WO2012122892A1 - Off-line cleaning and repairing method for different fouling of waste reverse osmosis membrane - Google Patents

Off-line cleaning and repairing method for different fouling of waste reverse osmosis membrane Download PDF

Info

Publication number
WO2012122892A1
WO2012122892A1 PCT/CN2012/071724 CN2012071724W WO2012122892A1 WO 2012122892 A1 WO2012122892 A1 WO 2012122892A1 CN 2012071724 W CN2012071724 W CN 2012071724W WO 2012122892 A1 WO2012122892 A1 WO 2012122892A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
reverse osmosis
inlet
water
osmosis membrane
Prior art date
Application number
PCT/CN2012/071724
Other languages
French (fr)
Chinese (zh)
Inventor
邓茂林
谭鸿波
朱仲强
Original Assignee
四川科伦药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川科伦药业股份有限公司 filed Critical 四川科伦药业股份有限公司
Publication of WO2012122892A1 publication Critical patent/WO2012122892A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/025Removal of membrane elements before washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/162Use of acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/164Use of bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/40Automatic control of cleaning processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

An off-line cleaning and repairing method for waste reverse osmosis membrane comprises the following steps: (1) analyzing the components of the fouling of the waste reverse osmosis membrane; (2) cleaning or repairing the membrane using acid or basic cleaning reagent and repairing reagent for different membrane fouling by using waste reverse osmosis cleaning and repairing equipment according to the analysis result; (3) continuously measuring the correlated parameter of the membrane performance in the chemic cleaning and repairing process. The parameters of the membrane cleaned and repaired by the method approaches those of the new membrane, the repairing ratio of the membrane is greatly increased and the pertinence of the method is improved, meanwhile the chemic damage by the existing cleaning methods is avoided.

Description

说 明 书 针对不同的废旧反渗透膜的膜垢进行的离线式清洗、 修复的方法 技术领域  Description of the method for off-line cleaning and repair of membrane fouling of different waste reverse osmosis membranes
本发明涉及一种废旧反渗透膜在离线状态下的清洗、 修复方法。  The invention relates to a method for cleaning and repairing a waste reverse osmosis membrane in an off-line state.
背景技术 Background technique
目前在各个领域 (食品、 制药、 电力、 自来水等) 的纯化水制备均采用了反渗透技术, 反渗透膜为反 渗透系统的核心, 其工作性能的优良与否直接影响反渗透系统的性能。  At present, reverse osmosis technology is adopted for the preparation of purified water in various fields (food, pharmaceutical, electric power, tap water, etc.). The reverse osmosis membrane is the core of the reverse osmosis system, and its excellent performance directly affects the performance of the reverse osmosis system.
反渗透系统运行一段时间后, 膜表面会生成难溶的菌层、 金属垢、 硅垢及其它有机、 无机污染物, 造 成反渗透系统进口压力增加、 产水量降低、 产水电导率上升, 影响产水水质, 反渗透膜消耗极高。  After the reverse osmosis system is operated for a period of time, the surface of the membrane will form insoluble bacteria layer, metal scale, silicon scale and other organic and inorganic pollutants, which will increase the inlet pressure of the reverse osmosis system, decrease the water production, and increase the conductivity of the water. Water quality, reverse osmosis membrane consumption is extremely high.
依照目前的技术, 对废旧反渗透膜大部分采用在线的简单清洗技术, 而此种方式对于多根膜管内的多 只膜会造成一只堵塞就必须对所有膜 (包括仍旧正常的膜) 进行化学清洗, 对功能还好的膜产生不必要的 化学损害, 现有技术未对不同的结垢情况和水质进行专业分析, 也没有针对不同的垢类进行专业的化学分 析, 给出专用配方, 这将造成一种较为粗犷的膜清洗方式, 清洗后效果很难保证。  According to the current technology, most of the waste reverse osmosis membranes are treated with simple online cleaning technology. In this way, for a plurality of membranes in a plurality of membrane tubes, a membrane blockage must be performed on all membranes (including still normal membranes). Chemical cleaning, which produces unnecessary chemical damage to the membrane with good function. The prior art does not conduct professional analysis on different scaling conditions and water quality, nor does it conduct professional chemical analysis for different scales, giving a special formula. This will result in a rougher film cleaning method, which is difficult to guarantee after cleaning.
在对废旧反渗透膜及膜垢分析的基础上发现, 反渗透膜的除盐性能下降比较严重, 反渗透膜可能有穿 Based on the analysis of waste reverse osmosis membrane and membrane scale, it is found that the desalination performance of reverse osmosis membrane is seriously degraded, and the reverse osmosis membrane may be worn.
? L现象, 对反渗透膜表面进行了化学修复, 以达到大幅度提高膜除盐性能的要求。 目前现有技术没有涉及 损伤膜的修复方法, 此处研究尚为空白。 ? L phenomenon, the surface of the reverse osmosis membrane was chemically repaired to achieve a significant increase in membrane desalination performance requirements. At present, the prior art does not involve a repair method for a damaged membrane, and the research here is still blank.
发明内容 Summary of the invention
本发明目的在于公开了一种针对不同的结垢情况和水质进行专业分析后得出的有针对性的废旧反渗 透膜离线式清洗修复的方法。  The object of the present invention is to disclose a targeted off-line cleaning and repairing method for a waste reverse osmosis membrane obtained by professional analysis of different fouling conditions and water quality.
本发明目的是通过如下方案实现的:  The object of the present invention is achieved by the following scheme:
针对不同的废旧反渗透膜的膜垢进行的离线式清洗、 修复的试剂进行离线式清洗、 修复的方法, 它包 括如下步骤:  A method for off-line cleaning and repair of off-line cleaning and repairing reagents for different waste reverse osmosis membrane scales, which comprises the following steps:
( 1 )对废旧反渗透膜的膜垢成分分析, 步骤为: 首先采集废旧反渗透膜表面的截留物样品, 分别用 化学分析法、 扫描电镜 (SEM)分析、 X衍射仪鉴定分析截留物样品, 对废旧反渗透膜内形成的垢类进行表 征与分析, 确认污染类型为硅酸盐、 碳酸盐和 /或铁氧化物; 其次对不同污染类型的膜垢经过三种化学方 法的分析和测定, 得出废旧反渗透膜的膜垢成分组成; 最后在不能进行化学分析时, 利用 SDI仪的测试反 渗透膜片上残留物的颜色、 密度, 判断污垢分类, 最终得出废旧反渗透膜的膜垢成分分析结果;  (1) Analysis of the scale component of the waste reverse osmosis membrane, the steps are as follows: First, the sample of the retentate on the surface of the waste reverse osmosis membrane is collected, and the sample of the retentate is identified by chemical analysis, scanning electron microscopy (SEM) analysis and X-ray diffractometer respectively. Characterizing and analyzing the scale formed in the waste reverse osmosis membrane, confirming that the pollution type is silicate, carbonate and/or iron oxide; secondly, the membrane scale of different pollution types is analyzed by three chemical methods and Determination, the composition of the scale component of the waste reverse osmosis membrane is obtained; finally, when the chemical analysis cannot be performed, the color and density of the residue on the reverse osmosis membrane are tested by the SDI meter to judge the classification of the dirt, and finally the waste reverse osmosis membrane is obtained. Membrane composition analysis results;
( 2 )根据废旧反渗透膜的膜垢成分分析结果, 利用废旧反渗透膜清洗、 修复设备(见图 8 ), 使用针 对上述不同的膜垢的本发明废旧反渗透膜清洗剂和修复剂, 在液体流速 10米 I秒条件下进行高速清洗, 在压力 5Mpa条件下进行修复;  (2) According to the results of the analysis of the scale component of the waste reverse osmosis membrane, using the waste reverse osmosis membrane cleaning and repairing equipment (see Fig. 8), using the waste reverse osmosis membrane cleaning agent and the repairing agent of the present invention for the above different membrane scales, High-speed cleaning at a liquid flow rate of 10 m I seconds, and repairing under a pressure of 5 Mpa;
( 3 ) 测定在化学清洗、 化学修复过程中膜性能的相关参数, 测定条件为: 介质为电导率在 450-550 y s / cm的自来水, 测定压力为 1. 5MPa, 测定温度为自来水水温即常温, 清洗修复至达到合格标准: 除盐 说 明 书 (3) Determination of the relevant parameters of the membrane performance in the chemical cleaning, chemical repair process, the measurement conditions are: the medium is tap water with a conductivity of 450-550 ys / cm, the measured pressure is 1. 5MPa, the measured temperature is the tap water temperature is normal temperature , cleaning and repair to meet the eligibility criteria: desalting Description
率达到 85. 0 %以上, 水回收率达到 12%以上, 压差低于 0. 2MPa。 2MPa。 The rate of water is more than 15%, the water recovery rate is more than 12%, the pressure difference is less than 0. 2MPa.
其中, 所述利用 SDI仪的测试反渗透膜片上残留物的颜色、 密度, 判断污垢分类为: 褐色残留物是铁 污垢; 白色残留物是硅、 砂质粘土、 钙垢; 晶状体外形是无机胶体、 钙垢; 从气味和污染物的形态为粘稠 状判断, 还含有生物污垢或者有机污垢。  Wherein, the color and density of the residue on the reverse osmosis membrane tested by the SDI meter are classified as: the brown residue is iron scale; the white residue is silicon, sandy clay, calcium scale; the lens shape is inorganic Colloid, calcium scale; Judging from the odor and the shape of the contaminant, it also contains bio- or organic dirt.
其中, 所述的的膜性能相关参数, 包括除盐率, 水回收率, 压差, 计算方法为除盐率 = (Ei-Eo) / Ei, 水回收率 =Vo / Vi, 压差 =Pi-p0, 其中, Ei-反渗透膜的进水电导率; Eo-反渗透膜的淡水电导率; Vo-反渗 透膜的淡水流量; Vi-反渗透膜的进水流量; Pi-反渗透膜的进水入口压力; Po-反渗透膜的浓水出口压力。 Wherein, the membrane performance related parameters, including salt removal rate, water recovery rate, pressure difference, calculation method is salt removal rate = (Ei-Eo) / Ei, water recovery rate = Vo / Vi , pressure difference = Pi -p 0 , wherein, the conductivity of the water in the Ei-reverse osmosis membrane; the fresh water conductivity of the Eo-reverse osmosis membrane; the fresh water flow rate of the Vo-reverse osmosis membrane; the influent flow rate of the Vi-reverse osmosis membrane; Pi-reverse osmosis The inlet inlet pressure of the membrane; the concentrated outlet pressure of the Po-reverse osmosis membrane.
其中, 所述的合格标准的确定方法为:  Wherein, the method for determining the eligibility criteria is:
( 1 ) 在清洗修复过程中, 在介质为电导率在 450-550 w s / cm的自来水, 测定压力为 1. 5MPa, 测定 温度为自来水水温即常温条件下, 分别测定新反渗透膜和废旧反渗透膜的各项性能参数;  (1) In the cleaning and repairing process, in the tap water having a conductivity of 450-550 ws / cm, the measured pressure is 1. 5MPa, and the measured temperature is the tap water temperature, that is, the normal temperature condition, respectively, and the new reverse osmosis membrane and the waste anti-separation are respectively determined. Various performance parameters of the permeable membrane;
( 2 )对测量得到的各项参数进行比较, 差别主要有: ①压差升高, 新反渗透膜的压差为 0. IMPa, 而 废旧反渗透膜的初始压差都远高于 0. 2MPa; ②水回收率下降, 新反渗透膜的水回收率为 15 %, 而废旧反 渗透膜的水回收率为 10% ; ③除盐率下降; 新膜除盐率一般大于 99 % , 而废旧反渗透膜的除盐率下降很 多, 一般低于 80% ;  (2) Comparing the measured parameters, the main differences are as follows: 1 The pressure difference is increased, the pressure difference of the new reverse osmosis membrane is 0. IMPa, and the initial pressure difference of the waste reverse osmosis membrane is much higher than 0. 2MPa; 2 water recovery rate decreases, the water recovery rate of the new reverse osmosis membrane is 15%, and the water recovery rate of the waste reverse osmosis membrane is 10%; 3 the salt removal rate decreases; the new membrane salt removal rate is generally greater than 99%, The demineralization rate of waste reverse osmosis membranes decreases a lot, generally less than 80%;
( 3 ) 针对各种不同的垢类分别进行清洗, 在同样的测试条件下进行各项参数的测量;  (3) Washing separately for various scales, and measuring various parameters under the same test conditions;
( 4)对比清洗后的废旧反渗透膜与新的反渗透膜的性能, 并对各个参数进行划界, 直到达到两者的 性能相当, 确立了本发明废旧反渗透膜清洗修复的合格标准: 除盐率达到 85. 0 %以上, 水回收率达到 12 %以上, 压差低于 0. 2MPa。  (4) Comparing the performance of the cleaned reverse osmosis membrane with the new reverse osmosis membrane, and demarcating each parameter until the performance of the two is equivalent, the qualification criteria for the cleaning and repair of the waste reverse osmosis membrane of the present invention are established: 2MPa。 The water removal rate of more than 0. 2MPa.
其中, 所述废旧反渗透膜清洗、 修复设备可以是如下结构见说明书附图 8:  Wherein, the waste reverse osmosis membrane cleaning and repairing device may be as follows:
该设备主要由阔门、流量计、 电导率仪、压力表和进水仪 pH、加压泵 P和精密过滤器 PP1和 PP2组成, 所述阀门由滤芯排空陶 V0、 自来水阀 VI、 自来水入口 l V2、 自来水出口 | V3、 酸性洗剂进水 l V4、 碱性 洗剂进水阀 V5、 修复剂进水闽 V6、 总进水阀 V7、 旧膜进水阔 V8、 旧膜浓水出口闽 V9、 旧膜短路阀 V10、 制纯水 -新膜进水阀 VI I、 旧膜淡水出口阀 V12、 新膜进水 f« V13、 新膜浓水出口岡 V14、 新膜短路阀 V15、 淡水排放阀 V16、 浓水排放阀 V17、 修复剂浓水回流阀 V18、 修复剂淡水回流阀 V19、 碱洗浓水回流阀 V20、 碱洗淡水回流 W V21、 酸洗淡水回流阀 V22、 酸洗浓水回流阀 V23、 浓水止逆阀 V24、 V25、 V26、 V27、 废 液排放阔 V28组成; 所述流量计由旧膜进水流量计 Fl、 新膜进水流量计 F2、 旧膜淡水流量计 F3和新膜淡 7J流量计 F4组成; 所述电导率仪由旧膜进水电导率仪 El、 新膜进水电导率仪 E2和旧膜淡水电导率仪 E3 组成; 所述压力表由进水总压力表 Pl、 新膜进水压力表 P2和新膜出口压力表 P3组成;  The device is mainly composed of a wide door, a flow meter, a conductivity meter, a pressure gauge and a water inlet pH, a pressure pump P and a precision filter PP1 and PP2, which are emptied by a filter core V0, a water valve VI, and a tap water. Inlet l V2, tap water outlet | V3, acid lotion influx l V4, alkaline lotion inlet valve V5, repair agent inlet 闽V6, total inlet valve V7, old membrane inlet V8, old membrane concentrated water Exit 闽V9, old membrane short-circuit valve V10, pure water-new membrane inlet valve VI I, old membrane fresh water outlet valve V12, new membrane inlet water f« V13, new membrane concentrated water outlet Gang V14, new membrane short-circuit valve V15 , fresh water discharge valve V16, concentrated water discharge valve V17, repair agent concentrated water return valve V18, repair agent fresh water return valve V19, alkali washed concentrated water return valve V20, alkaline washed fresh water return W V21, pickled fresh water return valve V22, acid The concentrated water return valve V23, the concentrated water check valve V24, V25, V26, V27, and the waste liquid discharge wide V28; the flow meter consists of the old membrane inlet flow meter Fl, the new membrane inlet flow meter F2, the old membrane Fresh water flow meter F3 and new membrane light 7J flow meter F4; the conductivity It consists of old membrane water conductivity meter El, new membrane water conductivity meter E2 and old membrane fresh water conductivity meter E3; the pressure gauge consists of inlet water total pressure gauge Pl, new membrane inlet water pressure gauge P2 and new membrane Export pressure gauge P3;
精密过滤器 PP1入口通过自来水阀 Π与市政自来水管连接, 出口通过自来水入口阀 V2与自来水箱 1 进口连接, 自来水箱 1、 酸洗箱 2、 碱洗箱 3、 修复剂箱 4出口分别通过自来水出口 | V3、 酸性洗剂进水 阀 V4、 碱性洗剂进水阀 V5、 修复剂进水阀 V6与加压泵 5入水口相连, 中间串接旧膜进水电导率仪 El、 进 说 明 书 The inlet of the precision filter PP1 is connected to the municipal water pipe through the tap water valve, and the outlet is connected to the inlet of the water tank 1 through the tap water inlet valve V2. The tap water tank 1, the pickling tank 2, the caustic washing tank 3, and the repairing tank 4 outlet respectively pass through the tap water. Export | V3, acid detergent inlet valve V4, alkaline detergent inlet valve V5, repair agent inlet valve V6 and pressure pump 5 inlet, intermediate connection of old membrane inlet conductivity meter El, into Description
水仪 pH、 加压泵 5的出口通过总进水阔 V7、 旧膜进水阀 V8、 旧膜进水流量计 F1与废旧 R0膜 6进口相连, 同时通过旧膜短路阀 V10、 新膜进水流量计 F2、 新膜进水阀 V13与新膜 7进口相连, 中间串接新膜进水压 力表 P2、 新膜进水电导率仪 E2、 废旧 R0膜 6浓水出口通过旧膜浓水出口闽 V9、 新膜进水流量计 F2、 新 膜进水 l V13与新膜 7进口相连, 中间串接新膜进水压力表 P2、 新膜进水电导率仪 E2, 同时通过新膜短 路阀 V15与 PP2精密过滤器入口相连, 废旧 R0膜淡水出口通过旧膜淡水出口阀 V12、 旧膜淡水流量计 F3、 修复剂淡水回流阀 V19、 碱洗淡水回流阀 V21、 酸洗淡水回流阀 V22分别与修复剂箱 4、 碱洗箱 3、 酸洗箱 2进口相连, 中间串接旧膜淡水电导率仪 E3, 末端接淡水排放阔 V16, 同时通过制纯水 -新膜进水阔 VI I与 新膜 7进口相连, 新 R0膜 7浓水出口通过新膜浓水出口陶 V14、浓水止逆阀 V24与精密过滤器 PP2入口相 连, 中间串接新膜出口压力表 P3, 新 R0膜 7淡水出口通过新膜淡水流量计 F4、 修复剂淡水侧回流阀 V19、 碱洗淡水回流 l V21、 酸洗淡水回流阀 V22分别与修复剂箱 4、 碱洗箱 3、 酸洗箱 2进口相连, 末端接淡水 排放阀 V16, PP2精密过滤器出口通过修复剂浓水回流阔 V18、 碱洗浓水回流阀 V20、 酸洗浓水回流阀 V23 分别与修复剂箱 4、 碱洗箱 3、 酸洗箱 2进口相连, 末端接浓水排放 l V17。 The water meter pH, the outlet of the pressure pump 5 is connected to the inlet of the waste R0 membrane 6 through the total inlet water V7, the old membrane inlet valve V8, the old membrane inlet flow meter F1, and the old membrane short-circuit valve V10, the new membrane. Water flow meter F2, new membrane inlet valve V13 is connected with the inlet of new membrane 7, the middle of the new membrane inlet pressure gauge P2, the new membrane inlet conductivity meter E2, the waste R0 membrane 6 concentrated water outlet through the old membrane concentrated water Export 闽V9, new membrane inlet flowmeter F2, new membrane inlet water l V13 is connected with the inlet of new membrane 7, the middle membrane is connected with new membrane inlet pressure gauge P2, new membrane inlet conductivity meter E2, and short circuit through new membrane Valve V15 is connected to PP2 precision filter inlet, waste R0 membrane fresh water outlet through old membrane fresh water outlet valve V12, old membrane fresh water flowmeter F3, repairing fresh water return valve V19, alkaline washing fresh water return valve V21, pickling fresh water return valve V22 It is connected with the repair agent tank 4, the alkali washing tank 3, the pickling tank 2 inlet, the old membrane fresh water conductivity meter E3, the end of the fresh water discharge V16, and the pure water-new membrane water inlet VI I Connected to the inlet of the new membrane 7, the new R0 membrane 7 is concentrated Through the new membrane concentrated water outlet pottery V14, concentrated water check valve V24 and the precision filter PP2 inlet, the middle of the new membrane outlet pressure gauge P3, the new R0 membrane 7 fresh water outlet through the new membrane freshwater flowmeter F4, repair agent fresh water The side return valve V19, the alkaline washed fresh water reflux l V21, and the pickled fresh water return valve V22 are respectively connected with the repair agent tank 4, the alkali washing tank 3, the pickling tank 2 inlet, and the end is connected with the fresh water discharge valve V16, and the PP2 precision filter outlet is passed. The repairing agent concentrated water returning V18, alkali washing concentrated water return valve V20, pickling concentrated water return valve V23 are respectively connected with the repairing agent tank 4, the alkali washing tank 3, the pickling tank 2 inlet, and the end is connected with concentrated water to discharge l V17.
本发明公开的废旧反渗透膜离线式清洗修复方法和试剂, 对不同种类的反渗透膜垢类进行针对性的清 洗修复,解决了原粗犷式清洗方式造成的清洗不彻底的问题,并开创性地研发了损伤膜的修复试剂和方法, 填补了国内在此方面的空白。该方法及试剂清洗修复得到的膜的各项参数更接近新膜,膜修复率大大增强, 针对性更高, 同时避免了现有清洗方法中对完好膜化学损伤的弊端。 本发明的离线清洗修复废旧反渗透膜 的方法和试剂, 能够保证膜清洗后的性能达到或接近新膜, 大大降低了企业膜消耗成本, 保证了生产和膜 清洗互不影响, 杜绝了在线化学清洗对正常膜的损伤。  The invention discloses an off-line cleaning and repairing method and reagent for waste reverse osmosis membrane, and performs targeted cleaning and repairing on different kinds of reverse osmosis membrane scales, and solves the problem of incomplete cleaning caused by the original rough cleaning method, and is groundbreaking. The research and development of repairing reagents and methods for damaged membranes have filled the domestic gap in this respect. The parameters of the membrane obtained by the method and the reagent cleaning and repairing are closer to the new membrane, the membrane repair rate is greatly enhanced, the pertinence is higher, and the disadvantages of the chemical damage of the intact membrane in the existing cleaning method are avoided. The method and the reagent for cleaning and repairing the waste reverse osmosis membrane of the invention can ensure the performance of the membrane after cleaning is close to or close to the new membrane, greatly reducing the cost of the membrane consumption of the enterprise, ensuring that the production and membrane cleaning do not affect each other, and eliminate the online chemistry. Wash damage to normal membranes.
各种金属离子对修复剂 MXFJ-400的性能的影响  Effect of various metal ions on the performance of repair agent MXFJ-400
( 1 ) 对用 MXFJ-400修复废旧反渗透膜前后的溶液进行紫外表征  (1) UV characterization of solutions before and after repairing used reverse osmosis membranes with MXFJ-400
对用 MXFJ-400修复废旧反渗透膜前后的溶液进行紫外表征, 结果如图 3。从紫外光谱图可以看出, 修 复废旧反渗透膜前 MXFJ-400在 213nm和 272nm处存在两个最大吸收峰, 并且 213皿处吸收峰比 272nm处 吸收峰高;修复废旧反渗透膜后剩余的 MXFJ-400溶液在 213ηιη和 272nm处也存在最大吸收峰,但其在 213nm 处的紫外吸收变小, 在 272ηιη处的紫外吸收变大。 后在 MXFJ-400水溶液中加入一些常见的金属离子, 以 考察常见金属离子对 MXFJ-400的影响。  The solution before and after repairing the waste reverse osmosis membrane with MXFJ-400 was subjected to UV characterization, and the results are shown in Fig. 3. It can be seen from the ultraviolet spectrum that the MXFJ-400 has two maximum absorption peaks at 213 nm and 272 nm before repairing the waste reverse osmosis membrane, and the absorption peak at 213 is higher than the absorption peak at 272 nm; the remaining after repairing the waste reverse osmosis membrane The MXFJ-400 solution also had a maximum absorption peak at 213 ηηη and 272 nm, but its ultraviolet absorption at 213 nm became small, and the ultraviolet absorption at 272 ηηη became large. Some common metal ions were added to the MXFJ-400 aqueous solution to investigate the effect of common metal ions on the MXFJ-400.
( 2 ) 考察各种离子对修复剂 MXFJ-400的影响  (2) Investigate the effects of various ions on the repair agent MXFJ-400
Fe 3+对 MXFJ-400的影响 在 MXFJ-400 水溶液中加入 Fe 3+, 发现原来无色透明的 MXFJ-400 水溶液变褐色。 对加入不同量的 MXFJ-400溶液进行紫外光谱扫描, 如图 4所示, 从光谱图可以看出, 加入 Fe 3+之后 MXFJ-400紫外吸收峰 发生明显的红移, 并且在 213皿和 272mn处的紫外吸收大幅度减少; 这说明 MXFJ-400对 Fe 3+具有很强的 说 明 书 螯合作用, 如果膜表面含有大量的 Fe 3+的, 会导致化学修复时 MXFJ-400的有效浓度急剧降低, 导致其修 复能力下降。 所以在对废旧反渗透膜修复过程中, 需要将膜表面的铁垢彻底清洗, 配制修复液的水也要进 行除 Fe 3+处理。 Effect of Fe 3+ on MXFJ-400 Fe 3+ was added to MXFJ-400 aqueous solution, and it was found that the original colorless and transparent MXFJ-400 aqueous solution turned brown. Ultraviolet spectroscopy was performed on different amounts of MXFJ-400 solution. As shown in Fig. 4, it can be seen from the spectrogram that the UV absorption peak of MXFJ-400 was significantly red-shifted after adding Fe 3+ , and in 213 dishes and 272 mn. The UV absorption at the site is greatly reduced; this shows that MXFJ-400 has a strong Fe 3+ If the film surface contains a large amount of Fe 3+ , the effective concentration of MXFJ-400 will be drastically reduced during chemical repair, resulting in a decrease in its repair ability. Therefore, in the process of repairing the waste reverse osmosis membrane, it is necessary to thoroughly clean the iron scale on the surface of the membrane, and the water for preparing the repair solution is also subjected to the treatment of Fe 3+ .
Al 3+对 MXFJ-400的影响 在 中加入 Al 3+,对该混合液进行紫外光谱扫描。结果如图 5所示。从图中可以看出在 MXFJ-400 中加入 Al 3+之后紫外最大吸收峰发生了显著红移,同时 213nm和 272皿处的紫外吸收降低。这说明 MXFJ-400 对 Al 3+有螯合作用。 Al 3+存在也会使得 MXFJ-400的有效浓度下降。 因此, 配制 MXFJ-400的水需进行除 Al 3+处理, 废旧反渗透膜表面的 A1垢也需要在清洗前彻底除去。 The effect of Al 3+ on MXFJ-400 was added to Al 3+ , and the mixture was subjected to ultraviolet spectrum scanning. The result is shown in Figure 5. It can be seen from the figure that after the addition of Al 3+ to MXFJ-400, the maximum absorption peak of ultraviolet light is significantly red-shifted, while the ultraviolet absorption at 213 nm and 272 dishes is lowered. This indicates that MXFJ-400 has a chelation effect on Al 3+ . The presence of Al 3+ also causes the effective concentration of MXFJ-400 to decrease. Therefore, the water prepared for MXFJ-400 needs to be treated with Al 3+ , and the A1 scale on the surface of the waste reverse osmosis membrane needs to be completely removed before cleaning.
Ca 2+对 MXFJ-400的影响 在 MXFJ-400水溶液中加入 Ca 2+,对混合溶液进行紫外光谱扫描, 结果如图 6所示。从图中可以看出, 在 MXFJ-400中加入 Ca 2+后没有发生紫外吸收峰的红移, 同时 213nm和 272nm处的紫外吸收强度也基本保 持不变。 这说明 Ca 2+对 MXFJ-400影响不大, 配制 MXFJ-400时可以不考虑 Ca 2+的影响。 Effect of Ca 2+ on MXFJ-400 Ca 2+ was added to MXFJ-400 aqueous solution, and the mixed solution was subjected to ultraviolet spectrum scanning. The results are shown in Fig. 6. It can be seen from the figure that the red absorption of the ultraviolet absorption peak does not occur after the addition of Ca 2+ in MXFJ-400, and the ultraviolet absorption intensity at 213 nm and 272 nm remains substantially unchanged. This indicates that Ca 2+ has little effect on MXFJ-400, and the influence of Ca 2+ can be ignored when formulating MXFJ-400.
Zn 2+对 MXFJ-400的影响 在 MXFJ-400水溶液中加入 Zn 2+,对混合溶液进行紫外光谱扫描, 结果如图 7所示。从图中可以看出, 加入 Zn 2+后, MXFJ-400的最大吸收峰没有发生变化。 另外, MXFJ-400的在 213皿和 272nm处的紫外吸收 均增强。这说明 Zn 2+对 MXFJ-400有增效作用, Zn 2+在一定程度上对 MXFJ-400进行了激活,使得 MXFJ-400 的有效浓度得到了提高。 于是, 在废旧反渗透的修复过程中可以加入 Zn 2+以提高 MXFJ-400的修复能力。 Effect of Zn 2+ on MXFJ-400 Zn 2+ was added to MXFJ-400 aqueous solution, and the mixed solution was subjected to ultraviolet spectrum scanning. The results are shown in Fig. 7. It can be seen from the figure that the maximum absorption peak of MXFJ-400 does not change after the addition of Zn 2+ . In addition, MXFJ-400 has enhanced UV absorption at 213 and 272 nm. This indicates that Zn 2+ has synergistic effect on MXFJ-400, and Zn 2+ activates MXFJ-400 to a certain extent, so that the effective concentration of MXFJ-400 is improved. Therefore, Zn 2+ can be added during the repair of waste reverse osmosis to improve the repairing ability of MXFJ-400.
本发明通过对修复剂 MXFJ-400的性能研究, 在使用其对废旧反渗透膜进行修复时, 需要将膜表面的 Fe和 A1垢类先进行去除, 同时配制修复剂的溶剂也需要除去其中的 Fe 3+和 A1 3+, Ca 2+对修复剂影响不 大, Zn 2+可以增加修复剂的能力, 在进行反渗透膜修复吋可在修复剂中加入 Zn 2+The invention studies the performance of the repairing agent MXFJ-400, and when using the same to repair the waste reverse osmosis membrane, the Fe and A1 scales on the surface of the membrane need to be removed first, and the solvent for preparing the repairing agent also needs to be removed. Fe 3+ and A1 3+, Ca 2+ has little influence on the repair agent, can increase the ability of Zn 2+ repair agent, during the reverse osmosis membrane repair inch Zn 2+ may be added to the repair agent.
附图说明 DRAWINGS
图 1.膜垢晶体结构形貌放大 1000倍图;  Figure 1. Magnification of the crystal structure of the membrane scale 1000 times;
图 2.膜垢晶体结构形貌放大 5000倍图;  Figure 2. Magnification of the crystal structure of the membrane scale 5000 times;
图 3. MXFJ-400修复反渗透膜前后紫外光谱图;  Figure 3. UV spectrum of the MXFJ-400 before and after repairing the reverse osmosis membrane;
图 4. MXFJ-400中加入 Fe 3+后紫外光谱图; 说 明 书 图 5. MXFJ-400中加入 Al 3+后紫外光谱图; 图 6. MXFJ-400中加入 Ca 2+后紫外光谱图; 图 7. MXFJ-400中加入 Zn 2+后紫外光谱图; Figure 4. Ultraviolet spectrum of Fe 3+ added to MXFJ-400; Figure 5. Ultraviolet spectrum of Al 3+ added to MXFJ-400; Figure 6. Ultraviolet spectrum of Ca 2+ added to MXFJ-400; Figure 7. Ultraviolet spectrum of Zn 2+ added to MXFJ-400;
图 8.废旧反渗透膜清洗、 修复设备的结构图;  Figure 8. Structure diagram of the waste reverse osmosis membrane cleaning and repair equipment;
图中: 滤芯排空阀 V0、 自来水阀 VI、 自来水入口阀 V2、 自来水出口阀 V3、 酸性洗剂进水阀 V4、 碱性 洗剂进水阀 V5、 修复剂进水阀 V6、 总进水阀 V7、 旧膜进水阔 V8、 旧膜浓水出口阔 V9、 旧膜短路阀 V10、 制纯水 -新膜进水阀 VI I、 旧膜淡水出口阀 V12、 新膜进水阔 V13、 新膜浓水出口 | V14、 新膜短路 | V15、 淡水排放阀 V16、 浓水排放阀 V17、 修复剂浓水回流阀 V18、 修复剂淡水回流阀 V19、 碱洗浓水回流闽 V20、 碱洗淡水回流阔 V21、 酸洗淡水回流阀 V22、 酸洗浓水回流阅 V23、 浓水止逆阀 V24、 V25、 V26、 V27、 废 液排放阀 V28、 旧膜进水流量计 Fl、 新膜进水流量计 F2、 旧膜淡水流量计 F3、 新膜淡水流量计 F4、 旧膜 进水电导率仪 El、 新膜进水电导率仪 E2、 旧膜淡水电导率仪 E3、 进水仪 pH、 加压泵 P、 进水总压力表 Pl、 新膜进水压力表 P2、 新膜出口压力表 P3、 精密过滤器 PP1和 PP2、 自来水箱 1、 酸洗箱 2、 碱洗箱 3、 修 复剂箱 4。  In the figure: filter vent valve V0, water valve VI, tap water inlet valve V2, tap water outlet valve V3, acid detergent inlet valve V4, alkaline detergent inlet valve V5, repair fluid inlet valve V6, total water Valve V7, old membrane inlet water V8, old membrane concentrated water outlet V9, old membrane short-circuit valve V10, pure water-new membrane inlet valve VI I, old membrane freshwater outlet valve V12, new membrane inlet water V13, New membrane concentrated water outlet | V14, new membrane short circuit | V15, fresh water discharge valve V16, concentrated water discharge valve V17, repair agent concentrated water return valve V18, repair agent fresh water return valve V19, alkali washed concentrated water reflux 闽V20, alkaline washing Fresh water return V21, pickled fresh water return valve V22, pickled concentrated water return V23, concentrated water check valve V24, V25, V26, V27, waste liquid discharge valve V28, old membrane inlet flow meter Fl, new membrane Water flow meter F2, old film fresh water flow meter F3, new membrane fresh water flow meter F4, old membrane water conductivity meter El, new membrane water conductivity meter E2, old membrane fresh water conductivity meter E3, water meter pH, Pressure pump P, water inlet pressure gauge Pl, new membrane inlet pressure gauge P2, new P3 outlet pressure gauge, precision filter PP1 and PP2, a water tank, tank 2 pickling, alkaline cleaning tank 3, 4 agent tank repair.
具体实施方式 detailed description
实施例 1 : Example 1
( 1 )对日东电工株式会社生产的型号为 CPA3-8080的 25号废旧反渗透膜进行膜垢成分分析,步骤为: 首先采集废旧反渗透膜表面的截留物样品, 分别用化学分析法、 扫描电镜 (SEM)、 X衍射仪鉴定截留物样 品, 膜垢晶体结构形貌如图 1和图 2。 对废旧反渗透膜内形成的垢类进行表征与分析, 确认污染类型为硅 酸盐和 /或碳酸盐; 其次对不同污染类型的膜垢经过三种化学方法的分析和测定, 得出废旧反渗透膜的膜 垢成分组成; 最后在不能进行化学分析时, 利用 SDI仪的测试反渗透膜片上残留物的颜色、 密度, 判断污 垢分类, 白色残留物是硅、 砂质粘土、 钙垢; 晶状体外形是无机胶体、 钙垢; 最终得出废旧反渗透膜的膜 垢成分分析结果为膜垢主要成分为 Si02, 还含有伊利石、 云母石和斜绿泥石, 主要由 Si、 K、 Ca、 Mg、 Al 元素构成; (1) The scale component analysis of No. 25 waste reverse osmosis membrane of model CPA3-8080 produced by Nitto Denko Co., Ltd. is as follows: First, the sample of the retentate on the surface of the waste reverse osmosis membrane is collected, respectively, by chemical analysis method, Scanning electron microscopy (SEM) and X-ray diffractometry were used to identify the retentate samples. The crystal structure of the scale was shown in Fig. 1 and Fig. 2. Characterize and analyze the scale formed in the waste reverse osmosis membrane, confirm that the pollution type is silicate and/or carbonate; secondly, the membrane scale of different pollution types is analyzed and measured by three chemical methods, and the waste is obtained. The composition of the scale component of the reverse osmosis membrane; Finally, when the chemical analysis cannot be performed, the color and density of the residue on the reverse osmosis membrane are measured by the SDI meter to determine the classification of the dirt. The white residue is silicon, sandy clay, and calcium scale. The shape of the lens is inorganic colloid and calcium scale. The result of the analysis of the scale composition of the waste reverse osmosis membrane is that the main component of the membrane scale is Si0 2 , and also contains illite, mica stone and oblique chlorite, mainly composed of Si, K, Ca, Mg, Al elements;
( 2 ) 根据废旧反渗透膜的膜垢成分分析结果, 利用说明书附图 8所示的废旧反渗透膜清洗、 修复设 备, 使用针对不同的膜垢的本发明清洗剂和修复剂进行, 在液体流速 10米 /秒条件下进行高速清洗, 在 压力 1. 5Mpa条件下进行修复;  (2) According to the results of the analysis of the scale component of the waste reverse osmosis membrane, using the waste reverse osmosis membrane cleaning and repairing equipment shown in Fig. 8 of the specification, using the cleaning agent and the repairing agent of the present invention for different membrane scales, in the liquid The high-speed cleaning is carried out at a flow rate of 10 m / sec, and repaired under a pressure of 1.5 Mpa;
( 3 ) 测定在化学清洗、 化学修复过程中膜性能的相关参数, 包括除盐率, 水回收率, 压差, 计算方 法为:  (3) Determine the relevant parameters of membrane performance during chemical cleaning and chemical repair, including salt removal rate, water recovery rate, and pressure difference. The calculation method is:
除盐率 = (Ei-Eo ) / Ei,  Demineralization rate = (Ei-Eo ) / Ei,
水回收 说 明 书 Water recycling Description
压差 =Pi - Po,  Pressure difference = Pi - Po,
其中, Ei-反渗透膜的进水电导率; Eo-反渗透膜的淡水电导率; Vo-反渗透膜的淡水流量; Vi-反渗透 膜的进水流量; Pi-反渗透膜的进水入口压力; Po-反渗透膜的浓水出口压力。  Among them, the influent conductivity of Ei-reverse osmosis membrane; the fresh water conductivity of Eo-reverse osmosis membrane; the fresh water flow of Vo-reverse osmosis membrane; the influent flow of Vi-reverse osmosis membrane; the influent of Pi-reverse osmosis membrane Inlet pressure; concentrated outlet pressure of the Po-reverse osmosis membrane.
测定条件为: 介质为电导率在 450-550 μ s I cm的自来水, 测定压力为 1.5MPa, 测定温度为自来水水 温即常温。  The measurement conditions are as follows: The medium is tap water having a conductivity of 450-550 μs 1 cm, and the measurement pressure is 1.5 MPa, and the measurement temperature is the tap water temperature, that is, normal temperature.
测量得到的各种参数如表 1。 清洗前该膜的初始压差为 1.25MPa, 膜已被堵死, 无法对其初始除盐性 能进行测定。 首先进行逆向冲洗, 膜的流路被开通。 随后, 使用配方一对其进行清洗, 其压差逐渐下降到 0.17MPa, 除盐率和水回收率分别为 71.9%和 11.4%。 后又对其进行配方三清洗, 主要为了清除膜表面的 有机物、 胶体、 及 Si02等。 清洗后除盐率下降到 69.9%, 水回收率上升到 19.2%, 压差下降到 0.15MPa。 经过多次配方一、 配方三反复清洗之后, 最后使用修复剂对其进行化学修复, 使除盐率为 86.9%, 水回收 率为 13.8%, 压差为 0.15ΜΡβο The various parameters obtained by measurement are shown in Table 1. The initial pressure difference of the membrane before washing was 1.25 MPa, and the membrane was blocked, and its initial desalination performance could not be determined. First, the reverse rinsing is performed, and the flow path of the membrane is opened. Subsequently, it was cleaned using Formulation 1, and the pressure difference was gradually decreased to 0.17 MPa, and the salt removal rate and water recovery rate were 71.9% and 11.4%, respectively. After that, it is cleaned by formula three, mainly to remove organic matter, colloid, and SiO 2 on the surface of the film. After washing, the salt removal rate dropped to 69.9%, the water recovery rate increased to 19.2%, and the pressure difference dropped to 0.15 MPa. After repeated cleaning of Formulation 1 and Formula 3, the repair agent was finally used for chemical repair to achieve a salt removal rate of 86.9%, a water recovery rate of 13.8%, and a pressure difference of 0.15 ΜΡβ.
表 1.25号膜清洗试剂及参数  Table No. 1.25 membrane cleaning reagents and parameters
Figure imgf000008_0001
Figure imgf000008_0001
废旧反渗透膜的清洗合格标准的测定方法为  The method for determining the eligibility criteria for the cleaning of used reverse osmosis membranes is
(1) 在清洗修复过程中, 在介质为电导率在 450-550μ s/cm的自来水, 测定压力为 1.5MPa, 测定 温度为自来水水温即常温条件下, 分别测定新反渗透膜和废旧反渗透膜的各项性能参数, 除盐率为 99.5 (1) During the cleaning and repairing process, in the tap water with a conductivity of 450-550μs/cm, the measured pressure is 1.5MPa, and the measured temperature is the tap water temperature, ie, the normal temperature condition, and the new reverse osmosis membrane and the waste reverse osmosis are respectively determined. The performance parameters of the membrane, the salt removal rate is 99.5
%, 淡水电导率 2.51 s cm—1, 水回收率 17.9%, 透水量为 40.3M3 d 1, 压差为 0.07MPa。 %, the fresh water conductivity is 2.51 s cm- 1 , the water recovery rate is 17.9%, the water permeability is 40.3M 3 d 1 , and the pressure difference is 0.07 MPa.
(2) 对测量得到的各项参数进行比较, 差别主要有: ①压差升高, 新反渗透膜的压差约为 0. IMPa, 而废旧反渗透膜的初始压差都远高于 0.2MPa; ②水回收率下降, 新反渗透膜的水回收率约为 15%左右, 而废 I日反渗透膜的水回收率远低于此值; ③除盐率下降。 新膜除盐率一般大于 99%, 而废旧反渗透膜的除 盐率下降很多。  (2) Comparing the measured parameters, the main differences are: 1 The pressure difference is increased, the pressure difference of the new reverse osmosis membrane is about 0. IMPa, and the initial pressure difference of the waste reverse osmosis membrane is much higher than 0.2. MPa; 2 water recovery rate decreases, the water recovery rate of the new reverse osmosis membrane is about 15%, and the water recovery rate of the reverse I membrane is much lower than this value; 3 the salt removal rate decreases. The salt removal rate of the new membrane is generally greater than 99%, while the salt removal rate of the waste reverse osmosis membrane is much lower.
(3) 针对各种不同的 类分别进行清洗, 在同样的测试条件下进行各项参数的测量。 说 明 书 (3) Washing is performed for each different type, and the parameters are measured under the same test conditions. Instruction manual
(4) 对比清洗后的废旧反渗透膜与新的反渗透膜的性能, 并对各个参数进行划界, 直到达到两者的 性能相当, 确立了废旧反渗透膜清洗的合格标准为: 除盐率达到 85.0%以上, 水回收率达到 12%以上, 压差低于 0.2MPa„  (4) Compare the performance of the cleaned reverse osmosis membrane with the new reverse osmosis membrane, and demarcate the parameters until the performance of the two is equivalent. The qualification criteria for the cleaning of the waste reverse osmosis membrane are as follows: The rate is above 85.0%, the water recovery rate is above 12%, and the pressure difference is less than 0.2MPa.
上述清洗修复后测得的各项参数均达到了清洗合格标准, 该废旧反渗透膜性能基本与新膜接近。 实施例 2:  All the parameters measured after the above cleaning and repair have reached the cleaning qualification standard, and the performance of the used reverse osmosis membrane is basically close to that of the new membrane. Example 2:
对陶氏化学公司生产的型号为 BW30-400的 5号废旧反渗透膜按照实施例 1的方法和步骤进行膜垢成 分分析, 首先确认污染类型为硅酸盐和 /或碳酸盐; 其次对不同污染类型的膜垢经过三种化学分析方法的 分析和测定, 得出废旧反渗透膜的膜垢成分组成; 最后在不能进行化学分析时, 利用 SDI仪的测试反渗透 膜片上残留物的颜色、 密度, 判断污垢分类, 白色残留物是硅、 砂质粘土、 钙垢; 晶状体外形是钙垢; 最 终得出废旧反渗透膜的膜垢成分分析结果为膜垢主要成分为 Si02, 还含有伊利石、 云母石和斜绿泥石, 主要由 Si、 K、 Ca、 Mg、 Al元素构成; The No. 5 waste reverse osmosis membrane of Model No. BW30-400 produced by The Dow Chemical Company was subjected to the method and procedure of Example 1 to analyze the scale composition, first confirming that the type of pollution is silicate and/or carbonate; The membrane scales of different types of pollution are analyzed and determined by three chemical analysis methods, and the composition of the membrane scale of the waste reverse osmosis membrane is obtained. Finally, when the chemical analysis cannot be performed, the residue on the reverse osmosis membrane is tested by the SDI instrument. Color, density, judging dirt classification, white residue is silicon, sandy clay, calcium scale; crystal shape is calcium scale; finally, the result of membrane scale composition analysis of waste reverse osmosis membrane is that the main component of membrane scale is Si0 2 , Containing illite, mica stone and oblique chlorite, mainly composed of Si, K, Ca, Mg, Al elements;
(2) 根据废旧反渗透膜的膜垢成分分析结果, 利用说明书附图 8 所示的废旧反渗透膜清洗、 修复设 备, 使用针对不同的膜垢的本发明清洗剂和修复剂进行, 在液体流速 Ξ¾10米 /秒条件下进行高速清洗, 在 压力; 51.5Mpa条件下进行修复;  (2) According to the results of the analysis of the scale component of the waste reverse osmosis membrane, the waste reverse osmosis membrane cleaning and repairing equipment shown in Fig. 8 of the specification is used, and the cleaning agent and the repairing agent of the present invention for different membrane scales are used, in the liquid High-speed cleaning at a flow rate of ⁄3⁄410 m/s, and repair under pressure; 51.5 MPa;
(3) 测定在化学清洗、 化学修复过程中膜性能的相关参数, 包括除盐率, 水回收率, 压差, 计算方 法为:  (3) Determine the relevant parameters of membrane performance during chemical cleaning and chemical repair, including salt removal rate, water recovery rate, and pressure difference. The calculation method is:
除盐率 = (Ei-Eo) /Ei,  Demineralization rate = (Ei-Eo) /Ei,
水回收率=\¾/ Vi,  Water recovery rate = \3⁄4/ Vi,
压差 =Pi-Po,  Pressure difference = Pi-Po,
其中, Ei-反渗透膜的进水电导率; Eo-反渗透膜的淡水电导率; Vo-反渗透膜的淡水流量; Vi-反渗透 膜的进水流量; Pi-反渗透膜的进水入口压力; Po-反渗透膜的浓水出口压力。  Among them, the influent conductivity of Ei-reverse osmosis membrane; the fresh water conductivity of Eo-reverse osmosis membrane; the fresh water flow of Vo-reverse osmosis membrane; the influent flow of Vi-reverse osmosis membrane; the influent of Pi-reverse osmosis membrane Inlet pressure; concentrated outlet pressure of the Po-reverse osmosis membrane.
测定条件为: 介质为电导率在 450-550 s/cni的自来水, 测定压力为 1.5MPa, 测定 1温度为自来水 水温即常温。  The measurement conditions are as follows: The medium is tap water having a conductivity of 450-550 s/cni, and the measurement pressure is 1.5 MPa, and the measurement 1 temperature is tap water, that is, normal temperature.
测得的各种参数如表 2。 该膜初始除盐率为 96.6%, 淡水电导率为 17.6%, 压差为 0.20MPa。 经过配 方一、 三反复清洗和修复剂化学修复处理之后, 膜的除盐率为 98.7%, 上升了 2.1%; 水回收率为 14.4 %, 压差为 0.12MPa下降了 0.08MPa, 按照实施例 1的方法确定废旧反渗透膜的清洗合格标准, 将两者参 数进行比较发现, 清洗修复后的废旧反渗透膜的各项参数均达到了清洗合格标准, 该旧反渗透膜基本接近 了新膜的性能。  The various parameters measured are shown in Table 2. The initial salt removal rate of the film was 96.6%, the fresh water conductivity was 17.6%, and the pressure difference was 0.20 MPa. After the first and third repeated cleaning and chemical repair treatment of the repairing agent, the salt removal rate of the film was 98.7%, which was 2.1% higher; the water recovery rate was 14.4%, and the pressure difference was 0.12 MPa, which was decreased by 0.08 MPa, according to Example 1. The method determines the cleaning qualification standard of waste reverse osmosis membrane, and compares the two parameters. It is found that the parameters of the waste reverse osmosis membrane after cleaning and repair have reached the cleaning qualification standard, and the old reverse osmosis membrane is basically close to the new membrane. performance.
表 2.5号膜清洗试剂及参数  Table No. 2.5 membrane cleaning reagents and parameters
清洗次数 清洗及修 除盐率 淡水电导 水回收率 透水量 压差 Number of cleanings Cleaning and repairing salt rate Freshwater conductivity Water recovery rate Water permeability Pressure difference
复试剂 1 % 率 ( μ (%) (MPa) 说 明 书 Reagent 1% rate (μ (%) (MPa) Instruction manual
Figure imgf000010_0001
Figure imgf000010_0001
实施例 3:  Example 3:
对日东电工株式会社生产的型号为 CPA3-8080的 6号废旧反渗透膜按照实施例 1的方法和步骤进行膜 垢成分分析, 确认污染类型为硅酸盐、 碳酸盐和 /或铁氧化物; 其次对不同污染类型的膜垢经过三种化学 分析方法的分析和测定, 得出废旧反渗透膜的膜垢成分组成; 最后在不能进行化学分析时, 利用 SDI仪的 测试反渗透膜片上残留物的颜色、 密度, 判断污垢分类, 褐色残留物是铁污垢; 白色残留物是硅、 砂质粘 土、 钙垢; 晶状体外形是无机胶体、 钙垢; 从气味和污染物的形态为粘稠状判断, 还含有生物污垢或者有 机污垢, 最终得出废旧反渗透膜的膜垢成分分析结果为膜垢主要成分为 Si02, 还含有伊利石、 云母石和 斜绿泥石, 主要由 Si、 K、 Ca、 Mg、 Fe、 Al、 C元素构成; The No. 6 waste reverse osmosis membrane of model CPA3-8080 manufactured by Nitto Denko Co., Ltd. was subjected to the method and procedure of Example 1 to analyze the scale composition, confirming that the pollution type was silicate, carbonate and/or iron oxidation. Secondly, the membrane scale of different pollution types is analyzed and measured by three chemical analysis methods, and the composition of the membrane scale of the waste reverse osmosis membrane is obtained. Finally, when the chemical analysis cannot be performed, the reverse osmosis membrane is tested by the SDI instrument. The color and density of the residue, the classification of the dirt, the brown residue is iron dirt; the white residue is silicon, sandy clay, calcium scale; the shape of the lens is inorganic colloid, calcium scale; from the form of odor and pollutants is sticky Judging thick, it also contains bio-fouling or organic dirt. Finally, the result of the analysis of the scale composition of the waste reverse osmosis membrane is that the main component of the membrane scale is Si0 2 , and also contains illite, mica and chlorite, mainly by Si, K, Ca, Mg, Fe, Al, C elements;
(2 ) 根据废旧反渗透膜的膜垢成分分析结果, 利用说明书附图 8 所示的废旧反渗透膜清洗、 修复设 备, 使用针对不同的膜垢的本发明清洗剂和修复剂进行, 在液体流速 10米 /秒条件下进行高速清洗, 在 压力 1. 5Mpa条件下进行修复;  (2) According to the results of the analysis of the scale component of the waste reverse osmosis membrane, using the waste reverse osmosis membrane cleaning and repairing equipment shown in Fig. 8 of the specification, using the cleaning agent and the repairing agent of the present invention for different membrane scales, in the liquid The high-speed cleaning is carried out at a flow rate of 10 m / sec, and repaired under a pressure of 1.5 Mpa;
( 3 ) 测定在化学清洗、 化学修复过程中膜性能的相关参数, 包括除盐率, 水回收率, 压差, 计算方 法为:  (3) Determine the relevant parameters of membrane performance during chemical cleaning and chemical repair, including salt removal rate, water recovery rate, and pressure difference. The calculation method is:
除盐率 = (Ei-Eo ) / Ei,  Demineralization rate = (Ei-Eo ) / Ei,
水回收率^0 / ¥1,  Water recovery rate ^0 / ¥1,
压差 =Pi - Po,  Pressure difference = Pi - Po,
其中, Ei-反渗透膜的进水电导率; Eo-反渗透膜的淡水电导率; Vo-反渗透膜的淡水流量; Vi_反渗透 膜的进水流量; Pi_反渗透膜的进水入口压力; Po-反渗透膜的浓水出口压力。  Among them, the influent conductivity of the Ei-reverse osmosis membrane; the fresh water conductivity of the Eo-reverse osmosis membrane; the fresh water flow rate of the Vo-reverse osmosis membrane; the influent flow rate of the Vi_reverse osmosis membrane; the influent of the Pi_reverse osmosis membrane Inlet pressure; concentrated outlet pressure of the Po-reverse osmosis membrane.
测定条件为: 介质为电导率在 450-550 μ s I cm的自来水, 测定压力为 1. 5MPa, 测定温度为自来水水 温即常温。  The measurement conditions are as follows: The medium is tap water having a conductivity of 450-550 μs 1 cm, and the measurement pressure is 1. 5 MPa, and the measurement temperature is the tap water temperature, that is, normal temperature.
测得的各种参数如表 3。 该膜膜的初始除盐率为 97. 5 %, 水回收率为 12. 0 % , 压差为 0. 30MPa; 其特 征是压差大。 从膜的初始除盐性能可以看出, 膜水回收率偏低, 压差偏高。 经过清洗之后除盐率为 98. 8 % , 水回收率为 18. 6 %, 上升了 6. 6%, 压差为 0. 19MPa, 下降了 0. llMPa, 按照实施例 1的方法确定废 旧反渗透膜的清洗合格标准, 将两者参数进行比较发现, 清洗修复后的废旧反渗透膜的各项参数均达到了 清洗合格标准, 该旧反渗透膜基本接近了新膜的性能。 说 明 书 The various parameters measured are shown in Table 3. The initial salt removal rate of the film is 97.5 %, the water recovery rate is 12.0%, and the pressure difference is 0. 30 MPa; It can be seen from the initial desalination performance of the membrane that the membrane water recovery rate is low and the pressure difference is high. After the cleaning, the salt removal rate is 98.8 %, the water recovery rate is 18.6%, the increase is 6.6%, the pressure difference is 0. 19MPa, the drop is 0. llMPa, the waste method is determined according to the method of the embodiment 1. The immersion membrane cleaning qualification standard, comparing the two parameters found that the parameters of the waste reverse osmosis membrane after cleaning and repair have reached the cleaning qualification standard, the old reverse osmosis membrane is basically close to the performance of the new membrane. Instruction manual
表 3. 6号膜清洗试剂及参数  Table 3. No. 6 membrane cleaning reagents and parameters
Figure imgf000011_0001
Figure imgf000011_0001
实施例 4:  Example 4:
对日东电工株式会社生产的型号为 CPA3-8080的 267号废旧反渗透膜按照实施例 1的方法和步骤进行 膜垢成分分析, 确认污染类型为硅酸盐和 /或铁氧化物; 其次对不同污染类型的膜垢经过三种化学分析方 法的分析和测定, 得出废旧反渗透膜的膜垢成分组成; 最后在不能进行化学分析时, 利用 SDI仪的测试反 渗透膜片上残留物的颜色、 密度, 判断污垢分类, 褐色残留物是铁污垢; 白色残留物是硅、 砂质粘土、 钙 垢; 晶状体外形是无机胶体、 钙垢; 最终得出废旧反渗透膜的膜垢成分分析结果为膜垢主要成分为 S i0 2, 还含有伊利石、 云母石和斜绿泥石, 主要由 Si、 Ca、 Mg、 Fe、 C元素构成; According to the method and procedure of Example 1 for the waste reverse osmosis membrane No. 267 of CPA3-8080 produced by Nitto Denko Co., Ltd., the scale composition analysis was carried out to confirm that the type of pollution was silicate and/or iron oxide; The membrane scales of different types of pollution are analyzed and determined by three chemical analysis methods, and the composition of the membrane scale of the waste reverse osmosis membrane is obtained. Finally, when the chemical analysis cannot be performed, the residue on the reverse osmosis membrane is tested by the SDI instrument. Color, density, judge the classification of dirt, brown residue is iron dirt; white residue is silicon, sandy clay, calcium scale; crystal shape is inorganic colloid, calcium scale; finally obtained the results of membrane fouling analysis of waste reverse osmosis membrane The main component of the membrane scale is S i0 2 , and also contains illite, mica stone and oblique chlorite, which are mainly composed of Si, Ca, Mg, Fe and C elements;
( 2 ) 根据废旧反渗透膜的膜垢成分分析结果, 利用说明书附图 8 所示的废旧反渗透膜清洗、 修复设 备, 使用针对不同的膜垢的本发明清洗剂和修复剂进行, 在液体流速 10米 /秒条件下进行高速清洗, 在 压力 1. 5Mpa条件下进行修复;  (2) According to the results of the analysis of the scale component of the waste reverse osmosis membrane, using the waste reverse osmosis membrane cleaning and repairing equipment shown in Fig. 8 of the specification, using the cleaning agent and the repairing agent of the present invention for different membrane scales, in the liquid The high-speed cleaning is carried out at a flow rate of 10 m / sec, and repaired under a pressure of 1.5 Mpa;
( 3 ) 测定在化学清洗、 化学修复过程中膜性能的相关参数, 包括除盐率, 水回收率, 压差, 计算方 法为:  (3) Determine the relevant parameters of membrane performance during chemical cleaning and chemical repair, including salt removal rate, water recovery rate, and pressure difference. The calculation method is:
除盐率 = ( Ei-Eo ) / Ei。  Demineralization rate = ( Ei-Eo ) / Ei.
水回收  Water recycling
压差 =Pi - Po,  Pressure difference = Pi - Po,
其中, Ei-反渗透膜的进水电导率; Eo-反渗透膜的淡水电导率; Vo-反渗透膜的淡水流量; Vi-反渗透 膜的进水流量; Pi-反渗透膜的进水入口压力; Po-反渗透膜的浓水出口压力。  Among them, the influent conductivity of Ei-reverse osmosis membrane; the fresh water conductivity of Eo-reverse osmosis membrane; the fresh water flow of Vo-reverse osmosis membrane; the influent flow of Vi-reverse osmosis membrane; the influent of Pi-reverse osmosis membrane Inlet pressure; concentrated outlet pressure of the Po-reverse osmosis membrane.
测定条件为: 介质为电导率在 450-550 μ s I cm的自来水, 测定压力为 1. 5MPa, 测定温度为自来水水 温即常温。  The measurement conditions are as follows: The medium is tap water having a conductivity of 450-550 μs 1 cm, and the measurement pressure is 1. 5 MPa, and the measurement temperature is the tap water temperature, that is, normal temperature.
测得的各种参数如表 4。 该膜膜的初始除盐率为 89. 9 % , 水回收率为 20. 4 %, 压差为 0. 22MPa。 经过 说 明 书 The various parameters measured are shown in Table 4. The pressure difference is 0. 22 MPa. The initial water removal rate is 89. 9 %, the water recovery is 20.4%, and the pressure difference is 0.22 MPa. After Description
清洗处理, 其除盐率上升到 94. 4% , 上升了 4. 5 %, 压差下降到 0. 16MPa, 下降了 0. 06MPa, 按照实施例 1 的方法确定废旧反渗透膜的清洗合格标准, 将两者参数进行比较发现, 清洗修复后的废旧反渗透膜的各项 参数均达到了清洗合格标准, 该旧反渗透膜基本接近了新膜的性能。  The cleaning rate of the waste reverse osmosis membrane is determined according to the method of Example 1. The salt removal rate is increased to 94. 4%, the increase is 4.5%, and the pressure difference is decreased to 0.16 MPa. Comparing the two parameters, it is found that the parameters of the waste reverse osmosis membrane after cleaning and repair have reached the cleaning qualification standard, and the old reverse osmosis membrane is basically close to the performance of the new membrane.
表 4. 267号膜清洗试剂及参数  Table 4. No.267 membrane cleaning reagents and parameters
Figure imgf000012_0001
Figure imgf000012_0001
实施例 5:  Example 5
对日东电工株式会社生产的型号为 CPA3-8080的 47号废旧反渗透膜按照实施例 1的方法和步骤进行 膜垢成分分析, 确认污染类型为硅酸盐和 /或铁氧化物; 其次对不同污染类型的膜垢经过三种化学分析方 法的分析和测定, 得出废旧反渗透膜的膜垢成分组成; 最后在不能进行化学分析时, 利用 SDI仪的测试反 渗透膜片上残留物的颜色、 密度, 判断污垢分类, 褐色残留物是铁污垢; 从气味和污染物的形态为粘稠状 判断,还含有生物污垢或者有机污垢,最终得出废旧反渗透膜的膜垢成分分析结果为膜垢主要成分为 SiO 2, 还含有伊利石、 云母石和斜绿泥石, 主要由 Si、 K、 Ca、 Mg、 Fe、 Al、 C元素构成; The No. 47 waste reverse osmosis membrane of model CPA3-8080 produced by Nitto Denko Co., Ltd. was subjected to membrane scale component analysis according to the method and procedure of Example 1, and it was confirmed that the type of pollution was silicate and/or iron oxide; The membrane scales of different types of pollution are analyzed and determined by three chemical analysis methods, and the composition of the membrane scale of the waste reverse osmosis membrane is obtained. Finally, when the chemical analysis cannot be performed, the residue on the reverse osmosis membrane is tested by the SDI instrument. Color, density, judging the classification of dirt, brown residue is iron dirt; judging from the odor and the shape of the contaminant, it also contains bio- or organic dirt, and finally the result of the analysis of the scale component of the waste reverse osmosis membrane is The main component of the scale is SiO 2 , and also contains illite, mica and chlorite, mainly composed of Si, K, Ca, Mg, Fe, Al and C elements;
(2 ) 根据废旧反渗透膜的膜垢成分分析结果, 利用说明书附图 8 所示的废旧反渗透膜清洗、 修复设 备, 使用针对不同的膜垢的本发明清洗剂和修复剂进行, 在液体流速 10米 /秒条件下进行高速清洗, 在 压力 1. 5Mpa条件下进行修复;  (2) According to the results of the analysis of the scale component of the waste reverse osmosis membrane, using the waste reverse osmosis membrane cleaning and repairing equipment shown in Fig. 8 of the specification, using the cleaning agent and the repairing agent of the present invention for different membrane scales, in the liquid The high-speed cleaning is carried out at a flow rate of 10 m / sec, and repaired under a pressure of 1.5 Mpa;
( 3 ) 测定在化学清洗、 化学修复过程中膜性能的相关参数, 包括除盐率, 水回收率, 压差, 计算方 法为:  (3) Determine the relevant parameters of membrane performance during chemical cleaning and chemical repair, including salt removal rate, water recovery rate, and pressure difference. The calculation method is:
除盐率 = (Ei-Eo ) / Ei,  Demineralization rate = (Ei-Eo ) / Ei,
水回收率^0 / ¥1,  Water recovery rate ^0 / ¥1,
压差 =Pi - Po,  Pressure difference = Pi - Po,
其中, Ei-反渗透膜的进水电导率; Eo-反渗透膜的淡水电导率; Vo-反渗透膜的淡水流量; Vi-反渗透 膜的进水流量; Pi-反渗透膜的进水入口压力; Po-反渗透膜的浓水出口压力。  Among them, the influent conductivity of Ei-reverse osmosis membrane; the fresh water conductivity of Eo-reverse osmosis membrane; the fresh water flow of Vo-reverse osmosis membrane; the influent flow of Vi-reverse osmosis membrane; the influent of Pi-reverse osmosis membrane Inlet pressure; concentrated outlet pressure of the Po-reverse osmosis membrane.
测定条件为: 介质为电导率在 450-550 μ s / cm的自来水, 测定压力为 1. 5MPa, 测定温度为自来水水 温即常温。 说 明 书 The measurement conditions are as follows: The medium is a tap water having a conductivity of 450-550 μs / cm, and the measured pressure is 1. 5 MPa, and the measured temperature is the tap water temperature, that is, normal temperature. Instruction manual
测得的各种参数如表 5。 清洗前该膜的初始压差为 1.26MPa, 膜已被堵死, 无法对其初始除盐性能进 行测定。首先进行逆向冲洗,膜的流路被开通。随后,使用配方一对其进行清洗,其压差逐渐下降到 0.16MPa, 除盐率和水回收率分别为 70.9%和 11.8%。 后又对其进行配方三清洗, 主要为了清除膜表面的有机物、 胶体、 及 Si02等。 清洗后除盐率下降到 69.4%, 水回收率上升到 19.7%, 压差下降到 0.15MPa。 经过多 次配方二、 配方四的反复清洗之后, 最后使用修复剂对其进行化学修复, 使除盐率为 87.2%, 水回收率为 13.9%, 压差为 0.15MPa, 按照实施例 1的方法确定废旧反渗透膜的清洗合格标准, 将两者参数进行比较 发现, 清洗修复后的废旧反渗透膜的各项参数均达到了清洗合格标准, 该旧反渗透膜基本接近了新膜的性 能。  The various parameters measured are shown in Table 5. The initial pressure difference of the membrane before cleaning was 1.26 MPa, and the membrane was blocked, and its initial desalination performance could not be determined. First, reverse rinsing is performed, and the flow path of the membrane is opened. Subsequently, it was cleaned using Formulation 1, and the pressure difference was gradually decreased to 0.16 MPa, and the salt removal rate and water recovery rate were 70.9% and 11.8%, respectively. After that, it is cleaned by formula three, mainly to remove organic matter, colloid, and SiO 2 on the surface of the film. After washing, the salt removal rate dropped to 69.4%, the water recovery rate rose to 19.7%, and the pressure difference dropped to 0.15 MPa. After repeated cleaning of Formulation 2 and Formulation 4, the repair agent was finally used for chemical repair to obtain a salt removal rate of 87.2%, a water recovery rate of 13.9%, and a pressure difference of 0.15 MPa, according to the method of Example 1. The cleaning qualification standard of waste reverse osmosis membrane was determined, and the parameters of the two were compared. It was found that the parameters of the waste reverse osmosis membrane after cleaning and repair reached the cleaning qualification standard, and the old reverse osmosis membrane basically approached the performance of the new membrane.
表 5.47号膜清洗试剂及参数变化  Table 5.47 membrane cleaning reagents and parameter changes
Figure imgf000013_0001
Figure imgf000013_0001
实施例 6:  Example 6:
对日东电工株式会社生产的型号为 CPA3-8080的 56号废旧反渗透膜按照实验例 1的方法和步骤进行 膜垢成分分析, 确认污染类型为硅酸盐和 /或碳酸盐; 其次对不同污染类型的膜垢经过三种化学分析方法 的分析和测定, 得出废旧反渗透膜的膜垢成分组成; 最后在不能进行化学分析时, 利用 SDI仪的测试反渗 透膜片上残留物的颜色、 密度, 判断污垢分类, 从气味和污染物的形态为粘稠状判断, 废旧反渗透膜膜垢 中含有生物污垢或者有机污垢, 最终得出废旧反渗透膜的膜垢成分分析结果为膜垢主要成分为 Si02, 还 含有有机物, 主要由 Si、 K、 Ca、 Al、 C元素构成; The No. 56 waste reverse osmosis membrane of model CPA3-8080 produced by Nitto Denko Co., Ltd. was analyzed according to the method and procedure of Experimental Example 1, and the contamination type was confirmed to be silicate and/or carbonate; The membrane scales of different types of pollution are analyzed and determined by three chemical analysis methods, and the composition of the membrane scale of the waste reverse osmosis membrane is obtained. Finally, when the chemical analysis cannot be performed, the residue on the reverse osmosis membrane is tested by the SDI instrument. Color, density, judging the classification of dirt, judging from the odor and the shape of the contaminant, the fouling of the waste reverse osmosis membrane contains biofouling or organic dirt, and finally the membrane scale component analysis result of the waste reverse osmosis membrane is the membrane. The main component of scale is Si0 2 , which also contains organic matter, mainly composed of Si, K, Ca, Al and C elements;
(2) 根据废旧反渗透膜的膜垢成分分析结果, 利用说明书附图 8 所示的废旧反渗透膜清洗、 修复设 备, 使用针对不同的膜垢的本发明清洗剂和修复剂进行, 在液体流速 10米 /秒条件下进行高速清洗, 在 压力 1.5Mpa条件下进行修复;  (2) According to the results of the analysis of the scale component of the waste reverse osmosis membrane, the waste reverse osmosis membrane cleaning and repairing equipment shown in Fig. 8 of the specification is used, and the cleaning agent and the repairing agent of the present invention for different membrane scales are used, in the liquid High-speed cleaning at a flow rate of 10 m/s and repair at a pressure of 1.5 MPa;
(3) 测定在化学清洗、 化学修复过程中膜性能的相关参数, 包括除盐率, 水回收率, 压差, 计算方 法为:  (3) Determine the relevant parameters of membrane performance during chemical cleaning and chemical repair, including salt removal rate, water recovery rate, and pressure difference. The calculation method is:
除盐率 = (Ei-Eo) /Ei, 说 明 书 Demineralization rate = (Ei-Eo) / Ei, Instruction manual
水回收  Water recycling
压差 =Pi - Po,  Pressure difference = Pi - Po,
其中, Ei-反渗透膜的进水电导率; Eo-反渗透膜的淡水电导率; Vo-反渗透膜的淡水流量; Vi_反渗透 膜的进水流量; Pi_反渗透膜的进水入口压力; Po-反渗透膜的浓水出口压力。  Among them, the influent conductivity of the Ei-reverse osmosis membrane; the fresh water conductivity of the Eo-reverse osmosis membrane; the fresh water flow rate of the Vo-reverse osmosis membrane; the influent flow rate of the Vi_reverse osmosis membrane; the influent of the Pi_reverse osmosis membrane Inlet pressure; concentrated outlet pressure of the Po-reverse osmosis membrane.
测定条件为: 介质为电导率在 450-550 μ s I cm的自来水, 测定压力为 1. 5MPa, 测定温度为自来水水 温即常温。  The measurement conditions are as follows: The medium is tap water having a conductivity of 450-550 μs 1 cm, and the measurement pressure is 1. 5 MPa, and the measurement temperature is the tap water temperature, that is, normal temperature.
测得的各种参数如表 6。 清洗前该膜的初始压差为 1. 25MPa, 膜已被堵死, 无法对其初始除盐性能进 行测定。首先进行逆向冲洗,膜的流路被开通。随后,使用配方一对其进行清洗,其压差逐渐下降到 0. 17MPa, 除盐率和水回收率分别为 72. 9 %和 11. 8 %。 后又对其进行配方二清洗, 主要为了清除膜表面的有机物、 胶体及 Si02等。 清洗后除盐率下降到 69. 8 %, 水回收率上升到 19. 2 %, 压差下降到 0. 15MPa。 经过多次 配方四、配方五反复清洗之后, 最后使用修复剂对其进行化学修复, 使除盐率为 87. 2 %, 水回收率为 14. 6 % , 压差为◦. 15MPa, 按照实施例 1的方法确定废旧反渗透膜的清洗合格标准, 将两者参数进行比较发现, 清洗修复后的废旧反渗透膜的各项参数均达到了清洗合格标准, 该旧反渗透膜基本接近了新膜的性能。 The various parameters measured are shown in Table 6. The initial pressure difference of the membrane before washing was 1. 25 MPa, and the membrane was blocked, and the initial desalination performance could not be determined. First, reverse rinsing is performed, and the flow path of the membrane is opened. The sulphur removal rate and the water recovery rate were 72.9 % and 11.8%, respectively. After that, it is cleaned by formula 2, mainly to remove organic matter, colloid and SiO 2 on the surface of the film. The singularity of the water pressure is reduced to 19.2%. After repeated cleaning of the formula 4 and the formula 5, the chemical repair is carried out by using the repairing agent, so that the salt removal rate is 87.2%, the water recovery rate is 14.6 %, and the pressure difference is ◦. 15MPa, according to the implementation. The method of Example 1 determines the cleaning qualification standard of the waste reverse osmosis membrane, and compares the two parameters. It is found that the parameters of the waste reverse osmosis membrane after cleaning and repair have reached the cleaning qualification standard, and the old reverse osmosis membrane is basically close to the new one. Membrane properties.
表 6. 56号膜清洗试剂及参数变化  Table 6. No. 56 membrane cleaning reagent and parameter changes
Figure imgf000014_0001
Figure imgf000014_0001
实施例 7  Example 7
对日东电工株式会社生产的型号为 CPA3-8080的 38号废旧反渗透膜按照实验例 1的方法和步骤进行 膜垢成分分析, 确认污染类型为硅酸盐、 碳酸盐和 /或铁氧化物; 其次对不同污染类型的膜垢经过三种化 学分析方法的分析和测定, 得出废旧反渗透膜的膜垢成分组成; 最后在不能进行化学分析时, 利用 SDI仪 的测试反渗透膜片上残留物的颜色、 密度, 判断污垢分类, 白色残留物是硅、 砂质粘土、 钙垢; 晶状体外 形是无机胶体、 钙垢; 从气味和污染物的形态为粘稠状判断, 还含有生物污垢或者有机污垢, 最终得出废 旧反渗透膜的膜垢成分分析结果为膜垢主要成分为 Si02, 还含有伊利石、 云母石和斜绿泥石, 主要由 Si、For the No. 38 waste reverse osmosis membrane of model CPA3-8080 produced by Nitto Denko Co., Ltd., according to the method and procedure of Experimental Example 1, the scale component analysis was carried out to confirm that the pollution type was silicate, carbonate and/or iron oxidation. Secondly, the membrane scale of different pollution types is analyzed and measured by three chemical analysis methods, and the composition of the membrane scale of the waste reverse osmosis membrane is obtained. Finally, when the chemical analysis cannot be performed, the reverse osmosis membrane is tested by the SDI instrument. The color and density of the residue are judged by the classification of the dirt. The white residue is silicon, sandy clay, and calcium scale. The shape of the lens is inorganic colloid and calcium scale. The shape of the odor and the contaminant is viscous. Dirt or organic dirt, the result of the analysis of the scale composition of the waste reverse osmosis membrane is that the main component of the membrane scale is Si0 2 , and also contains illite, mica stone and oblique chlorite, mainly composed of Si,
K、 Ca、 Mg、 Al、 C元素构成; 说 明 书 K, Ca, M g , Al, C elements; Instruction manual
(2) 根据废旧反渗透膜的膜垢成分分析结果, 利用说明书附图 8 所示的废旧反渗透膜清洗、 修复设 备, 使用针对不同的膜垢的本发明清洗剂和修复剂进行, 在液体流速 10米 /秒条件下进行高速清洗, 在 压力 5Mpa条件下进行修复;  (2) According to the results of the analysis of the scale component of the waste reverse osmosis membrane, the waste reverse osmosis membrane cleaning and repairing equipment shown in Fig. 8 of the specification is used, and the cleaning agent and the repairing agent of the present invention for different membrane scales are used, in the liquid High-speed cleaning at a flow rate of 10 m/s and repair at a pressure of 5 Mpa;
(3) 测定在化学清洗、 化学修复过程中膜性能的相关参数, 包括除盐率, 水回收率, 压差, 计算方 法为:  (3) Determine the relevant parameters of membrane performance during chemical cleaning and chemical repair, including salt removal rate, water recovery rate, and pressure difference. The calculation method is:
除盐率 = (Ei-Eo) /Ei,  Demineralization rate = (Ei-Eo) /Ei,
水回收率=\¾/ 1,  Water recovery rate = \3⁄4/ 1,
压差 =Pi - Po,  Pressure difference = Pi - Po,
其中, Ei-反渗透膜的进水电导率; Eo-反渗透膜的淡水电导率; Vo-反渗透膜的淡水流量; Vi-反渗透 膜的进水流量; Pi-反渗透膜的进水入口压力; Po-反渗透膜的浓水出口压力。  Among them, the influent conductivity of Ei-reverse osmosis membrane; the fresh water conductivity of Eo-reverse osmosis membrane; the fresh water flow of Vo-reverse osmosis membrane; the influent flow of Vi-reverse osmosis membrane; the influent of Pi-reverse osmosis membrane Inlet pressure; concentrated outlet pressure of the Po-reverse osmosis membrane.
测定条件为: 介质为电导率在 450-550 μ s I cm的自来水, 测定压力为 1.5MPa, 测定温度为自来水水 温即常温。  The measurement conditions are as follows: The medium is tap water having a conductivity of 450-550 μs 1 cm, and the measurement pressure is 1.5 MPa, and the measurement temperature is the tap water temperature, that is, normal temperature.
测得的各种参数如表 7。 清洗前该膜的初始压差为 1.25MPa, 膜已被堵死, 无法对其初始除盐性能进 行测定。首先进行逆向冲洗,膜的流路被开通。随后,使用配方一对其进行清洗,其压差逐渐下降到 0.17MPa, 除盐率和水回收率分别为了 2.1%和 11.8%。 后又对其进行配方三清洗, 主要为了清除膜表面的有机物、 胶体及 Si02等。 清洗后除盐率下降到 69.7%, 水回收率上升到 19.4%, 压差下降到 0.15MPa。 经过多次 配方四、配方二反复清洗之后, 最后使用修复剂对其进行化学修复, 使除盐率为 87.8%, 水回收率为 14.2 %, 压差为 0.15MPa, 按照实施例 1的方法确定废旧反渗透膜的清洗合格标准, 将两者参数进行比较发现, 清洗修复后的废旧反渗透膜的各项参数均达到了清洗合格标准, 该旧反渗透膜基本接近了新膜的性能。 The various parameters measured are shown in Table 7. The initial pressure difference of the membrane before washing was 1.25 MPa, and the membrane was blocked, and its initial desalination performance could not be determined. First, reverse rinsing is performed, and the flow path of the membrane is opened. Subsequently, it was cleaned using Formulation 1, and the pressure difference was gradually decreased to 0.17 MPa, and the salt removal rate and water recovery rate were 2.1% and 11.8%, respectively. After that, it is cleaned by formula three, mainly to remove organic matter, colloid and SiO 2 on the surface of the membrane. After washing, the salt removal rate decreased to 69.7%, the water recovery rate increased to 19.4%, and the pressure difference decreased to 0.15 MPa. After repeated cleaning of Formulation 4 and Formula 2, the repair agent was finally used for chemical repair to obtain a salt removal rate of 87.8%, a water recovery rate of 14.2%, and a pressure difference of 0.15 MPa, which was determined according to the method of Example 1. The cleaning qualification standard of waste reverse osmosis membrane was compared. It was found that the parameters of the waste reverse osmosis membrane after cleaning and repair reached the cleaning qualification standard, and the old reverse osmosis membrane basically approached the performance of the new membrane.
表 7.38号膜清洗试剂及参数变化  Table 7.38 Membrane cleaning reagents and parameter changes
清洗次数 清洗及修 除盐率 淡水电导 水回收率 透水量 压差  Number of cleanings Cleaning and repairing salt rate Freshwater conductivity Water recovery rate Water permeability Pressure difference
复试剂 1 % 率 ( μ (%) M3d- 1 (MPa) Reagent 1% rate (μ (%) M 3 d- 1 (MPa)
1 Λ 1 Λ
scm  Scm
初始 1.25  Initial 1.25
1 配方一 72.1 141.0 11.8 27.4 0.17  1 Formulation 1 72.1 141.0 11.8 27.4 0.17
2 配方三 69.7 133.4 19.4 46.3 0.15  2 Formula 3 69.7 133.4 19.4 46.3 0.15
3 配方四 64.2 162.4 18.9 44.2 0.14  3 Formulation 4 64.2 162.4 18.9 44.2 0.14
4 配方二 57.6 182.2 22.6 54.8 0.13  4 Formula 2 57.6 182.2 22.6 54.8 0.13
6 修复剂 87.8 54.0 14.2 33.3 0.15  6 Repair agent 87.8 54.0 14.2 33.3 0.15

Claims

权 利 要 求 书 Claim
1.针对不同的废旧反渗透膜的膜垢进行的离线式清洗、 修复的试剂进行离线式清洗、 修复的方法, 其特征 在于, 它包括如下步骤: (1 )对废旧反渗透膜的膜垢成分分析, 步骤为: 首先采集废旧反渗透膜表面的截 留物样品, 分别用化学分析法、 扫描电镜分析、 X衍射仪分析鉴定截留物样品, 对废旧反渗透膜内形成的 垢类进行表征与分析, 确认污染类型为硅酸盐、 碳酸盐和 /或铁氧化物; 其次对不同污染类型的膜垢经过 三种化学方法的分析和测定, 得出废旧反渗透膜的膜垢成分组成; 最后在不能进行化学分析时, 利用 SDI 仪的测试反渗透膜片上残留物的颜色、 密度, 判断污垢分类为: 褐色残留物是铁污垢; 白色残留物是硅、 砂质粘土、 钙垢; 晶状体外形是无机胶体、 钙垢; 从气味和污染物的形态为粘稠状判断, 还含有生物污垢 或者有机污垢; 最终得出废旧反渗透膜的膜垢成分分析结果: 膜垢主要成分为 Si02, 还含有伊利石、 云 母石和斜绿泥石, 主要由 S i、 K、 Ca、 Mg、 Fe、 Al元素构成; (2 )根据废旧反渗透膜的膜垢成分分析结果, 利用废旧反渗透膜清洗、 修复设备, 使用针对不同的膜垢的应用权利要求 1-5中的清洗剂和修复剂在液体 流速 10米 /秒条件下进行高速清洗, 在压力 1. 5Mpa条件下进行修复; (3 ) 在化学清洗、 化学修复过 程中, 连续测定膜性能的相关参数, 测定条件为: 介质为电导率在 450-550 y s Z cm 的自来水, 测定压力 为 1. 5MPa, 测定温度为自来水水温即常温, 清洗修复至达到合格标准。 1. A method for off-line cleaning and repairing off-line cleaning and repairing reagents for different waste reverse osmosis membranes, characterized in that it comprises the following steps: (1) Membrane scale of waste reverse osmosis membrane Ingredient analysis, the steps are as follows: Firstly, the sample of the retentate on the surface of the waste reverse osmosis membrane is collected, and the sample of the retentate is identified by chemical analysis, scanning electron microscopy and X-ray diffractometry, and the scale formed in the waste reverse osmosis membrane is characterized. Analysis, confirm that the pollution type is silicate, carbonate and/or iron oxide; secondly, the membrane scale of different pollution types is analyzed and determined by three chemical methods, and the composition of the membrane scale of the waste reverse osmosis membrane is obtained; Finally, when chemical analysis is not possible, the color and density of the residue on the reverse osmosis membrane are measured by the SDI meter to determine that the dirt is classified as: brown residue is iron scale; white residue is silicon, sandy clay, calcium scale; The shape of the lens is inorganic colloid, calcium scale; judging from the odor and the shape of the contaminant, it also contains biofouling or organic Scale; final waste obtained film reverse osmosis membrane fouling component analysis: the main component of membrane fouling Si0 2, further comprising illite, mica and clinochlore stone, mainly by S i, K, Ca, Mg , Fe, Al Elemental composition; (2) According to the results of the analysis of the scale component of the waste reverse osmosis membrane, using the waste reverse osmosis membrane cleaning and repairing equipment, using the cleaning agent and the repairing agent in the liquid according to the application of the different membrane scales High-speed cleaning at a flow rate of 10 m/s, and repair under a pressure of 1.5 Mpa; (3) Continuous measurement of the relevant parameters of the membrane performance during chemical cleaning and chemical repair. The measurement conditions are: The medium is the conductivity. Tap water of 450-550 ys Z cm, the measured pressure is 1. 5MPa, the measured temperature is the tap water temperature, that is, the normal temperature, and the cleaning is repaired to the qualified standard.
2.根据权利要求 1所述的针对不同的废旧反渗透膜的膜垢进行的离线式清洗、 修复的方法, 其特征在于, 所述废旧反渗透膜清洗、 修复设备是结构构成和连接关系如下:  2 . The method for off-line cleaning and repairing of membrane fouling of different waste reverse osmosis membranes according to claim 1 , wherein the waste reverse osmosis membrane cleaning and repairing device is structurally constructed and connected as follows :
该设备主要由 W门、 流量计、 电导率仪、 压力表和进水仪 pH、 加压泵 P和精密过滤器 PP1和 PP2组成, 所 述阔门由滤芯排空阀 V0、 自来水阔 VI、 自来水入口阀 V2、 自来水出口阀 V3、 酸性洗剂进水阀 V4、 碱性洗 剂进水 l V5、 修复剂进水 l V6、 总进水阀 、 旧膜进水阀 V8、 旧膜浓水出口阀 V9、 旧膜短路阀 V10、 制 纯水 -新膜进水阀 VI I、 旧膜淡水出口阀 V12、 新膜进水岡 V13、 新膜浓水出口阀 V14、 新膜短路阀 V15、 淡 7 排放阀 V16、 浓水排放阀 V17、 修复剂浓水回流阀 V18、 修复剂淡水回流阀 V19、 碱洗浓水回流阀 V20、 碱洗淡水回流阀 V21、 酸洗淡水回流阀 V22、 酸洗浓水回流阀 V23、 浓水止逆阀 V24、 V25、 V26、 V27、 废 液排放 PS V28组成; 所述流量计由旧膜进水流量计 Fl、 新膜进水流量计 F2、 旧膜淡水流量计 F3和新膜淡 7 流量计 F4组成; 所述电导率仪由旧膜进水电导率仪 El、 新膜进水电导率仪 E2和旧膜淡水电导率仪 E3 组成; 所述压力表由进水总压力表 Pl、 新膜进水压力表 P2和新膜出口压力表 P3组成; The device is mainly composed of a W door, a flow meter, a conductivity meter, a pressure gauge and a water inlet pH, a pressure pump P and a precision filter PP1 and PP2, and the wide door is made up of a filter vent valve V0, a tap water width VI, Tap water inlet valve V2, tap water outlet valve V3, acid detergent inlet valve V4, alkaline detergent inlet water V V5, repair agent inlet water V V6, total inlet valve, old membrane inlet valve V8, old membrane concentrated water Outlet valve V9, old membrane short-circuit valve V10, pure water-new membrane inlet valve VI I, old membrane fresh water outlet valve V12, new membrane inlet Shuigang V13, new membrane concentrated water outlet valve V14, new membrane short-circuit valve V15, Light 7 discharge valve V16, concentrated water discharge valve V17, repair agent concentrated water return valve V18, repair agent fresh water return valve V19, alkali washed concentrated water return valve V20, alkaline washed fresh water return valve V21, pickled fresh water return valve V22, acid The concentrated water return valve V23, the concentrated water check valve V24, V25, V26, V27 and the waste liquid discharge PS V28; the flow meter consists of the old membrane inlet flow meter Fl, the new membrane inlet flow meter F2, the old membrane Fresh water flow meter F3 and new membrane light flow meter F4; the conductance The instrument consists of an old membrane influent conductivity meter El, a new membrane influent conductivity meter E2 and an old membrane freshwater conductivity meter E3; the pressure gauge consists of a total inlet pressure gauge Pl, a new membrane inlet pressure gauge P2 and a new Membrane outlet pressure gauge P3;
精密过滤器 PP1入口通过自来水阔 VI与市政自来水管连接, 出口通过自来水入口阀 V2与自来水箱 1进口 连接, 自来水箱 1、 酸洗箱 2、 碱洗箱 3、 修复剂箱 4出口分别通过自来水出口阀 V3、 酸性洗剂进水阀 V4、 碱性洗剂进水阀 V5、修复剂进水阀 V6与加压泵 5入水口相连, 中间串接旧膜进水电导率仪 El、进水仪 pH、 加压泵 5的出口通过总进水阀 V7、 旧膜进水陶 V8、 旧膜进水流量计 F1与废旧反渗透膜 6进口相连, 同时 通过旧膜短路阀 V10、 新膜进水流量计 F2、 新膜进水阀 V13与新膜 7进口相连, 中间串接新膜进水压力表 P2、 新膜进水电导率仪 E2、 废旧反渗透膜 6浓水出口通过旧膜浓水出口阀 V9、 新膜进水流量计 F2、 新膜 进水阀 V13与新膜 7进口相连, 中间串接新膜进水压力表 P2、 新膜进水电导率仪 E2, 同时通过新膜短路 权 利 要 求 书 The inlet of the precision filter PP1 is connected to the municipal water pipe through the tap water width VI, and the outlet is connected to the inlet of the water tank 1 through the tap water inlet valve V2, and the outlets of the tap water tank 1, the pickling tank 2, the caustic washing tank 3, and the repairing tank 4 respectively pass through the tap water. The outlet valve V3, the acidic detergent inlet valve V4, the alkaline detergent inlet valve V5, the repairing inlet valve V6 and the pressure pump 5 are connected to the water inlet, and the old membrane inlet conductivity meter El is connected in the middle, and the water inlet is connected. The pH of the instrument and the outlet of the pressure pump 5 are connected to the inlet of the waste reverse osmosis membrane 6 through the total inlet valve V7, the old membrane inlet water V8, the old membrane inlet flow meter F1, and the old membrane short-circuit valve V10, the new membrane. Water flow meter F2, new membrane inlet valve V13 is connected with the inlet of new membrane 7, medium inlet new membrane inlet pressure gauge P2, new membrane inlet conductivity meter E2, waste reverse osmosis membrane 6 concentrated water outlet through old membrane thick The water outlet valve V9, the new membrane inlet flow meter F2, the new membrane inlet valve V13 are connected to the inlet of the new membrane 7, the new membrane inlet pressure gauge P2, the new membrane inlet conductivity meter E2, and the new membrane Short circuit Claim
阀 V15与 PP2精密过滤器入口相连,废旧反渗透膜淡水出口通过旧膜淡水出口阀 V12、旧膜淡水流量计 F3、 修复剂淡水回流阀 V19、 碱洗淡水回流陶 V21、 酸洗淡水回流闽 V22分别与修复剂箱 4、 碱洗箱 3、 酸洗箱 2进口相连, 中间串接旧膜淡水电导率仪 E3, 末端接淡水排放闽 V16, 同时通过制纯水 -新膜进水闽 VI I与 新膜 7进口相连, 新反渗透膜 7浓水出口通过新膜浓水出口岡 V14、 浓水止逆阀 V24与精密过滤器 PP2入 口相连, 中间串接新膜出口压力表 P3, 新反渗透膜 7淡水出口通过新膜淡水流量计 F4、 修复剂淡水侧回 流阀 V19、 碱洗淡水回流阀 V21、 酸洗淡水回流 V22分别与修复剂箱 4、 碱洗箱 3、 酸洗箱 2进口相连, 末端接淡水排放阀 V16, PP2精密过滤器出口通过修复剂浓水回流阀 V18、 碱洗浓水回流阀 V20、 酸洗浓水 回流阀 V23分别与修复剂箱 4、 碱洗箱 3、 酸洗箱 2进口相连, 末端接浓水排放阀 V17。 Valve V15 is connected to the inlet of PP2 precision filter. The waste reverse osmosis membrane fresh water outlet passes the old membrane fresh water outlet valve V12, the old membrane fresh water flowmeter F3, the repairing agent fresh water return valve V19, the alkali washed fresh water returning pottery V21, the pickled fresh water reflux 闽V22 is connected to the repair agent tank 4, the alkali washing tank 3, the pickling tank 2 inlet, the old membrane fresh water conductivity meter E3 is connected in series, the fresh water discharge 闽V16 is connected at the end, and the pure water-new membrane water inlet 闽 VI I is connected to the inlet of the new membrane 7, the new reverse osmosis membrane 7 concentrated water outlet is connected to the inlet of the precision filter PP2 through the new membrane concentrated water outlet Gang V14, the concentrated water check valve V24, and the new membrane outlet pressure gauge P3, new Reverse osmosis membrane 7 fresh water outlet through new membrane fresh water flow meter F4, repair agent fresh water side return valve V19, alkaline washed fresh water return valve V21, pickled fresh water reflux V22 and repair tank 4, alkali washing tank 3, pickling tank 2 The inlet is connected, the end is connected to the fresh water discharge valve V16, the PP2 precision filter outlet is passed through the repairing agent concentrated water return valve V18, the alkali washing concentrated water return valve V20, the pickling concentrated water return valve V23 and the repairing agent tank 4, the alkaline washing Box 3, pickling tank 2 inlet is connected, and the end is connected to the concentrated water discharge valve V17.
3.根据权利要求 1所述的针对不同的废旧反渗透膜的膜垢进行的离线式清洗、 修复的方法, 其特征在于, 所述的膜性能相关参数, 包括除盐率, 水回收率, 压差, 计算方法为除盐率 = ( Ei-Eo) / Ei , 水回收率= 0 / Vi , 压差 =Pi_Po , Ei-反渗透膜的进水电导率; Eo-反渗透膜的淡水电导率; Vo-反渗透膜的淡水流量; Vi_反渗透膜的进水流量; Pi_反渗透膜的进水入口压力; Po-反渗透膜的浓水出口压力。 3 . The method for off-line cleaning and repairing of membrane fouls of different waste reverse osmosis membranes according to claim 1 , wherein the membrane performance related parameters include salt removal rate, water recovery rate, Pressure difference, calculated by the salt removal rate = (Ei-Eo) / Ei, water recovery = 0 / Vi, differential pressure = Pi_Po, Ei- reverse osmosis membrane influent conductivity; Eo-reverse osmosis membrane freshwater conductance Rate; fresh water flow rate of Vo-reverse osmosis membrane; influent flow rate of Vi_reverse osmosis membrane; inlet inlet pressure of Pi_reverse osmosis membrane; concentrated water outlet pressure of Po-reverse osmosis membrane.
4.根据权利要求 1所述的针对不同的废旧反渗透膜的膜垢进行的离线式清洗、 修复的方法, 其特征在于, 所述的合格标准为指除盐率达到 85. 0%以上, 水回收率达到 12%以上, 压差低于 0. 2MPa。  The above-mentioned eligibility standard is that the salt removal rate is 85.0% or more, 2MPa。 The water recovery rate of more than 12%, the pressure difference is less than 0. 2MPa.
5.根据权利要求 1所述的针对不同的废旧反渗透膜的膜垢进行的离线式清洗、 修复的方法, 其特征在于, 所述合格标准的确定方法为:  5 . The method of claim 1 , wherein the method for determining the eligibility criteria is:
( 1 )在清洗修复过程中, 在介质为电导率在 450- 550 y s / cm的自来水, 测定压力为 1. 5MPa, 测定温度为 自来水水温即常温条件下, 分别测定新反渗透膜和废旧反渗透膜的各项性能参数;  (1) In the cleaning and repairing process, in the tap water having a conductivity of 450-550 ys / cm, the measured pressure is 1. 5MPa, and the measured temperature is the tap water temperature, that is, the normal temperature condition, respectively, and the new reverse osmosis membrane and the waste anti-sediment are respectively determined. Various performance parameters of the permeable membrane;
(2 ) 对测量得到的各项参数进行比较, 差别主要有: ①压差升高, 新反渗透膜的压差为 0. IMPa, 而废旧 反渗透膜的初始压差都远高于 0. 2MPa; ②水回收率下降, 新反渗透膜的水回收率为 15 % , 而废旧反渗透 膜的水回收率为 10 % ; ③除盐率下降, 新膜除盐率一般大于 99 %, 而废 1日反渗透膜的除盐率下降很多, 一般低于 80 % ; (2) Comparing the measured parameters, the main differences are as follows: 1 The pressure difference is increased, the pressure difference of the new reverse osmosis membrane is 0. IMPa, and the initial pressure difference of the waste reverse osmosis membrane is much higher than 0. 2MPa ; 2 water recovery rate decreases, the water recovery rate of the new reverse osmosis membrane is 15%, and the water recovery rate of the waste reverse osmosis membrane is 10%; 3 the salt removal rate decreases, the new membrane salt removal rate is generally greater than 99%, and The demineralization rate of the reverse osmosis membrane on the 1st day decreased a lot, generally less than 80%;
(3 ) 针对各种不同的垢类分别进行清洗, 在同样的测试条件下进行各项参数的测量;  (3) Washing separately for various scales, and measuring various parameters under the same test conditions;
(4 ) 对比清洗后的废旧反渗透膜与新的反渗透膜的性能, 并对各个参数进行划界, 直到达到两者的性能 相当, 确立了废旧反渗透膜清洗修复的合格标准。  (4) Comparing the performance of the cleaned reverse osmosis membrane with the new reverse osmosis membrane, and demarcating each parameter until the performance of the two is equivalent, the qualified standard for the cleaning and repair of the waste reverse osmosis membrane is established.
6.根据权利要求 1所述的针对不同的废旧反渗透膜的膜垢进行的离线式清洗、 修复的方法, 其特征在于, 所述的废旧反渗透膜修复前先除去 Fe 3+和 A1 3+6 . The method for off-line cleaning and repairing of membrane fouls of different waste reverse osmosis membranes according to claim 1 , wherein the waste reverse osmosis membrane is first removed by Fe 3+ and A1 3 . + .
7.根据权利要求 2-5之一所述的针对不同的废旧反渗透膜的膜垢进行的离线式清洗、 修复的方法, 其特征 在于, 所述的废旧反渗透膜修复前先除去 Fe 3+和 A1 3+The off-line for cleaning of one of the 2-5 scale for different waste film reverse osmosis membrane as claimed in claim repair method, wherein said reverse osmosis membrane waste previously removed repair Fe 3 + and A1 3+ .
PCT/CN2012/071724 2011-03-14 2012-02-28 Off-line cleaning and repairing method for different fouling of waste reverse osmosis membrane WO2012122892A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110060405.0 2011-03-14
CN201110060405.0A CN102210978B (en) 2011-03-14 2011-03-14 Method and reagent for cleaning and repairing discarded reverse osmosis film in offline mode

Publications (1)

Publication Number Publication Date
WO2012122892A1 true WO2012122892A1 (en) 2012-09-20

Family

ID=44742652

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2012/071724 WO2012122892A1 (en) 2011-03-14 2012-02-28 Off-line cleaning and repairing method for different fouling of waste reverse osmosis membrane
PCT/CN2012/071702 WO2012122890A2 (en) 2011-03-14 2012-02-28 Reagent for off-line cleaning and repairing specifically aimed at different types of membrane fouling of waste and old reverse osmosis membranes

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071702 WO2012122890A2 (en) 2011-03-14 2012-02-28 Reagent for off-line cleaning and repairing specifically aimed at different types of membrane fouling of waste and old reverse osmosis membranes

Country Status (2)

Country Link
CN (1) CN102210978B (en)
WO (2) WO2012122892A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102210978B (en) * 2011-03-14 2014-03-05 四川科伦药业股份有限公司 Method and reagent for cleaning and repairing discarded reverse osmosis film in offline mode
CN102179180B (en) * 2011-03-14 2013-05-15 四川科伦药业股份有限公司 Off-line washing and repairing device for multifunctional waste reverse osmosis membrane
EP2745917B1 (en) * 2012-12-18 2022-01-19 Grundfos Holding A/S A liquid fluid filter assembly
IL251168B (en) * 2017-03-14 2019-08-29 Efraty Avi Integrated reverse osmosis and membrane cleaning systems for fouling prevention
CN108217841B (en) * 2017-12-04 2020-09-29 山东聊城鲁西硝基复肥有限公司 Reverse osmosis water treatment system cleaning method
CN108502982A (en) * 2018-04-25 2018-09-07 天津碧水源膜材料有限公司 A kind of renovation agent of the reverse-osmosis membrane element to desalinize seawater
CN109966921A (en) * 2019-04-26 2019-07-05 北京亦庄水务有限公司 A kind of minimizing technology of counter-infiltration system pollutant
CN111229048A (en) * 2020-01-16 2020-06-05 西藏华阳供热工程服务有限公司 Chemical cleaning agent for reverse osmosis device and cleaning method thereof
CN111389233B (en) * 2020-03-20 2022-07-01 北京碧水源膜科技有限公司 Preparation method of microfiltration membrane repairing liquid for functional layer damage and microfiltration membrane repairing method
CN114249509A (en) * 2022-02-28 2022-03-29 利津绿瑞环保科技有限公司 Chemical cleaning and sewage treatment process for reverse osmosis membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4629568A (en) * 1983-09-26 1986-12-16 Kinetico, Inc. Fluid treatment system
CN1840227A (en) * 2005-11-11 2006-10-04 天津化工研究设计院 Multifunctional off-line cleaning device for reverse osmosis membrane
CN200984496Y (en) * 2006-09-28 2007-12-05 浙江四通环境工程有限公司 Off-line type reverse osmosis membrane cleaner
CN101945826A (en) * 2008-03-31 2011-01-12 株式会社神钢环境舒立净 Method of purifying water containing metallic ingredient and apparatus for purification
CN102210978A (en) * 2011-03-14 2011-10-12 四川科伦药业股份有限公司 Method and reagent for cleaning and repairing discarded reverse osmosis film in offline mode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101224391A (en) * 2007-10-17 2008-07-23 中国铝业股份有限公司 Water curing reverse osmosis membrane chemical cleaning method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4629568A (en) * 1983-09-26 1986-12-16 Kinetico, Inc. Fluid treatment system
CN1840227A (en) * 2005-11-11 2006-10-04 天津化工研究设计院 Multifunctional off-line cleaning device for reverse osmosis membrane
CN200984496Y (en) * 2006-09-28 2007-12-05 浙江四通环境工程有限公司 Off-line type reverse osmosis membrane cleaner
CN101945826A (en) * 2008-03-31 2011-01-12 株式会社神钢环境舒立净 Method of purifying water containing metallic ingredient and apparatus for purification
CN102210978A (en) * 2011-03-14 2011-10-12 四川科伦药业股份有限公司 Method and reagent for cleaning and repairing discarded reverse osmosis film in offline mode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LV, HUI ET AL.: "Monitoring and Controlling of Membrane Fouling in Reverse Osmosis", CHEMICAL INDUSTRY AND ENGINEERING, vol. 27, no. 6, November 2010 (2010-11-01), pages 525 - 529 *

Also Published As

Publication number Publication date
CN102210978A (en) 2011-10-12
WO2012122890A2 (en) 2012-09-20
CN102210978B (en) 2014-03-05

Similar Documents

Publication Publication Date Title
WO2012122892A1 (en) Off-line cleaning and repairing method for different fouling of waste reverse osmosis membrane
Li et al. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation
Yu et al. Performance of hollow fiber ultrafiltration membrane in a full-scale drinking water treatment plant in China: A systematic evaluation during 7-year operation
Li et al. Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles
Konieczny et al. Using activated carbon to improve natural water treatment by porous membranes
CN102814123B (en) Reverse osmosis membrane chemical cleaning method
Jung et al. Enhancing boron rejection on electrically conducting reverse osmosis membranes through local electrochemical pH modification
Agana et al. An approach to industrial water conservation–a case study involving two large manufacturing companies based in Australia
CN102085455B (en) Chemical cleaning and chemical repairing method and system for waste reverse osmosis membrane
WO2015012248A1 (en) Ultrapure water production system, ultrapure water production supply system, and method for cleaning same
Song et al. Arsenic removal using a sulfonated poly (ether ether ketone) coated hollow fiber nanofiltration membrane
Song et al. Nanofiltration desalination of reverse osmosis concentrate pretreated by advanced oxidation with ultrafiltration: Response surface optimization and exploration of membrane fouling
Dudley et al. Membrane autopsy—a case study
Liu et al. Fouling and chemically enhanced backwashing performance of low-pressure membranes during the treatment of shale gas produced water
CN105597549A (en) Device and method for cleaning nanofiltration membrane
Zhang et al. Research on the experiment of reservoir water treatment applying ultrafiltration membrane technology of different processes
Ahmad et al. Filtration analysis and fouling mechanisms of PVDF membrane for POME treatment
Yang et al. Research on refurbishing of the used RO membrane through chemical cleaning and repairing with a new system
Wang et al. How to extend the lifetime of RO membrane? From the perspective of the end-of-life RO membrane autopsy
CN110577859A (en) Cleaning agent for DTRO (draw texturing yarn) membrane and preparation and use methods thereof
Cho et al. Predictive models and factors affecting natural organic matter (NOM) rejection and flux decline in ultrafiltration (UF) membranes
CN107261852A (en) A kind of cleaning equipment and cleaning method of iron pollution micro-filtration/milipore filter
Manzouri et al. Rectification methods for the fouling of ultrafiltration hollow-fibre membranes as a result of excessive soluble iron
CN207237725U (en) A kind of cleaning equipment of iron pollution micro-filtration/ultrafiltration membrane
CN105776613B (en) Recycle the water purifier of raw water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758065

Country of ref document: EP

Kind code of ref document: A1