WO2012151738A1 - Embedded capacitance material and forming method thereof - Google Patents

Embedded capacitance material and forming method thereof Download PDF

Info

Publication number
WO2012151738A1
WO2012151738A1 PCT/CN2011/073784 CN2011073784W WO2012151738A1 WO 2012151738 A1 WO2012151738 A1 WO 2012151738A1 CN 2011073784 W CN2011073784 W CN 2011073784W WO 2012151738 A1 WO2012151738 A1 WO 2012151738A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal foil
porous
film
organic film
Prior art date
Application number
PCT/CN2011/073784
Other languages
French (fr)
Chinese (zh)
Inventor
苏民社
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Priority to PCT/CN2011/073784 priority Critical patent/WO2012151738A1/en
Publication of WO2012151738A1 publication Critical patent/WO2012151738A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0116Porous, e.g. foam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

An embedded capacitance material and a forming method thereof are provided in the present invention. The embedded capacitance material comprises: a prepreg, metal foils or cement coated metal foils respectively covered on both sides of the prepreg by pressing. The prepreg comprises a porous organic film and adhering resin compound after impregnating and drying. The cement coated metal foils comprise metal foils and resin compound coated on the metal foils. By using a porous organic film as the supporting material, the embedded capacitance material in the present invention not only increases the capacitance, but also provides excellent impact resistance.

Description

埋容材料及其制作方法 技术领域  Buried material and manufacturing method thereof
本发明涉及埋容材料技术领域, 尤其涉及一种以多孔隙的有机薄膜作 为支撑材料的埋容材料及其制作方法。 背景技术  The invention relates to the technical field of buried materials, in particular to a buried material using a porous organic film as a supporting material and a manufacturing method thereof. Background technique
随着电子器件向着高功能化、 微型化方向发展, 电子系统中的无源器 件所占的比重越来越大。 例如在手机中无源器件的数量是有源器件的 20 倍。 目前无源器件主要采用表面贴装的方式(如分立式电容器件) , 占据 着基板的大量空间, 且面上互连长度和焊接点多, 使得材料和系统的电性 能及可靠性能大为降低。 为了提供更加轻巧、 性能更好、 价格便宜、 性能 的可靠性更强的电子系统, 将过去表面贴装型封装系统转换为埋入式封装 系统是唯一的选择。 在所有的无源器件中, 电容器的数量最多, 受到更加 特别的关注。  As electronic devices move toward higher functionality and miniaturization, passive components in electronic systems are becoming more and more important. For example, the number of passive devices in mobile phones is 20 times that of active devices. At present, passive devices mainly use surface mount methods (such as discrete capacitive devices), occupy a large amount of space on the substrate, and have a large number of interconnect lengths and solder joints, which makes the electrical properties and reliability of materials and systems large. reduce. In order to provide an electronic system that is lighter, more efficient, cheaper, and more reliable, the conversion of a surface mount package system to a buried package system is the only option. Among all the passive components, the number of capacitors is the most, and more attention is paid.
为了节省电路板表面的空间并减少电磁干扰, 将分立式电容器件以平 板电容的材料形式(上下为两块金属电极, 中间为绝缘介质的平板结构) 埋进(层压进) 多层电路板(PCB ) 中, 是解决问题的趋势。  In order to save space on the surface of the board and reduce electromagnetic interference, the discrete capacitors are buried (laminated) in the form of a flat capacitor (two metal electrodes up and down, with a flat dielectric structure in the middle) In the board (PCB), it is the trend to solve the problem.
预获得具有较高应用价值的埋入式电容器, 其介质材料需要具有较高 的耐电压强度、 介质与金属基底之间有较高的剥离强度, 以及具有良好的 耐热性能和加工性能。 对埋入式电容材料的这些要求, 首先应归属于对介 质材料中树脂基体的要求。 众所周知, 作为埋入式电容器需要具有薄的介 质层厚度和较高的介电常数, 为了获得高的介电常数, 通常在介质层中加 入大量的高介电常的陶瓷填料, 大量陶瓷填料的加入对介质层的性能具有 一定的负面影响, 例如剥离强度降低引起材料的可靠性变差, 材料变脆易 碎使得加工性能变差等, 在埋入式电容材料的介电层做得很薄的情况下, 这些不利的影响会更加突出。  Pre-obtained buried capacitors with high application value, the dielectric materials need to have high withstand voltage, high peel strength between the medium and the metal substrate, and good heat resistance and processing properties. These requirements for buried capacitor materials should first be attributed to the resin matrix requirements in the dielectric material. It is well known that as a buried capacitor, it is required to have a thin dielectric layer thickness and a high dielectric constant. In order to obtain a high dielectric constant, a large amount of a high dielectric ceramic filler is usually added to the dielectric layer, and a large amount of ceramic filler is used. The addition has a certain negative influence on the performance of the dielectric layer, such as the deterioration of the peeling strength, the deterioration of the reliability of the material, the brittleness of the material, the deterioration of the processing property, etc., and the dielectric layer of the buried capacitor material is made thin. In the case of these, the adverse effects will be more prominent.
中国专利 CN200610007389.8 公开了一种用于埋入式电容器的树脂组 成物, 一种用于包括该树脂组成物的埋入式陶瓷 /聚合物埋容材料、 一种由 种树脂组成物主要着重于解决粘结 ^度、 耐热 和阻燃性, 并没有解决使 用这种树脂组成物与陶瓷材料组成的埋容材料的脆性问题, 这种树脂组成 物因为本身的脆性很大, 在和大量的陶瓷填料复合后, 脆性更大, 很难通 过印制电路板 ( PCB )加工过程的线路蚀刻机, 在 PCB的加工过程中会出 现破碎的现象, 并不能达到作为埋容材料的加工要求。 Chinese patent CN200610007389.8 discloses a resin composition for a buried capacitor, a buried ceramic/polymer buried material for including the resin composition, and a resin composition mainly focused on In order to solve the problem of adhesion, heat resistance and flame retardancy, the brittleness problem of the buried material composed of the resin composition and the ceramic material is not solved, and the resin composition is large in its own brittleness, and After the ceramic filler is compounded, it is more brittle and difficult to pass. The line etching machine that processes the printed circuit board (PCB) process will be broken during the processing of the PCB, and cannot meet the processing requirements as a buried material.
为解决埋容材料的脆性问题, 目前采用较多的方法之一是采用加入支 撑材料的方法, 如大多是采用玻璃纤维布作为支撑材料。 美国专利第 5162977 号揭示了一种内含高电容能量分布核层的印制电路板的制作及组 装流程, 其高介电常数材料是由环氧树脂加上强诱电性陶瓷粉末所形成的 胶液浸渍玻纤布所形成。 但是目前使用最薄的玻璃布制作的埋容材料厚度 都要在 30微米以上, 无法满足埋容材料更薄厚度的需要。  In order to solve the brittleness problem of buried materials, one of the more methods currently used is to use a method of adding a supporting material, such as glass fiber cloth as a supporting material. U.S. Patent No. 5,162,977 discloses a process for fabricating and assembling a printed circuit board containing a high-capacitance energy distribution core layer, the high dielectric constant material being formed of epoxy resin and strongly induced ceramic powder. The glue is formed by impregnating a fiberglass cloth. However, the thickness of the buried material made of the thinnest glass cloth is more than 30 microns, which cannot meet the need for a thinner thickness of the buried material.
美国申请专利 US20060188701揭示了一种中间加入耐热薄膜来作为支 撑材料, 虽然解决了埋容材料的强度(即解决了脆性) 问题, 但是因为使 用了薄膜作为中间夹层, 使得埋容材料成为两部分的串联结构, 根据串联 电容的计算公式 1/C=1/C1+1/C2, 最终制作的埋容材料, 其电容值 C得到 了降低。  U.S. Patent Application No. US20060188701 discloses the use of a heat-resistant film in the middle as a supporting material. Although the strength of the buried material (i.e., the brittleness is solved) is solved, the use of the film as an intermediate interlayer causes the buried material to be two parts. The series structure, according to the calculation formula of the series capacitor 1/C=1/C1+1/C2, the capacitance value C of the finally fabricated buried material is reduced.
美国专利 US4996097通过膨胀拉伸制作了一种最小厚度为 2.5微米的 陶瓷填充的 PTFE薄膜作为电容材料, 提出了通过拉伸方法先制作一种多 孔隙的 PTFE薄膜, 然后通过高压 (lOOOpsi )压缩消除了其中的空隙, 制 作成没有孔隙的电容材料。 其并没有提出将这种多孔隙的高介电 PTFE 薄 膜作为支撑材料, 采用浸渍的方法浸渍其它树脂体系, 以达到消除孔隙的 目的, 进而进行埋容材料的制作。 而且用该专利方法制作的电容材料, 需 要在 350°C以上的高温成型。  U.S. Patent No. 4,996,097, by using a ceramic-filled PTFE film having a minimum thickness of 2.5 μm as a capacitor material by expansion and stretching, proposes to fabricate a porous PTFE film by a stretching method and then eliminate it by high pressure (1000 psi) compression. The voids therein are made into a capacitor material without voids. It has not been proposed to use such a porous high-porosity PTFE film as a supporting material, and to impregnate other resin systems by impregnation to achieve the purpose of eliminating pores, thereby preparing a buried material. Moreover, the capacitor material produced by this patented method needs to be molded at a high temperature of 350 ° C or higher.
针对以上问题, 有必要开发出具有足够强度, 又对电容率降低不多的 埋容材料。 发明内容  In view of the above problems, it is necessary to develop a buried material having sufficient strength and a small decrease in the permittivity. Summary of the invention
本发明的目的在于提供一种埋容材料, 采用多孔隙的有机薄膜作为其 支撑材料, 利于埋容材料的薄型化, 具有良好的柔韧性, 高电容量。  The object of the present invention is to provide a buried material which uses a porous organic film as a supporting material, which is advantageous for thinning of a buried material, good flexibility, and high electric capacity.
本发明的另一目的在于提供一种上述埋容材料的制作方法, 采用多孔 隙的有机薄膜为支撑材料, 具有良好的成型性, 工艺操作筒便, 制得的埋 容材料强度和抗沖击性能优良, 避免了在蚀刻或者钻孔加工过程中出现碎 裂的现象  Another object of the present invention is to provide a method for fabricating the above-mentioned buried material, which adopts a porous organic film as a supporting material, has good formability, and is processed and operated, and the strength and impact resistance of the prepared buried material are obtained. Excellent performance, avoiding the phenomenon of chipping during etching or drilling
为实现上述目的, 本发明提供一种埋容材料, 包括: 半固化片、 及分 别压覆于其两侧的金属箔或涂胶金属箔, 半固化片包括多孔隙的有机薄膜 及通过含浸干燥后附着其上的树脂组合物, 涂胶金属箔包括金属箔及涂设 在其上的树脂组合物。 所述多孔隙的有机薄膜由聚酯、 聚胺、 聚丙烯酸、 聚酰亚胺、 芳纶、 聚四氟乙烯、 或间规聚苯乙烯制成; 该多孔隙的有机薄膜为多孔隙的膨胀 聚四氟乙烯 (ePTFE ) 薄膜、 多孔隙的聚乙烯薄膜、 多孔隙的聚丙烯薄 膜、 或多孔隙的聚酰亚胺薄膜; 所述多孔隙的有机薄膜厚度为 2~50 μ ιη, 其中孔的孔径为 1~500 μ ιη, 孔隙率为 30~98%; 所述金属箔为铜、 黄铜、 铝、 镍、 或这些金属的合金或复合金属箔, 其厚度为 12~150 μ ιη。 In order to achieve the above object, the present invention provides a buried material comprising: a prepreg, and a metal foil or a metallized metal foil respectively pressed on both sides thereof, the prepreg comprising a porous organic film and adhered thereto by impregnation and drying The resin composition, the metallized metal foil comprises a metal foil and a resin composition coated thereon. The porous organic film is made of polyester, polyamine, polyacrylic acid, polyimide, aramid, polytetrafluoroethylene, or syndiotactic polystyrene; the porous organic film is expanded by porosity a polytetrafluoroethylene (ePTFE) film, a porous polyethylene film, a porous polypropylene film, or a porous polyimide film; the porous organic film has a thickness of 2 to 50 μm, wherein the hole The pore size is from 1 to 500 μm, and the porosity is from 30 to 98%; the metal foil is copper, brass, aluminum, nickel, or an alloy of these metals or a composite metal foil having a thickness of 12 to 150 μm.
所述树脂组合物的树脂组分为环氧树脂、 氰酸酯树脂、 聚苯醚树脂、 聚丁二烯树脂、 丁苯树脂、 ΒΤ树脂、 聚四氟乙烯树脂 (PTFE树脂) 、 聚 酰亚胺树脂、 酚醛树脂、 及丙烯酸酯树脂中的一种或多种; 该树脂组合物 不包括或包括陶瓷填料, 陶瓷填料选自二氧化钛、 二氧化硅、 氧化铝、 氮 化硼、 氮化铝、 钛酸钡、 钛酸锶、 钛酸锶钡、 钙钛酸钡、 钛酸梧铅陶瓷、 钛酸铅一铣酸镁铅、 碳黑、 碳纳米管、 四氧化三铁、 金属及金属氧化物粉 末中的一种或多种。  The resin component of the resin composition is an epoxy resin, a cyanate resin, a polyphenylene ether resin, a polybutadiene resin, a styrene-butadiene resin, an anthracene resin, a polytetrafluoroethylene resin (PTFE resin), a polyamido. One or more of an amine resin, a phenol resin, and an acrylate resin; the resin composition does not include or include a ceramic filler selected from the group consisting of titanium dioxide, silicon dioxide, aluminum oxide, boron nitride, aluminum nitride, Barium titanate, barium titanate, barium titanate, barium calcium titanate, barium titanate lead ceramics, lead titanate magnesium chloride lead, carbon black, carbon nanotubes, ferroferric oxide, metals and metal oxides One or more of the powders.
本发明提供另一种埋容材料, 包括: 多孔隙的有机薄膜及压覆于其两 侧的涂胶金属箔, 所述涂胶金属箔包括金属箔及涂设在其上的树脂组合 物。  The present invention provides another embedding material comprising: a porous organic film and a rubberized metal foil pressed on both sides thereof, the rubberized metal foil comprising a metal foil and a resin composition coated thereon.
所述多孔隙的有机薄膜由聚酯、 聚胺、 聚丙烯酸、 聚酰亚胺、 芳纶、 聚四氟乙烯、 或间规聚苯乙烯制成, 该多孔隙的有机薄膜为多孔隙的膨胀 聚四氟乙烯 (ePTFE ) 薄膜、 多孔隙的聚乙烯薄膜、 多孔隙的聚丙烯薄 膜、 或多孔隙的聚酰亚胺薄膜; 所述多孔隙的有机薄膜厚度为 2~50 μ ιη, 其中孔的孔径为 1~500 μ ιη, 孔隙率为 30~98%; 所述金属箔为铜、 黄铜、 铝、 镍、 或这些金属的合金或复合金属箔, 其厚度为 12~150 μ ιη。  The porous organic film is made of polyester, polyamine, polyacrylic acid, polyimide, aramid, polytetrafluoroethylene, or syndiotactic polystyrene, and the porous organic film is porous. a polytetrafluoroethylene (ePTFE) film, a porous polyethylene film, a porous polypropylene film, or a porous polyimide film; the porous organic film has a thickness of 2 to 50 μm, wherein the hole The pore size is from 1 to 500 μm, and the porosity is from 30 to 98%; the metal foil is copper, brass, aluminum, nickel, or an alloy of these metals or a composite metal foil having a thickness of 12 to 150 μm.
所述树脂组合物的树脂组分为环氧树脂、 氰酸酯树脂、 聚苯醚树脂、 聚丁二烯树脂、 丁苯树脂、 ΒΤ树脂、 聚四氟乙烯树脂 (PTFE树脂) 、 聚 酰亚胺树脂、 酚醛树脂、 及丙烯酸酯树脂中的一种或多种; 该树脂组合物 不包括或包括陶瓷填料, 陶瓷填料选自二氧化钛、 二氧化硅、 氧化铝、 氮 化硼、 氮化铝、 钛酸钡、 钛酸锶、 钛酸锶钡、 钙钛酸钡、 钛酸梧铅陶瓷、 钛酸铅一铣酸镁铅、 碳黑、 碳纳米管、 四氧化三铁、 金属及金属氧化物粉 末中的一种或多种。  The resin component of the resin composition is an epoxy resin, a cyanate resin, a polyphenylene ether resin, a polybutadiene resin, a styrene-butadiene resin, an anthracene resin, a polytetrafluoroethylene resin (PTFE resin), a polyamido. One or more of an amine resin, a phenol resin, and an acrylate resin; the resin composition does not include or include a ceramic filler selected from the group consisting of titanium dioxide, silicon dioxide, aluminum oxide, boron nitride, aluminum nitride, Barium titanate, barium titanate, barium titanate, barium calcium titanate, barium titanate lead ceramics, lead titanate magnesium chloride lead, carbon black, carbon nanotubes, ferroferric oxide, metals and metal oxides One or more of the powders.
本发明提供一种上述埋容材料的制作方法, 包括以下步骤:  The invention provides a method for manufacturing the above buried material, comprising the following steps:
步骤 1、 提供多孔隙的有机薄膜、 及金属箔或涂胶金属箔, 并制备树 脂组合物的胶液;  Step 1. Providing a porous organic film, a metal foil or a metallized metal foil, and preparing a glue solution of the resin composition;
步骤 2、 用上述制备的树脂组合物的胶液浸渍多孔隙的有机薄膜, 烘 烤半固化, 制得半固化片; 步骤 3、 在半固化片的两侧各覆合一张金属箔或涂胶金属箔, 然后放 进层压机中通过热压固化, 即制得埋容材料。 Step 2: impregnating the porous organic film with the glue solution of the resin composition prepared above, baking and semi-curing to obtain a prepreg; Step 3. Laminating a metal foil or a metallized metal foil on both sides of the prepreg, and then putting it into a laminating machine to cure by hot pressing, thereby preparing a buried material.
所述多孔隙的有机薄膜由聚酯、 聚胺、 聚丙烯酸、 聚酰亚胺、 芳纶、 聚四氟乙烯、 或间规聚苯乙烯制成, 该多孔隙的有机薄膜为多孔隙的膨胀 聚四氟乙烯薄膜、 多孔隙的聚乙烯薄膜、 多孔隙的聚丙烯薄膜、 或多孔隙 的聚酰亚胺薄膜; 所述多孔隙的有机薄膜厚度为 2~50 μ ιη, 其中孔的孔径 为 1~500 μ ιη, 孔隙率为 30~98%; 所述金属箔为铜、 黄铜、 铝、 镍、 或这 些金属的合金或复合金属箔, 其厚度为 12~150 μ ιη; 所述涂胶金属箔通过 在金属箔上涂覆树脂组合物的胶液, 经烘烤半固化制得, 该树脂组合物与 所述半固化片的树脂组合物相同或不同。  The porous organic film is made of polyester, polyamine, polyacrylic acid, polyimide, aramid, polytetrafluoroethylene, or syndiotactic polystyrene, and the porous organic film is porous. a polytetrafluoroethylene film, a porous polyethylene film, a porous polypropylene film, or a porous polyimide film; the porous organic film has a thickness of 2 to 50 μm, wherein the pore diameter is 1~500 μ η, a porosity of 30 to 98%; the metal foil is copper, brass, aluminum, nickel, or an alloy or composite metal foil of these metals, and has a thickness of 12 to 150 μm; The metal foil is obtained by baking a resin solution of a resin composition on a metal foil, and baking is semi-cured, and the resin composition is the same as or different from the resin composition of the prepreg.
本发明提供另一种上述埋容材料的制作方法, 包括以下步骤: 步骤 1、 提供金属箔及多孔隙的有机薄膜, 并制备树脂组合物的胶 液;  The present invention provides another method for fabricating the above-mentioned buried material, comprising the following steps: Step 1. Providing a metal foil and a porous organic film, and preparing a glue of the resin composition;
步骤 2、 在金属箔上涂覆或浇注树脂组合物的胶液, 烘烤半固化, 制 得涂胶金属箔;  Step 2: coating or pouring a glue solution of the resin composition on the metal foil, baking and semi-curing to obtain a rubberized metal foil;
步骤 3、 在多孔隙的有机薄膜两侧各覆合一张涂胶金属箔, 然后放进 层压机中通过热压固化, 即制得埋容材料。  Step 3. Laminating a strip of coated metal foil on both sides of the porous organic film, and then putting it into a laminating machine to cure by hot pressing, thereby preparing a buried material.
所述多孔隙的有机薄膜由聚酯、 聚胺、 聚丙烯酸、 聚酰亚胺、 芳纶、 聚四氟乙烯、 或间规聚苯乙烯制成, 该多孔隙的有机薄膜为多孔隙的膨胀 聚四氟乙烯薄膜、 多孔隙的聚乙烯薄膜、 多孔隙的聚丙烯薄膜、 或多孔隙 的聚酰亚胺薄膜; 所述多孔隙的有机薄膜厚度为 2~50 μ ιη, 其中孔的孔径 为 1~500 μ ιη, 孔隙率为 30~98%; 所述金属箔为铜、 黄铜、 铝、 镍、 或这 些金属的合金或复合金属箔, 其厚度为 12~150 μ ιη。  The porous organic film is made of polyester, polyamine, polyacrylic acid, polyimide, aramid, polytetrafluoroethylene, or syndiotactic polystyrene, and the porous organic film is porous. a polytetrafluoroethylene film, a porous polyethylene film, a porous polypropylene film, or a porous polyimide film; the porous organic film has a thickness of 2 to 50 μm, wherein the pore diameter is 1~500 μ ιη, porosity is 30~98%; the metal foil is copper, brass, aluminum, nickel, or an alloy or composite metal foil of these metals, and has a thickness of 12-150 μm.
本发明的有益效果: 本发明的埋容材料, 采用多孔隙的有机薄膜作为 支撑材料, 可以方便树脂或及填料的进入, 使得埋容材料成为一个整体, 内部不具有串联的效应, 从而使得电容量得以提高; 另外, 以多孔隙的有 机薄膜作为支撑材料, 和热固性的树脂配合制作埋容材料, 具有良好的成 型性, 成型温度低, 工艺操作筒便, 所制得的埋容材料的强度和抗沖击性 能优良, 避免了在蚀刻或钻孔加工过程中出现裂碎的现象, 且利于埋容材 料的薄型化。 具体实施方式  Advantageous Effects of the Invention: The buried material of the present invention adopts a porous organic film as a supporting material, which can facilitate the entry of the resin or the filler, so that the buried material becomes a whole, and the internal does not have a series effect, thereby making electricity The capacity is improved. In addition, a porous organic film is used as a supporting material, and a thermosetting resin is used to prepare a buried material, which has good formability, low molding temperature, process operation cylinder, and strength of the prepared buried material. Excellent impact resistance, avoiding the phenomenon of cracking during etching or drilling, and facilitating the thinning of the buried material. detailed description
本发明一实施例的埋容材料, 包括: 半固化片、 及压覆于其两侧的涂 胶金属箔或金属箔, 半固化片包括多孔隙的有机薄膜及通过含浸干燥后附 着其上的树脂组合物, 涂胶金属箔包括金属箔及涂设在其上的树脂组合 物。 其中多孔隙的有机薄膜作为支撑材料, 其具有良好的柔韧性, 能够提 供埋容材料的柔韧性, 高电容量, 优良强度和抗沖击性能, 且该埋容材料 厚度可以小于 25微米, 更加薄型化。 A buried material according to an embodiment of the present invention comprises: a prepreg, and a rubberized metal foil or a metal foil laminated on both sides thereof, the prepreg comprising a porous organic film and being attached by impregnation and drying The resin composition thereon, the metallized metal foil includes a metal foil and a resin composition coated thereon. The porous organic film is used as a supporting material, and has good flexibility, can provide flexibility, high electric capacity, excellent strength and impact resistance of the buried material, and the thickness of the buried material can be less than 25 microns, and more Thin.
所述的多孔隙的有机薄膜可由聚酯、 聚胺、 聚丙烯酸、 聚酰亚胺、 芳 纶、 聚四氟乙烯、 或间规聚苯乙烯制作的薄膜, 但不限于这些列举的材 料, 可以是通过发泡、 膨胀拉伸等方法制作而成。 该多孔隙的有机薄膜可 为多孔隙的膨胀聚四氟乙烯(ePTFE ) 薄膜、 多孔隙的聚乙烯薄膜、 多孔 隙的聚丙烯薄膜、 或多孔隙的聚酰亚胺薄膜, 优选的多孔隙的有机薄膜为 通过膨胀拉伸制作的多孔隙的聚四氟乙烯薄膜。 该多孔隙的有机薄膜中有 大量的不密闭的孔隙, 孔隙的大小以可方便树脂和填料进入为好, 优选厚 度为 2~50 μ ιη, 其中孔的孔径为 1 μ ιη~500 μ ιη、 孔隙率为 50%~98%的多 孔隙的有机薄膜, 进一步优选厚度为 2~15 μ ιη, 孔径为 1 μ ιη~10 μ ιη、 孔 隙率为 70%~98%的该多孔隙的有机薄膜。  The porous organic film may be a film made of polyester, polyamine, polyacrylic acid, polyimide, aramid, polytetrafluoroethylene, or syndiotactic polystyrene, but is not limited to these listed materials, It is made by foaming, expanding and stretching. The porous organic film may be a porous expanded polytetrafluoroethylene (ePTFE) film, a porous polyethylene film, a porous polypropylene film, or a porous polyimide film, preferably porous. The organic film is a porous polytetrafluoroethylene film produced by expansion stretching. The porous organic film has a large number of non-closed pores, and the size of the pores is convenient for the resin and the filler to enter, preferably having a thickness of 2 to 50 μm, wherein the pore diameter is 1 μ ιη to 500 μ ιη, The porous organic film having a porosity of 50% to 98% is further preferably a porous organic film having a thickness of 2 to 15 μm, a pore diameter of 1 μm to 10 μm, and a porosity of 70% to 98%. .
所述涂胶金属箔的树脂组合物与半固化片的树脂组合物相同或不同, 所述树脂组合物包括的树脂组分可列举的有环氧树脂、 氰酸酯树脂、 聚苯 醚树脂、 聚丁二烯树脂、 丁苯树脂、 ΒΤ树脂、 PTFE树脂 (聚四氟乙烯树 脂) 、 聚酰亚胺树脂、 酚醛树脂、 丙烯酸酯树脂中的一种或多种, 但不限 于这些。  The resin composition for applying the metal foil is the same as or different from the resin composition of the prepreg, and the resin component included in the resin composition may be an epoxy resin, a cyanate resin, a polyphenylene ether resin, or a polybutylene. One or more of a diene resin, a styrene-butadiene resin, a fluorene resin, a PTFE resin (polytetrafluoroethylene resin), a polyimide resin, a phenol resin, and an acrylate resin, but are not limited thereto.
根据本发明, 所述树脂组合物可不包括有陶瓷填料, 也可包括有陶瓷 填料, 该陶瓷填料选自二氧化钛、 二氧化硅、 氧化铝、 氮化硼、 氮化铝、 钛酸钡、 钛酸锶、 钛酸锶钡、 钙钛酸钡、 钛酸锆铅陶瓷、 钛酸铅一铌酸镁 铅、 碳黑、 碳纳米管、 四氧化三铁、 金属及金属氧化物粉末中的一种或多 种, 但不限于这些。  According to the present invention, the resin composition may not include a ceramic filler, and may also include a ceramic filler selected from the group consisting of titanium dioxide, silicon dioxide, aluminum oxide, boron nitride, aluminum nitride, barium titanate, and titanic acid. One of barium, barium titanate, barium calcium titanate, zirconium titanate lead ceramic, lead titanate magnesium lead, carbon black, carbon nanotubes, triiron tetroxide, metal and metal oxide powder or A variety, but not limited to these.
根据本发明, 所述金属箔作为电极材料, 可列举的金属箔包括铜、 黄 铜、 铝、 镍、 辞或这些金属的合金或复合金属箔, 金属箔的厚度为 12~150 μ m。  According to the invention, the metal foil is used as an electrode material, and the metal foil may include copper, brass, aluminum, nickel, or an alloy of these metals or a composite metal foil having a thickness of 12 to 150 μm.
上述一实施例的埋容材料的制作方法, 包括以下步骤:  The manufacturing method of the buried material of the above embodiment comprises the following steps:
步骤 1、 提供多孔隙的有机薄膜、 及金属箔或涂胶金属箔, 并制备树 脂组合物的胶液; 所述树脂组合物中可包括有陶瓷填料, 也可不包括陶瓷 填料。 采用涂胶金属箔时, 该涂胶金属箔可预先制作, 通过在金属箔上涂 覆树脂组合物的胶液, 经烘烤半固化制得。  Step 1. Providing a porous organic film, and a metal foil or a metallized metal foil, and preparing a glue solution of the resin composition; the resin composition may or may not include a ceramic filler. When a metal foil is applied, the rubberized metal foil can be prepared in advance, and the resin composition is coated on the metal foil to be semi-cured by baking.
步骤 2、 用上述制备的树脂组合物的胶液浸渍多孔隙的有机薄膜, 烘 烤半固化, 制得半固化片。 步骤 3、 在半固化片的两侧各覆合一张金属箔或涂胶金属箔, 然后放 进层压机中通过热压固化, 即制得埋容材料。 该制得的埋容材料厚度可以 小于 25微米。 Step 2. Impregnating the porous organic film with the glue of the resin composition prepared above, baking and semi-curing to obtain a prepreg. Step 3. Laminating a metal foil or a metallized metal foil on both sides of the prepreg, and then putting it into a laminating machine to cure by hot pressing, thereby preparing a buried material. The resulting buried material may have a thickness of less than 25 microns.
本发明另一实施例的埋容材料, 包括: 多孔隙的有机薄膜及压覆于其 两侧的涂胶金属箔, 所述涂胶金属箔包括金属箔及涂设在其上的树脂组合 物。 其中多孔隙的有机薄膜作为支撑材料, 其具有良好的柔韧性, 能够提 供埋容材料的柔韧性, 高电容量, 优良强度和抗沖击性能, 且该埋容材料 可更加薄型化(厚度可以小于 25微米) 。  A buried material according to another embodiment of the present invention includes: a porous organic film and a rubberized metal foil pressed on both sides thereof, the rubberized metal foil comprising a metal foil and a resin composition coated thereon . The porous organic film is used as a supporting material, and has good flexibility, can provide flexibility, high electric capacity, excellent strength and impact resistance of the buried material, and the buried material can be thinner (thickness can be Less than 25 microns).
所述的多孔隙的有机薄膜可由聚酯、 聚胺、 聚丙烯酸、 聚酰亚胺、 芳 纶、 聚四氟乙烯、 或间规聚苯乙烯制作的薄膜, 但不限于这些列举的材 料, 可以是通过发泡、 膨胀拉伸等方法制作而成。 该多孔隙的有机薄膜可 为多孔隙的膨胀聚四氟乙烯薄膜、 多孔隙的聚乙烯薄膜、 多孔隙的聚丙烯 薄膜、 或多孔隙的聚酰亚胺薄膜, 优选的多孔隙的有机薄膜为通过膨胀拉 伸制作的多孔隙的聚四氟乙烯薄膜。 该多孔隙的有机薄膜中有大量的不密 闭的孔隙, 孔隙的大小以可方便树脂和填料进入为好, 优选厚度为 2~50 μ m, 其中孔的孔径为 1 μ ιη~500 μ ιη、 孔隙率为 50%~98%的多孔隙的有机 薄膜, 进一步优选厚度为 2~15 μ ιη , 孔径为 1 μ ιη~10 μ ιη、 孔隙率为 70%~98 %的该多孔隙的有机薄膜。  The porous organic film may be a film made of polyester, polyamine, polyacrylic acid, polyimide, aramid, polytetrafluoroethylene, or syndiotactic polystyrene, but is not limited to these listed materials, It is made by foaming, expanding and stretching. The porous organic film may be a porous expanded polytetrafluoroethylene film, a porous polyethylene film, a porous polypropylene film, or a porous polyimide film. The preferred porous organic film is A porous polytetrafluoroethylene film produced by expansion stretching. The porous organic film has a large number of unsealed pores, and the size of the pores is convenient for the resin and the filler to enter, preferably having a thickness of 2 to 50 μm, wherein the pore diameter is 1 μ ιη to 500 μ ιη, The porous organic film having a porosity of 50% to 98% is further preferably a porous organic film having a thickness of 2 to 15 μm, a pore diameter of 1 μm to 10 μm, and a porosity of 70% to 98%. .
所述树脂组合物包括的树脂组分可列举的有环氧树脂、 氰酸酯树脂、 聚苯醚树脂、 聚丁二烯树脂、 丁苯树脂、 ΒΤ树脂、 PTFE树脂 (聚四氟乙 烯树脂) 、 聚酰亚胺树脂、 酚醛树脂、 丙烯酸酯树脂中的一种或多种, 但 不限于这些。 根据本发明, 所述树脂组合物可不包括有陶瓷填料, 也可包 括有陶瓷填料, 该陶瓷填料选自二氧化钛、 二氧化硅、 氧化铝、 氮化硼、 氮化铝、 钛酸钡、 钛酸锶、 钛酸锶钡、 钙钛酸钡、 钛酸梧铅陶瓷、 钛酸 铅一铣酸镁铅、 碳黑、 碳纳米管、 四氧化三铁、 金属及金属氧化物粉末中 的一种或多种, 但不限于这些。 根据本发明, 所述金属箔作为电极材料, 可列举的金属箔包括铜、 黄铜、 铝、 镍、 辞或这些金属的合金或复合金属 箔, 金属箔的厚度为 12~150 μ ιη。  The resin component included in the resin composition may, for example, be an epoxy resin, a cyanate resin, a polyphenylene ether resin, a polybutadiene resin, a styrene-butadiene resin, an anthracene resin, or a PTFE resin (polytetrafluoroethylene resin). One or more of a polyimide resin, a phenol resin, and an acrylate resin, but is not limited thereto. According to the present invention, the resin composition may not include a ceramic filler, and may also include a ceramic filler selected from the group consisting of titanium dioxide, silicon dioxide, aluminum oxide, boron nitride, aluminum nitride, barium titanate, and titanic acid. One of barium, barium titanate, barium calcium titanate, barium titanate lead ceramic, lead titanate magnesium chloride, carbon black, carbon nanotubes, triiron tetroxide, metal and metal oxide powder or A variety, but not limited to these. According to the invention, the metal foil is used as an electrode material, and the metal foil may include copper, brass, aluminum, nickel, or an alloy of these metals or a composite metal foil having a thickness of 12 to 150 μm.
上述另一实施例的埋容材料的制作方法, 包括以下步骤:  The manufacturing method of the buried material according to another embodiment of the present invention includes the following steps:
步骤 1、 提供金属箔及多孔隙的有机薄膜, 并制备树脂组合物的胶 液。  Step 1. A metal foil and a porous organic film are provided, and a gel of the resin composition is prepared.
步骤 2、 在金属箔上涂覆或浇注树脂组合物的胶液, 烘烤半固化, 制 得涂胶金属箔。  Step 2. Coating or casting a glue solution of the resin composition on the metal foil, baking and semi-curing to obtain a rubberized metal foil.
步骤 3、 在多孔隙的有机薄膜两侧各覆合一张涂胶金属箔, 然后放进 层压机中通过热压固化, 即制得埋容材料。 该制得的埋容材料厚度可以小 于 25微米。 Step 3. Lay a piece of rubberized metal foil on both sides of the porous organic film, and then put it into The laminating machine is cured by hot pressing, that is, a buried material is obtained. The resulting buried material may have a thickness of less than 25 microns.
兹将本发明实施例详细说明如下, 但本发明并非局限在实施例范围。 实施例 1:  The embodiments of the present invention are described in detail below, but the present invention is not limited to the scope of the embodiments. Example 1:
将双酚 A环氧树脂 (环氧树脂 A ) 、 溴化环氧树脂 (环氧树脂 B ) 以 及端羧基丁腈橡胶(C ) , 溶解在乙二醇甲醚中, 并添加相对于环氧树脂 0.9摩尔比的邻甲酚线型酚酸树脂和 2-MI ( 2-甲基咪唑) , 然后在室温下 混合得到胶液。 将所得胶液涂覆在铜箔上, 然后在 155 °C的烘箱中烘烤 5 分钟固化为 B 阶段, 以获得涂胶铜箔 (RCC ) , RCC 的胶层厚度为 8微 米。 接着, 将 3微米厚的 ePTFE膜放在两个 RCC之间, 在压机中于 190 °C层压并固化, 得到固化物后测量拉伸模量, 延伸率, Tg, 剥离强度和蚀 刻掉铜箔后的介质层厚度。 具体配比及性能见表 1。  Dissolving bisphenol A epoxy resin (epoxy resin A), brominated epoxy resin (epoxy resin B) and terminal carboxylated nitrile rubber (C) in ethylene glycol methyl ether, and adding relative to epoxy The resin was mixed at a molar ratio of o-cresol novolac phenolic acid resin and 2-MI (2-methylimidazole), and then mixed at room temperature to obtain a gum solution. The obtained glue was coated on a copper foil, and then baked in an oven at 155 ° C for 5 minutes to form a B-stage to obtain a coated copper foil (RCC) having a thickness of 8 μm. Next, a 3 micron thick ePTFE film was placed between two RCCs, laminated and cured at 190 ° C in a press to obtain tensile modulus, elongation, Tg, peel strength and etching after curing. The thickness of the dielectric layer after the copper foil. The specific ratio and performance are shown in Table 1.
实施例 2:  Example 2:
将双酚 A环氧树脂 (环氧树脂 A ) 、 溴化环氧树脂 (环氧树脂 B )溶 解在乙二醇甲醚中, 并添加相对于环氧 0.9摩尔比的邻甲酚线型酚醛树脂 和 2-MI ( 2-甲基咪唑) , 然后在室温下混合得到胶液。 用所得胶液浸渍 3 微米厚的 ePTFE膜, 然后在 155°C的烘箱中烘烤 5分钟固化为 B阶段, 得 到半固化片, 控制树脂含量在 60%。 接着, 将该半固化片放在两张铜箔之 间, 在压机中于 190 °C层压并固化, 得到固化物后测量拉伸模量, 延伸 率, Tg, 剥离强度和蚀刻掉铜箔后的介质层厚度。 具体配比及性能见表 1。  Dissolving bisphenol A epoxy resin (epoxy resin A) and brominated epoxy resin (epoxy resin B) in ethylene glycol methyl ether, and adding ortho-cresol novolac to 0.9 molar ratio relative to epoxy The resin and 2-MI (2-methylimidazole) were then mixed at room temperature to give a gum solution. A 3 μm thick ePTFE film was impregnated with the resulting glue, and then baked in an oven at 155 ° C for 5 minutes to form a B stage, and a prepreg was obtained, and the control resin content was 60%. Next, the prepreg was placed between two copper foils, laminated and cured at 190 ° C in a press to obtain a cured product, and the tensile modulus, elongation, Tg, peel strength, and etching of the copper foil were measured. The thickness of the dielectric layer. The specific ratio and performance are shown in Table 1.
比较例 1:  Comparative example 1:
将双酚 A环氧树脂 (环氧树脂 A ) 、 溴化环氧树脂 (环氧树脂 B ) 以 及端 腈橡胶(树脂 C ) , 溶解在乙二醇甲醚中, 并添加 0.9摩尔比 的邻甲酚线型酚酸树脂和 2-MI ( 2-甲基咪唑) , 然后在室温下混合得到胶 液。 用以上胶液浸渍 106型 E型玻璃布, 然后在 155°C的烘箱中烘烤 5分 钟固化为 B阶段, 得到半固化片, 控制树脂含量在 72%。 接着, 将该半固 化片放在两张铜箔之间, 在压机中于 190°C层压并固化, 得到固化物后测 量拉伸模量, 延伸率, Tg, 剥离强度和蚀刻掉铜箔后的介质层厚度。 具体 配比及性能见表 1。  Dissolving bisphenol A epoxy resin (epoxy resin A), brominated epoxy resin (epoxy resin B) and terminal nitrile rubber (resin C) in ethylene glycol methyl ether, and adding 0.9 molar ratio of adjacent The cresol novolac phenolic acid resin and 2-MI (2-methylimidazole) are then mixed at room temperature to obtain a gum solution. The Type E E-glass cloth was impregnated with the above glue, and then baked in an oven at 155 ° C for 5 minutes to form a B-stage, and a prepreg was obtained, and the control resin content was 72%. Next, the prepreg was placed between two copper foils, laminated and cured at 190 ° C in a press to obtain a cured product, and then the tensile modulus, elongation, Tg, peel strength, and etching of the copper foil were measured. The thickness of the dielectric layer. The specific proportion and performance are shown in Table 1.
比较例 2:  Comparative Example 2:
将双酚 A环氧树脂 (环氧树脂 A ) 、 溴化环氧树脂 (环氧树脂 B ) , 溶解在乙二醇甲醚中, 并添加 0.9摩尔比的邻甲酚线型酚醛树脂和 2-MI ( 2-甲基咪唑) , 然后在室温下混合得到胶液。 用以上胶液浸渍 104型 E 型玻璃布, 然后在 155°C的烘箱中烘烤 5分钟固化为 B阶段, 得到半固化 片, 控制树脂含量在 80%。 接着, 将该半固化片放在两张铜箔之间, 在压 机中于 190°C层压并固化, 得到固化物后测量拉伸模量, 延伸率, Tg, 剥 离强度和蚀刻掉铜箔后的介质层厚度。 具体配比及性能见表 1。 Dissolving bisphenol A epoxy resin (epoxy resin A) and brominated epoxy resin (epoxy resin B) in ethylene glycol methyl ether, and adding 0.9 molar ratio of o-cresol novolac resin and 2 -MI (2-methylimidazole), and then mixed at room temperature to obtain a gum solution. Impregnate Type 104 E with the above glue The glass cloth was then baked in an oven at 155 ° C for 5 minutes to form a B-stage to obtain a prepreg having a controlled resin content of 80%. Next, the prepreg was placed between two copper foils, laminated and cured at 190 ° C in a press to obtain a cured product, and then the tensile modulus, elongation, Tg, peel strength, and etching of the copper foil were measured. The thickness of the dielectric layer. The specific ratio and performance are shown in Table 1.
表 1  Table 1
Figure imgf000009_0001
实施例 3:
Figure imgf000009_0001
Example 3:
按实施例 1的配比将双酚 A环氧树脂 (环氧树脂 A ) 、 溴化环氧树脂 (环氧树脂 B ) 、 端羧基丁腈橡胶混合物溶解在乙二醇甲醚中, 至于反应 溶液, 还添加了作为固化剂的 0.9摩尔比的邻甲酚线性酚酸树脂和 2-MI, 然后在室温下混合所得的胶液。 然后加入 40vol%的添加物的钛酸钡, 混合 均匀, 随后将所得胶液浇注在铜箔上, 在 155°C烘箱中烘烤 4分钟半固化 为 B阶段制作成 RCC。 接着, 将 5微米厚的 ePTFE膜放在两个 RCC之 间, 在压机中于 190 °C层压并固化。 得到固化物后测量拉伸模量、 延伸 率、 Tg、 剥离强度、 Dk/Df和阻燃性, 结果见表 2。 The bisphenol A epoxy resin (epoxy resin A), the brominated epoxy resin (epoxy resin B), and the terminal carboxylated nitrile rubber mixture were dissolved in ethylene glycol methyl ether according to the ratio of Example 1, as for the reaction. The solution was also added with a 0.9 molar ratio of o-cresol novolac resin and 2-MI as a curing agent, and then the resulting gum was mixed at room temperature. Then add 40 vol% of the additive barium titanate, mixing After uniformity, the obtained glue was poured on a copper foil, baked in an oven at 155 ° C for 4 minutes, and semi-cured to a B-stage to form an RCC. Next, a 5 micron thick ePTFE film was placed between two RCCs, laminated and cured at 190 ° C in a press. The tensile modulus, elongation, Tg, peel strength, Dk/Df, and flame retardancy were measured after obtaining a cured product, and the results are shown in Table 2.
比较例 3:  Comparative Example 3:
按实施例 1的配比将双酚 A环氧树脂 (环氧树脂 A ) 、 溴化环氧树脂 (环氧树脂 B) 、 端羧基丁腈橡胶混合物溶解在乙二醇甲醚中, 至于反应 溶液, 还添加了作为固化剂的 0.9摩尔比的邻甲酚线性酚酸树脂和 2-MI, 然后在室温下混合所得的胶液。 然后加入 40vol%的添加物的钛酸钡, 混合 均匀, 随后将所得胶液浇注在铜箔上, 在 155°C烘箱中烘烤 4分钟半固化 为 B阶段制作成 RCC。 接着, 将 5微米厚的 PI膜放在两个 RCC之间, 在 压机中于 190°C层压并固化。 得到固化物后测量拉伸模量、 延伸率、 Tg、 剥离强度、 Dk/Df和阻燃性, 结果见表 2。  The bisphenol A epoxy resin (epoxy resin A), the brominated epoxy resin (epoxy resin B), and the terminal carboxylated nitrile rubber mixture were dissolved in ethylene glycol methyl ether according to the ratio of Example 1, as for the reaction. The solution was also added with a 0.9 molar ratio of o-cresol novolac resin and 2-MI as a curing agent, and then the resulting gum was mixed at room temperature. Then, 40 vol% of the additive barium titanate was added, and the mixture was uniformly mixed. Then, the obtained glue was cast on a copper foil, baked in an oven at 155 ° C for 4 minutes, and semi-cured to form a RCC in the B stage. Next, a 5 μm thick PI film was placed between two RCCs, laminated and cured at 190 ° C in a press. The tensile modulus, elongation, Tg, peel strength, Dk/Df and flame retardancy were measured after obtaining a cured product, and the results are shown in Table 2.
表 2  Table 2
Figure imgf000010_0001
以上实施例和比较例皆参照 IPC4101 标准对覆铜板进行检测, 检测方 法如下:
Figure imgf000010_0001
The above examples and comparative examples refer to the IPC4101 standard for testing copper clad laminates. The detection methods are as follows:
( 1) 、 玻璃化转变温度(Tg) : 动态热机械分析法(DMA) 。  (1), glass transition temperature (Tg): Dynamic thermomechanical analysis (DMA).
(2) 、 剥离强度 (PS) : 测试条件为常态。  (2), Peel strength (PS): The test conditions are normal.
(3) 、 燃烧性: 采用 UL-94测试标准。  (3), flammability: Adopt UL-94 test standard.
(4) 、 拉伸模量和延伸率: 采用 Zwick材料拉伸试验机, 材料测试 状态为 A态。  (4), tensile modulus and elongation: Zwick material tensile testing machine, material testing state is A state.
(5) 、 介电' 1"生能: SPDR ( splite post dielectric resonator ) 法进行测 试, 测试条件为 A态, l.lGHz。 (5), dielectric '1' energy generation: SPDR (splite post dielectric resonator) method Test, the test condition is A state, l.lGHz.
从上表 1数据结果可看出, 本发明实施例 1、 2与比较例 1、 2相比, 采用 ePTFE膜作为支撑材料, 可以使埋容材料做的更薄, 而且具有良好的 强度和韧性; 虽然比较例 2中采用了目前市售的 104型薄玻璃布, 但是最 终埋容材料的厚度还是不能做的更薄。  As can be seen from the results of the above Table 1, the inventive examples 1 and 2 are compared with the comparative examples 1 and 2, and the ePTFE film is used as the supporting material, so that the buried material can be made thinner and has good strength and toughness. Although the commercially available type 104 thin glass cloth was used in Comparative Example 2, the thickness of the final buried material could not be made thinner.
从上表 2数据结果可看出, 本发明实施例 3与比较例 3相比, 因为实 施例 3采用了有孔隙的 ePTFE膜, 其介电常数相对于没有孔隙的 PI膜的 介电常数高了很多, 可以获得更高的电容量。  As can be seen from the results of the above Table 2, Example 3 of the present invention is compared with Comparative Example 3, since Example 3 employs a porous ePTFE film having a dielectric constant higher than that of a PI film having no pores. A lot, you can get higher capacitance.
从实施例中可以看出, 使用此多孔隙的有机薄膜和热固性的树脂配合 制作埋容材料, 成型温度低。  It can be seen from the examples that the porous organic film and the thermosetting resin are used in combination to form a buried material, and the molding temperature is low.
综上所述, 本发明的埋容材料, 采用多孔隙的有机薄膜作为支撑材 料, 可以方便树脂或及填料的进入, 使得埋容材料成为一个整体, 内部不 具有串联的效应, 从而使得电容量得以提高; 另外, 以多孔隙的有机薄膜 作为支撑材料, 和热固性的树脂配合制作埋容材料, 具有良好的成型性, 成型温度低, 工艺操作筒便, 所制得的埋容材料的强度和抗沖击性能优 良, 避免了在蚀刻或钻孔加工过程中出现裂碎的现象, 且利于埋容材料的 薄型化。  In summary, the buried material of the present invention adopts a porous organic film as a supporting material, which can facilitate the entry of the resin or the filler, so that the buried material becomes a whole, and the internal does not have a series effect, thereby making the capacitance. In addition, a porous organic film is used as a supporting material, and a thermosetting resin is used to prepare a buried material, which has good formability, low molding temperature, process operation cylinder, strength of the prepared buried material, and Excellent impact resistance, avoiding the phenomenon of cracking during etching or drilling, and facilitating the thinning of the buried material.
以上实施例, 并非对本发明的组合物的含量作任何限制, 凡是依据本 发明的技术实质或组合物成重量份或含量对以上实施例所作的任何细微修 改、 等同变化与修饰, 均仍属于本发明技术方案的范围内。  The above examples are not intended to limit the content of the composition of the present invention, and any minor modifications, equivalent changes and modifications made to the above examples in accordance with the technical spirit or composition of the present invention in parts by weight or amount are still in the present embodiment. Within the scope of the inventive solution.

Claims

权 利 要 求 Rights request
1、 一种埋容材料, 包括: 半固化片、 分别压覆于其两侧的金属箔或 涂胶金属箔, 半固化片包括多孔隙的有机薄膜及通过含浸干燥后附着其上 的树脂组合物, 涂胶金属箔包括金属箔及涂设在其上的树脂组合物。 1. A buried material comprising: a prepreg, a metal foil or a metallized metal foil respectively pressed on both sides thereof, the prepreg comprising a porous organic film and a resin composition adhered thereto by impregnation and drying, and a rubber coating The metal foil includes a metal foil and a resin composition coated thereon.
2、 如权利要求 1 所述的埋容材料, 其中, 所述多孔隙的有机薄膜由 聚酯、 聚胺、 聚丙烯酸、 聚酰亚胺、 芳纶、 聚四氟乙烯、 或间规聚苯乙烯 制成; 该多孔隙的有机薄膜为多孔隙的膨胀聚四氟乙烯薄膜、 多孔隙的聚 乙烯薄膜、 多孔隙的聚丙烯薄膜、 或多孔隙的聚酰亚胺薄膜; 该多孔隙的 有机薄膜厚度为 2~50 μ ιη , 其中孔的孔径为 1~500 μ ιη , 孔隙率为 30-98%; 金属箔为铜、 黄铜、 铝、 镍、 或这些金属的合金或复合金属箔, 其厚度为 12~150 μ ιη。  2. The embedding material according to claim 1, wherein the porous organic film is composed of polyester, polyamine, polyacrylic acid, polyimide, aramid, polytetrafluoroethylene, or syndiotactic polyphenylene. Made of ethylene; the porous organic film is a porous expanded polytetrafluoroethylene film, a porous polyethylene film, a porous polypropylene film, or a porous polyimide film; the porous organic The thickness of the film is 2~50 μ ιη, wherein the pore diameter is 1~500 μ η, and the porosity is 30-98%; the metal foil is copper, brass, aluminum, nickel, or an alloy or composite metal foil of these metals, Its thickness is 12~150 μ ιη.
3、 如权利要求 1 所述的埋容材料, 其中, 所述树脂组合物的树脂组 分为环氧树脂、 氰酸酯树脂、 聚苯醚树脂、 聚丁二烯树脂、 丁苯树脂、 ΒΤ 树脂、 聚四氟乙烯树脂、 聚酰亚胺树脂、 酚醛树脂、 及丙烯酸酯树脂中的 一种或多种; 该树脂组合物不包括或包括陶瓷填料, 陶瓷填料选自二氧化 钛、 二氧化硅、 氧化铝、 氮化硼、 氮化铝、 钛酸钡、 钛酸锶、 钛酸锶钡、 钙钛酸钡、 钛酸锆铅陶瓷、 钛酸铅一铌酸镁铅、 碳黑、 碳纳米管、 四氧化 三铁、 金属及金属氧化物粉末中的一种或多种。  3. The embedding material according to claim 1, wherein the resin component of the resin composition is an epoxy resin, a cyanate resin, a polyphenylene ether resin, a polybutadiene resin, a styrene-butadiene resin, and a ruthenium resin. One or more of a resin, a polytetrafluoroethylene resin, a polyimide resin, a phenol resin, and an acrylate resin; the resin composition does not include or include a ceramic filler selected from the group consisting of titanium dioxide, silicon dioxide, Alumina, boron nitride, aluminum nitride, barium titanate, barium titanate, barium titanate, barium calcium titanate, zirconium titanate lead ceramic, lead titanate magnesium lead, carbon black, carbon nanotube One or more of triiron tetroxide, metal and metal oxide powders.
4、 一种埋容材料, 包括: 多孔隙的有机薄膜及压覆于其两侧的涂胶 金属箔, 所述涂胶金属箔包括金属箔及涂设在其上的树脂组合物。  A buried material comprising: a porous organic film and a rubberized metal foil pressed on both sides thereof, the rubberized metal foil comprising a metal foil and a resin composition coated thereon.
5、 如权利要求 4 所述的埋容材料, 其中, 所述多孔隙的有机薄膜由 聚酯、 聚胺、 聚丙烯酸、 聚酰亚胺、 芳纶、 聚四氟乙烯、 或间规聚苯乙烯 制成, 该多孔隙的有机薄膜为多孔隙的膨胀聚四氟乙烯薄膜、 多孔隙的聚 乙烯薄膜、 多孔隙的聚丙烯薄膜、 或多孔隙的聚酰亚胺薄膜; 该多孔隙的 有机薄膜厚度为 2~50 μ ιη , 其中孔的孔径为 1~500 μ ιη , 孔隙率为 30-98%; 金属箔为铜、 黄铜、 铝、 镍、 或这些金属的合金或复合金属箔, 其厚度为 12~150 μ ιη。  The buried material according to claim 4, wherein the porous organic film is made of polyester, polyamine, polyacrylic acid, polyimide, aramid, polytetrafluoroethylene, or syndiotactic polyphenylene. Made of ethylene, the porous organic film is a porous expanded polytetrafluoroethylene film, a porous polyethylene film, a porous polypropylene film, or a porous polyimide film; the porous organic The thickness of the film is 2~50 μ ιη, wherein the pore diameter is 1~500 μ η, and the porosity is 30-98%; the metal foil is copper, brass, aluminum, nickel, or an alloy or composite metal foil of these metals, Its thickness is 12~150 μ ιη.
6、 如权利要求 4 所述的埋容材料, 其中, 所述树脂组合物的树脂组 分为环氧树脂、 氰酸酯树脂、 聚苯醚树脂、 聚丁二烯树脂、 丁苯树脂、 ΒΤ 树脂、 聚四氟乙烯树脂、 聚酰亚胺树脂、 酚醛树脂、 及丙烯酸酯树脂中的 一种或多种; 该树脂组合物不包括或包括陶瓷填料, 陶瓷填料选自二氧化 钛、 二氧化硅、 氧化铝、 氮化硼、 氮化铝、 钛酸钡、 钛酸锶、 钛酸锶钡、 钙钛酸钡、 钛酸锆铅陶瓷、 钛酸铅一铌酸镁铅、 碳黑、 碳纳米管、 四氧化 三铁、 金属及金属氧化物粉末中的一种或多种。 The embedding material according to claim 4, wherein the resin component of the resin composition is an epoxy resin, a cyanate resin, a polyphenylene ether resin, a polybutadiene resin, a styrene-butadiene resin, and a ruthenium resin. One or more of a resin, a polytetrafluoroethylene resin, a polyimide resin, a phenol resin, and an acrylate resin; the resin composition does not include or include a ceramic filler selected from the group consisting of titanium dioxide, silicon dioxide, Alumina, boron nitride, aluminum nitride, barium titanate, barium titanate, barium titanate, One or more of calcium barium titanate, zirconium titanate lead ceramic, lead titanate magnesium lead, carbon black, carbon nanotubes, triiron tetroxide, metal and metal oxide powder.
7、 一种如权利要求 1所述的埋容材料的制作方法, 包括以下步骤: 步骤 1、 提供多孔隙的有机薄膜、 及金属箔或涂胶金属箔, 并制备树 脂组合物的胶液;  7. A method of fabricating a buried material according to claim 1, comprising the steps of: Step 1, providing a porous organic film, and a metal foil or a metallized metal foil, and preparing a glue solution of the resin composition;
步骤 2、 用上述制备的树脂组合物的胶液浸渍多孔隙的有机薄膜, 烘 烤半固化, 制得半固化片;  Step 2: impregnating the porous organic film with the glue solution of the resin composition prepared above, baking and semi-curing to obtain a prepreg;
步骤 3、 在半固化片的两侧各覆合一张金属箔或涂胶金属箔, 然后放 进层压机中通过热压固化, 即制得埋容材料。  Step 3. Laminating a metal foil or a metallized metal foil on both sides of the prepreg, and then putting it into a laminating machine to cure by hot pressing, thereby preparing a buried material.
8、 如权利要求 7 所述的埋容材料的制作方法, 其中, 所述多孔隙的 有机薄膜由聚酯、 聚胺、 聚丙烯酸、 聚酰亚胺、 芳纶、 聚四氟乙烯、 或间 规聚苯乙烯制成, 该多孔隙的有机薄膜为多孔隙的膨胀聚四氟乙烯薄膜、 多孔隙的聚乙烯薄膜、 多孔隙的聚丙烯薄膜、 或多孔隙的聚酰亚胺薄膜; 所述多孔隙的有机薄膜厚度为 2~50 μ ιη, 其中孔的孔径为 1~500 μ ιη, 孔 隙率为 30~98%; 所述金属箔为铜、 黄铜、 铝、 镍、 或这些金属的合金或 复合金属箔, 其厚度为 12~150 μ ιη; 所述涂胶金属箔通过在金属箔上涂覆 树脂组合物的胶液, 经烘烤半固化制得, 该树脂组合物与所述半固化片的 树脂组合物相同或不同。  The method of manufacturing a buried material according to claim 7, wherein the porous organic film is made of polyester, polyamine, polyacrylic acid, polyimide, aramid, polytetrafluoroethylene, or Made of a polystyrene, the porous organic film is a porous expanded polytetrafluoroethylene film, a porous polyethylene film, a porous polypropylene film, or a porous polyimide film; The porous organic film has a thickness of 2 to 50 μm, wherein the pores have a pore diameter of 1 to 500 μm and a porosity of 30 to 98%; and the metal foil is copper, brass, aluminum, nickel, or these metals. An alloy or a composite metal foil having a thickness of 12 to 150 μm; the rubberized metal foil is obtained by coating a metal foil with a glue of a resin composition, and baking is semi-cured, the resin composition and the resin composition The resin compositions of the prepreg are the same or different.
9、 一种如权利要求 4所述的埋容材料的制作方法, 包括以下步骤: 步骤 1、 提供金属箔及多孔隙的有机薄膜, 并制备树脂组合物的胶 液;  9. A method of fabricating a buried material according to claim 4, comprising the steps of: Step 1. providing a metal foil and a porous organic film, and preparing a glue of the resin composition;
步骤 2、 在金属箔上涂覆或浇注树脂组合物的胶液, 烘烤半固化, 制 得涂胶金属箔;  Step 2: coating or pouring a glue solution of the resin composition on the metal foil, baking and semi-curing to obtain a rubberized metal foil;
步骤 3、 在多孔隙的有机薄膜两侧各覆合一张涂胶金属箔, 然后放进 层压机中通过热压固化, 即制得埋容材料。  Step 3. Laminating a strip of coated metal foil on both sides of the porous organic film, and then putting it into a laminating machine to cure by hot pressing, thereby preparing a buried material.
10、 如权利要求 9所述的埋容材料的制作方法, 其中, 所述多孔隙的 有机薄膜由聚酯、 聚胺、 聚丙烯酸、 聚酰亚胺、 芳纶、 聚四氟乙烯、 或间 规聚苯乙烯制成, 该多孔隙的有机薄膜为多孔隙的膨胀聚四氟乙烯薄膜、 多孔隙的聚乙烯薄膜、 多孔隙的聚丙烯薄膜、 或多孔隙的聚酰亚胺薄膜; 所述多孔隙的有机薄膜厚度为 2~50 μ ιη, 其中孔的孔径为 1~500 μ ιη, 孔 隙率为 30~98%; 金属箔为铜、 黄铜、 铝、 镍、 或这些金属的合金或复合 金属箔, 其厚度为 12~150 μ ιη。  The method of manufacturing a buried material according to claim 9, wherein the porous organic film is made of polyester, polyamine, polyacrylic acid, polyimide, aramid, polytetrafluoroethylene, or Made of a polystyrene, the porous organic film is a porous expanded polytetrafluoroethylene film, a porous polyethylene film, a porous polypropylene film, or a porous polyimide film; The porous organic film has a thickness of 2 to 50 μm, wherein the pores have a pore diameter of 1 to 500 μm and a porosity of 30 to 98%; the metal foil is copper, brass, aluminum, nickel, or an alloy of these metals or Composite metal foil with a thickness of 12~150 μm.
PCT/CN2011/073784 2011-05-06 2011-05-06 Embedded capacitance material and forming method thereof WO2012151738A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073784 WO2012151738A1 (en) 2011-05-06 2011-05-06 Embedded capacitance material and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073784 WO2012151738A1 (en) 2011-05-06 2011-05-06 Embedded capacitance material and forming method thereof

Publications (1)

Publication Number Publication Date
WO2012151738A1 true WO2012151738A1 (en) 2012-11-15

Family

ID=47138646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073784 WO2012151738A1 (en) 2011-05-06 2011-05-06 Embedded capacitance material and forming method thereof

Country Status (1)

Country Link
WO (1) WO2012151738A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104559177A (en) * 2013-10-25 2015-04-29 深圳光启创新技术有限公司 Resin composition and preparation methods of prepreg, composite substrate and PCB (printed circuit board) substrate
CN106221130A (en) * 2016-07-28 2016-12-14 苏州大学 A kind of porous polymer material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412500A (en) * 1977-06-30 1979-01-30 Matsushita Electric Ind Co Ltd Film material providing high electrostatic capacitance
US4996097A (en) * 1989-03-16 1991-02-26 W. L. Gore & Associates, Inc. High capacitance laminates
US5155655A (en) * 1989-08-23 1992-10-13 Zycon Corporation Capacitor laminate for use in capacitive printed circuit boards and methods of manufacture
US5162977A (en) * 1991-08-27 1992-11-10 Storage Technology Corporation Printed circuit board having an integrated decoupling capacitive element
CN101194326A (en) * 2005-02-22 2008-06-04 奥克-三井有限公司 Multilayered construction for resistor and capacitor formation
US20100271748A1 (en) * 2009-04-24 2010-10-28 Jung Rag Yoon Embedded capacitor, embedded capacitor sheet using the same and method of manufacturing the same
CN101973145A (en) * 2010-08-20 2011-02-16 广东生益科技股份有限公司 Method for preparing embedded material and embedded material prepared thereby

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412500A (en) * 1977-06-30 1979-01-30 Matsushita Electric Ind Co Ltd Film material providing high electrostatic capacitance
US4996097A (en) * 1989-03-16 1991-02-26 W. L. Gore & Associates, Inc. High capacitance laminates
US5155655A (en) * 1989-08-23 1992-10-13 Zycon Corporation Capacitor laminate for use in capacitive printed circuit boards and methods of manufacture
US5162977A (en) * 1991-08-27 1992-11-10 Storage Technology Corporation Printed circuit board having an integrated decoupling capacitive element
CN101194326A (en) * 2005-02-22 2008-06-04 奥克-三井有限公司 Multilayered construction for resistor and capacitor formation
US20100271748A1 (en) * 2009-04-24 2010-10-28 Jung Rag Yoon Embedded capacitor, embedded capacitor sheet using the same and method of manufacturing the same
CN101973145A (en) * 2010-08-20 2011-02-16 广东生益科技股份有限公司 Method for preparing embedded material and embedded material prepared thereby

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104559177A (en) * 2013-10-25 2015-04-29 深圳光启创新技术有限公司 Resin composition and preparation methods of prepreg, composite substrate and PCB (printed circuit board) substrate
CN104559177B (en) * 2013-10-25 2018-10-23 深圳光启创新技术有限公司 The preparation method of resin combination and prepreg, composite base material and PCB substrate
CN106221130A (en) * 2016-07-28 2016-12-14 苏州大学 A kind of porous polymer material and preparation method thereof

Similar Documents

Publication Publication Date Title
US9779880B2 (en) Resin composition and dielectric layer and capacitor produced therefrom
CN101973145B (en) Method for preparing embedded material and embedded material prepared thereby
TWI394189B (en) Capacitor substrate structure
CN102285168A (en) Buried capacitance material and manufacturing method thereof
WO2015180206A1 (en) Thermoset resin sandwiched pre-preg body, manufacturing method and copper clad plate
TW201328870A (en) Thermosetting resin composition and prepreg and metal clad laminate using the same
US8935851B2 (en) Method for manufacturing a circuit board
JPWO2009008471A1 (en) Copper foil with dielectric layer
CN103358631A (en) Dielectric layer for embedded capacitance material, embedded capacitance material, preparation method and use of embedded capacitance material
WO2004102589A1 (en) Insulating material, film, circuit board and method for manufacture thereof
WO2020100314A1 (en) Resin composition, prepreg, and laminated plate
JP2004146495A (en) Built-in chip capacitor for printed wiring board, and element-containing board built therein
WO2012151738A1 (en) Embedded capacitance material and forming method thereof
TW200424259A (en) Resin composition having high dielectric constant and uses thereof
CN108728029A (en) A kind of production method of heat conductive insulating medium glued membrane
CN109688697B (en) Low-insertion-loss high-frequency high-heat-conductivity substrate and application thereof
JP3820668B2 (en) Metal base substrate and manufacturing method thereof
JP2002261442A (en) Method of manufacturing multilayer printed wiring board
JP3783682B2 (en) Prepreg and method for manufacturing printed wiring board using this prepreg
CN209806155U (en) Low-insertion-loss high-frequency high-heat-conductivity substrate and printed circuit board
JP2004319561A (en) Substrate with built-in element and its manufacturing method
JP2000238162A (en) Laminate
JP2004322482A (en) Insulating film and multi-layer wiring board using the film
JP2003200526A (en) Material for manufacturing printed wiring board, printed wiring board and method for manufacturing the same
TW202348103A (en) Flexible metal clad laminate, method for manufacturing the same, and flexible printed circuit board using the flexible metal clad laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865200

Country of ref document: EP

Kind code of ref document: A1