WO2013005667A1 - METHOD FOR MANUFACTURING GaN SEMICONDUCTOR ELEMENT - Google Patents

METHOD FOR MANUFACTURING GaN SEMICONDUCTOR ELEMENT Download PDF

Info

Publication number
WO2013005667A1
WO2013005667A1 PCT/JP2012/066677 JP2012066677W WO2013005667A1 WO 2013005667 A1 WO2013005667 A1 WO 2013005667A1 JP 2012066677 W JP2012066677 W JP 2012066677W WO 2013005667 A1 WO2013005667 A1 WO 2013005667A1
Authority
WO
WIPO (PCT)
Prior art keywords
gan
electrode
protective film
film
electrodes
Prior art date
Application number
PCT/JP2012/066677
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 耕一郎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013005667A1 publication Critical patent/WO2013005667A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Definitions

  • the present invention relates to a method for manufacturing a GaN-based semiconductor element.
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-306026 discloses a method for manufacturing a GaN-based FET (field effect transistor).
  • an electrode is formed on a GaN-based semiconductor layer, the electrode is heat-treated to form a source / drain electrode as an ohmic electrode, and the source / drain electrode and the GaN-based semiconductor layer are formed on the source / drain electrode.
  • An insulating film (silicon nitride film or the like) is formed, and this insulating film is heat-treated.
  • This current collapse is particularly prominent in a GaN-based semiconductor device, and is a phenomenon in which the on-resistance of a transistor in high-voltage operation is significantly higher than the on-resistance of the transistor in low-voltage operation. .
  • the present inventors formed a SiN insulating film for suppressing current collapse after forming the source / drain electrodes, and when heat treatment is performed in this state, the electrode metal becomes SiN. A problem has been discovered in which it diffuses into the insulating film and causes leakage current via the SiN insulating film.
  • an object of the present invention is to provide a method of manufacturing a GaN-based semiconductor element that can suppress the diffusion of electrode metal into the SiN insulating film, and can achieve both suppression of current collapse and reduction of leakage current.
  • the present invention was created based on the discovery of the phenomenon that the electrode metal diffuses into the silicon nitride film when heat-treating the silicon nitride film that suppresses current collapse with the electrode formed. It has been done.
  • the present inventors have formed a silicon nitride film and heat-treated, and then formed an electrode and heat-treated (ohmic annealing) to form an ohmic electrode. It has been found that it is effective in suppressing diffusion into the film, and that leakage current passing through the silicon nitride film can be reduced.
  • a protective film including a silicon nitride film or a protective film made of a silicon nitride film is formed on a GaN-based stacked body having a heterojunction, Heat treating the protective film, Etching at least a predetermined region of the protective film of the protective film and the GaN-based laminate to remove an ohmic electrode formation region of the GaN-based laminate, Forming an electrode containing Ti / Al or Hf / Al in the ohmic electrode formation region of the GaN-based laminate; The electrode is heat-treated to form an ohmic electrode.
  • a protective film including the silicon nitride film or a protective film made of a silicon nitride film is formed on the GaN-based stacked body, and the protection for suppressing the current collapse is performed.
  • an electrode is formed on the GaN-based laminate, and the electrode is heat treated to form an ohmic electrode.
  • the electrode metal is suppressed from diffusing into the protective film during the heat treatment of the electrode, It has been found that the leakage current passing through the protective film can be reduced.
  • the present invention it is possible to manufacture a GaN-based semiconductor element that can not only suppress current collapse by the protective film but also reduce the leakage current passing through the protective film.
  • “current collapse” is a problem particularly in GaN-based semiconductor devices, and the transistor resistance in high-voltage operation is lower than the on-resistance of the transistor in low-voltage operation. This is a phenomenon in which the on-resistance becomes extremely high.
  • the protective film is A lower layer silicon nitride film formed on the GaN-based laminate, An upper silicon nitride film formed on the lower silicon nitride film; An SiO 2 film or an Al 2 O 3 film formed on the upper silicon nitride film,
  • the upper silicon nitride film is a stoichiometric silicon nitride film.
  • the upper silicon nitride film is stoichiometry, and an SiO 2 film or an Al 2 O 3 film is formed on the upper silicon nitride film. It is possible to suppress the electrode metal from diffusing into the upper layer and the lower layer silicon nitride film of the protective film during the heat treatment, and to further reduce the leakage current passing through the protective film.
  • the stoichiometric silicon nitride film means that Si and N have a composition of 3: 4.
  • the temperature at which the electrode is heat-treated is lower than the temperature at which the protective film is heat-treated.
  • the electrode metal when the electrode is heat-treated, the electrode metal can be prevented from diffusing into the protective film, and the leakage current passing through the protective film can be further reduced.
  • an electrode metal is protected by forming an ohmic electrode after forming a protective film including the silicon nitride film or a protective film made of a silicon nitride film and performing heat treatment. Since diffusion to the film is suppressed and leakage current passing through the protective film can be reduced, a GaN-based semiconductor element capable of both suppressing current collapse and reducing leakage current can be manufactured.
  • (First embodiment) 1 to 5 are cross-sectional views sequentially showing steps of a method of manufacturing a GaN-based HFET (Hetero-junction Field Effect Transistor) according to the first embodiment of the present invention.
  • GaN-based HFET Hetero-junction Field Effect Transistor
  • an undoped AlGaN buffer layer 2, an undoped GaN channel layer 3, and an undoped AlGaN barrier layer 4 are sequentially formed on a Si substrate 1 by using MOCVD (metal organic chemical vapor deposition).
  • MOCVD metal organic chemical vapor deposition
  • the AlGaN buffer layer 2, the GaN channel layer 3 and the AlGaN barrier layer 4 constitute a GaN-based laminate 5.
  • reference numeral 6 indicates a two-dimensional electron gas formed at the interface between the AlGaN barrier layer 4 and the GaN channel layer 3.
  • a SiN protective film 7 which is a silicon nitride film is formed on the AlGaN barrier layer 4 by using a plasma CVD method.
  • the growth temperature of the SiN protective film 7 is 225 ° C. as an example, but may be set in the range of 200 ° C. to 400 ° C.
  • the thickness of the SiN protective film 7 is 150 nm as an example, but may be set in the range of 20 nm to 250 nm.
  • the SiN protective film 7 having a silicon Si ratio larger than that of the stoichiometric silicon nitride film can be formed.
  • current collapse can be further suppressed as compared with a stoichiometric silicon nitride film.
  • a photoresist layer (not shown) is formed on the SiN protective film 7, exposed and developed to form an opening in the photoresist layer, and the photoresist layer in which the opening is formed is used as a mask. Then, dry etching is performed. Thereby, as shown in FIG. 3, openings 10 and 11 are formed in the SiN protective film 7 and recesses 12 and 13 reaching from the AlGaN barrier layer 4 to the GaN channel layer 3 are formed.
  • the recesses 12 and 13 form an ohmic electrode formation region.
  • the method of forming the recesses 12 and 13 is not limited to the above.
  • an AlGaN barrier is formed.
  • the recesses 12 and 13 may be formed by dry etching the layer 4 and the GaN channel layer 3.
  • the SiN protective film 7 is heat-treated.
  • This heat treatment was performed, for example, at 500 ° C. for 5 minutes in a nitrogen atmosphere.
  • the temperature of the heat treatment may be set in the range of 500 ° C. to 700 ° C. as an example.
  • a photoresist (not shown) in which the regions where the source and drain electrodes are to be formed (including regions by the recesses 12 and 13 and the openings 10 and 11) is formed is formed on the photoresist.
  • Ti and Al are deposited in this order, and lift-off provides a source electrode and a drain electrode so as to fill the recesses 12 and 13 and the openings 10 and 11 and have a region overlapping the SiN protective film 7 as shown in FIG.
  • Ti / Al electrodes 15 and 16 are formed.
  • the Ti / Al electrodes 15 and 16 are electrodes having a laminated structure in which a Ti layer and an Al layer are sequentially laminated.
  • the electrodes 15 and 16 are heat-treated to form ohmic electrodes, and the source electrode 15 and the drain electrode 16 are formed.
  • the condition of this heat treatment (ohmic annealing) is set to 500 ° C. for 30 minutes as an example, but the condition of the heat treatment is not limited to this.
  • the heat treatment temperature is set within a range of 400 ° C. to 600 ° C. May be.
  • a mask made of a photoresist is formed by photolithography, and etching is performed to remove a region where the gate electrode of the SiN protective film 7 is to be formed, thereby forming an opening 20.
  • TiN is sputtered over the entire surface so as to fill the opening 20, and a resist pattern (not shown) is formed in an electrode formation region where a gate electrode is to be formed by photolithography.
  • a resist pattern (not shown) is formed in an electrode formation region where a gate electrode is to be formed by photolithography.
  • dry etching or wet etching is performed.
  • Etching is performed to remove the TiN film other than the electrode formation region, and a TiN electrode to be the gate electrode 18 is formed.
  • the undoped AlGaN barrier layer 4 is located immediately below the gate electrode 18, and the junction between the gate electrode 18 and the undoped AlGaN barrier layer 4 is a Schottky junction.
  • the SiN protective film 7 is formed on the GaN-based stacked body 5, and the SiN protective film 7 is heat-treated (for example, 5 ° C. at 500 ° C.).
  • the Ti / Al electrodes 15 and 16 are formed on the GaN-based laminate 5, and the Ti / Al electrodes 15 and 16 are heat-treated to form the source electrode 15 and the drain electrode 16 as ohmic electrodes.
  • the inventors formed the SiN protective film 7 and heat-treated, then formed the Ti / Al electrodes 15 and 16 and heat-treated (ohmic annealing) to form the source electrode 15 and the drain electrode 16 as ohmic electrodes.
  • the electrode metal can be prevented from diffusing into the SiN protective film 7 and the leakage current passing through the SiN protective film 7 can be reduced.
  • the manufacturing method of this embodiment it is possible to manufacture a GaN-based HFET that can simultaneously suppress the current collapse by the SiN protective film 7 and reduce the leakage current passing through the SiN protective film 7.
  • “current collapse” is particularly problematic in GaN-based semiconductor devices, and the on-resistance of a transistor in high-voltage operation is higher than the on-resistance of the transistor in low-voltage operation. It is a phenomenon that ends up.
  • FIG. 7 is a graph comparing the yield (%) of the GaN-based HFET fabricated according to the present embodiment and the yield (%) of the GaN-based HFET fabricated according to the comparative example.
  • the Ti / Al electrodes 15 and 16 are heat-treated (ohmic annealing).
  • the Ti / Al electrodes 15 and 16 are not heat-treated before the Ti / Al electrodes 15 and 16 shown in FIG. This heat treatment (onic annealing) is also used as the heat treatment of the SiN protective film 7.
  • the gate leakage current is measured with the gate voltage Vg set to ⁇ 10 (V), the drain voltage Vd and the source voltage Vs set to 0 (V), and the gate leakage current is 1 ⁇ 10 ⁇ 5 ( When it was within A), it was judged as acceptable, and when the gate leakage current exceeded 1 ⁇ 10 ⁇ 5 (A), it was judged as unacceptable.
  • the gate leakage current was measured at room temperature (25 ° C.). As shown in FIG. 7, the yield (%) of the GaN-based HFET fabricated in this embodiment is 100%, whereas the yield (%) of the GaN-based HFET fabricated in the comparative example is 40%. The yield improvement according to the present embodiment was apparent.
  • FIGS. 9 to 13 are cross-sectional views sequentially showing the steps of the method of manufacturing the GaN-based HFET which is the second embodiment of the present invention.
  • an undoped AlGaN buffer layer 72, an undoped GaN channel layer 73, and an undoped AlGaN barrier layer 74 are sequentially formed on a Si substrate 71 using MOCVD (metal organic chemical vapor deposition).
  • MOCVD metal organic chemical vapor deposition
  • the AlGaN buffer layer 72, the GaN channel layer 73, and the AlGaN barrier layer 74 constitute a GaN-based stacked body 75.
  • reference numeral 76 indicates a two-dimensional electron gas formed at the interface between the AlGaN barrier layer 74 and the GaN channel layer 73.
  • the GaN-based laminate 75 produced in the second embodiment differs from the GaN-based laminate 5 produced in the first embodiment described above in that the thickness of the AlGaN barrier layer 74 is the same as that of the AlGaN of the first embodiment. It is thinner than the thickness of the barrier layer 4 (for example, 30 nm), for example, 10 nm. Thus, ohmic contacts can be made on electrodes 85 and 86 described later without forming the recesses 12 and 13 as in the first embodiment.
  • a SiN protective film 77 which is a silicon nitride film, is formed on the AlGaN barrier layer 74 by plasma CVD.
  • the growth temperature of the SiN protective film 77 is 225 ° C. as an example, but may be set in the range of 200 ° C. to 400 ° C.
  • the thickness of the SiN protective film 77 is 150 nm as an example, but may be set in the range of 20 nm to 250 nm.
  • a photoresist layer (not shown) is formed on the SiN protective film 77, exposed and developed to form an opening in the photoresist layer, and the photoresist layer in which the opening is formed is used as a mask. Then, wet etching is performed. Thus, openings 70 and 71 are formed in the SiN protective film 77 as shown in FIG. The region of the AlGaN barrier layer 74 exposed in the openings 70 and 71 forms an ohmic electrode formation region.
  • the SiN protective film 77 is heat-treated.
  • the temperature of this heat treatment was, for example, 500 ° C. for 5 minutes. Note that the temperature of the heat treatment may be set in a range of 500 ° C. to 700 ° C. as an example.
  • a photoresist (not shown) in which the regions where the source and drain electrodes are to be formed (including the exposed AlGaN barrier layer 74 region) is formed, and Ti is formed on the photoresist.
  • Al are sequentially deposited, and Ti / Al electrodes 85 and 86 are formed by lift-off so as to fill the openings 70 and 71 and to overlap the SiN protective film 77 as shown in FIG.
  • the Ti / Al electrodes 85 and 86 serve as a source electrode and a drain electrode.
  • the Ti / Al electrodes 85 and 86 are electrodes having a laminated structure in which a Ti layer and an Al layer are sequentially laminated.
  • the electrodes 85 and 86 are heat-treated to form ohmic electrodes, and the source electrode 85 and the drain electrode 86 are formed.
  • the condition of this heat treatment (ohmic annealing) is set to 500 ° C. for 30 minutes as an example, but the condition of the heat treatment is not limited to this.
  • the heat treatment temperature is set within a range of 400 ° C. to 600 ° C. May be.
  • a mask made of a photoresist is formed by photolithography, and etching is performed to remove a region where the gate electrode of the SiN protective film 77 is to be formed, thereby forming an opening 90.
  • TiN is sputtered over the entire surface so as to fill the opening 90, and a resist pattern (not shown) is formed in an electrode formation region where a gate electrode is to be formed by photolithography.
  • a resist pattern (not shown) is formed in an electrode formation region where a gate electrode is to be formed by photolithography.
  • dry etching or wet etching is performed.
  • Etching is performed to remove the TiN film other than the electrode formation region, and a TiN electrode to be the gate electrode 88 is formed.
  • An undoped AlGaN barrier layer 74 is located immediately below the gate electrode 88, and the junction between the gate electrode 88 and the undoped AlGaN barrier layer 74 is a Schottky junction.
  • the Si / N protective film 77 formed on the GaN-based stacked body 75 is modified by heat treatment, and then the Ti / Al electrodes 85, 86 are used. Is formed on the GaN-based laminate 75, and the Ti / Al electrode is heat-treated to form a source electrode 85 and a drain electrode 86 as ohmic electrodes.
  • the Ti / Al electrodes 85 and 86 are heat-treated (ohmic annealing) to form the source electrode 85 and the drain electrode 86 as ohmic electrodes.
  • the thickness of the AlGaN barrier layer 74 is made thinner than the thickness of the AlGaN barrier layer 4 of the first embodiment so that the source electrode 85 and the drain electrode 86 can be in ohmic contact.
  • the thickness of the AlGaN barrier layer 74 is equal to the thickness of the AlGaN barrier layer 4, the ohmic contact portion of the AlGaN barrier layer 74 is preliminarily doped with Si so as to be n-type, thereby enabling ohmic contact of the electrode. It is good.
  • the Si substrate is used as the substrate, but a sapphire substrate may be used.
  • a nitride semiconductor layer may be grown on a substrate made of a nitride semiconductor, such as growing an AlGaN layer on the GaN substrate.
  • a buffer layer may be appropriately formed between the substrate and each layer.
  • a hetero improvement layer made of AlN may be formed between the GaN channel layers 3 and 73 and the AlGaN barrier layers 4 and 74.
  • a GaN cap layer may be formed on the AlGaN barrier layers 4 and 74.
  • the gate electrodes 18 and 88 were produced with TiN, you may produce with WN.
  • the gate electrodes 18 and 88 may be made of Pt / Au or Ni / Au.
  • the protective film that suppresses current collapse is the SiN protective film 7, 77 made of a single layer of silicon nitride film (SiN film).
  • the protective film that suppresses current collapse is A lower SiN film having a larger silicon Si ratio than a stoichiometric silicon nitride film and a stoichiometric upper SiN film may be used. In this case, it is possible to suppress the diffusion of the electrode metal by the stoichiometric upper SiN film and to suppress the current collapse by the lower SiN film having a large silicon Si ratio. Further, an SiO 2 film or an Al 2 O 3 film may be formed on the SiN protective films 7 and 77.
  • a protective film 50 in which a lower SiN film 51, an upper SiN film 52 that is stoichiometry, and a SiO 2 film 53 are sequentially stacked may be used as a protective film that suppresses current collapse.
  • the upper SiN film 52 is stoichiometric means that Si and N have a composition of 3: 4.
  • the protective film 50 since the upper SiN film 52 is stoichiometry and the SiO 2 film 53 is formed on the upper SiN film 52, the upper and lower SiN layers of the protective film 50 are heat-treated during the heat treatment of the electrode.
  • the diffusion of the electrode metal into the protective layers 52 and 51 can be suppressed, and the leakage current passing through the protective film 50 can be further reduced.
  • the lower SiN film 51 is a SiN protective film having a silicon Si ratio larger than that of the stoichiometric silicon nitride film, the current collapse can be suppressed as compared with the stoichiometric silicon nitride film.
  • a stoichiometric silicon nitride film may be used. In this case, the leakage current can be further reduced by suppressing the diffusion of the electrode metal.
  • an Al 2 O 3 film may be used instead of the SiO 2 film 53.
  • the heat treatment temperature of the SiN protective films 7 and 77 is set to 500 ° C.
  • the heat treatment temperature of the electrodes 15, 16, 85, and 86 is set to 500 ° C. It is desirable that the heat treatment temperature of the electrodes 15, 16, 85, 86 be lower than the heat treatment temperature of the SiN protective film 77.
  • the heat treatment temperature of the SiN protective film 77 is 500 ° C.
  • the heat treatment temperature of the electrodes 15, 16, 85, 86 be 450 ° C. lower than 500 ° C.
  • the source electrodes 15 and 85 and the drain electrodes 16 and 86 as the ohmic electrodes are Ti / Al electrodes in which a Ti layer and an Al layer are sequentially stacked.
  • a Ti / Al / TiN electrode in which an Al layer and a TiN layer are sequentially laminated may be used.
  • the source electrode and the drain electrode may be Hf / Al electrodes.
  • Ni / Au may be stacked on Ti / Al or Hf / Al, or Pt / Au may be stacked on Ti / Al or Hf / Al. It is good also as what laminated
  • the temperature conditions for the ohmic annealing of the electrodes 15, 16, 85, 86 are set to 500 ° C.
  • the contact resistance ( ⁇ mm) of the electrodes 15, 16, 85, 86 rapidly increases when the temperature of the ohmic annealing is set to 700 ° C. exceeding 600 ° C. Therefore, it is desirable that the ohmic annealing temperature of the electrodes 15, 16, 85, 86 is 600 ° C. or lower.
  • the Ti / Al electrodes 15 and 16 that become the source electrode and the drain electrode are formed by lift-off, but the SiN protective film 7 and the recesses 12 and 13 and the openings 10 and 11 shown in FIG. Then, Ti, Al, and TiN are sequentially sputtered to fill the electrode, and a resist pattern (not shown) is formed in the electrode formation region where the source electrode and the drain electrode are to be formed by photolithography, and this resist pattern is used as a mask.
  • the Ti / Al / TiN electrodes 15 and 16 to be the source electrode and the drain electrode may be formed by performing dry etching or wet etching to remove the Ti, Al, and TiN films other than the electrode formation region.
  • the Ti / Al electrodes 85 and 86 to be the source electrode and the drain electrode are formed by lift-off, but the SiN protective film 77 and the openings 70 and 71 shown in FIG. Ti, Al, TiN films are sequentially sputtered in order, and a resist pattern (not shown) is formed in the electrode formation region where the source electrode and drain electrode are to be formed by photolithography, and dry etching or etching is performed using this resist pattern as a mask.
  • the Ti / Al / TiN electrodes 85 and 86 to be the source electrode and the drain electrode may be formed by performing wet etching to remove the Ti, Al, and TiN films other than the electrode formation region.
  • the GaN-based semiconductor laminate in the manufacturing method of the present invention may include a GaN-based semiconductor layer represented by Al x In y Ga 1-xy N (x ⁇ 0, y ⁇ 0, 0 ⁇ x + y ⁇ 1). . That is, the GaN-based semiconductor laminate in the manufacturing method of the present invention may include AlGaN, GaN, InGaN, and the like.
  • the normally-on type HFET has been described.
  • the normally-off type can achieve the same effect.
  • the Schottky gate has been described, an insulated gate structure may be used.
  • the GaN-based semiconductor element manufactured by the present invention is not limited to the HFET of the above embodiment, but may be a field effect transistor having another configuration.

Abstract

In this method for manufacturing a GaN-based HFET, an SiN protection film (7) formed on a GaN laminated body (5) is modified by heat treatment, then, Ti-Al electrodes (15, 16) are formed on the GaN laminated body (5), and a source electrode (15) and a drain electrode (16) are formed as ohmic electrodes by heat-treating the Ti-Al electrodes (15, 16). After heat-treating the SiN protection film (7), the Ti-Al electrodes (15, 16) are heat-treated (ohmic annealed), and the source electrode (15) and the drain electrode (16) are formed as the ohmic electrodes, thereby suppressing diffusion of the electrode metal in the SiN protection film (7), and achieving both the current collapse suppression and leak current reduction.

Description

GaN系半導体素子の製造方法GaN-based semiconductor device manufacturing method
 この発明は、GaN系半導体素子の製造方法に関する。 The present invention relates to a method for manufacturing a GaN-based semiconductor element.
 従来、GaN系半導体素子の製造方法としては、特許文献1(特開2008-306026号公報)にGaN系FET(電界効果トランジスタ)の製造方法が開示されている。このGaN系FETの製造方法では、GaN系半導体層上に、電極を形成し、この電極を熱処理してオーミック電極としてのソース/ドレイン電極にし、このソース/ドレイン電極および上記GaN系半導体層上に絶縁膜(シリコン窒化膜等)を形成し、この絶縁膜を熱処理している。 Conventionally, as a method for manufacturing a GaN-based semiconductor element, Patent Document 1 (Japanese Patent Laid-Open No. 2008-306026) discloses a method for manufacturing a GaN-based FET (field effect transistor). In this GaN-based FET manufacturing method, an electrode is formed on a GaN-based semiconductor layer, the electrode is heat-treated to form a source / drain electrode as an ohmic electrode, and the source / drain electrode and the GaN-based semiconductor layer are formed on the source / drain electrode. An insulating film (silicon nitride film or the like) is formed, and this insulating film is heat-treated.
 上記GaN系FETの製造方法では、GaN系半導体層の表面が上記絶縁膜に覆われた状態で熱処理を行うことによって、電流コラプスの抑制を図っている。 In the GaN-based FET manufacturing method, current collapse is suppressed by performing heat treatment in a state where the surface of the GaN-based semiconductor layer is covered with the insulating film.
 この電流コラプスとは、特に、GaN系半導体素子において顕著に表れるもので、低電圧動作でのトランジスタのオン抵抗と比べて、高電圧動作でのトランジスタのオン抵抗が著しく高くなってしまう現象である。 This current collapse is particularly prominent in a GaN-based semiconductor device, and is a phenomenon in which the on-resistance of a transistor in high-voltage operation is significantly higher than the on-resistance of the transistor in low-voltage operation. .
特開2008-306026号公報JP 2008-306026 A
 ところで、本発明者らは、先述の従来例では、ソース/ドレイン電極を形成してから電流コラプスを抑制するためのSiN絶縁膜を形成し、この状態で熱処理を行なうと、電極メタルが上記SiN絶縁膜に拡散して、上記SiN絶縁膜を経由するリーク電流の原因になるという問題を発見した。 By the way, in the above-mentioned conventional example, the present inventors formed a SiN insulating film for suppressing current collapse after forming the source / drain electrodes, and when heat treatment is performed in this state, the electrode metal becomes SiN. A problem has been discovered in which it diffuses into the insulating film and causes leakage current via the SiN insulating film.
 従来は、電極が形成された状態で電流コラプスを抑制するSiN絶縁膜を熱処理する際にSiN絶縁膜に電極メタルが拡散するという現象が気づかれていなかった。本発明者が、この現象を初めて発見したのである。 Conventionally, when the SiN insulating film that suppresses current collapse is heat-treated in a state where the electrode is formed, the phenomenon that the electrode metal diffuses into the SiN insulating film has not been noticed. This inventor discovered this phenomenon for the first time.
 そこで、この発明の課題は、電極メタルがSiN絶縁膜に拡散することを抑制でき、電流コラプスの抑制とリーク電流の低減とを両立できるGaN系半導体素子の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a method of manufacturing a GaN-based semiconductor element that can suppress the diffusion of electrode metal into the SiN insulating film, and can achieve both suppression of current collapse and reduction of leakage current.
 本発明は、電極が形成された状態で電流コラプスを抑制するシリコン窒化膜を熱処理する際に上記シリコン窒化膜に電極メタルが拡散するという現象が本発明者らにより発見されたことに基づいて創出されたものである。 The present invention was created based on the discovery of the phenomenon that the electrode metal diffuses into the silicon nitride film when heat-treating the silicon nitride film that suppresses current collapse with the electrode formed. It has been done.
 本発明者らは、シリコン窒化膜を成膜して熱処理した後に、電極を形成して熱処理(オーミックアニール)し、オーミック電極を形成することが、熱処理の工程が増えるけれども、電極メタルがシリコン窒化膜へ拡散することを抑制するのに有効であり、上記シリコン窒化膜を経由するリーク電流を低減できることを見出した。 The present inventors have formed a silicon nitride film and heat-treated, and then formed an electrode and heat-treated (ohmic annealing) to form an ohmic electrode. It has been found that it is effective in suppressing diffusion into the film, and that leakage current passing through the silicon nitride film can be reduced.
 すなわち、この発明のGaN系半導体素子の製造方法は、ヘテロ接合を有するGaN系積層体上にシリコン窒化膜を含む保護膜またはシリコン窒化膜からなる保護膜を形成し、
 上記保護膜を熱処理し、
 上記保護膜および上記GaN系積層体のうちの少なくとも上記保護膜の予め定められた領域をエッチングで除去して上記GaN系積層体のオーミック電極形成領域を露出させ、
 上記GaN系積層体のオーミック電極形成領域にTi/AlまたはHf/Alを含む電極を形成し、
 上記電極を熱処理してオーミック電極にすることを特徴としている。
That is, in the method for manufacturing a GaN-based semiconductor element of the present invention, a protective film including a silicon nitride film or a protective film made of a silicon nitride film is formed on a GaN-based stacked body having a heterojunction,
Heat treating the protective film,
Etching at least a predetermined region of the protective film of the protective film and the GaN-based laminate to remove an ohmic electrode formation region of the GaN-based laminate,
Forming an electrode containing Ti / Al or Hf / Al in the ohmic electrode formation region of the GaN-based laminate;
The electrode is heat-treated to form an ohmic electrode.
 この発明のGaN系半導体素子の製造方法によれば、上記GaN系積層体上に上記シリコン窒化膜を含む保護膜またはシリコン窒化膜からなる保護膜を形成し、この電流コラプスを抑制するための保護膜を熱処理により改質してから、電極をGaN系積層体上に形成し、上記電極を熱処理してオーミック電極にする。 According to the method for manufacturing a GaN-based semiconductor device of the present invention, a protective film including the silicon nitride film or a protective film made of a silicon nitride film is formed on the GaN-based stacked body, and the protection for suppressing the current collapse is performed. After the film is modified by heat treatment, an electrode is formed on the GaN-based laminate, and the electrode is heat treated to form an ohmic electrode.
 このように、上記電流コラプスを抑制するための保護膜を成膜し熱処理してから、オーミック電極を形成することによって、上記電極の熱処理時に電極メタルが上記保護膜に拡散することが抑制され、上記保護膜を経由するリーク電流を低減できることが判明した。 Thus, by forming an ohmic electrode after forming and heat-treating a protective film for suppressing the current collapse, the electrode metal is suppressed from diffusing into the protective film during the heat treatment of the electrode, It has been found that the leakage current passing through the protective film can be reduced.
 よって、この発明によれば、上記保護膜によって電流コラプスを抑制できるだけでなく、上記保護膜を経由するリーク電流も低減できるGaN系半導体素子を製造できる。ここで、再度述べると、「電流コラプス」とは、GaN系半導体素子において、特に、問題になっているもので、低電圧動作でのトランジスタのオン抵抗と比べて、高電圧動作でのトランジスタのオン抵抗が著しく高くなってしまう現象である。 Therefore, according to the present invention, it is possible to manufacture a GaN-based semiconductor element that can not only suppress current collapse by the protective film but also reduce the leakage current passing through the protective film. Here again, “current collapse” is a problem particularly in GaN-based semiconductor devices, and the transistor resistance in high-voltage operation is lower than the on-resistance of the transistor in low-voltage operation. This is a phenomenon in which the on-resistance becomes extremely high.
 また、一実施形態のGaN系半導体素子の製造方法では、上記保護膜は、
 上記GaN系積層体上に形成された下層シリコン窒化膜と、
 上記下層シリコン窒化膜上に形成された上層シリコン窒化膜と、
 上記上層シリコン窒化膜上に形成されたSiO膜またはAl膜と
を有し、
 上記上層シリコン窒化膜は、ストイキオメトリなシリコン窒化膜である。
In one embodiment of the method for manufacturing a GaN-based semiconductor device, the protective film is
A lower layer silicon nitride film formed on the GaN-based laminate,
An upper silicon nitride film formed on the lower silicon nitride film;
An SiO 2 film or an Al 2 O 3 film formed on the upper silicon nitride film,
The upper silicon nitride film is a stoichiometric silicon nitride film.
 この実施形態のGaN系半導体素子の製造方法によれば、上層シリコン窒化膜がストイキオメトリであると共に上記上層シリコン窒化膜上にSiO膜またはAl膜を形成したことで、上記電極の熱処理時に上記保護膜の上層および下層シリコン窒化膜へ電極メタルが拡散することを抑制でき、上記保護膜を経由するリーク電流をさらに低減できる。ここで、上記ストイキオメトリなシリコン窒化膜とは、SiとNが3:4の組成であることを意味している。 According to the method for manufacturing a GaN-based semiconductor device of this embodiment, the upper silicon nitride film is stoichiometry, and an SiO 2 film or an Al 2 O 3 film is formed on the upper silicon nitride film. It is possible to suppress the electrode metal from diffusing into the upper layer and the lower layer silicon nitride film of the protective film during the heat treatment, and to further reduce the leakage current passing through the protective film. Here, the stoichiometric silicon nitride film means that Si and N have a composition of 3: 4.
 また、一実施形態のGaN系半導体素子の製造方法では、上記電極を熱処理する温度を、上記保護膜を熱処理する温度よりも低くした。 In addition, in the method for manufacturing a GaN-based semiconductor element according to one embodiment, the temperature at which the electrode is heat-treated is lower than the temperature at which the protective film is heat-treated.
 この実施形態のGaN系半導体素子の製造方法によれば、上記電極を熱処理する際に、上記保護膜へ電極メタルが拡散することを抑制でき、上記保護膜を経由するリーク電流をさらに低減できる。 According to the method for manufacturing a GaN-based semiconductor element of this embodiment, when the electrode is heat-treated, the electrode metal can be prevented from diffusing into the protective film, and the leakage current passing through the protective film can be further reduced.
 この発明のGaN系半導体素子の製造方法によれば、上記シリコン窒化膜を含む保護膜またはシリコン窒化膜からなる保護膜を成膜し熱処理した後に、オーミック電極を形成することによって、電極メタルが保護膜に拡散することが抑制され、上記保護膜を経由するリーク電流を低減できるので、電流コラプスの抑制とリーク電流の低減とを両立できるGaN系半導体素子を製造できる。 According to the method for manufacturing a GaN-based semiconductor device of the present invention, an electrode metal is protected by forming an ohmic electrode after forming a protective film including the silicon nitride film or a protective film made of a silicon nitride film and performing heat treatment. Since diffusion to the film is suppressed and leakage current passing through the protective film can be reduced, a GaN-based semiconductor element capable of both suppressing current collapse and reducing leakage current can be manufactured.
この発明の第1実施形態のGaN系半導体素子の製造方法の一工程を説明する図である。It is a figure explaining 1 process of the manufacturing method of the GaN-type semiconductor element of 1st Embodiment of this invention. 図1の工程に続く工程を説明する図である。It is a figure explaining the process following the process of FIG. 図2の工程に続く工程を説明する図である。It is a figure explaining the process following the process of FIG. 図3の工程に続く工程を説明する図である。It is a figure explaining the process following the process of FIG. 図4の工程に続く工程を説明する図である。It is a figure explaining the process following the process of FIG. 上記GaN系半導体素子の保護膜の一例を示す断面図である。It is sectional drawing which shows an example of the protective film of the said GaN-type semiconductor element. 上記実施形態と比較例との歩留りの違いを示す図である。It is a figure which shows the difference in the yield of the said embodiment and a comparative example. オーミック電極のコンタクト抵抗とアニール温度との関係を示す図である。It is a figure which shows the relationship between the contact resistance of an ohmic electrode, and annealing temperature. この発明の第2実施形態のGaN系半導体素子の製造方法の一工程を説明する図である。It is a figure explaining 1 process of the manufacturing method of the GaN-type semiconductor element of 2nd Embodiment of this invention. 図9の工程に続く工程を説明する図である。It is a figure explaining the process following the process of FIG. 図10の工程に続く工程を説明する図である。It is a figure explaining the process following the process of FIG. 図11の工程に続く工程を説明する図である。It is a figure explaining the process following the process of FIG. 図12の工程に続く工程を説明する図である。It is a figure explaining the process following the process of FIG.
 以下、この発明を図示の実施の形態により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
  (第1の実施の形態)
 図1~図5は、この発明の第1実施形態であるGaN系HFET(Hetero-junction Field Effect Transistor;ヘテロ接合電界効果トランジスタ)の製造方法の工程を順に示す断面図である。
(First embodiment)
1 to 5 are cross-sectional views sequentially showing steps of a method of manufacturing a GaN-based HFET (Hetero-junction Field Effect Transistor) according to the first embodiment of the present invention.
 まず、図1に示すように、Si基板1上に、MOCVD(有機金属気相成長)法を用いて、アンドープAlGaNバッファ層2、アンドープGaNチャネル層3、アンドープAlGaNバリア層4、を順に形成する。このAlGaNバッファ層2とGaNチャネル層3とAlGaNバリア層4がGaN系積層体5を構成している。図1において、符号6は、AlGaNバリア層4とGaNチャネル層3との界面に形成される2次元電子ガスを示している。 First, as shown in FIG. 1, an undoped AlGaN buffer layer 2, an undoped GaN channel layer 3, and an undoped AlGaN barrier layer 4 are sequentially formed on a Si substrate 1 by using MOCVD (metal organic chemical vapor deposition). . The AlGaN buffer layer 2, the GaN channel layer 3 and the AlGaN barrier layer 4 constitute a GaN-based laminate 5. In FIG. 1, reference numeral 6 indicates a two-dimensional electron gas formed at the interface between the AlGaN barrier layer 4 and the GaN channel layer 3.
 次に、図2に示すように、上記AlGaNバリア層4上に、プラズマCVD法を用いて、シリコン窒化膜であるSiN保護膜7を形成する。このSiN保護膜7の成長温度は、一例として、225℃としたが、200℃~400℃の範囲で設定してもよい。また、上記SiN保護膜7の膜厚は、一例として、150nmとしたが、20nm~250nmの範囲で設定してもよい。 Next, as shown in FIG. 2, a SiN protective film 7 which is a silicon nitride film is formed on the AlGaN barrier layer 4 by using a plasma CVD method. The growth temperature of the SiN protective film 7 is 225 ° C. as an example, but may be set in the range of 200 ° C. to 400 ° C. The thickness of the SiN protective film 7 is 150 nm as an example, but may be set in the range of 20 nm to 250 nm.
 また、一例として、上記プラズマCVD法によりSiN保護膜7を形成する際のガス流量比は、N/NH/SiH=300sccm/40sccm/35sccmとした。これにより、ストイキオメトリなシリコン窒化膜よりもシリコンSiの比率の大きなSiN保護膜7を形成できる。このSiN保護膜7によれば、ストイキオメトリなシリコン窒化膜に比べて、電流コラプスをより抑制できる。また、例えば、SiN保護膜7のSiとNとの組成比Si:N=1.1~1.9:1にすると、Si:N=0.75:1のストイキオメトリなシリコン窒化膜よりも電流コラプスの抑制に有効である。 As an example, the gas flow rate ratio when forming the SiN protective film 7 by the plasma CVD method was set to N 2 / NH 3 / SiH 4 = 300 sccm / 40 sccm / 35 sccm. Thereby, the SiN protective film 7 having a silicon Si ratio larger than that of the stoichiometric silicon nitride film can be formed. According to the SiN protective film 7, current collapse can be further suppressed as compared with a stoichiometric silicon nitride film. Further, for example, when the Si: N composition ratio Si: N of the SiN protective film 7 is set to 1.1 to 1.9: 1, the stoichiometric silicon nitride film of Si: N = 0.75: 1 is used. Is also effective in suppressing current collapse.
 次に、上記SiN保護膜7上にフォトレジスト層(図示せず)を形成し、露光,現像することにより、上記フォトレジスト層に開口を形成し、上記開口を形成したフォトレジスト層をマスクとして、ドライエッチングを行なう。これにより、図3に示すように、上記SiN保護膜7に開口10,11を形成すると共に上記AlGaNバリア層4からGaNチャネル層3まで達するリセス12,13を形成する。このリセス12,13がオーミック電極形成領域をなす。なお、上記リセス12,13の形成方法は、上記に限らず、例えば、フォトレジスト層をマスクとして、上記開口10,11を形成する領域のSiN保護膜7をウェットエッチングで除去したのち、AlGaNバリア層4およびGaNチャネル層3をドライエッチングすることにより、リセス12,13を形成してもよい。 Next, a photoresist layer (not shown) is formed on the SiN protective film 7, exposed and developed to form an opening in the photoresist layer, and the photoresist layer in which the opening is formed is used as a mask. Then, dry etching is performed. Thereby, as shown in FIG. 3, openings 10 and 11 are formed in the SiN protective film 7 and recesses 12 and 13 reaching from the AlGaN barrier layer 4 to the GaN channel layer 3 are formed. The recesses 12 and 13 form an ohmic electrode formation region. The method of forming the recesses 12 and 13 is not limited to the above. For example, after removing the SiN protective film 7 in the region for forming the openings 10 and 11 by wet etching using a photoresist layer as a mask, an AlGaN barrier is formed. The recesses 12 and 13 may be formed by dry etching the layer 4 and the GaN channel layer 3.
 次に、上記SiN保護膜7を熱処理する。この熱処理は、例えば、窒素雰囲気で500℃で5分間とした。また、上記熱処理の温度は、一例として、500℃~700℃の範囲で設定してもよい。 Next, the SiN protective film 7 is heat-treated. This heat treatment was performed, for example, at 500 ° C. for 5 minutes in a nitrogen atmosphere. The temperature of the heat treatment may be set in the range of 500 ° C. to 700 ° C. as an example.
 次に、フォトリソグラフィにより、ソース電極,ドレイン電極を形成すべき領域(リセス12,13と開口10,11による領域を含む)が開口したフォトレジスト(図示せず)を形成し、このフォトレジスト上にTi,Alを順に蒸着し、リフトオフにより、図4に示すように、リセス12,13と開口10,11を埋めると共にSiN保護膜7上に重なる領域を有するようにソース電極,ドレイン電極となるTi/Al電極15,16を形成する。このTi/Al電極15,16は、Ti層,Al層が順に積層された積層構造の電極である。次に、上記電極15,16を、熱処理してオーミック電極にし、ソース電極15,ドレイン電極16とする。この熱処理(オーミックアニール)の条件は、一例として500℃で30分としたが、上記熱処理の条件は、これに限らず、例えば、上記熱処理温度を、400℃~600℃の範囲内で設定してもよい。 Next, by photolithography, a photoresist (not shown) in which the regions where the source and drain electrodes are to be formed (including regions by the recesses 12 and 13 and the openings 10 and 11) is formed is formed on the photoresist. Then, Ti and Al are deposited in this order, and lift-off provides a source electrode and a drain electrode so as to fill the recesses 12 and 13 and the openings 10 and 11 and have a region overlapping the SiN protective film 7 as shown in FIG. Ti / Al electrodes 15 and 16 are formed. The Ti / Al electrodes 15 and 16 are electrodes having a laminated structure in which a Ti layer and an Al layer are sequentially laminated. Next, the electrodes 15 and 16 are heat-treated to form ohmic electrodes, and the source electrode 15 and the drain electrode 16 are formed. The condition of this heat treatment (ohmic annealing) is set to 500 ° C. for 30 minutes as an example, but the condition of the heat treatment is not limited to this. For example, the heat treatment temperature is set within a range of 400 ° C. to 600 ° C. May be.
 次に、図5に示すように、フォトリソグラフィによりフォトレジストによるマスクを形成してエッチングすることで、上記SiN保護膜7のゲート電極を形成すべき領域を除去して開口20を形成する。その後、開口20を埋めるように、TiNを全面スパッタし、フォトリソグラフィでゲート電極を形成すべき電極形成領域にレジストパターン(図示せず)を形成し、このレジストパターンをマスクとして、ドライエッチングまたはウエットエッチングを行なって、上記電極形成領域以外のTiN膜を除去して、ゲート電極18となるTiN電極を形成する。ゲート電極18の直下には、アンドープAlGaNバリア層4が位置しており、ゲート電極18とアンドープAlGaNバリア層4との接合は、ショットキー接合となる。 Next, as shown in FIG. 5, a mask made of a photoresist is formed by photolithography, and etching is performed to remove a region where the gate electrode of the SiN protective film 7 is to be formed, thereby forming an opening 20. Thereafter, TiN is sputtered over the entire surface so as to fill the opening 20, and a resist pattern (not shown) is formed in an electrode formation region where a gate electrode is to be formed by photolithography. Using this resist pattern as a mask, dry etching or wet etching is performed. Etching is performed to remove the TiN film other than the electrode formation region, and a TiN electrode to be the gate electrode 18 is formed. The undoped AlGaN barrier layer 4 is located immediately below the gate electrode 18, and the junction between the gate electrode 18 and the undoped AlGaN barrier layer 4 is a Schottky junction.
 このように、この第1実施形態のGaN系HFETの製造方法によれば、上記GaN系積層体5上にSiN保護膜7を形成し、このSiN保護膜7を熱処理(例えば、500℃で5分間)により改質してから、Ti/Al電極15,16をGaN系積層体5上に形成し、上記Ti/Al電極15,16を熱処理してオーミック電極としてのソース電極15,ドレイン電極16とする。本発明者らは、SiN保護膜7を成膜して熱処理した後に、上記Ti/Al電極15,16を形成し熱処理(オーミックアニール)して、オーミック電極としてソース電極15,ドレイン電極16を形成することによって、電極メタルがSiN保護膜7に拡散することを抑制できて、上記SiN保護膜7を経由するリーク電流を低減できることを見出した。 Thus, according to the manufacturing method of the GaN-based HFET of the first embodiment, the SiN protective film 7 is formed on the GaN-based stacked body 5, and the SiN protective film 7 is heat-treated (for example, 5 ° C. at 500 ° C.). The Ti / Al electrodes 15 and 16 are formed on the GaN-based laminate 5, and the Ti / Al electrodes 15 and 16 are heat-treated to form the source electrode 15 and the drain electrode 16 as ohmic electrodes. And The inventors formed the SiN protective film 7 and heat-treated, then formed the Ti / Al electrodes 15 and 16 and heat-treated (ohmic annealing) to form the source electrode 15 and the drain electrode 16 as ohmic electrodes. As a result, it was found that the electrode metal can be prevented from diffusing into the SiN protective film 7 and the leakage current passing through the SiN protective film 7 can be reduced.
 したがって、この実施形態の製造方法によれば、上記SiN保護膜7による電流コラプスの抑制と上記SiN保護膜7を経由するリーク電流の低減とを両立できるGaN系HFETを製造できる。ここで、「電流コラプス」とは、GaN系半導体素子において、特に、問題になっているもので、低電圧動作でのトランジスタのオン抵抗と比べて高電圧動作でのトランジスタのオン抵抗が高くなってしまう現象である。 Therefore, according to the manufacturing method of this embodiment, it is possible to manufacture a GaN-based HFET that can simultaneously suppress the current collapse by the SiN protective film 7 and reduce the leakage current passing through the SiN protective film 7. Here, “current collapse” is particularly problematic in GaN-based semiconductor devices, and the on-resistance of a transistor in high-voltage operation is higher than the on-resistance of the transistor in low-voltage operation. It is a phenomenon that ends up.
 図7は、本実施形態によって作製したGaN系HFETの歩留り(%)と比較例によって作製したGaN系HFETの歩留り(%)とを比較するグラフである。本実施形態では、上述の如く、SiN保護膜7を形成し熱処理した後に、上記Ti/Al電極15,16を熱処理(オーミックアニール)するものである。これに対して、上記比較例では、図4に示すTi/Al電極15,16をGaN系積層体5上に形成する前にはSiN保護膜7を熱処理しないで、Ti/Al電極15,16の熱処理(オーニックアニール)を上記SiN保護膜7の熱処理と兼用している。そして、上記歩留りを求めるために、本実施形態により10個のサンプル(GaN系HFET)を作製するとともに、上記比較例により10個のサンプル(GaN系HFET)を作製した。そして、各サンプルについて、ゲート電圧Vgを-10(V)とし、ドレイン電圧Vdおよびソース電圧Vsを0(V)として、ゲートリーク電流を計測して、このゲートリーク電流が1×10-5(A)以内である場合に合格と判定し、ゲートリーク電流が1×10-5(A)を超えたときに不合格と判定した。なお、このゲートリーク電流の測定は、常温(25℃)にて行なった。図7に示すように、本実施形態で作製したGaN系HFETの歩留り(%)は100%であるのに対して、上記比較例で作製したGaN系HFETの歩留り(%)は40%であり、本実施形態による歩留りの向上が明らかであった。 FIG. 7 is a graph comparing the yield (%) of the GaN-based HFET fabricated according to the present embodiment and the yield (%) of the GaN-based HFET fabricated according to the comparative example. In the present embodiment, as described above, after the SiN protective film 7 is formed and heat-treated, the Ti / Al electrodes 15 and 16 are heat-treated (ohmic annealing). On the other hand, in the comparative example, the Ti / Al electrodes 15 and 16 are not heat-treated before the Ti / Al electrodes 15 and 16 shown in FIG. This heat treatment (onic annealing) is also used as the heat treatment of the SiN protective film 7. Then, in order to obtain the yield, ten samples (GaN-based HFET) were manufactured according to the present embodiment, and ten samples (GaN-based HFET) were manufactured according to the comparative example. For each sample, the gate leakage current is measured with the gate voltage Vg set to −10 (V), the drain voltage Vd and the source voltage Vs set to 0 (V), and the gate leakage current is 1 × 10 −5 ( When it was within A), it was judged as acceptable, and when the gate leakage current exceeded 1 × 10 −5 (A), it was judged as unacceptable. The gate leakage current was measured at room temperature (25 ° C.). As shown in FIG. 7, the yield (%) of the GaN-based HFET fabricated in this embodiment is 100%, whereas the yield (%) of the GaN-based HFET fabricated in the comparative example is 40%. The yield improvement according to the present embodiment was apparent.
  (第2の実施の形態)
 次に、図9~図13は、この発明の第2実施形態であるGaN系HFETの製造方法の工程を順に示す断面図である。
(Second embodiment)
Next, FIGS. 9 to 13 are cross-sectional views sequentially showing the steps of the method of manufacturing the GaN-based HFET which is the second embodiment of the present invention.
 まず、図9に示すように、Si基板71上に、MOCVD(有機金属気相成長)法を用いて、アンドープAlGaNバッファ層72、アンドープGaNチャネル層73、アンドープAlGaNバリア層74、を順に形成する。このAlGaNバッファ層72とGaNチャネル層73とAlGaNバリア層74がGaN系積層体75を構成している。図9において、符号76は、AlGaNバリア層74とGaNチャネル層73との界面に形成される2次元電子ガスを示している。 First, as shown in FIG. 9, an undoped AlGaN buffer layer 72, an undoped GaN channel layer 73, and an undoped AlGaN barrier layer 74 are sequentially formed on a Si substrate 71 using MOCVD (metal organic chemical vapor deposition). . The AlGaN buffer layer 72, the GaN channel layer 73, and the AlGaN barrier layer 74 constitute a GaN-based stacked body 75. In FIG. 9, reference numeral 76 indicates a two-dimensional electron gas formed at the interface between the AlGaN barrier layer 74 and the GaN channel layer 73.
 この第2実施形態で作製するGaN系積層体75が、前述の第1実施形態で作製するGaN系積層体5と異なる点は、上記AlGaNバリア層74の厚さを、第1実施形態のAlGaNバリア層4の厚さ(例えば30nm)よりも薄く、例えば10nmとした点である。これにより、前述の第1実施形態のようなリセス12,13を形成することなく、後述する電極85,86をオーミックコンタクト可能にしている。 The GaN-based laminate 75 produced in the second embodiment differs from the GaN-based laminate 5 produced in the first embodiment described above in that the thickness of the AlGaN barrier layer 74 is the same as that of the AlGaN of the first embodiment. It is thinner than the thickness of the barrier layer 4 (for example, 30 nm), for example, 10 nm. Thus, ohmic contacts can be made on electrodes 85 and 86 described later without forming the recesses 12 and 13 as in the first embodiment.
 次に、図10に示すように、上記AlGaNバリア層74上に、プラズマCVD法を用いて、シリコン窒化膜であるSiN保護膜77を形成する。このSiN保護膜77の成長温度は、一例として、225℃としたが、200℃~400℃の範囲で設定してもよい。また、上記SiN保護膜77の膜厚は、一例として、150nmとしたが、20nm~250nmの範囲で設定してもよい。 Next, as shown in FIG. 10, a SiN protective film 77, which is a silicon nitride film, is formed on the AlGaN barrier layer 74 by plasma CVD. The growth temperature of the SiN protective film 77 is 225 ° C. as an example, but may be set in the range of 200 ° C. to 400 ° C. The thickness of the SiN protective film 77 is 150 nm as an example, but may be set in the range of 20 nm to 250 nm.
 一例として、上記プラズマCVD法によりSiN保護膜77を形成する際のガス流量比は、N/NH/SiH=300sccm/40sccm/35sccmとした。これにより、ストイキオメトリなシリコン窒化膜よりもシリコンSiの比率の大きなSiN保護膜77を形成でき、電流コラプスの抑制効果を向上できる。 As an example, the gas flow rate ratio when forming the SiN protective film 77 by the plasma CVD method is set to N 2 / NH 3 / SiH 4 = 300 sccm / 40 sccm / 35 sccm. Thereby, the SiN protective film 77 having a silicon Si ratio larger than that of the stoichiometric silicon nitride film can be formed, and the current collapse suppressing effect can be improved.
 次に、上記SiN保護膜77上にフォトレジスト層(図示せず)を形成し、露光,現像することにより、上記フォトレジスト層に開口を形成し、上記開口を形成したフォトレジスト層をマスクとして、ウエットエッチングを行なう。これにより、図11に示すように、上記SiN保護膜77に開口70,71を形成する。この開口70,71に露出したAlGaNバリア層74の領域がオーミック電極形成領域をなす。 Next, a photoresist layer (not shown) is formed on the SiN protective film 77, exposed and developed to form an opening in the photoresist layer, and the photoresist layer in which the opening is formed is used as a mask. Then, wet etching is performed. Thus, openings 70 and 71 are formed in the SiN protective film 77 as shown in FIG. The region of the AlGaN barrier layer 74 exposed in the openings 70 and 71 forms an ohmic electrode formation region.
 次に、上記SiN保護膜77を熱処理する。この熱処理の温度は、例えば、500℃で5分間とした。なお、上記熱処理の温度は、一例として、500℃~700℃の範囲で設定してもよい。 Next, the SiN protective film 77 is heat-treated. The temperature of this heat treatment was, for example, 500 ° C. for 5 minutes. Note that the temperature of the heat treatment may be set in a range of 500 ° C. to 700 ° C. as an example.
 次に、フォトリソグラフィにより、ソース電極,ドレイン電極を形成すべき領域(上記露出したAlGaNバリア層74の領域を含む)が開口したフォトレジスト(図示せず)を形成し、このフォトレジスト上にTi,Alを順に蒸着し、リフトオフにより、図12に示すように、開口70,71を埋めると共にSiN保護膜77上に重なる領域を有するようにTi/Al電極85,86を形成する。このTi/Al電極85,86がソース電極,ドレイン電極となる。このTi/Al電極85,86は、Ti層,Al層が順に積層された積層構造の電極である。次に、上記電極85,86を、熱処理してオーミック電極にし、ソース電極85,ドレイン電極86とする。この熱処理(オーミックアニール)の条件は、一例として500℃で30分としたが、上記熱処理の条件は、これに限らず、例えば、上記熱処理温度を、400℃~600℃の範囲内で設定してもよい。 Next, by photolithography, a photoresist (not shown) in which the regions where the source and drain electrodes are to be formed (including the exposed AlGaN barrier layer 74 region) is formed, and Ti is formed on the photoresist. , Al are sequentially deposited, and Ti / Al electrodes 85 and 86 are formed by lift-off so as to fill the openings 70 and 71 and to overlap the SiN protective film 77 as shown in FIG. The Ti / Al electrodes 85 and 86 serve as a source electrode and a drain electrode. The Ti / Al electrodes 85 and 86 are electrodes having a laminated structure in which a Ti layer and an Al layer are sequentially laminated. Next, the electrodes 85 and 86 are heat-treated to form ohmic electrodes, and the source electrode 85 and the drain electrode 86 are formed. The condition of this heat treatment (ohmic annealing) is set to 500 ° C. for 30 minutes as an example, but the condition of the heat treatment is not limited to this. For example, the heat treatment temperature is set within a range of 400 ° C. to 600 ° C. May be.
 次に、図13に示すように、フォトリソグラフィによりフォトレジストによるマスクを形成してエッチングすることで、上記SiN保護膜77のゲート電極を形成すべき領域を除去して開口90を形成する。その後、開口90を埋めるように、TiNを全面スパッタし、フォトリソグラフィでゲート電極を形成すべき電極形成領域にレジストパターン(図示せず)を形成し、このレジストパターンをマスクとして、ドライエッチングまたはウエットエッチングを行なって、上記電極形成領域以外のTiN膜を除去して、ゲート電極88となるTiN電極を形成する。ゲート電極88の直下には、アンドープAlGaNバリア層74が位置しており、ゲート電極88とアンドープAlGaNバリア層74との接合は、ショットキー接合となる。 Next, as shown in FIG. 13, a mask made of a photoresist is formed by photolithography, and etching is performed to remove a region where the gate electrode of the SiN protective film 77 is to be formed, thereby forming an opening 90. Thereafter, TiN is sputtered over the entire surface so as to fill the opening 90, and a resist pattern (not shown) is formed in an electrode formation region where a gate electrode is to be formed by photolithography. Using this resist pattern as a mask, dry etching or wet etching is performed. Etching is performed to remove the TiN film other than the electrode formation region, and a TiN electrode to be the gate electrode 88 is formed. An undoped AlGaN barrier layer 74 is located immediately below the gate electrode 88, and the junction between the gate electrode 88 and the undoped AlGaN barrier layer 74 is a Schottky junction.
 このように、この第2実施形態のGaN系HFETの製造方法によれば、上記GaN系積層体75上に形成したSiN保護膜77を熱処理により改質してから、Ti/Al電極85,86をGaN系積層体75上に形成し、上記Ti/Al電極を熱処理してオーミック電極としてのソース電極85,ドレイン電極86とする。このように、SiN保護膜77を成膜して熱処理した後に、上記Ti/Al電極85,86を熱処理(オーミックアニール)し、オーミック電極としてのソース電極85,ドレイン電極86を形成する。これにより、上記Ti/Al電極85,86の熱処理時に電極メタルがSiN保護膜77に拡散することを抑制できて、上記SiN保護膜77を経由するリーク電流を低減できる。よって、この第2実施形態によれば、上記熱処理したSiN保護膜77による電流コラプスの抑制と上記SiN保護膜77を経由するリーク電流の低減とを両立できるGaN系HFETを製造できる。 Thus, according to the GaN-based HFET manufacturing method of the second embodiment, the Si / N protective film 77 formed on the GaN-based stacked body 75 is modified by heat treatment, and then the Ti / Al electrodes 85, 86 are used. Is formed on the GaN-based laminate 75, and the Ti / Al electrode is heat-treated to form a source electrode 85 and a drain electrode 86 as ohmic electrodes. Thus, after forming the SiN protective film 77 and heat-treating, the Ti / Al electrodes 85 and 86 are heat-treated (ohmic annealing) to form the source electrode 85 and the drain electrode 86 as ohmic electrodes. Thereby, it is possible to prevent the electrode metal from diffusing into the SiN protective film 77 during the heat treatment of the Ti / Al electrodes 85 and 86, and to reduce the leakage current passing through the SiN protective film 77. Therefore, according to the second embodiment, it is possible to manufacture a GaN-based HFET that can achieve both suppression of current collapse by the heat-treated SiN protective film 77 and reduction of leakage current via the SiN protective film 77.
 なお、上記第2実施形態では、上記AlGaNバリア層74の厚さを第1実施形態のAlGaNバリア層4の厚さよりも薄くして、ソース電極85,ドレイン電極86をオーミックコンタクト可能としたが、上記AlGaNバリア層74の厚さをAlGaNバリア層4の厚さと同等とした場合には、AlGaNバリア層74のオーミックコンタクト部分に予めSiドープをしてn型化させることで電極のオーミックコンタクト可能をとしてもよい。 In the second embodiment, the thickness of the AlGaN barrier layer 74 is made thinner than the thickness of the AlGaN barrier layer 4 of the first embodiment so that the source electrode 85 and the drain electrode 86 can be in ohmic contact. When the thickness of the AlGaN barrier layer 74 is equal to the thickness of the AlGaN barrier layer 4, the ohmic contact portion of the AlGaN barrier layer 74 is preliminarily doped with Si so as to be n-type, thereby enabling ohmic contact of the electrode. It is good.
 また、上記第1,第2実施形態では、基板としてSi基板を用いたが、サファイア基板を用いてもよい。また、上記GaN基板上にAlGaN層を成長させる等のように、窒化物半導体からなる基板上に窒化物半導体層を成長させてもよい。また、適宜、バッファ層を基板と各層間に形成してもよい。また、GaNチャネル層3,73とAlGaNバリア層4,74との間に、AlNで作製したヘテロ改善層を形成してもよい。また、上記AlGaNバリア層4,74上にGaNキャップ層を形成してもよい。また、上記実施形態では、ゲート電極18,88をTiNで作製したが、WNで作製してもよい。また、ゲート電極18,88をPt/AuやNi/Auで作製してもよい。 In the first and second embodiments, the Si substrate is used as the substrate, but a sapphire substrate may be used. Further, a nitride semiconductor layer may be grown on a substrate made of a nitride semiconductor, such as growing an AlGaN layer on the GaN substrate. Further, a buffer layer may be appropriately formed between the substrate and each layer. A hetero improvement layer made of AlN may be formed between the GaN channel layers 3 and 73 and the AlGaN barrier layers 4 and 74. A GaN cap layer may be formed on the AlGaN barrier layers 4 and 74. Moreover, in the said embodiment, although the gate electrodes 18 and 88 were produced with TiN, you may produce with WN. The gate electrodes 18 and 88 may be made of Pt / Au or Ni / Au.
 また、上記第1,第2実施形態では、電流コラプスを抑制する保護膜をシリコン窒化膜(SiN膜)の一層からなるSiN保護膜7,77としたが、電流コラプスを抑制する保護膜を、ストイキオメトリなシリコン窒化膜よりもシリコンSiの比率の大きな下層SiN膜とストイキオメトリな上層SiN膜とで構成してもよい。この場合、ストイキオメトリな上層SiN膜による電極メタルの拡散抑制と、シリコンSiの比率の大きな下層SiN膜による電流コラプス抑制とを図れる。また、上記SiN保護膜7,77上にSiO膜またはAl膜を形成してもよい。この場合、上記SiO膜またはAl膜によって上記電極の熱処理時にSiN保護膜7,77へ電極メタルが拡散するのをさらに抑制でき、上記SiN保護膜7,77を経由してゲート電極18,88に流れるリーク電流をさらに低減できる。 In the first and second embodiments, the protective film that suppresses current collapse is the SiN protective film 7, 77 made of a single layer of silicon nitride film (SiN film). However, the protective film that suppresses current collapse is A lower SiN film having a larger silicon Si ratio than a stoichiometric silicon nitride film and a stoichiometric upper SiN film may be used. In this case, it is possible to suppress the diffusion of the electrode metal by the stoichiometric upper SiN film and to suppress the current collapse by the lower SiN film having a large silicon Si ratio. Further, an SiO 2 film or an Al 2 O 3 film may be formed on the SiN protective films 7 and 77. In this case, it is possible to further suppress the diffusion of the electrode metal to the SiN protective films 7 and 77 during the heat treatment of the electrode by the SiO 2 film or the Al 2 O 3 film, and the gate electrode via the SiN protective films 7 and 77. The leakage current flowing through 18, 88 can be further reduced.
 また、図6に示すように、下層SiN膜51とストイキオメトリである上層SiN膜52とSiO膜53とを順に積層した保護膜50を電流コラプスを抑制する保護膜としてもよい。ここで、上記上層SiN膜52がストイキオメトリであるとは、SiとNが3:4の組成であることを意味している。上記保護膜50によれば、上層SiN膜52がストイキオメトリであると共に上記上層SiN膜52上にSiO膜53を形成したことで、上記電極の熱処理時に上記保護膜50の上層および下層SiN保護層52,51へ電極メタルが拡散することを抑制でき、上記保護膜50を経由するリーク電流をさらに低減できる。なお、上記下層SiN膜51は、ストイキオメトリなシリコン窒化膜よりもシリコンSiの比率の大きなSiN保護膜とすることで、ストイキオメトリなシリコン窒化膜に比べて電流コラプスの抑制を図れるが、上層SiN膜52と同様にストイキオメトリなシリコン窒化膜としてもよい。この場合、電極メタルの拡散抑制によるさらなるリーク電流低減を図れる。また、上記SiO膜53の替わりにAl膜としてもよい。 Further, as shown in FIG. 6, a protective film 50 in which a lower SiN film 51, an upper SiN film 52 that is stoichiometry, and a SiO 2 film 53 are sequentially stacked may be used as a protective film that suppresses current collapse. Here, that the upper SiN film 52 is stoichiometric means that Si and N have a composition of 3: 4. According to the protective film 50, since the upper SiN film 52 is stoichiometry and the SiO 2 film 53 is formed on the upper SiN film 52, the upper and lower SiN layers of the protective film 50 are heat-treated during the heat treatment of the electrode. The diffusion of the electrode metal into the protective layers 52 and 51 can be suppressed, and the leakage current passing through the protective film 50 can be further reduced. Although the lower SiN film 51 is a SiN protective film having a silicon Si ratio larger than that of the stoichiometric silicon nitride film, the current collapse can be suppressed as compared with the stoichiometric silicon nitride film. Similar to the upper SiN film 52, a stoichiometric silicon nitride film may be used. In this case, the leakage current can be further reduced by suppressing the diffusion of the electrode metal. Further, instead of the SiO 2 film 53, an Al 2 O 3 film may be used.
 また、上記第1,第2実施形態では、一例として、上記SiN保護膜7,77の熱処理温度を500℃とするとともに、電極15,16,85,86の熱処理温度を500℃としたが、電極15,16,85,86の熱処理温度をSiN保護膜77の熱処理温度よりも低くすることが望ましい。例えば、上記SiN保護膜77の熱処理温度が500℃である場合、電極15,16,85,86の熱処理温度を500℃よりも低い450℃とすることが望ましい。これにより、上記電極15,16,85,86を熱処理する際に、上記SiN保護膜7,77へ電極メタルが拡散することを抑制でき、上記SiN保護膜7,77を経由してゲート電極18,88に流れるリーク電流をさらに低減できる。 In the first and second embodiments, as an example, the heat treatment temperature of the SiN protective films 7 and 77 is set to 500 ° C., and the heat treatment temperature of the electrodes 15, 16, 85, and 86 is set to 500 ° C. It is desirable that the heat treatment temperature of the electrodes 15, 16, 85, 86 be lower than the heat treatment temperature of the SiN protective film 77. For example, when the heat treatment temperature of the SiN protective film 77 is 500 ° C., it is desirable that the heat treatment temperature of the electrodes 15, 16, 85, 86 be 450 ° C. lower than 500 ° C. Thereby, when the electrodes 15, 16, 85, 86 are heat-treated, the electrode metal can be prevented from diffusing into the SiN protective films 7, 77, and the gate electrode 18 passes through the SiN protective films 7, 77. , 88 can be further reduced.
 また、上記第1,第2実施形態では、上記オーミック電極としてのソース電極15,85、ドレイン電極16,86を、Ti層,Al層が順に積層されたTi/Al電極としたが、Ti層,Al層,TiN層が順に積層されたTi/Al/TiN電極としてもよい。また、上記Al層の代わりにAlSi層やAlCu層を用いてもよい。また、ソース電極,ドレイン電極としては、Hf/Al電極としてもよい。また、ソース電極,ドレイン電極としては、Ti/AlまたはHf/Al上にNi/Auを積層したものとしてもよく、Ti/AlまたはHf/Al上にPt/Auを積層したものとしてもよく、Ti/AlまたはHf/Al上にAuを積層したものとしてもよい。 In the first and second embodiments, the source electrodes 15 and 85 and the drain electrodes 16 and 86 as the ohmic electrodes are Ti / Al electrodes in which a Ti layer and an Al layer are sequentially stacked. A Ti / Al / TiN electrode in which an Al layer and a TiN layer are sequentially laminated may be used. Moreover, you may use an AlSi layer and an AlCu layer instead of the said Al layer. The source electrode and the drain electrode may be Hf / Al electrodes. Further, as the source electrode and the drain electrode, Ni / Au may be stacked on Ti / Al or Hf / Al, or Pt / Au may be stacked on Ti / Al or Hf / Al. It is good also as what laminated | stacked Au on Ti / Al or Hf / Al.
 また、上記第1,第2実施形態では、一例として、上記電極15,16,85,86のオーミックアニールの温度条件を、500℃としたが、図8に示すように、上記電極15,16,85,86のオーミックアニールの温度が600℃を超える700℃にした場合、電極15,16,85,86のコンタクト抵抗(Ωmm)が急増する。このため、上記電極15,16,85,86のオーミックアニールの温度は600℃以下にすることが望ましい。例えば、上記オーミックアニールの温度を、400℃~600℃の範囲内で設定することが望ましい。 In the first and second embodiments, as an example, the temperature conditions for the ohmic annealing of the electrodes 15, 16, 85, 86 are set to 500 ° C. However, as shown in FIG. , 85, 86, the contact resistance (Ωmm) of the electrodes 15, 16, 85, 86 rapidly increases when the temperature of the ohmic annealing is set to 700 ° C. exceeding 600 ° C. Therefore, it is desirable that the ohmic annealing temperature of the electrodes 15, 16, 85, 86 is 600 ° C. or lower. For example, it is desirable to set the ohmic annealing temperature within a range of 400 ° C. to 600 ° C.
 また、上記第1実施形態では、リフトオフにより、ソース電極,ドレイン電極となるTi/Al電極15,16を形成したが、図3に示すSiN保護膜7上およびリセス12,13と開口10,11を埋めるように、Ti,Al,TiNを順に全面スパッタし、フォトリソグラフィで上記ソース電極,ドレイン電極を形成すべき電極形成領域にレジストパターン(図示せず)を形成し、このレジストパターンをマスクとして、ドライエッチングまたはウエットエッチングを行なって、上記電極形成領域以外のTi,Al,TiN膜を除去して、ソース電極,ドレイン電極となるTi/Al/TiN電極15,16を形成してもよい。 In the first embodiment, the Ti / Al electrodes 15 and 16 that become the source electrode and the drain electrode are formed by lift-off, but the SiN protective film 7 and the recesses 12 and 13 and the openings 10 and 11 shown in FIG. Then, Ti, Al, and TiN are sequentially sputtered to fill the electrode, and a resist pattern (not shown) is formed in the electrode formation region where the source electrode and the drain electrode are to be formed by photolithography, and this resist pattern is used as a mask. The Ti / Al / TiN electrodes 15 and 16 to be the source electrode and the drain electrode may be formed by performing dry etching or wet etching to remove the Ti, Al, and TiN films other than the electrode formation region.
 また、上記第2実施形態では、リフトオフにより、ソース電極,ドレイン電極となるTi/Al電極85,86を形成したが、図11に示すSiN保護膜77上および開口70,71を埋めるように、Ti,Al,TiN膜を順に全面スパッタし、フォトリソグラフィで上記ソース電極,ドレイン電極を形成すべき電極形成領域にレジストパターン(図示せず)を形成し、このレジストパターンをマスクとして、ドライエッチングまたはウエットエッチングを行なって、上記電極形成領域以外のTi,Al,TiN膜を除去して、ソース電極,ドレイン電極となるTi/Al/TiN電極85,86を形成してもよい。 In the second embodiment, the Ti / Al electrodes 85 and 86 to be the source electrode and the drain electrode are formed by lift-off, but the SiN protective film 77 and the openings 70 and 71 shown in FIG. Ti, Al, TiN films are sequentially sputtered in order, and a resist pattern (not shown) is formed in the electrode formation region where the source electrode and drain electrode are to be formed by photolithography, and dry etching or etching is performed using this resist pattern as a mask. The Ti / Al / TiN electrodes 85 and 86 to be the source electrode and the drain electrode may be formed by performing wet etching to remove the Ti, Al, and TiN films other than the electrode formation region.
 この発明の製造方法におけるGaN系半導体積層体は、AlxInyGa1-x-yN(x≧0、y≧0、0≦x+y<1)で表されるGaN系半導体層を含むものでもよい。すなわち、この発明の製造方法におけるGaN系半導体積層体は、AlGaN、GaN、InGaN等を含むものとしてもよい。 The GaN-based semiconductor laminate in the manufacturing method of the present invention may include a GaN-based semiconductor layer represented by Al x In y Ga 1-xy N (x ≧ 0, y ≧ 0, 0 ≦ x + y <1). . That is, the GaN-based semiconductor laminate in the manufacturing method of the present invention may include AlGaN, GaN, InGaN, and the like.
 また、上記実施形態では、ノーマリオンタイプのHFETについて説明したがノーマリオフタイプでも同様の効果が得られる。また、ショットキーゲートで説明したが絶縁ゲート構造でも構わない。また、この発明で製造するGaN系半導体素子は、上記実施形態のHFETに限らず、他の構成の電界効果トランジスタであってもよい。 In the above embodiment, the normally-on type HFET has been described. However, the normally-off type can achieve the same effect. Moreover, although the Schottky gate has been described, an insulated gate structure may be used. Further, the GaN-based semiconductor element manufactured by the present invention is not limited to the HFET of the above embodiment, but may be a field effect transistor having another configuration.
 この発明の具体的な実施の形態について説明したが、この発明は上記実施形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。 Although specific embodiments of the present invention have been described, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention.
 1,71 Si基板
 2,72 アンドープAlGaNバッファ層
 3,73 GaNチャネル層
 4,74 AlGaNバリア層
 5,75 GaN系積層体
 6,76 2次元電子ガス
 7,77 SiN保護膜
 10,11,70,71 開口
 12,13 リセス
 15,85 Ti/Al電極(ソース電極)
 16,86 Ti/Al電極(ドレイン電極)
 18,88 ゲート電極
 20,90 開口
 50 保護膜
 51 下層SiN膜
 52 上層SiN膜
 53 SiO
1,71 Si substrate 2,72 Undoped AlGaN buffer layer 3,73 GaN channel layer 4,74 AlGaN barrier layer 5,75 GaN-based laminate 6,76 Two- dimensional electron gas 7,77 SiN protective film 10,11,70, 71 opening 12,13 recess 15,85 Ti / Al electrode (source electrode)
16,86 Ti / Al electrode (drain electrode)
18,88 Gate electrode 20,90 Opening 50 Protective film 51 Lower SiN film 52 Upper SiN film 53 SiO 2 film

Claims (3)

  1.  ヘテロ接合を有するGaN系積層体(5,75)上にシリコン窒化膜(51,52,53)を含む保護膜(50)またはシリコン窒化膜からなる保護膜(7,77)を形成し、
     上記保護膜(7,77)を熱処理し、
     上記保護膜(7,77)および上記GaN系積層体(5,75)のうちの少なくとも上記保護膜(7,77)の予め定められた領域をエッチングで除去して上記GaN系積層体(5,75)のオーミック電極形成領域を露出させ、
     上記GaN系積層体(5,75)のオーミック電極形成領域にTi/AlまたはHf/Alを含む電極(15,16,85,86)を形成し、
     上記電極(15,16,85,86)を熱処理してオーミック電極(15,16,85,86)にすることを特徴とするGaN系半導体素子の製造方法。
    A protective film (50) including a silicon nitride film (51, 52, 53) or a protective film (7, 77) made of a silicon nitride film is formed on a GaN-based laminate (5, 75) having a heterojunction,
    Heat-treating the protective film (7,77),
    Of the protective film (7, 77) and the GaN-based laminate (5, 75), at least a predetermined region of the protective film (7, 77) is removed by etching to remove the GaN-based laminate (5 , 75) is exposed,
    Forming electrodes (15, 16, 85, 86) containing Ti / Al or Hf / Al in the ohmic electrode forming region of the GaN-based laminate (5, 75);
    A method of manufacturing a GaN-based semiconductor device, wherein the electrode (15, 16, 85, 86) is heat-treated to form an ohmic electrode (15, 16, 85, 86).
  2.  請求項1に記載のGaN系半導体素子の製造方法において、
     上記保護膜(50)は、
     上記GaN系積層体(5,75)上に形成された下層シリコン窒化膜(51)と、
     上記下層シリコン窒化膜(51)上に形成された上層シリコン窒化膜(52)と、
     上記上層シリコン窒化膜(52)上に形成されたSiO膜(53)またはAl膜と
    を有し、
     上記上層シリコン窒化膜(52)は、ストイキオメトリなシリコン窒化膜であることを特徴とするGaN系半導体素子の製造方法。
    In the manufacturing method of the GaN-type semiconductor element of Claim 1,
    The protective film (50)
    A lower silicon nitride film (51) formed on the GaN-based laminate (5, 75);
    An upper silicon nitride film (52) formed on the lower silicon nitride film (51);
    An SiO 2 film (53) or an Al 2 O 3 film formed on the upper silicon nitride film (52),
    The method for manufacturing a GaN-based semiconductor device, wherein the upper silicon nitride film (52) is a stoichiometric silicon nitride film.
  3.  請求項1または2に記載のGaN系半導体素子の製造方法において、
     上記電極(15,16,85,86)を熱処理する温度を、上記保護膜(7,77)を熱処理する温度よりも低くしたことを特徴とするGaN系半導体素子の製造方法。
    In the manufacturing method of the GaN-type semiconductor element of Claim 1 or 2,
    A method for producing a GaN-based semiconductor device, wherein a temperature for heat-treating the electrodes (15, 16, 85, 86) is lower than a temperature for heat-treating the protective film (7, 77).
PCT/JP2012/066677 2011-07-07 2012-06-29 METHOD FOR MANUFACTURING GaN SEMICONDUCTOR ELEMENT WO2013005667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011150971A JP5166576B2 (en) 2011-07-07 2011-07-07 GaN-based semiconductor device manufacturing method
JP2011-150971 2011-07-07

Publications (1)

Publication Number Publication Date
WO2013005667A1 true WO2013005667A1 (en) 2013-01-10

Family

ID=47437020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066677 WO2013005667A1 (en) 2011-07-07 2012-06-29 METHOD FOR MANUFACTURING GaN SEMICONDUCTOR ELEMENT

Country Status (2)

Country Link
JP (1) JP5166576B2 (en)
WO (1) WO2013005667A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8888773B2 (en) 2012-05-11 2014-11-18 Medtronic Ardian Luxembourg S.A.R.L. Multi-electrode catheter assemblies for renal neuromodulation and associated systems and methods
US8956352B2 (en) 2010-10-25 2015-02-17 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having multi-electrode arrays for renal neuromodulation and associated systems and methods
US9084610B2 (en) 2010-10-21 2015-07-21 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US9131978B2 (en) 2002-04-08 2015-09-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
CN109671775A (en) * 2017-10-16 2019-04-23 住友电工光电子器件创新株式会社 The technique for forming nitride compound semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102087941B1 (en) * 2013-08-07 2020-03-11 엘지이노텍 주식회사 Power Semiconductor Device
JP2015170824A (en) * 2014-03-10 2015-09-28 株式会社東芝 Semiconductor device and method of manufacturing the same
KR20180068161A (en) * 2016-12-13 2018-06-21 (주)웨이비스 A nitride electronic element and manufacturing method thereof
JP2018163928A (en) * 2017-03-24 2018-10-18 住友電気工業株式会社 Method of manufacturing semiconductor device
KR102396072B1 (en) * 2020-11-13 2022-05-11 한국원자력연구원 Method for Forming the Ohmic Contact of GaN Based Electronic Device and the Ohmic Contact of GaN Based Electronic Device Formed by the Same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016762A (en) * 2006-07-10 2008-01-24 Oki Electric Ind Co Ltd MANUFACTURING METHOD OF GaN-HEMT
JP2008306027A (en) * 2007-06-08 2008-12-18 Eudyna Devices Inc Manufacturing method of semiconductor device
JP2009200306A (en) * 2008-02-22 2009-09-03 Eudyna Devices Inc Manufacturing method of semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306026A (en) * 2007-06-08 2008-12-18 Eudyna Devices Inc Method of manufacturing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016762A (en) * 2006-07-10 2008-01-24 Oki Electric Ind Co Ltd MANUFACTURING METHOD OF GaN-HEMT
JP2008306027A (en) * 2007-06-08 2008-12-18 Eudyna Devices Inc Manufacturing method of semiconductor device
JP2009200306A (en) * 2008-02-22 2009-09-03 Eudyna Devices Inc Manufacturing method of semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9131978B2 (en) 2002-04-08 2015-09-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US9084610B2 (en) 2010-10-21 2015-07-21 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US8956352B2 (en) 2010-10-25 2015-02-17 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having multi-electrode arrays for renal neuromodulation and associated systems and methods
US8998894B2 (en) 2010-10-25 2015-04-07 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having multi-electrode arrays for renal neuromodulation and associated systems and methods
US8888773B2 (en) 2012-05-11 2014-11-18 Medtronic Ardian Luxembourg S.A.R.L. Multi-electrode catheter assemblies for renal neuromodulation and associated systems and methods
CN109671775A (en) * 2017-10-16 2019-04-23 住友电工光电子器件创新株式会社 The technique for forming nitride compound semiconductor device
CN109671775B (en) * 2017-10-16 2023-09-29 住友电工光电子器件创新株式会社 Process for forming nitride semiconductor device

Also Published As

Publication number Publication date
JP5166576B2 (en) 2013-03-21
JP2013021016A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5166576B2 (en) GaN-based semiconductor device manufacturing method
US8748274B2 (en) Method for fabricating semiconductor device
TWI512993B (en) Transistor and method of forming the same and semiconductor device
JP5306438B2 (en) Field effect transistor and manufacturing method thereof
US10784361B2 (en) Semiconductor device and method for manufacturing the same
JPWO2005015642A1 (en) Semiconductor device and manufacturing method thereof
JP2010232377A (en) Semiconductor device
US10700189B1 (en) Semiconductor devices and methods for forming the same
JP6050018B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP7175727B2 (en) Nitride semiconductor device
JP2014045174A (en) Nitride semiconductor device
TWI680503B (en) Method of manufacturing gate structure for gallium nitride hemt
WO2013108844A1 (en) Nitride semiconductor device
US20150179823A1 (en) Electrode structure for nitride semiconductor device, production method therefor, and nitride semiconductor field-effect transistor
TW202015241A (en) Semiconductor devices and methods for forming same
US20150349108A1 (en) Electrode structure for nitride semiconductor device, and nitride semiconductor field effect transistor
JP2019009366A (en) Semiconductor device and manufacturing method of semiconductor device
JP2013115323A (en) Field-effect transistor
JP5220904B2 (en) GaN compound semiconductor device
WO2014129245A1 (en) Nitride semiconductor device
TW202329461A (en) High electron mobility transistor and method for fabricating the same
WO2013084726A1 (en) Field-effect transistor
JP2015073002A (en) Compound semiconductor device and manufacturing method of the same
JP6650867B2 (en) Method for manufacturing heterojunction field effect transistor
WO2013094356A1 (en) Semiconductor device and method of fabricating same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807532

Country of ref document: EP

Kind code of ref document: A1