WO2013018497A1 - Collector, separation method, and display method - Google Patents

Collector, separation method, and display method Download PDF

Info

Publication number
WO2013018497A1
WO2013018497A1 PCT/JP2012/067171 JP2012067171W WO2013018497A1 WO 2013018497 A1 WO2013018497 A1 WO 2013018497A1 JP 2012067171 W JP2012067171 W JP 2012067171W WO 2013018497 A1 WO2013018497 A1 WO 2013018497A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
frequency
bacteria
liquid
sample liquid
Prior art date
Application number
PCT/JP2012/067171
Other languages
French (fr)
Japanese (ja)
Inventor
伴 和夫
藤岡 一志
紀江 松井
隆治 圓城寺
崇志 岩本
Original Assignee
シャープ株式会社
フィルテクノジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, フィルテクノジャパン株式会社 filed Critical シャープ株式会社
Publication of WO2013018497A1 publication Critical patent/WO2013018497A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/005Dielectrophoresis, i.e. dielectric particles migrating towards the region of highest field strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/026Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present invention relates to a collection device, a separation method, and a display method, and more particularly, to a collection device, a separation method, and a display method for collecting bacteria in a sample solution using dielectrophoretic force and separating live and dead bacteria. .
  • Concentration technology that efficiently concentrates target bacteria including proteins such as microorganisms and analyzes such concentrates is provided in the beverage and food fields such as drinking water, meat, prepared dishes, processed foods, pharmaceuticals, formulations, pharmaceuticals, Pharmaceutical and cosmetics fields such as cosmetics, clinical and medical fields such as AIDS, tuberculosis and avian influenza, bioindustry fields such as DNA, RNA, proteins and nucleic acids, and environmental measurement fields such as hot springs, water treatment and sewage treatment It is expected to play an active role in various fields such as ship ballast, bay management, and ocean measurement fields such as marine pollution.
  • Patent Document 1 discloses a chip for the purpose of separating microorganisms by dielectrophoresis, assuming that microorganisms with a small amount of charge can be collected at a low voltage without depending on the charges possessed by the microorganisms.
  • Non-Patent Document 1 “Major life and death separation of microbes in a microfluid by dielectrophoresis” (Non-Patent Document 1) by Masato Suzuki et al. Explains the principle for separating live and dead bacteria in microorganisms.
  • Non-Patent Document 1 discloses the principle of separation, it does not disclose a method specifically implemented by an apparatus, and there is a problem that actual separation based on the principle is difficult.
  • the present invention has been made in view of such problems, and is a collection device and a separation method capable of collecting microorganisms in a sample solution by dielectrophoretic force and suitably separating live and dead bacteria in the microorganisms. And to provide a display method.
  • the collection device is a collection device for collecting bacteria in a sample solution, and a flow-through tube for flowing the liquid, A plurality of electrodes installed in the tube, a transport mechanism for transporting the liquid in the through-flow tube along a predetermined liquid flow direction, and a control device for controlling the frequency of each of the plurality of electrodes.
  • the plurality of electrodes include a first electrode and a second electrode arranged in stages from the upstream side to the downstream side in the liquid flow direction.
  • the control device controls the frequency of the first electrode so as to collect viable bacteria in the sample liquid that has flowed into the flow-through tube with the first electrode, and passes through the first electrode with the second electrode.
  • the frequency of the second electrode is controlled so as to collect dead bacteria in the sample solution.
  • the frequency at which the dielectrophoretic force generated in both the live and dead bacteria in the sample liquid in the cross-flow tube is greater than the stress exerted on the live and dead bacteria by the sample liquid transported by the transport mechanism is the first frequency.
  • the dielectrophoretic force generated by dead bacteria in the sample liquid in the once-through tube is smaller than the stress exerted on the dead bacteria by the sample liquid transported by the transport mechanism.
  • the control device sets the frequency of the first electrode as the second frequency, and the second electrode. Is the first frequency.
  • the frequency at which the dielectrophoretic force generated in both the live and dead bacteria in the sample liquid in the cross-flow tube is greater than the stress exerted on the live and dead bacteria by the sample liquid transported by the transport mechanism is the first frequency.
  • the dielectrophoretic force generated by dead bacteria in the sample liquid in the once-through tube is smaller than the stress exerted on the dead bacteria by the sample liquid transported by the transport mechanism.
  • the control device sets the frequency of the first electrode to the first frequency, The frequency of the electrode is switched from the first frequency to the second frequency, and the frequency of the second electrode is set as the first frequency.
  • the plurality of electrodes further include a third electrode arranged on the upstream side in the liquid flow direction with respect to the first electrode, and the control device includes a third electrode in the sample liquid flown through the flow-through tube.
  • the frequency of the third electrode is controlled so as to collect the live bacteria and dead bacteria, and the control device controls the frequency of the third electrode, and then the live bacteria and dead bacteria collected on the third electrode.
  • the frequency of the third electrode is controlled so as to be released from the third electrode, the frequency of the first electrode is controlled so as to collect viable bacteria with the first electrode, and the second electrode is dead.
  • the frequency of the second electrode is controlled so as to collect bacteria.
  • control device generates the frequency of the third electrode so as to collect the live bacteria and dead bacteria in the sample liquid flowing through the flow-through pipe, and generates both the live and dead bacteria in the sample liquid in the flow-through pipe.
  • the dielectrophoretic force is set to a frequency that is greater than the stress exerted on the living bacteria and dead bacteria by the sample liquid transported by the transport mechanism.
  • the plurality of electrodes are in parallel with the first electrode and the second electrode in the liquid flow direction and stepwise from the upstream side to the downstream side in the liquid flow direction, respectively.
  • a fourth electrode and a fifth electrode arranged in a direction orthogonal to the liquid flow direction.
  • the control device controls the frequency of the fourth electrode so as to collect viable bacteria in the sample liquid that has flowed through the flow-through tube with the fourth electrode, and the fifth electrode collects the fourth electrode with the fourth electrode.
  • the frequency of the fifth electrode is controlled so as to collect viable bacteria released later.
  • the separation method flows through the flow path by controlling the frequency of each of the plurality of electrodes arranged stepwise from the upstream side to the downstream side in the liquid flow direction of the flow path.
  • a method for separating live and dead bacteria in a sample solution the step of controlling the frequency of the first electrode so as to collect the live bacteria in the sample solution with the first electrode arranged upstream in the liquid flow direction.
  • the frequency of the second electrode so as to collect dead bacteria in the sample liquid after passing through the first electrode with the second electrode arranged downstream of the first electrode in the liquid flow direction. Controlling.
  • the display method is a method of collecting bacteria in a sample solution with a collection device, and displaying the result on the display device, wherein the collection device is a liquid flow in a flow path.
  • the first electrode includes a plurality of electrodes arranged stepwise from the upstream side to the downstream side in the direction, and collects live bacteria in the sample solution with the first electrode arranged upstream in the liquid flow direction.
  • the display position in which the step of controlling the frequency of the electrode 2 and the viable bacteria in the collected sample liquid and the dead bacteria in the collected sample liquid are on the same screen is specified, and the display position is Displaying live bacteria and dead bacteria contained on the same screen of the display device.
  • microorganisms in a sample solution can be collected by dielectrophoretic force, and viable and dead bacteria in microorganisms can be suitably separated.
  • FIG. 1 is a diagram illustrating a specific example of the configuration of the collection system 1 according to the present embodiment.
  • the collection system 1 includes a collection device 100 including a plurality of electrodes, and a power supply 26 therein, and controls connection between the power supply and each electrode of the collection device 100.
  • An apparatus 500 and a display apparatus 600 that is electrically connected to the imaging apparatus 500 and displays a captured image are included.
  • the collection device 100 has an inner space as will be described later, and the liquid flows from the upstream side to the downstream side.
  • the tube 400A is connected to the upstream side, and the tube 400B is connected to the downstream side.
  • the tube 400A is connected with a three-way valve 700 as an example of a mechanism for switching the liquid to flow through.
  • the three-way valve 700 includes a valve 700A provided between the cleaning liquid chamber 300A and the tube 400A, a valve 700B provided between the sample liquid chamber 300B and the tube 400A, and between the collection device 100 and the tube 400A.
  • the mechanism for switching the connection between the collection device 100 and the cleaning liquid chamber 300A or the sample liquid chamber 300B is not limited to the three-way valve 700, and may be another method.
  • the pump 800 is connected to the tube 400B.
  • the pump 800 is electrically connected to the control device 200, and its operation is controlled by the control device 200. That is, when the pump 800 is operated by the control of the control device 200, as shown by the arrow in FIG. 1, the collection device 100 passes through the tube 400A from the cleaning liquid chamber 300A or the sample liquid chamber 300B, and passes through the tube. A flow path reaching the waste liquid chamber 300C through 400B is formed.
  • FIG. 2 is a schematic exploded view for explaining the structure of the collection device 100.
  • the collection device 100 is mainly composed of a substrate 10, an electrode part 12 including an electrode unit 11, and a water tank part 13 having a water tank wall surface 14.
  • the substrate 10 has a fixing mechanism (not shown) for fixing the electrode part 12 and the water tank part 13.
  • the electrode part 12 and the water tank part 13 are fixed on the substrate 10 by the above mechanism. Specifically, the electrode unit 12 is disposed immediately above the substrate 10, and the water tank unit 13 is disposed on the substrate 10 with the electrode unit 12 interposed therebetween.
  • the water tank unit 13 has a water tank wall surface 14, and the water tank unit 13 is fixed on the substrate 10 with the electrode unit 12 sandwiched therebetween, so that the substrate 10 is a bottom surface, and the substrate 10 and the water tank wall surface 14 have an inside thereof.
  • a water tank that is a space capable of holding a liquid is formed.
  • connection port 15A for connecting the tube 400A and a connection port 15B for connecting the tube 400B are arranged on the side of the collection device 100 in contact with the water tank.
  • FIG. 1 shows an example in which the tube 400A and the tube 400B are connected to both ends of the rectangular parallelepiped collection device 100 as an example.
  • the connection port 15A and the tube 15A are connected to one end.
  • An example in which the connection port 15B is arranged and the tube 400A and the tube 400B are connected to one end is shown.
  • the tube 400A connected to the cleaning liquid chamber 300A or the sample liquid chamber 300B is connected to the connection port 15A, and the pump 800 connected to the tube 400B is operated by connecting the tube 400B to the connection port 15B. Then, a liquid flow in the direction from the connection port 15A toward the connection port 15B is generated.
  • An electrode unit 11 in which a plurality of electrodes are arranged is formed on the surface of the electrode portion 12 on the water tank side. Since the liquid is held in the water tank, the electrode disposed in the electrode unit 11 is in contact with the liquid, and an electric field is generated in the liquid in the water tank.
  • FIG. 3A and 3B are diagrams for illustrating a specific example of the electrode arrangement of the electrode unit 11.
  • FIG. 3A is a view of the electrode unit 11 as viewed from the water tank portion 13 toward the substrate 10 and is a top view.
  • FIG. 3B is a view seen in the direction of arrow IIIB in FIG. 3A, and this view is a side view.
  • the arrow F in the figure represents the liquid flow direction.
  • the electrode unit 11 includes a first electrode 11A, a second electrode 11B, a third electrode 11C, a fourth electrode 11D, and a fifth electrode 11E as a plurality of electrodes in the liquid flow direction. Arranged in stages. In the present invention, it may be arranged in at least two stages. In the following description, an example in which the liquid flow direction is arranged in three stages will be described as an example.
  • the most upstream electrode position in the liquid flow direction is the first stage
  • the electrode position adjacent to the first stage downstream is the second stage
  • the electrode position adjacent to the second stage downstream is This is called the third stage.
  • the first stage has one electrode having a width close to the entire liquid flow width
  • the second stage and the third stage each have two electrodes arranged substantially perpendicular to the liquid flow and having a width approximately half of the liquid flow width. Are arranged. A more detailed arrangement example is illustrated in FIG.
  • the first electrode 11A which is one electrode on the first stage
  • the second electrode 11B and the third electrode 11C which are two electrodes on the second stage
  • FIGS 4 to 8 are diagrams showing specific examples of electrode patterns (shapes) formed on the electrode unit 11 respectively.
  • the electrode pattern may be a vertical comb shape as shown in FIG. 4, a parallel comb shape as shown in FIG. 5, or “U” as shown in FIG. 6. ", A cross-shaped diagonal shape as shown in FIG. 7, or a comb-shaped diagonal shape as shown in FIG.
  • n vertical electrodes are arranged in parallel at equal intervals, and n electrodes of the same shape are alternately combined from the facing side.
  • a comb-shaped electrode pattern having a gap number of 2n ⁇ 1 is formed.
  • one electrode may have an electrode width of 50 ⁇ m or 100 ⁇ m, and an electrode interval (gap) may be 10 ⁇ m.
  • the bacteria are collected by being held on the electrodes by the dielectrophoretic force.
  • the vertical comb-shaped electrode shown in FIG. 4 is preferably used for any of the first electrode 11A to the fifth electrode 11E.
  • the bacteria held by the electrodes are moved (released) to other electrodes along the liquid flow direction.
  • the parallel comb electrodes shown in FIG. 5 are preferably used for any of the first electrode 11A to the fifth electrode 11E.
  • n “U” shape electrodes are arranged in parallel at equal intervals and are alternately combined from the opposite side.
  • an “U” -shaped electrode pattern having a gap number of 2n ⁇ 1 is formed.
  • one electrode may have an electrode width of 100 ⁇ m and an electrode interval (gap) of 10 ⁇ m.
  • the “U” -shaped electrode pattern shown in FIG. 6 there are a portion where the electrodes are arranged in parallel to the liquid flow direction and a portion where the electrodes are arranged perpendicular to the liquid flow direction.
  • the bacteria are collected at the observation position on the downstream side while moving the bacteria in the liquid flow direction. Therefore, the “U” -shaped electrode shown in FIG. 6 is suitably used for the first electrode 11A disposed upstream from the branch from the second electrode 11B to the fifth electrode 11E.
  • one diagonal electrode and n ⁇ 1 “V” -shaped electrodes are arranged in parallel at equal intervals, and n identical electrodes alternate from the opposite side. Are combined.
  • an electrode pattern having a gap number of 2n ⁇ 1 is formed.
  • one electrode may have an electrode width of 50 ⁇ m or 100 ⁇ m, and an electrode interval (gap) may be 10 ⁇ m.
  • the crossed diagonal electrode shown in FIG. 7 is also preferably used for the first electrode 11A arranged upstream from the branch from the second electrode 11B to the fifth electrode 11E.
  • n “L” -shaped electrodes are arranged in parallel at equal intervals.
  • an electrode pattern having an n-1 gap number is formed.
  • one electrode may have an electrode width of 50 ⁇ m or 100 ⁇ m, and an electrode interval (gap) may be 10 ⁇ m.
  • the bacteria held between the electrodes move to the lower part of the electrode according to the direction of the electrodes, and the bacteria held on the upstream side of the electrode move to the lower part of the electrode and then move and accumulate in parallel with the liquid flow direction. Therefore, compared with the vertical comb-shaped electrode pattern shown in FIG. 4, the bacteria collected in a narrower range can be aggregated, and is preferably used to collect the bacteria in the imaging range described later. .
  • the shapes of the electrodes 11A to 11E of the electrode unit 11 can be variously configured by combining the shapes shown in FIGS.
  • the shapes of the first electrode 11A to the fifth electrode 11E are not limited to specific shapes, and the illustrated shapes can be variously combined. Then, an imaging region in the imaging device 500 is set on the electrode, and the imaging device 500 is installed so that the region is the imaging region.
  • FIGS. 9 to 13 are diagrams showing specific examples of combinations of shapes of the first electrode 11A to the fifth electrode 11E.
  • the combination of the shapes of the first electrode 11A to the fifth electrode 11E in the present invention is not limited to only those shown in FIGS. Note that an arrow F in FIGS. 9 to 13 represents the liquid flow direction.
  • FIG. 9 shows an example in which all of the first electrode 11A to the fifth electrode 11E are formed in a comb-shaped electrode pattern.
  • viable bacteria are collected on the fourth electrode 11D and dead bacteria are collected on the fifth electrode 11E by controlling the frequency with respect to these electrodes, as shown in FIG. 9, orthogonal to the liquid flow direction.
  • a region P1 straddling the fourth electrode 11D and the fifth electrode 11E of the third stage is an imaging region in the imaging device 500, the living bacteria collected by the fourth electrode 11D and the fifth electrode 11E are captured. The collected dead bacteria are photographed at the same time.
  • live bacteria may be collected on the second electrode 11B, and dead bacteria may be collected on the fourth electrode 11D.
  • an area P2 that straddles the second electrode 11B of the second stage and the fourth electrode 11D of the third stage arranged in the liquid flow direction is set as an imaging area in the imaging apparatus 500, whereby the second electrode 11B The live bacteria collected and the dead bacteria collected on the fourth electrode 11D are photographed simultaneously.
  • FIG. 10 shows an example in which the first electrode 11A is formed in an “U” -shaped electrode pattern, and the second electrode 11B to the fifth electrode 11E are formed in a comb-shaped electrode pattern.
  • the fourth electrode of the third stage orthogonal to the liquid flow direction.
  • a region P3 straddling 11D and the fifth electrode 11E as a photographing region in the imaging device 500, live bacteria collected on the fourth electrode 11D and dead germs collected on the fifth electrode 11E are photographed simultaneously. Is done.
  • live bacteria may be collected on the second electrode 11B, and dead bacteria may be collected on the fourth electrode 11D.
  • an area P4 that straddles the second electrode 11B of the second stage and the fourth electrode 11D of the third stage arranged in the liquid flow direction is set as an imaging area in the imaging apparatus 500, whereby the second electrode 11B The live bacteria collected and the dead bacteria collected on the fourth electrode 11D are photographed simultaneously.
  • FIG. 11 shows an example in which the first electrode 11A to the third electrode 11C are formed in a comb-shaped electrode pattern, and the fourth electrode 11D and the fifth electrode 11E are formed in a comb-shaped oblique electrode pattern.
  • the fourth electrode 11D and the fifth electrode 11E are formed in a comb-shaped oblique electrode pattern.
  • FIG. 11 shows an example in which the first electrode 11A to the third electrode 11C are formed in a comb-shaped electrode pattern, and the fourth electrode 11D and the fifth electrode 11E are formed in a comb-shaped oblique electrode pattern.
  • the first electrode 11A is formed in an “U” -shaped electrode pattern
  • the second electrode 11B and the third electrode 11C are formed in a comb-shaped electrode pattern
  • the fourth electrode 11D and the fifth electrode 11E are formed in a comb-shaped oblique electrode pattern.
  • the fourth electrode 11D and the fifth electrode 11E are formed in a comb-shaped oblique electrode pattern.
  • the first electrode 11 ⁇ / b> A is formed with a cross-shaped diagonal electrode pattern
  • the second electrode 11 ⁇ / b> B and the third electrode 11 ⁇ / b> C are comb-shaped electrode patterns
  • the fourth electrode 11 ⁇ / b> D and fifth electrode 11 ⁇ / b> E are formed with a comb-shaped diagonal electrode pattern.
  • An example is shown. In this configuration, when viable bacteria are collected on the fourth electrode 11D and dead bacteria are collected on the fifth electrode 11E by controlling the frequency with respect to these electrodes, as shown in FIG. 13, orthogonal to the liquid flow direction.
  • control device 200 has, as a device configuration, a CPU (Central Processing Unit) 20 for controlling the entire device, a memory 21 for storing a program executed by CPU 20, a power source, and the like. 26, a switch 22 for switching the connection between the power supply 26 and the first electrode 11A to the fifth electrode 11E, a communication I / F (interface) 24 for communicating with the three-way valve 700, and a pump 800.
  • the communication I / F 23 and the communication I / F 25 for communicating with the imaging apparatus 500 are included.
  • the CPU 20 reads out and executes a program stored in the memory 21 in accordance with an instruction input from an instruction input unit (not shown) such as a switch, and causes the collection device 100 to execute a collection operation described later. At that time, the frequency of each of the first electrode 11A to the fifth electrode 11E is controlled.
  • An example of electrode frequency control performed by the CPU 20 is PWM control (pulse width modulation). If PWM control is performed, the switch 22 corresponds to a transistor switch or the like, and the CPU 20 controls the frequency of each of the first electrode 11A to the fifth electrode 11E by controlling the switching timing of the switch 22, that is, the pulse width. .
  • the frequency control of each of the first electrode 11A to the fifth electrode 11E by the CPU 20 is not limited to PWM control, and may be another control method.
  • the control device 200 includes a device configuration corresponding to the control method.
  • the CPU 20 outputs a control signal to the three-way valve 700 and the pump 800. Further, a control signal is output to the imaging apparatus 500 to control photographing with the imaging apparatus 500.
  • control apparatus 200 may be comprised with a general computer as an example. Therefore, other device configurations not shown in FIG. 1 may be included.
  • the imaging apparatus 500 has, as its device configuration, a CPU 50 for controlling the entire apparatus, a memory 51 for storing a program executed by the CPU 50, a CCD (Charge Coupled Device), and the like. Imaging unit 52, communication I / F 53 for communicating with control device 200, and communication I / F 54 for communicating with display device 600.
  • a CPU 50 for controlling the entire apparatus
  • a memory 51 for storing a program executed by the CPU 50
  • CCD Charge Coupled Device
  • Imaging unit 52 communication I / F 53 for communicating with control device 200
  • communication I / F 54 for communicating with display device 600.
  • the CPU 50 receives a control signal from the control device 200 via the communication I / F 53, and reads and executes a program stored in the memory 51 according to the control signal. In accordance with the execution of the program, the CPU 50 controls the photographing unit 52 to perform a photographing operation.
  • the imaging device 500 is set so as to include any position of the electrodes as an imaging region from above the first electrode 11A to the fifth electrode 11E included in the collection device 100. And imaging
  • region is performed by imaging
  • the image data obtained by photographing is transmitted to the display device 600 via the communication I / F 54.
  • Display device 600 displays a screen based on screen data received by a CPU (not shown). Further, when the display device 600 is a computer on which an analysis program is installed, the CPU (not shown) may execute the analysis program to analyze the image data.
  • the collection device 100 collects biological particles in a sample solution by attaching them to an electrode using the principle of dielectrophoresis.
  • Dielectrophoresis is a phenomenon in which induced dipole moment is generated by utilizing a difference in electrical properties such as dielectric constant between a biological particle and a medium (such as water), and the particle is generated by the dielectrophoretic force generated by the balance. Refers to a phenomenon in which is attached to or separated from the electrode.
  • the dielectrophoretic force generated for both live and dead bacteria increases as the frequency increases, and the dielectrophoretic force generated for live bacteria always outweighs the dielectrophoretic force generated for dead bacteria.
  • the dielectrophoretic force generated for both living and dead bacteria decreases with increasing frequency while maintaining the magnitude relationship of the generated dielectrophoretic force, but the rate of decrease is relative to the increase in frequency. It becomes moderate.
  • the rate of decrease in dielectrophoretic force generated in dead bacteria is greater than the rate of decrease in dielectrophoretic force generated in live bacteria.
  • the dielectrophoretic force generated in dead bacteria decreases until it becomes approximately 1/3 times the dielectrophoretic force generated in live bacteria.
  • H3 [MHz] the dielectrophoretic force generated in killed bacteria becomes zero.
  • the collection device 100 separates live and dead bacteria using a change according to the frequency of the dielectrophoretic force.
  • H1, H2, and H3 depend on the width and shape of the electrodes and the distance between the electrodes. Then, when experiment was conducted using Escherichia coli with the collection apparatus 100 which the inventor made as a prototype for confirmation, the above H1, H2, and H3 are about 100 [kHz], about 1 [MHz], and about 4 [MHz], respectively. Met.
  • the first frequency is a frequency at which the dielectrophoretic force generated for both live and dead bacteria in the sample liquid is greater than the stress exerted on the live and dead bacteria when the sample liquid is conveyed by the operation of the pump 800. More specifically, it indicates a frequency of about 100 [kHz] as described above.
  • the electrophoretic force is a frequency that causes the sample liquid to be greater than the stress exerted on the living bacteria when the sample liquid is conveyed by the operation of the pump 800. Specifically, as described above, a frequency of about 4 [MHz] is used. Point to.
  • an electric field of the second frequency is generated in the sample liquid to collect only viable bacteria first, and an electric field of the first frequency is generated for the remaining sample liquid from which the viable bacteria have been removed. Since only dead bacteria adhere, only dead bacteria are collected.
  • an electric field of the first frequency is generated in the sample solution to collect viable bacteria and dead bacteria, and then the frequency is changed from the first frequency to the second frequency, thereby collecting the collected live bacteria and dead bacteria.
  • Our live bacteria are kept collected and dead bacteria are released.
  • FIG. 14 is a flowchart showing an outline of a first operation example in the collection system 1.
  • 15 to 19 are diagrams showing the collection state at each step of the flowchart of FIG.
  • the bacterium represented by the solid line represents the bacterium collected by the electrode
  • the bacterium represented by the dotted line represents the bacterium not collected by the electrode.
  • the electrode represented by the thick line represents that a voltage is applied.
  • FIG. 15 shows the state of collection at that time, and shows a state in which a sample liquid containing live and dead bacteria has been transported into the water tank.
  • the flow of the sample solution is started, and the live and dead bacteria are collected in the first stage (# 12).
  • a voltage is applied to the first electrode 11A arranged on the first stage at the first frequency described above.
  • FIG. 16 shows the collection state at that time. That is, referring to FIG. 16, when a voltage is applied to the first electrode 11 ⁇ / b> A of the first stage at the first frequency described above, the electric field in the sample liquid passing thereover is within a range affected. Viable and dead bacteria adhere to the first electrode 11A and are collected.
  • FIG. 17 shows the collection state at that time. That is, referring to FIG. 17, only the living and dead bacteria collected on the first electrode 11 ⁇ / b> A remain on the electrode by washing the inside of the water tank with the washing liquid while maintaining the voltage of each electrode, that is, on the electrode, Other bacteria are eliminated.
  • FIG. 18 shows the state of collection at that time, and live and dead bacteria collected on the first electrode 11A in # 11 dissociate from the first electrode 11A.
  • the living and dead bacteria dissociated from the first electrode 11A are directed to the second stage on the downstream side along the flow of the cleaning liquid.
  • live and dead bacteria are released from the first stage, and live bacteria are collected at the second stage downstream (# 15), and dead bacteria are collected at the third stage downstream (# 16).
  • the voltage is applied to the second electrode 11B or the third electrode 11C of the second stage at the second frequency described above, and the fourth electrode 11D or the fifth electrode 11E of the third stage on the downstream side is applied to the second electrode 11B or the third electrode 11C.
  • a voltage is applied at the first frequency.
  • FIG. 19 shows the collection state at that time.
  • a voltage is applied to the second electrode 11B arranged side by side along the liquid flow at the above-described second frequency, and the above-described voltage is applied to the fourth electrode 11D.
  • An example in which a voltage is applied at the first frequency is shown. That is, at the above-mentioned second frequency, no dielectrophoretic force is generated in dead bacteria, or only a dielectrophoretic force smaller than the flow force of the cleaning liquid is generated, so that only viable bacteria are collected on the second electrode 11B. Become. Although the dielectrophoretic force is generated in both the live and dead bacteria at the first frequency described above, the fourth electrode 11D is obtained by collecting the live bacteria and removing them from the liquid on the upstream side. Only dead bacteria will be collected.
  • the width of the second electrode 11B is approximately half of the width of the first electrode 11A
  • the viable bacteria of approximately half of the viable and dead bacteria released from the first electrode 11A of the first stage are the first.
  • the dead bacteria of approximately half of the live and dead bacteria that are collected by the second stage 11B and released from the first electrode 11A are collected by the fourth electrode 11D of the third stage. Become.
  • FIG. 20 is a block diagram illustrating a specific example of a functional configuration of the control device 200 for causing the collection system 1 to perform the above-described operation.
  • Each function shown in FIG. 20 is a function mainly formed on the CPU 20 when the CPU 20 of the control device 200 reads out and executes a program stored in the memory 21.
  • a hardware configuration such as an electric circuit.
  • the control device 200 includes an input unit 201 for receiving an instruction input for starting the collection operation from an instruction input unit (not shown) such as a switch (not shown), and the above-described # 11 according to the disclosure of the collection operation.
  • a control signal is output to the three-way valve 700 via the communication I / F 23 according to the determination by the determination unit 202 for determining each stage of # 16 to # 16, and the opening and closing of the three-way valve 700 is controlled.
  • a valve control unit 203 for controlling the operation of the pump 800 by outputting a control signal to the pump 800 via the communication I / F 24 according to the determination of the determination unit 202, Frequency control for controlling the frequency of each of the first electrode 11A to the fifth electrode 11E by controlling the switching timing of the switch 22, that is, the pulse width, according to the determination by the determination unit 202.
  • the imaging control unit 206 for controlling the imaging in the imaging device 500 by outputting a control signal to the imaging apparatus 500 via the communication I / F25 in accordance with the determination at decision 202.
  • FIG. 21 is a flowchart showing an operation flow of the control device 200 for causing the collection system 1 to perform the collection operation represented in the first operation example.
  • the operation shown in the flowchart of FIG. 21 is realized by causing the CPU 20 of the control device 200 to read out and execute a program stored in the memory 21 to exhibit each function shown in FIG.
  • step S101 the CPU 20 controls the three-way valve 700 for passing the sample liquid # 11. That is, the valve 700A on the cleaning liquid chamber 300A side is closed, and the sample liquid chamber 300B and the valves 700B and 700C on the collection device 100 side are opened. Thereby, the sample liquid chamber 300B is connected to the collection device 100 via the tube 400A.
  • step S103 the CPU 20 operates the pump 800.
  • the sample liquid held in the sample liquid chamber 300B flows into the collection device 100 through the tube 400A, flows through the water tank, and is conveyed to the waste liquid chamber 300C through the tube 400B.
  • step S105 the CPU 20 performs frequency control on the electrodes for collecting live and dead bacteria in the first stage. That is, a voltage is applied to the first electrode 11A arranged in the first stage at the first frequency described above, and the voltage application to the electrodes arranged in the second stage and the third stage is turned off. As a result, as shown in FIG. 16, live and dead bacteria within the range affected by the electric field generated by the first electrode 11A in the flowing sample are attached to the first electrode 11A and collected.
  • step S107 the three-way valve 700 for cleaning liquid flow of # 13 is controlled. That is, the valve 700A on the cleaning liquid chamber 300A side and the valve 700C on the collection device 100 side are opened, and the valve 700B on the sample liquid chamber 300B side is opened. Accordingly, the cleaning liquid chamber 300A is connected to the collection device 100 via the tube 400A.
  • the liquid in the tube is conveyed by the pump operated in step S103, so that the cleaning liquid held in the cleaning liquid chamber 300A flows into the collection device 100 through the tube 400A and flows through the water tank. And it is conveyed to the waste liquid chamber 300C through the tube 400B.
  • step S109 the CPU 20 performs frequency control on the electrodes for collecting live bacteria in the second stage and collecting dead bacteria in the third stage. That is, in the case of the above-described example, after the application of the voltage at the first frequency to the first electrode 11A is turned off, the electrode is applied at the second frequency to the second electrode 11B arranged in the second stage, and the first An electrode is applied at a first frequency to the fourth electrode 11D arranged in three stages.
  • the live and dead bacteria collected from the first electrode 11A are released, and are carried downstream by riding on the liquid flow of the cleaning liquid. Then, as shown in FIG. 19, live bacteria are collected by the second electrode 11B, and dead bacteria are collected by the fourth electrode 11D on the downstream side thereof.
  • step S111 the CPU 20 outputs a control signal to the image capturing apparatus 500 to perform photographing within a preset photographing range.
  • the imaging range it is only necessary to set a region P2 that straddles the second electrode 11B and the fourth electrode 11D as shown in FIG. 9, and the imaging apparatus 500 captures the range in accordance with the control signal.
  • live bacteria collected on the second electrode 11B and dead bacteria collected on the fourth electrode 11D are photographed simultaneously.
  • the viable bacteria are collected by applying a voltage of the above-mentioned second frequency, which is about 4 [MHz], to the electrode on the upstream side of the liquid flow, and the viable bacteria are excluded.
  • the dead bacteria are collected by applying a voltage of the above-mentioned first frequency of about 100 [kHz] to an electrode on the downstream side of the transported sample liquid. That is, normally, only by applying a voltage of the first frequency, live bacteria and dead bacteria are collected without being separated, but in the collection device 100, the live bacteria and dead bacteria described above are collected.
  • the electrodes are arranged in three stages with respect to the liquid flow direction described above, and once the live and dead bacteria are collected by the first stage electrodes and then released, the second and third stage electrodes are used.
  • the bacteria to be collected are collected at a position from the electrode in the liquid flow of the cleaning liquid, that is, near the bottom of the water tank along the electrode in the above example. Therefore, the released bacteria are transported within a range that can be influenced by the electric field at the electrodes of the second stage and the third stage, and the probability of being collected by these electrodes is remarkably increased.
  • an amount of bacteria corresponding to the collection ability at the downstream electrode is previously collected at the upstream electrode, it is possible to efficiently collect viable and dead bacteria at the downstream electrode. it can.
  • the electrodes are arranged in three stages, and the live and dead bacteria are once collected by the first stage electrode on the most upstream side, but this collection is not necessarily essential, and at least upstream It is only necessary to collect live bacteria in the second stage and to collect dead bacteria in the third stage on the downstream side.
  • only dead bacteria can be collected on the downstream side by collecting only dead bacteria after collecting the live and dead bacteria on the upstream side.
  • FIG. 22 is a flowchart showing an outline of a second operation example in the collection system 1 as another example.
  • FIGS. 23 to 28 are diagrams showing the collection state in each step of the flowchart of FIG.
  • the bacteria represented by the solid line represent the bacteria collected on the electrode
  • the bacteria represented by the dotted line represent the bacteria not collected on the electrode.
  • the electrode represented by the thick line represents that a voltage is applied.
  • the sample solution is caused to flow through the collection device 100 (# 21).
  • the same control as in step S101 described above is performed.
  • the flow of the sample solution is started at # 21 and viable bacteria are collected on the second stage (# 22).
  • a voltage is applied to one of the second electrode 11B and the third electrode 11C arranged on the second stage at the above-described second frequency.
  • the third electrode 11C since the width of the third electrode 11C in the direction perpendicular to the liquid flow direction is approximately half of the entire width, the third electrode 11C is approximately half the total width of the transported sample liquid. Viable bacteria among viable and dead bacteria in the transported sample liquid adhere to the third electrode 11C and are collected.
  • FIG. 25 shows the collection state at that time. That is, referring to FIG. 25, since the width of the first electrode 11A in the direction orthogonal to the liquid flow direction is approximately the entire width, viable bacteria among the live and dead bacteria in the transported sample liquid are the first electrode 11A. It is attached to and collected.
  • the sample liquid is conveyed to the second stage on the downstream side.
  • viable bacteria in the sample liquid already transported are collected in the first stage. No more viable bacteria are collected.
  • dead bacteria which are bacteria contained in the sample solution, adhere to the second electrode 11B and are collected.
  • FIG. 26 shows the collection state at that time. That is, with reference to FIG. 26, the inside of the water tank, that is, the top of the electrode is washed with the cleaning liquid while maintaining the voltage of each electrode, so that the live bacteria collected on the first electrode 11A and the second electrode 11B are collected. Only the collected dead bacteria and the live bacteria collected on the third electrode 11C remain on the electrode, and other bacteria are excluded.
  • FIG. 27 shows the state of collection at that time, and dead bacteria collected on the second electrode 11B and live bacteria collected on the third electrode 11C in # 26 are dissociated from the electrodes.
  • the viable and dead bacteria dissociated from these electrodes travel to the third stage on the downstream side along the flow of the cleaning liquid. At this time, dead bacteria are conveyed in the liquid flow direction on the second electrode 11B side and viable bacteria are on the third electrode 11C side. Therefore, when a voltage is applied to both electrodes of the third stage at the first frequency, bacteria in the cleaning liquid conveyed on the respective electrodes are collected.
  • dead bacteria dissociated from the second electrode 11B are collected in the fourth electrode 11D arranged adjacent to the downstream along the liquid flow of the second electrode 11B, and along the liquid flow of the third electrode 11C.
  • Viable bacteria dissociated from the third electrode 11C are collected at the fifth electrode 11E arranged adjacent to the downstream.
  • the fourth electrode 11D and the fifth electrode 11E are formed in a comb-shaped diagonal electrode pattern. Therefore, in this example, after the operation of # 27, by maintaining the flow of the cleaning liquid for a predetermined time, the bacteria collected along the “L” -shaped electrode move, and gradually the maximum in the liquid flow direction. It will be collected downstream, that is, at the tip.
  • FIG. 28 shows the state of collection at that time, and as shown in FIG. 27, after the live and dead bacteria are collected on each electrode of the third stage, the live and dead bacteria are collected at the tip of each electrode.
  • the imaging device 500 captures an area at the tip of the comb-shaped diagonal as an imaging area, so that live bacteria collected on the fourth electrode 11D and dead bacteria collected on the fifth electrode 11E are simultaneously photographed. .
  • the present collection system 1 can separate and collect viable and dead bacteria.
  • the first electrode 11A is collected in # 24.
  • the frequency may be switched from the first frequency to the second frequency, and the voltage of the electrode on the other side of the second stage on the downstream side may be applied at the first frequency.
  • the live bacteria among the live and dead bacteria collected by the first electrode 11A are held as they are, and only the dead bacteria are released, and the released dead bacteria are transferred to the other electrode of the second stage on the downstream side. It will be collected.
  • the specific collection operation in the collection system 1 is not limited to the operation shown in the first operation example described above, and the dielectrophoretic force with respect to the frequencies of viable bacteria and dead bacteria. If the action is to collect the live bacteria first on the upstream side using the difference and collect the dead bacteria by performing the collection operation on the downstream side, the live bacteria are separated and collected. Any operation is possible.
  • the inventors of the present application use the collection system 1 to separate and collect live bacteria and dead bacteria, and photograph the collected state with the imaging device 500.
  • micrographs actually taken are introduced.
  • the same position of the electrode unit 12 of the collection device 100 is the imaging range.
  • the image was taken after the same frequency control collection operation.
  • FIG. 29 is a photomicrograph of an electrode in the imaging range before the start of collection.
  • the thick line extending in the vertical direction in the center of the imaging range represents between different electrodes, and different electrodes are imaged on the right and left sides of FIG.
  • the gap in each electrode is photographed as a thin line extending in the vertical direction on each of the left and right electrodes. At this stage, no bacteria are attached to any gap, and no bacteria are collected at any electrode.
  • FIG. 30 is a photomicrograph of the electrode in the imaging range after the collection operation was performed with the bacteria in the sample solution being 100% dead. Since bacteria are attached to the gap of the right electrode in FIG. 30, it can be seen that the right electrode is an electrode collecting dead bacteria.
  • FIG. 31 is a photomicrograph of the electrode in the imaging range after the collection operation was performed with the bacteria in the sample solution as 100% viable bacteria. Since bacteria are attached to the gap of the left electrode in FIG. 31, it can be seen that the left electrode is an electrode in which viable bacteria are collected.
  • FIG. 32 is a photomicrograph of the electrodes in the imaging range after the collection operation was performed with 50% dead bacteria and 50% viable bacteria in the sample solution. From the micrograph in FIG. 32, the same number of bacteria are attached to the gap between the left and right electrodes. From the imaging results of FIGS. 30 and 31, dead bacteria are collected on the right electrode in FIG. 32 and live bacteria are collected on the left electrode, and are collected at a ratio close to the ratio of the bacteria in the sample solution. I understand that. That is, from this collection experiment, it was found that the collection system 1 can generally maintain the ratio of viable and dead bacteria in the sample solution and separate and collect them.

Abstract

A collection system (1) comprises: a collector equipped with a through-flow tube for allowing a liquid to flow therethrough and a plurality of electrodes installed at positions toward the through-flow tube; a pump (800) and tubes (400A, 400B) for carrying the liquid along a predetermined liquid flow direction in the through-flow tube; and a control device (200) for controlling the frequency of each of the electrodes of the collector. The electrodes include a first electrode and a second electrode arranged in stages from the upstream side to the downstream side in the liquid flow direction. The control device controls the frequency of the first electrode so that viable bacteria in a sample liquid are collected at the first electrode and controls the frequency of the second electrode so that dead bacteria in the sample liquid after passing through the first electrode are collected at the second electrode.

Description

捕集装置、分離方法、および表示方法Collection device, separation method, and display method
 この発明は捕集装置、分離方法、および表示方法に関し、特に、誘電泳動力を利用して試料液中の菌を捕集し、生死菌を分離する捕集装置、分離方法、および表示方法に関する。 The present invention relates to a collection device, a separation method, and a display method, and more particularly, to a collection device, a separation method, and a display method for collecting bacteria in a sample solution using dielectrophoretic force and separating live and dead bacteria. .
 近年、サルモネラ菌、ブドウ球菌、ボツリヌス菌、および病原性大腸菌O-157といった微生物に起因する食中毒の被害が問題になっている。関係企業では、これらの微生物に対する予防・衛生に関わる講習会や啓蒙活動などを行なう一方で、高額な設備投資を通じて事故拡散を未然に防ごうとしており、微生物を簡易かつ迅速に検出する様々な試薬や装置が提案されている。 Recently, food poisoning caused by microorganisms such as Salmonella, Staphylococcus, Clostridium botulinum, and pathogenic E. coli O-157 has become a problem. While related companies hold lectures and awareness-raising activities related to prevention and hygiene for these microorganisms, they are trying to prevent accident diffusion through expensive capital investment, and various reagents that can detect microorganisms simply and quickly. And devices have been proposed.
 微生物などのタンパク質を含む標的菌を効率よく濃縮して、かかる濃縮液を分析する濃縮技術の提供は、飲料水、食肉、惣菜、加工食品等の飲料・食品分野や、製薬、製剤、薬品、化粧品等の製薬・化粧品分野や、エイズ、結核菌、鳥インフルエンザ等の臨床・医療分野や、DNA・RNA、たんぱく質、核酸等のバイオ産業分野や、温泉、水処理、下水処理等の環境測定分野や、船舶バラスト、湾岸管理、海洋汚染等の海洋測定分野など、様々な分野で活躍することが期待される。 Concentration technology that efficiently concentrates target bacteria including proteins such as microorganisms and analyzes such concentrates is provided in the beverage and food fields such as drinking water, meat, prepared dishes, processed foods, pharmaceuticals, formulations, pharmaceuticals, Pharmaceutical and cosmetics fields such as cosmetics, clinical and medical fields such as AIDS, tuberculosis and avian influenza, bioindustry fields such as DNA, RNA, proteins and nucleic acids, and environmental measurement fields such as hot springs, water treatment and sewage treatment It is expected to play an active role in various fields such as ship ballast, bay management, and ocean measurement fields such as marine pollution.
 微生物を捕集する方法として、たとえば特開2007-6858号公報(特許文献1)にも開示されているように、最近、誘電泳動力を利用した捕集方法が注目されている。上記特許文献1は、微生物が有する電荷に依存することなく、荷電量がわずかな微生物を低電圧で捕集できるとして、誘電泳動法による微生物の分離を目的としたチップを開示している。 As a method for collecting microorganisms, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-6858 (Patent Document 1), a collection method using a dielectrophoretic force has recently attracted attention. Patent Document 1 discloses a chip for the purpose of separating microorganisms by dielectrophoresis, assuming that microorganisms with a small amount of charge can be collected at a low voltage without depending on the charges possessed by the microorganisms.
 また、鈴木雅登らによる「誘電泳動法による微小流体中での微生物の生死分離」(非特許文献1)においては、微生物中の生死菌を分離するための原理説明がなされている。 In addition, “Major life and death separation of microbes in a microfluid by dielectrophoresis” (Non-Patent Document 1) by Masato Suzuki et al. Explains the principle for separating live and dead bacteria in microorganisms.
特開2007-6858号公報Japanese Patent Laid-Open No. 2007-6858
 ところで、上述のような様々な分野において、試料液中の生菌と死菌とのそれぞれの菌を捕集したいというニーズがある。 By the way, in various fields as described above, there is a need to collect each of live and dead bacteria in a sample solution.
 特許文献1の技術を用いて捕集すると生菌と死菌とが分離されず、上のニーズに応じることができないという問題があった。 When collected using the technique of Patent Document 1, there was a problem that live bacteria and dead bacteria were not separated and could not meet the above needs.
 非特許文献1には分離の原理が開示されているものの、具体的に装置にて実現する方法を開示しておらず、その原理に基づいた実際の分離が難しいという問題があった。 Although Non-Patent Document 1 discloses the principle of separation, it does not disclose a method specifically implemented by an apparatus, and there is a problem that actual separation based on the principle is difficult.
 本発明はこのような問題に鑑みてなされたものであって、試料液中の微生物を誘電泳動力によって捕集し、微生物中の生死菌を好適に分離することのできる捕集装置、分離方法、および表示方法を提供することを目的としている。 The present invention has been made in view of such problems, and is a collection device and a separation method capable of collecting microorganisms in a sample solution by dielectrophoretic force and suitably separating live and dead bacteria in the microorganisms. And to provide a display method.
 上記目的を達成するために、本発明のある局面に従うと、捕集装置は、試料液中の菌を捕集するための捕集装置であって、液体を貫流させるための貫流管と、貫流管内に設置された複数の電極と、貫流管内で液体を所定の液流方向に沿って搬送するための搬送機構と、複数の電極のそれぞれの周波数を制御するための制御装置とを備える。複数の電極は、液流方向の上流側から下流側に段階的に配列された第1の電極と第2の電極とを含む。制御装置は、第1の電極で貫流管に貫流された試料液中の生菌を捕集するよう第1の電極の周波数を制御し、第2の電極で第1の電極を通過した後の試料液中の死菌を捕集するよう第2の電極の周波数を制御する。 In order to achieve the above object, according to an aspect of the present invention, the collection device is a collection device for collecting bacteria in a sample solution, and a flow-through tube for flowing the liquid, A plurality of electrodes installed in the tube, a transport mechanism for transporting the liquid in the through-flow tube along a predetermined liquid flow direction, and a control device for controlling the frequency of each of the plurality of electrodes. The plurality of electrodes include a first electrode and a second electrode arranged in stages from the upstream side to the downstream side in the liquid flow direction. The control device controls the frequency of the first electrode so as to collect viable bacteria in the sample liquid that has flowed into the flow-through tube with the first electrode, and passes through the first electrode with the second electrode. The frequency of the second electrode is controlled so as to collect dead bacteria in the sample solution.
 好ましくは、貫流管内の試料液中の生菌、死菌共に生じる誘電泳動力を、搬送機構で搬送される試料液が生菌および死菌に及ぼす応力よりも大きいものとする周波数を第1の周波数とし、貫流管内の試料液中の死菌に生じる誘電泳動力を搬送機構で搬送される試料液が死菌に及ぼす応力よりも小さいものとし、試料液中の生菌に生じる誘電泳動力を搬送機構で搬送される試料液が生菌に及ぼす応力よりも大きいものとする周波数を第2の周波数とすると、制御装置は、第1の電極の周波数を第2の周波数とし、第2の電極の周波数を第1の周波数とする。 Preferably, the frequency at which the dielectrophoretic force generated in both the live and dead bacteria in the sample liquid in the cross-flow tube is greater than the stress exerted on the live and dead bacteria by the sample liquid transported by the transport mechanism is the first frequency. The dielectrophoretic force generated by dead bacteria in the sample liquid in the once-through tube is smaller than the stress exerted on the dead bacteria by the sample liquid transported by the transport mechanism. When the second frequency is the frequency at which the sample solution transported by the transport mechanism is greater than the stress exerted on the living bacteria, the control device sets the frequency of the first electrode as the second frequency, and the second electrode. Is the first frequency.
 好ましくは、貫流管内の試料液中の生菌、死菌共に生じる誘電泳動力を、搬送機構で搬送される試料液が生菌および死菌に及ぼす応力よりも大きいものとする周波数を第1の周波数とし、貫流管内の試料液中の死菌に生じる誘電泳動力を搬送機構で搬送される試料液が死菌に及ぼす応力よりも小さいものとし、試料液中の生菌に生じる誘電泳動力を搬送機構で搬送される試料液が生菌に及ぼす応力よりも大きいものとする周波数を第2の周波数とすると、制御装置は、第1の電極の周波数を第1の周波数とした後に、第1の電極の周波数を第1の周波数から第2の周波数に切り替え、かつ、第2の電極の周波数を第1の周波数とする。 Preferably, the frequency at which the dielectrophoretic force generated in both the live and dead bacteria in the sample liquid in the cross-flow tube is greater than the stress exerted on the live and dead bacteria by the sample liquid transported by the transport mechanism is the first frequency. The dielectrophoretic force generated by dead bacteria in the sample liquid in the once-through tube is smaller than the stress exerted on the dead bacteria by the sample liquid transported by the transport mechanism. Assuming that the second frequency is the frequency at which the sample solution transported by the transport mechanism is greater than the stress exerted on the living bacteria, the control device sets the frequency of the first electrode to the first frequency, The frequency of the electrode is switched from the first frequency to the second frequency, and the frequency of the second electrode is set as the first frequency.
 好ましくは、複数の電極は、第1の電極よりも液流方向の上流側に配列された第3の電極をさらに含み、制御装置は、第3の電極で貫流管に貫流された試料液中の生菌および死菌を捕集するよう第3の電極の周波数を制御し、制御装置は、第3の電極の周波数を制御した後に、第3の電極に捕集された生菌および死菌を第3の電極から放出するよう第3の電極の周波数を制御すると共に、第1の電極で生菌を捕集するよう第1の電極の周波数を制御し、かつ、第2の電極で死菌を捕集するよう第2の電極の周波数を制御する。 Preferably, the plurality of electrodes further include a third electrode arranged on the upstream side in the liquid flow direction with respect to the first electrode, and the control device includes a third electrode in the sample liquid flown through the flow-through tube. The frequency of the third electrode is controlled so as to collect the live bacteria and dead bacteria, and the control device controls the frequency of the third electrode, and then the live bacteria and dead bacteria collected on the third electrode The frequency of the third electrode is controlled so as to be released from the third electrode, the frequency of the first electrode is controlled so as to collect viable bacteria with the first electrode, and the second electrode is dead. The frequency of the second electrode is controlled so as to collect bacteria.
 より好ましくは、制御装置は、貫流管に貫流された試料液中の生菌および死菌を捕集するよう第3の電極の周波数を、貫流管内の試料液中の生菌、死菌共に生じる誘電泳動力を搬送機構で搬送される試料液が生菌および死菌に及ぼす応力よりも大きいものとする周波数とする。 More preferably, the control device generates the frequency of the third electrode so as to collect the live bacteria and dead bacteria in the sample liquid flowing through the flow-through pipe, and generates both the live and dead bacteria in the sample liquid in the flow-through pipe. The dielectrophoretic force is set to a frequency that is greater than the stress exerted on the living bacteria and dead bacteria by the sample liquid transported by the transport mechanism.
 好ましくは、複数の電極は、第1の電極および第2の電極と液流方向に平行に、液流方向の上流側から下流側に段階的に、それぞれ、第1の電極および第2の電極と液流方向に直交方向に並んで配列された第4の電極および第5の電極を含む。制御装置は、第4の電極で貫流管に貫流された試料液中の生菌を捕集するよう第4の電極の周波数を制御し、第5の電極で第4の電極で捕集された後に放出された生菌を捕集するよう第5の電極の周波数を制御する。 Preferably, the plurality of electrodes are in parallel with the first electrode and the second electrode in the liquid flow direction and stepwise from the upstream side to the downstream side in the liquid flow direction, respectively. And a fourth electrode and a fifth electrode arranged in a direction orthogonal to the liquid flow direction. The control device controls the frequency of the fourth electrode so as to collect viable bacteria in the sample liquid that has flowed through the flow-through tube with the fourth electrode, and the fifth electrode collects the fourth electrode with the fourth electrode. The frequency of the fifth electrode is controlled so as to collect viable bacteria released later.
 本発明の他の局面に従うと、分離方法は、流路の液流方向の上流側から下流側に段階的に配置された複数の電極のそれぞれの周波数を制御することで、当該流路を流れる試料液中の生死菌を分離する方法であって、液流方向に上流側に配列された第1の電極で試料液中の生菌を捕集するよう第1の電極の周波数を制御するステップと、液流方向に第1の電極よりも下流側に配列された第2の電極で第1の電極を通過した後の試料液中の死菌を捕集するよう第2の電極の周波数を制御するステップとを備える。 According to another aspect of the present invention, the separation method flows through the flow path by controlling the frequency of each of the plurality of electrodes arranged stepwise from the upstream side to the downstream side in the liquid flow direction of the flow path. A method for separating live and dead bacteria in a sample solution, the step of controlling the frequency of the first electrode so as to collect the live bacteria in the sample solution with the first electrode arranged upstream in the liquid flow direction. And the frequency of the second electrode so as to collect dead bacteria in the sample liquid after passing through the first electrode with the second electrode arranged downstream of the first electrode in the liquid flow direction. Controlling.
 本発明のさらに他の局面に従うと、表示方法は試料液中の菌を捕集装置で捕集し、その結果を表示装置で表示する方法であって、捕集装置は、流路の液流方向の上流側から下流側に段階的に配置された複数の電極を含み、液流方向に上流側に配列された第1の電極で試料液中の生菌を捕集するよう第1の電極の周波数を制御するステップと、液流方向に第1の電極よりも下流側に配列された第2の電極で第1の電極を通過した後の試料液中の死菌を捕集するよう第2の電極の周波数を制御するステップと、捕集された試料液中の生菌と捕集された試料液中の死菌とが同一画面となるような表示位置を特定し、当該表示位置に含まれる生菌と死菌とを表示装置の同一の画面において表示するステップとを備える。 According to still another aspect of the present invention, the display method is a method of collecting bacteria in a sample solution with a collection device, and displaying the result on the display device, wherein the collection device is a liquid flow in a flow path. The first electrode includes a plurality of electrodes arranged stepwise from the upstream side to the downstream side in the direction, and collects live bacteria in the sample solution with the first electrode arranged upstream in the liquid flow direction. The step of controlling the frequency of the first and the second electrodes arranged downstream of the first electrode in the liquid flow direction so as to collect dead bacteria in the sample liquid after passing through the first electrode. The display position in which the step of controlling the frequency of the electrode 2 and the viable bacteria in the collected sample liquid and the dead bacteria in the collected sample liquid are on the same screen is specified, and the display position is Displaying live bacteria and dead bacteria contained on the same screen of the display device.
 この発明によると、試料液中の微生物を誘電泳動力によって捕集し、微生物中の生死菌を好適に分離することができる。 According to this invention, microorganisms in a sample solution can be collected by dielectrophoretic force, and viable and dead bacteria in microorganisms can be suitably separated.
実施の形態にかかる捕集システムの構成の具体例を示す図である。It is a figure which shows the specific example of a structure of the collection system concerning embodiment. 捕集システムに含まれる捕集装置の構造を説明するための概略分解図である。It is a schematic exploded view for demonstrating the structure of the collection apparatus contained in a collection system. 捕集装置に含まれる電極ユニットの上面図である。It is a top view of the electrode unit contained in a collection device. 捕集装置に含まれる電極ユニットの側面図である。It is a side view of the electrode unit contained in a collection device. 電極ユニットに形成される電極のパターン(形状)の具体例を示す図である。It is a figure which shows the specific example of the pattern (shape) of the electrode formed in an electrode unit. 電極ユニットに形成される電極のパターン(形状)の具体例を示す図である。It is a figure which shows the specific example of the pattern (shape) of the electrode formed in an electrode unit. 電極ユニットに形成される電極のパターン(形状)の具体例を示す図である。It is a figure which shows the specific example of the pattern (shape) of the electrode formed in an electrode unit. 電極ユニットに形成される電極のパターン(形状)の具体例を示す図である。It is a figure which shows the specific example of the pattern (shape) of the electrode formed in an electrode unit. 電極ユニットに形成される電極のパターン(形状)の具体例を示す図である。It is a figure which shows the specific example of the pattern (shape) of the electrode formed in an electrode unit. 電極パターンの組み合わせの具体例を示す図である。It is a figure which shows the specific example of the combination of an electrode pattern. 電極パターンの組み合わせの具体例を示す図である。It is a figure which shows the specific example of the combination of an electrode pattern. 電極パターンの組み合わせの具体例を示す図である。It is a figure which shows the specific example of the combination of an electrode pattern. 電極パターンの組み合わせの具体例を示す図である。It is a figure which shows the specific example of the combination of an electrode pattern. 電極パターンの組み合わせの具体例を示す図である。It is a figure which shows the specific example of the combination of an electrode pattern. 捕集システムでの第1の動作例の概要を表わすフローチャートである。It is a flowchart showing the outline | summary of the 1st operation example in a collection system. 図14のフローチャートの各ステップでの捕集状態を表わした図である。It is a figure showing the collection state in each step of the flowchart of FIG. 図14のフローチャートの各ステップでの捕集状態を表わした図である。It is a figure showing the collection state in each step of the flowchart of FIG. 図14のフローチャートの各ステップでの捕集状態を表わした図である。It is a figure showing the collection state in each step of the flowchart of FIG. 図14のフローチャートの各ステップでの捕集状態を表わした図である。It is a figure showing the collection state in each step of the flowchart of FIG. 図14のフローチャートの各ステップでの捕集状態を表わした図である。It is a figure showing the collection state in each step of the flowchart of FIG. 捕集システムに含まれる制御装置の機能構成の具体例を示すブロック図である。It is a block diagram which shows the specific example of a function structure of the control apparatus contained in a collection system. 制御装置の動作の流れを表わすフローチャートである。It is a flowchart showing the flow of operation | movement of a control apparatus. 捕集システムでの第2の動作例の概要を表わすフローチャートである。It is a flowchart showing the outline | summary of the 2nd operation example in a collection system. 図22のフローチャートの各ステップでの捕集状態を表わした図である。It is a figure showing the collection state in each step of the flowchart of FIG. 図22のフローチャートの各ステップでの捕集状態を表わした図である。It is a figure showing the collection state in each step of the flowchart of FIG. 図22のフローチャートの各ステップでの捕集状態を表わした図である。It is a figure showing the collection state in each step of the flowchart of FIG. 図22のフローチャートの各ステップでの捕集状態を表わした図である。It is a figure showing the collection state in each step of the flowchart of FIG. 図22のフローチャートの各ステップでの捕集状態を表わした図である。It is a figure showing the collection state in each step of the flowchart of FIG. 図22のフローチャートの各ステップでの捕集状態を表わした図である。It is a figure showing the collection state in each step of the flowchart of FIG. 捕集システムを用いた捕集動作で撮影された顕微鏡写真である。It is the microscope picture image | photographed by the collection operation | movement using a collection system. 捕集システムを用いた捕集動作で撮影された顕微鏡写真である。It is the microscope picture image | photographed by the collection operation | movement using a collection system. 捕集システムを用いた捕集動作で撮影された顕微鏡写真である。It is the microscope picture image | photographed by the collection operation | movement using a collection system. 捕集システムを用いた捕集動作で撮影された顕微鏡写真である。It is the microscope picture image | photographed by the collection operation | movement using a collection system.
 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are also the same.
 <システム構成>
 図1は、本実施の形態にかかる捕集システム1の構成の具体例を示す図である。図1を参照して、捕集システム1は、複数の電極を含む捕集装置100と、内部に電源26を有し、当該電源と捕集装置100の各電極との接続を制御することで該電極への印加を制御するための制御装置200と、洗浄液を保持するための洗浄液チェンバ300Aおよび試料液を保持するための試料液チェンバ300Bと捕集装置100とを接続するためのチューブ400Aと、廃液を保持するための廃液チェンバ300Cと捕集装置100とを接続するためのチューブ400Bと、捕集装置100近傍に設置され、捕集装置100で捕集された菌を撮影するための撮像装置500と、撮像装置500に電気的に接続され、撮影画像を表示するための表示装置600とを含む。
<System configuration>
FIG. 1 is a diagram illustrating a specific example of the configuration of the collection system 1 according to the present embodiment. With reference to FIG. 1, the collection system 1 includes a collection device 100 including a plurality of electrodes, and a power supply 26 therein, and controls connection between the power supply and each electrode of the collection device 100. A control device 200 for controlling application to the electrodes, a cleaning liquid chamber 300A for holding a cleaning liquid, a tube 400A for connecting the sample liquid chamber 300B for holding the sample liquid and the collection device 100, and The tube 400B for connecting the waste liquid chamber 300C for holding the waste liquid and the collection device 100, and the imaging for photographing the bacteria collected by the collection device 100 installed in the vicinity of the collection device 100 An apparatus 500 and a display apparatus 600 that is electrically connected to the imaging apparatus 500 and displays a captured image are included.
 <捕集装置の装置構成>
 捕集装置100は、後述するように内空を有し、上流側から下流側に液体が貫流する。上流側にチューブ400Aが接続され、下流側にチューブ400Bが接続されている。
<Apparatus configuration of collection device>
The collection device 100 has an inner space as will be described later, and the liquid flows from the upstream side to the downstream side. The tube 400A is connected to the upstream side, and the tube 400B is connected to the downstream side.
 チューブ400Aには、貫流させる液体を切り替えるための機構の一例としての、三方弁700が接続される。三方弁700は、洗浄液チェンバ300Aとチューブ400Aとの間に設けられた弁700A、試料液チェンバ300Bとチューブ400Aとの間に設けられた弁700B、および捕集装置100とチューブ400Aとの間に設けられた弁700Cとの3つの弁を有し、各弁の開閉が制御装置200によって制御される。すなわち、制御装置200での制御によって、捕集装置100に洗浄液チェンバ300Aがチューブ400Aで接続された状態、または、捕集装置100に試料液チェンバ300Bがチューブ400Aで接続された状態、となる。 The tube 400A is connected with a three-way valve 700 as an example of a mechanism for switching the liquid to flow through. The three-way valve 700 includes a valve 700A provided between the cleaning liquid chamber 300A and the tube 400A, a valve 700B provided between the sample liquid chamber 300B and the tube 400A, and between the collection device 100 and the tube 400A. There are three valves, the provided valve 700 </ b> C, and the opening and closing of each valve is controlled by the control device 200. That is, under the control of the control device 200, the cleaning liquid chamber 300A is connected to the collection device 100 via the tube 400A, or the sample liquid chamber 300B is connected to the collection device 100 via the tube 400A.
 もちろん、捕集装置100と洗浄液チェンバ300Aまたは試料液チェンバ300Bとの接続を切り替えるための機構は三方弁700のみに限定されず、他の方法であってもよい。 Of course, the mechanism for switching the connection between the collection device 100 and the cleaning liquid chamber 300A or the sample liquid chamber 300B is not limited to the three-way valve 700, and may be another method.
 チューブ400Bにはポンプ800が接続されている。ポンプ800は制御装置200に電気的に接続され、その稼動が制御装置200によって制御される。すなわち、制御装置200での制御によってポンプ800が稼動することで、図1中の矢印に示されるように、洗浄液チェンバ300Aまたは試料液チェンバ300Bからチューブ400Aを通って捕集装置100を抜け、チューブ400Bを通って廃液チェンバ300Cに達する流路が形成される。 The pump 800 is connected to the tube 400B. The pump 800 is electrically connected to the control device 200, and its operation is controlled by the control device 200. That is, when the pump 800 is operated by the control of the control device 200, as shown by the arrow in FIG. 1, the collection device 100 passes through the tube 400A from the cleaning liquid chamber 300A or the sample liquid chamber 300B, and passes through the tube. A flow path reaching the waste liquid chamber 300C through 400B is formed.
 図2は、捕集装置100の構造を説明するための概略分解図である。
 図2を参照して、捕集装置100は、大きくは、基板10と、電極ユニット11を含む電極部12と、水槽壁面14を有する水槽部13とから構成される。
FIG. 2 is a schematic exploded view for explaining the structure of the collection device 100.
With reference to FIG. 2, the collection device 100 is mainly composed of a substrate 10, an electrode part 12 including an electrode unit 11, and a water tank part 13 having a water tank wall surface 14.
 基板10は、電極部12および水槽部13を固定するための、図示しない固定機構を有する。 The substrate 10 has a fixing mechanism (not shown) for fixing the electrode part 12 and the water tank part 13.
 電極部12および水槽部13は基板10上に上記機構によって固定される。詳しくは、電極部12が基板10直上に配置され、該電極部12を間に挟んで水槽部13が基板10上に配置される。 The electrode part 12 and the water tank part 13 are fixed on the substrate 10 by the above mechanism. Specifically, the electrode unit 12 is disposed immediately above the substrate 10, and the water tank unit 13 is disposed on the substrate 10 with the electrode unit 12 interposed therebetween.
 水槽部13は水槽壁面14を有し、基板10上に電極部12を間に挟んで水槽部13が固定されることで、基板10を底面とし、基板10と水槽壁面14とでその内部に液体を保持し得る空間である水槽が形成される。 The water tank unit 13 has a water tank wall surface 14, and the water tank unit 13 is fixed on the substrate 10 with the electrode unit 12 sandwiched therebetween, so that the substrate 10 is a bottom surface, and the substrate 10 and the water tank wall surface 14 have an inside thereof. A water tank that is a space capable of holding a liquid is formed.
 水槽に接した捕集装置100の側部には、チューブ400Aを接続するための接続口15Aおよびチューブ400Bを接続するための接続口15Bが配されている。図1では、一例として直方体の捕集装置100の両端部にそれぞれチューブ400Aおよびチューブ400Bが接続される例が示されているが、図2では、他の例として、一方端に接続口15Aおよび接続口15Bが配されてチューブ400Aおよびチューブ400Bが一方端に接続される例が示されている。 A connection port 15A for connecting the tube 400A and a connection port 15B for connecting the tube 400B are arranged on the side of the collection device 100 in contact with the water tank. FIG. 1 shows an example in which the tube 400A and the tube 400B are connected to both ends of the rectangular parallelepiped collection device 100 as an example. In FIG. 2, as another example, the connection port 15A and the tube 15A are connected to one end. An example in which the connection port 15B is arranged and the tube 400A and the tube 400B are connected to one end is shown.
 洗浄液チェンバ300Aまたは試料液チェンバ300Bと接続されたチューブ400Aが接続口15Aに接続され、チューブ400Bが接続口15Bに接続されてチューブ400Bに接続されたポンプ800が稼動することで、水槽内には、接続口15Aから接続口15Bに向かう方向の液流が発生する。 The tube 400A connected to the cleaning liquid chamber 300A or the sample liquid chamber 300B is connected to the connection port 15A, and the pump 800 connected to the tube 400B is operated by connecting the tube 400B to the connection port 15B. Then, a liquid flow in the direction from the connection port 15A toward the connection port 15B is generated.
 電極部12の水槽側の面には、複数の電極が配された電極ユニット11が形成されている。水槽内に液体が保持されることで、電極ユニット11に配された電極が該液体に接し、水槽内の液体に電界を生じさせる。 An electrode unit 11 in which a plurality of electrodes are arranged is formed on the surface of the electrode portion 12 on the water tank side. Since the liquid is held in the water tank, the electrode disposed in the electrode unit 11 is in contact with the liquid, and an electric field is generated in the liquid in the water tank.
 図3Aおよび図3Bは、電極ユニット11の、電極の配列の具体例を示すための図である。図3Aは、電極ユニット11を水槽部13から基板10へ向く方向で見た図であって、この図を上面図とする。図3Bは、図3A中の矢印IIIB方向に見た図であって、この図を側面図とする。また、図中の矢印Fは液流方向を表わしている。 3A and 3B are diagrams for illustrating a specific example of the electrode arrangement of the electrode unit 11. FIG. FIG. 3A is a view of the electrode unit 11 as viewed from the water tank portion 13 toward the substrate 10 and is a top view. FIG. 3B is a view seen in the direction of arrow IIIB in FIG. 3A, and this view is a side view. Moreover, the arrow F in the figure represents the liquid flow direction.
 図3Aに示されるように、電極ユニット11には、複数の電極として第1電極11A、第2電極11B、第3電極11C、第4電極11D、および第5電極11Eが、液流方向に他段階に配置される。本発明においては少なくとも2段階に配置されればよく、以降の説明では、一例として液流方向に3段階に配列される例を説明する。 As shown in FIG. 3A, the electrode unit 11 includes a first electrode 11A, a second electrode 11B, a third electrode 11C, a fourth electrode 11D, and a fifth electrode 11E as a plurality of electrodes in the liquid flow direction. Arranged in stages. In the present invention, it may be arranged in at least two stages. In the following description, an example in which the liquid flow direction is arranged in three stages will be described as an example.
 なお、以降の説明において、液流方向の最も上流側の電極位置を第1ステージ、第1ステージに下流側に隣接する電極位置を第2ステージ、第2ステージに下流側に隣接する電極位置を第3ステージと称する。第1ステージには液流幅全体に近い幅の1つの電極、第2ステージおよび第3ステージには、それぞれ、液流に対して垂直並んだ、液流幅の概ね半分の幅の2つの電極が配列されるものとする。より詳しい配列例を図3に例示する。 In the following description, the most upstream electrode position in the liquid flow direction is the first stage, the electrode position adjacent to the first stage downstream is the second stage, and the electrode position adjacent to the second stage downstream is This is called the third stage. The first stage has one electrode having a width close to the entire liquid flow width, and the second stage and the third stage each have two electrodes arranged substantially perpendicular to the liquid flow and having a width approximately half of the liquid flow width. Are arranged. A more detailed arrangement example is illustrated in FIG.
 すなわち、図3Aおよび図3Bを参照して、第1ステージに1つの電極である第1電極11Aが、第2ステージには2つの電極である第2電極11Bおよび第3電極11Cが、第3ステージには2つの電極である第4電極11Dおよび第5電極11Eが配列される。 That is, referring to FIG. 3A and FIG. 3B, the first electrode 11A, which is one electrode on the first stage, and the second electrode 11B and the third electrode 11C, which are two electrodes on the second stage, Two electrodes, a fourth electrode 11D and a fifth electrode 11E, are arranged on the stage.
 図4~図8は、それぞれ、電極ユニット11に形成される電極のパターン(形状)の具体例を示す図である。 4 to 8 are diagrams showing specific examples of electrode patterns (shapes) formed on the electrode unit 11 respectively.
 電極パターンは、一例として図4に示されたような垂直櫛形であってもよいし、図5に示されたような平行櫛形であってもよいし、図6に示されたような「U」の字のような形であってもよいし、図7に示されたような交差形斜め形状であってもよいし、図8に示されたような櫛形斜め形状であってもよい。 For example, the electrode pattern may be a vertical comb shape as shown in FIG. 4, a parallel comb shape as shown in FIG. 5, or “U” as shown in FIG. 6. ", A cross-shaped diagonal shape as shown in FIG. 7, or a comb-shaped diagonal shape as shown in FIG.
 図4に示された垂直櫛形および図5に示された平行櫛形では、n本の垂直電極が等間隔に並列配置され、同形の電極n本が対面から交互に組み合わされている。これによって、2n-1のギャップ数をもつ櫛形の電極パターンが形成される。たとえば、1本の電極は電極幅50μmまたは100μmであって、電極の間隔(ギャップ)は10μmとすることができる。 In the vertical comb shape shown in FIG. 4 and the parallel comb shape shown in FIG. 5, n vertical electrodes are arranged in parallel at equal intervals, and n electrodes of the same shape are alternately combined from the facing side. As a result, a comb-shaped electrode pattern having a gap number of 2n−1 is formed. For example, one electrode may have an electrode width of 50 μm or 100 μm, and an electrode interval (gap) may be 10 μm.
 後述するように、捕集装置100では菌は誘電泳動力により電極に保持されて捕集される。垂直櫛形の電極パターンの場合、液流方向に対して電極が垂直に配列されていることから、捕集された菌は誘電泳動力により強固に電極で保持されることになる。そのため、図4に示された垂直櫛形電極は、第1電極11A~第5電極11Eのいずれにも好適に用いられる。 As will be described later, in the collection device 100, the bacteria are collected by being held on the electrodes by the dielectrophoretic force. In the case of a vertical comb-shaped electrode pattern, since the electrodes are arranged perpendicular to the liquid flow direction, the collected bacteria are firmly held by the electrodes due to the dielectrophoretic force. Therefore, the vertical comb-shaped electrode shown in FIG. 4 is preferably used for any of the first electrode 11A to the fifth electrode 11E.
 後述するように、捕集装置100における捕集動作においては電極に保持された菌を液流方向に沿って他の電極へと移動(放出)させる。平行櫛形の電極パターンの場合、液流方向に対して電極が平行に配列されていることから、垂直櫛形の電極パターンに比して捕集された菌を別の電極へとスムーズに移動(放出)させることができる。そのため、図5に示された平行櫛形電極は、第1電極11A~第5電極11Eのいずれにも好適に用いられるである。 As will be described later, in the collection operation of the collection device 100, the bacteria held by the electrodes are moved (released) to other electrodes along the liquid flow direction. In the case of a parallel comb-shaped electrode pattern, since the electrodes are arranged parallel to the liquid flow direction, the collected bacteria move smoothly to another electrode (release) compared to the vertical comb-shaped electrode pattern. ). Therefore, the parallel comb electrodes shown in FIG. 5 are preferably used for any of the first electrode 11A to the fifth electrode 11E.
 図6に示された「U」の字形では、n本の「U」の字形電極が等間隔に並列配置され、対面から交互に組み合わされている。これによって、2n-1のギャップ数をもつ「U」の字形の電極パターンが形成される。たとえば、1本の電極は電極幅100μmであって、電極の間隔(ギャップ)は10μmとすることができる。 In the “U” shape shown in FIG. 6, n “U” shape electrodes are arranged in parallel at equal intervals and are alternately combined from the opposite side. As a result, an “U” -shaped electrode pattern having a gap number of 2n−1 is formed. For example, one electrode may have an electrode width of 100 μm and an electrode interval (gap) of 10 μm.
 図6に示された「U」の字形の電極パターンの場合、液流方向に対して電極が平行に配列されている箇所と垂直に配列されている箇所とがあることから、液流方向に対して平行に配列されている箇所から垂直に配列されている箇所へと菌を移動させて集約することができる。後述するように、捕集装置100における捕集動作においては、液流方向に菌を移動させながら下流側の観察位置に捕集する。そのため、図6に示された「U」の字形電極は、第2電極11Bから第5電極11Eへと分岐するよりも上流側に配置される第1電極11Aに好適に用いられる。 In the case of the “U” -shaped electrode pattern shown in FIG. 6, there are a portion where the electrodes are arranged in parallel to the liquid flow direction and a portion where the electrodes are arranged perpendicular to the liquid flow direction. On the other hand, it is possible to move and aggregate bacteria from a place arranged in parallel to a place arranged vertically. As will be described later, in the collection operation of the collection device 100, the bacteria are collected at the observation position on the downstream side while moving the bacteria in the liquid flow direction. Therefore, the “U” -shaped electrode shown in FIG. 6 is suitably used for the first electrode 11A disposed upstream from the branch from the second electrode 11B to the fifth electrode 11E.
 図7に示された交差形斜め形状の電極パターンでは、1本の斜め電極とn-1本の「V」の字形電極とが等間隔に並列配置され、同形の電極n本が対面から交互に組み合わされている。これによって、2n-1のギャップ数をもつ電極パターンが形成される。たとえば、1本の電極は電極幅50μmまたは100μmであって、電極の間隔(ギャップ)は10μmとすることができる。 In the crossed diagonal electrode pattern shown in FIG. 7, one diagonal electrode and n−1 “V” -shaped electrodes are arranged in parallel at equal intervals, and n identical electrodes alternate from the opposite side. Are combined. As a result, an electrode pattern having a gap number of 2n−1 is formed. For example, one electrode may have an electrode width of 50 μm or 100 μm, and an electrode interval (gap) may be 10 μm.
 図7に示された交差形斜めの電極パターンの場合も「U」の字形の電極パターンと同様の現象により、斜め電極がある中心部へ菌を集約することができる。そのため、図7に示された交差形斜めの電極もまた、第2電極11Bから第5電極11Eへと分岐するよりも上流側に配置される第1電極11Aに好適に用いられる。 In the case of the crossed diagonal electrode pattern shown in FIG. 7, bacteria can be concentrated to the central portion where the diagonal electrode is located by the same phenomenon as the “U” -shaped electrode pattern. Therefore, the crossed diagonal electrode shown in FIG. 7 is also preferably used for the first electrode 11A arranged upstream from the branch from the second electrode 11B to the fifth electrode 11E.
 図8に示された櫛形斜めの電極パターンでは、n本の「L」の字形電極が等間隔に並列配置されている。これにより、n-1のギャップ数をもつ電極パターンが形成される。たとえば、1本の電極は電極幅50μmまたは100μmであって、電極の間隔(ギャップ)は10μmとすることができる。 In the comb-shaped diagonal electrode pattern shown in FIG. 8, n “L” -shaped electrodes are arranged in parallel at equal intervals. As a result, an electrode pattern having an n-1 gap number is formed. For example, one electrode may have an electrode width of 50 μm or 100 μm, and an electrode interval (gap) may be 10 μm.
 電極間で保持された菌は電極の向きに従い電極下部へ移動するとともに、電極上流側で保持された菌は、電極下部まで移動したのち、液流方向と平行に移動して集積する。そのため、図4に示された垂直櫛形の電極パターンと比較してより狭い範囲に捕集された菌を集約させることができ、後述する撮影範囲に菌を捕集させるためには好適に用いられる。 The bacteria held between the electrodes move to the lower part of the electrode according to the direction of the electrodes, and the bacteria held on the upstream side of the electrode move to the lower part of the electrode and then move and accumulate in parallel with the liquid flow direction. Therefore, compared with the vertical comb-shaped electrode pattern shown in FIG. 4, the bacteria collected in a narrower range can be aggregated, and is preferably used to collect the bacteria in the imaging range described later. .
 電極ユニット11の各電極11A~11Eの形状は、上記図4~図8の形状を組み合わせ、様々な構成とすることができる。本発明において、第1電極11A~第5電極11Eそれぞれの形状は特定の形状に限定されるものではなく、例示された形状を様々に組み合わせることができる。そして、その電極上に撮像装置500での撮影領域を設定し、該領域を撮影領域とするよう、撮像装置500を設置する。 The shapes of the electrodes 11A to 11E of the electrode unit 11 can be variously configured by combining the shapes shown in FIGS. In the present invention, the shapes of the first electrode 11A to the fifth electrode 11E are not limited to specific shapes, and the illustrated shapes can be variously combined. Then, an imaging region in the imaging device 500 is set on the electrode, and the imaging device 500 is installed so that the region is the imaging region.
 図9~図13は、第1電極11A~第5電極11Eそれぞれの形状の組み合わせの具体例を示す図である。もちろん、本発明における第1電極11A~第5電極11Eそれぞれの形状の組み合わせは図9~図13に示されるもののみに限定されるものではない。なお、図9~図13中の矢印Fは液流方向を表わしている。 9 to 13 are diagrams showing specific examples of combinations of shapes of the first electrode 11A to the fifth electrode 11E. Of course, the combination of the shapes of the first electrode 11A to the fifth electrode 11E in the present invention is not limited to only those shown in FIGS. Note that an arrow F in FIGS. 9 to 13 represents the liquid flow direction.
 図9は、第1電極11A~第5電極11Eすべてが櫛形の電極パターンで形成された例を表わしている。この構成において、これら電極に対する周波数の制御によって第4電極11Dに生菌が捕集され、第5電極11Eに死菌が捕集される場合、図9に示されるように、液流方向に直交する第3ステージの第4電極11Dおよび第5電極11Eをまたぐ領域P1を撮像装置500での撮影領域に設定することで、第4電極11Dに捕集された生菌および第5電極11Eに捕集された死菌が同時に撮影される。 FIG. 9 shows an example in which all of the first electrode 11A to the fifth electrode 11E are formed in a comb-shaped electrode pattern. In this configuration, when viable bacteria are collected on the fourth electrode 11D and dead bacteria are collected on the fifth electrode 11E by controlling the frequency with respect to these electrodes, as shown in FIG. 9, orthogonal to the liquid flow direction. By setting a region P1 straddling the fourth electrode 11D and the fifth electrode 11E of the third stage to be an imaging region in the imaging device 500, the living bacteria collected by the fourth electrode 11D and the fifth electrode 11E are captured. The collected dead bacteria are photographed at the same time.
 なお、他の周波数制御によっては第2電極11Bに生菌が捕集され、第4電極11Dに死菌が捕集される場合もある。この場合、液流方向に並んだ第2ステージの第2電極11Bと第3ステージの第4電極11Dとをまたぐ領域P2を撮像装置500での撮影領域に設定することで、第2電極11Bに捕集された生菌および第4電極11Dに捕集された死菌が同時に撮影される。 Depending on other frequency control, live bacteria may be collected on the second electrode 11B, and dead bacteria may be collected on the fourth electrode 11D. In this case, an area P2 that straddles the second electrode 11B of the second stage and the fourth electrode 11D of the third stage arranged in the liquid flow direction is set as an imaging area in the imaging apparatus 500, whereby the second electrode 11B The live bacteria collected and the dead bacteria collected on the fourth electrode 11D are photographed simultaneously.
 図10は、第1電極11Aが「U」の字形の電極パターン、第2電極11B~第5電極11Eが櫛形の電極パターンで形成された例を表わしている。この構成において、これら電極に対する周波数の制御によって第4電極11Dに生菌が捕集され、第5電極11Eに死菌が捕集される場合、液流方向に直交する第3ステージの第4電極11Dおよび第5電極11Eをまたぐ領域P3を撮像装置500での撮影領域に設定することで、第4電極11Dに捕集された生菌および第5電極11Eに捕集された死菌が同時に撮影される。 FIG. 10 shows an example in which the first electrode 11A is formed in an “U” -shaped electrode pattern, and the second electrode 11B to the fifth electrode 11E are formed in a comb-shaped electrode pattern. In this configuration, when viable bacteria are collected on the fourth electrode 11D and dead bacteria are collected on the fifth electrode 11E by controlling the frequency with respect to these electrodes, the fourth electrode of the third stage orthogonal to the liquid flow direction. By setting a region P3 straddling 11D and the fifth electrode 11E as a photographing region in the imaging device 500, live bacteria collected on the fourth electrode 11D and dead germs collected on the fifth electrode 11E are photographed simultaneously. Is done.
 なお、他の周波数制御によっては第2電極11Bに生菌が捕集され、第4電極11Dに死菌が捕集される場合もある。この場合、液流方向に並んだ第2ステージの第2電極11Bと第3ステージの第4電極11Dとをまたぐ領域P4を撮像装置500での撮影領域に設定することで、第2電極11Bに捕集された生菌および第4電極11Dに捕集された死菌が同時に撮影される。 Depending on other frequency control, live bacteria may be collected on the second electrode 11B, and dead bacteria may be collected on the fourth electrode 11D. In this case, an area P4 that straddles the second electrode 11B of the second stage and the fourth electrode 11D of the third stage arranged in the liquid flow direction is set as an imaging area in the imaging apparatus 500, whereby the second electrode 11B The live bacteria collected and the dead bacteria collected on the fourth electrode 11D are photographed simultaneously.
 図11は、第1電極11A~第3電極11Cが櫛形の電極パターン、第4電極11Dおよび第5電極11Eが櫛形斜めの電極パターンで形成された例を表わしている。この構成において、これら電極に対する周波数の制御によって第4電極11Dに生菌が捕集され、第5電極11Eに死菌が捕集される場合、図11に示されるように、液流方向に直交する第3ステージの第4電極11Dおよび第5電極11Eをまたぐ領域であって、特に、菌が集約される櫛形斜めの先端の領域P5を撮像装置500での撮影領域に設定することで、第4電極11Dに捕集された生菌および第5電極11Eに捕集された死菌が同時に撮影される。 FIG. 11 shows an example in which the first electrode 11A to the third electrode 11C are formed in a comb-shaped electrode pattern, and the fourth electrode 11D and the fifth electrode 11E are formed in a comb-shaped oblique electrode pattern. In this configuration, when viable bacteria are collected on the fourth electrode 11D and dead bacteria are collected on the fifth electrode 11E by controlling the frequency with respect to these electrodes, as shown in FIG. 11, orthogonal to the liquid flow direction. By setting the region P5 at the tip of the comb-shaped diagonal where the bacteria are gathered, as the imaging region in the imaging device 500, the region straddling the fourth electrode 11D and the fifth electrode 11E of the third stage Live bacteria collected on the four electrodes 11D and dead bacteria collected on the fifth electrode 11E are photographed simultaneously.
 図12は、第1電極11Aが「U」の字形の電極パターン、第2電極11Bおよび第3電極11Cが櫛形の電極パターン、第4電極11Dおよび第5電極11Eが櫛形斜めの電極パターンで形成された例を表わしている。この構成において、これら電極に対する周波数の制御によって第4電極11Dに生菌が捕集され、第5電極11Eに死菌が捕集される場合、図12に示されるように、液流方向に直交する第3ステージの第4電極11Dおよび第5電極11Eをまたぐ領域であって、特に、菌が集約される櫛形斜めの先端の領域P6を撮像装置500での撮影領域に設定することで、第4電極11Dに捕集された生菌および第5電極11Eに捕集された死菌が同時に撮影される。 In FIG. 12, the first electrode 11A is formed in an “U” -shaped electrode pattern, the second electrode 11B and the third electrode 11C are formed in a comb-shaped electrode pattern, and the fourth electrode 11D and the fifth electrode 11E are formed in a comb-shaped oblique electrode pattern. Represents an example. In this configuration, when viable bacteria are collected on the fourth electrode 11D and dead bacteria are collected on the fifth electrode 11E by controlling the frequency with respect to these electrodes, as shown in FIG. 12, orthogonal to the liquid flow direction. By setting an area P6 at the tip of the comb-shaped diagonal where the bacteria are gathered, as an imaging area in the imaging device 500, the area spans the fourth electrode 11D and the fifth electrode 11E of the third stage. Live bacteria collected on the four electrodes 11D and dead bacteria collected on the fifth electrode 11E are photographed simultaneously.
 図13は、第1電極11Aが交差形斜めの電極パターン、第2電極11Bおよび第3電極11Cが櫛形の電極パターン、第4電極11Dおよび第5電極11Eが櫛形斜めの電極パターンで形成された例を表わしている。この構成において、これら電極に対する周波数の制御によって第4電極11Dに生菌が捕集され、第5電極11Eに死菌が捕集される場合、図13に示されるように、液流方向に直交する第3ステージの第4電極11Dおよび第5電極11Eをまたぐ領域であって、特に、菌が集約される櫛形斜めの先端の領域P7を撮像装置500での撮影領域に設定することで、第4電極11Dに捕集された生菌および第5電極11Eに捕集された死菌が同時に撮影される。 In FIG. 13, the first electrode 11 </ b> A is formed with a cross-shaped diagonal electrode pattern, the second electrode 11 </ b> B and the third electrode 11 </ b> C are comb-shaped electrode patterns, and the fourth electrode 11 </ b> D and fifth electrode 11 </ b> E are formed with a comb-shaped diagonal electrode pattern. An example is shown. In this configuration, when viable bacteria are collected on the fourth electrode 11D and dead bacteria are collected on the fifth electrode 11E by controlling the frequency with respect to these electrodes, as shown in FIG. 13, orthogonal to the liquid flow direction. By setting the region P7 at the tip of the comb-shaped oblique tip where the bacteria are concentrated, as the imaging region in the imaging device 500, the region straddling the fourth electrode 11D and the fifth electrode 11E of the third stage Live bacteria collected on the four electrodes 11D and dead bacteria collected on the fifth electrode 11E are photographed simultaneously.
 <制御装置の装置構成>
 再度図1を参照して、制御装置200は、装置構成として、装置全体を制御するためのCPU(Central Processing Unit)20と、CPU20で実行されるプログラム等を記憶するためのメモリ21と、電源26と、電源26と第1電極11A~第5電極11Eとの接続を切り替えるためのスイッチ22と、三方弁700と通信するための通信I/F(インタフェース)24と、ポンプ800と通信するための通信I/F23と、撮像装置500と通信するための通信I/F25とを含む。
<Device configuration of control device>
Referring to FIG. 1 again, control device 200 has, as a device configuration, a CPU (Central Processing Unit) 20 for controlling the entire device, a memory 21 for storing a program executed by CPU 20, a power source, and the like. 26, a switch 22 for switching the connection between the power supply 26 and the first electrode 11A to the fifth electrode 11E, a communication I / F (interface) 24 for communicating with the three-way valve 700, and a pump 800. The communication I / F 23 and the communication I / F 25 for communicating with the imaging apparatus 500 are included.
 CPU20はスイッチ等の図示しない指示入力部から入力された指示に従ってメモリ21に記憶されるプログラムを読み出して実行し、捕集装置100に対して後述する捕集動作を実行させる。その際に、第1電極11A~第5電極11Eそれぞれの周波数を制御する。 The CPU 20 reads out and executes a program stored in the memory 21 in accordance with an instruction input from an instruction input unit (not shown) such as a switch, and causes the collection device 100 to execute a collection operation described later. At that time, the frequency of each of the first electrode 11A to the fifth electrode 11E is controlled.
 CPU20が行なう電極の周波数制御の一例として、PWM制御(パルス幅変調)が挙げられる。PWM制御を行なうとすると、スイッチ22はトランジスタスイッチ等が該当し、CPU20は、スイッチ22の切り替えのタイミング、つまりパルス幅を制御することで第1電極11A~第5電極11Eそれぞれの周波数を制御する。 An example of electrode frequency control performed by the CPU 20 is PWM control (pulse width modulation). If PWM control is performed, the switch 22 corresponds to a transistor switch or the like, and the CPU 20 controls the frequency of each of the first electrode 11A to the fifth electrode 11E by controlling the switching timing of the switch 22, that is, the pulse width. .
 もちろん、CPU20での第1電極11A~第5電極11Eそれぞれの周波数制御はPWM制御に限定されず、他の制御方法であってもよい。その場合、制御装置200には、その制御方法に対応した装置構成が含まれる。 Of course, the frequency control of each of the first electrode 11A to the fifth electrode 11E by the CPU 20 is not limited to PWM control, and may be another control method. In that case, the control device 200 includes a device configuration corresponding to the control method.
 また、CPU20は三方弁700やポンプ800に対して制御信号を出力する。さらに、撮像装置500対して制御信号を出力し、撮像装置500での撮影を制御する。 Further, the CPU 20 outputs a control signal to the three-way valve 700 and the pump 800. Further, a control signal is output to the imaging apparatus 500 to control photographing with the imaging apparatus 500.
 なお、制御装置200は一例として、一般的なコンピュータで構成されてよい。そのため、図1に示されていない他の装置構成が含まれていてもよい。 In addition, the control apparatus 200 may be comprised with a general computer as an example. Therefore, other device configurations not shown in FIG. 1 may be included.
 <撮像装置の装置構成>
 さらに図1を参照して、撮像装置500は、装置構成として、装置全体を制御するためのCPU50と、CPU50で実行されるプログラム等を記憶するためのメモリ51と、CCD(Charge Coupled Device)などの撮影部52と、制御装置200と通信するための通信I/F53と、表示装置600と通信するための通信I/F54とを含む。
<Apparatus configuration of imaging apparatus>
Further, referring to FIG. 1, the imaging apparatus 500 has, as its device configuration, a CPU 50 for controlling the entire apparatus, a memory 51 for storing a program executed by the CPU 50, a CCD (Charge Coupled Device), and the like. Imaging unit 52, communication I / F 53 for communicating with control device 200, and communication I / F 54 for communicating with display device 600.
 CPU50は通信I/F53を介して制御装置200からの制御信号を受信し、該制御信号に従ってメモリ51に記憶されるプログラムを読み出して実行する。該プログラムの実行に従って、CPU50は撮影部52を制御して、撮影動作を行なわせる。 The CPU 50 receives a control signal from the control device 200 via the communication I / F 53, and reads and executes a program stored in the memory 51 according to the control signal. In accordance with the execution of the program, the CPU 50 controls the photographing unit 52 to perform a photographing operation.
 撮像装置500は、上述のように、捕集装置100に含まれる第1電極11A~第5電極11Eの上方から該電極のいずれかの位置を撮影領域として含むようにセットされている。そして、制御装置200からの制御信号に従ったタイミングで撮影を行なうことで、該撮影領域の撮影を行なう。 As described above, the imaging device 500 is set so as to include any position of the electrodes as an imaging region from above the first electrode 11A to the fifth electrode 11E included in the collection device 100. And imaging | photography of this imaging | photography area | region is performed by imaging | photography at the timing according to the control signal from the control apparatus 200. FIG.
 撮影して得られた画像データは通信I/F54を介して表示装置600に送信される。表示装置600は、図示しないCPUによって受信した画面データに基づく画面を表示する。また、表示装置600が解析プログラムを搭載したコンピュータである場合、図示しないCPUが該解析プログラムを実行することで該画像データの解析を行なうようにしてもよい。 The image data obtained by photographing is transmitted to the display device 600 via the communication I / F 54. Display device 600 displays a screen based on screen data received by a CPU (not shown). Further, when the display device 600 is a computer on which an analysis program is installed, the CPU (not shown) may execute the analysis program to analyze the image data.
 <分離方法の原理>
 捕集装置100は、誘電泳動の原理を利用して試料液中の生物由来の粒子を電極に付着させて捕集する。
<Principle of separation method>
The collection device 100 collects biological particles in a sample solution by attaching them to an electrode using the principle of dielectrophoresis.
 ここで、誘電泳動の原理を利用した分離方法について説明する。
 誘電泳動とは、生物由来の粒子と媒質(ここでは水等)との誘電率などの電気的な性質の差異を利用して誘起双極子モーメントを生じさせ、そのバランスによって生じる誘電泳動力によって粒子を電極に付着させたり乖離させたりする現象を指す。
Here, a separation method using the principle of dielectrophoresis will be described.
Dielectrophoresis is a phenomenon in which induced dipole moment is generated by utilizing a difference in electrical properties such as dielectric constant between a biological particle and a medium (such as water), and the particle is generated by the dielectrophoretic force generated by the balance. Refers to a phenomenon in which is attached to or separated from the electrode.
 細胞膜の破損していない正常な生物の由来粒子(生菌)と破損した生物の由来粒子(死菌)との各々に生じる誘電泳動力は、生じさせる電場の周波数によって異なる傾向を見せることが知られている。 It is known that the dielectrophoretic force generated in each particle of normal organisms (viable bacteria) without damaged cell membranes and particles of dead organisms (dead bacteria) shows different tendencies depending on the frequency of the generated electric field. It has been.
 詳しくは、H1[kHz]超までは生菌、死菌とも生じる誘電泳動力は周波数の増加に応じて増加し、常に生菌に生じる誘電泳動力が死菌に生じる誘電泳動力に勝っている。 Specifically, up to H1 [kHz], the dielectrophoretic force generated for both live and dead bacteria increases as the frequency increases, and the dielectrophoretic force generated for live bacteria always outweighs the dielectrophoretic force generated for dead bacteria. .
 H1[kHz]超以降は、生じる誘電泳動力の大小関係は維持したまま生菌、死菌とも生じる誘電泳動力は周波数の増加に応じて減少するものの、その減少率は、周波数の増加に対して緩やかとなる。一方、死菌に生じる誘電泳動力の減少率の方が生菌に生じる誘電泳動力の減少率よりも大きくなる。H2[MHz]付近では、死菌に生じる誘電泳動力が生菌に生じる誘電泳動力の概ね1/3倍程度となるまで減少する。そして、H3[MHz]付近では、死菌に生じる誘電泳動力は0となる。 After H1 [kHz], the dielectrophoretic force generated for both living and dead bacteria decreases with increasing frequency while maintaining the magnitude relationship of the generated dielectrophoretic force, but the rate of decrease is relative to the increase in frequency. It becomes moderate. On the other hand, the rate of decrease in dielectrophoretic force generated in dead bacteria is greater than the rate of decrease in dielectrophoretic force generated in live bacteria. In the vicinity of H2 [MHz], the dielectrophoretic force generated in dead bacteria decreases until it becomes approximately 1/3 times the dielectrophoretic force generated in live bacteria. In the vicinity of H3 [MHz], the dielectrophoretic force generated in killed bacteria becomes zero.
 捕集装置100では、この誘電泳動力の周波数に応じた変化を利用して生菌と死菌とを分離する。上記H1,H2,H3は、電極の幅、形状、電極間の距離に依存する。そこで発明者が確認用に試作した捕集装置100で大腸菌を用いて実験を行なったところ、上記H1,H2,H3は、各々100[kHz]程度、1[MHz]程度、4[MHz]程度であった。 The collection device 100 separates live and dead bacteria using a change according to the frequency of the dielectrophoretic force. H1, H2, and H3 depend on the width and shape of the electrodes and the distance between the electrodes. Then, when experiment was conducted using Escherichia coli with the collection apparatus 100 which the inventor made as a prototype for confirmation, the above H1, H2, and H3 are about 100 [kHz], about 1 [MHz], and about 4 [MHz], respectively. Met.
 すなわち、水槽内に試料液が保持された状態で当該試料液に対して100[kHz]程度の周波数の電場を生じさせることで、電極に生菌、死菌共に付着させ、捕集することができる。この周波数を以降の説明において「第1周波数」と称する。第1周波数は、試料液中の生菌、死菌共に生じる誘電泳動力を、試料液がポンプ800の稼動によって搬送されることによって生菌、死菌に及ぼす応力よりも大きいものとする周波数と言え、具体的には、上の説明のように100[kHz]程度の周波数を指す。 That is, by generating an electric field having a frequency of about 100 [kHz] with respect to the sample liquid while the sample liquid is held in the water tank, both live and dead bacteria can be attached to the electrode and collected. it can. This frequency will be referred to as “first frequency” in the following description. The first frequency is a frequency at which the dielectrophoretic force generated for both live and dead bacteria in the sample liquid is greater than the stress exerted on the live and dead bacteria when the sample liquid is conveyed by the operation of the pump 800. More specifically, it indicates a frequency of about 100 [kHz] as described above.
 一方、第1周波数よりも高周波の死菌に生じる誘電泳動力が0となる周波数である4[MHz]の周波数の電場を生じさせることで、電極には生菌のみ付着することになるため、生菌のみ捕集されることになる。この周波数を以降の説明において「第2周波数」と称する。第2周波数は、試料液中の死菌に生じる誘電泳動力を試料液がポンプ800の稼動によって搬送されることによって死菌に及ぼす応力よりも小さいものとし、試料液中の生菌に生じる誘電泳動力を試料液がポンプ800の稼動によって搬送されることによって生菌に及ぼす応力よりも大きいものとする周波数と言え、具体的には、上の説明のように4[MHz]程度の周波数を指す。 On the other hand, by generating an electric field with a frequency of 4 [MHz], which is a frequency at which the dielectrophoretic force generated in killing bacteria at a frequency higher than the first frequency is 0, only viable bacteria adhere to the electrode. Only live bacteria will be collected. This frequency will be referred to as “second frequency” in the following description. The second frequency is such that the dielectrophoretic force generated in the dead bacteria in the sample liquid is smaller than the stress exerted on the dead bacteria when the sample liquid is conveyed by the operation of the pump 800, and the dielectric generated in the live bacteria in the sample liquid. It can be said that the electrophoretic force is a frequency that causes the sample liquid to be greater than the stress exerted on the living bacteria when the sample liquid is conveyed by the operation of the pump 800. Specifically, as described above, a frequency of about 4 [MHz] is used. Point to.
 また、試料液に第2周波数の電場を生じさせて生菌のみを先に捕集し、生菌が除去された残りの試料液に対して第1周波数の電場を生じさせることで、電極には死菌のみ付着することになるため、死菌のみ捕集されることになる。 In addition, an electric field of the second frequency is generated in the sample liquid to collect only viable bacteria first, and an electric field of the first frequency is generated for the remaining sample liquid from which the viable bacteria have been removed. Since only dead bacteria adhere, only dead bacteria are collected.
 この電極に対する周波数制御を液流の上流側の電極から順に行なうことで、最終的に、撮影領域が設定された下流側の電極に生菌と死菌とを分離して捕集することができる。 By performing frequency control on this electrode in order from the upstream electrode of the liquid flow, it is possible to finally collect and separate live and dead bacteria on the downstream electrode where the imaging region is set. .
 また、試料液に第1周波数の電場を生じさせて生菌および死菌を捕集した後、周波数を第1周波数から第2周波数に変化させることで、捕集された生菌および死菌のうちの生菌は捕集されたまま保持され、死菌が放出されることになる。 In addition, an electric field of the first frequency is generated in the sample solution to collect viable bacteria and dead bacteria, and then the frequency is changed from the first frequency to the second frequency, thereby collecting the collected live bacteria and dead bacteria. Our live bacteria are kept collected and dead bacteria are released.
 この電極に対する周波数制御を液流の上流側の電極にて行なうことで、下流側の電極で死菌のみ捕集することが可能となり、上流側の電極と下流側の電極とで、それぞれ、生菌と死菌とを分離して捕集することができる。 By controlling the frequency of this electrode at the upstream electrode of the liquid flow, it becomes possible to collect only dead bacteria at the downstream electrode. Bacteria and dead bacteria can be separated and collected.
 <動作概要>
 図14は、捕集システム1での第1の動作例の概要を表わすフローチャートである。また、図15~図19は、図14のフローチャートの各ステップでの捕集状態を表わした図である。図15~図19において、実線で表わされた菌は電極に捕集されている菌を表わし、点線で表わされた菌は電極に捕集されていない菌を表わしている。また、太線で表わされた電極は、電圧が印加されていることを表わしている。
<Overview of operation>
FIG. 14 is a flowchart showing an outline of a first operation example in the collection system 1. 15 to 19 are diagrams showing the collection state at each step of the flowchart of FIG. In FIG. 15 to FIG. 19, the bacterium represented by the solid line represents the bacterium collected by the electrode, and the bacterium represented by the dotted line represents the bacterium not collected by the electrode. Moreover, the electrode represented by the thick line represents that a voltage is applied.
 図14を参照して、はじめに捕集装置100内に試料液を貫流させる(#11)。図15はそのときの捕集状態を表わしており、水槽内に生死菌を含んだ試料液が搬送されてきている状態を表わしている。 Referring to FIG. 14, first, the sample liquid is allowed to flow through the collection device 100 (# 11). FIG. 15 shows the state of collection at that time, and shows a state in which a sample liquid containing live and dead bacteria has been transported into the water tank.
 #11で試料液の貫流を開始すると共に、第1ステージで生死菌を捕集する(#12)。ここでは、第1ステージに配置されている第1電極11Aに上述の第1周波数で電圧を印加させる。 In # 11, the flow of the sample solution is started, and the live and dead bacteria are collected in the first stage (# 12). Here, a voltage is applied to the first electrode 11A arranged on the first stage at the first frequency described above.
 図16はそのときの捕集状態を表わしている。すなわち、図16を参照して、第1ステージの第1電極11Aに上述の第1周波数で電圧が印加されることで、その上を通過する試料液中の当該電場が影響する範囲内にある生死菌が第1電極11Aに付着して捕集される。 FIG. 16 shows the collection state at that time. That is, referring to FIG. 16, when a voltage is applied to the first electrode 11 </ b> A of the first stage at the first frequency described above, the electric field in the sample liquid passing thereover is within a range affected. Viable and dead bacteria adhere to the first electrode 11A and are collected.
 #12の後、各電極の電圧を維持したまま洗浄液を貫流させる(#13)。図17はそのときの捕集状態を表わしている。すなわち、図17を参照して、各電極の電圧を維持したまま洗浄液によって水槽内、つまり電極上が洗浄されることで、第1電極11Aに捕集された生死菌のみが電極上に留まり、他の菌が排除される。 After # 12, the cleaning liquid is allowed to flow while maintaining the voltage of each electrode (# 13). FIG. 17 shows the collection state at that time. That is, referring to FIG. 17, only the living and dead bacteria collected on the first electrode 11 </ b> A remain on the electrode by washing the inside of the water tank with the washing liquid while maintaining the voltage of each electrode, that is, on the electrode, Other bacteria are eliminated.
 その後、洗浄液の貫流を継続したまま、第1ステージから生死菌を放出する(#14)。ここでは、第1ステージの第1電極11Aの電圧をオフする。 Thereafter, live and dead bacteria are released from the first stage while continuing the flow of the cleaning solution (# 14). Here, the voltage of the first electrode 11A of the first stage is turned off.
 図18はそのときの捕集状態を表わしており、#11で第1電極11Aに捕集された生死菌が第1電極11Aから解離する。第1電極11Aから解離した生死菌は、洗浄液の液流に沿って下流側の第2ステージに向かう。 FIG. 18 shows the state of collection at that time, and live and dead bacteria collected on the first electrode 11A in # 11 dissociate from the first electrode 11A. The living and dead bacteria dissociated from the first electrode 11A are directed to the second stage on the downstream side along the flow of the cleaning liquid.
 #14で第1ステージから生死菌を放出すると共に、その下流の第2ステージで生菌を捕集し(#15)、さらに下流の第3ステージで死菌を捕集する(#16)。ここでは、第2ステージの第2電極11Bまたは第3電極11Cに上述の第2周波数で電圧を印加させ、かつ、その下流側の第3ステージの第4電極11Dまたは第5電極11Eに上述の第1周波数で電圧を印加させる。 At # 14, live and dead bacteria are released from the first stage, and live bacteria are collected at the second stage downstream (# 15), and dead bacteria are collected at the third stage downstream (# 16). Here, the voltage is applied to the second electrode 11B or the third electrode 11C of the second stage at the second frequency described above, and the fourth electrode 11D or the fifth electrode 11E of the third stage on the downstream side is applied to the second electrode 11B or the third electrode 11C. A voltage is applied at the first frequency.
 図19はそのときの捕集状態を表わしており、一例として、液流に沿って並んで配置された第2電極11Bに上述の第2周波数で電圧が印加され、第4電極11Dに上述の第1周波数で電圧が印加された例が示されている。すなわち、上述の第2周波数では死菌には誘電泳動力が生じない、または洗浄液の流力よりも小さい誘電泳動力しか生じないため、第2電極11Bには生菌のみ捕集されることになる。上述の第1周波数では生菌にも死菌にも誘電泳動力が生じるものであるが、その上流側にて生菌が捕集されて液中から排除されていることで、第4電極11Dには死菌のみ捕集されることになる。 FIG. 19 shows the collection state at that time. As an example, a voltage is applied to the second electrode 11B arranged side by side along the liquid flow at the above-described second frequency, and the above-described voltage is applied to the fourth electrode 11D. An example in which a voltage is applied at the first frequency is shown. That is, at the above-mentioned second frequency, no dielectrophoretic force is generated in dead bacteria, or only a dielectrophoretic force smaller than the flow force of the cleaning liquid is generated, so that only viable bacteria are collected on the second electrode 11B. Become. Although the dielectrophoretic force is generated in both the live and dead bacteria at the first frequency described above, the fourth electrode 11D is obtained by collecting the live bacteria and removing them from the liquid on the upstream side. Only dead bacteria will be collected.
 さらに、第2電極11Bの幅は第1電極11Aの幅の概ね半分であるから、第1ステージの第1電極11Aから放出された生死菌のうち概ね半分の生死菌のうちの生菌が第2ステージの第2電極11Bに捕集され、第1電極11Aから放出された生死菌のうち概ね半分の生死菌のうちの死菌が第3ステージの第4電極11Dに捕集されることになる。 In addition, since the width of the second electrode 11B is approximately half of the width of the first electrode 11A, the viable bacteria of approximately half of the viable and dead bacteria released from the first electrode 11A of the first stage are the first. The dead bacteria of approximately half of the live and dead bacteria that are collected by the second stage 11B and released from the first electrode 11A are collected by the fourth electrode 11D of the third stage. Become.
 <機能構成>
 図20は、捕集システム1に上述の動作を行なわせるための制御装置200の機能構成の具体例を示すブロック図である。図20に示される各機能は、制御装置200のCPU20がメモリ21に記憶されるプログラムを読み出して実行することによって、主にCPU20上に形成される機能である。しかしながら、少なくとも一部が、電気回路などのハードウェア構成によって実現されてもよい。
<Functional configuration>
FIG. 20 is a block diagram illustrating a specific example of a functional configuration of the control device 200 for causing the collection system 1 to perform the above-described operation. Each function shown in FIG. 20 is a function mainly formed on the CPU 20 when the CPU 20 of the control device 200 reads out and executes a program stored in the memory 21. However, at least a part may be realized by a hardware configuration such as an electric circuit.
 図20を参照して、制御装置200は、図示しないスイッチ等の図示しない指示入力部から捕集動作開始の指示入力を受け付けるための入力部201と、捕集動作開示に応じて、上記#11~#16の各段階を判断するための判断部202と、判断部202での判断に応じて通信I/F23を介して三方弁700に対して制御信号を出力し三方弁700の開閉を制御するための弁制御部203と、判断部202での判断に応じて通信I/F24を介してポンプ800に対して制御信号を出力しポンプ800の稼動を制御するためのポンプ制御部204と、判断部202での判断に応じてスイッチ22の切り替えのタイミング、つまりパルス幅を制御することで第1電極11A~第5電極11Eそれぞれの周波数を制御するための周波数制御部205と、判断部202での判断に応じて通信I/F25を介して撮像装置500に対して制御信号を出力することで撮像装置500での撮影を制御するための撮影制御部206を含む。 Referring to FIG. 20, the control device 200 includes an input unit 201 for receiving an instruction input for starting the collection operation from an instruction input unit (not shown) such as a switch (not shown), and the above-described # 11 according to the disclosure of the collection operation. A control signal is output to the three-way valve 700 via the communication I / F 23 according to the determination by the determination unit 202 for determining each stage of # 16 to # 16, and the opening and closing of the three-way valve 700 is controlled. A valve control unit 203 for controlling the operation of the pump 800 by outputting a control signal to the pump 800 via the communication I / F 24 according to the determination of the determination unit 202, Frequency control for controlling the frequency of each of the first electrode 11A to the fifth electrode 11E by controlling the switching timing of the switch 22, that is, the pulse width, according to the determination by the determination unit 202. Including the 205, the imaging control unit 206 for controlling the imaging in the imaging device 500 by outputting a control signal to the imaging apparatus 500 via the communication I / F25 in accordance with the determination at decision 202.
 <動作フロー>
 図21は、上記第1の動作例で表わされた捕集動作を捕集システム1で行なわせるための制御装置200の動作の流れを表わすフローチャートである。図21のフローチャートに示された動作は、制御装置200のCPU20がメモリ21に記憶されているプログラムを読み出して実行し、図20に示される各機能を発揮させることによって実現される。
<Operation flow>
FIG. 21 is a flowchart showing an operation flow of the control device 200 for causing the collection system 1 to perform the collection operation represented in the first operation example. The operation shown in the flowchart of FIG. 21 is realized by causing the CPU 20 of the control device 200 to read out and execute a program stored in the memory 21 to exhibit each function shown in FIG.
 図21を参照して、ステップS101でCPU20は、上記#11の試料液貫流用の三方弁700の制御を行なう。すなわち、洗浄液チェンバ300A側の弁700Aを閉塞し、試料液チェンバ300Bおよび捕集装置100側の弁700B,700Cを開放する。これにより、捕集装置100にチューブ400Aを介して試料液チェンバ300Bが接続された状態となる。 Referring to FIG. 21, in step S101, the CPU 20 controls the three-way valve 700 for passing the sample liquid # 11. That is, the valve 700A on the cleaning liquid chamber 300A side is closed, and the sample liquid chamber 300B and the valves 700B and 700C on the collection device 100 side are opened. Thereby, the sample liquid chamber 300B is connected to the collection device 100 via the tube 400A.
 次に、ステップS103でCPU20は、ポンプ800を稼動させる。これにより、試料液チェンバ300B内に保持された試料液がチューブ400Aを通って捕集装置100内に流入し、水槽を貫流してチューブ400Bを経て廃液チェンバ300Cまで搬送される。 Next, in step S103, the CPU 20 operates the pump 800. Thereby, the sample liquid held in the sample liquid chamber 300B flows into the collection device 100 through the tube 400A, flows through the water tank, and is conveyed to the waste liquid chamber 300C through the tube 400B.
 次に、ステップS105でCPU20は、第1ステージで生死菌を捕集するための電極への周波数制御を行なう。すなわち、第1ステージに配列された第1電極11Aに上述の第1周波数で電圧を印加し、第2ステージおよび第3ステージに配列された電極への電圧の印加をオフする。これによって、図16に示されたように、貫流している試料中の第1電極11Aによって生じた電場の影響を受ける範囲内の生死菌が第1電極11Aに付着し、捕集される。 Next, in step S105, the CPU 20 performs frequency control on the electrodes for collecting live and dead bacteria in the first stage. That is, a voltage is applied to the first electrode 11A arranged in the first stage at the first frequency described above, and the voltage application to the electrodes arranged in the second stage and the third stage is turned off. As a result, as shown in FIG. 16, live and dead bacteria within the range affected by the electric field generated by the first electrode 11A in the flowing sample are attached to the first electrode 11A and collected.
 次に、ステップS107で上記#13の洗浄液貫流用の三方弁700の制御を行なう。すなわち、洗浄液チェンバ300A側の弁700Aおよび捕集装置100側の弁700Cを開放し、試料液チェンバ300B側の弁700Bを開放する。これにより、捕集装置100にチューブ400Aを介して洗浄液チェンバ300Aが接続された状態となる。 Next, in step S107, the three-way valve 700 for cleaning liquid flow of # 13 is controlled. That is, the valve 700A on the cleaning liquid chamber 300A side and the valve 700C on the collection device 100 side are opened, and the valve 700B on the sample liquid chamber 300B side is opened. Accordingly, the cleaning liquid chamber 300A is connected to the collection device 100 via the tube 400A.
 この状態で上記ステップS103で稼動されたポンプによってチューブ内の液体が搬送されることで、洗浄液チェンバ300A内に保持された洗浄液がチューブ400Aを通って捕集装置100内に流入し、水槽を貫流してチューブ400Bを経て廃液チェンバ300Cまで搬送される。 In this state, the liquid in the tube is conveyed by the pump operated in step S103, so that the cleaning liquid held in the cleaning liquid chamber 300A flows into the collection device 100 through the tube 400A and flows through the water tank. And it is conveyed to the waste liquid chamber 300C through the tube 400B.
 このとき、上記ステップS105で制御された周波数状態が維持されていることで、図17に示されたように、第1電極11Aに捕集された生死菌は第1電極11A上に留まり、その周囲の菌が排除される。 At this time, because the frequency state controlled in the above step S105 is maintained, as shown in FIG. 17, the viable and dead bacteria collected on the first electrode 11A remain on the first electrode 11A, Surrounding bacteria are eliminated.
 次に、ステップS109でCPU20は、第2ステージで生菌を捕集し、第3ステージで死菌を捕集するための電極への周波数制御を行なう。すなわち、上述の例の場合、第1電極11Aへの第1周波数での電圧の印加をオフした後、第2ステージに配列された第2電極11Bに第2周波数で電極を印加すると共に、第3ステージに配列された第4電極11Dに第1周波数で電極を印加する。 Next, in step S109, the CPU 20 performs frequency control on the electrodes for collecting live bacteria in the second stage and collecting dead bacteria in the third stage. That is, in the case of the above-described example, after the application of the voltage at the first frequency to the first electrode 11A is turned off, the electrode is applied at the second frequency to the second electrode 11B arranged in the second stage, and the first An electrode is applied at a first frequency to the fourth electrode 11D arranged in three stages.
 これによって、図18に示されたように第1電極11Aから捕集された生死菌が放出され、洗浄液の液流に乗って下流側に搬送される。そして、図19に示されたように、第2電極11Bで生菌が捕集され、その下流側の第4電極11Dで死菌が捕集される。 As a result, as shown in FIG. 18, the live and dead bacteria collected from the first electrode 11A are released, and are carried downstream by riding on the liquid flow of the cleaning liquid. Then, as shown in FIG. 19, live bacteria are collected by the second electrode 11B, and dead bacteria are collected by the fourth electrode 11D on the downstream side thereof.
 次に、ステップS111でCPU20は、撮像装置500に対して制御信号を出力し、予め設定されている撮影範囲で撮影を行なわせる。この場合、撮影範囲としては図9に示されたように第2電極11Bと第4電極11Dとをまたぐ領域P2が設定されておればよく、上記制御信号に従って撮像装置500がその範囲を撮影することで、第2電極11Bに捕集された生菌および第4電極11Dに捕集された死菌が同時に撮影される。 Next, in step S111, the CPU 20 outputs a control signal to the image capturing apparatus 500 to perform photographing within a preset photographing range. In this case, as the imaging range, it is only necessary to set a region P2 that straddles the second electrode 11B and the fourth electrode 11D as shown in FIG. 9, and the imaging apparatus 500 captures the range in accordance with the control signal. Thus, live bacteria collected on the second electrode 11B and dead bacteria collected on the fourth electrode 11D are photographed simultaneously.
 <実施の形態の効果>
 本実施の形態にかかる捕集装置100では、液流の上流側の電極に4[MHz]程度である上述の第2周波数の電圧を印加することで生菌を捕集し、生菌が排除された試料液が搬送されるその下流側の電極に100[kHz]程度である上述の第1周波数の電圧を印加することで死菌が捕集される。すなわち、通常、第1周波数の電圧を印加するのみでは生菌と死菌とが区分されることなく捕集されるものであるが、捕集装置100では上に説明された生菌と死菌との周波数に対する誘電泳動力の差異を利用して上流側で先に生菌を捕集してしまうことで、その下流側で死菌を捕集することが可能となり、結果として、生菌と死菌とを分離して捕集することが可能となる。
<Effect of Embodiment>
In the collection device 100 according to the present embodiment, the viable bacteria are collected by applying a voltage of the above-mentioned second frequency, which is about 4 [MHz], to the electrode on the upstream side of the liquid flow, and the viable bacteria are excluded. The dead bacteria are collected by applying a voltage of the above-mentioned first frequency of about 100 [kHz] to an electrode on the downstream side of the transported sample liquid. That is, normally, only by applying a voltage of the first frequency, live bacteria and dead bacteria are collected without being separated, but in the collection device 100, the live bacteria and dead bacteria described above are collected. By collecting the viable bacteria first on the upstream side using the difference in the dielectrophoretic force with respect to the frequency, it becomes possible to collect dead bacteria on the downstream side. It becomes possible to separate and collect dead bacteria.
 さらに、上に説明された液流方向に対して3段階に電極を配置し、第1ステージの電極で生死菌をいったん捕集した後に放出することで、第2ステージ、第3ステージの電極での捕集対象となる菌が洗浄液での液流において電極よりの位置、つまり、上の例では電極に沿って水槽の底寄りに集められることになる。そのため、放出された菌は第2ステージ、第3ステージの電極での電場の影響を受け得る範囲で搬送されることになり、これら電極で捕集される確率が格段に高くなる。また、下流側の電極での捕集能力に応じた量の菌が予め上流側の電極にて捕集されることになるので、下流側の電極で効率的に生死菌を捕集することができる。 Furthermore, the electrodes are arranged in three stages with respect to the liquid flow direction described above, and once the live and dead bacteria are collected by the first stage electrodes and then released, the second and third stage electrodes are used. The bacteria to be collected are collected at a position from the electrode in the liquid flow of the cleaning liquid, that is, near the bottom of the water tank along the electrode in the above example. Therefore, the released bacteria are transported within a range that can be influenced by the electric field at the electrodes of the second stage and the third stage, and the probability of being collected by these electrodes is remarkably increased. In addition, since an amount of bacteria corresponding to the collection ability at the downstream electrode is previously collected at the upstream electrode, it is possible to efficiently collect viable and dead bacteria at the downstream electrode. it can.
 なお、上の例では、3段階に電極を配置して、最上流側の第1ステージの電極でいったん生死菌を捕集するものとしているが、必ずしもこの捕集は必須ではなく、少なくとも上流側の第2ステージでの生菌の捕集、および下流側の第3ステージでの死菌の捕集が行なわれればよい。または、後述するように、上流側で生死菌を捕集した後に死菌のみ放出するようにすることで、下流側で死菌のみ捕集することができる。 In the above example, the electrodes are arranged in three stages, and the live and dead bacteria are once collected by the first stage electrode on the most upstream side, but this collection is not necessarily essential, and at least upstream It is only necessary to collect live bacteria in the second stage and to collect dead bacteria in the third stage on the downstream side. Alternatively, as will be described later, only dead bacteria can be collected on the downstream side by collecting only dead bacteria after collecting the live and dead bacteria on the upstream side.
 <他の例>
 なお、上で説明した捕集方法は一例であって、上述の原理を利用する他の捕集方法も挙げられる。
<Other examples>
In addition, the collection method demonstrated above is an example, Comprising: The other collection method using the above-mentioned principle is also mentioned.
 図22は、他の例として、捕集システム1での第2の動作例の概要を表わすフローチャートである。また、図23~図28は、図22のフローチャートの各ステップでの捕集状態を表わした図である。図23~図28においても、実線で表わされた菌は電極に捕集されている菌を表わし、点線で表わされた菌は電極に捕集されていない菌を表わしている。また、太線で表わされた電極は、電圧が印加されていることを表わしている。 FIG. 22 is a flowchart showing an outline of a second operation example in the collection system 1 as another example. FIGS. 23 to 28 are diagrams showing the collection state in each step of the flowchart of FIG. In FIGS. 23 to 28, the bacteria represented by the solid line represent the bacteria collected on the electrode, and the bacteria represented by the dotted line represent the bacteria not collected on the electrode. Moreover, the electrode represented by the thick line represents that a voltage is applied.
 図22を参照して、はじめに捕集装置100内に試料液を貫流させる(#21)。ここでは、上述のステップS101と同様の制御が行なわれる。 Referring to FIG. 22, first, the sample solution is caused to flow through the collection device 100 (# 21). Here, the same control as in step S101 described above is performed.
 第2の動作例では、#21で試料液の貫流を開始すると共に、第2ステージの一方で生菌を捕集する(#22)。ここでは、第2ステージに配置されている第2電極11Bおよび第3電極11Cのうちの一方に上述の第2周波数で電圧を印加させる。 In the second operation example, the flow of the sample solution is started at # 21 and viable bacteria are collected on the second stage (# 22). Here, a voltage is applied to one of the second electrode 11B and the third electrode 11C arranged on the second stage at the above-described second frequency.
 図23および図24はそのときの捕集状態を表わしている。すなわち、図23を参照して、ここでは、第2ステージの第3電極11Cに上述の第2周波数で電圧が印加され、第2ステージの第2電極11Bの電圧はオフされている。その状態で上記#21の動作がなされることで水槽内に生死菌を含む試料液が搬送されてくる。 23 and 24 show the collection state at that time. That is, referring to FIG. 23, here, the voltage is applied to the third electrode 11C of the second stage at the second frequency described above, and the voltage of the second electrode 11B of the second stage is turned off. In this state, the operation of # 21 is performed, so that the sample liquid containing life and death bacteria is conveyed into the water tank.
 図24を参照して、第3電極11Cの液流方向に直交する方向の幅は概ね全幅の半分程度であるため、搬送された試料液中の概ね半分程度である、第3電極11C上を搬送される試料液中の生死菌のうちの生菌が第3電極11Cに付着し、捕集される。 Referring to FIG. 24, since the width of the third electrode 11C in the direction perpendicular to the liquid flow direction is approximately half of the entire width, the third electrode 11C is approximately half the total width of the transported sample liquid. Viable bacteria among viable and dead bacteria in the transported sample liquid adhere to the third electrode 11C and are collected.
 #22の後、#22での周波数状態を維持したまま、第1ステージで生菌を捕集すると共に(#23)、その下流側の第2ステージの他方側の電極で死菌を捕集する(#24)。ここでは、第1ステージに配置されている第1電極11Aに上述の第2周波数で電圧を印加させ、第2ステージに配置されている他方の電極に上述の第1周波数で電圧を印加させる。 After # 22, while maintaining the frequency state at # 22, live bacteria are collected at the first stage (# 23), and dead bacteria are collected at the other electrode of the second stage downstream thereof. (# 24). Here, a voltage is applied to the first electrode 11A disposed on the first stage at the above-described second frequency, and a voltage is applied to the other electrode disposed on the second stage at the above-described first frequency.
 図25はそのときの捕集状態を表わしている。すなわち、図25を参照して、第1電極11Aの液流方向に直交する方向の幅は概ね全幅程度であるため、搬送された試料液中の生死菌のうちの生菌が第1電極11Aに付着し、捕集される。 FIG. 25 shows the collection state at that time. That is, referring to FIG. 25, since the width of the first electrode 11A in the direction orthogonal to the liquid flow direction is approximately the entire width, viable bacteria among the live and dead bacteria in the transported sample liquid are the first electrode 11A. It is attached to and collected.
 試料液中の生菌が液流の上流側で捕集されて排除された状態で、試料液は下流側の第2ステージに搬送される。このとき、第3電極11Cには第2周波数で電圧が印加されているものの、すでに搬送された試料液中の生菌は第1ステージにて捕集されているため、第3電極11Cにはこれ以上生菌が捕集されることがない。一方、第2電極11Bには第1周波数で電圧が印加されているため、試料液中に含まれる菌である死菌が第2電極11Bに付着し、捕集される。 In a state where viable bacteria in the sample liquid are collected and removed on the upstream side of the liquid flow, the sample liquid is conveyed to the second stage on the downstream side. At this time, although a voltage is applied to the third electrode 11C at the second frequency, viable bacteria in the sample liquid already transported are collected in the first stage. No more viable bacteria are collected. On the other hand, since a voltage is applied to the second electrode 11B at the first frequency, dead bacteria, which are bacteria contained in the sample solution, adhere to the second electrode 11B and are collected.
 #24の後、各電極の電圧を維持したまま洗浄液を貫流させる(#25)。図26はそのときの捕集状態を表わしている。すなわち、図26を参照して、各電極の電圧を維持したまま洗浄液によって水槽内、つまり電極上が洗浄されることで、第1電極11Aに捕集された生菌、第2電極11Bに捕集された死菌、および第3電極11Cに捕集された生菌のみが電極上に留まり、他の菌が排除される。 After # 24, the cleaning liquid is allowed to flow while maintaining the voltage of each electrode (# 25). FIG. 26 shows the collection state at that time. That is, with reference to FIG. 26, the inside of the water tank, that is, the top of the electrode is washed with the cleaning liquid while maintaining the voltage of each electrode, so that the live bacteria collected on the first electrode 11A and the second electrode 11B are collected. Only the collected dead bacteria and the live bacteria collected on the third electrode 11C remain on the electrode, and other bacteria are excluded.
 その後、洗浄液の貫流を継続したまま、第2ステージから生死菌を放出する(#26)。ここでは、第2ステージの両電極である第2電極11Bおよび第3電極11Cの電圧をオフする。 Thereafter, live and dead bacteria are released from the second stage while continuing the flow of the cleaning solution (# 26). Here, the voltages of the second electrode 11B and the third electrode 11C, which are both electrodes of the second stage, are turned off.
 それと共に、その下流の第3ステージで生死菌を捕集する(#27)。ここでは、第3ステージの両電極である第4電極11Dおよび第5電極11Eのいずれもに第1周波数で電圧を印加させる。 At the same time, live and dead bacteria are collected in the third stage downstream (# 27). Here, a voltage is applied at the first frequency to both the fourth electrode 11D and the fifth electrode 11E which are both electrodes of the third stage.
 図27はそのときの捕集状態を表わしており、#26で第2電極11Bに捕集された死菌および第3電極11Cに捕集された生菌がそれぞれ電極から解離する。これら電極から解離した生死菌は、洗浄液の液流に沿って下流側の第3ステージに向かう。このとき、死菌は第2電極11B側および生菌は第3電極11C側で、液流方向に搬送される。そのため、第3ステージの両電極に第1周波数で電圧が印加されることで、それぞれの電極上を搬送される洗浄液中の菌が捕集されることになる。すなわち、第2電極11Bの液流に沿って下流に隣接して配列された第4電極11Dには第2電極11Bから解離した死菌が捕集され、第3電極11Cの液流に沿って下流に隣接して配列された第5電極11Eには第3電極11Cから解離した生菌が捕集される。 FIG. 27 shows the state of collection at that time, and dead bacteria collected on the second electrode 11B and live bacteria collected on the third electrode 11C in # 26 are dissociated from the electrodes. The viable and dead bacteria dissociated from these electrodes travel to the third stage on the downstream side along the flow of the cleaning liquid. At this time, dead bacteria are conveyed in the liquid flow direction on the second electrode 11B side and viable bacteria are on the third electrode 11C side. Therefore, when a voltage is applied to both electrodes of the third stage at the first frequency, bacteria in the cleaning liquid conveyed on the respective electrodes are collected. That is, dead bacteria dissociated from the second electrode 11B are collected in the fourth electrode 11D arranged adjacent to the downstream along the liquid flow of the second electrode 11B, and along the liquid flow of the third electrode 11C. Viable bacteria dissociated from the third electrode 11C are collected at the fifth electrode 11E arranged adjacent to the downstream.
 なお、図23~図28に示された例の場合、図11~図13に示されたように、第4電極11Dおよび第5電極11Eが櫛形斜めの電極パターンで形成されている。そのため、この例では、#27の動作の後、所定時間洗浄液の貫流を維持することで、「L」の字形電極に沿って捕集された菌が移動し、徐々に、液流方向の最下流、つまり、先端部分に集められることになる。図28はそのときの捕集状態を表わしており、図27のように第3ステージの各電極に生死菌がそれぞれ捕集された後に、各電極の先端に生死菌が集約されている。 In the case of the example shown in FIGS. 23 to 28, as shown in FIGS. 11 to 13, the fourth electrode 11D and the fifth electrode 11E are formed in a comb-shaped diagonal electrode pattern. Therefore, in this example, after the operation of # 27, by maintaining the flow of the cleaning liquid for a predetermined time, the bacteria collected along the “L” -shaped electrode move, and gradually the maximum in the liquid flow direction. It will be collected downstream, that is, at the tip. FIG. 28 shows the state of collection at that time, and as shown in FIG. 27, after the live and dead bacteria are collected on each electrode of the third stage, the live and dead bacteria are collected at the tip of each electrode.
 この状態で櫛形斜めの先端の領域を撮影領域として撮像装置500で撮影することで、第4電極11Dに捕集された生菌および第5電極11Eに捕集された死菌が同時に撮影される。 In this state, the imaging device 500 captures an area at the tip of the comb-shaped diagonal as an imaging area, so that live bacteria collected on the fourth electrode 11D and dead bacteria collected on the fifth electrode 11E are simultaneously photographed. .
 このような動作が行なわれることでも、本捕集システム1では生菌と死菌とを分離して捕集することが可能となる。 Even when such an operation is performed, the present collection system 1 can separate and collect viable and dead bacteria.
 なお、他の例として、上記#23において第1ステージの第1電極11Aの第1周波数で電圧を印加させて試料液中の生死菌共に捕集した後に、上記#24において第1電極11Aの周波数を第1周波数から第2周波数に切り替え、かつ、その下流側の第2ステージの他方側の電極の周波数を第1周波数で電圧を印加させてもよい。これによって、第1電極11Aに捕集された生死菌のうちの生菌はそのまま保持され死菌のみが放出され、放出された死菌が、その下流側の第2ステージの他方側の電極で捕集されることになる。 As another example, after applying a voltage at the first frequency of the first electrode 11A of the first stage in # 23 and collecting both live and dead bacteria in the sample solution, the first electrode 11A is collected in # 24. The frequency may be switched from the first frequency to the second frequency, and the voltage of the electrode on the other side of the second stage on the downstream side may be applied at the first frequency. As a result, the live bacteria among the live and dead bacteria collected by the first electrode 11A are held as they are, and only the dead bacteria are released, and the released dead bacteria are transferred to the other electrode of the second stage on the downstream side. It will be collected.
 つまり、捕集システム1での具体的な捕集動作は、上述の第1の動作例に示された動作のみに限定されるものではなく、生菌と死菌との周波数に対する誘電泳動力の差異を利用して上流側で先に生菌を捕集し、その下流側で捕集動作を行なうことで死菌を捕集する、という動作であれば、生死菌を分離して捕集することが可能となるため、どのような動作であってもよい。 In other words, the specific collection operation in the collection system 1 is not limited to the operation shown in the first operation example described above, and the dielectrophoretic force with respect to the frequencies of viable bacteria and dead bacteria. If the action is to collect the live bacteria first on the upstream side using the difference and collect the dead bacteria by performing the collection operation on the downstream side, the live bacteria are separated and collected. Any operation is possible.
 <実験結果の紹介>
 なお、本願発明者らは捕集システム1を用いて生菌および死菌を分離して捕集し、その捕集状態を撮像装置500にて撮影している。
<Introduction of experimental results>
The inventors of the present application use the collection system 1 to separate and collect live bacteria and dead bacteria, and photograph the collected state with the imaging device 500.
 以降、実際に撮影された顕微鏡写真を紹介する。これら顕微鏡写真は、いずれも、捕集装置100の電極部12の同じ位置を撮影範囲としたものである。また、同じ周波数制御の捕集動作の後に撮影したものである。 Hereafter, the micrographs actually taken are introduced. In these micrographs, the same position of the electrode unit 12 of the collection device 100 is the imaging range. Also, the image was taken after the same frequency control collection operation.
 図29は、捕集開始前の撮影範囲にある電極を撮影した顕微鏡写真である。図29の撮影範囲のほぼ中央の図の上下方向に伸びる太いラインは異なる電極間を表わしており、図29の右側と左側とにそれぞれ異なる電極が撮影されている。さらに、各電極におけるギャップが、左右の電極のそれぞれに上下方向に伸びる細いラインとして撮影されている。この段階ではいすれのギャップにも菌が付着しておらず、いずれの電極でも菌が捕集されていない。 FIG. 29 is a photomicrograph of an electrode in the imaging range before the start of collection. In FIG. 29, the thick line extending in the vertical direction in the center of the imaging range represents between different electrodes, and different electrodes are imaged on the right and left sides of FIG. Further, the gap in each electrode is photographed as a thin line extending in the vertical direction on each of the left and right electrodes. At this stage, no bacteria are attached to any gap, and no bacteria are collected at any electrode.
 図30は、試料液中の菌を死菌100%として捕集動作を行なった後に撮影範囲にある電極を撮影した顕微鏡写真である。図30の右側の電極のギャップに菌が付着していることから、右側の電極が死菌を捕集した電極であることがわかる。 FIG. 30 is a photomicrograph of the electrode in the imaging range after the collection operation was performed with the bacteria in the sample solution being 100% dead. Since bacteria are attached to the gap of the right electrode in FIG. 30, it can be seen that the right electrode is an electrode collecting dead bacteria.
 図31は、試料液中の菌を生菌100%として捕集動作を行なった後に撮影範囲にある電極を撮影した顕微鏡写真である。図31の左側の電極のギャップに菌が付着していることから、左側の電極が生菌を捕集した電極であることがわかる。 FIG. 31 is a photomicrograph of the electrode in the imaging range after the collection operation was performed with the bacteria in the sample solution as 100% viable bacteria. Since bacteria are attached to the gap of the left electrode in FIG. 31, it can be seen that the left electrode is an electrode in which viable bacteria are collected.
 図32は、試料液中の菌を死菌50%、生菌50%として捕集動作を行なった後に撮影範囲にある電極を撮影した顕微鏡写真である。図32の顕微鏡写真より、左右の電極のギャップにそれぞれ同数程度の菌が付着している。図30、図31の撮影結果より、図32の右側の電極に死菌が、左側の電極に生菌が捕集され、それぞれ、試料液中の菌の比率に近い比率で捕集されていることがわかる。つまり、この捕集実験より、捕集システム1では、概ね、試料液中の生死菌の比率を維持して、それらを分離して捕集可能であることがわかった。 FIG. 32 is a photomicrograph of the electrodes in the imaging range after the collection operation was performed with 50% dead bacteria and 50% viable bacteria in the sample solution. From the micrograph in FIG. 32, the same number of bacteria are attached to the gap between the left and right electrodes. From the imaging results of FIGS. 30 and 31, dead bacteria are collected on the right electrode in FIG. 32 and live bacteria are collected on the left electrode, and are collected at a ratio close to the ratio of the bacteria in the sample solution. I understand that. That is, from this collection experiment, it was found that the collection system 1 can generally maintain the ratio of viable and dead bacteria in the sample solution and separate and collect them.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 捕集システム、10 基板、11 電極ユニット、11A 第1電極、11B 第2電極、11C 第3電極、11D 第4電極、11E 第5電極、12 電極部、13 水槽部、14 水槽壁面、15A,15B 接続口、20 CPU、21,51 メモリ、22 スイッチ、23,24,25,53,54 通信I/F、26 電源、50 CPU、52 撮影部、100 捕集装置、200 制御装置、201 入力部、202 判断部、203 弁制御部、204 ポンプ制御部、205 周波数制御部、206 撮影制御部、300A 洗浄液チェンバ、300B 試料液チェンバ、300C 廃液チェンバ、400A,400B チューブ、500 撮像装置、600 表示装置、700 三方弁、700A,700B,700C 弁、800 ポンプ、P1,P2,P3,P5,P6,P7 領域。 1 collection system, 10 substrate, 11 electrode unit, 11A first electrode, 11B second electrode, 11C third electrode, 11D fourth electrode, 11E fifth electrode, 12 electrode part, 13 water tank part, 14 water tank wall surface, 15A , 15B connection port, 20 CPU, 21, 51 memory, 22 switch, 23, 24, 25, 53, 54 communication I / F, 26 power supply, 50 CPU, 52 photographing unit, 100 collection device, 200 control device, 201 Input unit, 202 determination unit, 203 valve control unit, 204 pump control unit, 205 frequency control unit, 206 imaging control unit, 300A cleaning liquid chamber, 300B sample liquid chamber, 300C waste liquid chamber, 400A, 400B tube, 500 imaging device, 600 Display device, 700 three-way valve, 700A, 700 , 700C valve, 800 pump, P1, P2, P3, P5, P6, P7 area.

Claims (8)

  1.  試料液中の菌を捕集するための捕集装置であって、
     液体を貫流させるための貫流管と、
     前記貫流管内に設置された複数の電極と、
     前記貫流管内で液体を所定の液流方向に沿って搬送するための搬送機構と、
     前記複数の電極のそれぞれの周波数を制御するための制御装置とを備え、
     前記複数の電極は、前記液流方向の上流側から下流側に段階的に配列された第1の電極と第2の電極とを含み、
     前記制御装置は、前記第1の電極で前記貫流管に貫流された前記試料液中の生菌を捕集するよう前記第1の電極の周波数を制御し、前記第2の電極で前記第1の電極を通過した後の前記試料液中の死菌を捕集するよう前記第2の電極の周波数を制御する、捕集装置。
    A collection device for collecting bacteria in a sample solution,
    A once-through tube for allowing liquid to flow through;
    A plurality of electrodes installed in the cross-flow tube;
    A transport mechanism for transporting the liquid along a predetermined liquid flow direction in the flow-through pipe;
    A control device for controlling the frequency of each of the plurality of electrodes,
    The plurality of electrodes include a first electrode and a second electrode arranged in stages from the upstream side to the downstream side in the liquid flow direction,
    The control device controls the frequency of the first electrode so as to collect viable bacteria in the sample liquid that has flowed into the flow-through tube with the first electrode, and the first electrode with the second electrode. The collection apparatus which controls the frequency of a said 2nd electrode so that the dead microbe in the said sample liquid after passing the electrode of this may be collected.
  2.  前記貫流管内の前記試料液中の生菌、死菌共に生じる誘電泳動力を、前記搬送機構で搬送される前記試料液が前記生菌および前記死菌に及ぼす応力よりも大きいものとする周波数を第1の周波数とし、
     前記貫流管内の前記試料液中の死菌に生じる誘電泳動力を前記搬送機構で搬送される前記試料液が前記死菌に及ぼす応力よりも小さいものとし、前記試料液中の生菌に生じる誘電泳動力を前記搬送機構で搬送される前記試料液が前記生菌に及ぼす応力よりも大きいものとする周波数を第2の周波数とすると、
     前記制御装置は、前記第1の電極の周波数を前記第2の周波数とし、前記第2の電極の周波数を前記第1の周波数とする、請求項1に記載の捕集装置。
    A frequency at which the dielectrophoretic force generated in both the live and dead bacteria in the sample liquid in the flow-through tube is greater than the stress exerted on the live and dead bacteria by the sample liquid transported by the transport mechanism. The first frequency,
    The dielectrophoretic force generated in killed bacteria in the sample liquid in the flow-through tube is smaller than the stress exerted on the dead bacteria by the sample liquid transported by the transport mechanism, and the dielectric generated in live bacteria in the sample liquid When the second frequency is a frequency that causes the migration force to be greater than the stress exerted on the viable bacteria by the sample liquid transported by the transport mechanism,
    The collection device according to claim 1, wherein the control device sets the frequency of the first electrode as the second frequency, and sets the frequency of the second electrode as the first frequency.
  3.  前記貫流管内の前記試料液中の生菌、死菌共に生じる誘電泳動力を、前記搬送機構で搬送される前記試料液が前記生菌および前記死菌に及ぼす応力よりも大きいものとする周波数を第1の周波数とし、
     前記貫流管内の前記試料液中の死菌に生じる誘電泳動力を前記搬送機構で搬送される前記試料液が前記死菌に及ぼす応力よりも小さいものとし、前記試料液中の生菌に生じる誘電泳動力を前記搬送機構で搬送される前記試料液が前記生菌に及ぼす応力よりも大きいものとする周波数を第2の周波数とすると、
     前記制御装置は、前記第1の電極の周波数を前記第1の周波数とした後に、前記第1の電極の周波数を前記第1の周波数から前記第2の周波数に切り替え、かつ、前記第2の電極の周波数を前記第1の周波数とする、請求項1に記載の捕集装置。
    A frequency at which the dielectrophoretic force generated in both the live and dead bacteria in the sample liquid in the flow-through tube is greater than the stress exerted on the live and dead bacteria by the sample liquid transported by the transport mechanism. The first frequency,
    The dielectrophoretic force generated in killed bacteria in the sample liquid in the flow-through tube is smaller than the stress exerted on the dead bacteria by the sample liquid transported by the transport mechanism, and the dielectric generated in live bacteria in the sample liquid When the second frequency is a frequency that causes the migration force to be greater than the stress exerted on the viable bacteria by the sample liquid transported by the transport mechanism,
    The control device switches the frequency of the first electrode from the first frequency to the second frequency after setting the frequency of the first electrode to the first frequency, and the second frequency The collection device according to claim 1, wherein the frequency of the electrode is the first frequency.
  4.  前記複数の電極は、前記第1の電極よりも前記液流方向の上流側に配列された第3の電極をさらに含み、
     前記制御装置は、前記第3の電極で前記貫流管に貫流された前記試料液中の生菌および死菌を捕集するよう前記第3の電極の周波数を制御し、
     前記制御装置は、前記第3の電極の周波数を制御した後に、前記第3の電極に捕集された生菌および死菌を前記第3の電極から放出するよう前記第3の電極の周波数を制御すると共に、前記第1の電極で生菌を捕集するよう前記第1の電極の周波数を制御し、かつ、前記第2の電極で死菌を捕集するよう前記第2の電極の周波数を制御する、請求項1に記載の捕集装置。
    The plurality of electrodes further includes a third electrode arranged upstream of the first electrode in the liquid flow direction,
    The control device controls the frequency of the third electrode so as to collect viable and dead bacteria in the sample liquid that has flowed into the flow-through tube with the third electrode,
    After the control device controls the frequency of the third electrode, the control device sets the frequency of the third electrode so as to release live bacteria and dead bacteria collected by the third electrode from the third electrode. Control the frequency of the first electrode so as to collect viable bacteria with the first electrode, and the frequency of the second electrode so as to collect dead bacteria with the second electrode The collection device according to claim 1, wherein the collection device is controlled.
  5.  前記制御装置は、前記貫流管に貫流された前記試料液中の生菌および死菌を捕集するよう前記第3の電極の周波数を、前記貫流管内の前記試料液中の生菌、死菌共に生じる誘電泳動力を前記搬送機構で搬送される前記試料液が前記生菌および前記死菌に及ぼす応力よりも大きいものとする周波数とする、請求項4に記載の捕集装置。 The control device sets the frequency of the third electrode so as to collect viable bacteria and dead bacteria in the sample liquid that have flowed through the flow-through pipe, and viable bacteria and dead bacteria in the sample liquid in the flow-through pipe. The collection device according to claim 4, wherein a dielectrophoretic force generated together is set to a frequency that is greater than a stress exerted on the live bacteria and the dead bacteria by the sample liquid transported by the transport mechanism.
  6.  前記複数の電極は、前記第1の電極および前記第2の電極と前記液流方向に平行に、前記液流方向の上流側から下流側に段階的に、それぞれ、前記第1の電極および前記第2の電極と前記液流方向に直交方向に並んで配列された第4の電極および第5の電極を含み、
     前記制御装置は、前記第4の電極で前記貫流管に貫流された前記試料液中の生菌を捕集するよう前記第4の電極の周波数を制御し、前記第5の電極で前記第4の電極で捕集された後に放出された前記生菌を捕集するよう前記第5の電極の周波数を制御する、請求項1に記載の捕集装置。
    The plurality of electrodes are parallel to the liquid flow direction with the first electrode and the second electrode, stepwise from the upstream side to the downstream side in the liquid flow direction, respectively. A fourth electrode and a fifth electrode arranged in a direction orthogonal to the second electrode and the liquid flow direction;
    The control device controls the frequency of the fourth electrode so as to collect viable bacteria in the sample liquid that has flowed into the flow-through tube with the fourth electrode, and the fourth electrode with the fourth electrode. The collection device according to claim 1, wherein the frequency of the fifth electrode is controlled so as to collect the viable bacteria released after being collected by the electrode.
  7.  流路の液流方向の上流側から下流側に段階的に配置された複数の電極のそれぞれの周波数を制御することで、前記流路を流れる試料液中の生死菌を分離する方法であって、
     前記液流方向に上流側に配列された第1の電極で前記試料液中の生菌を捕集するよう前記第1の電極の周波数を制御するステップと、
     前記液流方向に前記第1の電極よりも下流側に配列された第2の電極で前記第1の電極を通過した後の前記試料液中の死菌を捕集するよう前記第2の電極の周波数を制御するステップとを備える、分離方法。
    A method for separating live and dead bacteria in a sample liquid flowing in the flow path by controlling the frequency of each of a plurality of electrodes arranged stepwise from the upstream side to the downstream side in the liquid flow direction of the flow path. ,
    Controlling the frequency of the first electrode so as to collect viable bacteria in the sample solution with the first electrode arranged upstream in the liquid flow direction;
    The second electrode so as to collect dead bacteria in the sample liquid after passing through the first electrode by a second electrode arranged downstream of the first electrode in the liquid flow direction. Controlling the frequency of the separation method.
  8.  試料液中の菌を捕集装置で捕集し、その結果を表示装置で表示する方法であって、
     前記捕集装置は、流路の液流方向の上流側から下流側に段階的に配置された複数の電極を含み、
     前記液流方向に上流側に配列された第1の電極で前記試料液中の生菌を捕集するよう前記第1の電極の周波数を制御するステップと、
     前記液流方向に前記第1の電極よりも下流側に配列された第2の電極で前記第1の電極を通過した後の前記試料液中の死菌を捕集するよう前記第2の電極の周波数を制御するステップと、
     前記捕集された前記試料液中の生菌と前記捕集された前記試料液中の死菌とが同一画面となるような表示位置を特定し、当該表示位置に含まれる生菌と死菌とを前記表示装置の同一の画面において表示するステップとを備える、表示方法。
    A method of collecting bacteria in a sample solution with a collection device and displaying the result on a display device,
    The collection device includes a plurality of electrodes arranged stepwise from the upstream side in the liquid flow direction of the flow path to the downstream side,
    Controlling the frequency of the first electrode so as to collect viable bacteria in the sample solution with the first electrode arranged upstream in the liquid flow direction;
    The second electrode so as to collect dead bacteria in the sample liquid after passing through the first electrode by a second electrode arranged downstream of the first electrode in the liquid flow direction. Controlling the frequency of
    Specify a display position where live bacteria in the collected sample liquid and dead bacteria in the collected sample liquid are on the same screen, and live bacteria and dead bacteria included in the display position On the same screen of the display device.
PCT/JP2012/067171 2011-07-29 2012-07-05 Collector, separation method, and display method WO2013018497A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-166710 2011-07-29
JP2011166710A JP5921829B2 (en) 2011-07-29 2011-07-29 Collection device, separation method, and display method

Publications (1)

Publication Number Publication Date
WO2013018497A1 true WO2013018497A1 (en) 2013-02-07

Family

ID=47629028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067171 WO2013018497A1 (en) 2011-07-29 2012-07-05 Collector, separation method, and display method

Country Status (2)

Country Link
JP (1) JP5921829B2 (en)
WO (1) WO2013018497A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3361231A4 (en) * 2015-10-07 2019-05-22 AFI Corporation Inspection apparatus, inspection system, and inspection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624024B (en) * 2014-10-31 2018-01-19 南京法迈特科技发展有限公司 Microorganism separator in cavity content
JP6796932B2 (en) 2016-02-16 2020-12-09 株式会社Afiテクノロジー Separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263847A (en) * 2007-04-19 2008-11-06 Gunma Univ Cell separation device and cell separation method
US20100224493A1 (en) * 2009-03-09 2010-09-09 Virginia Tech Intellectual Properties, Inc. Devices and methods for contactless dielectrophoresis for cell or particle manipulation
US20110024335A1 (en) * 2007-04-09 2011-02-03 Los Alamos National Security, Llc Acoustic Concentration of Particles in Fluid Flow

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110024335A1 (en) * 2007-04-09 2011-02-03 Los Alamos National Security, Llc Acoustic Concentration of Particles in Fluid Flow
JP2008263847A (en) * 2007-04-19 2008-11-06 Gunma Univ Cell separation device and cell separation method
US20100224493A1 (en) * 2009-03-09 2010-09-09 Virginia Tech Intellectual Properties, Inc. Devices and methods for contactless dielectrophoresis for cell or particle manipulation

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
AKIRA YOSHIDA: "Yuden Eido Device ni yoru Ishu Saibo no Renzoku Bunri Sochi no Kaihatsu", NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY ADVANCED TECHNOLOGY KODO KENKYU CENTER NENPO, 2009, pages 122 - 123 *
CIPRIAN ILIESCU ET AL.: "Dielectrophoretic separation of biological samples in a 3D filtering chip", JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 17, no. 7, 2007, pages S128 - S136 *
HAIBO LI ET AL.: "Dielectrophoretic separation and manipulation of live and heat- treated cells of Listeria on microfabricated devices with interdigitated electrodes.", SENSORS AND ACTUATORS, B: CHEMICAL, vol. B86, no. 2-3, 2002, pages 215 - 221 *
IL DOH ET AL.: "A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process.", SENSORS AND ACTUATORS, A: PHYSICAL, vol. A121, no. 1, 2005, pages 59 - 65 *
JEN CHUN-PING ET AL.: "Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open- top microstructures.", BIOMEDICAL MICRODEVICES, vol. 11, no. 3, 2009, pages 597 - 607 *
JUN'YA SUEHIRO ET AL.: "Yuden Eido Impedance Keisoku ni yoru Saikin Kassei no Real Time Monitoring-ho no Kaihatsu", ANNUAL REPORT, NAKATANI FOUNDATION OF ELECTRONIC MEASURING TECHNOLOGY ADVANCEMENT, vol. 17, 2003, pages 35 - 40 *
LAPIZCO-ENCINAS BLANCA H ET AL.: "Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators.", ANALYTICAL CHEMISTRY, vol. 76, no. 6, 2004, pages 1571 - 1579 *
LIMING YU ET AL.: "Sequential Field-Flow Cell Separation Method in a Dielectrophoretic Chip With 3-D Electrodes.", JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol. 16, no. 5, 2007, pages 1120 - 1129 *
MASATO SUZUKI ET AL.: "Separation of Live and Dead Microorganisms in a Micro-Fluidic Device by Dielectrophoresis", JOURNAL OF JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY, vol. 54, no. 12, 2005, pages 1189 - 1195 *
RYO HAMADA ET AL.: "Selective Detection of Viable and Non-viable Bacteria by Using Dielectrophoretic Impedance Measurement Method", PROCEEDINGS OF ANNUAL MEETING OF THE INSTITUTE OF ELECTROSTATICS JAPAN, vol. 2000, pages 115 - 118 *
SACHIKO OGATA ET AL.: "Yuden Eido o Riyo shita Biseibutsu matawa Saibo no Bunri Flow System no Kaihatsu", CHEMICAL SENSORS, vol. 18, no. B, 2002, pages 85 - 87 *
SOUMYA K. SRIVASTAVA ET AL.: "DC insulator dielectrophoretic applications in microdevice technology: a review.", ANALYTICAL AND BIOANALYTICAL CHEMISTRY, vol. 399, no. 1, January 2011 (2011-01-01), pages 301 - 321 *
Z. WANG ET AL.: "Real-time monitoring of a dielectrophoresis based selective filter using microchip flow cytometry with integrated polymer waveguides.", INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, 2005. MEMS 2005. 18TH IEEE, 2005, pages 710 - 713 *
ZHOU GUANGBIN ET AL.: "Selective Elimination of Viable and Nonviable Cells Using Dielectrophoretic Filter", PROCEEDINGS OF ANNUAL MEETING OF THE INSTITUTE OF ELECTROSTATICS JAPAN, vol. 2002, 2002, pages 325 - 328 *
ZURINA Z. ABIDIN ET AL.: "Novel electrode structures for large scale dielectrophoretic separations based on textile technology.", JOURNAL OF BIOTECHNOLOGY, vol. 130, no. 2, 2007, pages 183 - 187 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3361231A4 (en) * 2015-10-07 2019-05-22 AFI Corporation Inspection apparatus, inspection system, and inspection method
US10495580B2 (en) 2015-10-07 2019-12-03 Afi Corporation Inspection device, inspection system, and inspection method
US10876974B2 (en) 2015-10-07 2020-12-29 Afi Corporation Inspection device, inspection system, and inspection method

Also Published As

Publication number Publication date
JP2013027366A (en) 2013-02-07
JP5921829B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
US9144799B2 (en) Modular microfluidic system for biological sample preparation
JP5323933B2 (en) Pump supply switching and desalting of amplified dynamic current bodies
US10357780B2 (en) Magnetic capture of a target from a fluid
US9090663B2 (en) Systems and methods for the capture and separation of microparticles
US7666289B2 (en) Methods and devices for high-throughput dielectrophoretic concentration
Zhao et al. Continuous separation of nanoparticles by type via localized DC-dielectrophoresis using asymmetric nano-orifice in pressure-driven flow
US20210039099A1 (en) Apparatus for pathogen detection
JP6441838B2 (en) Analysis device and separation device
US7811439B1 (en) Concentration and separation of biological organisms by ultrafiltration and dielectrophoresis
WO2007044642A3 (en) Device and method for combined microfluidic-micromagnetic separation of material in continuous flow
JP5921829B2 (en) Collection device, separation method, and display method
JP4548742B2 (en) Dielectric fine particle concentrator
JP5047034B2 (en) Particle separation method and separation apparatus
Kostner et al. Guided dielectrophoresis: a robust method for continuous particle and cell separation
Visuri et al. Microfluidic tools for biological sample preparation
JP2004000217A (en) Trapping and releasing device of dna using flow passage and method for trapping and releasing dna
TWM550302U (en) Biological device
Wu et al. A microfluidic device for separation of amniotic fluid mesenchymal stem cells utilizing louver-array structures
US9527050B2 (en) Rotationally actuated magnetic bead trap and mixer
CA2974637C (en) Apparatus for pathogen detection
WO2023276935A1 (en) Flow channel chip, separation system, and separation method
Simmons et al. Concentration and separation of biological organisms by ultrafiltration and dielectrophoresis
Dalili Shoaei Developing a Lob-On-a-Chip platform for manipulation and separation of microparticles
AU2019409018A1 (en) Microfluidic device
Li et al. Dielectrophoresis and antibody mediated selective capture of microorganisms in micro-fluidic biochips

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820776

Country of ref document: EP

Kind code of ref document: A1