WO2013023404A1 - 植入式生物电极及包括所述电极的医疗组件 - Google Patents

植入式生物电极及包括所述电极的医疗组件 Download PDF

Info

Publication number
WO2013023404A1
WO2013023404A1 PCT/CN2011/080859 CN2011080859W WO2013023404A1 WO 2013023404 A1 WO2013023404 A1 WO 2013023404A1 CN 2011080859 W CN2011080859 W CN 2011080859W WO 2013023404 A1 WO2013023404 A1 WO 2013023404A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
wire
film
implantable
magnetic
Prior art date
Application number
PCT/CN2011/080859
Other languages
English (en)
French (fr)
Inventor
李路明
姜长青
郝红伟
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to US14/238,567 priority Critical patent/US10080890B2/en
Publication of WO2013023404A1 publication Critical patent/WO2013023404A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • A61N1/086Magnetic resonance imaging [MRI] compatible leads

Definitions

  • the present invention relates to the field of implantable medical device technology, and more particularly to an implantable bioelectrode and a medical component comprising the same.
  • Magnetic resonance imaging (MRI) technology is widely used in modern medical diagnosis with its advantages of no radioactivity, high resolution, imaging of soft tissue and visualization of brain function. But so far, the Lord
  • heating occurs primarily at the tip of a metal implant, such as a deep brain stimulator, where heating occurs primarily around the contacts of the electrode. This aspect is due to the metal contacts in the RF field of the MRI
  • Eddy currents are induced, and on the other hand, because the electrodes form an antenna in the RF field, the electric field induced on the electrodes causes heating at the contacts.
  • the heating effect is related to the position and shape of the electrode in the MRI magnetic field.
  • the electrode can avoid resonance with the MRI magnetic field and avoid overheating, but in practical applications.
  • the way the middle electrode is implanted in the human body is uncertain, so the electrode itself is required to meet the safety requirements under resonance conditions.
  • the technical problem to be solved by the present invention is how to effectively suppress the eddy current effect of the implanted bioelectrode.
  • the present invention provides an implantable bioelectrode comprising a wire, the two ends of which are respectively connected with a contact and a joint, the contact including a specific resistance
  • the specific central resistivity is greater than 10-6 ⁇ •m.
  • the non-magnetic nanofiber is a combination of one or more of carbon nanotube wire, carbon fiber and conductive polymer fiber; or the film is a carbon nanotube film and a conductive polymer
  • the wire is a conductive, non-magnetic material.
  • the wire is one of platinum, rhodium, an alloy of platinum and rhodium, a carbon nanotube wire, a carbon fiber, and a conductive polymer.
  • the wire is connected to the contact by one of mechanical connection, welding and bonding.
  • the bioelectrode further comprises a sleeve, the non-magnetic nanofiber or film being wound on the sleeve.
  • the wire comprises a lead end
  • the non-magnetic nanofiber or film forming the contact is wound around a sleeve at a position where the lead end of the wire is located, thereby allowing the contact and the wire to pass
  • the take-up end is U-shaped and is intertwined with the non-magnetic nanofiber or film.
  • the non-magnetic nanofiber or film is coated with a metal coating.
  • the invention also provides a medical component comprising:
  • the implantable bioelectrode The implantable bioelectrode
  • a signal transceiving component coupled to the header for generating a particular electrical signal and transmitting to the contact, and/or receiving an electrical signal from the contact and performing a particular processing thereof.
  • the invention adopts nanofiber or film material with high resistivity to wrap the contact to effectively suppress the eddy current effect, thereby overcoming the nuclear magnetic resonance
  • FIG. 1 is a schematic view showing the structure of an electrode according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a medical component according to an embodiment of the present invention.
  • FIGS 3 to 5 show the fabrication process of the contacts
  • Fig. 6 is a schematic view showing a connection mode of a wire and a contact and a processing process thereof.
  • the implantable bioelectrode of the present invention comprises a wire 2, and two ends of the wire 2 are respectively connected with a contact 1 and a joint 3, wherein the contact 1 is made of non-magnetic nanofibers. Or film
  • the sleeve 5 is used to support the contact 1 and provide protection and increase insulation for the wire 2, the wire 2 is inside the casing 5
  • the contact 1 Passing out from the contact 1 forms an electrical connection with the contact 1.
  • a signal can be transmitted between the contact 1 and the wire 2.
  • the diameter of the diameter or film material can range from a few hundred nanometers to hundreds of microns.
  • the medical component of the present invention includes a signal transceiving member 4 in addition to the above-described electrodes.
  • the signal transceiving unit 4 is configured to generate a specific electrical stimulation signal and transmit the contact to the electrode
  • thermal problem caused by RF in MRI mainly occurs at the electrode contact, this thermal problem is caused by the eddy current caused by RF at the electrode contact and the time-varying electric field induced by RF in the electrode.
  • Winding a contact with a nano-fiber or film material of higher resistivity can effectively suppress the eddy current effect.
  • high resistivity means that the induced current is small under the same RF field, and the second electrode contact
  • a material having a resistivity of 10-7 ⁇ •m or lower (for example, a metal such as a Pt-Ir alloy) is used, and the present invention proposes to select a film material having a magnitude of 10-6 ⁇ •m or a higher central resistivity, or
  • non-magnetic nanofibers of the order of 10-6 ⁇ •m or higher resistivity the higher the central resistivity or resistivity, the better the suppression effect, but the electrical conductivity needs to be met in the electrical stimulation.
  • the optional contact material comprises non-magnetic nanofibers or films, and the non-magnetic nanofibers are one or more of carbon nanotube wires, carbon fibers and conductive polymer fibers.
  • 3 to 5 illustrate a method of fabricating a contact embodiment of the present invention.
  • one of the contacts is taken as an example for explanation.
  • a sleeve 5 is provided which leads the lead 2 out of the sleeve to form a lead end 6, as shown in FIG.
  • the sleeve 5 is made of a biosafety polymer material selected from the group consisting of polyurethane, silicone rubber, nylon or any combination thereof.
  • the grooves are machined on the outer wall of the sleeve, and the grooves can be formed by mechanical processing or thermoforming.
  • the terminal 6 is attached to the outer wall of the sleeve 5.
  • the wire 2 is typically made of a biosafe conductive non-magnetic material selected from the group consisting of platinum, rhodium or alloys thereof, or carbon nanotube wires, carbon fibers, conductive polymers.
  • a non-magnetic nanofiber or film 7 is wound around the sleeve 5 at the leading end 6 of the wire 2 to form mechanical contact with the leading end 6 of the wire 2 to form an electrical connection, as shown in FIG. carry on
  • Wire and contact connectivity It is also possible to solder the wires together with the contacts by means of laser or the like, wherein the sleeve 5 may be partially or completely coated with gold by electroplating, sputtering and/or deposition.
  • the coating increases the connectability; or the wire is bonded to the contact by a biosafe conductive adhesive.
  • the end of the non-magnetic nanofiber or film is wrapped with a biocompatible adhesive.
  • the casing wall is used to prevent the contacts from loosening.
  • the electrode of the invention is simpler to manufacture than the conventional process, has a good electrode interface, and can overcome the heat problem in the nuclear magnetic resonance environment and improve the safety of the electrode in the magnetic resonance imaging.
  • Sex It can be applied to nerve electrical stimulation, electrical stimulation inside the heart, muscle electrical stimulation, spinal cord electrical stimulation, and other similar applications.
  • the invention provides an implantable bioelectrode and a medical component comprising the same, which can effectively suppress the eddy current effect by winding a nanofiber or a film material with a higher resistivity to make a contact.

Abstract

一种植入式生物电极,包括导线(2),所述导线(2)的两端分别连接有触点(1)和接头(3)。所述触点(1)包括具有特定电阻率的、导电的非磁性纳米纤维,或者具有特定中心电阻率的、导电的薄膜。一种医疗组件,其包括所述植入式生物电极。采用具有较高电阻率的纳米纤维或薄膜材料缠绕制作的触点能有效抑制涡流,提高电极在核磁共振成像中的安全性。

Description

植入式生物电极及包括所述电极的医疗组件
技术领域
本发明涉及植入式医疗器械技术领域,更具体地,涉及一种植入式生物电极及包括所述电极的医疗组件。
背景技术
磁共振成像(MRI)技术以其无放射性、分辨率高、对软组织成像以及脑功能的显影等优势在现代医学诊断中应用越来越广泛。但迄今为止,主
要由于射频(RF)加热的风险使得植入了神经刺激器或起搏器等医疗器械的病人不能进行高场强的MRI检查。美国FDA报道了植入脑深部刺激器
的帕金森病人进行MRI检查导致昏迷并永久性致残的案例。这一问题使得许多病人在需要进行MRI检查时受到很多限制。
研究表明,加热主要发生在金属植入物的尖端,例如脑深部刺激器,则加热主要发生在电极的触点周围。这一方面由于金属触点在MRI的RF场中
会感生涡流,另一方面由于电极形成RF场中的天线,感生在电极上的电场导致了触点处的加热。
加热效应同电极在MRI磁场中的位置和形态有关,在一些特定的位置和形态下,电极可以避开和MRI磁场的共振而避免过度加热,但在实际应用
中电极在人体内的植入方式是不确定的,因此需要电极本身在共振条件下就满足安全性的要求。
发明内容
本发明要解决的技术问题是:如何有效抑制植入式生物电极的涡流效应。
为了解决上述技术问题,本发明提出了一种植入式生物电极,包括导线,所述导线的两端分别连接有触点和接头,所述触点包括具有特定电阻
率的、导电的非磁性纳米纤维,或者具有所述特定中心电阻率的、导电的薄膜。
优选地,所述特定中心电阻率为大于10-6Ω•m的电阻率。
优选地,所述非磁性纳米纤维为碳纳米管线、碳纤维和导电聚合物纤维中的一种或几种的组合;或者,所述薄膜为碳纳米管薄膜和导电聚合物
薄膜中的一种或几种的组合。
优选地,所述导线为导电的非磁性材料。
优选地,所述导线为铂、铱、铂与铱的合金、碳纳米管线、碳纤维和导电聚合物中的一种。
优选地,所述导线与触点的连接方式为:机械连接、焊接和粘接中的一种。
优选地,所述生物电极还包括套管,所述非磁性纳米纤维或薄膜缠绕在所述套管上。
优选地,所述导线包括引出端,形成触点的所述非磁性纳米纤维或薄膜缠绕在所述导线的引出端所在位置的套管上,从而使得触点与导线通过
机械接触形成电连接。
优选地,所述引出端为U型,并与所述非磁性纳米纤维或薄膜交叠缠绕。
优选地,所述非磁性纳米纤维或薄膜上涂覆有金属涂层。
本发明还提供了一种医疗组件,包括:
所述植入式生物电极;
信号收发部件,与所述接头连接,用于产生特定的电信号并传输到所述触点,和/或从所述触点接收电信号并对其进行特定的处理。
上述技术方案具有如下优点:本发明采用具有较高电阻率的纳米纤维或薄膜材料缠绕制作触点能够有效抑制涡流效应,从而能克服在核磁共振
环境下的热问题,提高电极在核磁共振成像中的安全性。
附图说明
图1是本发明实施例的电极结构示意图;
图2是本发明实施例的医疗组件的结构示意图;
图3~5示出了触点的制作过程;
图6是导线与触点的一种连接方式及其加工过程示意图。
其中,触点1;导线2;连接器3;信号收发部件4;套管5;引出端6;非磁性纳米纤维或薄膜7。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
如图1、图3~图5所示,本发明的植入式生物电极包括导线2,所述导线2的两端分别连接有触点1和接头3,其中触点1由非磁性纳米纤维或者薄膜
7组成,非磁性纳米纤维或者薄膜缠绕(优选缠绕多层)在套管5上,套管5用于支撑触点1并为导线2提供保护和增加绝缘作用,导线2在套管5内
从触点1处穿出和触点1形成电连接。触点1与导线2之间可以传输信号。触点为1个或多个,本实施例中为4个。其中,非磁性纳米纤维材料的直
径或薄膜材料的厚度可以从百纳米到数百微米。
如图2所示,本发明的医疗组件除了包括上述电极,还包括信号收发部件4。信号收发部件4用于产生特定的电刺激信号并传输到所述电极的触点
,和/或从所述电极的触点接收生物电信号并对其进行特定的处理。
由于MRI中RF导致的热问题主要发生在电极触点,这一热问题由RF在电极触点引起的涡流以及RF导致的时变电场在电极中感生的电动势在电极触
点和周围组织进行加热所致。对于金属触点这种效应影响显著,会在电极触点产生很高的温升,严重时将对病人造成巨大伤害。而本发明中采
用较高电阻率的纳米纤维或薄膜材料缠绕制作触点能够有效抑制涡流效应,首先,电阻率高意味着在相同RF场下的感生电流小,其次电极触点
不再是整体的材料,非磁性纳米纤维之间或薄膜之间的分层结构有效地割裂了感生电流的传导,使得其影响减小到最小。现有技术中电极的触
点常用具有10-7Ω•m甚至更低的电阻率的材料(例如Pt-Ir合金等金属),本发明提出选用10-6Ω•m量级或中心电阻率更高的薄膜材料,或者选
用10-6Ω•m量级或电阻率更高的非磁性纳米纤维,中心电阻率或电阻率越高可以获得越好的抑制效果,但需要满足导电性的要求以在电刺激中
传输有效的电流。可选的触点材料包括非磁性纳米纤维或薄膜,所述非磁性纳米纤维为碳纳米管线、碳纤维和导电聚合物纤维中的一种或几种
的组合;或者,所述薄膜为碳纳米管薄膜和导电聚合物薄膜中的一种或几种的组合。
图3~图5示出了本发明的一个触点实施例的制作方法。这里以其中一个触点为例进行了说明。
首先提供套管5,将导线2从套管中引出,形成引出端6,如图3所示。套管5由选自聚氨酯、硅橡胶、尼龙或其任意组合的生物安全性高分子材料
制成。为便于对触点位置和形状加以控制,在套管外壁加工凹槽,凹槽可以采用机械加工或热塑成形等方法做成。引出端6贴于套管5外壁。所
述导线2通常由选自铂、铱或其合金,或碳纳米管线、碳纤维、导电聚合物的生物安全的导电的非磁性材料制成。
将非磁性纳米纤维或薄膜7缠绕在所述导线2的引出端6位置的套管5上,同所述导线2的引出端6形成机械接触从而形成电连接,如图4所示。继续
缠绕至将所述导线2的引出端6覆盖,可以缠绕1层或多层,加工后如图5所示。导线与触点的连接可以有多种方式。图6示出了一种较复杂的机械
连接方式,其中的(a)、(b)、(c)示出了加工过程:通过将导线2的引出端6折成U型并和非磁性纳米纤维或薄膜交叠缠绕的方式提高电导
线和触点的连接性。还可以将导线同所述触点通过激光等方法焊接在一起,其中套管5上可采用电镀、溅射和/或沉积的方法部分或全部涂覆金
属涂层增加可连接性;或者将导线同触点由生物安全的导电胶进行粘接。非磁性纳米纤维或薄膜缠绕后的端部可以采用生物相容的粘结剂粘在
套管壁上以防止触点松散脱落。
本发明的电极的制作方式较传统工艺更为简单,有良好的电极界面,并能克服在核磁共振环境下的热问题,提高电极在核磁共振成像中的安全
性。可应用于神经电刺激、心脏内部的电刺激、肌肉电刺激、脊髓电刺激,以及其他类似的应用中。
工业实用性
本发明提供一种植入式生物电极及包括所述电极的医疗组件,采用具有较高电阻率的纳米纤维或薄膜材料缠绕制作触点能够有效抑制涡流效应
,从而能克服在核磁共振环境下的热问题,提高电极在核磁共振成像中的安全性,具有工业实用性。

Claims (1)

  1. 权利要求书:
    1、一种植入式生物电极,其特征在于,包括导线(2),所述导线(2)的两端分别连接有触点(1)和接头(3),所述触点(1)包括具有特
    定电阻率的、导电的非磁性纳米纤维,或者具有所述特定中心电阻率的、导电的薄膜。
    2、如权利要求1所述的植入式生物电极,其特征在于,所述特定中心电阻率为大于10-6Ω•m的电阻率。
    3、如权利要求2所述的植入式生物电极,其特征在于,所述非磁性纳米纤维为碳纳米管线、碳纤维和导电聚合物纤维中的一种或几种的组合;
    或者,所述薄膜为碳纳米管薄膜和导电聚合物薄膜中的一种或几种的组合。
    4、如权利要求1所述的植入式生物电极,其特征在于,所述导线(2)为导电的非磁性材料。
    5、如权利要求4所述的植入式生物电极,其特征在于,所述导线(2)为铂、铱、铂与铱的合金、碳纳米管线、碳纤维和导电聚合物中的一种。
    6、如权利要求1所述的植入式生物电极,其特征在于,所述导线(2)与触点(1)的连接方式为:机械连接或焊接。
    7、如权利要求1所述的植入式生物电极,其特征在于,所述生物电极还包括套管(5),所述非磁性纳米纤维或薄膜(7)缠绕在所述套管(5)
    上。
    8、如权利要求7所述的植入式生物电极,其特征在于,所述导线(2)包括引出端(6),形成触点(1)的所述非磁性纳米纤维或薄膜(7)缠
    绕在所述导线(2)的引出端(6)所在位置的套管(5)上,从而使得触点(1)与导线(2)通过机械接触形成电连接。
    9、如权利要求8所述的植入式生物电极,其特征在于,所述引出端(6)为U型,并与所述非磁性纳米纤维或薄膜(7)交叠缠绕。
    10、如权利要求7所述的植入式生物电极,其特征在于,所述非磁性纳米纤维或薄膜(7)上涂覆有金属涂层。
    11、一种医疗组件,其特征在于,包括:
    根据权利要求1-10中任一项所述的电极;
    信号收发部件(4),与所述接头(3)连接,用于产生特定的电信号并传输到所述触点(1),和/或从所述触点(1)接收电信号并对其进行特
    定的处理。
PCT/CN2011/080859 2011-08-12 2011-10-17 植入式生物电极及包括所述电极的医疗组件 WO2013023404A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/238,567 US10080890B2 (en) 2011-08-12 2011-10-17 Implantable biological electrode and medical assembly including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110231234.3A CN102327668B (zh) 2011-08-12 2011-08-12 植入式生物电极及包括所述电极的医疗组件
CN201110231234.3 2011-08-12

Publications (1)

Publication Number Publication Date
WO2013023404A1 true WO2013023404A1 (zh) 2013-02-21

Family

ID=45479789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080859 WO2013023404A1 (zh) 2011-08-12 2011-10-17 植入式生物电极及包括所述电极的医疗组件

Country Status (3)

Country Link
US (1) US10080890B2 (zh)
CN (1) CN102327668B (zh)
WO (1) WO2013023404A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764119A (zh) * 2012-07-20 2012-11-07 中国科学院深圳先进技术研究院 电极阵列
CN102824689B (zh) 2012-09-07 2014-12-24 清华大学 植入式电极及其制备方法以及包括所述电极的医疗组件
CN104102398B (zh) * 2013-04-08 2020-11-06 崔伟 一种触控天线
CN103239225A (zh) * 2013-05-13 2013-08-14 湛江市康田医用器械高科技有限公司 心电监护电极生产方法
US11439810B2 (en) 2017-07-18 2022-09-13 Regents Of The University Of Minnesota Tunable neural electrode
WO2019097495A1 (en) * 2017-11-20 2019-05-23 Cochlear Limited Electrode array manufacture
CN112881472B (zh) * 2021-01-18 2021-12-14 克拉玛依市昂科能源科技有限公司 流体驱替过程中岩样电阻率和核磁共振联测的方法与装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336254A (en) * 1992-09-23 1994-08-09 Medtronic, Inc. Defibrillation lead employing electrodes fabricated from woven carbon fibers
CN1388540A (zh) * 2002-07-12 2003-01-01 四川工业学院 碳纳米管复合电极超大容量电容器及其制造方法
CN101109098A (zh) * 2007-06-28 2008-01-23 上海交通大学 碳纳米管/碳纳米纤维植入金属电极表层的方法
CN101172184A (zh) * 2007-10-10 2008-05-07 中国科学院上海微系统与信息技术研究所 一种三维柔性神经微电极及制作方法
CN101484628A (zh) * 2006-05-02 2009-07-15 罗尔股份有限公司 使用纳米增强材料对用于复合材料中的增强纤维丝束的改性
CN101927057A (zh) * 2010-08-31 2010-12-29 清华大学 起搏器及其起搏器电极
CN102068760A (zh) * 2011-01-28 2011-05-25 北京品驰医疗设备有限公司 植入式生物电极及其制作方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458695A (en) 1982-07-16 1984-07-10 Cordis Corporation Multipolar electrode assembly for pacing lead
US4437474A (en) 1982-07-16 1984-03-20 Cordis Corporation Method for making multiconductor coil and the coil made thereby
US5411527A (en) * 1989-05-03 1995-05-02 Intermedics, Inc. Difibrillation electrodes and implantation
US5211174A (en) * 1990-09-14 1993-05-18 Physiometrix, Inc. Low impedance, low durometer, dry conforming contact element
US5702437A (en) 1996-04-10 1997-12-30 Medtronic Inc. Implantable lead with wires carried by body
US6480747B2 (en) * 2001-01-16 2002-11-12 Quetzal Biomedical, Inc. Cardiac electrode catheter and method of manufacturing same
US8396568B2 (en) * 2002-04-11 2013-03-12 Medtronic, Inc. Medical electrical lead body designs incorporating energy dissipating shunt
US7844347B2 (en) * 2002-12-06 2010-11-30 Medtronic, Inc. Medical devices incorporating carbon nanotube material and methods of fabricating same
US7596415B2 (en) * 2002-12-06 2009-09-29 Medtronic, Inc. Medical devices incorporating carbon nanotube material and methods of fabricating same
US9155877B2 (en) * 2004-03-30 2015-10-13 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
CN1762510A (zh) * 2004-09-02 2006-04-26 巨佰-雪莱公司 用于降低有源植入性医疗器械对诸如磁共振成像这样的医学过程的易感性的装置和过程
US7571010B2 (en) * 2005-05-06 2009-08-04 Cardiac Pacemakers, Inc. Cable electrode assembly for a lead terminal and method therefor
US8639311B2 (en) * 2005-09-08 2014-01-28 Philadelphia Health & Education Corporation Sensing probe comprising multiple, spatially separate, sensing sites
US7974707B2 (en) * 2007-01-26 2011-07-05 Cyberonics, Inc. Electrode assembly with fibers for a medical device
AU2008299049B2 (en) * 2007-09-10 2012-02-02 Med-El Elektromedizinische Geraete Gmbh Impact protection for implants
AU2009212697B2 (en) * 2008-02-06 2011-12-01 Cardiac Pacemakers, Inc. Lead with MRI compatible design features
FR2933621B1 (fr) * 2008-07-11 2010-09-10 Commissariat Energie Atomique Sonde implantable
US8897888B2 (en) * 2008-09-17 2014-11-25 Saluda Medical Pty Limited Knitted electrode assembly and integrated connector for an active implantable medical device
CN102186534B (zh) * 2008-10-15 2015-12-16 沙皮恩斯脑部刺激控制有限公司 用于可植入医疗设备的探针
US8855788B2 (en) * 2009-03-04 2014-10-07 Imricor Medical Systems, Inc. MRI compatible electrode circuit
US9414758B1 (en) * 2011-01-12 2016-08-16 Vivaquant Llc Apparatus, system and methods for sensing and processing physiological signals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336254A (en) * 1992-09-23 1994-08-09 Medtronic, Inc. Defibrillation lead employing electrodes fabricated from woven carbon fibers
CN1388540A (zh) * 2002-07-12 2003-01-01 四川工业学院 碳纳米管复合电极超大容量电容器及其制造方法
CN101484628A (zh) * 2006-05-02 2009-07-15 罗尔股份有限公司 使用纳米增强材料对用于复合材料中的增强纤维丝束的改性
CN101109098A (zh) * 2007-06-28 2008-01-23 上海交通大学 碳纳米管/碳纳米纤维植入金属电极表层的方法
CN101172184A (zh) * 2007-10-10 2008-05-07 中国科学院上海微系统与信息技术研究所 一种三维柔性神经微电极及制作方法
CN101927057A (zh) * 2010-08-31 2010-12-29 清华大学 起搏器及其起搏器电极
CN102068760A (zh) * 2011-01-28 2011-05-25 北京品驰医疗设备有限公司 植入式生物电极及其制作方法

Also Published As

Publication number Publication date
US10080890B2 (en) 2018-09-25
CN102327668B (zh) 2014-01-22
US20140288618A1 (en) 2014-09-25
CN102327668A (zh) 2012-01-25

Similar Documents

Publication Publication Date Title
WO2013023404A1 (zh) 植入式生物电极及包括所述电极的医疗组件
US8805536B2 (en) Implantable lead and medical device using the same
RU2695256C2 (ru) Способ изготовления устройства на основе гибких токопроводящих дорожек, устройство на основе гибких токопроводящих дорожек и система нейростимуляции
US9220886B2 (en) Wire configuration and method of making for an implantable medical apparatus
US8626315B2 (en) Electronic pacemaker and pacemaker electrode
CN103721342B (zh) 可植入的检测/刺激多极微型引导体
EP3160572B1 (en) Implantable medical lead conductor having carbon nanotube wire
EP2066234B1 (en) Catheter and medical assembly
JP2006524110A5 (zh)
WO2017170323A1 (ja) 圧電ワイヤー及びその製造方法、並びにその圧電ワイヤーを備えた圧電装置
CN103093865A (zh) 起搏器电极线及起搏器
WO2012039654A1 (en) Mri-compatible implantable medical lead
WO2013131261A1 (zh) 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构
CN103384547A (zh) 兼容磁共振成像的医用电导线以及制造其的方法
US7734354B1 (en) Stimulation lead, stimulation system, and method for limiting MRI induced current in a stimulation lead
CN103083808B (zh) 起搏器电极线及起搏器
US9517335B2 (en) Implantable electrical line
US20140371562A1 (en) Solderable flexible electrode and method for manufacturing same
US11896835B2 (en) Electrical shielding in implantable medical devices
US8972020B2 (en) Coil cable for an implantable medical device
US20120253445A1 (en) MRI compatible conductor system for catheter and stimulation leads
CN117297618A (zh) 一种集成拉伸传感功能的液态金属卡肤电极及其制备方法和应用
CN112244840A (zh) 一种石墨碳盘状电极及其制备方法和使用方法
WO2021007815A1 (zh) 一种抗弯折的颅内电极制作方法、颅内深部电极以及脑电图仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14238567

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/07/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11870990

Country of ref document: EP

Kind code of ref document: A1