WO2013051060A1 - Rotational vibration gyro - Google Patents

Rotational vibration gyro Download PDF

Info

Publication number
WO2013051060A1
WO2013051060A1 PCT/JP2011/005612 JP2011005612W WO2013051060A1 WO 2013051060 A1 WO2013051060 A1 WO 2013051060A1 JP 2011005612 W JP2011005612 W JP 2011005612W WO 2013051060 A1 WO2013051060 A1 WO 2013051060A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
movable weight
axis
electrode
detection
Prior art date
Application number
PCT/JP2011/005612
Other languages
French (fr)
Japanese (ja)
Inventor
三朗 伊藤
哲郎 杉田
Original Assignee
パイオニア株式会社
パイオニア・マイクロ・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニア・マイクロ・テクノロジー株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2011/005612 priority Critical patent/WO2013051060A1/en
Publication of WO2013051060A1 publication Critical patent/WO2013051060A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure

Definitions

  • the present invention relates to a rotary vibration gyro that detects an angular velocity using Coriolis force.
  • This double-axis gyroscope sensor includes a detection mass including a rotor (movable weight) released on a substrate, a drive system (drive electrode) that rotates and vibrates the detection mass around the Z axis, and around the X axis and Coriolis force.
  • a sensing system that detects the displacement of the detected mass that swings around the Y axis, and a quadrature correction system that extends in the radial direction from the outer peripheral end of the rotor and cancels the quadrature component error.
  • Each quadrature correction system is formed integrally with the rotor and extends from the outer peripheral end of the rotor in the X-axis direction and the Y-axis direction, respectively, and faces each plate with a gap in the Z-axis direction.
  • Each of the pair of fixed electrode pads is provided.
  • a positive DC offset voltage is applied so that one voltage of one set of fixed electrode pads is higher than the other voltage.
  • the rotor rotates (vibrates) clockwise, for example, one fixed electrode pad overlaps with the plate, and the plate is pulled up (suction) by the electrostatic force generated in this overlapping portion.
  • the quadrature phase error is canceled (corrected) by the electrostatic force.
  • the quadrature error (Quadrature Error) is caused by imperfection of the detected mass based on the etching accuracy of the beam (support spring), and is generated in synchronization with the rotational vibration of the rotor.
  • the quadrature phase error may increase depending on the product, and in the gyro sensor as described above, the plate and the fixed electrode pad are formed to be longer in the radial direction. That is, since the amplitude of the rotational vibration of the rotor is fixed, if the quadrature phase error is large, the plate and the fixed electrode pad can be lengthened in the radial direction to increase the overlapping area, and the electrostatic force for attraction can be increased. I have to. For this reason, there has been a problem that the outer dimension of the gyro itself becomes larger than necessary.
  • An object of the present invention is to provide a rotational vibration gyro capable of appropriately removing a quadrature phase error while suppressing an increase in outer dimension.
  • the rotational vibration gyro of the present invention causes the movable weight released on the substrate to reciprocally rotate and vibrate via the drive electrode, and the displacement of the movable weight that swings around the detection axis by the Coriolis force via the detection electrode.
  • a rotational vibration gyro to detect comprising error correction means for correcting an error swing of the movable weight caused by reciprocating rotational vibration without applying an angular velocity by applying an electrostatic force to the movable weight. Is applied in the circumferential direction of the movable weight around the axis orthogonal to the detection axis in at least one half of the movable weight defined by the detection axis while applying a voltage for generating an electrostatic force It has a plurality of correction parts.
  • an electrostatic force that attracts the movable weight acts on each correction portion when a voltage is applied.
  • the electrostatic force acts in a direction to attract the movable weight.
  • the quadrature phase error is canceled out by the electrostatic force, and the movable weight vibrates in a reciprocating manner in a plane without causing a shake. Therefore, noise is removed in the detection of the Coriolis force, and the angular velocity can be detected with high accuracy.
  • the error correction means is composed of a plurality of correction portions arranged in the circumferential direction of the movable weight with the Z axis being an axis orthogonal to the detection axis as a center, each correction portion is not formed long in the radial direction. However, it is possible to sufficiently obtain the overlapping area, that is, the electrostatic force in the circumferential direction, and to suppress the increase in the outer dimensions.
  • the plurality of correction portions are arranged line-symmetrically around at least one of the detection axis and an axis orthogonal to the detection axis.
  • the correcting portion is arranged line-symmetrically on the detection axis or on the axis orthogonal to the detection axis, so that the rotational vibration gyro does not increase in the axial direction.
  • each correction portion extends in the radial direction from the outer peripheral end of the movable weight, and overlaps the extending piece constituting the movable electrode and the extending piece in the vibration direction of the reciprocating rotational vibration. It is preferable to have a correction electrode on the fixed side arranged in the.
  • the electrostatic force (superimposed area) between the correction electrode to which the voltage is applied and the extended piece changes. That is, in one cycle of the rotating movable weight, the larger the displacement, the larger the overlapping area and the stronger the electrostatic force generated. Thereby, even if the applied voltage is constant, the generated electrostatic force is changed in proportion to the rotational vibration displacement, so that the quadrature phase error is canceled and the error oscillation of the movable weight can be corrected.
  • a pair of correction electrodes is provided so as to overlap both sides of the vibration direction of the reciprocating rotational vibration.
  • the correction electrode is preferably formed in a planar shape in which the area of the overlap portion between the extending piece and the correction electrode changes corresponding to the displacement of the reciprocating rotational vibration.
  • the quadrature phase error can be accurately canceled by the generated electrostatic force only by adjusting the voltage applied to the correction electrode.
  • the planar shape of the correction electrode may be a trapezoid or a triangle.
  • the movable weight is formed with a plurality of openings corresponding to the plurality of correction portions, and each correction portion constitutes an opening and an opening edge portion constituting a movable-side electrode, and an opening portion. It is preferable to have a correction electrode on the fixed side arranged so as to overlap the opening edge portion in the vibration direction of the reciprocating rotational vibration.
  • the opening edge can have the same function as the extended piece.
  • the area of the movable weight can be reduced compared to the case where the extended piece is provided in the radial direction from the outer peripheral surface of the movable weight, and the air resistance when rotating and reciprocating can be reduced.
  • the correction electrode is preferably formed in a fan shape that is concentric with the movable weight.
  • the quadrature phase error is accurately corrected in proportion to the rotational vibration of the movable weight. be able to.
  • two orthogonal detection axes are provided and two sets of error correction means provided corresponding to the two detection axes, respectively.
  • a plurality of correction portions constituting the two sets of error correction means are evenly arranged in the circumferential direction of the movable weight.
  • the plurality of correction units are assigned to any of the detection axes based on the error swing of the movable weight.
  • the above configuration it is possible to easily manufacture a plurality of correcting portions in the circumferential direction of the movable weight. Also, some of the plurality of correction units are allocated to correct a quadrature error around one detection axis, and the rest are allocated to correct a quadrature error around the other detection axis. By assigning more correction units to detection axes that generate a large amount of quadrature error, correction by electrostatic force can be performed in accordance with the magnitude of the quadrature error around each detection axis.
  • a voltage application unit that applies a voltage to the pair of correction electrodes is further provided, and the voltage application unit fixes the voltage applied to one of the pair of correction electrodes to a constant value and varies the voltage applied to the other.
  • the voltage applied to the pair of correction electrodes can be variably adjusted.
  • the attractive force due to the electrostatic force can be adjusted by adjusting the other correction electrode. Further, the magnitude of the attractive force can be adjusted by making the voltage applied to each correction electrode variable.
  • FIG. 1A is a schematic plan view of a uniaxial vibrating gyroscope according to the first embodiment.
  • FIG. 1B is a sectional view taken along the line AA. It is an enlarged plan view around a correction part according to a modification. It is a figure which shows the relationship between the displacement by error rocking
  • It is a circuit block diagram for generating a DC voltage.
  • FIG. 5 is an output waveform diagram of each part in the circuit block diagram of FIG. 4. It is a flowchart of error fluctuation correction by DC voltage.
  • It is a plane schematic diagram of the uniaxial vibrating gyroscope which concerns on 2nd Embodiment. It is a plane schematic diagram of the biaxial vibration gyroscope concerning 2nd Embodiment. It is a plane schematic diagram of the biaxial vibration gyroscope concerning 3rd Embodiment.
  • vibration gyro a rotational vibration gyro according to an embodiment of the present invention (hereinafter referred to as “vibration gyro”) will be described with reference to the accompanying drawings.
  • This vibrating gyroscope is an angular velocity sensor in a MEMS (micro-electro-mechanical system) sensor manufactured by microfabrication technology using silicon or the like as a material, and is driven by reciprocating rotational vibrations in the normal and reverse directions.
  • the thing of embodiment is packaged in about 1 mm square, for example, and is commercialized.
  • a rotary vibration gyro with a single movable weight will be described. However, the movable weight may be separated into a drive weight and a detection weight. In the plan view, the description will be made with the left-right direction as the “X-axis (Coriolis force detection axis) direction”, the front-rear direction as the “Y-axis direction”, and the penetration direction as the “Z-axis direction”.
  • FIG. 1A is a schematic plan view of a uniaxial vibrating gyroscope with a drive electrode omitted
  • FIG. 1B is a cross-sectional view taken along the line AA.
  • the vibrating gyroscope 1 includes a plurality of sets of drive electrodes 3 (not shown in FIG. 1A) located on the outermost periphery on the substrate 2 and a flat plate-shaped movable electrode disposed inside the plurality of sets of drive electrodes 3.
  • a total of four torsion support springs 7 (supports) each spanned between the weight 4, the anchor 6 disposed at the center of the movable weight 4, and the anchor 6 and the movable weight 4 in the X-axis direction.
  • the error correction means 40a includes four correction units 41 to 44 disposed on the outer peripheral portion of the movable weight 4, and a D / A conversion unit (voltage application unit) 77 that applies a DC voltage to the four correction units 41 to 44 ( (See FIG. 4 for details).
  • the vibrating gyroscope 1 includes a sealing member 12 that seals the above-described constituent elements on a substrate 2 (see FIG. 1B).
  • the movable weight 4 and the four torsion support springs 7 constitute a movable part of the vibrating gyroscope 1 and are supported on the substrate 2 via the anchor 6. This movable part is formed by etching a substrate made of silicon.
  • the fixed detection electrode 32 of the detection electrode 9 is above the movable weight 4 and is supported below the sealing member 12 (details will be described later).
  • the movable weight 4 (the same applies to the torsion support spring 7) is composed of a conductive member, and the movable drive electrode 22 and the movable detection electrode 31 described later are composed of a part of the movable weight 4.
  • the plurality of drive electrodes 3 are arranged at equal intervals in the circumferential direction on the outer peripheral portion of the movable weight 4.
  • Each drive electrode 3 includes a fixed drive electrode 21 integrally formed on the substrate 2 and a movable drive electrode 22 provided as a part of the movable weight 4 so as to extend radially outward from the outer peripheral end of the movable weight 4. And is composed of.
  • the fixed drive electrode 21 and the movable drive electrode 22 are opposed to each other in the form of comb teeth.
  • the movable weight 4 is formed of two circular flat plates centered on the Z axis. Needless to say, the movable weight 4 is formed vertically and symmetrically (in the Y-axis direction) with respect to the X-axis (detection axis) serving as the center of vibration due to the Coriolis force.
  • the anchor 6 is disposed so as to be inserted through a rectangular laterally elongated opening formed at the center position of the movable weight 4 and is erected integrally on the substrate 2 so as to be slightly higher than the movable weight 4.
  • the anchor 6 is formed in a columnar shape, and the above-described four torsion support springs 7 extend in an S shape on the X axis from both side surfaces thereof.
  • Each torsion support spring 7 spans between the anchor 6 and the edge (opening edge) of the horizontally long opening, and supports the movable weight 4 in a state of being lifted from the substrate 2.
  • Each torsion support spring 7 functions as a hinge shaft of the movable weight 4 that allows rotation of the movable weight 4 and vibrates by Coriolis force. That is, the torsion support spring 7 functions as a so-called torsion spring.
  • the four torsion support springs 7 are each bent in an S shape, and are arranged symmetrically about the X axis and symmetrical about the Y axis. In this case, the four torsion support springs 7 function “soft” with respect to the vibration around the Z axis of the movable weight 4 and somewhat “rigid” with respect to the oscillation (vibration) around the X axis.
  • the movable weight 4 that has received the Coriolis force has a seesaw whose upper half and lower half in the Y-axis direction are substantially centered on the two torsion support springs 7 and 7 (the X axis that is the detection axis). Vibrate.
  • the pair of detection electrodes 9 includes a pair of movable detection electrodes 31 and 31 configured by an upper half portion and a lower half portion in the Y-axis direction of the movable weight 4 made of a conductive material, and a pair of movable detection electrodes 31. , 31, and a pair of fixed detection electrodes 32, 32 facing the upper side with a capacitance gap 33 as a minute gap.
  • the movable weight 4 vibrates (swings) like a seesaw due to the Coriolis force around the X axis
  • the capacitance between the movable detection electrode 31 and the fixed detection electrode 32 changes, and the angular velocity is detected based on this change. (See FIG. 4).
  • the movable weight 4 if the angular velocity around the Y axis is received while the movable weight 4 is rotating and vibrating, the movable weight 4 is vibrated (oscillated) around the X axis by the generated Coriolis force. Thereby, the electrostatic capacitance of a pair of detection electrodes 9 and 9 changes, and the received angular velocity is detected.
  • Each of the fixed detection electrodes 32 is formed in a plane shape that is substantially the same shape as the movable detection electrode 31 configured by a half portion of the movable weight 4, and is substantially at the same position in the XY plane with respect to the corresponding movable detection electrode 31. They are arranged in parallel.
  • Each fixed detection electrode 32 is made of polysilicon or the like formed on the sacrificial layer, and is supported by a plurality of electrode support portions (not shown) spaced apart on the substrate 2. That is, the pair of fixed detection electrodes 32 and 32 and the pair of electrode support portions are produced by removing the sacrificial layer by etching or the like.
  • Each fixed detection electrode 32 may be formed on the sealing member 12.
  • the vibrating gyroscope 1 configured as described above, for example, if the torsion support spring 7 is not etched vertically with high accuracy, a quadrature phase error occurs. That is, if the torsion support spring 7 is etched not in a rectangular cross section but in a parallelogram in cross section, or when the Z axis and the center of gravity of the movable weight 4 do not coincide (incomplete shape), the movable weight 4 is driven. When this occurs, unnecessary vibration (error fluctuation) occurs based on the quadrature phase error.
  • the error correction means 40a is provided as described above in order to eliminate error fluctuation around the X axis (detection axis) that occurs based on the quadrature phase error.
  • the error correction means 40a has a plurality of (four in the present embodiment) correction portions 41 to 44 disposed outside the movable weight 4 as described above.
  • a DC voltage is applied to each of the correction units 41 to 44 from a D / A conversion unit (voltage application unit) 77 (see FIG. 4).
  • the four correction portions 41 to 44 include an upper left correction portion 41 and an upper right correction portion 42 that function when the upper half portion of the movable weight 4 swings downward in the Z-axis direction (forward downward), A lower left side correction part 43 and a lower right side correction part 44 that function when the lower half swings downward (rearward downward) in the Z-axis direction are provided.
  • the upper left correction unit 41, the upper right correction unit 42, the lower left correction unit 43, and the lower right correction unit 44 are arranged symmetrically about the X axis and symmetrical about the Y axis. ing.
  • the thing of embodiment is a structure which removes error fluctuation
  • the upper left correction portion 41 extends radially outward from the outer peripheral end of the movable weight 4 and extends on both sides in the vibration direction of the reciprocating rotational vibration with respect to the extended piece 41a constituting the movable electrode and the extended piece 41a.
  • the extended piece 41a is formed integrally with the movable weight 4, and the pair of correction electrodes 41b and 41c are a plurality of electrode support portions (not shown) arranged on the substrate 2 separately from the fixed detection electrode 32 described above. (See FIG. 1B).
  • the upper right correction portion 42 has an extended piece 42a and a pair of correction electrodes 42b and 42c
  • the lower left correction portion 43 has an extended piece 43a and a pair of correction electrodes 43b and 43c
  • the lower right correcting portion 44 includes an extending piece 44a and a pair of correcting electrodes 44b and 44c.
  • the extension electrodes 41 a, 42 a, 43 a, 44 a and the correction electrodes 41 b, 42 b, 43 b, 44 b and the correction electrodes 41 c, 42 c, 43 c, 44 c are A DC voltage is selectively applied so as to produce a predetermined potential difference between the two. For example, when a DC voltage is applied between the extension piece 41a and the correction electrode 41b so as to generate a predetermined potential difference, an electrostatic force is generated in proportion to the overlapping area of the extension piece 41a and the correction electrode 41b. .
  • a force that pulls up in the Z-axis direction by electrostatic force acts on the movable-side extending piece 41a against the fixed-side correction electrode 41b.
  • a DC voltage V1 is applied to each of the correction electrodes 41b, 42b, 43b and 44b, and a DC voltage V2 is applied to each of the correction electrodes 41c, 42c, 43c and 44c (see FIG. 4).
  • the attractive force in the Z-axis direction due to the electrostatic force changes due to driving vibration.
  • the potential difference between the correction electrode to which one of the DC voltages V1 and V2 is applied and the extending piece on the movable side is maximized, and the other DC voltage is applied. This can be realized by setting the potential difference between the correction electrode to which is applied and the extended side corresponding to the correction electrode to zero.
  • the DC voltages V1 and V2 may be set to the same potential.
  • either one of the DC voltages V1 and V2 is set to a fixed value and the other is set to a variable value. It is also possible to switch the application electrodes of the DC voltages V1 and V2 (selective application) and switch the direction (polarity) of the change in the attractive force in the Z-axis direction with respect to the driving direction.
  • both values of the DC voltages V1 and V2 may be variable values. In this case, by setting each suction force (variation range) with a different value, it is possible to use the coarse adjustment and the fine adjustment separately, so that the adjustment accuracy can be increased without increasing the circuit scale.
  • the DC voltage V2 is applied to the correction electrodes 41b, 42b, 43b, and 44b
  • the DC voltage V1 is applied to the correction electrodes 41c, 42c, 43c, and 44c.
  • the extended piece 43a overlaps with 43b while being separated in the Z-axis direction, and at the same time, the extended piece 44a is overlapped with the correction electrode 44b while being separated in the Z-axis direction.
  • the extended pieces 43a and 44a are attracted (pulled up) to the correction electrodes 43b and 44b by the generated electrostatic force.
  • the extended pieces 41a and 42a are separated from the correction electrodes 41b and 42b and overlap the correction electrodes 41c and 42c to which the DC voltage V1 is applied. Since the DC voltage V1 has the same potential as the extending side on the movable side, the electrostatic force is reduced in the upper half of the movable weight 4. Therefore, the force for pulling up the movable weight 4 becomes stronger on the extended sides 43a and 44a side.
  • the electrostatic force between the extended pieces 43a and 44a and the correction electrodes 43b and 44b is obtained by the following equation.
  • F (1/2) ⁇ ⁇ ⁇ (S / (dx) 2 )
  • the electrostatic force is proportional to S (area) and V 2 (square of potential difference).
  • the extension pieces 43a and 44a overlap with the correction electrodes 43c and 44c, but a DC voltage V1 is applied to them, and the DC voltage V1 has the same potential as the extension piece on the movable side.
  • the electrostatic force decreases and the attractive force decreases. Therefore, the force for pulling up the movable weight 4 becomes stronger on the extending pieces 41a and 42a side. In this way, by repeating the above-described operation on the movable weight 4 that oscillates and oscillates, the seesaw-like error swing is canceled, and the movable weight 4 maintains a parallel state with respect to the substrate 2.
  • the extended pieces 41a and 42a are attracted (raised) by the correction electrodes 41c and 42c by the generated electrostatic force.
  • the extended pieces 43a and 44a overlap with the correction electrodes 43b and 44b, but a DC voltage V1 is applied to them, and the DC voltage V1 is extended on the movable side. Because of the same potential as the installation piece, the electrostatic force is reduced and the attractive force is reduced. Therefore, the force for pulling up the movable weight 4 becomes stronger on the extending pieces 41a and 42a side.
  • the extension piece 41a and the correction electrode 41b overlap, and the extension piece 42a and the correction electrode 42b overlap. Since the DC voltage V1 is applied and has the same potential as that of the extending piece on the movable side, the electrostatic force is reduced and the attractive force is reduced. Therefore, the force for pulling up the movable weight 4 becomes stronger on the extending pieces 43a and 44a side. Also in this case, the above operation is repeated on the movable weight 4 that oscillates and rotates, so that the seesaw-like error swing is canceled and the movable weight 4 maintains a parallel state with respect to the substrate 2.
  • the error correction means 40a is omitted from the upper left correction unit 41 and the upper right correction unit 42, or the lower left correction unit 43 and the lower right correction unit 44. May be. Further, in this embodiment, the correction portions 41 and 42 are provided in the upper half portion of the movable weight 4 and the correction portions 43 and 44 are provided in the lower half portion, respectively, but three or more correction portions are provided in each half portion. (However, the three or more correction parts may be symmetrical with respect to the Y axis).
  • the correction electrode 41b is adjusted so that the area of the overlapping portion between each extending piece 41a to 44a and each correction electrode 41b to 44b, 41c to 44 changes.
  • the planar shapes of .about.44b and 41c.about.44 may be trapezoids or triangles, for example.
  • FIG. 2 shows a modification of each correction unit, taking the upper left correction unit 41 as an example.
  • the extending piece 41a and the correction electrodes 41b and 41c have a planar shape that curves in a fan shape around the Z axis (the center of gravity of the movable weight 4).
  • the overlapping area of the extending piece 41a and the correction electrodes 41b and 41c increases and decreases proportionally (inversely proportional), and the error swing of the movable weight 4 can be corrected accurately.
  • FIG. 3 shows the displacement of the movable weight 4 in the Z-axis direction (error fluctuation) based on the quadrature phase error and the change in the electrostatic force applied to the movable weight 4 in one amplitude (drive) of the movable weight 4.
  • the displacement of the movable weight 4 that becomes the seesaw motion changes proportionally (linearly) around the neutral position.
  • the applied electrostatic force also changes proportionally (linearly) due to the influence of one amplitude (drive) of the movable weight 4.
  • the proportional (linear) change in the electrostatic force is explained by taking the correction unit 41 as an example, and the potential difference between the extension piece 41a and the correction electrode 41b is made constant by the DC voltage applied to the correction electrode 41b.
  • this is achieved by proportionally increasing or decreasing the overlapping area of the extended piece 41a and the correction electrode 41b.
  • the movable weight 4 is reciprocally rotated (driven) around the Z axis by applying an AC voltage to the drive electrode. That is, it reciprocates clockwise and counterclockwise as shown (for example, FIG. 1 a) at the drive resonance frequency of the movable weight 4.
  • the drive electrodes 3 are comb-shaped movable drive electrodes 22 formed integrally with the movable weight 4.
  • a pair of comb-like fixed drive electrodes 21 provided so as to mesh with the movable drive electrode 22, and one fixed drive electrode 21 is adjacent to the forward drive direction (clockwise) with respect to the movable drive electrode 22,
  • the other fixed drive electrode 21 is disposed so as to be adjacent in the backward movement direction (counterclockwise).
  • the vibration (seesaw motion) due to the Coriolis force appears at substantially the same frequency as the drive resonance frequency and is 90 ° out of phase with the drive vibration of the movable weight 4 ("angular velocity signal" in FIG. 5c). reference).
  • the vibration (swing) corresponding to the detection electrode 9a is represented by “SELP”
  • the vibration (swing) corresponding to the detection electrode 9b is represented by “SELN”.
  • the quadrature phase error is mainly based on the shape failure of the support spring 7, the vibration (swing) detected by the pair of detection electrodes 9, 9 is movable at the same frequency as the drive resonance frequency. It appears in the same phase as the driving vibration of the weight 4 (see “Quadrature Error Signal” in FIG. 5d).
  • the quadrature phase error signal corresponding to the detection electrode 9a is represented by “Qselp”
  • the quadrature phase error signal corresponding to the detection electrode 9b is represented by “Qseln”.
  • the circuit for generating this correction signal corrects the vibration (tilt) in FIG. 1a with respect to the vibration (tilt) in which the movable weight 4 moves forward (backward upward) when moving forward and backwards (forward) when returning.
  • DC voltage V2 in FIG. 4
  • DC voltage (FIG. 5f) composed of a DC voltage (“V1” in FIG. 4) applied to the correction electrodes 43b and 44b on the left side of FIG.
  • DCP DC voltage
  • DCN DC voltage
  • FIG. 4 shows a circuit configuration for performing the correction by the DC voltage described above.
  • This correction accurately detects (detects) quadrature phase error and generates a DC voltage that cancels out of quadrature phase error, so that the vibratory gyroscope 1 is movable without applying any angular velocity (no Coriolis force is generated).
  • the weight 4 is driven.
  • the movable weight 4 is driven by a drive circuit (not shown), and the above “drive signal” is applied to the drive electrode. Further, in this drive circuit, the drive of the movable weight 4 is monitored to obtain the above “drive vibration”.
  • the “quadrature phase error signal” input from the pair of detection electrodes 9 and 9 to the CV converter 71 is converted into a change in voltage by the change in capacitance, and is output to the synchronous detector 72 after amplification.
  • the synchronous detection unit 72 detects the “quadrature phase error signal” while synchronizing with the drive monitor signal (“drive vibration”) of the drive circuit input from the synchronization signal switching unit 73, and performs the above-described “quadrature phase error signal synchronization”.
  • a signal “after detection” is obtained. From this signal, noise is removed by the LPF 74 of the filter unit, and the signal is output to the measurement unit 75.
  • the synchronization signal switching unit 73 switches the drive monitor signal to the above “drive signal” to achieve synchronization.
  • the arithmetic processing is performed by the above-described mathematical formula for obtaining the correction force at the time of forward and rearward descending, and the correction voltage applied to the correction units 41 to 44 is determined.
  • This voltage is output to the SPI unit 76 as a digital value, and the SPI unit 76 converts the serial signal into a parallel signal.
  • the D / A converter 77 converts the digital value into an analog value (DC voltage) and outputs it.
  • the two “DC voltages” are switched by the subsequent correction switching unit 78, and the correction voltage “V1” or “V2” is applied. The actual one is adjusted by repeating the above routine work (details will be described later).
  • FIG. 6 is a flowchart of the correction using the DC voltage described above.
  • the above-mentioned “drive signal” is applied to the drive electrode 3 to drive the movable weight 4 (see S1).
  • the synchronous signal switching unit 73 is switched to the drive monitor signal, and synchronous detection of the “quadrature phase error signal” is performed (see S2).
  • the correction switching part 78 is in the state switched to any one correction electrode (refer S3).
  • the signal of “quadrature phase error signal after synchronous detection” is output to the measurement unit 75 (see S4).
  • the measurement voltage Vo that becomes the signal of “quadrature phase error signal after synchronous detection” and the reference
  • the voltage Vref is compared (see S5).
  • Vo-Vref is zero or substantially zero (“YES”), it is determined that appropriate quadrature phase error correction has been performed, and correction by DC voltage is terminated (see S6).
  • Vo ⁇ Vref ⁇ 0 if Vo ⁇ Vref ⁇ 0 is not satisfied (NO), it is determined whether or not Vo ⁇ Vref> 0 (see S7). If “YES”, the correction voltage is adjusted again (see S8). A later correction voltage is applied (see S9) and measurement is performed.
  • the determination is “NO”. In such a case, after the switching operation of the correction switching unit 78 is performed (see S10), the correction voltage is applied (see S9), and then the process returns to S4.
  • the quadrature phase error generated by the movable weight 4 is canceled by the electrostatic force, and the movable weight 4 to be driven is maintained in a state parallel to the substrate 2 (no error fluctuation). Therefore, the quadrature phase error based on the imperfection of the shape is removed, and the detection accuracy of the Coriolis force can be greatly improved.
  • FIG. 7 is a schematic plan view of a uniaxial vibrating gyroscope showing a second embodiment (drive electrodes are omitted).
  • the vibration gyro 1A of the second embodiment is similar to the first embodiment in that the movable weight 4 is connected to the substrate via four torsion support springs 7 extending from the anchor 6 in the X-axis direction. Released on 2.
  • four openings 65 are formed in the peripheral portion of the movable weight 4, and four (plural) correction portions 61 to 64 around the opening 65 are configured.
  • the error correction means 40a includes an upper left correction portion 61 and an upper right correction portion 62 located in the upper half of the movable weight 4, and a lower left correction portion 63 and a lower right correction portion 64 located in the lower half.
  • the upper left correction unit 61, the upper right correction unit 62, the lower left correction unit 63, and the lower right correction unit 64 are arranged symmetrically about the X axis and centered on the Y axis. Are arranged in line symmetry.
  • the upper left correction portion 61 faces the opening 65 formed on the surface of the movable weight 4 and the pair of opening edges 61a and 61a constituting the opening 65 in the vibration direction of the reciprocating vibration.
  • the correction electrodes 61b and 61c are fixedly arranged so as to overlap.
  • the other correction parts 62 to 64 have the same structure.
  • the opening edge portions 61a, 62a, 63a, and 64a constitute a fixed-side electrode.
  • the opening edge portions 61a to 64a and the corresponding correction electrodes 61b to 64b or the correction electrodes 61c to 64c are overlapped to cause an electrostatic force to act on the movable weight 4. .
  • the inclination of the movable weight 4 is corrected by the electrostatic force, and the movable weight 4 to be driven maintains a parallel state with respect to the substrate 2.
  • a plurality of correction portions 61 to 64 are formed around the opening 65 of the movable weight 4, thereby making it possible to make a right angle without increasing the outer dimension of the movable weight 4.
  • the error fluctuation due to the phase error can be corrected, and the angular velocity can be accurately detected.
  • the biaxial vibrating gyroscope 11 of the second embodiment has a drive electrode and a movable weight 4 and is disposed inside the movable weight 4.
  • a pair of Y-axis weight coupling springs 13b, 13b that couple 5b and a pair of vibrating X-axis A pair of X-axis detection electrodes for detecting the displacement of the detection weights 5a, 5a and a pair of Y-axis detection electrodes (both not shown) for detecting the displacement of the vibrating pair of X-axis divided detection weights 5b, 5b ing.
  • the biaxial vibrating gyroscope 11 includes an X axis error correcting means 40b for removing error fluctuations around the X axis (detection axis) generated based on the quadrature error, and a Y axis generated based on the quadrature error.
  • Y-axis error correction means 40c for removing error fluctuation around the (detection axis).
  • connection form of the pair of X-axis weight support springs 7a and 7a and the pair of Y-axis weight support springs 7b and 7b and the anchor 6 is such that the movable part mainly composed of the movable weight 4 and the detection weight 5 is the X-axis and the Y-axis. And it is comprised so that it may become symmetrical about a Z-axis. That is, with respect to the Z axis, the center of gravity of the vibration gyro 11 (movable part) overlaps with the axes of the X and Y support springs 7a and 7b and the anchor 6, and the vibration gyro 11 (movable part) with respect to the XY plane. ) Is placed so that the center position of the Thereby, it becomes difficult to receive the influence of accelerations, such as gravity, for example, and the freedom degree of installation can also be improved.
  • the pair of X-axis divided detection weights 5a and 5a and the pair of Y-axis divided detection weights 5b and 5b are formed in exactly the same flat fan shape having an angle of 90 °, and are arranged at a pitch of 90 °.
  • the rotationally oscillating drive weight 4 receives an angular velocity about the X axis
  • the pair of X axis divided detection weights 5a and 5a are centered on the pair of X axis weight support springs 7a and 7a together with the drive weight 4 due to the generated Coriolis force. Each vibrates.
  • the pair of Y axis divided detection weights 5b and 5b together with the drive weight 4 is generated by the generated Coriolis force and the pair of Y axis weight support springs 7b and 7b. Vibrate around each other.
  • the pair of X-axis weight connection springs 13a and 13a and the pair of Y-axis weight connection springs 13b and 13b have exactly the same form, and are formed in a narrow cross-sectional rectangle, respectively, and the drive weight 4 is subjected to rotational vibration.
  • the Coriolis force received by the driving weight 4 is absorbed and transmitted to the detection weight 5. That is, the rotation vibration of the drive weight 4 is not transmitted to the detection weight 5 by the pair of X-axis weight connection springs 13 a and 13 a and the pair of Y-axis weight connection springs 13 b and 13 b, but vibration due to the Coriolis force is transmitted to the detection weight 5. It has come to be.
  • the pair of X-axis split detection weights 5A and 5A and the pair of Y-axis split detection weights 5B and 5B vibrate by Coriolis force without being affected by the rotational vibration of the drive weight 4.
  • the pair of X-axis detection electrodes has a pair of movable detection electrodes constituted by a pair of X-axis divided detection weights 5a and 5a and a small gap (however, larger than the amplitude of the detection weight 5) with respect to the pair of movable detection electrodes. And a pair of fan-shaped fixed detection electrodes facing each other (both not shown).
  • the pair of Y-axis detection electrodes includes a pair of movable detection electrodes constituted by a pair of Y-axis divided detection weights 5b and 5b, and a pair of fan-like surfaces facing each other with a minute gap with respect to the pair of movable detection electrodes. And a fixed detection electrode.
  • the capacitance between the respective movable detection electrodes and the fixed detection electrodes changes, and based on this change, a desired value is obtained. Is detected.
  • the error correction means 40b around the X axis is the same as the error correction means 40a of the first embodiment, and is constituted by correction parts 41 to 44, and the error correction means 40c around the Y axis is constituted by correction parts 45 to 48.
  • the X axis error correcting means 40b includes an upper left correcting portion 41, an upper right correcting portion 42, a lower left correcting portion 43, and A lower right correction unit 44 is provided.
  • the Y axis around error correction means 40c includes a right upper correction unit 45, a right lower correction unit 46, a left upper correction unit 47, and a left lower correction unit 48 which are provided symmetrically with respect to the X axis.
  • the correction portions 45 to 48 are provided with extension pieces 45a to 48a and correction electrodes 45b and 45c, 46b and 46c, 47b and 47c, 48b and 48c corresponding to the extension pieces 45a to 48a, and D / An A conversion unit (voltage application unit) (see FIG. 4) is connected.
  • the error correcting means 40b around the X axis operates as described with reference to FIG. That is, when the movable weight 4 reciprocates and the upper half or the lower half of the movable weight 4 tilts around the X axis, the correcting portions 41 to 44 operate in the same manner as in FIG. .
  • the biaxial rotational vibration gyro is provided with the correcting portions 45 to 48 with respect to the X axis not only with respect to the Y axis but also with respect to the X axis.
  • eight correction parts (4 ⁇ 2 sets) are provided in the circumferential direction of the drive weight 4, not only the quadrature phase error centered on the X axis but also the quadrature phase error centered on the Y axis Can be canceled out, and the angular velocities of the two axes can be detected with high accuracy.
  • eight sets of correction portions are provided symmetrically with respect to each axis, but of course, more than that may be provided.
  • the correction portions 41 to 48 are provided uniformly in the circumferential direction of the movable weight 4, but the intervals between the correction portions 41 to 48 need not be equal.
  • FIG. 9 is a schematic plan view showing a modification of the biaxial vibrating gyroscope shown in FIG.
  • correction portions 51a to 51t are provided over the entire circumference of the movable weight 4.
  • Each of the correction portions 51a to 51t has an extending piece and a pair of correction electrodes (not shown) as described above.
  • the correction parts 51a to 51t are divided into those for the X axis and those for the Y axis.
  • the quadrature phase error of each of the two axes can be corrected appropriately. Can do.
  • the correcting portions 51a to 51t are provided over the entire circumference of the movable weight 4, the correcting portion may not be used as necessary.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

A rotational vibration gyro is provided which is able to properly remove erroneous vibrations caused by quadrature errors. A rotational vibration gyro vibrates a movable mass released on a substrate both reciprocatingly and rotationally via driving electrodes, and detects via detection electrodes displacement of the movable mass as it swings around a detection axis due to the Coriolis effect. This rotational vibration gyro has an error correcting means for imparting electrostatic force to the movable mass to correct the erroneous vibrations caused by the reciprocating and rotational vibration in a state that does not cause angular velocity, and the error correcting means has a plurality of correcting units arranged circumferentially with respect to the movable mass and centred on an axis orthogonal to the detection axis around at least one half of the movable mass as defined by the detection axis for applying voltage to generate the electrostatic force.

Description

回転振動ジャイロRotating vibration gyro
 本発明は、コリオリ力を利用して角速度を検出する回転振動ジャイロに関するものである。 The present invention relates to a rotary vibration gyro that detects an angular velocity using Coriolis force.
 従来、この種の回転振動ジャイロとして、X軸周りおよびY軸周りの角速度を検出可能な二重軸ジャイロスコープセンサが知られている(特許文献1の図20参照)。
 この二重軸ジャイロスコープセンサは、基板上にリリースしたローター(可動錘)を含む検出質量と、検出質量をZ軸周りに回転振動させる駆動システム(駆動電極)と、コリオリ力によりX軸周りおよびY軸周りに揺動する検出質量の変位を検出する感知システム(検出電極)と、ローターの外周端から径方向に延び、直角成分誤差を相殺する直角位相修正システムと、を備えている。
 各直角位相修正システムは、ローターと一体的に形成され、ローターの外周端からX軸方向およびY軸方向にそれぞれ延設した4つのプレートと、各プレートとZ軸方向に間隙をもって対向するようにそれぞれ設けられた、各一対の固定電極パッドと、を有している。
Conventionally, a double-axis gyroscope sensor capable of detecting angular velocities around the X-axis and the Y-axis is known as this type of rotational vibration gyro (see FIG. 20 of Patent Document 1).
This double-axis gyroscope sensor includes a detection mass including a rotor (movable weight) released on a substrate, a drive system (drive electrode) that rotates and vibrates the detection mass around the Z axis, and around the X axis and Coriolis force. A sensing system (detection electrode) that detects the displacement of the detected mass that swings around the Y axis, and a quadrature correction system that extends in the radial direction from the outer peripheral end of the rotor and cancels the quadrature component error.
Each quadrature correction system is formed integrally with the rotor and extends from the outer peripheral end of the rotor in the X-axis direction and the Y-axis direction, respectively, and faces each plate with a gap in the Z-axis direction. Each of the pair of fixed electrode pads is provided.
 この二重軸ジャイロスコープセンサでは、直角位相エラーを修正するために、1組の固定電極パッドの一方の電圧が他方の電圧より高くなるように正の直流オフセット電圧が印加される。ローターが例えば時計周りに回転(振動)すると、一方の固定電極パッドがプレートと重畳し、この重畳部分に生ずる静電力によりプレートが引き上げられる(吸引)。これにより、直角位相エラーが静電力により相殺される(修正される)。そして、この直角位相エラーを修正することでノイズが除去され、角速度が正確に検出されるようになっている。 In this double axis gyroscope sensor, in order to correct the quadrature phase error, a positive DC offset voltage is applied so that one voltage of one set of fixed electrode pads is higher than the other voltage. When the rotor rotates (vibrates) clockwise, for example, one fixed electrode pad overlaps with the plate, and the plate is pulled up (suction) by the electrostatic force generated in this overlapping portion. Thereby, the quadrature phase error is canceled (corrected) by the electrostatic force. By correcting this quadrature phase error, noise is removed and the angular velocity is accurately detected.
特表2002-515976号公報Special Table 2002-515976
 ところで、直角位相エラー(Quadrature Error)は、梁(支持ばね)のエッチング精度等に基づく検出質量の不完全性に起因し、且つローターの回転振動に同期して発生する。このため、製品によっては直角位相エラーが大きくなる場合があり、上述のようなジャイロセンサーでは、プレートおよび固定電極パッドを径方向に長くなるように形成している。
 すなわち、ローターの回転振動の振幅は決まっているため、直角位相エラーが大きい場合には、プレートおよび固定電極パッドを径方向に長くして重畳面積を稼ぎ、引き付けのための静電力を大きくできるようにしている。このため、ジャイロ自体の外形寸法が必要以上に大きくなってしまう問題があった。
Incidentally, the quadrature error (Quadrature Error) is caused by imperfection of the detected mass based on the etching accuracy of the beam (support spring), and is generated in synchronization with the rotational vibration of the rotor. For this reason, the quadrature phase error may increase depending on the product, and in the gyro sensor as described above, the plate and the fixed electrode pad are formed to be longer in the radial direction.
That is, since the amplitude of the rotational vibration of the rotor is fixed, if the quadrature phase error is large, the plate and the fixed electrode pad can be lengthened in the radial direction to increase the overlapping area, and the electrostatic force for attraction can be increased. I have to. For this reason, there has been a problem that the outer dimension of the gyro itself becomes larger than necessary.
 本発明は、外形寸法の大型化を抑制しつつ、直角位相エラーを適切に除去することができる回転振動ジャイロを提供することを課題としている。 An object of the present invention is to provide a rotational vibration gyro capable of appropriately removing a quadrature phase error while suppressing an increase in outer dimension.
 本発明の回転振動ジャイロは、基板上にリリースされた可動錘を、駆動電極を介して往復回転振動させると共に、検出電極を介して、コリオリ力により検出軸周りに揺動する可動錘の変位を検出する回転振動ジャイロであって、角速度を与えない状態で往復回転振動に伴って生ずる可動錘の誤差揺動を、可動錘に静電力を作用させて修正する誤差修正手段を備え、誤差修正手段は、静電力を生じさせるための電圧が印加されると共に、検出軸で画成される可動錘の少なくとも一方の半部において、検出軸に直交する軸を中心に可動錘の周方向に配置した複数の修正部を有していることを特徴とする。 The rotational vibration gyro of the present invention causes the movable weight released on the substrate to reciprocally rotate and vibrate via the drive electrode, and the displacement of the movable weight that swings around the detection axis by the Coriolis force via the detection electrode. A rotational vibration gyro to detect, comprising error correction means for correcting an error swing of the movable weight caused by reciprocating rotational vibration without applying an angular velocity by applying an electrostatic force to the movable weight. Is applied in the circumferential direction of the movable weight around the axis orthogonal to the detection axis in at least one half of the movable weight defined by the detection axis while applying a voltage for generating an electrostatic force It has a plurality of correction parts.
 上記の構成によれば、電圧が印加されることにより、各修正部に可動錘を引き付ける静電力が作用する。例えば、往復回転振動により可動錘が時計周り回転(振動)し、且つ直角位相エラーの影響で可動錘が各修正部から離れる方向に揺動したときに、静電力が可動錘を引き付ける方向に作用する。すなわち、直角位相エラーが静電力により相殺され、可動錘はブレを生ずることなく、平面内で往復回転振動する。したがって、コリオリ力の検出においてノイズが除去され、角速度を精度良く検出することができる。また、誤差修正手段を、検出軸に直交する軸であるZ軸を中心に可動錘の周方向に配置した複数の修正部で構成しているため、各修正部を径方向に長く形成しなくても、周方向において重畳面積、すなわち静電力を十分に得ることができ、外形寸法の大型化を抑制することができる。 According to the above configuration, an electrostatic force that attracts the movable weight acts on each correction portion when a voltage is applied. For example, when the movable weight rotates clockwise (vibrates) due to reciprocating rotational vibration, and the movable weight swings away from each correction part due to the influence of the quadrature phase error, the electrostatic force acts in a direction to attract the movable weight. To do. That is, the quadrature phase error is canceled out by the electrostatic force, and the movable weight vibrates in a reciprocating manner in a plane without causing a shake. Therefore, noise is removed in the detection of the Coriolis force, and the angular velocity can be detected with high accuracy. Further, since the error correction means is composed of a plurality of correction portions arranged in the circumferential direction of the movable weight with the Z axis being an axis orthogonal to the detection axis as a center, each correction portion is not formed long in the radial direction. However, it is possible to sufficiently obtain the overlapping area, that is, the electrostatic force in the circumferential direction, and to suppress the increase in the outer dimensions.
 この場合、前記複数の修正部は、前記検出軸および前記検出軸に直交する軸の少なくとも一方を中心として線対称に配置されていることが好ましい。 In this case, it is preferable that the plurality of correction portions are arranged line-symmetrically around at least one of the detection axis and an axis orthogonal to the detection axis.
 上記の構成によれば、検出軸上や検出軸に直交する軸上に修正部が線対称に配置されているので、回転振動ジャイロが軸方向に大きくなることがない。 According to the above configuration, the correcting portion is arranged line-symmetrically on the detection axis or on the axis orthogonal to the detection axis, so that the rotational vibration gyro does not increase in the axial direction.
 この場合、各修正部は、可動錘の外周端から径方向に延設され、可動側の電極を構成する延設片と、延設片に対し、往復回転振動の振動方向にオーバーラップするように配置した固定側の修正電極と、を有していることが好ましい。 In this case, each correction portion extends in the radial direction from the outer peripheral end of the movable weight, and overlaps the extending piece constituting the movable electrode and the extending piece in the vibration direction of the reciprocating rotational vibration. It is preferable to have a correction electrode on the fixed side arranged in the.
 上記の構成によれば、可動錘が時計周りまたは反時計周りに回転すると、電圧が印加される修正電極と延設片との間の静電力(重畳面積)が変化する。すなわち、回転する可動錘の1周期において、変位が大きくなるほど、重畳面積が大きくなって発生する静電力が強くなる。これにより、印加する電圧が一定であっても、発生する静電力が回転振動変位に比例して変化する事により直角位相エラーが相殺され、可動錘の誤差揺動を修正することができる。 According to the above configuration, when the movable weight rotates clockwise or counterclockwise, the electrostatic force (superimposed area) between the correction electrode to which the voltage is applied and the extended piece changes. That is, in one cycle of the rotating movable weight, the larger the displacement, the larger the overlapping area and the stronger the electrostatic force generated. Thereby, even if the applied voltage is constant, the generated electrostatic force is changed in proportion to the rotational vibration displacement, so that the quadrature phase error is canceled and the error oscillation of the movable weight can be corrected.
 この場合、修正電極は、往復回転振動の振動方向両側にオーバーラップするように一対配設されていることが好ましい。 In this case, it is preferable that a pair of correction electrodes is provided so as to overlap both sides of the vibration direction of the reciprocating rotational vibration.
 上記の構成によれば、直角位相エラーにより可動錘の傾動が検出軸に対して前下り(例えば、可動錘の上半部がX軸を中心にZ軸方向下方へ傾く(前下り=後上り)または後下り(例えば、可動錘の下半部がX軸を中心にZ軸方向下方へ傾く(後下り=前上り))の状態になったとしても、いずれか一方の修正電極により可動錘を所定の平面内に位置するように吸引することができる。 According to the above configuration, the tilting of the movable weight is caused to fall forward with respect to the detection axis due to the quadrature phase error (for example, the upper half of the movable weight is tilted downward in the Z-axis direction about the X axis (front falling = backward rising). ) Or rear descending (for example, the lower half of the movable weight is inclined downward in the Z-axis direction around the X axis (rear descending = front ascending)) Can be sucked so as to be located within a predetermined plane.
 この場合、修正電極は、往復回転振動の変位に対応して、延設片と修正電極とのオーバーラップ部分の面積が変化する平面形状に形成されていることが好ましい。 In this case, the correction electrode is preferably formed in a planar shape in which the area of the overlap portion between the extending piece and the correction electrode changes corresponding to the displacement of the reciprocating rotational vibration.
 上記の構成によれば、修正電極に印加する電圧を調整するだけで、発生する静電力により直角位相エラーを精度良く相殺することができる。なお、修正電極の平面形状は、台形や三角形等であってもよい。 According to the above configuration, the quadrature phase error can be accurately canceled by the generated electrostatic force only by adjusting the voltage applied to the correction electrode. The planar shape of the correction electrode may be a trapezoid or a triangle.
 同様に、可動錘には、複数の修正部に対応して複数の開口部が形成され、各修正部は、開口部を構成すると共に可動側の電極を構成する開口縁部と、開口部に臨み、開口縁部に対し、往復回転振動の振動方向にオーバーラップするように配設した固定側の修正電極と、を有していることが好ましい。 Similarly, the movable weight is formed with a plurality of openings corresponding to the plurality of correction portions, and each correction portion constitutes an opening and an opening edge portion constituting a movable-side electrode, and an opening portion. It is preferable to have a correction electrode on the fixed side arranged so as to overlap the opening edge portion in the vibration direction of the reciprocating rotational vibration.
 上記の構成によれば、開口縁部に上記の延設片と同様の機能を持たせることができる。これにより、延設片を可動錘の外周面から径方向に設ける場合に比べて可動錘の面積を小さくすることができ、かつ回転往復振動する際の空気抵抗を小さくすることができる。 According to the above configuration, the opening edge can have the same function as the extended piece. As a result, the area of the movable weight can be reduced compared to the case where the extended piece is provided in the radial direction from the outer peripheral surface of the movable weight, and the air resistance when rotating and reciprocating can be reduced.
 また、修正電極は、可動錘と同心となる扇形状に形成されていることが好ましい。 Also, the correction electrode is preferably formed in a fan shape that is concentric with the movable weight.
 上記の構成によれば、可動錘の外周縁の形状と修正電極の周方向における外周縁の形状とが同心円になるので、可動錘の回転振動に比例して、直角位相エラーを正確に修正することができる。 According to the above configuration, since the shape of the outer peripheral edge of the movable weight and the shape of the outer peripheral edge of the correction electrode in the circumferential direction are concentric circles, the quadrature phase error is accurately corrected in proportion to the rotational vibration of the movable weight. be able to.
 一方、直交する2つの検出軸を備えると共に、2つの検出軸にそれぞれ対応して設けられた2組の誤差修正手段を備えることが好ましい。 On the other hand, it is preferable that two orthogonal detection axes are provided and two sets of error correction means provided corresponding to the two detection axes, respectively.
 上記の構成によれば、直交する2つの検出軸に対応して2組の誤差修正手段が設けられているので、可動錘が回転振動する時に直角位相エラーによりどちらの軸周りに対して傾動したとしても、直角位相エラーを相殺するように、可動錘を所定の平面内に位置するように引きつけることができる。このため、各軸のコリオリ力の検出においてノイズが除去され、各軸の角速度を正確に検出することができる。 According to the above configuration, since two sets of error correction means are provided corresponding to two orthogonal detection axes, when the movable weight rotates and vibrates, it is tilted with respect to which axis due to a quadrature phase error. However, the movable weight can be attracted so as to be positioned within a predetermined plane so as to cancel out the quadrature phase error. For this reason, noise is removed in detecting the Coriolis force of each axis, and the angular velocity of each axis can be accurately detected.
 この場合、2組の誤差修正手段を構成する複数の修正部が、可動錘の周方向に均等に配設されていることが好ましい。また、複数の修正部は、可動錘の誤差揺動に基づいて、検出軸のいずれかに割り当てられている。 In this case, it is preferable that a plurality of correction portions constituting the two sets of error correction means are evenly arranged in the circumferential direction of the movable weight. In addition, the plurality of correction units are assigned to any of the detection axes based on the error swing of the movable weight.
 上記の構成によれば、可動錘の周方向に複数の修正部を均等に設けるために容易に製造できる。また、複数の修正部のいくつかを一方の検出軸周りの直角位相エラーを修正するために割り振り、残りを他方の検出軸周りの直角位相エラーを修正するために割り振る。直角位相エラーを大きく発生する検出軸に、より多くの修正部を割り振ることにより、各検出軸周りの直角位相エラーの大きさに対応させて、静電力による修正を行うことができる。 According to the above configuration, it is possible to easily manufacture a plurality of correcting portions in the circumferential direction of the movable weight. Also, some of the plurality of correction units are allocated to correct a quadrature error around one detection axis, and the rest are allocated to correct a quadrature error around the other detection axis. By assigning more correction units to detection axes that generate a large amount of quadrature error, correction by electrostatic force can be performed in accordance with the magnitude of the quadrature error around each detection axis.
 この場合、一対の修正電極に電圧を印加する電圧印加部をさらに備え、電圧印加部は、一対の修正電極の一方に印加される電圧を一定値に固定とし、他方に印加される電圧を可変調整可能とするか、または、一対の修正電極に印加される電圧をそれぞれ可変調整可能とする。 In this case, a voltage application unit that applies a voltage to the pair of correction electrodes is further provided, and the voltage application unit fixes the voltage applied to one of the pair of correction electrodes to a constant value and varies the voltage applied to the other. The voltage applied to the pair of correction electrodes can be variably adjusted.
 上記の構成によれば、一方の修正電極に対する電圧が固定されている時には、他方の修正電極を調整することにより、静電力による吸引力を調整することができる。また、それぞれの修正電極に印加される電圧を可変調整可能とすることにより、吸引力の大きさを調整することができる。 According to the above configuration, when the voltage with respect to one correction electrode is fixed, the attractive force due to the electrostatic force can be adjusted by adjusting the other correction electrode. Further, the magnitude of the attractive force can be adjusted by making the voltage applied to each correction electrode variable.
図1(a)は、第1実施形態に係る1軸の振動ジャイロの平面模式図である。図1(b)は、そのA-A線断面図である。FIG. 1A is a schematic plan view of a uniaxial vibrating gyroscope according to the first embodiment. FIG. 1B is a sectional view taken along the line AA. 変形例に係る修正部周りの拡大平面図である。It is an enlarged plan view around a correction part according to a modification. 誤差揺動による変位とこれを相殺する静電力との関係を示す図である。It is a figure which shows the relationship between the displacement by error rocking | fluctuation, and the electrostatic force which cancels this. 直流電圧を発生させるための回路ブロック図である。It is a circuit block diagram for generating a DC voltage. 図4の回路ブロック図における各部の出力波形図である。FIG. 5 is an output waveform diagram of each part in the circuit block diagram of FIG. 4. 直流電圧による誤差揺動修正のフローチャートである。It is a flowchart of error fluctuation correction by DC voltage. 第2実施形態に係る1軸の振動ジャイロの平面模式図である。It is a plane schematic diagram of the uniaxial vibrating gyroscope which concerns on 2nd Embodiment. 第2実施形態に係る2軸の振動ジャイロの平面模式図である。It is a plane schematic diagram of the biaxial vibration gyroscope concerning 2nd Embodiment. 第3実施形態に係る2軸の振動ジャイロの平面模式図である。It is a plane schematic diagram of the biaxial vibration gyroscope concerning 3rd Embodiment.
 以下、添付図面を参照して、本発明の一実施形態に係る回転振動ジャイロ(以下、「振動ジャイロ」という)について説明する。この振動ジャイロは、シリコン等を材料として微細加工技術により製造されるMEMS(micro electro mechanical system)センサにおける角速度センサであり、平面内において正逆の往復回転振動により駆動する。実施形態のものは、例えば1mm角程度にパッケージングされ製品化される。なお、以下では、可動錘が単体の回転振動ジャイロについて説明するが、可動錘を駆動錘と検出錘とに分離した構成としてもよい。また、平面図において左右方向を「X軸(コリオリ力の検出軸)方向」、前後方向を「Y軸方向」、貫通方向を「Z軸方向」として説明を進める。 Hereinafter, a rotational vibration gyro according to an embodiment of the present invention (hereinafter referred to as “vibration gyro”) will be described with reference to the accompanying drawings. This vibrating gyroscope is an angular velocity sensor in a MEMS (micro-electro-mechanical system) sensor manufactured by microfabrication technology using silicon or the like as a material, and is driven by reciprocating rotational vibrations in the normal and reverse directions. The thing of embodiment is packaged in about 1 mm square, for example, and is commercialized. In the following, a rotary vibration gyro with a single movable weight will be described. However, the movable weight may be separated into a drive weight and a detection weight. In the plan view, the description will be made with the left-right direction as the “X-axis (Coriolis force detection axis) direction”, the front-rear direction as the “Y-axis direction”, and the penetration direction as the “Z-axis direction”.
 図1(a)は、駆動電極を省略して表した1軸の振動ジャイロの平面模式図であり、図1(b)は、そのA-A線断面図である。
 この振動ジャイロ1は、基板2上において、最外周に位置する複数組の駆動電極3(図1(a)では省略)と、複数組の駆動電極3の内側に配設した平板円状の可動錘4と、可動錘4の中央位置に配設されたアンカー6と、X軸方向において、アンカー6と可動錘4との間に掛け渡した各一対、計4本の捻り支持ばね7(支持ばね)と、可動錘4の変位を検出する一対の検出電極9,9と、後述する直角位相エラー(Quadrature Error)を除去する誤差修正手段40aと、を備えている。誤差修正手段40aは、可動錘4の外周部分に配設した4つの修正部41~44と、4つの修正部41~44に直流電圧を印加するD/A変換部(電圧印加部)77(図4参照)とを有している(詳細は後述する)。また、この振動ジャイロ1は、基板2上に上記の構成素子を封止する封止部材12を備えている(図1(b)参照)。
FIG. 1A is a schematic plan view of a uniaxial vibrating gyroscope with a drive electrode omitted, and FIG. 1B is a cross-sectional view taken along the line AA.
The vibrating gyroscope 1 includes a plurality of sets of drive electrodes 3 (not shown in FIG. 1A) located on the outermost periphery on the substrate 2 and a flat plate-shaped movable electrode disposed inside the plurality of sets of drive electrodes 3. A total of four torsion support springs 7 (supports) each spanned between the weight 4, the anchor 6 disposed at the center of the movable weight 4, and the anchor 6 and the movable weight 4 in the X-axis direction. Spring), a pair of detection electrodes 9, 9 for detecting the displacement of the movable weight 4, and an error correction means 40a for removing a quadrature error (Quadrature Error) described later. The error correction means 40a includes four correction units 41 to 44 disposed on the outer peripheral portion of the movable weight 4, and a D / A conversion unit (voltage application unit) 77 that applies a DC voltage to the four correction units 41 to 44 ( (See FIG. 4 for details). The vibrating gyroscope 1 includes a sealing member 12 that seals the above-described constituent elements on a substrate 2 (see FIG. 1B).
 可動錘4および4本の捻り支持ばね7は、振動ジャイロ1の可動部を構成しており、アンカー6を介して基板2上に支持されている。この可動部は、シリコンで構成された基板をエッチングして形成されている。また、検出電極9の固定検出電極32は、可動錘4の上側にあって、封止部材12の下側に支持されている(詳細は後述する)。可動錘4(捻り支持ばね7も同じ)は、導電性の部材で構成され、後述する可動駆動電極22および可動検出電極31は、可動錘4の一部で構成される。 The movable weight 4 and the four torsion support springs 7 constitute a movable part of the vibrating gyroscope 1 and are supported on the substrate 2 via the anchor 6. This movable part is formed by etching a substrate made of silicon. The fixed detection electrode 32 of the detection electrode 9 is above the movable weight 4 and is supported below the sealing member 12 (details will be described later). The movable weight 4 (the same applies to the torsion support spring 7) is composed of a conductive member, and the movable drive electrode 22 and the movable detection electrode 31 described later are composed of a part of the movable weight 4.
 複数の駆動電極3は、可動錘4の外周部分において周方向に均等間隔で配置されている。各駆動電極3は、基板2上に一体に形成した固定駆動電極21と、可動錘4の一部として可動錘4の外周端から径方向外方に延在するように設けた可動駆動電極22と、で構成されている。固定駆動電極21と可動駆動電極22とは、相互にくし歯の形態を有して対峙しており、これに交流電圧を印加することで、両電極間に生ずる静電気力により可動錘4がZ軸回り(重心回り)に回転振動する。 The plurality of drive electrodes 3 are arranged at equal intervals in the circumferential direction on the outer peripheral portion of the movable weight 4. Each drive electrode 3 includes a fixed drive electrode 21 integrally formed on the substrate 2 and a movable drive electrode 22 provided as a part of the movable weight 4 so as to extend radially outward from the outer peripheral end of the movable weight 4. And is composed of. The fixed drive electrode 21 and the movable drive electrode 22 are opposed to each other in the form of comb teeth. When an AC voltage is applied to the fixed drive electrode 21 and the movable drive electrode 22, the movable weight 4 is moved to Z by the electrostatic force generated between the two electrodes. Rotates and vibrates around the axis (around the center of gravity).
 上述したように、可動錘4はZ軸を中心とする2つの円状平板で形成されている。言うまでもないが、可動錘4は、コリオリ力による振動の中心となるX軸(検出軸)に対し上下(Y軸方向において)対称に形成されている。 As described above, the movable weight 4 is formed of two circular flat plates centered on the Z axis. Needless to say, the movable weight 4 is formed vertically and symmetrically (in the Y-axis direction) with respect to the X-axis (detection axis) serving as the center of vibration due to the Coriolis force.
 アンカー6は、可動錘4の中央位置に形成した矩形状の横長開口に挿通するように配設され、可動錘4より僅かに高くなるように基板2上に一体に立設されている。この場合、アンカー6は柱状に形成されており、その両側面から上記の4本の捻り支持ばね7が、X軸上においてそれぞれS字状に延在している。各捻り支持ばね7は、アンカー6と横長開口の縁部(開口端縁部)との間に掛け渡され、可動錘4を基板2から浮き上がった状態に支持している。 The anchor 6 is disposed so as to be inserted through a rectangular laterally elongated opening formed at the center position of the movable weight 4 and is erected integrally on the substrate 2 so as to be slightly higher than the movable weight 4. In this case, the anchor 6 is formed in a columnar shape, and the above-described four torsion support springs 7 extend in an S shape on the X axis from both side surfaces thereof. Each torsion support spring 7 spans between the anchor 6 and the edge (opening edge) of the horizontally long opening, and supports the movable weight 4 in a state of being lifted from the substrate 2.
 各捻り支持ばね7は、可動錘4の回転振動を許容すると共に、コリオリ力により振動する可動錘4のヒンジ軸として機能する。すなわち、捻り支持ばね7は、いわゆるトーションばねとして機能する。4本の捻り支持ばね7は、それぞれS字状に屈曲形成されると共に、X軸に対し線対称に且つY軸に対し線対称に配設されている。この場合、4本の捻り支持ばね7は、可動錘4のZ軸周りの振動に対し「柔」に、X軸周りの揺動(振動)に対し幾分「剛」に機能する。すなわち、コリオリ力を受けた可動錘4は、Y軸方向の上半部と下半部とが、実質上、2本の捻り支持ばね7,7(検出軸であるX軸)を中心にシーソー様に振動(揺動)する。 Each torsion support spring 7 functions as a hinge shaft of the movable weight 4 that allows rotation of the movable weight 4 and vibrates by Coriolis force. That is, the torsion support spring 7 functions as a so-called torsion spring. The four torsion support springs 7 are each bent in an S shape, and are arranged symmetrically about the X axis and symmetrical about the Y axis. In this case, the four torsion support springs 7 function “soft” with respect to the vibration around the Z axis of the movable weight 4 and somewhat “rigid” with respect to the oscillation (vibration) around the X axis. That is, the movable weight 4 that has received the Coriolis force has a seesaw whose upper half and lower half in the Y-axis direction are substantially centered on the two torsion support springs 7 and 7 (the X axis that is the detection axis). Vibrate.
 一対の検出電極9は、導電性材料で形成された可動錘4のY軸方向の上半部と下半部とにより構成された一対の可動検出電極31,31と、一対の可動検出電極31,31に対し微小間隙である静電容量ギャップ33を存して上側に対面する一対の固定検出電極32,32と、で構成されている。X軸を中心にコリオリ力により可動錘4がシーソー様に振動(揺動)すると、可動検出電極31と固定検出電極32との間の静電容量が変化し、この変化に基づいて角速度が検出される(図4参照)。本実施形態のものでは、可動錘4が回転振動している状態で、Y軸回りの角速度を受けると、発生するコリオリ力により可動錘4がX軸を中心に微小振動(揺動)する。これにより、一対の検出電極9,9の静電容量が変化し、受けた角速度が検出される。 The pair of detection electrodes 9 includes a pair of movable detection electrodes 31 and 31 configured by an upper half portion and a lower half portion in the Y-axis direction of the movable weight 4 made of a conductive material, and a pair of movable detection electrodes 31. , 31, and a pair of fixed detection electrodes 32, 32 facing the upper side with a capacitance gap 33 as a minute gap. When the movable weight 4 vibrates (swings) like a seesaw due to the Coriolis force around the X axis, the capacitance between the movable detection electrode 31 and the fixed detection electrode 32 changes, and the angular velocity is detected based on this change. (See FIG. 4). In the present embodiment, if the angular velocity around the Y axis is received while the movable weight 4 is rotating and vibrating, the movable weight 4 is vibrated (oscillated) around the X axis by the generated Coriolis force. Thereby, the electrostatic capacitance of a pair of detection electrodes 9 and 9 changes, and the received angular velocity is detected.
 各固定検出電極32は、可動錘4の半部で構成した可動検出電極31と略同形の平面形状に形成され、対応する可動検出電極31に対し、X・Y平面内において略同位置に且つ平行に配設されている。また、各固定検出電極32は、犠牲層上に成膜したポリシリコン等で構成され、基板2上に離間して配置した複数の電極支持部(図示省略)に支持されている。すなわち、一対の固定検出電極32,32および一対の電極支持部は、上記の犠牲層をエッチング等により除去することで作製される。なお、各固定検出電極32を封止部材12に形成してもよい。 Each of the fixed detection electrodes 32 is formed in a plane shape that is substantially the same shape as the movable detection electrode 31 configured by a half portion of the movable weight 4, and is substantially at the same position in the XY plane with respect to the corresponding movable detection electrode 31. They are arranged in parallel. Each fixed detection electrode 32 is made of polysilicon or the like formed on the sacrificial layer, and is supported by a plurality of electrode support portions (not shown) spaced apart on the substrate 2. That is, the pair of fixed detection electrodes 32 and 32 and the pair of electrode support portions are produced by removing the sacrificial layer by etching or the like. Each fixed detection electrode 32 may be formed on the sealing member 12.
 ところで、このように構成された振動ジャイロ1において、例えば捻り支持ばね7が、精度良く垂直にエッチングされていないと、直角位相エラーが発生する。すなわち、捻り支持ばね7が断面長方形ではなく、断面平行四辺形にエッチングされ、或いはZ軸と可動錘4の重心とが不一致となってしまうと(形状の不完全性)、可動錘4を駆動したときに、直角位相エラーに基づいて無用な振動(誤差揺動)が発生する。この誤差揺動は、可動錘4の回転振動(駆動)に同期し且つ同一周期で現れ、コリオリ力による振動(揺動)とは90°位相がずれるものの、その振幅が大きいため、検出感度に影響を及ぼす。そこで、本実施形態では、直角位相エラーに基づいて生ずるX軸(検出軸)周りの誤差揺動を除去すべく、上記のように誤差修正手段40aを設けている。 By the way, in the vibrating gyroscope 1 configured as described above, for example, if the torsion support spring 7 is not etched vertically with high accuracy, a quadrature phase error occurs. That is, if the torsion support spring 7 is etched not in a rectangular cross section but in a parallelogram in cross section, or when the Z axis and the center of gravity of the movable weight 4 do not coincide (incomplete shape), the movable weight 4 is driven. When this occurs, unnecessary vibration (error fluctuation) occurs based on the quadrature phase error. This error oscillation appears in the same cycle as the rotational oscillation (drive) of the movable weight 4 and is 90 ° out of phase with the oscillation (oscillation) due to the Coriolis force, but its amplitude is large, so that the detection sensitivity is improved. affect. Therefore, in the present embodiment, the error correction means 40a is provided as described above in order to eliminate error fluctuation around the X axis (detection axis) that occurs based on the quadrature phase error.
 誤差修正手段40aは、上述のように、可動錘4の外側に配設した複数(本実施形態では4つ)の修正部41~44を有している。各修正部41~44には、D/A変換部(電圧印加部)77(図4参照)から直流電圧が印加される。4つの修正部41~44は、可動錘4の上半部がZ軸方向下方へ揺動する場合(前下り)に機能する上部左側修正部41および上部右側修正部42と、可動錘4の下半部がZ軸方向の下方へ揺動する場合(後下がり)に機能する下部左側修正部43および下部右側修正部44と、を備えている。そして、上部左側修正部41、上部右側修正部42、下部左側修正部43および下部右側修正部44は、X軸を中心に線対称に配設され且つY軸を中心に線対称に配設されている。なお、実施形態のものは、印加した直流電圧により生ずる静電力により、誤差揺動を除去する構成であるため、可動錘4の半部を引き付ける(吸引)ようにしている。 The error correction means 40a has a plurality of (four in the present embodiment) correction portions 41 to 44 disposed outside the movable weight 4 as described above. A DC voltage is applied to each of the correction units 41 to 44 from a D / A conversion unit (voltage application unit) 77 (see FIG. 4). The four correction portions 41 to 44 include an upper left correction portion 41 and an upper right correction portion 42 that function when the upper half portion of the movable weight 4 swings downward in the Z-axis direction (forward downward), A lower left side correction part 43 and a lower right side correction part 44 that function when the lower half swings downward (rearward downward) in the Z-axis direction are provided. The upper left correction unit 41, the upper right correction unit 42, the lower left correction unit 43, and the lower right correction unit 44 are arranged symmetrically about the X axis and symmetrical about the Y axis. ing. In addition, since the thing of embodiment is a structure which removes error fluctuation | variation with the electrostatic force which arises with the applied DC voltage, it is trying to attract | suck the half part of the movable weight 4 (attraction | suction).
 上部左側修正部41は、可動錘4の外周端から径方向外側に延設され、可動側の電極を構成する延設片41aと、延設片41aに対し、往復回転振動の振動方向両側にオーバーラップするように配置した固定側の一対の修正電極41b,41cと、を有している。延設片41aは可動錘4に一体的に形成され、一対の修正電極41b,41cは、上記の固定検出電極32と同様に、基板2上に離間して配置した複数の電極支持部(図示省略)に支持されている(図1(b)参照)。可動錘4の往復回転振動(駆動)により、延設片41aが図示の時計回りの移動(円運動)すると、延設片41aと修正電極41cとのオーバーラップ面積(重畳面積)が比例的に増加する。同様に、延設片41aが図示の反時計回りの移動(円運動)すると、延設片41aと修正電極41bとのオーバーラップ面積(重畳面積)が比例的に増加する。 The upper left correction portion 41 extends radially outward from the outer peripheral end of the movable weight 4 and extends on both sides in the vibration direction of the reciprocating rotational vibration with respect to the extended piece 41a constituting the movable electrode and the extended piece 41a. A pair of fixed correction electrodes 41b and 41c arranged so as to overlap each other. The extended piece 41a is formed integrally with the movable weight 4, and the pair of correction electrodes 41b and 41c are a plurality of electrode support portions (not shown) arranged on the substrate 2 separately from the fixed detection electrode 32 described above. (See FIG. 1B). When the extending piece 41a moves clockwise (circular movement) by the reciprocating rotational vibration (drive) of the movable weight 4, the overlap area (overlapping area) between the extending piece 41a and the correction electrode 41c is proportionally increased. To increase. Similarly, when the extended piece 41a moves counterclockwise (circular movement), the overlap area (overlapping area) between the extended piece 41a and the correction electrode 41b increases proportionally.
 同様に、上部右側修正部42は、延設片42aと一対の修正電極42b,42cとを有し、下部左側修正部43は、延設片43aと一対の修正電極43b,43cとを有し、下部右側修正部44は、延設片44aと一対の修正電極44b,44cとを有している。 Similarly, the upper right correction portion 42 has an extended piece 42a and a pair of correction electrodes 42b and 42c, and the lower left correction portion 43 has an extended piece 43a and a pair of correction electrodes 43b and 43c. The lower right correcting portion 44 includes an extending piece 44a and a pair of correcting electrodes 44b and 44c.
 詳細は後述するが、修正電極41b,42b,43b,44bと、修正電極41c,42c,43c,44cとには、上記の電圧印加部77により、各延設片41a,42a,43a,44aとの間に所定の電位差を生ずるように、直流電圧が選択的に印加されるようになっている。例えば、延設片41aと修正電極41bとの間に、所定の電位差を生ずるように直流電圧が印加されると、延設片41aと修正電極41bとの重畳面積に比例して静電力が生ずる。すなわち、固定側の修正電極41bに対し、可動側の延設片41aに静電力によるZ軸方向の引き上げる力が働く。そして、各修正電極41b,42b,43bおよび44bには直流電圧V1が、各修正電極41c,42c,43cおよび44cには直流電圧V2がそれぞれ印加される(図4参照)。 Although details will be described later, the extension electrodes 41 a, 42 a, 43 a, 44 a and the correction electrodes 41 b, 42 b, 43 b, 44 b and the correction electrodes 41 c, 42 c, 43 c, 44 c are A DC voltage is selectively applied so as to produce a predetermined potential difference between the two. For example, when a DC voltage is applied between the extension piece 41a and the correction electrode 41b so as to generate a predetermined potential difference, an electrostatic force is generated in proportion to the overlapping area of the extension piece 41a and the correction electrode 41b. . In other words, a force that pulls up in the Z-axis direction by electrostatic force acts on the movable-side extending piece 41a against the fixed-side correction electrode 41b. A DC voltage V1 is applied to each of the correction electrodes 41b, 42b, 43b and 44b, and a DC voltage V2 is applied to each of the correction electrodes 41c, 42c, 43c and 44c (see FIG. 4).
 直流電圧V1と直流電圧V2とを異なる電圧に設定し、各修正電極41b~44bおよび41c~44cにそれぞれ印加することにより、静電力によるZ軸方向の吸引力が駆動振動によって変化する。駆動振動による吸引力の変化を最大にするには、いずれか一方の直流電圧V1およびV2が印加される修正電極と、可動側の延設片との電位差を最大にすると共に、他方の直流電圧が印加される修正電極と、該修正電極に対応する延設辺との電位差をゼロにすることにより実現できる。駆動振動による吸引力の変化を最小(ゼロ)にするには、直流電圧V1およびV2を同電位とすればよい。吸引力を調整する場合には、直流電圧V1およびV2のいずれか一方を固定値とし、他方を可変値とすることにより可能となる。また、直流電圧V1およびV2の印加電極を切り替え(選択的印加)、駆動方向に対するZ軸方向への吸引力の変化の方向(極性)を切り替えることでも可能である。一方、直流電圧V1およびV2の双方の値を可変値としてもよい。この場合、それぞれの吸引力(変化幅)を異なる値で設定することにより、粗調整と微調整との使い分けが可能となり、そのため、回路規模を増やさず調整精度を高めることができる。 When the DC voltage V1 and the DC voltage V2 are set to different voltages and applied to the respective correction electrodes 41b to 44b and 41c to 44c, the attractive force in the Z-axis direction due to the electrostatic force changes due to driving vibration. In order to maximize the change in the attractive force due to the drive vibration, the potential difference between the correction electrode to which one of the DC voltages V1 and V2 is applied and the extending piece on the movable side is maximized, and the other DC voltage is applied. This can be realized by setting the potential difference between the correction electrode to which is applied and the extended side corresponding to the correction electrode to zero. In order to minimize the change in the attractive force due to the drive vibration, the DC voltages V1 and V2 may be set to the same potential. When adjusting the attractive force, either one of the DC voltages V1 and V2 is set to a fixed value and the other is set to a variable value. It is also possible to switch the application electrodes of the DC voltages V1 and V2 (selective application) and switch the direction (polarity) of the change in the attractive force in the Z-axis direction with respect to the driving direction. On the other hand, both values of the DC voltages V1 and V2 may be variable values. In this case, by setting each suction force (variation range) with a different value, it is possible to use the coarse adjustment and the fine adjustment separately, so that the adjustment accuracy can be increased without increasing the circuit scale.
 以下、直交位相エラーにより、駆動する可動錘4がX軸を中心に誤差揺動するときの修正処理について詳細に説明する。なお、上記した直流電圧の選択的印加を、「第1の場合」と「第2の場合」とに分けて説明する。また、直流電圧V1が固定値(可動側の延設辺と同電位)であり、直流電圧V2が可変値である場合を説明する。詳細は後述するが、振動ジャイロ1は、製品別の不完全性により誤差揺動するが、その際、「第1の場合」と「第2の場合」とのいずれかの動作となる。 Hereinafter, the correction process when the movable weight 4 to be driven is swung around the X axis due to the quadrature phase error will be described in detail. The selective application of the DC voltage will be described separately for the “first case” and the “second case”. Further, a case where the DC voltage V1 is a fixed value (the same potential as the extending side on the movable side) and the DC voltage V2 is a variable value will be described. As will be described in detail later, the vibration gyro 1 oscillates by error due to imperfections for each product. At that time, the operation is either “first case” or “second case”.
<第1の場合>
 第1の場合は、修正電極41b,42b,43b,44bに直流電圧V2が印加され、修正電極41c,42c,43c,44cに直流電圧V1が印加される。この状態で、可動錘4が時計回りに回転し(駆動の1振幅)、可動錘4の下半部がX軸を中心にZ軸方向下方へ傾く(後下り=前上り)と、修正電極43bに対し延設片43aがZ軸方向に離れながら重畳してゆくと同時に、修正電極44bに対し延設片44aがZ軸方向に離れながら重畳してゆく。このとき、修正電極43bおよび修正電極44bに直流電圧が印加されているため、発生した静電力により延設片43aおよび44aは、修正電極43bおよび44bに吸引される(引き上げられる)。一方、延設片41aおよび42aは、修正電極41bおよび42bから外れ、直流電圧V1が印加されてる修正電極41cおよび42cに重畳する。直流電圧V1は可動側の延設辺と同電位のため、可動錘4の上半部には静電力が低下する。よって、可動錘4を引き上げる力は、延設辺43aおよび44a側が強くなる。なお、延設片43aおよび44aと修正電極43bおよび44bとの間の静電力は、次の式により求められる。
 F = (1/2)・ε・(S/(d-x)2)・V2
  = A・S・V2  (但し、A =ε/2(d-X)2
 このように、静電力はS(面積)およびV2(電位差の二乗)に比例している。
<First case>
In the first case, the DC voltage V2 is applied to the correction electrodes 41b, 42b, 43b, and 44b, and the DC voltage V1 is applied to the correction electrodes 41c, 42c, 43c, and 44c. In this state, when the movable weight 4 rotates clockwise (one amplitude of driving) and the lower half of the movable weight 4 tilts downward in the Z-axis direction around the X-axis (rear descending = front ascending), the correction electrode The extended piece 43a overlaps with 43b while being separated in the Z-axis direction, and at the same time, the extended piece 44a is overlapped with the correction electrode 44b while being separated in the Z-axis direction. At this time, since a DC voltage is applied to the correction electrode 43b and the correction electrode 44b, the extended pieces 43a and 44a are attracted (pulled up) to the correction electrodes 43b and 44b by the generated electrostatic force. On the other hand, the extended pieces 41a and 42a are separated from the correction electrodes 41b and 42b and overlap the correction electrodes 41c and 42c to which the DC voltage V1 is applied. Since the DC voltage V1 has the same potential as the extending side on the movable side, the electrostatic force is reduced in the upper half of the movable weight 4. Therefore, the force for pulling up the movable weight 4 becomes stronger on the extended sides 43a and 44a side. In addition, the electrostatic force between the extended pieces 43a and 44a and the correction electrodes 43b and 44b is obtained by the following equation.
F = (1/2) ・ ε ・ (S / (dx) 2 ) ・ V 2
= A ・ S ・ V 2 (A = ε / 2 (dX) 2 )
Thus, the electrostatic force is proportional to S (area) and V 2 (square of potential difference).
 続いて、可動錘4が反時計回りに回転し、可動錘4の上半部がX軸を中心にZ軸方向下方へ傾く(前下り=後上り)と、修正電極41bに対し延設片41aがZ軸方向に離れながら重畳してゆくと同時に、修正電極42bに対し延設片42aがZ軸方向に離れながら重畳してゆく。このとき、修正電極41bおよび修正電極42bに直流電圧V2が印加されているため、発生した静電力により延設片41aおよび42aは、修正電極41bおよび42bに吸引される(引き上げられる)。一方、延設片43aおよび44aは、修正電極43cおよび44cと重畳するが、これらには直流電圧V1が印加されており、直流電圧V1は、可動側の延設片と同電位のために、静電力が低下し、吸引力が低下する。よって、可動錘4を引き上げる力は、延設片41aおよび42a側が強くなる。
 このように、回転振動する可動錘4に上記の動作が繰り返されることにより、シーソー様の誤差揺動は相殺され、可動錘4は基板2に対し平行状態を維持する。
Subsequently, when the movable weight 4 rotates counterclockwise and the upper half of the movable weight 4 tilts downward in the Z-axis direction about the X axis (front descending = back ascending), the extended piece with respect to the correction electrode 41b At the same time as 41a is superposed while being separated in the Z-axis direction, the extended piece 42a is superposed while being separated from the correction electrode 42b in the Z-axis direction. At this time, since the DC voltage V2 is applied to the correction electrode 41b and the correction electrode 42b, the extended pieces 41a and 42a are attracted (raised) by the correction electrodes 41b and 42b by the generated electrostatic force. On the other hand, the extension pieces 43a and 44a overlap with the correction electrodes 43c and 44c, but a DC voltage V1 is applied to them, and the DC voltage V1 has the same potential as the extension piece on the movable side. The electrostatic force decreases and the attractive force decreases. Therefore, the force for pulling up the movable weight 4 becomes stronger on the extending pieces 41a and 42a side.
In this way, by repeating the above-described operation on the movable weight 4 that oscillates and oscillates, the seesaw-like error swing is canceled, and the movable weight 4 maintains a parallel state with respect to the substrate 2.
<第2の場合>
 第2の場合は、修正電極41c,42c,43c,44cに直流電圧V2が印加され、修正電極41b,42b,43b,44bに直流電圧V1が印加される。この状態で、可動錘4が時計回りに回転し(駆動の1振幅)、可動錘4の上半部がX軸を中心にZ軸方向下方へ傾く(前下り=後上り)と、修正電極41cに対し延設片41aがZ軸方向に離れながら重畳してゆくと同時に、修正電極42cに対し延設片42aがZ軸方向に離れながら重畳してゆく。このとき、修正電極41cおよび修正電極42cに直流電圧V2が印加されているため、発生した静電力により延設片41aおよび42aは、修正電極41cおよび42cに吸引される(引き上げられる)。一方、可動錘4の下半部に関しては、延設片43aおよび44aが修正電極43bおよび44bと重畳するが、これらには直流電圧V1が印加されており、直流電圧V1は、可動側の延設片と同電位のために、静電力が低下し、吸引力が低下する。従って、可動錘4を引き上げる力は、延設片41aおよび42a側が強くなる。
<Second case>
In the second case, the DC voltage V2 is applied to the correction electrodes 41c, 42c, 43c, and 44c, and the DC voltage V1 is applied to the correction electrodes 41b, 42b, 43b, and 44b. In this state, when the movable weight 4 rotates clockwise (one amplitude of driving) and the upper half of the movable weight 4 tilts downward in the Z-axis direction about the X-axis (front descending = back ascending), the correction electrode The extended piece 41a overlaps with 41c while being separated in the Z-axis direction, and at the same time, the extended piece 42a is overlapped with the correction electrode 42c while being separated in the Z-axis direction. At this time, since the DC voltage V2 is applied to the correction electrode 41c and the correction electrode 42c, the extended pieces 41a and 42a are attracted (raised) by the correction electrodes 41c and 42c by the generated electrostatic force. On the other hand, with respect to the lower half of the movable weight 4, the extended pieces 43a and 44a overlap with the correction electrodes 43b and 44b, but a DC voltage V1 is applied to them, and the DC voltage V1 is extended on the movable side. Because of the same potential as the installation piece, the electrostatic force is reduced and the attractive force is reduced. Therefore, the force for pulling up the movable weight 4 becomes stronger on the extending pieces 41a and 42a side.
 続いて、可動錘4が反時計回りに回転し、可動錘4の下半部がX軸を中心にZ軸方向下方へ傾く(後下り=前上り)と、修正電極43cに対し延設片43aがZ軸方向に離れながら重畳してゆくと同時に、修正電極44cに対し延設片44aがZ軸方向に離れながら重畳してゆく。このとき、修正電極43cおよび修正電極44cに直流電圧V2が印加されているため、発生した静電力により延設片43aおよび44aは、修正電極43cおよび44cに吸引される(引き上げられる)。一方、前上りとなっている可動錘4の上半部では、延設片41aと修正電極41bとが、また延設片42aと修正電極42bとが重畳するが、これらには直流電圧V1が印加されており、直流電圧V1は、可動側の延設片と同電位のために、静電力が低下し、吸引力が低下する。よって、可動錘4を引き上げる力は、延設片43aおよび44a側が強くなる。
 この場合も、回転振動する可動錘4に上記の動作が繰り返されることにより、シーソー様の誤差揺動は相殺され、可動錘4は基板2に対し平行状態を維持する。
Subsequently, when the movable weight 4 rotates counterclockwise and the lower half of the movable weight 4 tilts downward in the Z-axis direction around the X-axis (rear descending = front ascending), the extended piece with respect to the correction electrode 43c 43a overlaps while being separated in the Z-axis direction, and at the same time, the extended piece 44a is superimposed on the correction electrode 44c while being separated in the Z-axis direction. At this time, since the DC voltage V2 is applied to the correction electrode 43c and the correction electrode 44c, the extended pieces 43a and 44a are attracted (raised) by the correction electrodes 43c and 44c by the generated electrostatic force. On the other hand, in the upper half portion of the movable weight 4 that is in the upward direction, the extension piece 41a and the correction electrode 41b overlap, and the extension piece 42a and the correction electrode 42b overlap. Since the DC voltage V1 is applied and has the same potential as that of the extending piece on the movable side, the electrostatic force is reduced and the attractive force is reduced. Therefore, the force for pulling up the movable weight 4 becomes stronger on the extending pieces 43a and 44a side.
Also in this case, the above operation is repeated on the movable weight 4 that oscillates and rotates, so that the seesaw-like error swing is canceled and the movable weight 4 maintains a parallel state with respect to the substrate 2.
 ところで、可動錘4の上半部と下半部とを基板2に対して平行にするための修正力は、次式により求めることができる。
(前下り時の修正力)
Fp = A・(S+ΔS・sin(ωt))・(V2-V0)+A・(S-ΔS・sin(ωt))・(V1-V0)2
    = A・[(S+ΔS・sin(ωt))・(V2+2V・ΔV+ΔV)
      +(S-ΔS・sin(ωt))・(V12-2V・V1・V0+V0)]
    = A・[V22+V1-2・V0・(V2+V1)+V0)+ΔS・(V22-V1-2・V0・(V2-V1))・
   sin(ωt)]
(後下り時の修正力)
Fn = A・(S-ΔS・sin(ωt))・(V2-V0)+A・(S+ΔS・sin(ωt))・(V1-V0)2
    = A・[(V22+V1-2・V0・(V2+V1)+V02)-ΔS・(V22-V1-2・V0・(V2-V1))・
   sin(ωt)]
 このように、上側電極と下側電極とでは、駆動変位と同周期で逆極性の修正力が印加されるようになっている。
By the way, the correction force for making the upper half and the lower half of the movable weight 4 parallel to the substrate 2 can be obtained by the following equation.
(Correction power when going down)
Fp = A ・ (S + ΔS ・ sin (ωt)) ・ (V2-V0) 2 + A ・ (S-ΔS ・ sin (ωt)) ・ (V1-V0) 2
= A ・ [(S + ΔS ・ sin (ωt)) ・ (V 2 + 2V ・ ΔV + ΔV 2 )
+ (S-ΔS ・ sin (ωt)) ・ (V1 2 -2V ・ V1 ・ V0 + V0 2 )]
= A ・ [V2 2 + V1 2 -2 ・ V0 ・ (V2 + V1) + V0 2 ) + ΔS ・ (V2 2 -V1 2 -2 ・ V0 ・ (V2-V1)) ・
sin (ωt)]
(Correction power when going down)
Fn = A ・ (S-ΔS ・ sin (ωt)) ・ (V2-V0) 2 + A ・ (S + ΔS ・ sin (ωt)) ・ (V1-V0) 2
= A ・ [(V2 2 + V1 2 -2 ・ V0 ・ (V2 + V1) + V0 2 ) -ΔS ・ (V2 2 -V1 2 -2 ・ V0 ・ (V2-V1)) ・
sin (ωt)]
As described above, a correction force having a reverse polarity is applied to the upper electrode and the lower electrode in the same cycle as the drive displacement.
 なお、Z軸と可動錘4の重心とがぶれない限りにおいて、誤差修正手段40aを、上部左側修正部41および上部右側修正部42、または下部左側修正部43および下部右側修正部44を省略してもよい。また、本実施形態では、可動錘4の上半部に修正部41および42を、下半部に修正部43および44をそれぞれ設けてあるが、各半部に3つ以上の修正部を設ける(但し、3つ以上の修正部はY軸を中心に線対称とする)ようにしてもよい。
 さらに、可動錘4の往復回転振動の変位に対応して、各延設片41a~44a と各修正電極41b~44b,41c~44とのオーバーラップ部分の面積が変化するように、修正電極41b~44b,41c~44の平面形状を例えば台形や三角形としてもよい。
As long as the Z axis and the center of gravity of the movable weight 4 do not deviate, the error correction means 40a is omitted from the upper left correction unit 41 and the upper right correction unit 42, or the lower left correction unit 43 and the lower right correction unit 44. May be. Further, in this embodiment, the correction portions 41 and 42 are provided in the upper half portion of the movable weight 4 and the correction portions 43 and 44 are provided in the lower half portion, respectively, but three or more correction portions are provided in each half portion. (However, the three or more correction parts may be symmetrical with respect to the Y axis).
Further, in accordance with the displacement of the reciprocating rotational vibration of the movable weight 4, the correction electrode 41b is adjusted so that the area of the overlapping portion between each extending piece 41a to 44a and each correction electrode 41b to 44b, 41c to 44 changes. The planar shapes of .about.44b and 41c.about.44 may be trapezoids or triangles, for example.
 図2は、上部左側修正部41を例とする、各修正部の変形例を示している。この変形例では、延設片41a、修正電極41bおよび41cが、Z軸(可動錘4の重心)を中心として扇状に湾曲する平面形状を有している。これにより、延設片41aと修正電極41bおよび41cとの重畳面積が比例的(反比例的)に増減し、可動錘4の誤差揺動を正確に修正することができる。 FIG. 2 shows a modification of each correction unit, taking the upper left correction unit 41 as an example. In this modification, the extending piece 41a and the correction electrodes 41b and 41c have a planar shape that curves in a fan shape around the Z axis (the center of gravity of the movable weight 4). Thereby, the overlapping area of the extending piece 41a and the correction electrodes 41b and 41c increases and decreases proportionally (inversely proportional), and the error swing of the movable weight 4 can be corrected accurately.
 図3は、可動錘4の1振幅(駆動)において、直角位相エラーに基づく可動錘4のZ軸方向の変位(誤差揺動)と、可動錘4に加えられる静電力の変化を表している。この場合、可動錘4の1振幅(駆動)の影響により、シーソー運動となる可動錘4の変位は、中立位置を中心に比例的(直線的)に変化する。一方、加えられる静電力は、これも可動錘4の1振幅(駆動)の影響により比例的(直線的)に変化する。そして、この静電力の比例的(直線的)な変化は、例えば修正部41を例に説明すると、修正電極41bに印加される直流電圧により、延設片41aと修正電極41bとの電位差を一定とし、可動錘4の1振幅(駆動)において、(可動錘4の1振幅(駆動)が)延設片41aと修正電極41bとの重畳面積が比例的に増減される事で達成される。これにより、直角位相エラーが静電力により相殺され、駆動する可動錘4は、基板2に対し平行な状態(誤差揺動無し)を維持する。 FIG. 3 shows the displacement of the movable weight 4 in the Z-axis direction (error fluctuation) based on the quadrature phase error and the change in the electrostatic force applied to the movable weight 4 in one amplitude (drive) of the movable weight 4. . In this case, due to the influence of one amplitude (drive) of the movable weight 4, the displacement of the movable weight 4 that becomes the seesaw motion changes proportionally (linearly) around the neutral position. On the other hand, the applied electrostatic force also changes proportionally (linearly) due to the influence of one amplitude (drive) of the movable weight 4. The proportional (linear) change in the electrostatic force is explained by taking the correction unit 41 as an example, and the potential difference between the extension piece 41a and the correction electrode 41b is made constant by the DC voltage applied to the correction electrode 41b. In addition, in one amplitude (drive) of the movable weight 4 (one amplitude (drive) of the movable weight 4), this is achieved by proportionally increasing or decreasing the overlapping area of the extended piece 41a and the correction electrode 41b. Thereby, the quadrature phase error is canceled out by the electrostatic force, and the movable weight 4 to be driven maintains a state parallel to the substrate 2 (no error fluctuation).
 次に、図4ないし図6を参照して、直角位相エラーに基づく誤差揺動を相殺する修正方法について説明する。上述のように、可動錘4は、駆動電極に交流電圧を印加することによりZ軸周りに往復回動(駆動)する。すなわち、可動錘4の駆動共振周波数で、図示(例えば、図1a)の時計回りおよび反時計回りに往復回動する。図1(a)では省略したが、駆動電極3(実際には、可動錘4の周方向に複数設けられている)は、可動錘4と一体に形成した櫛歯状の可動駆動電極22と、可動駆動電極22に噛み合うように設けた櫛歯状の一対の固定駆動電極21とから成り、可動駆動電極22に対し、一方の固定駆動電極21は往動方向(時計回り)に隣接し、他方の固定駆動電極21は復動方向(反時計回り)に隣接するように配設されている。 Next, a correction method for canceling the error fluctuation based on the quadrature error will be described with reference to FIGS. As described above, the movable weight 4 is reciprocally rotated (driven) around the Z axis by applying an AC voltage to the drive electrode. That is, it reciprocates clockwise and counterclockwise as shown (for example, FIG. 1 a) at the drive resonance frequency of the movable weight 4. Although omitted in FIG. 1A, the drive electrodes 3 (actually provided in a plurality in the circumferential direction of the movable weight 4) are comb-shaped movable drive electrodes 22 formed integrally with the movable weight 4. A pair of comb-like fixed drive electrodes 21 provided so as to mesh with the movable drive electrode 22, and one fixed drive electrode 21 is adjacent to the forward drive direction (clockwise) with respect to the movable drive electrode 22, The other fixed drive electrode 21 is disposed so as to be adjacent in the backward movement direction (counterclockwise).
 そして、交流電圧を一方の固定駆動電極21と他方の固定駆動電極21とに180°位相をずらして印加することにより(図5a「駆動信号」参照)、可動錘4を往復回動(駆動)させる。図5の「駆動信号」では、一方の固定駆動電極(往動側)への駆動信号を「SOP」で、他方の固定駆動電極(復動側)への駆動信号を「SON」で表している。この駆動信号(交流電圧の印加)により、実際の可動錘4は、位相が90°遅れて往復回動する(図5b「駆動振動」参照)。この場合、往動側のモニター信号を「MONP」で、復動側のモニター信号を「MONN」で表している。なお、実施形態のものでは、コリオリ力による振動(シーソー運動)が、駆動共振周波数と略同じ周波数で、且つ可動錘4の駆動振動に対し90°位相がずれて現れる(図5c「角速度信号」参照)。この場合、図4において、検出電極9aに対応する振動(揺動)を「SELP」で、検出電極9bに対応する振動(揺動)を「SELN」で表している。 Then, an AC voltage is applied to one fixed drive electrode 21 and the other fixed drive electrode 21 with a phase difference of 180 ° (see “drive signal” in FIG. 5a), whereby the movable weight 4 is reciprocally rotated (driven). Let In the “drive signal” in FIG. 5, the drive signal to one fixed drive electrode (forward movement side) is represented by “SOP”, and the drive signal to the other fixed drive electrode (return movement side) is represented by “SON”. Yes. Due to this drive signal (application of an alternating voltage), the actual movable weight 4 rotates back and forth with a phase delay of 90 ° (see “drive vibration” in FIG. 5b). In this case, the forward monitor signal is represented by “MONP” and the backward monitor signal is represented by “MONN”. In the embodiment, the vibration (seesaw motion) due to the Coriolis force appears at substantially the same frequency as the drive resonance frequency and is 90 ° out of phase with the drive vibration of the movable weight 4 ("angular velocity signal" in FIG. 5c). reference). In this case, in FIG. 4, the vibration (swing) corresponding to the detection electrode 9a is represented by “SELP”, and the vibration (swing) corresponding to the detection electrode 9b is represented by “SELN”.
 一方、直角位相エラーは、主として支持ばね7の形状不良に基づくものであるため、一対の検出電極9,9により検出されるその振動(揺動)は、駆動共振周波数と同じ周波数で、且つ可動錘4の駆動振動と同位相で現れる(図5d「直角位相エラー信号」参照)。この場合、図4において、検出電極9aに対応する直交位相エラー信号を「Qselp」で、検出電極9bに対応する直交位相エラー信号を「Qseln」で表している。本実施形態では、直角位相エラーにより振動(シーソー運動)する可動錘4を基板2と平行になるように修正するため、「直角位相エラー信号」の振幅の半分を同期検波により取り出し(図5e「demo」で表される「直角位相エラー信号 同期検波後」参照)、後述するフィルター部のLPF(ローパスフィルター)74によりノイズが除去された振幅値に基づいて修正値を決定している(図5f「修正信号である直流電圧」参照)。 On the other hand, since the quadrature phase error is mainly based on the shape failure of the support spring 7, the vibration (swing) detected by the pair of detection electrodes 9, 9 is movable at the same frequency as the drive resonance frequency. It appears in the same phase as the driving vibration of the weight 4 (see “Quadrature Error Signal” in FIG. 5d). In this case, in FIG. 4, the quadrature phase error signal corresponding to the detection electrode 9a is represented by “Qselp”, and the quadrature phase error signal corresponding to the detection electrode 9b is represented by “Qseln”. In this embodiment, in order to correct the movable weight 4 that vibrates (seesaw motion) due to the quadrature phase error so as to be parallel to the substrate 2, half of the amplitude of the “quadrature phase error signal” is extracted by synchronous detection (FIG. 5e “ The correction value is determined based on the amplitude value from which the noise has been removed by the LPF (low-pass filter) 74 of the filter unit described later (see “quadrature phase error signal after synchronous detection”) (FIG. 5f). (Refer to “DC voltage as a correction signal”).
 この修正信号を発生する回路は、上述のように、可動錘4が往動時に前下り(後上り)となり復動時に後下り(前上り)となる振動(傾動)に対し、図1aにおける修正部41および42の右側にある修正電極41cおよび42cと修正部43および44の右側にある修正電極43cおよび44cとに印加される直流電圧(図4における「V2」)と、可動錘4が往動時に前上り(後下り)となり復動時に後上り(前下り)となる振動(傾動)に対し、図1aにおける修正部41および42の左側にある修正電極41bおよび42bと修正部43および44の左側にある修正電極43bおよび44bとに印加される直流電圧(図4における「V1」)と、から成る直流電圧(図5f)を生成している。図5fでは、前者の直流電圧を「DCP」で、後者の直流電圧を「DCN」で表している。この直角位相エラーによる振動(シーソー運動)形態は、製品により区々となることが想定されるため、最終的には、「V1」と「V2」とを正しく切り替え、該当する修正電極に印加することになる(図5g「修正後信号」参照)。また、Y軸に関する直角位相エラーも上述した信号処理により相殺される。 As described above, the circuit for generating this correction signal corrects the vibration (tilt) in FIG. 1a with respect to the vibration (tilt) in which the movable weight 4 moves forward (backward upward) when moving forward and backwards (forward) when returning. DC voltage ("V2" in FIG. 4) applied to the correction electrodes 41c and 42c on the right side of the portions 41 and 42 and the correction electrodes 43c and 44c on the right side of the correction portions 43 and 44, and the movable weight 4 Correction electrodes 41b and 42b and correction portions 43 and 44 on the left side of the correction portions 41 and 42 in FIG. 1a with respect to vibration (tilt) that moves forward (backward downward) during movement and backward upward (forward downward) during backward movement. DC voltage (FIG. 5f) composed of a DC voltage (“V1” in FIG. 4) applied to the correction electrodes 43b and 44b on the left side of FIG. In FIG. 5f, the former DC voltage is represented by “DCP” and the latter DC voltage is represented by “DCN”. Since it is assumed that the vibration (seesaw motion) form due to the quadrature phase error varies depending on the product, finally, “V1” and “V2” are correctly switched and applied to the corresponding correction electrode. (Refer to FIG. 5g “post-correction signal”). Further, the quadrature phase error with respect to the Y axis is also canceled by the signal processing described above.
 図4は、上記した直流電圧による修正を実施する回路構成を表している。この修正では、正確に直角位相エラーを検出(検波)し、直角位相エラーを相殺する直流電圧を生成するため、振動ジャイロ1には一切の角速度を加えることなく(コリオリ力は発生しない)、可動錘4を駆動する。可動錘4の駆動は、図外の駆動回路により行い、駆動電極に上記の「駆動信号」を印加する。また、この駆動回路では、可動錘4の駆動をモニターし上記の「駆動振動」を得ておく。 FIG. 4 shows a circuit configuration for performing the correction by the DC voltage described above. This correction accurately detects (detects) quadrature phase error and generates a DC voltage that cancels out of quadrature phase error, so that the vibratory gyroscope 1 is movable without applying any angular velocity (no Coriolis force is generated). The weight 4 is driven. The movable weight 4 is driven by a drive circuit (not shown), and the above “drive signal” is applied to the drive electrode. Further, in this drive circuit, the drive of the movable weight 4 is monitored to obtain the above “drive vibration”.
 一対の検出電極9,9からCV変換部71に入力された「直角位相エラー信号」は、静電容量の変化が電圧の変化に変換され、増幅後に同期検波部72に出力される。同期検波部72は、同期信号切替え部73から入力した駆動回路の駆動モニター信号(「駆動振動」)により同期を取りながら、「直角位相エラー信号」を検波し、上記の「直角位相エラー信号 同期検波後」の信号を得る。この信号は、フィルター部のLPF74によりノイズが取り除かれ、測定部75に出力される。なお、コリオリ力の測定では、同期信号切替え部73において、駆動モニター信号を上記の「駆動信号」に切り替えて同期をとるようにする。 The “quadrature phase error signal” input from the pair of detection electrodes 9 and 9 to the CV converter 71 is converted into a change in voltage by the change in capacitance, and is output to the synchronous detector 72 after amplification. The synchronous detection unit 72 detects the “quadrature phase error signal” while synchronizing with the drive monitor signal (“drive vibration”) of the drive circuit input from the synchronization signal switching unit 73, and performs the above-described “quadrature phase error signal synchronization”. A signal “after detection” is obtained. From this signal, noise is removed by the LPF 74 of the filter unit, and the signal is output to the measurement unit 75. In the measurement of the Coriolis force, the synchronization signal switching unit 73 switches the drive monitor signal to the above “drive signal” to achieve synchronization.
 測定部75では、前下り時および後下り時の修正力を求めるための上述した数式により演算処理が為され、修正部41~44に印加される修正電圧が決定される。この電圧はデジタル値でSPI部76に出力され、SPI部76において、シリアル信号からパラレル信号に変換される。そしてD/A変換部77でデジタル値からアナログ値(直流電圧)に変換されて出力される。2つの「直流電圧」は、続く修正切替え部78により切り替えられて、上記の修正電圧「V1」または「V2」が印加される。なお、実際のものは、上記のルーチンワークを繰り返して、調整される(詳細は後述する)。 In the measurement unit 75, the arithmetic processing is performed by the above-described mathematical formula for obtaining the correction force at the time of forward and rearward descending, and the correction voltage applied to the correction units 41 to 44 is determined. This voltage is output to the SPI unit 76 as a digital value, and the SPI unit 76 converts the serial signal into a parallel signal. Then, the D / A converter 77 converts the digital value into an analog value (DC voltage) and outputs it. The two “DC voltages” are switched by the subsequent correction switching unit 78, and the correction voltage “V1” or “V2” is applied. The actual one is adjusted by repeating the above routine work (details will be described later).
 図6は、上記した直流電圧による修正のフローチャートである。上述のように、先ず駆動電極3に上記の「駆動信号」を印加して可動錘4を駆動する(S1参照)。次に、同期信号切替え部73を駆動モニター信号に切り替えておいて、「直角位相エラー信号」の同期検波を行う(S2参照)。なお、修正切替え部78は、いずれか一方の修正電極に切り替えられた状態となっている(S3参照)。続いて、「直角位相エラー信号 同期検波後」の信号は、測定部75に出力され(S4参照)、測定部75において、「直角位相エラー信号 同期検波後」の信号となる測定電圧Voと基準電圧Vrefが比較される(S5参照)。ここで、Vo-Vrefがゼロ或いは略ゼロであれば(「YES」)、適切な直角位相エラー修正が行われたものとして、直流電圧による修正を終了する(S6参照)。 FIG. 6 is a flowchart of the correction using the DC voltage described above. As described above, first, the above-mentioned “drive signal” is applied to the drive electrode 3 to drive the movable weight 4 (see S1). Next, the synchronous signal switching unit 73 is switched to the drive monitor signal, and synchronous detection of the “quadrature phase error signal” is performed (see S2). In addition, the correction switching part 78 is in the state switched to any one correction electrode (refer S3). Subsequently, the signal of “quadrature phase error signal after synchronous detection” is output to the measurement unit 75 (see S4). In the measurement unit 75, the measurement voltage Vo that becomes the signal of “quadrature phase error signal after synchronous detection” and the reference The voltage Vref is compared (see S5). Here, if Vo-Vref is zero or substantially zero (“YES”), it is determined that appropriate quadrature phase error correction has been performed, and correction by DC voltage is terminated (see S6).
 一方、Vo-Vref≒0ではない場合(NO)には、Vo-Vref>0か否かが判定され(S7参照)、「YES」であれば修正電圧を再度調整し(S8参照)、調整後の修正電圧を印加して(S9参照)測定を行う。ここで、修正切替え部78による修正電極に対する修正電圧「V1」または「V2」の切り替えが間違っている(S3における設定が間違っている)と、「NO」の判定となる。かかる場合には、修正切替え部78の切替え操作を行ってから(S10参照)、修正電圧を印加(S9参照)した後、S4の処理に戻る。 On the other hand, if Vo−Vref≈0 is not satisfied (NO), it is determined whether or not Vo−Vref> 0 (see S7). If “YES”, the correction voltage is adjusted again (see S8). A later correction voltage is applied (see S9) and measurement is performed. Here, if the switching of the correction voltage “V1” or “V2” to the correction electrode by the correction switching unit 78 is wrong (the setting in S3 is wrong), the determination is “NO”. In such a case, after the switching operation of the correction switching unit 78 is performed (see S10), the correction voltage is applied (see S9), and then the process returns to S4.
 このようにして、可動錘4の生ずる直角位相エラーが静電力により相殺され、駆動する可動錘4は、基板2に対し平行な状態(誤差揺動無し)を維持する。したがって、形状の不完全性に基づく直角位相エラーが除去され、コリオリ力の検出精度を格段に向上させることができる。 In this way, the quadrature phase error generated by the movable weight 4 is canceled by the electrostatic force, and the movable weight 4 to be driven is maintained in a state parallel to the substrate 2 (no error fluctuation). Therefore, the quadrature phase error based on the imperfection of the shape is removed, and the detection accuracy of the Coriolis force can be greatly improved.
 図7は、第2実施形態を示す1軸の振動ジャイロの平面模式図である(駆動電極は省略)。同図に示すように、第2実施形態の振動ジャイロ1Aは、第1実施形態と同様に、可動錘4を、アンカー6からX軸方向に延びる4本の捻り支持ばね7を介して、基板2上にリリースしている。そして、この振動ジャイロ1Aでは、可動錘4の周縁部に4つの開口部65を形成し、この開口部65周りの4つ(複数)の修正部61~64を構成するようにしている。この場合も、誤差修正手段40aは、可動錘4の上半部に位置する上部左側修正部61および上部右側修正部62と、下半部に位置する下部左側修正部63および下部右側修正部64と、を有しており、上部左側修正部61、上部右側修正部62、下部左側修正部63および下部右側修正部64は、X軸を中心に線対称に配設され、且つY軸を中心に線対称に配設されている。 FIG. 7 is a schematic plan view of a uniaxial vibrating gyroscope showing a second embodiment (drive electrodes are omitted). As shown in the figure, the vibration gyro 1A of the second embodiment is similar to the first embodiment in that the movable weight 4 is connected to the substrate via four torsion support springs 7 extending from the anchor 6 in the X-axis direction. Released on 2. In the vibration gyro 1A, four openings 65 are formed in the peripheral portion of the movable weight 4, and four (plural) correction portions 61 to 64 around the opening 65 are configured. Also in this case, the error correction means 40a includes an upper left correction portion 61 and an upper right correction portion 62 located in the upper half of the movable weight 4, and a lower left correction portion 63 and a lower right correction portion 64 located in the lower half. The upper left correction unit 61, the upper right correction unit 62, the lower left correction unit 63, and the lower right correction unit 64 are arranged symmetrically about the X axis and centered on the Y axis. Are arranged in line symmetry.
 上部左側修正部61は、可動錘4の表面に形成された開口部65と、開口部65に臨み、開口部65を構成する一対の開口縁部61a,61aに対し、往復振動の振動方向にオーバーラップするように固定的に配設された修正電極61bおよび61cを備えている。他の修正部62~64も、同様の構造となっている。そして、各開口縁部61a,62a,63a,64aにより、固定側の電極が構成されている。 The upper left correction portion 61 faces the opening 65 formed on the surface of the movable weight 4 and the pair of opening edges 61a and 61a constituting the opening 65 in the vibration direction of the reciprocating vibration. The correction electrodes 61b and 61c are fixedly arranged so as to overlap. The other correction parts 62 to 64 have the same structure. The opening edge portions 61a, 62a, 63a, and 64a constitute a fixed-side electrode.
 この場合も、可動錘4が往復回転振動すると、各開口縁部61a~64aと、これに対応する修正電極61b~64bまたは修正電極61c~64cが重畳し、可動錘4に静電力を作用させる。この静電力により、可動錘4の傾きが修正され、駆動する可動錘4は、基板2に対し平行状態を維持する。 Also in this case, when the movable weight 4 is reciprocatingly oscillated, the opening edge portions 61a to 64a and the corresponding correction electrodes 61b to 64b or the correction electrodes 61c to 64c are overlapped to cause an electrostatic force to act on the movable weight 4. . The inclination of the movable weight 4 is corrected by the electrostatic force, and the movable weight 4 to be driven maintains a parallel state with respect to the substrate 2.
 可動錘4の外終端に延設片を設ける代わりに、可動錘4の開口部65周りに複数の修正部61~64を構成することにより、可動錘4の外形寸法を大きくすることなく、直角位相エラーによる誤差揺動を修正でき、角速度を正確に検出することができる。 Instead of providing an extended piece at the outer end of the movable weight 4, a plurality of correction portions 61 to 64 are formed around the opening 65 of the movable weight 4, thereby making it possible to make a right angle without increasing the outer dimension of the movable weight 4. The error fluctuation due to the phase error can be corrected, and the angular velocity can be accurately detected.
 次に、図8の2軸の振動ジャイロの平面模式図を参照して、本発明の第2実施形態について説明する。なお、図1(a)と同様に、図8においても駆動電極を示していない。
 第2実施形態の2軸の振動ジャイロ11は、第1実施形態(図1(a))と同様に、駆動電極および可動錘4を有しているとともに、可動錘4の内側に配設された平板扇状の一対のX軸分割検出錘5a,5aおよび一対のY軸分割検出錘5b,5bからなる検出錘5と、可動錘4の中央位置に配設されたアンカー6と、アンカー6と各X軸分割検出錘5a,5aとの間に掛け渡された一対のX軸錘支持ばね7a,7aおよびアンカー6と各Y軸分割検出錘5b,5bとの間に架け渡された一対のY軸錘支持ばね7b,7bと、可動錘4と各X軸分割検出錘5a,5aとを連結する一対のX軸錘連結ばね13a,13bおよび可動錘4と各Y軸分割検出錘5b,5bとを連結する一対のY軸錘連結ばね13b,13bと、振動する一対のX軸分割検出錘5a,5aの変位を検出する一対のX軸検出電極および振動する一対のX軸分割検出錘5b,5bの変位を検出する一対のY軸検出電極(ともに図示しない)と、を有している。また、この2軸の振動ジャイロ11は、直角位相エラーに基づいて生ずるX軸(検出軸)周りの誤差揺動を除去するX軸周り誤差修正手段40bと、直角位相エラーに基づいて生ずるY軸(検出軸)周りの誤差揺動を除去するY軸周り誤差修正手段40cと、有している。
Next, a second embodiment of the present invention will be described with reference to a schematic plan view of the biaxial vibrating gyroscope of FIG. Note that the drive electrodes are not shown in FIG. 8 as in FIG.
Similar to the first embodiment (FIG. 1A), the biaxial vibrating gyroscope 11 of the second embodiment has a drive electrode and a movable weight 4 and is disposed inside the movable weight 4. A pair of X-axis divided detection weights 5a, 5a and a pair of Y-axis divided detection weights 5b, 5b, an anchor 6 disposed at the center position of the movable weight 4, and an anchor 6 A pair of X-axis weight support springs 7a, 7a and an anchor 6 spanned between the X-axis split detection weights 5a, 5a and a pair of spans spanned between the Y-axis split detection weights 5b, 5b. Y-axis weight support springs 7b, 7b, a pair of X-axis weight connection springs 13a, 13b for connecting the movable weight 4 and the respective X-axis divided detection weights 5a, 5a, and the movable weight 4 and the respective Y-axis divided detection weights 5b, A pair of Y-axis weight coupling springs 13b, 13b that couple 5b and a pair of vibrating X-axis A pair of X-axis detection electrodes for detecting the displacement of the detection weights 5a, 5a and a pair of Y-axis detection electrodes (both not shown) for detecting the displacement of the vibrating pair of X-axis divided detection weights 5b, 5b ing. The biaxial vibrating gyroscope 11 includes an X axis error correcting means 40b for removing error fluctuations around the X axis (detection axis) generated based on the quadrature error, and a Y axis generated based on the quadrature error. Y-axis error correction means 40c for removing error fluctuation around the (detection axis).
 一対のX軸錘支持ばね7a,7aおよび一対のY軸錘支持ばね7b,7bと、アンカー6との接続形態は、可動錘4および検出錘5を主体とする可動部がX軸、Y軸およびZ軸について対称となるように構成されている。すなわち、Z軸に関しては、振動ジャイロ11(可動部)の重心がX・Y両支持ばね7a,7bとアンカー6との軸心と重なり、且つX・Y平面に関しては、振動ジャイロ11(可動部)の中心位置が重心と重なるように配置されている。これにより、例えば重力などの加速度の影響を受け難くなり、設置の自由度も向上させることができる。 The connection form of the pair of X-axis weight support springs 7a and 7a and the pair of Y-axis weight support springs 7b and 7b and the anchor 6 is such that the movable part mainly composed of the movable weight 4 and the detection weight 5 is the X-axis and the Y-axis. And it is comprised so that it may become symmetrical about a Z-axis. That is, with respect to the Z axis, the center of gravity of the vibration gyro 11 (movable part) overlaps with the axes of the X and Y support springs 7a and 7b and the anchor 6, and the vibration gyro 11 (movable part) with respect to the XY plane. ) Is placed so that the center position of the Thereby, it becomes difficult to receive the influence of accelerations, such as gravity, for example, and the freedom degree of installation can also be improved.
 一対のX軸分割検出錘5a,5aおよび一対のY軸分割検出錘5b,5bは、90°の角度を為す全く同一の平板扇状に形成され、90°ピッチで配設されている。回転振動する駆動錘4が、X軸回りの角速度を受けると、発生するコリオリ力により駆動錘4と共に一対のX軸分割検出錘5a,5aが一対のX軸錘支持ばね7a,7aを中心にそれぞれ振動する。同様に、回転振動する駆動錘4が、Y軸回りの角速度を受けると、発生するコリオリ力により駆動錘4と共に一対のY軸分割検出錘5b,5bが一対のY軸錘支持ばね7b,7bを中心にそれぞれ振動する。 The pair of X-axis divided detection weights 5a and 5a and the pair of Y-axis divided detection weights 5b and 5b are formed in exactly the same flat fan shape having an angle of 90 °, and are arranged at a pitch of 90 °. When the rotationally oscillating drive weight 4 receives an angular velocity about the X axis, the pair of X axis divided detection weights 5a and 5a are centered on the pair of X axis weight support springs 7a and 7a together with the drive weight 4 due to the generated Coriolis force. Each vibrates. Similarly, when the rotationally oscillating drive weight 4 receives an angular velocity around the Y axis, the pair of Y axis divided detection weights 5b and 5b together with the drive weight 4 is generated by the generated Coriolis force and the pair of Y axis weight support springs 7b and 7b. Vibrate around each other.
 一対のX軸錘連結ばね13a,13aおよび一対のY軸錘連結ばね13b,13bは、全く同一の形態を有しており、それぞれ幅狭の断面矩形に形成され、駆動錘4の回転振動を吸収すると共に駆動錘4が受けるコリオリ力を検出錘5に伝達する。すなわち、一対のX軸錘連結ばね13a,13aおよび一対のY軸錘連結ばね13b,13bにより、駆動錘4の回転振動は検出錘5に伝達されないが、コリオリ力による振動は検出錘5に伝達されるようになっている。これにより、一対のX軸分割検出錘5A,5Aおよび一対のY軸分割検出錘5B,5Bは、駆動錘4の回転振動の影響を受けることなくコリオリ力によりそれぞれ振動する。 The pair of X-axis weight connection springs 13a and 13a and the pair of Y-axis weight connection springs 13b and 13b have exactly the same form, and are formed in a narrow cross-sectional rectangle, respectively, and the drive weight 4 is subjected to rotational vibration. The Coriolis force received by the driving weight 4 is absorbed and transmitted to the detection weight 5. That is, the rotation vibration of the drive weight 4 is not transmitted to the detection weight 5 by the pair of X-axis weight connection springs 13 a and 13 a and the pair of Y-axis weight connection springs 13 b and 13 b, but vibration due to the Coriolis force is transmitted to the detection weight 5. It has come to be. As a result, the pair of X-axis split detection weights 5A and 5A and the pair of Y-axis split detection weights 5B and 5B vibrate by Coriolis force without being affected by the rotational vibration of the drive weight 4.
 一対のX軸検出電極は、一対のX軸分割検出錘5a,5aにより構成された一対の可動検出電極と、一対の可動検出電極に対し微小間隙(但し、検出錘5の振幅より大きい)を存して対面する扇状の一対の固定検出電極と、で構成されている(いずれも図示せず)。同様に、一対のY軸検出電極は、一対のY軸分割検出錘5b,5bにより構成された一対の可動検出電極と、一対の可動検出電極に対し微小間隙を存して対面する扇状の一対の固定検出電極と、で構成されている。コリオリ力によりX軸分割検出錘5a,5aまたはY軸分割検出錘5b,5bが振動すると、それぞれの可動検出電極と固定検出電極との間の静電容量が変化し、この変化に基づいて所望の角速度が検出される。 The pair of X-axis detection electrodes has a pair of movable detection electrodes constituted by a pair of X-axis divided detection weights 5a and 5a and a small gap (however, larger than the amplitude of the detection weight 5) with respect to the pair of movable detection electrodes. And a pair of fan-shaped fixed detection electrodes facing each other (both not shown). Similarly, the pair of Y-axis detection electrodes includes a pair of movable detection electrodes constituted by a pair of Y-axis divided detection weights 5b and 5b, and a pair of fan-like surfaces facing each other with a minute gap with respect to the pair of movable detection electrodes. And a fixed detection electrode. When the X-axis divided detection weights 5a and 5a or the Y-axis divided detection weights 5b and 5b vibrate due to the Coriolis force, the capacitance between the respective movable detection electrodes and the fixed detection electrodes changes, and based on this change, a desired value is obtained. Is detected.
 X軸周り誤差修正手段40bは、第1実施形態の誤差修正手段40aと同一のものであり、修正部41~44により構成され、Y軸周り誤差修正手段40cは、修正部45~48により構成されている。詳細な説明は第1実施形態に譲るが、X軸周り誤差修正手段40bは、Y軸に対して線対称に設けられた上部左側修正部41、上部右側修正部42、下部左側修正部43および下部右側修正部44を有している。また、Y軸周り誤差修正手段40cは、X軸に対して線対称に設けられた右側上部修正部45、右側下部修正部46、左側上部修正部47および左側下部修正部48を備えている。各修正部45~48は、延設片45a~48aおよび延設片45a~48aに対応する修正電極45bおよび45c、46bおよび46c、47bおよび47c、48bおよび48cが設けられているとともに、D/A変換部(電圧印加部)(図4参照)が接続されている。 The error correction means 40b around the X axis is the same as the error correction means 40a of the first embodiment, and is constituted by correction parts 41 to 44, and the error correction means 40c around the Y axis is constituted by correction parts 45 to 48. Has been. Although the detailed description will be given to the first embodiment, the X axis error correcting means 40b includes an upper left correcting portion 41, an upper right correcting portion 42, a lower left correcting portion 43, and A lower right correction unit 44 is provided. Further, the Y axis around error correction means 40c includes a right upper correction unit 45, a right lower correction unit 46, a left upper correction unit 47, and a left lower correction unit 48 which are provided symmetrically with respect to the X axis. The correction portions 45 to 48 are provided with extension pieces 45a to 48a and correction electrodes 45b and 45c, 46b and 46c, 47b and 47c, 48b and 48c corresponding to the extension pieces 45a to 48a, and D / An A conversion unit (voltage application unit) (see FIG. 4) is connected.
 X軸に関し、直角位相エラーにより誤差揺動が発生する場合には、図1(a)で説明したのと同様に、X軸周り誤差修正手段40bが動作する。すなわち、可動錘4が往復動回転し、可動錘4の上半部または下半部がX軸回りに傾動する時には、修正部41~44が、図1(a)の場合と同様に動作する。 When the error fluctuation occurs due to the quadrature phase error with respect to the X axis, the error correcting means 40b around the X axis operates as described with reference to FIG. That is, when the movable weight 4 reciprocates and the upper half or the lower half of the movable weight 4 tilts around the X axis, the correcting portions 41 to 44 operate in the same manner as in FIG. .
 以下、直交位相エラーにより駆動錘4がY軸を中心に誤差揺動するときの修正処理について説明する。この場合も、上述と同様に2つの振動形態(Y軸を中心として右下りまたは左下り)となる。なお、Y軸回りの修正処理を行う場合、各修正電極45b~48cには、常に電圧が印加される。 Hereinafter, a correction process when the drive weight 4 swings around the Y axis due to a quadrature error will be described. In this case as well, two vibration modes (downwardly to the right or downward to the left with respect to the Y axis) are provided as described above. When the correction process around the Y axis is performed, a voltage is always applied to the correction electrodes 45b to 48c.
 可動錘4が往動方向(時計回り)に回転し、可動錘4の左半部がY軸を中心にZ軸方向左側に傾く(左下り=右上り)場合、延設片47aおよび48aに重畳した修正電極47bおよび48bに直流電圧が印加され、延設片47aおよび48aは、修正電極47bおよび48bに吸引される。可動錘4は、修正電極47bおよび48bの静電力のみにより吸引される。 When the movable weight 4 rotates in the forward direction (clockwise) and the left half of the movable weight 4 is tilted to the left in the Z-axis direction around the Y axis (left down = upper right), the extension pieces 47a and 48a A DC voltage is applied to the superimposed correction electrodes 47b and 48b, and the extending pieces 47a and 48a are attracted to the correction electrodes 47b and 48b. The movable weight 4 is attracted only by the electrostatic force of the correction electrodes 47b and 48b.
 続いて、可動錘4が復動方向(反時計回り)に回転し、可動錘4の右半部がY軸を中心にZ軸方向右側へ傾く(右下り=左上り)と、延設片45aおよび延設片46aに重畳した修正電極45bおよび46bに直流電圧が印加され、延設片45aおよび46aは、修正電極45bおよび46bに吸引される。すなわち、可動錘4は、修正電極45bおよび46bのみにより吸引される。
 回転振動する可動錘4に上記の動作が繰り返されることにより、シーソー様の誤差揺動は相殺され、可動錘4は基板2に対し平行状態を維持する。
Subsequently, when the movable weight 4 rotates in the backward movement direction (counterclockwise) and the right half of the movable weight 4 tilts to the right in the Z-axis direction around the Y axis (right downward = left upward), the extended piece A DC voltage is applied to the correction electrodes 45b and 46b superimposed on the 45a and the extension piece 46a, and the extension pieces 45a and 46a are attracted to the correction electrodes 45b and 46b. That is, the movable weight 4 is attracted only by the correction electrodes 45b and 46b.
By repeating the above-described operation on the movable weight 4 that rotates and vibrates, the seesaw-like error swing is canceled, and the movable weight 4 maintains a parallel state with respect to the substrate 2.
 可動錘4が往動方向(時計回り)に回転し、可動錘4の右半部がY軸を中心にZ方向右側に傾く(右下り=左上り)場合、および、復動方向(反時計回り)に回転し、可動錘4の左半部がZ方向左側に傾く(左下り=右上がり)場合も、上述と同様にして、各延設片と対応する修正電極との間の静電力により、可動錘4が吸引される。 When the movable weight 4 rotates in the forward direction (clockwise) and the right half of the movable weight 4 is tilted to the right in the Z direction around the Y axis (right downward = left upward), and in the backward direction (counterclockwise) When the left half of the movable weight 4 is tilted to the left in the Z direction (left-down = up-right), the electrostatic force between each extended piece and the corresponding correction electrode is also the same as described above. Thus, the movable weight 4 is sucked.
 このように、2軸の回転振動ジャイロには、Y軸に関してのみならずX軸に関しても、X軸を線対称として、修正部45~48がそれぞれ設けられている。全体として、駆動錘4の周方向に8つの修正部(4つ×2組)が設けられているので、X軸を中心とする直交位相エラーのみならず、Y軸を中心とする直交位相エラーをも相殺することができ、2軸のそれぞれの角速度検出を精度良く行うことができる。この実施形態では、各軸に対して線対称に8組の修正部を設けたが、もちろん、それ以上も設けてもよい。図示したように、各修正部41~48を可動錘4の周方向に均等に設けてあるが、各修正部41~48の間隔を均等としなくても良い。 As described above, the biaxial rotational vibration gyro is provided with the correcting portions 45 to 48 with respect to the X axis not only with respect to the Y axis but also with respect to the X axis. As a whole, since eight correction parts (4 × 2 sets) are provided in the circumferential direction of the drive weight 4, not only the quadrature phase error centered on the X axis but also the quadrature phase error centered on the Y axis Can be canceled out, and the angular velocities of the two axes can be detected with high accuracy. In this embodiment, eight sets of correction portions are provided symmetrically with respect to each axis, but of course, more than that may be provided. As shown in the figure, the correction portions 41 to 48 are provided uniformly in the circumferential direction of the movable weight 4, but the intervals between the correction portions 41 to 48 need not be equal.
 図9は、図8に示す2軸の振動ジャイロの変形例を示す平面模式図である。この振動ジャイロ11Aでは、可動錘4の全周にわたって修正部51a~51tが設けられている。各修正部51a~51tは、上述と同様に、延設片および一対の修正電極を有している(図示省略)。
 このような構成の振動ジャイロ11Aでは、X軸を中心とする直交位相エラー(誤差揺動)と、Y軸を中心とする直交位相エラー(誤差揺動)と、における強度の相違に合わせて、修正部51a~51tをX軸用とY軸用とに区分けするようにしている。このように、直流電圧が印加される修正部の数を、X/Yの直交位相エラーの大きさに対応して割り当てるようにすれば、2軸のそれぞれの直角位相エラーを適切に修正することができる。このように、可動錘4の全周にわたって修正部51a~51tを設けた場合、修正部は、必要に応じて使用されない場合がある。
FIG. 9 is a schematic plan view showing a modification of the biaxial vibrating gyroscope shown in FIG. In the vibrating gyroscope 11A, correction portions 51a to 51t are provided over the entire circumference of the movable weight 4. Each of the correction portions 51a to 51t has an extending piece and a pair of correction electrodes (not shown) as described above.
In the vibration gyro 11A having such a configuration, according to the difference in intensity between the quadrature phase error (error fluctuation) centered on the X axis and the quadrature phase error (error fluctuation) centered on the Y axis, The correction parts 51a to 51t are divided into those for the X axis and those for the Y axis. In this way, if the number of correction parts to which a DC voltage is applied is assigned corresponding to the magnitude of the X / Y quadrature phase error, the quadrature phase error of each of the two axes can be corrected appropriately. Can do. As described above, when the correcting portions 51a to 51t are provided over the entire circumference of the movable weight 4, the correcting portion may not be used as necessary.
 1,1A,11,11A 振動ジャイロ、2 基板、3 駆動電極、4 可動錘 6 アンカー、7 支持ばね、9 検出電極、40a 誤差修正手段、40b X軸周り誤差修正手段、40c Y軸周り誤差修正手段、41~48 修正部、41a~48a 延設片、41b~48c 修正電極、51a~51t 修正部、61~64 修正部、61a~64a 開口縁部、61b~64c 修正電極、65 開口部、77 D/A変換部 1,1A, 11,11A Vibration gyro, 2, substrate, 3 drive electrode, 4 movable weight, 6 anchor, 7 support spring, 9 detection electrode, 40a error correction means, 40b X axis error correction means, 40c Y axis error correction Means, 41-48 correction part, 41a-48a extension piece, 41b-48c correction electrode, 51a-51t correction part, 61-64 correction part, 61a-64a opening edge, 61b-64c correction electrode, 65 opening part, 77 D / A converter

Claims (12)

  1.  基板上にリリースされた可動錘を、駆動電極を介して往復回転振動させると共に、
     検出電極を介して、コリオリ力により検出軸周りに揺動する前記可動錘の変位を検出する回転振動ジャイロであって、
     角速度を与えない状態で前記往復回転振動に伴って生ずる前記可動錘の誤差揺動を、前記可動錘に静電力を作用させて修正する誤差修正手段を備え、
     前記誤差修正手段は、
     前記静電力を生じさせるための電圧が印加されると共に、
     前記検出軸で画成される前記可動錘の少なくとも一方の半部において、前記検出軸に直交する軸を中心に前記可動錘の周方向に配置した複数の修正部を有していることを特徴とする回転振動ジャイロ。
    While the movable weight released on the substrate is reciprocally rotated through the drive electrode,
    A rotational vibration gyro that detects a displacement of the movable weight swinging around a detection axis by a Coriolis force via a detection electrode;
    An error correction means for correcting an error swing of the movable weight caused by the reciprocating rotation vibration without applying an angular velocity by applying an electrostatic force to the movable weight;
    The error correction means includes
    A voltage for generating the electrostatic force is applied,
    At least one half of the movable weight defined by the detection axis has a plurality of correction portions arranged in the circumferential direction of the movable weight with an axis orthogonal to the detection axis as a center. Rotating vibration gyro.
  2.  前記複数の修正部は、前記検出軸および前記検出軸に直交する軸の少なくとも一方を中心として線対称に配置されていることを特徴とする請求項1に記載の回転振動ジャイロ。 The rotational vibration gyroscope according to claim 1, wherein the plurality of correcting portions are arranged line-symmetrically around at least one of the detection axis and an axis orthogonal to the detection axis.
  3.  前記各修正部は、
     前記可動錘の外周端から径方向に延設され、可動側の電極を構成する延設片と、
     前記延設片に対し、前記往復回転振動の振動方向にオーバーラップするように配置した固定側の修正電極と、を有していることを特徴とする請求項1に記載の回転振動ジャイロ。
    Each of the correction units is
    An extending piece extending in a radial direction from an outer peripheral end of the movable weight, and constituting an electrode on the movable side;
    The rotary vibration gyro according to claim 1, further comprising a fixed correction electrode arranged so as to overlap the extending piece in a vibration direction of the reciprocating rotational vibration.
  4.  前記修正電極は、前記往復回転振動の振動方向両側にオーバーラップするように一対配設されていることを特徴とする請求項3に記載の回転振動ジャイロ。 4. The rotational vibration gyro according to claim 3, wherein a pair of the correction electrodes are disposed so as to overlap both sides of the vibration direction of the reciprocating rotational vibration.
  5.  前記修正電極は、前記往復回転振動の変位に対応して、前記延設片と前記修正電極とのオーバーラップ部分の面積が変化する平面形状に形成されていることを特徴とする請求項4に記載の回転振動ジャイロ。 The said correction electrode is formed in the planar shape from which the area of the overlap part of the said extension piece and the said correction electrode changes according to the displacement of the said reciprocation rotational vibration. The rotational vibration gyro described.
  6.  前記可動錘には、前記複数の修正部に対応して複数の開口部が形成され、
     前記各修正部は、
     前記開口部を構成すると共に可動側の電極を構成する開口縁部と、
     前記開口部に臨み、前記開口縁部に対し、前記往復回転振動の振動方向にオーバーラップするように配設した固定側の修正電極と、を有していることを特徴とする請求項1に記載の回転振動ジャイロ。
    The movable weight has a plurality of openings corresponding to the plurality of correction portions,
    Each of the correction units is
    An opening edge that constitutes the opening and constitutes the movable electrode; and
    The fixed electrode on the fixed side facing the opening and disposed so as to overlap with the opening edge in the vibration direction of the reciprocating rotational vibration. The rotational vibration gyro described.
  7.  前記修正電極は、前記可動錘と同心となる扇形状に形成されていることを特徴とする請求項3または6に記載の回転振動ジャイロ。 The rotational vibration gyroscope according to claim 3 or 6, wherein the correction electrode is formed in a fan shape concentric with the movable weight.
  8.  直交する2つの前記検出軸を備えると共に、
     2つの前記検出軸にそれぞれ対応して設けられた2組の前記誤差修正手段を備えたことを特徴とする請求項1に記載の回転振動ジャイロ。
    Including two orthogonal detection axes,
    2. The rotary vibration gyro according to claim 1, further comprising two sets of the error correction means provided corresponding to the two detection axes.
  9.  前記2組の誤差修正手段を構成する複数の修正部が、前記可動錘の周方向に均等に配設されていることを特徴とする請求項8に記載の回転振動ジャイロ。 9. The rotary vibration gyro according to claim 8, wherein a plurality of correction portions constituting the two sets of error correction means are arranged uniformly in a circumferential direction of the movable weight.
  10.  前記複数の修正部は、前記可動錘の誤差揺動に基づいて、前記検出軸のいずれかに割り当てられていることを特徴とする請求項9に記載の回転振動ジャイロ。 10. The rotational vibration gyro according to claim 9, wherein the plurality of correcting portions are assigned to any one of the detection shafts based on an error swing of the movable weight.
  11.  前記一対の修正電極に電圧を印加する電圧印加部をさらに備え、前記電圧印加部は、前記一対の修正電極の一方に印加される電圧を一定値に固定とし、他方に印加される電圧を可変調整可能とすることを特徴とする請求項4に記載の回転振動ジャイロ。 The apparatus further comprises a voltage application unit that applies a voltage to the pair of correction electrodes, and the voltage application unit fixes a voltage applied to one of the pair of correction electrodes to a constant value and varies a voltage applied to the other. The rotary vibration gyro according to claim 4, wherein the rotational vibration gyro is adjustable.
  12.  前記一対の修正電極に電圧を印加する電圧印加部をさらに備え、前記電圧印加部は、前記一対の修正電極に印加される電圧をそれぞれ可変調整可能とすることを特徴とする請求項4に記載の回転振動ジャイロ。 The voltage application unit that applies a voltage to the pair of correction electrodes, and the voltage application unit is capable of variably adjusting the voltages applied to the pair of correction electrodes. Rotating vibration gyro.
PCT/JP2011/005612 2011-10-05 2011-10-05 Rotational vibration gyro WO2013051060A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005612 WO2013051060A1 (en) 2011-10-05 2011-10-05 Rotational vibration gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005612 WO2013051060A1 (en) 2011-10-05 2011-10-05 Rotational vibration gyro

Publications (1)

Publication Number Publication Date
WO2013051060A1 true WO2013051060A1 (en) 2013-04-11

Family

ID=48043257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005612 WO2013051060A1 (en) 2011-10-05 2011-10-05 Rotational vibration gyro

Country Status (1)

Country Link
WO (1) WO2013051060A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016097127A1 (en) * 2014-12-18 2016-06-23 Acreo Swedish Ict Ab A quadrature compensation method for mems gyroscopes and a gyroscope sensor
CN107003130A (en) * 2014-12-18 2017-08-01 赖斯阿克里奥公司 Micro-electro-mechanical gyroscope
WO2018016190A1 (en) * 2016-07-21 2018-01-25 ソニー株式会社 Gyrosensor, signal processing device, electronic apparatus, and gyrosensor control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045699A2 (en) * 1996-05-31 1997-12-04 The Regents Of The University Of California Micromachined vibratory rate gyroscope
US5955668A (en) * 1997-01-28 1999-09-21 Irvine Sensors Corporation Multi-element micro gyro
JP2000509812A (en) * 1996-10-07 2000-08-02 ハーン―シッカート―ゲゼルシャフト フア アンゲワンテ フォルシュンク アインゲトラーゲナー フェライン Rotational speed gyroscope preventing mutual interference between orthogonal primary and secondary vibrations
JP2003509670A (en) * 1999-09-17 2003-03-11 キオニックス インク Electrically separated micromechanical gyroscope
WO2010016093A1 (en) * 2008-08-06 2010-02-11 パイオニア株式会社 Rotational vibration gyro

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045699A2 (en) * 1996-05-31 1997-12-04 The Regents Of The University Of California Micromachined vibratory rate gyroscope
JP2000509812A (en) * 1996-10-07 2000-08-02 ハーン―シッカート―ゲゼルシャフト フア アンゲワンテ フォルシュンク アインゲトラーゲナー フェライン Rotational speed gyroscope preventing mutual interference between orthogonal primary and secondary vibrations
US5955668A (en) * 1997-01-28 1999-09-21 Irvine Sensors Corporation Multi-element micro gyro
JP2003509670A (en) * 1999-09-17 2003-03-11 キオニックス インク Electrically separated micromechanical gyroscope
WO2010016093A1 (en) * 2008-08-06 2010-02-11 パイオニア株式会社 Rotational vibration gyro

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016097127A1 (en) * 2014-12-18 2016-06-23 Acreo Swedish Ict Ab A quadrature compensation method for mems gyroscopes and a gyroscope sensor
CN107003131A (en) * 2014-12-18 2017-08-01 赖斯阿克里奥公司 Quadrature compensation method and gyro sensor for micro-electro-mechanical gyroscope
CN107003130A (en) * 2014-12-18 2017-08-01 赖斯阿克里奥公司 Micro-electro-mechanical gyroscope
US10371520B2 (en) 2014-12-18 2019-08-06 Rise Acreo Ab Quadrature compensation method for MEMS gyroscopes and a gyroscope sensor
CN107003130B (en) * 2014-12-18 2020-10-16 赖斯阿克里奥公司 Micro-electromechanical gyroscope
WO2018016190A1 (en) * 2016-07-21 2018-01-25 ソニー株式会社 Gyrosensor, signal processing device, electronic apparatus, and gyrosensor control method

Similar Documents

Publication Publication Date Title
JP5639087B2 (en) MEMS gyroscope for detecting rotational movement about x, y and / or z axis
JP5836947B2 (en) Offset detection and compensation for micromachined inertial sensors
JP5639088B2 (en) Micro gyroscope for measuring the rotational movement of X axis or / and Y axis and Z axis
KR101166866B1 (en) Mems gyroscope with horizontally oriented drive electrodes
TWI245902B (en) Microstructure angular velocity sensor device
TWI476372B (en) Physical quantity sensor and electronic device
JP6514790B2 (en) Gyroscope
JP2000509812A (en) Rotational speed gyroscope preventing mutual interference between orthogonal primary and secondary vibrations
CN1813192A (en) Six degree-of-freedom micro-machined multi-sensor
WO2010030740A1 (en) Piezoelectric transducers and intertial sensors using piezoelectric transducers
JP2002350138A (en) Detector of both of acceleration and angular velocity
WO2004071940A2 (en) Methods and systems for controlling movement within mems structures
EP3234503B1 (en) A quadrature compensation method for mems gyroscopes and a gyroscope sensor
JP2009198206A (en) Angular velocity sensor
JP2007052012A (en) Vibration gyroscope for canceling bias error by using inversion mode
FI126070B (en) Improved ring gyroscope design and gyroscope
JP2013210283A (en) Rollover gyro sensor
JP2005241500A (en) Angular velocity sensor
WO2013051060A1 (en) Rotational vibration gyro
JP6632726B2 (en) Micromechanical yaw rate sensor and method of manufacturing the same
JP3307907B2 (en) Micro gyroscope
JP2010054263A (en) Rotation oscillation gyroscope
JP2001133268A (en) Angular velocity sensor
JP6146592B2 (en) Physical quantity sensor, electronic equipment
JP2010008300A (en) Inertia sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP