WO2013066873A1 - Electronic devices having integrated reset systems and methods thereof - Google Patents

Electronic devices having integrated reset systems and methods thereof Download PDF

Info

Publication number
WO2013066873A1
WO2013066873A1 PCT/US2012/062581 US2012062581W WO2013066873A1 WO 2013066873 A1 WO2013066873 A1 WO 2013066873A1 US 2012062581 W US2012062581 W US 2012062581W WO 2013066873 A1 WO2013066873 A1 WO 2013066873A1
Authority
WO
WIPO (PCT)
Prior art keywords
reset
battery
electronic device
power
data processor
Prior art date
Application number
PCT/US2012/062581
Other languages
French (fr)
Inventor
Alexander G. Ghesquiere
Christopher Ammon Myles
Scott Dalton
Original Assignee
Abbott Diabetes Care Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Diabetes Care Inc. filed Critical Abbott Diabetes Care Inc.
Publication of WO2013066873A1 publication Critical patent/WO2013066873A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/24Resetting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3212Monitoring battery levels, e.g. power saving mode being initiated when battery voltage goes below a certain level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3237Power saving characterised by the action undertaken by disabling clock generation or distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system

Definitions

  • a hang occurs when the device ceases to respond to inputs.
  • the device's display becomes static and is unresponsive to any user input, e.g., clicking or movement of a mouse cursor, typing on a keyboard, or touching a touch screen, etc.
  • Many modern operating systems provide the user with a means to terminate a hung program or device without rebooting or power cycling the device.
  • the device may have to be power cycled, which is often accomplished with an on/off or reset button provided on the device.
  • a crash is a condition in which the electronic device or a program, either an application or part of the operating system, ceases to function properly, often exiting after encountering errors. This is different from a hang or freeze where the application or operating system continues to run without obvious response to input.
  • a reset button the location of which is not always obvious (e.g., it may be recessed within the device housing) and may require an extra tool (e.g., paperclip or the like) to access.
  • the power cycling or reset may require
  • a device can be configured to be reset is by prolonged removal of the battery or batteries or by installing the batteries upside down (i.e., the positive side of the battery is connected to the positive contact in the battery receptacle, and the same for the negative). Often, these actions are neither obvious nor effortless for users, require extra electromechanical hardware and/or require additional device housing access points, all of which add to the cost of the device and increase the risk of electrostatic discharge (ESD) and liquid ingress issues.
  • ESD electrostatic discharge
  • Certain embodiments of the present disclosure include power cycling an electronic device having a data processor, enabling a reset circuit to provide a reset signal to the data processor, supplying power to the data processor while enabling the reset circuit, disabling the reset circuit while maintaining power to the data processor, enabling the reset circuit while maintaining power to the data processor, and removing power to the data processor while enabling the reset circuit.
  • Certain embodiments include a device housing that encases power cycling electronic components of the electronic device including a printed circuit board, a data processor, a power interface circuit that provides at least one power input line to the data processor, a reset circuit that provides a reset signal to the data processor via a reset line, a battery receptacle terminal configured to receive a battery pack including at least one cathode terminal, at least one anode terminal, and at least one reset pad electrically coupled to an input of the reset circuit, and a battery pack including a housing and at least one battery retained in the housing and positioned between at least one battery between the at least one cathode terminal and the at least one anode terminal, the battery configured as the supply voltage of the electronic device, wherein the reset circuit includes a reset switch positioned between the reset circuit and system ground.
  • Certain embodiments include power cycling an electronic device having a data processor including receiving an electrical short from at least one battery, receiving a first voltage input signal from one or more reset lines that is HI, receiving a second voltage input signal from one or more power lines that is LO, receiving a third voltage input signal from the one or more power lines that is HI, determining that the first voltage input signal from the one or more reset lines remains HI, receiving a fifth voltage input signal from the one or more reset lines that is LO, and determining that the third voltage input signal from the one or more power lines remains HI.
  • Fig. 1 is a block diagram of a portion of a device's electronics including power cycling and/or reset circuitry of one or more embodiments of the present disclosure
  • FIGs. 2 A and 2B are top and side cutaway views, respectively, of certain structural embodiments of an electronic device having a configuration for power cycling and/or reset upon battery insertion into and/or removal from the device;
  • FIG. 2C is an enlarged view of the area noted in Fig. 2B;
  • FIGs. 3 A and 3B are top and side cutaway views of the device of Figs. 2A and 2B in a first stage of battery insertion (or, in reverse sequence, a third stage of battery removal) for implementing a power cycling or reset procedure of certain embodiments of the present disclosure;
  • FIGs. 4A and 4B are top and side cutaway views of the device of Figs. 2A and 2B in a second stage of battery insertion (or, in reverse sequence, a second stage of battery removal) for implementing a power cycling or reset procedure of certain embodiments of the present disclosure;
  • FIGs. 5 A and 5B are top and side cutaway views of the device of Figs. 2A and 2B in a final stage of battery insertion (or, in reverse sequence, a first stage of battery removal) for implementing a power cycling or reset procedure of certain embodiments of the present disclosure;
  • Figs. 6A and 6B are graphs showing the status of the reset and power lines, respectively, of the device of Figs. 2 A and 2B during the various stages of battery insertion/removal of Figs. 3A/3B, 4A/4B and 5A/5B.
  • the electronic device may include, but is not limited to, for example, a blood glucose meter, a continuous glucose monitoring device, or an infusion device such as an insulin pump.
  • the electronic device includes a data processor or microprocessor 20, which, in certain embodiments, is provided along with other integrated circuits (not shown) on a printed circuit board (PCB), for performing the device's data processing and/or data communication (i.e., data transmission and reception) functions.
  • the device electronics further include circuitry for providing and regulating the supply of voltage to the various device components including data processor 20.
  • Such circuitry includes a power interface circuit 30 which provides one or more power input lines 50 to data processor 20, and a source of power 40, i.e., one or more replaceable batteries described in greater detail below, positioned between power interface circuit 30 and system ground.
  • Power interface circuit 30 may include a backup battery and/or one or more large capacitors which maintain power to data processor 20 and certain other circuits, e.g., a memory, in case of a loss of primary power 40, such as when the battery is being replaced or expires prior to replacement.
  • the power reset circuitry in certain embodiments of the present disclosure, which works cooperatively with the power components described above, includes a reset circuit 60 which provides a reset signal to data processor 20 via reset line 80.
  • the power reset circuitry also includes a reset switch 70 positioned between reset circuit 60 and system ground.
  • Reset switch 70 in certain embodiments, is structurally provided by a pair of contacts 110a, 110b which are, as shown in Figs. 2A-2C, in certain embodiments, positioned side -by- side and marginally spaced apart from a front or distal side or end 106a of a battery contact pad 106, which is schematically represented in Fig. 1 by the negative terminal (or the positive terminal depending on the desired orientation) of battery 40.
  • reset switch 70 When a conductor is extended between contact points 110a and 110b, reset switch 70 is closed thereby grounding reset circuit 60 which in turn sends a reset signal via line 80 to data processor 20. Conversely, when the contact points are not electrically connected, reset switch 70 is open with no reset signal being provided by reset circuit 60 to data processor 20.
  • an electronic device 100 having, in certain embodiments, a device housing 102 which encases the device's electronic components, many of which are provided on PCB 104, including the circuitry of Fig. 1 as well as opposing, spaced apart battery receptacle contacts or terminals 106, 108 configured for receiving a replaceable battery therebetween. While a single replaceable battery may be employed as the system's supply voltage, the illustrated device embodiment is configured to operate with a battery pack 120 including a pair of batteries 114 retained within an insulated housing or tray 122, which is shaped and configured to mate in sliding or snap-fit engagement with a distal or receiving end of device housing 102. When fully engaged with each other, the combined housings 102, 122 may provide a hermetically resistant seal about the device. If used, a battery pack, in certain embodiments, includes two replaceable batteries of the same size that are held and positioned in tandem.
  • any suitable battery type may be used depending on the subject electronic device, common battery types for providing a long service life, i.e., typically well over a year of continuous use, for small portable or hand-held electronic devices include but are not limited to coin or button cell batteries.
  • the can 118 typically functions as the anode or positive terminal and the cap 116 typically functions as the cathode or negative terminal.
  • Suitable anode materials include but are not limited to zinc and lithium
  • suitable cathode materials include but are not limited to manganese dioxide, silver oxide, carbon monofluoride, cupric oxide and oxygen from the air.
  • a standard lithium battery such as the CR2032 battery, which is rated at 3.0 V, can be used in the presently disclosed device.
  • each pair of battery receptacle terminals includes a cathode or negative terminal 106 and an anode or positive terminal 108.
  • Each negative terminal 106 is in the form of a conductive pad having a shape corresponding to that of the can 118 of replaceable battery 114
  • each positive or anode terminal 108 is in the form of a conductive lead that extends over and is spaced above negative or cathode terminal 106 a distance corresponding to the height or thickness of battery 114.
  • the separation distance between leads 106 and 108 may be slightly less than the height of battery 114 wherein conductive lead 108 may be anchored with a slight spring bias to enable it to bend slightly upward upon receiving the front end of battery 114 and provide a snug fit therewith.
  • Reset contacts 110a, 110b are in the form of conductive pads or vias within PCB 104 where contact 110a is electrically coupled to system ground and contact 110b is electrically coupled to an input of reset circuit 60, as shown in Fig. 1.
  • the height of reset contacts 110a, 110b extends a distance Di which is slightly higher than the top surface of battery receptacle terminal 106 and slightly above the battery insertion plane 125 traversed by batteries 114 as tray 122 is operative ly coupled with device housing 102.
  • Distance D ls in certain embodiments, may range from about 0.01mm to 1.0mm.
  • reset contacts 110a, 110b are laterally spaced a distance D 2 from the peripheral leading edge 106a of battery receptacle contact pad 106.
  • the reset contacts may be positioned adjacent to battery receptacle contact pad 108 in a similar manner. In either configuration, the separation between the reset contact points and the battery receptacle contact pads insulates them from each other.
  • Distance D 2 may range from about 0.01mm to 10mm in certain embodiments.
  • the relative height of reset contacts 110a, 110b and their structural juxtaposition to the device's battery receptacles collectively provide and enable a power reset cycle of the present disclosure which is implemented each time the batteries 114/battery pack 120 are inserted or removed from device 100.
  • Such power reset cycle is described with reference to Figs. 3A/3B, 4A/4B and 5A/5B as well as to the graphs of Figs. 6A and 6B. As shown in Figs.
  • a battery 114 upon commencing insertion of batteries 114 into their corresponding battery receptacles 106, a battery 114 is slid over reset contacts 110a, 110b whereby the bottom or anode surface 118 of the battery physically bridges and electrically shorts the reset contacts.
  • the batteries 114 At this first stage of the power reset cycle (commencing at battery position 1), the batteries 114 have yet to contact their respective receptacles.
  • the reset line 80 input to data processor 20 is set HI while the power line 50 input to data processor 20 is set LO. Midway through battery installation, as shown in Figs.
  • batteries 114 are positioned within their respective battery receptacle such that battery cap or anode 116 engages battery receptacle cathode 106 and battery can or cathode 118 engages battery receptacle anode 108.
  • power line 50 input to data processor 20 goes HI while the reset line 80 input to data processor 20 remains HI.
  • certain of the device's electronics are electronically reset. A reset event will initialize the electronic circuit to a known or default state, the nature of the state will depend on the circuit.
  • the device is powered by replaceable batteries 114 which guarantees that the reset signal is sensed or received by data processor 20 regardless of the state or existence of a backup battery or large powering capacitors.
  • the batteries 114 moves off of reset contacts 110a, 110b and become fully seated within their respective battery receptacles.
  • power line 50 input to data processor 20 remains HI while the reset line 80 input to data processor 20 goes LO.
  • the separation distance D 2 between the reset contact points 110a, 110b and the battery receptacle pad 106 ensures that device 100 is not held in a reset mode during normal operation.
  • a multi-stage power reset cycle is also provided upon removal of batteries 114/battery pack 120 from device 100, but with the stages occurring in reverse order from the process just described.
  • the subject power reset system thus operates by using a single surface or pole of a battery and a pair of reset contact points as an electro-mechanical switch to trigger and cease a power cycling or reset state of the system.
  • no additional user action is required to initiate such a reset.
  • no additional device housing access ports or switch receptacles are necessary, reducing manufacturing costs and minimizing the risk of liquid or electrostatic discharge (ESD) ingress into the device.
  • Certain embodiments of the present disclosure may include power cycling an electronic device having a data processor including enabling a reset circuit to provide a reset signal to the data processor, supplying power to the data processor while enabling the reset circuit, disabling the reset circuit while maintaining power to the data processor, enabling the reset circuit while maintaining power to the data processor, and removing power to the data processor while enabling the reset circuit.
  • enabling the reset circuit may include conductively grounding the reset circuit.
  • conductively grounding the reset circuit may include positioning one pole of a battery across two reset contact points.
  • supplying power to the data processor may include positioning the battery between ground and a power circuit of the device.
  • disabling the reset circuit may include removing the battery from the two reset contact points.
  • Certain embodiments of the present disclosure may include an electronic device including a device housing that encases power cycling electronic components of the electronic device comprising a printed circuit board including a data processor, a power interface circuit that provides at least one power input line to the data processor, a reset circuit that provides a reset signal to the data processor via a reset line, a battery receptacle terminal configured to receive a battery pack including at least one cathode terminal, at least one anode terminal, and at least one reset pad electrically coupled to an input of the reset circuit, and a battery pack including a housing and at least one battery retained in the housing and positioned between at least one battery between the at least one cathode terminal and the at least one anode terminal, the battery configured as the supply voltage of the electronic device, wherein the reset circuit includes a reset switch positioned between the reset circuit and system ground.
  • the data processor may include a microprocessor.
  • separation distance between the at least one cathode terminal and the at least one anode terminal may be less than the thickness of the at least one battery.
  • At least one anode terminal may be anchored with a spring bias that enables a bending of the at least one anode terminal upon receipt of the at least one battery between the at least one cathode terminal and the at least one anode terminal.
  • At least one reset pad may include a first reset pad electrically coupled to device ground and a second reset pad electrically coupled to an input of the reset circuit. [0040] In certain embodiments, a height of the at least one reset pad may be greater than a top surface of the at least one cathode terminal.
  • the height of the at least one reset pad may be in a range of 0.01mm to 1.0mm.
  • At least one battery may be a replaceable battery.
  • the battery pack may be configured to engage with the battery receptacle terminal in a sliding or snap-fit manner.
  • At least one reset pad may be laterally spaced from a leading peripheral edge of the at least one cathode terminal.
  • the lateral spacing of the at least one reset pad from the leading peripheral edge of the at least one cathode terminal may be in a range of 0.01mm to 10mm.
  • Certain embodiments of the present disclosure may include power cycling an electronic device having a data processor including receiving, at one or more reset contact, an electrical short from at least one battery, receiving, at one or more data processors, a first voltage input signal from one or more reset lines that is HI, receiving, at the one or more data processors, a second voltage input signal from one or more power lines that is LO, receiving, at the one or more data processors, a third voltage input signal from the one or more power lines that is HI, determining, at the one or more data processors, that the first voltage input signal from the one or more reset lines remains HI, receiving, at the one or more data processors, a fifth voltage input signal from the one or more reset lines that is LO, and determining, at the one or more data processors, that the third voltage input signal from the one or more power lines remains HI.

Abstract

Methods and devices for power cycling an electronic device are provided. Also provided are systems and kits.

Description

ELECTRONIC DEVICES HAVING INTEGRATED RESET
SYSTEMS AND METHODS THEREOF
PRIORITY
[0001] The present application claims priority to U.S. provisional application no.
61/553,942 filed October 31, 2011, entitled "Electronic Devices Having Integrated Reset Systems and Methods Thereof, the disclosure of which is incorporated herein by reference for all purposes.
BACKGROUND
[0002] In using electronic devices, such as computers, smart phones, PDAs, etc., a user may experience a situation in which the electronic device "hangs" or
"crashes". A hang, sometimes referred to as a "freeze", occurs when the device ceases to respond to inputs. In the most commonly encountered scenario, the device's display becomes static and is unresponsive to any user input, e.g., clicking or movement of a mouse cursor, typing on a keyboard, or touching a touch screen, etc. Many modern operating systems provide the user with a means to terminate a hung program or device without rebooting or power cycling the device. In more severe hangs, however, the device may have to be power cycled, which is often accomplished with an on/off or reset button provided on the device. A crash, on the other hand, is a condition in which the electronic device or a program, either an application or part of the operating system, ceases to function properly, often exiting after encountering errors. This is different from a hang or freeze where the application or operating system continues to run without obvious response to input.
[0003] Often, the only way to recover from a hang or crash is to reboot or reset the device, usually by turning it off and then on again - called power cycling. Power cycling typically involves resetting or clearing any pending errors or events and then bringing the system to normal conditions or to an initial or default state in a controlled manner. Depending on the device configuration, a device may be able to automatically reset itself by means of an internal program which is triggered if a command times out. However, such a timing out does not always occur or is too lengthy, and even if pending, a user often has no way of knowing if and when the reset will happen. As such, most conventional electronic devices have a means to enable a user action for manually initiating a reset. One such common means is a reset button, the location of which is not always obvious (e.g., it may be recessed within the device housing) and may require an extra tool (e.g., paperclip or the like) to access. Alternatively, the power cycling or reset may require
simultaneously or serially pressing or holding a designated combination of keys (e.g., user interface keys), the combination of which may be unknown or not readily available to a user. Other ways in which a device can be configured to be reset is by prolonged removal of the battery or batteries or by installing the batteries upside down (i.e., the positive side of the battery is connected to the positive contact in the battery receptacle, and the same for the negative). Often, these actions are neither obvious nor effortless for users, require extra electromechanical hardware and/or require additional device housing access points, all of which add to the cost of the device and increase the risk of electrostatic discharge (ESD) and liquid ingress issues.
[0004] Accordingly, it would be desirable and beneficial to provide means and methods of resetting or power cycling electronic devices which overcome the disadvantages of the prior art.
SUMMARY
[0005] Certain embodiments of the present disclosure include power cycling an electronic device having a data processor, enabling a reset circuit to provide a reset signal to the data processor, supplying power to the data processor while enabling the reset circuit, disabling the reset circuit while maintaining power to the data processor, enabling the reset circuit while maintaining power to the data processor, and removing power to the data processor while enabling the reset circuit.
[0006] Certain embodiments include a device housing that encases power cycling electronic components of the electronic device including a printed circuit board, a data processor, a power interface circuit that provides at least one power input line to the data processor, a reset circuit that provides a reset signal to the data processor via a reset line, a battery receptacle terminal configured to receive a battery pack including at least one cathode terminal, at least one anode terminal, and at least one reset pad electrically coupled to an input of the reset circuit, and a battery pack including a housing and at least one battery retained in the housing and positioned between at least one battery between the at least one cathode terminal and the at least one anode terminal, the battery configured as the supply voltage of the electronic device, wherein the reset circuit includes a reset switch positioned between the reset circuit and system ground.
[0007] Certain embodiments include power cycling an electronic device having a data processor including receiving an electrical short from at least one battery, receiving a first voltage input signal from one or more reset lines that is HI, receiving a second voltage input signal from one or more power lines that is LO, receiving a third voltage input signal from the one or more power lines that is HI, determining that the first voltage input signal from the one or more reset lines remains HI, receiving a fifth voltage input signal from the one or more reset lines that is LO, and determining that the third voltage input signal from the one or more power lines remains HI.
[0008] These and other embodiments, objects, advantages, and features of the disclosure will become apparent to those persons skilled in the art upon reading the details of exemplary embodiments of the disclosure as more fully described below.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] Embodiments of the present disclosure are best understood from the
following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawings are the following figures:
[0010] Fig. 1 is a block diagram of a portion of a device's electronics including power cycling and/or reset circuitry of one or more embodiments of the present disclosure;
[0011] Figs. 2 A and 2B are top and side cutaway views, respectively, of certain structural embodiments of an electronic device having a configuration for power cycling and/or reset upon battery insertion into and/or removal from the device;
[0012] Fig. 2C is an enlarged view of the area noted in Fig. 2B;
[0013] Figs. 3 A and 3B are top and side cutaway views of the device of Figs. 2A and 2B in a first stage of battery insertion (or, in reverse sequence, a third stage of battery removal) for implementing a power cycling or reset procedure of certain embodiments of the present disclosure;
[0014] Figs. 4A and 4B are top and side cutaway views of the device of Figs. 2A and 2B in a second stage of battery insertion (or, in reverse sequence, a second stage of battery removal) for implementing a power cycling or reset procedure of certain embodiments of the present disclosure;
[0015] Figs. 5 A and 5B are top and side cutaway views of the device of Figs. 2A and 2B in a final stage of battery insertion (or, in reverse sequence, a first stage of battery removal) for implementing a power cycling or reset procedure of certain embodiments of the present disclosure; and
[0016] Figs. 6A and 6B are graphs showing the status of the reset and power lines, respectively, of the device of Figs. 2 A and 2B during the various stages of battery insertion/removal of Figs. 3A/3B, 4A/4B and 5A/5B.
DETAILED DESCRIPTION
[0017] Before the present disclosure is further described, it is to be understood that this disclosure is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
[0018] As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.
[0019] Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.
[0020] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, exemplary methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
[0021] As used herein and in the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as "solely," "only" and the like in connection with the recitation of claim elements, or use of a "negative" limitation.
[0022] The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
[0023] While the present disclosure has been described with reference to the specific embodiments, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the disclosure. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the claims appended hereto.
[0024] Referring now to Fig. 1, there is shown a block diagram 10 of a portion of the electronics of a battery-powered electronic device including the power cycling/reset electronics in certain embodiments of the present disclosure. The electronic device may include, but is not limited to, for example, a blood glucose meter, a continuous glucose monitoring device, or an infusion device such as an insulin pump. The electronic device includes a data processor or microprocessor 20, which, in certain embodiments, is provided along with other integrated circuits (not shown) on a printed circuit board (PCB), for performing the device's data processing and/or data communication (i.e., data transmission and reception) functions. The device electronics further include circuitry for providing and regulating the supply of voltage to the various device components including data processor 20. Such circuitry includes a power interface circuit 30 which provides one or more power input lines 50 to data processor 20, and a source of power 40, i.e., one or more replaceable batteries described in greater detail below, positioned between power interface circuit 30 and system ground. Power interface circuit 30 may include a backup battery and/or one or more large capacitors which maintain power to data processor 20 and certain other circuits, e.g., a memory, in case of a loss of primary power 40, such as when the battery is being replaced or expires prior to replacement.
[0025] Referring still to Fig. 1, the power reset circuitry in certain embodiments of the present disclosure, which works cooperatively with the power components described above, includes a reset circuit 60 which provides a reset signal to data processor 20 via reset line 80. The power reset circuitry also includes a reset switch 70 positioned between reset circuit 60 and system ground. Reset switch 70, in certain embodiments, is structurally provided by a pair of contacts 110a, 110b which are, as shown in Figs. 2A-2C, in certain embodiments, positioned side -by- side and marginally spaced apart from a front or distal side or end 106a of a battery contact pad 106, which is schematically represented in Fig. 1 by the negative terminal (or the positive terminal depending on the desired orientation) of battery 40. When a conductor is extended between contact points 110a and 110b, reset switch 70 is closed thereby grounding reset circuit 60 which in turn sends a reset signal via line 80 to data processor 20. Conversely, when the contact points are not electrically connected, reset switch 70 is open with no reset signal being provided by reset circuit 60 to data processor 20.
[0026] Referring now to Figs. 2A-2C, an electronic device 100 is shown having, in certain embodiments, a device housing 102 which encases the device's electronic components, many of which are provided on PCB 104, including the circuitry of Fig. 1 as well as opposing, spaced apart battery receptacle contacts or terminals 106, 108 configured for receiving a replaceable battery therebetween. While a single replaceable battery may be employed as the system's supply voltage, the illustrated device embodiment is configured to operate with a battery pack 120 including a pair of batteries 114 retained within an insulated housing or tray 122, which is shaped and configured to mate in sliding or snap-fit engagement with a distal or receiving end of device housing 102. When fully engaged with each other, the combined housings 102, 122 may provide a hermetically resistant seal about the device. If used, a battery pack, in certain embodiments, includes two replaceable batteries of the same size that are held and positioned in tandem.
Although any suitable battery type may be used depending on the subject electronic device, common battery types for providing a long service life, i.e., typically well over a year of continuous use, for small portable or hand-held electronic devices include but are not limited to coin or button cell batteries. In such batteries, the can 118 typically functions as the anode or positive terminal and the cap 116 typically functions as the cathode or negative terminal. Suitable anode materials include but are not limited to zinc and lithium, and suitable cathode materials include but are not limited to manganese dioxide, silver oxide, carbon monofluoride, cupric oxide and oxygen from the air. By way of example, a standard lithium battery, such as the CR2032 battery, which is rated at 3.0 V, can be used in the presently disclosed device. Referring again to Figs. 2A-2C, each pair of battery receptacle terminals includes a cathode or negative terminal 106 and an anode or positive terminal 108. Each negative terminal 106 is in the form of a conductive pad having a shape corresponding to that of the can 118 of replaceable battery 114, and each positive or anode terminal 108 is in the form of a conductive lead that extends over and is spaced above negative or cathode terminal 106 a distance corresponding to the height or thickness of battery 114. The separation distance between leads 106 and 108 may be slightly less than the height of battery 114 wherein conductive lead 108 may be anchored with a slight spring bias to enable it to bend slightly upward upon receiving the front end of battery 114 and provide a snug fit therewith. When battery pack 120 is fully engaged with device housing 102, batteries 114 are seated between respective battery receptacle terminals 106 and 108, as best shown in Fig. 5B.
[0027] Reset contacts 110a, 110b are in the form of conductive pads or vias within PCB 104 where contact 110a is electrically coupled to system ground and contact 110b is electrically coupled to an input of reset circuit 60, as shown in Fig. 1. As best shown in Fig. 2C, the height of reset contacts 110a, 110b extends a distance Di which is slightly higher than the top surface of battery receptacle terminal 106 and slightly above the battery insertion plane 125 traversed by batteries 114 as tray 122 is operative ly coupled with device housing 102. Distance Dls in certain embodiments, may range from about 0.01mm to 1.0mm. Further, reset contacts 110a, 110b are laterally spaced a distance D2 from the peripheral leading edge 106a of battery receptacle contact pad 106. In certain embodiments, the reset contacts may be positioned adjacent to battery receptacle contact pad 108 in a similar manner. In either configuration, the separation between the reset contact points and the battery receptacle contact pads insulates them from each other. Distance D2 may range from about 0.01mm to 10mm in certain embodiments.
[0028] In the power reset circuitry described above with respect to Fig. 1 , the relative height of reset contacts 110a, 110b and their structural juxtaposition to the device's battery receptacles collectively provide and enable a power reset cycle of the present disclosure which is implemented each time the batteries 114/battery pack 120 are inserted or removed from device 100. Such power reset cycle is described with reference to Figs. 3A/3B, 4A/4B and 5A/5B as well as to the graphs of Figs. 6A and 6B. As shown in Figs. 3 A and 3B, upon commencing insertion of batteries 114 into their corresponding battery receptacles 106, a battery 114 is slid over reset contacts 110a, 110b whereby the bottom or anode surface 118 of the battery physically bridges and electrically shorts the reset contacts. At this first stage of the power reset cycle (commencing at battery position 1), the batteries 114 have yet to contact their respective receptacles. As such, with reference to the voltage graphs of Figs. 6A and 6B, the reset line 80 input to data processor 20 is set HI while the power line 50 input to data processor 20 is set LO. Midway through battery installation, as shown in Figs. 4A and 4B, batteries 114 are positioned within their respective battery receptacle such that battery cap or anode 116 engages battery receptacle cathode 106 and battery can or cathode 118 engages battery receptacle anode 108. At this second stage of the power reset cycle (commencing at battery position 2), as shown in Figs. 6A and 6B, power line 50 input to data processor 20 goes HI while the reset line 80 input to data processor 20 remains HI. As such, certain of the device's electronics are electronically reset. A reset event will initialize the electronic circuit to a known or default state, the nature of the state will depend on the circuit. During this reset stage, the device is powered by replaceable batteries 114 which guarantees that the reset signal is sensed or received by data processor 20 regardless of the state or existence of a backup battery or large powering capacitors. Finally, as battery pack 120 is completely advanced, as shown in Figs. 5 A and 5B, the batteries 114 moves off of reset contacts 110a, 110b and become fully seated within their respective battery receptacles. At this third and final stage of the battery insertion power reset cycle (commencing at battery position 3), as shown in Figs. 6A and 6B, power line 50 input to data processor 20 remains HI while the reset line 80 input to data processor 20 goes LO. The separation distance D2 between the reset contact points 110a, 110b and the battery receptacle pad 106 ensures that device 100 is not held in a reset mode during normal operation. A multi-stage power reset cycle is also provided upon removal of batteries 114/battery pack 120 from device 100, but with the stages occurring in reverse order from the process just described.
[0029] The subject power reset system thus operates by using a single surface or pole of a battery and a pair of reset contact points as an electro-mechanical switch to trigger and cease a power cycling or reset state of the system. In certain embodiments, no additional user action is required to initiate such a reset. Further, in certain embodiments, no additional device housing access ports or switch receptacles are necessary, reducing manufacturing costs and minimizing the risk of liquid or electrostatic discharge (ESD) ingress into the device.
[0030] Certain embodiments of the present disclosure may include power cycling an electronic device having a data processor including enabling a reset circuit to provide a reset signal to the data processor, supplying power to the data processor while enabling the reset circuit, disabling the reset circuit while maintaining power to the data processor, enabling the reset circuit while maintaining power to the data processor, and removing power to the data processor while enabling the reset circuit. [0031] In certain embodiments, enabling the reset circuit may include conductively grounding the reset circuit.
[0032] In certain embodiments, conductively grounding the reset circuit may include positioning one pole of a battery across two reset contact points.
[0033] In certain embodiments, supplying power to the data processor may include positioning the battery between ground and a power circuit of the device.
[0034] In certain embodiments, disabling the reset circuit may include removing the battery from the two reset contact points.
[0035] Certain embodiments of the present disclosure may include an electronic device including a device housing that encases power cycling electronic components of the electronic device comprising a printed circuit board including a data processor, a power interface circuit that provides at least one power input line to the data processor, a reset circuit that provides a reset signal to the data processor via a reset line, a battery receptacle terminal configured to receive a battery pack including at least one cathode terminal, at least one anode terminal, and at least one reset pad electrically coupled to an input of the reset circuit, and a battery pack including a housing and at least one battery retained in the housing and positioned between at least one battery between the at least one cathode terminal and the at least one anode terminal, the battery configured as the supply voltage of the electronic device, wherein the reset circuit includes a reset switch positioned between the reset circuit and system ground.
[0036] In certain embodiments, the data processor may include a microprocessor.
[0037] In certain embodiments, separation distance between the at least one cathode terminal and the at least one anode terminal may be less than the thickness of the at least one battery.
[0038] In certain embodiments, at least one anode terminal may be anchored with a spring bias that enables a bending of the at least one anode terminal upon receipt of the at least one battery between the at least one cathode terminal and the at least one anode terminal.
[0039] In certain embodiments, at least one reset pad may include a first reset pad electrically coupled to device ground and a second reset pad electrically coupled to an input of the reset circuit. [0040] In certain embodiments, a height of the at least one reset pad may be greater than a top surface of the at least one cathode terminal.
[0041] In certain embodiments, the height of the at least one reset pad may be in a range of 0.01mm to 1.0mm.
[0042] In certain embodiments, at least one battery may be a replaceable battery.
[0043] In certain embodiments, the battery pack may be configured to engage with the battery receptacle terminal in a sliding or snap-fit manner.
[0044] In certain embodiments, at least one reset pad may be laterally spaced from a leading peripheral edge of the at least one cathode terminal.
[0045] In certain embodiments, the lateral spacing of the at least one reset pad from the leading peripheral edge of the at least one cathode terminal may be in a range of 0.01mm to 10mm.
[0046] Certain embodiments of the present disclosure may include power cycling an electronic device having a data processor including receiving, at one or more reset contact, an electrical short from at least one battery, receiving, at one or more data processors, a first voltage input signal from one or more reset lines that is HI, receiving, at the one or more data processors, a second voltage input signal from one or more power lines that is LO, receiving, at the one or more data processors, a third voltage input signal from the one or more power lines that is HI, determining, at the one or more data processors, that the first voltage input signal from the one or more reset lines remains HI, receiving, at the one or more data processors, a fifth voltage input signal from the one or more reset lines that is LO, and determining, at the one or more data processors, that the third voltage input signal from the one or more power lines remains HI.
[0047] While the present disclosure has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the disclosure. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the claims appended hereto.

Claims

What is claimed is:
1. A method of power cycling an electronic device having a data processor, the method comprising:
enabling a reset circuit to provide a reset signal to the data processor;
supplying power to the data processor while enabling the reset circuit;
disabling the reset circuit while maintaining power to the data processor; enabling the reset circuit while maintaining power to the data processor; and removing power to the data processor while enabling the reset circuit.
2. The method of claim 1, wherein the enabling the reset circuit comprises conductively grounding the reset circuit.
3. The method of claim 2, wherein the conductively grounding the reset circuit comprises positioning one pole of a battery across two reset contact points.
4. The method of claim 3, wherein the supplying power to the data processor comprises positioning the battery between ground and a power circuit of the device.
5. The method of claim 4, wherein the disabling the reset circuit includes removing the battery from the two reset contact points.
6. An electronic device including a device housing that encases power cycling electronic components of the electronic device, comprising:
a printed circuit board including a data processor;
a power interface circuit that provides at least one power input line to the data processor;
a reset circuit that provides a reset signal to the data processor via a reset line; a battery receptacle terminal configured to receive a battery pack including at least one cathode terminal, at least one anode terminal, and at least one reset pad electrically coupled to an input of the reset circuit; and
a battery pack including a housing and at least one battery retained in the housing and positioned between at least one battery between the at least one cathode terminal and the at least one anode terminal, the battery configured as the supply voltage of the electronic device;
wherein the reset circuit includes a reset switch positioned between the reset circuit and system ground.
7. The electronic device of claim 6, wherein the data processor includes a microprocessor.
8. The electronic device of claim 6, wherein the separation distance between the at least one cathode terminal and the at least one anode terminal is less than the thickness of the at least one battery.
9. The electronic device of claim 6, wherein the at least one anode terminal is anchored with a spring bias that enables a bending of the at least one anode terminal upon receipt of the at least one battery between the at least one cathode terminal and the at least one anode terminal.
10. The electronic device of claim 6, wherein the at least one reset pad includes a first reset pad electrically coupled to device ground and a second reset pad electrically coupled to an input of the reset circuit.
11. The electronic device of claim 6, wherein a height of the at least one reset pad is greater than a top surface of the at least one cathode terminal.
12. The electronic device of claim 11, wherein the height of the at least one reset pad is in a range of 0.01mm to 1.0mm.
13. The electronic device of claim 6, wherein the at least one battery is a replaceable battery.
14. The electronic device of claim 6, wherein the battery pack is configured to engage with the battery receptacle terminal in a sliding or snap-fit manner.
15. The electronic device of claim 6, wherein the at least one reset pad is laterally spaced from a leading peripheral edge of the at least one cathode terminal.
16. The electronic device of claim 15, wherein the lateral spacing of the at least one reset pad from the leading peripheral edge of the at least one cathode terminal is in a range of 0.01mm to 10mm.
17. A method of power cycling an electronic device having a data processor, the method comprising:
receiving, at one or more reset contact, an electrical short from at least one battery;
receiving, at one or more data processors, a first voltage input signal from one or more reset lines that is HI;
receiving, at the one or more data processors, a second voltage input signal from one or more power lines that is LO;
receiving, at the one or more data processors, a third voltage input signal from the one or more power lines that is HI;
determining, at the one or more data processors, that the first voltage input signal from the one or more reset lines remains HI;
receiving, at the one or more data processors, a fifth voltage input signal from the one or more reset lines that is LO; and
determining, at the one or more data processors, that the third voltage input signal from the one or more power lines remains HI.
PCT/US2012/062581 2011-10-31 2012-10-30 Electronic devices having integrated reset systems and methods thereof WO2013066873A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161553942P 2011-10-31 2011-10-31
US61/553,942 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013066873A1 true WO2013066873A1 (en) 2013-05-10

Family

ID=48173699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/062581 WO2013066873A1 (en) 2011-10-31 2012-10-30 Electronic devices having integrated reset systems and methods thereof

Country Status (2)

Country Link
US (2) US9069536B2 (en)
WO (1) WO2013066873A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680960B2 (en) 2007-06-21 2015-03-04 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Health care device and method
US9402544B2 (en) 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US9184490B2 (en) 2009-05-29 2015-11-10 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
EP3923295A1 (en) 2009-08-31 2021-12-15 Abbott Diabetes Care, Inc. Medical devices and methods
CN103619255B (en) 2011-02-28 2016-11-02 雅培糖尿病护理公司 The device that associates with analyte monitoring device, system and method and combine their device
WO2013066873A1 (en) * 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
KR101538063B1 (en) * 2014-05-07 2015-07-22 주식회사 아이센스 Battery detecting apparatus for portable medical device
US11039546B2 (en) 2015-12-25 2021-06-15 Ting-Jui Wang Pull-out aiding device and chassis-wall module with pull-out aiding function
US11385692B2 (en) * 2019-11-27 2022-07-12 Chao-Cheng Yu Remote automatic control power supply system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798961A (en) * 1994-08-23 1998-08-25 Emc Corporation Non-volatile memory module
US6085342A (en) * 1997-05-06 2000-07-04 Telefonaktiebolaget L M Ericsson (Publ) Electronic system having a chip integrated power-on reset circuit with glitch sensor
US20020039026A1 (en) * 2000-04-04 2002-04-04 Stroth John E. Power line testing device with signal generator and signal detector
US20020185128A1 (en) * 1998-03-30 2002-12-12 Astra Aktiebolag, Swedish Corporation Electrical device
US20020197522A1 (en) * 2001-06-01 2002-12-26 Craig Lawrence Fuel cell assembly for portable electronic device and interface, control, and regulator circuit for fuel cell powered electronic device
US20110184482A1 (en) * 2010-01-24 2011-07-28 Kevin Wilmot Eberman Non-rechargeable batteries and implantable medical devices

Family Cites Families (777)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1191363A (en) 1968-02-19 1970-05-13 Pavelle Ltd Improvements in or relating to Electronic Thermostats.
US3949388A (en) 1972-11-13 1976-04-06 Monitron Industries, Inc. Physiological sensor and transmitter
US3926760A (en) 1973-09-28 1975-12-16 Du Pont Process for electrophoretic deposition of polymer
US4245634A (en) 1975-01-22 1981-01-20 Hospital For Sick Children Artificial beta cell
US4036749A (en) 1975-04-30 1977-07-19 Anderson Donald R Purification of saline water
US4070821A (en) * 1976-03-22 1978-01-31 Hughes Aircraft Company Electric watch battery contact spring
US4055175A (en) 1976-05-07 1977-10-25 Miles Laboratories, Inc. Blood glucose control apparatus
US4129128A (en) 1977-02-23 1978-12-12 Mcfarlane Richard H Securing device for catheter placement assembly
US4344438A (en) 1978-08-02 1982-08-17 The United States Of America As Represented By The Department Of Health, Education And Welfare Optical sensor of plasma constituents
AU530979B2 (en) 1978-12-07 1983-08-04 Aus. Training Aids Pty. Ltd., Detecting position of bullet fired at target
US4373527B1 (en) 1979-04-27 1995-06-27 Univ Johns Hopkins Implantable programmable medication infusion system
US4425920A (en) 1980-10-24 1984-01-17 Purdue Research Foundation Apparatus and method for measurement and control of blood pressure
US4327725A (en) 1980-11-25 1982-05-04 Alza Corporation Osmotic device with hydrogel driving member
US4392849A (en) 1981-07-27 1983-07-12 The Cleveland Clinic Foundation Infusion pump controller
DE3138194A1 (en) 1981-09-25 1983-04-14 Basf Ag, 6700 Ludwigshafen WATER-INSOLUBLE POROESES PROTEIN MATERIAL, THEIR PRODUCTION AND USE
US4431004A (en) 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4494950A (en) 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
FI831399L (en) 1982-04-29 1983-10-30 Agripat Sa KONTAKTLINS AV HAERDAD POLYVINYL ALCOHOL
EP0098592A3 (en) 1982-07-06 1985-08-21 Fujisawa Pharmaceutical Co., Ltd. Portable artificial pancreas
US4509531A (en) 1982-07-28 1985-04-09 Teledyne Industries, Inc. Personal physiological monitor
GB2128453A (en) 1982-10-08 1984-04-26 Philips Electronic Associated System identification in communications systems
US4527240A (en) 1982-12-29 1985-07-02 Kvitash Vadim I Balascopy method for detecting and rapidly evaluating multiple imbalances within multi-parametric systems
US5509410A (en) 1983-06-06 1996-04-23 Medisense, Inc. Strip electrode including screen printing of a single layer
CA1226036A (en) 1983-05-05 1987-08-25 Irving J. Higgins Analytical equipment and sensor electrodes therefor
US4538616A (en) 1983-07-25 1985-09-03 Robert Rogoff Blood sugar level sensing and monitoring transducer
DE3429596A1 (en) 1984-08-10 1986-02-20 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR THE PHYSIOLOGICAL FREQUENCY CONTROL OF A PACEMAKER PROVIDED WITH A PICTURE ELECTRODE
CA1254091A (en) 1984-09-28 1989-05-16 Vladimir Feingold Implantable medication infusion system
US5279294A (en) 1985-04-08 1994-01-18 Cascade Medical, Inc. Medical diagnostic system
US4671288A (en) 1985-06-13 1987-06-09 The Regents Of The University Of California Electrochemical cell sensor for continuous short-term use in tissues and blood
US5245314A (en) 1985-09-18 1993-09-14 Kah Jr Carl L C Location monitoring system
US4890620A (en) 1985-09-20 1990-01-02 The Regents Of The University Of California Two-dimensional diffusion glucose substrate sensing electrode
US4757022A (en) 1986-04-15 1988-07-12 Markwell Medical Institute, Inc. Biological fluid measuring device
US4703756A (en) 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
US4731726A (en) 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
US5055171A (en) 1986-10-06 1991-10-08 T And G Corporation Ionic semiconductor materials and applications thereof
US4777953A (en) 1987-02-25 1988-10-18 Ash Medical Systems, Inc. Capillary filtration and collection method for long-term monitoring of blood constituents
US4854322A (en) 1987-02-25 1989-08-08 Ash Medical Systems, Inc. Capillary filtration and collection device for long-term monitoring of blood constituents
US5002054A (en) 1987-02-25 1991-03-26 Ash Medical Systems, Inc. Interstitial filtration and collection device and method for long-term monitoring of physiological constituents of the body
US4759828A (en) 1987-04-09 1988-07-26 Nova Biomedical Corporation Glucose electrode and method of determining glucose
US4749985A (en) 1987-04-13 1988-06-07 United States Of America As Represented By The United States Department Of Energy Functional relationship-based alarm processing
EP0290683A3 (en) 1987-05-01 1988-12-14 Diva Medical Systems B.V. Diabetes management system and apparatus
US4818994A (en) 1987-10-22 1989-04-04 Rosemount Inc. Transmitter with internal serial bus
GB8725936D0 (en) 1987-11-05 1987-12-09 Genetics Int Inc Sensing system
US4925268A (en) 1988-07-25 1990-05-15 Abbott Laboratories Fiber-optic physiological probes
EP0353328A1 (en) 1988-08-03 1990-02-07 Dräger Nederland B.V. A polarographic-amperometric three-electrode sensor
US5340722A (en) 1988-08-24 1994-08-23 Avl Medical Instruments Ag Method for the determination of the concentration of an enzyme substrate and a sensor for carrying out the method
US4995402A (en) 1988-10-12 1991-02-26 Thorne, Smith, Astill Technologies, Inc. Medical droplet whole blood and like monitoring
US5360404A (en) 1988-12-14 1994-11-01 Inviro Medical Devices Ltd. Needle guard and needle assembly for syringe
US5068536A (en) 1989-01-19 1991-11-26 Futrex, Inc. Method for providing custom calibration for near infrared instruments for measurement of blood glucose
DE69027233T2 (en) 1989-03-03 1996-10-10 Edward W Stark Signal processing method and apparatus
JPH02298855A (en) 1989-03-20 1990-12-11 Assoc Univ Inc Electrochemical biosensor using immobilized enzyme and redox polymer
US4953552A (en) 1989-04-21 1990-09-04 Demarzo Arthur P Blood glucose monitoring system
EP0396788A1 (en) 1989-05-08 1990-11-14 Dräger Nederland B.V. Process and sensor for measuring the glucose content of glucosecontaining fluids
FR2648353B1 (en) 1989-06-16 1992-03-27 Europhor Sa MICRODIALYSIS PROBE
US4986271A (en) 1989-07-19 1991-01-22 The University Of New Mexico Vivo refillable glucose sensor
US5431160A (en) 1989-07-19 1995-07-11 University Of New Mexico Miniature implantable refillable glucose sensor and material therefor
US5264105A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5320725A (en) 1989-08-02 1994-06-14 E. Heller & Company Electrode and method for the detection of hydrogen peroxide
US5262035A (en) 1989-08-02 1993-11-16 E. Heller And Company Enzyme electrodes
US5264104A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
US5082550A (en) 1989-12-11 1992-01-21 The United States Of America As Represented By The Department Of Energy Enzyme electrochemical sensor electrode and method of making it
US5342789A (en) 1989-12-14 1994-08-30 Sensor Technologies, Inc. Method and device for detecting and quantifying glucose in body fluids
US5051688A (en) 1989-12-20 1991-09-24 Rohm Co., Ltd. Crossed coil meter driving device having a plurality of input parameters
US5165407A (en) 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US5124661A (en) 1990-07-23 1992-06-23 I-Stat Corporation Reusable test unit for simulating electrochemical sensor signals for quality assurance of portable blood analyzer instruments
WO1992005775A1 (en) 1990-09-28 1992-04-16 Pfizer Inc. Dispensing device containing a hydrophobic medium
ATE155575T1 (en) 1990-12-12 1997-08-15 Sherwood Medical Co CALIBRATION OF AN INFRARED THERMOMETER USING AREA CALIBRATION CURVE REPRESENTATION
JPH04278450A (en) 1991-03-04 1992-10-05 Adam Heller Biosensor and method for analyzing subject
US5262305A (en) 1991-03-04 1993-11-16 E. Heller & Company Interferant eliminating biosensors
US5593852A (en) 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US5469855A (en) 1991-03-08 1995-11-28 Exergen Corporation Continuous temperature monitor
US5135004A (en) 1991-03-12 1992-08-04 Incontrol, Inc. Implantable myocardial ischemia monitor and related method
US5122925A (en) 1991-04-22 1992-06-16 Control Products, Inc. Package for electronic components
US5289497A (en) 1991-05-23 1994-02-22 Interdigital Technology Corporation Broadcast synchronized communication system
CA2074702C (en) 1991-07-29 1996-11-19 Donald J. Urbas Programmable transponder
GB9120144D0 (en) 1991-09-20 1991-11-06 Imperial College A dialysis electrode device
US5322063A (en) 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5372427A (en) 1991-12-19 1994-12-13 Texas Instruments Incorporated Temperature sensor
US5285792A (en) 1992-01-10 1994-02-15 Physio-Control Corporation System for producing prioritized alarm messages in a medical instrument
US5246867A (en) 1992-01-17 1993-09-21 University Of Maryland At Baltimore Determination and quantification of saccharides by luminescence lifetimes and energy transfer
IL104365A0 (en) 1992-01-31 1993-05-13 Gensia Pharma Method and apparatus for closed loop drug delivery
US5328927A (en) 1992-03-03 1994-07-12 Merck Sharpe & Dohme, Ltd. Hetercyclic compounds, processes for their preparation and pharmaceutical compositions containing them
ZA931077B (en) 1992-03-05 1994-01-04 Qualcomm Inc Apparatus and method for reducing message collision between mobile stations simultaneously accessing a base station in a cdma cellular communications system
DE69319771T2 (en) 1992-03-31 1999-04-22 Dainippon Printing Co Ltd Immobilized enzyme electrode, composition for its production and electrically conductive enzymes
EP0636009B1 (en) 1992-04-03 2000-11-29 Micromedical Industries Limited system for physiological monitoring
US5711001A (en) 1992-05-08 1998-01-20 Motorola, Inc. Method and circuit for acquisition by a radio receiver
GB9211402D0 (en) 1992-05-29 1992-07-15 Univ Manchester Sensor devices
US5333615A (en) 1992-06-22 1994-08-02 William Craelius Apparatus for digitally recording and analyzing electrocardial and other bioelectric signals
DK95792A (en) 1992-07-24 1994-01-25 Radiometer As Sensor for non-invasive, in vivo determination of an analyte and blood flow
US6283761B1 (en) 1992-09-08 2001-09-04 Raymond Anthony Joao Apparatus and method for processing and/or for providing healthcare information and/or healthcare-related information
WO1994010553A1 (en) 1992-10-23 1994-05-11 Optex Biomedical, Inc. Fibre-optic probe for the measurement of fluid parameters
US5899855A (en) 1992-11-17 1999-05-04 Health Hero Network, Inc. Modular microprocessor-based health monitoring system
US5956501A (en) 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
US5601435A (en) 1994-11-04 1997-02-11 Intercare Method and apparatus for interactively monitoring a physiological condition and for interactively providing health related information
US20030212579A1 (en) 2002-05-08 2003-11-13 Brown Stephen J. Remote health management system
ZA938555B (en) 1992-11-23 1994-08-02 Lilly Co Eli Technique to improve the performance of electrochemical sensors
US5410326A (en) 1992-12-04 1995-04-25 Goldstein; Steven W. Programmable remote control device for interacting with a plurality of remotely controlled devices
US5342408A (en) 1993-01-07 1994-08-30 Incontrol, Inc. Telemetry system for an implantable cardiac device
US5499243A (en) 1993-01-22 1996-03-12 Hall; Dennis R. Method and apparatus for coordinating transfer of information between a base station and a plurality of radios
US5299571A (en) 1993-01-22 1994-04-05 Eli Lilly And Company Apparatus and method for implantation of sensors
US5600301A (en) 1993-03-11 1997-02-04 Schrader Automotive Inc. Remote tire pressure monitoring system employing coded tire identification and radio frequency transmission, and enabling recalibration upon tire rotation or replacement
US5400794A (en) 1993-03-19 1995-03-28 Gorman; Peter G. Biomedical response monitor and technique using error correction
DK0622119T3 (en) 1993-04-23 2000-04-10 Roche Diagnostics Gmbh Test element storage system
JP2979933B2 (en) 1993-08-03 1999-11-22 セイコーエプソン株式会社 Pulse wave analyzer
DE4329898A1 (en) 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring device
US5582184A (en) 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
US5791344A (en) 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5497772A (en) 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
FR2713372B1 (en) 1993-12-01 1996-03-01 Neopost Ind Thermal protection device for secure electronic device, in particular postage meter.
US5320715A (en) 1994-01-14 1994-06-14 Lloyd Berg Separation of 1-pentanol from cyclopentanol by extractive distillation
DE4401400A1 (en) 1994-01-19 1995-07-20 Ernst Prof Dr Pfeiffer Method and arrangement for continuously monitoring the concentration of a metabolite
US5543326A (en) 1994-03-04 1996-08-06 Heller; Adam Biosensor including chemically modified enzymes
US5536249A (en) 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5390671A (en) 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5391250A (en) 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5609575A (en) 1994-04-11 1997-03-11 Graseby Medical Limited Infusion pump and method with dose-rate calculation
US5569186A (en) 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
DE4415896A1 (en) 1994-05-05 1995-11-09 Boehringer Mannheim Gmbh Analysis system for monitoring the concentration of an analyte in the blood of a patient
US5472317A (en) 1994-06-03 1995-12-05 Minimed Inc. Mounting clip for a medication infusion pump
US5809417A (en) 1994-07-05 1998-09-15 Lucent Technologies Inc. Cordless telephone arranged for operating with multiple portable units in a frequency hopping system
US5462051A (en) 1994-08-31 1995-10-31 Colin Corporation Medical communication system
US5528460A (en) * 1994-09-21 1996-06-18 Aeg Schneider Automation, Inc. Battery holder for a printed circuit board
US5549115A (en) 1994-09-28 1996-08-27 Heartstream, Inc. Method and apparatus for gathering event data using a removable data storage medium and clock
US5724030A (en) 1994-10-13 1998-03-03 Bio Medic Data Systems, Inc. System monitoring reprogrammable implantable transponder
EP0724859B1 (en) 1995-02-04 1997-11-12 Baumann & Haldi S.A. Personal device for measurement, processing and transmission of substantially physiological data
US5568806A (en) 1995-02-16 1996-10-29 Minimed Inc. Transcutaneous sensor insertion set
US5586553A (en) 1995-02-16 1996-12-24 Minimed Inc. Transcutaneous sensor insertion set
US5752512A (en) 1995-05-10 1998-05-19 Massachusetts Institute Of Technology Apparatus and method for non-invasive blood analyte measurement
US5628310A (en) 1995-05-19 1997-05-13 Joseph R. Lakowicz Method and apparatus to perform trans-cutaneous analyte monitoring
US5995860A (en) 1995-07-06 1999-11-30 Thomas Jefferson University Implantable sensor and system for measurement and control of blood constituent levels
US5581206A (en) 1995-07-28 1996-12-03 Micron Quantum Devices, Inc. Power level detection circuit
US5972199A (en) 1995-10-11 1999-10-26 E. Heller & Company Electrochemical analyte sensors using thermostable peroxidase
US5665222A (en) 1995-10-11 1997-09-09 E. Heller & Company Soybean peroxidase electrochemical sensor
US5778330A (en) * 1995-10-19 1998-07-07 Case Corporation Microprocessor controlled neutral circuit for a power transmission
US5748103A (en) 1995-11-13 1998-05-05 Vitalcom, Inc. Two-way TDMA telemetry system with power conservation features
US5711861A (en) 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
EP0882258B1 (en) * 1995-12-29 2000-07-26 Advanced Micro Devices, Inc. Reset circuit for a battery-powered integrated circuit and method of resetting such integrated circuit
FI960636A (en) 1996-02-12 1997-08-13 Nokia Mobile Phones Ltd A procedure for monitoring the health of a patient
US5833603A (en) 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
FR2748171B1 (en) 1996-04-30 1998-07-17 Motorola Inc METHOD FOR GENERATING A CLOCK SIGNAL FOR USE IN A DATA RECEIVER, CLOCK GENERATOR, DATA RECEIVER AND REMOTE CONTROL ACCESS SYSTEM FOR VEHICLES
DE19618597B4 (en) 1996-05-09 2005-07-21 Institut für Diabetestechnologie Gemeinnützige Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm Method for determining the concentration of tissue glucose
US6130602A (en) 1996-05-13 2000-10-10 Micron Technology, Inc. Radio frequency data communications device
US5735285A (en) 1996-06-04 1998-04-07 Data Critical Corp. Method and hand-held apparatus for demodulating and viewing frequency modulated biomedical signals
EP0914178B1 (en) 1996-06-18 2003-03-12 Alza Corporation Device for enhancing transdermal agent delivery or sampling
US5830064A (en) 1996-06-21 1998-11-03 Pear, Inc. Apparatus and method for distinguishing events which collectively exceed chance expectations and thereby controlling an output
JP3581218B2 (en) 1996-07-03 2004-10-27 株式会社東芝 Mobile communication terminal device and its mobile phone and data terminal device
CA2259254C (en) 1996-07-08 2008-02-19 Animas Corporation Implantable sensor and system for in vivo measurement and control of fluid constituent levels
US5707502A (en) 1996-07-12 1998-01-13 Chiron Diagnostics Corporation Sensors for measuring analyte concentrations and methods of making same
AU3892297A (en) 1996-07-26 1998-02-20 Ikonos Corporation Sensor for detecting heparin and other analytes
US6544193B2 (en) 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
US5856758A (en) 1996-11-20 1999-01-05 Adtran, Inc. Low distortion driver employing positive feedback for reducing power loss in output impedance that effectively matches the impedance of driven line
US6027459A (en) 1996-12-06 2000-02-22 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US5964993A (en) 1996-12-19 1999-10-12 Implanted Biosystems Inc. Glucose sensor
US6130623A (en) 1996-12-31 2000-10-10 Lucent Technologies Inc. Encryption for modulated backscatter systems
US6122351A (en) 1997-01-21 2000-09-19 Med Graph, Inc. Method and system aiding medical diagnosis and treatment
US6093172A (en) 1997-02-05 2000-07-25 Minimed Inc. Injector for a subcutaneous insertion set
US6607509B2 (en) 1997-12-31 2003-08-19 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
DE69809391T2 (en) 1997-02-06 2003-07-10 Therasense Inc SMALL VOLUME SENSOR FOR IN-VITRO DETERMINATION
US5749907A (en) 1997-02-18 1998-05-12 Pacesetter, Inc. System and method for identifying and displaying medical data which violate programmable alarm conditions
EP1011426A1 (en) 1997-02-26 2000-06-28 Diasense, Inc. Individual calibration of blood glucose for supporting noninvasive self-monitoring blood glucose
US6159147A (en) 1997-02-28 2000-12-12 Qrs Diagnostics, Llc Personal computer card for collection of real-time biological data
US20050033132A1 (en) 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US7192450B2 (en) 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US6741877B1 (en) 1997-03-04 2004-05-25 Dexcom, Inc. Device and method for determining analyte levels
US7657297B2 (en) 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US6558321B1 (en) 1997-03-04 2003-05-06 Dexcom, Inc. Systems and methods for remote monitoring and modulation of medical devices
US5959529A (en) 1997-03-07 1999-09-28 Kail, Iv; Karl A. Reprogrammable remote sensor monitoring system
US6699187B2 (en) 1997-03-27 2004-03-02 Medtronic, Inc. System and method for providing remote expert communications and video capabilities for use during a medical procedure
US5961451A (en) 1997-04-07 1999-10-05 Motorola, Inc. Noninvasive apparatus having a retaining member to retain a removable biosensor
US5942979A (en) 1997-04-07 1999-08-24 Luppino; Richard On guard vehicle safety warning system
US5935224A (en) 1997-04-24 1999-08-10 Microsoft Corporation Method and apparatus for adaptively coupling an external peripheral device to either a universal serial bus port on a computer or hub or a game port on a computer
US5818200A (en) * 1997-05-06 1998-10-06 Dell U.S.A., L.P. Dual smart battery detection system and method for portable computers
US6558351B1 (en) 1999-06-03 2003-05-06 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
US5954643A (en) 1997-06-09 1999-09-21 Minimid Inc. Insertion set for a transcutaneous sensor
US7267665B2 (en) 1999-06-03 2007-09-11 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
EP0990151A2 (en) 1997-06-16 2000-04-05 ELAN CORPORATION, Plc Methods of calibrating and testing a sensor for (in vivo) measurement of an analyte and devices for use in such methods
US6056435A (en) 1997-06-24 2000-05-02 Exergen Corporation Ambient and perfusion normalized temperature detector
US6731976B2 (en) 1997-09-03 2004-05-04 Medtronic, Inc. Device and method to measure and communicate body parameters
DE19836401A1 (en) 1997-09-19 2000-02-17 Salcomp Oy Salo Device for charging accumulators
US6117290A (en) 1997-09-26 2000-09-12 Pepex Biomedical, Llc System and method for measuring a bioanalyte such as lactate
US20020013538A1 (en) 1997-09-30 2002-01-31 David Teller Method and apparatus for health signs monitoring
US5904671A (en) 1997-10-03 1999-05-18 Navot; Nir Tampon wetness detection system
EP0918423B1 (en) 1997-10-15 2004-03-10 Nokia Corporation Mobile phone for Internet applications
US6088608A (en) 1997-10-20 2000-07-11 Alfred E. Mann Foundation Electrochemical sensor and integrity tests therefor
US6119028A (en) 1997-10-20 2000-09-12 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
FI107080B (en) 1997-10-27 2001-05-31 Nokia Mobile Phones Ltd measuring device
US6044285A (en) 1997-11-12 2000-03-28 Lightouch Medical, Inc. Method for non-invasive measurement of an analyte
KR100258969B1 (en) 1997-11-20 2000-06-15 윤종용 Firmware upgrading method in wireless communication device and firmware upgrade supporting method in cell base station
CA2547299C (en) 1997-12-04 2009-03-03 Roche Diagnostics Corporation Instrument and method
WO1999027849A1 (en) 1997-12-04 1999-06-10 Roche Diagnostics Corporation Instrument setup utility program
US6579690B1 (en) 1997-12-05 2003-06-17 Therasense, Inc. Blood analyte monitoring through subcutaneous measurement
CA2484271C (en) 1997-12-31 2007-04-24 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
EP2201969B1 (en) 1997-12-31 2011-03-30 Medtronic MiniMed, Inc. Insertion device for an insertion set
US6097480A (en) 1998-01-27 2000-08-01 Kaplan; Milton Vehicle interlock system
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6134461A (en) 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6024699A (en) 1998-03-13 2000-02-15 Healthware Corporation Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients
US6197181B1 (en) 1998-03-20 2001-03-06 Semitool, Inc. Apparatus and method for electrolytically depositing a metal on a microelectronic workpiece
US6579231B1 (en) 1998-03-27 2003-06-17 Mci Communications Corporation Personal medical monitoring unit and system
JP3104672B2 (en) 1998-03-31 2000-10-30 日本電気株式会社 Current detection type sensor element and method of manufacturing the same
JPH11296598A (en) 1998-04-07 1999-10-29 Seizaburo Arita System and method for predicting blood-sugar level and record medium where same method is recorded
CA2325886C (en) 1998-04-09 2009-07-21 California Institute Of Technology Electronic techniques for analyte detection
US6091987A (en) 1998-04-29 2000-07-18 Medtronic, Inc. Power consumption reduction in medical devices by employing different supply voltages
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US6141223A (en) * 1998-05-08 2000-10-31 Smk Manufacturing, Inc. Battery assembly for supplying power to an integrated circuit
WO1999058050A1 (en) 1998-05-13 1999-11-18 Cygnus, Inc. Signal processing for measurement of physiological analytes
EP1077634B1 (en) 1998-05-13 2003-07-30 Cygnus, Inc. Monitoring of physiological analytes
US6121611A (en) 1998-05-20 2000-09-19 Molecular Imaging Corporation Force sensing probe for scanning probe microscopy
US6302855B1 (en) 1998-05-20 2001-10-16 Novo Nordisk A/S Medical apparatus for use by a patient for medical self treatment of diabetes
JP2000031951A (en) 1998-07-15 2000-01-28 Fujitsu Ltd Burst synchronization circuit
US6493069B1 (en) 1998-07-24 2002-12-10 Terumo Kabushiki Kaisha Method and instrument for measuring blood sugar level
US6248067B1 (en) 1999-02-05 2001-06-19 Minimed Inc. Analyte sensor and holter-type monitor system and method of using the same
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6480753B1 (en) 1998-09-04 2002-11-12 Ncr Corporation Communications, particularly in the domestic environment
JP2000089288A (en) * 1998-09-11 2000-03-31 Minolta Co Ltd Camera and its battery pack
KR20000019716A (en) 1998-09-15 2000-04-15 박호군 Composition comprising bioflavonoid compounds for descending blood sugar
US6740518B1 (en) 1998-09-17 2004-05-25 Clinical Micro Sensors, Inc. Signal detection techniques for the detection of analytes
DE69908602T2 (en) 1998-09-30 2004-06-03 Cygnus, Inc., Redwood City METHOD AND DEVICE FOR PREDICTING PHYSIOLOGICAL MEASUREMENTS
US6402689B1 (en) 1998-09-30 2002-06-11 Sicel Technologies, Inc. Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors
WO2000019887A1 (en) 1998-10-08 2000-04-13 Minimed Inc. Telemetered characteristic monitor system
US20060202859A1 (en) 1998-10-08 2006-09-14 Mastrototaro John J Telemetered characteristic monitor system and method of using the same
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6496729B2 (en) 1998-10-28 2002-12-17 Medtronic, Inc. Power consumption reduction in medical devices employing multiple supply voltages and clock frequency control
US6497729B1 (en) 1998-11-20 2002-12-24 The University Of Connecticut Implant coating for control of tissue/implant interactions
US6540672B1 (en) 1998-12-09 2003-04-01 Novo Nordisk A/S Medical system and a method of controlling the system for use by a patient for medical self treatment
HUP0104660A2 (en) 1998-11-30 2002-03-28 Novo Nordisk A/S A method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions
EP1135052A1 (en) 1999-02-12 2001-09-26 Cygnus, Inc. Devices and methods for frequent measurement of an analyte present in a biological system
JP2002537031A (en) 1999-02-18 2002-11-05 バイオバルブ テクノロジーズ インコーポレイテッド Electroactive pores
US6360888B1 (en) 1999-02-25 2002-03-26 Minimed Inc. Glucose sensor package system
US6424847B1 (en) 1999-02-25 2002-07-23 Medtronic Minimed, Inc. Glucose monitor calibration methods
US8103325B2 (en) 1999-03-08 2012-01-24 Tyco Healthcare Group Lp Method and circuit for storing and providing historical physiological data
AU4063100A (en) 1999-04-01 2000-10-23 University Of Connecticut, The Optical glucose sensor apparatus and method
GB9907815D0 (en) 1999-04-06 1999-06-02 Univ Cambridge Tech Implantable sensor
US6285897B1 (en) 1999-04-07 2001-09-04 Endonetics, Inc. Remote physiological monitoring system
US6494829B1 (en) 1999-04-15 2002-12-17 Nexan Limited Physiological sensor array
US6416471B1 (en) 1999-04-15 2002-07-09 Nexan Limited Portable remote patient telemonitoring system
US6200265B1 (en) 1999-04-16 2001-03-13 Medtronic, Inc. Peripheral memory patch and access method for use with an implantable medical device
US6669663B1 (en) 1999-04-30 2003-12-30 Medtronic, Inc. Closed loop medicament pump
US6514689B2 (en) 1999-05-11 2003-02-04 M-Biotech, Inc. Hydrogel biosensor
US6359444B1 (en) 1999-05-28 2002-03-19 University Of Kentucky Research Foundation Remote resonant-circuit analyte sensing apparatus with sensing structure and associated method of sensing
US6546268B1 (en) 1999-06-02 2003-04-08 Ball Semiconductor, Inc. Glucose sensor
US6312378B1 (en) 1999-06-03 2001-11-06 Cardiac Intelligence Corporation System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care
US7806886B2 (en) 1999-06-03 2010-10-05 Medtronic Minimed, Inc. Apparatus and method for controlling insulin infusion with state variable feedback
JP4801301B2 (en) 1999-06-18 2011-10-26 アボット ダイアベティス ケア インコーポレイテッド In vivo analyte sensor with limited mass transfer
US6423035B1 (en) 1999-06-18 2002-07-23 Animas Corporation Infusion pump with a sealed drive mechanism and improved method of occlusion detection
US7522878B2 (en) 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
US6413393B1 (en) 1999-07-07 2002-07-02 Minimed, Inc. Sensor including UV-absorbing polymer and method of manufacture
US6804558B2 (en) 1999-07-07 2004-10-12 Medtronic, Inc. System and method of communicating between an implantable medical device and a remote computer system or health care provider
US7113821B1 (en) 1999-08-25 2006-09-26 Johnson & Johnson Consumer Companies, Inc. Tissue electroperforation for enhanced drug delivery
US6608562B1 (en) 1999-08-31 2003-08-19 Denso Corporation Vital signal detecting apparatus
AT408182B (en) 1999-09-17 2001-09-25 Schaupp Lukas Dipl Ing Dr Tech DEVICE FOR VIVO MEASURING SIZES IN LIVING ORGANISMS
WO2001028416A1 (en) 1999-09-24 2001-04-26 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US6662439B1 (en) 1999-10-04 2003-12-16 Roche Diagnostics Corporation Laser defined features for patterned laminates and electrodes
US6645359B1 (en) 2000-10-06 2003-11-11 Roche Diagnostics Corporation Biosensor
US7073246B2 (en) 1999-10-04 2006-07-11 Roche Diagnostics Operations, Inc. Method of making a biosensor
US7276146B2 (en) 2001-11-16 2007-10-02 Roche Diagnostics Operations, Inc. Electrodes, methods, apparatuses comprising micro-electrode arrays
US6294997B1 (en) 1999-10-04 2001-09-25 Intermec Ip Corp. RFID tag having timing and environment modules
US6767440B1 (en) 2001-04-24 2004-07-27 Roche Diagnostics Corporation Biosensor
US20050103624A1 (en) 1999-10-04 2005-05-19 Bhullar Raghbir S. Biosensor and method of making
US6478736B1 (en) 1999-10-08 2002-11-12 Healthetech, Inc. Integrated calorie management system
US6616819B1 (en) 1999-11-04 2003-09-09 Therasense, Inc. Small volume in vitro analyte sensor and methods
AU1607801A (en) 1999-11-15 2001-05-30 Therasense, Inc. Transition metal complexes with bidentate ligand having an imidazole ring
US6291200B1 (en) 1999-11-17 2001-09-18 Agentase, Llc Enzyme-containing polymeric sensors
US6658396B1 (en) 1999-11-29 2003-12-02 Tang Sharon S Neural network drug dosage estimation
US6522927B1 (en) 1999-12-01 2003-02-18 Vertis Neuroscience, Inc. Electrode assembly for a percutaneous electrical therapy system
US6418346B1 (en) 1999-12-14 2002-07-09 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US7060031B2 (en) 1999-12-17 2006-06-13 Medtronic, Inc. Method and apparatus for remotely programming implantable medical devices
US6497655B1 (en) 1999-12-17 2002-12-24 Medtronic, Inc. Virtual remote monitor, alert, diagnostics and programming for implantable medical device systems
US6602191B2 (en) 1999-12-17 2003-08-05 Q-Tec Systems Llp Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US20030107884A1 (en) * 1999-12-20 2003-06-12 Krietzman Mark Howard Flat illuminator with flexible integral switching arm
US20020091796A1 (en) 2000-01-03 2002-07-11 John Higginson Method and apparatus for transmitting data over a network using a docking device
US7286894B1 (en) 2000-01-07 2007-10-23 Pasco Scientific Hand-held computer device and method for interactive data acquisition, analysis, annotation, and calibration
US7369635B2 (en) 2000-01-21 2008-05-06 Medtronic Minimed, Inc. Rapid discrimination preambles and methods for using the same
WO2001052935A1 (en) 2000-01-21 2001-07-26 Medical Research Group, Inc. Ambulatory medical apparatus and method having telemetry modifiable control software
US6974437B2 (en) 2000-01-21 2005-12-13 Medtronic Minimed, Inc. Microprocessor controlled ambulatory medical apparatus with hand held communication device
ATE552869T1 (en) 2000-01-21 2012-04-15 Medtronic Minimed Inc MICROPROCESSOR-CONTROLLED, AMBULATORY MEDICAL DEVICE WITH HAND-HOLD COMMUNICATION DEVICE
US6748445B1 (en) 2000-02-01 2004-06-08 Microsoft Corporation System and method for exchanging data
US20010037060A1 (en) 2000-02-08 2001-11-01 Thompson Richard P. Web site for glucose monitoring
US7003336B2 (en) 2000-02-10 2006-02-21 Medtronic Minimed, Inc. Analyte sensor method of making the same
US6484045B1 (en) 2000-02-10 2002-11-19 Medtronic Minimed, Inc. Analyte sensor and method of making the same
US20030060765A1 (en) 2000-02-16 2003-03-27 Arthur Campbell Infusion device menu structure and method of using the same
US6895263B2 (en) 2000-02-23 2005-05-17 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US7890295B2 (en) 2000-02-23 2011-02-15 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US7027931B1 (en) 2000-02-24 2006-04-11 Bionostics, Inc. System for statistical analysis of quality control data
US6893396B2 (en) 2000-03-01 2005-05-17 I-Medik, Inc. Wireless internet bio-telemetry monitoring system and interface
US6405066B1 (en) 2000-03-17 2002-06-11 The Regents Of The University Of California Implantable analyte sensor
DZ3338A1 (en) 2000-03-29 2001-10-04 Univ Virginia METHOD, SYSTEM AND COMPUTER PROGRAM FOR EVALUATING GLYCEMIC REGULATION OF DIABETES FROM AUTOMATICALLY CONTROLLED DATA
US6610012B2 (en) 2000-04-10 2003-08-26 Healthetech, Inc. System and method for remote pregnancy monitoring
US6561975B1 (en) 2000-04-19 2003-05-13 Medtronic, Inc. Method and apparatus for communicating with medical device systems
US6440068B1 (en) 2000-04-28 2002-08-27 International Business Machines Corporation Measuring user health as measured by multiple diverse health measurement devices utilizing a personal storage device
AU2001263022A1 (en) 2000-05-12 2001-11-26 Therasense, Inc. Electrodes with multilayer membranes and methods of using and making the electrodes
US6442413B1 (en) 2000-05-15 2002-08-27 James H. Silver Implantable sensor
US7181261B2 (en) 2000-05-15 2007-02-20 Silver James H Implantable, retrievable, thrombus minimizing sensors
US6459917B1 (en) 2000-05-22 2002-10-01 Ashok Gowda Apparatus for access to interstitial fluid, blood, or blood plasma components
US6735479B2 (en) 2000-06-14 2004-05-11 Medtronic, Inc. Lifestyle management system
US6494830B1 (en) 2000-06-22 2002-12-17 Guidance Interactive Technologies, Inc. Handheld controller for monitoring/using medical parameters
IL153516A (en) 2000-06-23 2007-07-24 Bodymedia Inc System for monitoring health, wellness and fitness
US6540675B2 (en) 2000-06-27 2003-04-01 Rosedale Medical, Inc. Analyte monitor
US6400974B1 (en) 2000-06-29 2002-06-04 Sensors For Medicine And Science, Inc. Implanted sensor processing system and method for processing implanted sensor output
WO2002017210A2 (en) 2000-08-18 2002-02-28 Cygnus, Inc. Formulation and manipulation of databases of analyte and associated values
WO2002015777A1 (en) 2000-08-18 2002-02-28 Cygnus, Inc. Methods and devices for prediction of hypoglycemic events
US6675030B2 (en) 2000-08-21 2004-01-06 Euro-Celtique, S.A. Near infrared blood glucose monitoring system
US20020026111A1 (en) 2000-08-28 2002-02-28 Neil Ackerman Methods of monitoring glucose levels in a subject and uses thereof
EP1339312B1 (en) 2000-10-10 2006-01-04 Microchips, Inc. Microchip reservoir devices using wireless transmission of power and data
US6712025B2 (en) 2000-10-13 2004-03-30 Dogwatch, Inc. Receiver/stimulus unit for an animal control system
US6695860B1 (en) 2000-11-13 2004-02-24 Isense Corp. Transcutaneous sensor insertion device
US6574510B2 (en) 2000-11-30 2003-06-03 Cardiac Pacemakers, Inc. Telemetry apparatus and method for an implantable medical device
JP4348082B2 (en) 2000-12-11 2009-10-21 レスメド・リミテッド Device for judging the patient's situation after stroke onset
US6665558B2 (en) 2000-12-15 2003-12-16 Cardiac Pacemakers, Inc. System and method for correlation of patient health information and implant device data
US20020074162A1 (en) 2000-12-15 2002-06-20 Bor-Ray Su Substrate layout method and structure for reducing cross talk of adjacent signals
TW492117B (en) 2000-12-15 2002-06-21 Acer Labs Inc Substrate layout method and structure thereof for decreasing crosstalk between adjacent signals
US7052483B2 (en) 2000-12-19 2006-05-30 Animas Corporation Transcutaneous inserter for low-profile infusion sets
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US6970529B2 (en) 2001-01-16 2005-11-29 International Business Machines Corporation Unified digital architecture
US6603770B2 (en) 2001-01-16 2003-08-05 Physical Optics Corporation Apparatus and method for accessing a network
US20040197846A1 (en) 2001-01-18 2004-10-07 Linda Hockersmith Determination of glucose sensitivity and a method to manipulate blood glucose concentration
TW536689B (en) 2001-01-18 2003-06-11 Sharp Kk Display, portable device, and substrate
BR0206604A (en) 2001-01-22 2004-02-17 Hoffmann La Roche Lancet device that has capillary action
WO2002073503A2 (en) 2001-03-14 2002-09-19 Baxter International Inc. Internet based therapy management system
US6968294B2 (en) 2001-03-15 2005-11-22 Koninklijke Philips Electronics N.V. Automatic system for monitoring person requiring care and his/her caretaker
US6611206B2 (en) 2001-03-15 2003-08-26 Koninklijke Philips Electronics N.V. Automatic system for monitoring independent person requiring occasional assistance
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US7916013B2 (en) 2005-03-21 2011-03-29 Greatbatch Ltd. RFID detection and identification system for implantable medical devices
GR1003802B (en) 2001-04-17 2002-02-08 Micrel �.�.�. ������� ��������� ��������������� ��������� Tele-medicine system
US6698269B2 (en) 2001-04-27 2004-03-02 Oceana Sensor Technologies, Inc. Transducer in-situ testing apparatus and method
US20020164836A1 (en) 2001-05-07 2002-11-07 Advanced Semiconductor Engineering Inc. Method of manufacturing printed circuit board
US7395214B2 (en) 2001-05-11 2008-07-01 Craig P Shillingburg Apparatus, device and method for prescribing, administering and monitoring a treatment regimen for a patient
US6932894B2 (en) 2001-05-15 2005-08-23 Therasense, Inc. Biosensor membranes composed of polymers containing heterocyclic nitrogens
US6549796B2 (en) 2001-05-25 2003-04-15 Lifescan, Inc. Monitoring analyte concentration using minimally invasive devices
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US7179226B2 (en) 2001-06-21 2007-02-20 Animas Corporation System and method for managing diabetes
WO2003000127A2 (en) 2001-06-22 2003-01-03 Cygnus, Inc. Method for improving the performance of an analyte monitoring system
US7044911B2 (en) 2001-06-29 2006-05-16 Philometron, Inc. Gateway platform for biological monitoring and delivery of therapeutic compounds
US20030208113A1 (en) 2001-07-18 2003-11-06 Mault James R Closed loop glycemic index system
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US6544212B2 (en) 2001-07-31 2003-04-08 Roche Diagnostics Corporation Diabetes management system
US6788965B2 (en) 2001-08-03 2004-09-07 Sensys Medical, Inc. Intelligent system for detecting errors and determining failure modes in noninvasive measurement of blood and tissue analytes
EP1320322A1 (en) 2001-08-20 2003-06-25 Inverness Medical Limited Wireless diabetes management devices and methods for using the same
US7736272B2 (en) 2001-08-21 2010-06-15 Pantometrics, Ltd. Exercise system with graphical feedback and method of gauging fitness progress
US6781522B2 (en) 2001-08-22 2004-08-24 Kivalo, Inc. Portable storage case for housing a medical monitoring device and an associated method for communicating therewith
US6827702B2 (en) 2001-09-07 2004-12-07 Medtronic Minimed, Inc. Safety limits for closed-loop infusion pump control
WO2003022142A2 (en) 2001-09-13 2003-03-20 The Boeing Company Method for transmitting vital health statistics to a remote location form an aircraft
JP2003084101A (en) 2001-09-17 2003-03-19 Dainippon Printing Co Ltd Resin composition for optical device, optical device and projection screen
US7052591B2 (en) 2001-09-21 2006-05-30 Therasense, Inc. Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking
US6830562B2 (en) 2001-09-27 2004-12-14 Unomedical A/S Injector device for placing a subcutaneous infusion set
US20050137480A1 (en) 2001-10-01 2005-06-23 Eckhard Alt Remote control of implantable device through medical implant communication service band
US20040253867A1 (en) * 2001-11-05 2004-12-16 Shuzo Matsumoto Circuit part connector structure and gasket
AU2002356956A1 (en) 2001-11-16 2003-06-10 North Carolina State University Biomedical electrochemical sensor array and method of fabrication
US20030116447A1 (en) 2001-11-16 2003-06-26 Surridge Nigel A. Electrodes, methods, apparatuses comprising micro-electrode arrays
WO2003046695A2 (en) 2001-11-28 2003-06-05 Phemi Inc. Methods and apparatus for automated interactive medical management
US7382405B2 (en) 2001-12-03 2008-06-03 Nikon Corporation Electronic apparatus having a user identification function and user identification method
US7204823B2 (en) 2001-12-19 2007-04-17 Medtronic Minimed, Inc. Medication delivery system and monitor
US7082334B2 (en) 2001-12-19 2006-07-25 Medtronic, Inc. System and method for transmission of medical and like data from a patient to a dedicated internet website
US20030119457A1 (en) 2001-12-19 2003-06-26 Standke Randolph E. Filter technique for increasing antenna isolation in portable communication devices
US7729776B2 (en) 2001-12-19 2010-06-01 Cardiac Pacemakers, Inc. Implantable medical device with two or more telemetry systems
US20080255438A1 (en) 2001-12-27 2008-10-16 Medtronic Minimed, Inc. System for monitoring physiological characteristics
US7399277B2 (en) 2001-12-27 2008-07-15 Medtronic Minimed, Inc. System for monitoring physiological characteristics
US20050027182A1 (en) 2001-12-27 2005-02-03 Uzair Siddiqui System for monitoring physiological characteristics
US7022072B2 (en) 2001-12-27 2006-04-04 Medtronic Minimed, Inc. System for monitoring physiological characteristics
US6980852B2 (en) 2002-01-25 2005-12-27 Subqiview Inc. Film barrier dressing for intravascular tissue monitoring system
US20030144711A1 (en) 2002-01-29 2003-07-31 Neuropace, Inc. Systems and methods for interacting with an implantable medical device
US6985773B2 (en) 2002-02-07 2006-01-10 Cardiac Pacemakers, Inc. Methods and apparatuses for implantable medical device telemetry power management
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
EP1487519B1 (en) 2002-02-26 2013-06-12 TecPharma Licensing AG Insertion device for an insertion set and method of using the same
US20030212379A1 (en) 2002-02-26 2003-11-13 Bylund Adam David Systems and methods for remotely controlling medication infusion and analyte monitoring
US7043305B2 (en) 2002-03-06 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for establishing context among events and optimizing implanted medical device performance
US7468032B2 (en) 2002-12-18 2008-12-23 Cardiac Pacemakers, Inc. Advanced patient management for identifying, displaying and assisting with correlating health-related data
US6998247B2 (en) 2002-03-08 2006-02-14 Sensys Medical, Inc. Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
US6936006B2 (en) 2002-03-22 2005-08-30 Novo Nordisk, A/S Atraumatic insertion of a subcutaneous device
US20040030531A1 (en) 2002-03-28 2004-02-12 Honeywell International Inc. System and method for automated monitoring, recognizing, supporting, and responding to the behavior of an actor
GB2388898B (en) 2002-04-02 2005-10-05 Inverness Medical Ltd Integrated sample testing meter
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7410468B2 (en) 2002-04-19 2008-08-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
WO2003090614A1 (en) 2002-04-25 2003-11-06 Matsushita Electric Industrial Co., Ltd. Dosage determination supporting device, injector, and health management supporting system
US6810309B2 (en) 2002-04-25 2004-10-26 Visteon Global Technologies, Inc. Vehicle personalization via biometric identification
US6983867B1 (en) 2002-04-29 2006-01-10 Dl Technology Llc Fluid dispense pump with drip prevention mechanism and method for controlling same
GB2388716B (en) 2002-05-13 2004-10-20 Splashpower Ltd Improvements relating to contact-less power transfer
US7226978B2 (en) 2002-05-22 2007-06-05 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US20040030581A1 (en) 2002-06-12 2004-02-12 Samuel Leven Heart monitoring device
US7124027B1 (en) 2002-07-11 2006-10-17 Yazaki North America, Inc. Vehicular collision avoidance system
US20040010207A1 (en) 2002-07-15 2004-01-15 Flaherty J. Christopher Self-contained, automatic transcutaneous physiologic sensing system
JP2004054394A (en) 2002-07-17 2004-02-19 Toshiba Corp Radio information processing system, radio information recording medium, radio information processor and communication method for radio information processing system
AU2003302720B9 (en) 2002-07-19 2008-08-21 Smiths Detection-Pasadena, Inc. Non-specific sensor array detectors
US7470533B2 (en) 2002-12-20 2008-12-30 Acea Biosciences Impedance based devices and methods for use in assays
US7278983B2 (en) 2002-07-24 2007-10-09 Medtronic Minimed, Inc. Physiological monitoring device for controlling a medication infusion device
US6992580B2 (en) 2002-07-25 2006-01-31 Motorola, Inc. Portable communication device and corresponding method of operation
WO2004015539A2 (en) 2002-08-13 2004-02-19 University Of Virginia Patent Foundation Managing and processing self-monitoring blood glucose
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US7404796B2 (en) 2004-03-01 2008-07-29 Becton Dickinson And Company System for determining insulin dose using carbohydrate to insulin ratio and insulin sensitivity factor
US7192405B2 (en) 2002-09-30 2007-03-20 Becton, Dickinson And Company Integrated lancet and bodily fluid sensor
JP4599296B2 (en) 2002-10-11 2010-12-15 ベクトン・ディキンソン・アンド・カンパニー System and method for initiating and maintaining continuous long-term control of the concentration of a substance in a patient's body using a feedback or model-based controller coupled to a single needle or multi-needle intradermal (ID) delivery device
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US7572237B2 (en) 2002-11-06 2009-08-11 Abbott Diabetes Care Inc. Automatic biological analyte testing meter with integrated lancing device and methods of use
GB0226648D0 (en) 2002-11-15 2002-12-24 Koninkl Philips Electronics Nv Usage data harvesting
US20040100376A1 (en) 2002-11-26 2004-05-27 Kimberly-Clark Worldwide, Inc. Healthcare monitoring system
US7580395B2 (en) 2002-11-29 2009-08-25 Intermec Ip Corp. Information gathering apparatus and method having multiple wireless communication options
GB2396248B (en) * 2002-12-13 2004-12-15 Giga Byte Tech Co Ltd Supporting device for coupling batteries to a circuit board
US7009511B2 (en) 2002-12-17 2006-03-07 Cardiac Pacemakers, Inc. Repeater device for communications with an implantable medical device
US20040122353A1 (en) 2002-12-19 2004-06-24 Medtronic Minimed, Inc. Relay device for transferring information between a sensor system and a fluid delivery system
US7833151B2 (en) 2002-12-26 2010-11-16 Given Imaging Ltd. In vivo imaging device with two imagers
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US7154398B2 (en) 2003-01-06 2006-12-26 Chen Thomas C H Wireless communication and global location enabled intelligent health monitoring system
US7228162B2 (en) 2003-01-13 2007-06-05 Isense Corporation Analyte sensor
GB0304424D0 (en) 2003-02-26 2003-04-02 Glaxosmithkline Biolog Sa Novel compounds
US7447298B2 (en) 2003-04-01 2008-11-04 Cabot Microelectronics Corporation Decontamination and sterilization system using large area x-ray source
US20040199056A1 (en) 2003-04-03 2004-10-07 International Business Machines Corporation Body monitoring using local area wireless interfaces
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US7587287B2 (en) 2003-04-04 2009-09-08 Abbott Diabetes Care Inc. Method and system for transferring analyte test data
US20040204868A1 (en) 2003-04-09 2004-10-14 Maynard John D. Reduction of errors in non-invasive tissue sampling
CN102811556A (en) 2003-04-15 2012-12-05 医药及科学传感器公司 Printed circuit board with integrated antenna and implantable sensor processing system with integrated printed circuit board antenna
US20040225199A1 (en) 2003-05-08 2004-11-11 Evanyk Shane Walter Advanced physiological monitoring systems and methods
AU2003902187A0 (en) 2003-05-08 2003-05-22 Aimedics Pty Ltd Patient monitor
US7875293B2 (en) 2003-05-21 2011-01-25 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US8460243B2 (en) 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
US7040139B2 (en) 2003-06-10 2006-05-09 Smiths Detection Inc. Sensor arrangement
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US20040254433A1 (en) 2003-06-12 2004-12-16 Bandis Steven D. Sensor introducer system, apparatus and method
US7155290B2 (en) 2003-06-23 2006-12-26 Cardiac Pacemakers, Inc. Secure long-range telemetry for implantable medical device
US7510564B2 (en) 2003-06-27 2009-03-31 Abbott Diabetes Care Inc. Lancing device
US7242981B2 (en) 2003-06-30 2007-07-10 Codman Neuro Sciences Sárl System and method for controlling an implantable medical device subject to magnetic field or radio frequency exposure
US7722536B2 (en) 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
US7424318B2 (en) 2003-12-05 2008-09-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
JP4708342B2 (en) 2003-07-25 2011-06-22 デックスコム・インコーポレーテッド Oxygen augmentation membrane system for use in implantable devices
JP2007500336A (en) 2003-07-25 2007-01-11 デックスコム・インコーポレーテッド Electrode system for electrochemical sensors
US7761130B2 (en) 2003-07-25 2010-07-20 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20050176136A1 (en) 2003-11-19 2005-08-11 Dexcom, Inc. Afinity domain for analyte sensor
US7108778B2 (en) 2003-07-25 2006-09-19 Dexcom, Inc. Electrochemical sensors including electrode systems with increased oxygen generation
US7460898B2 (en) 2003-12-05 2008-12-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7366556B2 (en) 2003-12-05 2008-04-29 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7651596B2 (en) 2005-04-08 2010-01-26 Dexcom, Inc. Cellulosic-based interference domain for an analyte sensor
US7467003B2 (en) 2003-12-05 2008-12-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8423113B2 (en) 2003-07-25 2013-04-16 Dexcom, Inc. Systems and methods for processing sensor data
US8282549B2 (en) 2003-12-09 2012-10-09 Dexcom, Inc. Signal processing for continuous analyte sensor
US8369919B2 (en) 2003-08-01 2013-02-05 Dexcom, Inc. Systems and methods for processing sensor data
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US7925321B2 (en) 2003-08-01 2011-04-12 Dexcom, Inc. System and methods for processing analyte sensor data
US8060173B2 (en) 2003-08-01 2011-11-15 Dexcom, Inc. System and methods for processing analyte sensor data
US8626257B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. Analyte sensor
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US8233959B2 (en) 2003-08-22 2012-07-31 Dexcom, Inc. Systems and methods for processing analyte sensor data
EP3851030B1 (en) 2003-09-11 2024-01-17 Labrador Diagnostics LLC Medical device for analyte monitoring
DE602004026763D1 (en) 2003-09-30 2010-06-02 Roche Diagnostics Gmbh SENSOR WITH IMPROVED BIOKOMPATIBILITY
US7203549B2 (en) 2003-10-02 2007-04-10 Medtronic, Inc. Medical device programmer with internal antenna and display
US8140168B2 (en) 2003-10-02 2012-03-20 Medtronic, Inc. External power source for an implantable medical device having an adjustable carrier frequency and system and method related therefore
US7148803B2 (en) 2003-10-24 2006-12-12 Symbol Technologies, Inc. Radio frequency identification (RFID) based sensor networks
US20050090607A1 (en) 2003-10-28 2005-04-28 Dexcom, Inc. Silicone composition for biocompatible membrane
US8373544B2 (en) 2003-10-29 2013-02-12 Innovision Research & Technology Plc RFID apparatus
US6928380B2 (en) 2003-10-30 2005-08-09 International Business Machines Corporation Thermal measurements of electronic devices during operation
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
ES2739529T3 (en) 2003-11-06 2020-01-31 Lifescan Inc Drug administration pen with event notification means
US7419573B2 (en) 2003-11-06 2008-09-02 3M Innovative Properties Company Circuit for electrochemical sensor strip
WO2005051170A2 (en) 2003-11-19 2005-06-09 Dexcom, Inc. Integrated receiver for continuous analyte sensor
AU2004293463A1 (en) 2003-11-20 2005-06-09 Angiotech International Ag Implantable sensors and implantable pumps and anti-scarring agents
US20050113886A1 (en) 2003-11-24 2005-05-26 Fischell David R. Implantable medical system with long range telemetry
US8532730B2 (en) 2006-10-04 2013-09-10 Dexcom, Inc. Analyte sensor
US20080200788A1 (en) 2006-10-04 2008-08-21 Dexcorn, Inc. Analyte sensor
DE602004029092D1 (en) 2003-12-05 2010-10-21 Dexcom Inc CALIBRATION METHODS FOR A CONTINUOUSLY WORKING ANALYTIC SENSOR
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8425417B2 (en) 2003-12-05 2013-04-23 Dexcom, Inc. Integrated device for continuous in vivo analyte detection and simultaneous control of an infusion device
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20080197024A1 (en) 2003-12-05 2008-08-21 Dexcom, Inc. Analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US8364230B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8425416B2 (en) 2006-10-04 2013-04-23 Dexcom, Inc. Analyte sensor
ES2646312T3 (en) 2003-12-08 2017-12-13 Dexcom, Inc. Systems and methods to improve electromechanical analyte sensors
US7384397B2 (en) 2003-12-30 2008-06-10 Medtronic Minimed, Inc. System and method for sensor recalibration
US7637868B2 (en) 2004-01-12 2009-12-29 Dexcom, Inc. Composite material for implantable device
CN1910600B (en) 2004-01-23 2011-12-14 株式会社半导体能源研究所 ID label, ID card, and ID tag
PL1709750T3 (en) 2004-01-27 2015-03-31 Altivera L L C Diagnostic radio frequency identification sensors and applications thereof
JP4526827B2 (en) 2004-02-03 2010-08-18 オムロンヘルスケア株式会社 Electronic blood pressure monitor
US7350720B2 (en) * 2004-02-03 2008-04-01 S.C. Johnson & Son, Inc. Active material emitting device
US8165651B2 (en) 2004-02-09 2012-04-24 Abbott Diabetes Care Inc. Analyte sensor, and associated system and method employing a catalytic agent
US7364592B2 (en) 2004-02-12 2008-04-29 Dexcom, Inc. Biointerface membrane with macro-and micro-architecture
US20060154642A1 (en) 2004-02-20 2006-07-13 Scannell Robert F Jr Medication & health, environmental, and security monitoring, alert, intervention, information and network system with associated and supporting apparatuses
JP3590053B1 (en) 2004-02-24 2004-11-17 株式会社日立製作所 Blood glucose measurement device
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
DE102004011135A1 (en) 2004-03-08 2005-09-29 Disetronic Licensing Ag Method and apparatus for calculating a bolus amount
US7831828B2 (en) 2004-03-15 2010-11-09 Cardiac Pacemakers, Inc. System and method for securely authenticating a data exchange session with an implantable medical device
US7228182B2 (en) 2004-03-15 2007-06-05 Cardiac Pacemakers, Inc. Cryptographic authentication for telemetry with an implantable medical device
GB0405798D0 (en) 2004-03-15 2004-04-21 E San Ltd Medical data display
JP5051767B2 (en) 2004-03-22 2012-10-17 ボディーメディア インコーポレイテッド Device for monitoring human condition parameters
EP1735729A2 (en) 2004-03-26 2006-12-27 Novo Nordisk A/S Device for displaying data relevant for a diabetic patient
US20050221504A1 (en) 2004-04-01 2005-10-06 Petruno Patrick T Optoelectronic rapid diagnostic test system
US6971274B2 (en) 2004-04-02 2005-12-06 Sierra Instruments, Inc. Immersible thermal mass flow meter
US20060009727A1 (en) 2004-04-08 2006-01-12 Chf Solutions Inc. Method and apparatus for an extracorporeal control of blood glucose
US7324850B2 (en) 2004-04-29 2008-01-29 Cardiac Pacemakers, Inc. Method and apparatus for communication between a handheld programmer and an implantable medical device
US20050245799A1 (en) 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US7125382B2 (en) 2004-05-20 2006-10-24 Digital Angel Corporation Embedded bio-sensor system
US7118667B2 (en) 2004-06-02 2006-10-10 Jin Po Lee Biosensors having improved sample application and uses thereof
US20060010098A1 (en) 2004-06-04 2006-01-12 Goodnow Timothy T Diabetes care host-client architecture and data management system
US7289855B2 (en) 2004-06-09 2007-10-30 Medtronic, Inc. Implantable medical device package antenna
US7283867B2 (en) 2004-06-10 2007-10-16 Ndi Medical, Llc Implantable system and methods for acquisition and processing of electrical signals from muscles and/or nerves and/or central nervous system tissue
US20070100222A1 (en) 2004-06-14 2007-05-03 Metronic Minimed, Inc. Analyte sensing apparatus for hospital use
US7565197B2 (en) 2004-06-18 2009-07-21 Medtronic, Inc. Conditional requirements for remote medical device programming
US7556723B2 (en) 2004-06-18 2009-07-07 Roche Diagnostics Operations, Inc. Electrode design for biosensor
US7623988B2 (en) 2004-06-23 2009-11-24 Cybiocare Inc. Method and apparatus for the monitoring of clinical states
DE102004031092A1 (en) 2004-06-28 2006-01-12 Giesecke & Devrient Gmbh transponder unit
US20060001538A1 (en) 2004-06-30 2006-01-05 Ulrich Kraft Methods of monitoring the concentration of an analyte
US20060015020A1 (en) 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20060016700A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
WO2006127694A2 (en) 2004-07-13 2006-11-30 Dexcom, Inc. Analyte sensor
US7946984B2 (en) 2004-07-13 2011-05-24 Dexcom, Inc. Transcutaneous analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US20080242961A1 (en) 2004-07-13 2008-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US8886272B2 (en) 2004-07-13 2014-11-11 Dexcom, Inc. Analyte sensor
US7344500B2 (en) 2004-07-27 2008-03-18 Medtronic Minimed, Inc. Sensing system with auxiliary display
US8313433B2 (en) 2004-08-06 2012-11-20 Medtronic Minimed, Inc. Medical data management system and process
CN101091114A (en) 2004-08-31 2007-12-19 生命扫描苏格兰有限公司 Method of manufacturing an auto-calibrating sensor
EP1799101A4 (en) 2004-09-02 2008-11-19 Proteus Biomedical Inc Methods and apparatus for tissue activation and monitoring
US20080312859A1 (en) 2004-09-03 2008-12-18 Novo Nordisk A/S Method of Calibrating a System for Measuring the Concentration of Substances in Body and an Apparatus for Exercising the Method
US8211038B2 (en) 2004-09-17 2012-07-03 Abbott Diabetes Care Inc. Multiple-biosensor article
EP1794695A2 (en) 2004-09-23 2007-06-13 Novo Nordisk A/S Device for self-care support
US10201305B2 (en) 2004-11-02 2019-02-12 Medtronic, Inc. Apparatus for data retention in an implantable medical device
US7408132B2 (en) 2004-11-08 2008-08-05 Rrc Power Solutions Gmbh Temperature sensor for power supply
US7237712B2 (en) 2004-12-01 2007-07-03 Alfred E. Mann Foundation For Scientific Research Implantable device and communication integrated circuit implementable therein
ATE545361T1 (en) 2004-12-13 2012-03-15 Koninkl Philips Electronics Nv MOBILE MONITORING
US7461192B2 (en) 2004-12-15 2008-12-02 Rambus Inc. Interface for bridging out-of-band information and preventing false presence detection of terminating devices
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
EP1835849B1 (en) 2004-12-29 2016-02-17 LifeScan Scotland Limited Method of inputting data into an analyte testing device
US20110190603A1 (en) 2009-09-29 2011-08-04 Stafford Gary A Sensor Inserter Having Introducer
US20070027381A1 (en) 2005-07-29 2007-02-01 Therasense, Inc. Inserter and methods of use
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US20060166629A1 (en) 2005-01-24 2006-07-27 Therasense, Inc. Method and apparatus for providing EMC Class-B compliant RF transmitter for data monitoring an detection systems
US20060173260A1 (en) 2005-01-31 2006-08-03 Gmms Ltd System, device and method for diabetes treatment and monitoring
US7547281B2 (en) 2005-02-01 2009-06-16 Medtronic Minimed, Inc. Algorithm sensor augmented bolus estimator for semi-closed loop infusion system
US7847488B2 (en) * 2005-02-08 2010-12-07 Rohm Co., Ltd. Power supply circuit and portable device
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US20090076360A1 (en) 2007-09-13 2009-03-19 Dexcom, Inc. Transcutaneous analyte sensor
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
US20060202805A1 (en) 2005-03-14 2006-09-14 Alfred E. Mann Foundation For Scientific Research Wireless acquisition and monitoring system
EP1859279A4 (en) 2005-03-15 2009-12-30 Entelos Inc Apparatus and method for computer modeling type 1 diabetes
WO2006102412A2 (en) 2005-03-21 2006-09-28 Abbott Diabetes Care, Inc. Method and system for providing integrated medication infusion and analyte monitoring system
US7889069B2 (en) 2005-04-01 2011-02-15 Codman & Shurtleff, Inc. Wireless patient monitoring system
EP1877116A1 (en) 2005-04-13 2008-01-16 Novo Nordisk A/S Medical skin mountable device and system
US7270633B1 (en) 2005-04-22 2007-09-18 Cardiac Pacemakers, Inc. Ambulatory repeater for use in automated patient care and method thereof
DE102005019306B4 (en) 2005-04-26 2011-09-01 Disetronic Licensing Ag Energy-optimized data transmission of a medical device
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US8700157B2 (en) 2005-04-29 2014-04-15 Medtronic, Inc. Telemetry head programmer for implantable medical device and system and method
US7467065B2 (en) 2005-05-02 2008-12-16 Home Diagnostics, Inc. Computer interface for diagnostic meter
US20060253085A1 (en) 2005-05-06 2006-11-09 Medtronic Minimed, Inc. Dual insertion set
US9233203B2 (en) 2005-05-06 2016-01-12 Medtronic Minimed, Inc. Medical needles for damping motion
US7604178B2 (en) 2005-05-11 2009-10-20 Intelleflex Corporation Smart tag activation
EP1881786B1 (en) 2005-05-13 2017-11-15 Trustees of Boston University Fully automated control system for type 1 diabetes
US7541935B2 (en) 2005-05-19 2009-06-02 Proacticare Llc System and methods for monitoring caregiver performance
US20060272652A1 (en) 2005-06-03 2006-12-07 Medtronic Minimed, Inc. Virtual patient software system for educating and treating individuals with diabetes
US20070033074A1 (en) 2005-06-03 2007-02-08 Medtronic Minimed, Inc. Therapy management system
US20080071580A1 (en) 2005-06-03 2008-03-20 Marcus Alan O System and method for medical evaluation and monitoring
EP1733676B1 (en) 2005-06-17 2012-08-01 F. Hoffmann-La Roche AG Sensor system, arrangement and method for monitoring a compound, in particular glucose in body tissue.
US20070016449A1 (en) 2005-06-29 2007-01-18 Gary Cohen Flexible glucose analysis using varying time report deltas and configurable glucose target ranges
AU2006269374C1 (en) 2005-07-12 2010-03-25 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
WO2007007459A1 (en) 2005-07-12 2007-01-18 Omron Healthcare Co., Ltd. Biochemical measuring instrument for measuring information about component of living body accurately
US7413124B2 (en) 2005-07-19 2008-08-19 3M Innovative Properties Company RFID reader supporting one-touch search functionality
TWI417543B (en) 2005-08-05 2013-12-01 Bayer Healthcare Llc Meters and method of using meters having a multi-level user interface with predefined levels of user features
WO2007022485A2 (en) 2005-08-19 2007-02-22 Becton, Dickinson And Company Sterilization of biosensors
EP1758039A1 (en) 2005-08-27 2007-02-28 Roche Diagnostics GmbH Communication adaptor for portable medical or therapeutical devices
EP1921978B1 (en) 2005-09-09 2012-08-01 F. Hoffmann-La Roche AG Device and program for diabetes care
US8298389B2 (en) 2005-09-12 2012-10-30 Abbott Diabetes Care Inc. In vitro analyte sensor, and methods
US7725148B2 (en) 2005-09-23 2010-05-25 Medtronic Minimed, Inc. Sensor with layered electrodes
US9072476B2 (en) 2005-09-23 2015-07-07 Medtronic Minimed, Inc. Flexible sensor apparatus
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US7701052B2 (en) 2005-10-21 2010-04-20 E. I. Du Pont De Nemours And Company Power core devices
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
EP3064236B1 (en) 2005-11-08 2020-02-05 Bigfoot Biomedical, Inc. Method and system for manual and autonomous control of an infusion pump
US20070173706A1 (en) 2005-11-11 2007-07-26 Isense Corporation Method and apparatus for insertion of a sensor
WO2007062173A1 (en) 2005-11-22 2007-05-31 Vocollect Healthcare Systems, Inc. Advanced diabetes management system (adms)
US7941200B2 (en) 2005-12-08 2011-05-10 Roche Diagnostics Operations, Inc. System and method for determining drug administration information
US8515518B2 (en) 2005-12-28 2013-08-20 Abbott Diabetes Care Inc. Analyte monitoring
US8160670B2 (en) 2005-12-28 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent
EP1968432A4 (en) 2005-12-28 2009-10-21 Abbott Diabetes Care Inc Medical device insertion
US8102789B2 (en) 2005-12-29 2012-01-24 Medtronic, Inc. System and method for synchronous wireless communication with a medical device
US20070179349A1 (en) 2006-01-19 2007-08-02 Hoyme Kenneth P System and method for providing goal-oriented patient management based upon comparative population data analysis
US7574266B2 (en) 2006-01-19 2009-08-11 Medtronic, Inc. System and method for telemetry with an implantable medical device
US7872574B2 (en) 2006-02-01 2011-01-18 Innovation Specialists, Llc Sensory enhancement systems and methods in personal electronic devices
DE602007013723D1 (en) 2006-02-09 2011-05-19 Deka Products Lp SYSTEMS FOR DISPENSING FLUIDS IN PATCH SIZE
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US7576657B2 (en) 2006-03-22 2009-08-18 Symbol Technologies, Inc. Single frequency low power RFID device
US7887682B2 (en) 2006-03-29 2011-02-15 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US20070233013A1 (en) 2006-03-31 2007-10-04 Schoenberg Stephen J Covers for tissue engaging members
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
ATE449518T1 (en) 2006-04-20 2009-12-15 Lifescan Scotland Ltd METHOD FOR SENDING DATA IN A BLOOD GLUCOSE SYSTEM AND CORRESPONDING BLOOD GLUCOSE SYSTEM
US7359837B2 (en) 2006-04-27 2008-04-15 Medtronic, Inc. Peak data retention of signal data in an implantable medical device
US20070255126A1 (en) 2006-04-28 2007-11-01 Moberg Sheldon B Data communication in networked fluid infusion systems
US20070258395A1 (en) 2006-04-28 2007-11-08 Medtronic Minimed, Inc. Wireless data communication protocols for a medical device network
US20070253021A1 (en) 2006-04-28 2007-11-01 Medtronic Minimed, Inc. Identification of devices in a medical device network and wireless data communication techniques utilizing device identifiers
US20070255125A1 (en) 2006-04-28 2007-11-01 Moberg Sheldon B Monitor devices for networked fluid infusion systems
US8135352B2 (en) 2006-05-02 2012-03-13 3M Innovative Properties Company Telecommunication enclosure monitoring system
GB0608829D0 (en) 2006-05-04 2006-06-14 Husheer Shamus L G In-situ measurement of physical parameters
DE102006023213B3 (en) 2006-05-17 2007-09-27 Siemens Ag Sensor operating method, involves detecting recording and evaluation device during order and non-order functions of monitoring device in check mode, and watching occurrence of results in mode by sensor, which automatically leaves mode
DE102006025485B4 (en) 2006-05-30 2008-03-20 Polylc Gmbh & Co. Kg Antenna arrangement and its use
WO2007143225A2 (en) 2006-06-07 2007-12-13 Abbott Diabetes Care, Inc. Analyte monitoring system and method
US8098159B2 (en) 2006-06-09 2012-01-17 Intelleflex Corporation RF device comparing DAC output to incoming signal for selectively performing an action
US7796038B2 (en) 2006-06-12 2010-09-14 Intelleflex Corporation RFID sensor tag with manual modes and functions
US20080177149A1 (en) 2006-06-16 2008-07-24 Stefan Weinert System and method for collecting patient information from which diabetes therapy may be determined
WO2008001366A2 (en) 2006-06-28 2008-01-03 Endo-Rhythm Ltd. Lifestyle and eating advisor based on physiological and biological rhythm monitoring
US20090105560A1 (en) 2006-06-28 2009-04-23 David Solomon Lifestyle and eating advisor based on physiological and biological rhythm monitoring
US7680469B2 (en) 2006-07-06 2010-03-16 Hewlett-Packard Development Company, L.P. Electronic device power management system and method
US7866026B1 (en) 2006-08-01 2011-01-11 Abbott Diabetes Care Inc. Method for making calibration-adjusted sensors
GB0616331D0 (en) 2006-08-16 2006-09-27 Innovision Res & Tech Plc Near Field RF Communicators And Near Field Communications Enabled Devices
US20090256572A1 (en) 2008-04-14 2009-10-15 Mcdowell Andrew F Tuning Low-Inductance Coils at Low Frequencies
US7769456B2 (en) 2006-09-01 2010-08-03 Cardiac Pacemakers, Inc. Frequency-agile system for telemetry with implantable device
US20080057484A1 (en) 2006-09-05 2008-03-06 Shinichi Miyata Event-driven method for tutoring a user in the determination of an analyte in a bodily fluid sample
US20080058678A1 (en) 2006-09-05 2008-03-06 Shinichi Miyata Kit for the determination of an analyte in a bodily fluid sample that includes a meter with a display-based tutorial module
US20080071328A1 (en) 2006-09-06 2008-03-20 Medtronic, Inc. Initiating medical system communications
US9056165B2 (en) 2006-09-06 2015-06-16 Medtronic Minimed, Inc. Intelligent therapy recommendation algorithm and method of using the same
US7696941B2 (en) 2006-09-11 2010-04-13 Elster Electricity, Llc Printed circuit notch antenna
DE102006043484B4 (en) 2006-09-15 2019-11-28 Infineon Technologies Ag Fuse structure and method for producing the same
US7779332B2 (en) 2006-09-25 2010-08-17 Alfred E. Mann Foundation For Scientific Research Rotationally invariant non-coherent burst coding
US7831287B2 (en) 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8447376B2 (en) 2006-10-04 2013-05-21 Dexcom, Inc. Analyte sensor
US8562528B2 (en) 2006-10-04 2013-10-22 Dexcom, Inc. Analyte sensor
US8298142B2 (en) 2006-10-04 2012-10-30 Dexcom, Inc. Analyte sensor
US8275438B2 (en) 2006-10-04 2012-09-25 Dexcom, Inc. Analyte sensor
US8478377B2 (en) 2006-10-04 2013-07-02 Dexcom, Inc. Analyte sensor
US8449464B2 (en) 2006-10-04 2013-05-28 Dexcom, Inc. Analyte sensor
US20080092638A1 (en) 2006-10-19 2008-04-24 Bayer Healthcare Llc Wireless analyte monitoring system
US8126728B2 (en) 2006-10-24 2012-02-28 Medapps, Inc. Systems and methods for processing and transmittal of medical data through an intermediary device
EP2106238A4 (en) 2006-10-26 2011-03-09 Abbott Diabetes Care Inc Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
EP1918837A1 (en) 2006-10-31 2008-05-07 F. Hoffmann-La Roche AG Method for processing a chronological sequence of measurements of a time dependent parameter
US20080119705A1 (en) 2006-11-17 2008-05-22 Medtronic Minimed, Inc. Systems and Methods for Diabetes Management Using Consumer Electronic Devices
FI20065735A0 (en) 2006-11-20 2006-11-20 Salla Koski Measurement, monitoring and management system and its constituent equipment
US20080139910A1 (en) 2006-12-06 2008-06-12 Metronic Minimed, Inc. Analyte sensor and method of using the same
KR100833511B1 (en) 2006-12-08 2008-05-29 한국전자통신연구원 Passive tag with volatile memory
WO2008071218A1 (en) 2006-12-14 2008-06-19 Egomedical Swiss Ag Monitoring device
US8120493B2 (en) 2006-12-20 2012-02-21 Intel Corporation Direct communication in antenna devices
US20080154513A1 (en) 2006-12-21 2008-06-26 University Of Virginia Patent Foundation Systems, Methods and Computer Program Codes for Recognition of Patterns of Hyperglycemia and Hypoglycemia, Increased Glucose Variability, and Ineffective Self-Monitoring in Diabetes
US20080161666A1 (en) 2006-12-29 2008-07-03 Abbott Diabetes Care, Inc. Analyte devices and methods
US7946985B2 (en) 2006-12-29 2011-05-24 Medtronic Minimed, Inc. Method and system for providing sensor redundancy
WO2008089184A2 (en) 2007-01-15 2008-07-24 Deka Products Limited Partnership Device and method for food management
US8098160B2 (en) 2007-01-22 2012-01-17 Cisco Technology, Inc. Method and system for remotely provisioning and/or configuring a device
US7742747B2 (en) 2007-01-25 2010-06-22 Icera Canada ULC Automatic IIP2 calibration architecture
US10154804B2 (en) 2007-01-31 2018-12-18 Medtronic Minimed, Inc. Model predictive method and system for controlling and supervising insulin infusion
US9597019B2 (en) 2007-02-09 2017-03-21 Lifescan, Inc. Method of ensuring date and time on a test meter is accurate
US8758245B2 (en) 2007-03-20 2014-06-24 Lifescan, Inc. Systems and methods for pattern recognition in diabetes management
US7659823B1 (en) 2007-03-20 2010-02-09 At&T Intellectual Property Ii, L.P. Tracking variable conditions using radio frequency identification
CA2683721C (en) 2007-04-14 2017-05-23 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
CA2683953C (en) 2007-04-14 2016-08-02 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
CA2683959C (en) 2007-04-14 2017-08-29 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
ES2817503T3 (en) 2007-04-14 2021-04-07 Abbott Diabetes Care Inc Procedure and apparatus for providing data processing and control in a medical communication system
EP2146625B1 (en) 2007-04-14 2019-08-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
WO2008128210A1 (en) 2007-04-14 2008-10-23 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
CA2685374A1 (en) 2007-04-27 2008-11-06 Abbott Diabetes Care Inc. Test strip identification using conductive patterns
US8692655B2 (en) 2007-05-07 2014-04-08 Bloomberg Finance L.P. Dynamically programmable RFID transponder
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US20080312845A1 (en) 2007-05-14 2008-12-18 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
EP2156684A4 (en) 2007-05-14 2012-10-24 Abbott Diabetes Care Inc Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US20080287755A1 (en) 2007-05-17 2008-11-20 Isense Corporation Method and apparatus for trend alert calculation and display
US8072310B1 (en) 2007-06-05 2011-12-06 Pulsed Indigo Inc. System for detecting and measuring parameters of passive transponders
WO2008154312A1 (en) 2007-06-08 2008-12-18 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US20080312518A1 (en) 2007-06-14 2008-12-18 Arkal Medical, Inc On-demand analyte monitor and method of use
JP5680960B2 (en) 2007-06-21 2015-03-04 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Health care device and method
US8617069B2 (en) 2007-06-21 2013-12-31 Abbott Diabetes Care Inc. Health monitor
DK2170158T3 (en) 2007-06-27 2017-09-18 Hoffmann La Roche Interface for input of patient information to a therapy system
EP2170430A2 (en) 2007-06-29 2010-04-07 Roche Diagnostics GmbH Method and apparatus for determining and delivering a drug bolus
CN101345297B (en) * 2007-07-12 2010-06-16 英业达股份有限公司 Button battery electrical connection structure and its manufacture process
JP5027579B2 (en) * 2007-07-13 2012-09-19 富士通コンポーネント株式会社 Transceiver
US7768386B2 (en) 2007-07-31 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US20090036760A1 (en) 2007-07-31 2009-02-05 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
EP2182838B1 (en) 2007-07-31 2016-05-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7731658B2 (en) 2007-08-16 2010-06-08 Cardiac Pacemakers, Inc. Glycemic control monitoring using implantable medical device
US9968742B2 (en) 2007-08-29 2018-05-15 Medtronic Minimed, Inc. Combined sensor and infusion set using separated sites
US20090063402A1 (en) 2007-08-31 2009-03-05 Abbott Diabetes Care, Inc. Method and System for Providing Medication Level Determination
MX2010003205A (en) 2007-09-24 2010-04-09 Bayer Healthcare Llc Multi-electrode test sensors.
US20090085768A1 (en) 2007-10-02 2009-04-02 Medtronic Minimed, Inc. Glucose sensor transceiver
DE102007047351A1 (en) 2007-10-02 2009-04-09 B. Braun Melsungen Ag System and method for monitoring and controlling blood glucose levels
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8000918B2 (en) 2007-10-23 2011-08-16 Edwards Lifesciences Corporation Monitoring and compensating for temperature-related error in an electrochemical sensor
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US7783442B2 (en) 2007-10-31 2010-08-24 Medtronic Minimed, Inc. System and methods for calibrating physiological characteristic sensors
US8098201B2 (en) 2007-11-29 2012-01-17 Electronics & Telecommunications Research Institute Radio frequency identification tag and radio frequency identification tag antenna
US8103241B2 (en) 2007-12-07 2012-01-24 Roche Diagnostics Operations, Inc. Method and system for wireless device communication
US8290559B2 (en) 2007-12-17 2012-10-16 Dexcom, Inc. Systems and methods for processing sensor data
US20090164239A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
US20090164190A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Physiological condition simulation device and method
US20090168290A1 (en) * 2007-12-28 2009-07-02 Patrick Dale Riedlinger Battery clip wtih integrated microprocessor reset switch and method of operating
JP2011510402A (en) 2008-01-15 2011-03-31 コーニング ケーブル システムズ エルエルシー RFID system and method for automatically detecting and / or indicating the physical configuration of a complex system
DE102008008072A1 (en) 2008-01-29 2009-07-30 Balluff Gmbh sensor
WO2009097450A1 (en) 2008-01-30 2009-08-06 Dexcom. Inc. Continuous cardiac marker sensor system
EP2090996A1 (en) 2008-02-16 2009-08-19 Roche Diagnostics GmbH Medical device
US20090299156A1 (en) 2008-02-20 2009-12-03 Dexcom, Inc. Continuous medicament sensor system for in vivo use
WO2009105709A1 (en) 2008-02-21 2009-08-27 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US8317699B2 (en) 2008-02-29 2012-11-27 Roche Diagnostics Operations, Inc. Device and method for assessing blood glucose control
CN101965151B (en) 2008-03-10 2012-12-05 皇家飞利浦电子股份有限公司 Wireless ECG monitoring system
US20090242399A1 (en) 2008-03-25 2009-10-01 Dexcom, Inc. Analyte sensor
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
CN102047101A (en) 2008-03-28 2011-05-04 德克斯康公司 Polymer membranes for continuous analyte sensors
CN103400028B (en) 2008-04-04 2017-04-12 海吉雅有限公司 Device for optimizing patient's insulin dosage regimen
US20090267765A1 (en) 2008-04-29 2009-10-29 Jack Greene Rfid to prevent reprocessing
US8102021B2 (en) 2008-05-12 2012-01-24 Sychip Inc. RF devices
WO2009140360A1 (en) 2008-05-14 2009-11-19 Espenuda Holding, Llc Physical activity monitor and data collection unit
WO2009143289A2 (en) 2008-05-20 2009-11-26 Deka Products Limited Partnership Rfid system
US20090294277A1 (en) 2008-05-30 2009-12-03 Abbott Diabetes Care, Inc. Method and system for producing thin film biosensors
US8394637B2 (en) 2008-06-02 2013-03-12 Roche Diagnostics Operations, Inc. Handheld analyzer for testing a sample
US8132037B2 (en) 2008-06-06 2012-03-06 Roche Diagnostics International Ag Apparatus and method for processing wirelessly communicated data and clock information within an electronic device
US8117481B2 (en) 2008-06-06 2012-02-14 Roche Diagnostics International Ag Apparatus and method for processing wirelessly communicated information within an electronic device
CN101621714B (en) 2008-06-30 2013-06-12 华为技术有限公司 Node and data processing system and data processing method
WO2010005806A2 (en) 2008-07-09 2010-01-14 Cardiac Pacemakers, Inc. Event-based battery monitor for implantable devices
WO2010009172A1 (en) 2008-07-14 2010-01-21 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US20100025238A1 (en) 2008-07-31 2010-02-04 Medtronic Minimed, Inc. Analyte sensor apparatuses having improved electrode configurations and methods for making and using them
US8111042B2 (en) 2008-08-05 2012-02-07 Broadcom Corporation Integrated wireless resonant power charging and communication channel
US8432070B2 (en) 2008-08-25 2013-04-30 Qualcomm Incorporated Passive receivers for wireless power transmission
US7981535B2 (en) * 2008-08-27 2011-07-19 Harris Corporation Battery packaging system
US8094009B2 (en) 2008-08-27 2012-01-10 The Invention Science Fund I, Llc Health-related signaling via wearable items
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US8102154B2 (en) 2008-09-04 2012-01-24 Medtronic Minimed, Inc. Energy source isolation and protection circuit for an electronic device
KR101613671B1 (en) * 2008-09-12 2016-04-19 사푸라스트 리써치 엘엘씨 Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
EP2326944B1 (en) 2008-09-19 2020-08-19 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US8983568B2 (en) 2008-09-30 2015-03-17 Abbott Diabetes Care Inc. Analyte sensors comprising leveling agents
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
JP2012504932A (en) 2008-10-02 2012-02-23 レイデン エナジー インコーポレイテッド Electronic current interrupt device for batteries
US9317657B2 (en) 2008-11-26 2016-04-19 University Of Virginia Patent Foundation Method, system, and computer program product for tracking of blood glucose variability in diabetes
US8098161B2 (en) 2008-12-01 2012-01-17 Raytheon Company Radio frequency identification inlay with improved readability
US8150516B2 (en) 2008-12-11 2012-04-03 Pacesetter, Inc. Systems and methods for operating an implantable device for medical procedures
US20100169035A1 (en) 2008-12-29 2010-07-01 Medtronic Minimed, Inc. Methods and systems for observing sensor parameters
US9320470B2 (en) 2008-12-31 2016-04-26 Medtronic Minimed, Inc. Method and/or system for sensor artifact filtering
US9402544B2 (en) 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
EP2394217A4 (en) 2009-02-04 2016-05-04 Abbott Diabetes Care Inc Multi-function analyte test device and methods therefor
US8394246B2 (en) 2009-02-23 2013-03-12 Roche Diagnostics Operations, Inc. System and method for the electrochemical measurement of an analyte employing a remote sensor
US20100213057A1 (en) 2009-02-26 2010-08-26 Benjamin Feldman Self-Powered Analyte Sensor
EP3925533B1 (en) 2009-04-30 2024-04-10 DexCom, Inc. Performance reports associated with continuous sensor data from multiple analysis time periods
WO2010135638A2 (en) 2009-05-22 2010-11-25 Abbott Diabetes Care Inc. Methods for reducing false hypoglycemia alarm occurrence
US8595607B2 (en) 2009-06-04 2013-11-26 Abbott Diabetes Care Inc. Method and system for updating a medical device
US8124452B2 (en) 2009-06-14 2012-02-28 Terepac Corporation Processes and structures for IC fabrication
US9218453B2 (en) 2009-06-29 2015-12-22 Roche Diabetes Care, Inc. Blood glucose management and interface systems and methods
US9792408B2 (en) 2009-07-02 2017-10-17 Covidien Lp Method and apparatus to detect transponder tagged objects and to communicate with medical telemetry devices, for example during medical procedures
AU2010284320B2 (en) 2009-08-17 2015-02-26 The Regents Of The University Of California Distributed external and internal wireless sensor systems for characterization of surface and subsurface biomedical structure and condition
EP3923295A1 (en) 2009-08-31 2021-12-15 Abbott Diabetes Care, Inc. Medical devices and methods
WO2011026130A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Inserter device including rotor subassembly
US8743128B2 (en) * 2009-09-01 2014-06-03 Blackberry Limited Mobile wireless communications device with reset functions and related methods
US8093991B2 (en) 2009-09-16 2012-01-10 Greatbatch Ltd. RFID detection and identification system for implantable medical devices
US20110077469A1 (en) 2009-09-27 2011-03-31 Blocker Richard A Systems and methods for utilizing prolonged self monitoring in the analysis of chronic ailment treatments
WO2011041531A1 (en) 2009-09-30 2011-04-07 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US20110082484A1 (en) 2009-10-07 2011-04-07 Heber Saravia Sensor inserter assembly having rotatable trigger
US20110123971A1 (en) 2009-11-20 2011-05-26 Medivoce, Inc. Electronic Medical Voice Instruction System
US9949672B2 (en) 2009-12-17 2018-04-24 Ascensia Diabetes Care Holdings Ag Apparatus, systems and methods for determining and displaying pre-event and post-event analyte concentration levels
CA2728831A1 (en) 2010-01-22 2011-07-22 Lifescan, Inc. Diabetes management unit, method, and system
US20110208027A1 (en) 2010-02-23 2011-08-25 Roche Diagnostics Operations, Inc. Methods And Systems For Providing Therapeutic Guidelines To A Person Having Diabetes
CN102469941B (en) 2010-04-16 2016-04-13 艾伯特糖尿病护理公司 Analyze thing surveillance equipment and method
WO2011133768A1 (en) 2010-04-22 2011-10-27 Abbott Diabetes Care Inc. Devices, systems, and methods related to analyte monitoring and management
WO2013066873A1 (en) * 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798961A (en) * 1994-08-23 1998-08-25 Emc Corporation Non-volatile memory module
US6085342A (en) * 1997-05-06 2000-07-04 Telefonaktiebolaget L M Ericsson (Publ) Electronic system having a chip integrated power-on reset circuit with glitch sensor
US20020185128A1 (en) * 1998-03-30 2002-12-12 Astra Aktiebolag, Swedish Corporation Electrical device
US20020039026A1 (en) * 2000-04-04 2002-04-04 Stroth John E. Power line testing device with signal generator and signal detector
US20020197522A1 (en) * 2001-06-01 2002-12-26 Craig Lawrence Fuel cell assembly for portable electronic device and interface, control, and regulator circuit for fuel cell powered electronic device
US20110184482A1 (en) * 2010-01-24 2011-07-28 Kevin Wilmot Eberman Non-rechargeable batteries and implantable medical devices

Also Published As

Publication number Publication date
US20150293568A1 (en) 2015-10-15
US9069536B2 (en) 2015-06-30
US9465420B2 (en) 2016-10-11
US20130111248A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
US9465420B2 (en) Electronic devices having integrated reset systems and methods thereof
US6837739B2 (en) Battery connection interrupter
US11336105B2 (en) Multi-battery charging and discharging device and mobile terminal
KR102371184B1 (en) Electronic Apparatus for checking battery abnormality and the Control method thereof
US8990038B2 (en) Method and apparatus for monitoring battery life
WO2018120236A1 (en) Battery charging method, charging device and terminal equipment
US20160126757A1 (en) System
JP5982692B2 (en) Charge / discharge management device and mobile terminal
US8519985B2 (en) Touch screen device
CN110416643B (en) Processing method and device and electronic equipment
CN108920390B (en) Insertion detection circuit, insertion detection method, and electronic device
US10514744B2 (en) Portable computing device with hibernate mode
CN111623863A (en) Electronic scale control method and electronic scale
JP6017021B2 (en) Apparatus, method and electronic device for identifying batteries of different thickness
CN101980444A (en) Circuit for forcibly resetting system powered by battery without removing battery
CN111241022A (en) GPIO state query method, device and storage medium
CN111241023B (en) Insertion detection circuit and method of flash memory card, and electronic device
CN108959002B (en) Insertion detection circuit, insertion detection method, and electronic device
CN212783224U (en) Switch assembly and electronic equipment
CN106713550B (en) Mobile terminal
KR20210045768A (en) Electronic device including power management integrated circuit and method for recovering abnormal state of the electronic device
CN112731833B (en) Control method and device of electronic equipment, electronic equipment and storage medium
CN217360669U (en) Notebook computer
CN210295081U (en) Electronic device
CN208909138U (en) A kind of electronic cigarette tobacco rod and electronic cigarette

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846365

Country of ref document: EP

Kind code of ref document: A1