WO2013080032A1 - Plasma chemical synthesis process and plasma chemical synthesis reactor for the implementation thereof - Google Patents

Plasma chemical synthesis process and plasma chemical synthesis reactor for the implementation thereof Download PDF

Info

Publication number
WO2013080032A1
WO2013080032A1 PCT/IB2012/002588 IB2012002588W WO2013080032A1 WO 2013080032 A1 WO2013080032 A1 WO 2013080032A1 IB 2012002588 W IB2012002588 W IB 2012002588W WO 2013080032 A1 WO2013080032 A1 WO 2013080032A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
chemical synthesis
plasma chemical
resonators
laser
Prior art date
Application number
PCT/IB2012/002588
Other languages
French (fr)
Russian (ru)
Inventor
Юрий Александрович ЧИВЕЛЬ
Original Assignee
Chivel Yuri
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chivel Yuri filed Critical Chivel Yuri
Publication of WO2013080032A1 publication Critical patent/WO2013080032A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma

Definitions

  • This invention relates to the field of plasma chemistry and can be used to create plasma-chemical reactors based on lasers.
  • a known method of plasma chemical synthesis [1] consisting in the supply of reagents to a plasma formation formed in the interelectrode gap during a gas discharge.
  • the disadvantage of this method is the pollution of the plasma by elements of the material of the electrodes during their evaporation, affecting the quality of the synthesis products ..
  • Known plasma chemical synthesis method [2] which consists in feeding the reactants into the plasma formation - optical plasma discharge formed in the focal area of the lens focusing the radiation C0 2 laser.
  • the disadvantage of this method is the difficulty to use for conducting plasma-chemical reactions the radiation of short-wave lasers of the near-IR visible and ultraviolet range due to the very weak absorption of their radiation by the plasma. Namely, short-wave radiation finds application and is promising for conducting plasma-chemical reactions.
  • the task of the invention is to develop a method of plasma chemical synthesis that provides the expansion of the capabilities of this method of obtaining products, increasing productivity and reducing energy consumption with high quality products.
  • a method of plasmachemical synthesis which consists in supplying reagents to a plasma formation.
  • the plasma formation is located in the resonators or in additional resonators of a set of lasers of different wavelengths.
  • FIG. 1 The essence of the method is illustrated in the diagram ( Figure 1): Using a plasma source, an electric discharge, high-frequency pos. 2 (as shown in Fig. 1) a laser forms a quasistationary plasma formation 9 in a special chamber 11 as in Fig. 1 or in open space. In the plasma region using the feed device 1, a stream of 3 necessary reagents is introduced in a gaseous, liquid, or solid state, and the reaction products are output in the form of a stream 10.
  • Plasma formation 9 is located in the laser resonators 4,5 of specific wavelengths formed by mirrors 6,7 or, to control the degree of plasma-laser coupling, in additional resonators formed by the introduction of mirror 8. Since the plasma formation is located in the laser resonators, due to the huge number of passes, irrespective of the wavelength, the laser radiation will be completely absorbed, providing high efficiency of laser action at the molecular and atomic levels with the appropriate selection of wavelengths. The proposed method significantly expands the possibilities of plasma chemistry.
  • a device [2] which contains a C0 2 laser optically coupled to a focusing lens and a system for supplying reagents to the focal region.
  • the disadvantage of this device is the futility of using short-wave radiation due to its extremely weak absorption by the plasma of an optical discharge at characteristic temperatures of 10 - 17 10 3 K.
  • the closest in technical essence to the claimed device is the device for applying diamond coatings from an optical discharge plasma presented in [3], in which laser sources of 3 wavelengths, including an ultraviolet laser, are used.
  • the disadvantage of this device is the weak absorption of ultraviolet radiation by the discharge plasma and the damaging effect of the radiation of laser sources on the treated surface.
  • the task of the invention is the development of a device providing the ability to use a wide range of wavelengths of laser radiation for conducting plasma-chemical reactions, increasing productivity and reducing energy costs.
  • a device comprising a laser optically coupled to a focusing lens and a reagent supply system.
  • the novelty is that the device is additionally equipped with a set of lasers of various wavelengths, with the focal region of the focusing lens located in the resonators or in additional resonators of the laser set.
  • the device contains a laser 12, optically connected with the lens 13, the reagent supply system 1, lasers 4,5.
  • the device operates as follows.
  • the laser beam 12, mainly CO2 laser due to the long radiation wavelength, with the help of the lens 13 is focused in the camera or in the open space as in Fig.2 in a spot size of 0.1 -1 mm.
  • Plasma-forming inert gas such as argon and reagents are introduced into this region using the feed device 1.
  • an optical discharge 9 is ignited, which continuously burns in the beam of laser 1.
  • up to 60-70 percent of CO2 laser radiation is absorbed in the plasma and spent on maintaining the discharge.
  • the claimed device will provide the possibility of directional effects at the molecular and atomic level on the course of the plasma-chemical process, increasing the productivity of the plasma-chemical reactor, reducing

Abstract

The present invention relates to the field of plasma chemistry and can be used in the creation of laser-based plasma chemical reactors. The aim of the invention is to develop a plasma chemical synthesis process and device which increase the potential of this method of obtaining a product, increase productivity and reduce power consumption while providing a high quality product. The plasma chemical synthesis process consists of supplying reagents to a plasma formation. The invention is novel in that the plasma formation is located in the resonators or in additional resonators of a set of lasers with different wavelengths. The plasma chemical synthesis reactor comprises a laser which is optically coupled to a focusing lens, and a reagent supply system. The invention is novel in that the device is additionally equipped with a set of lasers with different wavelengths, wherein the focal region of the focusing lens is located in the resonators or in additional resonators of the set of lasers.

Description

Способ плазмохимического синтеза и реактор  Plasma-chemical synthesis method and reactor
плазмохимического синтеза для его осуществления  plasmachemical synthesis for its implementation
Данное изобретение относится к области плазмохимии и может быть использовано при создании плазмохимических реакторов на основе лазеров. This invention relates to the field of plasma chemistry and can be used to create plasma-chemical reactors based on lasers.
Известен способ плазмохимического синтеза [1] состоящий в подаче реагентов в плазменное образование сформированное в межэлектродном промежутке при газовом разряде. A known method of plasma chemical synthesis [1] consisting in the supply of reagents to a plasma formation formed in the interelectrode gap during a gas discharge.
Недостатком этого способа является загрязнение плазмы элементами материала электродов при их испарении , влияющее на качество продукции синтеза..  The disadvantage of this method is the pollution of the plasma by elements of the material of the electrodes during their evaporation, affecting the quality of the synthesis products ..
Известен способ плазмохимического синтеза [2] состоящий в подаче реагентов в плазменное образование - плазму оптического разряда, сформированное в фокальной области объектива, фокусирующего излучение С02 лазера. Known plasma chemical synthesis method [2] which consists in feeding the reactants into the plasma formation - optical plasma discharge formed in the focal area of the lens focusing the radiation C0 2 laser.
Недостаток данного способа состоит в сложности использовать для ведения плазмохимических реакций излучения коротковолновых лазеров ближнего ИК видимого и ультрафиолетового диапазона ввиду очень слабого поглощения их излучения плазмой. А именно коротковолновое излучение находит применение и перспективно для ведения плазмохимических реакций. The disadvantage of this method is the difficulty to use for conducting plasma-chemical reactions the radiation of short-wave lasers of the near-IR visible and ultraviolet range due to the very weak absorption of their radiation by the plasma. Namely, short-wave radiation finds application and is promising for conducting plasma-chemical reactions.
Задачей заявляемого изобретения является разработка способа плазмохимического синтеза обеспечивающего расширение возможностей данного метода получения продукции, повышение производительности и снижение энергозатрат при высоком качестве продукции.  The task of the invention is to develop a method of plasma chemical synthesis that provides the expansion of the capabilities of this method of obtaining products, increasing productivity and reducing energy consumption with high quality products.
Предлагается способ плазмохимического синтеза состоящий в подаче реагентов в плазменное образование.  A method of plasmachemical synthesis is proposed, which consists in supplying reagents to a plasma formation.
Новым по мнению автора является то , что плазменное образование располагается в резонаторах или в дополнительных резонаторах набора лазеров различных длин волн.  What is new in the author’s opinion is that the plasma formation is located in the resonators or in additional resonators of a set of lasers of different wavelengths.
Сущность способа поясняется схемой (Фиг.1): С помощью источника плазмы , электроразрядного , высокочастотного поз.2 (как приведено на фиг. 1) лазерного формируется квазистационарное плазменное образование 9 в специальной камере 11 как на фиг.1 или в открытом пространстве. В плазменную область с помощью устройства подачи 1 вводится поток 3 необходимых реагентов в газообразном, жидком или твердом состоянии, а продукты реакции выводятся в виде потока 10. The essence of the method is illustrated in the diagram (Figure 1): Using a plasma source, an electric discharge, high-frequency pos. 2 (as shown in Fig. 1) a laser forms a quasistationary plasma formation 9 in a special chamber 11 as in Fig. 1 or in open space. In the plasma region using the feed device 1, a stream of 3 necessary reagents is introduced in a gaseous, liquid, or solid state, and the reaction products are output in the form of a stream 10.
Плазменное образование 9 располагается в резонаторах лазеров 4,5 определенных длин волн, образованных зеркалами 6,7 или, для управления степенью связи плазма -лазер , в дополнительных резонаторах, образованных при введении зеркала 8. Так как плазменное образование располагается в резонаторах лазеров, то за счет огромного числа проходов, независимо от длины волны, излучение лазеров будет поглощаться полностью, обеспечивая высокую эффективность лазерного воздействия на молекулярном и атомном уровне при соответствующем подборе длин волн. Предложенный способ значительно расширяет возможности плазмохимии.  Plasma formation 9 is located in the laser resonators 4,5 of specific wavelengths formed by mirrors 6,7 or, to control the degree of plasma-laser coupling, in additional resonators formed by the introduction of mirror 8. Since the plasma formation is located in the laser resonators, due to the huge number of passes, irrespective of the wavelength, the laser radiation will be completely absorbed, providing high efficiency of laser action at the molecular and atomic levels with the appropriate selection of wavelengths. The proposed method significantly expands the possibilities of plasma chemistry.
Известно устройство [2],содержащее С02 лазер, оптически связанный с фокусирующим объективом и систему подачи реагентов в фокальную область. A device [2] is known, which contains a C0 2 laser optically coupled to a focusing lens and a system for supplying reagents to the focal region.
Недостаток данного устройства состоит в бесперспективности применять коротковолновое излучение ввиду его крайне слабого поглощения плазмой оптического разряда при характерных температурах 10 - 17 103 К. The disadvantage of this device is the futility of using short-wave radiation due to its extremely weak absorption by the plasma of an optical discharge at characteristic temperatures of 10 - 17 10 3 K.
Наиболее близким по технической сущности к заявляемому устройству является представленное в [3] устройство для нанесения алмазных покрытий из плазмы оптического разряда, в котором использованы лазерные источники 3 длин волн, включая ультрафиолетовый лазер. The closest in technical essence to the claimed device is the device for applying diamond coatings from an optical discharge plasma presented in [3], in which laser sources of 3 wavelengths, including an ultraviolet laser, are used.
Недостаток данного устройства состоит в слабом поглощении ультрафиолетового излучения плазмой разряда и повреждающее действие излучения лазерных источников на обрабатываемую поверхность.  The disadvantage of this device is the weak absorption of ultraviolet radiation by the discharge plasma and the damaging effect of the radiation of laser sources on the treated surface.
Задачей заявляемого изобретения является разработка устройства обеспечивающего возможность использования широкого спектра длин волн лазерного излучения для ведения плазмохимических реакций , повышение производительности и снижение энергозатрат . The task of the invention is the development of a device providing the ability to use a wide range of wavelengths of laser radiation for conducting plasma-chemical reactions, increasing productivity and reducing energy costs.
Для решения поставленной задачи предлагается устройство , содержащее лазер, оптически связанный с фокусирующим объективом и систему подачи реагентов. Новым, по мнению авторов, является то, что устройство дополнительно снабжено набором лазеров различных длин волн, причем фокальная область фокусирующего объектива располагается в резонаторах или в дополнительных резонаторах набора лазеров.  To solve this problem, a device is proposed comprising a laser optically coupled to a focusing lens and a reagent supply system. According to the authors, the novelty is that the device is additionally equipped with a set of lasers of various wavelengths, with the focal region of the focusing lens located in the resonators or in additional resonators of the laser set.
Сущность изобретения поясняется схемой ( фиг.2).  The invention is illustrated in the diagram (figure 2).
Устройство содержит лазер 12 , оптически связанный с объективом 13 систему подачи реагентов 1 , лазеры 4,5.  The device contains a laser 12, optically connected with the lens 13, the reagent supply system 1, lasers 4,5.
Устройство работает следующим образом. Луч лазера 12, преимущественно С02 лазера из-за большой длины волны излучения, с помощью объектива 13 фокусируется в камере или в открытом пространстве как на Фиг.2 в пятно размером 0.1 -1мм . В эту область с помощью устройства подачи 1 вводятся плазмообразующий инертный газ типа аргона и реагенты. С помощью мощного внешнего источника или путем кратковременного ввода испаряющегося вещества добиваются поджига оптического разряда 9 который непрерывно горит в луче лазера 1. Обычно до 60-70 процентов излучения С02 лазера поглощается в плазме и затрачивается на поддержание разряда С помощью лазеров 4 ,5 в резонаторах 6,7 или дополнительных резонаторах 7,8 которых горит разряд осуществляют воздействие излучения определенных длин волн на молекулярные или атомные уровни реагентов и продуктов реакций, обеспечивая получение необходимого продукта, отводимого потоком 10. За счет огромного числа проходов, независимо от длины волны, излучение лазеров будет поглощаться полностью, обеспечивая высокую эффективность лазерного воздействия  The device operates as follows. The laser beam 12, mainly CO2 laser due to the long radiation wavelength, with the help of the lens 13 is focused in the camera or in the open space as in Fig.2 in a spot size of 0.1 -1 mm. Plasma-forming inert gas such as argon and reagents are introduced into this region using the feed device 1. Using a powerful external source or by briefly introducing a vaporizing substance, an optical discharge 9 is ignited, which continuously burns in the beam of laser 1. Usually, up to 60-70 percent of CO2 laser radiation is absorbed in the plasma and spent on maintaining the discharge. Using lasers 4, 5 in resonators 6 , 7 or additional resonators 7.8 of which the discharge is on, carry out the action of radiation of certain wavelengths on the molecular or atomic levels of the reactants and reaction products, providing the desired product A bleed stream 10. Due to the huge number of passes, regardless of the wavelength of laser radiation will be absorbed completely, providing a high-performance laser exposure
Таким образом заявляемое устройство обеспечит возможность направленного воздействия на молекулярном и атомном уровне на ход плазмохимического процесса , повышение производительности плазмохимического реактора, снижение  Thus, the claimed device will provide the possibility of directional effects at the molecular and atomic level on the course of the plasma-chemical process, increasing the productivity of the plasma-chemical reactor, reducing
з энергозатрат, при высоком качестве продукции. s energy consumption, with high quality products.
Литература Literature
1. US Patent 3,622,493 3,658,673  1. US Patent 3,622,493 3,658,673
2. А.Большаков В. Востриков В. Конов и др. Квант. Электроника 35, 4, 2005 2. A. Bolshakov V. Vostrikov V. Konov and others. Quantum. Electronics 35, 4, 2005
3. P.Mistry,K. Turchan // Materials Research Innovation. V.l, N°3 149-156, 1997. 3. P.Mistry, K. Turchan // Materials Research Innovation. V.l, N ° 3 149-156, 1997.

Claims

ФОРМУЛА FORMULA
1. Способ плазмохимического синтеза , состоящий в подаче реагентов в плазменное образование отличающийся тем , что плазменное образование располагается в резонаторах или в дополнительных резонаторах набора лазеров различных длин 1. The method of plasma chemical synthesis, which consists in supplying reagents to the plasma formation, characterized in that the plasma formation is located in the resonators or in additional resonators of a set of lasers of various lengths
2. Реактор плазмохимического синтеза содержащий лазер, оптически связанный с фокусирующим объективом и систему подачи реагентов, отличающийся тем, что устройство дополнительно снабжено набором лазеров различных длин волн, причем фокальная область объектива располагается в резонаторах или в дополнительных резонаторах набора лазеров 2. A plasma-chemical synthesis reactor comprising a laser optically coupled to a focusing lens and a reagent supply system, characterized in that the device is additionally equipped with a set of lasers of various wavelengths, the focal region of the lens being located in the resonators or in additional resonators of the laser set
PCT/IB2012/002588 2011-11-28 2012-11-29 Plasma chemical synthesis process and plasma chemical synthesis reactor for the implementation thereof WO2013080032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2011148054 2011-11-28
RU2011148054/02A RU2532676C2 (en) 2011-11-28 2011-11-28 Method of plasmochemical synthesis and reactor of plasmochemical synthesis for its realisation

Publications (1)

Publication Number Publication Date
WO2013080032A1 true WO2013080032A1 (en) 2013-06-06

Family

ID=48534750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/002588 WO2013080032A1 (en) 2011-11-28 2012-11-29 Plasma chemical synthesis process and plasma chemical synthesis reactor for the implementation thereof

Country Status (2)

Country Link
RU (1) RU2532676C2 (en)
WO (1) WO2013080032A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2597447C2 (en) * 2014-12-12 2016-09-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Laser method for production of functional coatings

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622493A (en) 1968-01-08 1971-11-23 Francois A Crusco Use of plasma torch to promote chemical reactions
US3658673A (en) 1968-12-24 1972-04-25 Lonza Ag Process for carrying out chemical reactions
JPH02250974A (en) * 1989-03-23 1990-10-08 Sony Corp Optical reactor
RU2176132C2 (en) * 2000-01-12 2001-11-20 Институт проблем лазерных и информационных технологий РАН Technique of laser heating of plasma
KR20090071037A (en) * 2007-12-27 2009-07-01 주식회사 뉴파워 프라즈마 Inductively coupled plasma reactor with multi laser scanning line

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2035218C1 (en) * 1991-04-29 1995-05-20 Крохв Валентин Викторович Equipment for obtaining chemical compounds
RU2023499C1 (en) * 1991-05-30 1994-11-30 Крохв Валентин Викторович Method for preparation of chemical compounds
RU2416673C2 (en) * 2009-04-28 2011-04-20 Учреждение Российской Академии Наук Сибирское Отделение Ран Институт Лазерной Физики Laser-plasma procedure of synthesis of very hard micro- and nano-structured coatings and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622493A (en) 1968-01-08 1971-11-23 Francois A Crusco Use of plasma torch to promote chemical reactions
US3658673A (en) 1968-12-24 1972-04-25 Lonza Ag Process for carrying out chemical reactions
JPH02250974A (en) * 1989-03-23 1990-10-08 Sony Corp Optical reactor
RU2176132C2 (en) * 2000-01-12 2001-11-20 Институт проблем лазерных и информационных технологий РАН Technique of laser heating of plasma
KR20090071037A (en) * 2007-12-27 2009-07-01 주식회사 뉴파워 프라즈마 Inductively coupled plasma reactor with multi laser scanning line

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. P. BOLSHAKOV ET AL.: "Kvantovaya elektronika", LAZERNY PLAZMOTRON DLYA BESKAMERNOGO OSAZHDENIYA ALMAZNYKH PLENOK, vol. 35, no. 4, 2005, pages 385 - 386, XP008173447 *
P.MISTRY; K. TURCHAN, MATERIALS RESEARCH INNOVATION., vol. I, no. 3, 1997, pages 149 - 156
V. BOLSHAKOV; V. VOSTRIKOVS, KONOV ETC. QUANT. ELECTRONICS, vol. 35, 2005, pages 4

Also Published As

Publication number Publication date
RU2532676C2 (en) 2014-11-10
RU2011148054A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
Hädrich et al. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources
Sato et al. Synthesis of nanoparticles of silver and platinum by microwave-induced plasma in liquid
Czylkowski et al. Microwave plasma for hydrogen production from liquids
WO2013080032A1 (en) Plasma chemical synthesis process and plasma chemical synthesis reactor for the implementation thereof
RU2382734C2 (en) Method of preparing high-purity nanopowders and device to this end
RU2680143C2 (en) Method of generating broadband high-brightness optical radiation
Chen et al. Elongation of plasma channel generated by temporally shaped femtosecond laser pulse
Boutu et al. Scaling of the generation of high-order harmonics in large gas media with focal length
Plant et al. New optically pumped far-infrared lasers
Uno et al. Glass drilling by longitudinally excited CO2 laser with short laser pulse
Ojha et al. Numerical Optimal Configuration of Microwave Electric Field in Surfaguide Plasma Source for CO 2 Conversion
Ivanov et al. Study of the population inversion mechanisms and superradiance on ion transitions of molecular nitrogen in the filament
RU2468543C1 (en) Method for organisation of working process in chamber of laser rocket engine, and laser rocket engine
Navid et al. Possibility of methane conversion into heavier hydrocarbons using nanosecond lasers
RU157892U1 (en) HIGH-BRIGHT BROADBAND OPTICAL RADIATION SOURCE
Riconda et al. Plasma optics: A perspective for high-power coherent light generation and manipulation
Losev et al. Development of discharge pulse repetition rate excimer lasers for different applications
Zhang et al. Efficient synthesis of Vitamin D3 in a 3D ultraviolet photochemical microreactor fabricated using an ultrafast laser
RU114107U1 (en) LASER ROCKET ENGINE
Katto et al. Development of Ultrashort Pulsed VUV Laser and its Applications
Zuffi et al. Development of glass nozzles for below threshold harmonics and high harmonic generation
Debord et al. First ignition of an UV microwave microplasma in Ar-filled hollow-core photonic crystal fibers
Diao et al. Carrier-envelope phase effects on high-harmonic generation driven by mid-infrared laser field
JP2571740B2 (en) Processing apparatus and processing method using vacuum ultraviolet light
Sun et al. Damage performance and developments of final optics system for UV nanosecond high power laser systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012853123

Country of ref document: EP

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: INVITATION TO GIVE NOTICE OF APPOINTMENT OF A PROFESSIONAL REPRESENTATIVE (EPO FORM 1122 DATED 14.01.2015)