WO2013093168A1 - Active nanocomposite materials based on salts generating so2 and edta and method for obtaining same - Google Patents

Active nanocomposite materials based on salts generating so2 and edta and method for obtaining same Download PDF

Info

Publication number
WO2013093168A1
WO2013093168A1 PCT/ES2012/070904 ES2012070904W WO2013093168A1 WO 2013093168 A1 WO2013093168 A1 WO 2013093168A1 ES 2012070904 W ES2012070904 W ES 2012070904W WO 2013093168 A1 WO2013093168 A1 WO 2013093168A1
Authority
WO
WIPO (PCT)
Prior art keywords
material according
edta
matrix
salts
active
Prior art date
Application number
PCT/ES2012/070904
Other languages
Spanish (es)
French (fr)
Other versions
WO2013093168A9 (en
Inventor
Patricia FERNÁNDEZ SAIZ
Maria Busolo Pons
José Maria LAGARON CABELLO
Original Assignee
Nanobiomatters Research & Development, S. L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanobiomatters Research & Development, S. L. filed Critical Nanobiomatters Research & Development, S. L.
Publication of WO2013093168A1 publication Critical patent/WO2013093168A1/en
Publication of WO2013093168A9 publication Critical patent/WO2013093168A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment

Definitions

  • the present invention relates to active and / or bioactive nanocomposite materials generically based on the use of nano-clays as a support for the active substances. Said activity is obtained through the formulation of a specific type of laminar-type additives or nanoadditives with or without prior modification that are dispersed within a polymeric, plastic matrix and comprising, said additives or nanoadditives, active agents such as EDTA and / or SO2 generating salts that confer said materials with antimicrobial and / or antioxidant and / or oxygen sequestrant properties.
  • active agents such as EDTA and / or SO2 generating salts that confer said materials with antimicrobial and / or antioxidant and / or oxygen sequestrant properties.
  • Such materials may be used in multidisciplinary applications including the food contact sector, as well as in the medical sector and for hygiene products.
  • the present invention describes the process of manufacturing said materials. Therefore, the present invention belongs to the materials engineering sector.
  • nanocomposites based on phyllosilicates and / or synthetic double laminar hydroxides are interspersed with different organic modifiers, and once incorporated into thermoplastic and / or thermostable matrices, they are capable of improving the gas and vapor barrier properties of these.
  • the aforementioned documents are some examples of polymer clay nanocomposites prepared from modified clays. These documents describe a nanocomposite material such as an exfoliated or interleaved plate, with a touch structure of nanometric dimensions, comprising intercalated clay dispersed in a polymer matrix, such as an oligomer, a polymer, or a mixture thereof.
  • Microorganisms and in particular bacteria, are the main cause of diseases caused by the consumption of contaminated food. These can survive the heat treatment required for canning or contaminate the food after such treatment due to sutures or leaks from the container. In addition to its potential health hazard, the proliferation of microorganisms can cause alterations in foods that in turn lead to changes in the physical, chemical and organoleptic properties of the same. Some of the traditional preservation methods such as heat treatments, irradiation, modified atmosphere packaging or addition of salts, cannot be applied to certain types of foods such as vegetables, fresh fruits and meats or ready-to-eat products. On the other hand, the direct application of antibacterial substances on food has limited effects since they neutralize and diffuse rapidly into the food.
  • active packaging is a viable and advantageous way to limit and control bacterial growth in foods, since antimicrobial agents migrate slowly from the material to the surface of the product. The migration can be as extensive as required, so that it covers the time of transport, storage and is guaranteed until consumption.
  • antimicrobial nanoadditives of ethylenediaminetetraacetic acid (EDTA) and its salts once incorporated into the containers, they can inhibit the growth of microorganisms thanks to their chelating property of divalent cations such as Ca 2+ or Mg 2+ , essential factors for microbial growth
  • EDTA is able to destabilize the outer membrane of the microorganism, excessively increasing its permeability.
  • microorganisms are also undesirable in other sectors.
  • it is essential to eliminate the risks of infection in invasive treatments, of open wounds, as well as in routine treatments.
  • coatings with antimicrobial films of catheters and stethoscopes, and the preparation of fabrics in fibers pretreated with silver nitrate or with broad-spectrum antibiotics for wound and burn treatments can be cited.
  • the use of fibers pretreated with antibacterial agents limits the proliferation of microorganisms in the face of sweat, humidity and high temperatures, reducing bad body odors and risks of contagion.
  • Plastic materials with antimicrobial properties can also be used in the manufacture of cranks, handlebars, handles and armrests of public transport elements, in railings and support points of places of high concurrence, in the manufacture of sanitary parts for public and mass use, as well as in headphones and microphones of telephones and audio systems of public places; kitchen tools and food transport, all this in order to reduce the risk of spreading infections and diseases.
  • SO2 generating salts are currently used as preservatives and food bleaching agents. They are used to control the growth of undesirable microorganisms: in viticulture before the process of must fermentation to prevent the growth of acetic bacteria and molds without affecting yeasts in dairy and vegetable products. They are also used as anti-browning agents for vegetables, mainly potatoes.
  • Sodium bisulfite and sodium sulphite are recognized as suitable for food contact, with a specific migration of 10 mg / kg, according to Commission Regulation (EU) No. 10/201 1 of January 14, 201 1 on plastic materials and objects to come into contact with food.
  • the efficiency of the inorganic salts generating SO2 can be significantly enhanced by supporting them in an agent that acts as a vehicle, such as activated carbon, alumina, silica, or clays.
  • an agent that acts as a vehicle such as activated carbon, alumina, silica, or clays.
  • the manufacture of nanoactive materials based on salts generating SO2 has not been protected or patented, as well as their use as oxygen sequestering agents, antimicrobials, free radical scavengers for the manufacture of active packages; or any other functionality or improvement of properties granted by clays to the matrices to which they can be incorporated.
  • a novel option to avoid the action of oxygen in packaged foods is the incorporation of active agents in plastic materials that are subsequently used in the manufacture of items for packaging.
  • Antioxidant systems have been developed for the food industry that illustrate these applications. More specifically, patent CA2278569 describes the manufacture of bilayer films containing antioxidant agents, among other additives, and which are used for packaging meat and pre-cooked products, but also for the manufacture of coatings and bags.
  • the generic use of nano-clays with active and bioactive properties with biocidal and antioxidant properties to develop nanocomposites has also been reported and protected (WO02007 / 074184A1).
  • a plastic material has also been developed for use in wine packaging with the "bag-in box”system; wherein said plastic material contains one or more salts generating SO 2 , mainly calcium sulphite. Additionally, the plastic material contains metal oxides that regulate the release of SO 2 to the beverage. This system is set out in WO2008025085.
  • the present invention relates to a new type of nanocomposite materials, with active and / or bioactive properties, with multisectoral applications, with antimicrobial and / or oxygen sequestration properties and / or with antioxidant character, which substantially improve the effects obtained with materials of the same nature but with slightly different composition.
  • a first aspect of the present invention relates to a nanocomposite material comprising the following elements:
  • - laminar-type additives or nanoadditives with or without prior modification that are dispersed within the matrix, and which comprise at least one active agent selected from EDTA, EDTA salts and / or SO2 generating salts.
  • the matrix: - It is present in the nanocomposite material in a proportion of 5 to 99.99% by weight with respect to the total.
  • thermoplastics thermosets, elastomers and materials derived from biomass and / or biodegradable or mixtures thereof containing typical additives that are added during the manufacture and processing of plastics and bioplastics;
  • they are of the laminar type and are selected from phyllosilicates or synthetic double hydroxides. Preferably they are montmorillonitic or kaolinitic clays.
  • the laminar type additives or nanoadditives are modified and the modifying agents are selected from:
  • - precursor agents which are selected from the group consisting of expanders and / or compatibilizers and / or agents with active and / or bioactive character;
  • the latter compounds are selected from arquad (didecyldimethylammonium chloride) or CTAB (hexadecyltrimethyl ammonium bromide);
  • the nanocomposite material comprises:
  • EDTA modified clays or EDTA salts are suitable in cases where silver-based systems were not efficient due to the presence of sulfur amino acids in the environment. This is the case of a food package for meats, since, as demonstrated in this document, the compound has no negative interaction with this type of food.
  • calcium and sodium ethylene diamino tetracetate (disodium calcium EDTA, E385) is accepted as a food additive in the European Union, but there are numerous possible EDTA salts capable of fulfilling the same function, for example, but not limited to:
  • the nanocomposite material comprises:
  • montmorillonite dispersed in the plastic matrix, wherein said montmorillonite comprises sodium bisulfite as active agent.
  • the nanocomposite material comprises:
  • montmorillonite dispersed in the plastic matrix, wherein said montmorillonite comprises EDTA or salts of EDTA and sodium bisulfite as active agents.
  • a second aspect of the present invention relates to the use of the nanocomposite material described above for the manufacture of plastic materials or plastics coating and more specifically for containers with antimicrobial and / or antioxidant and / or oxygen sequestrant properties.
  • the advantage of using S0 2 generating salts is that they have a minimal impact on color in final applications in plastics, unlike iron-based compounds that have a dark color.
  • a third aspect of the present invention relates to a package comprising the nanocomposite material described above.
  • a fourth aspect of the present invention relates to the use of the above package, for the preservation and / or protection of food, medications, medical instruments or hygiene products.
  • a fifth aspect of the present invention relates to a process for obtaining the nanocomposite materials described above comprising the following steps:
  • step a) -dispersion of the laminar additive or nanoadditive with or without chemical modification or prior physical treatment, in a solution of the active agent selected from EDTA, EDTA salt and / or sodium bisulfite in a clay; - Drying the product obtained in step a) by any industrial drying process known to a person skilled in the art, preferably spraying. - add the product obtained in step b) to a plastic or polymer matrix as described above.
  • the suspension is added directly to the matrix without a prior drying process.
  • Said dispersion is carried out in water, isopropanol or mixtures thereof.
  • the dispersion is carried out in a reactor assisted by simple agitation, homogenizers and / or ultrasound.
  • the product can be dried, stored and resuspended in water, isopropanol or mixtures to add in suspension to the plastic matrix.
  • step b) of drying is carried out in an atomizer, by means of filtroprensa or centrifuge.
  • the additive or nanoadditive has been subjected, prior to the dispersion of step a), to:
  • Figure 1 Shows the results of the thermogravimetric analysis of MMT / Ca 30% EDTA-Na
  • Figure 2 Shows the X-ray diffractogram of Montmorillonite Ca with 30% EDTA-Na
  • Figure 3 Shows the X-ray diffractograms (WAXS) of a sample of unmodified montmorillonite clay and the same clay modified with sodium bisulfite, according to the method described in Example 1, to obtain MMT / NaHS0 3
  • Figure 4 Shows the X-ray diffractograms (WAXS) of a sample of montmorillonite-type clay modified with 30% of arquad and the same clay modified with sodium bisulfite, according to the method described in Example 2, to obtain MMT / NaHSO 3 /30% arch.
  • Figure 5 Shows the graph of contact oxidation inhibition (DPPH method) by action of the MMT / NaHSO 3 and MMT / NaHSO 3 /30% arquad clays, of examples 1 and 2, respectively.
  • DPPH method contact oxidation inhibition
  • Figure 6 Shows the plot of oxygen sequestering capacity in head space of the MMT / NaHSO 3 and MMT / NaHSO 3 /30% arquad clays, of examples 1 and 2, respectively.
  • Figure 7 Shows the graph of contact oxidation inhibition (DPPH method) by action of the films of HDPE and PET composites with clays MMT / NaHSO 3 and MMT / NaHSO 3 /30% arquad.
  • Figure 8 Shows the graph of oxygen sequestering capacity in head space of films of composites of HDPE, PET and elastomer with clays MMT / NaHS0 3 and MMT / NaHSO 3 /30% arch.
  • Example 1 Intercalation of disodium calcium EDTA in montmorillonite clays. Initially, a 3.6% solution of disodium calcium EDTA in water is prepared, in which the clay is dispersed with or without prior modification with CTAB or modified arquad (7.8% by weight). The dispersion is stirred for 6 h at 70 ° C. Finally, the clay is dried by spraying at 220 ° C. The thermogravimetric analysis (TGA) of the resulting clay shows an onset of degradation at approximately 200 ° C (see figure 1).
  • TGA thermogravimetric analysis
  • the X-ray diffractogram of the resulting clay shows that the basal peak has shifted from its initial position (5.55 °, 2 ⁇ ), which indicates that there are changes in the interlaminar distance and that the entire modifier has sandwiched between the sheets.
  • Example 2 Preparation of low density polyethylene (LDPE) composites, with 4 v 7% CaNa? EDTA / MMT or 4 v 7% CaNa? EDTA / 30% CTAB / MMT or 4 v 7%.
  • LDPE low density polyethylene
  • a 10% clay concentrate in LDPE is prepared with a corrotative spindle extruder (ratio R: D 42: 1). Flow rate: 10 Kg / hour. T a : 150 ° C. For this, the clay is previously dispersed in isopropanol (clay: isopropanol 1: 3).
  • Example 3 Antimicrobial capacity of LDPE composites with disodium calcium EDTA clay on a real food.
  • antimicrobial effectiveness was carried out using the same experimental conditions but using a silver-based additive.
  • Table 2 shows the antimicrobial effectiveness of the films obtained on the growth of the three microorganisms at 4 ° C for 24 hours in chicken broth.
  • films that have been added with clay with disodium calcium edetate show a very significant antimicrobial effectiveness against the growth of microorganisms in chicken broth at 4 ° C.
  • samples with silver-based additive do not show detectable antimicrobial effectiveness, probably due to inactivation of the compound in contact with sulfur amino acids present in the food (for example, methionine or cysteine).
  • Example 4 Intercalation of sodium bisulfite (NaHSOs) in montmorillonite clays. MMT / NaHSO Preparation ⁇
  • the clay was filtered by suction and dried in an atomizer.
  • the chemical analysis of the resulting clay shows a NaHS03 content (detected as S0 2 ) of 16.20%.
  • the X-ray diffractogram of the resulting clay shows that the basal peak has not shifted from its initial position (7.02 °, 2 ⁇ ), which indicates that there are no changes in the interlaminar distance.
  • Example 5 Intercalation of sodium bisulfite (NaHSO ⁇ ) in montmorillonite clays, previously modified with 30% arch. Preparation MMT / NaHSO ⁇ / 30% arch.
  • a 3% solution of sodium bisulfite in water is prepared, in which the previously modified montmorillonite clay is dispersed with 30% of arch. The dispersion is stirred for 24 h at 40 ° C. Finally, the clay was filtered by suction and dried in an atomizer. The chemical analysis of the resulting clay shows a NaHS03 content (detected as SO2) of 5.9%. The X-ray diffractogram of the resulting clay ( Figure 4) shows that the interlaminar distance of the clay modified with arch and subsequently modified with NaHS03 has increased 3.2 A (which corresponds to a displacement of the initial angle from 2.9 to 2.6; 2 ⁇ ) .
  • Example 6 NaHSO antioxidant capacity ⁇ / MMT v NaHSO / 30% arquad / MMT
  • the antioxidant effect by contact of the NaHS03-MMT and NaHSO3 / 30% arquad / MMT clays was determined using the DPPH radical discoloration method (2,2-diphenyl-1-pyrilhydracil). For this, weighed in 3 ml glass vials, in triplicate, 30mg portions of each clay. 1 ml of a stock solution 0.05g / L of DPPH in methanol was added in each tube, whose absorbance at 517 nm is 1.2. In parallel, three control samples without clay containing 1 ml of DPPH were prepared. Samples and controls were allowed to incubate in the dark for 24 ° C for 24 hours. Next, the samples were filtered and the absorbance to the supernatant was measured at 517 nm. The results are expressed in% DPPH inhibition:
  • % DPPH inhibition (Abs control - Abs sample) / Abs control
  • Example 8 Preparation of high density polyethylene (HDPE), polyethylene terephthalate (PET) and elastomer composites, with 15% NaHSOs / MMT or 15%
  • Example 9 Sequestrant capacity of MMT / NaHSO 3 /30% arquad v MMT / NaHSO 3 .
  • the clay with the greatest capacity to absorb oxygen is the one that contains only sodium bisulfite, which contains more NaHS0 3 than the clay with double modification arquad / NaHS03.
  • Example 10 Antioxidant capacity of HDPE and PET composites with sodium bisulfite clay.
  • % DPPH inhibition (Abs control - Abs sample) / Abs control
  • Figure 7 shows that, in general, all the composites evaluated exhibit antioxidant capacity, observing the highest activity in composites of
  • HDPE-MMT / NaHS03 26.95% DPPH turn.
  • PET composites there are no significant differences when added with the clay of simple modification (only NaHS0 3 ) or double (NaHS0 3 / arquad).
  • the results show that both HDPE and PET, materials widely used in food packaging, have the property of capturing free radicals from oxygen, a condition that can be advantageous for extending the shelf life of food by delaying oxidation processes.
  • Example 11 Oxygen sequestering capacity of HDPE, PET and elastomer composites with MMT / NaHSO ⁇ / 30% arquad v MMT / NaHSOs.
  • each film was weighed, in duplicate, in 40 ml vials.
  • a cell with 1 ml of water was placed to ensure 100% relative humidity inside, and each vial was closed with a traffic light cap, with open-closed switch and needle inlet. The caps were left in the "closed" position during the test.
  • the vials were placed in a heated space at 25 ° C, under constant artificial light.
  • the oxygen content was measured between 1 and 60 days, using an oxygen sensor.
  • the sequestering capacity results are shown in Figure 8.
  • the graph of volume of oxygen consumed / g clay vs. time indicates that of the composites added with MMT / NaHS0 3 the most active is that of elastomer, which can consume up to 1.88 ml of 02 / g of composite.
  • Composites with HDPE and PET can absorb 1, 54 and 0.91 ml of oxygen per gram of composite, respectively. These differences are due to the matrix effect, which causes the same clay to behave differently depending on the matrix in which it is incorporated.
  • PET added to clay containing arquad in addition to bisulfite shows less activity than PET added to bisulfite modified clay only: 0.51 ml of 02 / g composite.
  • the results indicate that the PET and HDPE composites added with the bisulfite-based clays have the capacity to absorb oxygen, a property that can be beneficial in extending the shelf life of packaged foods susceptible to oxidation, such as fat-based foods and meats.
  • Example 12 Intercalation of sodium bisulfite (NaHSOs) and disodium calcium EDTA in montmorillonite clays. Preparation of CaNa2EDTA / NaHSOr3 ⁇ 4 / MMT
  • Example 13 Oxygen sequestering capacity of CaNa2EDTA / NaHSOa MMT clays.
  • each film was weighed, in duplicate, in 40 ml vials.
  • a cell with 1 ml of water was placed inside each vial to ensure 100% relative humidity inside, and each vial was closed with a traffic light cap, with an open-closed switch and needle inlet. The caps were left in the "closed" position during the test.
  • the vials were placed in a heated space at 25 ° C, under constant artificial light.
  • the oxygen content was measured at 3, 5 and 10 days, using an oxygen sensor.
  • Example 14 Tube macrodilution method to determine antimicrobial activity of CaNa2EDTA / NaHSO MMT clays.
  • Table 6 shows that the clay CaNa2EDTA / NaHS0 3 / MMT can cause a 99.96% reduction in colony forming units with 0.1 g of clay.

Abstract

The present invention relates to active and/or bioactive nanocomposite materials which include a plastic or polymer matrix and laminar additives or nano-additives, with or without prior modification, which are dispersed within said matrix, wherein said additives or nano-additives include at least one active agent which is selected among EDTA and EDTA salts and salts generating SO2 such as sodium bisulphite. Said active agents grant antimicrobial and/or antioxidant and/or oxygen-sequestering properties to said materials, and are therefore suitable for the production of plastic materials or plastic coverings and specifically for containers having said properties that can be used in the food industry, as well as in the medical industry and for hygiene products. In addition, the present invention describes the method for producing said materials.

Description

MATERIALES NANOCOMPUESTOS ACTIVOS BASADOS EN SALES GENERADORAS DE SO2 Y EDTA Y EL PROCEDIMIENTO PARA SU OBTENCIÓN CAMPO TÉCNICO DE LA INVENCIÓN ACTIVE NANOCOMPOSED MATERIALS BASED ON SO 2 AND EDTA GENERATING SALTS AND THE PROCEDURE FOR OBTAINING THE TECHNICAL FIELD OF THE INVENTION
La presente invención se refiere a materiales nanocompuestos activos y/o bioactivos basados de forma genérica en el uso de nanoarcillas como soporte de las sustancias activas. Dicha actividad se obtiene a través de la formulación de un tipo específico de aditivos o nanoaditivos de tipo laminar con o sin modificación previa que se encuentran dispersos dentro de una matriz plástica, polimérica y que comprenden, dichos aditivos o nanoaditivos, agentes activos tales como EDTA y/o sales generadoras de SO2 que confieren a dichos materiales propiedades antimicrobianas y/o antioxidantes y/o secuestrantes de oxígeno. Dichos materiales podrán usarse en aplicaciones multidisciplinares incluyendo el sector del contacto alimentario, así como en el sector médico y para productos de higiene. Además, la presente invención describe el procedimiento de elaboración de dichos materiales. Por tanto, la presente invención pertenece al sector de la ingeniería de materiales. The present invention relates to active and / or bioactive nanocomposite materials generically based on the use of nano-clays as a support for the active substances. Said activity is obtained through the formulation of a specific type of laminar-type additives or nanoadditives with or without prior modification that are dispersed within a polymeric, plastic matrix and comprising, said additives or nanoadditives, active agents such as EDTA and / or SO2 generating salts that confer said materials with antimicrobial and / or antioxidant and / or oxygen sequestrant properties. Such materials may be used in multidisciplinary applications including the food contact sector, as well as in the medical sector and for hygiene products. In addition, the present invention describes the process of manufacturing said materials. Therefore, the present invention belongs to the materials engineering sector.
ANTECEDENTES DE LA INVENCIÓN En el campo de los polímeros, una de las áreas que mayor interés está generando es el desarrollo de materiales compuestos, y más específicamente de nanocompuestos de base arcillas. Existen diferentes técnicas de preparación de nanocompuestos, tanto por el método de casting, como por el método de mezclado en fundido y por el método de polimerización in-situ. Además estos nuevos nanocompuestos y sus técnicas de procesado están descritas en, por ejemplo, la patente US Número US 4739007; y más específicamente en lo que respecta a WO2007074184A1 . En esta solicitud de patente PCT, se describe una nueva ruta de fabricación de nanocompuestos que pueden o no ser biodegradables, con propiedades antimicrobianas basadas en productos naturales y/o con capacidad de fijación o liberación controlada de otras sustancias activas o bioactivas. Estos nanocompuestos basados en filosilicatos y/o hidróxidos dobles laminares sintéticos están intercalados con diferentes modificantes orgánicos, y una vez incorporados a matrices termoplásticos y/o termoestables, son capaces de mejorarl las propiedades barrera a gases y a vapores de éstos. Los documentos antes citados son algunos ejemplos de nanocompuestos de polímeros-arcilla preparados a partir de arcillas modificadas. Estos documentos describen un material nanocompuesto como una placa exfoliada o intercalada, con estructura tactoide de dimensiones nanométricas, que comprende arcilla intercalada dispersa en una matriz de polímero, tal como un oligómero, un polímero, o una mezcla de los mismos. La protección frente a la acción de los microorganismos es un requisito básico para muchas aplicaciones actuales de los plásticos, como el preservar la calidad de los alimentos envasados, garantizar las condiciones asépticas en aplicaciones biomédicas, contribuir a limitar el crecimiento de microorganismos en superficies expuestas y de trabajo, entre otras aplicaciones. La patente US 7306777 describe el uso de materiales germicidas basados en nanopartículas de plata aplicados en envases y embalajes. Sin embargo, hasta ahora no se ha publicado ningún diseño específico en el que se describa el proceso de fabricación de nanocompuestos de base nanoarcillas para aplicaciones de protección ante la acción de los microorganismos y/o con propiedades antioxidantes y/o secuestradoras de oxígeno. BACKGROUND OF THE INVENTION In the field of polymers, one of the areas that is generating the greatest interest is the development of composite materials, and more specifically of clay-based nanocomposites. There are different nanocomposite preparation techniques, both by the casting method, by the melt mixing method and by the in-situ polymerization method. In addition, these new nanocomposites and their processing techniques are described in, for example, US Patent No. US 4739007; and more specifically with regard to WO2007074184A1. In this PCT patent application, a new route for manufacturing nanocomposites is described which may or may not be biodegradable, with antimicrobial properties based on natural products and / or with the ability to fix or release controlled other active or bioactive substances. These nanocomposites based on phyllosilicates and / or synthetic double laminar hydroxides are interspersed with different organic modifiers, and once incorporated into thermoplastic and / or thermostable matrices, they are capable of improving the gas and vapor barrier properties of these. The aforementioned documents are some examples of polymer clay nanocomposites prepared from modified clays. These documents describe a nanocomposite material such as an exfoliated or interleaved plate, with a touch structure of nanometric dimensions, comprising intercalated clay dispersed in a polymer matrix, such as an oligomer, a polymer, or a mixture thereof. Protection against the action of microorganisms is a basic requirement for many current applications of plastics, such as preserving the quality of packaged food, ensuring aseptic conditions in biomedical applications, contributing to limiting the growth of microorganisms on exposed surfaces and of work, among other applications. US 7306777 describes the use of germicidal materials based on silver nanoparticles applied in containers and packaging. However, until now no specific design has been published describing the manufacturing process of nano-clay based nanocomposites for applications of protection against the action of microorganisms and / or with antioxidant and / or oxygen sequestering properties.
Los microorganismos, y en concreto las bacterias, son la principal causa de enfermedades provocadas por el consumo de alimentos contaminados. Éstos pueden sobrevivir al tratamiento térmico requerido para el enlatado o bien contaminar el alimento después de dicho tratamiento debido a suturas o fugas del envase. Además de su potencial peligro para la salud, la proliferación de microorganismos puede provocar alteraciones en los alimentos que a su vez den lugar a cambios en las propiedades físicas, químicas y organolépticas de los mismos. Algunos de los métodos tradicionales de preservación como los tratamientos térmicos, irradiación, envasado en atmósfera modificada o adición de sales, no pueden ser aplicados a ciertos tipos de alimentos como vegetales, frutas y carnes frescas o productos listos para consumir. Por otra parte, la aplicación directa de sustancias antibacterianas sobre los alimentos tiene efectos limitados dado que éstas se neutralizan y difunden rápidamente hacia el interior del alimento. Considerando los aspectos anteriores, los envases activos constituyen una forma viable y ventajosa para limitar y controlar el crecimiento bacteriano en los alimentos, ya que los agentes antimicrobianos migran lentamente del material a la superficie del producto. La migración puede ser tan extensa como se requiera, de manera que cubra el tiempo de transporte, almacenaje y se garantice hasta el consumo. En el caso de los nanoaditivos antimicrobianos de ácido etilendiaminotetraacético (EDTA) y sus sales, una vez incorporados a los envases pueden inhibir el crecimiento de microorganismos gracias a su propiedad quelante de cationes divalentes como Ca2+ o Mg2+, factores esenciales para el crecimiento microbiano. Además, el EDTA es capaz de desestabilizar la membrana externa del microorganismo, incrementando en exceso su permeabilidad. El efecto de los microorganismos también es indeseable en otros sectores. En el campo de la medicina es indispensable eliminar los riesgos de contagios en tratamientos invasivos, de heridas abiertas, así como en tratamientos rutinarios. Como ejemplos de dichos tratamientos se pueden citar los recubrimientos con películas antimicrobianas de catéteres y estetoscopios, y la elaboración de tejidos en fibras pretratadas con nitrato de plata o con antibióticos de amplio espectro para tratamientos de heridas y quemaduras. En la industria textil en lo que respecta a vestuario de moda y laboral, por ejemplo, el uso de fibras pretratadas con agente antibacterianos limita la proliferación de microorganismos ante el sudor, humedad y temperaturas elevadas, reduciendo los malos olores corporales y riesgos de contagio. Se conoce como fouling la acumulación y depósito de material biológico en superficies expuestas a condiciones medioambientales diversas, como pueden ser embarcaciones, objetos o sistemas pintados expuestos a condiciones de alta humedad u otras superficies expuestas a medios activos, agresivos o medioambientalmente adversos. En el caso de embarcaciones, el consumo de combustible puede incrementar hasta en un 50% debido a la resistencia hidrodinámica que ofrece la acumulación de material biológico en el casco. Los sistemas antimicrobianos pueden actuar como antifouling si se aplican en forma de capas en la superficie de la embarcación, haciendo que el consumo de combustible sea óptimo, y que las operaciones de limpieza y mantenimiento sean menos frecuentes. En el caso de contenedores y tanques de agua, al recubrir el interior con una película de compuestos antimicrobianos se reduce significativamente el crecimiento de algas y generación de malos olores, por lo que la calidad del agua contenida se garantiza por más tiempo. El recubrir con films de compuestos antimicrobianos o fabricar con éstos las superficies de trabajo de laboratorios (clínicos, microbiológicos, de análisis de agua, de alimentos), de comercios en lo que se manipulan alimentos frescos (carnicerías, pescaderías, etc.), de pabellones de hospitales y centros de salud, por mencionar sólo algunos ejemplos, garantiza las condiciones de higiene adecuadas para el desarrollo del trabajo y elimina el riesgo de contaminación e infecciones. Los materiales plásticos con propiedades antimicrobianas también pueden emplearse en la fabricación de manivelas, manillares, agarraderas y apoyabrazos de elementos de transporte público, en barandillas y puntos de apoyo de lugares de alta concurrencia, en la fabricación de piezas sanitarias de uso público y masivo, así como en auriculares y micrófonos de teléfonos y sistemas de audio de sitios públicos; utillaje de cocina y de transporte de alimentos, todo esto con el fin de reducir riesgos de propagación de infecciones y enfermedades. Microorganisms, and in particular bacteria, are the main cause of diseases caused by the consumption of contaminated food. These can survive the heat treatment required for canning or contaminate the food after such treatment due to sutures or leaks from the container. In addition to its potential health hazard, the proliferation of microorganisms can cause alterations in foods that in turn lead to changes in the physical, chemical and organoleptic properties of the same. Some of the traditional preservation methods such as heat treatments, irradiation, modified atmosphere packaging or addition of salts, cannot be applied to certain types of foods such as vegetables, fresh fruits and meats or ready-to-eat products. On the other hand, the direct application of antibacterial substances on food has limited effects since they neutralize and diffuse rapidly into the food. Considering the above aspects, active packaging is a viable and advantageous way to limit and control bacterial growth in foods, since antimicrobial agents migrate slowly from the material to the surface of the product. The migration can be as extensive as required, so that it covers the time of transport, storage and is guaranteed until consumption. In the case of the antimicrobial nanoadditives of ethylenediaminetetraacetic acid (EDTA) and its salts, once incorporated into the containers, they can inhibit the growth of microorganisms thanks to their chelating property of divalent cations such as Ca 2+ or Mg 2+ , essential factors for microbial growth In addition, EDTA is able to destabilize the outer membrane of the microorganism, excessively increasing its permeability. The effect of microorganisms is also undesirable in other sectors. In the medical field, it is essential to eliminate the risks of infection in invasive treatments, of open wounds, as well as in routine treatments. As examples of such treatments, coatings with antimicrobial films of catheters and stethoscopes, and the preparation of fabrics in fibers pretreated with silver nitrate or with broad-spectrum antibiotics for wound and burn treatments can be cited. In the textile industry in terms of fashion and workwear, for example, the use of fibers pretreated with antibacterial agents limits the proliferation of microorganisms in the face of sweat, humidity and high temperatures, reducing bad body odors and risks of contagion. It is known as fouling the accumulation and deposit of biological material on surfaces exposed to various environmental conditions, such as boats, objects or painted systems exposed to high humidity conditions or other surfaces exposed to active, aggressive or environmentally adverse media. In the case of boats, fuel consumption can increase by up to 50% due to the hydrodynamic resistance offered by the accumulation of biological material in the hull. Antimicrobial systems can act as antifouling if they are applied in the form of layers on the surface of the boat, making fuel consumption optimal, and cleaning and maintenance operations less frequent. In the case of containers and water tanks, coating the interior with a film of antimicrobial compounds significantly reduces the growth of algae and the generation of bad odors, so that the quality of the water contained is guaranteed for longer. Coating with films of antimicrobial compounds or manufacturing with them the work surfaces of laboratories (clinical, microbiological, water analysis, food), of shops in which fresh food (butchers, fishmongers, etc.), of Hospital and health center pavilions, to mention just a few examples, guarantee adequate hygiene conditions for the development of work and eliminate the risk of contamination and infections. Plastic materials with antimicrobial properties can also be used in the manufacture of cranks, handlebars, handles and armrests of public transport elements, in railings and support points of places of high concurrence, in the manufacture of sanitary parts for public and mass use, as well as in headphones and microphones of telephones and audio systems of public places; kitchen tools and food transport, all this in order to reduce the risk of spreading infections and diseases.
Otras propiedades activas de gran interés son el carácter "antioxidante" que funciona por secuestro de radicales libres y que por tanto impiden los procesos de oxidación aun en presencia de oxígeno, y la capacidad secuestrante de oxígeno, que impide la oxidación por la captura de oxígeno. Other active properties of great interest are the "antioxidant" character that works by free radical sequestration and therefore prevents oxidation processes even in the presence of oxygen, and the oxygen sequestering capacity, which prevents oxidation by oxygen capture .
Las sales generadoras de SO2 se usan actualmente como conservantes y agentes blanqueadores alimentarios. Se emplean para controlar el crecimiento de microorganismos no deseables: en viticultura antes del proceso de fermentación del mosto para evitar el crecimiento de bacterias acéticas y mohos sin afectar las levaduras en productos lácteos y vegetales. También se utilizan como agentes antipardeamiento de vegetales, principalmente la patata. El bisulfito de sodio y el sulfito de sodio están reconocidos como aptos para contacto alimentario, con una migración específica de 10 mg/Kg, según el reglamento (UE) N° 10/201 1 de la Comisión de 14 de Enero de 201 1 sobre materiales y objetos plásticos a entrar en contacto con alimentos. La eficiencia de las sales inorgánicas generadoras de SO2 puede potenciarse significativamente soportándolas en un agente que actúe como vehículo, como carbón activado, alúmina, sílice, o arcillas. Sin embargo, hasta el momento, no se ha protegido o patentado la fabricación de materiales nanoactivos basados en sales generadoras de SO2, así como tampoco su uso como agentes secuestrantes de oxígeno, antimicrobianos, captadores de radicales libres para la fabricación de envases activos; o cualquier otra funcionalidad o mejora de propiedades que otorguen las arcillas a las matrices a las que puedan ser incorporados. SO2 generating salts are currently used as preservatives and food bleaching agents. They are used to control the growth of undesirable microorganisms: in viticulture before the process of must fermentation to prevent the growth of acetic bacteria and molds without affecting yeasts in dairy and vegetable products. They are also used as anti-browning agents for vegetables, mainly potatoes. Sodium bisulfite and sodium sulphite are recognized as suitable for food contact, with a specific migration of 10 mg / kg, according to Commission Regulation (EU) No. 10/201 1 of January 14, 201 1 on plastic materials and objects to come into contact with food. The efficiency of the inorganic salts generating SO2 can be significantly enhanced by supporting them in an agent that acts as a vehicle, such as activated carbon, alumina, silica, or clays. However, so far, the manufacture of nanoactive materials based on salts generating SO2 has not been protected or patented, as well as their use as oxygen sequestering agents, antimicrobials, free radical scavengers for the manufacture of active packages; or any other functionality or improvement of properties granted by clays to the matrices to which they can be incorporated.
Una opción novedosa para evitar la acción del oxígeno en los alimentos envasados es la incorporación de agentes activos en los materiales plásticos que posteriormente van a emplearse en la fabricación de artículos para el envasado. Se han desarrollado sistemas antioxidantes para la industria alimenticia que ilustran estas aplicaciones. Más concretamente, la patente CA2278569 describe la fabricación de películas bicapa que contienen agentes antioxidantes, entre otros aditivos, y que sirven para el envasado de carne y productos precocinados, pero también para la fabricación de recubrimientos y bolsas. También se ha reportado y protegido el uso genérico de nanoarcillas con propiedades activas y bioactivas con propiedades biocida y antioxidante para desarrollar nanocompuestos (WO02007/074184A1 ). Adicionalmente, se han descrito sistemas (FR2536045 y DE1 12979) en los que el cartón utilizado para contener frutas y vegetales actúa como vehículo del bisulfito de sodio, que actúa como secuestrante de oxígeno. Los sulfitos y sus análogos se han empleado como secuestrantes de oxígeno por muchos años. Pueden incorporarse directamente en films y materiales para envasar alimentos, y en las condiciones adecuadas de humedad relativa han mostrado ser muy activos. En base a este concepto la patente CN101530233 se refiere a una mezcla de sulfito de hierro y ácido trimetílico, que añadida en una carga de 3% al polímero permite producir envases en los que se eliminan los olores desagradables que se pueden generar en el entorno del producto envasado no alimenticio (por amoníaco o etanotiol). También se ha desarrollado un material plástico para usarse en el envasado de vinos con el sistema "bag-in box"; en el que dicho material plástico contiene una o más sales generadoras de SO2, principalmente sulfito de calcio. Adicionalmente, el material plástico contiene óxidos metálicos que regulan la liberación de SO2 a la bebida. Este sistema está recogido en la patente WO2008025085. A novel option to avoid the action of oxygen in packaged foods is the incorporation of active agents in plastic materials that are subsequently used in the manufacture of items for packaging. Antioxidant systems have been developed for the food industry that illustrate these applications. More specifically, patent CA2278569 describes the manufacture of bilayer films containing antioxidant agents, among other additives, and which are used for packaging meat and pre-cooked products, but also for the manufacture of coatings and bags. The generic use of nano-clays with active and bioactive properties with biocidal and antioxidant properties to develop nanocomposites has also been reported and protected (WO02007 / 074184A1). Additionally, systems (FR2536045 and DE1 12979) have been described in which the cardboard used to contain fruits and vegetables acts as a vehicle for sodium bisulfite, which acts as an oxygen sequestrant. Sulfites and their analogues have been used as oxygen sequestrants for many years. They can incorporated directly into films and materials for food packaging, and in the appropriate conditions of relative humidity have shown to be very active. Based on this concept, the CN101530233 patent refers to a mixture of iron sulphite and trimethyl acid, which added in a 3% load to the polymer allows to produce packages in which the unpleasant odors that can be generated around the environment are eliminated. non-food packaged product (by ammonia or ethanothiol). A plastic material has also been developed for use in wine packaging with the "bag-in box"system; wherein said plastic material contains one or more salts generating SO 2 , mainly calcium sulphite. Additionally, the plastic material contains metal oxides that regulate the release of SO 2 to the beverage. This system is set out in WO2008025085.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención se refiere a un nuevo tipo de materiales nanocompuestos, con propiedades activas y/o bioactivas, con aplicaciones multisectoriales, con propiedades antimicrobianas y/o de secuestro de oxígeno y/o con carácter antioxidante, que mejoran sustancialmente los efectos obtenidos con materiales de la misma naturaleza pero con composición ligeramente diferente. The present invention relates to a new type of nanocomposite materials, with active and / or bioactive properties, with multisectoral applications, with antimicrobial and / or oxygen sequestration properties and / or with antioxidant character, which substantially improve the effects obtained with materials of the same nature but with slightly different composition.
Por tanto, un primer aspecto de la presente invención se refiere a un material nanocompuesto que comprende los siguientes elementos: Therefore, a first aspect of the present invention relates to a nanocomposite material comprising the following elements:
- una matriz; - An array;
- aditivos o nanoaditivos de tipo laminar con o sin modificación previa que se encuentran dispersos dentro de la matriz, y que comprenden al menos un agente activo seleccionado de entre EDTA, sales de EDTA y/o sales generadoras de SO2. - laminar-type additives or nanoadditives with or without prior modification that are dispersed within the matrix, and which comprise at least one active agent selected from EDTA, EDTA salts and / or SO2 generating salts.
De manera preferida, la matriz: - está presente en el material nanocompuesto en una proporción del 5 al 99,99% en peso respecto del total. Preferably, the matrix: - It is present in the nanocomposite material in a proportion of 5 to 99.99% by weight with respect to the total.
- es de tipo polimérica o plástica y se selecciona del grupo formado por las familias de termoplásticos, termoestables, elastómeros y materiales derivados de biomasa y/o biodegradables o mezclas de los mismos conteniendo aditivos típicos que se añaden durante la fabricación y procesado de plásticos y bioplásticos; - It is of polymeric or plastic type and is selected from the group formed by the families of thermoplastics, thermosets, elastomers and materials derived from biomass and / or biodegradable or mixtures thereof containing typical additives that are added during the manufacture and processing of plastics and bioplastics;
- puede comprender agentes que se seleccionan de entre compuestos con propiedades de barrera a la radiación electromagnética, compuestos con resistencia al fuego, compuestos con actividad antimicrobiana, sustancias de bajo peso molecular con otro carácter activo o bioactivo tales como compuestos antioxidantes naturales o sintéticos, secuestrantes de oxígeno, fármacos, enzimas, compuestos de calcio biodisponibles, probióticos, aceites marinos, simbióticos o prebióticos. - may comprise agents that are selected from compounds with electromagnetic radiation barrier properties, fire resistant compounds, compounds with antimicrobial activity, low molecular weight substances with other active or bioactive character such as natural or synthetic antioxidant compounds, sequestrants of oxygen, drugs, enzymes, bioavailable calcium compounds, probiotics, marine oils, symbiotics or prebiotics.
Por otra parte, con respecto a los aditivos o nanoaditivos: On the other hand, with respect to additives or nanoadditives:
- están en una proporción del 0,01 al 95% en peso respecto del total, más preferiblemente entre un 0,01 y un 60% y aun más preferiblemente entre un 0,01 y un 25%. - they are in a proportion of 0.01 to 95% by weight with respect to the total, more preferably between 0.01 and 60% and even more preferably between 0.01 and 25%.
- son de tipo laminar y se seleccionan entre filosilicatos o hidróxidos dobles sintéticos. Preferiblemente son arcillas montmorilloníticas o caoliníticas. - they are of the laminar type and are selected from phyllosilicates or synthetic double hydroxides. Preferably they are montmorillonitic or kaolinitic clays.
De manera preferida, los aditivos o nanoaditivos de tipo laminar están modificados y los agentes modificantes se seleccionan de entre: Preferably, the laminar type additives or nanoadditives are modified and the modifying agents are selected from:
- agentes precursores, que se seleccionan del grupo formado por expansores y/o compatibilizadores y/o agentes con carácter activo y/o bioactivo;
Figure imgf000009_0001
- precursor agents, which are selected from the group consisting of expanders and / or compatibilizers and / or agents with active and / or bioactive character;
Figure imgf000009_0001
Figure imgf000010_0001
Figure imgf000010_0001
Tabla 1 Table 1
- o compuestos con carácter surfactante o compatibilizante que puede adicionalmente tener un papel activo, antioxidante, antimicrobiano o absorbedor de oxígeno. De manera preferida estos últimos compuestos se seleccionan entre el arquad (cloruro de didecildimetilamonio) o CTAB (bromuro de hexadeciltrimetil amonio); - or compounds with surfactant or compatibilizing character that may additionally have an active, antioxidant, antimicrobial or oxygen absorbing role. Preferably, the latter compounds are selected from arquad (didecyldimethylammonium chloride) or CTAB (hexadecyltrimethyl ammonium bromide);
- o compuestos, partículas o nanoparticulas de plata, cobre o zinc o mezclas de los anteriores. ún otra realización preferida, el material nanocompuesto comprende: - or compounds, particles or nanoparticles of silver, copper or zinc or mixtures thereof. In another preferred embodiment, the nanocomposite material comprises:
- una matriz plástica; y  - a plastic matrix; Y
- montmorillonita dispersa en la matriz plástica, donde dicha montmorillonita comprende EDTA o sales de EDTA como agente activo. El uso de las arcillas modificadas con EDTA o sales de EDTA es adecuado en los casos en los que los sistemas basados en plata no fueran eficientes debido a la presencia de aminoácidos azufrados en el entorno. Este es el caso de un envase alimentario para carnes, ya que, tal y como se demuestra en el presente documento, el compuesto no presenta interacción negativa frente a este tipo de alimentos. Actualmente se encuentra aceptado como aditivo alimentario en la Unión Europea el Etilen-diamino-tetracetato de calcio y sodio (EDTA cálcico disódico, E385), pero existen numerosas sales del EDTA posibles capaces de cumplir la misma función, como por ejemplo, pero sin limitarse a: - montmorillonite dispersed in the plastic matrix, wherein said montmorillonite comprises EDTA or EDTA salts as active agent. The use of EDTA modified clays or EDTA salts is suitable in cases where silver-based systems were not efficient due to the presence of sulfur amino acids in the environment. This is the case of a food package for meats, since, as demonstrated in this document, the compound has no negative interaction with this type of food. At the moment the calcium and sodium ethylene diamino tetracetate (disodium calcium EDTA, E385) is accepted as a food additive in the European Union, but there are numerous possible EDTA salts capable of fulfilling the same function, for example, but not limited to:
Etilen-diamino-tetracetato de tetrasodio CAS Reg. No. 64-02-8 Etilen-diamino-tetracetato de disodio CAS Reg. No. 139-33-3  Tetrasodium ethylene diamino tetracetate CAS Reg. No. 64-02-8 Disodium ethylene diamino tetracetate CAS Reg. No. 139-33-3
Etilen-diamino-tetracetato de trisodio CAS Reg. No. 150-38-9  Ethylene diamino tetracetate from CAS episode Reg. No. 150-38-9
Etilen-diamino-tetracetato de tetrapotasio CAS Reg. No. 5964-35-2 Etilen-diamino-tetracetato de disodio, dihidratada CAS Reg. No. 6381 - 92-6  Tetrapotasio ethylene diamino tetracetate CAS Reg. No. 5964-35-2 Disodium ethylene diamino tetracetate, dihydrate CAS Reg. No. 6381-92-6
Etilen-diamino-tetracetato de potasio CAS Reg. No. 7379-27-3  Ethylene-diamino-potassium tetracetate CAS Reg. No. 7379-27-3
Etilen-diamino-tetracetato de sodio CAS Reg. No. 7379-28-4  Ethylene sodium diamino tetracetate CAS Reg. No. 7379-28-4
Etilen-diamino-tetracetato de cobre CAS Reg. No. 12276-01 -6 Etilen-diamino-tetracetato de disodio cobre CAS Reg. No. 14025-15-1  Ethylene-diamino-tetracetate of copper CAS Reg. No. 12276-01 -6 Ethylene-diamino-tetracetate of copper disodium CAS Reg. No. 14025-15-1
Según otra realización preferida, el material nanocompuesto comprende: According to another preferred embodiment, the nanocomposite material comprises:
- una matriz plástica;  - a plastic matrix;
- montmorillonita dispersa en la matriz plástica, donde dicha montmorillonita comprende bisulfito sódico como agente activo.  - montmorillonite dispersed in the plastic matrix, wherein said montmorillonite comprises sodium bisulfite as active agent.
Aparte del bisulfito sódico mencionado, se pueden usar otras sales generadoras de S02 aceptadas como aditivos tales como: Apart from the mentioned sodium bisulfite, other S0 2 generating salts accepted as additives such as:
Sulfito de sodio (E221 ) Sodium Sulfite (E221)
Metabisulfito de sodio (E223)  Sodium Metabisulfite (E223)
Metabisulfito de potasio (E224)  Potassium Metabisulfite (E224)
Sulfito de calcio (E226) Bisulfito de calcio (E227) Calcium Sulphite (E226) Calcium Bisulfite (E227)
Bisulfito de potasio (E228)  Potassium Bisulfite (E228)
Según otra realización preferida, el material nanocompuesto comprende: According to another preferred embodiment, the nanocomposite material comprises:
- una matriz plástica; y  - a plastic matrix; Y
- montmorillonita dispersa en la matriz plástica, donde dicha montmorillonita comprende EDTA o sales de EDTA y bisulfito sódico como agentes activos.  - montmorillonite dispersed in the plastic matrix, wherein said montmorillonite comprises EDTA or salts of EDTA and sodium bisulfite as active agents.
Un segundo aspecto de la presente invención se refiere al uso del material nanocompuesto descrito anteriormente para la fabricación de materiales plásticos o recubrimiento de plásticos y más específicamente para envases con propiedades antimicrobianas y/o antioxidantes y/o secuestrantes de oxígeno. La ventaja del uso de sales generadoras de S02 es que presentan un impacto mínimo en color en aplicaciones finales en plásticos, al contrario que los compuestos basados en hierro que presentan un color obscuro. A second aspect of the present invention relates to the use of the nanocomposite material described above for the manufacture of plastic materials or plastics coating and more specifically for containers with antimicrobial and / or antioxidant and / or oxygen sequestrant properties. The advantage of using S0 2 generating salts is that they have a minimal impact on color in final applications in plastics, unlike iron-based compounds that have a dark color.
Un tercer aspecto de la presente invención se refiere a un envase que comprende el material nanocompuesto anteriormente descrito. A third aspect of the present invention relates to a package comprising the nanocomposite material described above.
Un cuarto aspecto de la presente invención se refiere al uso del envase anterior, para la conservación y/o protección de alimentos, medicamentos, instrumental médico o productos de higiene. A fourth aspect of the present invention relates to the use of the above package, for the preservation and / or protection of food, medications, medical instruments or hygiene products.
Un quinto aspecto de la presente invención se refiere a un procedimiento para la obtención de los materiales nanocompuestos anteriormente descritos que comprende las siguientes etapas: A fifth aspect of the present invention relates to a process for obtaining the nanocomposite materials described above comprising the following steps:
-dispersión del aditivo o nanoaditivo laminar con o sin modificación química o tratamiento físico previo, en una solución del agente activo seleccionado entre EDTA, sal de EDTA y/o bisulfito sódico en una arcilla; - secar el producto obtenido en la etapa a) mediante cualquier proceso de secado industrial conocido por un experto en la materia, preferiblemente el atomizado. - adicionar a una matriz plástica o polimérica tal cual se describió anteriormente, el producto obtenido en la etapa b). -dispersion of the laminar additive or nanoadditive with or without chemical modification or prior physical treatment, in a solution of the active agent selected from EDTA, EDTA salt and / or sodium bisulfite in a clay; - Drying the product obtained in step a) by any industrial drying process known to a person skilled in the art, preferably spraying. - add the product obtained in step b) to a plastic or polymer matrix as described above.
De manera preferida, tras la etapa de dispersión a), se añade la suspensión directamente a la matriz sin un proceso de secado previo. Dicha dispersión se lleva a cabo en agua, isopropanol o mezclas de los mismos. Además la dispersión se lleva a cabo en un reactor asistida bien por agitación simple, homogenizadores y/o ultrasonidos. De manera alternativa se puede secar el producto, almacenar y volver a suspender en agua, isopropanol o mezclas para añadir en suspensión a la matriz plástica. Preferably, after the dispersion step a), the suspension is added directly to the matrix without a prior drying process. Said dispersion is carried out in water, isopropanol or mixtures thereof. In addition, the dispersion is carried out in a reactor assisted by simple agitation, homogenizers and / or ultrasound. Alternatively, the product can be dried, stored and resuspended in water, isopropanol or mixtures to add in suspension to the plastic matrix.
Por otra parte según otra realización preferida, la etapa b) de secado se realiza en un atomizador, mediante filtroprensa o en centrifuga. Según otra realización preferida, el aditivo o nanoaditivo ha sido sometido, previo a la dispersión del paso a), a: On the other hand according to another preferred embodiment, step b) of drying is carried out in an atomizer, by means of filtroprensa or centrifuge. According to another preferred embodiment, the additive or nanoadditive has been subjected, prior to the dispersion of step a), to:
- tratamientos físicos de reducción del tamaño de partícula y/o de purificación mediante eliminación de oxido de silicio u otras partículas duras y/o eliminación de la materia orgánica.  - physical treatments for particle size reduction and / or purification by removing silicon oxide or other hard particles and / or eliminating organic matter.
- un tratamiento de modificación superficial en una o varias etapas con expansores tales como el dimetil sulfóxido y/o compatibilizantes con o sin un rol activo tales como arquad, C16, sales de metales, partículas de metales y/o sales de amonio. Todas las características y ventajas expuestas, así como otras propias de la invención, podrán comprenderse mejor con los siguientes ejemplos. Por otra parte los ejemplos y figuras que se muestran a continuación, no tienen carácter limitativo sino ilustrativo a modo de que se pueda entender mejor la presente invención.  - a surface modification treatment in one or several stages with expanders such as dimethyl sulfoxide and / or compatibilizers with or without an active role such as arquad, C16, metal salts, metal particles and / or ammonium salts. All the features and advantages set forth, as well as other features of the invention, can be better understood with the following examples. On the other hand, the examples and figures shown below are not limited but illustrative so that the present invention can be better understood.
BREVE DESCRIPCIÓN DE LAS FIGURAS A continuación se describe la invención con referencia a las figuras adjuntas, en las cuales: BRIEF DESCRIPTION OF THE FIGURES The invention is described below with reference to the attached figures, in which:
Figura 1 Muestra los resultados del análisis termogravimétrico de la MMT/Ca 30% EDTA-Na Figure 1 Shows the results of the thermogravimetric analysis of MMT / Ca 30% EDTA-Na
Figura 2 Muestra el difractograma de rayos X de la montmorillonita Ca con 30% de EDTA-Na Figura 3 Muestra los difractogramas de rayos-X (WAXS) de una muestra de arcilla tipo montmorillonítica sin modificar y la misma arcilla modificada con bisulfito de sodio, según el método descrito en el Ejemplo 1 , para obtener MMT/NaHS03 Figura 4 Muestra los difractogramas de rayos-X (WAXS) de una muestra de arcilla tipo montmorillonítica modificada con 30% de arquad y la misma arcilla modificada con bisulfito de sodio, según el método descrito en el Ejemplo 2, para obtener MMT/NaHSO3/30% arquad. Figura 5 Muestra la gráfica de inhibición de oxidación por contacto (método de DPPH) por acción de las arcillas MMT/NaHSO3 y MMT/NaHSO3/30% arquad, de los ejemplos 1 y 2, respectivamente. Figure 2 Shows the X-ray diffractogram of Montmorillonite Ca with 30% EDTA-Na Figure 3 Shows the X-ray diffractograms (WAXS) of a sample of unmodified montmorillonite clay and the same clay modified with sodium bisulfite, according to the method described in Example 1, to obtain MMT / NaHS0 3 Figure 4 Shows the X-ray diffractograms (WAXS) of a sample of montmorillonite-type clay modified with 30% of arquad and the same clay modified with sodium bisulfite, according to the method described in Example 2, to obtain MMT / NaHSO 3 /30% arch. Figure 5 Shows the graph of contact oxidation inhibition (DPPH method) by action of the MMT / NaHSO 3 and MMT / NaHSO 3 /30% arquad clays, of examples 1 and 2, respectively.
Figura 6 Muestra la gráfica de capacidad secuestrante de oxígeno en espacio cabeza de las arcillas MMT/NaHSO3 y MMT/NaHSO3/30% arquad, de los ejemplos 1 y 2, respectivamente. Figure 6 Shows the plot of oxygen sequestering capacity in head space of the MMT / NaHSO 3 and MMT / NaHSO 3 /30% arquad clays, of examples 1 and 2, respectively.
Figura 7 Muestra la gráfica de inhibición de oxidación por contacto (método de DPPH) por acción de los films de composites de HDPE y PET con las arcillas MMT/NaHSO3 y MMT/NaHSO3/30% arquad. Figura 8 Muestra la gráfica de capacidad secuestrante de oxígeno en espacio cabeza de films de composites de HDPE, PET y elastómero con arcillas MMT/NaHS03 y MMT/NaHSO3/30% arquad. EJEMPLOS Figure 7 Shows the graph of contact oxidation inhibition (DPPH method) by action of the films of HDPE and PET composites with clays MMT / NaHSO 3 and MMT / NaHSO 3 /30% arquad. Figure 8 Shows the graph of oxygen sequestering capacity in head space of films of composites of HDPE, PET and elastomer with clays MMT / NaHS0 3 and MMT / NaHSO 3 /30% arch. EXAMPLES
Ejemplo 1 : Intercalación del EDTA cálcico disódico en arcillas de tipo montmorillonita. Inicialmente se prepara una solución al 3,6% de EDTA cálcico disódico en agua, en la que se dispersa la arcilla con o sin modificación previa con CTAB o arquad modificado (7,8% en peso). La dispersión se agita durante 6 h a 70 °C. Finalmente, se seca la arcilla mediante atomizado a 220°C. El análisis termogravimétrico (TGA) de la arcilla resultante muestra un inicio de la degradación aproximadamente a 200°C (ver figura 1 ). Example 1: Intercalation of disodium calcium EDTA in montmorillonite clays. Initially, a 3.6% solution of disodium calcium EDTA in water is prepared, in which the clay is dispersed with or without prior modification with CTAB or modified arquad (7.8% by weight). The dispersion is stirred for 6 h at 70 ° C. Finally, the clay is dried by spraying at 220 ° C. The thermogravimetric analysis (TGA) of the resulting clay shows an onset of degradation at approximately 200 ° C (see figure 1).
El difractograma de rayos X de la arcilla resultante (ver figura 2) muestra que el pico basal se ha desplazado de su posición inicial (5.55 °, 2Θ), lo cual indica que hay cambios en la distancia interlaminar y que todo el modificante se ha intercalado entre las láminas. The X-ray diffractogram of the resulting clay (see figure 2) shows that the basal peak has shifted from its initial position (5.55 °, 2Θ), which indicates that there are changes in the interlaminar distance and that the entire modifier has sandwiched between the sheets.
Ejemplo 2: Preparación de composites de polietileno de baja densidad (LDPE), con 4 v 7% CaNa?EDTA /MMT ó 4 v 7% CaNa?EDTA /30% CTAB/MMT ó 4 v 7%. CaNa2EDTA /30% Arquad/MMT Example 2: Preparation of low density polyethylene (LDPE) composites, with 4 v 7% CaNa? EDTA / MMT or 4 v 7% CaNa? EDTA / 30% CTAB / MMT or 4 v 7%. CaNa 2 EDTA / 30% Arquad / MMT
Se prepara un concentrado de 10% de arcilla en LDPE con una extrusora de husillo corrotativa (relación R:D 42:1 ). Caudal: 10 Kg/hora. Ta: 150°C. Para ello, se dispersa previamente la arcilla en isopropanol (arcilla:isopropanol 1 :3). A 10% clay concentrate in LDPE is prepared with a corrotative spindle extruder (ratio R: D 42: 1). Flow rate: 10 Kg / hour. T a : 150 ° C. For this, the clay is previously dispersed in isopropanol (clay: isopropanol 1: 3).
El concentrado se diluye en extrusora monohusillo para cast-film a 170°C (40 rpm). Se obtienen películas de 100 mieras de espesor con 4 y 7% de aditivo. Ejemplo 3: Capacidad antimicrobiana de composites de LDPE con arcilla de EDTA cálcico disódico sobre un alimento real. The concentrate is diluted in a single-screw extruder for cast-film at 170 ° C (40 rpm). 100 microns thick films with 4 and 7% additive are obtained. Example 3: Antimicrobial capacity of LDPE composites with disodium calcium EDTA clay on a real food.
Se evaluaron films de 5 x 5 cm según el estándar JIS Z 2801 con diversas modificaciones. El microorganismo sobre el que se llevaron a cabo los ensayos de susceptibilidad fue L. innocua (CECT 910T), S. aureus (CECT 86), y E.coli (CECT 516). Para ello se inocularon inicialmente 1 *105 UFC (unidades formadoras de colonia) sobre cada probeta. El medio de cultivo utilizado fue caldo de pollo, como ejemplo de alimento real rico en proteínas. Estas muestras se incubaron a 4°C durante 24 h y a continuación se hizo un recuento de células viables. La temperatura de incubación de la muestra inoculada fue de 4°C, dado que los productos frescos perecederos se suelen conservar a esta temperatura durante su vida útil. De cada tipo de probeta se analizaron 3 réplicas. 5 x 5 cm films were evaluated according to the JIS Z 2801 standard with various modifications. The microorganism on which susceptibility tests were carried out was L. innocua (CECT 910T), S. aureus (CECT 86), and E.coli (CECT 516). For this, 1 * 10 5 CFU (colony forming units) were initially inoculated on each specimen. The culture medium used was chicken broth, as an example of real protein-rich food. These samples were incubated at 4 ° C for 24 h and then a viable cell count was made. The incubation temperature of the inoculated sample was 4 ° C, since perishable fresh products are usually kept at this temperature during their useful life. Three replicates were analyzed for each type of specimen.
Según indica en el estándar JIS Z 2801 , el valor de actividad antimicrobiana de las muestras tras su evaluación se obtiene de la expresión: R= log (B/C) donde B es el promedio de bacterias viables de la muestra blanco después de 24 h incubación a 4°C, y C es el promedio de bacterias viables de la muestra antimicrobiana después de 24 h incubación a 37°C. Si R≥ 2.0, entonces se considera que la muestra evaluada tiene efectividad biocida. As indicated in the JIS Z 2801 standard, the value of antimicrobial activity of the samples after evaluation is obtained from the expression: R = log (B / C) where B is the average viable bacteria of the white sample after 24 h incubation at 4 ° C, and C is the average of viable bacteria in the antimicrobial sample after 24 h incubation at 37 ° C. If R≥ 2.0, then the evaluated sample is considered to have biocidal effectiveness.
Además, se llevó a cabo la efectividad antimicrobiana empleando las mismas condiciones de experimentación pero utilizando un aditivo basado en plata. In addition, antimicrobial effectiveness was carried out using the same experimental conditions but using a silver-based additive.
Los resultados obtenidos se recogen en la Tabla 2, en la cual se muestra la efectividad antimicrobiana de las películas obtenidas sobre el crecimiento de los tres microorganismos a 4°C durante 24 horas en caldo de pollo.
Figure imgf000017_0001
The results obtained are shown in Table 2, which shows the antimicrobial effectiveness of the films obtained on the growth of the three microorganisms at 4 ° C for 24 hours in chicken broth.
Figure imgf000017_0001
* El antimicrobiano basado en plata tiene un 2% de Ag * The silver-based antimicrobial has 2% Ag
Tabla 2. Efectividad antimicrobiana de las películas obtenidas sobre el crecimiento de L.innocua, E.coli y S.aureus a 4°C durante 24 horas en caldo de pollo. Table 2. Antimicrobial effectiveness of the films obtained on the growth of L. innocua, E.coli and S.aureus at 4 ° C for 24 hours in chicken broth.
Se observa que los films que han sido aditivados con arcilla con edetato de calcio disódico muestran una efectividad antimicrobiana muy significativa frente al crecimiento de los microorganismos en caldo de pollo a 4°C. Sin embargo, las muestras con aditivo basado en plata no presentan una efectividad antimicrobiana detectable, probablemente debido a una inactivación del compuesto en contacto con aminoácidos azufrados presentes en el alimento (por ejemplo, metionina o cisteína). It is observed that films that have been added with clay with disodium calcium edetate show a very significant antimicrobial effectiveness against the growth of microorganisms in chicken broth at 4 ° C. However, samples with silver-based additive do not show detectable antimicrobial effectiveness, probably due to inactivation of the compound in contact with sulfur amino acids present in the food (for example, methionine or cysteine).
Ejemplo 4: Intercalación de bisulfito de sodio (NaHSOs) en arcillas de tipo montmorillonita. Preparación de MMT/NaHSO^ Example 4: Intercalation of sodium bisulfite (NaHSOs) in montmorillonite clays. MMT / NaHSO Preparation ^
Inicialmente se prepara una solución al 10% de bisulfito de sodio en agua, en la que se dispersa la arcilla sin modificar. La dispersión se agita durante 24 h a 40Initially a 10% solution of sodium bisulfite in water is prepared, in which the unmodified clay is dispersed. The dispersion is stirred for 24 h at 40
°C. Finalmente se filtró la arcilla por succión y se secó en un atomizador. El análisis químico de la arcilla resultante muestra un contenido de NaHS03 (detectado como S02) de 16,20 %. El difractograma de rayos X de la arcilla resultante (ver figura 3) muestra que el pico basal no se ha desplazado de su posición inicial (7.02 °, 2Θ), lo cual indica que no hay cambios en la distancia interlaminar. ° C. Finally, the clay was filtered by suction and dried in an atomizer. The chemical analysis of the resulting clay shows a NaHS03 content (detected as S0 2 ) of 16.20%. The X-ray diffractogram of the resulting clay (see figure 3) shows that the basal peak has not shifted from its initial position (7.02 °, 2Θ), which indicates that there are no changes in the interlaminar distance.
Ejemplo 5: Intercalación de bisulfito de sodio (NaHSO^) en arcillas de tipo montmorillonita, previamente modificadas con 30% de arquad. Preparación MMT/NaHSO^/30% arquad. Example 5: Intercalation of sodium bisulfite (NaHSO ^) in montmorillonite clays, previously modified with 30% arch. Preparation MMT / NaHSO ^ / 30% arch.
Se prepara una solución al 3% de bisulfito de sodio en agua, en la que se dispersa la arcilla tipo montmorillonita previamente modificada con 30% de arquad. La dispersión se agita durante 24 h a 40 °C. Finalmente se filtró la arcilla por succión y se secó en atomizador. El análisis químico de la arcilla resultante muestra un contenido de NaHS03 (detectado como SO2) de 5,9 %. El difractograma de rayos X de la arcilla resultante (figura 4) muestra que la distancia interlaminar de la arcilla modificada con arquad y posteriormente modificada con NaHS03 ha aumentado 3.2 A (lo que corresponde a un desplazamiento del ángulo inicial de 2.9 a 2.6; 2Θ). A 3% solution of sodium bisulfite in water is prepared, in which the previously modified montmorillonite clay is dispersed with 30% of arch. The dispersion is stirred for 24 h at 40 ° C. Finally, the clay was filtered by suction and dried in an atomizer. The chemical analysis of the resulting clay shows a NaHS03 content (detected as SO2) of 5.9%. The X-ray diffractogram of the resulting clay (Figure 4) shows that the interlaminar distance of the clay modified with arch and subsequently modified with NaHS03 has increased 3.2 A (which corresponds to a displacement of the initial angle from 2.9 to 2.6; 2Θ) .
Ejemplo 6: Capacidad antioxidante de NaHSO^/MMT v NaHSO /30% arquad/MMT Example 6: NaHSO antioxidant capacity ^ / MMT v NaHSO / 30% arquad / MMT
El efecto antioxidante por contacto de las arcillas NaHS03-MMT y NaHSO3/30% arquad/MMT se determinó utilizando el método de descoloramiento del radical DPPH (2,2-difenil-1 -picrilhidracilo). Para ello se pesaron en viales de vidrio de 3 mi, por triplicado, porciones de 30mg de cada arcilla. Se añadió en cada tubo 1 mi de una solución stock 0,05g/L de DPPH en metanol, cuya absorbancia a 517 nm es de 1 ,2. Paralelamente se prepararon tres muestras controles sin arcilla que contenían 1 ml de DPPH. Las muestras y los controles se dejaron incubar en la oscuridad durante 24°C durante 24h. Seguidamente, se filtraron las muestras y se midió la absorbancia al sobrenadante a 517 nm. Los resultados se expresan en % de inhibición del DPPH: The antioxidant effect by contact of the NaHS03-MMT and NaHSO3 / 30% arquad / MMT clays was determined using the DPPH radical discoloration method (2,2-diphenyl-1-pyrilhydracil). For this, weighed in 3 ml glass vials, in triplicate, 30mg portions of each clay. 1 ml of a stock solution 0.05g / L of DPPH in methanol was added in each tube, whose absorbance at 517 nm is 1.2. In parallel, three control samples without clay containing 1 ml of DPPH were prepared. Samples and controls were allowed to incubate in the dark for 24 ° C for 24 hours. Next, the samples were filtered and the absorbance to the supernatant was measured at 517 nm. The results are expressed in% DPPH inhibition:
% Inhibición del DPPH = (Abs control - Abs muestra)/Abs control % DPPH inhibition = (Abs control - Abs sample) / Abs control
Los resultados muestran que estas arcillas son capaces de atrapar radicales libres, actividad que puede extenderse a los radicales libres del oxígeno (responsables de los procesos de oxidación de sustratos susceptibles, como insaturados y centros metálicos). En la Figura 5 se observa que las arcillas modificadas con bisulfito de sodio y bisulfito de sodio/arquad tienen capacidad de secuestrar radicales libres (hasta un 45,78%). Ejemplo 7: Método de macrodilución en tubo para determinar actividad antimicrobiana de arcillas NaHSOs/MMT The results show that these clays are capable of trapping free radicals, an activity that can extend to free radicals of oxygen (responsible for the oxidation processes of susceptible substrates, such as unsaturated and metal centers). Figure 5 shows that clays modified with sodium bisulfite and sodium bisulfite / arquad have the ability to sequester free radicals (up to 45.78%). Example 7: Tube macrodilution method to determine antimicrobial activity of NaHSOs / MMT clays
Las muestras fueron evaluadas según el método de macrodilución en tubo estipulado por el Comité Nacional de Estándares de Laboratorio Clínico, con diversas modificaciones. Para ello, se introdujeron 0,1 y 0,01 g de arcilla en tubos con medio de cultivo estéril (TSB) a pH=6,2. Seguidamente, se inoculó S. aureus en fase exponencial media a una concentración en el tubo de aproximadamente 1 *105 UFC/mL (UFC: unidades formadoras de colonia). Las muestras se prepararon por duplicado y se incubaron a 37°C durante 24 h. Seguidamente, se procedió al recuento de las células viables en cada tubo mediante siembra en placa de las diluciones seriadas (de nuevo incubación a 37°C durante 24 h). La tabla 3 muestra que la arcilla NaHS03/MMT puede causar una reducción de entre 90 y 99% de las unidades formadoras de colonia en los casos en que se testaron 0,01 y 0,1 g de arcilla, respectivamente. The samples were evaluated according to the tube macrodilution method stipulated by the National Clinical Laboratory Standards Committee, with various modifications. For this, 0.1 and 0.01 g of clay were introduced into tubes with sterile culture medium (TSB) at pH = 6.2. Next, S. aureus was inoculated in the middle exponential phase at a concentration in the tube of approximately 1 * 10 5 CFU / mL (CFU: colony forming units). Samples were prepared in duplicate and incubated at 37 ° C for 24 h. Next, the viable cells in each tube were counted by plating the serial dilutions (again incubation at 37 ° C for 24 h). Table 3 shows that NaHS0 3 / MMT clay can cause a reduction of between 90 and 99% of the colony forming units in cases where 0.01 and 0.1 g of clay were tested, respectively.
Figure imgf000020_0001
Figure imgf000020_0001
Tabla 3. Efectividad antimicrobiana de NaHS03/MMT frente al crecimiento de Table 3. Antimicrobial effectiveness of NaHS03 / MMT against the growth of
S. Aureus, a 37 °C  S. Aureus, at 37 ° C
Estos resultados indican que la arcilla NaHSOs/MMT tiene actividad antimicrobiana, característica que es muy ventajosa para acotar o eliminar la reproducción de microorganismos patógenos en envases alimentarios. Ejemplo 8: Preparación de composites de polietileno de alta densidad (HDPE), polietiléntereftalato (PET) y elastómero, con 15% NaHSOs/MMT ó 15%These results indicate that NaHSOs / MMT clay has antimicrobial activity, a characteristic that is very advantageous to limit or eliminate the reproduction of pathogenic microorganisms in food containers. Example 8: Preparation of high density polyethylene (HDPE), polyethylene terephthalate (PET) and elastomer composites, with 15% NaHSOs / MMT or 15%
NaHSO^/30% arauad/MMT. En la cámara de un plastógrafo previamente precalentada (ver Tabla 4) se añadieron alternativamente 12,75 g de polímero virgen y 2,25 g de arcilla, a una velocidad de mezclado de 5 rpm. NaHSO ^ / 30% arauad / MMT. 12.75 g of virgin polymer and 2.25 g of clay were added alternately in the chamber of a pre-heated plastgraph (see Table 4), at a mixing speed of 5 rpm.
Figure imgf000021_0001
Figure imgf000021_0001
Tabla 4. Condiciones de mezclado Table 4. Mixing conditions
Una vez añadido el material, se aumentaron las revoluciones y se dejó mezclar el material durante 3 min. Pasado este tiempo, se recogió el material mezclado en fundido y se transformó en planchas de aproximadamente 100 mieras de espesor por moldeado en compresión en una prensa hidráulica de platos calientes. Las planchas se enfriaron por inmersión en agua, se secan y se reservan en un desecador al vacío hasta su caracterización. Ejemplo 9: Capacidad secuestrante de MMT/NaHSO3/30% arquad v MMT/NaHSO3. Once the material was added, the revolutions were increased and the material was allowed to mix for 3 min. After this time, the material mixed in molten was collected and transformed into plates of approximately 100 microns thick by compression molding in a hot plate hydraulic press. The plates were cooled by immersion in water, dried and reserved in a vacuum desiccator until characterized. Example 9: Sequestrant capacity of MMT / NaHSO 3 /30% arquad v MMT / NaHSO 3 .
Se pesaron 1 ,5 g de cada arcilla, por duplicado, en viales de 40 mi. Dentro de cada vial se colocó una celda con 1 mi de agua para asegurar 100% de humedad relativa en el interior, y cada vial se cerró con un tapón tipo semáforo, con interruptor abierto-cerrado y entrada de aguja. Los tapones se dejaron en posición "cerrado" durante el ensayo. Los viales se colocaron en un espacio climatizado a 25 °C, bajo luz artificial constante. Se midió el contenido de oxígeno entre 1 y 60 días, utilizando un sensor de oxígeno. Los resultados de capacidad secuestrante (Figura 6) indican que la modificación de arcillas con bisulfito de sodio les concede la propiedad de reducir el contenido de oxígeno en el espacio cabeza, hasta 9,95 mi de oxígeno por gramo de arcilla. Eso se debe a la reacción que ocurre entre el bisulfito contenido en la arcilla y el oxígeno del medio:
Figure imgf000022_0001
1.5 g of each clay was weighed, in duplicate, in 40 ml vials. A cell with 1 ml of water was placed inside each vial to ensure 100% relative humidity inside, and each vial was closed with a traffic light cap, with an open-closed switch and needle inlet. The caps were left in the "closed" position during the test. The vials were placed in a heated space at 25 ° C, under constant artificial light. The oxygen content was measured between 1 and 60 days, using an oxygen sensor. The sequestering capacity results (Figure 6) indicate that the modification of clays with sodium bisulfite gives them the property of reducing the oxygen content in the head space, up to 9.95 ml of oxygen per gram of clay. This is due to the reaction that occurs between the bisulfite contained in the clay and the oxygen in the medium:
Figure imgf000022_0001
La arcilla con mayor capacidad de absorber oxígeno es la que contiene sólo bisulfito de sodio, que contiene más NaHS03 que la arcilla con doble modificación arquad/NaHS03. The clay with the greatest capacity to absorb oxygen is the one that contains only sodium bisulfite, which contains more NaHS0 3 than the clay with double modification arquad / NaHS03.
Ejemplo 10: Capacidad antioxidante de composites de HDPE y PET con arcilla de bisulfito de sodio. Example 10: Antioxidant capacity of HDPE and PET composites with sodium bisulfite clay.
El efecto antioxidante por contacto de los composites de HDPE y PET, descritos en el ejemplo 8, se determinó utilizando el método de descoloramiento del radical DPPH (2,2-difenil-1 -picrilhidracilo). Para ello se pesaron en viales de vidrio de 3 mi, por triplicado, porciones de 30mg de cada film. Se añadió en cada tubo 1 mi de una solución stock 0,05g/L de DPPH en metanol, cuya absorbancia a 517 nm de es de 1 ,2. Paralelamente se prepararon tres muestras controles sin film que contenían 1 ml de DPPH. Las muestras y los controles se dejaron incubar en la oscuridad a 24°C durante 24h. Seguidamente, se midió la absorbancia a 517 nm. Los resultados se expresan en % de inhibición del DPPH: The antioxidant effect by contact of the HDPE and PET composites, described in example 8, was determined using the DPPH radical discoloration method (2,2-diphenyl-1-pyrillicracil). For this, weighed in 3 ml glass vials, in triplicate, 30mg portions of each film. 1 ml of a 0.05g / L stock solution of DPPH in methanol was added in each tube, whose absorbance at 517 nm is 1.2. At the same time, three control samples without film containing 1 ml of DPPH were prepared. Samples and controls were allowed to incubate in the dark at 24 ° C for 24h. Next, the absorbance at 517 nm was measured. The results are expressed in% DPPH inhibition:
% Inhibición del DPPH = (Abs control - Abs muestra)/Abs control % DPPH inhibition = (Abs control - Abs sample) / Abs control
La Figura 7 muestra que, en general, todos los composites evaluados exhiben capacidad antioxidante, observándose la mayor actividad en composites deFigure 7 shows that, in general, all the composites evaluated exhibit antioxidant capacity, observing the highest activity in composites of
HDPE-MMT/NaHS03 (26,95% de viraje de DPPH). En el caso de los composites de PET, no se observan diferencias significativas al aditivar con la arcilla de modificación simple (sólo NaHS03) o doble (NaHS03/arquad). Los resultados demuestran que tanto el HDPE como PET, materiales ampliamente utilizados en envases alimentarios, tienen la propiedad de captar radicales libres procedentes del oxígeno, condición que puede resultar ventajosa para la extensión de la vida útil de los alimentos al retrasar los procesos de oxidación. Ejemplo 11 : Capacidad secuestrante de oxígeno de los composites de HDPE, PET v elastómero con MMT/NaHSO^/30% arquad v MMT/NaHSOs. HDPE-MMT / NaHS03 (26.95% DPPH turn). In the case of PET composites, there are no significant differences when added with the clay of simple modification (only NaHS0 3 ) or double (NaHS0 3 / arquad). The results show that both HDPE and PET, materials widely used in food packaging, have the property of capturing free radicals from oxygen, a condition that can be advantageous for extending the shelf life of food by delaying oxidation processes. Example 11: Oxygen sequestering capacity of HDPE, PET and elastomer composites with MMT / NaHSO ^ / 30% arquad v MMT / NaHSOs.
Se pesaron 1 ,5 g de cada film, por duplicado, en viales de 40 mi. Dentro de cada vial se colocó una celda con 1 mi de agua para segurar 100% de humedad relativa en el interior, y cada vial se cerró con un tapón tipo semáforo, con interruptor abierto-cerrado y entrada de aguja. Los tapones se dejaron en posición "cerrado" durante el ensayo. Los viales se colocaron en un espacio climatizado a 25 °C, bajo luz artificial constante. Se midió el contenido de oxígeno entre 1 y 60 días, utilizando un sensor de oxígeno. Los resultados de capacidad secuestrante se muestran en la Figura 8. 1.5 g of each film was weighed, in duplicate, in 40 ml vials. Within each vial, a cell with 1 ml of water was placed to ensure 100% relative humidity inside, and each vial was closed with a traffic light cap, with open-closed switch and needle inlet. The caps were left in the "closed" position during the test. The vials were placed in a heated space at 25 ° C, under constant artificial light. The oxygen content was measured between 1 and 60 days, using an oxygen sensor. The sequestering capacity results are shown in Figure 8.
La gráfica de volumen de oxígeno consumido/g arcilla vs. tiempo indica que de los composites aditivados con MMT/NaHS03 el más activo es el de elastómero, que puede consumir hasta 1 ,88 mi de 02/g de composite. Los composites con HDPE y PET pueden absorber 1 ,54 y 0,91 mi de oxígeno por gramo de composite, respectivamente. Estas diferencias se deben al efecto matriz, que causa que la misma arcilla se comporte de manera distinta dependiendo de la matriz en la que se incorpore. El PET aditivado con la arcilla que contiene arquad además de bisulfito muestra una actividad menor que la del PET aditivado con arcilla modificada sólo con bisulfito: 0,51 mi de 02/g composite. Los resultados indican que los composites de PET y HDPE aditivados con las arcillas basadas en bisulfito tienen capacidad para absorber oxígeno, propiedad que puede resultar beneficiosa en la extensión de la vida útil de alimentos envasados susceptibles a la oxidación, como los alimentos de base grasa y carnes. The graph of volume of oxygen consumed / g clay vs. time indicates that of the composites added with MMT / NaHS0 3 the most active is that of elastomer, which can consume up to 1.88 ml of 02 / g of composite. Composites with HDPE and PET can absorb 1, 54 and 0.91 ml of oxygen per gram of composite, respectively. These differences are due to the matrix effect, which causes the same clay to behave differently depending on the matrix in which it is incorporated. PET added to clay containing arquad in addition to bisulfite shows less activity than PET added to bisulfite modified clay only: 0.51 ml of 02 / g composite. The results indicate that the PET and HDPE composites added with the bisulfite-based clays have the capacity to absorb oxygen, a property that can be beneficial in extending the shelf life of packaged foods susceptible to oxidation, such as fat-based foods and meats.
Ejemplo 12: Intercalación de bisulfito de sodio (NaHSOs) y EDTA cálcico disódico en arcillas de tipo montmorillonita. Preparación de CaNa2EDTA/NaHSOr¾/MMT Example 12: Intercalation of sodium bisulfite (NaHSOs) and disodium calcium EDTA in montmorillonite clays. Preparation of CaNa2EDTA / NaHSOr¾ / MMT
Inicialmente se prepara una solución al 4% de bisulfito de sodio en agua, en la que se dispersa la arcilla sin modificación previa, para obtener una dispersión al 14% de contenido en sólidos. Se añade a esta dispersión una solución acuosa al 3,6% de EDTA cálcico disódico, y se agita durante 24 h a 40°C. Finalmente, se seca la arcilla mediante atomizado a 220°C. Ejemplo 13: Capacidad secuestrante de oxígeno de de arcillas CaNa2EDTA/NaHSOa MMT. Initially a 4% solution of sodium bisulfite in water is prepared, in which the clay is dispersed without prior modification, to obtain a dispersion at 14% solids content. A 3.6% aqueous solution of disodium calcium EDTA is added to this dispersion, and it is stirred for 24 h at 40 ° C. Finally, the clay is dried by spraying at 220 ° C. Example 13: Oxygen sequestering capacity of CaNa2EDTA / NaHSOa MMT clays.
Se pesaron 1 ,5 g de cada film, por duplicado, en viales de 40 mi. Dentro de cada vial se colocó una celda con 1 mi de agua para asegurar 100% de humedad relativa en el interior, y cada vial se cerró con un tapón tipo semáforo, con interruptor abierto-cerrado y entrada de aguja. Los tapones se dejaron en posición "cerrado" durante el ensayo. Los viales se colocaron en un espacio climatizado a 25 °C, bajo luz artificial constante. Se midió el contenido de oxígeno a los 3, 5 y 10 días, utilizando un sensor de oxígeno. 1.5 g of each film was weighed, in duplicate, in 40 ml vials. A cell with 1 ml of water was placed inside each vial to ensure 100% relative humidity inside, and each vial was closed with a traffic light cap, with an open-closed switch and needle inlet. The caps were left in the "closed" position during the test. The vials were placed in a heated space at 25 ° C, under constant artificial light. The oxygen content was measured at 3, 5 and 10 days, using an oxygen sensor.
Figure imgf000024_0001
Figure imgf000024_0001
Tabla 5. Resultados de capacidad secuestrante.  Table 5. Results of sequestering capacity.
Ejemplo 14: Método de macrodilución en tubo para determinar actividad antimicrobiana de arcillas CaNa2EDTA/NaHSO MMT. Example 14: Tube macrodilution method to determine antimicrobial activity of CaNa2EDTA / NaHSO MMT clays.
Las muestras fueron evaluadas según método de macrodilución en tubo estipulado por el Comité Nacional de Estándares de Laboratorio Clínico, con diversas modificaciones. Para ello, se introdujeron 0.1 g de arcilla en tubos con medio de cultivo estéril (TSB) a pH=6,2. Seguidamente, se inoculó S. aureus en fase exponencial media a una concentración en el tubo de aproximadamente 1 *105 UFC/mL (UFC: unidades formadoras de colonia). Las muestras se prepararon por duplicado y se incubaron a 37°C durante 24 h. Seguidamente, se procedió al recuento de las células viables en cada tubo mediante siembra en placa de las diluciones seriadas (de nuevo incubación aThe samples were evaluated according to the tube macrodilution method stipulated by the National Clinical Laboratory Standards Committee, with various modifications. For this, 0.1 g of clay was introduced into tubes with sterile culture medium (TSB) at pH = 6.2. Next, S. aureus was inoculated in the middle exponential phase at a concentration in the tube of approximately 1 * 10 5 CFU / mL (CFU: colony forming units). Samples were prepared in duplicate and incubated at 37 ° C for 24 h. Next, the viable cells in each tube were counted by plating the serial dilutions (again incubation to
37°C durante 24 h). La tabla 6 muestra que la arcilla CaNa2EDTA/NaHS03/MMT puede causar una reducción del 99,96% de las unidades formadoras de colonia con 0,1 g de arcilla.37 ° C for 24 h). Table 6 shows that the clay CaNa2EDTA / NaHS0 3 / MMT can cause a 99.96% reduction in colony forming units with 0.1 g of clay.
Figure imgf000025_0001
Figure imgf000025_0001

Claims

REIVINDICACIONES
1 . Material nanocompuesto que comprende los siguientes elementos: a. una matriz; one . Nanocomposite material comprising the following elements: a. An array;
b. aditivos o nanoaditivos de tipo laminar con o sin modificación previa que se encuentran dispersos dentro de la matriz, donde dichos aditivos o nanoaditivos comprenden al menos un agente activo seleccionado de entre EDTA, sales de EDTA y/o sales generadoras de S02 que se seleccionan del grupo que comprende sulfito de sodio, bisulfito de sodio, metabisulfito de sodio, metabisulfito de potasio, sulfito de calcio, bisulfito de calcio y bisulfito de potasio. b. laminar type additives or nanoadditives with or without prior modification that are dispersed within the matrix, wherein said additives or nanoadditives comprise at least one active agent selected from EDTA, EDTA salts and / or S0 2 generating salts that are selected from the group comprising sodium sulfite, sodium bisulfite, sodium metabisulfite, potassium metabisulfite, calcium sulfite, calcium bisulfite and potassium bisulfite.
2. El material según la reivindicación 1 , donde la matriz está en una proporción del 5 al 99,99% en peso respecto del total. 2. The material according to claim 1, wherein the matrix is in a proportion of 5 to 99.99% by weight with respect to the total.
3. El material según cualquiera de las reivindicaciones 1 ó 2, donde la matriz es polimérica o plástica. 3. The material according to any of claims 1 or 2, wherein the matrix is polymeric or plastic.
4. El material según cualquiera de las reivindicaciones 1 a 3, donde la matriz polimérica o plástica se selecciona del grupo formado por las familias de termoplásticos, termoestables, elastomeros y materiales derivados de biomasa y/o biodegradables o mezclas de los mismos conteniendo aditivos típicos que se añaden durante la fabricación y procesado de plásticos y bioplásticos. 4. The material according to any one of claims 1 to 3, wherein the polymeric or plastic matrix is selected from the group consisting of the families of thermoplastics, thermosets, elastomers and materials derived from biomass and / or biodegradable or mixtures thereof containing typical additives which are added during the manufacture and processing of plastics and bioplastics.
5. El material según cualquiera de las reivindicaciones 1 a 4, donde la sal generadora de SO2 es el bisulfito de sodio. 5. The material according to any of claims 1 to 4, wherein the salt generating SO 2 is sodium bisulfite.
6. El material según cualquiera de las reivindicaciones 1 a 5, donde la matriz comprende agentes que se seleccionan entre compuestos con propiedades de barrera a la radiación electromagnética, compuestos con resistencia al fuego, compuestos con actividad antimicrobiana, sustancias de bajo peso molecular con otro carácter activo o bioactivo tales como compuestos antioxidantes naturales o sintéticos, secuestradores de oxígeno, fármacos, enzimas, compuestos de calcio biodisponibles, probióticos, aceites marinos, simbióticos o prebióticos. 6. The material according to any one of claims 1 to 5, wherein the matrix comprises agents that are selected from compounds with electromagnetic radiation barrier properties, compounds with fire resistance, compounds with antimicrobial activity, low molecular weight substances with other active or bioactive character such as natural or synthetic antioxidant compounds, oxygen sequestrants, drugs, enzymes, bioavailable calcium compounds, probiotics, marine oils, symbiotics or prebiotics .
7. El material según cualquiera de las reivindicaciones 1 a 6, donde el aditivo o nanoaditivo de tipo laminar, se selecciona entre filosilicatos o hidróxidos doble sintéticos. 7. The material according to any of claims 1 to 6, wherein the laminar type additive or nanoadditive is selected from double synthetic phyllosilicates or hydroxides.
8. El material según la reivindicación 7, donde los aditivos o nanoaditivos de tipo laminar son arcillas caoliníticas o montmorilloníticas. 8. The material according to claim 7, wherein the laminar type additives or nanoadditives are kaolinitic or montmorillonite clays.
9. El material según cualquiera de las reivindicaciones 7 u 8, donde el aditivo o nanoaditivo de tipo laminar está modificado. 9. The material according to any of claims 7 or 8, wherein the laminar type additive or nanoadditive is modified.
10. El material según la reivindicación 9, donde el agente modificante es un agente precursor, seleccionado del grupo formado por expansores y/o compatibilizadores y/o agentes con carácter activo y/o bioactivo. 10. The material according to claim 9, wherein the modifying agent is a precursor agent, selected from the group consisting of expanders and / or compatibilizers and / or agents with active and / or bioactive character.
1 1 . El material según cualquiera de las reivindicaciones 9 ó 10, donde el agente modificante es un compuesto con carácter activo, antioxidante, antimicrobiano o absorbedor de oxígeno. eleven . The material according to any of claims 9 or 10, wherein the modifying agent is an active, antioxidant, antimicrobial or oxygen absorbing compound.
12. El material según cualquiera de las reivindicaciones 9 a 1 1 , donde el agente modificante es el cloruro de didecildimetilamonio o el bromuro de hexadeciltrimetil amonio. 12. The material according to any of claims 9 to 1 1, wherein the modifying agent is didecyldimethylammonium chloride or hexadecyltrimethyl ammonium bromide.
13. El material según cualquiera de las reivindicaciones 9 a 1 1 , donde el agente modificante son compuestos, partículas o nanoparticulas de plata, cobre o zinc o mezclas de los anteriores. 13. The material according to any of claims 9 to 1 1, wherein the modifying agent are silver, copper or zinc compounds, nanoparticles or mixtures thereof.
14. El material según cualquiera de las reivindicaciones 1 a 13, donde el aditivo o nanoaditivo está en una proporción del 0,01 al 60% en peso respecto del total. 14. The material according to any of claims 1 to 13, wherein the additive or nanoadditive is in a proportion of 0.01 to 60% by weight with respect to the total.
15. El material según la reivindicación 14 donde el aditivo o nanoaditivo está en una proporción del 0,01 al 25% en peso respecto del total. 15. The material according to claim 14 wherein the additive or nanoadditive is in a proportion of 0.01 to 25% by weight with respect to the total.
16. El material según cualquiera de las reivindicaciones 1 a 15, donde el aditivo o nanoaditivo es la montmorillonita. 16. The material according to any of claims 1 to 15, wherein the additive or nanoadditive is montmorillonite.
17. El material según cualquiera de las reivindicaciones 1 a 16, que comprende: 17. The material according to any of claims 1 to 16, comprising:
a. una matriz plástica;  to. a plastic matrix;
b. montmorillonita dispersa en la matriz plástica, donde dicha montmorillonita comprende EDTA o sales de EDTA como agente activo.  b. Montmorillonite dispersed in the plastic matrix, wherein said Montmorillonite comprises EDTA or EDTA salts as active agent.
18 . El material según cualquiera de las reivindicaciones 1 a 16, que comprende: 18. The material according to any of claims 1 to 16, comprising:
a. una matriz plástica;  to. a plastic matrix;
b. montmorillonita dispersa en la matriz plástica, donde dicha montmorillonita comprende bisulfito sódico como agente activo.  b. montmorillonite dispersed in the plastic matrix, wherein said montmorillonite comprises sodium bisulfite as an active agent.
19. El material según cualquiera de las reivindicaciones 1 a 16, que comprende: 19. The material according to any of claims 1 to 16, comprising:
a. una matriz plástica;  to. a plastic matrix;
b. montmorillonita dispersa en la matriz plástica, donde dicha montmorillonita comprende EDTA o sales de EDTA y bisulfito sódico como agentes activos.  b. montmorillonite dispersed in the plastic matrix, wherein said montmorillonite comprises EDTA or salts of EDTA and sodium bisulfite as active agents.
20. Uso del material según cualquiera de las reivindicaciones 1 a 19, para la fabricación de un envase con propiedades antimicrobianas y/o antioxidantes y/o secuestrantes de oxígeno. 20. Use of the material according to any of claims 1 to 19, for the manufacture of a container with antimicrobial and / or antioxidant and / or oxygen sequestrant properties.
21 . Envase que comprende el material nanocompuesto de cualquiera de las reivindicaciones 1 a 19. twenty-one . Container comprising the nanocomposite material of any one of claims 1 to 19.
22. Uso del envase de la reivindicación 21 , para la conservación y/o protección de alimentos, medicamentos, instrumental médico o productos de higiene. 22. Use of the container of claim 21, for the preservation and / or protection of food, medicaments, medical instruments or hygiene products.
23. Uso del material según cualquiera de las reivindicaciones 1 a 19 en recubrimientos plásticos. 23. Use of the material according to any of claims 1 to 19 in plastic coatings.
24. Procedimiento para la obtención de los materiales nanocompuestos según las reivindicaciones 1 a 19, que comprende las siguientes etapas: 24. Method for obtaining the nanocomposite materials according to claims 1 to 19, comprising the following steps:
a. dispersión del aditivo o nanoaditivo laminar con o sin modificación química o tratamiento físico previo, en una solución de al menos un agente activo seleccionado de entre EDTA, sales de EDTA o bisulfito sódico en una arcilla;  to. dispersion of the laminar additive or nanoadditive with or without chemical modification or prior physical treatment, in a solution of at least one active agent selected from EDTA, salts of EDTA or sodium bisulfite in a clay;
b. secado opcional del producto obtenido en la etapa a);  b. optional drying of the product obtained in step a);
c. adicionar a una matriz, el producto obtenido en la etapa b).  C. add to a matrix, the product obtained in step b).
25. El procedimiento según la reivindicación 24, donde la dispersión de la etapa a) se lleva a cabo en agua, isopropanol o mezclas de los mismos. 25. The process according to claim 24, wherein the dispersion of step a) is carried out in water, isopropanol or mixtures thereof.
26. El procedimiento según cualquiera de las reivindicaciones 24 ó 25, donde la dispersión del paso a) se realiza en un reactor asistida por agitación simple, homogenizadores y/o ultrasonidos. 26. The method according to any of claims 24 or 25, wherein the dispersion of step a) is carried out in a reactor assisted by simple agitation, homogenizers and / or ultrasound.
27. El procedimiento según cualquiera de las reivindicaciones 24 a 26 donde la etapa b) de secado, se realiza en un atomizador, mediante filtroprensa o en centrífuga. 27. The method according to any one of claims 24 to 26, wherein step b) of drying is carried out in an atomizer, by means of a filter press or in a centrifuge.
28. El procedimiento según la reivindicación 24, donde tras la etapa de dispersión a), se añade la suspensión directamente a la matriz sin un proceso de secado previo. 28. The method according to claim 24, wherein after the dispersion step a), the suspension is added directly to the matrix without a prior drying process.
29. El procedimiento según cualquiera de las reivindicaciones 24 a 28, donde el aditivo o nanoaditivo ha sido sometido, previo a la dispersión del paso a), a tratamientos físicos de reducción del tamaño de partícula y/o de purificación mediante eliminación de oxido de silicio u otras partículas duras y/o eliminación de la materia orgánica. 29. The method according to any of claims 24 to 28, wherein the additive or nanoadditive has been subjected, prior to the dispersion of step a), to physical treatments for particle size reduction and / or purification by removal of oxide from silicon or other hard particles and / or elimination of organic matter.
30. El procedimiento según cualquiera de las reivindicaciones 24 a 29, donde el aditivo o nanoaditivo, previo a la dispersión del paso a) ha sido sometido a un tratamiento de modificación superficial en una o varias etapas con expansores tales como el dimetil sulfóxido y/o modificadores tales como las sales de metales, partículas de metales y/o sales de amonio. 30. The process according to any of claims 24 to 29, wherein the additive or nanoadditive, prior to the dispersion of step a) has been subjected to a surface modification treatment in one or several stages with expanders such as dimethyl sulfoxide and / or modifiers such as metal salts, metal particles and / or ammonium salts.
PCT/ES2012/070904 2011-12-21 2012-12-21 Active nanocomposite materials based on salts generating so2 and edta and method for obtaining same WO2013093168A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201132068A ES2415242B1 (en) 2011-12-21 2011-12-21 ACTIVE NANOCOMPOSITE MATERIALS BASED ON SO2 AND EDTA GENERATING SALTS AND THE PROCEDURE FOR OBTAINING
ESP201132068 2011-12-21

Publications (2)

Publication Number Publication Date
WO2013093168A1 true WO2013093168A1 (en) 2013-06-27
WO2013093168A9 WO2013093168A9 (en) 2014-04-17

Family

ID=47714143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070904 WO2013093168A1 (en) 2011-12-21 2012-12-21 Active nanocomposite materials based on salts generating so2 and edta and method for obtaining same

Country Status (2)

Country Link
ES (1) ES2415242B1 (en)
WO (1) WO2013093168A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106096018A (en) * 2016-06-24 2016-11-09 西安交通大学 A kind of method considering resonance elastic scattering in Multi-group data storehouse
WO2020230107A1 (en) * 2019-05-15 2020-11-19 Polyamyna Nanotech Inc. Antimicrobial nanoclays comprising cationic antimicrobials, method of preparation and uses thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2112979A1 (en) 1971-03-17 1972-09-21 Fibreboard Corp Fruit packaging - of carton with reactive coating containing sodium bisulphite to release preserving so2 vapour
FR2536045A1 (en) 1982-11-15 1984-05-18 Gross Peter System for processing and preserving packaged fruit
US4739007A (en) 1985-09-30 1988-04-19 Kabushiki Kaisha Toyota Chou Kenkyusho Composite material and process for manufacturing same
CA2278569A1 (en) 1997-01-21 1998-07-23 Cryovac, Inc. Additive transfer film suitable for cook-in end use
US20020058740A1 (en) * 2000-09-21 2002-05-16 Lorah Dennis Paul Nanocomposite compositions and methods for making and using same
US20030060555A1 (en) * 2001-09-27 2003-03-27 Lorah Dennis Paul Modified clays and methods for making and using same
WO2007074184A1 (en) 2005-12-29 2007-07-05 Nanobiomatters, S.L. Method for producing nanocomposite materials for multi-sectoral applications
WO2007130755A1 (en) * 2006-05-03 2007-11-15 Polyone Corporation Stabilized polyolefin nanocomposites
US7306777B2 (en) 2003-12-16 2007-12-11 Eastman Kodak Company Antimicrobial composition
WO2008025085A1 (en) 2006-08-30 2008-03-06 Amcor Limited Hydrophobic packaging material including a sulphite salt
CN101530233A (en) 2009-04-23 2009-09-16 海安县隆泰包装有限公司 Negative ion infrared deodorizing and fresh-keeping powder
EP2332885A1 (en) * 2008-10-01 2011-06-15 Nanobiomatters, S.L. Nanocomposite materials having electromagnetic-radiation barrier properties and process for obtainment thereof
WO2012164131A1 (en) * 2011-06-03 2012-12-06 Nanobiomatters Research & Development, S. L. Nanocomposite materials based on metal oxides having multi-functional properties

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2112979A1 (en) 1971-03-17 1972-09-21 Fibreboard Corp Fruit packaging - of carton with reactive coating containing sodium bisulphite to release preserving so2 vapour
FR2536045A1 (en) 1982-11-15 1984-05-18 Gross Peter System for processing and preserving packaged fruit
US4739007A (en) 1985-09-30 1988-04-19 Kabushiki Kaisha Toyota Chou Kenkyusho Composite material and process for manufacturing same
CA2278569A1 (en) 1997-01-21 1998-07-23 Cryovac, Inc. Additive transfer film suitable for cook-in end use
US20020058740A1 (en) * 2000-09-21 2002-05-16 Lorah Dennis Paul Nanocomposite compositions and methods for making and using same
US20030060555A1 (en) * 2001-09-27 2003-03-27 Lorah Dennis Paul Modified clays and methods for making and using same
US7306777B2 (en) 2003-12-16 2007-12-11 Eastman Kodak Company Antimicrobial composition
WO2007074184A1 (en) 2005-12-29 2007-07-05 Nanobiomatters, S.L. Method for producing nanocomposite materials for multi-sectoral applications
WO2007130755A1 (en) * 2006-05-03 2007-11-15 Polyone Corporation Stabilized polyolefin nanocomposites
WO2008025085A1 (en) 2006-08-30 2008-03-06 Amcor Limited Hydrophobic packaging material including a sulphite salt
EP2332885A1 (en) * 2008-10-01 2011-06-15 Nanobiomatters, S.L. Nanocomposite materials having electromagnetic-radiation barrier properties and process for obtainment thereof
CN101530233A (en) 2009-04-23 2009-09-16 海安县隆泰包装有限公司 Negative ion infrared deodorizing and fresh-keeping powder
WO2012164131A1 (en) * 2011-06-03 2012-12-06 Nanobiomatters Research & Development, S. L. Nanocomposite materials based on metal oxides having multi-functional properties

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106096018A (en) * 2016-06-24 2016-11-09 西安交通大学 A kind of method considering resonance elastic scattering in Multi-group data storehouse
CN106096018B (en) * 2016-06-24 2019-04-16 西安交通大学 A method of considering resonance elastic scattering in Multi-group data library
WO2020230107A1 (en) * 2019-05-15 2020-11-19 Polyamyna Nanotech Inc. Antimicrobial nanoclays comprising cationic antimicrobials, method of preparation and uses thereof

Also Published As

Publication number Publication date
WO2013093168A9 (en) 2014-04-17
ES2415242B1 (en) 2014-09-29
ES2415242A2 (en) 2013-07-24
ES2415242R1 (en) 2013-07-30

Similar Documents

Publication Publication Date Title
Al-Tayyar et al. Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review
Khaneghah et al. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions
Rahman et al. Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat
de Azeredo Antimicrobial nanostructures in food packaging
Rhim et al. Bio-nanocomposites for food packaging applications
Bratovčić et al. Application of polymer nanocomposite materials in food packaging
Espitia et al. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications
WO2009156975A9 (en) Active nanocomposite materials and production method thereof
ES2395507B1 (en) NANOCOMPOSED MATERIALS BASED ON METAL OXIDES WITH MULTIFUNCTIONAL PROPERTIES
Nath et al. Nanoclay-based active food packaging systems: A review
JP2007529575A (en) Biocidal composition and method for producing the same
WO2009049450A1 (en) An associated sterilization method comprising ozone, ultraviolet and nano-silver coating for quality maintenance of freeze-dried food
Talukdar et al. Enhancing barrier properties of biodegradable film by reinforcing with 2D heterostructure
Giannakas et al. Montmorillonite composite materials and food packaging
Yang et al. The mechanism of metal-based antibacterial materials and the progress of food packaging applications: A review
Abdel Ghaffar et al. Effect of gamma radiation on the properties of crosslinked chitosan nano-composite film
JP2007528439A (en) Biocidal composition and method for producing the same
Bujok et al. Sustainable microwave synthesis of biodegradable active packaging films based on polycaprolactone and layered ZnO nanoparticles
Xue et al. Permeability of biodegradable film comprising biopolymers derived from marine origin for food packaging application: A review
Riahi et al. High-performance multifunctional gelatin-based films engineered with metal-organic frameworks for active food packaging applications
KR20130014724A (en) Inorganic antibacterial material using metal ion substituted inorganic carrier containing metal hydroxide, method for preparing said inorganic antibacterial material and articles comprising said inorganic antibacterial material
ES2415242B1 (en) ACTIVE NANOCOMPOSITE MATERIALS BASED ON SO2 AND EDTA GENERATING SALTS AND THE PROCEDURE FOR OBTAINING
Haddar et al. Hybrid levan–Ag/AgCl nanoparticles produced by UV-irradiation: properties, antibacterial efficiency and application in bioactive poly (vinyl alcohol) films
Ahmadi et al. Antimicrobial polymer nanocomposite films and coatings
Visnuvinayagam et al. Combined effect of zinc oxide nano particle incorporated chitosan for better antimicrobial activity towards wound healing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823245

Country of ref document: EP

Kind code of ref document: A1