WO2013121066A1 - Process for the production of hydrogen by means of catalytic hydrolysis in a continuous reactor that is used to perform the method - Google Patents

Process for the production of hydrogen by means of catalytic hydrolysis in a continuous reactor that is used to perform the method Download PDF

Info

Publication number
WO2013121066A1
WO2013121066A1 PCT/ES2013/070083 ES2013070083W WO2013121066A1 WO 2013121066 A1 WO2013121066 A1 WO 2013121066A1 ES 2013070083 W ES2013070083 W ES 2013070083W WO 2013121066 A1 WO2013121066 A1 WO 2013121066A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrogen
reactor
process according
solution
Prior art date
Application number
PCT/ES2013/070083
Other languages
Spanish (es)
French (fr)
Inventor
Gisela Mariana Arzac de Calvo
Dirk HUFSCHMIDT
Enrique Jimenez Roca
Asunción FERNANDEZ CAMACHO
Mª Angeles JIMENEZ DOMINGUEZ
Sarika TYAGI
Mª del Mar JIMENEZ VEGA
Belén SARMIENTO MARRON
Original Assignee
Abengoa Hidrogeno, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Hidrogeno, S.A. filed Critical Abengoa Hidrogeno, S.A.
Publication of WO2013121066A1 publication Critical patent/WO2013121066A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • B01J37/0226Oxidation of the substrate, e.g. anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention is framed in the field of the generation of hydrogen-rich gas streams by hydrolysis, particularly of hydrides, and more particularly of complex hydrides, which can be used in hydrogen production plants, combustion engines and especially as fuel in fuel cell systems where optimal results are obtained, more specifically in PEM type fuel cells.
  • Said design can vary from a simple external cooling of the reactor, a design that involves the continuous addition of reagents (semicontinuous reactor, GM Arzac, et al., Journal of Power Sources, 2011, 196, 4388-4395), to a reactor that operate by continuous flow of reagents and products, which also allows the heat released by the reaction to be continuously eliminated (SJ Kim, et al., J. Power Sources 170, 2007, 412-418).
  • Any device that can generate hydrogen for portable applications must include a reactor that can meet the following requirements:
  • the catalyst with its support must cover / fill the maximum volume of the reactor, so as to take full advantage of the entire volume of the reactor and avoid preferential paths of the reagents, so that conversion is maximized;
  • the catalyst must be stable throughout the operation of the system. This means that it should not be deactivated, nor reduce its ability to accelerate the reaction, nor its efficiency, during the established operating time;
  • the catalyst must be able to be reused in an experience similar to the initial one or in different conditions, without loss of its efficiency, that is, without reducing the speed of hydrogen production. It is highly desirable that the catalyst be reused as many times as possible without loss of efficiency or deactivation;
  • the reactor should operate at high temperatures, preferably above the melting temperature of borates (60 ° C) and preferably in a continuous elimination regime, so that they do not remain in the reactor, blocking the catalyst and therefore reducing its efficiency (EY Marrero-Alfonso, et al., Int. J. Hydrogen Energy 32, 2007, 4723-4730; BH Liu, ZP Li, S. Suda, J. Alloys and Compd., 468, 2009, 493-493).
  • the present invention proposes a continuous hydrogen production process at constant speed and temperature, based on adding a source of hydrogen, such as a complex hydride that acts as a fuel, preferably sodium borohydride, stabilized in a hydroxide solution, which is preferably sodium hydroxide, on a catalyst based on Cobalt and Boron (Co-B), preferably supported on a previously oxidized stainless steel monolith.
  • a source of hydrogen such as a complex hydride that acts as a fuel, preferably sodium borohydride, stabilized in a hydroxide solution, which is preferably sodium hydroxide, on a catalyst based on Cobalt and Boron (Co-B), preferably supported on a previously oxidized stainless steel monolith.
  • control of the temperature and the speed of hydrogen production in this process are based on the control of the rate of addition or aggregation of the fuel solution on the supported catalyst.
  • the system includes a continuous reactor in which not only the fuel solution is added continuously on the catalyst, but the reaction products are continuously removed from the medium so that they do not accumulate blocking the catalyst .
  • the design of the continuous reactor also allows to reduce its volume to the maximum and, mainly, autonomy is no longer limited by its size, as in the case of the semicontinuous reactor previously reported (GM Arzac, et al., Journal of Power Sources, 2011, 196, 4388-4395).
  • the main object of the present invention is a process for the controlled production of hydrogen from the catalyzed hydrolysis of at least one complex hydride, preferably sodium borohydride (according to equation (1) set forth in the previous section), in a wide range of speeds and with control of the flow of hydrogen production on demand.
  • at least one complex hydride preferably sodium borohydride (according to equation (1) set forth in the previous section)
  • Another object of the present invention is the design of an installation for the production of hydrogen under constant flow conditions, in accordance with the aforementioned procedure, which is characterized in that it comprises a reactor of minimum volume (preferably around 11 mi) It works on a continuous basis of reagent input and output of products, which does not require refrigeration, and which has a potentially unlimited autonomy.
  • said reactor is characterized by presenting a simple design, being able to be constructed with light and transparent materials such as PMMA (polymethylmethacrylate). The transparency of the reactor allows observing the production of hydrogen, having greater control over what happens in the system.
  • the developed device is chemically stable and safe before, during and after the operation.
  • the hydrogen obtained could feed a hydrogen production plant or a combustion engine, although the hydrogen production process of the present invention is preferably designed to feed a fuel cell, preferably PEM type, to produce electrical energy.
  • a fuel cell preferably PEM type
  • the present invention encompasses the development of a method for machining stainless steel monoliths that will support the catalyst, a heat treatment on mechanized monoliths to improve the adhesion of the Co-B catalyst (based on cobalt and boron) and a technique of synthesis of the catalysts on the oxidized monolith.
  • the present invention also encompasses the use of a novel in situ reactivation method and an ex situ method that allows the reuse of catalysts supported on stainless steel monoliths.
  • the reactivation method is based on the first of the cases in the aggregate of an aliquot of combustible solution on the catalyst before starting the continuous aggregate, and in the addition of a diluted acid, preferably hydrochloric acid (HC1), in the second case. Thanks to the catalyst's in situ reactivation method, it is possible to maintain its initial activity up to 6 cycles, before the complete deactivation occurs. On the other hand, the ex situ reactivation of the catalyst which, used 6 cycles, has been completely deactivated, allows recovering part of the initial activity due to a cumulative or memory effect.
  • HC1 hydrochloric acid
  • FIG. 1A Diagram of the hydrogen production facility by means of the process described herein, comprising the following elements:
  • a storage tank (1) of the fuel solution comprising the complex hydride stabilized by a hydroxide
  • thermocouple 10
  • Figure IB Scheme of the continuous reactor (3) of Figure 1A comprising the following elements: a cylindrical body (7);
  • Figure 2A Representation of the winding procedure of the stainless steel sheet to produce the monolith that acts as a catalyst support.
  • FIG. 2C Photograph of the monolith covered with catalyst based on cobalt and boron (Co-B).
  • Figure 3 Scanning electron microscopy micrographs of bare stainless steel (Figure 3A) and treated stainless steel at 900 ° C for 2h ( Figure 3B).
  • Figure 4 Graphical representation of hydrogen production speed and temperature as a function of time, for one hour (Figure 4A) and hydrogen production speed as a function of time for 9 hours ( Figure 4B).
  • FIG. 5A Hydrogen production rate and temperature as a function of time for a fuel solution aggregate rate of 19% w / w between 5 and 0.8 ml / minute;
  • Figure 5B Hydrogen production rate as a function of the rate of aggregate of fuel solution (fuel) at 19% w / w;
  • Figure 5C Hydrogen production rate and temperature as a function of time for a fuel solution aggregate rate of 9% w / w between 10 and 1.6 ml / minute;
  • Figure 5D Hydrogen production rate as a function of the rate of aggregate of fuel solution at 9% w / w.
  • the present invention relates to a process for the production of a continuous flow of hydrogen by catalyzed hydrolysis of at least one complex hydride, which comprises at least the step of adding at a constant speed to a reactor a combustible solution comprising a complex hydride. stabilized in hydroxide, on a Co-B catalyst that is supported on a stainless steel monolith, in an excess amount inside the reactor ( Figures 1 and 2).
  • object of the present invention is an installation for producing a stream of hydrogen according to the process described.
  • Said installation comprises at least the elements that have been presented in Figure 1A to better illustrate an embodiment of the invention, without supposing said figure a limitation thereof in its most generic form.
  • the installation comprises at least the following elements: a storage tank (1) of the fuel solution comprising the stabilized complex hydride; dispensing means (2) of the constant flow fuel solution within the reactor; a continuous reactor (3) without refrigeration; a hydrogen separator tank of the hydrolysis products (4); a means for drying the hydrogen stream (5) and means for dispensing the hydrogen stream to the fuel cell system (6).
  • the reactor is comprised at least of a cylindrical body (7), a lid with opening and closing (8), which allows the entry of combustible liquid and an outlet device (9) of the hydrogen flow and hydrolysis products ( Figures 1A and IB).
  • Both the storage tank (1) and the continuous reactor can be constructed with plastic materials, thus minimizing the weight according to the operating conditions of the system (flow of hydrogen, time or concentration of the fuel solution).
  • said continuous reactor (3) may comprise a thermocouple (10) for simultaneous temperature measurement.
  • thermocouple 10 for simultaneous temperature measurement.
  • the autonomy is not limited by the reactor, but by the feeding and storage tanks of waste.
  • the support of the catalyst is essential in this type of continuous reactor because the stabilized solution of complex hydride that feeds it must produce a conversion of the complex hydride into hydrogen with a speed preferably between 1.66 and 0.3 1 / min (in the case of a reactor of around 11 ml capacity and a catalyst size appropriate to said capacity), which implies a continuous and violent gas production, which must take place without the catalyst being dragged. Since the reaction products are constantly removed from the reactor and directed to the separator tank, the joint entrainment of catalyst particles would gradually lead to a loss of efficiency and conversion of the process until its complete stop.
  • the support must also ensure adequate dispersion of the catalyst on it and also inside the reactor, filling it completely, which avoids sudden ups and downs of the hydrogen production rate.
  • the support can consist of commercial 316 stainless steel, in the form of a plate with hexagonal holes, honeycomb type. The preferred choice of this type of support is due to its low cost and its ease of machining ( Figure 2A). Since the reactor is cylindrical, the monoliths are constructed by winding the plate to give a cylinder that is filled with a second smaller cylinder obtained in the same way ( Figure 2B).
  • the monolith thus constructed is subjected to an oxidation in oxygen atmosphere, at a temperature of 900 ° C for 2 hours, to produce an oxide layer thereon.
  • This oxide layer gives it a greater roughness that causes the catalyst to adhere more to it, reducing losses (Figure 3).
  • the excess amount of catalyst is between 37 and 240 mg.
  • This hydrogen flow can serve as a source of fuel to other devices, such as a combustion engine, but preferably to a fuel cell, since in this case the continuous supply of a hydrogen flow is essential for its operation.
  • the concentration of complex hydride in the fuel solution is between 9% and 19% w / w.
  • the temperature is between 82.4 ° C and 103.9 ° C, achieving a flow continuous and constant hydrogen between 1.66 and 0.30 1 / minute.
  • the temperature is between 85.2 and 78.6 ° C, achieving a continuous and constant flow of hydrogen between 1.43 and 0.30 1 / minute.
  • the complex hydride is sodium borohydride. It has been found that the optimum values of hydrogen production are achieved with sodium borohydride (BHS) as a source of hydrogen, following equation (1) set forth in the "Background of the invention” section.
  • the solution that acts as a fuel with which the complex hydride is stabilized is sodium hydroxide. More preferably, the solution is 4.5% w / w sodium hydroxide (in percent by weight of the solution).
  • the catalyst based on cobalt and boron (Co-B) is preferably supported on previously oxidized stainless steel monoliths.
  • the hydrogen production process by hydrolysis comprises adding in a continuous reactor, a solution comprising 4.5% w / w sodium borohydride on a cobalt and boron-based catalyst (Co -B) supported on previously oxidized stainless steel monoliths.
  • this invention comprises, the most preferred would be a process for the production of a continuous flow by catalyzed hydrolysis of a complex hydride, which comprises at least the step of adding continuously and at a constant speed to a continuous reactor a fuel solution comprising sodium borohydride in a concentration between 9 and 19% w / w, stabilized with sodium hydroxide at a percentage of 4.5% by weight of solution on a catalyst based on cobalt and boron (Co-B), wherein said The catalyst is supported on a previously oxidized stainless steel monolith that is added in an amount between 37 and 240 mg.
  • the fuel solution is added at a speed between 5 and 0.8 ml / min, in the case of the BHS solution 19% w / w. In the case of the 9% w / w BHS solution, the speed is between 10 and 1.6 ml / min.
  • the temperature is controlled at a constant value by the constant rate addition of a stabilized solution of complex hydride, which is preferably BHS.
  • the continuous flow of stabilized solution of complex hydride on the supported catalyst and the continuous flow of reaction products, hydrogen and the hydrolysis product ensure the elimination of possible blockers of catalyst activity. Since the continuous flow of stabilized solution over the catalyst allows the reactor to work at temperatures that range from 70 to 120 ° C, the hydrolysis product remains a molten salt. Continuous removal of this molten salt from this reaction medium ensures the stability of the catalyst in long-term hydrogen release experiments that range from 1 to 6 hours without loss of efficiency and conversion (Figure 6). At times greater than 6 hours a small deactivation of the catalyst occurs which reduces its activity to 90% with respect to the initial one.
  • the process further comprises, prior to the aggregation of the fuel solution on the catalyst:
  • the process comprises:
  • Washing the hydrogen stream or not, a particular embodiment of the process further comprises directing the hydrogen stream continuously and at a constant speed to a fuel cell, preferably the fuel cell is PEM.
  • Another object of the present invention is the reactivation and reuse of the catalyst based on Cobalt and Boron (Co-B) because, after each 1-hour experiment, a slight deactivation of the catalyst occurs due to deposition of borates on the surface thereof and oxidation of cobalt.
  • the method consists of adding on the supported catalyst deposited in the reactor, a small amount of stabilized solution of complex hydride for a few seconds and wait for the temperature to reach 60 ° C and then turn on the pump that feeds the catalyst with stabilized solution of complex hydride This causes the catalyst to reactivate in situ and convert complex hydride efficiently again. This reactivation process in situ can be repeated a maximum of 6 times ( Figure 6), since then the memory effect (cumulative effect) completely deactivates the catalyst.
  • the reactor After the reactivation in situ described above, the reactor begins to release hydrogen and, once it enters the regime (induction time), it does so in a stable and safe way during the time that the fuel aggregate lasts.
  • the elapsed time has been a maximum of 9 hours.
  • Example 1 Manufacture of stainless steel monolith that will work as a support for the catalyst.
  • the monolith that is subsequently used as a catalyst support is manufactured using a commercial 316 stainless steel sheet, with hexagonal perforations of 6 mm side and a porosity of 79% (See Figure 2A).
  • a piece of the 6.3 cm side blade is cut and rolled until a hollow cylinder approximately 1.3 cm in diameter is obtained (see figure 2A).
  • That cylinder is filled with a piece of 6.3 cm sheet of rolled side on itself up to 3 times obtaining an approximately solid cylinder.
  • the first hollow cylinder is filled with the solid cylinder, obtaining a single cylinder that functions as a catalyst support, filling the reactor total (See figure 2B).
  • Example 2 Oxidation of stainless steel monolith to increase catalyst adhesion.
  • a calcination is carried out in static air at 900 ° C for 2h. Prior to calcination, a wash in purified water is carried out undergoing the ultrasound action for 30 min. Then, the same washing is done but using acetone. The heating is done with a speed of 5 ° C / minute. After heating for 2 hours, let it cool until it reaches room temperature. The oxidized monolith thus obtained is coated with an oxide layer that makes its surface more rough than that of the bare metal (See Figure 3). The monoliths thus oxidized are those that are used as support for the subsequent preparation of the catalysts.
  • Example 3 Preparation of a catalyst based on Cobalt and Boron (Co-B) supported on previously oxidized stainless steel monolith.
  • the catalyst based on Cobalt and Boron (Co-B) supported on the previously oxidized monolith is prepared by reduction of an ethanolic solution of CoC126H20 by an aqueous solution of sodium borohydride stabilized in NaOH.
  • the ethanolic solution of the cobalt precursor (CoC126H20) is prepared using ethanol and the concentration is 30% w / v.
  • the previously oxidized monolith is immersed in the ethanolic solution of the cobalt precursor for 5 minutes. Subsequently, it is removed from the solution and dried under a stream of nitrogen. Once dried, it is immersed in the 19% w / w BHS solution stabilized in 1% w / w NaOH for one minute.
  • the monolith is removed from the solution and washed with purified water, ethanol and acetone and dried under a stream of nitrogen. The process described above is repeated about 12 times.
  • Example 4 Process according to the present invention to produce 0.8-1.2 1 / min of hydrogen for 1 h and 9 h from the hydrolysis of sodium borohydride in sodium hydroxide solution, on a catalyst as in the previous example.
  • a stabilized BHS solution with a 19% w / w concentration thereof has been selected. Said solution is added at a constant speed of 2.8 g / min, according to the required hydrogen production rate, on the catalyst located in the reactor, which is part of the continuous system, obtaining a hydrogen production of 0.8-1.2 almost instantaneously 1 / min
  • the hydrogen flow is stable and constant over an hour and the temperature is constant and stable during that time ( Figure 4A).
  • the average temperature value is between 90 and 120 ° C.
  • the process thus described can be prolonged for at least 9 h, with a constant and stable production of hydrogen that is always the same during the first 6 hours and then is reduced to 90% with respect to the initial one ( Figure 4B). So that during the last three hours of the process (from the 6th to the 9th hour inclusive) the activity could be recovered to 100% of the initial, it is necessary to increase the speed of adding fuel solution.
  • Example 5 Process according to the present invention to produce between 0.3 1 / min and 1.66 1 / min using stabilized BHS solution at 19% w / w and 9% w / w.
  • the system described herein is versatile in terms of the rate of hydrogen production.
  • the continuous nature of the reactor means that the variation in the fuel flow results in a variation in the hydrogen flow with an almost instantaneous response and keeping the temperature constant, as seen in Figure 5.
  • the reactor has been fed continuous containing the catalyst based on Cobalt and Boron (Co-B) of Example 3 with:
  • the hydrogen production rate is found between 0.3 1 / min and 1.43 1 / min and the temperature between 78.6 and 85.2 ° C (Figure 5C).
  • Example 6 Process of washing and reactivation in situ of the catalyst of example 3 by means of the reactivation protocol proposed in the present invention and its reuse in the process of example 4.
  • the monolith containing catalyst based on cobalt and boron (Co-B) is removed. It must be removed from the continuous reactor and washed with milliQ water, ethanol and then dried under a stream of nitrogen, to avoid oxidation of the support that was not covered by catalyst.
  • the reactivation procedure is an on-site process, because it consists of putting the washed monolith back into the continuous reactor and administering a quantity of combustible solution for a few seconds until the evolution of hydrogen begins and the temperature reaches about 60 ° C.
  • Example 7 Ex situ washing and reactivation process of the catalyst of Example 6 by means of the reactivation protocol proposed in the present invention and its reuse in the process of Example 4.
  • the catalyst can be used as proposed in example 4 and reused a maximum of 5 times without counting the initial. After this, the catalyst is completely deactivated, and the in situ reactivation proposed in Example 6 no longer produces any positive results. It is then proposed in this example an ex situ reactivation process that includes removing the monolith that has been reused 6 times counting the initial one, washing it with purified water and immersing it in a dilute acid solution, preferably 10-4 M hydrochloric acid (HC1 10-4 mol / liter). The catalyst thus reactivated can be reused at least 3 more times with an activity that is not identical to the previous ones, but 80% (See Figure 6).

Abstract

The invention relates to a process for the controlled production of a continuous flow of hydrogen, characterised in that it comprises at least the following steps: (a) a step in which a fuel solution is added to a reactor at a constant rate, said solution comprising between 9% and 19% p/p of at least one complex hydride stabilised in a hydroxide, on a catalyst of cobalt and boron (Co-B) supported on a stainless steel monolith, in which the catalyst is located inside the reactor in an excess quantity of between 37 mg and 240 mg; (b) a step comprising the catalytic hydrolysis of the complex hydride, generating a continuous flow of hydrogen; and (c) a step comprising the continuous removal of the products of the catalytic hydrolysis in the form of molten salt. The invention also relates to the unit used to carry out said method.

Description

PROCESO DE PRODUCCION DE HIDROGENO MEDIANTE HIDROLISIS HYDROGEN PRODUCTION PROCESS THROUGH HYDROLYSIS
CATALITICA EN UN REACTOR CONTINUO PARA LLEVAR A CABO DICHOCATALITICS IN A CONTINUOUS REACTOR TO CARRY OUT SAID
PROCEDIMIENTOPROCESS
DESCRIPCIONDESCRIPTION
CAMPO TECNICO DE LA INVENCION TECHNICAL FIELD OF THE INVENTION
La presente invención se enmarca en el campo de la generación de corrientes gaseosas ricas en hidrógeno mediante hidrólisis, particularmente de hidruros, y más particularmente de hidruros complejos, que puede utilizarse en plantas de producción de hidrógeno, motores de combustión y en especial como combustible en sistemas de pilas de combustible donde se obtienen resultados óptimos, más concretamente en pilas de combustible tipo PEM.  The present invention is framed in the field of the generation of hydrogen-rich gas streams by hydrolysis, particularly of hydrides, and more particularly of complex hydrides, which can be used in hydrogen production plants, combustion engines and especially as fuel in fuel cell systems where optimal results are obtained, more specifically in PEM type fuel cells.
ANTECEDENTES DE LA INVENCION  BACKGROUND OF THE INVENTION
Es conocido que puede obtenerse hidrógeno libre de monóxido de carbono por hidrólisis alcalina de borohidruro sódico (BHS) en presencia de catalizadores según la ecuación siguiente: It is known that carbon monoxide-free hydrogen can be obtained by alkaline hydrolysis of sodium borohydride (BHS) in the presence of catalysts according to the following equation:
NaBH4 + 2H20 4H2 + NaB02 + Q (ecuación 1) NaBH4 + 2H20 4H2 + NaB02 + Q (equation 1)
Revisiones bibliográficas muy recientes recogen una amplia bibliografía referente al estudio de la reacción (ecuación 1), tanto desde un punto de vista fundamental, como desde un punto de vista práctico, como es la generación de hidrógeno para aplicaciones portátiles (B.H. Liu, Z.P. Li, J. Power Sources, 2009, 187, 527-534; U.B Demirci, at al., Fuel Cells 2010, 3, 335-350; S.S. Muir, X. Yao, Int J. Hydrogen Energy, 36, 2011, 5983-5997) . Very recent bibliographical reviews include a wide bibliography referring to the study of the reaction (equation 1), both from a fundamental point of view, and from a practical point of view, such as hydrogen generation for portable applications (BH Liu, ZP Li , J. Power Sources, 2009, 187, 527-534; UB Demirci, at al., Fuel Cells 2010, 3, 335-350; SS Muir, X. Yao, Int J. Hydrogen Energy, 36, 2011, 5983- 5997).
Entre los catalizadores más utilizados y con mejor relación coste/eficiencia se encuentran los basados en cobalto y boro (Co-B) . Para una ampliación de los modos de preparación de estos catalizadores Co-B tanto en forma de polvo como soportados, se debe recurrir a la siguiente bibliografía: U.B. Demirci, P.Miele, Phys . Chem. Chem. Phys . , 2010, 12, 14665- 14651 y U.B. Demirci, et al., 2010, 53, 1870-1879. Para cualquier diseño capaz de producir hidrógeno basado en la hidrólisis catalizada de un hidruro complejo, como puede ser preferiblemente el borohidruro sódico, que quiera adaptarse a una pila de combustible, es fundamental asegurar una producción de hidrógeno a velocidad constante, en un valor que dependerá de las condiciones de la misma (potencia y voltaje) . Dado el carácter exotérmico de la reacción (ecuación 1) la constancia en la velocidad requiere que el medio en que transcurra la reacción sea lo más isotérmico posible (B.H. Liu, Z.P. Li, S. Suda, J. Alloys and Compd. 468, 2009, 493- 493) . El control de la temperatura puede alcanzarse con un diseño de sistema/reactor adecuado. Dicho diseño puede variar desde una sencilla refrigeración externa del reactor, un diseño que implique el agregado continuo de reactivos (reactor semicontinuo, G.M. Arzac, et al., Journal of Power Sources, 2011, 196, 4388-4395), hasta un reactor que opere por flujo continuo de reactivos y productos, que permite eliminar también de forma continua el calor liberado por la reacción (S.J. Kim, et al., J. Power Sources 170, 2007, 412-418) . Cualquier dispositivo que permita generar hidrógeno para aplicaciones portátiles, debe de incluir un reactor que pueda cumplir los siguientes requisitos: Among the most used catalysts with the best cost / efficiency ratio are those based on cobalt and boron (Co-B). For an extension of the ways of preparing these Co-B catalysts both in powder and supported form, the following bibliography should be used: UB Demirci, P.Miele, Phys. Chem. Chem. Phys. , 2010, 12, 14665-14651 and UB Demirci, et al., 2010, 53, 1870-1879. For any design capable of producing hydrogen based on the catalyzed hydrolysis of a complex hydride, such as preferably sodium borohydride, which wants to adapt to a fuel cell, it is essential to ensure a hydrogen production at a constant speed, at a value that will depend of the conditions of the same (power and voltage). Given the exothermic nature of the reaction (equation 1) the constancy in velocity requires that the medium in which the reaction proceeds be as isothermal as possible (BH Liu, ZP Li, S. Suda, J. Alloys and Compd. 468, 2009 , 493-493). Temperature control can be achieved with a suitable system / reactor design. Said design can vary from a simple external cooling of the reactor, a design that involves the continuous addition of reagents (semicontinuous reactor, GM Arzac, et al., Journal of Power Sources, 2011, 196, 4388-4395), to a reactor that operate by continuous flow of reagents and products, which also allows the heat released by the reaction to be continuously eliminated (SJ Kim, et al., J. Power Sources 170, 2007, 412-418). Any device that can generate hydrogen for portable applications must include a reactor that can meet the following requirements:
El volumen del reactor debe ser mínimo; The reactor volume must be minimal;
El catalizador basado en Cobalto y Boro (Co-B) debe estar soportado en un soporte que sea barato, que permita una gran adhesión (ya que la formación de burbujas de hidrógeno tiende a desprenderlo de su soporte) y que permita dispersarlo altamente; The catalyst based on Cobalt and Boron (Co-B) must be supported on a support that is cheap, that allows great adhesion (since the formation of hydrogen bubbles tends to release it from its support) and that allows it to be dispersed highly;
El catalizador con su soporte debe cubrir/rellenar el máximo volumen del reactor, de modo que se aproveche al máximo todo el volumen del mismo y evite caminos preferenciales de los reactivos, de tal manera que se maximice la conversión; The catalyst with its support must cover / fill the maximum volume of the reactor, so as to take full advantage of the entire volume of the reactor and avoid preferential paths of the reagents, so that conversion is maximized;
El catalizador con su soporte debe permitir tanto el flujo de solución estabilizada de hidruro complejo (BHS) como el flujo de productos de reacción (hidrógeno y boratos); El diseño completo (reactor y catalizador soportado) deben producir un flujo estable de hidrógeno, sin aumentos ni disminuciones bruscas en la velocidad de producción del mismo ; The catalyst with its support must allow both the flow of stabilized complex hydride solution (BHS) and the flow of reaction products (hydrogen and borates); The complete design (reactor and supported catalyst) must produce a stable flow of hydrogen, without sudden increases or decreases in its production speed;
El catalizador debe ser estable a lo largo del funcionamiento del sistema. Esto quiere decir que no debe desactivarse, ni reducir su capacidad de acelerar la reacción, ni su eficiencia, durante el tiempo de operación establecido ; The catalyst must be stable throughout the operation of the system. This means that it should not be deactivated, nor reduce its ability to accelerate the reaction, nor its efficiency, during the established operating time;
Una vez finalizada la operación del sistema, el catalizador debe poder reutilizarse en una experiencia similar a la inicial o en condiciones diferentes, sin pérdida de su eficiencia, es decir, sin reducción de la velocidad de producción de hidrógeno. Es altamente deseable que el catalizador permita ser reutilizado el mayor número de veces posible sin pérdida de eficiencia ni desactivación; Once the operation of the system is finished, the catalyst must be able to be reused in an experience similar to the initial one or in different conditions, without loss of its efficiency, that is, without reducing the speed of hydrogen production. It is highly desirable that the catalyst be reused as many times as possible without loss of efficiency or deactivation;
En el caso de que existiese una desactivación del catalizador, es deseable que el mismo pudiese reactivarse mediante algún método sencillo, rápido y seguro; If there is a deactivation of the catalyst, it is desirable that it could be reactivated by some simple, fast and safe method;
Para que el sistema sea eficiente, el reactor debería operar a temperaturas altas, preferiblemente por encima de la temperatura de fusión de los boratos (60°C) y preferiblemente en régimen de eliminación continua de los mismos, de modo que éstos no permanezcan en el reactor, bloqueando el catalizador y por ende reduciendo la eficiencia del mismo (E.Y Marrero-Alfonso, et al., Int. J. Hydrogen Energy 32, 2007, 4723-4730; B.H. Liu, Z.P. Li, S. Suda, J. Alloys and Compd., 468, 2009, 493-493) . For the system to be efficient, the reactor should operate at high temperatures, preferably above the melting temperature of borates (60 ° C) and preferably in a continuous elimination regime, so that they do not remain in the reactor, blocking the catalyst and therefore reducing its efficiency (EY Marrero-Alfonso, et al., Int. J. Hydrogen Energy 32, 2007, 4723-4730; BH Liu, ZP Li, S. Suda, J. Alloys and Compd., 468, 2009, 493-493).
En la literatura se han reportado un gran número de soportes para los catalizadores basados en cobalto y boro (Co-B) , del grupo de los soportes metálicos. Se destaca en primer lugar la espuma de níquel, que es sin duda el soporte más reportado (S.J. Kim, et al., J. Power Sources 170, 2007, 412-418; H.B. Daim, et al., J. Power Sources, 177, 2008, 17-23; P. Krishnan, S.G. Advani, A.K. Prasad, App . Cat . B. Environmental , 86, 2009, 137-144), las arcillas (H.Tian, Q. Guo, D.Xu, J. Power Sources, 195, 2010, 2136-2142), carbono vulcan (J. Zhao, H.Mua, J. Chen, Int. J. Hydrogen Energy, 32, 2007, 4711-4716), zeolitas (M . Rakap, S. Ozkar, Appl . Catal . B . 91, 2009, 21- 29), etc. En ningún caso se ha preparado el catalizador basado en cobalto y boro en acero inoxidable como soporte. Tampoco se ha reportado, para el catalizador basado en cobalto y boro, ninguna estrategia de tratamiento sobre el soporte de acero inoxidable para aumentar la adherencia. A large number of supports have been reported in the literature for catalysts based on cobalt and boron (Co-B), from the group of metal supports. Nickel foam is highlighted first, which is undoubtedly the most reported support (SJ Kim, et al., J. Power Sources 170, 2007, 412-418; HB Daim, et al., J. Power Sources, 177, 2008, 17-23; P. Krishnan, SG Advani, AK Prasad, App. Cat. B. Environmental, 86, 2009, 137-144), clays (H.Tian, Q. Guo, D.Xu, J. Power Sources, 195, 2010, 2136-2142), vulcan carbon (J. Zhao, H .Mua, J. Chen, Int. J. Hydrogen Energy, 32, 2007, 4711-4716), zeolites (M. Rakap, S. Ozkar, Appl. Catal. B. 91, 2009, 21-29), etc. In no case has the catalyst based on cobalt and boron in stainless steel been prepared as a support. Nor has it been reported, for the catalyst based on cobalt and boron, any treatment strategy on the stainless steel support to increase adhesion.
Por otro lado, no existe reportado en la literatura un sistema que incluya un reactor que opere en flujo continuo de reactivos y productos para la hidrólisis catalizada de hidruros complejos, en el que se maximice el contacto entre la solución y el catalizador, y se estabilice la producción de hidrógeno, sin subidas ni bajadas en la velocidad de producción de hidrógeno.  On the other hand, there is no system reported in the literature that includes a reactor that operates in continuous flow of reagents and products for catalyzed hydrolysis of complex hydrides, in which the contact between the solution and the catalyst is maximized, and stabilized hydrogen production, without rises or falls in the rate of hydrogen production.
Para la hidrólisis catalizada del borohidruro sódico, existe una gran cantidad de reportes bibliográficos en los que se diseñan nuevos catalizadores cada vez más eficientes, pero muy escasos, en los que se estudia la durabilidad de los mismos y la estabilidad a lo largo de un experimento de larga duración (S.S. Muir, X. Yao, Int J. Hydrogen Energy, 36, 2011, 5983- 5997, y referencias allí incluidas) . Muy recientemente se ha reportado un estudio de durabilidad de un catalizador basado en Cobalto (Co) para la reacción de hidrólisis del borohidruro sódico, en condiciones de generación de 100 ml.min-1 de hidrógeno durante como máximo 5 minutos (O.Akdim, U.B. Demirci, P. Miele, Int. J. Hydrogen Energy, 36, 2011, 13669- 13675) . En ningún caso se ha estudiado la durabilidad de un catalizador basado en cobalto y boro (Co-B) , ni tampoco se ha estudiado la durabilidad de ningún catalizador operando en una escala de producción de hidrógeno entre 0.8 y 1.2 l.min-1 durante periodos que abarcan horas, lo cual es de interés para la presente invención (B.H. Liu, Z.P. Li, J. Power Sources, 2009, 187, 527-534; U.B Demirci, et al., Fuel Cells 2010, 3, 335-350, S.S. Muir, X. Yao, Int J. Hydrogen Energy, 36, 2011, 5983-5997 y referencias allí incluidas) . For the catalyzed hydrolysis of sodium borohydride, there is a large number of bibliographic reports in which new catalysts are designed that are increasingly efficient, but very scarce, in which their durability and stability are studied throughout an experiment. long-term (SS Muir, X. Yao, Int J. Hydrogen Energy, 36, 2011, 5983-5997, and references included there). Very recently, a study of the durability of a Cobalt (Co) -based catalyst for the hydrolysis reaction of sodium borohydride has been reported, under conditions of generation of 100 ml.min-1 of hydrogen for a maximum of 5 minutes (O. Akdim, UB Demirci, P. Miele, Int. J. Hydrogen Energy, 36, 2011, 13669-137575). In no case has the durability of a catalyst based on cobalt and boron (Co-B) been studied, nor has the durability of any catalyst operating on a hydrogen production scale between 0.8 and 1.2 l.min-1 been studied during periods covering hours, which is of interest to the present invention (BH Liu, ZP Li, J. Power Sources, 2009, 187, 527-534; UB Demirci, et al., Fuel Cells 2010, 3, 335-350, SS Muir, X. Yao, Int J. Hydrogen Energy, 36, 2011, 5983-5997 and references included therein).
Para solventar estos problemas detectados en el campo, la presente invención propone un proceso de producción continua de hidrógeno a velocidad y temperatura constantes, basado en adicionar una fuente de hidrógeno, como es un hidruro complejo que actúa como combustible, preferentemente borohidruro sódico, estabilizado en una solución de hidróxido, que es preferiblemente hidróxido de sodio, sobre un catalizador basado en Cobalto y Boro (Co-B) , preferiblemente soportado en monolito de acero inoxidable previamente oxidado. Para adaptar las técnicas de síntesis ya conocidas de Co-B sobre soportes metálicos al soporte aquí utilizado, se han realizado modificaciones en la misma que suponen parte de esta invención.  To solve these problems detected in the field, the present invention proposes a continuous hydrogen production process at constant speed and temperature, based on adding a source of hydrogen, such as a complex hydride that acts as a fuel, preferably sodium borohydride, stabilized in a hydroxide solution, which is preferably sodium hydroxide, on a catalyst based on Cobalt and Boron (Co-B), preferably supported on a previously oxidized stainless steel monolith. To adapt the already known synthesis techniques of Co-B on metal supports to the support used herein, modifications have been made therein which are part of this invention.
El control de la temperatura y la velocidad de producción de hidrógeno en este proceso se fundamentan en el control de la velocidad de adición o agregación de la solución de combustible sobre el catalizador soportado.  The control of the temperature and the speed of hydrogen production in this process are based on the control of the rate of addition or aggregation of the fuel solution on the supported catalyst.
Basándose en consideraciones prácticas, el sistema incluye un reactor continuo en el que no sólo la solución combustible se adiciona de manera continua sobre el catalizador, sino que los productos de reacción son retirados de manera continua del medio de modo que no se acumulen bloqueando el catalizador. El diseño del reactor continuo además permite reducir el volumen del mismo al máximo y principalmente, la autonomía ya no se encuentra limitada por su tamaño, como en el caso del reactor semicontinuo antes reportado (G.M. Arzac, et al., Journal of Power Sources, 2011, 196, 4388-4395) . Based on practical considerations, the system includes a continuous reactor in which not only the fuel solution is added continuously on the catalyst, but the reaction products are continuously removed from the medium so that they do not accumulate blocking the catalyst . The design of the continuous reactor also allows to reduce its volume to the maximum and, mainly, autonomy is no longer limited by its size, as in the case of the semicontinuous reactor previously reported (GM Arzac, et al., Journal of Power Sources, 2011, 196, 4388-4395).
DESCRIPCIÓN DE LA INVENCIÓN  DESCRIPTION OF THE INVENTION
El objeto principal de la presente invención consiste en un proceso para la producción controlada de hidrógeno a partir de la hidrólisis catalizada de al menos un hidruro complejo, preferiblemente borohidruro sódico (de acuerdo con la ecuación (1) expuesta en el apartado anterior), en un amplio rango de velocidades y con control del flujo de producción de hidrógeno a demanda . The main object of the present invention is a process for the controlled production of hydrogen from the catalyzed hydrolysis of at least one complex hydride, preferably sodium borohydride (according to equation (1) set forth in the previous section), in a wide range of speeds and with control of the flow of hydrogen production on demand.
Otro objeto de la presente invención es el diseño de una instalación para la producción de hidrógeno en condiciones de flujo constante, de acuerdo con el procedimiento antes mencionado, que se caracteriza porque comprende un reactor de volumen mínimo (preferentemente de en torno a 11 mi) que funciona en régimen continuo de entrada de reactivos y salida de productos, que no precisa refrigeración, y que tiene una autonomía potencialmente ilimitada. Además, dicho reactor se caracteriza por presentar un diseño sencillo, pudiendo ser construido con materiales ligeros y transparentes como el PMMA (polimetilmetacrilato ) . La transparencia del reactor permite observar la producción de hidrógeno, teniéndose mayor control sobre lo que sucede en el sistema.  Another object of the present invention is the design of an installation for the production of hydrogen under constant flow conditions, in accordance with the aforementioned procedure, which is characterized in that it comprises a reactor of minimum volume (preferably around 11 mi) It works on a continuous basis of reagent input and output of products, which does not require refrigeration, and which has a potentially unlimited autonomy. In addition, said reactor is characterized by presenting a simple design, being able to be constructed with light and transparent materials such as PMMA (polymethylmethacrylate). The transparency of the reactor allows observing the production of hydrogen, having greater control over what happens in the system.
De este modo, el dispositivo desarrollado es químicamente estable y seguro antes, durante y después de la operación. In this way, the developed device is chemically stable and safe before, during and after the operation.
El hidrógeno obtenido podría alimentar una planta de producción de hidrógeno o un motor de combustión, aunque el proceso de producción de hidrógeno de la presente invención está preferiblemente diseñado para alimentar una pila de combustible, preferentemente de tipo PEM, para producir energía eléctrica. The hydrogen obtained could feed a hydrogen production plant or a combustion engine, although the hydrogen production process of the present invention is preferably designed to feed a fuel cell, preferably PEM type, to produce electrical energy.
Asimismo, la presente invención abarca el desarrollo de un método para mecanizar los monolitos de acero inoxidable que servirán de soporte para el catalizador, un tratamiento térmico sobre los monolitos mecanizados para mejorar la adherencia del catalizador Co-B (basado en cobalto y boro) y una técnica de síntesis de los catalizadores sobre el monolito oxidado.  Also, the present invention encompasses the development of a method for machining stainless steel monoliths that will support the catalyst, a heat treatment on mechanized monoliths to improve the adhesion of the Co-B catalyst (based on cobalt and boron) and a technique of synthesis of the catalysts on the oxidized monolith.
La presente invención también abarca la utilización de un método novedoso de reactivación in situ y un método ex situ que permite la reutilización de los catalizadores soportados sobre los monolitos de acero inoxidable. El método de reactivación se basa en el primero de los casos en el agregado de una alícuota de solución combustible sobre el catalizador antes de comenzar el agregado continuo, y en el agregado de un ácido diluido, preferiblemente ácido clorhídrico (HC1), en el segundo de los casos. Gracias al método de reactivación in situ del catalizador, es posible mantener la actividad inicial del mismo hasta 6 ciclos, antes de que ocurra la desactivación completa. Por otro lado, la reactivación ex situ del catalizador que, utilizado 6 ciclos, se ha desactivado completamente, permite recuperar parte de la actividad inicial debido a un efecto acumulativo o de memoria. The present invention also encompasses the use of a novel in situ reactivation method and an ex situ method that allows the reuse of catalysts supported on stainless steel monoliths. The reactivation method is based on the first of the cases in the aggregate of an aliquot of combustible solution on the catalyst before starting the continuous aggregate, and in the addition of a diluted acid, preferably hydrochloric acid (HC1), in the second case. Thanks to the catalyst's in situ reactivation method, it is possible to maintain its initial activity up to 6 cycles, before the complete deactivation occurs. On the other hand, the ex situ reactivation of the catalyst which, used 6 cycles, has been completely deactivated, allows recovering part of the initial activity due to a cumulative or memory effect.
DESCRIPCIÓN DE LAS FIGURAS  DESCRIPTION OF THE FIGURES
Con objeto de contribuir a una mejor comprensión de la invención, y de acuerdo con una realización práctica de la misma, se acompaña como parte integrante de esta descripción una serie de figuras donde, con carácter ilustrativo y nunca limitativo de la invención, se ha representado lo siguiente: In order to contribute to a better understanding of the invention, and in accordance with a practical embodiment thereof, an integral part of this description is accompanied by a series of figures where, with an illustrative and never limiting nature of the invention, it has been represented the next:
Figura 1A. Esquema de la instalación de producción de hidrógeno mediante el proceso descrito en la presente memoria, que comprende los siguientes elementos: Figure 1A Diagram of the hydrogen production facility by means of the process described herein, comprising the following elements:
un tanque de almacenamiento (1) de la solución de combustible que comprende el hidruro complejo estabilizado mediante un hidróxido;  a storage tank (1) of the fuel solution comprising the complex hydride stabilized by a hydroxide;
medios dispensadores (2) de la solución de combustible a flujo constante dentro del reactor continuo (3);  dispensing means (2) of the constant flow fuel solution within the continuous reactor (3);
un reactor continuo (3) sin refrigeración;  a continuous reactor (3) without refrigeration;
un tanque separador del hidrógeno de los productos de hidrólisis ( 4 ) ;  a hydrogen separator tank of the hydrolysis products (4);
medio de secado de la corriente de hidrógeno (5);  hydrogen stream drying medium (5);
medios dispensadores de la corriente de hidrógeno a la celda de combustible (6);  means for dispensing hydrogen stream to the fuel cell (6);
un termopar opcional (10) .  an optional thermocouple (10).
Figura IB. Esquema del reactor (3) continuo de la Figura 1A que comprende los siguientes elementos: un cuerpo cilindrico (7); Figure IB Scheme of the continuous reactor (3) of Figure 1A comprising the following elements: a cylindrical body (7);
una tapa con apertura y cierre (8), que permite la entrada de liquido combustible;  a lid with opening and closing (8), which allows the entry of combustible liquid;
un dispositivo de salida (9) de la corriente de hidrógeno y de los productos de hidrólisis;  an output device (9) of the hydrogen stream and hydrolysis products;
Figura 2A. Representación del procedimiento de enrollado de la hoja de acero inoxidable para producir el monolito que actúa como soporte del catalizador.  Figure 2A Representation of the winding procedure of the stainless steel sheet to produce the monolith that acts as a catalyst support.
Figura 2B. Fotografía del monolito de acero inoxidable desnudo.  Figure 2B Photograph of bare stainless steel monolith.
Figura 2C. Fotografía del monolito cubierto con catalizador basado en cobalto y boro (Co-B) .  Figure 2C Photograph of the monolith covered with catalyst based on cobalt and boron (Co-B).
Figura 3. Micrografías de microscopía electrónica de barrido del acero inoxidable desnudo (Figura 3A) y del acero inoxidable tratado a 900 °C durante 2h (Figura 3B) .  Figure 3. Scanning electron microscopy micrographs of bare stainless steel (Figure 3A) and treated stainless steel at 900 ° C for 2h (Figure 3B).
Figura 4. Representación gráfica de la velocidad de producción de hidrógeno y la temperatura en función del tiempo, durante una hora (Figura 4A) y la velocidad de producción de hidrógeno en función del tiempo durante 9 horas (Figura 4B) .  Figure 4. Graphical representation of hydrogen production speed and temperature as a function of time, for one hour (Figure 4A) and hydrogen production speed as a function of time for 9 hours (Figure 4B).
Figura 5. (Figura 5A) Velocidad de producción de hidrógeno y temperatura en función del tiempo para una velocidad de agregado de solución combustible al 19% p/p entre 5 y 0.8 ml/minuto; (Figura 5B) Velocidad de producción de hidrógeno en función de la velocidad de agregado de solución combustible (fuel) al 19% p/p; (Figura 5C) Velocidad de producción de hidrógeno y temperatura en función del tiempo para una velocidad de agregado de solución combustible (fuel) al 9% p/p entre 10 y 1.6 ml/minuto; (Figura 5D) Velocidad de producción de hidrógeno en función de la velocidad de agregado de solución combustible al 9% p/p. Figure 5. (Figure 5A) Hydrogen production rate and temperature as a function of time for a fuel solution aggregate rate of 19% w / w between 5 and 0.8 ml / minute; (Figure 5B) Hydrogen production rate as a function of the rate of aggregate of fuel solution (fuel) at 19% w / w; (Figure 5C) Hydrogen production rate and temperature as a function of time for a fuel solution aggregate rate of 9% w / w between 10 and 1.6 ml / minute; (Figure 5D) Hydrogen production rate as a function of the rate of aggregate of fuel solution at 9% w / w.
Figura 6. Velocidad media de producción de hidrógeno (VH2) dividida por la velocidad de producción de hidrógeno del primer ciclo de uso (VH2 inicial) en función del número de ciclos de uso. DESCRIPCIÓN DE TALLADA DE LA INVENCIÓN Figure 6. Average hydrogen production rate (VH2) divided by the hydrogen production rate of the first use cycle (initial VH2) as a function of the number of use cycles. DETAILED DESCRIPTION OF THE INVENTION
La presente invención se refiere a un proceso para la producción de un flujo continuo de hidrógeno mediante la hidrólisis catalizada de al menos un hidruro complejo, que comprende al menos la etapa de agregar a velocidad constante a un reactor una solución combustible que comprende un hidruro complejo estabilizado en hidróxido, sobre un catalizador de Co-B que se encuentra soportado en un monolito de acero inoxidable, en una cantidad en exceso dentro del reactor ( Figuras 1 y 2 ) .  The present invention relates to a process for the production of a continuous flow of hydrogen by catalyzed hydrolysis of at least one complex hydride, which comprises at least the step of adding at a constant speed to a reactor a combustible solution comprising a complex hydride. stabilized in hydroxide, on a Co-B catalyst that is supported on a stainless steel monolith, in an excess amount inside the reactor (Figures 1 and 2).
También es objeto de la presente invención una instalación de producción de una corriente de hidrógeno de acuerdo con el proceso descrito. Dicha instalación comprende al menos los elementos que han sido presentados en la figura 1A para ilustrar mejor una realización de la invención, sin suponer dicha figura una limitación de la misma en su forma más genérica .  Also object of the present invention is an installation for producing a stream of hydrogen according to the process described. Said installation comprises at least the elements that have been presented in Figure 1A to better illustrate an embodiment of the invention, without supposing said figure a limitation thereof in its most generic form.
De este modo, la instalación comprende al menos los siguientes elementos: un tanque de almacenamiento (1) de la solución de combustible que comprende el hidruro complejo estabilizado; medios dispensadores (2) de la solución de combustible a flujo constante dentro del reactor; un reactor continuo (3) sin refrigeración; un tanque separador del hidrógeno de los productos de hidrólisis (4); un medio de secado de la corriente de hidrógeno (5) y medios dispensadores de la corriente de hidrógeno al sistema de pila de combustible (6) . Thus, the installation comprises at least the following elements: a storage tank (1) of the fuel solution comprising the stabilized complex hydride; dispensing means (2) of the constant flow fuel solution within the reactor; a continuous reactor (3) without refrigeration; a hydrogen separator tank of the hydrolysis products (4); a means for drying the hydrogen stream (5) and means for dispensing the hydrogen stream to the fuel cell system (6).
El reactor está comprendido al menos por un cuerpo cilindrico (7), una tapa con apertura y cierre (8), que permite la entrada de liquido combustible y un dispositivo de salida (9) de la corriente de hidrógeno y de los productos de hidrólisis (Figuras 1A y IB) . The reactor is comprised at least of a cylindrical body (7), a lid with opening and closing (8), which allows the entry of combustible liquid and an outlet device (9) of the hydrogen flow and hydrolysis products (Figures 1A and IB).
Tanto el tanque de almacenamiento (1) como el reactor continuo pueden construirse con materiales plásticos, minimizando asi el peso según las condiciones de operación del sistema (flujo de hidrógeno, tiempo o concentración de la solución combustible) . Both the storage tank (1) and the continuous reactor can be constructed with plastic materials, thus minimizing the weight according to the operating conditions of the system (flow of hydrogen, time or concentration of the fuel solution).
Opcionalmente, dicho reactor continuo (3) puede comprender un termopar (10) para la medida simultánea de la temperatura. Las mayores singularidades del reactor continuo que aquí se describen son:  Optionally, said continuous reactor (3) may comprise a thermocouple (10) for simultaneous temperature measurement. The greatest singularities of the continuous reactor described here are:
No precisa refrigeración externa; Does not require external cooling;
La continua eliminación de los productos de hidrólisis permiten minimizar su tamaño, y evitar la desactivación hasta el ciclo número 6; The continuous elimination of hydrolysis products can minimize their size, and prevent deactivation until cycle number 6;
La autonomía no está limitada por el reactor, sino por los tanques de alimentación y guardado de residuos. The autonomy is not limited by the reactor, but by the feeding and storage tanks of waste.
El soportado del catalizador es fundamental en este tipo de reactor continuo debido a que la solución estabilizada de hidruro complejo que alimenta al mismo debe producir una conversión del hidruro complejo en hidrógeno con una velocidad preferentemente comprendida entre 1.66 y 0.3 1/min (en el caso de un reactor de entorno a 11 mi de capacidad y un tamaño de catalizador adecuado a dicha capacidad) , lo cual supone una producción de gases continua y violenta, que debe transcurrir sin arrastre del catalizador. Dado que los productos de reacción son constantemente retirados de reactor y dirigidos al tanque separador, el arrastre conjunto de partículas de catalizador llevaría poco a poco a una pérdida de eficiencia y conversión del proceso hasta la detención completa del mismo. Por otro lado, los tiempos de operación que se requieren en los casos de experimentos de larga duración (9 horas) y/o la necesidad de reutilizar el mismo catalizador soportado en sucesivos experimentos sin pérdida de eficiencia, requieren que el catalizador soportado sea estable y esté bien adherido al soporte. El soporte además debe asegurar una dispersión adecuada del catalizador sobre el mismo y también dentro del reactor, rellenándolo completamente, lo cual evita subidas y bajadas bruscas de la velocidad de producción de hidrógeno. El soporte puede consistir en acero inoxidable 316 comercial, en forma de placa con agujeros hexagonales, tipo panal de abeja. La elección preferente de este tipo de soporte se debe a su bajo costo y su facilidad de mecanizar (Figura 2A) . Dado que el reactor es cilindrico, los monolitos se construyen enrollando la placa para dar un cilindro que se rellena con un segundo cilindro más pequeño obtenido de la misma manera (Figura 2B) . El monolito asi construido se somete a una oxidación en atmósfera de oxigeno, a una temperatura de 900 °C durante 2 horas, para producir una capa de óxido sobre el mismo. Esta capa de óxido le confiere una mayor rugosidad que hace que el catalizador se adhiera más al mismo, reduciendo las pérdidas (Figura 3) . The support of the catalyst is essential in this type of continuous reactor because the stabilized solution of complex hydride that feeds it must produce a conversion of the complex hydride into hydrogen with a speed preferably between 1.66 and 0.3 1 / min (in the case of a reactor of around 11 ml capacity and a catalyst size appropriate to said capacity), which implies a continuous and violent gas production, which must take place without the catalyst being dragged. Since the reaction products are constantly removed from the reactor and directed to the separator tank, the joint entrainment of catalyst particles would gradually lead to a loss of efficiency and conversion of the process until its complete stop. On the other hand, the operating times required in the case of long-term experiments (9 hours) and / or the need to reuse the same supported catalyst in successive experiments without loss of efficiency, require that the supported catalyst be stable and Be well attached to the support. The support must also ensure adequate dispersion of the catalyst on it and also inside the reactor, filling it completely, which avoids sudden ups and downs of the hydrogen production rate. The support can consist of commercial 316 stainless steel, in the form of a plate with hexagonal holes, honeycomb type. The preferred choice of this type of support is due to its low cost and its ease of machining (Figure 2A). Since the reactor is cylindrical, the monoliths are constructed by winding the plate to give a cylinder that is filled with a second smaller cylinder obtained in the same way (Figure 2B). The monolith thus constructed is subjected to an oxidation in oxygen atmosphere, at a temperature of 900 ° C for 2 hours, to produce an oxide layer thereon. This oxide layer gives it a greater roughness that causes the catalyst to adhere more to it, reducing losses (Figure 3).
Preferiblemente, para conseguir la generación de un flujo continuo de hidrógeno dentro del reactor la cantidad en exceso de catalizador está comprendida entre 37 y 240 mg. De esta forma se consigue el objetivo principal de esta invención, que es producir un flujo continuo a velocidad constante y controlada de hidrógeno. Este flujo de hidrógeno puede servir de fuente de combustible a otros dispositivos, como un motor de combustión, pero preferiblemente a una pila de combustible, ya que en este caso la aportación continua de un flujo de hidrógeno resulta fundamental para su funcionamiento.  Preferably, in order to achieve the generation of a continuous flow of hydrogen into the reactor, the excess amount of catalyst is between 37 and 240 mg. In this way the main objective of this invention is achieved, which is to produce a continuous flow at a constant and controlled rate of hydrogen. This hydrogen flow can serve as a source of fuel to other devices, such as a combustion engine, but preferably to a fuel cell, since in this case the continuous supply of a hydrogen flow is essential for its operation.
También preferiblemente la concentración de hidruro complejo en la solución combustible está comprendida entre 9% y 19% p/p. Para el caso de la solución de borohidruro al 19% p/p, agregándose dicha solución sobre el catalizador a una velocidad comprendida preferentemente entre 0.8 y 5 ml/min, la temperatura queda comprendida entre 82.4°C y 103.9°C, consiguiéndose un flujo continuo y constante de hidrógeno comprendido entre 1.66 y 0.30 1/minuto.  Also preferably the concentration of complex hydride in the fuel solution is between 9% and 19% w / w. In the case of the 19% w / w borohydride solution, said solution being added on the catalyst at a rate preferably between 0.8 and 5 ml / min, the temperature is between 82.4 ° C and 103.9 ° C, achieving a flow continuous and constant hydrogen between 1.66 and 0.30 1 / minute.
Para el caso de la solución de borohidruro al 9% p/p, agregándose dicha solución sobre el catalizador a una velocidad comprendida preferentemente entre 1.6 y 10 ml/min, la temperatura queda comprendida entre 85.2 y 78.6°C, consiguiéndose un flujo continuo y constante de hidrógeno comprendido entre 1.43 y 0.30 1/minuto. In the case of the 9% w / w borohydride solution, said solution being added to the catalyst at a rate preferably between 1.6 and 10 ml / min, the temperature is between 85.2 and 78.6 ° C, achieving a continuous and constant flow of hydrogen between 1.43 and 0.30 1 / minute.
Preferentemente, en cualquiera de los casos o variantes aquí mencionados, el hidruro complejo es borohidruro de sodio. Se ha comprobado que los valores óptimos de producción de hidrógeno se alcanzan con el borohidruro sódico (BHS) como fuente de hidrógeno, siguiendo la ecuación (1) expuesta en el apartado "Antecedentes de la invención".  Preferably, in any of the cases or variants mentioned herein, the complex hydride is sodium borohydride. It has been found that the optimum values of hydrogen production are achieved with sodium borohydride (BHS) as a source of hydrogen, following equation (1) set forth in the "Background of the invention" section.
También de manera preferida, la solución que actúa como combustible con la que se estabiliza el hidruro complejo es hidróxido de sodio. Más preferiblemente, la solución es de hidróxido de sodio al 4.5% p/p (en porcentaje en peso de la solución) .  Also preferably, the solution that acts as a fuel with which the complex hydride is stabilized is sodium hydroxide. More preferably, the solution is 4.5% w / w sodium hydroxide (in percent by weight of the solution).
En cuanto al catalizador basado en cobalto y boro (Co-B) , éste se encuentra preferiblemente soportado en monolitos de acero inoxidable previamente oxidados.  As for the catalyst based on cobalt and boron (Co-B), it is preferably supported on previously oxidized stainless steel monoliths.
Como se ha descrito, con el agregado continuo de la solución de combustible al reactor se logra controlar la velocidad y la temperatura de producción de hidrógeno (Figura 4A) , pudiendo asi prescindir la instalación de sistemas adicionales de calentamiento y/o enfriamiento de reactor y de métodos de agitación, ya que esta última se logra por el propio agregado del combustible directamente sobre el catalizador y la formación de las burbujas durante la reacción.  As described, with the continuous addition of the fuel solution to the reactor it is possible to control the speed and temperature of hydrogen production (Figure 4A), thus being able to dispense with the installation of additional reactor heating and / or cooling systems and of agitation methods, since the latter is achieved by the fuel itself added directly on the catalyst and the formation of the bubbles during the reaction.
En una de las realizaciones más preferidas de la invención, el proceso de producción de hidrógeno mediante hidrólisis, comprende agregar en un reactor continuo, una solución que comprende borohidruro sódico 4,5% p/p sobre un catalizador basado en cobalto y boro (Co-B) soportado en monolitos de acero inoxidable previamente oxidados. In one of the most preferred embodiments of the invention, the hydrogen production process by hydrolysis, comprises adding in a continuous reactor, a solution comprising 4.5% w / w sodium borohydride on a cobalt and boron-based catalyst (Co -B) supported on previously oxidized stainless steel monoliths.
De todas las realizaciones que comprende esta invención la más preferida consistiría en un proceso para la producción de un flujo continuo mediante hidrólisis catalizada de un hidruro complejo, que comprende al menos la etapa de agregar de forma continua y a velocidad constante a un reactor continuo una solución combustible que comprende borohidruro sódico en una concentración comprendida entre 9 y 19% p/p, estabilizado con hidróxido de sodio en un porcentaje de 4.5% en peso de disolución sobre un catalizador basado en cobalto y boro (Co- B) , donde dicho catalizador se encuentra soportado en monolito de acero inoxidable previamente oxidado que se adiciona en una cantidad comprendida entre 37 y 240 mg. Of all the embodiments that this invention comprises, the most preferred would be a process for the production of a continuous flow by catalyzed hydrolysis of a complex hydride, which comprises at least the step of adding continuously and at a constant speed to a continuous reactor a fuel solution comprising sodium borohydride in a concentration between 9 and 19% w / w, stabilized with sodium hydroxide at a percentage of 4.5% by weight of solution on a catalyst based on cobalt and boron (Co-B), wherein said The catalyst is supported on a previously oxidized stainless steel monolith that is added in an amount between 37 and 240 mg.
Al llevar a cabo una adición de la solución combustible a velocidad constante, se obtiene una producción de hidrógeno a velocidad constante y a una temperatura también constante. La solución combustible se agrega a una velocidad comprendida entre 5 y 0.8 ml/min, para el caso de la solución de BHS 19% p/p. Para el caso de la solución de BHS 9% p/p, la velocidad de encuentra comprendida entre 10 y 1.6 ml/min. La temperatura queda controlada en un valor constante por la adición a velocidad constante de una solución estabilizada de hidruro complejo, que es preferentemente BHS.  By carrying out an addition of the fuel solution at a constant speed, hydrogen production is obtained at a constant speed and also at a constant temperature. The fuel solution is added at a speed between 5 and 0.8 ml / min, in the case of the BHS solution 19% w / w. In the case of the 9% w / w BHS solution, the speed is between 10 and 1.6 ml / min. The temperature is controlled at a constant value by the constant rate addition of a stabilized solution of complex hydride, which is preferably BHS.
En condiciones de flujo constante de solución estabilizada de hidruro complejo, se consigue una producción de hidrógeno constante con una velocidad que se relaciona con el flujo de solución de hidruro complejo según consta en la Figura 5.  Under conditions of constant flow of stabilized complex hydride solution, a constant hydrogen production is achieved at a rate that is related to the flow of complex hydride solution as shown in Figure 5.
El flujo continuo de solución estabilizada de hidruro complejo sobre el catalizador soportado y el flujo continuo de productos de reacción, hidrógeno y el producto de hidrólisis (NaB02XH20, ecuación (1)) aseguran la eliminación de posibles bloqueantes de la actividad del catalizador. Dado que el flujo continuo de solución estabilizada sobre el catalizador permite que el reactor trabaje en temperaturas que abarcan el rango de 70 a 120°C, el producto de hidrólisis permanece como una sal fundida. La continua eliminación de esta sal fundida de este medio de reacción asegura la estabilidad del catalizador en experimentos de liberación de hidrógeno a tiempos largos que comprenden el rango de 1 a 6 horas sin pérdida de eficiencia y conversión (Figura 6) . A tiempos mayores de 6 horas ocurre una pequeña desactivación del catalizador que reduce su actividad a un 90% respecto de la inicial. La continua alimentación del reactor con solución estabilizada de hidruro complejo sobre el catalizador y la continua eliminación del producto de hidrólisis en forma de sal fundida hacen que el catalizador pueda reutilizarse durante 6 ciclos sin desactivación completa, aunque con una pérdida de eficiencia del 10%. La desactivación después de 6 ciclos ocurre en este caso por efecto memoria o acumulativo. The continuous flow of stabilized solution of complex hydride on the supported catalyst and the continuous flow of reaction products, hydrogen and the hydrolysis product (NaB02XH20, equation (1)) ensure the elimination of possible blockers of catalyst activity. Since the continuous flow of stabilized solution over the catalyst allows the reactor to work at temperatures that range from 70 to 120 ° C, the hydrolysis product remains a molten salt. Continuous removal of this molten salt from this reaction medium ensures the stability of the catalyst in long-term hydrogen release experiments that range from 1 to 6 hours without loss of efficiency and conversion (Figure 6). At times greater than 6 hours a small deactivation of the catalyst occurs which reduces its activity to 90% with respect to the initial one. The continuous feeding of the reactor with stabilized solution of complex hydride on the catalyst and the continuous elimination of the hydrolysis product in the form of molten salt make the catalyst can be reused for 6 cycles without complete deactivation, although with a loss of efficiency of 10%. Deactivation after 6 cycles occurs in this case due to memory or cumulative effect.
En una realización particular de la invención descrita que puede englobar cualquiera de las preferencias antes reseñadas, el proceso comprende además, previamente a la agregación de la solución combustible sobre el catalizador:  In a particular embodiment of the described invention that can encompass any of the preferences described above, the process further comprises, prior to the aggregation of the fuel solution on the catalyst:
estabilizar el hidruro complejo en la solución combustible que comprende el hidróxido.  stabilize the complex hydride in the fuel solution comprising the hydroxide.
En otra realización particular, que engloba cualquiera de las anteriores, el proceso comprende:  In another particular embodiment, which encompasses any of the above, the process comprises:
extraer del reactor la corriente de hidrógeno obtenida por hidrólisis y dirigirla a unos medios de lavado.  extract the hydrogen stream obtained by hydrolysis from the reactor and direct it to washing means.
Lavada la corriente de hidrógeno o no, una realización particular del proceso comprende además dirigir la corriente de hidrógeno de forma continua y a velocidad constante a una pila de combustible, preferiblemente la pila de combustible es PEM.  Washing the hydrogen stream or not, a particular embodiment of the process further comprises directing the hydrogen stream continuously and at a constant speed to a fuel cell, preferably the fuel cell is PEM.
Otro objeto de la presente invención consiste en la reactivación y reutilización del catalizador basado en Cobalto y boro (Co-B) debido a que, tras cada experimento de 1 hora de duración, ocurre una desactivación ligera del catalizador por deposición de boratos en la superficie del mismo y oxidación del cobalto. El método consiste en adicionar sobre el catalizador soportado depositado en el reactor, una pequeña cantidad de solución estabilizada de hidruro complejo durante unos segundos y esperar a que la temperatura alcance los 60°C para luego encender la bomba que alimente el catalizador con solución estabilizada de hidruro complejo. Esto hace que el catalizador se reactive in situ y vuelva a convertir hidruro complejo eficientemente. Este proceso de reactivación in situ se puede repetir como máximo 6 veces (Figura 6), ya que luego el efecto memoria (efecto acumulativo) desactiva completamente el catalizador.Another object of the present invention is the reactivation and reuse of the catalyst based on Cobalt and Boron (Co-B) because, after each 1-hour experiment, a slight deactivation of the catalyst occurs due to deposition of borates on the surface thereof and oxidation of cobalt. The method consists of adding on the supported catalyst deposited in the reactor, a small amount of stabilized solution of complex hydride for a few seconds and wait for the temperature to reach 60 ° C and then turn on the pump that feeds the catalyst with stabilized solution of complex hydride This causes the catalyst to reactivate in situ and convert complex hydride efficiently again. This reactivation process in situ can be repeated a maximum of 6 times (Figure 6), since then the memory effect (cumulative effect) completely deactivates the catalyst.
Tras la reactivación in situ antes descrita, el reactor comienza a liberar hidrógeno y, una vez que entra en régimen (tiempo de inducción) , lo hace de manera estable y segura durante el tiempo que dura el agregado de combustible. En una realización particular de la invención, según se muestra en la Figura 4B, el tiempo transcurrido ha sido de un máximo de 9 horas. After the reactivation in situ described above, the reactor begins to release hydrogen and, once it enters the regime (induction time), it does so in a stable and safe way during the time that the fuel aggregate lasts. In a particular embodiment of the invention, as shown in Figure 4B, the elapsed time has been a maximum of 9 hours.
Tras la completa desactivación es posible revertir al menos parcialmente este efecto por la adición de ácido diluido, en lo que constituye una reactivación ex situ. Los boratos que se depositan en la superficie del catalizador son solubles en medio ácido con lo cual, en una realización preferente de la invención, se sumerge el monolito con catalizador soportado en ácido clorhídrico 10-4 M (HC1 10-4 moles /litro) al menos 15 minutos. Este monolito se lava con agua destilada y se reutiliza en el mismo sistema de reactor continuo. La eficiencia del catalizador se recupera pero no vuelve completamente a la anterior al paso de reactivación (Figura 6) .  After complete deactivation it is possible to at least partially reverse this effect by adding diluted acid, in what constitutes an ex situ reactivation. The borates that are deposited on the surface of the catalyst are soluble in acid medium whereby, in a preferred embodiment of the invention, the monolith is immersed with catalyst supported in 10-4 M hydrochloric acid (HC1 10-4 moles / liter) at least 15 minutes This monolith is washed with distilled water and reused in the same continuous reactor system. The efficiency of the catalyst is recovered but does not completely return to that prior to the reactivation step (Figure 6).
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN  EXAMPLES OF EMBODIMENT OF THE INVENTION
A continuación se describen una serie de ejemplos a modo ilustrativo de la invención. En estos ejemplos, el sistema se ha probado en condiciones de producir entre 0.15 y 1.5 1/min de hidrógeno a velocidad constante, operando a una temperatura constante de entre 90 y 120°C, según las condiciones, durante tiempos que van desde lh hasta 9h. La posibilidad de reutilizar el mismo catalizador en sucesivos experimentos de 1 hora de duración se ha testeado durante 10 ciclos. Se ha estudiado la posibilidad de utilizar el paso de reactivación in situ propuesto por esta invención entre cada experimento. En los casos en que el catalizador se ha desactivado completamente, se ha estudiado la posibilidad de realizar una reactivación ex situ del mismo, reportada previamente en (O.Akdim, U.B. Demirci, P. Miele, Int. J. Hydrogen Energy, 36, 2011, 13669-13675), pero sólo probada en las condiciones de trabajo que incluyen la producción de 100 ml/min de hidrógeno durante como máximo 5 minutos, sobre un catalizador que está basado solo en cobalto y no en cobalto-boro como el que se presenta en la presente invención. A series of examples are described below by way of illustration of the invention. In these examples, the system has been tested under conditions of producing between 0.15 and 1.5 1 / min of hydrogen at constant speed, operating at a constant temperature of between 90 and 120 ° C, depending on the conditions, during times ranging from lh to 9h The possibility of reusing the same catalyst in successive 1-hour experiments has been tested for 10 cycles. The possibility of using the in situ reactivation step proposed by this invention between each experiment has been studied. In cases where the catalyst has been completely deactivated, the possibility of carrying out an ex situ reactivation of the catalyst, previously reported in (O. Akdim, UB Demirci, P. Miele, Int. J. Hydrogen Energy, 36, 2011, 13669-13675), but only tested under working conditions that include the production of 100 ml / min of hydrogen for a maximum 5 minutes, on a catalyst that is based only on cobalt and not on cobalt-boron like the one presented in the present invention.
Ejemplo 1. Fabricación del monolito de acero oxidable que funcionará de soporte para el catalizador.  Example 1. Manufacture of stainless steel monolith that will work as a support for the catalyst.
El monolito que posteriormente se utiliza como soporte del catalizador se fabrica utilizando una hoja comercial de acero inoxidable 316, con perforaciones hexagonales de 6 mm de lado y una porosidad del 79% (Ver figura 2A) . Se corta un trozo de la hoja de 6.3 cm de lado y se enrolla hasta obtener un cilindro hueco de aproximadamente 1.3 cm de diámetro (ver figura 2A) . Ese cilindro se rellena con un trozo de hoja de 6,3 cm de lado enrollado sobre si mismo hasta 3 veces obteniendo un cilindro aproximadamente macizo. El primer cilindro hueco se rellena con el cilindro macizo obteniéndose un único cilindro que funciona como soporte del catalizador, rellenando el total del reactor (Ver figura 2B) .  The monolith that is subsequently used as a catalyst support is manufactured using a commercial 316 stainless steel sheet, with hexagonal perforations of 6 mm side and a porosity of 79% (See Figure 2A). A piece of the 6.3 cm side blade is cut and rolled until a hollow cylinder approximately 1.3 cm in diameter is obtained (see figure 2A). That cylinder is filled with a piece of 6.3 cm sheet of rolled side on itself up to 3 times obtaining an approximately solid cylinder. The first hollow cylinder is filled with the solid cylinder, obtaining a single cylinder that functions as a catalyst support, filling the reactor total (See figure 2B).
Ejemplo 2. Oxidación del monolito de acero inoxidable para aumentar la adherencia del catalizador.  Example 2. Oxidation of stainless steel monolith to increase catalyst adhesion.
Para aumentar la rugosidad de la superficie del monolito de acero inoxidable que se muestra en el ejemplo 1, se realiza una calcinación en aire estático a 900°C durante 2h. Previo a la calcinación se realiza un lavado en agua purificada sometiendo a la acción de ultrasonido durante 30 min. A continuación, se realiza el mismo lavado pero utilizando acetona. El calentamiento se realiza con una velocidad de 5°C/minuto. Finalizado el calentamiento durante 2h, se deja enfriar hasta alcanzar la temperatura ambiente. El monolito oxidado asi obtenido queda recubierto con una capa de óxido que hace que la superficie del mismo sea más rugosa que la del metal desnudo (Ver Figura 3) . Los monolitos asi oxidados son los que se utilizan como soporte para la posterior preparación de los catalizadores. Ejemplo 3. Preparación de un catalizador basado en Cobalto y Boro (Co-B) soportado sobre monolito de acero inoxidable previamente oxidado. To increase the surface roughness of the stainless steel monolith shown in example 1, a calcination is carried out in static air at 900 ° C for 2h. Prior to calcination, a wash in purified water is carried out undergoing the ultrasound action for 30 min. Then, the same washing is done but using acetone. The heating is done with a speed of 5 ° C / minute. After heating for 2 hours, let it cool until it reaches room temperature. The oxidized monolith thus obtained is coated with an oxide layer that makes its surface more rough than that of the bare metal (See Figure 3). The monoliths thus oxidized are those that are used as support for the subsequent preparation of the catalysts. Example 3. Preparation of a catalyst based on Cobalt and Boron (Co-B) supported on previously oxidized stainless steel monolith.
El catalizador basado en Cobalto y Boro (Co-B) soportado sobre el monolito previamente oxidado se prepara por reducción de una solución etanólica de CoC126H20 por una solución acuosa de borohidruro sódico estabilizado en NaOH. La solución etanólica del precursor de cobalto (CoC126H20) se prepara utilizando etanol y la concentración es de 30% p/v. El monolito previamente oxidado se sumerge en la solución etanólica del precursor de cobalto durante 5 minutos. Posteriormente, se retira de la solución y se seca bajo corriente de nitrógeno. Una vez secado, se sumerge en la solución de BHS 19% p/p estabilizada en NaOH 1% p/p durante un minuto. El monolito se retira de la solución y se lava con agua purificada, etanol y acetona y se seca bajo corriente de nitrógeno. El proceso antes descrito se repite unas 12 veces.  The catalyst based on Cobalt and Boron (Co-B) supported on the previously oxidized monolith is prepared by reduction of an ethanolic solution of CoC126H20 by an aqueous solution of sodium borohydride stabilized in NaOH. The ethanolic solution of the cobalt precursor (CoC126H20) is prepared using ethanol and the concentration is 30% w / v. The previously oxidized monolith is immersed in the ethanolic solution of the cobalt precursor for 5 minutes. Subsequently, it is removed from the solution and dried under a stream of nitrogen. Once dried, it is immersed in the 19% w / w BHS solution stabilized in 1% w / w NaOH for one minute. The monolith is removed from the solution and washed with purified water, ethanol and acetone and dried under a stream of nitrogen. The process described above is repeated about 12 times.
Para incrementar la adherencia del catalizador al soporte, sin perder actividad catalítica, se sometió a un tratamiento térmico de 2 horas en atmósfera inerte a 300°C ( 1 °C/minuto ) . Con este proceso se obtiene una masa de catalizador de 80 a 120 mg de Cobalto-Boro con una carga de 10-15mg catalizador/g monolito. La fotografía del monolito terminado se muestra en la figura 2C.  To increase the adhesion of the catalyst to the support, without losing catalytic activity, it was subjected to a 2-hour heat treatment in an inert atmosphere at 300 ° C (1 ° C / minute). With this process a catalyst mass of 80 to 120 mg of Cobalt-Boron is obtained with a charge of 10-15mg catalyst / g monolith. The photograph of the finished monolith is shown in Figure 2C.
Ejemplo 4. Proceso de acuerdo con la presente invención para producir 0.8-1.2 1/min de hidrógeno durante 1 h y 9 h a partir de la hidrólisis del borohidruro sódico en solución de hidróxido de sodio, sobre un catalizador como el del ejemplo anterior . Example 4. Process according to the present invention to produce 0.8-1.2 1 / min of hydrogen for 1 h and 9 h from the hydrolysis of sodium borohydride in sodium hydroxide solution, on a catalyst as in the previous example.
Para producir 0.8-1.2 1/min de hidrógeno se ha seleccionado una solución de BHS estabilizada con una concentración 19% p/p del mismo. Dicha solución se adiciona a una velocidad constante de 2.8 g/min, según la velocidad de producción de hidrógeno requerida, sobre el catalizador situado en el reactor, que es parte del sistema continuo, obteniéndose casi instantáneamente una producción de hidrógeno de 0.8-1.2 1/min. El flujo de hidrógeno es estable y constante a lo largo de una hora y la temperatura es constante y estable durante ese tiempo (Figura 4A) . El valor medio de la temperatura se encuentra entre 90 y 120°C. El proceso asi descrito se puede prolongar durante al menos 9 h, con una producción constante y estable de hidrógeno que es siempre igual durante las 6 primeras horas y luego se reduce al 90% respecto de la inicial (Figura 4B) . Para que durante las últimas tres horas de proceso (desde la hora 6 hasta la 9 inclusive) la actividad pudiese recuperarse al 100% de la inicial, es necesario aumentar la velocidad de agregado de solución combustible.To produce 0.8-1.2 1 / min of hydrogen, a stabilized BHS solution with a 19% w / w concentration thereof has been selected. Said solution is added at a constant speed of 2.8 g / min, according to the required hydrogen production rate, on the catalyst located in the reactor, which is part of the continuous system, obtaining a hydrogen production of 0.8-1.2 almost instantaneously 1 / min The hydrogen flow is stable and constant over an hour and the temperature is constant and stable during that time (Figure 4A). The average temperature value is between 90 and 120 ° C. The process thus described can be prolonged for at least 9 h, with a constant and stable production of hydrogen that is always the same during the first 6 hours and then is reduced to 90% with respect to the initial one (Figure 4B). So that during the last three hours of the process (from the 6th to the 9th hour inclusive) the activity could be recovered to 100% of the initial, it is necessary to increase the speed of adding fuel solution.
Ejemplo 5. Proceso de acuerdo con la presente invención para producir entre 0.3 1/min y 1.66 1/min utilizando solución estabilizada de BHS al 19% p/p y al 9% p/p. Example 5. Process according to the present invention to produce between 0.3 1 / min and 1.66 1 / min using stabilized BHS solution at 19% w / w and 9% w / w.
El sistema descrito en esta memoria es versátil en cuanto a la velocidad de producción de hidrógeno. El carácter continuo del reactor hace que la variación del flujo de combustible se traduzca en una variación en el flujo de hidrógeno con una respuesta casi instantánea y manteniendo la temperatura constante, como se ve en la Figura 5. En este ejemplo se ha alimentado el reactor continuo que contiene el catalizador basado en Cobalto y Boro (Co-B) del ejemplo 3 con: The system described herein is versatile in terms of the rate of hydrogen production. The continuous nature of the reactor means that the variation in the fuel flow results in a variation in the hydrogen flow with an almost instantaneous response and keeping the temperature constant, as seen in Figure 5. In this example the reactor has been fed continuous containing the catalyst based on Cobalt and Boron (Co-B) of Example 3 with:
i) una solución combustible de BHS estabilizado al 19% p/p con una velocidad de agregado de combustible de entre 5 y 0.8 ml/minuto. Se ha observado que la velocidad de producción de hidrógeno varia con la velocidad de agregado de combustible, y estos datos se muestran en la figura 5B . La velocidad de producción de hidrógeno se encuentra comprendida entre 0.3 1/min y 1.66 1/min y la temperatura entre 82.4 y 103.9°C (Figura 5A) ;  i) a 19% w / w stabilized BHS fuel solution with a fuel aggregate rate of between 5 and 0.8 ml / minute. It has been observed that the rate of hydrogen production varies with the rate of fuel aggregate, and these data are shown in Figure 5B. The hydrogen production rate is between 0.3 1 / min and 1.66 1 / min and the temperature between 82.4 and 103.9 ° C (Figure 5A);
ii) una solución combustible de BHS estabilizado al 9% p/p con una velocidad de agregado de combustible de entre 10 y 1.6 ml/minuto. Se ha observado que la velocidad de producción de hidrógeno varia con la velocidad de agregado de combustible, y estos datos se muestran en la figura 5D. ii) a 9% w / w stabilized BHS fuel solution with a fuel aggregate rate of between 10 and 1.6 ml / minute. It has been observed that the rate of hydrogen production varies with the rate of fuel aggregate, and these data are shown in Figure 5D.
La velocidad de producción de hidrógeno se encuentra comprendida entre 0.3 1/min y 1.43 1/min y la temperatura entre 78.6 y 85.2°C (Figura 5C) . The hydrogen production rate is found between 0.3 1 / min and 1.43 1 / min and the temperature between 78.6 and 85.2 ° C (Figure 5C).
Ejemplo 6. Proceso de lavado y reactivación in situ del catalizador del ejemplo 3 mediante protocolo de reactivación propuesto en la presente invención y su reutilización en el proceso del ejemplo 4.  Example 6. Process of washing and reactivation in situ of the catalyst of example 3 by means of the reactivation protocol proposed in the present invention and its reuse in the process of example 4.
Para reutilizar el catalizador del ejemplo 3 se procede a retirar el monolito que contiene catalizador basado en cobalto y boro (Co-B) . Debe retirarse del reactor continuo y lavarse con agua milliQ, etanol y luego secarse bajo corriente de nitrógeno, para evitar la oxidación del soporte que no estuviese cubierto por catalizador. El procedimiento de reactivación es un proceso in situ, porque consiste en poner el monolito lavado nuevamente en el reactor continuo y administrarle una cantidad de solución combustible durante unos segundos hasta que comience la evolución de hidrógeno y la temperatura alcance unos 60°C. Transcurrido el proceso de reactivación in situ, se enciende la bomba que alimenta el reactor continuo con solución combustible, y se repiten las condiciones del ejemplo 4, para dar los mismos resultados como máximo durante 5 reutilizaciones, sin contar la inicial. Luego de 6 utilizaciones, contando la inicial, el catalizador se empieza a desactivar de manera notoria (Ver Figura 6) .  To reuse the catalyst of example 3, the monolith containing catalyst based on cobalt and boron (Co-B) is removed. It must be removed from the continuous reactor and washed with milliQ water, ethanol and then dried under a stream of nitrogen, to avoid oxidation of the support that was not covered by catalyst. The reactivation procedure is an on-site process, because it consists of putting the washed monolith back into the continuous reactor and administering a quantity of combustible solution for a few seconds until the evolution of hydrogen begins and the temperature reaches about 60 ° C. After the reactivation process in situ, the pump that feeds the continuous reactor with fuel solution is turned on, and the conditions of example 4 are repeated, to give the same results for a maximum of 5 reuses, not counting the initial one. After 6 uses, counting the initial one, the catalyst begins to deactivate significantly (See Figure 6).
Ejemplo 7. Proceso de lavado y reactivación ex situ del catalizador del ejemplo 6 mediante protocolo de reactivación propuesto en la presente invención y su reutilización en el proceso del ejemplo 4.  Example 7. Ex situ washing and reactivation process of the catalyst of Example 6 by means of the reactivation protocol proposed in the present invention and its reuse in the process of Example 4.
Como se expuso en el ejemplo 6, el catalizador se puede utilizar como se propone en el ejemplo 4 y reutilizar como máximo 5 veces sin contar la inicial. Luego de esto, el catalizador se desactiva completamente, y la reactivación in situ propuesta en el ejemplo 6 ya no produce ningún resultado positivo. Se propone entonces en este ejemplo un proceso de reactivación ex situ que comprende retirar el monolito que se ha reutilizado 6 veces contando la inicial, lavarlo con agua purificada y sumergirlo en una solución ácida diluida, preferiblemente de ácido clorhídrico 10-4 M (HC1 10-4 moles/litro) . El catalizador así reactivado se puede reutilizar al menos 3 veces más con una actividad que no es idéntica a las anteriores, sino del 80% (Ver Figura 6) . As stated in example 6, the catalyst can be used as proposed in example 4 and reused a maximum of 5 times without counting the initial. After this, the catalyst is completely deactivated, and the in situ reactivation proposed in Example 6 no longer produces any positive results. It is then proposed in this example an ex situ reactivation process that includes removing the monolith that has been reused 6 times counting the initial one, washing it with purified water and immersing it in a dilute acid solution, preferably 10-4 M hydrochloric acid (HC1 10-4 mol / liter). The catalyst thus reactivated can be reused at least 3 more times with an activity that is not identical to the previous ones, but 80% (See Figure 6).

Claims

RE IVI DICACIONES RE IVI DICATIONS
1. Proceso para la producción controlada de un flujo continuo de hidrógeno, caracterizado porque comprende al menos las siguientes etapas: 1. Process for the controlled production of a continuous flow of hydrogen, characterized in that it comprises at least the following stages:
(a) agregar a velocidad constante a un reactor continuo una solución combustible que comprende entre 9% y 19% p/p de al menos un hidruro complejo estabilizado en un hidróxido, sobre un catalizador de cobalto y boro (Co-B) soportado en un monolito de acero inoxidable, donde dicho catalizador se encuentra en el interior del reactor en una cantidad en exceso comprendida entre 37 mg y 240 mg;  (a) adding at a constant speed to a continuous reactor a combustible solution comprising between 9% and 19% w / w of at least one complex hydride stabilized in a hydroxide, on a cobalt and boron (Co-B) catalyst supported in a stainless steel monolith, wherein said catalyst is inside the reactor in an excess amount comprised between 37 mg and 240 mg;
(b) una etapa de hidrólisis catalítica del hidruro complejo, dando lugar a un flujo continuo de hidrógeno; y  (b) a stage of catalytic hydrolysis of the complex hydride, resulting in a continuous flow of hydrogen; Y
(c) eliminar de manera continua los productos de la hidrólisis catalítica en forma de sal fundida.  (c) continuously remove the products of catalytic hydrolysis in the form of molten salt.
2. Proceso de acuerdo a la reivindicación 1, donde cuando solución combustible comprende un 9% p/p de al menos un hidruro complejo, la solución combustible se agrega al reactor a una velocidad comprendida entre 1.6 ml/minuto y 10 ml/minuto.  2. Process according to claim 1, wherein when the fuel solution comprises 9% w / w of at least one complex hydride, the fuel solution is added to the reactor at a rate between 1.6 ml / minute and 10 ml / minute.
3. Proceso de acuerdo a la reivindicación 1, donde cuando solución combustible comprende un 19% p/p de al menos un hidruro complejo, la solución combustible se agrega al reactor a una velocidad comprendida entre 0.8 ml/minuto y 5 ml/minuto.  3. Process according to claim 1, wherein when the fuel solution comprises 19% w / w of at least one complex hydride, the fuel solution is added to the reactor at a rate between 0.8 ml / minute and 5 ml / minute.
4. Proceso de acuerdo a la reivindicación 2, donde cuando la adición de la solución combustible se lleva a cabo a una velocidad comprendida entre 1.6 ml/minuto y 10 ml/minuto, la hidrólisis catalítica se lleva a cabo a una temperatura comprendida entre 78.6°C y 85.2°C.  4. Process according to claim 2, wherein when the addition of the fuel solution is carried out at a rate between 1.6 ml / minute and 10 ml / minute, the catalytic hydrolysis is carried out at a temperature between 78.6 ° C and 85.2 ° C.
5. Proceso de acuerdo a la reivindicación 3, donde cuando la adición de la solución combustible se lleva a cabo a una velocidad comprendida entre 0.8 ml/minuto y 5 ml/minuto la hidrólisis catalítica se lleva a cabo a una temperatura comprendida entre 82.4°C y 103.9°C. 5. Process according to claim 3, wherein when the addition of the fuel solution is carried out at a rate between 0.8 ml / minute and 5 ml / minute the Catalytic hydrolysis is carried out at a temperature between 82.4 ° C and 103.9 ° C.
6. Proceso de acuerdo a una cualquiera de las reivindicaciones anteriores, donde el hidruro complejo es borohidruro sódico. 6. Process according to any one of the preceding claims, wherein the complex hydride is sodium borohydride.
7. Proceso de acuerdo a una cualquiera de las reivindicaciones anteriores, donde el hidróxido es hidróxido de sodio en un porcentaje de 4.5% en peso de la solución .  7. Process according to any one of the preceding claims, wherein the hydroxide is sodium hydroxide in a percentage of 4.5% by weight of the solution.
8. Proceso de acuerdo a una cualquiera de las reivindicaciones anteriores, donde el reactor funciona sin refrigeración externa.  8. Process according to any one of the preceding claims, wherein the reactor operates without external cooling.
9. Proceso de acuerdo a una cualquiera de las reivindicaciones anteriores, donde el monolito de acero ha sido previamente obtenido a partir de un proceso que comprende al menos una etapa de mecanizado y de tratamiento térmico para mejorar la adherencia posterior del catalizador.  9. Process according to any one of the preceding claims, wherein the steel monolith has been previously obtained from a process comprising at least one machining and heat treatment step to improve the subsequent adhesion of the catalyst.
10. Proceso de acuerdo a la reivindicación 9, donde dicho tratamiento térmico consiste en un tratamiento a 900 °C, durante 2h.  10. Process according to claim 9, wherein said heat treatment consists of a treatment at 900 ° C, for 2h.
11. Proceso de acuerdo a una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende asimismo un proceso de reactivación in situ del catalizador de cobalto y boro soportado sobre el monolito de acero.  11. Process according to any one of the preceding claims, characterized in that it also comprises an in situ reactivation process of the cobalt and boron catalyst supported on the steel monolith.
12. Proceso de acuerdo a la reivindicación 11, donde dicho proceso de reactivación in situ comprende llevar a cabo una primera adición de solución combustible sobre el catalizador de manera previa al agregado continuo de la solución combustible.  12. Process according to claim 11, wherein said reactivation process in situ comprises carrying out a first addition of fuel solution on the catalyst prior to the continuous addition of the fuel solution.
13. Proceso de acuerdo a una cualquiera de las reivindicaciones anteriores, caracterizado porque una vez el catalizador de cobalto y boro ha perdido su actividad, el proceso comprende un proceso adicional de reactivación ex situ del catalizador. 13. Process according to any one of the preceding claims, characterized in that once The cobalt and boron catalyst has lost its activity, the process comprises an additional ex situ reactivation process of the catalyst.
14. Proceso de acuerdo a la reivindicación 13, donde dicho proceso de reactivación ex situ comprende agregar de un ácido diluido sobre el catalizador. 14. Process according to claim 13, wherein said ex situ reactivation process comprises adding a dilute acid on the catalyst.
15. Proceso de acuerdo a la reivindicación 14, donde dicho ácido diluido es ácido clorhídrico.  15. Process according to claim 14, wherein said dilute acid is hydrochloric acid.
16. Proceso de acuerdo a la reivindicación 14 o 15, donde tras la reactivación ex situ, el catalizador reactivado es reutilizado en el proceso. 16. Process according to claim 14 or 15, wherein after ex situ reactivation, the reactivated catalyst is reused in the process.
17. Uso del flujo continuo de hidrógeno obtenido a partir del proceso de acuerdo a una cualquiera de las reivindicaciones 1 a 16 para producir energía.  17. Use of the continuous flow of hydrogen obtained from the process according to any one of claims 1 to 16 to produce energy.
18. Uso, de acuerdo a la reivindicación 17, donde dicha producción de energía se lleva a cabo mediante una pila de combustible .  18. Use according to claim 17, wherein said energy production is carried out by a fuel cell.
19. Instalación para llevar a cabo un proceso de acuerdo a una cualquiera de las reivindicaciones 1 a 16, caracterizada porque comprende al menos:  19. Installation for carrying out a process according to any one of claims 1 to 16, characterized in that it comprises at least:
un tanque de almacenamiento (1) de solución de combustible ;  a storage tank (1) of fuel solution;
un reactor continuo (3);  a continuous reactor (3);
medios dispensadores (2) de la solución de combustible dentro del reactor continuo (3);  dispensing means (2) of the fuel solution within the continuous reactor (3);
un tanque separador (4) de la corriente de hidrógeno y de los productos de hidrólisis.  a separating tank (4) of the hydrogen stream and of the hydrolysis products.
medios de secado de la corriente de hidrógeno (5) separada en el tanque separador (4); means for drying the hydrogen stream (5) separated in the separator tank (4);
20. Instalación de acuerdo a la reivindicación 19, caracterizada porque comprende adicionalmente medios dispensadores de la corriente de hidrógeno a al menos una celda de combustible (6) . 20. Installation according to claim 19, characterized in that it additionally comprises means for dispensing the hydrogen stream to at least one fuel cell (6).
21. Instalación de acuerdo a la reivindicación 19 o 20, donde el reactor continuo (3) comprende los siguientes elementos :  21. Installation according to claim 19 or 20, wherein the continuous reactor (3) comprises the following elements:
un cuerpo cilindrico (7);  a cylindrical body (7);
una tapa con apertura y cierre (8) para regular el suministro de solución combustible;  a lid with opening and closing (8) to regulate the supply of fuel solution;
un dispositivo de salida (9) de la corriente de hidrógeno y de los productos de hidrólisis.  an output device (9) of the hydrogen stream and of the hydrolysis products.
22. Instalación de acuerdo a la reivindicación 21, donde dicho reactor continuo (3) comprende asimismo al menos un termopar (10) .  22. Installation according to claim 21, wherein said continuous reactor (3) also comprises at least one thermocouple (10).
23. Instalación de acuerdo a la reivindicación 21 o 22, donde el reactor continuo (3) está construido de un material ligero y transparente que consiste en polimetilmetacrilato .  23. Installation according to claim 21 or 22, wherein the continuous reactor (3) is constructed of a light and transparent material consisting of polymethylmethacrylate.
24. Monolito de acero adecuado para su uso como soporte de un catalizador del proceso de acuerdo a una cualquiera de las reivindicaciones 1 a 16, donde dicho monolito es obtenido a partir de un proceso que comprende al menos una etapa de mecanizado y de tratamiento térmico para mejorar la adherencia del catalizador.  24. Steel monolith suitable for use as a support for a process catalyst according to any one of claims 1 to 16, wherein said monolith is obtained from a process comprising at least one machining and heat treatment step to improve catalyst adhesion.
25. Uso de un monolito de acero de acuerdo a la reivindicación 24 como soporte de un catalizador del proceso de acuerdo a una cualquiera de las reivindicaciones 1 a 16.  25. Use of a steel monolith according to claim 24 as a support for a process catalyst according to any one of claims 1 to 16.
PCT/ES2013/070083 2012-02-14 2013-02-12 Process for the production of hydrogen by means of catalytic hydrolysis in a continuous reactor that is used to perform the method WO2013121066A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201230221A ES2419506B1 (en) 2012-02-14 2012-02-14 HYDROGEN PRODUCTION PROCESS THROUGH CATALYTIC HYDROLYSIS IN A CONTINUOUS REACTOR TO CARRY OUT THIS PROCEDURE
ESP201230221 2012-02-14

Publications (1)

Publication Number Publication Date
WO2013121066A1 true WO2013121066A1 (en) 2013-08-22

Family

ID=47913453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070083 WO2013121066A1 (en) 2012-02-14 2013-02-12 Process for the production of hydrogen by means of catalytic hydrolysis in a continuous reactor that is used to perform the method

Country Status (2)

Country Link
ES (1) ES2419506B1 (en)
WO (1) WO2013121066A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050132640A1 (en) * 2003-12-19 2005-06-23 Kelly Michael T. Fuel blends for hydrogen generators
EP2008713A2 (en) * 2007-06-19 2008-12-31 Afton Chemical Corporation Nanoalloys in emissions control after-treatment system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100560477C (en) * 2007-08-31 2009-11-18 浙江大学 The preparation method of the tubular reactor of hydrogen production by sodium borohydride-hydrazine mixed fuel
ES2387171B1 (en) * 2010-12-21 2013-08-13 Abengoa Hidrogeno, S.A. HYDROGEN PRODUCTION PROCESS THROUGH CATALYZED HYDROLYSIS OF A COMPLEX HYDROIDE, AND INSTALLATION WITH SEMICONTINUOUS REACTOR TO CARRY OUT THE PROCEDURE.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050132640A1 (en) * 2003-12-19 2005-06-23 Kelly Michael T. Fuel blends for hydrogen generators
EP2008713A2 (en) * 2007-06-19 2008-12-31 Afton Chemical Corporation Nanoalloys in emissions control after-treatment system

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
ARZAC G M ET AL: "Optimized hydrogen generation in a semicontinuous sodium borohydride hydrolysis reactor for a 60W-scale fuel cell stack", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 196, no. 9, 25 October 2010 (2010-10-25), pages 4388 - 4395, XP028148490, ISSN: 0378-7753, [retrieved on 20101103], DOI: 10.1016/J.JPOWSOUR.2010.10.073 *
B.H. LIU; Z.P. LI, J. POWER SOURCES, vol. 187, 2009, pages 527 - 534
B.H. LIU; Z.P. LI; S. SUDA, J. ALLOYS AND COMPD., vol. 468, 2009, pages 493 - 493
E.Y MARRERO-ALFONSO ET AL., INT. J. HYDROGEN ENERGY, vol. 32, 2007, pages 4723 - 4730
G.M. ARZAC ET AL., JOURNAL OF POWER SOURCES, vol. 196, 2011, pages 4388 - 4395
H.B. DAIM ET AL., J. POWER SOURCES, vol. 177, 2008, pages 17 - 23
H.TIAN; Q. GUO; D.XU, J., POWER SOURCES, vol. 195, 2010, pages 2136 - 2142
J. ZHAO; H.MUA, J. CHEN, INT. J. HYDROGEN ENERGY, vol. 32, 2007, pages 4711 - 4716
LEE ET AL: "A structured Co-B catalyst for hydrogen extraction from NaBH4 solution", CATALYSIS TODAY, ELSEVIER, NL, vol. 120, no. 3-4, 24 January 2007 (2007-01-24), pages 305 - 310, XP005857754, ISSN: 0920-5861, DOI: 10.1016/J.CATTOD.2006.09.019 *
M. RAKAP; S. OZKAR, APPL. CATAL. B., vol. 91, 2009, pages 21 - 29
O.AKDIM; U.B. DEMIRCI; P. MIELE, INT. J. HYDROGEN ENERGY, vol. 36, 2011, pages 13669 - 13675
P. KRISHNAN; S.G. ADVANI; A.K. PRASAD, APP. CAT. B. ENVIRONMENTAL, vol. 86, 2009, pages 137 - 144
S.J. KIM ET AL., J. POWER SOURCES, vol. 170, 2007, pages 412 - 418
S.S. MUIR; X. YAO, INT J. HYDROGEN ENERGY, vol. 36, 2011, pages 5983 - 5997
U.B DEMIRCI ET AL., FUEL CELLS, vol. 3, 2010, pages 335 - 350
U.B DEMIRCI, FUEL CELLS, vol. 3, 2010, pages 335 - 350
U.B. DEMIRCI ET AL., PHYS. CHEM. CHEM, vol. 53, 2010, pages 1870 - 1879
U.B. DEMIRCI; P.MIELE, PHYS. CHEM. CHEM. PHYS., vol. 12, 2010, pages 14665 - 14651

Also Published As

Publication number Publication date
ES2419506A1 (en) 2013-08-20
ES2419506B1 (en) 2014-12-16

Similar Documents

Publication Publication Date Title
Xu et al. Integrating the g-C3N4 nanosheet with B–H bonding decorated metal–organic framework for CO2 activation and photoreduction
Ouyang et al. Hydrogen production via hydrolysis and alcoholysis of light metal-based materials: a review
Cui et al. Monolithically integrated CoP nanowire array: An on/off switch for effective on-demand hydrogen generation via hydrolysis of NaBH 4 and NH 3 BH 3
Tahir et al. Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels
Soler et al. Synergistic hydrogen generation from aluminum, aluminum alloys and sodium borohydride in aqueous solutions
Wang et al. Hydrogen generation from alkaline NaBH4 solution using nanostructured Co–Ni–P catalysts
Nunes et al. Hydrogen generation and storage by aqueous sodium borohydride (NaBH4) hydrolysis for small portable fuel cells (H2–PEMFC)
Al-Enizi et al. Electrospun carbon nanofiber-encapsulated NiS nanoparticles as an efficient catalyst for hydrogen production from hydrolysis of sodium borohydride
Yang et al. Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature
CN102513120A (en) Hydrogen production catalyst as well as preparation method thereof and catalytic hydrogen production method using same
Fangaj et al. The use of metallurgical waste sludge as a catalyst in hydrogen production from sodium borohydride
ES2387171B1 (en) HYDROGEN PRODUCTION PROCESS THROUGH CATALYZED HYDROLYSIS OF A COMPLEX HYDROIDE, AND INSTALLATION WITH SEMICONTINUOUS REACTOR TO CARRY OUT THE PROCEDURE.
CN104148084A (en) Preparation of nano porous quaternary alloy catalyst and application thereof in production of hydrogen by virtue of ammonia borane hydrolysis
Chen et al. Metal oxides for hydrogen storage
Ma et al. Enhanced hydrogen generation performance of CaMg 2-based materials by ball milling
Halim Yap et al. Study of the Hydrogen Storage Properties and Catalytic Mechanism of a MgH2–Na3AlH6 System Incorporating FeCl3
CN207664150U (en) Electric generating station system based on magnesium-base hydrogen storage material
ES2419506B1 (en) HYDROGEN PRODUCTION PROCESS THROUGH CATALYTIC HYDROLYSIS IN A CONTINUOUS REACTOR TO CARRY OUT THIS PROCEDURE
Hwang et al. NaBH 4 Hydrolysis Reaction Using Co-PB Catalyst Supported on FeCrAlloy
CN102125836A (en) Monolithic catalyst for producing hydrogen by hydroboron hydrolysis and preparation method thereof
Keskin et al. Recommendations for ammonia borane composite pellets as a hydrogen storage medium
CN104056638A (en) Catalyst for hydrogen production by sodium borohydride solution hydrolysis and preparation method thereof
CN101602485A (en) The NaAlH of Ce hydride catalytic 4Composite hydrogen storage material and preparation method
CN202250172U (en) Special air regeneration device for totally closed power supply system of mine rescue capsule
CN103303864A (en) Method and device for preparing hydrogen by hydrolysis of hydroboron, and application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13711062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13711062

Country of ref document: EP

Kind code of ref document: A1