WO2013124454A1 - Method for producing a graphite film, a graphite film produced using this method, and the use thereof - Google Patents

Method for producing a graphite film, a graphite film produced using this method, and the use thereof Download PDF

Info

Publication number
WO2013124454A1
WO2013124454A1 PCT/EP2013/053623 EP2013053623W WO2013124454A1 WO 2013124454 A1 WO2013124454 A1 WO 2013124454A1 EP 2013053623 W EP2013053623 W EP 2013053623W WO 2013124454 A1 WO2013124454 A1 WO 2013124454A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
graphite foil
salt
less
μιτι
Prior art date
Application number
PCT/EP2013/053623
Other languages
German (de)
French (fr)
Inventor
Oswin ÖTTINGER
Rainer Schmitt
Bastian Hudler
Sylvia Mechen
Werner Langer
Jürgen Bacher
Original Assignee
Sgl Carbon Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sgl Carbon Se filed Critical Sgl Carbon Se
Publication of WO2013124454A1 publication Critical patent/WO2013124454A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/048Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material made of particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/12Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering
    • F16J15/121Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement
    • F16J15/122Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement generally parallel to the surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/12Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering
    • F16J15/121Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement
    • F16J15/126Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement consisting of additions, e.g. metallic fibres, metallic powders, randomly dispersed in the packing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a process for producing a graphite foil according to the preamble of claim 1, a graphite foil prepared by this process and their use.
  • Graphite foil is conventionally produced by compression of so-called graphite expandate.
  • Natural graphite is transformed by treatment with acid to graphite salt, which is an intercalation compound of graphite and the corresponding acid.
  • graphite salt is an intercalation compound of graphite and the corresponding acid.
  • graphite salt is made to swell by heat treatment, for example, 200 times the original volume.
  • the resulting flakes of expanded natural graphite hereinafter also called graphite expandate
  • with a very low bulk density of, for example, 1 to 20 g / l can interlock by pressing into each other and form a mechanically stable, but very flexible graphite foil without the addition of binder.
  • graphite foils are usually produced in the thickness range of 0.5 to 3.0 mm. These graphite foils are widely used, for example for seals or as heat spreaders. Due to a high anisotropy of the thermal conductivity by aligning the graphite particles and thus levels during pressing, graphite foil as heat spreader can dissipate and distribute heat very well. This is useful, for example, to avoid local overheating in a variety of applications, such as screens.
  • JP-A-61-133865 proposes a process for producing thin graphite films below 0.254 mm (10 mils) by applying an adhesive layer and expanded graphite to a polyester film, metal foil or paper tape before the graphite foil becomes the desired one Thickness of 0.254 mm is rolled out.
  • the method has the disadvantage that an adhesive layer is necessary, which makes it difficult to separate a resulting graphite foil from the carrier material.
  • no homogeneous thicknesses below 0.254 mm or basis weights below 200 g / m 2 can be achieved.
  • the object of the invention is to overcome the stated problems of the prior art, in particular to provide a method with which a graphite foil of high quality with a basis weight less than 200 g / m 2 , in particular less than 150 g / m 2 , can be produced.
  • a self-supporting graphite foil in particular with a thickness of less than 200 ⁇ , be continuously produced.
  • a process for the production of a graphite foil from at least partially compressed graphite expandate comprising an expanding step of graphite salt and a compressing step of the expanding graphite expander, characterized in that in the expansion step graphite salt particles are expanded on a base to graphite expander, the graphite expander remains on the base and in the compression step on the base to the graphite foil is compressed.
  • the process according to the invention is characterized in that, in the expansion step, graphite salt particles are expanded on a support to expand graphite, the graphite expander remains on the support and is compressed on the support to the graphite foil in the compression step.
  • a particularly homogeneous graphite foil can be produced, even with a small thickness of, for example, less than 200 ⁇ m and with a low basis weight, such as below 150 g / m 2 .
  • the expansion graphite particles can be compacted without having to be transported to a compression unit physically separate from the manufacturing location, as in conventional manufacturing processes.
  • the homogeneity of the graphite foil relates both to its thickness and basis weight as well as to other properties, such as its thermal conductivity in the film plane and perpendicular to the film plane, and its mechanical strength, in particular its tensile strength.
  • a further advantage of the method according to the invention is that it allows a self-supporting graphite foil to be obtained even with a very low basis weight.
  • self-supporting means that, because of the high intrinsic stability of the resulting graphite foil, no second layer is necessary to support the graphite foil obtained by compression for handling, rather, the graphite foil can be removed from the substrate without remaining attached to it
  • This unsupported property is advantageously possible due to the surprisingly high strength of the graphite foil according to the invention, even at low thicknesses. that the graphite expandate particles are not moved after their expansion and therefore are not damaged before compression or at least hardly damaged.
  • the expansion step and / or the compression step are continuous. This is possible, in particular, in that the graphite pandate formed on the substrate remains thereon until the compression step.
  • a continuous process is especially advantageous from the point of view of process economics and thus of economic efficiency, as well as consistent quality.
  • a continuous process should not exclude a semi-continuous process, which includes, for example, a batchwise operation.
  • individual documents can be sprinkled with graphite salt, the graphite salt are expanded on the substrate to Graphitexpandatpizaten and the Graphitexpandatpizate be pressed on the individual documents each to a single graphite foil.
  • the process as such can be carried out continuously in that the steps of sprinkling with graphite salt, expansion and compression take place continuously.
  • the compressing step comprises a calendering step.
  • a calendering step This makes it possible to carry out a continuous process in a particularly advantageous manner by compressing the graphite expandate particles on the base or the underlay continuously between calendering rolls and graphite foil.
  • graphite expandate is semi-continuously pressed onto the backing.
  • the pad is designed as a transport belt. This advantageously supports a continuous implementation of the method according to the invention.
  • the conveyor belt can preferably be formed as an endless belt, which is circumferentially guided, for example via deflection rollers, and in particular arranged and designed to be continuously drivable.
  • Preferred materials for the conveyor belt are, for example, metal, fiber materials containing, for example, metal or ceramic fibers, or other known temperature-resistant materials suitable for withstanding the expansion treatment associated with conventional heating devices, such as continuous ovens
  • the acid which is used for the preparation of the graphite salt can be selected specifically so that only a small increase in temperature for expanding treatment is necessary.
  • organic acids such as acetic acid
  • acetic acid can be used. This allows the use of relatively temperature-sensitive materials for the conveyor belt, such as non-high temperature resistant plastics. Using common acids such as sulfuric acid or nitric acid, correspondingly higher temperatures are used for expansion, necessitating more temperature resistant materials for the conveyor belt.
  • conventional types of heating can be used to expand the graphite salt. This can be advantageous
  • Convection heaters and / or radiators from the group consisting of infrared radiator, microwave radiator and laser, but also use induction heating.
  • the heaters mentioned can be combined as needed.
  • the graphite salt is applied to the substrate with a basis weight of less than 200 g / m 2 , more preferably with a basis weight of less than 150 g / m 2 , in particular less than 100 g / m 2 , in particular from 50 g / m 2 to 100 g / m 2 .
  • a method according to the invention can also be advantageously used for the production of graphite foil, which despite the advantages of the method according to the invention has defects, in particular at extremely low basis weights.
  • a graphite foil may be suitable for specific applications. Such applications in which a flat continuous graphite foil is not necessarily required, for example, a composite material of a plastic film and a graphite foil according to the invention. Due to a large number of defects even a net-like graphite foil can be created.
  • the particle size of the graphite salt particles to be applied to the substrate is preferably less than 50 mesh, particularly preferably less than 80 mesh. Such small particles can be applied particularly evenly on the substrate.
  • graphite salt particles with a particle size of 100 mesh and smaller may also be preferred if expansion methods are used which operate with heating elements of high energy density, such as lasers or induction heating elements, because their high energy input makes it possible to expand even with such small graphite salt particles. which is usually difficult to do otherwise
  • the graphite salt is scattered onto the substrate and / or knife-coated.
  • This is a particularly simple process step, which also leads to particularly homogeneous layers of graphite salt and thus to particularly homogeneous graphite films, in particular with respect to the local thickness and density.
  • the graphite salt is applied by means of a powder scattering unit.
  • the powder scattering unit may comprise an application brush, an applicator roll, a vibrating plate and / or a perforated plate, as well as all other known scattering devices suitable for the graphite salt particles.
  • a combination of multiple scattering devices may allow for a multi-stage littering process by already scattering graphite salt particles evenly onto a second scattering device, such as a perforated plate, by a first spreading device, such as an applicator roll.
  • the second scattering device further homogenizes the distribution of the graphite salt particles ultimately applied to the backing.
  • graphite salt particles can be scattered and / or geräkelt by a perforated plate.
  • the object of the invention is further achieved with a graphite foil according to claim 1 1, which is produced by the method according to the invention.
  • Advantageous developments of the graphite foil according to the invention are given in the dependent claims 12 to 17.
  • the graphite foil according to the invention preferably has a weight per unit area of less than 150 g / m 2 , particularly preferably less than 100 g / m 2 , in particular less than 50 g / m 2 , in particular between 30 and 50 g / m 2 .
  • These low basis weights can surprisingly be realized with the process according to the invention. They open up a large number of new applications for graphite foils, which, for example, enable the miniaturization of structures.
  • the graphite foil has a thickness between 10 ⁇ and 150 ⁇ , more preferably between 15 ⁇ and 100 ⁇ , in particular between 20 ⁇ and 60 ⁇ . This small thickness as well as the low basis weight is made possible by the method according to the invention.
  • the correlation of the basis weight with the thickness of the graphite foil produced according to the invention is in particular the following: 100 g / m 2 : 50-1000 ⁇ , 50 g / m 2 : 25-500 ⁇ , 30 g / m 2 : 15-300 ⁇ .
  • the deviation from the average basis weight on 100 mm 2 large faces less than 15%, more preferably less than 10%, most preferably less than 5%. Such low fluctuations of the average basis weight are possible by the method according to the invention.
  • the graphite foil may form a laminate with at least one plastic film.
  • a graphite foil according to the invention in particular a very low basis weight and / or thickness, can be advantageously reinforced.
  • self-supporting graphite foils can also be purposefully provided with additional properties by lamination with a plastic film, such as higher impermeability perpendicular to the film plane.
  • PET polyethylene terephthalate
  • PET polyolefins
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PS polystyrene
  • polyester polyester
  • PI polyimide
  • fluoroplastics such as PVDF and PTFE
  • PDA polylactide
  • CA cellulose acetate
  • starch blends starch blends
  • the graphite foil and the plastic film are connected to each other by means of an adhesive.
  • the adhesive is preferably an adhesive from the group consisting of acrylates, polysiloxanes, polyurethanes, polyamides, acetates and epoxy resins in question.
  • graphite foil and plastic foil are adhesively bonded together. This can be done for example by partial melting or sintering of the plastic film on the graphite foil (ie welding). Apart from supporting the graphite foil by the plastic film, for example, a leak perpendicular to the film plane can be prevented.
  • a perforated plastic film can also be advantageous.
  • the perforation is, for example, evenly distributed over the plastic film and has, for example, an area ratio between 10 and 80%.
  • the hole diameter may advantageously be between 0.25 and 2 mm, but depending on the use of the graphite foil, other hole diameters may also be advantageous.
  • a film according to the invention in particular produced by a process according to the invention, can be used advantageously for a number of uses.
  • the uses according to the invention are not exclusively, but preferably uses, which are made possible by the small thickness of the graphite foil according to the invention with high homogeneity.
  • a first use according to the invention relates to the use in battery structures, such as heat dissipater and distributor and as a current collector in secondary batteries (ie rechargeable batteries), which is particularly space-saving formed with a small thickness of the graphite foil and the use of alternative
  • Electrolyte systems allows that can not or only partially be used in previously used collectors. Examples include the cathode side of a lithium-ion battery or the electrodes in EDLCs (electric double-layer capacitor, supercapacitors) in which aluminum-based current conductors can be advantageously replaced, or other applications in capacitor structures.
  • EDLCs electro double-layer capacitor, supercapacitors
  • active material which may be, for example, electrochemically active material, but also about phase change material for storing heat and / or cold.
  • a possible large number of imperfections in extremely thin graphite foils can then be advantageously taken into account if - as in the case of current flow - missing graphite material hardly any influence on the desired properties - here the electrical conductivity within the
  • Graphitfolienebene - has or the amount of active material of the homogeneity of the film can be adjusted accordingly.
  • Another use according to the invention is the use of the graphite foil according to the invention as resistance heating. This is particularly advantageous because with a small thickness of the graphite foil already at low currents, a strong heating occurs. Resistance heating can be used for conventional heaters such as hotplates, hot plates and the like. But it can also be provided with large-scale components, such as aircraft wings or rotor blades, which can be easily de-icing. Also, electric blankets can be provided with the graphite foil according to the invention as a resistance heating element. A small thickness of the graphite foil allows a low rigidity of the heating blanket.
  • Yet another use according to the invention is the use of graphite foil in gaskets.
  • Here is a small thickness particularly advantageous because the
  • volume leakage of a seal decreases in proportion to its thickness. Without losing the typical properties of a graphite foil, such as adaptability, compressibility and springback, as well as low creep behavior, the execution of a low thickness or low basis weight foil may result in loss of performance
  • the particularly homogeneous thickness and density distribution of the graphite foil according to the invention allows the applications mentioned even with a small thickness of the graphite foil with very high quality and particularly low quality variations.
  • a thin graphite foil as an outer layer in a multi-layered construction of a gasket with a metal reinforcement also acts as an anti-adhesion layer of the multi-layered structure when, for example, it is applied to the metal directly or another outer foil.
  • FIG. 1 shows a schematic side view of an apparatus for carrying out the method according to the invention
  • Fig. 2 a schematic side view of a Aufrereuvotechnisch for applying graphite salt on a transport pad.
  • graphite salt 2 is scattered on a conveyor belt 1 as a base.
  • GHS salt "SS3-low ash-PT" from AirWater Chemicals is used as graphite salt 2.
  • the particle size of the individual graphite salt particles 3 in the present exemplary embodiment is 50 mesh, ie all graphite salt particles 3 can pass through a sieve of mesh size 300 ⁇ m 2 is scattered by means of a powder scattering unit 4.
  • the latter has a storage container 5, an application roller 6 and an application brush 7. Through an opening 8 in FIG. 1
  • Feed tank 5 emerges graphite salt 2 from the feed tank 5 down and single Graphitsalzpumble 3 come to lie in spaces 9 between individual teeth 10 of the applicator roll 6. With further rotation of the applicator roll 6, the graphite salt particles 3 fall on the conveyor belt. 1
  • the application brush 7 presses against the applicator roll 6 and on the one hand prevents the graphite salt particles 3 from falling out too early from the interspaces 9 and, on the other hand, promotes targeted removal of the graphite salt particles 3 from the interstices 9.
  • the graphite salt particles 3 can be applied to the conveyor belt 1 in a targeted and very uniform manner become.
  • a basis weight of the resulting layer 13 of graphite salt 2 can be adjusted.
  • a basis weight of the graphite salt particles 3 of 75 g / m 2 is set.
  • a perforated plate 22 is arranged below the applicator roll 6, onto which the graphite salt particles 3 fall. len, and that - possibly in conjunction with a scraper (not shown) which presses the graphite salt particles 3 through the perforated plate 22 - allows an even more targeted application of graphite salt particles 3 on the conveyor belt 1.
  • the layer 13 With the feed rate 12, the layer 13 is further transported and enters a heating zone 14, in which heating elements 15 are arranged.
  • the heating elements 15 are in this example conventional radiant heaters, which are arranged over 2 m in length. The radiant heaters 15 heat the conveyor belt 1 at about 200 ° C from below.
  • infrared radiators are installed above the conveyor belt, which can generate temperatures of over 500 ° C. Due to the injected heat from above and below the graphite salt 2 is expanded, with sulfate as the intercalation compound gaseous sulfuric acid is formed, which expands the graphite salt by 300 to 400 times to graphite expandate 16. This is shown schematically in FIG. 1 as a continuously thickening layer 13, wherein the thickness profile does not run so uniformly in reality. In particular, when using graphite salt, which was prepared with organic acids, a heat input from above can be sufficient for the expansion of the graphite salt.
  • heating elements 15 microwave emitters, infrared radiators, circulating air heaters and similar heating elements, but also lasers, such as carbon dioxide laser, can be used and combined as needed and design of the entire system.
  • the heating elements 15 can be arranged above and below the conveyor belt 1, wherein the thermal conductivity and other material properties of the conveyor belt, such as heat resistance, chemical resistance u. ⁇ . must be taken into account.
  • ceramic and stainless steel strips are suitable for inductive expansion.
  • the 60 cm wide conveyor belt 1 in this example for example, metal bands in question, for example made of steel.
  • CFRP tape can also be used.
  • the expansion sleeve is followed by a compression step in the feed direction. This is carried out continuously in this example as already the Aufrechudsritt and the expansion step.
  • the layer 13 of graphite expander 16 passes through a calendering device 17 in a calendering step, which contains several calendering rolls 18.
  • the desired thickness of the resulting graphite foil 19 can be adjusted.
  • Several calendering roller pairs 18 can be arranged one behind the other (not shown) in order to produce particularly thin graphite foils 19 in a particularly gentle manner.
  • the graphite foil 19 is removed from the original tape 1 and rolled up.
  • the graphite foil 19 can be integrated into the production process prior to rolling up or, after being rolled up, be densified in separate steps, laminated to plastic film, finished and / or impregnated. These and other suitable steps can advantageously be combined with each other, repeated, and tailored to each other.
  • the conveyor belt 1 is guided over a plurality of pulleys 20 back to the Aufrereuvorraum 4.
  • Clamping devices 21 serve to adjust the tension of the transport belt 1 in a targeted manner.
  • the obtained graphite foil 19 has in the present embodiment
  • Basis weight of 62 g / m 2 The difference to the basis weight of the graphite salt particles 3 results from the removal of the volatiles during the expansion.
  • the graphite foil 19 has no holes, which proves the homogeneity of the layer 13 of graphite salt 2 and the resulting graphite foil 19.
  • the thickness of the graphite foil 19 is at 70 ⁇ , the tensile strength is 2.8 MPa in the longitudinal direction, in the transverse direction 2.7 MPa.
  • the bulk density is 0.9 g / cm 3 .
  • the thickness of the layer 13 and thus of the graphite foil 19 is varied by varying the parameters feed rate 12 and rotational speed of the application roller 6.
  • a Produce graphite foil with a thickness of 35 ⁇ at a basis weight of 35 g / m 2 a Produce graphite foil with a thickness of 35 ⁇ at a basis weight of 35 g / m 2 .
  • the resulting graphite foil 19 is wound up at the end of the process and placed in a separate unit (not shown) with a Mylar® film under heat and pressure, i. by welding, laminated to a composite foil.
  • a plastic film is adhered, for example with an acrylate resin as an adhesive, which is sprayed, for example, surface.

Abstract

The invention relates to a method for producing a graphite film consisting at least partially of compressed graphite expandate, comprising an expanding step of graphite salt and a compressing step of the graphite expandate that is formed in the expanding step. In the expansion step, graphite salt particles are expanded on a base into graphite expandate, the graphite expandate remains on the base and is compressed on the base in the compressing step into the graphite film. The invention further relates to a graphite film produced using this method and to the use thereof.

Description

VERFAHREN ZUR HERSTELLUNG EINER GRAPHITFOLIE, EINE MIT DIESEM VERFARHREN HERGESTELLTE GRAPHITFOLIE, UND DEREN VERWENDUNG  METHOD FOR THE PRODUCTION OF A GRAPHITE FILM, A GRAPHITE FILM MANUFACTURED THEREOF, AND THEIR USE
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Graphitfolie gemäß dem Oberbegriff von Anspruch 1 , eine mit diesem Verfahren hergestellte Graphitfolie und deren Verwendung. The present invention relates to a process for producing a graphite foil according to the preamble of claim 1, a graphite foil prepared by this process and their use.
Graphitfolie wird herkömmlich durch Verpressen von sogenanntem Graphitexpandat hergestellt. Dabei wird Naturgraphit durch Behandlung mit Säure zu Graphitsalz umgewandelt, das eine Interkalationsverbindung aus Graphit und der entsprechenden Säure darstellt. Diese Graphiteinlagerungsverbindungen (im Folgenden nur noch kurz mit Graphitsalz bezeichnet) werden durch Wärmebehandlung zu einem Aufblähen gebracht, wobei beispielsweise das 200-fache des Ausgangsvolumens erzielt wird. Die dabei entstehenden Flocken aus expandiertem Naturgraphit (im Folgenden auch Graphitexpandat genannt) mit einer sehr niedrigen Schüttdichte von beispielsweise 1 bis 20 g/l können durch Pressen ineinander verhaken und bilden auch ohne Zugabe von Binder eine mechanisch stabile, aber sehr flexible Graphitfolie. Graphite foil is conventionally produced by compression of so-called graphite expandate. Natural graphite is transformed by treatment with acid to graphite salt, which is an intercalation compound of graphite and the corresponding acid. These graphite intercalation compounds (hereinafter referred to as graphite salt for short) are made to swell by heat treatment, for example, 200 times the original volume. The resulting flakes of expanded natural graphite (hereinafter also called graphite expandate) with a very low bulk density of, for example, 1 to 20 g / l can interlock by pressing into each other and form a mechanically stable, but very flexible graphite foil without the addition of binder.
Herkömmlich werden Graphitfolien meist im Dickenbereich von 0,5 bis 3,0 mm hergestellt. Diese Graphitfolien finden breite Anwendung, beispielsweise für Dichtungen oder als Wärmeverteiler. Aufgrund einer hohen Anisotropie der Wärmeleitfähigkeit durch ein Ausrichten der Graphitpartikel und damit -ebenen beim Verpressen kann Graphitfolie als Wärmeverteiler sehr gut Wärme abführen und verteilen. Dies ist beispielsweise zum Vermeiden lokaler Überhitzungen bei einer Vielzahl von Anwendungen, wie bei Bildschirmen, von Vorteil. Conventionally, graphite foils are usually produced in the thickness range of 0.5 to 3.0 mm. These graphite foils are widely used, for example for seals or as heat spreaders. Due to a high anisotropy of the thermal conductivity by aligning the graphite particles and thus levels during pressing, graphite foil as heat spreader can dissipate and distribute heat very well. This is useful, for example, to avoid local overheating in a variety of applications, such as screens.
Graphitfolien geringerer Dicke als 0,5 mm herzustellen, insbesondere mit weniger als 0,2 mm Dicke, ist bisher nur mit großem technischem Aufwand und insbesondere bei geringen Dicken mit nicht optimalen Qualitäten gelungen. Die DE 690 12 675 T2 be- schreibt eine Graphitfolie mit einer Dicke von unter 0,2 mm, die dadurch hergestellt wird, dass in Abwandlung des oben beschriebenen Verfahrens Graphitsalz durch unmittelbares Einbringen in eine heiße Zone sehr schnell aufgeheizt wird. Mit diesem Verfahren ist insbesondere bei sehr dünnen Folien bezogen auf die Folienfläche eine Homogenität der mechanischen Festigkeit nur schwer einzuhalten. To produce graphite foils lesser thickness than 0.5 mm, in particular less than 0.2 mm thickness, has previously succeeded only with great technical effort and especially at low thicknesses with non-optimal qualities. DE 690 12 675 T2 describes a graphite foil with a thickness of less than 0.2 mm, which is produced by heating graphite salt very quickly by direct introduction into a hot zone as a modification of the method described above. With this In particular with very thin films, the process is difficult to maintain a homogeneity of the mechanical strength in relation to the film surface.
Die JP-A-61 -133865 schlägt ein Verfahren zur Herstellung von dünnen Graphitfolien unter 0,254 mm (10 mil) vor, bei dem eine Haftschicht und expandierter Graphit auf einen Polyesterfilm, eine Metallfolie oder ein Papierband aufgetragen werden, bevor die Graphitfolie zu der gewünschten Dicke von 0,254 mm ausgewalzt wird. Das Verfahren hat den Nachteil, dass eine Haftschicht nötig ist, die ein Trennen einer entstehenden Graphitfolie von dem Trägermaterial erschwert. Außerdem sind mit dem Verfahren keine homogenen Dicken unter 0,254 mm oder Flächengewichte unter 200 g/m2 erzielbar. JP-A-61-133865 proposes a process for producing thin graphite films below 0.254 mm (10 mils) by applying an adhesive layer and expanded graphite to a polyester film, metal foil or paper tape before the graphite foil becomes the desired one Thickness of 0.254 mm is rolled out. The method has the disadvantage that an adhesive layer is necessary, which makes it difficult to separate a resulting graphite foil from the carrier material. In addition, with the method no homogeneous thicknesses below 0.254 mm or basis weights below 200 g / m 2 can be achieved.
Bei einer herkömmlichen Expansion von Graphitsalz in einem Flammrohr und Überführen des entstehenden Graphitexpandats über einen Fallschacht in einen Vorverdichter, der anschließend über Kalandrierwalzen eine erste Verdichtung des Expandates vornimmt, lässt sich die Menge an Graphitexpandatpartikeln bei geringen Flächengewichten schlecht steuern. Insbesondere schwer zu beherrschende Strömungsverhältnisse in dem Fallschacht bzw. Vorverdichter bedingen bei geringen Expandatmengen ein stark schwankendes Flächengewicht. In a conventional expansion of graphite salt in a flame tube and transferring the resulting Graphitexpandats via a chute into a supercharger, which then makes a first compaction of the expandate on calender rolls, the amount of graphite expandate particles can be controlled poorly at low basis weights. In particular, difficult-to-control flow conditions in the chute or supercharger necessitate a strongly fluctuating weight per unit area at low amounts of expanded material.
Aufgabe der Erfindung ist, die genannten Probleme des Stands der Technik zu überwinden, insbesondere ein Verfahren bereitzustellen, mit dem eine Graphitfolie hoher Qualität mit einem Flächengewicht unter 200 g/m2, insbesondere unter 150 g/m2, herstellbar ist. Bevorzugt soll mit dem Verfahren eine freitragende Graphitfolie, insbesondere mit einer Dicke von weniger als 200 μιτι, kontinuierlich herstellbar sein. The object of the invention is to overcome the stated problems of the prior art, in particular to provide a method with which a graphite foil of high quality with a basis weight less than 200 g / m 2 , in particular less than 150 g / m 2 , can be produced. Preferably, with the method a self-supporting graphite foil, in particular with a thickness of less than 200 μιτι, be continuously produced.
Gelöst wird die Aufgabe mit einem Verfahren gemäß Anspruch 1 , d.h. einem The problem is solved by a method according to claim 1, i. one
Verfahren zur Herstellung einer Graphitfolie aus zumindest teilweise komprimiertem Graphitexpandat, umfassend einen Expandierschritt von Graphitsalz und einen Komprimierschritt des sich im Expandierschritt bildenden Graphitexpandats, dadurch gekennzeichnet, dass im Expansionsschritt Graphitsalzpartikel auf einer Unterlage zu Graphitexpandat expandiert werden, das Graphitexpandat auf der Unterlage verbleibt und im Komprimierschritt auf der Unterlage zur Graphitfolie komprimiert wird. Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens sind in den abhängigen Ansprüchen 2 bis 9 angegeben. A process for the production of a graphite foil from at least partially compressed graphite expandate, comprising an expanding step of graphite salt and a compressing step of the expanding graphite expander, characterized in that in the expansion step graphite salt particles are expanded on a base to graphite expander, the graphite expander remains on the base and in the compression step on the base to the graphite foil is compressed. Advantageous developments of the method according to the invention are specified in the dependent claims 2 to 9.
Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass im Expansions- schritt Graphitsalzpartikel auf einer Unterlage zu Graphitexpandat expandiert werden, das Graphitexpandat auf der Unterlage verbleibt und im Komprimierschritt auf der Unterlage zur Graphitfolie komprimiert wird. The process according to the invention is characterized in that, in the expansion step, graphite salt particles are expanded on a support to expand graphite, the graphite expander remains on the support and is compressed on the support to the graphite foil in the compression step.
Somit lässt sich überraschenderweise eine besonders homogene Graphitfolie herstellen, selbst bei einer geringen Dicke von beispielsweise unter 200 μιτι und bei einem niedrigen Flächengewicht, wie etwa unter 150 g/m2. Thus, surprisingly, a particularly homogeneous graphite foil can be produced, even with a small thickness of, for example, less than 200 μm and with a low basis weight, such as below 150 g / m 2 .
Dadurch, dass die Expansion der Graphiteinlagerungsverbindungen auf derselben Unterlage durchgeführt wird wie das darauffolgende Komprimieren, können die bei der Expansion entstehenden Graphitexpandatpartikel verdichtet werden, ohne dass sie zu einer vom Herstellungsort räumlich getrennten Komprimiereinheit transportiert werden müssten, wie dies bei herkömmlichen Herstellungsverfahren der Fall ist. By carrying out the expansion of the graphite intercalation compounds on the same support as the subsequent compression, the expansion graphite particles can be compacted without having to be transported to a compression unit physically separate from the manufacturing location, as in conventional manufacturing processes.
Dadurch wird eine Graphitfolie mit einer für das erfindungsgemäße Verfahren charakteristischen guten Homogenität erzielt, und dies überraschenderweise selbst bei sehr geringen Flächengewichten. Dies wird vermutlich auch dadurch erleichtert, dass sich die Graphitsalzpartikel deutlich gleichmäßiger verteilen lassen als die gewichtsbezogen selbe Menge an entsprechenden Expandatpartikeln. Nach dem Expansionsschritt der auf der Unterlage ursprünglich gleichmäßig verteilten Graphitsalzpartikel liegen entsprechend gleichmäßig bzw. homogen verteilte Graphitex- pandatpartikel auf der Unterlage vor, die bis zu ihrer Expansion und auch nach dieser nicht weiter bewegt werden müssen. Eine derartige gleichmäßige Verteilung ist durch direktes Aufbringen von Graphitexpandatpartikeln auf eine Unterlage (also erst nach deren Expansion) nicht möglich, denn Graphitexpandatpartikel mit ihrer ziehharmonikaartigen Oberfläche und geringen Dichte verhaken unerwünschterweise bereits vor dem Komprimierschritt bei einfacher Berührung stark miteinander, was zu lokalen Anhäufungen oder freibleibenden Stellen auf der Unterlage führen würde. Diese lokalen Anhäufungen oder freibleibenden Stellen wiederum würden bei anschließender Kompression zu Löchern oder Inhomogenitäten in der entstehenden Graphitfolie führen. Diese Erkenntnis, die im Rahmen der Erfindung gewonnen wurde, hat die vorliegende Erfindung erst möglich gemacht. Die vorgenannten vermuteten Mechanismen sind dabei nicht beschränkend für die Erfindung zu sehen. Die Homogenität der Graphitfolie bezieht sich dabei sowohl auf deren Dicke und Flächengewicht als auch auf weitere Eigenschaften, wie ihre Wärmeleitfähigkeit in der Folienebene und senkrecht zur Folienebene, und ihre mechanische Festigkeit, insbesondere ihre Zugfestigkeit. Ein weiterer Vorteil des erfindungsgemäßen Verfahrens ist, dass sich damit eine freitragende Graphitfolie selbst bei sehr niedrigem Flächengewicht erhalten lässt. „Freitragend" bedeutet im Rahmen der Erfindung, dass wegen der hohen Eigenstabilität der erhaltenen Graphitfolie keine zweite Schicht nötig ist, um die durch Komprimieren erhaltene Graphitfolie zur Handhabung zu stützen. Vielmehr lässt sich die Graphitfolie von der Unterlage entfernen, ohne mit dieser verbunden zu bleiben, insbesondere nicht über eine Klebeschicht, wie dies teilweise beim Stand der Technik nötig ist. Diese freitragende Eigenschaft ist vorteilhaft durch die überraschend hohe Festigkeit der erfindungsgemäßen Graphitfolie auch bei geringen Dicken möglich. Ein möglicher Grund für eine hohe Festigkeit der erfindungsgemäßen Graphitfo- lie ist, dass die Graphitexpandatpartikel nach ihrer Expansion nicht bewegt werden und daher vor der Kompression nicht oder zumindest kaum geschädigt werden. As a result, a graphite foil having a good homogeneity characteristic of the method according to the invention is achieved, and surprisingly even at very low basis weights. This is probably also facilitated by the fact that the graphite salt particles can be distributed much more uniformly than the weight-related same amount of corresponding expandate particles. After the expansion step of the graphite salt particles originally distributed uniformly on the support, there are correspondingly uniformly or homogeneously distributed graphite expandate particles on the support, which do not have to be moved further until they expand and afterward. Such a uniform distribution is not possible by direct application of graphite expandable particles to a substrate (ie, after expansion), because graphite expandate particles with their accordion-like surface and low density undesirably become entangled with each other even prior to the compacting step with simple contact, resulting in localized aggregates or non-existing ones Places on the pad would result. These local clumps or remaining parts in turn would become holes or inhomogeneities in subsequent compression Lead graphite foil. This finding, which was obtained in the context of the invention, has made the present invention possible. The aforementioned suspected mechanisms are not to be seen as limiting the invention. The homogeneity of the graphite foil relates both to its thickness and basis weight as well as to other properties, such as its thermal conductivity in the film plane and perpendicular to the film plane, and its mechanical strength, in particular its tensile strength. A further advantage of the method according to the invention is that it allows a self-supporting graphite foil to be obtained even with a very low basis weight. In the context of the invention, "self-supporting" means that, because of the high intrinsic stability of the resulting graphite foil, no second layer is necessary to support the graphite foil obtained by compression for handling, rather, the graphite foil can be removed from the substrate without remaining attached to it This unsupported property is advantageously possible due to the surprisingly high strength of the graphite foil according to the invention, even at low thicknesses. that the graphite expandate particles are not moved after their expansion and therefore are not damaged before compression or at least hardly damaged.
Alternativ ist jedoch auch eine Verbindung einer mit dem erfindungsgemäßen Verfahren erhaltenen Graphitfolie mit zumindest einer weiteren Schicht zu einem Mehr- schichtaufbau möglich, falls dies gewünscht ist. Alternatively, however, it is also possible to combine a graphite foil obtained with the method according to the invention with at least one further layer to form a multi-layer structure, if desired.
Vorteilhafterweise sind der Expansionsschritt und/oder der Komprimierschritt kontinuierlich ausgebildet. Dies ist insbesondere dadurch möglich, dass das Graphitex- pandat, das auf der Unterlage gebildet wird, auf dieser bis zum Komprimierschritt verbleibt. Ein kontinuierliches Verfahren ist insbesondere aus Sicht der Verfahrensökonomie und damit der Wirtschaftlichkeit, sowie gleich bleibender Qualität besonders vorteilhaft. Ein kontinuierliches Verfahren soll im Rahmen der Erfindung auch ein semi-kon- tinuierliches Verfahren nicht ausschließen, was beispielsweise ein chargenweises Arbeiten umfasst. Dabei können einzelne Unterlagen mit Graphitsalz bestreut werden, das Graphitsalz auf der Unterlage zu Graphitexpandatpartikeln expandiert werden und die Graphitexpandatpartikel auf den einzelnen Unterlagen jeweils zu einer einzelnen Graphitfolie verpresst werden. Es entstehen bei dieser Variante zwar jeweils einzelne, diskontinuierliche Graphitfolien, das Verfahren als solches kann aber kontinuierlich durchgeführt werden, indem die Schritte des Bestreuens mit Graphitsalz, des Expandierens und des Komprimierens fortlaufend stattfinden. Advantageously, the expansion step and / or the compression step are continuous. This is possible, in particular, in that the graphite pandate formed on the substrate remains thereon until the compression step. A continuous process is especially advantageous from the point of view of process economics and thus of economic efficiency, as well as consistent quality. Within the scope of the invention, a continuous process should not exclude a semi-continuous process, which includes, for example, a batchwise operation. In this case, individual documents can be sprinkled with graphite salt, the graphite salt are expanded on the substrate to Graphitexpandatpartikeln and the Graphitexpandatpartikel be pressed on the individual documents each to a single graphite foil. Although in each case individual, discontinuous graphite foils are produced in this variant, the process as such can be carried out continuously in that the steps of sprinkling with graphite salt, expansion and compression take place continuously.
Bevorzugt umfasst der Komprimierschritt einen Kalandrierschritt. Dies ermöglicht ein besonders vorteilhaftes Durchführen eines kontinuierlichen Verfahrens, indem die Graphitexpandatpartikel auf der Unterlage bzw. den Unterlagen kontinuierlich zwischen Kalandrierwalzen zu Graphitfolie komprimiert werden. Preferably, the compressing step comprises a calendering step. This makes it possible to carry out a continuous process in a particularly advantageous manner by compressing the graphite expandate particles on the base or the underlay continuously between calendering rolls and graphite foil.
Bei einem alternativen semikontinuierlichen Verfahren wird Graphitexpandat semikontinuierlich auf der Unterlage verpresst. In an alternative semi-continuous process, graphite expandate is semi-continuously pressed onto the backing.
Nach einem weiteren vorteilhaften Aspekt der Erfindung ist die Unterlage als Trans- portband ausgebildet. Dies unterstützt vorteilhaft eine kontinuierliche Durchführung des erfindungsgemäßen Verfahrens. According to a further advantageous aspect of the invention, the pad is designed as a transport belt. This advantageously supports a continuous implementation of the method according to the invention.
Das Transportband kann dabei vorzugsweise als Endlosband ausgebildet sein, das beispielsweise über Umlenkrollen umlaufend geführt wird, und insbesondere kon- tinuierlich antreibbar angeordnet und ausgebildet ist. The conveyor belt can preferably be formed as an endless belt, which is circumferentially guided, for example via deflection rollers, and in particular arranged and designed to be continuously drivable.
Bevorzugte Materialien für das Transportband sind beispielsweise Metall, Fasermaterialien, die etwa Metall- oder Keramikfasern enthalten, oder andere bekannte temperaturbeständige Materialien, die geeignet sind, die Expandierbehandlung aus- zuhalten, die bei herkömmlichen Heizvorrichtungen, wie etwa Durchlauföfen, beiPreferred materials for the conveyor belt are, for example, metal, fiber materials containing, for example, metal or ceramic fibers, or other known temperature-resistant materials suitable for withstanding the expansion treatment associated with conventional heating devices, such as continuous ovens
Temperaturen zwischen 150 und 1000 °C stattfindet, wie etwa auch hochtemperaturbeständige Kunststoffe oder CFK-Materialien. Dabei kann die Säure, die zur Herstellung des Graphitsalzes verwendet wird, gezielt so gewählt werden, dass lediglich eine geringe Temperaturerhöhung zur Expandierbehandlung nötig ist. Vorteilhaft lassen sich organische Säuren, wie etwa Essigsäure, einsetzen. Dies ermöglicht den Einsatz von relativ temperaturempfindlichen Ma- terialien für das Transportband, wie etwa nicht-hochtemperaturbeständige Kunststoffe. Bei Verwendung üblicher Säuren, wie etwa Schwefelsäure oder Salpetersäure, werden entsprechend höhere Temperaturen zur Expansion verwendet, was temperaturbeständigere Materialien für das Transportband nötig macht. Bei dem erfindungsgemäßen Verfahren können herkömmliche Heizungsarten zur Expansion des Graphitsalzes eingesetzt werden. So lassen sich vorteilhaft Temperatures between 150 and 1000 ° C takes place, such as high temperature resistant plastics or CFRP materials. In this case, the acid which is used for the preparation of the graphite salt, can be selected specifically so that only a small increase in temperature for expanding treatment is necessary. Advantageously, organic acids, such as acetic acid, can be used. This allows the use of relatively temperature-sensitive materials for the conveyor belt, such as non-high temperature resistant plastics. Using common acids such as sulfuric acid or nitric acid, correspondingly higher temperatures are used for expansion, necessitating more temperature resistant materials for the conveyor belt. In the method according to the invention conventional types of heating can be used to expand the graphite salt. This can be advantageous
Umluftheizer und/oder Strahler aus der Gruppe bestehend aus Infrarotstrahler, Mikrowellenstrahler und Laser, aber auch Induktionsheizelemente einsetzen. Die genannten Heizungen lassen sich je nach Bedarf miteinander kombinieren. Convection heaters and / or radiators from the group consisting of infrared radiator, microwave radiator and laser, but also use induction heating. The heaters mentioned can be combined as needed.
Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Graphitsalz mit einem Flächengewicht von weniger als 200 g/m2 auf die Unterlage aufgebracht, besonders bevorzugt mit einem Flächengewicht von weniger als 150 g/m2, insbesondere von weniger als 100 g/m2, ganz insbesondere von 50 g/m2 bis 100 g/m2. Somit lassen sich gezielt besonders dünne Graphitfolien herstellen. Mit 10 bis 40 Gew.-% an flüchtigen Bestandteilen im Graphitsalz, die bei der Expansion ausgetrieben werden, wie beispielsweise eingelagerter Schwefelsäure oder organischen Säuren, wie zum Beispiel Essigsäure, wird mit den genannten Flächengewichten an Graphitsalz eine Graphitfolie mit einem Flächengewicht von weniger als 120 bis 180 g/m2, bevorzugt weniger als 90 bis 135 g/m2, insbesondere weniger als 60 bis 90 g/m2, ganz insbesondere von zwischen 30 bis 45 g/m2 erzielt, wobei die kleinere Angabe der bevorzugten Obergrenze des Flächengewichts (z.B. 30 g/m2) jeweils für den Einsatz organischer Säuren und die größere (z.B. 45 g/m2) für den Einsatz anorganischer Säuren gilt. According to a preferred embodiment of the method according to the invention, the graphite salt is applied to the substrate with a basis weight of less than 200 g / m 2 , more preferably with a basis weight of less than 150 g / m 2 , in particular less than 100 g / m 2 , in particular from 50 g / m 2 to 100 g / m 2 . This makes it possible to produce especially thin graphite foils. With 10 to 40 wt .-% of volatile constituents in the graphite salt, which are expelled during expansion, such as stored sulfuric acid or organic acids such as acetic acid, with the surface weights of graphite salt mentioned a graphite foil with a basis weight of less than 120 up to 180 g / m 2 , preferably less than 90 to 135 g / m 2 , in particular less than 60 to 90 g / m 2 , very particularly of between 30 to 45 g / m 2 achieved, the smaller indication of the preferred upper limit of Basis weight (eg 30 g / m 2 ) in each case for the use of organic acids and the larger (eg 45 g / m 2 ) for the use of inorganic acids applies.
Durch das Komprimieren werden eventuell vorhandene Zwischenräume zwischen den Graphitexpandatpartikeln geschlossen, so dass sich mit dem erfindungsgemäßen Verfahren selbst aus einer Monolage von Graphitsalzpartikeln eine Graphitfo- lie herstellen lässt, die keine oder zumindest wenige Fehlstellen besitzt. Dies ist wiederum nur dadurch möglich, dass sich die Graphitsalzpartikel nicht untereinander verhaken, wie sie es im expandierten Zustand tun würden, was eine von vornherein gleichmäßige Verteilung auf der Unterlage gewährleistet. Dies ist bei sehr geringen Flächengewichten von Graphitsalzpartikeln auf der Unterlage bis hin zu einer Mono- lage als Ausgangsschicht besonders wesentlich, um eine Graphitfolie sehr geringer Dicke zu erhalten, die nur eine sehr geringe Dickenschwankung besitzt. Bei einer Monolage würde eine starke Dickenschwankung sofort zu einer Vielzahl von Fehlstellen, wie etwa Löchern, führen. Compressing closes any intermediate spaces between the graphite expandate particles so that a graphite powder can be obtained from a monolayer of graphite salt particles even with the method according to the invention. let produce that has no or at least a few defects. This in turn is only possible because the graphite salt particles do not interlock with each other, as they would do in the expanded state, which ensures a uniform distribution on the substrate from the outset. This is particularly essential for very low basis weights of graphite salt particles on the substrate to a monolayer as the starting layer, in order to obtain a graphite foil of very small thickness, which has only a very small thickness variation. In a monolayer, a large variation in thickness would immediately lead to a variety of defects, such as holes.
Jedoch kann ein erfindungsgemäßes Verfahren auch vorteilhaft zur Herstellung von Graphitfolie eingesetzt werden, die trotz der Vorteile des erfindungsgemäßen Verfahrens Fehlstellen aufweist, insbesondere bei extrem niedrigen Flächengewichten. Eine derartige Graphitfolie kann für spezielle Anwendungen geeignet sein. Derartige Anwendungen, bei denen eine flächig durchgehende Graphitfolie nicht notwendigerweise erforderlich ist, ist beispielsweise ein Werkstoffverbund aus einer Kunststofffolie und einer erfindungsgemäßen Graphitfolie. Durch eine Vielzahl von Fehlstellen kann sogar eine netzartige Graphitfolie entstehen. Bevorzugt ist die Partikelgröße der auf die Unterlage aufzubringenden Graphitsalzpartikel kleiner als 50 mesh, besonders bevorzugt kleiner als 80 mesh. Derart kleine Partikel können besonders gleichmäßig auf der Unterlage aufgebracht werden. Es können aber auch Graphitsalzpartikel einer Partikelgröße von 100 mesh und kleiner bevorzugt sein, wenn Expansionsverfahren eingesetzt werden, die mit Heizelemen- ten hoher Energiedichte arbeiten, wie etwa Lasern oder Induktionsheizelementen, denn durch deren hohen Energieeintrag ist ein Expandieren auch bei derart kleinen Graphitsalzpartikeln möglich, was sonst herkömmlicherweise schwierig bis However, a method according to the invention can also be advantageously used for the production of graphite foil, which despite the advantages of the method according to the invention has defects, in particular at extremely low basis weights. Such a graphite foil may be suitable for specific applications. Such applications in which a flat continuous graphite foil is not necessarily required, for example, a composite material of a plastic film and a graphite foil according to the invention. Due to a large number of defects even a net-like graphite foil can be created. The particle size of the graphite salt particles to be applied to the substrate is preferably less than 50 mesh, particularly preferably less than 80 mesh. Such small particles can be applied particularly evenly on the substrate. However, graphite salt particles with a particle size of 100 mesh and smaller may also be preferred if expansion methods are used which operate with heating elements of high energy density, such as lasers or induction heating elements, because their high energy input makes it possible to expand even with such small graphite salt particles. which is usually difficult to do otherwise
unmöglich ist. Besonders bevorzugt wird das Graphitsalz auf die Unterlage aufgestreut und/oder aufgerakelt. Dies ist ein besonders einfacher Verfahrensschritt, der darüber hinaus zu besonders homogenen Schichten an Graphitsalz führt und somit zu besonders homogenen Graphitfolien, insbesondere in Bezug auf die lokale Dicke und Dichte. Vorteilhaft wird das Graphitsalz mittels einer Pulverstreueinheit aufgebracht. Die Pulverstreueinheit kann eine Auftragsbürste, eine Auftragswalze, ein Rüttelblech und/oder ein Lochblech umfassen, sowie alle anderen bekannten und für die Graphit- salzpartikel geeigneten Aufstreuvorrichtungen. Eine Kombination mehrerer Aufstreuvorrichtungen kann einen mehrstufigen Aufstreu prozess ermöglichen, indem eine erste Aufstreuvorrichtung, wie etwa eine Auftragswalze, Graphitsalzpartikel bereits sehr gleichmäßig auf eine zweite Aufstreuvorrichtung, wie etwa ein Lochblech, streut. Die zweite Aufstreuvorrichtung vergleichmäßigt die Verteilung der letztendlich auf der Unterlage aufgebrachten Graphitsalzpartikel weiter. Durch ein Lochblech können Graphitsalzpartikel beispielsweise gestreut und/oder geräkelt werden. is impossible. Particularly preferably, the graphite salt is scattered onto the substrate and / or knife-coated. This is a particularly simple process step, which also leads to particularly homogeneous layers of graphite salt and thus to particularly homogeneous graphite films, in particular with respect to the local thickness and density. Advantageously, the graphite salt is applied by means of a powder scattering unit. The powder scattering unit may comprise an application brush, an applicator roll, a vibrating plate and / or a perforated plate, as well as all other known scattering devices suitable for the graphite salt particles. A combination of multiple scattering devices may allow for a multi-stage littering process by already scattering graphite salt particles evenly onto a second scattering device, such as a perforated plate, by a first spreading device, such as an applicator roll. The second scattering device further homogenizes the distribution of the graphite salt particles ultimately applied to the backing. For example, graphite salt particles can be scattered and / or geräkelt by a perforated plate.
Die Aufgabe der Erfindung wird des Weiteren mit einer Graphitfolie gemäß Anspruch 1 1 gelöst, die mit dem erfindungsgemäßen Verfahren hergestellt ist. Vorteilhafte Weiterbildungen der erfindungsgemäßen Graphitfolie sind in den abhängigen Ansprüchen 12 bis 17 angegeben. The object of the invention is further achieved with a graphite foil according to claim 1 1, which is produced by the method according to the invention. Advantageous developments of the graphite foil according to the invention are given in the dependent claims 12 to 17.
Bevorzugt besitzt die erfindungsgemäße Graphitfolie ein Flächengewicht kleiner als 150 g/m2, besonders bevorzugt kleiner als 100 g/m2, insbesondere kleiner als 50 g/m2, insbesondere zwischen 30 und 50 g/m2. Diese niedrigen Flächengewichte lassen sich überraschenderweise mit dem erfindungsgemäßen Verfahren verwirklichen. Sie eröffnen eine Vielzahl neuer Anwendungen für Graphitfolien, die beispielsweise die Miniaturisierung von Strukturen ermöglicht. Bevorzugt weist die Graphitfolie eine Dicke zwischen 10 μιτι und 150 μιτι, besonders bevorzugt zwischen 15 μιτι und 100 μιτι auf, insbesondere zwischen 20 μιτι und 60 μιτι. Diese geringe Dicke wird ebenso wie das niedrige Flächengewicht durch das erfindungsgemäße Verfahren ermöglicht. Die Korrelation des Flächengewichts mit der Dicke der erfindungsgemäß hergestellten Graphitfolie ist dabei insbesondere folgende: 100 g/m2: 50 - 1000 μιτι, 50 g/m2: 25 - 500 μηη, 30 g/m2: 15 - 300 μηη. Bevorzugt beträgt die Abweichung vom mittleren Flächengewicht auf 100 mm2 großen Teilflächen weniger als 15 %, besonders bevorzugt weniger als 10 %, ganz besonders bevorzugt weniger als 5 %. Derartig niedrige Schwankungen des mittleren Flächengewichts sind durch das erfindungsgemäße Verfahren möglich. Dies bedeu- tet beispielsweise bei einer Graphitfolie mit einem Flächengewicht von 40 g/m2 eine Abweichung von weniger als 6 g/m2, bevorzugt von weniger als 4 g/m2, besonders bevorzugt von weniger als 2 g/m2. The graphite foil according to the invention preferably has a weight per unit area of less than 150 g / m 2 , particularly preferably less than 100 g / m 2 , in particular less than 50 g / m 2 , in particular between 30 and 50 g / m 2 . These low basis weights can surprisingly be realized with the process according to the invention. They open up a large number of new applications for graphite foils, which, for example, enable the miniaturization of structures. Preferably, the graphite foil has a thickness between 10 μιτι and 150 μιτι, more preferably between 15 μιτι and 100 μιτι, in particular between 20 μιτι and 60 μιτι. This small thickness as well as the low basis weight is made possible by the method according to the invention. The correlation of the basis weight with the thickness of the graphite foil produced according to the invention is in particular the following: 100 g / m 2 : 50-1000 μιτι, 50 g / m 2 : 25-500 μηη, 30 g / m 2 : 15-300 μηη. Preferably, the deviation from the average basis weight on 100 mm 2 large faces less than 15%, more preferably less than 10%, most preferably less than 5%. Such low fluctuations of the average basis weight are possible by the method according to the invention. This means, for example, for a graphite foil having a basis weight of 40 g / m 2, a deviation of less than 6 g / m 2 , preferably less than 4 g / m 2 , particularly preferably less than 2 g / m 2 .
Nach einer Alternative kann die Graphitfolie mit zumindest einer Kunststofffolie ein Laminat bilden. Dadurch kann vorteilhaft eine erfindungsgemäße Graphitfolie insbesondere sehr niedrigen Flächengewichts und/oder Dicke verstärkt werden. Es können aber auch freitragende Graphitfolien durch Auflaminieren mit einer Kunststofffolie gezielt mit zusätzlichen Eigenschaften versehen werden, wie etwa höherer Dichtigkeit senkrecht zur Folienebene. As an alternative, the graphite foil may form a laminate with at least one plastic film. As a result, a graphite foil according to the invention, in particular a very low basis weight and / or thickness, can be advantageously reinforced. However, self-supporting graphite foils can also be purposefully provided with additional properties by lamination with a plastic film, such as higher impermeability perpendicular to the film plane.
Vorteilhaft ist die Kunststofffolie aus zumindest einem der Kunststoffe aus der Gruppe umfassend Polyethylenterephtalat (PET), Polyolefine, wie Polyethylen (PE) und Polypropylen (PP), Polyvinylchlorid (PVC), Polystyrol (PS), Polyester, Polyimid (PI), Fluorkunststoffe, wie etwa PVDF und PTFE, Polycarbonat und Biopolymere, wie etwa Polylactid (PLA), Celluloseacetat (CA) und Stärkeblends, gebildet. Als PET wird insbesondere biaxial orientierte Polyesterfolie bevorzugt, die auch unter dem Advantageously, the plastic film of at least one of the plastics from the group comprising polyethylene terephthalate (PET), polyolefins such as polyethylene (PE) and polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), polyester, polyimide (PI), fluoroplastics, such as PVDF and PTFE, polycarbonate and biopolymers such as polylactide (PLA), cellulose acetate (CA) and starch blends. As PET in particular biaxially oriented polyester film is preferred, which also under the
Handelsnamen Mylar® bekannt ist. Trade name Mylar® is known.
Nach einer ersten vorteilhaften Variante sind die Graphitfolie und die Kunststofffolie mittels eines Klebstoffs miteinander verbunden. Als Klebstoff kommt bevorzugt ein Klebstoff aus der Gruppe bestehend aus Acrylaten, Polysiloxanen, Polyurethanen, Polyamiden, Acetaten und Epoxidharzen in Frage. According to a first advantageous variant, the graphite foil and the plastic film are connected to each other by means of an adhesive. As the adhesive is preferably an adhesive from the group consisting of acrylates, polysiloxanes, polyurethanes, polyamides, acetates and epoxy resins in question.
Nach einer zweiten vorteilhaften Variante sind Graphitfolie und Kunststofffolie kleber- frei miteinander verbunden. Dies kann beispielsweise durch teilweises Aufschmelzen oder Aufsintern der Kunststofffolie auf die Graphitfolie (d.h. Schweißen) erfolgen. Außer einem Stützen der Graphitfolie durch die Kunststofffolie kann beispielsweise auch eine Undichtigkeit senkrecht zur Folienebene verhindert werden. Allein zur mechanischen Stützung kann auch eine gelochte Kunststofffolie von Vorteil sein. Die Lochung ist dabei beispielsweise gleichmäßig über die Kunststofffolie verteilt und besitzt beispielsweise einen Flächenanteil zwischen 10 und 80 %. Der Lochdurchmesser kann vorteilhaft zwischen 0,25 und 2 mm liegen, es können aber je nach Einsatz der Graphitfolie auch andere Lochdurchmesser vorteilhaft sein. According to a second advantageous variant, graphite foil and plastic foil are adhesively bonded together. This can be done for example by partial melting or sintering of the plastic film on the graphite foil (ie welding). Apart from supporting the graphite foil by the plastic film, for example, a leak perpendicular to the film plane can be prevented. For mechanical support alone, a perforated plastic film can also be advantageous. The perforation is, for example, evenly distributed over the plastic film and has, for example, an area ratio between 10 and 80%. The hole diameter may advantageously be between 0.25 and 2 mm, but depending on the use of the graphite foil, other hole diameters may also be advantageous.
Eine erfindungsgemäße Folie, insbesondere hergestellt mit einem erfindungsge- mäßen Verfahren, lässt sich vorteilhaft für eine Reihe von Verwendungen einsetzen. Die erfindungsgemäßen Verwendungen betreffen nicht ausschließlich, aber bevorzugt Verwendungen, die durch die geringe Dicke der erfindungsgemäßen Graphitfolie bei hoher Homogenität ermöglicht werden. Eine erste erfindungsgemäße Verwendung betrifft den Einsatz in Batteriestrukturen, wie etwa als Wärmeabieiter und -Verteiler und als Stromkollektor in Sekundär-Batte- rien (also wiederaufladbaren Batterien), der bei einer geringen Dicke der Graphitfolie besonders platzsparend ausgebildet ist und der die Verwendung alternativer A film according to the invention, in particular produced by a process according to the invention, can be used advantageously for a number of uses. The uses according to the invention are not exclusively, but preferably uses, which are made possible by the small thickness of the graphite foil according to the invention with high homogeneity. A first use according to the invention relates to the use in battery structures, such as heat dissipater and distributor and as a current collector in secondary batteries (ie rechargeable batteries), which is particularly space-saving formed with a small thickness of the graphite foil and the use of alternative
Elektrolytsysteme ermöglicht, die bei bisher verwendeten Kollektoren nicht oder nur eingeschränkt verwendet werden können. Beispielhaft sind hier die Kathodenseite einer Lithium-Ionen-Batterie oder auch die Elektroden bei EDLC's (electric double- layer capacitor, Superkondensatoren) zu nennen, in denen aluminiumbasierte Stromableiter vorteilhafterweise ersetzt werden können, oder andere Anwendungen in Kondensatorstrukturen. Je weniger Graphitmaterial vorliegt, das heißt je dünner die Graphitfolie ist, desto mehr Platz bleibt für Aktivmaterial, was beispielsweise elektrochemisch aktives Material sein kann, aber etwa auch Phasenwechselmaterial zur Speicherung von Wärme und/oder Kälte. Eine eventuelle Vielzahl von Fehlstellen bei extrem dünnen Graphitfolien kann dann vorteilhaft in Kauf genommen werden, wenn - wie im Fall von Stromfluss - fehlendes Graphitmaterial kaum Einfluss auf die gewünschten Eigenschaften - hier die elektrische Leitfähigkeit innerhalb der Electrolyte systems allows that can not or only partially be used in previously used collectors. Examples include the cathode side of a lithium-ion battery or the electrodes in EDLCs (electric double-layer capacitor, supercapacitors) in which aluminum-based current conductors can be advantageously replaced, or other applications in capacitor structures. The less graphite material is present, that is, the thinner the graphite foil, the more space remains for active material, which may be, for example, electrochemically active material, but also about phase change material for storing heat and / or cold. A possible large number of imperfections in extremely thin graphite foils can then be advantageously taken into account if - as in the case of current flow - missing graphite material hardly any influence on the desired properties - here the electrical conductivity within the
Graphitfolienebene - hat oder die Menge an Aktivmaterial der Homogenität der Folie entsprechend angepasst werden kann. Eine weitere erfindungsgemäße Verwendung ist der Einsatz der erfindungsgemäßen Graphitfolie als Widerstandheizung. Dies ist besonders vorteilhaft, da bei einer geringen Dicke der Graphitfolie bereits bei niedrigen Strömen ein starkes Aufheizen eintritt. Eine Widerstandsheizung kann für herkömmliche Heizungen, wie in Kochplatten, Warmhalteplatten und ähnlichem eingesetzt werden. Es lassen sich aber auch großflächige Bauteile damit versehen, wie etwa Flugzeugflügel oder Rotorblätter, die sich dadurch leicht enteisen lassen. Auch können Heizdecken mit der erfindungsgemäßen Graphitfolie als Widerstandsheizelement versehen werden. Eine geringe Dicke der Graphitfolie ermöglicht hier eine geringe Steifigkeit der Heizdecke. Graphitfolienebene - has or the amount of active material of the homogeneity of the film can be adjusted accordingly. Another use according to the invention is the use of the graphite foil according to the invention as resistance heating. This is particularly advantageous because with a small thickness of the graphite foil already at low currents, a strong heating occurs. Resistance heating can be used for conventional heaters such as hotplates, hot plates and the like. But it can also be provided with large-scale components, such as aircraft wings or rotor blades, which can be easily de-icing. Also, electric blankets can be provided with the graphite foil according to the invention as a resistance heating element. A small thickness of the graphite foil allows a low rigidity of the heating blanket.
Noch eine weitere erfindungsgemäße Verwendung ist der Einsatz der Graphitfolie in Dichtungen. Hier ist eine geringe Dicke besonders vorteilhaft, da die Yet another use according to the invention is the use of graphite foil in gaskets. Here is a small thickness particularly advantageous because the
Volumenleckage einer Dichtung proportional zu ihrer Dicke sinkt. Ohne die typischen Eigenschaften einer Graphitfolie, wie etwa Anpassungsfähigkeit, Komprimierbarkeit und Rückfederung, sowie geringes Kriechverhalten, zu verlieren, kann durch die Ausführung einer Folie mit geringer Dicke bzw. niedrigem Flächengewicht die Volume leakage of a seal decreases in proportion to its thickness. Without losing the typical properties of a graphite foil, such as adaptability, compressibility and springback, as well as low creep behavior, the execution of a low thickness or low basis weight foil may result in loss of performance
Dichtigkeit in der Ebene verbessert werden. Die besonders homogene Dicke- und Dichteverteilung der erfindungsgemäßen Graphitfolie ermöglicht die genannten Anwendungen selbst bei geringer Dicke der Graphitfolie mit sehr hoher Qualität und besonders niedrigen Qualitätsschwankungen. Eine dünne Graphitfolie als äußere Schicht in einem Mehrschichtaufbau einer Dichtung mit einer Metallverstärkung wirkt darüber hinaus als Antihaftschicht des Mehrschichtaufbaus, wenn diese zum Beispiel auf das Metall direkt oder eine weitere äußere Folie aufgebracht wird. Weitere vorteilhafte Aus- und Weiterbildungen der Erfindung werden im Folgenden anhand eines bevorzugten Ausführungsbeispiels und der dazugehörigen Figuren erläutert. Tightness in the plane can be improved. The particularly homogeneous thickness and density distribution of the graphite foil according to the invention allows the applications mentioned even with a small thickness of the graphite foil with very high quality and particularly low quality variations. A thin graphite foil as an outer layer in a multi-layered construction of a gasket with a metal reinforcement also acts as an anti-adhesion layer of the multi-layered structure when, for example, it is applied to the metal directly or another outer foil. Further advantageous embodiments and developments of the invention will be explained below with reference to a preferred embodiment and the accompanying figures.
Dabei zeigen Show
Fig. 1 : eine schematische Seitenansicht einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens und Fig. 2: eine schematische Seitenansicht einer Aufstreuvorichtung zum Aufbringen von Graphitsalz auf eine Transportunterlage. 1 shows a schematic side view of an apparatus for carrying out the method according to the invention and Fig. 2: a schematic side view of a Aufrereuvorichtung for applying graphite salt on a transport pad.
Bei einem erfindungsgemäßen Verfahren (s. Fig. 1 ) wird auf ein Transportband 1 als Unterlage Graphitsalz 2 gestreut. Als Graphitsalz 2 wird GHS-Salz„SS3 - low ash - PT" der Firma AirWater Chemicals verwendet. Die Partikelgröße der einzelnen Graphitsalzpartikel 3 liegt im vorliegenden Ausführungsbeispiel bei 50 mesh, d.h. alle Graphitsalzpartikel 3 können ein Sieb der Maschenweite 300 μιτι passieren. Das Graphitsalz 2 wird, wie in Fig. 2 dargestellt, mittels einer Pulverstreueinheit 4 aufgestreut. Diese weist in diesem Ausführungsbeispiel einen Vorlagebehälter 5, eine Auftragswalze 6 und eine Auftragsbürste 7 auf. Durch eine Öffnung 8 im In a method according to the invention (see Fig. 1), graphite salt 2 is scattered on a conveyor belt 1 as a base. GHS salt "SS3-low ash-PT" from AirWater Chemicals is used as graphite salt 2. The particle size of the individual graphite salt particles 3 in the present exemplary embodiment is 50 mesh, ie all graphite salt particles 3 can pass through a sieve of mesh size 300 μm 2 is scattered by means of a powder scattering unit 4. In this exemplary embodiment, the latter has a storage container 5, an application roller 6 and an application brush 7. Through an opening 8 in FIG
Vorlagebehälter 5 tritt Graphitsalz 2 aus dem Vorlagebehälter 5 nach unten aus und einzelne Graphitsalzpartikel 3 kommen in Zwischenräumen 9 zwischen einzelnen Zähnen 10 der Auftragswalze 6 zu liegen. Mit weiterer Drehung der Auftragswalze 6 fallen die Graphitsalzpartikel 3 auf das Transportband 1 . Die Auftragsbürste 7 drückt gegen die Auftragswalze 6 und verhindert einerseits ein zu frühes Herausfallen der Graphitsalzpartikel 3 aus den Zwischenräumen 9 und fördert andererseits ein gezieltes Entfernen der Graphitsalzpartikel 3 aus den Zwischenräumen 9. So können die Graphitsalzpartikel 3 gezielt und sehr gleichmäßig auf dem Transportband 1 aufgebracht werden. Feed tank 5 emerges graphite salt 2 from the feed tank 5 down and single Graphitsalzpartikel 3 come to lie in spaces 9 between individual teeth 10 of the applicator roll 6. With further rotation of the applicator roll 6, the graphite salt particles 3 fall on the conveyor belt. 1 The application brush 7 presses against the applicator roll 6 and on the one hand prevents the graphite salt particles 3 from falling out too early from the interspaces 9 and, on the other hand, promotes targeted removal of the graphite salt particles 3 from the interstices 9. Thus, the graphite salt particles 3 can be applied to the conveyor belt 1 in a targeted and very uniform manner become.
Durch ein gleichmäßige Vorschubgeschwindigkeit (in Fig. 2 mit einem Pfeil 12 dargestellt) des Transportbandes 1 , die beispielsweise durch eine Antriebswalze 1 1 gewährleistet wird, kann in Verbindung mit der Drehgeschwindigkeit der Auftragswalze 6, dem Abstand der Zwischenräume 9, der Drehgeschwindigkeit der Auftragsbürste 7 und der Partikelgröße der Graphitsalzpartikel 3 exakt ein Flächengewicht der sich ergebenden Schicht 13 aus Graphitsalz 2 eingestellt werden. Im vorliegenden Ausführungsbeispiel wird ein Flächengewicht der Graphitsalzpartikel 3 von 75 g/m2 eingestellt. By a uniform feed rate (in Fig. 2 with an arrow 12) of the conveyor belt 1, which is ensured for example by a drive roller 1 1, in conjunction with the rotational speed of the applicator roll 6, the distance between the spaces 9, the rotational speed of the application brush. 7 and the particle size of the graphite salt particles 3 exactly a basis weight of the resulting layer 13 of graphite salt 2 can be adjusted. In the present embodiment, a basis weight of the graphite salt particles 3 of 75 g / m 2 is set.
In einer Variante des Ausführungsbeispiels ist, wie in Fig. 1 angedeutet, unter der Auftragswalze 6 ein Lochblech 22 angeordnet, auf das die Graphitsalzpartikel 3 fal- len, und das - eventuell in Verbindung mit einem Abstreifer (nicht dargestellt), der die Graphitsalzpartikel 3 durch das Lochblech 22 drückt - eine noch gezieltere Aufbringung der Graphitsalzpartikel 3 auf das Transportband 1 ermöglicht. Mit der Vorschubgeschwindigkeit 12 wird die Schicht 13 weiter transportiert und gelangt in eine Heizzone 14, in der Heizelemente 15 angeordnet sind. Die Heizelemente 15 sind in diesem Beispiel herkömmliche Heizstrahler, die über 2 m Länge angeordnet sind. Die Heizstrahler 15 erhitzen das Transportband 1 mit ca. 200 °C von unten. Zusätzlich sind oberhalb des Transportbandes Infrarotstrahler (nicht dar- gestellt) angebracht, die Temperaturen von über 500 °C erzeugen können. Durch die eingekoppelte Hitze von oben und unten wird das Graphitsalz 2 expandiert, wobei mit Sulfat als Interkalationsverbindung gasförmige Schwefelsäure entsteht, die das Graphitsalz um das 300- bis 400-fache zu Graphitexpandat 16 expandiert. Dies ist in Fig. 1 schematisch als sich stetig verdickende Schicht 13 dargestellt, wobei der Dickenverlauf in der Realität nicht so gleichmäßig verläuft. Insbesondere bei Verwendung von Graphitsalz, das mit organischen Säuren hergestellt wurde, kann eine Wärmeeinkopplung von oben zur Expansion des Graphitsalzes genügen. In a variant of the exemplary embodiment, as indicated in FIG. 1, a perforated plate 22 is arranged below the applicator roll 6, onto which the graphite salt particles 3 fall. len, and that - possibly in conjunction with a scraper (not shown) which presses the graphite salt particles 3 through the perforated plate 22 - allows an even more targeted application of graphite salt particles 3 on the conveyor belt 1. With the feed rate 12, the layer 13 is further transported and enters a heating zone 14, in which heating elements 15 are arranged. The heating elements 15 are in this example conventional radiant heaters, which are arranged over 2 m in length. The radiant heaters 15 heat the conveyor belt 1 at about 200 ° C from below. In addition, infrared radiators (not shown) are installed above the conveyor belt, which can generate temperatures of over 500 ° C. Due to the injected heat from above and below the graphite salt 2 is expanded, with sulfate as the intercalation compound gaseous sulfuric acid is formed, which expands the graphite salt by 300 to 400 times to graphite expandate 16. This is shown schematically in FIG. 1 as a continuously thickening layer 13, wherein the thickness profile does not run so uniformly in reality. In particular, when using graphite salt, which was prepared with organic acids, a heat input from above can be sufficient for the expansion of the graphite salt.
Als Heizelemente 15 können erfindungsgemäß Mikrowellenstrahler, Infrarotstrahler, Umluftheizer und ähnliche Heizelemente, aber auch Laser, wie etwa Kohlendioxidlaser, verwendet und je nach Bedarf und Auslegung der gesamten Anlage miteinander kombiniert werden. Die Heizelemente 15 können oberhalb und unterhalb des Transportbandes 1 angeordnet sein, wobei die Wärmeleitfähigkeit und andere Materialeigenschaften des Transportbands, wie Hitzebeständigkeit, Chemikalienre- sistenz u. ä. berücksichtigt werden müssen. Für ein induktives Expandieren sind beispielsweise keramische und Edelstahlbänder geeignet. As heating elements 15 according to the invention microwave emitters, infrared radiators, circulating air heaters and similar heating elements, but also lasers, such as carbon dioxide laser, can be used and combined as needed and design of the entire system. The heating elements 15 can be arranged above and below the conveyor belt 1, wherein the thermal conductivity and other material properties of the conveyor belt, such as heat resistance, chemical resistance u. Ä. must be taken into account. For example, ceramic and stainless steel strips are suitable for inductive expansion.
Als Materialien für das in diesem Beispiel 60 cm breite Transportband 1 kommen beispielsweise auch Metallbänder in Frage, beispielsweise aus Stahl. Auch ist ein hoch temperaturstabiles Transportband 1 aus keramischen Nextel-Fasern der Firma 3M bevorzugt. Es kann beispielsweise auch CFK-Band eingesetzt werden. An den Expandierschhtt schließt sich in Vorschubrichtung ein Komprimierschritt an. Dieser wird in diesem Beispiel wie bereits der Aufstreuschritt und der Expandierschritt kontinuierlich ausgeführt. Dazu durchläuft die Schicht 13 aus Graphitexpandat 16 in einem Kalandrierschritt eine Kalandriervorrichtung 17, die mehrere Kalandrier- walzen 18 enthält. Durch einen vorgegebenen Abstand zwischen den Kalandrier- walzen 18 lässt sich die gewünschte Dicke der sich ergebenden Graphitfolie 19 einstellen. Es können mehrere Kalandrierwalzenpaare 18 hintereinander angeordnet werden (nicht dargestellt), um besonders schonend auch besonders dünne Graphitfolien 19 herzustellen. As materials for the 60 cm wide conveyor belt 1 in this example, for example, metal bands in question, for example made of steel. Also, a high temperature-stable conveyor belt 1 of ceramic Nextel fibers from 3M preferred. For example, CFRP tape can also be used. The expansion sleeve is followed by a compression step in the feed direction. This is carried out continuously in this example as already the Aufrechudsritt and the expansion step. For this purpose, the layer 13 of graphite expander 16 passes through a calendering device 17 in a calendering step, which contains several calendering rolls 18. By a predetermined distance between the calendering rollers 18, the desired thickness of the resulting graphite foil 19 can be adjusted. Several calendering roller pairs 18 can be arranged one behind the other (not shown) in order to produce particularly thin graphite foils 19 in a particularly gentle manner.
In einem weiteren Schritt wird die Graphitfolie 19 vom Vorlageband 1 abgenommen und aufgerollt. Alternativ kann die Graphitfolie 19 vor dem Aufrollen in den Her- stellungsprozess integriert oder nach dem Aufrollen in separaten Schritten nachverdichtet, auf Kunststofffolie laminiert, konfektioniert und/oder imprägniert werden. Diese und andere geeignete Schritte können vorteilhaft miteinander kombiniert, wiederholt, sowie gezielt aufeinander abgestimmt werden. In a further step, the graphite foil 19 is removed from the original tape 1 and rolled up. Alternatively, the graphite foil 19 can be integrated into the production process prior to rolling up or, after being rolled up, be densified in separate steps, laminated to plastic film, finished and / or impregnated. These and other suitable steps can advantageously be combined with each other, repeated, and tailored to each other.
Das Transportband 1 wird über eine Mehrzahl Umlenkrollen 20 zurück zur Aufstreuvorrichtung 4 geführt. Spannvorrichtungen 21 dienen dazu, die Spannung des Trans- portbands 1 gezielt einzustellen. The conveyor belt 1 is guided over a plurality of pulleys 20 back to the Aufrereuvorrichtung 4. Clamping devices 21 serve to adjust the tension of the transport belt 1 in a targeted manner.
Die erhaltene Graphitfolie 19 besitzt im vorliegenden Ausführungsbeispiel ein The obtained graphite foil 19 has in the present embodiment
Flächengewicht von 62 g/m2. Die Differenz zum Flächengewicht der Graphitsalzpartikel 3 rührt von dem Entfernen der flüchtigen Bestandteile während des Expandie- rens. Die Graphitfolie 19 besitzt keinerlei Löcher, was die Homogenität der Schicht 13 aus Graphitsalz 2 und der sich ergebenden Graphitfolie 19 belegt. Die Dicke der Graphitfolie 19 liegt bei 70 μιτι, die Zugfestigkeit beträgt in Längsrichtung 2,8 MPa, in Querrichtung 2,7 MPa. Die Rohdichte liegt bei 0,9 g/cm3. In weiteren Ausführungsbeispielen wird über eine Variation der Parameter Vorschubgeschwindigkeit 12 und Drehgeschwindigkeit der Auftragswalze 6 die Dicke der Schicht 13 und damit der Graphitfolie 19 variiert. So lässt sich beispielsweise eine Graphitfolie mit einer Dicke von 35 μιτι bei einem Flächengewicht von 35 g/m2 herstellen. Basis weight of 62 g / m 2 . The difference to the basis weight of the graphite salt particles 3 results from the removal of the volatiles during the expansion. The graphite foil 19 has no holes, which proves the homogeneity of the layer 13 of graphite salt 2 and the resulting graphite foil 19. The thickness of the graphite foil 19 is at 70 μιτι, the tensile strength is 2.8 MPa in the longitudinal direction, in the transverse direction 2.7 MPa. The bulk density is 0.9 g / cm 3 . In further exemplary embodiments, the thickness of the layer 13 and thus of the graphite foil 19 is varied by varying the parameters feed rate 12 and rotational speed of the application roller 6. Thus, for example, a Produce graphite foil with a thickness of 35 μιτι at a basis weight of 35 g / m 2 .
Die sich ergebende Graphitfolie 19 wird am Ende des Prozesses aufgewickelt und in einer separaten Anlage (nicht dargestellt) mit einer Mylar®-Folie unter Hitze und Druck, d.h. durch Schweißen, zu einer Verbundfolie laminiert. Alternativ wird eine Kunststofffolie aufgeklebt, beispielsweise mit einem Acrylatharz als Kleber, der beispielsweise flächig aufgesprüht wird. Alle in der Beschreibung, den Beispielen und den Ansprüchen genannten Merkmale können in beliebiger Kombination zur Erfindung beitragen. Insbesondere können verschiedene Verfahrensparameter, wie etwa Parameter des Aufstreuschritts, des Expandierschritts und des Komprimierschritts und verschiedene Graphitsalze vorteilhaft miteinander kombiniert werden. Desweiteren kann eine derart mit gezielt einge- stellten Eigenschaften hergestellte Graphitfolie in weiteren Schritten gezielt mit geeigneten Kunststofffolien für spezielle Anforderungen kombiniert werden. The resulting graphite foil 19 is wound up at the end of the process and placed in a separate unit (not shown) with a Mylar® film under heat and pressure, i. by welding, laminated to a composite foil. Alternatively, a plastic film is adhered, for example with an acrylate resin as an adhesive, which is sprayed, for example, surface. All features mentioned in the description, examples and claims may contribute to the invention in any combination. In particular, various process parameters such as parameters of the spreading step, the expanding step and the compressing step, and various graphite salts can be advantageously combined with each other. Furthermore, graphite foil produced in such a way with specifically adjusted properties can in a targeted manner be combined with suitable plastic foils for special requirements.

Claims

Patentansprüche claims
1 . Verfahren zur Herstellung einer Graphitfolie (19) aus zumindest teilweise komprimiertem Graphitexpandat (16), umfassend einen Expandierschritt von Graphitsalz (2) und einen Komprimierschritt des sich im Expandierschritt bildenden Graphitexpandats (16), dadurch gekennzeichnet, dass 1 . A method of producing a graphite foil (19) from at least partially compressed graphite expander (16), comprising an expanding step of graphite salt (2) and a compressing step of the graphite expander (16) forming in the expanding step, characterized in that
im Expansionsschritt Graphitsalzpartikel (3) auf einer Unterlage (1 ) zu  in the expansion step graphite salt particles (3) on a support (1)
Graphitexpandat (16) expandiert werden, das Graphitexpandat (16) auf der Unterlage (1 ) verbleibt und im Komprimierschritt auf der Unterlage (1 ) zur Graphitfolie (19) komprimiert wird.  Graphitexpandat (16) are expanded, the Graphitexpandat (16) remains on the substrate (1) and is compressed in the compression step on the substrate (1) to the graphite foil (19).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der 2. The method according to claim 1, characterized in that the
Expansionsschritt und/oder der Komprimierschritt kontinuierlich ausgebildet sind.  Expansion step and / or the compression step are formed continuously.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Komprimierschritt einen Kalandrierschritt umfasst. A method according to claim 1 or 2, characterized in that the compressing step comprises a calendering step.
4. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Unterlage (1 ) als Transportband, insbesondere als umlaufendes Endlosband, ausgebildet ist. 4. The method according to at least one of the preceding claims, characterized in that the base (1) is designed as a conveyor belt, in particular as a circulating endless belt.
5. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Graphitsalz (2) mit einem Flächengewicht von weniger als 200 g/m2 auf die Unterlage aufgebracht wird, insbesondere mit einem Flächengewicht von weniger als 150 g/m2, insbesondere von weniger als 100 g/m2, ganz insbesondere zwischen 30 und 50 g/m2. 5. The method according to at least one of the preceding claims, characterized in that the graphite salt (2) is applied with a basis weight of less than 200 g / m 2 to the substrate, in particular with a basis weight of less than 150 g / m 2 , in particular of less than 100 g / m 2 , more particularly between 30 and 50 g / m 2 .
6. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Partikelgröße der Graphitsalzpartikel (3) kleiner ist als 50 mesh, insbesondere kleiner als 80 mesh. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Graphitsalz (2) auf die Unterlage (1 ) aufgestreut oder aufgerakelt wird. 6. The method according to at least one of the preceding claims, characterized in that the particle size of the graphite salt particles (3) is smaller than 50 mesh, in particular smaller than 80 mesh. Method according to at least one of the preceding claims, characterized in that the graphite salt (2) is sprinkled or spread on the base (1).
Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Graphitsalz (2) über eine Aufstreueinheit (4) auf die Unterlage (1 ) aufgestreut oder aufgerakelt wird. A method according to claim 7, characterized in that the graphite salt (2) is sprinkled or scrape over a Aufrereueinheit (4) on the substrate (1).
Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die A method according to claim 8, characterized in that the
Aufstreueinheit (4) eine Auftragsbürste (7), eine Auftragswalze (6), ein  Aufrereueinheit (4) an order brush (7), an applicator roll (6), a
Rüttelblech und/oder ein Lochblech (1 ) umfasst.  Rüttelblech and / or a perforated plate (1).
Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beim Expansionsschritt als zumindest eine Heizung (15) zur Expansion des Graphitsalzes ein Umluftheizer und/oder ein Strahler aus der Gruppe bestehend aus Infrarotstrahler, Mikrowellenstrahler und Laser und/oder ein Induktionsheizelement oder eine Kombination aus diesen eingesetzt wird. Method according to at least one of the preceding claims, characterized in that in the expansion step as at least one heater (15) for expansion of the graphite salt, a circulating air heater and / or a radiator from the group consisting of infrared radiator, microwave radiator and laser and / or an induction heating element or a combination is used from these.
Graphitfolie hergestellt nach einem Verfahren gemäß zumindest einem der Ansprüche 1 bis 10. Graphite foil produced by a process according to at least one of claims 1 to 10.
12. Graphitfolie nach Anspruch 1 1 , dadurch gekennzeichnet, dass sie ein 12. graphite foil according to claim 1 1, characterized in that they are a
Flächengewicht kleiner als 150 g/m2, insbesondere kleiner als 100 g/m2, insbesondere kleiner 50 g/m2, insbesondere zwischen 30 und 50 g/m2 besitzt. Basis weight less than 150 g / m 2 , in particular less than 100 g / m 2 , in particular less than 50 g / m 2 , in particular between 30 and 50 g / m 2 has.
13. Graphitfolie nach Anspruch 1 1 oder 12, dadurch gekennzeichnet, dass sie eine Dicke zwischen 10 μιτι und 150 μιτι, insbesondere zwischen 15 μιτι und 100 μιτι, insbesondere zwischen 20 μιτι und 60 μιτι besitzt. 13. graphite foil according to claim 1 1 or 12, characterized in that it has a thickness between 10 μιτι and 150 μιτι, in particular between 15 μιτι and 100 μιτι, in particular between 20 μιτι and 60 μιτι.
14. Graphitfolie nach zumindest einem der Ansprüche 1 1 bis 13, dadurch gekennzeichnet, dass die Abweichung vom mittleren Flächengewicht auf 100 mm2 großen Teilflächen bezogen weniger als 15 %, insbesondere weniger als 10 %, insbesondere weniger als 5 % beträgt. 14. graphite foil according to at least one of claims 1 1 to 13, characterized in that the deviation from the average basis weight to 100 mm 2 large surface areas is less than 15%, in particular less than 10%, in particular less than 5%.
15. Graphitfolie nach zumindest einem der Ansprüche 1 1 bis 14, dadurch gekennzeichnet, dass sie mit zumindest einer Kunststofffolie ein Laminat bildet. 15 graphite foil according to at least one of claims 1 1 to 14, characterized in that it forms a laminate with at least one plastic film.
16. Graphitfolie nach Anspruch 15, dadurch gekennzeichnet, dass die 16. Graphite foil according to claim 15, characterized in that the
Kunststofffolie aus zumindest einem der Kunststoffe aus der Gruppe  Plastic film of at least one of the plastics from the group
umfassend Polyethylenterephtalat (PET), insbesondere als biaxial orientierte Polyesterfolie, Polyolefine, wie etwa Polyethylen (PE) und Polypropylen (PP), Polyvinylchlorid (PVC), Polystyrol (PS), Polyester, Polyimid (PI),  comprising polyethylene terephthalate (PET), in particular as a biaxially oriented polyester film, polyolefins, such as polyethylene (PE) and polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), polyester, polyimide (PI),
Fluorkunststoffe, wie etwa PVDF und PTFE, Polycarbonat und Biopolymere, wie etwa Polylactid (PLA), Celluloseacetat (CA) und Stärkeblends, gebildet ist.  Fluoroplastics such as PVDF and PTFE, polycarbonate and biopolymers such as polylactide (PLA), cellulose acetate (CA) and starch blends.
17. Graphitfolie nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass die Kunststofffolie gelocht ist. 17. graphite foil according to claim 15 or 16, characterized in that the plastic film is perforated.
18. Verwendung einer Graphitfolie gemäß zumindest einem Ansprüche 1 1 bis 17, insbesondere hergestellt mit einem Verfahren gemäß zumindest einem der Ansprüche 1 bis 10, in Batteriestrukturen, in Kondensatorstrukturen, als Wärmeabieiter und -Verteiler und/oder als Stromkollektor. 18. Use of a graphite foil according to at least one of claims 1 to 17, in particular produced by a method according to at least one of claims 1 to 10, in battery structures, in capacitor structures, as a heat dissipater and distributor and / or as a current collector.
19. Verwendung einer Graphitfolie gemäß zumindest einem Ansprüche 1 1 bis 17, insbesondere hergestellt mit einem Verfahren gemäß zumindest einem der Ansprüche 1 bis 10, als Widerstandheizung für großflächige Bauteile, wie etwa Flugzeugflügel oder Rotorblätter, Heizdecken und Warmhalteplatten. 19. Use of a graphite foil according to at least one of claims 1 1 to 17, in particular produced by a method according to at least one of claims 1 to 10, as resistance heating for large-area components, such as aircraft wings or rotor blades, electric blankets and hot plates.
20. Verwendung einer Graphitfolie gemäß zumindest einem Ansprüche 1 1 bis 17, insbesondere hergestellt mit einem Verfahren gemäß zumindest einem der Ansprüche 1 bis 10, als Dichtung oder als äußere Schicht eines 20. Use of a graphite foil according to at least one of claims 1 to 17, in particular produced by a method according to at least one of claims 1 to 10, as a seal or as an outer layer of a
Mehrschichtaufbaus einer Dichtung.  Multi-layer construction of a seal.
PCT/EP2013/053623 2012-02-22 2013-02-22 Method for producing a graphite film, a graphite film produced using this method, and the use thereof WO2013124454A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201210202748 DE102012202748A1 (en) 2012-02-22 2012-02-22 Process for producing a graphite foil
DE102012202748.3 2012-02-22

Publications (1)

Publication Number Publication Date
WO2013124454A1 true WO2013124454A1 (en) 2013-08-29

Family

ID=47747653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/053623 WO2013124454A1 (en) 2012-02-22 2013-02-22 Method for producing a graphite film, a graphite film produced using this method, and the use thereof

Country Status (2)

Country Link
DE (1) DE102012202748A1 (en)
WO (1) WO2013124454A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106131983A (en) * 2016-08-10 2016-11-16 陈庚 A kind of for hotting mask and preparation method thereof and heating plant
CN106211380A (en) * 2016-08-10 2016-12-07 陈庚 A kind of for hotting mask and preparation method thereof and heating plant
WO2021004274A1 (en) * 2019-07-08 2021-01-14 宁德时代新能源科技股份有限公司 Modified graphite paper, preparation method therefor, and lithium ion battery containing same
CN113163529A (en) * 2020-07-07 2021-07-23 安徽宇航派蒙健康科技股份有限公司 Method for preparing graphene high-temperature electrothermal film based on LIG method
CN113714055A (en) * 2020-05-25 2021-11-30 弗劳恩霍夫应用研究促进协会 Solvent-free coating process for foils for electrochemical applications

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107010959B (en) * 2017-05-14 2020-04-14 合肥鼎鑫模具有限公司 Corrosion-resistant oxidation-resistant gasket mold for automobile and manufacturing method thereof
DE102017216105A1 (en) * 2017-09-12 2019-03-14 Sgl Carbon Se The thermal transfer member
DE102018208967A1 (en) 2018-06-06 2019-12-12 Sgl Carbon Se Layer assembly for a seal
DE102018210645A1 (en) 2018-06-28 2020-01-02 Sgl Carbon Se Battery module and its use
DE102018210646B4 (en) 2018-06-28 2024-02-29 Sgl Carbon Se Sealing segment for temperature control of a fluid-cooled battery
JP7450356B2 (en) * 2018-09-28 2024-03-15 帝人株式会社 Heat-modified polymer layer-inorganic base material composite, polymer member-inorganic base material composite, and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404061A (en) * 1962-03-21 1968-10-01 Union Carbide Corp Flexible graphite material of expanded particles compressed together
JPS61133865A (en) 1984-12-04 1986-06-21 Taisei Corp Handy flow direction meter
JPS62294549A (en) * 1986-06-13 1987-12-22 日本ピラ−工業株式会社 Manufacture of flexible graphite sheet
US5149518A (en) * 1989-06-30 1992-09-22 Ucar Carbon Technology Corporation Ultra-thin pure flexible graphite calendered sheet and method of manufacture
DE4117074A1 (en) * 1991-05-25 1992-11-26 Bayer Ag METHOD FOR PRODUCING MOLDED BODIES
DE69012675T2 (en) 1989-06-30 1995-05-04 Ucar Carbon Tech Graphite foil.
US20070284259A1 (en) * 2006-06-12 2007-12-13 Macleod Andrew S Preheating of electrolytic cell
DE102008019888A1 (en) * 2007-10-22 2009-04-23 GrafTech International Holdings Inc., Parma Improved heat exchanger system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404061A (en) * 1962-03-21 1968-10-01 Union Carbide Corp Flexible graphite material of expanded particles compressed together
JPS61133865A (en) 1984-12-04 1986-06-21 Taisei Corp Handy flow direction meter
JPS62294549A (en) * 1986-06-13 1987-12-22 日本ピラ−工業株式会社 Manufacture of flexible graphite sheet
US5149518A (en) * 1989-06-30 1992-09-22 Ucar Carbon Technology Corporation Ultra-thin pure flexible graphite calendered sheet and method of manufacture
DE69012675T2 (en) 1989-06-30 1995-05-04 Ucar Carbon Tech Graphite foil.
DE4117074A1 (en) * 1991-05-25 1992-11-26 Bayer Ag METHOD FOR PRODUCING MOLDED BODIES
US20070284259A1 (en) * 2006-06-12 2007-12-13 Macleod Andrew S Preheating of electrolytic cell
DE102008019888A1 (en) * 2007-10-22 2009-04-23 GrafTech International Holdings Inc., Parma Improved heat exchanger system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 198805, Derwent World Patents Index; AN 1988-033909, XP002695839 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106131983A (en) * 2016-08-10 2016-11-16 陈庚 A kind of for hotting mask and preparation method thereof and heating plant
CN106211380A (en) * 2016-08-10 2016-12-07 陈庚 A kind of for hotting mask and preparation method thereof and heating plant
WO2021004274A1 (en) * 2019-07-08 2021-01-14 宁德时代新能源科技股份有限公司 Modified graphite paper, preparation method therefor, and lithium ion battery containing same
CN113714055A (en) * 2020-05-25 2021-11-30 弗劳恩霍夫应用研究促进协会 Solvent-free coating process for foils for electrochemical applications
CN113163529A (en) * 2020-07-07 2021-07-23 安徽宇航派蒙健康科技股份有限公司 Method for preparing graphene high-temperature electrothermal film based on LIG method

Also Published As

Publication number Publication date
DE102012202748A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
WO2013124454A1 (en) Method for producing a graphite film, a graphite film produced using this method, and the use thereof
DE102017208220A1 (en) Process for producing a dry film and dry film and dry film coated substrate
EP2745348B1 (en) Heat spreader and electric energy store device
DE102013104712A1 (en) Method for producing vacuum insulation panels
WO2011080334A2 (en) Layered composite material for use in a redox flow battery
WO2005037948A1 (en) Flat sealing material in the form of a reinforced composite foil (composite film)
EP2839717A2 (en) Electric heating device, component and method for the production thereof
DE102007037435A1 (en) laminate
EP2633979A1 (en) Semi-finished product for the production of a fiber composite metal hybrid laminate and method for producing such a semi-finished product
WO2018185090A1 (en) Method for producing a planar composite component and composite component produced thereby
EP1492672A1 (en) Device and method for the production of composite materials
DE112016006013T5 (en) Method for producing a metal-carbon fiber composite material
WO2021028242A1 (en) Method for producing a component and component herein
WO2018033335A1 (en) Method for producing an electrode for an electrochemical energy accumulator, electrochemical energy accumulator and vehicle
EP1395767B1 (en) Flat packing and method for the production thereof
DE112015002016T5 (en) Cylindrical heat insulating material and process for its production
EP2732946A1 (en) Composite, component therefrom and method for producing the same
EP3504046A1 (en) Fiber-reinforced foam material
DE102008036318A1 (en) Method for producing a bipolar cell and bipolar cell for a bipolar battery
DE102023201108B3 (en) Battery cell
DE1594019A1 (en) Method for connecting a fabric-like fabric, which consists at least for the greater part of polyhalocarbon resin fibers, with a metal surface
EP3781848A1 (en) Layer composite for a seal
EP3603941B1 (en) Method for producing sealing strip and sealing strip
DE102015122756A1 (en) Method for producing vacuum insulation panels
DE102015209571A1 (en) COMPONENTS FROM FIBER-PLASTIC COMPOUNDS AND METHOD FOR THE PRODUCTION THEREOF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13705507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13705507

Country of ref document: EP

Kind code of ref document: A1