WO2013140991A1 - Method for producing olefin polymer - Google Patents

Method for producing olefin polymer Download PDF

Info

Publication number
WO2013140991A1
WO2013140991A1 PCT/JP2013/055510 JP2013055510W WO2013140991A1 WO 2013140991 A1 WO2013140991 A1 WO 2013140991A1 JP 2013055510 W JP2013055510 W JP 2013055510W WO 2013140991 A1 WO2013140991 A1 WO 2013140991A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
olefin
olefin polymer
compound
Prior art date
Application number
PCT/JP2013/055510
Other languages
French (fr)
Japanese (ja)
Inventor
正洋 山下
崇史 雪田
寛矛 兼吉
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to SG11201405812VA priority Critical patent/SG11201405812VA/en
Priority to EP13763976.1A priority patent/EP2829555B1/en
Priority to US14/385,748 priority patent/US9315602B2/en
Priority to CN201380015033.7A priority patent/CN104203993B/en
Priority to JP2014506113A priority patent/JP5800984B2/en
Priority to KR1020147026060A priority patent/KR101609500B1/en
Publication of WO2013140991A1 publication Critical patent/WO2013140991A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent

Definitions

  • the present invention relates to a method for producing an olefin polymer using an olefin polymerization catalyst containing a bridged metallocene compound having a specific structure, and particularly relates to a method for producing a high melting point and high molecular weight olefin polymer with high productivity. .
  • metallocene compounds are well known as homogeneous catalysts for olefin polymerization.
  • W.W. Since the report of isotactic polymerization by Kaminsky et al., Many improvement studies have been conducted from the viewpoint of further improving stereoregularity and polymerization activity (Non-patent Document 1).
  • the specific catalyst includes a metallocene compound having a ligand obtained by crosslinking a cyclopentadienyl group and a fluorenyl group with isopropylidene, and an aluminoxane.
  • Patent Document 1 As an improvement of the metallocene compound, an attempt has been made to improve stereoregularity by changing the fluorenyl group to a 2,7-ditert-butylfluorenyl group (Patent Document 1). In addition, an attempt to improve stereoregularity by changing the fluorenyl group to a 3,6-ditert-butylfluorenyl group (Patent Document 2), or a combination of a cyclopentadienyl group and a fluorenyl group Attempts to improve stereoregularity by converting the cross-linked part (Patent Documents 3 and 4) have been reported.
  • an olefin polymer having a high melting point and a high molecular weight has been obtained by improving the metallocene compound, but the productivity is still not sufficient in an industrial production method.
  • these metallocene compounds are used by being dissolved in a hydrocarbon solvent, the solubility is not high, and it is necessary to use many solvents.
  • the use of many solvents reduces the concentration of the catalyst solution composed of the metallocene compound, which reduces productivity due to the effects of poisoning and deactivation. For this reason, efficient production of an olefin polymer having a high melting point and a high molecular weight is desired.
  • the problem to be solved by the present invention is to produce an olefin polymer having a high melting point and a high molecular weight by polymerizing an olefin such as propylene, which is advantageous in an industrial production method and has a high productivity. Is to provide.
  • the present inventors have intensively studied to solve the above problems. As a result, it has been found that the above-mentioned problems can be solved by using an olefin polymerization catalyst containing a crosslinked metallocene compound having a specific structure, and the present invention has been completed.
  • the present invention relates to the following [1] to [12].
  • [1] (A) a bridged metallocene compound represented by the following general formula [1]; (B) (b-1) an organoaluminum oxy compound, In the presence of an olefin polymerization catalyst comprising (b-2) a compound that reacts with the bridged metallocene compound (A) to form an ion pair, and (b-3) at least one compound selected from organoaluminum compounds And at least one olefin selected from olefins having 2 or more carbon atoms, and a method for producing an olefin polymer:
  • R 1 to R 4 each independently represents a group selected from a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group and a silicon-containing group, and two adjacent groups are bonded to form a ring.
  • R 5 to R 9 each independently represents a group selected from a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group and a silicon-containing group, and two adjacent groups are They may combine to form a ring;
  • R 10 to R 12 each independently represents a group selected from a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group and a silicon-containing group;
  • Y represents a carbon atom or a silicon atom;
  • M represents Ti, Zr or Hf;
  • Q is a structure selected from a halogen atom, a hydrocarbon group, a neutral conjugated or nonconjugated diene having 10 or less carbon atoms, an anionic ligand, and a neutral ligand capable of coordinating with a lone electron pair;
  • j Represents
  • the general formula [1] is a group selected from a halogen-containing hydrocarbon group of R 1 and R 4 are hydrocarbon groups and having 1 to 40 carbon atoms each independently having a carbon number of 1 to a 40, R 2 And at least one group of R 3 is a group selected from a hydrocarbon group having 1 to 40 carbon atoms and a silicon-containing group.
  • R 1 and R 4 are each independently a group selected from an aryl group having 6 to 20 carbon atoms and a halogen-containing aryl group having 6 to 20 carbon atoms. The method for producing an olefin polymer according to the above [1] or [2].
  • R 12 is a group selected from a hydrogen atom, a hydrocarbon group having 1 to 40 carbon atoms, and a halogen-containing hydrocarbon group having 1 to 40 carbon atoms.
  • R 10 to R 11 are all hydrogen atoms
  • R 12 is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and 6 to 20 carbon atoms.
  • an olefin polymer such as propylene is polymerized to produce an olefin polymer having a high melting point and a high molecular weight
  • a production method that is advantageous in an industrial production method and has high productivity. it can.
  • the method for producing an olefin polymer according to the present invention comprises an olefin having 2 or more carbon atoms (preferably ⁇ ) in the presence of an olefin polymerization catalyst comprising (A) a bridged metallocene compound described later and (B) a compound described later. At least one olefin selected from olefins).
  • the invention relates to a catalyst for olefin polymerization comprising a crosslinked metallocene compound (A) and a compound (B) used in the present invention, and a method for polymerizing an olefin having 2 or more carbon atoms in the presence of the olefin polymerization catalyst.
  • A crosslinked metallocene compound
  • B compound used in the present invention
  • the catalyst for olefin polymerization used in the present invention reacts with the bridged metallocene compound (A), (B) (b-1) an organoaluminum oxy compound, and (b-2) the bridged metallocene compound (A) to produce an ion pair. And (b-3) at least one compound selected from organoaluminum compounds as essential components. Further, the carrier (C) and the organic compound component (D) may be included as optional components.
  • Bridged metallocene compound (A) used in the present invention is represented by the following general formula [1].
  • R 1 to R 4 are each independently a group selected from a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group and a silicon-containing group. Further, two groups (for example, R 1 and R 2 , R 3 and R 4 ) bonded to adjacent ring carbons out of R 1 to R 4 may be bonded to form a ring.
  • R 5 to R 9 are each independently a group selected from a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group, and a silicon-containing group.
  • two groups eg, R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 ) bonded to adjacent ring carbons among R 5 to R 9 are bonded. May form a ring.
  • R 10 to R 12 are each independently a group selected from a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group, and a silicon-containing group.
  • Y represents a carbon atom or a silicon atom.
  • M represents Ti, Zr or Hf.
  • Q is a structure selected from a halogen atom, a hydrocarbon group, a neutral conjugated or nonconjugated diene having 10 or less carbon atoms, an anionic ligand, and a neutral ligand capable of coordinating with a lone electron pair.
  • j represents an integer of 1 to 4, and when j is 2 or more, a plurality of Qs may be the same or different from each other.
  • group is used to include atoms.
  • the hydrocarbon group listed as R 1 to R 12 is preferably a hydrocarbon group having 1 to 40 carbon atoms, and more preferably a hydrocarbon group having 1 to 20 carbon atoms.
  • the hydrocarbon group include an alkyl group having 1 to 20 carbon atoms, a saturated alicyclic group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms examples include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, and n-nonyl.
  • a linear alkyl group such as n-decanyl group; iso-propyl group, tert-butyl group, amyl group, 3-methylpentyl group, 1,1-diethylpropyl group, 1,1-dimethylbutyl group, 1
  • Illustrative branched alkyl groups such as -methyl-1-propylbutyl, 1,1-propylbutyl, 1,1-dimethyl-2-methylpropyl, 1-methyl-1-isopropyl-2-methylpropyl Is done.
  • saturated alicyclic group having 3 to 20 carbon atoms examples include cycloalkyl groups such as cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group; and alicyclic polycyclic groups such as norbornyl group and adamantyl group. .
  • aryl group having 6 to 20 carbon atoms examples include an aryl group in which all groups bonded to an aromatic carbon such as a phenyl group, a naphthyl group, a phenanthryl group, an anthracenyl group, and a biphenyl group are hydrogen atoms (hereinafter referred to as “unsubstituted aryl group”).
  • O-tolyl group O-tolyl group, m-tolyl group, p-tolyl group, ethylphenyl group, n-propylphenyl group, iso-propylphenyl group, n-butylphenyl group, sec-butylphenyl group, tert- Examples thereof include alkylaryl groups such as butylphenyl group and xylyl group.
  • aralkyl group having 7 to 20 carbon atoms all the groups bonded to aromatic carbon such as benzyl group, cumyl group, ⁇ -phenethyl group, ⁇ -phenethyl group, diphenylmethyl group, naphthylmethyl group, neophyll group, etc. are hydrogen atoms.
  • An aralkyl group (hereinafter also referred to as “unsubstituted aralkyl group”); o-methylbenzyl group, m-methylbenzyl group, p-methylbenzyl group, ethylbenzyl group, n-propylbenzyl group, iso-propylbenzyl group And alkylaralkyl groups such as n-butylbenzyl group, sec-butylbenzyl group and tert-butylbenzyl group.
  • the hydrocarbon group is particularly preferably a hydrocarbon group having 1 to 10 carbon atoms.
  • halogen-containing hydrocarbon group listed as R 1 to R 12 include groups in which at least one hydrogen atom of the hydrocarbon group is substituted with a halogen atom.
  • Halogen-containing alkyl groups such as fluoroalkyl groups such as trifluoromethyl groups; Fluoroaryl groups such as pentafluorophenyl group, o-chlorophenyl group, m-chlorophenyl group, p-chlorophenyl group, chloroaryl group such as chloronaphthyl group, o-bromophenyl group, m-bromophenyl group, p-bromophenyl A part of or all of the above-mentioned unsubstituted aryl groups such as iodoaryl groups such as bromoaryl groups such as bromonaphthyl groups, o-iodophenyl groups, m-iodophenyl groups, p-i
  • a part of the hydrogen atoms of the unsubstituted aralkyl group such as a bromoaralkyl group, an o-iodobenzyl group, an m-iodobenzyl group, a p-iodobenzyl group, an iodophenethyl group, or the like is substituted with a halogen atom.
  • a halogen atom such as groups.
  • nitrogen-containing groups listed as R 1 to R 12 include a nitro group, a cyano group, an N-methylamino group, an N, N-dimethylamino group, and an N-phenylamino group.
  • Examples of the oxygen-containing group listed as R 1 to R 12 include a methoxy group, an ethoxy group, and a phenoxy group.
  • silicon-containing groups listed as R 1 to R 12 include alkylsilyl groups such as methylsilyl group, dimethylsilyl group, trimethylsilyl group, ethylsilyl group, diethylsilyl group, triethylsilyl group, dimethyl-tert-butylsilyl group; Examples include arylsilyl groups such as silyl group, diphenylmethylsilyl group, and triphenylsilyl group.
  • halogen atom listed as R 5 to R 12 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • At least one set of two adjacent groups selected from R 1 to R 4 and R 5 to R 9 may be bonded to form a ring.
  • the ring structure include 1-methyl-2-naphthalenyl group, 3-methyl-2-naphthalenyl group, 1-methyl-2- (5,6,7,8-tetrahydro) naphthalenyl group, 3-methyl-2- (5,6,7,8-tetrahydro) naphthalenyl group, 7-methyl-1H-6-indenyl group, 6-methyl-1H-5-indenyl group, 7-methyl-6-benzofuranyl group, 6-methyl-5 -Benzofuranyl group, 7-methyl-6-benzothiophenyl group, 6-methyl-5-benzothiophenyl group.
  • R 1 and R 4 are preferably each independently the above hydrocarbon group or halogen-containing hydrocarbon group, more preferably the above aryl group or halogen-containing aryl group, a phenyl group, an alkylphenyl group, or these It is more preferable that a part of the hydrogen atoms in the group is a group substituted with a halogen atom.
  • R 1 and R 4 are preferably the same group.
  • R 2 and R 3 are preferably groups selected from the hydrocarbon group and the silicon-containing group. Further, R 2 and R 3 are preferably each independently the hydrocarbon group or silicon-containing group, more preferably the hydrocarbon group, and particularly preferably the alkyl group. R 2 and R 3 are preferably the same group.
  • R 5 to R 9 are each independently preferably a hydrogen atom, a halogen atom or an alkyl group having 1 to 20 carbon atoms, and R 5 to R 9 are all hydrogen atoms, R 5 , R 6 , R 8 R 9 is more preferably a hydrogen atom, and R 7 is more preferably a halogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 10 to R 11 are each preferably a hydrogen atom;
  • R 12 is preferably a hydrogen atom, the above hydrocarbon group or a halogen-containing hydrocarbon group, and the above alkyl group, aryl group or halogen-containing aryl. It is more preferably a group, more preferably an alkyl group having 1 to 10 carbon atoms, a phenyl group, an alkylphenyl group, or a group in which a part of these groups is substituted with a halogen. It is presumed that an olefin polymer having a high melting point and a high molecular weight is produced by the electronic or steric effects of R 10 to R 12 or both.
  • an olefin polymer having a high melting point can be obtained. This is because the bridged metallocene compound (A) catalyzes the production of a highly stereoregular olefin polymer. For this reason, even an olefin polymer synthesized at a temperature higher than room temperature, preferably a temperature much higher than room temperature, can exhibit good moldability, increase the value of the product and industrially produce olefin polymers. The cost performance when doing so is improved.
  • the bridged metallocene compound (A) having the above substituent an olefin polymer having a large molecular weight can be obtained.
  • the bridged metallocene compound (A) catalyzes the production of a high molecular weight olefin polymer. For this reason, it becomes possible to synthesize an olefin polymer at a temperature not lower than room temperature, preferably a temperature significantly higher than room temperature, and the cost performance when industrially producing the olefin polymer is improved.
  • the bridged metallocene compound (A) has excellent solubility in hydrocarbon solvents.
  • the bridged metallocene compound (A) has a solubility in a hydrocarbon solvent having 4 to 10 carbon atoms (25 ° C.), preferably 0.5 mmol / L or more. More preferably, it is 0.7 mmol / L or more, More preferably, it is 0.9 mmol / L or more.
  • the solubility of the bridged metallocene compound (A) is preferably 0.5 mmol / L or more, more preferably 0.7 mmol / L or more, and still more preferably 0 with respect to n-hexane at 25 ° C. .9 mmol / L or more.
  • the upper limit is preferably 10 mol / L or less, more preferably 1 mol / L or less.
  • the bridged metallocene compound in which the ligand has a crosslinked structure generally has a rigid structure and is relatively strongly crystallized, and the solubility in hydrocarbon solvents tends to decrease.
  • the bridged metallocene compound (A) used in the present invention has an asymmetric structure in which the structure of the bridge portion, specifically, the structure of the two substituents bonded to Y in formula (1) are different. It is presumed that the degree of crystallization is loose and the solubility in hydrocarbon solvents tends to be high.
  • Non-Patent Document 1 discloses that metallocene compounds generally tend to have extremely high olefin polymerization activity. Such highly active compounds generally tend to be susceptible to the effects of impurities, specifically poisoning and deactivation.
  • the bridged metallocene compound (A) used in the present invention is excellent in solubility in a hydrocarbon solvent as described above, whereby a catalyst solution can be prepared using a smaller amount of solvent.
  • the effects of poisoning and deactivation due to impurities that may be slightly contained in the solvent used are suppressed, and an improvement in the productivity of the olefin polymer can be expected.
  • Such an effect is a useful performance that is expected to reduce the possibility of being affected by the lot of the solvent to be used, especially when the production of an olefin polymer is commercialized.
  • -About Y, M, Q and j- Y represents a carbon atom or a silicon atom, preferably a carbon atom.
  • M represents Ti, Zr or Hf, preferably Zr or Hf, particularly preferably Zr.
  • Q is a structure selected from a halogen atom, a hydrocarbon group, a neutral conjugated or nonconjugated diene having 10 or less carbon atoms, an anionic ligand, and a neutral ligand capable of coordinating with a lone electron pair.
  • halogen atom listed as Q examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • an alkyl group having 1 to 10 carbon atoms and a cycloalkyl group having 3 to 10 carbon atoms are preferable.
  • the alkyl group having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, iso-propyl, 2-methylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, , 1-diethylpropyl group, 1-ethyl-1-methylpropyl group, 1,1,2,2-tetramethylpropyl group, sec-butyl group, tert-butyl group, 1,1-dimethylbutyl group, 1, Examples include a 1,3-trimethylbutyl group and a neopentyl group; examples of the cycloalkyl group having 3 to 10 carbon atoms include a cyclohexylmethyl group, a cyclohexyl group, and a 1-methyl-1-cyclohexyl group
  • Neutral conjugated or non-conjugated dienes having 10 or less carbon atoms include s-cis- or s-trans- ⁇ 4 -1,3-butadiene, s-cis- or s-trans- ⁇ 4 -1,4- Diphenyl-1,3-butadiene, s-cis- or s-trans- ⁇ 4 -3-methyl-1,3-pentadiene, s-cis- or s-trans- ⁇ 4 -1,4-dibenzyl-1, 3-butadiene, s-cis- or s-trans- ⁇ 4 -2,4-hexadiene, s-cis- or s-trans- ⁇ 4 -1,3-pentadiene, s-cis- or s-trans- ⁇ 4 -1,4-ditolyl-1,3-butadiene, s- cis - or s-trans eta 4 -1,4-bis (trimethylsilyl) -1
  • anion ligand examples include alkoxy groups such as methoxy and tert-butoxy; aryloxy groups such as phenoxy; carboxylate groups such as acetate and benzoate; sulfonate groups such as mesylate and tosylate.
  • Neutral ligands that can be coordinated by lone pairs include organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, diphenylmethylphosphine; tetrahydrofuran (THF), diethyl ether, dioxane, 1,2-dimethoxy Examples are ethers such as ethane.
  • Q is preferably a halogen atom or an alkyl group having 1 to 5 carbon atoms.
  • J is an integer of 1 to 4, preferably 2.
  • bridged metallocene compound (A) is represented by the following general formula [2].
  • R 1 to R 4 , R 7 , R 12 , Y, M, Q and j are defined as R 1 to R 4 , R 7 , R 12 , Y, M in the above formula [1]. , Q and j are identical.
  • R 1 and R 4 are an aryl group having 6 to 20 carbon atoms or a halogen-containing aryl group having 6 to 20 carbon atoms
  • R 2 and R 3 are alkyl groups having 1 to 10 carbon atoms
  • R 12 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • bridged metallocene compounds ⁇ Examples of bridged metallocene compounds> Specific examples of the bridged metallocene compound (A) represented by the general formula [1] are shown below, but the scope of the present invention is not particularly limited thereby.
  • the crosslinked metallocene compound (A) may be used alone or in combination of two or more.
  • the ligand structure excluding MQ j (metal part) of the metallocene compound is divided into three parts: Bridge (bridge part), Flu (fluorenyl part) and Cp (cyclopentadienyl part).
  • the structure of the crosslinked portion is divided into three in terms of notation. Abbreviations of each group of the crosslinked portion are shown in Table 1, and specific examples of the structure of the crosslinked portion are shown in Tables 2 to 3.
  • represents —CR 10 R 11 R 12
  • represents —PhR 5 R 6 R 7 R 8 R 9
  • represents Y.
  • No. B-24 means a combination of ⁇ 1- ⁇ 2- ⁇ 1, and the structure of the bridge (crosslinked portion) is represented by the following formula.
  • the ligand structure of 944 means a combination of B-24 and ⁇ 5.
  • MQ j of the metal moiety is ZrCl 2
  • the following metallocene compound is exemplified.
  • MQ j examples include ZrCl 2 , ZrBr 2 , ZrMe 2 , Zr (OTs) 2 , Zr (OMs) 2 , Zr (OTf) 2 , TiCl 2 , TiBr 2 , TiMe 2 , Ti (OTs). 2, Ti (OMs) 2, Ti (OTf) 2, HfCl 2, HfBr 2, HfMe 2, Hf (OTs) 2, Hf (OMs) 2, etc. Hf (OTf) 2 and the like.
  • Ts represents a p-toluenesulfonyl group
  • Ms represents a methanesulfonyl group
  • Tf represents a trifluoromethanesulfonyl group.
  • the bridged metallocene compound (A) represented by the general formula [1] used in the present invention can be produced by a known method, and the production method is not particularly limited. Examples of known production methods include those described in the pamphlet of WO 2001/027124 and WO 2004/087775 by the applicant.
  • Compound (B) is used as a component of the olefin polymerization catalyst.
  • Compound (B) is selected from (b-1) an organoaluminum oxy compound, (b-2) a compound that reacts with a bridged metallocene compound (A) to form an ion pair, and (b-3) an organoaluminum compound. At least one kind. Of these, the organoaluminum oxy compound (b-1) is preferred.
  • organoaluminum oxy compound (b-1) examples include conventionally known aluminoxanes such as a compound represented by the following general formula [3] and a compound represented by the following general formula [4], and a compound represented by the following general formula [5]. Examples thereof include a modified methylaluminoxane having a structure represented by the following formula, and a boron-containing organoaluminum oxy compound represented by the following general formula [6].
  • R represents a hydrocarbon group having 1 to 10 carbon atoms, preferably a methyl group, and n represents an integer of 2 or more, preferably 3 or more, more preferably 10 or more.
  • methylaluminoxane in which R is a methyl group in formulas [3] and [4] is preferably used.
  • R represents a hydrocarbon group having 2 to 10 carbon atoms, and m and n each independently represents an integer of 2 or more. A plurality of R may be the same or different from each other.
  • the modified methylaluminoxane [5] can be prepared using trimethylaluminum and an alkylaluminum other than trimethylaluminum.
  • modified methylaluminoxane [5] is generally called MMAO (modified (methyl aluminoxane).
  • MMAO can be prepared specifically by the methods listed in US4960878 and US5041584.
  • modified methylaluminoxane prepared by using trimethylaluminum and triisobutylaluminum from Tosoh Finechem Co., Ltd. (namely, R in the above general formula [5] is an isobutyl group) is named MMAO or TMAO. Is produced commercially.
  • MMAO is an aluminoxane with improved solubility in various solvents and storage stability. Specifically, unlike a compound that is insoluble or hardly soluble in benzene such as a compound represented by the above general formula [3] or [4], MMAO is an aliphatic hydrocarbon, alicyclic carbonization. It is soluble in hydrogen and aromatic hydrocarbons.
  • R c represents a hydrocarbon group having 1 to 10 carbon atoms.
  • a plurality of R d 's each independently represents a group selected from a hydrogen atom, a halogen atom, and a hydrocarbon group having 1 to 10 carbon atoms.
  • an olefin polymer can be produced even at a high temperature as described later. Therefore, one of the features of the present invention is that a benzene-insoluble organoaluminum oxy compound as exemplified in JP-A-2-78687 can also be used. Further, organoaluminum oxy compounds described in JP-A-2-167305, aluminoxanes having two or more alkyl groups described in JP-A-2-24701, JP-A-3-103407, and the like are also included. It can be used suitably.
  • the “benzene-insoluble” organoaluminum oxy compound means that the amount of the compound dissolved in benzene at 60 ° C. is usually 10% by weight or less, preferably 5% by weight or less, particularly preferably in terms of Al atom.
  • An organoaluminum oxy compound that is 2% by weight or less and is insoluble or hardly soluble in benzene.
  • the organoaluminum oxy compound (b-1) exemplified above may be used alone or in combination of two or more.
  • ionic compound (b-2) which forms an ion pair by reacting with the bridged metallocene compound (A)>
  • JP-A-1-501950 is disclosed as the compound (b-2) that reacts with the bridged metallocene compound (A) to form an ion pair.
  • JP, 1-502036, JP 3-179005, JP 3-179006, JP 3-207703, JP 3-207704, JP 2004-51676 is disclosed.
  • heteropoly compounds and isopoly compounds are also exemplified.
  • the ionic compound (b-2) is preferably a compound represented by the following general formula [7].
  • R e + is exemplified by H + , oxonium cation, carbenium cation, ammonium cation, phosphonium cation, cycloheptyltrienyl cation, and ferrocenium cation having a transition metal.
  • R f , R g , R h and R i each independently represents an organic group, preferably a group selected from an aryl group and a halogen-containing aryl group.
  • carbenium cation examples include trisubstituted carbenium cations such as triphenylcarbenium cation, tris (methylphenyl) carbenium cation, and tris (dimethylphenyl) carbenium cation.
  • ammonium cation examples include trialkylammonium cation, triethylammonium cation, tri (n-propyl) ammonium cation, triisopropylammonium cation, tri (n-butyl) ammonium cation, and triisobutylammonium cation; N, N, N-dialkylanilinium cations such as N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N, 2,4,6-pentamethylanilinium cation; diisopropylammonium cation, dicyclohexylammonium cation, etc. Of the dialkylammonium cation.
  • Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tris (methylphenyl) phosphonium cation, and tris (dimethylphenyl) phosphonium cation.
  • R e + among the above examples, a carbenium cation and an ammonium cation are preferable, and a triphenylcarbenium cation, an N, N-dimethylanilinium cation, and an N, N-diethylanilinium cation are particularly preferable.
  • R e + is a carbenium cation (carbenium salt)
  • carbenium salt examples include triphenylcarbenium tetraphenylborate, triphenylcarbeniumtetrakis (pentafluorophenyl) borate, triphenylcarbeniumtetrakis (3,5-ditrifluoromethylphenyl) borate, tris (4-methylphenyl) carbene.
  • Examples thereof include nium tetrakis (pentafluorophenyl) borate and tris (3,5-dimethylphenyl) carbenium tetrakis (pentafluorophenyl) borate.
  • R e + is an ammonium cation (ammonium salt)
  • ammonium salts include trialkylammonium salts, N, N-dialkylanilinium salts, and dialkylammonium salts.
  • trialkylammonium salt examples include triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate, trimethylammonium tetrakis (p-tolyl) borate, trimethylammonium tetrakis ( o-tolyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (2,4 -Dimethylphenyl) borate, tri (n-butyl) ammonium tetrakis (3,5-dimethylphenyl) borate, tri
  • N, N-dialkylanilinium salts include N, N-dimethylanilinium tetraphenylborate, N, N-dimethylaniliniumtetrakis (pentafluorophenyl) borate, and N, N-dimethylaniliniumtetrakis.
  • dialkylammonium salt examples include diisopropylammonium tetrakis (pentafluorophenyl) borate and dicyclohexylammonium tetraphenylborate.
  • the ionic compound (b-2) may be used alone or in combination of two or more.
  • organoaluminum compound (b-3) examples include an organoaluminum compound represented by the following general formula [8], and a complex alkylated product of a group 1 metal of the periodic table represented by the following general formula [9] and aluminum. Illustrated.
  • M 2 represents Li, Na or K
  • R a each independently represents a group selected from a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms.
  • organoaluminum compound [8] examples include tri-n-alkylaluminums such as trimethylaluminum, triethylaluminum, tri-n-butylaluminum, trihexylaluminum, and trioctylaluminum; Tri-branched alkylaluminums such as triisopropylaluminum, triisobutylaluminum, trisec-butylaluminum, tritert-butylaluminum, tri-2-methylbutylaluminum, tri-3-methylhexylaluminum, tri-2-ethylhexylaluminum; Tricycloalkylaluminum such as tricyclohexylaluminum and tricyclooctylaluminum; triarylaluminum such as triphenylaluminum and tritolylaluminum; Dialkylaluminum hydrides such as diisopropylaluminum hydride, diisobutylalum
  • Examples of the complex alkylated product [9] include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 .
  • a compound similar to the complex alkylated product [9] can also be used, and an organic aluminum compound in which two or more aluminum compounds are bonded via a nitrogen atom is exemplified.
  • An example of such a compound is (C 2 H 5 ) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2 .
  • organoaluminum compound (b-3) trimethylaluminum and triisobutylaluminum are preferable because they are easily available.
  • the organoaluminum compound (b-3) may be used alone or in combination of two or more.
  • the carrier (C) may be used as a component of the olefin polymerization catalyst.
  • the carrier (C) is an inorganic compound or an organic compound, and is a granular or particulate solid.
  • inorganic compounds examples include porous oxides, inorganic halides, clay minerals, clay (usually composed of the clay mineral as a main component), ion-exchangeable layered compounds (most clay minerals are ion-exchangeable). A layered compound)).
  • porous oxide examples include SiO 2 , Al 2 O 3 , MgO, ZrO, TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 ; a composite or mixture containing these oxides.
  • the Examples of the composite or mixture include natural or synthetic zeolite, SiO 2 —MgO, SiO 2 —Al 2 O 3 , SiO 2 —TiO 2 , SiO 2 —V 2 O 5 , SiO 2 —Cr 2 O 3 , SiO 2.
  • -TiO 2 -MgO is exemplified.
  • porous oxides containing as a main component one or both of SiO 2 and Al 2 O 3 are preferable.
  • the porous oxide has different properties depending on the type and production method, but the particle size is preferably 10 to 300 ⁇ m, more preferably 20 to 200 ⁇ m; the specific surface area is preferably 50 to 1000 m 2 / g, Preferably it is in the range of 100 to 700 m 2 / g; the pore volume is preferably in the range of 0.3 to 3.0 cm 3 / g.
  • Such a porous oxide is used after being calcined at 100 to 1000 ° C., preferably 150 to 700 ° C., if necessary.
  • the inorganic halide examples include MgCl 2 , MgBr 2 , MnCl 2 , and MnBr 2 .
  • the inorganic halide may be used as it is or after being pulverized by a ball mill or a vibration mill.
  • the above-mentioned clay, clay mineral, and ion-exchange layered compound are not limited to natural products, and artificial synthetic products can also be used.
  • the said ion exchange layered compound is a compound which has the crystal structure where the surface comprised by an ionic bond etc. was piled up in parallel with weak mutual bond force, and is a compound which can contain the ion contained.
  • the clays and clay minerals include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysinger gel, pyrophyllite, synthetic mica, etc.
  • examples of the ion-exchangeable layered compound have a layered crystal structure such as hexagonal close-packed packing type, antimony type, CdCl 2 type, CdI 2 type Examples are ionic crystalline compounds.
  • examples of the ion-exchange layered compound include ⁇ -Zr (HAsO 4 ) 2 .H 2 O, ⁇ -Zr (HPO 4 ) 2 , ⁇ -Zr (KPO 4 ) 2 .3H 2 O, ⁇ - Ti (HPO 4 ) 2 , ⁇ -Ti (HAsO 4 ) 2 .H 2 O, ⁇ -Sn (HPO 4 ) 2 .H 2 O, ⁇ -Zr (HPO 4 ) 2 , ⁇ -Ti (HPO 4 ) 2 Examples thereof include crystalline acidic salts of polyvalent metals such as ⁇ -Ti (NH 4 PO 4 ) 2 .H 2 O.
  • any of a surface treatment that removes impurities adhering to the surface and a treatment that affects the crystal structure of clay can be used.
  • Specific examples of the chemical treatment include acid treatment, alkali treatment, salt treatment, and organic matter treatment.
  • the ion-exchangeable layered compound may be a layered compound in which the interlayer is expanded by exchanging the exchangeable ions between the layers with another large bulky ion using the ion-exchangeability.
  • Such bulky ions play a role of supporting pillars to support the layered structure and are usually called pillars.
  • an oxide column pillar
  • intercalation The introduction of another substance between the layers of the layered compound is called intercalation.
  • guest compounds to be intercalated include cationic inorganic compounds such as TiCl 4 and ZrCl 4 ; metal alkoxides such as Ti (OR) 4 , Zr (OR) 4 , PO (OR) 3 , and B (OR) 3 ( R is a hydrocarbon group); metal hydroxide ions such as [Al 13 O 4 (OH) 24 ] 7+ , [Zr 4 (OH) 14 ] 2+ , [Fe 3 O (OCOCH 3 ) 6 ] + Is exemplified. These guest compounds may be used alone or in combination of two or more.
  • a metal alkoxide such as Si (OR) 4 , Al (OR) 3 , Ge (OR) 4 is hydrolyzed and polycondensed.
  • R is a hydrocarbon group, etc.
  • Si (OR) 4 Al (OR) 3 , Ge (OR) 4 is hydrolyzed and polycondensed.
  • the obtained polymer, a colloidal inorganic compound such as SiO 2, etc. can also coexist.
  • clay minerals and clays are preferable, and montmorillonite group, vermiculite, hectorite, teniolite and synthetic mica are particularly preferable.
  • Organic compounds examples include granular or particulate solids having a particle size in the range of 10 to 300 ⁇ m.
  • a (co) polymer synthesized mainly from an olefin having 2 to 14 carbon atoms such as ethylene, propylene, 1-butene, 4-methyl-1-pentene examples of synthesized (co) polymers; modified products of these (co) polymers.
  • Organic compound component (D) may be used as a component of the olefin polymerization catalyst.
  • the organic compound component (D) is used for the purpose of improving the polymerization performance in the olefin polymerization reaction and the physical properties of the olefin polymer, if necessary.
  • Examples of the organic compound component (D) include alcohols, phenolic compounds, carboxylic acids, phosphorus compounds, and sulfonates.
  • the components of the olefin polymerization catalyst are preferably used in the following ratios.
  • the crosslinked metallocene compound (A) is usually 10 ⁇ 9 to 10 ⁇ 1 mol, preferably 10 ⁇ 8 to 1 liter per reaction volume. It is used in such an amount that it becomes 10 ⁇ 2 mol.
  • the organoaluminum oxy compound (b-1) is used as a component of the olefin polymerization catalyst, the compound (b-1) is crosslinked with the aluminum atom (Al) in the compound (b-1).
  • the metallocene compound (A) is used in such an amount that the molar ratio [Al / M] to all transition metal atoms (M) in the metallocene compound (A) is usually 0.01 to 5000, preferably 0.05 to 2000.
  • the compound (b-2) is a combination of the compound (b-2) and the bridged metallocene compound (A).
  • the molar ratio [(b-2) / M] with the transition metal atom (M) is usually 1 to 10, preferably 1 to 5.
  • the organoaluminum compound (b-3) is used as a component of the olefin polymerization catalyst, the compound (b-3) is added to the compound (b-3) and the bridged metallocene compound (A).
  • the molar ratio [(b-3) / M] with the transition metal atom (M) is usually 10 to 5000, preferably 20 to 2000.
  • the organic compound component (D) when used as a component of the olefin polymerization catalyst, when the compound (B) is an organoaluminum oxy compound (b-1), the organic compound component (D) and the compound In an amount such that the molar ratio [(D) / (b-1)] to (b-1) is usually 0.01 to 10, preferably 0.1 to 5; compound (B) is an ion When the organic compound (b-2) is used, the molar ratio [(D) / (b-2)] of the organic compound component (D) and the compound (b-2) is usually 0.01 to 10 Preferably in an amount of 0.1 to 5; when the compound (B) is an organoaluminum compound (b-3), the moles of the organic compound component (D) and the compound (b-3) The amount [(D) / (b-3)] is usually 0.005 to 2, preferably 0.01 to 1. It is.
  • the catalyst for olefin polymerization used in the present invention can be used by dissolving the bridged metallocene compound (A) and compound (B), which are catalyst components, in a solvent. That is, in the present invention, the olefin polymerization catalyst can be supplied to the polymerization system as a catalyst solution.
  • a hydrocarbon solvent having 4 to 10 carbon atoms can be used as the solvent.
  • a high concentration catalyst solution (solvent: hydrocarbon solvent) of the bridged metallocene compound (A) can be prepared. From the viewpoint of polymerization activity, it is preferable to supply a catalyst solution having a bridged metallocene compound (A) concentration of 0.03 mmol / L to 2.0 mol / L to the polymerization system, more preferably 0.04 mmol / L to 1.. 5 mol / L, more preferably 0.05 mmol / L to 1.0 mol / L.
  • hydrocarbon solvent having 4 to 10 carbon atoms examples include hydrocarbon solvents having 4 carbon atoms such as butane, isobutane, cyclobutane, and methylcyclopropane; Hydrocarbon solvents having 5 carbon atoms such as pentane, isopentane, neopentane, cyclopentane, methylcyclobutane, 1,1-dimethylcyclopropane, 1,2-dimethylcyclopropane, ethylcyclopropane; Hexane, 3-methylpentane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, cyclohexane, methylcyclopentane, 1,1-dimethylcyclobutane, 1,2-dimethylcyclobutane, 1,3- C6 hydrocarbon solvents such as dimethylcyclobutane, ethylcyclobutane, 1,1,2-trimethyl
  • hydrocarbon solvents having 4 to 10 carbon atoms hydrocarbon solvents having 5 to 8 carbon atoms are industrially preferable.
  • an olefin having 2 or more carbon atoms is used as a raw material for the olefin polymer.
  • the said olefin may be used individually by 1 type, and may use 2 or more types together.
  • the olefin is an olefin having 2 or more carbon atoms, preferably 3 to 20, more preferably 3 to 10. Further, the olefin is preferably an ⁇ -olefin, more preferably a linear or branched ⁇ -olefin.
  • olefin examples include ethylene, propylene, 1-butene, 2-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, -Octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene.
  • propylene is particularly preferred.
  • Cyclic olefins having 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms, such as cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, 2-methyl-1,4,5,8-dimethano- 1,2,3,4,4a, 5,8,8a-octahydronaphthalene;
  • Polar monomers for example, ⁇ , such as acrylic acid, methacrylic acid, fumaric acid, maleic anhydride, itaconic acid, itaconic anhydride, bicyclo (2,2,1) -5-heptene-2,3-dicarboxylic acid anhydride ⁇ -unsaturated carboxylic acid;
  • metal salt such as sodium salt, potassium salt, lithium salt, zinc salt, magnesium salt, calcium salt of ⁇ , ⁇ -unsaturated carboxylic acid
  • metal salt such as sodium salt, potassium salt, lithium salt, zinc salt, magnesium salt, calcium
  • propylene is used for at least a part of the olefin.
  • the proportion of propylene used is preferably 60 to 100 mol% and more preferably 70 to 100 mol% with respect to 100 mol% of the olefin.
  • the content ratio of the structural unit derived from propylene measured by 13 C-NMR is preferably 60 to 100 mol%, and more preferably 70 to 100 mol%. .
  • the polymerization temperature is not particularly limited, and is usually ⁇ 100 to 250 ° C., preferably 40 to 200 ° C., more preferably 45 to 150 ° C., and particularly preferably 50. It is ⁇ 150 ° C. (in other words, it is particularly preferably a temperature that can be industrialized).
  • the polymerization pressure is usually in the range of normal pressure to 10 MPa-G (gauge pressure), preferably normal pressure to 5 MPa-G.
  • the polymerization temperature is preferably 50 ° C. or more, and particularly preferably 60 to 150 ° C. from the viewpoint of productivity.
  • the polymerization reaction can be carried out in any of batch, semi-continuous and continuous methods. Furthermore, the polymerization can be performed in two or more stages having different reaction conditions.
  • the melting point of the olefin polymer can be adjusted by changing the polymerization temperature.
  • the molecular weight of the olefin polymer can be adjusted by allowing hydrogen to exist in the polymerization reaction system or changing the polymerization temperature.
  • the molecular weight of the olefin polymer can be adjusted by the amount of the compound (B) used as a component of the olefin polymerization catalyst. When hydrogen is added, the amount is suitably about 0.001 to 100 NL per kg of olefin.
  • the usage and order of addition of each component of the olefin polymerization catalyst such as the crosslinked metallocene compound (A) and the compound (B) are arbitrarily selected.
  • the following method is exemplified.
  • the catalyst component can be used after being dissolved in a solvent.
  • a solvent generally, a hydrocarbon solvent having 4 to 10 carbon atoms can be used as described above.
  • a high concentration catalyst solution (solvent: hydrocarbon solvent) of the bridged metallocene compound (A) can be prepared. From the viewpoint of polymerization activity, it is preferable to supply a catalyst solution having a bridged metallocene compound (A) concentration of 0.03 mmol / L to 2.0 mol / L to the polymerization system, more preferably 0.04 mmol / L to 1.. 5 mol / L, more preferably 0.05 mmol / L to 1.0 mol / L.
  • the holding time can be normally set to 120 hours or shorter, preferably 36 hours or shorter.
  • the retention time is set to 24 hours or less in order to suppress poisoning and deactivation from the solvent. It is preferable to set it to 12 hours or less.
  • At least two of the catalyst components may be contacted in advance.
  • the unsupported compound (B) is added to the polymerization vessel in any order as necessary. May be.
  • the compound (B) supported on the carrier (C) and the compound (B) not supported may be the same or different.
  • the solid catalyst component in which the crosslinked metallocene compound (A) is supported on the support (C) and the solid catalyst component in which the crosslinked metallocene compound (A) and the compound (B) are supported on the support (C) It may be polymerized, and a catalyst component may be further supported on the prepolymerized solid catalyst component.
  • an olefin polymer is obtained by homopolymerizing or copolymerizing one or more of the olefins in the presence of the olefin polymerization catalyst.
  • the polymerization can be carried out by any of liquid phase polymerization methods such as solution polymerization and suspension polymerization; and gas phase polymerization methods.
  • Inert hydrocarbon solvents used in the liquid phase polymerization method include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, cyclohexane, methylcyclo Examples include alicyclic hydrocarbons such as pentane; aromatic hydrocarbons such as benzene, toluene and xylene; and halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane. Moreover, these inert hydrocarbon solvents may be used individually by 1 type, and may use 2 or more types together. Moreover, the olefin itself used as a raw material of an olefin polymer can also be used as a solvent.
  • Olefin polymer According to the present invention described above, when an olefin such as propylene is polymerized, the olefin having a high melting point and a high molecular weight is efficiently produced with a high polymerization activity not only at a low polymerization temperature but also at a high polymerization temperature. A polymer can be produced.
  • the weight average molecular weight (Mw) determined by gel permeation chromatography (GPC) of the olefin polymer is usually 90,000 or more, preferably 97,000 to 1,000,000, more preferably 110,000 to 1,000,000.
  • the propylene polymer has an MWD (weight average molecular weight (Mw) / number average molecular weight (Mn)) of usually 1 to 3, preferably 1 to 2.9, more preferably 1 to 2.8.
  • the bridged metallocene compound (A) used in the present invention exhibits properties as a so-called single site catalyst and is advantageous for obtaining a polymer having a narrow molecular weight distribution as described above.
  • a polymer having a wide molecular weight distribution can be obtained by adopting a so-called multistage polymerization method in which polymerization reactions under different conditions are sequentially performed.
  • the intrinsic viscosity [ ⁇ ] of the olefin polymer is preferably 1.20 dl / g or more, more preferably 1.25 dl / g or more, and further preferably 1.35 dl / g or more.
  • the upper limit of the intrinsic viscosity [ ⁇ ] is usually about 10 dl / g.
  • a propylene polymer having an intrinsic viscosity [ ⁇ ] that is an index of weight average molecular weight (Mw) and molecular weight is in the above range is excellent in stability during melt extrusion.
  • the melting point (Tm) determined by a differential scanning calorimeter (DSC) of the propylene polymer is usually 135 ° C. or higher, preferably 140 to 170 ° C., more preferably 145 to 170 ° C.
  • a propylene polymer having a melting point (Tm) in the above range is excellent in moldability.
  • the crystallization temperature (Tc) determined by DSC of the propylene polymer is usually 70 ° C. or higher, more preferably 80 to 150 ° C., and more preferably 85 to 130 ° C.
  • a propylene polymer having a crystallization temperature (Tc) in the above range is excellent in moldability.
  • the high temperature side peak is defined as the melting point (Tm) of the propylene polymer.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), intrinsic viscosity [ ⁇ ], melting point (Tm) and crystallization temperature (Tc) of the olefin polymer are as described in the examples. The value to be measured.
  • an olefin polymer having a melting point (Tm) of 145 ° C. or higher and a weight average molecular weight (Mw) of 97,000 or higher can be obtained with high polymerization activity even at an industrializable temperature. It can be manufactured efficiently.
  • melting point (Tm), crystallization temperature (Tc) The melting point (Tm) or crystallization temperature (Tc) of the olefin polymer was measured as follows using DSC Pyris 1 or DSC 7 manufactured by PerkinElmer.
  • the sample (about 5 mg) was (1) heated to 230 ° C. and held at 230 ° C. for 10 minutes, and (2) cooled to 30 ° C. at 10 ° C./min. After holding for 1 minute, (3) the temperature was raised to 230 ° C. at 10 ° C./min.
  • the melting point (Tm) was calculated from the peak vertex of the crystal melting peak in the temperature raising process (3), and the crystallization temperature (Tc) was calculated from the peak vertex of the crystallization peak in the temperature lowering process (2).
  • the high temperature side peak is regarded as the melting point of the olefin polymer. (Tm).
  • the intrinsic viscosity [ ⁇ ] of the olefin polymer is a value measured at 135 ° C. using a decalin solvent. That is, granulated pellets of olefin polymer (about 20 mg) are dissolved in decalin solvent (15 mL), and the specific viscosity ⁇ sp is measured in an oil bath at 135 ° C. After decalin solvent (5 mL) is added to the decalin solution for dilution, the specific viscosity ⁇ sp is measured in the same manner as described above.
  • Intrinsic viscosity [ ⁇ ] lim ( ⁇ sp / C) (C ⁇ 0) [Weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution (Mw / Mn)] The weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn; MWD) were measured using a gel permeation chromatograph Alliance GPC-2000 manufactured by Waters as follows.
  • the separation columns are two TSKgel GNH6-HT and two TSKgel GNH6-HTL, the column size is 7.5 mm in diameter and 300 mm in length, the column temperature is 140 ° C., and the mobile phase is oji Chlorobenzene (Wako Pure Chemical Industries) and 0.025 wt% BHT (Takeda Pharmaceutical) as the antioxidant were used, the mobile phase was moved at 1.0 mL / min, the sample concentration was 15 mg / 10 mL, and the sample injection volume was 500 micron. A differential refractometer was used as a detector.
  • the standard polystyrene used was manufactured by Tosoh Corporation for molecular weights of Mw ⁇ 1000 and Mw> 4 ⁇ 10 6 , and used by Pressure Chemical Co. for 1000 ⁇ Mw ⁇ 4 ⁇ 10 6 .
  • the molecular weight distribution and various average molecular weights were calculated as polypropylene molecular weights according to the general calibration procedure.
  • bridged metallocene compound used in Comparative Example The bridged metallocene compound used in the comparative example was synthesized by the method described in the following patent publication. JP2000-212194, JP2004-168744, JP2004-189666, JP2004-161957, JP2007-302854, JP2007-302853, WO01 / 027124 pamphlet.
  • 6-methyl-6- (p-tolyl) fulvene (1.9 g, 10.2 mmol) was added dropwise to the solution at ⁇ 10 ° C., and the mixture was stirred at room temperature for 2 hours to be reacted.
  • a dilute aqueous hydrochloric acid solution was added and the mixture was extracted with hexane.
  • the organic layer was washed with water and then dried over anhydrous magnesium sulfate, and then the solvent was distilled off to obtain a light brown solid.
  • the obtained solid was recrystallized from methanol to obtain 5.1 g of the desired product. Analytical values are shown below.
  • the extract was washed twice with a saturated aqueous sodium hydrogen carbonate solution, twice with water, and once with saturated brine, and then dried over anhydrous magnesium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography to obtain the desired product as an ocherous viscous liquid (yield 1.49 g, yield 53.9%).
  • cyclohexane 9. 1 (volume ratio) mixed solvent 0.7mL was added, temperature was heated up to 65 degreeC, and superposition
  • the polymerization activity was 39.90 kg-PP / mmol-Zr ⁇ hr.
  • [ ⁇ ] of the obtained polymer was 1.48 dl / g, the weight average molecular weight (Mw) was 127,000, the number average molecular weight (Mn) was 65,000, the molecular weight distribution (Mw / Mn) was 1.96, crystals
  • the conversion temperature (Tc) was 96.5 ° C., and the melting points (Tm1, Tm2) were 140.0 ° C. and 147.9 ° C., respectively.
  • Example 1 it carried out like Example 1 except having changed the bridge
  • crosslinking metallocene compound used, its addition amount, the retention time after catalyst solution preparation, the polymerization temperature, and the polymerization time as shown in Table 18. The results are shown in Table 18. “Mixed” in Table 18 refers to a solvent in which cyclohexane and hexane are mixed in cyclohexane: hexane 9: 1 (volume ratio).
  • the bridged metallocene compound (A) used in the present invention is excellent in solubility in a hydrocarbon solvent, so that a catalyst solution can be prepared using a smaller amount of solvent. This is a useful performance expected to reduce the possibility of being affected by the lot of the solvent to be used, especially when commercializing the production of olefin polymers.
  • the concentration of the catalyst solution was 0.00050M
  • the polymerization activity was 3.00 kg-PP / mmol-Zr ⁇ hr.
  • [ ⁇ ] of the obtained polymer was 2.81 dl / g
  • weight average molecular weight (Mw) was 293,000
  • number average molecular weight (Mn) was 134,000
  • molecular weight distribution (Mw / Mn) was 2.18
  • crystal The conversion temperature (Tc) was 96.9 ° C.
  • the melting points (Tm1, Tm2) were 137.6 ° C. and 144.1 ° C., respectively.

Abstract

[Problem] To provide a method for producing an olefin polymer having a high melting point and high molecular weight even under industrially feasible high-temperature conditions. [Solution] A method for producing an olefin polymer, characterized by comprising polymerizing a C2 or higher olefin in the presence of an olefin-polymerizing catalyst, the catalyst including: (A) a cross-linked metallocene compound represented by general formula [1]; and (B) at least one species of compound selected from organoaluminumoxy compounds, organoaluminum compounds, and the like. (In formula [1], R1-R4 represent hydrocarbon groups or the like; R5-R9 represent hydrogen atoms, halogen atoms, or the like; R10-R11 represent hydrogen atoms or the like; R12 represents a hydrocarbon group or the like; Y represents a carbon atom or the like; M represents Zr or the like; Y represents a carbon atom or the like; Q represents a halogen atom or the like; and j represents an integer 1-4.)

Description

オレフィン重合体の製造方法Process for producing olefin polymer
 本発明は、特定の構造を有する架橋メタロセン化合物を含むオレフィン重合用触媒を用いたオレフィン重合体の製造方法に関し、特に詳しくは高融点かつ高分子量のオレフィン重合体を高い生産性で製造する方法に関する。 The present invention relates to a method for producing an olefin polymer using an olefin polymerization catalyst containing a bridged metallocene compound having a specific structure, and particularly relates to a method for producing a high melting point and high molecular weight olefin polymer with high productivity. .
 オレフィン重合用の均一系触媒としては、いわゆるメタロセン化合物がよく知られている。メタロセン化合物を用いてオレフィンを重合する方法(特にα-オレフィンを重合する方法)に関しては、W.Kaminskyらによってアイソタクチック重合が報告されて以来、立体規則性や重合活性の更なる向上という視点から、多くの改良研究が行なわれている(非特許文献1)。 So-called metallocene compounds are well known as homogeneous catalysts for olefin polymerization. Regarding the method of polymerizing olefins using metallocene compounds (particularly the method of polymerizing α-olefins), W.W. Since the report of isotactic polymerization by Kaminsky et al., Many improvement studies have been conducted from the viewpoint of further improving stereoregularity and polymerization activity (Non-patent Document 1).
 このような研究の一環として、特定の触媒の存在下にプロピレンを重合した結果、シンジオタックチックペンタッド分率が0.7を超えるようなタクティシティの高いポリプロピレンが得られることが、J.A.Ewenによって報告されている(非特許文献2)。ここで、前記特定の触媒は、シクロペンタジエニル基およびフルオレニル基をイソプロピリデンで架橋した配位子を有するメタロセン化合物と、アルミノキサンとからなる。 As a part of such research, as a result of polymerizing propylene in the presence of a specific catalyst, it is possible to obtain a polypropylene having a high tacticity such that the syndiotactic pentad fraction exceeds 0.7. A. Reported by Ewen (Non-Patent Document 2). Here, the specific catalyst includes a metallocene compound having a ligand obtained by crosslinking a cyclopentadienyl group and a fluorenyl group with isopropylidene, and an aluminoxane.
 上記メタロセン化合物の改良として、フルオレニル基を2,7-ジtert-ブチルフルオレニル基にすることにより、立体規則性を向上させる試みがなされている(特許文献1)。その他にも、フルオレニル基を3,6-ジtert-ブチルフルオレニル基にすることにより立体規則性を向上させる試み(特許文献2)や、シクロペンタジエニル基とフルオレニル基とが結合している架橋部を変換することにより立体規則性を向上させる試み(特許文献3、4)が報告されている。 As an improvement of the metallocene compound, an attempt has been made to improve stereoregularity by changing the fluorenyl group to a 2,7-ditert-butylfluorenyl group (Patent Document 1). In addition, an attempt to improve stereoregularity by changing the fluorenyl group to a 3,6-ditert-butylfluorenyl group (Patent Document 2), or a combination of a cyclopentadienyl group and a fluorenyl group Attempts to improve stereoregularity by converting the cross-linked part (Patent Documents 3 and 4) have been reported.
 他方、ジメチルメチレン(3-tert-ブチルシクロペンタジエニル)(フルオレニル)ジルコニウムジクロリドに比べて、シクロペンタジエニル環の5位にもメチル基を導入したジメチルメチレン(3-tert-ブチル-5-メチルシクロペンタジエニル)(フルオレニル)ジルコニウムジクロリドの方が、高分子量のアイソタクチックポリプロピレンを得ることができることも報告されている(特許文献5)。 On the other hand, as compared to dimethylmethylene (3-tert-butylcyclopentadienyl) (fluorenyl) zirconium dichloride, dimethylmethylene (3-tert-butyl-5-5-methylmethyl) introduced with a methyl group also at the 5-position of the cyclopentadienyl ring. It has also been reported that methylcyclopentadienyl) (fluorenyl) zirconium dichloride can obtain high molecular weight isotactic polypropylene (Patent Document 5).
 また、高温での重合が可能で、高分子量の重合体を製造可能なメタロセン化合物として、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリドなども報告されている(特許文献6)。 Further, as a metallocene compound capable of polymerizing at a high temperature and capable of producing a high molecular weight polymer, di (p-chlorophenyl) methylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert- (Butylfluorenyl) zirconium dichloride has also been reported (Patent Document 6).
 このようにメタロセン化合物の改良によって、高い融点と高い分子量とを有するオレフィン重合体が得られるようになってきているが、工業的製法においてはその生産性は未だ充分とはいえない。とりわけこれらメタロセン化合物を炭化水素溶媒に溶解して用いる場合、その溶解度は高いとはいえず、多くの溶媒を用いる必要がある。また、多くの溶媒を用いることでメタロセン化合物からなる触媒溶液の濃度が低くなり、被毒や失活の影響から生産性を落としている。このため、高い融点と高い分子量とを有するオレフィン重合体の効率的な製造が望まれている。 As described above, an olefin polymer having a high melting point and a high molecular weight has been obtained by improving the metallocene compound, but the productivity is still not sufficient in an industrial production method. In particular, when these metallocene compounds are used by being dissolved in a hydrocarbon solvent, the solubility is not high, and it is necessary to use many solvents. In addition, the use of many solvents reduces the concentration of the catalyst solution composed of the metallocene compound, which reduces productivity due to the effects of poisoning and deactivation. For this reason, efficient production of an olefin polymer having a high melting point and a high molecular weight is desired.
特開平04-069394号公報Japanese Patent Laid-Open No. 04-069394 特開2000-212194号公報JP 2000-212194 A 特開2004-189666号公報JP 2004-189666 A 特開2004-189667号公報JP 2004-189667 A 特表2001-526730号公報JP-T-2001-526730 特開2007-302853号公報JP 2007-302853 A
 本発明が解決しようとする課題は、プロピレンなどのオレフィンを重合して、高い融点と高い分子量とを有するオレフィン重合体を製造する際に、工業的製法において有利で高い生産性を有する製造方法を提供することである。 The problem to be solved by the present invention is to produce an olefin polymer having a high melting point and a high molecular weight by polymerizing an olefin such as propylene, which is advantageous in an industrial production method and has a high productivity. Is to provide.
 本発明者らは上記課題を解決すべく鋭意検討を行った。その結果、特定の構造を有する架橋メタロセン化合物を含むオレフィン重合用触媒を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。 The present inventors have intensively studied to solve the above problems. As a result, it has been found that the above-mentioned problems can be solved by using an olefin polymerization catalyst containing a crosslinked metallocene compound having a specific structure, and the present invention has been completed.
 すなわち、本発明は、以下の[1]~[12]に関する。
[1](A)下記一般式[1]で表される架橋メタロセン化合物と、
(B)(b-1)有機アルミニウムオキシ化合物、
   (b-2)架橋メタロセン化合物(A)と
        反応してイオン対を形成する化合物、および
   (b-3)有機アルミニウム化合物
   から選択される少なくとも1種の化合物と
を含むオレフィン重合用触媒の存在下に、炭素数2以上のオレフィンから選択される少なくとも1種のオレフィンを重合することを特徴とするオレフィン重合体の製造方法:
That is, the present invention relates to the following [1] to [12].
[1] (A) a bridged metallocene compound represented by the following general formula [1];
(B) (b-1) an organoaluminum oxy compound,
In the presence of an olefin polymerization catalyst comprising (b-2) a compound that reacts with the bridged metallocene compound (A) to form an ion pair, and (b-3) at least one compound selected from organoaluminum compounds And at least one olefin selected from olefins having 2 or more carbon atoms, and a method for producing an olefin polymer:
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
〔式[1]において、
 R1~R4は、それぞれ独立に炭化水素基、ハロゲン含有炭化水素基、窒素含有基、酸素含有基およびケイ素含有基から選ばれる基を示し、隣り合う2つの基が結合して環を形成していてもよく;
 R5~R9は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基、ハロゲン含有炭化水素基、窒素含有基、酸素含有基およびケイ素含有基から選ばれる基を示し、隣り合う2つの基が結合して環を形成していてもよく;
 R10~R12は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基、ハロゲン含有炭化水素基、窒素含有基、酸素含有基およびケイ素含有基から選ばれる基を示し;
 Yは、炭素原子またはケイ素原子を示し;
 Mは、Ti、ZrまたはHfを示し;
 Qは、ハロゲン原子、炭化水素基、炭素数10以下の中性の共役もしくは非共役ジエン、アニオン配位子および孤立電子対で配位可能な中性配位子から選ばれる構造であり;jは、1~4の整数を示し、jが2以上のときは、複数あるQは相互に同一でも異なっていてもよい。〕
[2]前記一般式[1]において、R1およびR4がそれぞれ独立に炭素数1~40の炭化水素基および炭素数1~40のハロゲン含有炭化水素基から選ばれる基であり、R2およびR3の1つ以上の基が炭素数1~40の炭化水素基およびケイ素含有基から選ばれる基であることを特徴とする前記[1]に記載のオレフィン重合体の製造方法。
[3]前記一般式[1]において、R1およびR4がそれぞれ独立に炭素数6~20のアリール基および炭素数6~20のハロゲン含有アリール基から選ばれる基であることを特徴とする前記[1]または[2]に記載のオレフィン重合体の製造方法。
[4]前記一般式[1]において、R12が水素原子、炭素数1~40の炭化水素基および炭素数1~40のハロゲン含有炭化水素基から選ばれる基であることを特徴とする前記[1]~[3]の何れか一項に記載のオレフィン重合体の製造方法。
[5]前記一般式[1]において、R10~R11が何れも水素原子であり、R12が炭素数1~20のアルキル基、炭素数6~20のアリール基および炭素数6~20のハロゲン含有アリール基から選ばれる基であるか、またはR10~R12が何れも水素原子であることを特徴とする前記[1]~[4]の何れか一項に記載のオレフィン重合体の製造方法。
[6]前記一般式[1]において、R5~R9がそれぞれ独立に水素原子、ハロゲン原子および炭素数1~20のアルキル基から選ばれる基であることを特徴とする前記[1]~[5]の何れか一項に記載のオレフィン重合体の製造方法。
[7]前記オレフィン重合用触媒が、さらに担体(C)を含むことを特徴とする前記[1]~[6]の何れか一項に記載のオレフィン重合体の製造方法。
[8]前記オレフィンの少なくとも一部が、プロピレンであることを特徴とする前記[1]~[7]の何れか一項に記載のオレフィン重合体の製造方法。
[9]前記一般式[1]で表される架橋メタロセン化合物の25℃のn-ヘキサンに対する溶解度が、0.5mmol/L以上であることを特徴とする前記[1]~[8]の何れか一項に記載のオレフィン重合体の製造方法。
[10]前記一般式[1]で表される架橋メタロセン化合物の濃度が0.05mmol/L~1.0mol/Lの溶液を重合系に供給することを特徴とする前記[1]~[9]の何れか一項に記載のオレフィン重合体の製造方法。
[11]重合温度が50~150℃であることを特徴とする前記[1]~[10]の何れか一項に記載のオレフィン重合体の製造方法。
[12]重合温度が50~150℃であり、得られるプロピレン重合体の示差走査熱量計により測定される融点(Tm)(複数の結晶溶融ピークが観測される場合は、高温側ピークに基づく融点(Tm))が145~170℃であり、135℃デカリン中で測定される極限粘度([η])が1.25dl/g以上であり、ゲルパーミエーションクロマトグラフィーにより測定される重量平均分子量(Mw)が97,000以上であり、かつ重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1~3であることを特徴とする前記[1]~[11]の何れか一項に記載のプロピレン重合体の製造方法。
[In Formula [1],
R 1 to R 4 each independently represents a group selected from a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group and a silicon-containing group, and two adjacent groups are bonded to form a ring. May be;
R 5 to R 9 each independently represents a group selected from a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group and a silicon-containing group, and two adjacent groups are They may combine to form a ring;
R 10 to R 12 each independently represents a group selected from a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group and a silicon-containing group;
Y represents a carbon atom or a silicon atom;
M represents Ti, Zr or Hf;
Q is a structure selected from a halogen atom, a hydrocarbon group, a neutral conjugated or nonconjugated diene having 10 or less carbon atoms, an anionic ligand, and a neutral ligand capable of coordinating with a lone electron pair; j Represents an integer of 1 to 4, and when j is 2 or more, a plurality of Qs may be the same or different from each other. ]
In [2] the general formula [1] is a group selected from a halogen-containing hydrocarbon group of R 1 and R 4 are hydrocarbon groups and having 1 to 40 carbon atoms each independently having a carbon number of 1 to a 40, R 2 And at least one group of R 3 is a group selected from a hydrocarbon group having 1 to 40 carbon atoms and a silicon-containing group.
[3] In the general formula [1], R 1 and R 4 are each independently a group selected from an aryl group having 6 to 20 carbon atoms and a halogen-containing aryl group having 6 to 20 carbon atoms. The method for producing an olefin polymer according to the above [1] or [2].
[4] In the general formula [1], R 12 is a group selected from a hydrogen atom, a hydrocarbon group having 1 to 40 carbon atoms, and a halogen-containing hydrocarbon group having 1 to 40 carbon atoms. [1] The process for producing an olefin polymer according to any one of [3].
[5] In the general formula [1], R 10 to R 11 are all hydrogen atoms, R 12 is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and 6 to 20 carbon atoms. The olefin polymer according to any one of the above [1] to [4], wherein the olefin polymer is a group selected from halogen-containing aryl groups, or R 10 to R 12 are all hydrogen atoms Manufacturing method.
[6] In the general formula [1], R 5 to R 9 are each independently a group selected from a hydrogen atom, a halogen atom, and an alkyl group having 1 to 20 carbon atoms. [5] The method for producing an olefin polymer according to any one of [5].
[7] The method for producing an olefin polymer according to any one of [1] to [6], wherein the olefin polymerization catalyst further contains a carrier (C).
[8] The method for producing an olefin polymer according to any one of [1] to [7], wherein at least a part of the olefin is propylene.
[9] Any of the above [1] to [8], wherein the bridged metallocene compound represented by the general formula [1] has a solubility in n-hexane at 25 ° C. of 0.5 mmol / L or more. A method for producing the olefin polymer according to claim 1.
[10] The above [1] to [9], wherein a solution having a concentration of the bridged metallocene compound represented by the general formula [1] of 0.05 mmol / L to 1.0 mol / L is supplied to the polymerization system. ] The manufacturing method of the olefin polymer as described in any one of.
[11] The method for producing an olefin polymer according to any one of [1] to [10], wherein the polymerization temperature is 50 to 150 ° C.
[12] Melting point (Tm) measured with a differential scanning calorimeter of the resulting propylene polymer when the polymerization temperature is 50 to 150 ° C. (if multiple crystal melting peaks are observed, the melting point based on the high temperature side peak) (Tm)) is 145 to 170 ° C., the intrinsic viscosity ([η]) measured in decalin at 135 ° C. is 1.25 dl / g or more, and the weight average molecular weight measured by gel permeation chromatography ( Mw) is 97,000 or more, and the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 1 to 3, [1] to [11] The manufacturing method of the propylene polymer as described in any one of these.
 本発明によれば、プロピレンなどのオレフィンを重合して、高い融点と高い分子量とを有するオレフィン重合体を製造する際に、工業的製法において有利で高い生産性を有する製造方法を提供することができる。 According to the present invention, when an olefin polymer such as propylene is polymerized to produce an olefin polymer having a high melting point and a high molecular weight, it is possible to provide a production method that is advantageous in an industrial production method and has high productivity. it can.
 本発明に係るオレフィン重合体の製造方法は、(A)後述する架橋メタロセン化合物と、(B)後述する化合物とを含むオレフィン重合用触媒の存在下に、炭素数2以上のオレフィン(好ましくはα-オレフィン)から選択される少なくとも1種のオレフィンを重合することを特徴とする。 The method for producing an olefin polymer according to the present invention comprises an olefin having 2 or more carbon atoms (preferably α) in the presence of an olefin polymerization catalyst comprising (A) a bridged metallocene compound described later and (B) a compound described later. At least one olefin selected from olefins).
 以下、本発明で使用される架橋メタロセン化合物(A)と化合物(B)とを含むオレフィン重合用触媒、該オレフィン重合用触媒の存在下に炭素数2以上のオレフィンを重合する方法について、発明を実施するための最良の形態を順次説明する。 Hereinafter, the invention relates to a catalyst for olefin polymerization comprising a crosslinked metallocene compound (A) and a compound (B) used in the present invention, and a method for polymerizing an olefin having 2 or more carbon atoms in the presence of the olefin polymerization catalyst. The best mode for carrying out will be described sequentially.
 〔オレフィン重合用触媒〕
 本発明で使用されるオレフィン重合用触媒は、架橋メタロセン化合物(A)と、(B)(b-1)有機アルミニウムオキシ化合物、(b-2)架橋メタロセン化合物(A)と反応してイオン対を形成する化合物、および(b-3)有機アルミニウム化合物から選択される少なくとも1種の化合物とを必須成分として含む。また、担体(C)や有機化合物成分(D)を任意成分として含んでいてもよい。
[Olefin polymerization catalyst]
The catalyst for olefin polymerization used in the present invention reacts with the bridged metallocene compound (A), (B) (b-1) an organoaluminum oxy compound, and (b-2) the bridged metallocene compound (A) to produce an ion pair. And (b-3) at least one compound selected from organoaluminum compounds as essential components. Further, the carrier (C) and the organic compound component (D) may be included as optional components.
 《架橋メタロセン化合物(A)》
 本発明で使用される架橋メタロセン化合物(A)は、下記一般式[1]で表される。
<< Bridged metallocene compound (A) >>
The bridged metallocene compound (A) used in the present invention is represented by the following general formula [1].
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式[1]において、各記号の意味は以下のとおりである。 In the formula [1], the meaning of each symbol is as follows.
 R1~R4は、それぞれ独立に炭化水素基、ハロゲン含有炭化水素基、窒素含有基、酸素含有基およびケイ素含有基から選ばれる基である。また、R1~R4のうち隣り合う環炭素にそれぞれ結合した2つの基(例:R1とR2、R3とR4)が結合して環を形成していてもよい。 R 1 to R 4 are each independently a group selected from a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group and a silicon-containing group. Further, two groups (for example, R 1 and R 2 , R 3 and R 4 ) bonded to adjacent ring carbons out of R 1 to R 4 may be bonded to form a ring.
 R5~R9は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基、ハロゲン含有炭化水素基、窒素含有基、酸素含有基およびケイ素含有基から選ばれる基である。また、R5~R9のうち隣り合う環炭素にそれぞれ結合した2つの基(例:R5とR6、R6とR7、R7とR8、R8とR9)が結合して環を形成していてもよい。 R 5 to R 9 are each independently a group selected from a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group, and a silicon-containing group. In addition, two groups (eg, R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 ) bonded to adjacent ring carbons among R 5 to R 9 are bonded. May form a ring.
 R10~R12は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基、ハロゲン含有炭化水素基、窒素含有基、酸素含有基およびケイ素含有基から選ばれる基である。 R 10 to R 12 are each independently a group selected from a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group, and a silicon-containing group.
 Yは、炭素原子またはケイ素原子を示す。 Y represents a carbon atom or a silicon atom.
 Mは、Ti、ZrまたはHfを示す。 M represents Ti, Zr or Hf.
 Qは、ハロゲン原子、炭化水素基、炭素数10以下の中性の共役もしくは非共役ジエン、アニオン配位子および孤立電子対で配位可能な中性配位子から選ばれる構造である。jは、1~4の整数を示し、jが2以上のときは、複数あるQは相互に同一でも異なっていてもよい。 Q is a structure selected from a halogen atom, a hydrocarbon group, a neutral conjugated or nonconjugated diene having 10 or less carbon atoms, an anionic ligand, and a neutral ligand capable of coordinating with a lone electron pair. j represents an integer of 1 to 4, and when j is 2 or more, a plurality of Qs may be the same or different from each other.
 以下、架橋メタロセン化合物(A)を構成する基について説明する。 Hereinafter, groups constituting the bridged metallocene compound (A) will be described.
 なお、本明細書において、基とは原子を含む意味で用いる。 In this specification, the term “group” is used to include atoms.
 -R1~R12について-
 R1~R12として列挙される炭化水素基としては、炭素数1~40の炭化水素基が好ましく、炭素数1~20の炭化水素基がより好ましい。前記炭化水素基としては、炭素数1~20のアルキル基、炭素数3~20の飽和脂環式基、炭素数6~20のアリール基、炭素数7~20のアラルキル基が例示される。
About -R 1 ~ R 12 -
The hydrocarbon group listed as R 1 to R 12 is preferably a hydrocarbon group having 1 to 40 carbon atoms, and more preferably a hydrocarbon group having 1 to 20 carbon atoms. Examples of the hydrocarbon group include an alkyl group having 1 to 20 carbon atoms, a saturated alicyclic group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms.
 炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカニル基などの直鎖状アルキル基;iso-プロピル基、tert-ブチル基、アミル基、3-メチルペンチル基、1,1-ジエチルプロピル基、1,1-ジメチルブチル基、1-メチル-1-プロピルブチル基、1,1-プロピルブチル基、1,1-ジメチル-2-メチルプロピル基、1-メチル-1-イソプロピル-2-メチルプロピル基などの分岐状アルキル基が例示される。 Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, and n-nonyl. A linear alkyl group such as n-decanyl group; iso-propyl group, tert-butyl group, amyl group, 3-methylpentyl group, 1,1-diethylpropyl group, 1,1-dimethylbutyl group, 1 Illustrative branched alkyl groups such as -methyl-1-propylbutyl, 1,1-propylbutyl, 1,1-dimethyl-2-methylpropyl, 1-methyl-1-isopropyl-2-methylpropyl Is done.
 炭素数3~20の飽和脂環式基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などのシクロアルキル基;ノルボルニル基、アダマンチル基などの脂環式多環基が例示される。 Examples of the saturated alicyclic group having 3 to 20 carbon atoms include cycloalkyl groups such as cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group; and alicyclic polycyclic groups such as norbornyl group and adamantyl group. .
 炭素数6~20のアリール基としては、フェニル基、ナフチル基、フェナントリル基、アントラセニル基、ビフェニル基などの芳香族炭素と結合する基が全て水素原子であるアリール基(以下「非置換アリール基」ともいう。);o-トリル基、m-トリル基、p-トリル基、エチルフェニル基、n-プロピルフェニル基、iso-プロピルフェニル基、n-ブチルフェニル基、sec-ブチルフェニル基、tert-ブチルフェニル基、キシリル基などのアルキルアリール基が例示される。 Examples of the aryl group having 6 to 20 carbon atoms include an aryl group in which all groups bonded to an aromatic carbon such as a phenyl group, a naphthyl group, a phenanthryl group, an anthracenyl group, and a biphenyl group are hydrogen atoms (hereinafter referred to as “unsubstituted aryl group”). O-tolyl group, m-tolyl group, p-tolyl group, ethylphenyl group, n-propylphenyl group, iso-propylphenyl group, n-butylphenyl group, sec-butylphenyl group, tert- Examples thereof include alkylaryl groups such as butylphenyl group and xylyl group.
 炭素数7~20のアラルキル基としては、ベンジル基、クミル基、α-フェネチル基、β-フェネチル基、ジフェニルメチル基、ナフチルメチル基、ネオフィル基などの芳香族炭素と結合する基が全て水素原子であるアラルキル基(以下「非置換アラルキル基」ともいう。);o-メチルベンジル基、m-メチルベンジル基、p-メチルベンジル基、エチルベンジル基、n-プロピルベンジル基、iso-プロピルベンジル基、n-ブチルベンジル基、sec-ブチルベンジル基、tert-ブチルベンジル基などのアルキルアラルキル基が例示される。 As the aralkyl group having 7 to 20 carbon atoms, all the groups bonded to aromatic carbon such as benzyl group, cumyl group, α-phenethyl group, β-phenethyl group, diphenylmethyl group, naphthylmethyl group, neophyll group, etc. are hydrogen atoms. An aralkyl group (hereinafter also referred to as “unsubstituted aralkyl group”); o-methylbenzyl group, m-methylbenzyl group, p-methylbenzyl group, ethylbenzyl group, n-propylbenzyl group, iso-propylbenzyl group And alkylaralkyl groups such as n-butylbenzyl group, sec-butylbenzyl group and tert-butylbenzyl group.
 上記炭化水素基としては、炭素数1~10の炭化水素基が特に好ましい。 The hydrocarbon group is particularly preferably a hydrocarbon group having 1 to 10 carbon atoms.
 R1~R12として列挙されるハロゲン含有炭化水素基としては、上記炭化水素基が有する少なくとも1つの水素原子がハロゲン原子で置換された基が例示され、具体的には、
 トリフルオロメチル基などのフルオロアルキル基などのハロゲン含有アルキル基;
 ペンタフルオロフェニル基などのフルオロアリール基、o-クロロフェニル基、m-クロロフェニル基、p-クロロフェニル基、クロロナフチル基などのクロロアリール基、o-ブロモフェニル基、m-ブロモフェニル基、p-ブロモフェニル基、ブロモナフチル基などのブロモアリール基、o-ヨードフェニル基、m-ヨードフェニル基、p-ヨードフェニル基、ヨードナフチル基などのヨードアリール基などの上記非置換アリール基の一部または全ての水素原子がハロゲン原子で置換された基;トリフルオロメチルフェニル基などのフルオロアルキルアリール基、ブロモメチルフェニル基、ジブロモメチルフェニル基などのブロモアルキルアリール基、ヨードメチルフェニル基、ジヨードメチルフェニル基などのヨードアルキルアリール基などの上記アルキルアリール基の一部の水素原子がハロゲン原子で置換された基;などのハロゲン含有アリール基;
 o-クロロベンジル基、m-クロロベンジル基、p-クロロベンジル基、クロロフェネチル基などのクロロアラルキル基、o-ブロモベンジル基、m-ブロモベンジル基、p-ブロモベンジル基、ブロモフェネチル基などのブロモアラルキル基、o-ヨードベンジル基、m-ヨードベンジル基、p-ヨードベンジル基、ヨードフェネチル基などのヨードアラルキル基などの上記非置換アラルキル基の一部の水素原子がハロゲン原子で置換された基などのハロゲン含有アラルキル基が例示される。
Examples of the halogen-containing hydrocarbon group listed as R 1 to R 12 include groups in which at least one hydrogen atom of the hydrocarbon group is substituted with a halogen atom. Specifically,
Halogen-containing alkyl groups such as fluoroalkyl groups such as trifluoromethyl groups;
Fluoroaryl groups such as pentafluorophenyl group, o-chlorophenyl group, m-chlorophenyl group, p-chlorophenyl group, chloroaryl group such as chloronaphthyl group, o-bromophenyl group, m-bromophenyl group, p-bromophenyl A part of or all of the above-mentioned unsubstituted aryl groups such as iodoaryl groups such as bromoaryl groups such as bromonaphthyl groups, o-iodophenyl groups, m-iodophenyl groups, p-iodophenyl groups and iodonaphthyl groups A group in which a hydrogen atom is substituted with a halogen atom; a fluoroalkylaryl group such as a trifluoromethylphenyl group, a bromoalkylaryl group such as a bromomethylphenyl group or a dibromomethylphenyl group, an iodomethylphenyl group, or a diiodomethylphenyl group The iodoalkyl aryl Halogen-containing aryl group such as; the part of the hydrogen atoms of the alkyl aryl group group substituted with a halogen atom such as;
chloroaralkyl groups such as o-chlorobenzyl group, m-chlorobenzyl group, p-chlorobenzyl group, chlorophenethyl group, o-bromobenzyl group, m-bromobenzyl group, p-bromobenzyl group, bromophenethyl group, etc. A part of the hydrogen atoms of the unsubstituted aralkyl group such as a bromoaralkyl group, an o-iodobenzyl group, an m-iodobenzyl group, a p-iodobenzyl group, an iodophenethyl group, or the like is substituted with a halogen atom. Illustrative are halogen-containing aralkyl groups such as groups.
 R1~R12として列挙される窒素含有基としては、ニトロ基、シアノ基、N-メチルアミノ基、N,N-ジメチルアミノ基、N-フェニルアミノ基が例示される。 Examples of nitrogen-containing groups listed as R 1 to R 12 include a nitro group, a cyano group, an N-methylamino group, an N, N-dimethylamino group, and an N-phenylamino group.
 R1~R12として列挙される酸素含有基としては、メトキシ基、エトキシ基、フェノキシ基が例示される。 Examples of the oxygen-containing group listed as R 1 to R 12 include a methoxy group, an ethoxy group, and a phenoxy group.
 R1~R12として列挙されるケイ素含有基としては、メチルシリル基、ジメチルシリル基、トリメチルシリル基、エチルシリル基、ジエチルシリル基、トリエチルシリル基、ジメチル-tert-ブチルシリル基などのアルキルシリル基;ジメチルフェニルシリル基、ジフェニルメチルシリル基、トリフェニルシリル基などのアリールシリル基が例示される。 Examples of silicon-containing groups listed as R 1 to R 12 include alkylsilyl groups such as methylsilyl group, dimethylsilyl group, trimethylsilyl group, ethylsilyl group, diethylsilyl group, triethylsilyl group, dimethyl-tert-butylsilyl group; Examples include arylsilyl groups such as silyl group, diphenylmethylsilyl group, and triphenylsilyl group.
 R5~R12として列挙されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示される。 Examples of the halogen atom listed as R 5 to R 12 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 また、R1~R4およびR5~R9から選択される少なくとも1組の隣り合う2つの基が結合して環を形成していてもよい。前記環構造としては、1-メチル-2-ナフタレニル基、3-メチル-2-ナフタレニル基、1-メチル-2-(5,6,7,8-テトラヒドロ)ナフタレニル基、3-メチル-2-(5,6,7,8-テトラヒドロ)ナフタレニル基、7-メチル-1H-6-インデニル基、6-メチル-1H-5-インデニル基、7-メチル-6-ベンゾフラニル基、6-メチル-5-ベンゾフラニル基、7-メチル-6-ベンゾチオフェニル基、6-メチル-5-ベンゾチオフェニル基が例示される。 Further, at least one set of two adjacent groups selected from R 1 to R 4 and R 5 to R 9 may be bonded to form a ring. Examples of the ring structure include 1-methyl-2-naphthalenyl group, 3-methyl-2-naphthalenyl group, 1-methyl-2- (5,6,7,8-tetrahydro) naphthalenyl group, 3-methyl-2- (5,6,7,8-tetrahydro) naphthalenyl group, 7-methyl-1H-6-indenyl group, 6-methyl-1H-5-indenyl group, 7-methyl-6-benzofuranyl group, 6-methyl-5 -Benzofuranyl group, 7-methyl-6-benzothiophenyl group, 6-methyl-5-benzothiophenyl group.
 R1およびR4は、それぞれ独立に上記炭化水素基またはハロゲン含有炭化水素基であることが好ましく、上記アリール基またはハロゲン含有アリール基であることがより好ましく、フェニル基、アルキルフェニル基、またはこれらの基の一部の水素原子がハロゲン原子で置換された基であることがさらに好ましい。なお、R1およびR4は、同一の基であることが好ましい。 R 1 and R 4 are preferably each independently the above hydrocarbon group or halogen-containing hydrocarbon group, more preferably the above aryl group or halogen-containing aryl group, a phenyl group, an alkylphenyl group, or these It is more preferable that a part of the hydrogen atoms in the group is a group substituted with a halogen atom. R 1 and R 4 are preferably the same group.
 R2およびR3の1つ以上の基は、上記炭化水素基およびケイ素含有基から選ばれる基であることが好ましい。さらに、R2およびR3は、それぞれ独立に上記炭化水素基またはケイ素含有基であることが好ましく、上記炭化水素基であることがより好ましく、上記アルキル基であることが特に好ましい。なお、R2およびR3は、同一の基であることが好ましい。 One or more groups of R 2 and R 3 are preferably groups selected from the hydrocarbon group and the silicon-containing group. Further, R 2 and R 3 are preferably each independently the hydrocarbon group or silicon-containing group, more preferably the hydrocarbon group, and particularly preferably the alkyl group. R 2 and R 3 are preferably the same group.
 R5~R9は、それぞれ独立に水素原子、ハロゲン原子または炭素数1~20のアルキル基であることが好ましく、R5~R9が何れも水素原子か、R5、R6、R8、R9が何れも水素原子であり、R7がハロゲン原子または炭素数1~20のアルキル基であることがより好ましい。 R 5 to R 9 are each independently preferably a hydrogen atom, a halogen atom or an alkyl group having 1 to 20 carbon atoms, and R 5 to R 9 are all hydrogen atoms, R 5 , R 6 , R 8 R 9 is more preferably a hydrogen atom, and R 7 is more preferably a halogen atom or an alkyl group having 1 to 20 carbon atoms.
 R10~R11は、何れも水素原子であることが好ましく;R12は、水素原子、上記炭化水素基またはハロゲン含有炭化水素基であることが好ましく、上記アルキル基、アリール基またはハロゲン含有アリール基であることがより好ましく、炭素数1~10のアルキル基、フェニル基、アルキルフェニル基、またはこれらの基の一部がハロゲンで置換された基であることがさらに好ましい。R10~R12の電子的もしくは立体的、またはその両方の効果により、融点および分子量の高いオレフィン重合体が生成すると推測される。 R 10 to R 11 are each preferably a hydrogen atom; R 12 is preferably a hydrogen atom, the above hydrocarbon group or a halogen-containing hydrocarbon group, and the above alkyl group, aryl group or halogen-containing aryl. It is more preferably a group, more preferably an alkyl group having 1 to 10 carbon atoms, a phenyl group, an alkylphenyl group, or a group in which a part of these groups is substituted with a halogen. It is presumed that an olefin polymer having a high melting point and a high molecular weight is produced by the electronic or steric effects of R 10 to R 12 or both.
 上記置換基を有する架橋メタロセン化合物(A)を用いることにより、融点の高いオレフィン重合体が得られる。これは、架橋メタロセン化合物(A)が、高立体規則性オレフィン重合体の生成を触媒するためである。このため、常温以上の温度、好ましくは常温を大きく超える高い温度で合成したオレフィン重合体でも、良好な成型加工性を示すことが可能となり、製品の価値を高めるとともに工業的にオレフィン重合体を生産する際のコストパフォーマンスが向上する。 By using the bridged metallocene compound (A) having the above substituent, an olefin polymer having a high melting point can be obtained. This is because the bridged metallocene compound (A) catalyzes the production of a highly stereoregular olefin polymer. For this reason, even an olefin polymer synthesized at a temperature higher than room temperature, preferably a temperature much higher than room temperature, can exhibit good moldability, increase the value of the product and industrially produce olefin polymers. The cost performance when doing so is improved.
 また、上記置換基を有する架橋メタロセン化合物(A)を用いることにより、分子量の大きいオレフィン重合体が得られる。これは、架橋メタロセン化合物(A)が、高分子量オレフィン重合体の生成を触媒するためである。このため、常温以上の温度、好ましくは常温を大きく超える高い温度で、オレフィン重合体を合成することが可能となり、工業的にオレフィン重合体を生産する際のコストパフォーマンスが向上する。 Further, by using the bridged metallocene compound (A) having the above substituent, an olefin polymer having a large molecular weight can be obtained. This is because the bridged metallocene compound (A) catalyzes the production of a high molecular weight olefin polymer. For this reason, it becomes possible to synthesize an olefin polymer at a temperature not lower than room temperature, preferably a temperature significantly higher than room temperature, and the cost performance when industrially producing the olefin polymer is improved.
 さらに、架橋メタロセン化合物(A)は、炭化水素溶媒に対する溶解度に優れている。具体的には、架橋メタロセン化合物(A)は、炭素数4~10の炭化水素溶媒(25℃)に対する溶解度が、好ましくは0.5mmol/L以上である。より好ましくは0.7mmol/L以上、さらに好ましくは0.9mmol/L以上である。より具体的には、架橋メタロセン化合物(A)の溶解度は、25℃のn-ヘキサンに対しては、好ましくは0.5mmol/L以上、より好ましくは0.7mmol/L以上、さらに好ましくは0.9mmol/L以上である。上限としては、一般的に好ましくは10mol/L以下、より好ましくは1mol/L以下である。 Furthermore, the bridged metallocene compound (A) has excellent solubility in hydrocarbon solvents. Specifically, the bridged metallocene compound (A) has a solubility in a hydrocarbon solvent having 4 to 10 carbon atoms (25 ° C.), preferably 0.5 mmol / L or more. More preferably, it is 0.7 mmol / L or more, More preferably, it is 0.9 mmol / L or more. More specifically, the solubility of the bridged metallocene compound (A) is preferably 0.5 mmol / L or more, more preferably 0.7 mmol / L or more, and still more preferably 0 with respect to n-hexane at 25 ° C. .9 mmol / L or more. In general, the upper limit is preferably 10 mol / L or less, more preferably 1 mol / L or less.
 配位子が架橋構造を有する架橋メタロセン化合物は、一般的に構造が剛直で、比較的強固に結晶化し、炭化水素溶媒に対する溶解度が低下する傾向にある。ところが、本発明で使用される架橋メタロセン化合物(A)は、この架橋部の構造、具体的には式(1)のYに結合する2つの置換基の構造が異なる非対称構造になっているため、結晶化の度合いが緩み、炭化水素溶媒に対する溶解度が高い傾向にあると推測される。 The bridged metallocene compound in which the ligand has a crosslinked structure generally has a rigid structure and is relatively strongly crystallized, and the solubility in hydrocarbon solvents tends to decrease. However, the bridged metallocene compound (A) used in the present invention has an asymmetric structure in which the structure of the bridge portion, specifically, the structure of the two substituents bonded to Y in formula (1) are different. It is presumed that the degree of crystallization is loose and the solubility in hydrocarbon solvents tends to be high.
 メタロセン化合物は、一般的に極めてオレフィンの重合活性が高い傾向があることが、例えば非特許文献1等に開示されている。このような活性の高い化合物は、一般的には不純物の影響、具体的には被毒や失活を受け易い傾向にある。ところが、本発明で使用される架橋メタロセン化合物(A)は、上述したように炭化水素溶媒に対する溶解度に優れることにより、より少量の溶媒を用いて触媒溶液を調製することが可能となる。その結果、用いる溶媒に僅かに含まれる可能性のある不純物による被毒や失活の影響が抑制され、オレフィン重合体の生産性の向上が期待できる。このような効果は、特にオレフィン重合体の製造を事業化したときには、用いる溶媒のロットなどによる影響を受ける可能性を低減できることが期待される有用な性能である。 For example, Non-Patent Document 1 discloses that metallocene compounds generally tend to have extremely high olefin polymerization activity. Such highly active compounds generally tend to be susceptible to the effects of impurities, specifically poisoning and deactivation. However, the bridged metallocene compound (A) used in the present invention is excellent in solubility in a hydrocarbon solvent as described above, whereby a catalyst solution can be prepared using a smaller amount of solvent. As a result, the effects of poisoning and deactivation due to impurities that may be slightly contained in the solvent used are suppressed, and an improvement in the productivity of the olefin polymer can be expected. Such an effect is a useful performance that is expected to reduce the possibility of being affected by the lot of the solvent to be used, especially when the production of an olefin polymer is commercialized.
 -Y、M、Qおよびjについて-
 Yは、炭素原子またはケイ素原子を示し、好ましくは炭素原子を示す。
-About Y, M, Q and j-
Y represents a carbon atom or a silicon atom, preferably a carbon atom.
 Mは、Ti、ZrまたはHfを示し、好ましくはZrまたはHfを示し、特に好ましくはZrを示す。前記中心金属および架橋部を有する架橋メタロセン化合物(A)を用いることにより、高分子量かつ高融点のオレフィン重合体を効率よく製造することができる。 M represents Ti, Zr or Hf, preferably Zr or Hf, particularly preferably Zr. By using the cross-linked metallocene compound (A) having the central metal and the cross-linking part, a high molecular weight and high melting point olefin polymer can be efficiently produced.
 Qは、ハロゲン原子、炭化水素基、炭素数10以下の中性の共役もしくは非共役ジエン、アニオン配位子および孤立電子対で配位可能な中性配位子から選ばれる構造である。 Q is a structure selected from a halogen atom, a hydrocarbon group, a neutral conjugated or nonconjugated diene having 10 or less carbon atoms, an anionic ligand, and a neutral ligand capable of coordinating with a lone electron pair.
 Qとして列挙されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示される。 Examples of the halogen atom listed as Q include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 Qとして列挙される炭化水素基としては、炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基が好ましい。炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、2-メチルプロピル基、1,1-ジメチルプロピル基、2,2-ジメチルプロピル基、1,1-ジエチルプロピル基、1-エチル-1-メチルプロピル基、1,1,2,2-テトラメチルプロピル基、sec-ブチル基、tert-ブチル基、1,1-ジメチルブチル基、1,1,3-トリメチルブチル基、ネオペンチル基が例示され;炭素数3~10のシクロアルキル基としては、シクロヘキシルメチル基、シクロヘキシル基、1-メチル-1-シクロヘキシル基が例示される。この炭化水素基の炭素数は、5以下であることがより好ましい。 As the hydrocarbon group listed as Q, an alkyl group having 1 to 10 carbon atoms and a cycloalkyl group having 3 to 10 carbon atoms are preferable. Examples of the alkyl group having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, iso-propyl, 2-methylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, , 1-diethylpropyl group, 1-ethyl-1-methylpropyl group, 1,1,2,2-tetramethylpropyl group, sec-butyl group, tert-butyl group, 1,1-dimethylbutyl group, 1, Examples include a 1,3-trimethylbutyl group and a neopentyl group; examples of the cycloalkyl group having 3 to 10 carbon atoms include a cyclohexylmethyl group, a cyclohexyl group, and a 1-methyl-1-cyclohexyl group. More preferably, the hydrocarbon group has 5 or less carbon atoms.
 炭素数10以下の中性の共役または非共役ジエンとしては、s-シス-またはs-トランス-η4-1,3-ブタジエン、s-シス-またはs-トランス-η4-1,4-ジフェニル-1,3-ブタジエン、s-シス-またはs-トランス-η4-3-メチル-1,3-ペンタジエン、s-シス-またはs-トランス-η4-1,4-ジベンジル-1,3-ブタジエン、s-シス-またはs-トランス-η4-2,4-ヘキサジエン、s-シス-またはs-トランス-η4-1,3-ペンタジエン、s-シス-またはs-トランス-η4-1,4-ジトリル-1,3-ブタジエン、s-シス-またはs-トランス-η4-1,4-ビス(トリメチルシリル)-1,3-ブタジエンが例示される。 Neutral conjugated or non-conjugated dienes having 10 or less carbon atoms include s-cis- or s-trans-η 4 -1,3-butadiene, s-cis- or s-trans-η 4 -1,4- Diphenyl-1,3-butadiene, s-cis- or s-trans-η 4 -3-methyl-1,3-pentadiene, s-cis- or s-trans-η 4 -1,4-dibenzyl-1, 3-butadiene, s-cis- or s-trans-η 4 -2,4-hexadiene, s-cis- or s-trans-η 4 -1,3-pentadiene, s-cis- or s-trans-η 4 -1,4-ditolyl-1,3-butadiene, s- cis - or s- trans eta 4 -1,4-bis (trimethylsilyl) -1,3-butadiene and the like.
 アニオン配位子としては、メトキシ、tert-ブトキシなどのアルコキシ基;フェノキシなどのアリールオキシ基;アセテート、ベンゾエートなどのカルボキシレート基;メシレート、トシレートなどのスルホネート基が例示される。 Examples of the anion ligand include alkoxy groups such as methoxy and tert-butoxy; aryloxy groups such as phenoxy; carboxylate groups such as acetate and benzoate; sulfonate groups such as mesylate and tosylate.
 孤立電子対で配位可能な中性配位子としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物;テトラヒドロフラン(THF)、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタンなどのエーテル類が例示される。 Neutral ligands that can be coordinated by lone pairs include organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, diphenylmethylphosphine; tetrahydrofuran (THF), diethyl ether, dioxane, 1,2-dimethoxy Examples are ethers such as ethane.
 Qの好ましい態様は、ハロゲン原子または炭素数1~5のアルキル基である。 Q is preferably a halogen atom or an alkyl group having 1 to 5 carbon atoms.
 jは、1~4の整数であり、好ましくは2である。 J is an integer of 1 to 4, preferably 2.
 架橋メタロセン化合物(A)の好ましい一形態は、下記一般式[2]で表される。 One preferred form of the bridged metallocene compound (A) is represented by the following general formula [2].
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式[2]において、R1~R4、R7、R12、Y、M、Qおよびjの定義は、上記式[1]におけるR1~R4、R7、R12、Y、M、Qおよびjの定義と同一である。好ましくは、R1およびR4が炭素数6~20のアリール基または炭素数6~20のハロゲン含有アリール基であり、R2およびR3が炭素数1~10のアルキル基であり、R7が水素原子、ハロゲン原子または炭素数1~10のアルキル基であり、R12が水素原子、炭素数1~10のアルキル基または炭素数6~20のアリール基である。 In the formula [2], R 1 to R 4 , R 7 , R 12 , Y, M, Q and j are defined as R 1 to R 4 , R 7 , R 12 , Y, M in the above formula [1]. , Q and j are identical. Preferably, R 1 and R 4 are an aryl group having 6 to 20 carbon atoms or a halogen-containing aryl group having 6 to 20 carbon atoms, R 2 and R 3 are alkyl groups having 1 to 10 carbon atoms, and R 7 Is a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms, and R 12 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms.
 <架橋メタロセン化合物の例示>
 以下に、上記一般式[1]で表される架橋メタロセン化合物(A)の具体例を示すが、特にこれによって本発明の範囲が限定されるものではない。なお、本発明において架橋メタロセン化合物(A)は、1種単独で用いてもよく2種以上を併用してもよい。
<Examples of bridged metallocene compounds>
Specific examples of the bridged metallocene compound (A) represented by the general formula [1] are shown below, but the scope of the present invention is not particularly limited thereby. In the present invention, the crosslinked metallocene compound (A) may be used alone or in combination of two or more.
 便宜上、メタロセン化合物のMQj(金属部分)を除いたリガンド構造を、Bridge(架橋部分)、Flu(フルオレニル部分)およびCp(シクロペンタジエニル部分)の3つに分ける。そして、架橋部分の構造を表記上3つに分け、架橋部分の各基の略称を表1に、架橋部分の構造の具体例を表2~3に示す。αは-CR101112を表し、βは-PhR56789を表し、γはYを表す。 For convenience, the ligand structure excluding MQ j (metal part) of the metallocene compound is divided into three parts: Bridge (bridge part), Flu (fluorenyl part) and Cp (cyclopentadienyl part). The structure of the crosslinked portion is divided into three in terms of notation. Abbreviations of each group of the crosslinked portion are shown in Table 1, and specific examples of the structure of the crosslinked portion are shown in Tables 2 to 3. α represents —CR 10 R 11 R 12 , β represents —PhR 5 R 6 R 7 R 8 R 9 , and γ represents Y.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記表に従えば、No.B-24はα1-β2-γ1の組合せを意味し、そのBridge(架橋部分)の構造は下記式で表される。 According to the above table, No. B-24 means a combination of α1-β2-γ1, and the structure of the bridge (crosslinked portion) is represented by the following formula.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 次に、フルオレニル部分の構造の具体例を表4に示す。 Next, specific examples of the structure of the fluorenyl moiety are shown in Table 4.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 メタロセン化合物の、架橋部分およびフルオレニル部分の組合せを下記表に示す。 The combinations of the bridging moiety and the fluorenyl moiety of the metallocene compound are shown in the following table.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 上記表に従えば、No.944のリガンド構造はB-24およびδ5の組合せを意味し、金属部分のMQjがZrCl2の場合は、下記メタロセン化合物を例示したことになる。 According to the above table, no. The ligand structure of 944 means a combination of B-24 and δ5. When MQ j of the metal moiety is ZrCl 2 , the following metallocene compound is exemplified.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 MQjの具体的な例示としては、ZrCl2、ZrBr2、ZrMe2、Zr(OTs)2、Zr(OMs)2、Zr(OTf)2、TiCl2、TiBr2、TiMe2、Ti(OTs)2、Ti(OMs)2、Ti(OTf)2、HfCl2、HfBr2、HfMe2、Hf(OTs)2、Hf(OMs)2、Hf(OTf)2などが挙げられる。Tsはp-トルエンスルホニル基、Msはメタンスルホニル基、Tfはトリフルオロメタンスルホニル基を示す。 Specific examples of MQ j include ZrCl 2 , ZrBr 2 , ZrMe 2 , Zr (OTs) 2 , Zr (OMs) 2 , Zr (OTf) 2 , TiCl 2 , TiBr 2 , TiMe 2 , Ti (OTs). 2, Ti (OMs) 2, Ti (OTf) 2, HfCl 2, HfBr 2, HfMe 2, Hf (OTs) 2, Hf (OMs) 2, etc. Hf (OTf) 2 and the like. Ts represents a p-toluenesulfonyl group, Ms represents a methanesulfonyl group, and Tf represents a trifluoromethanesulfonyl group.
 本発明で使用される、上記一般式[1]で表される架橋メタロセン化合物(A)は公知の方法によって製造可能であり、特に製造方法が限定されるわけではない。公知の製造方法として、本出願人によるWO2001/027124号パンフレットおよびWO2004/087775号パンフレットに記載の方法が例示される。 The bridged metallocene compound (A) represented by the general formula [1] used in the present invention can be produced by a known method, and the production method is not particularly limited. Examples of known production methods include those described in the pamphlet of WO 2001/027124 and WO 2004/087775 by the applicant.
 《化合物(B)》
 本発明では、オレフィン重合用触媒の成分として、化合物(B)が用いられる。化合物(B)は、(b-1)有機アルミニウムオキシ化合物、(b-2)架橋メタロセン化合物(A)と反応してイオン対を形成する化合物、および(b-3)有機アルミニウム化合物から選択される少なくとも1種である。これらの中では、有機アルミニウムオキシ化合物(b-1)が好ましい。
<< Compound (B) >>
In the present invention, the compound (B) is used as a component of the olefin polymerization catalyst. Compound (B) is selected from (b-1) an organoaluminum oxy compound, (b-2) a compound that reacts with a bridged metallocene compound (A) to form an ion pair, and (b-3) an organoaluminum compound. At least one kind. Of these, the organoaluminum oxy compound (b-1) is preferred.
 〈有機アルミニウムオキシ化合物(b-1)〉
 有機アルミニウムオキシ化合物(b-1)としては、下記一般式[3]で表される化合物および下記一般式[4]で表される化合物などの従来公知のアルミノキサン、下記一般式[5]で表される構造を有する修飾メチルアルミノキサン、下記一般式[6]で表されるボロン含有有機アルミニウムオキシ化合物が例示される。
<Organic aluminum oxy compound (b-1)>
Examples of the organoaluminum oxy compound (b-1) include conventionally known aluminoxanes such as a compound represented by the following general formula [3] and a compound represented by the following general formula [4], and a compound represented by the following general formula [5]. Examples thereof include a modified methylaluminoxane having a structure represented by the following formula, and a boron-containing organoaluminum oxy compound represented by the following general formula [6].
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 式[3]および[4]において、Rは炭素数1~10の炭化水素基、好ましくはメチル基を示し、nは2以上、好ましくは3以上、より好ましくは10以上の整数を示す。本発明では、式[3]および[4]において、Rがメチル基であるメチルアルミノキサンが好適に使用される。 In the formulas [3] and [4], R represents a hydrocarbon group having 1 to 10 carbon atoms, preferably a methyl group, and n represents an integer of 2 or more, preferably 3 or more, more preferably 10 or more. In the present invention, methylaluminoxane in which R is a methyl group in formulas [3] and [4] is preferably used.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式[5]において、Rは炭素数2~10の炭化水素基を示し、mおよびnはそれぞれ独立に2以上の整数を示す。複数あるRは相互に同一でも異なっていてもよい。 In the formula [5], R represents a hydrocarbon group having 2 to 10 carbon atoms, and m and n each independently represents an integer of 2 or more. A plurality of R may be the same or different from each other.
 修飾メチルアルミノキサン[5]は、トリメチルアルミニウムとトリメチルアルミニウム以外のアルキルアルミニウムとを用いて調製することができる。このような修飾メチルアルミノキサン[5]は、一般的にMMAO(modified methyl aluminoxane)と呼ばれている。MMAOは、具体的にはUS4960878およびUS5041584で挙げられている方法で調製することが出来る。 The modified methylaluminoxane [5] can be prepared using trimethylaluminum and an alkylaluminum other than trimethylaluminum. Such modified methylaluminoxane [5] is generally called MMAO (modified (methyl aluminoxane). MMAO can be prepared specifically by the methods listed in US4960878 and US5041584.
 また、東ソー・ファインケム社などからも、トリメチルアルミニウムとトリイソブチルアルミニウムとを用いて調製された(すなわち、上記一般式[5]においてRがイソブチル基である)修飾メチルアルミノキサンが、MMAOやTMAOといった名称で商業的に生産されている。 In addition, modified methylaluminoxane prepared by using trimethylaluminum and triisobutylaluminum from Tosoh Finechem Co., Ltd. (namely, R in the above general formula [5] is an isobutyl group) is named MMAO or TMAO. Is produced commercially.
 MMAOは、各種溶媒への溶解性および保存安定性が改善されたアルミノキサンである。具体的には、上記一般式[3]または[4]で表される化合物などのようなベンゼンに対して不溶性または難溶性の化合物とは異なり、MMAOは、脂肪族炭化水素、脂環族炭化水素および芳香族炭化水素に溶解するものである。 MMAO is an aluminoxane with improved solubility in various solvents and storage stability. Specifically, unlike a compound that is insoluble or hardly soluble in benzene such as a compound represented by the above general formula [3] or [4], MMAO is an aliphatic hydrocarbon, alicyclic carbonization. It is soluble in hydrogen and aromatic hydrocarbons.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式[6]において、Rcは炭素数1~10の炭化水素基を示す。複数あるRdはそれぞれ独立に水素原子、ハロゲン原子および炭素数1~10の炭化水素基から選ばれる基を示す。 In the formula [6], R c represents a hydrocarbon group having 1 to 10 carbon atoms. A plurality of R d 's each independently represents a group selected from a hydrogen atom, a halogen atom, and a hydrocarbon group having 1 to 10 carbon atoms.
 本発明では、後述するような高温においてもオレフィン重合体を製造することができる。したがって、本発明の特徴の一つに、特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物をも使用できることが挙げられる。また、特開平2-167305号公報に記載されている有機アルミニウムオキシ化合物、特開平2-24701号公報、特開平3-103407号公報に記載されている2種以上のアルキル基を有するアルミノキサンなども好適に使用できる。 In the present invention, an olefin polymer can be produced even at a high temperature as described later. Therefore, one of the features of the present invention is that a benzene-insoluble organoaluminum oxy compound as exemplified in JP-A-2-78687 can also be used. Further, organoaluminum oxy compounds described in JP-A-2-167305, aluminoxanes having two or more alkyl groups described in JP-A-2-24701, JP-A-3-103407, and the like are also included. It can be used suitably.
 なお、上記「ベンゼン不溶性の」有機アルミニウムオキシ化合物とは、60℃のベンゼンに溶解する該化合物の溶解量が、Al原子換算で通常は10重量%以下、好ましくは5重量%以下、特に好ましくは2重量%以下である、ベンゼンに対して不溶性または難溶性である有機アルミニウムオキシ化合物をいう。 The “benzene-insoluble” organoaluminum oxy compound means that the amount of the compound dissolved in benzene at 60 ° C. is usually 10% by weight or less, preferably 5% by weight or less, particularly preferably in terms of Al atom. An organoaluminum oxy compound that is 2% by weight or less and is insoluble or hardly soluble in benzene.
 本発明において、上記例示の有機アルミニウムオキシ化合物(b-1)は、1種単独で用いてもよく2種以上を併用してもよい。 In the present invention, the organoaluminum oxy compound (b-1) exemplified above may be used alone or in combination of two or more.
 〈架橋メタロセン化合物(A)と反応してイオン対を形成する化合物(b-2)〉
 架橋メタロセン化合物(A)と反応してイオン対を形成する化合物(b-2)(以下、「イオン性化合物(b-2)」と略称する場合がある。)としては、特開平1-501950号公報、特開平1-502036号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、特開2004-51676号公報、USP5321106号などに記載された、ルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物が例示される。さらに、ヘテロポリ化合物およびイソポリ化合物も例示される。これらの中では、イオン性化合物(b-2)としては、下記一般式[7]で表される化合物が好ましい。
<Compound (b-2) which forms an ion pair by reacting with the bridged metallocene compound (A)>
As the compound (b-2) that reacts with the bridged metallocene compound (A) to form an ion pair (hereinafter sometimes abbreviated as “ionic compound (b-2)”), JP-A-1-501950 is disclosed. JP, 1-502036, JP 3-179005, JP 3-179006, JP 3-207703, JP 3-207704, JP 2004-51676. And Lewis acids, ionic compounds, borane compounds and carborane compounds described in U.S. Pat. No. 5,321,106. Furthermore, heteropoly compounds and isopoly compounds are also exemplified. Of these, the ionic compound (b-2) is preferably a compound represented by the following general formula [7].
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 式[7]において、Re+としては、H+、オキソニウムカチオン、カルベニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンが例示される。Rf、Rg、RhおよびRiはそれぞれ独立に有機基、好ましくはアリール基、ハロゲン含有アリール基から選ばれる基を示す。 In the formula [7], R e + is exemplified by H + , oxonium cation, carbenium cation, ammonium cation, phosphonium cation, cycloheptyltrienyl cation, and ferrocenium cation having a transition metal. R f , R g , R h and R i each independently represents an organic group, preferably a group selected from an aryl group and a halogen-containing aryl group.
 上記カルベニウムカチオンとしては、トリフェニルカルベニウムカチオン、トリス(メチルフェニル)カルベニウムカチオン、トリス(ジメチルフェニル)カルベニウムカチオンなどの三置換カルベニウムカチオンが例示される。 Examples of the carbenium cation include trisubstituted carbenium cations such as triphenylcarbenium cation, tris (methylphenyl) carbenium cation, and tris (dimethylphenyl) carbenium cation.
 上記アンモニウムカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリ(n-プロピル)アンモニウムカチオン、トリイソプロピルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオン、トリイソブチルアンモニウムカチオンなどのトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N,2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンが例示される。 Examples of the ammonium cation include trialkylammonium cation, triethylammonium cation, tri (n-propyl) ammonium cation, triisopropylammonium cation, tri (n-butyl) ammonium cation, and triisobutylammonium cation; N, N, N-dialkylanilinium cations such as N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N, 2,4,6-pentamethylanilinium cation; diisopropylammonium cation, dicyclohexylammonium cation, etc. Of the dialkylammonium cation.
 上記ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリス(メチルフェニル)ホスホニウムカチオン、トリス(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンが例示される。 Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tris (methylphenyl) phosphonium cation, and tris (dimethylphenyl) phosphonium cation.
 Re+としては、上記例示の中では、カルベニウムカチオン、アンモニウムカチオンが好ましく、トリフェニルカルベニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオンが特に好ましい。 As R e + , among the above examples, a carbenium cation and an ammonium cation are preferable, and a triphenylcarbenium cation, an N, N-dimethylanilinium cation, and an N, N-diethylanilinium cation are particularly preferable.
 1.R e+ がカルベニウムカチオンの場合(カルベニウム塩)
 カルベニウム塩としては、トリフェニルカルベニウムテトラフェニルボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、トリス(4-メチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリス(3,5-ジメチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレートが例示される。
1. When R e + is a carbenium cation (carbenium salt)
Examples of the carbenium salt include triphenylcarbenium tetraphenylborate, triphenylcarbeniumtetrakis (pentafluorophenyl) borate, triphenylcarbeniumtetrakis (3,5-ditrifluoromethylphenyl) borate, tris (4-methylphenyl) carbene. Examples thereof include nium tetrakis (pentafluorophenyl) borate and tris (3,5-dimethylphenyl) carbenium tetrakis (pentafluorophenyl) borate.
 2.R e+ がアンモニウムカチオンの場合(アンモニウム塩)
 アンモニウム塩としては、トリアルキルアンモニウム塩、N,N-ジアルキルアニリニウム塩、ジアルキルアンモニウム塩が例示される。
2. When R e + is an ammonium cation (ammonium salt)
Examples of ammonium salts include trialkylammonium salts, N, N-dialkylanilinium salts, and dialkylammonium salts.
 トリアルキルアンモニウム塩としては、具体的には、トリエチルアンモニウムテトラフェニルボレート、トリプロピルアンモニウムテトラフェニルボレート、トリ(n-ブチル)アンモニウムテトラフェニルボレート、トリメチルアンモニウムテトラキス(p-トリル)ボレート、トリメチルアンモニウムテトラキス(o-トリル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(2,4-ジメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(3,5-ジメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(4-トリフルオロメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(o-トリル)ボレート、ジオクタデシルメチルアンモニウムテトラフェニルボレート、ジオクタデシルメチルアンモニウムテトラキス(p-トリル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(o-トリル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(2,4-ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5-ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(4-トリフルオロメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレートが例示される。 Specific examples of the trialkylammonium salt include triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate, trimethylammonium tetrakis (p-tolyl) borate, trimethylammonium tetrakis ( o-tolyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (2,4 -Dimethylphenyl) borate, tri (n-butyl) ammonium tetrakis (3,5-dimethylphenyl) borate Tri (n-butyl) ammonium tetrakis (4-trifluoromethylphenyl) borate, tri (n-butyl) ammonium tetrakis (3,5-ditrifluoromethylphenyl) borate, tri (n-butyl) ammonium tetrakis ( o-tolyl) borate, dioctadecylmethylammonium tetraphenylborate, dioctadecylmethylammonium tetrakis (p-tolyl) borate, dioctadecylmethylammonium tetrakis (o-tolyl) borate, dioctadecylmethylammonium tetrakis (pentafluorophenyl) borate, Dioctadecylmethylammonium tetrakis (2,4-dimethylphenyl) borate, dioctadecylmethylammonium tetrakis (3,5-dimethylphenyl) borate DOO, dioctadecyl methyl ammonium tetrakis (4-trifluoromethylphenyl) borate, dioctadecyl methyl ammonium tetrakis (3,5-ditrifluoromethylphenyl) borate.
 N,N-ジアルキルアニリニウム塩としては、具体的には、N,N-ジメチルアニリニウムテトラフェニルボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、N,N-ジエチルアニリニウムテトラフェニルボレート、N,N-ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジエチルアニリニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、N,N,2,4,6-ペンタメチルアニリニウムテトラフェニルボレート、N,N,2,4,6-ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートが例示される。 Specific examples of N, N-dialkylanilinium salts include N, N-dimethylanilinium tetraphenylborate, N, N-dimethylaniliniumtetrakis (pentafluorophenyl) borate, and N, N-dimethylaniliniumtetrakis. (3,5-ditrifluoromethylphenyl) borate, N, N-diethylanilinium tetraphenylborate, N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N, N-diethylanilinium tetrakis (3,5 -Ditrifluoromethylphenyl) borate, N, N, 2,4,6-pentamethylanilinium tetraphenylborate, N, N, 2,4,6-pentamethylanilinium tetrakis (pentafluorophenyl) borate The
 ジアルキルアンモニウム塩としては、具体的には、ジイソプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートが例示される。 Specific examples of the dialkylammonium salt include diisopropylammonium tetrakis (pentafluorophenyl) borate and dicyclohexylammonium tetraphenylborate.
 イオン性化合物(b-2)は、1種単独で用いてもよく2種以上を併用してもよい。 The ionic compound (b-2) may be used alone or in combination of two or more.
 〈有機アルミニウム化合物(b-3)〉
 有機アルミニウム化合物(b-3)としては、下記一般式[8]で表される有機アルミニウム化合物、下記一般式[9]で表される周期律表第1族金属とアルミニウムとの錯アルキル化物が例示される。
<Organic aluminum compound (b-3)>
Examples of the organoaluminum compound (b-3) include an organoaluminum compound represented by the following general formula [8], and a complex alkylated product of a group 1 metal of the periodic table represented by the following general formula [9] and aluminum. Illustrated.
 Ra mAl(ORbnpq ・・・[8]
 式[8]において、RaおよびRbはそれぞれ独立に炭素数1~15、好ましくは1~4の炭化水素基から選ばれる基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。
R a m Al (OR b ) n H p X q [8]
In the formula [8], R a and R b each independently represent a group selected from a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, X represents a halogen atom, and m represents 0 <m ≦ 3, n is 0 ≦ n <3, p is 0 ≦ p <3, q is a number 0 ≦ q <3, and m + n + p + q = 3.
 M2AlRa 4 ・・・[9]
 式[9]において、M2はLi、NaまたはKを示し、複数あるRaはそれぞれ独立に炭素数1~15、好ましくは1~4の炭化水素基から選ばれる基を示す。
M 2 AlR a 4 ... [9]
In the formula [9], M 2 represents Li, Na or K, and a plurality of R a each independently represents a group selected from a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms.
 有機アルミニウム化合物[8]としては、トリメチルアルミニウム、トリエチルアルミニウム、トリn-ブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウムなどのトリn-アルキルアルミニウム;
 トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリtert-ブチルアルミニウム、トリ2-メチルブチルアルミニウム、トリ3-メチルヘキシルアルミニウム、トリ2-エチルヘキシルアルミニウムなどのトリ分岐鎖アルキルアルミニウム;
 トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリシクロアルキルアルミニウム;トリフェニルアルミニウム、トリトリルアルミニウムなどのトリアリールアルミニウム;
 ジイソプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド;
 一般式(i-C49xAly(C510z(式中、x、yおよびzは正の数であり、z≦2xである。)などで表されるイソプレニルアルミニウムなどのアルケニルアルミニウム;
 イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシドなどのアルキルアルミニウムアルコキシド;ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド;エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド;
 一般式Ra 2.5Al(ORb0.5(式中、RaおよびRbは式[8]中のRaおよびRbと同義である。)で表される平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム;ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシド)などのアルキルアルミニウムアリーロキシド;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド;エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド;
 エチルアルミニウムジクロリドなどのアルキルアルミニウムジハライドなどの部分的にハロゲン化されたアルキルアルミニウム;ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド、エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドなどの部分的に水素化されたアルキルアルミニウム;エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムが例示される。
Examples of the organoaluminum compound [8] include tri-n-alkylaluminums such as trimethylaluminum, triethylaluminum, tri-n-butylaluminum, trihexylaluminum, and trioctylaluminum;
Tri-branched alkylaluminums such as triisopropylaluminum, triisobutylaluminum, trisec-butylaluminum, tritert-butylaluminum, tri-2-methylbutylaluminum, tri-3-methylhexylaluminum, tri-2-ethylhexylaluminum;
Tricycloalkylaluminum such as tricyclohexylaluminum and tricyclooctylaluminum; triarylaluminum such as triphenylaluminum and tritolylaluminum;
Dialkylaluminum hydrides such as diisopropylaluminum hydride, diisobutylaluminum hydride;
Formula (i-C 4 H 9) x Al y (C 5 H 10) z ( wherein, x, y and z are each a positive number, and z ≦ 2x.) Isoprenyl represented by like Alkenyl aluminum such as aluminum;
Alkylaluminum alkoxides such as isobutylaluminum methoxide and isobutylaluminum ethoxide; dialkylaluminum alkoxides such as dimethylaluminum methoxide, diethylaluminum ethoxide and dibutylaluminum butoxide; alkylaluminum sesquialkoxides such as ethylaluminum sesquiethoxide and butylaluminum sesquibutoxide ;
(Wherein, R a and R b are. Synonymous with R a and R b in the formula [8]) formula R a 2.5 Al (OR b) 0.5 partially alkoxy having an average composition represented by Alkyl aluminum; alkyl aluminum aryloxides such as diethyl aluminum phenoxide and diethyl aluminum (2,6-di-t-butyl-4-methylphenoxide); dimethyl aluminum chloride, diethyl aluminum chloride, dibutyl aluminum chloride, diethyl aluminum Dialkylaluminum halides such as bromide and diisobutylaluminum chloride; alkylaluminum sesquihalides such as ethylaluminum sesquichloride, butylaluminum sesquichloride and ethylaluminum sesquibromide;
Partially halogenated alkylaluminums such as alkylaluminum dihalides such as ethylaluminum dichloride; dialkylaluminum hydrides such as diethylaluminum hydride and dibutylaluminum hydride, alkylaluminum dihydrides such as ethylaluminum dihydride and propylaluminum dihydride Illustrative are partially partially alkylated and halogenated alkylaluminums such as ethylaluminum ethoxychloride, butylaluminum butoxycyclyl, ethylaluminum ethoxybromide.
 錯アルキル化物[9]としては、LiAl(C254、LiAl(C7154が例示される。また、錯アルキル化物[9]に類似する化合物も使用することができ、窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物が例示される。このような化合物としては、(C252AlN(C25)Al(C252が例示される。 Examples of the complex alkylated product [9] include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 . A compound similar to the complex alkylated product [9] can also be used, and an organic aluminum compound in which two or more aluminum compounds are bonded via a nitrogen atom is exemplified. An example of such a compound is (C 2 H 5 ) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2 .
 有機アルミニウム化合物(b-3)としては、入手が容易な点から、トリメチルアルミニウム、トリイソブチルアルミニウムが好ましい。また、有機アルミニウム化合物(b-3)は、1種単独で用いてもよく2種以上を併用してもよい。 As the organoaluminum compound (b-3), trimethylaluminum and triisobutylaluminum are preferable because they are easily available. The organoaluminum compound (b-3) may be used alone or in combination of two or more.
 《担体(C)》
 本発明では、オレフィン重合用触媒の成分として、担体(C)を用いてもよい。担体(C)は、無機化合物または有機化合物であって、顆粒状または微粒子状の固体である。
<< Carrier (C) >>
In the present invention, the carrier (C) may be used as a component of the olefin polymerization catalyst. The carrier (C) is an inorganic compound or an organic compound, and is a granular or particulate solid.
 〈無機化合物〉
 上記無機化合物としては、多孔質酸化物、無機ハロゲン化物、粘土鉱物、粘土(通常は該粘土鉱物を主成分として構成される。)、イオン交換性層状化合物(大部分の粘土鉱物はイオン交換性層状化合物である。)が例示される。
<Inorganic compounds>
Examples of the inorganic compound include porous oxides, inorganic halides, clay minerals, clay (usually composed of the clay mineral as a main component), ion-exchangeable layered compounds (most clay minerals are ion-exchangeable). A layered compound)).
 上記多孔質酸化物としては、SiO2、Al23、MgO、ZrO、TiO2、B23、CaO、ZnO、BaO、ThO2;これらの酸化物を含む複合物または混合物が例示される。前記複合物または混合物としては、天然または合成ゼオライト、SiO2-MgO、SiO2-Al23、SiO2-TiO2、SiO2-V25、SiO2-Cr23、SiO2-TiO2-MgOが例示される。これらの中では、SiO2およびAl23の何れか一方または双方の成分を主成分とする多孔質酸化物が好ましい。 Examples of the porous oxide include SiO 2 , Al 2 O 3 , MgO, ZrO, TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 ; a composite or mixture containing these oxides. The Examples of the composite or mixture include natural or synthetic zeolite, SiO 2 —MgO, SiO 2 —Al 2 O 3 , SiO 2 —TiO 2 , SiO 2 —V 2 O 5 , SiO 2 —Cr 2 O 3 , SiO 2. -TiO 2 -MgO is exemplified. Among these, porous oxides containing as a main component one or both of SiO 2 and Al 2 O 3 are preferable.
 上記多孔質酸化物は、種類および製法によりその性状は異なるが、粒径が好ましくは10~300μm、より好ましくは20~200μmの範囲にあり;比表面積が好ましくは50~1000m2/g、より好ましくは100~700m2/gの範囲にあり;細孔容積が好ましくは0.3~3.0cm3/gの範囲にある。このような多孔質酸化物は、必要に応じて100~1000℃、好ましくは150~700℃で焼成して使用される。 The porous oxide has different properties depending on the type and production method, but the particle size is preferably 10 to 300 μm, more preferably 20 to 200 μm; the specific surface area is preferably 50 to 1000 m 2 / g, Preferably it is in the range of 100 to 700 m 2 / g; the pore volume is preferably in the range of 0.3 to 3.0 cm 3 / g. Such a porous oxide is used after being calcined at 100 to 1000 ° C., preferably 150 to 700 ° C., if necessary.
 上記無機ハロゲン化物としては、MgCl2、MgBr2、MnCl2、MnBr2が例示される。上記無機ハロゲン化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に上記無機ハロゲン化物を溶解させた後、析出剤によって微粒子状に析出させた成分を用いることもできる。 Examples of the inorganic halide include MgCl 2 , MgBr 2 , MnCl 2 , and MnBr 2 . The inorganic halide may be used as it is or after being pulverized by a ball mill or a vibration mill. In addition, it is possible to use a component that is dissolved in a fine particle by a precipitating agent after the inorganic halide is dissolved in a solvent such as alcohol.
 上記粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。なお、上記イオン交換性層状化合物は、イオン結合などによって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有されるイオンが交換可能な化合物である。 The above-mentioned clay, clay mineral, and ion-exchange layered compound are not limited to natural products, and artificial synthetic products can also be used. In addition, the said ion exchange layered compound is a compound which has the crystal structure where the surface comprised by an ionic bond etc. was piled up in parallel with weak mutual bond force, and is a compound which can contain the ion contained.
 具体的には、上記粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、合成雲母などのウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ヘクトライト、テニオライト、ハロイサイトが例示され;イオン交換性層状化合物としては、六方最密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物が例示される。具体的には、イオン交換性層状化合物としては、α-Zr(HAsO42・H2O、α-Zr(HPO42、α-Zr(KPO42・3H2O、α-Ti(HPO42、α-Ti(HAsO42・H2O、α-Sn(HPO42・H2O、γ-Zr(HPO42、γ-Ti(HPO42、γ-Ti(NH4PO42・H2Oなどの多価金属の結晶性酸性塩が例示される。 Specifically, the clays and clay minerals include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysinger gel, pyrophyllite, synthetic mica, etc. And kaolinite, nacrite, dickite, hectorite, teniolite and halloysite; examples of the ion-exchangeable layered compound have a layered crystal structure such as hexagonal close-packed packing type, antimony type, CdCl 2 type, CdI 2 type Examples are ionic crystalline compounds. Specifically, examples of the ion-exchange layered compound include α-Zr (HAsO 4 ) 2 .H 2 O, α-Zr (HPO 4 ) 2 , α-Zr (KPO 4 ) 2 .3H 2 O, α- Ti (HPO 4 ) 2 , α-Ti (HAsO 4 ) 2 .H 2 O, α-Sn (HPO 4 ) 2 .H 2 O, γ-Zr (HPO 4 ) 2 , γ-Ti (HPO 4 ) 2 Examples thereof include crystalline acidic salts of polyvalent metals such as γ-Ti (NH 4 PO 4 ) 2 .H 2 O.
 上記粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理としては、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理が例示される。 It is also preferable to subject the clay and clay mineral to chemical treatment. As the chemical treatment, any of a surface treatment that removes impurities adhering to the surface and a treatment that affects the crystal structure of clay can be used. Specific examples of the chemical treatment include acid treatment, alkali treatment, salt treatment, and organic matter treatment.
 また、上記イオン交換性層状化合物は、そのイオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した層状化合物としてもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常はピラーと呼ばれる。例えば、層状化合物の層間に下記金属水酸化物イオンをインターカレーションした後に加熱脱水することにより、層間に酸化物支柱(ピラー)を形成することができる。なお、このように層状化合物の層間に別の物質を導入することをインターカレーションという。 Further, the ion-exchangeable layered compound may be a layered compound in which the interlayer is expanded by exchanging the exchangeable ions between the layers with another large bulky ion using the ion-exchangeability. Such bulky ions play a role of supporting pillars to support the layered structure and are usually called pillars. For example, an oxide column (pillar) can be formed between layers by intercalating the following metal hydroxide ions between layers of the layered compound and then heat-dehydrating. The introduction of another substance between the layers of the layered compound is called intercalation.
 インターカレーションするゲスト化合物としては、TiCl4、ZrCl4などの陽イオン性無機化合物;Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3などの金属アルコキシド(Rは炭化水素基など);[Al134(OH)247+、[Zr4(OH)142+、[Fe3O(OCOCH36+などの金属水酸化物イオンが例示される。これらのゲスト化合物は、1種単独で用いてもよく2種以上を併用してもよい。 Examples of guest compounds to be intercalated include cationic inorganic compounds such as TiCl 4 and ZrCl 4 ; metal alkoxides such as Ti (OR) 4 , Zr (OR) 4 , PO (OR) 3 , and B (OR) 3 ( R is a hydrocarbon group); metal hydroxide ions such as [Al 13 O 4 (OH) 24 ] 7+ , [Zr 4 (OH) 14 ] 2+ , [Fe 3 O (OCOCH 3 ) 6 ] + Is exemplified. These guest compounds may be used alone or in combination of two or more.
 また、上記ゲスト化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4などの金属アルコキシド(Rは炭化水素基など)を加水分解および重縮合して得た重合物、SiO2などのコロイド状無機化合物などを共存させることもできる。 In addition, when the guest compound is intercalated, a metal alkoxide (R is a hydrocarbon group, etc.) such as Si (OR) 4 , Al (OR) 3 , Ge (OR) 4 is hydrolyzed and polycondensed. The obtained polymer, a colloidal inorganic compound such as SiO 2, etc. can also coexist.
 上記無機化合物の中では、粘土鉱物および粘土が好ましく、モンモリロナイト群、バーミキュライト、ヘクトライト、テニオライトおよび合成雲母が特に好ましい。 Among the inorganic compounds, clay minerals and clays are preferable, and montmorillonite group, vermiculite, hectorite, teniolite and synthetic mica are particularly preferable.
 〈有機化合物〉
 上記有機化合物としては、粒径が10~300μmの範囲にある顆粒状または微粒子状の固体が例示される。具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどの炭素数2~14のオレフィンを主成分として合成される(共)重合体;ビニルシクロヘキサン、スチレンを主成分として合成される(共)重合体;これら(共)重合体の変成体が例示される。
<Organic compounds>
Examples of the organic compound include granular or particulate solids having a particle size in the range of 10 to 300 μm. Specifically, a (co) polymer synthesized mainly from an olefin having 2 to 14 carbon atoms such as ethylene, propylene, 1-butene, 4-methyl-1-pentene; Examples of synthesized (co) polymers; modified products of these (co) polymers.
 《有機化合物成分(D)》
 本発明では、オレフィン重合用触媒の成分として、有機化合物成分(D)を用いてもよい。有機化合物成分(D)は、必要に応じて、オレフィンの重合反応における重合性能およびオレフィン重合体の物性を向上させる目的で使用される。有機化合物成分(D)としては、アルコール類、フェノール性化合物、カルボン酸、リン化合物、スルホン酸塩が例示される。
<< Organic compound component (D) >>
In the present invention, the organic compound component (D) may be used as a component of the olefin polymerization catalyst. The organic compound component (D) is used for the purpose of improving the polymerization performance in the olefin polymerization reaction and the physical properties of the olefin polymer, if necessary. Examples of the organic compound component (D) include alcohols, phenolic compounds, carboxylic acids, phosphorus compounds, and sulfonates.
 《オレフィン重合用触媒の構成・調製》
 オレフィン重合用触媒の各成分は、以下の割合で用いることが好ましい。
<< Configuration and Preparation of Olefin Polymerization Catalyst >>
The components of the olefin polymerization catalyst are preferably used in the following ratios.
 〈1〉上記オレフィン重合用触媒を用いて、オレフィンの重合を行うに際して、架橋メタロセン化合物(A)は、反応容積1リットル当り、通常は10-9~10-1モル、好ましくは10-8~10-2モルとなるような量で用いられる。 <1> When olefin polymerization is performed using the above olefin polymerization catalyst, the crosslinked metallocene compound (A) is usually 10 −9 to 10 −1 mol, preferably 10 −8 to 1 liter per reaction volume. It is used in such an amount that it becomes 10 −2 mol.
 〈2〉オレフィン重合用触媒の成分として有機アルミニウムオキシ化合物(b-1)を用いる場合には、該化合物(b-1)は、該化合物(b-1)中のアルミニウム原子(Al)と架橋メタロセン化合物(A)中の全遷移金属原子(M)とのモル比〔Al/M〕が、通常は0.01~5000、好ましくは0.05~2000となるような量で用いられる。 <2> When the organoaluminum oxy compound (b-1) is used as a component of the olefin polymerization catalyst, the compound (b-1) is crosslinked with the aluminum atom (Al) in the compound (b-1). The metallocene compound (A) is used in such an amount that the molar ratio [Al / M] to all transition metal atoms (M) in the metallocene compound (A) is usually 0.01 to 5000, preferably 0.05 to 2000.
 〈3〉オレフィン重合用触媒の成分としてイオン性化合物(b-2)を用いる場合には、該化合物(b-2)は、該化合物(b-2)と架橋メタロセン化合物(A)中の全遷移金属原子(M)とのモル比〔(b-2)/M〕が、通常は1~10、好ましくは1~5となるような量で用いられる。 <3> When the ionic compound (b-2) is used as a component of the catalyst for olefin polymerization, the compound (b-2) is a combination of the compound (b-2) and the bridged metallocene compound (A). The molar ratio [(b-2) / M] with the transition metal atom (M) is usually 1 to 10, preferably 1 to 5.
 〈4〉オレフィン重合用触媒の成分として有機アルミニウム化合物(b-3)を用いる場合には、該化合物(b-3)は、該化合物(b-3)と架橋メタロセン化合物(A)中の全遷移金属原子(M)とのモル比〔(b-3)/M〕が、通常は10~5000、好ましくは20~2000となるような量で用いられる。 <4> When the organoaluminum compound (b-3) is used as a component of the olefin polymerization catalyst, the compound (b-3) is added to the compound (b-3) and the bridged metallocene compound (A). The molar ratio [(b-3) / M] with the transition metal atom (M) is usually 10 to 5000, preferably 20 to 2000.
 〈5〉オレフィン重合用触媒の成分として有機化合物成分(D)を用いる場合には、化合物(B)が有機アルミニウムオキシ化合物(b-1)であるときは、有機化合物成分(D)と該化合物(b-1)とのモル比〔(D)/(b-1)〕が、通常は0.01~10、好ましくは0.1~5となるような量で;化合物(B)がイオン性化合物(b-2)であるときは、有機化合物成分(D)と該化合物(b-2)とのモル比〔(D)/(b-2)〕が、通常は0.01~10、好ましくは0.1~5となるような量で;化合物(B)が有機アルミニウム化合物(b-3)であるときは、有機化合物成分(D)と該化合物(b-3)とのモル比〔(D)/(b-3)〕が、通常は0.005~2、好ましくは0.01~1となるような量で用いられる。 <5> When the organic compound component (D) is used as a component of the olefin polymerization catalyst, when the compound (B) is an organoaluminum oxy compound (b-1), the organic compound component (D) and the compound In an amount such that the molar ratio [(D) / (b-1)] to (b-1) is usually 0.01 to 10, preferably 0.1 to 5; compound (B) is an ion When the organic compound (b-2) is used, the molar ratio [(D) / (b-2)] of the organic compound component (D) and the compound (b-2) is usually 0.01 to 10 Preferably in an amount of 0.1 to 5; when the compound (B) is an organoaluminum compound (b-3), the moles of the organic compound component (D) and the compound (b-3) The amount [(D) / (b-3)] is usually 0.005 to 2, preferably 0.01 to 1. It is.
 本発明で使用されるオレフィン重合用触媒は、触媒成分である架橋メタロセン化合物(A)および化合物(B)を溶媒に溶解させて用いることができる。すなわち、本発明では、オレフィン重合用触媒を、触媒溶液として重合系に供給することができる。 The catalyst for olefin polymerization used in the present invention can be used by dissolving the bridged metallocene compound (A) and compound (B), which are catalyst components, in a solvent. That is, in the present invention, the olefin polymerization catalyst can be supplied to the polymerization system as a catalyst solution.
 溶媒としては、一般的には、炭素数4~10の炭化水素溶媒を用いることができる。本発明では、上述したように架橋メタロセン化合物(A)の高濃度触媒溶液(溶媒:炭化水素溶媒)を調製することができる。重合活性の観点から、架橋メタロセン化合物(A)の濃度が0.03mmol/L~2.0mol/Lの触媒溶液を重合系に供給することが好ましく、より好ましくは0.04mmol/L~1.5mol/L、さらに好ましくは0.05mmol/L~1.0mol/Lである。 As the solvent, generally a hydrocarbon solvent having 4 to 10 carbon atoms can be used. In the present invention, as described above, a high concentration catalyst solution (solvent: hydrocarbon solvent) of the bridged metallocene compound (A) can be prepared. From the viewpoint of polymerization activity, it is preferable to supply a catalyst solution having a bridged metallocene compound (A) concentration of 0.03 mmol / L to 2.0 mol / L to the polymerization system, more preferably 0.04 mmol / L to 1.. 5 mol / L, more preferably 0.05 mmol / L to 1.0 mol / L.
 触媒溶液の調製に使用することのできる炭素数4~10の炭化水素溶媒としては、ブタン、イソブタン、シクロブタン、メチルシクロプロパンなどの炭素数4の炭化水素溶媒;
 ペンタン、イソペンタン、ネオペンタン、シクロペンタン、メチルシクロブタン、1,1-ジメチルシクロプロパン、1,2-ジメチルシクロプロパン、エチルシクロプロパンなどの炭素数5の炭化水素溶媒;
 ヘキサン、3-メチルペンタン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、シクロヘキサン、メチルシクロペンタン、1,1-ジメチルシクロブタン、1,2-ジメチルシクロブタン、1,3-ジメチルシクロブタン、エチルシクロブタン、1,1,2-トリメチルシクロプロパン、1-エチル-1-メチルシクロプロパン、プロピルシクロプロパン、イソプロピルシクロプロパンなどの炭素数6の炭化水素溶媒;
 ヘプタン、2-メチルヘキサン、3-メチルヘキサン、3-エチルペンタン、2,2-ジメチルペンタン、2,3-ジメチルペンタン、2,4-ジメチルペンタン、3,3-ジメチルペンタン、2,2,3-トリメチルブタン、メチルシクロヘキサン、1,2-ジメチルペンタン、1,3-ジメチルペンタン、1,2,3-トリメチルブタン、シクロヘプタン、メチルシクロヘキサン、1,1-ジメチルシクロペンタン、1,2-ジメチルシクロペンタン、1,3-ジメチルシクロペンタン、エチルシクロペンタン、プロピルシクロブタン、1,1,2,2-テトラメチルシクロプロパン、1,1,2,3-テトラメチルシクロプロパン、1,1-ジエチルシクロプロパン、1-イソプロピル-1-メチルシクロプロパン、1-イソプロピル-2-メチルシクロプロパン、1-プロピル-2-メチルシクロプロパン、ブチルシクロプロパンなどの炭素数7の炭化水素溶媒;
 オクタン、2-メチルヘプタン、3-メチルヘプタン、4-メチルヘプタン、2,2-ジメチルヘキサン、2,3-ジメチルヘキサン、2,4-ジメチルヘキサン、2,5-ジメチルヘキサン、3,3-ジメチルヘキサン、3,4-ジメチルヘキサン、3-エチルヘキサン、2,2,3-トリメチルペンタン、2,2,4-トリメチルペンタン、2,3,3-トリメチルペンタン、2,3,4-トリメチルペンタン、2-メチル-3-エチルペンタン、シクロオクタン、メチルシクロヘプタン、1,1-ジメチルシクロヘキサン、1,2-ジメチルシクロヘキサン、1,3-ジメチルシクロヘキサン、1,4-ジメチルシクロヘキサン、エチルシクロヘキサン、1,1,2-トリメチルシクロペンタン、1,1,3-トリメチルシクロペンタン、1,2,3-トリメチルシクロペンタン、1,2,4-トリメチルシクロペンタン、1‐エチル‐1‐メチルシクロペンタン、1‐エチル‐2‐メチルシクロペンタン、1‐エチル‐3‐メチルシクロペンタン、プロピルシクロペンタン、イソプロピルシクロペンタン、1,2,3,4-テトラメチルシクロブタン、1,1,3,3-テチラメチルシクロブタン、2,2,3,3-テチラメチルシクロブタン、1,2-ジエチルシクロブタン、1-ブチル-2-メチルシクロプロパン、ペンチルシクロプロパン、イソペンチルシクロプロパンなどの炭素数8の炭化水素溶媒;
 ノナン、2-メチルオクタン、3-メチルオクタン、4-メチルオクタン、2,2-ジメチルヘプタン、2,3-ジメチルヘプタン、2,4-ジメチルヘプタン、2,5-ジメチルヘプタン、2,6-ジメチルヘプタン、4,4-ジメチルヘプタン、2-エチルヘプタン、3-エチルヘプタン、4-エチルヘプタン、2,2,3-トリメチルヘキサン、2,2,4-トリメチルヘキサン、2,2,5-トリメチルヘキサン、2,3,3-トリメチルヘキサン、2,3,4-トリメチルヘキサン、2,3,5-トリメチルヘキサン、2,4,4-トリメチルヘキサン、3,3,4-トリメチルヘキサン、3-エチル-2-メチルヘキサン、3-エチル-3-メチルヘキサン、4-エチル-2-メチルヘキサン、4-エチル-3-メチルヘキサン、2,2,3,3-テトラメチルペンタン、2,2,3,4-テトラメチルペンタン、2,2,4,4-テトラメチルペンタン、2,3,3,4-テトラメチルペンタン、2,2-ジメチル-3-エチルペンタン、2,2-ジエチルペンタン、2,3-ジエチルペンタン、シクロノナン、メチルシクロオクタン、エチルシクロヘプタン、1,1-ジメチルシクロヘプタン、1,2-ジメチルシクロヘプタン、1,3-ジメチルシクロヘプタン、1,4-ジメチルシクロヘプタン、プロピルシクロヘキサン、イソプロピルシクロヘキサン、1-エチル-2-メチルシクロヘキサン、1-エチル-3-メチルシクロヘキサン、1-エチル-4-メチルシクロヘキサン、1,1,2-トリメチルシクロヘキサン、1,1,3-トリメチルシクロヘキサン、1,1,4-トリメチルシクロヘキサン、1,2,3-トリメチルシクロヘキサン、1,2,4-トリメチルシクロヘキサン、ブチルシクロペンタン、イソブチルシクロペンタン、2-シクロペンチルブタン、1,2-ジエチルシクロペンタン、1-イソプロピル-3-メチルシクロペンタン、1-メチル-2-プロピルシクロペンタン、2-エチル-1,1-ジメチルシクロペンタン、1,1,3,3-テトラメチルシクロペンタン、1,1,3,4-テトラメチルシクロペンタン、1,2,3,4-テトラメチルシクロペンタン、1,1,2,3,3-ペンタメチルシクロブタン、1,2-ジプロピルシクロプロパン、1-ヘキシルシクロプロパン、1-ペンチル-1-メチルシクロプロパン、1-ペンチル-2-メチルシクロプロパンなどの炭素数9の炭化水素溶媒;
 デカン、2-メチルノナン、3-メチルノナン、4-メチルノナン、5-メチルノナン、2,2-ジメチルオクタン、2,3-ジメチルオクタン、2,4-ジメチルオクタン、2,5-ジメチルオクタン、2,6-ジメチルオクタン、2,7-ジメチルオクタン、3,3-ジメチルオクタン、3,4-ジメチルオクタン、3,5-ジメチルオクタン、3,6-ジメチルオクタン、4,4-ジメチルオクタン、4,5-ジメチルオクタン、3-エチルオクタン、4-エチルオクタン、2,2,3-トリメチルヘプタン、2,2,4-トリメチルヘプタン、2,2,5-トリメチルヘプタン、2,2,5-トリメチルヘプタン、2,2,6-トリメチルヘプタン、2,3,3-トリメチルヘプタン、2,3,4-トリメチルヘプタン、2,3,5-トリメチルヘプタン、2,3,6-トリメチルヘプタン、2,4,4-トリメチルヘプタン、2,4,5-トリメチルヘプタン、2,4,6-トリメチルヘプタン、2,5,5-トリメチルヘプタン、2-メチル-3-エチルヘプタン、2-メチル-4-エチルヘプタン、3-エチル-3-メチルヘプタン、3-エチル-4-メチルヘプタン、3-エチル-5-メチルヘプタン、3-メチル-4-エチルヘプタン、5-エチル-2-メチルヘプタン、3,3,4-トリメチルヘプタン、3,3,5-トリメチルヘプタン、3,4,4-トリメチルヘプタン、3,4,5-トリメチルヘプタン、4-プロピルヘプタン、4-イソプロピルヘプタン、2,2,3,3-テトラメチルヘキサン、2,2,3,4-テトラメチルヘキサン、2,2,3,5-テトラメチルヘキサン、2,2,4,4-テトラメチルヘキサン、2,2,4,5-テトラメチルヘキサン、2,2,5,5-テトラメチルヘキサン、2,3,3,4-テトラメチルヘキサン、2,3,3,5-テトラメチルヘキサン、2,3,4,4-テトラメチルヘキサン、2,3,4,5-テトラメチルヘキサン、3,3,4,4-テトラメチルヘキサン、2,2-ジメチル-3-エチルヘキサン、2,3-ジメチル-3-エチルヘキサン、2,3-ジメチル-4-エチルヘキサン、2,4-ジメチル-4-エチルヘキサン、2,5-ジメチル-3-エチルヘキサン、3,3-ジメチル-4-エチルヘキサン、3,4-ジメチル-3-エチルヘキサン、3-エチル-2,4-ジメチルヘキサン、4-エチル-2,2-ジメチルヘキサン、3,3-ジエチルヘキサン、3,4-ジエチルヘキサン、2,2,3,3,4-ペンタメチルペンタン、2,2,3,4,4-ペンタメチルペンタン、2,2,3-トリメチル-3-エチルペンタン、2,2,4-トリメチル-3-エチルペンタン、2,3,4-トリメチル-3-エチルペンタン、2,4-ジメチル-3-イソプロピルペンタン、2-メチル-3-3-ジエチルペンタン、4-エチル-4-メチルペンタン、シクロデカン、メチルシクロノナン、1,5-ジメチルシクロオクタン、エチルシクロオクタン、シクロヘプタン、1,1,2,3-テトラメチルシクロヘキサン、1,1,3,3-テトラメチルシクロヘキサン、1,1,3,5-テトラメチルシクロヘキサン、1,1,4,4-テトラメチルシクロヘキサン、1,2,2,4-テトラメチルシクロヘキサン、1,2,3,4-テトラメチルシクロヘキサン、1,2,3,5-テトラメチルシクロヘキサン、1,2,4,5-テトラメチルシクロヘキサン、ブチルシクロヘキサン、1,3-ジエチルシクロヘキサン、1,4-ジエチルシクロヘキサン、1-エチル-2-プロピルシクロヘキサン、1,3-ジメチル-5-エチルシクロヘキサン、1-エチル-2,3-ジメチルシクロヘキサン、1-エチル-2,4-ジメチルシクロヘキサン、1-イソプロピル-1-メチルシクロヘキサン、1-イソプロピル-2-メチルシクロヘキサン、1-イソプロピル-3-メチルシクロヘキサン、1-イソプロピル-4-メチルシクロヘキサン、1-メチル-2-プロピルシクロヘキサン、1-メチル-3-プロピルシクロヘキサン、2-エチル-1,3-ジメチルシクロヘキサン、sec-ブチルシクロヘキサン、tert-ブチルシクロヘキサン、イソブチルシクロヘキサン、1,2,3,4,5-ペンタメチルシクロペンタン、1,2,3-トリメチル-4-エチルシクロペンタン、1,2-ジメチル-3-イソプロピルシクロペンタン、1-エチル-3-イソプロピルシクロペンタン、1-メチル-2,4-ジエチルシクロペンタン、1-メチル-2-ブチルシクロペンタン、1-メチル-3-tert-ブチルシクロペンタン、1-メチル-3-イソブチルシクロペンタン、2-イソプロピル-1,3-ジメチルシクロペンタン、2-シクロペンチルペンタン、2-メチルブチルシクロペンタン、イソペンチルシクロペンタン、ペンチルシクロペンタン、2-エチル-1-メチル-3-プロピルシクロブタン、1,1,2-トリメチル-3-イソブチルシクロプロパン、1,1-ジメチル-2-ペンチルシクロプロパン、1,2-ジメチル-1-ペンチルシクロプロパン、1,2-ジメチル-3-ペンチルシクロプロパン、1-エチル-2-ペンチルシクロプロパン、1-ヘキシル-2-メチルシクロプロパン、1-メチル-2-(1-メチルペンチル)シクロプロパン、1-メチル-2-(3-メチルペンチル)シクロプロパンなどの炭素数10の炭化水素溶媒;
が例示される。
Examples of the hydrocarbon solvent having 4 to 10 carbon atoms that can be used for preparing the catalyst solution include hydrocarbon solvents having 4 carbon atoms such as butane, isobutane, cyclobutane, and methylcyclopropane;
Hydrocarbon solvents having 5 carbon atoms such as pentane, isopentane, neopentane, cyclopentane, methylcyclobutane, 1,1-dimethylcyclopropane, 1,2-dimethylcyclopropane, ethylcyclopropane;
Hexane, 3-methylpentane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, cyclohexane, methylcyclopentane, 1,1-dimethylcyclobutane, 1,2-dimethylcyclobutane, 1,3- C6 hydrocarbon solvents such as dimethylcyclobutane, ethylcyclobutane, 1,1,2-trimethylcyclopropane, 1-ethyl-1-methylcyclopropane, propylcyclopropane, isopropylcyclopropane;
Heptane, 2-methylhexane, 3-methylhexane, 3-ethylpentane, 2,2-dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, 2,2,3 -Trimethylbutane, methylcyclohexane, 1,2-dimethylpentane, 1,3-dimethylpentane, 1,2,3-trimethylbutane, cycloheptane, methylcyclohexane, 1,1-dimethylcyclopentane, 1,2-dimethylcyclo Pentane, 1,3-dimethylcyclopentane, ethylcyclopentane, propylcyclobutane, 1,1,2,2-tetramethylcyclopropane, 1,1,2,3-tetramethylcyclopropane, 1,1-diethylcyclopropane 1-isopropyl-1-methylcyclopropane, 1-isopropyl 2-methyl-cyclopropane, 1-propyl-2-methyl cyclopropane, hydrocarbon solvents having a carbon number of 7 or butyl cyclopropane;
Octane, 2-methylheptane, 3-methylheptane, 4-methylheptane, 2,2-dimethylhexane, 2,3-dimethylhexane, 2,4-dimethylhexane, 2,5-dimethylhexane, 3,3-dimethyl Hexane, 3,4-dimethylhexane, 3-ethylhexane, 2,2,3-trimethylpentane, 2,2,4-trimethylpentane, 2,3,3-trimethylpentane, 2,3,4-trimethylpentane, 2-methyl-3-ethylpentane, cyclooctane, methylcycloheptane, 1,1-dimethylcyclohexane, 1,2-dimethylcyclohexane, 1,3-dimethylcyclohexane, 1,4-dimethylcyclohexane, ethylcyclohexane, 1,1 , 2-Trimethylcyclopentane, 1,1,3-trimethylcyclopenta 1,2,3-trimethylcyclopentane, 1,2,4-trimethylcyclopentane, 1-ethyl-1-methylcyclopentane, 1-ethyl-2-methylcyclopentane, 1-ethyl-3-methylcyclopentane , Propylcyclopentane, isopropylcyclopentane, 1,2,3,4-tetramethylcyclobutane, 1,1,3,3-tetramethylcyclobutane, 2,2,3,3-tetramethylcyclobutane, 1,2-diethyl Hydrocarbon solvents having 8 carbon atoms such as cyclobutane, 1-butyl-2-methylcyclopropane, pentylcyclopropane, isopentylcyclopropane;
Nonane, 2-methyloctane, 3-methyloctane, 4-methyloctane, 2,2-dimethylheptane, 2,3-dimethylheptane, 2,4-dimethylheptane, 2,5-dimethylheptane, 2,6-dimethyl Heptane, 4,4-dimethylheptane, 2-ethylheptane, 3-ethylheptane, 4-ethylheptane, 2,2,3-trimethylhexane, 2,2,4-trimethylhexane, 2,2,5-trimethylhexane 2,3,3-trimethylhexane, 2,3,4-trimethylhexane, 2,3,5-trimethylhexane, 2,4,4-trimethylhexane, 3,3,4-trimethylhexane, 3-ethyl- 2-methylhexane, 3-ethyl-3-methylhexane, 4-ethyl-2-methylhexane, 4-ethyl-3-methylhexane 2,2,3,3-tetramethylpentane, 2,2,3,4-tetramethylpentane, 2,2,4,4-tetramethylpentane, 2,3,3,4-tetramethylpentane, 2, 2-dimethyl-3-ethylpentane, 2,2-diethylpentane, 2,3-diethylpentane, cyclononane, methylcyclooctane, ethylcycloheptane, 1,1-dimethylcycloheptane, 1,2-dimethylcycloheptane, 1 , 3-dimethylcycloheptane, 1,4-dimethylcycloheptane, propylcyclohexane, isopropylcyclohexane, 1-ethyl-2-methylcyclohexane, 1-ethyl-3-methylcyclohexane, 1-ethyl-4-methylcyclohexane, 1, 1,2-trimethylcyclohexane, 1,1,3-trimethylcyclohex 1,1,4-trimethylcyclohexane, 1,2,3-trimethylcyclohexane, 1,2,4-trimethylcyclohexane, butylcyclopentane, isobutylcyclopentane, 2-cyclopentylbutane, 1,2-diethylcyclopentane, 1-isopropyl-3-methylcyclopentane, 1-methyl-2-propylcyclopentane, 2-ethyl-1,1-dimethylcyclopentane, 1,1,3,3-tetramethylcyclopentane, 1,1,3 , 4-tetramethylcyclopentane, 1,2,3,4-tetramethylcyclopentane, 1,1,2,3,3-pentamethylcyclobutane, 1,2-dipropylcyclopropane, 1-hexylcyclopropane, 1-pentyl-1-methylcyclopropane, 1-pentyl-2-methylcyclopro C9 hydrocarbon solvent such as bread;
Decane, 2-methylnonane, 3-methylnonane, 4-methylnonane, 5-methylnonane, 2,2-dimethyloctane, 2,3-dimethyloctane, 2,4-dimethyloctane, 2,5-dimethyloctane, 2,6- Dimethyloctane, 2,7-dimethyloctane, 3,3-dimethyloctane, 3,4-dimethyloctane, 3,5-dimethyloctane, 3,6-dimethyloctane, 4,4-dimethyloctane, 4,5-dimethyl Octane, 3-ethyloctane, 4-ethyloctane, 2,2,3-trimethylheptane, 2,2,4-trimethylheptane, 2,2,5-trimethylheptane, 2,2,5-trimethylheptane, 2, 2,6-trimethylheptane, 2,3,3-trimethylheptane, 2,3,4-trimethylheptane, 2,3,5 Trimethylheptane, 2,3,6-trimethylheptane, 2,4,4-trimethylheptane, 2,4,5-trimethylheptane, 2,4,6-trimethylheptane, 2,5,5-trimethylheptane, 2- Methyl-3-ethylheptane, 2-methyl-4-ethylheptane, 3-ethyl-3-methylheptane, 3-ethyl-4-methylheptane, 3-ethyl-5-methylheptane, 3-methyl-4-ethyl Heptane, 5-ethyl-2-methylheptane, 3,3,4-trimethylheptane, 3,3,5-trimethylheptane, 3,4,4-trimethylheptane, 3,4,5-trimethylheptane, 4-propyl Heptane, 4-isopropylheptane, 2,2,3,3-tetramethylhexane, 2,2,3,4-tetramethylhexane, 2,2,3,5 Tetramethylhexane, 2,2,4,4-tetramethylhexane, 2,2,4,5-tetramethylhexane, 2,2,5,5-tetramethylhexane, 2,3,3,4-tetramethyl Hexane, 2,3,3,5-tetramethylhexane, 2,3,4,4-tetramethylhexane, 2,3,4,5-tetramethylhexane, 3,3,4,4-tetramethylhexane, 2,2-dimethyl-3-ethylhexane, 2,3-dimethyl-3-ethylhexane, 2,3-dimethyl-4-ethylhexane, 2,4-dimethyl-4-ethylhexane, 2,5-dimethyl- 3-ethylhexane, 3,3-dimethyl-4-ethylhexane, 3,4-dimethyl-3-ethylhexane, 3-ethyl-2,4-dimethylhexane, 4-ethyl-2,2-dimethylhexa 3,3-diethylhexane, 3,4-diethylhexane, 2,2,3,4,4-pentamethylpentane, 2,2,3,4,4-pentamethylpentane, 2,2,3-trimethyl -3-Ethylpentane, 2,2,4-trimethyl-3-ethylpentane, 2,3,4-trimethyl-3-ethylpentane, 2,4-dimethyl-3-isopropylpentane, 2-methyl-3-3 -Diethylpentane, 4-ethyl-4-methylpentane, cyclodecane, methylcyclononane, 1,5-dimethylcyclooctane, ethylcyclooctane, cycloheptane, 1,1,2,3-tetramethylcyclohexane, 1,1, 3,3-tetramethylcyclohexane, 1,1,3,5-tetramethylcyclohexane, 1,1,4,4-tetramethylcyclohexane, , 2,2,4-tetramethylcyclohexane, 1,2,3,4-tetramethylcyclohexane, 1,2,3,5-tetramethylcyclohexane, 1,2,4,5-tetramethylcyclohexane, butylcyclohexane, 1,3-diethylcyclohexane, 1,4-diethylcyclohexane, 1-ethyl-2-propylcyclohexane, 1,3-dimethyl-5-ethylcyclohexane, 1-ethyl-2,3-dimethylcyclohexane, 1-ethyl-2 , 4-Dimethylcyclohexane, 1-isopropyl-1-methylcyclohexane, 1-isopropyl-2-methylcyclohexane, 1-isopropyl-3-methylcyclohexane, 1-isopropyl-4-methylcyclohexane, 1-methyl-2-propylcyclohexane , 1-methyl-3-propyl Pyrcyclohexane, 2-ethyl-1,3-dimethylcyclohexane, sec-butylcyclohexane, tert-butylcyclohexane, isobutylcyclohexane, 1,2,3,4,5-pentamethylcyclopentane, 1,2,3-trimethyl- 4-ethylcyclopentane, 1,2-dimethyl-3-isopropylcyclopentane, 1-ethyl-3-isopropylcyclopentane, 1-methyl-2,4-diethylcyclopentane, 1-methyl-2-butylcyclopentane, 1-methyl-3-tert-butylcyclopentane, 1-methyl-3-isobutylcyclopentane, 2-isopropyl-1,3-dimethylcyclopentane, 2-cyclopentylpentane, 2-methylbutylcyclopentane, isopentylcyclopentane , Pencil Lopentane, 2-ethyl-1-methyl-3-propylcyclobutane, 1,1,2-trimethyl-3-isobutylcyclopropane, 1,1-dimethyl-2-pentylcyclopropane, 1,2-dimethyl-1-pentyl Cyclopropane, 1,2-dimethyl-3-pentylcyclopropane, 1-ethyl-2-pentylcyclopropane, 1-hexyl-2-methylcyclopropane, 1-methyl-2- (1-methylpentyl) cyclopropane, A hydrocarbon solvent having 10 carbon atoms such as 1-methyl-2- (3-methylpentyl) cyclopropane;
Is exemplified.
 炭素数4~10の炭化水素溶媒の中でも、炭素数5~8の炭化水素溶媒が工業的に好ましい。加えて、触媒溶液の調製には、工業的に使用しやすいように、これらの混合物を使用することも好ましい。 Among hydrocarbon solvents having 4 to 10 carbon atoms, hydrocarbon solvents having 5 to 8 carbon atoms are industrially preferable. In addition, it is also preferable to use a mixture of these for the preparation of the catalyst solution so as to facilitate industrial use.
 〔オレフィン〕
 本発明に係るオレフィン重合体の製造方法において、該オレフィン重合体の原料として、炭素数2以上のオレフィンが用いられる。前記オレフィンは、1種単独で用いてもよく2種以上を併用してもよい。
[Olefin]
In the method for producing an olefin polymer according to the present invention, an olefin having 2 or more carbon atoms is used as a raw material for the olefin polymer. The said olefin may be used individually by 1 type, and may use 2 or more types together.
 上記オレフィンは、炭素数が2以上のオレフィン、好ましくは3~20、より好ましくは3~10のオレフィンである。また、オレフィンは、α-オレフィンであることが好ましく、直鎖状または分岐状のα-オレフィンであることがより好ましい。 The olefin is an olefin having 2 or more carbon atoms, preferably 3 to 20, more preferably 3 to 10. Further, the olefin is preferably an α-olefin, more preferably a linear or branched α-olefin.
 上記オレフィンとしては、エチレン、プロピレン、1-ブテン、2-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンが例示される。これらの中では、プロピレンが特に好ましい。 Examples of the olefin include ethylene, propylene, 1-butene, 2-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, -Octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene. Of these, propylene is particularly preferred.
 また、本発明では、上記オレフィン重合体の原料として、上記オレフィンとともに、
 炭素数3~30、好ましくは3~20の環状オレフィン、例えば、シクロペンテン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、2-メチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン;
 極性モノマー、例えば、アクリル酸、メタクリル酸、フマル酸、無水マレイン酸、イタコン酸、無水イタコン酸、ビシクロ(2,2,1)-5-ヘプテン-2,3-ジカルボン酸無水物などのα,β-不飽和カルボン酸;該α,β-不飽和カルボン酸のナトリウム塩、カリウム塩、リチウム塩、亜鉛塩、マグネシウム塩、カルシウム塩などの金属塩;アクリル酸メチル、アクリル酸n-ブチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸tert-ブチル、アクリル酸2-n-ブチルヘキシル、メタクリル酸メチル、メタクリル酸n-ブチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチルなどのα,β-不飽和カルボン酸エステル;酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、トリフルオロ酢酸ビニルなどのビニルエステル類;アクリル酸グリシジル、メタクリル酸グリシジル、イタコン酸モノグリシジルエステルなどの不飽和グリシジル
などを用いてもよい。
In the present invention, as a raw material for the olefin polymer, together with the olefin,
Cyclic olefins having 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms, such as cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, 2-methyl-1,4,5,8-dimethano- 1,2,3,4,4a, 5,8,8a-octahydronaphthalene;
Polar monomers, for example, α, such as acrylic acid, methacrylic acid, fumaric acid, maleic anhydride, itaconic acid, itaconic anhydride, bicyclo (2,2,1) -5-heptene-2,3-dicarboxylic acid anhydride β-unsaturated carboxylic acid; metal salt such as sodium salt, potassium salt, lithium salt, zinc salt, magnesium salt, calcium salt of α, β-unsaturated carboxylic acid; methyl acrylate, n-butyl acrylate, acrylic N-propyl acid, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, 2-n-butylhexyl acrylate, methyl methacrylate, n-butyl methacrylate, n-propyl methacrylate, Α, β-unsaturation such as isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate Vinyl esters such as rubonic acid ester; vinyl acetate, vinyl propionate, vinyl caproate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl trifluoroacetate; glycidyl acrylate, glycidyl methacrylate, monoglycidyl itaconate Unsaturated glycidyl etc. may be used.
 また、ビニルシクロヘキサン、ジエン、ポリエン;芳香族ビニル化合物、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-n-ブチルスチレン、m-n-ブチルスチレン、p-n-ブチルスチレンなどのモノまたはポリアルキルスチレン;メトキシスチレン、エトキシスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、o-クロロスチレン、p-クロロスチレン、ジビニルベンゼンなどの官能基含有スチレン誘導体;3-フェニルプロピレン、4-フェニルプロピレン、α-メチルスチレンなどを反応系に共存させて重合を進めることもできる。 Vinylcyclohexane, diene, polyene; aromatic vinyl compounds such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p-dimethylstyrene, on-butylstyrene, mn Mono- or polyalkyl styrene such as butyl styrene, pn-butyl styrene; methoxy styrene, ethoxy styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl benzyl acetate, hydroxy styrene, o-chlorostyrene, p-chlorostyrene, Polymerization can also proceed by coexisting a functional group-containing styrene derivative such as divinylbenzene; 3-phenylpropylene, 4-phenylpropylene, α-methylstyrene and the like in the reaction system.
 本発明の好ましい実施態様では、上記オレフィンの少なくとも一部にプロピレンを用いる。例えば、上記オレフィン100モル%に対して、プロピレンの使用割合は60~100モル%であることが好ましく、70~100モル%であることがより好ましい。また、得られた重合体においては、13C-NMRを用いて測定したプロピレン由来の構成単位の含有割合が60~100モル%であることが好ましく、70~100モル%であることがより好ましい。 In a preferred embodiment of the present invention, propylene is used for at least a part of the olefin. For example, the proportion of propylene used is preferably 60 to 100 mol% and more preferably 70 to 100 mol% with respect to 100 mol% of the olefin. Further, in the obtained polymer, the content ratio of the structural unit derived from propylene measured by 13 C-NMR is preferably 60 to 100 mol%, and more preferably 70 to 100 mol%. .
 〔オレフィン重合体の製造条件〕
 本発明に係るオレフィン重合体の製造方法において、重合温度は、特に限定されるものではなく、通常-100~250℃、好ましくは40~200℃、より好ましくは45~150℃、特に好ましくは50~150℃(換言すれば、特に好ましくは工業化可能な温度である。)である。また、重合圧力は、通常は常圧~10MPa-G(ゲージ圧)、好ましくは常圧~5MPa-Gの範囲にある。上記オレフィンの少なくとも一部がプロピレンである場合、生産性の観点から、重合温度は、50℃以上であることが好ましく、60~150℃であることが特に好ましい。
[Olefin polymer production conditions]
In the method for producing an olefin polymer according to the present invention, the polymerization temperature is not particularly limited, and is usually −100 to 250 ° C., preferably 40 to 200 ° C., more preferably 45 to 150 ° C., and particularly preferably 50. It is ˜150 ° C. (in other words, it is particularly preferably a temperature that can be industrialized). The polymerization pressure is usually in the range of normal pressure to 10 MPa-G (gauge pressure), preferably normal pressure to 5 MPa-G. When at least a part of the olefin is propylene, the polymerization temperature is preferably 50 ° C. or more, and particularly preferably 60 to 150 ° C. from the viewpoint of productivity.
 また、重合反応は、回分式、半連続式および連続式の何れの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。 Further, the polymerization reaction can be carried out in any of batch, semi-continuous and continuous methods. Furthermore, the polymerization can be performed in two or more stages having different reaction conditions.
 オレフィン重合体の融点は、重合温度を変化させることによって調節することができる。また、オレフィン重合体の分子量は、重合反応系に水素を存在させるか、または重合温度を変化させることによって調節することができる。さらに、オレフィン重合体の分子量は、オレフィン重合用触媒の成分として用いられる化合物(B)の量により調節することもできる。水素を添加する場合、その量はオレフィン1kgあたり0.001~100NL程度が適当である。 The melting point of the olefin polymer can be adjusted by changing the polymerization temperature. The molecular weight of the olefin polymer can be adjusted by allowing hydrogen to exist in the polymerization reaction system or changing the polymerization temperature. Furthermore, the molecular weight of the olefin polymer can be adjusted by the amount of the compound (B) used as a component of the olefin polymerization catalyst. When hydrogen is added, the amount is suitably about 0.001 to 100 NL per kg of olefin.
 本発明に係るオレフィン重合体の製造方法において、重合の際には、架橋メタロセン化合物(A)および化合物(B)などのオレフィン重合用触媒の各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。 In the method for producing an olefin polymer according to the present invention, at the time of polymerization, the usage and order of addition of each component of the olefin polymerization catalyst such as the crosslinked metallocene compound (A) and the compound (B) are arbitrarily selected. The following method is exemplified.
 (1)架橋メタロセン化合物(A)および化合物(B)を任意の順序で重合器に添加する方法;(2)架橋メタロセン化合物(A)を担体(C)に担持させた触媒成分、および化合物(B)を任意の順序で重合器に添加する方法;(3)化合物(B)を担体(C)に担持させた触媒成分、および架橋メタロセン化合物(A)を任意の順序で重合器に添加する方法;(4)架橋メタロセン化合物(A)と化合物(B)とを担体(C)に担持させた触媒成分を重合器に添加する方法。 (1) A method in which the bridged metallocene compound (A) and the compound (B) are added to the polymerization vessel in an arbitrary order; (2) a catalyst component in which the bridged metallocene compound (A) is supported on the carrier (C), and a compound ( A method of adding B) to the polymerization vessel in an arbitrary order; (3) a catalyst component in which the compound (B) is supported on the carrier (C), and the bridged metallocene compound (A) are added to the polymerization vessel in an arbitrary order. Method; (4) A method in which a catalyst component in which a bridged metallocene compound (A) and a compound (B) are supported on a carrier (C) is added to a polymerization vessel.
 上記(1)~(4)の各方法において、触媒成分は溶媒に溶解させて用いることができる。溶媒としては、一般的には、上述したように炭素数4~10の炭化水素溶媒を用いることができる。本発明では、上述したように架橋メタロセン化合物(A)の高濃度触媒溶液(溶媒:炭化水素溶媒)を調製することができる。重合活性の観点から、架橋メタロセン化合物(A)の濃度が0.03mmol/L~2.0mol/Lの触媒溶液を重合系に供給することが好ましく、より好ましくは0.04mmol/L~1.5mol/L、さらに好ましくは0.05mmol/L~1.0mol/Lである。 In each of the above methods (1) to (4), the catalyst component can be used after being dissolved in a solvent. As the solvent, generally, a hydrocarbon solvent having 4 to 10 carbon atoms can be used as described above. In the present invention, as described above, a high concentration catalyst solution (solvent: hydrocarbon solvent) of the bridged metallocene compound (A) can be prepared. From the viewpoint of polymerization activity, it is preferable to supply a catalyst solution having a bridged metallocene compound (A) concentration of 0.03 mmol / L to 2.0 mol / L to the polymerization system, more preferably 0.04 mmol / L to 1.. 5 mol / L, more preferably 0.05 mmol / L to 1.0 mol / L.
 また、架橋メタロセン化合物(A)の高濃度触媒溶液を用いる場合、触媒溶液を調製した後、この触媒溶液を重合系に供給するまでの時間(以下「保持時間」ともいう。)を長く設定しても、高い重合活性が発現する。これは、触媒溶液の濃度が高い場合、溶媒からの被毒や失活の影響が小さいためである。例えば、保持時間を通常120時間以下、好ましくは36時間以下に設定することができる。 When a high concentration catalyst solution of the bridged metallocene compound (A) is used, the time until the catalyst solution is supplied to the polymerization system after preparation of the catalyst solution (hereinafter also referred to as “holding time”) is set long. Even so, high polymerization activity is exhibited. This is because when the concentration of the catalyst solution is high, the influence of poisoning and deactivation from the solvent is small. For example, the holding time can be normally set to 120 hours or shorter, preferably 36 hours or shorter.
 一方、架橋メタロセン化合物(A)の濃度が0.03mmol/L未満の触媒溶液を重合系に供給する場合、溶媒からの被毒や失活を抑制するために、保持時間を24時間以下に設定することが好ましく、12時間以下に設定することがより好ましい。 On the other hand, when supplying a catalyst solution having a concentration of the bridged metallocene compound (A) of less than 0.03 mmol / L to the polymerization system, the retention time is set to 24 hours or less in order to suppress poisoning and deactivation from the solvent. It is preferable to set it to 12 hours or less.
 さらに、上記(1)~(3)の各方法において、架橋メタロセン化合物(A)を溶媒に溶解させるとき、あるいは架橋メタロセン化合物(A)を担体(C)に担持させた触媒成分を溶媒に溶解させるとき、化合物(B)は、同時に溶解させないことがより好ましい。 Further, in each of the above methods (1) to (3), when the bridged metallocene compound (A) is dissolved in the solvent, or the catalyst component in which the bridged metallocene compound (A) is supported on the carrier (C) is dissolved in the solvent. More preferably, the compound (B) is not dissolved simultaneously.
 上記(1)~(4)の各方法においては、各触媒成分の少なくとも2つは予め接触されていてもよい。化合物(B)が担体(C)に担持されている上記(3)、(4)の各方法においては、必要に応じて担持されていない化合物(B)を、任意の順序で重合器に添加してもよい。この場合、担体(C)に担持されている化合物(B)と担持されていない化合物(B)とは、同一でも異なっていてもよい。 In each of the above methods (1) to (4), at least two of the catalyst components may be contacted in advance. In each of the above methods (3) and (4) in which the compound (B) is supported on the carrier (C), the unsupported compound (B) is added to the polymerization vessel in any order as necessary. May be. In this case, the compound (B) supported on the carrier (C) and the compound (B) not supported may be the same or different.
 また、担体(C)に架橋メタロセン化合物(A)が担持された固体触媒成分、担体(C)に架橋メタロセン化合物(A)および化合物(B)が担持された固体触媒成分には、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに触媒成分が担持されていてもよい。 The solid catalyst component in which the crosslinked metallocene compound (A) is supported on the support (C) and the solid catalyst component in which the crosslinked metallocene compound (A) and the compound (B) are supported on the support (C) It may be polymerized, and a catalyst component may be further supported on the prepolymerized solid catalyst component.
 本発明に係るオレフィン重合体の製造方法では、上記オレフィン重合用触媒の存在下に、1種または2種以上の上記オレフィンを単独重合または共重合することによりオレフィン重合体を得る。本発明では、重合は、溶液重合、懸濁重合などの液相重合法;気相重合法の何れにおいても実施できる。 In the method for producing an olefin polymer according to the present invention, an olefin polymer is obtained by homopolymerizing or copolymerizing one or more of the olefins in the presence of the olefin polymerization catalyst. In the present invention, the polymerization can be carried out by any of liquid phase polymerization methods such as solution polymerization and suspension polymerization; and gas phase polymerization methods.
 液相重合法で用いられる不活性炭化水素溶媒、すなわち重合溶媒としては、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素が例示される。また、これらの不活性炭化水素溶媒は、1種単独で用いてもよく2種以上を併用してもよい。また、オレフィン重合体の原料として用いられるオレフィン自身を溶媒として用いることもできる。 Inert hydrocarbon solvents used in the liquid phase polymerization method, that is, polymerization solvents include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, cyclohexane, methylcyclo Examples include alicyclic hydrocarbons such as pentane; aromatic hydrocarbons such as benzene, toluene and xylene; and halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane. Moreover, these inert hydrocarbon solvents may be used individually by 1 type, and may use 2 or more types together. Moreover, the olefin itself used as a raw material of an olefin polymer can also be used as a solvent.
 〔オレフィン重合体〕
 以上記載の本発明によれば、プロピレンなどのオレフィンを重合する場合に、低い重合温度条件においてのみならず高い重合温度条件においても、高い重合活性で効率良く、高い融点と高い分子量とを有するオレフィン重合体を製造することができる。
[Olefin polymer]
According to the present invention described above, when an olefin such as propylene is polymerized, the olefin having a high melting point and a high molecular weight is efficiently produced with a high polymerization activity not only at a low polymerization temperature but also at a high polymerization temperature. A polymer can be produced.
 上記オレフィン重合体のゲルパーミエーションクロマトグラフィー(GPC)により求められる重量平均分子量(Mw)は、通常は90,000以上、好ましくは97,000~1,000,000、より好ましくは110,000~1,000,000である。上記プロピレン重合体のMWD(重量平均分子量(Mw)/数平均分子量(Mn))は、通常は1~3、好ましくは1~2.9、より好ましくは1~2.8である。 The weight average molecular weight (Mw) determined by gel permeation chromatography (GPC) of the olefin polymer is usually 90,000 or more, preferably 97,000 to 1,000,000, more preferably 110,000 to 1,000,000. The propylene polymer has an MWD (weight average molecular weight (Mw) / number average molecular weight (Mn)) of usually 1 to 3, preferably 1 to 2.9, more preferably 1 to 2.8.
 本発明で使用される架橋メタロセン化合物(A)は、いわゆるシングルサイト触媒としての性質を示し、上記の様な分子量分布の狭い重合体を得るのに有利である。もちろん、異なる条件での重合反応を逐次的に行う、いわゆる多段重合法を採用することによって、広い分子量分布の重合体を得ることも出来る。 The bridged metallocene compound (A) used in the present invention exhibits properties as a so-called single site catalyst and is advantageous for obtaining a polymer having a narrow molecular weight distribution as described above. Of course, a polymer having a wide molecular weight distribution can be obtained by adopting a so-called multistage polymerization method in which polymerization reactions under different conditions are sequentially performed.
 上記オレフィン重合体の極限粘度[η]は、好ましくは1.20dl/g以上、より好ましくは1.25dl/g以上、さらに好ましくは1.35dl/g以上である。極限粘度[η]の上限は、通常は10dl/g程度である。 The intrinsic viscosity [η] of the olefin polymer is preferably 1.20 dl / g or more, more preferably 1.25 dl / g or more, and further preferably 1.35 dl / g or more. The upper limit of the intrinsic viscosity [η] is usually about 10 dl / g.
 重量平均分子量(Mw)や分子量の指標である極限粘度[η]が上記範囲にあるプロピレン重合体は、溶融押出時の安定性に優れる。 A propylene polymer having an intrinsic viscosity [η] that is an index of weight average molecular weight (Mw) and molecular weight is in the above range is excellent in stability during melt extrusion.
 以下では、プロピレン単独重合体またはプロピレンとプロピレン以外のオレフィンとの共重合体の場合(上記オレフィンの少なくとも一部がプロピレンである場合)におけるプロピレン重合体の物性を説明する。 Hereinafter, physical properties of the propylene polymer in the case of a propylene homopolymer or a copolymer of propylene and an olefin other than propylene (when at least a part of the olefin is propylene) will be described.
 上記プロピレン重合体の示差走査熱量計(DSC)により求められる融点(Tm)は、通常は135℃以上、好ましくは140~170℃、より好ましくは145~170℃である。融点(Tm)が前記範囲にあるプロピレン重合体は、成型加工性に優れる。 The melting point (Tm) determined by a differential scanning calorimeter (DSC) of the propylene polymer is usually 135 ° C. or higher, preferably 140 to 170 ° C., more preferably 145 to 170 ° C. A propylene polymer having a melting point (Tm) in the above range is excellent in moldability.
 上記プロピレン重合体のDSCにより求められる結晶化温度(Tc)は、通常は70℃以上、より好ましくは80~150℃、より好ましくは85~130℃である。結晶化温度(Tc)が前記範囲にあるプロピレン重合体は、成型加工性に優れる。 The crystallization temperature (Tc) determined by DSC of the propylene polymer is usually 70 ° C. or higher, more preferably 80 to 150 ° C., and more preferably 85 to 130 ° C. A propylene polymer having a crystallization temperature (Tc) in the above range is excellent in moldability.
 なお、上記プロピレン重合体において、複数の結晶溶融ピークが観測された場合(例えば、低温側ピークTm1、高温側ピークTm2)には、高温側ピークをプロピレン重合体の融点(Tm)と定義する。 When a plurality of crystal melting peaks are observed in the propylene polymer (for example, the low temperature side peak Tm1 and the high temperature side peak Tm2), the high temperature side peak is defined as the melting point (Tm) of the propylene polymer.
 なお、本発明において、オレフィン重合体の重量平均分子量(Mw)、数平均分子量(Mn)、極限粘度[η]、融点(Tm)および結晶化温度(Tc)は、実施例に記載の条件において測定される値である。 In the present invention, the weight average molecular weight (Mw), number average molecular weight (Mn), intrinsic viscosity [η], melting point (Tm) and crystallization temperature (Tc) of the olefin polymer are as described in the examples. The value to be measured.
 一般的にオレフィン重合時の重合温度を上げると、オレフィン重合体の融点および分子量は低下する。上記オレフィン重合用触媒によれば、工業化可能な温度においても、融点(Tm)が145℃以上であり、かつ重量平均分子量(Mw)が97,000以上であるオレフィン重合体を、高い重合活性で効率良く製造することができる。 Generally, when the polymerization temperature during olefin polymerization is increased, the melting point and molecular weight of the olefin polymer are decreased. According to the olefin polymerization catalyst, an olefin polymer having a melting point (Tm) of 145 ° C. or higher and a weight average molecular weight (Mw) of 97,000 or higher can be obtained with high polymerization activity even at an industrializable temperature. It can be manufactured efficiently.
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。最初に、オレフィン重合体の物性・性状を測定する方法について述べる。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. First, a method for measuring physical properties and properties of an olefin polymer will be described.
 〔融点(Tm)、結晶化温度(Tc)〕
 オレフィン重合体の融点(Tm)または結晶化温度(Tc)は、パーキンエルマー社製DSC Pyris1またはDSC7を用い、以下のようにして測定した。
[Melting point (Tm), crystallization temperature (Tc)]
The melting point (Tm) or crystallization temperature (Tc) of the olefin polymer was measured as follows using DSC Pyris 1 or DSC 7 manufactured by PerkinElmer.
 窒素雰囲気下(20mL/min)、試料(約5mg)を(1)230℃まで昇温して230℃で10分間保持し、(2)10℃/分で30℃まで冷却して30℃で1分間保持した後、(3)10℃/分で230℃まで昇温させた。前記(3)の昇温過程における結晶溶融ピークのピーク頂点から融点(Tm)を、前記(2)の降温過程における結晶化ピークのピーク頂点から結晶化温度(Tc)を算出した。 Under a nitrogen atmosphere (20 mL / min), the sample (about 5 mg) was (1) heated to 230 ° C. and held at 230 ° C. for 10 minutes, and (2) cooled to 30 ° C. at 10 ° C./min. After holding for 1 minute, (3) the temperature was raised to 230 ° C. at 10 ° C./min. The melting point (Tm) was calculated from the peak vertex of the crystal melting peak in the temperature raising process (3), and the crystallization temperature (Tc) was calculated from the peak vertex of the crystallization peak in the temperature lowering process (2).
 なお、実施例および比較例に記載したオレフィン重合体において、複数の結晶溶融ピークが観測された場合(例えば、低温側ピークTm1、高温側ピークTm2)には、高温側ピークをオレフィン重合体の融点(Tm)と定義した。 In the olefin polymers described in Examples and Comparative Examples, when a plurality of crystal melting peaks are observed (for example, the low temperature side peak Tm1 and the high temperature side peak Tm2), the high temperature side peak is regarded as the melting point of the olefin polymer. (Tm).
 〔極限粘度[η]〕
 オレフィン重合体の極限粘度[η]は、デカリン溶媒を用いて、135℃で測定した値である。すなわち、オレフィン重合体の造粒ペレット(約20mg)をデカリン溶媒(15mL)に溶解し、135℃のオイルバス中で比粘度ηspを測定する。このデカリン溶液にデカリン溶媒(5mL)を追加して希釈した後、前記と同様に比粘度ηspを測定する。この、デカリン溶媒(5ml)を追加する希釈操作をさらに2回繰り返し、オレフィン重合体の濃度(C)を0に外挿したときのηsp/Cの値をオレフィン重合体の極限粘度[η]とした。
[Intrinsic viscosity [η]]
The intrinsic viscosity [η] of the olefin polymer is a value measured at 135 ° C. using a decalin solvent. That is, granulated pellets of olefin polymer (about 20 mg) are dissolved in decalin solvent (15 mL), and the specific viscosity ηsp is measured in an oil bath at 135 ° C. After decalin solvent (5 mL) is added to the decalin solution for dilution, the specific viscosity ηsp is measured in the same manner as described above. This dilution operation of adding a decalin solvent (5 ml) was repeated twice more, and the value of ηsp / C when the concentration (C) of the olefin polymer was extrapolated to 0 was defined as the intrinsic viscosity [η] of the olefin polymer. did.
 極限粘度[η]=lim(ηsp/C) (C→0)
 〔重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)〕
 重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn;MWD)は、Waters社製ゲル浸透クロマトグラフAlliance GPC-2000型を用い、以下のようにして測定した。分離カラムはTSKgel GNH6-HT:2本およびTSKgel GNH6-HTL:2本であり、カラムサイズはいずれも直径7.5mm、長さ300mmであり、カラム温度は140℃とし、移動相にはo-ジクロロベンゼン(和光純薬工業)と酸化防止剤としてBHT(武田薬品)0.025重量%とを用い、前記移動相は1.0mL/分で移動させ、試料濃度は15mg/10mLとし、試料注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw<1000およびMw>4×106については東ソー社製を用い、1000≦Mw≦4×106についてはプレッシャーケミカル社製を用いた。分子量分布および各種平均分子量は、汎用校正の手順に従い、ポリプロピレン分子量換算として計算された。
Intrinsic viscosity [η] = lim (ηsp / C) (C → 0)
[Weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution (Mw / Mn)]
The weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn; MWD) were measured using a gel permeation chromatograph Alliance GPC-2000 manufactured by Waters as follows. The separation columns are two TSKgel GNH6-HT and two TSKgel GNH6-HTL, the column size is 7.5 mm in diameter and 300 mm in length, the column temperature is 140 ° C., and the mobile phase is oji Chlorobenzene (Wako Pure Chemical Industries) and 0.025 wt% BHT (Takeda Pharmaceutical) as the antioxidant were used, the mobile phase was moved at 1.0 mL / min, the sample concentration was 15 mg / 10 mL, and the sample injection volume was 500 micron. A differential refractometer was used as a detector. The standard polystyrene used was manufactured by Tosoh Corporation for molecular weights of Mw <1000 and Mw> 4 × 10 6 , and used by Pressure Chemical Co. for 1000 ≦ Mw ≦ 4 × 10 6 . The molecular weight distribution and various average molecular weights were calculated as polypropylene molecular weights according to the general calibration procedure.
 〔目的物の同定〕
 合成例で得られた化合物の構造は、270MHz 1H-NMR(日本電子GSH-270)およびFD-MS(日本電子SX-102A)を用いて決定した。
(Identification of target)
The structure of the compound obtained in the synthesis example was determined using 270 MHz 1 H-NMR (JEOL GSH-270) and FD-MS (JEOL SX-102A).
 〔比較例で用いた架橋メタロセン化合物〕
 比較例で用いた架橋メタロセン化合物は、以下の特許公報に記載された方法で合成した。特開2000-212194号公報、特開2004-168744号公報、特開2004-189666号公報、特開2004-161957号公報、特開2007-302854号公報、特開2007-302853号公報、WO01/027124号パンフレット。
[Bridged metallocene compound used in Comparative Example]
The bridged metallocene compound used in the comparative example was synthesized by the method described in the following patent publication. JP2000-212194, JP2004-168744, JP2004-189666, JP2004-161957, JP2007-302854, JP2007-302853, WO01 / 027124 pamphlet.
 [合成例1]触媒(a):ベンジル(フェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリドの合成 Synthesis Example 1 Catalyst (a): Synthesis of benzyl (phenyl) methylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorenyl) zirconium dichloride
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 (i)2,7-ジブロモ-3,6-ジtert-ブチルフルオレンの合成
 窒素気流下、3,6-ジtert-ブチルフルオレン15.22g(54.7mmol)に炭酸プロピレン170mLを加え、攪拌を行った。この溶液にN-ブロモスクシンイミド20.52g(115mmol)を添加した。80℃で5時間加熱攪拌を行った。自然放冷した後、反応溶液を水800mLに加えた。室温で15分間攪拌を行い、桐山ロートを用いてろ過を行った。得られた白黄色粉末をエタノール10mLで5回洗浄した。前記粉末にヘキサンと少量のジクロロメタンとの混合溶液を加え、60℃に加熱して、前記粉末を全て溶解させた。この溶液を-20℃で一晩静置させた。析出した結晶をヘキサン5mLで3回洗浄し、白黄色粉末の目的物を得た(収量21.16g、収率76%)。
1H-NMR(270MHz,CDCl3,TMS):δ(ppm) 1.60(18H),3.75(2H),7.73(2H),7.81(2H).
MS(FD):M/z 436(M+).
 (ii)2,7-ジフェニル-3,6-ジtert-ブチルフルオレンの合成
 窒素雰囲気下、300mLの3口フラスコに、2,7-ジブロモ-3,6-ジtert-ブチルフルオレン8.15g(18.7mmol)、Pd(PPh3)1.08g(0.93mmol)、および脱水1,2-ジメトキシエタン120mLを加え、室温で20分間攪拌を行った。この溶液にフェニルほう酸5.01g(41.1mmol)のエタノール溶液20mLを添加し、室温で20分間攪拌を行った後、2.0Mの炭酸ナトリウム水溶液37.4mL(74.8mmol)を添加した。その後18時間加熱還流し、自然放冷した後、氷浴下、希塩酸でクエンチした。エーテルを添加して可溶部を抽出し、有機層を飽和炭酸水素ナトリウム水溶液で2回、水で2回、飽和食塩水で2回洗浄した後、硫酸マグネシウムで乾燥した。溶媒を留去した後、得られた固体をカラムクロマトで分離して目的物を得た(収量4.36g、収率54%)。
1H-NMR(270 MHz,CDCl3,TMS):δ(ppm) 1.29(18H),3.78(2H),7.16(2H),7.34(10H),7.97(2H).
MS(FD):M/z 430(M+).
 (iii)6-ベンジル-6-フェニルフルベンの合成
 窒素雰囲気下、100mLのシュレンクフラスコに、無水塩化マグネシウム2.45g(25.7mmol)、および脱水THF20mLを加えて撹拌を行った。この混合溶液に、2.0MのナトリウムシクロペンタジエニドTHF溶液10.6mL(21.2mmol)を加えた。その後1時間加熱還流し、得られた桃色スラリーを氷浴で冷却した後、ベンジルフェニルケトン3.5g(17.8mmol)を脱水THF15mLに溶かした溶液を加えた。その後室温で18時間攪拌を行い、得られた橙色溶液を希塩酸水溶液でクエンチした。ジエチルエーテル30mLを加えて可溶分を抽出し、有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で中和・洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を留去した後、残留物をシリカゲルカラムクロマトグラフィーで精製することにより赤橙色固体の目的物を得た(収量2.7g、収率62%)。
1H-NMR(270MHz,CDCl3,TMS):δ(ppm) 4.2(2H),6.15-6.75(4H),7.08-7.30(10H).
MS(GC):M/z 244(M+).
 (iv)ベンジル(フェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレン)の合成
 窒素気流下、2,7-ジフェニル-3,6-ジtert-ブチルフルオレン4.02g(9.3mmol)に無水THF40mLを加えて攪拌/溶解し、氷浴で冷却した後に、1.63Mのn-ブチルリチウムヘキサン溶液6.2mL(10.1mmol)を添加した。室温で2.5時間攪拌を行った後、得られた濃赤色溶液をドライアイス/メタノール浴で冷却し、6-ベンジル-6-フェニルフルベン2.7g(11.1mmol)のTHF溶液(15mL)を添加した。徐々に室温まで昇温しながら16時間攪拌を行った後、得られた濃赤色溶液を氷浴下で希塩酸を加えて反応を終了させた。ジエチルエーテルを添加して水層と有機層とに分液した上で、水層をジエチルエーテルで2回抽出して先の有機層とあわせた。飽和炭酸水素ナトリウム水溶液で2回、水で2回、飽和食塩水で1回洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を留去した後、残留物をシリカゲルカラムクロマトグラフィーで精製することにより淡黄色粉末の目的物を得た(収量2.3g、収率36.9%)。
1H-NMR(270MHz,CDCl3):δ(ppm) 1.21-1.31(18H),2.53-2.82(2H),3.42-3.78(2H),4.83(1H),5.84-6.10(3H),6.75-7.31(22H),7.63-7.70(2H).
 (v)ベンジル(フェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリドの合成
 窒素雰囲気下、100mLのシュレンク管に、ベンジル(フェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレン)0.81g(1.20mmol)、および無水ジエチルエーテル40mLを加えて撹拌/溶解した。 この溶液を氷浴で冷却し、1.63Mのn-ブチルリチウムヘキサン溶液1.60mL(2.61mmol)を加え、氷温のまま4時間攪拌を行った。得られた橙色スラリーをドライアイス/メタノール浴で冷却した後、無水四塩化ジルコニウム0.30g(1.29mmol)を加えた。その後徐々に室温まで昇温しながら17時間攪拌を行い、赤褐色懸濁液を得た。
(I) Synthesis of 2,7-dibromo- 3,6-ditert-butylfluorene In a nitrogen stream, 170 mL of propylene carbonate was added to 15.22 g (54.7 mmol) of 3,6-ditert-butylfluorene and stirred. went. To this solution, 20.52 g (115 mmol) of N-bromosuccinimide was added. Stirring was performed at 80 ° C. for 5 hours. After natural cooling, the reaction solution was added to 800 mL of water. The mixture was stirred at room temperature for 15 minutes and filtered using a Kiriyama funnel. The obtained white yellow powder was washed 5 times with 10 mL of ethanol. A mixed solution of hexane and a small amount of dichloromethane was added to the powder and heated to 60 ° C. to dissolve all the powder. This solution was allowed to stand at −20 ° C. overnight. The precipitated crystals were washed 3 times with 5 mL of hexane to obtain the desired product as a white yellow powder (yield 21.16 g, yield 76%).
1 H-NMR (270 MHz, CDCl 3 , TMS): δ (ppm) 1.60 (18H), 3.75 (2H), 7.73 (2H), 7.81 (2H).
MS (FD): M / z 436 (M <+> ).
(Ii) Synthesis of 2,7-diphenyl-3,6 -ditert-butylfluorene In a 300 mL three-necked flask under a nitrogen atmosphere, 8.15 g of 2,7-dibromo-3,6-ditert-butylfluorene ( 18.7 mmol), 1.08 g (0.93 mmol) of Pd (PPh 3 ), and 120 mL of dehydrated 1,2-dimethoxyethane were added, and the mixture was stirred at room temperature for 20 minutes. To this solution, 20 mL of an ethanol solution of 5.01 g (41.1 mmol) of phenylboric acid was added and stirred at room temperature for 20 minutes, and then 37.4 mL (74.8 mmol) of a 2.0 M aqueous sodium carbonate solution was added. Thereafter, the mixture was heated to reflux for 18 hours, allowed to cool naturally, and then quenched with dilute hydrochloric acid in an ice bath. Ether was added to extract the soluble part, and the organic layer was washed twice with a saturated aqueous sodium hydrogen carbonate solution, twice with water and twice with a saturated saline solution, and then dried over magnesium sulfate. After the solvent was distilled off, the obtained solid was separated by column chromatography to obtain the desired product (yield 4.36 g, yield 54%).
1 H-NMR (270 MHz, CDCl 3 , TMS): δ (ppm) 1.29 (18H), 3.78 (2H), 7.16 (2H), 7.34 (10H), 7.97 ( 2H).
MS (FD): M / z 430 (M <+> ).
(Iii) Synthesis of 6-benzyl-6- phenylfulvene Under a nitrogen atmosphere, 2.45 g (25.7 mmol) of anhydrous magnesium chloride and 20 mL of dehydrated THF were added to a 100 mL Schlenk flask and stirred. To this mixed solution, 10.6 mL (21.2 mmol) of a 2.0 M sodium cyclopentadienide THF solution was added. Thereafter, the mixture was heated to reflux for 1 hour, and the resulting pink slurry was cooled in an ice bath. Then, a solution of 3.5 g (17.8 mmol) of benzyl phenyl ketone in 15 mL of dehydrated THF was added. The mixture was then stirred at room temperature for 18 hours, and the resulting orange solution was quenched with dilute hydrochloric acid aqueous solution. 30 mL of diethyl ether was added to extract soluble components, and the organic layer was neutralized and washed with a saturated aqueous sodium hydrogen carbonate solution, water and saturated brine, and then dried over anhydrous magnesium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography to obtain the desired product as a reddish orange solid (yield 2.7 g, yield 62%).
1 H-NMR (270 MHz, CDCl 3 , TMS): δ (ppm) 4.2 (2H), 6.15-6.75 (4H), 7.08-7.30 (10H).
MS (GC): M / z 244 (M <+> ).
(Iv) Synthesis of benzyl (phenyl) methylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorene) Under a nitrogen stream, 2,7-diphenyl-3,6-ditert- To 4.02 g (9.3 mmol) of butylfluorene, 40 mL of anhydrous THF was added and stirred / dissolved. After cooling in an ice bath, 6.2 mL (10.1 mmol) of 1.63 M n-butyllithium hexane solution was added. After stirring at room temperature for 2.5 hours, the resulting deep red solution was cooled in a dry ice / methanol bath, and 2.7 g (11.1 mmol) of 6-benzyl-6-phenylfulvene in THF (15 mL) Was added. The mixture was stirred for 16 hours while gradually warming to room temperature, and then the resulting deep red solution was added with dilute hydrochloric acid in an ice bath to terminate the reaction. Diethyl ether was added to separate the aqueous layer and the organic layer, and the aqueous layer was extracted twice with diethyl ether and combined with the previous organic layer. The extract was washed twice with a saturated aqueous sodium hydrogen carbonate solution, twice with water, and once with saturated brine, and then dried over anhydrous magnesium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography to obtain the desired product as a pale yellow powder (yield 2.3 g, yield 36.9%).
1 H-NMR (270 MHz, CDCl 3 ): δ (ppm) 1.21-1.31 (18H), 2.53-2.82 (2H), 3.42-3.78 (2H), 4. 83 (1H), 5.84-6.10 (3H), 6.75-7.31 (22H), 7.63-7.70 (2H).
(V) Synthesis of benzyl (phenyl) methylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorenyl) zirconium dichloride Into a 100 mL Schlenk tube under a nitrogen atmosphere, benzyl (phenyl ) 0.81 g (1.20 mmol) of methylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorene) and 40 mL of anhydrous diethyl ether were added and stirred / dissolved. The solution was cooled in an ice bath, 1.60 mL (2.61 mmol) of a 1.63 M n-butyllithium hexane solution was added, and the mixture was stirred for 4 hours while maintaining the ice temperature. The obtained orange slurry was cooled in a dry ice / methanol bath, and 0.30 g (1.29 mmol) of anhydrous zirconium tetrachloride was added. Thereafter, the mixture was stirred for 17 hours while gradually warming to room temperature to obtain a reddish brown suspension.
 溶媒を減圧乾燥した後、グローブボックス内でジクロロメタン抽出を行い、ジクロロメタンを留去したものから更にペンタン抽出を行った。ペンタンを減圧留去した後、更に減圧乾燥を行い、橙色粉末の目的物を得た(収量0.49g、収率48.9%)。
1H-NMR(270MHz,CDCl3):δ(ppm) 1.19-1.25(18H),3.74-4.39(2H),5.37-6.45(4H),6.65-7.53(22H),8.22-8.29(2H).
MS(FD):M/Z 834(M+
 窒素雰囲気下、この触媒(a)10mgをサンプル瓶に取り、25℃で攪拌しながらn-ヘキサンを加えて溶解させたとき、要したn-ヘキサン量から求めた溶解度は1.005mmol/Lであった。
After the solvent was dried under reduced pressure, dichloromethane extraction was performed in a glove box, and further pentane extraction was performed from the dichloromethane distilled off. After pentane was distilled off under reduced pressure, the residue was further dried under reduced pressure to obtain the desired product as an orange powder (yield 0.49 g, yield 48.9%).
1 H-NMR (270 MHz, CDCl 3 ): δ (ppm) 1.19-1.25 (18H), 3.74-4.49 (2H), 5.37-6.45 (4H), 6. 65-7.53 (22H), 8.22-8.29 (2H).
MS (FD): M / Z 834 (M + )
In a nitrogen atmosphere, 10 mg of this catalyst (a) was placed in a sample bottle and dissolved by adding n-hexane while stirring at 25 ° C., and the solubility determined from the amount of n-hexane required was 1.005 mmol / L. there were.
 [合成例2]触媒(b):ベンジル(フェニル)メチレン(シクロペンタジエニル)(2,7-ジ-p-クロロフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリド Synthesis Example 2 Catalyst (b): benzyl (phenyl) methylene (cyclopentadienyl) (2,7-di-p-chlorophenyl-3,6-ditert-butylfluorenyl) zirconium dichloride
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 (i)ベンジル(フェニル)メチレン(シクロペンタジエニル)(2,7-ジ-p-クロロフェニル-3,6-ジtert-ブチルフルオレン)の合成
 窒素気流下、3,6-ジtert-ブチル-2,7-ジ-p-クロロフェニルフルオレン2.15g(4.3mmol)に無水THF200mLを加えて攪拌/溶解し、氷浴で冷却した後に1.63Mのn-ブチルリチウムのヘキサン溶液2.96mL(4.7mmol)を添加した。室温で1.5時間攪拌した後、得られた濃赤色溶液をドライアイス/メタノール浴で冷却し、6-ベンジル-6-フェニルフルベン1.26g(5.2mmol)のTHF(50mL)溶液を添加した。徐々に室温まで昇温しながら4時間攪拌した後、得られた溶液を氷浴下で希塩酸を加えて反応を終了させた。ジエチルエーテルを添加して分液した上で、水層をジエチルエーテルで2回抽出して先の有機層とあわせた。飽和炭酸水素ナトリウム水溶液で2回、水で2回、飽和食塩水で1回洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムクロマトグラフィーで精製することにより目的物を得た(収量1.8g、収率56%)。
1H-NMR(270MHz,CDCl3):δ(ppm) 1.21-1.31(18H),2.53-2.82(2H),3.42-3.78(2H),4.83(1H),5.84-6.10(3H),6.75-7.31(20H),7.63-7.70(2H).
 (ii)ベンジル(フェニル)メチレン(シクロペンタジエニル)(2,7-ジ-p-クロロフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリドの合成
 窒素雰囲気下、100mLのシュレンク管にベンジル(フェニル)メチレン(シクロペンタジエニル)(2,7-ジ-p-クロロフェニル-3,6-ジtert-ブチルフルオレン)0.99g(1.33mmol)、無水ジエチルエーテル50mLを加えて撹拌/溶解した。 この溶液を氷浴で冷却し、濃度1.63Mのn-ブチルリチウムヘキサン溶液1.71mL(2.79mmol)を加え、氷温のまま4時間攪拌した。得られた橙色スラリーをドライアイス/メタノール浴で冷却した後、無水四塩化ジルコニウム0.31g(1.33mmol)を加えた。その後徐々に室温まで昇温しながら17時間攪拌し赤褐色懸濁液を得た。
(I) Synthesis of benzyl (phenyl) methylene (cyclopentadienyl) (2,7-di-p-chlorophenyl-3,6-ditert-butylfluorene) 3,6-ditert-butyl- under a nitrogen stream 200 mL of anhydrous THF was added to 2.15 g (4.3 mmol) of 2,7-di-p-chlorophenylfluorene and stirred / dissolved. After cooling in an ice bath, 2.96 mL of a 1.63 M n-butyllithium hexane solution ( 4.7 mmol) was added. After stirring at room temperature for 1.5 hours, the resulting deep red solution was cooled in a dry ice / methanol bath and a solution of 1.26 g (5.2 mmol) of 6-benzyl-6-phenylfulvene in THF (50 mL) was added. did. After stirring for 4 hours while gradually warming to room temperature, the obtained solution was diluted with dilute hydrochloric acid in an ice bath to terminate the reaction. After diethyl ether was added for liquid separation, the aqueous layer was extracted twice with diethyl ether and combined with the previous organic layer. The extract was washed twice with a saturated aqueous sodium hydrogen carbonate solution, twice with water and once with a saturated saline solution, and dried over anhydrous magnesium sulfate. The solvent was distilled off, and the residue was purified by silica gel column chromatography to obtain the desired product (yield 1.8 g, yield 56%).
1 H-NMR (270 MHz, CDCl 3 ): δ (ppm) 1.21-1.31 (18H), 2.53-2.82 (2H), 3.42-3.78 (2H), 4. 83 (1H), 5.84-6.10 (3H), 6.75-7.31 (20H), 7.63-7.70 (2H).
(Ii) Synthesis of benzyl (phenyl) methylene (cyclopentadienyl) (2,7-di-p-chlorophenyl-3,6-ditert-butylfluorenyl) zirconium dichloride Into a 100 mL Schlenk tube under a nitrogen atmosphere Add 0.99 g (1.33 mmol) of benzyl (phenyl) methylene (cyclopentadienyl) (2,7-di-p-chlorophenyl-3,6-ditert-butylfluorene) and 50 mL of anhydrous diethyl ether and stir / Dissolved. This solution was cooled in an ice bath, 1.71 mL (2.79 mmol) of a 1.63-M n-butyllithium hexane solution was added, and the mixture was stirred at ice temperature for 4 hours. The obtained orange slurry was cooled in a dry ice / methanol bath, and 0.31 g (1.33 mmol) of anhydrous zirconium tetrachloride was added. Thereafter, the mixture was stirred for 17 hours while gradually warming to room temperature to obtain a reddish brown suspension.
 溶媒を減圧乾燥した後グローブボックス内でジクロロメタン抽出を行い、ジクロロメタンを留去したものを、ペンタン洗浄を行い、減圧乾燥を行い、目的物を得た(収量0.90g、収率69.3%)。
1H-NMR(270MHz,CDCl3):δ(ppm) 1.19-1.25(18H),3.74-4.39(2H),5.37-6.45(4H),6.65-7.53(20H),8.22-8.29(2H).
MS(FD):M/Z 834(M+
 窒素雰囲気下、この触媒(b)10mgをサンプル瓶に取り、25℃で攪拌しながらn-ヘキサンを加えて溶解させたとき、要したn-ヘキサン量から求めた溶解度は4.098mmol/Lであった。
After the solvent was dried under reduced pressure, dichloromethane extraction was performed in the glove box, and dichloromethane was distilled away, washed with pentane, and dried under reduced pressure to obtain the desired product (yield 0.90 g, yield 69.3%). ).
1 H-NMR (270 MHz, CDCl 3 ): δ (ppm) 1.19-1.25 (18H), 3.74-4.49 (2H), 5.37-6.45 (4H), 6. 65-7.53 (20H), 8.22-8.29 (2H).
MS (FD): M / Z 834 (M + )
Under a nitrogen atmosphere, 10 mg of this catalyst (b) was placed in a sample bottle and dissolved by adding n-hexane while stirring at 25 ° C., and the solubility determined from the amount of n-hexane required was 4.098 mmol / L. there were.
 [合成例3]触媒(c):ベンジル(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリド Synthesis Example 3 Catalyst (c): benzyl (p-chlorophenyl) methylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorenyl) zirconium dichloride
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 (i)6-ベンジル-6-(p-クロロフェニル)フルベンの合成
 窒素雰囲気下、100mLのシュレンクフラスコに無水塩化マグネシウム2.45g(25.7mmol)、脱水THF20mLを加えて撹拌した。この混合溶液に、濃度2.0mol/LのナトリウムシクロペンタジエニドTHF溶液10.6mL(21.2mmol)を加えた。その後加熱して1時間還流させ、得られた桃色スラリーを氷浴で冷却した後、ベンジル(p-クロロフェニル)ケトン3.5g(17.8mmol)を脱水THF15mLに溶かした溶液を加えた。その後室温で18時間攪拌し、得られた橙色溶液を希塩酸水溶液でクエンチした。ジエチルエーテル30mLを加えて可溶分を抽出し、この有機相を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で中和洗浄後に無水硫酸マグネシウムで乾燥した。溶媒を留去した後、残留物をシリカゲルカラムクロマトグラフィーで精製することにより赤橙色固体として目的物を得てそのまま次工程に使用した(収量2.7g)。
(I) Synthesis of 6-benzyl-6- (p-chlorophenyl) fulvene Under a nitrogen atmosphere, 2.45 g (25.7 mmol) of anhydrous magnesium chloride and 20 mL of dehydrated THF were added to a 100 mL Schlenk flask and stirred. To this mixed solution, 10.6 mL (21.2 mmol) of a 2.0 mol / L sodium cyclopentadienide THF solution was added. The mixture was then heated to reflux for 1 hour. The resulting pink slurry was cooled in an ice bath, and a solution of 3.5 g (17.8 mmol) of benzyl (p-chlorophenyl) ketone in 15 mL of dehydrated THF was added. The mixture was then stirred at room temperature for 18 hours, and the resulting orange solution was quenched with dilute aqueous hydrochloric acid. 30 mL of diethyl ether was added to extract soluble components, and the organic phase was neutralized and washed with a saturated aqueous sodium hydrogen carbonate solution, water and saturated brine, and then dried over anhydrous magnesium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography to obtain the desired product as a red-orange solid, which was directly used in the next step (yield 2.7 g).
 (ii)ベンジル(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレン)の合成
 窒素気流下、3,6-ジtert-ブチル-2,7-ジフェニルフルオレン4.3g(10mmol)に無水THF200mLを加えて攪拌/溶解し、氷浴で冷却した後に1.63Mのn-ブチルリチウムのヘキサン溶液11mL(6.74mmol)を添加した。室温で1.5時間攪拌した後、得られた濃赤色溶液をドライアイス/メタノール浴で冷却し、6-ベンジル-6-(p-クロロフェニル)フルベン3.34g(12mmol)のTHF(50mL)溶液を添加した。徐々に室温まで昇温しながら4時間攪拌した後、得られた溶液を氷浴下で希塩酸を加えて反応を終了させた。ジエチルエーテルを添加して分液した上で、水層をジエチルエーテルで2回抽出して先の有機層とあわせた。飽和炭酸水素ナトリウム水溶液で2回、水で2回、飽和食塩水で1回洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムクロマトグラフィーで精製することにより目的物を得た(収量5.2g、収率73%)。
1H-NMR(270MHz,CDCl3):δ(ppm) 1.21-1.31(18H),2.53-2.82(2H),3.42-3.78(2H),4.83(1H),5.84-6.10(3H),6.75-7.31(19H),7.63-7.70(2H).
 (iii)ベンジル(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリドの合成
 窒素雰囲気下、100mLのシュレンク管にベンジル(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレン)2.7g(3.81mmol)、無水ジエチルエーテル50mLを加えて撹拌/溶解した。 この溶液を氷浴で冷却し、濃度1.63Mのn-ブチルリチウムヘキサン溶液5.12mL(7.99mmol)を加え、氷温のまま4時間攪拌した。得られた橙色スラリーをドライアイス/メタノール浴で冷却した後、無水四塩化ジルコニウム0.85g(3.64mmol)を加えた。その後徐々に室温まで昇温しながら17時間攪拌し赤褐色懸濁液を得た。
(Ii) Synthesis of benzyl (p-chlorophenyl) methylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorene) Under a nitrogen stream, 3,6-ditert-butyl-2, To 4.3 g (10 mmol) of 7-diphenylfluorene, 200 mL of anhydrous THF was added and stirred / dissolved. After cooling in an ice bath, 11 mL (6.74 mmol) of a hexane solution of 1.63 M n-butyllithium was added. After stirring at room temperature for 1.5 hours, the resulting deep red solution was cooled in a dry ice / methanol bath and a solution of 6.34 g (12 mmol) of 6-benzyl-6- (p-chlorophenyl) fulvene in THF (50 mL). Was added. After stirring for 4 hours while gradually warming to room temperature, the obtained solution was diluted with dilute hydrochloric acid in an ice bath to terminate the reaction. After diethyl ether was added for liquid separation, the aqueous layer was extracted twice with diethyl ether and combined with the previous organic layer. The extract was washed twice with a saturated aqueous sodium hydrogen carbonate solution, twice with water and once with a saturated saline solution, and dried over anhydrous magnesium sulfate. The solvent was distilled off, and the residue was purified by silica gel column chromatography to obtain the desired product (yield 5.2 g, yield 73%).
1 H-NMR (270 MHz, CDCl 3 ): δ (ppm) 1.21-1.31 (18H), 2.53-2.82 (2H), 3.42-3.78 (2H), 4. 83 (1H), 5.84-6.10 (3H), 6.75-7.31 (19H), 7.63-7.70 (2H).
(Iii) Synthesis of benzyl (p-chlorophenyl) methylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorenyl) zirconium dichloride In a nitrogen atmosphere, add benzyl ( 2.7 g (3.81 mmol) of p-chlorophenyl) methylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorene) and 50 mL of anhydrous diethyl ether were added and stirred / dissolved. The solution was cooled in an ice bath, 5.12 mL (7.99 mmol) of a 1.63-M n-butyllithium hexane solution was added, and the mixture was stirred for 4 hours while maintaining the ice temperature. The resulting orange slurry was cooled in a dry ice / methanol bath, and 0.85 g (3.64 mmol) of anhydrous zirconium tetrachloride was added. Thereafter, the mixture was stirred for 17 hours while gradually warming to room temperature to obtain a reddish brown suspension.
 溶媒を減圧乾燥した後グローブボックス内でジクロロメタン抽出を行い、ジクロロメタンを留去したものを、ペンタン洗浄を行い、減圧乾燥を行い、目的物を得た(収量1.2g、収率36%)。
1H-NMR(270MHz,CDCl3):δ(ppm) 1.19-1.25(18H),3.74-4.39(2H),5.37-6.45(4H),6.65-7.53(20H),8.22-8.29(2H).
MS(FD):M/Z 834(M+
 窒素雰囲気下、この触媒(c)10mgをサンプル瓶に取り、25℃で攪拌しながらn-ヘキサンを加えて溶解させたとき、要したn-ヘキサン量から求めた溶解度は1.585mmol/Lであった。
After the solvent was dried under reduced pressure, dichloromethane extraction was performed in the glove box, and dichloromethane was distilled away, washed with pentane, and dried under reduced pressure to obtain the desired product (yield 1.2 g, yield 36%).
1 H-NMR (270 MHz, CDCl 3 ): δ (ppm) 1.19-1.25 (18H), 3.74-4.49 (2H), 5.37-6.45 (4H), 6. 65-7.53 (20H), 8.22-8.29 (2H).
MS (FD): M / Z 834 (M + )
Under a nitrogen atmosphere, 10 mg of this catalyst (c) was placed in a sample bottle and dissolved by adding n-hexane while stirring at 25 ° C., and the solubility determined from the amount of n-hexane required was 1.585 mmol / L. there were.
 [合成例4]触媒(d):ベンジル(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジ-p-クロロフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリド Synthesis Example 4 Catalyst (d): benzyl (p-chlorophenyl) methylene (cyclopentadienyl) (2,7-di-p-chlorophenyl-3,6-ditert-butylfluorenyl) zirconium dichloride
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 (i)ベンジル(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジ-p-クロロフェニル-3,6-ジtert-ブチルフルオレン)の合成
 窒素気流下、3,6-ジtert-ブチル-2,7-ジ-p-クロロフェニルフルオレン1.53g(3.06mmol)にトルエン40mL、THF3.5gを加えて攪拌/溶解し、氷浴で冷却した後に1.67Mのn-ブチルリチウムのヘキサン溶液2mL(3.3mmol)を添加した。室温で1.5時間攪拌した後、得られた濃赤色溶液をドライアイス/メタノール浴で冷却し、6-ベンジル-6-(p-クロロフェニル)フルベン1.1g(3.95mmol)を添加した。徐々に室温まで昇温しながら19時間攪拌した後、得られた溶液を氷浴下で希塩酸を加えて反応を終了させた。ジエチルエーテルを添加して分液した上で、水層をジエチルエーテルで2回抽出して先の有機層とあわせた。飽和炭酸水素ナトリウム水溶液で2回、水で2回、飽和食塩水で1回洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムクロマトグラフィーで精製することにより目的物を得た(収量1.0g)。
(I) Synthesis of benzyl (p-chlorophenyl) methylene (cyclopentadienyl) (2,7-di-p-chlorophenyl-3,6-ditert-butylfluorene) 3,6-ditert- To 1.53 g (3.06 mmol) of butyl-2,7-di-p-chlorophenylfluorene, 40 mL of toluene and 3.5 g of THF were added and stirred / dissolved. After cooling in an ice bath, 1.67 M of n-butyllithium was added. 2 mL (3.3 mmol) of hexane solution was added. After stirring at room temperature for 1.5 hours, the resulting deep red solution was cooled in a dry ice / methanol bath and 1.1 g (3.95 mmol) of 6-benzyl-6- (p-chlorophenyl) fulvene was added. The mixture was stirred for 19 hours while gradually warming to room temperature, and the resulting solution was added with dilute hydrochloric acid in an ice bath to terminate the reaction. After diethyl ether was added for liquid separation, the aqueous layer was extracted twice with diethyl ether and combined with the previous organic layer. The extract was washed twice with a saturated aqueous sodium hydrogen carbonate solution, twice with water and once with a saturated saline solution, and dried over anhydrous magnesium sulfate. The solvent was distilled off, and the residue was purified by silica gel column chromatography to obtain the desired product (yield 1.0 g).
 (ii)ベンジル(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジ-p-クロロフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリドの合成
 窒素雰囲気下、ベンジル(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジ-p-クロロフェニル-3,6-ジtert-ブチルフルオレン)600mg(0.77mmol)、無水ジエチルエーテル40mLを加えて撹拌/溶解した。この溶液を氷浴で冷却し、濃度1.67Mのn-ブチルリチウムヘキサン溶液0.96mL(1.62mmol)を加え、氷温のまま4時間攪拌した。得られた橙色スラリーをドライアイス/メタノール浴で冷却した後、無水四塩化ジルコニウム170mg(0.73mmol)を加えた。その後徐々に室温まで昇温しながら17時間攪拌し赤褐色懸濁液を得た。
(Ii) Synthesis of benzyl (p-chlorophenyl) methylene (cyclopentadienyl) (2,7-di-p-chlorophenyl-3,6-ditert-butylfluorenyl) zirconium dichloride Under nitrogen atmosphere, benzyl (p -Chlorophenyl) methylene (cyclopentadienyl) (2,7-di-p-chlorophenyl-3,6-ditert-butylfluorene) 600 mg (0.77 mmol) and anhydrous diethyl ether 40 mL were added and stirred / dissolved. This solution was cooled in an ice bath, 0.96 mL (1.62 mmol) of a 1.67M n-butyllithium hexane solution was added, and the mixture was stirred for 4 hours while maintaining the ice temperature. The resulting orange slurry was cooled in a dry ice / methanol bath, and 170 mg (0.73 mmol) of anhydrous zirconium tetrachloride was added. Thereafter, the mixture was stirred for 17 hours while gradually warming to room temperature to obtain a reddish brown suspension.
 溶媒を減圧乾燥した後グローブボックス内でヘキサン抽出を行い、留去したものを、ペンタン洗浄を行い、減圧乾燥を行い、目的物を得た(収量350mg)。
1H-NMR(270MHz,CDCl3):δ(ppm) 1.19-1.25(18H),3.74-4.39(2H),5.37-6.45(4H),6.65-7.53(19H),8.22-8.29(2H).
 窒素雰囲気下、この触媒(d)10mgをサンプル瓶に取り、25℃で攪拌しながらn-ヘキサンを加えて溶解させたとき、要したn-ヘキサン量から求めた溶解度は0.901mmol/Lであった。
After the solvent was dried under reduced pressure, hexane extraction was carried out in the glove box, and the evaporated product was washed with pentane and dried under reduced pressure to obtain the desired product (yield 350 mg).
1 H-NMR (270 MHz, CDCl 3 ): δ (ppm) 1.19-1.25 (18H), 3.74-4.49 (2H), 5.37-6.45 (4H), 6. 65-7.53 (19H), 8.22-8.29 (2H).
Under a nitrogen atmosphere, 10 mg of this catalyst (d) was placed in a sample bottle, and when n-hexane was added and dissolved while stirring at 25 ° C., the solubility determined from the amount of n-hexane required was 0.901 mmol / L. there were.
 [合成例5]触媒(e):メチル(p-トリル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリド Synthesis Example 5 Catalyst (e): Methyl (p-tolyl) methylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorenyl) zirconium dichloride
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 (i)6-メチル-6-(p-トリル)フルベン
 窒素雰囲気下、シクロペンタジエニルリチウム塩(5.9g、81.9mmol)の脱水ジエチルエーテル(100mL)溶液をアイスバスで冷却し、4’-メチルアセトフェノン(10.0g、74.5mmol)を滴下した。その後室温で20時間攪拌し反応させた。反応終了後、希塩酸水溶液を加え、ヘキサンで抽出した後、有機層を水洗、続いて無水硫酸マグネシウムで乾燥後、溶媒を留去して赤色液体を得た。カラムクロマトグラフィにより(シリカゲル、溶媒:ヘキサン)精製し、6-メチル-6-(p-トリル)フルベン9.8gを得た。分析値を以下に示す。
1H-NMR(270MHz、CDCl3中、TMS基準):δ(ppm) 7.25(2H)、7.12(2H)、6.55(1H)、6.51(1H)、6.40(1H)、6.15(1H)、2.43(3H)、2.30(3H)
 (ii)メチル(p-トリル)シクロペンタジエニル(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)メタン
 窒素雰囲気下、2,7-ジフェニル-3,6-ジtert-ブチルフルオレン(4.0g、9.3mmol)の脱水テトラヒドロフラン(50ml)溶液に、n-ブチルリチウムのヘキサン溶液(6.3ml、10.2mmol)を-10℃で滴下後、室温で20時間攪拌した。その後、この溶液に6-メチル-6-(p-トリル)フルベン(1.9g、10.2mmol)を-10℃で滴下し、その後室温で2時間攪拌し反応させた。反応終了後、希塩酸水溶液を加え、ヘキサンで抽出した後、有機層を水洗、続いて無水硫酸マグネシウムで乾燥後、溶媒を留去して薄茶色固体を得た。得られた固体をメタノールで再結晶し、目的物5.1gを得た。分析値を以下に示す。
1H-NMR(270MHz、CDCl3中、TMS基準):δ(ppm) 7.8(2H)、6.90~7.35(15H)、6.70、6.6、6.5、6.3、6.15(4H)、5.45、5.3、4.7(2H)、2.95~2.7(1H)、2.18(3H)、1.3~1.21(18H)、1.01~1.00(3H)
FD-MS:m/z 612(M+
 (iii)メチル(p-トリル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリド
 窒素雰囲気下、メチル(p-トリル)シクロペンタジエニル(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)メタン(1.0g、1.63mmol)の脱水ジエチルエーテル(40ml)溶液にn-ブチルリチウムのヘキサン溶液(2.1ml、3.3mmol)をゆっくりと滴下し、さらに室温で24時間攪拌した。その後、-60℃に冷却し四塩化ジルコニウム(0.38g、1.63mmol)を添加し徐々に室温に戻しながら24時間攪拌した。得られた赤色懸濁液をセライトでろ過しリチウムクロライドを除去した後、濃縮しジエチルエーテルで洗浄後、ヘキサン溶液で冷却し析出した回収後、メチル(p-トリル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリド150mg(赤色固体)を得た。分析値を以下に示す。
1H-NMR(270MHz、CDCl3中、TMS基準):δ(ppm) 8.2(2H)、6.9~7.5(16H)、6.4(1H)、6.23(1H)、5.68(1H)、5.55(1H)、5.38(1H)、2.25(3H)、1.20、1.25(21H)
FD-MS:m/z 772(M+
 窒素雰囲気下、この触媒(e)10mgをサンプル瓶に取り、25℃で攪拌しながらn-ヘキサンを加えて溶解させたとき、要したn-ヘキサン量から求めた溶解度は6.221mmol/Lであった。
(I) A solution of cyclopentadienyl lithium salt (5.9 g, 81.9 mmol) in dehydrated diethyl ether (100 mL) was cooled in an ice bath under a 6-methyl-6- (p-tolyl) fulvene nitrogen atmosphere. '-Methylacetophenone (10.0 g, 74.5 mmol) was added dropwise. Thereafter, the reaction was stirred for 20 hours at room temperature. After completion of the reaction, a dilute aqueous hydrochloric acid solution was added and the mixture was extracted with hexane. The organic layer was washed with water and then dried over anhydrous magnesium sulfate, and then the solvent was distilled off to obtain a red liquid. Purification by column chromatography (silica gel, solvent: hexane) gave 9.8 g of 6-methyl-6- (p-tolyl) fulvene. Analytical values are shown below.
1 H-NMR (270 MHz, in CDCl 3 , TMS standard): δ (ppm) 7.25 (2H), 7.12 (2H), 6.55 (1H), 6.51 (1H), 6.40 (1H), 6.15 (1H), 2.43 (3H), 2.30 (3H)
(Ii) Methyl (p-tolyl) cyclopentadienyl (2,7-diphenyl-3,6-ditert-butylfluorenyl) methane in a nitrogen atmosphere and 2,7-diphenyl-3,6-ditert- A hexane solution (6.3 ml, 10.2 mmol) of n-butyllithium was added dropwise to a solution of butylfluorene (4.0 g, 9.3 mmol) in dehydrated tetrahydrofuran (50 ml) at −10 ° C., and the mixture was stirred at room temperature for 20 hours. . Thereafter, 6-methyl-6- (p-tolyl) fulvene (1.9 g, 10.2 mmol) was added dropwise to the solution at −10 ° C., and the mixture was stirred at room temperature for 2 hours to be reacted. After completion of the reaction, a dilute aqueous hydrochloric acid solution was added and the mixture was extracted with hexane. The organic layer was washed with water and then dried over anhydrous magnesium sulfate, and then the solvent was distilled off to obtain a light brown solid. The obtained solid was recrystallized from methanol to obtain 5.1 g of the desired product. Analytical values are shown below.
1 H-NMR (270 MHz, in CDCl 3 , TMS standard): δ (ppm) 7.8 (2H), 6.90-7.35 (15H), 6.70, 6.6, 6.5, 6 .3, 6.15 (4H), 5.45, 5.3, 4.7 (2H), 2.95 to 2.7 (1H), 2.18 (3H), 1.3 to 1.21 (18H), 1.01 to 1.00 (3H)
FD-MS: m / z 612 (M + )
(Iii) Methyl (p-tolyl) methylene (cyclopentadienyl) (2,7-diphenyl-3,6- ditert-butylfluorenyl ) zirconium dichloride under nitrogen atmosphere, methyl (p-tolyl) cyclopentadi N-Butyllithium solution in hexane (2.1 ml) to a solution of enyl (2,7-diphenyl-3,6-ditert-butylfluorenyl) methane (1.0 g, 1.63 mmol) in dehydrated diethyl ether (40 ml) 3.3 mmol) was slowly added dropwise, and the mixture was further stirred at room temperature for 24 hours. Thereafter, the mixture was cooled to −60 ° C., zirconium tetrachloride (0.38 g, 1.63 mmol) was added, and the mixture was stirred for 24 hours while gradually returning to room temperature. The resulting red suspension was filtered through celite to remove lithium chloride, concentrated, washed with diethyl ether, cooled with a hexane solution, and recovered. After collection, methyl (p-tolyl) methylene (cyclopentadienyl) 150 mg (red solid) of (2,7-diphenyl-3,6-ditert-butylfluorenyl) zirconium dichloride was obtained. Analytical values are shown below.
1 H-NMR (270 MHz, in CDCl 3 , TMS standard): δ (ppm) 8.2 (2H), 6.9 to 7.5 (16H), 6.4 (1H), 6.23 (1H) 5.68 (1H), 5.55 (1H), 5.38 (1H), 2.25 (3H), 1.20, 1.25 (21H)
FD-MS: m / z 772 (M + )
In a nitrogen atmosphere, 10 mg of this catalyst (e) was placed in a sample bottle and dissolved by adding n-hexane while stirring at 25 ° C., and the solubility determined from the amount of n-hexane required was 6.221 mmol / L. there were.
 [合成例6]触媒(f):n-オクチル(フェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリド Synthesis Example 6 Catalyst (f): n-octyl (phenyl) methylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorenyl) zirconium dichloride
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 (i)6-(n-オクチル)-6-フェニルフルベンの合成
 窒素雰囲気下、100mLのシュレンクフラスコに、n-ノナノフェノン2.0g(9.2mmol)と脱水THF30mLを入れて溶液とした。そこに氷冷下、2.0MのナトリウムシクロペンタジエニドTHF溶液5.6mL(11.2mmol)を加え、室温で19時間攪拌を行い、得られた濃赤色溶液を氷冷下、希塩酸水溶液でクエンチした。ジエチルエーテル30mLを加えて可溶分を抽出し、有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で中和・洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を留去した後、残留物をシリカゲルカラムクロマトグラフィーで精製することにより赤色液体の目的物を得た(収量1.77g、収率72.5%)。
(I) Synthesis of 6- (n-octyl) -6 -phenylfulvene Under a nitrogen atmosphere, a 100 mL Schlenk flask was charged with 2.0 g (9.2 mmol) of n-nonanophenone and 30 mL of dehydrated THF to prepare a solution. Thereto was added 5.6 mL (11.2 mmol) of 2.0 M sodium cyclopentadienide THF solution under ice cooling, and the mixture was stirred at room temperature for 19 hours. The resulting dark red solution was diluted with dilute aqueous hydrochloric acid under ice cooling. Quenched. 30 mL of diethyl ether was added to extract soluble components, and the organic layer was neutralized and washed with a saturated aqueous sodium hydrogen carbonate solution, water and saturated brine, and then dried over anhydrous magnesium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography to obtain the desired product as a red liquid (yield 1.77 g, yield 72.5%).
 (ii)n-オクチル(フェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレン)の合成
 窒素気流下、2,7-ジフェニル-3,6-ジtert-ブチルフルオレン1.71(3.97mmol)に無水THF40mLを加えて攪拌/溶解し、氷浴で冷却した後に、1.67Mのn-ブチルリチウムヘキサン溶液2.8mL(4.68mmol)を添加した。氷冷下で2時間攪拌を行った後、得られた濃赤褐色溶液を氷水で冷却したまま、6-(n-オクチル)-6-フェニルフルベン1.6g(6.0mmol)のTHF溶液(30mL)を添加した。徐々に室温まで昇温しながら16時間攪拌を行った後、得られた茶褐色溶液を氷浴下で希塩酸を加えて反応を終了させた。ジエチルエーテルを添加して水層と有機層とに分液した上で、水層をジエチルエーテルで2回抽出して先の有機層とあわせた。飽和炭酸水素ナトリウム水溶液で2回、水で2回、飽和食塩水で1回洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を留去した後、残留物をシリカゲルカラムクロマトグラフィーで精製することにより黄土色粘調液体として目的物を得た(収量1.49g、収率53.9%)。
(Ii) Synthesis of n-octyl (phenyl) methylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorene) Under a nitrogen stream, 2,7-diphenyl-3,6-di Add 40 mL of anhydrous THF to 1.71 (3.97 mmol) of tert-butylfluorene, stir / dissolve, cool in an ice bath, and then add 2.8 mL (4.68 mmol) of 1.67M n-butyllithium hexane solution. did. After stirring for 2 hours under ice cooling, the resulting deep reddish brown solution was cooled with ice water, and a solution of 1.6 g (6.0 mmol) of 6- (n-octyl) -6-phenylfulvene in THF (30 mL) was obtained. ) Was added. The mixture was stirred for 16 hours while gradually warming to room temperature, and then the resulting brown solution was added with dilute hydrochloric acid in an ice bath to terminate the reaction. Diethyl ether was added to separate the aqueous layer and the organic layer, and the aqueous layer was extracted twice with diethyl ether and combined with the previous organic layer. The extract was washed twice with a saturated aqueous sodium hydrogen carbonate solution, twice with water, and once with saturated brine, and then dried over anhydrous magnesium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography to obtain the desired product as an ocherous viscous liquid (yield 1.49 g, yield 53.9%).
 (iii)n-オクチル(フェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリドの合成
 窒素雰囲気下、100mLのシュレンク管に、n-オクチル(フェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレン)0.70g(1.00mmol)、および無水ジエチルエーテル40mLを加えて撹拌/溶解した。 この溶液を氷浴で冷却し、1.67Mのn-ブチルリチウムヘキサン溶液1.35mL(2.25mmol)を加え、氷温のまま3時間とその後室温で1.5時間攪拌を行った。得られた橙色スラリーをドライアイス/メタノール浴で冷却した後、無水四塩化ジルコニウム0.26g(1.12mmol)を加えた。その後徐々に室温まで昇温しながら3時間攪拌を行い、橙朱色懸濁液を得た。
(Iii) Synthesis of n-octyl (phenyl) methylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorenyl) zirconium dichloride In a nitrogen atmosphere, n -0.70 g (1.00 mmol) of octyl (phenyl) methylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorene) and 40 mL of anhydrous diethyl ether were added and stirred / dissolved . This solution was cooled in an ice bath, 1.35 mL (2.25 mmol) of a 1.67 M n-butyllithium hexane solution was added, and the mixture was stirred at ice temperature for 3 hours and then at room temperature for 1.5 hours. The obtained orange slurry was cooled in a dry ice / methanol bath, and 0.26 g (1.12 mmol) of anhydrous zirconium tetrachloride was added. Thereafter, the mixture was stirred for 3 hours while gradually warming to room temperature to obtain an orange vermilion suspension.
 溶媒を減圧乾燥した後、グローブボックス内でジクロロメタン抽出を行い、ジクロロメタンを留去したものから更にヘキサン抽出を行った。ヘキサンを減圧留去した後、更に減圧乾燥を行い、赤色粉末の目的物を得た(収量0.79g、収率91.6%)。
1H-NMR(270MHz,CDCl3):δ(ppm) 1.19-1.35(33H),2.34-2.78(2H),5.37-6.45(4H),6.84-6.99(5H),7.02-7.47(10H),7.50(2H)、8.22-8.27(2H).
 窒素雰囲気下、この触媒(f)10mgをサンプル瓶に取り、25℃で攪拌しながらn-ヘキサンを加えて溶解させたとき、要したn-ヘキサン量から求めた溶解度は7.683mmol/Lであった。
After the solvent was dried under reduced pressure, dichloromethane extraction was performed in a glove box, and hexane extraction was further performed from the dichloromethane distilled off. After the hexane was distilled off under reduced pressure, the residue was further dried under reduced pressure to obtain the desired product as a red powder (yield 0.79 g, yield 91.6%).
1 H-NMR (270 MHz, CDCl 3 ): δ (ppm) 1.19-1.35 (33H), 2.34-2.78 (2H), 5.37-6.45 (4H), 6. 84-6.99 (5H), 7.02-7.47 (10H), 7.50 (2H), 8.22-8.27 (2H).
Under a nitrogen atmosphere, 10 mg of this catalyst (f) was placed in a sample bottle and dissolved by adding n-hexane while stirring at 25 ° C., and the solubility determined from the amount of n-hexane required was 7.683 mmol / L. there were.
 触媒(g):ジフェニルメチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリド Catalyst (g): Diphenylmethylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorenyl) zirconium dichloride
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 窒素雰囲気下、この触媒(g)10mgをサンプル瓶に取り、25℃で攪拌しながらn-ヘキサンを加えて溶解させたとき、30mLのn-ヘキサンを加えた場合でも触媒の一部はとけ残っていたので、溶解度は0.211mmol/L以下である。 In a nitrogen atmosphere, 10 mg of this catalyst (g) was taken into a sample bottle and dissolved by adding n-hexane while stirring at 25 ° C. Even when 30 mL of n-hexane was added, part of the catalyst remained undissolved. Therefore, the solubility is 0.211 mmol / L or less.
 触媒(h):ジベンジルメチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリド Catalyst (h): Dibenzylmethylene (cyclopentadienyl) (2,7-diphenyl-3,6-ditert-butylfluorenyl) zirconium dichloride
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 窒素雰囲気下、この触媒(h)10mgをサンプル瓶に取り、25℃で攪拌しながらn-ヘキサンを加えて溶解させたとき、30mLのn-ヘキサンを加えた場合でも触媒の一部はとけ残っていたので、溶解度は0.278mmol/L以下である。 In a nitrogen atmosphere, 10 mg of this catalyst (h) is taken into a sample bottle and dissolved by adding n-hexane while stirring at 25 ° C. Even when 30 mL of n-hexane is added, part of the catalyst remains undissolved. Therefore, the solubility is 0.278 mmol / L or less.
 [実施例1]
 充分に窒素置換した内容積15mLのSUS製オートクレーブに、トリイソブチルアルミニウム0.4mL(0.05M、20μmol)、重合溶媒としてシクロヘキサンとヘキサンとをシクロヘキサン:ヘキサン=9:1(体積比)で混合した溶媒2.7mLを入れ、600回転/分にて攪拌を行った。この溶液を50℃に昇温し、次いでプロピレンで全圧が7barになるまで加圧した。
[Example 1]
In a SUS autoclave with an internal volume of 15 mL sufficiently purged with nitrogen, 0.4 mL (0.05 M, 20 μmol) of triisobutylaluminum and cyclohexane and hexane as a polymerization solvent were mixed in cyclohexane: hexane = 9: 1 (volume ratio). 2.7 mL of the solvent was added and stirred at 600 rpm. The solution was heated to 50 ° C. and then pressurized with propylene until the total pressure was 7 bar.
 窒素雰囲気下、シュレンク管に架橋メタロセン化合物として触媒(a)2.5mg(分子量835.07g/mol)を入れ、ヘキサン5.5mLに溶解させた後、修飾メチルアルミノキサンの懸濁液0.36mL(n-ヘキサン溶媒、アルミニウム原子換算で4.15M、1.49mmol)を攪拌しながら室温で加え、触媒(a)濃度が0.00051Mの触媒溶液を調製した。 In a nitrogen atmosphere, 2.5 mg (molecular weight 835.07 g / mol) of the catalyst (a) as a crosslinked metallocene compound was placed in a Schlenk tube, dissolved in 5.5 mL of hexane, and then 0.36 mL of a suspension of modified methylaluminoxane ( n-Hexane solvent, 4.15M in terms of aluminum atom, 1.49mmol) was added at room temperature while stirring to prepare a catalyst solution having a catalyst (a) concentration of 0.00051M.
 上記触媒溶液を室温下かつ窒素雰囲気下で30分間保持した後、上記オートクレーブに上記触媒溶液0.2mL(0.00051M、0.10μmol)、および重合溶媒としてシクロヘキサンとヘキサンとをシクロヘキサン:ヘキサン=9:1(体積比)で混合した溶媒0.7mLを加え、温度を65℃に昇温し、重合を開始した。65℃で9分間重合した後、少量のイソブチルアルコールを加えて重合を停止した。得られたポリマーにメタノール50mL、少量の塩酸水溶液を加え、室温にて1時間攪拌を行った。その後、ポリマーをろ過して減圧乾燥し、シンジオタクチックポリプロピレン0.60gを得た。 After maintaining the catalyst solution at room temperature and under a nitrogen atmosphere for 30 minutes, 0.2 mL (0.00051 M, 0.10 μmol) of the catalyst solution and cyclohexane and hexane as polymerization solvents in the autoclave were added to cyclohexane: hexane = 9. 1 (volume ratio) mixed solvent 0.7mL was added, temperature was heated up to 65 degreeC, and superposition | polymerization was started. After polymerization at 65 ° C. for 9 minutes, a small amount of isobutyl alcohol was added to terminate the polymerization. Methanol 50mL and a small amount of hydrochloric acid aqueous solution were added to the obtained polymer, and it stirred at room temperature for 1 hour. Thereafter, the polymer was filtered and dried under reduced pressure to obtain 0.60 g of syndiotactic polypropylene.
 重合活性は39.90kg-PP/mmol-Zr・hrであった。得られたポリマーの[η]は1.48dl/g、重量平均分子量(Mw)は127,000、数平均分子量(Mn)は65,000、分子量分布(Mw/Mn)は1.96、結晶化温度(Tc)は96.5℃、融点(Tm1、Tm2)はそれぞれ140.0℃、147.9℃であった。 The polymerization activity was 39.90 kg-PP / mmol-Zr · hr. [Η] of the obtained polymer was 1.48 dl / g, the weight average molecular weight (Mw) was 127,000, the number average molecular weight (Mn) was 65,000, the molecular weight distribution (Mw / Mn) was 1.96, crystals The conversion temperature (Tc) was 96.5 ° C., and the melting points (Tm1, Tm2) were 140.0 ° C. and 147.9 ° C., respectively.
 [実施例2~9]
 実施例1において、使用した架橋メタロセン化合物およびその添加量、触媒溶液調製後の保持時間、重合温度ならびに重合時間を表18に記載のとおりに変更したこと以外は実施例1と同様に行った。結果を表18に示す。表18中の「混合」とは、シクロヘキサンとヘキサンとをシクロヘキサン:ヘキサン=9:1(体積比)で混合した溶媒を指す。
[Examples 2 to 9]
In Example 1, it carried out like Example 1 except having changed the bridge | crosslinking metallocene compound used, its addition amount, the retention time after catalyst solution preparation, the polymerization temperature, and the polymerization time as shown in Table 18. The results are shown in Table 18. “Mixed” in Table 18 refers to a solvent in which cyclohexane and hexane are mixed in cyclohexane: hexane = 9: 1 (volume ratio).
 実施例5および6に見られるように、触媒溶液調製濃度を0.500mmol/Lと高濃度で実施した例においては、触媒調製後の保持時間によらず高い重合活性が発現した。また、実施例7に見られるように、触媒溶液調製濃度を0.020mmol/Lと低濃度で実施した例においても、触媒調製後の保持時間を短時間に設定することにより、実用上使用可能な重合活性が発現した。 As can be seen from Examples 5 and 6, in the example where the catalyst solution preparation concentration was as high as 0.500 mmol / L, high polymerization activity was exhibited regardless of the retention time after catalyst preparation. Further, as seen in Example 7, even in the case where the catalyst solution preparation concentration was as low as 0.020 mmol / L, it can be used practically by setting the retention time after catalyst preparation to a short time. Polymerization activity.
 前述したように、本発明で使用される架橋メタロセン化合物(A)が炭化水素溶媒に対する溶解度に優れることにより、より少量の溶媒を用いて触媒溶液を調製することが可能となる。これは、特にオレフィン重合体の製造を事業化したときには、用いる溶媒のロットなどによる影響を受ける可能性を低減できることが期待される有用な性能である。 As described above, the bridged metallocene compound (A) used in the present invention is excellent in solubility in a hydrocarbon solvent, so that a catalyst solution can be prepared using a smaller amount of solvent. This is a useful performance expected to reduce the possibility of being affected by the lot of the solvent to be used, especially when commercializing the production of olefin polymers.
 [比較例1]
 充分に窒素置換した内容積15mLのSUS製オートクレーブに、トリイソブチルアルミニウム0.4mL(0.05M、20μmol)、重合溶媒としてシクロヘキサンとヘキサンとをシクロヘキサン:ヘキサン=9:1(体積比)で混合した溶媒2.7mLを入れ、600回転/分にて攪拌を行った。この溶液を50℃に昇温し、次いでプロピレンで全圧が7barになるまで加圧した。
[Comparative Example 1]
In a SUS autoclave with an internal volume of 15 mL sufficiently purged with nitrogen, 0.4 mL (0.05 M, 20 μmol) of triisobutylaluminum and cyclohexane and hexane as a polymerization solvent were mixed in cyclohexane: hexane = 9: 1 (volume ratio). 2.7 mL of the solvent was added and stirred at 600 rpm. The solution was heated to 50 ° C. and then pressurized with propylene until the total pressure was 7 bar.
 窒素雰囲気下、シュレンク管に架橋メタロセン化合物として触媒(g)3.0mg(分子量821.04g/mol)を入れ、脱水ヘキサン4.55mLを加えて5分間攪拌した後、上澄み部分の2.0mLに更に脱水ヘキサン0.95mLと修飾メチルアルミノキサンの懸濁液0.27mL(n-ヘキサン溶媒、アルミニウム原子換算で2.96M、0.80mmol)とを加え、室温で15分間攪拌を行って、触媒溶液を調製した。 Under a nitrogen atmosphere, 3.0 mg (molecular weight 821.04 g / mol) of the catalyst (g) as a cross-linked metallocene compound was placed in a Schlenk tube, and 4.55 mL of dehydrated hexane was added and stirred for 5 minutes. Further, 0.95 mL of dehydrated hexane and 0.27 mL of a suspension of modified methylaluminoxane (n-hexane solvent, 2.96 M in terms of aluminum atom, 0.80 mmol) were added, and the mixture was stirred at room temperature for 15 minutes to obtain a catalyst solution. Was prepared.
 上記触媒溶液を室温下かつ窒素雰囲気下で30分間保持した後、上記オートクレーブに、上記触媒溶液0.2mL、および重合溶媒としてシクロヘキサンとヘキサンとを9:1(体積比)で混合した溶媒0.7mLを加え、温度を65℃に昇温し、重合を開始した。65℃で10分間重合した後、少量のイソブチルアルコールを加えて重合を停止した。得られたポリマーにメタノール50mL、少量の塩酸水溶液を加え、室温にて1時間攪拌を行った。その後、ポリマーをろ過して減圧乾燥し、シンジオタクチックポリプロピレン0.06gを得た。 After holding the catalyst solution at room temperature and under a nitrogen atmosphere for 30 minutes, 0.2 mL of the catalyst solution and 9: 1 (volume ratio) of cyclohexane and hexane as polymerization solvents were mixed in the autoclave. 7 mL was added and the temperature was raised to 65 ° C. to initiate polymerization. After polymerization at 65 ° C. for 10 minutes, a small amount of isobutyl alcohol was added to terminate the polymerization. Methanol 50mL and a small amount of hydrochloric acid aqueous solution were added to the obtained polymer, and it stirred at room temperature for 1 hour. Thereafter, the polymer was filtered and dried under reduced pressure to obtain 0.06 g of syndiotactic polypropylene.
 触媒溶液の濃度が0.00050Mであったとすると、重合活性は3.00kg-PP/mmol-Zr・hrであった。得られたポリマーの[η]は2.81dl/g、重量平均分子量(Mw)は293,000、数平均分子量(Mn)は134,000、分子量分布(Mw/Mn)は2.18、結晶化温度(Tc)は96.9℃、融点(Tm1、Tm2)はそれぞれ137.6℃、144.1℃であった。 Assuming that the concentration of the catalyst solution was 0.00050M, the polymerization activity was 3.00 kg-PP / mmol-Zr · hr. [Η] of the obtained polymer was 2.81 dl / g, weight average molecular weight (Mw) was 293,000, number average molecular weight (Mn) was 134,000, molecular weight distribution (Mw / Mn) was 2.18, crystal The conversion temperature (Tc) was 96.9 ° C., and the melting points (Tm1, Tm2) were 137.6 ° C. and 144.1 ° C., respectively.
 [比較例2]
 比較例1において、使用した架橋メタロセン化合物およびその添加量、重合温度ならびに重合時間を表18に記載のとおりに変更したこと以外は比較例1と同様に行った。結果を表18に示す。表18中の「混合」とは、シクロヘキサンとヘキサンとをシクロヘキサン:ヘキサン=9:1(体積比)で混合した溶媒を指す。
[Comparative Example 2]
Comparative Example 1 was carried out in the same manner as Comparative Example 1 except that the bridged metallocene compound used, the amount thereof added, the polymerization temperature and the polymerization time were changed as shown in Table 18. The results are shown in Table 18. “Mixed” in Table 18 refers to a solvent in which cyclohexane and hexane are mixed in cyclohexane: hexane = 9: 1 (volume ratio).
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038

Claims (12)

  1. (A)下記一般式[1]で表される架橋メタロセン化合物と、
    (B)(b-1)有機アルミニウムオキシ化合物、
       (b-2)架橋メタロセン化合物(A)と
            反応してイオン対を形成する化合物、および
       (b-3)有機アルミニウム化合物
       から選択される少なくとも1種の化合物と
    を含むオレフィン重合用触媒の存在下に、炭素数2以上のオレフィンから選択される少なくとも1種のオレフィンを重合することを特徴とするオレフィン重合体の製造方法:
    Figure JPOXMLDOC01-appb-C000001
    〔式[1]において、
     R1~R4は、それぞれ独立に炭化水素基、ハロゲン含有炭化水素基、窒素含有基、酸素含有基およびケイ素含有基から選ばれる基を示し、隣り合う2つの基が結合して環を形成していてもよく;
     R5~R9は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基、ハロゲン含有炭化水素基、窒素含有基、酸素含有基およびケイ素含有基から選ばれる基を示し、隣り合う2つの基が結合して環を形成していてもよく;
     R10~R12は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基、ハロゲン含有炭化水素基、窒素含有基、酸素含有基およびケイ素含有基から選ばれる基を示し;
     Yは、炭素原子またはケイ素原子を示し;
     Mは、Ti、ZrまたはHfを示し;
     Qは、ハロゲン原子、炭化水素基、炭素数10以下の中性の共役もしくは非共役ジエン、アニオン配位子および孤立電子対で配位可能な中性配位子から選ばれる構造であり;jは、1~4の整数を示し、jが2以上のときは、複数あるQは相互に同一でも異なっていてもよい。〕
    (A) a bridged metallocene compound represented by the following general formula [1];
    (B) (b-1) an organoaluminum oxy compound,
    In the presence of an olefin polymerization catalyst comprising (b-2) a compound that reacts with the bridged metallocene compound (A) to form an ion pair, and (b-3) at least one compound selected from organoaluminum compounds And at least one olefin selected from olefins having 2 or more carbon atoms, and a method for producing an olefin polymer:
    Figure JPOXMLDOC01-appb-C000001
    [In Formula [1],
    R 1 to R 4 each independently represents a group selected from a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group and a silicon-containing group, and two adjacent groups are bonded to form a ring. May be;
    R 5 to R 9 each independently represents a group selected from a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group and a silicon-containing group, and two adjacent groups are They may combine to form a ring;
    R 10 to R 12 each independently represents a group selected from a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, a nitrogen-containing group, an oxygen-containing group and a silicon-containing group;
    Y represents a carbon atom or a silicon atom;
    M represents Ti, Zr or Hf;
    Q is a structure selected from a halogen atom, a hydrocarbon group, a neutral conjugated or nonconjugated diene having 10 or less carbon atoms, an anionic ligand, and a neutral ligand capable of coordinating with a lone electron pair; j Represents an integer of 1 to 4, and when j is 2 or more, a plurality of Qs may be the same or different from each other. ]
  2.  前記一般式[1]において、R1およびR4がそれぞれ独立に炭素数1~40の炭化水素基および炭素数1~40のハロゲン含有炭化水素基から選ばれる基であり、R2およびR3の1つ以上の基が炭素数1~40の炭化水素基およびケイ素含有基から選ばれる基であることを特徴とする請求項1に記載のオレフィン重合体の製造方法。 In the general formula [1], R 1 and R 4 are each independently a group selected from a hydrocarbon group having 1 to 40 carbon atoms and a halogen-containing hydrocarbon group having 1 to 40 carbon atoms, and R 2 and R 3 2. The method for producing an olefin polymer according to claim 1, wherein the one or more groups are a group selected from a hydrocarbon group having 1 to 40 carbon atoms and a silicon-containing group.
  3.  前記一般式[1]において、R1およびR4がそれぞれ独立に炭素数6~20のアリール基および炭素数6~20のハロゲン含有アリール基から選ばれる基であることを特徴とする請求項1または2に記載のオレフィン重合体の製造方法。 2. The general formula [1], wherein R 1 and R 4 are each independently a group selected from an aryl group having 6 to 20 carbon atoms and a halogen-containing aryl group having 6 to 20 carbon atoms. Or the manufacturing method of the olefin polymer of 2.
  4.  前記一般式[1]において、R12が水素原子、炭素数1~40の炭化水素基および炭素数1~40のハロゲン含有炭化水素基から選ばれる基であることを特徴とする請求項1または2に記載のオレフィン重合体の製造方法。 2. The general formula [1], wherein R 12 is a group selected from a hydrogen atom, a hydrocarbon group having 1 to 40 carbon atoms, and a halogen-containing hydrocarbon group having 1 to 40 carbon atoms. 2. The method for producing an olefin polymer according to 2.
  5.  前記一般式[1]において、R10~R11が何れも水素原子であり、R12が炭素数1~20のアルキル基、炭素数6~20のアリール基および炭素数6~20のハロゲン含有アリール基から選ばれる基であるか、またはR10~R12が何れも水素原子であることを特徴とする請求項1または2に記載のオレフィン重合体の製造方法。 In the general formula [1], R 10 to R 11 are all hydrogen atoms, R 12 contains an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and a halogen having 6 to 20 carbon atoms. 3. The method for producing an olefin polymer according to claim 1, wherein the olefin polymer is a group selected from aryl groups, or R 10 to R 12 are all hydrogen atoms.
  6.  前記一般式[1]において、R5~R9がそれぞれ独立に水素原子、ハロゲン原子および炭素数1~20のアルキル基から選ばれる基であることを特徴とする請求項1または2に記載のオレフィン重合体の製造方法。 3. The general formula [1], wherein R 5 to R 9 are each independently a group selected from a hydrogen atom, a halogen atom, and an alkyl group having 1 to 20 carbon atoms. A method for producing an olefin polymer.
  7.  前記オレフィン重合用触媒が、さらに担体(C)を含むことを特徴とする請求項1または2に記載のオレフィン重合体の製造方法。 The method for producing an olefin polymer according to claim 1 or 2, wherein the olefin polymerization catalyst further contains a carrier (C).
  8.  前記オレフィンの少なくとも一部が、プロピレンであることを特徴とする請求項1または2に記載のオレフィン重合体の製造方法。 3. The method for producing an olefin polymer according to claim 1, wherein at least a part of the olefin is propylene.
  9.  前記一般式[1]で表される架橋メタロセン化合物の25℃のn-ヘキサンに対する溶解度が、0.5mmol/L以上であることを特徴とする請求項1または2に記載のオレフィン重合体の製造方法。 The olefin polymer production according to claim 1 or 2, wherein the solubility of the bridged metallocene compound represented by the general formula [1] in n-hexane at 25 ° C is 0.5 mmol / L or more. Method.
  10.  前記一般式[1]で表される架橋メタロセン化合物の濃度が0.05mmol/L~1.0mol/Lの溶液を重合系に供給することを特徴とする請求項1または2に記載のオレフィン重合体の製造方法。 The olefin weight according to claim 1 or 2, wherein a solution having a concentration of the bridged metallocene compound represented by the general formula [1] of 0.05 mmol / L to 1.0 mol / L is supplied to the polymerization system. Manufacturing method of coalescence.
  11.  重合温度が50~150℃であることを特徴とする請求項1または2に記載のオレフィン重合体の製造方法。 The method for producing an olefin polymer according to claim 1 or 2, wherein the polymerization temperature is 50 to 150 ° C.
  12.  重合温度が50~150℃であり、得られるプロピレン重合体の示差走査熱量計により測定される融点(Tm)(複数の結晶溶融ピークが観測される場合は、高温側ピークに基づく融点(Tm))が145~170℃であり、135℃デカリン中で測定される極限粘度([η])が1.25dl/g以上であり、ゲルパーミエーションクロマトグラフィーにより測定される重量平均分子量(Mw)が97,000以上であり、かつ重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1~3であることを特徴とする請求項1または2に記載のプロピレン重合体の製造方法。 Melting point (Tm) measured by a differential scanning calorimeter of the resulting propylene polymer when the polymerization temperature is 50 to 150 ° C. (if multiple crystal melting peaks are observed, the melting point based on the high temperature side peak (Tm) ) Is 145 to 170 ° C., the intrinsic viscosity ([η]) measured in decalin at 135 ° C. is 1.25 dl / g or more, and the weight average molecular weight (Mw) measured by gel permeation chromatography is 3. The propylene polymer according to claim 1, wherein the propylene polymer is 97,000 or more and has a ratio (Mw / Mn) of weight average molecular weight (Mw) to number average molecular weight (Mn) of 1 to 3. Manufacturing method.
PCT/JP2013/055510 2012-03-21 2013-02-28 Method for producing olefin polymer WO2013140991A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11201405812VA SG11201405812VA (en) 2012-03-21 2013-02-28 Method for producing olefin polymer
EP13763976.1A EP2829555B1 (en) 2012-03-21 2013-02-28 Method for producing olefin polymer
US14/385,748 US9315602B2 (en) 2012-03-21 2013-02-28 Method for producing olefin polymer
CN201380015033.7A CN104203993B (en) 2012-03-21 2013-02-28 The manufacture method of olefin polymer
JP2014506113A JP5800984B2 (en) 2012-03-21 2013-02-28 Process for producing olefin polymer
KR1020147026060A KR101609500B1 (en) 2012-03-21 2013-02-28 Method for producing olefin polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012063932 2012-03-21
JP2012-063932 2012-03-21

Publications (1)

Publication Number Publication Date
WO2013140991A1 true WO2013140991A1 (en) 2013-09-26

Family

ID=49222454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055510 WO2013140991A1 (en) 2012-03-21 2013-02-28 Method for producing olefin polymer

Country Status (8)

Country Link
US (1) US9315602B2 (en)
EP (1) EP2829555B1 (en)
JP (1) JP5800984B2 (en)
KR (1) KR101609500B1 (en)
CN (1) CN104203993B (en)
SG (2) SG10201508676PA (en)
TW (1) TWI574981B (en)
WO (1) WO2013140991A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11041029B2 (en) 2015-08-31 2021-06-22 Exxonmobil Chemical Patents Inc. Aluminum alkyls with pendant olefins for polyolefin reactions
US10618988B2 (en) 2015-08-31 2020-04-14 Exxonmobil Chemical Patents Inc. Branched propylene polymers produced via use of vinyl transfer agents and processes for production thereof
CN107921424A (en) * 2015-08-31 2018-04-17 埃克森美孚化学专利公司 The alkyl aluminum with pendency alkene on clay
US10562987B2 (en) 2016-06-30 2020-02-18 Exxonmobil Chemical Patents Inc. Polymers produced via use of quinolinyldiamido transition metal complexes and vinyl transfer agents
US10626200B2 (en) 2017-02-28 2020-04-21 Exxonmobil Chemical Patents Inc. Branched EPDM polymers produced via use of vinyl transfer agents and processes for production thereof
CN115259991A (en) * 2021-04-30 2022-11-01 中国科学院过程工程研究所 Tension ring high-energy fuel and preparation method thereof

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501950A (en) 1987-01-30 1989-07-06 エクソン・ケミカル・パテンツ・インク Catalysts, methods of making these catalysts and polymerization processes using these catalysts
JPH01502036A (en) 1987-01-30 1989-07-13 エクソン・ケミカル・パテンツ・インク Catalysts, methods of making these catalysts, and methods of using these catalysts
JPH0224701A (en) 1988-07-13 1990-01-26 Sekisui Chem Co Ltd Drive control device for electric apparatus
JPH0278687A (en) 1988-09-14 1990-03-19 Mitsui Petrochem Ind Ltd Production of benzene-insoluble organoaluminumoxy compound
JPH02167305A (en) 1988-09-14 1990-06-27 Mitsui Petrochem Ind Ltd Production of benzene-insoluble organic aluminumoxy compound
US4960878A (en) 1988-12-02 1990-10-02 Texas Alkyls, Inc. Synthesis of methylaluminoxanes
JPH03103407A (en) 1989-09-18 1991-04-30 Idemitsu Kosan Co Ltd Preparation of olefinic polymer
JPH03179005A (en) 1989-10-10 1991-08-05 Fina Technol Inc Metallocene catalyst
JPH03179006A (en) 1989-10-10 1991-08-05 Fina Technol Inc Method and catalyst for preparation of syndiotactic polymer
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
JPH03207704A (en) 1989-10-30 1991-09-11 Fina Technol Inc Olefin polymerization catalyst
JPH03207703A (en) 1989-10-30 1991-09-11 Fina Technol Inc Preparation of olefin polymerization catalyst
JPH0469394A (en) 1990-07-09 1992-03-04 Mitsui Toatsu Chem Inc New transition metal compound and production of syndiotactic poly-alpha-olefin using the same compound
US5321106A (en) 1990-07-03 1994-06-14 The Dow Chemical Company Addition polymerization catalyst with oxidative activation
JP2000212194A (en) 1999-01-25 2000-08-02 Mitsui Chemicals Inc Metallocene compound, catalyst for olefin polymerization and polymerization of olefin
WO2001027124A1 (en) 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Metallocene compound, process for producing metallocene compound, olefin polymerization catalyst, process for producing polyolefin, and polyolefin
JP2001526730A (en) 1997-05-26 2001-12-18 フイナ・リサーチ・ソシエテ・アノニム Metallocene catalysts for use in the production of isotactic polyolefins
JP2004051676A (en) 2002-07-16 2004-02-19 Mitsui Chemicals Inc Production method for ethylene copolymer
JP2004161957A (en) 2002-11-15 2004-06-10 Mitsui Chemicals Inc Method of manufacturing propylene copolymer
JP2004168744A (en) 2002-11-22 2004-06-17 Mitsui Chemicals Inc Bridged metallocene compound for olefin polymerization and method for polymerizing olefin by using the same
JP2004189667A (en) 2002-12-11 2004-07-08 Mitsui Chemicals Inc Crosslinked metallocene compound for polymerization of olefin, and method for polymerizing olefin by using the same
JP2004189666A (en) 2002-12-11 2004-07-08 Mitsui Chemicals Inc Crosslinked metallocene compound for polymerization of olefin, and method for polymerizing olefin by using the same
WO2004087775A1 (en) 2003-03-28 2004-10-14 Mitsui Chemicals, Inc. Propylene copolymer, polypropylene composition, use thereof, transition metal compounds, and catalysts for olefin polymerization
WO2006123759A1 (en) * 2005-05-18 2006-11-23 Mitsui Chemicals, Inc. Catalyst for olefin polymerization, method for producing olefin polymer, method for producing propylene copolymer, propylene polymer, propylene polymer composition, and use of those
JP2007302853A (en) 2005-05-18 2007-11-22 Mitsui Chemicals Inc Method for producing propylene-based copolymer
JP2007302854A (en) 2005-07-25 2007-11-22 Mitsui Chemicals Inc Catalyst for olefin polymerization and method for producing olefin polymer
WO2008059974A1 (en) * 2006-11-17 2008-05-22 Mitsui Chemicals, Inc. Method for producing syndiotactic propylene polymer
JP2011122118A (en) * 2009-12-14 2011-06-23 Mitsui Chemicals Inc Method of manufacturing olefin polymer
WO2011078054A1 (en) * 2009-12-21 2011-06-30 三井化学株式会社 PROCESS FOR PRODUCTION OF SYNDIOTACTIC α-OLEFIN POLYMER

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2082274T3 (en) 1991-05-27 1996-03-16 Hoechst Ag PROCEDURE FOR THE PREPARATION OF SYNDIOTACTIC POLYOLEFINS WITH WIDE DISTRIBUTION OF MOLECULAR MASSES.
JP2006028449A (en) 2004-07-21 2006-02-02 Mitsui Chemicals Inc Propylene-based polymer
JP2009127007A (en) 2007-11-27 2009-06-11 Prime Polymer:Kk Thermoplastic resin composition for automobile material
JP5319996B2 (en) * 2008-09-16 2013-10-16 三井化学株式会社 Low viscosity engine oil composition

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501950A (en) 1987-01-30 1989-07-06 エクソン・ケミカル・パテンツ・インク Catalysts, methods of making these catalysts and polymerization processes using these catalysts
JPH01502036A (en) 1987-01-30 1989-07-13 エクソン・ケミカル・パテンツ・インク Catalysts, methods of making these catalysts, and methods of using these catalysts
JPH0224701A (en) 1988-07-13 1990-01-26 Sekisui Chem Co Ltd Drive control device for electric apparatus
JPH0278687A (en) 1988-09-14 1990-03-19 Mitsui Petrochem Ind Ltd Production of benzene-insoluble organoaluminumoxy compound
JPH02167305A (en) 1988-09-14 1990-06-27 Mitsui Petrochem Ind Ltd Production of benzene-insoluble organic aluminumoxy compound
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
US4960878A (en) 1988-12-02 1990-10-02 Texas Alkyls, Inc. Synthesis of methylaluminoxanes
JPH03103407A (en) 1989-09-18 1991-04-30 Idemitsu Kosan Co Ltd Preparation of olefinic polymer
JPH03179005A (en) 1989-10-10 1991-08-05 Fina Technol Inc Metallocene catalyst
JPH03179006A (en) 1989-10-10 1991-08-05 Fina Technol Inc Method and catalyst for preparation of syndiotactic polymer
JPH03207704A (en) 1989-10-30 1991-09-11 Fina Technol Inc Olefin polymerization catalyst
JPH03207703A (en) 1989-10-30 1991-09-11 Fina Technol Inc Preparation of olefin polymerization catalyst
US5321106A (en) 1990-07-03 1994-06-14 The Dow Chemical Company Addition polymerization catalyst with oxidative activation
JPH0469394A (en) 1990-07-09 1992-03-04 Mitsui Toatsu Chem Inc New transition metal compound and production of syndiotactic poly-alpha-olefin using the same compound
JP2001526730A (en) 1997-05-26 2001-12-18 フイナ・リサーチ・ソシエテ・アノニム Metallocene catalysts for use in the production of isotactic polyolefins
JP2000212194A (en) 1999-01-25 2000-08-02 Mitsui Chemicals Inc Metallocene compound, catalyst for olefin polymerization and polymerization of olefin
WO2001027124A1 (en) 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Metallocene compound, process for producing metallocene compound, olefin polymerization catalyst, process for producing polyolefin, and polyolefin
JP2004051676A (en) 2002-07-16 2004-02-19 Mitsui Chemicals Inc Production method for ethylene copolymer
JP2004161957A (en) 2002-11-15 2004-06-10 Mitsui Chemicals Inc Method of manufacturing propylene copolymer
JP2004168744A (en) 2002-11-22 2004-06-17 Mitsui Chemicals Inc Bridged metallocene compound for olefin polymerization and method for polymerizing olefin by using the same
JP2004189667A (en) 2002-12-11 2004-07-08 Mitsui Chemicals Inc Crosslinked metallocene compound for polymerization of olefin, and method for polymerizing olefin by using the same
JP2004189666A (en) 2002-12-11 2004-07-08 Mitsui Chemicals Inc Crosslinked metallocene compound for polymerization of olefin, and method for polymerizing olefin by using the same
WO2004087775A1 (en) 2003-03-28 2004-10-14 Mitsui Chemicals, Inc. Propylene copolymer, polypropylene composition, use thereof, transition metal compounds, and catalysts for olefin polymerization
WO2006123759A1 (en) * 2005-05-18 2006-11-23 Mitsui Chemicals, Inc. Catalyst for olefin polymerization, method for producing olefin polymer, method for producing propylene copolymer, propylene polymer, propylene polymer composition, and use of those
JP2007302853A (en) 2005-05-18 2007-11-22 Mitsui Chemicals Inc Method for producing propylene-based copolymer
JP2007302854A (en) 2005-07-25 2007-11-22 Mitsui Chemicals Inc Catalyst for olefin polymerization and method for producing olefin polymer
WO2008059974A1 (en) * 2006-11-17 2008-05-22 Mitsui Chemicals, Inc. Method for producing syndiotactic propylene polymer
JP2011122118A (en) * 2009-12-14 2011-06-23 Mitsui Chemicals Inc Method of manufacturing olefin polymer
WO2011078054A1 (en) * 2009-12-21 2011-06-30 三井化学株式会社 PROCESS FOR PRODUCTION OF SYNDIOTACTIC α-OLEFIN POLYMER

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED. ENGL., vol. 24, 1985, pages 507
J. AM. CHEM. SOC., vol. 110, 1988, pages 6255
See also references of EP2829555A4

Also Published As

Publication number Publication date
SG10201508676PA (en) 2015-11-27
EP2829555B1 (en) 2018-05-16
CN104203993B (en) 2016-06-15
JP5800984B2 (en) 2015-10-28
US20150045523A1 (en) 2015-02-12
TW201343695A (en) 2013-11-01
TWI574981B (en) 2017-03-21
EP2829555A1 (en) 2015-01-28
US9315602B2 (en) 2016-04-19
KR20140124012A (en) 2014-10-23
JPWO2013140991A1 (en) 2015-08-03
EP2829555A4 (en) 2015-06-17
KR101609500B1 (en) 2016-04-05
CN104203993A (en) 2014-12-10
SG11201405812VA (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP5951108B2 (en) Process for producing olefin polymer and catalyst for olefin polymerization
CN106715487B (en) Process for producing olefin (co) polymer containing constituent unit derived from 1-butene
JP5800984B2 (en) Process for producing olefin polymer
JP2007302853A (en) Method for producing propylene-based copolymer
WO2010021304A1 (en) Method for manufacturing olefin polymer using mixed catalyst
JP2015137352A (en) Method of producing olefin polymer
JP5979920B2 (en) Olefin polymerization catalyst and process for producing olefin polymer using the same
JP2016164264A (en) Olefin polymer production method and olefin polymerization catalyst
JP2011122118A (en) Method of manufacturing olefin polymer
JP5261163B2 (en) Method for producing high molecular weight olefin polymer
JP5972056B2 (en) Process for producing olefin polymer
JP6679345B2 (en) Process for producing olefin (co) polymer containing constitutional unit derived from 1-butene
JP2014073983A (en) Novel metallocene compound, olefin polymerization catalyst, and production process of olefin polymer
JP2010144036A (en) Method of manufacturing high melting point olefin polymer
JP2015137353A (en) Method of producing olefin polymer
JP2013060518A (en) Method for producing olefin polymer
JP2010047630A (en) Preparation for high molecular weight olefin polymer
JP2014177507A (en) Method of producing catalyst containing novel fluorene derivative and method of producing olefin polymer
JP2014177508A (en) Method of producing catalyst containing novel fluorene derivative and method of producing olefin polymer
JP2021059673A (en) Method for producing olefin polymer
JP2016147965A (en) Process for producing olefin (co)polymer containing 1-butene derived constitutional unit
JP2018065958A (en) Method for producing olefin polymer
JP2011102366A (en) Method for producing olefin polymer
JP2015157924A (en) Method of producing olefin polymer and cross-linked metallocene compound
JP2010047628A (en) Manufacturing method for olefin polymer by highly active catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763976

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14385748

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014506113

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20147026060

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013763976

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE