WO2013185196A1 - Use of an ammonium salt-free organophilic nanostructured clay in polyethylene - Google Patents

Use of an ammonium salt-free organophilic nanostructured clay in polyethylene Download PDF

Info

Publication number
WO2013185196A1
WO2013185196A1 PCT/BR2013/000207 BR2013000207W WO2013185196A1 WO 2013185196 A1 WO2013185196 A1 WO 2013185196A1 BR 2013000207 W BR2013000207 W BR 2013000207W WO 2013185196 A1 WO2013185196 A1 WO 2013185196A1
Authority
WO
WIPO (PCT)
Prior art keywords
clay
polyethylene
organophilic
free
application
Prior art date
Application number
PCT/BR2013/000207
Other languages
French (fr)
Portuguese (pt)
Inventor
Bianca Iodice
Reinaldo Yoshio MORITA
Juliana Regina KLOSS
Gilson Luiz Torrens
Ronilson Vasconcelos Barbosa
Original Assignee
Ioto International Indústria E Comércio De Produtos Aromáticos Ltda.
Universidade Federal Do Paraná
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ioto International Indústria E Comércio De Produtos Aromáticos Ltda., Universidade Federal Do Paraná filed Critical Ioto International Indústria E Comércio De Produtos Aromáticos Ltda.
Publication of WO2013185196A1 publication Critical patent/WO2013185196A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/019Specific properties of additives the composition being defined by the absence of a certain additive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen

Definitions

  • the present invention is concerned with the incorporation of an ammonium salt free nanostructured organophilic clay into polyethylene.
  • This clay was obtained from the chemical treatment of a pure natural clay with a carboxylic acid or alkyl sulfate or propyl sulfate derived surfactant and from a chemical that modifies the surfactant within the clay and the clay itself. (patent-pending methodology - DEPR 015100000646)
  • Polyethylene is one of the most widely used polyolefin polymers and can be produced in different forms.
  • polyethylenes which vary in number and size of branches beyond molecular weight distribution [Pettarin, V .; Frontini, P. M; Pita, V.J. R. R .; Dias, M.L .; Diaz, F. V.
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • PEUAMM ultra high molar mass polyethylene
  • PEUBD ultra low density polyethylene
  • Green Polyethylene a 100% renewable source (sugar cane)
  • This polymer combines environmental benefits and technical advantages with the easily processable forms of olefins.
  • Packaging In the polyethylene market, one of the trends is in the packaging for marketing meat, chicken, cheese and cold both in the domestic and export markets.
  • Packaging in this case, has to meet a range of requirements ranging from better product visualization and increased shelf life to barrier resistance, in addition to thickness, another important factor, making better packaging with less raw material is current market trend, and meets another concern that is sustainability [HAYASAKI, M. Commitment to Innovation. PACK Packaging, Technology and Innovation, n. 10, year 10, p. 19-21, 2008].
  • a product needs to provide consumer appeal while offering less environmentally friendly packaging around it and creating a lower cost opportunity that will be passed on to the community [Monteiro, S. Environmentally Friendly Packaging environment: where to start? PACK Packaging, Technology and Innovation, n.10, year 10, p. 38-39, 2008].
  • organophilic clays also known as nanoargils or nanoparticulate clays, which are obtained from bentonites, a very fine-grained clay composed essentially of smecite group clay minerals, with montmorillonite in concentrations ranging from 60% more common. 95% [PAIVA, LB; MORALES, AR 51st Brazilian Congress of Ceramics, 2007].
  • Nanocomposites have great advantages over virgin material or conventional micro or macro composites, because with the use of low fillers (up to 5% by mass), which differentiates them from traditional composites where the mass percentage can reach At 40%, a significant increase in modulus, tensile strength and thermal distortion temperature can be achieved, decreased permeability and flammability, and increased biodegradability in biodegradable polymers without significantly increasing material density while maintaining brightness and transparency, with strategic applications in the modern industrial park, including the automotive and packaging area [Saminathan, K .; Selvakumar, P .; Bhatnagar, N. Fracture studies of polypropylene / nanoclay composite. Part I: Effect of loading rates on essential work of fracture. Polymer Testing, v. 27, no. 3, p.
  • Interleaved structure nanocomposites formed when the polymeric chain is interspersed between the silicate lamellae, resulting in a morphology of well-ordered multilayer, alternating between inorganic and organic phases; / ' /) Exfoliated structure nanocomposites: These are formed when the lamellae of clays are uniformly dispersed (exfoliated) as individual entities in a continuous polymeric matrix [Camargo, PH C; Satyanarayana, KG; Wypych, F. .. Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Materials Research, 12, 1-39, 2009]. Analyzes by X-ray diffraction and transmission electron microscopy are usually employed in the structural characterization of these materials [Patent, PI 0601384-8 A].
  • the exfoliation-adsorption process is a particular case of the simple component mixing method used in the preparation of composites at industrial level.
  • the fillers generally used are lamellar structures that can be partially or totally delaminated with the introduction of chemical species between the inorganic layers.
  • the preparation of a nanocomposite by the exfoliation-adsorption process is feasible only if the polymer in question is soluble in a particular solvent in which the inorganic material can be delaminated, because when added to the polymer solution the lamellae are spontaneously organized to form ordered nanocomposites [Esteves, AC C; Barros-Timmons, A .; Trindade, T. Polymeric matrix nanocomposites: Synthesis strategies of hybrid materials. New Chemistry, v. 27, no.
  • the intercalative in situ polymerization technique consists of swelling of the clay in the monomer or a solution of the monomer and subsequently, the polymerization is conducted by heating or radiation in the presence or absence of initiator. This procedure also allows the formation of intercalated and / or exfoliated structures, given the possibility of polymerization in the interlamellar region [Alexandre, M .; Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering, v. 28, pp. 1-63, 2000].
  • the physical and chemical properties of nanocomposites obtained by this process can be influenced by the choice of polymerization method.
  • An example is the advantage of producing nanocomposites via emulsion polymerization due to molecular weight control and molecular weight distribution of the polymer [Esteves, A. C. C; Barros-Timmons, A .; Trindade, T. Polymeric matrix nanocomposites: Synthesis strategies of hybrid materials. New Chemistry, v. 27, no. 5, p. 798-806, 2004].
  • amorphous polymer nanocomposites such as polystyrene (PS) and polymethyl methacrylate (PMMA).
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • the reactive site for polymerization resides in the interlamellar galleries and the driving force generated in the polymerization reaction promotes the effect of dispersing the clay lamellae
  • Polystyrene-clay nanocomposites prepared with polymerizable imidazolium surfactants Macromolecular Rapid Communications, v. 24, no. 8, p.
  • Fu and Qutubuddin (2001) using the in situ polymerization method obtained nanocomposites with a high degree of exfoliation and better mechanical and thermal properties than pure polymer [Fu, X .; Qutubuddin, S. Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer, v. 42, p. 807-813, 2001].
  • Patent document PI0704383-0 describes the procedure for obtaining interleaved or exfoliated polyolefin nanocomposites using a modified clay to prepare a solid metallocene catalyst for in situ olefin polymerization reactions.
  • Evidence of nanocomposite structures was investigated by X-ray diffraction and transmission electron microscopy techniques [Patent, PI0704383-0].
  • the properties of the nanocomposite are given in some way by the polymeric matrix that acts as a mold.
  • This technique is widely used in the preparation of nanocomposites with double lamellar hydroxides and is often adapted for aqueous solution systems.
  • the method proceeds by crystallizing layered ordered structures from an aqueous solution of the inorganic precursors containing the polymer. In this way, the polymer is trapped within the layers during the inorganic crystal formation process [Esteves, A. C. C; Barros-Timmons, A .; Trindade, T. Polymeric matrix nanocomposites: Synthesis strategies of hybrid materials. New Chemistry, v. 27, no. 5, p. 798-806, 2004].
  • the molten polymer is mixed with the clay to allow interleaving of the polymeric chains between the coverslips.
  • the polymeric materials resulting from finite expansion of the lamellae produce intercalated nanocomposites.
  • a delaminated nanocomposite is obtained, where the lamellae behave as individual entities dispersed in the polymeric matrix [Paul , DR; Roberson, LM. Polymer nanotechnology: Nanocomposites. Polymer, v. 49, p. 3187-3204, 2008].
  • the nanocomposites obtained through this process have been intensively researched, mainly with the polyolefin class polymeric matrices [Barbosa, R .; Ara ⁇ jo, MS; Maia, LF; Pereira, OD; Melo, TJA; Ito, EN Morphology of polyethylene and polyamide-6 nanocomposites containing national clay.
  • Polymers Science and Technology, v. 16, no. 3, p. 246-251, 2006; Pettarin, V .; Frontini, PM, Pita, VJRR; Dias, M.L; Diaz, FV Polyethylene / (organo-montmorillonite) modified composites with ethylene / methacrylic acid copolymer: morphology and mechanical properties.
  • montmorillonite smectitic clay mineral one of the most common and used, presents a 2: 1 stacked face-to-face layered structure forming a crystalline reticulum.
  • the layers or sheets are comprised of two sheets of silica (nSi0 2) and richly distributed tetraed an alumina sheet (NAI 2 0 3) therebetween and distributed octahedrally chemically bonded.
  • the general chemical composition of montmorillonite is given by the formula:
  • the chemical composition of montmorillonites may vary, as isomorphic substitutions occur in the crystal structure by exchanging Si 4+ ions from tetrahedral leaves with Al 3+ ions and the other part, Al 3+ ions from octahedral leaves can be replaced by ions. Mg 2+ or Fe 3+ .
  • the unit clay cell becomes negatively charged and the electric balancing is done by the presence of a positive ion, known as an exchangeable cation.
  • the cation represented by M + occupies the interlamellar space or commonly called galleries, thus remaining between the stacked layers [Bergaya, F .; Theng, BKG; Lagaly, G.
  • Montmorillonite like other clay minerals, has the capacity to swell in the presence of water, because interlamellar hydration occurs. spacing of the coverslips allowing the accessibility of exchangeable ions. Therefore, ions are relatively more readily available for exchange with other ions or ionic structures.
  • CTC ion exchange capacity
  • Modification of the clays employing the ammonium salts introduces a hydrophobic character to the clay, reducing its surface tension and consequently improving compatibility with the polymer matrix. This process increases the spacing between the coverslips, facilitating polymer intercalation and thereby delamination of the clay.
  • clays are known as organophilic clays. These clays are currently one of the main precursors for obtaining polymeric nanocomposites, however, they have some limitations compared to the requirements in the area of composite materials [Patent, PI 0601384-8 A].
  • ammonium salts block the access of polymer chains to the polar polar sites is what causes the weak interaction between the polymer and this charge.
  • ammonium salts commonly employed in chemical modification do not have functional groups in their structures capable of promoting chemical bonding with clay or even proper interaction with this matrix [Pinavaia, T. J .; et al. Homostructured mixed organic and inorganic cation exchange tapered compositions. Int C13B22 C01 B 033/24. US 5,993,769. 14 May 1998, 30 Nov. 1999].
  • the use of ammonium modifiers becomes restrictive due to the low thermal stability, because depending on the type of processing employed in obtaining nanocomposites the temperature leads to the thermal degradation process [Park, C. I .; et al. The manufacture of syndiotactic polystyrene / organophilic clay nanocomposites and their properties. Polymer, v. 42, p. 7465-7475, 2001].
  • the principal method of obtaining the nanocomposite is via melt polymer intercalation. In this method, the polymer is mixed with clay in equipment such as extruders, calenders, internal mixers, among others. The polyethylene / clay mixture is subjected to high temperatures and high shear rates.
  • ammonium salt degradation products can act as degradants of the polymeric matrix, inducing color appearance and compromising the thermal stability and properties of the final product [ Patent, PI 0601384-8 A].
  • the present invention relates to different methodologies for the production of ammonium salt-free modified polyethylene / clay nanocomposites, i.e. chemical modification by a surfactant derived primarily from a carboxylic acid, or other surfactant having the desired characteristics, such as for example, an alkyl or propyl sulfate derivative.
  • Figure 1- X-ray diffractograms of low density polyethylene films (melt index around 7.0 g / 10 min) with LDPE / modified clay concentrate (70/30) inside, in the proportions of 3 (a) and 5% (b) (w / w).
  • the nanocomposite in question in the present invention will be prepared by the melt polymer intercalation technique through three different forms of processing employing a polymer belonging to the polyolefin family, preferably a polyethylene (low density, high density, low linear density). ) and a natural clay, belonging to the family of phyllosilicates, preferably from the 2: 1 group, modified with a surfactant derived from Recommended carboxylic acid for this invention is sodium stearate, CH 3 (CH 2 ) i 6 COO " Na + or sodium lauryl sulfate, CH 3 (CH 2 ) iSO 4 " Na + (methodology under production of DEPR 015100000646), ie surfactant other than ammonium salt.
  • a polymer belonging to the polyolefin family preferably a polyethylene (low density, high density, low linear density).
  • a natural clay belonging to the family of phyllosilicates, preferably from the 2: 1 group, modified with a surfactant derived from
  • the amount of polymeric material was between 50 to 50 to
  • ammonium salt-free modified clay ranged from 1 to 10% based on the final mass of the nanocomposite obtained.
  • the amounts may be increased depending on the expected properties of the final product or in the case of preparation of a polymer / clay concentrate (concentration of 20 to 50% of modified clay).
  • the concentrate (polyethylene / modified clay), after cooling, was granulated and mixed in the percentages of 3 and 5% to low density polyethylene - LDPE (flow rate around 7.0 g / 10 min), to obtain thin films prepared in a laboratory balloon extruder with the following temperature profile 130 - 135 - 140 - 140 ° C from the feed to the die and also in the percentages of 5 and 10% to low density polyethylene (LDPE) flow rate around 30.0 g / 10 min) to obtain the injected compound, in a 65 tonne closing force injector, screw L / D ratio of 20 and 35 mm thread diameter and 180 to 200 ° C.
  • LDPE low density polyethylene
  • EXAMPLE 2 Preparation of Nanocomposite with Addition of Specific Percentages of Modified Polyethylene (PE) Clay
  • PE Modified Polyethylene
  • This example consists of a mixture of polyethylene (melt index around 30.0 g / 10 min), generally 98.5 and 97%, and different amounts of modified clay, generally 1, 5 and 3.0%.
  • m / m in an intensive homogenizer at 3600 revolutions per minute for approximately two 10 second cycles. After mixing, the material was extruded in pellet form in a laboratory single-screw extruder with the following temperature profile 140 - 150 - 160 - 160 ° C from the feed to the die.
  • the extruded nanocomposites were granulated and injected, with a closing force of 65 tons, screw L / D ratio of 20 and a thread diameter of 35 mm and a process temperature of 180 to 200 ° C.
  • the third form consists of the processing of polyethylene (flow rate around 30.0 g / 10 min), generally 98.5 and 97%, and modified clay, generally 1, 0 and 3.0% m / m, in a co-rotating twin screw extruder with the following temperature profile 140 - 150 - 160 - 160 ° C from feed to die or in a twin screw mixer.
  • the extruded nanocomposites were granulated and injected, with a closing force of 65 tons, screw L / D ratio of 20 and a thread diameter of 35 mm and a process temperature of 180 to 200 ° C.
  • the mechanical tests were performed in a universal testing machine, using specimens according to ASTM D 638-08.
  • the clearance speed between the claws was 50 mm-min "1 and load cell of 500 kgf. 10 specimens per composition were analyzed.

Abstract

Use of an ammonium salt-free organophilic nanostructured clay in polyethylene, which comprises the preparation of a nanocomposite using the molten polymer intercalation technique, via three different forms of processing, using a polymer belonging to the family of polyolefins, preferably a polyethylene (low-density, high-density, linear low-density) and a natural clay belonging to the family of phyllosilicates, preferably from the group 2:1, modified with a surfactant derived from carboxylic acid. Recommended for this invention is sodium stearate, CH3(CH2)16COO-Na+, or sodium lauryl sulphate, CH3(CH2)11SO4 -Na+ (methodology pending patenting under DEPR 015100000646), i.e. a surfactant other than an ammonium salt.

Description

"APLICAÇÃO DE UMA ARGILA NANOESTRUTURADA ORGANOFILICA LIVRE DE SAL DE AMÓNIO EM POLIETILENO"  "APPLICATION OF A NON-STRUCTURED ORGANOPHILIC CLAY FREE OF AMMONIUM SALT IN POLYETHYLENE"
CAMPOS DA INVENÇÃO  FIELDS OF THE INVENTION
A presente invenção trata da incorporação de uma argila organofílica nanoestruturada livre de sal de amónio, em polietileno. Esta argila foi obtida a partir do tratamento químico de uma argila pura natural com um agente tensoativo derivado de ácido carboxílico ou derivado de alquil sulfato ou propil sulfato e, de um agente químico que modifica o agente tensoativo no interior da argila e a argila propriamente dita (metodologia sob fase de obtenção de patente - DEPR 015100000646)  The present invention is concerned with the incorporation of an ammonium salt free nanostructured organophilic clay into polyethylene. This clay was obtained from the chemical treatment of a pure natural clay with a carboxylic acid or alkyl sulfate or propyl sulfate derived surfactant and from a chemical that modifies the surfactant within the clay and the clay itself. (patent-pending methodology - DEPR 015100000646)
FUNDAMENTOS DA INVENÇÃO  BACKGROUND OF THE INVENTION
O polietileno é dos polímeros poliolefínicos mais amplamente utilizados e, pode ser produzido em diferentes formas. Atualmente, existe um grande número de polietilenos, que variam entre si na quantidade e tamanho das ramificações além da distribuição de peso molecular [Pettarin, V.; Frontini, P. M; Pita, V. J. R. R.; Dias, M. L.; Diaz, F. V. Polyethylene /(organo-montmorillonite) composites modified with ethylene/methacrylic acid copolymer: Morphology and mechanical properties, Composites Part A: Applied Science and Manufacturing, v. 39, p. 1822-1828, 2008. Kuila, T.; Srivastava, S. K; Bhowmick, A. K.; Saxena, A. K. Thermoplastic polyolefin based polymer - blend-layered double hydroxide nanocomposites, Composites Science and Technology, v. 68, p. 3234-3239, 2008. Munaro, M.; Desenvolvimento de blendas de polietileno com desempenho aperfeiçoado para utilização no setor elétrico. Tese de Doutorado - Universidade Federal do Paraná, 2007].  Polyethylene is one of the most widely used polyolefin polymers and can be produced in different forms. Currently, there are a large number of polyethylenes, which vary in number and size of branches beyond molecular weight distribution [Pettarin, V .; Frontini, P. M; Pita, V.J. R. R .; Dias, M.L .; Diaz, F. V. Polyethylene / (organo-montmorillonite) modified composites with ethylene / methacrylic acid copolymer: Morphology and mechanical properties, Composites Part A: Applied Science and Manufacturing, v. 39, p. 1822-1828, 2008. Kuila, T .; Srivastava, S. K; Bhowmick, A. K .; Saxena, A. K. Thermoplastic polyolefin based polymer - blend-layered double hydroxide nanocomposites, Composites Science and Technology, v. 68, p. 3234-3239, 2008. Munaro, M .; Development of polyethylene blends with improved performance for use in the electrical sector. Doctoral Thesis - Federal University of Paraná, 2007].
Conforme as condições reacionais e do sistema catalítico empregado na polimerização, podem ser obtidos cinco tipos de polietilenos: polietileno de baixa densidade (PEBD); polietileno de alta densidade (PEAD); polietileno de baixa densidade linear (PEBDL); polietileno de ultra alta massa molar (PEUAMM); polietileno de ultra baixa densidade (PEUBD).  Depending on the reaction conditions and the catalytic system employed in polymerization, five types of polyethylenes can be obtained: low density polyethylene (LDPE); high density polyethylene (HDPE); linear low density polyethylene (LLDPE); ultra high molar mass polyethylene (PEUAMM); ultra low density polyethylene (PEUBD).
As propriedades mecânicas, sofrem uma forte influência do peso molecular, do teor de ramificações, da estrutura morfológica e da orientação das cadeias durante o processamento [MUNARO, M.; Desenvolvimento de blendas de polietileno com desempenho aperfeiçoado para utilização no setor elétrico. Tese de Doutorado - Universidade Federal do Paraná, 2007].  Mechanical properties are strongly influenced by molecular weight, branch content, morphological structure and chain orientation during processing [MUNARO, M .; Development of polyethylene blends with improved performance for use in the electrical sector. Doctoral Thesis - Federal University of Paraná, 2007].
Recentemente, a maior petroquímica brasileira - BRASKEM - desenvolveu o primeiro polímero certificado em todo o mundo proveniente de fonte 100 % renovável (cana-de-açúcar), denominado Polietileno Verde. Este polímero reúne benefícios ambientais e vantagens técnicas às formas de fácil processabilidade dos olefínicos. Sendo a produção do eteno verde, polimerizada em PEAD e PEBDL, para as mais diversificadas áreas de transformação, como sopro para grandes volumes, moldagem por injeção e rotomoldagem [CATÁLOGO DE PRODUTOS - BRASKEM. Disponível em http://vvww.braskem.com.br/site/portal_braskem/pt/produtos_e_servicos/boletins/pd f_catalogos/PVerdepdf. Acesso em 03/11/2010 às 15:25]. Recently, the largest Brazilian petrochemical company - BRASKEM - developed the world's first certified polymer from a 100% renewable source (sugar cane) called Green Polyethylene. This polymer combines environmental benefits and technical advantages with the easily processable forms of olefins. Being the production of green ethylene, polymerized in HDPE and LLDPE, for the most diversified areas of transformation, such as high volume blow molding, injection molding and rotomolding [PRODUCT CATALOG - BRASKEM. Available at http://vvww.braskem.com.br/site/portal_braskem/en/produtos_e_servicos/boletins/pd f_catalogos / PVerdepdf. Access on 11/03/2010 at 15:25].
No mercado de polietileno, uma das tendências está nas embalagens para comercialização de carnes, frango, queijo e frios tanto no mercado interno como para exportação. As embalagens, neste caso, precisam suprir uma série de exigências que vão da melhor visualização do produto e aumento da vida útil a resistência à barreira, além da espessura, outro fator importante, fazer embalagens melhores com uma menor quantidade de matéria-prima, é a tendência do mercado atual, e vai ao encontro de outra preocupação que é sustentabilidade [HAYASAKI, M. Compromisso com a Inovação. PACK Embalagens, Tecnologia e Inovação, n. 10, ano 10, p. 19-21 , 2008]. Um produto precisa proporcionar a atração do consumidor ao mesmo tempo em que ofereça uma embalagem menos agressiva ao meio ambiente à sua volta e que crie uma oportunidade de menor custo, o que será repassado para a comunidade [Monteiro, S. Embalagens mais amigas do meio ambiente: por onde começar? PACK Embalagens, Tecnologia e Inovação, n.10, ano 10, p. 38-39, 2008].  In the polyethylene market, one of the trends is in the packaging for marketing meat, chicken, cheese and cold both in the domestic and export markets. Packaging, in this case, has to meet a range of requirements ranging from better product visualization and increased shelf life to barrier resistance, in addition to thickness, another important factor, making better packaging with less raw material is current market trend, and meets another concern that is sustainability [HAYASAKI, M. Commitment to Innovation. PACK Packaging, Technology and Innovation, n. 10, year 10, p. 19-21, 2008]. A product needs to provide consumer appeal while offering less environmentally friendly packaging around it and creating a lower cost opportunity that will be passed on to the community [Monteiro, S. Environmentally Friendly Packaging environment: where to start? PACK Packaging, Technology and Innovation, n.10, year 10, p. 38-39, 2008].
O campo de aplicação dos polímeros tem sido largamente ampliado nos últimos anos, ocupando espaços antes pertencentes aos outros materiais como as cerâmicas e metais [Camargo, P. H. C; Satyanarayana, K. G.; Wypych, F.. Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Materials Research, 12, 1-39, 2009]. Estas novas aplicações requerem, necessariamente, novas propriedades muitas vezes não alcançadas com o emprego do polímero puro. É dentro deste contexto que está inserido o ramo da química de materiais que trata da modificação das propriedades destes sólidos, através da preparação de nanocompósitos polímero/material nanoparticulado.  The field of application of polymers has been greatly expanded in recent years, occupying spaces previously belonging to other materials such as ceramics and metals [Camargo, P. H. C; Satyanarayana, K. G .; Wypych, F. .. Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Materials Research, 12, 1-39, 2009]. These new applications necessarily require new properties often not achieved with the use of pure polymer. It is within this context that the branch of materials chemistry that deals with the modification of the properties of these solids is inserted through the preparation of polymer nanocomposites / nanoparticulate material.
Entre os nanomateriais utilizados na preparação dos nanocompósitos, 70% do volume utilizado é de argilas organofílicas também conhecidas como nanoargilas ou argilas nanoparticuladas, que são obtidas através de bentonitas, uma argila de granulação muito fina, composta essencialmente por argilominerais de grupo das esmecitas, sendo mais comum a montmorilonita em concentrações que podem variar de 60 a 95% [PAIVA, L. B.; MORALES, A. R. 51° Congresso Brasileiro de Cerâmica, 2007]. Among the nanomaterials used in the preparation of nanocomposites, 70% The volume used is organophilic clays also known as nanoargils or nanoparticulate clays, which are obtained from bentonites, a very fine-grained clay composed essentially of smecite group clay minerals, with montmorillonite in concentrations ranging from 60% more common. 95% [PAIVA, LB; MORALES, AR 51st Brazilian Congress of Ceramics, 2007].
O interesse nos nanocompósitos polímero/nanoargila cresceu rapidamente desde a descoberta feita por um grupo de pesquisadores da Toyota. Eles obtiveram nanocompósitos de nylon-6/argila organofílica por meio do processo de polimerização in situ da ε-caprolactona. O resultado foi uma melhoria significativa em diversas propriedades quando comparadas àquelas do polímero puro [Ray, S. S.; Okamoto, M.. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, v. 28, p. 1539-1641 , 2003].  Interest in polymer nanocomposites has grown rapidly since the discovery by a group of Toyota researchers. They obtained nylon-6 / organophilic clay nanocomposites by the in situ polymerization process of ε-caprolactone. The result was a significant improvement in several properties compared to those of pure polymer [Ray, S. S .; Okamoto, M .. Polymer / layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, v. 28, p. 1539-1641, 2003].
Os nanocompósitos apresentam grandes vantagens em relação ao material virgem ou a micro ou macro-compósitos convencionais, pois com o emprego de baixos teores de carga (até 5 % em massa), o que os diferencia dos compósitos tradicionais onde a porcentagem em massa pode chegar a 40 %, pode-se conseguir, o aumento significativo do módulo, da resistência à tração e da temperatura de distorção térmica, diminuição da permeabilidade e da inflamabilidade, e aumento da biodegradabilidade nos polímeros biodegradáveis, sem aumentar muito a densidade do material, mantendo o brilho e a transparência, com aplicações estratégicas no parque industrial moderno, incluindo a área de automobilística e de embalagem [Saminathan, K.; Selvakumar, P.; Bhatnagar, N. Fracture studies of polypropylene /nanoclay composite. Part I: Effect of loading rates on essential work of fracture. Polymer Testing, v. 27, n. 3, p. 296-307, 2008. Zhang, Z.; Lee, J.; Lee, S.; Heo, S.; Pittman JR, C. U. Morphology, thermal stability and rheology of poly(propylene carbonate)/organoclay nanocomposites with different pillaring agents. Polymer, v. 49, n. 12, p. 2947-2956, 2008. Qin, H.; SU, Q.; Zhang, S.; Zhao, B.; Yang, M. Thermal stability and flammability of polyamide 6,6/montmorillonite nanocomposites. Polymer, v. 44, n. 24, p. 7533-7538, 2003. Drozdov, A. D.; Jensen, E. A.; Christiansen, J. de C. Viscoelasticity of polyethylene/montmorillonite nanocomposite melts. Computational Materials Science, v. 43, n. 4, p. 1027-1035, 2008]. Na indústria automobilística o enfoque é na melhoria de propriedades mecânicas, sem comprometimento no custo e permitindo a redução no peso do produto. Na área de embalagens, que responde por 53% do mercado dos plásticos (42%, filmes flexíveis e laminados e 11% embalagens rígidas), o principal motivo é a melhoria de propriedades de barreira a gases de filmes ou de embalagens rígidas [Rodrigues, A. W.; Brasileiro, M. I.; Araújo, W. D.; Araújo, E. M.; Neves, G. A.; Melo, T. J. A. de. Desenvolvimento de nanocompósitos propileno/argila bentonita brasileira: I Tratamento de argila e influência de compatibilizantes polares nas propriedades mecânicas. Polímeros: Ciência e Tecnologia, vol. 17, n. 3, p. 219-227, 2007.; Qin, H.; Su, Q.; Zhang, S.; Zhao, B.; Yang, M. Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites. Polymer, v. 44, n. 24, p. 7533-7538, 2003. Costache, M. C; Heidecker, M. J.; Manias, E.; Camino, G.; Frache, A.; Beyer, G.; GuptA, R. K.; Wilkie, C. A. The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene. Polymer, v. 48, n. 22, p. 6532-6545, 2007]. Outra aplicação que merece destaque é a utilização de nanocompósitos para redução da carga estática, de interesse na área de embalagens para produtos inflamáveis [Costache, M. C; Heidecker, M. J.; Manias, E.; Camino, G.; Frache, A.; Beyer, G.; Gupta, R. K.; Wilkie, C. A. The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene. Polymer, v. 48, n. 22, p. 6532-6545, 2007. Zulfiqar, S.; Sarwar, M. I. Mechanical and thermal behavior of clay-reinforced aramid nanocomposite materiais. Scripta Materialia, v. 59, n. 4, p. 436-439, 2008]. Nanocomposites have great advantages over virgin material or conventional micro or macro composites, because with the use of low fillers (up to 5% by mass), which differentiates them from traditional composites where the mass percentage can reach At 40%, a significant increase in modulus, tensile strength and thermal distortion temperature can be achieved, decreased permeability and flammability, and increased biodegradability in biodegradable polymers without significantly increasing material density while maintaining brightness and transparency, with strategic applications in the modern industrial park, including the automotive and packaging area [Saminathan, K .; Selvakumar, P .; Bhatnagar, N. Fracture studies of polypropylene / nanoclay composite. Part I: Effect of loading rates on essential work of fracture. Polymer Testing, v. 27, no. 3, p. 296-307, 2008. Zhang, Z .; Lee, J .; Lee, S .; Heo, S .; Pittman JR, CU Morphology, thermal stability and rheology of poly (propylene carbonate) / organoclay nanocomposites with different pillaring agents. Polymer, v. 49, no. 12, p. 2947-2956, 2008. Qin, H .; SU, Q .; Zhang, S .; Zhao, B .; Yang, M. Thermal stability and flammability of polyamide 6,6 / montmorillonite nanocomposites. Polymer, v. 44, no. 24, p. 7533-7538, 2003. Drozdov, AD; Jensen, EA; Christiansen, J. de C. Viscoelasticity of polyethylene / montmorillonite nanocomposite melts. Computational Materials Science, v. 43, no. 4, p. 1027-1035, 2008]. In the automotive industry the focus is on improving mechanical properties, without compromising on cost and allowing for a reduction in product weight. In the packaging area, which accounts for 53% of the plastics market (42%, flexible and laminated films and 11% rigid packaging), the main reason is the improvement of gas barrier properties of films or rigid packaging [Rodrigues, A W; Brazilian, MI; Araújo, WD; Araújo, MS; Neves, GA; Melo, TJA de. Development of Brazilian propylene / bentonite clay nanocomposites: I Clay treatment and influence of polar compatibilizers on mechanical properties. Polymers: Science and Technology, vol. 17, no. 3, p. 219-227, 2007; Qin, H .; Su, Q .; Zhang, S .; Zhao, B .; Yang, M. Thermal stability and flammability of polyamide 66 / montmorillonite nanocomposites. Polymer, v. 44, no. 24, p. 7533-7538, 2003. Costache, M. C; Heidecker, MJ; Manias, E .; Camino, G .; Frache, A .; Beyer, G .; GuptA, RK; Wilkie, CA The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene. Polymer, v. 48, no. 22, p. 6532-6545, 2007]. Another noteworthy application is the use of nanocomposites to reduce the static charge, of interest in the area of packaging for flammable products [Costache, M. C; Heidecker, MJ; Manias, E .; Camino, G .; Frache, A .; Beyer, G .; Gupta, RK; Wilkie, CA The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene. Polymer, v. 48, no. 22, p. 6532-6545, 2007. Zulfiqar, S .; Sarwar, MI Mechanical and thermal behavior of clay-reinforced aramid nanocomposite materials. Scripta Materialia, v. 59, no. 4, p. 436-439, 2008].
No entanto, para a obtenção de nanocompósitos, em geral, é necessária a realização de uma modificação química na montmorilonita, permitindo uma melhor dispersão e adesão desta na matriz polimérica, são passos cruciais para se atingir o ganho esperado nas propriedades:  However, to obtain nanocomposites, in general, it is necessary to perform a chemical modification in the montmorillonite, allowing a better dispersion and adhesion of this in the polymeric matrix, are crucial steps to achieve the expected gain in properties:
i) modificar quimicamente a montmorilonita através de um processo economicamente viável para a indústria, pois as argilas organofílicas para nanocompósitos poliméricos são importadas e tem um custo elevado para o mercado nacional, o que dificulta novos desenvolvimentos nesta área;  (i) chemically modify montmorillonite through an economically viable process for industry, as organophilic clays for polymeric nanocomposites are imported and costly to the domestic market, which hinders further developments in this area;
ii) diminuir perdas de material no processo; iii) obter nanocompósitos que poderão reduzir a quantidade de matéria- prima virgem utilizada, sem perda de propriedades. ii) decrease material losses in the process; iii) obtain nanocomposites that can reduce the amount of virgin raw material used without loss of properties.
Dependendo da natureza dos componentes usados e do método de preparação, dois tipos de nanocompósitos polímero/nanoargila podem ser obtidos: /) Nanocompósitos com estrutura intercalada: são formados quando a cadeia polimérica está intercalada entre as lamelas de um silicato, resultando em uma morfologia em multicamadas bem ordenada, com alternância entre as fases inorgânica e orgânica; /'/) Nanocompósitos com estrutura esfoliada: são formados quando as lamelas das argilas estão dispersas uniformemente (esfoliadas) como entidades individuais em uma matriz polimérica contínua [Camargo, P. H. C; Satyanarayana, K. G.; Wypych, F.. Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Materials Research, 12, 1-39, 2009]. Análises por difratometria de raios X e microscopia eletronica de transmissão são usualmente empregadas na caracterização estrutural destes materiais [Patente, PI 0601384-8 A]. Depending on the nature of the components used and the method of preparation, two types of polymer / nanoargyl nanocomposites can be obtained: /) Interleaved structure nanocomposites: formed when the polymeric chain is interspersed between the silicate lamellae, resulting in a morphology of well-ordered multilayer, alternating between inorganic and organic phases; / ' /) Exfoliated structure nanocomposites: These are formed when the lamellae of clays are uniformly dispersed (exfoliated) as individual entities in a continuous polymeric matrix [Camargo, PH C; Satyanarayana, KG; Wypych, F. .. Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Materials Research, 12, 1-39, 2009]. Analyzes by X-ray diffraction and transmission electron microscopy are usually employed in the structural characterization of these materials [Patent, PI 0601384-8 A].
Diferentes metodologias podem ser empregadas na preparação de nanocompósitos polímero/nanoargila. Os quatro principais processos são: /) Esfoliação-adsorção; /'/) Intercalação por polimerização in situ; iii) síntese em matriz polimérica; /V) Intercalação no estado fundido [Esteves, A. C. C; Barros-Timmons, A.; Trindade, T. Nanocompósitos de matriz polimérica: Estratégias de síntese de materiais híbridos. Química Nova, v. 27, n. 5, p. 798-806, 2004; Patente, PI0601384-8A]. Different methodologies may be employed in the preparation of polymer nanocomposites. The four main processes are: /) Exfoliation-adsorption; / ' /) In situ polymerization interleaving; iii) polymeric matrix synthesis; / V) Merging in the molten state [Esteves, AC C; Barros-Timmons, A .; Trindade, T. Polymeric matrix nanocomposites: Synthesis strategies of hybrid materials. New Chemistry, v. 27, no. 5, p. 798-806, 2004; Patent, PI0601384-8A].
O processo de esfoliação-adsorção é um caso particular do método de mistura simples de componentes usado na preparação de compósitos a nível industrial. As cargas utilizadas, geralmente são de estruturas lamelares que podem ser parcial ou totalmente delaminados com a introdução de espécies químicas entre as camadas inorgânicas. A preparação de um nanocompósito pelo processo de esfoliação-adsorção é viável somente se o polímero em questão for solúvel num determinado solvente, no qual o material inorgânico possa ser delaminado, pois ao ser adicionado na solução do polímero, as lamelas organizam-se espontaneamente para formar nanocompósitos ordenados [Esteves, A. C. C; Barros-Timmons, A.; Trindade, T. Nanocompósitos de matriz polimérica: Estratégias de síntese de materiais híbridos. Química Nova, v. 27, n. 5, p. 798-806, 2004]. O trabalho de Lan e colaboradores é um dos vários estudos utilizando o processo de esfoliação-adsorção a fim de obter nanocompósitos com estruturas esfoliadas. Neste caso, o material obtido foi um nanocompósito de epóxi-argila ao qual foi avaliada a influência da esfoliação da argila nas propriedades mecânicas e além do estudo do mecanismo de inchamento da argila pela resina epóxi [Lan, T.; Kaviratna, P. D.; Pinnavaia, T. J. Mechanism of clay tactoid exfoliation in epoxy- clay nanocomposites. Chemistry of Materials, v. 7, p. 2144-2150, 1995]. The exfoliation-adsorption process is a particular case of the simple component mixing method used in the preparation of composites at industrial level. The fillers generally used are lamellar structures that can be partially or totally delaminated with the introduction of chemical species between the inorganic layers. The preparation of a nanocomposite by the exfoliation-adsorption process is feasible only if the polymer in question is soluble in a particular solvent in which the inorganic material can be delaminated, because when added to the polymer solution the lamellae are spontaneously organized to form ordered nanocomposites [Esteves, AC C; Barros-Timmons, A .; Trindade, T. Polymeric matrix nanocomposites: Synthesis strategies of hybrid materials. New Chemistry, v. 27, no. 5, p. 798-806, 2004]. The work of Lan and colleagues is one of several studies using the exfoliation-adsorption process to obtain nanocomposites with exfoliated structures. In this case, the material obtained was an epoxy clay nanocomposite which was evaluated the influence of clay exfoliation on mechanical properties and in addition to the study of the clay swelling mechanism by epoxy resin [Lan, T .; Kaviratna, PD; Pinnavaia, TJ Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chemistry of Materials, v. 7, p. 2144-2150, 1995].
A técnica intercalativa por polimerização in situ consiste no inchamento da argila no monômero ou em uma solução do monômero e posteriormente, a polimerização é conduzida por aquecimento ou radiação na presença ou não de iniciador. Este procedimento permite também a formação de estruturas intercaladas e/ou esfoliadas, visto a possibilidade de polimerização na região interlamelar [Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materiais. Materials Science and Engineering, v. 28, p.1-63, 2000].  The intercalative in situ polymerization technique consists of swelling of the clay in the monomer or a solution of the monomer and subsequently, the polymerization is conducted by heating or radiation in the presence or absence of initiator. This procedure also allows the formation of intercalated and / or exfoliated structures, given the possibility of polymerization in the interlamellar region [Alexandre, M .; Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering, v. 28, pp. 1-63, 2000].
As propriedades físicas e químicas dos nanocompósitos obtidos por esse processo podem ser influenciadas pela escolha do método de polimerização. Um exemplo é a vantagem em produzir os nanocompósitos via polimerização em emulsão devido ao controle da massa molecular e da distribuição de massas moleculares do polímero [Esteves, A. C. C; Barros-Timmons, A.; Trindade, T. Nanocompósitos de matriz polimérica: Estratégias de síntese de materiais híbridos. Química Nova, v. 27, n. 5, p. 798-806, 2004].  The physical and chemical properties of nanocomposites obtained by this process can be influenced by the choice of polymerization method. An example is the advantage of producing nanocomposites via emulsion polymerization due to molecular weight control and molecular weight distribution of the polymer [Esteves, A. C. C; Barros-Timmons, A .; Trindade, T. Polymeric matrix nanocomposites: Synthesis strategies of hybrid materials. New Chemistry, v. 27, no. 5, p. 798-806, 2004].
Comumente, a técnica é empregada na preparação de nanocompósitos de polímeros amorfos, tais como, o poliestireno (PS) e poli(metacrilato de metila) (PMMA). Como relatado na literatura, o sítio reativo para a polimerização reside nas galerias interlamelares e a força motriz gerada na reação de polimerização promove o efeito de dispersar as lamelas da argila [Bottino, F.A.; Fabbri, E.; Fragala, I.L.; Malandrino, G.; Orestano, A.; Pilati, F.; Pollicino, A. Polystyrene-clay nanocomposites prepared with polymerizable imidazolium surfactants. Macromolecular Rapid Communications, v. 24, n. 8, p. 1079-1084, 2003]. Fu e Qutubuddin (2001) utilizando o método de polimerização in situ obtiveram nanocompósitos com elevado grau de esfoliação e propriedades mecânicas e térmicas melhores que o polímero puro [Fu, X.; Qutubuddin, S. Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer, v. 42, p. 807-813, 2001 ]. Commonly, the technique is employed in the preparation of amorphous polymer nanocomposites such as polystyrene (PS) and polymethyl methacrylate (PMMA). As reported in the literature, the reactive site for polymerization resides in the interlamellar galleries and the driving force generated in the polymerization reaction promotes the effect of dispersing the clay lamellae [Bottino, FA; Fabbri, E .; Fragala, IL; Malandrino, G .; Orestano, A .; Pilati, F .; Pollicino, A. Polystyrene-clay nanocomposites prepared with polymerizable imidazolium surfactants. Macromolecular Rapid Communications, v. 24, no. 8, p. 1079-1084, 2003]. Fu and Qutubuddin (2001) using the in situ polymerization method obtained nanocomposites with a high degree of exfoliation and better mechanical and thermal properties than pure polymer [Fu, X .; Qutubuddin, S. Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer, v. 42, p. 807-813, 2001].
No documento de patente PI0704383-0 é descrito o procedimento de obtenção de nanocompósitos de poliolefinas com estrutura intercalada ou esfoliada, utilizando uma argila modificada para preparar um catalisador metalocênico sólido para reações de polimerização in situ de olefinas. A evidência das estruturas dos nanocompósitos foi investigada pelas técnicas de difração de raios X e microscopia eletrônica de transmissão [Patente, PI0704383-0].  Patent document PI0704383-0 describes the procedure for obtaining interleaved or exfoliated polyolefin nanocomposites using a modified clay to prepare a solid metallocene catalyst for in situ olefin polymerization reactions. Evidence of nanocomposite structures was investigated by X-ray diffraction and transmission electron microscopy techniques [Patent, PI0704383-0].
No caso da técnica de síntese em matriz polimérica, as propriedades do nanocompósito são dadas de certa maneira pela matriz polimérica que atua como molde. Esta técnica é amplamente usada na preparação de nanocompósitos com os hidróxidos duplos lamelares, sendo muitas vezes adaptada para sistemas em solução aquosa. O método procede através da cristalização de estruturas ordenadas em camada, a partir de uma solução aquosa dos precursores inorgânicos que contém o polímero. Desta forma, o polímero fica retido no interior das camadas durante o processo de formação dos cristais inorgânicos [Esteves, A. C. C; Barros-Timmons, A.; Trindade, T. Nanocompósitos de matriz polimérica: Estratégias de síntese de materiais híbridos. Química Nova, v. 27, n. 5, p. 798-806, 2004].  In the case of the polymeric matrix synthesis technique, the properties of the nanocomposite are given in some way by the polymeric matrix that acts as a mold. This technique is widely used in the preparation of nanocomposites with double lamellar hydroxides and is often adapted for aqueous solution systems. The method proceeds by crystallizing layered ordered structures from an aqueous solution of the inorganic precursors containing the polymer. In this way, the polymer is trapped within the layers during the inorganic crystal formation process [Esteves, A. C. C; Barros-Timmons, A .; Trindade, T. Polymeric matrix nanocomposites: Synthesis strategies of hybrid materials. New Chemistry, v. 27, no. 5, p. 798-806, 2004].
Este método foi descrito por Oriakhi e colaboradores na preparação de nanocompósitos lamelares contendo poli(óxido de etileno) [Oriakhi, C. O. Polymer nanocomposition approach to advanced materiais. Journal of Chemical Education, v. 77, n. 9, p. 1 138-1146, 2000] e Messersmith e colaboradores prepararam os materiais com os hidróxidos duplo lamelares de cálcio e alumínio com o polímero poli(vinil álcool) (PVA) intercalado [Messersmith, P. B.; Stupp, S. I. High- temperature chemical and microstructural transformations of a nanocomposite organoceramic. Chemistry of Materials, v. 7, p. 454-460, 1995].  This method has been described by Oriakhi and colleagues in the preparation of lamellar nanocomposites containing poly (ethylene oxide) [Oriakhi, C. O. Polymer nanocomposition approach to advanced materials. Journal of Chemical Education, v. 77, no. 9, p. 1,138-1146, 2000] and Messersmith et al. Prepared materials with the double lamellar calcium and aluminum hydroxides with the intercalated poly (vinyl alcohol) (PVA) polymer [Messersmith, P. B .; Stupp, S. I. High-temperature chemical and microstructural transformations of an organoceramic nanocomposite. Chemistry of Materials, v. 7, p. 454-460, 1995].
Na obtenção de nanocompósitos diretamente por intercalação do polímero fundido o primeiro relato foi feito por Giannelis e colaboradores [Vaia, R. A.; Giannelis, E. P.. Lattice of polymer melt intercalation in organically-modified layered silicates. Macromolecules, v. 30, p. 7990-7999, 1997]. Esta metodologia tornou-se o principal meio de obtenção destes materiais, por ser a alternativa mais eficiente, simples e económica. Além disso, é uma técnica ambientalmente apropriada e compatível com processos industriais por não utilizarem solventes.  In obtaining nanocomposites directly by melt polymer intercalation the first report was made by Giannelis and colleagues [Vaia, R. A .; Giannelis, E. P. Lattice of polymer melt intercalation in organically-modified layered silicates. Macromolecules, v. 30, p. 7990-7999, 1997]. This methodology has become the main means of obtaining these materials, as it is the most efficient, simple and economical alternative. In addition, it is an environmentally appropriate technique and compatible with industrial processes as it does not use solvents.
Nesta técnica, o polímero fundido é misturado com a argila de forma a permitir a intercalação das cadeias poliméricas entre as lamelas. Os materiais poliméricos resultantes de uma expansão finita das lamelas produzem nanocompósitos intercalados. Quando a penetração das cadeias poliméricas é suficiente para aumentar a distância interlamelar, a ponto de anular o efeito das forças atrativas entre as mesmas, obtém-se um nanocompósito delaminado, onde as lamelas passam a se comportar como entidades individuais dispersas na matriz polimérica [Paul, D. R.; Roberson, L. M.. Polymer nanotechnology: Nanocomposites. Polymer, v. 49, p. 3187-3204, 2008]. In this technique, the molten polymer is mixed with the clay to allow interleaving of the polymeric chains between the coverslips. The polymeric materials resulting from finite expansion of the lamellae produce intercalated nanocomposites. When the penetration of the polymer chains is sufficient to increase the interlamellar distance, to the point of nullifying the effect of the attractive forces between them, a delaminated nanocomposite is obtained, where the lamellae behave as individual entities dispersed in the polymeric matrix [Paul , DR; Roberson, LM. Polymer nanotechnology: Nanocomposites. Polymer, v. 49, p. 3187-3204, 2008].
Os nanocompósitos obtidos através deste processo têm sido intensivamente pesquisados, principalmente com as matrizes poliméricas da classe das poliolefinas [Barbosa, R.; Araújo, E. M.; Maia, L. F.; Pereira, O. D.; Melo, T. J. A.; Ito, E. N. Morfologia de nanocompósitos de polietileno e poliamida-6 contendo argila nacional. Polímeros: Ciência e Tecnologia, v. 16, n. 3, p. 246-251 , 2006; Pettarin, V.; Frontini, P. M., Pita, V. J. R. R.; Dias, M. L; Diaz, F. V. Polyethylene/(organo-montmorillonite) composites modified with ethylene/methacrylic acid copolymer: morphology and mechanical properties. Composites: Part A, v. 39, p. 1822-1828, 2008], acrílicos [Huskic, M.; Zigon, M. PMMA/MMT nanocomposites prepared by one-step in situ intercalative solution polymerization. European Polymer Journal, v. 43, p. 4891-4897, 2007; Zhao, Q.; Samulski, E. T. A comparative study of poly(methyl methacrylate and polystyrene/clay nanocomposites prepared in supercritical carbon dioxide. Polymer v. 47, p. 663-671 , 2006], vinílicos [Ren, J.; Huang, Y.; Liu, Y.; Tang, X. Preparation, characterization and properties of poly(vinyl chloride) /compatibilizer/organophilic- montmorillonite nanocomposites by melt intercalation. Polymer Testing, v. 24, n. 3, p. 316-323, 2005; Awad, W. H.; Beyer, G.; Benderly, D.; Ijdo, W. L; Songtipya, P.; Jimenez-Gasco, M. M.; Manias, E.; Wilkie, C. A. Material properties of nanoclay PVC composites. Polymer, v. 50, p. 1857-1867, 2009; Madaleno, L; Schjodt- Thomsen, J.; Pinto, J. C. Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending+melt compounding. Composites Science and Technology, v. 70, p. 804- 814, 2010], poliésteres [Costache, M. C; Heidecker, M. J.; Manias, E.; Wilkie, C. A. Preparation and characterization of poly(ethylene terephthalate)/clay nanocomposites by melt blending using thermally stable surfactants. Polymers for advanced Technologies, v. 17, p. 764-771 , 2006] e poliamidas [Hasegawa, N.; Okamoto, H.; Kato, M.; Usuki, A.; Sato, N. Nylon 6/Na-montmorillonite nanocomposites prepared by compounding Nylon 6 with Na-montmorillonite slurry. Polymer, v. 44, p. 2933-2937, 2003]. The nanocomposites obtained through this process have been intensively researched, mainly with the polyolefin class polymeric matrices [Barbosa, R .; Araújo, MS; Maia, LF; Pereira, OD; Melo, TJA; Ito, EN Morphology of polyethylene and polyamide-6 nanocomposites containing national clay. Polymers: Science and Technology, v. 16, no. 3, p. 246-251, 2006; Pettarin, V .; Frontini, PM, Pita, VJRR; Dias, M.L; Diaz, FV Polyethylene / (organo-montmorillonite) modified composites with ethylene / methacrylic acid copolymer: morphology and mechanical properties. Composites: Part A, v. 39, p. 1822-1828, 2008], acrylics [Huskic, M .; Zigon, M. PMMA / MMT nanocomposites prepared by one-step in situ intercalative solution polymerization. European Polymer Journal, v. 43, p. 4891-4897, 2007; Zhao, Q .; Samulski, ET A comparative study of poly (methyl methacrylate and polystyrene / clay nanocomposites prepared in supercritical carbon dioxide. Polymer v. 47, pp. 663-671, 2006), vinyls [Ren, J .; Huang, Y .; Liu, Y, Tang, X. Preparation, Characterization, and Properties of Poly (Vinyl Chloride) / Compatibilizer / Organophilic-Montmorillonite Nanocomposites by Melt Intercalation Polymer Testing, v. 24, No. 3, pp. 316-323, 2005; WH; Beyer, G.; Benderly, D.; Ijdo, W. L. Songtipya, P.; Jimenez-Gasco, MM; Manias, E.; Wilkie, CA Material properties of nanoclay PVC composites. Polymer, v. 50, 1857-1867, 2009; Madaleno, L.; Schjodt-Thomsen, J.; Pinto, JC Morphology, thermal and mechanical properties of PVC / MMT nanocomposites prepared by blending solution and solution blending + melt compounding. 70, pp 804-814, 2010], polyesters [Costache, M.C; Heidecker, MJ; Manias, E.; Wilkie, CA Preparation and characterization of poly (ethylene terephthalate) / clay nanocomposites by melt blending using thermally stable surfactants. Polymers for Advanced Technologies, v. 17, p. 764-771, 2006] and polyamides [Hasegawa, N .; Okamoto, H .; Kato, M .; Usuki, A .; Sato, N. Nylon 6 / Na-montmorillonite nanocomposites prepared by compounding Nylon 6 with Na-montmorillonite slurry. Polymer, v. 44, p. 2933-2937, 2003].
Atualmente, foi superado um dos grandes desafios na preparação e obtenção de nanocompósitos poliméricos com propriedades físico-químicas e mecânicas ideais através das modificações química das argilas. Como dito anteriormente, determinados fatores são alcançados o que torna o processo necessário e viável. O exemplo do argilomineral esmectítico montmorilonita, um dos mais comuns e usado, apresenta uma estrutura em camadas empilhadas face a face do tipo 2:1 , formando um retículo cristalino. As camadas ou placas são compostas por duas folhas de sílica (nSi02) distribuído tetraed ricamente e um folha de alumina (nAI203) entre elas ligadas quimicamente e distribuído octaédricamente. A composição química geral da montmorilonita é dada pela fórmula: Currently, one of the major challenges in the preparation and obtaining of polymeric nanocomposites with ideal physicochemical and mechanical properties through the chemical modifications of clays has been overcome. As stated earlier, certain factors are achieved which makes the process necessary and viable. The example of the montmorillonite smectitic clay mineral, one of the most common and used, presents a 2: 1 stacked face-to-face layered structure forming a crystalline reticulum. The layers or sheets are comprised of two sheets of silica (nSi0 2) and richly distributed tetraed an alumina sheet (NAI 2 0 3) therebetween and distributed octahedrally chemically bonded. The general chemical composition of montmorillonite is given by the formula:
(M+y .nH20)(AI3+2.yMg2+y)Si4+ 401o(OH)2 (M + y .nH 2 0) (AI 3+ 2.yMg 2+ y) Si 4+ 4 0 1 o (OH) 2
sendo M+ representa os cátions trocáveis existentes entre as camadas estruturais [Ray, S. S.; Okamoto, M.. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, v. 28, p. 1539- 1641 , 2003]. where M + represents the exchangeable cations existing between the structural layers [Ray, SS; Okamoto, M .. Polymer / layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, v. 28, p. 1539-1641, 2003].
Contudo, a composição química das montmorilonitas pode variar, pois substituições isomórficas ocorrem na estrutura cristalina pela troca dos íons Si4+ das folhas tetraédricas pelos íons Al3+ e a outra parte, os íons Al3+ das folhas octaédricas podem ser substituídos por íons Mg2+ ou Fe3+. Como consequência deste processo, a cela unitária do argilomineral torna negativamente carregada e o balanceamento elétrico é feito pela presença de um íon positivo, conhecido como um cátion trocável. O cátion representado por M+ ocupa o espaço interlamelar ou comumente chamado de galerias, sendo assim, permanecendo entre as camadas empilhadas [Bergaya, F.; Theng, B. K. G.; Lagaly, G. Handbook of clays science, 1a ed., Elsevier Science: Amsterdan, 2006; Coelho, A. C. V.; Santos, P. S.; Santos, H. S. Argilas especiais: Argilas quimicamente modificadas - uma revisão. Química Nova, v. 30, n. 5, p. 1282-1294, 2007]. Geralmente, são os cátions Na+, Li+ e Ca2+ podendo ainda apresentar moléculas de água nas galerias. However, the chemical composition of montmorillonites may vary, as isomorphic substitutions occur in the crystal structure by exchanging Si 4+ ions from tetrahedral leaves with Al 3+ ions and the other part, Al 3+ ions from octahedral leaves can be replaced by ions. Mg 2+ or Fe 3+ . As a consequence of this process, the unit clay cell becomes negatively charged and the electric balancing is done by the presence of a positive ion, known as an exchangeable cation. The cation represented by M + occupies the interlamellar space or commonly called galleries, thus remaining between the stacked layers [Bergaya, F .; Theng, BKG; Lagaly, G. Handbook of clays Science, ed 1, Elsevier Science:. Amsterdam, 2006; Rabbit, LCA; Santos, PS; Santos, HS Special Clays: Chemically Modified Clays - A Review. New Chemistry, v. 30, no. 5, p. 1282-1294, 2007]. Generally, they are Na + , Li + and Ca 2+ cations and can also present water molecules in the galleries.
A montmorilonita assim como outros argilominerais, tem a capacidade de inchamento na presença de água, pois pela hidratação interlamelar ocorre o afastamento das lamelas possibilitando a acessibilidade dos íons trocáveis. Sendo assim, os íons estão relativamente mais disponíveis para a permuta com outros íons ou estruturas iónicas. Montmorillonite, like other clay minerals, has the capacity to swell in the presence of water, because interlamellar hydration occurs. spacing of the coverslips allowing the accessibility of exchangeable ions. Therefore, ions are relatively more readily available for exchange with other ions or ionic structures.
Em vista desta capacidade de troca iônica (CTC) das argilas, inúmeros trabalhos têm mostrado as alternativas de modificação e alteração nas propriedades dos materiais [Spencer, W. F.; Gieseking, J. E. Organic derivatives of montmorillonite. Journal Physical Chemistry, v. 56, n. 6, p. 751-753, 1952; Song, K.; Sândi, G. Characterization of montmorillonite surface after modification by organosilane. Clays and clay minerais, v. 49, n. 2, p. 119-125, 2001 ; Lopes, C. W.; Penha, F. G.; Braga, R. M.; Melo, D. M. A.; Pergher, S. B. C; Petkowicz, D. I. Síntese e caracterização de argilas organofílicas contendo diferentes teores do surfactante catiônico brometo de hexadeciltrimetilamônio. Química Nova, v. 34, n. 7, p. 1 152-1156, 201 1].  In view of this ion exchange capacity (CTC) of clays, numerous studies have shown the alternatives of modification and alteration in material properties [Spencer, W. F .; Gieseking, J.E. Organic derivatives of montmorillonite. Journal Physical Chemistry, v. 56, no. 6, p. 751-753, 1952; Song, K .; Sândi, G. Characterization of montmorillonite surface after modification by organosilane. Clays and clay minerals, v. 49, no. 2, p. 119-125, 2001; Lopes, C. W .; Penha, F. G .; Braga, R. M .; Melo, D.M. A .; Pergher, S. B. C; Petkowicz, D. I. Synthesis and characterization of organophilic clays containing different levels of the cationic surfactant hexadecyltrimethylammonium bromide. New Chemistry, v. 34, no. 7, p. 1,152-1156,201].
Dentre os mais variados métodos de modificação das argilas destaca-se a da troca iônica com cátions orgânicos, representado principalmente pelos sais orgânicos quaternários de amónio com cadeias de 10 a 18 átomos de carbono.  Among the most varied methods of clay modification, ion exchange with organic cations, mainly represented by quaternary organic ammonium salts with chains of 10 to 18 carbon atoms, stands out.
A modificação das argilas empregando os sais de amónio introduz um caráter hidrofóbico à argila, reduzindo sua tensão superficial e, consequentemente melhorando a compatibilidade com a matriz polimérica. Este processo aumenta o espaçamento entre as lamelas, facilitando a intercalação do polímero e com isto, a delaminação da argila. Quando modificadas, usualmente com sais de alquilamônio e alquilfosfônío, as argilas são conhecidas como argilas organofílicas. Estas argilas são, atualmente, um dos principais precursores para a obtenção de nanocompósitos poliméricos, no entanto, estas apresentam algumas limitações frente às exigências na área de materiais compósitos [Patente, PI 0601384-8 A].  Modification of the clays employing the ammonium salts introduces a hydrophobic character to the clay, reducing its surface tension and consequently improving compatibility with the polymer matrix. This process increases the spacing between the coverslips, facilitating polymer intercalation and thereby delamination of the clay. When modified, usually with alkylammonium and alkylphosphonium salts, clays are known as organophilic clays. These clays are currently one of the main precursors for obtaining polymeric nanocomposites, however, they have some limitations compared to the requirements in the area of composite materials [Patent, PI 0601384-8 A].
É conhecido que as propriedades de materiais compósitos estão fortemente relacionadas com o grau de dispersão da partícula inorgânica assim como do grau de interação da matriz polimérica com a mesma. A argila, ao ser tratada com alguns sais de amónio, por exemplo, apresenta fraca interação lamela-lamela e partícula-partícula. Devido a isto, ela sofre um alto grau de delaminação e, portanto, de dispersão da argila na matriz do polímero. No entanto, este tratamento químico resulta ao mesmo tempo em uma fraca interação com o polímero. Em vista disso, apesar do nanocompósito apresentar um elevado grau de delaminação da argila na matriz polimérica, resultados na literatura mostram que, em alguns casos, não foram obtidas propriedades mecânicas superiores à de compósitos tradicionais. It is known that the properties of composite materials are strongly related to the degree of dispersion of the inorganic particle as well as the degree of interaction of the polymeric matrix with it. Clay, when treated with some ammonium salts, for example, exhibits poor lamella-lamella and particle-particle interaction. Because of this, it undergoes a high degree of delamination and therefore of dispersion of the clay in the polymer matrix. However, this chemical treatment results in poor interaction with the polymer at the same time. In view of this, although nanocomposite presents a high degree of clay delamination in the polymeric matrix, results in the literature show that in some In these cases, no higher mechanical properties were obtained than traditional composites.
O fato de alguns sais de amónio bloquearem o acesso das cadeias poliméricas aos sítios polares da argila é o que causa a fraca interação entre o polímero e esta carga. Além disso, os sais de amónio usualmente empregados na modificação química não possuem grupos funcionais em suas estruturas capazes de promover ligação química com a argila ou mesmo uma interação adequada com esta matriz [Pinavaia, T. J.; et al. Homostructured mixed organic and inorganic cation exchange tapered compositions. Int C13B22 C01 B 033/24. US 5,993,769. 14 May 1998, 30 Nov. 1999].  The fact that some ammonium salts block the access of polymer chains to the polar polar sites is what causes the weak interaction between the polymer and this charge. In addition, the ammonium salts commonly employed in chemical modification do not have functional groups in their structures capable of promoting chemical bonding with clay or even proper interaction with this matrix [Pinavaia, T. J .; et al. Homostructured mixed organic and inorganic cation exchange tapered compositions. Int C13B22 C01 B 033/24. US 5,993,769. 14 May 1998, 30 Nov. 1999].
Em alguns casos, o uso dos modificadores de amónio torna-se restritiva devido à baixa estabilidade térmica, pois dependendo do tipo de processamento empregado na obtenção de nanocompósitos a temperatura leva ao processo de degradação térmica [Park, C. I.; et al. The fabrication of syndiotactic polystyrene/organophilic clay nanocomposites and their properties. Polymer, v. 42, p. 7465-7475, 2001]. Conforme já descrito, o principal método de obtenção do nanocompósito é via intercalação ao polímero no estado fundido. Neste método, a mistura do polímero com a argila é realizada em equipamentos como extrusoras, calandras, misturadores internos, entre outros. A mistura polietileno/argila é submetida a altas temperaturas e altas taxas de cisalhamento. Sob estas condições, os sais de amónio não são suficientemente estáveis, sofrendo reação de eliminação de Hoffman [Fornes, T. D.; Yoon, P. J.; Paul, D. R.. Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites. Polymer, v. 44, p. 7545-7556, 2003].  In some cases, the use of ammonium modifiers becomes restrictive due to the low thermal stability, because depending on the type of processing employed in obtaining nanocomposites the temperature leads to the thermal degradation process [Park, C. I .; et al. The manufacture of syndiotactic polystyrene / organophilic clay nanocomposites and their properties. Polymer, v. 42, p. 7465-7475, 2001]. As already described, the principal method of obtaining the nanocomposite is via melt polymer intercalation. In this method, the polymer is mixed with clay in equipment such as extruders, calenders, internal mixers, among others. The polyethylene / clay mixture is subjected to high temperatures and high shear rates. Under these conditions, ammonium salts are not stable enough and undergo Hoffman elimination reaction [Fornes, T. D .; Yoon, P. J .; Paul, D. R .. Polymer matrix degradation and color formation in melt processed nylon 6 / clay nanocomposites. Polymer, v. 44, p. 7545-7556, 2003].
Análises termogravimétricas revelaram que a degradação dos sais de amónio ocorre em temperaturas próximas de 180 °C sob atmosfera não oxidante. Como muitos polímeros são processados em temperaturas próximas ou superiores a 180 °C, os produtos oriundos da degradação dos sais de amónio podem atuar como pró-degradantes da matriz polimérica, induzindo o aparecimento de cor e comprometendo a estabilidade térmica e propriedades do produto final [Patente, PI 0601384-8 A].  Thermogravimetric analysis revealed that the degradation of ammonium salts occurs at temperatures close to 180 ° C under non-oxidizing atmosphere. As many polymers are processed at temperatures close to or above 180 ° C, ammonium salt degradation products can act as degradants of the polymeric matrix, inducing color appearance and compromising the thermal stability and properties of the final product [ Patent, PI 0601384-8 A].
Em vista das limitações mencionadas acima, há a necessidade de se desenvolver novos processos de modificação química da argila que venham a substituir os tradicionais sais de amónio por outros agentes modificadores. Isto está baseado no sentido de atender os requisitos de estabilidade térmica, capacidade de intumescimento do mineral, bem como o de promover uma melhora na interação entre o mineral e o polímero. In view of the above-mentioned limitations, there is a need to develop new chemical clay modification processes that will replace traditional ammonium salts with other modifying agents. This It is based on meeting the requirements of thermal stability, mineral swelling capacity, as well as to promote an improved interaction between the mineral and the polymer.
BREVE DESCRIÇÃO DA INVENÇÃO  BRIEF DESCRIPTION OF THE INVENTION
A presente invenção relata diferentes metodologias para a produção de nancompósitos de polietileno/argila modificada, livre de sal de amónio, ou seja, modificação química por um agente tensoativo derivado principalmente de um ácido carboxílico, ou outro tensoativo que tenha as características desejadas, como por exemplo, um derivado de alquil ou propil sulfato.  The present invention relates to different methodologies for the production of ammonium salt-free modified polyethylene / clay nanocomposites, i.e. chemical modification by a surfactant derived primarily from a carboxylic acid, or other surfactant having the desired characteristics, such as for example, an alkyl or propyl sulfate derivative.
Com isto, os objetivos a serem alcançados com a presente invenção são os seguintes:  Thus, the objectives to be achieved with the present invention are as follows:
1) Preparar nancompósitos polietileno / argila modificada, livre de sal de amónio;  1) Prepare ammonium salt-free polyethylene / modified clay nanomposites;
2) Preparar materiais alternativos e de menor custo;  2) Prepare alternative and lower cost materials;
3) Obter nanocompósito poliolefina/argila modificada com propriedades térmicas melhoradas, quando comparado a matriz polimérica pura;  3) Obtain modified polyolefin / clay nanocomposite with improved thermal properties when compared to pure polymeric matrix;
4) Obter nanocompósito poliolefina/argila modificada com propriedades mecânicas melhoradas, especificamente ganho ou pouca perda no módulo, com ganho ou pouca perda na tensão e deformação na ruptura, quando comparado a matriz polimérica pura.  4) Obtain modified polyolefin / clay nanocomposite with improved mechanical properties, specifically gain or little loss in modulus, with gain or little loss in stress and deformation at break when compared to pure polymer matrix.
DESCRIÇÃO DAS FIGURAS  DESCRIPTION OF THE FIGURES
A presente invenção será pormenorizadamente descrita com base na figura abaixo relacionada, na qual:  The present invention will be described in more detail based on the related figure below, in which:
a figura 1- Difratogramas de raios X dos filmes de polietileno de baixa densidade (índice de fluidez em torno de 7,0 g/10 min) com o concentrado PEBD/argila modificada (70/30) em seu interior, nas proporções de 3 (a) e 5% (b) (m/m).  Figure 1- X-ray diffractograms of low density polyethylene films (melt index around 7.0 g / 10 min) with LDPE / modified clay concentrate (70/30) inside, in the proportions of 3 (a) and 5% (b) (w / w).
DESCRIÇÃO DETALHADA DA INVENÇÃO  DETAILED DESCRIPTION OF THE INVENTION
O nanocompósito em questão na presente invenção, será preparado pela técnica de intercalação do polímero fundido, através de três formas distintas de processamento, empregando um polímero pertencente à família das poliolefinas, preferencialmente, um polietileno (de baixa densidade, alta densidade, baixa densidade linear) e uma argila natural, pertencente a família dos filossilicatos, preferencialmente do grupo 2:1 , modificada com um agente tensoativo derivado de ácido carboxílico recomendado para esta invenção é o estearato de sódio, CH3(CH2)i6COO"Na+ ou o lauril sulfato de sódio, CH3(CH2)i iS04 "Na+ (metodologia sob fase de obtenção de patente - DEPR 015100000646), ou seja, agente tensoativo diferente de sal de amónio. The nanocomposite in question in the present invention will be prepared by the melt polymer intercalation technique through three different forms of processing employing a polymer belonging to the polyolefin family, preferably a polyethylene (low density, high density, low linear density). ) and a natural clay, belonging to the family of phyllosilicates, preferably from the 2: 1 group, modified with a surfactant derived from Recommended carboxylic acid for this invention is sodium stearate, CH 3 (CH 2 ) i 6 COO " Na + or sodium lauryl sulfate, CH 3 (CH 2 ) iSO 4 " Na + (methodology under production of DEPR 015100000646), ie surfactant other than ammonium salt.
Na presente invenção, a quantidade do material polimérico ficou entre 50 a In the present invention, the amount of polymeric material was between 50 to
99%, em massa, e da argila modificada, livre de sal de amónio, variou entre 1 a 10%, baseada na massa final do nanocompósito obtido. As quantidades podem ser aumentadas, dependendo das propriedades que se espera no produto final, ou ainda, no caso da preparação de um concentrado polímero/argila (concentração de 20 a 50% de argila modificada). 99% by weight and ammonium salt-free modified clay ranged from 1 to 10% based on the final mass of the nanocomposite obtained. The amounts may be increased depending on the expected properties of the final product or in the case of preparation of a polymer / clay concentrate (concentration of 20 to 50% of modified clay).
De modo a ilustrar mais claramente a presente invenção, três exemplos são descritos abaixo. Deve-se considerar que estes exemplos são apenas ilustrativos e não limitam a invenção divulgada aqui.  In order to more clearly illustrate the present invention, three examples are described below. It should be understood that these examples are illustrative only and do not limit the invention disclosed herein.
EXEMPLO 1 - Preparação de um concentrado de polietileno/argila modificada (masterbatch)  EXAMPLE 1 - Preparation of a masterbatch polyethylene / modified clay concentrate
A argila modificada quimicamente, livre de sal de amónio, em concentração de 30%, foi misturada e dispersa ao polietileno de baixa densidade - PEBD (índice de fluidez em torno de 30,0 g/10 min), em concentração de 70%, utilizando um homogeneizador de laboratório, numa temperatura de 200°C e velocidades dos rotores 1800-3600 rpm, por aproximadamente, dois ciclos de 10 segundos. Na sequencia, o concentrado foi processado numa extrusora monorosca de laboratório, com o seguinte perfil de temperatura 140 - 150 - 160 - 160°C, da alimentação até a matriz.  The chemically modified clay, free of ammonium salt, at a concentration of 30%, was mixed and dispersed to low density polyethylene - LDPE (flow rate around 30.0 g / 10 min), at a concentration of 70%. using a laboratory homogenizer at a temperature of 200 ° C and rotor speeds 1800-3600 rpm for approximately two 10 second cycles. Subsequently, the concentrate was processed in a laboratory single-screw extruder with the following temperature profile 140 - 150 - 160 - 160 ° C from the feed to the die.
O concentrado (polietileno/argila modificada), após o resfriamento, foi granulado e misturado nas porcentagens de 3 e 5% ao polietileno de baixa densidade - PEBD (índice de fluidez em torno de 7,0 g/10 min), para obtenção de filmes finos, preparados numa extrusora balão de laboratório, com o seguinte perfil de temperatura 130 - 135 - 140 - 140°C, da alimentação até a matriz e também, nas porcentagens de 5 e 10% ao polietileno de baixa densidade - PEBD (índice de fluidez em torno de 30,0 g/10 min) para obtenção do compostos injetados, numa injetora com força de fechamento de 65 toneladas, relação L/D do parafuso igual a 20 e diâmetro da rosca de 35 mm e temperatura de processo de 180 a 200°C.  The concentrate (polyethylene / modified clay), after cooling, was granulated and mixed in the percentages of 3 and 5% to low density polyethylene - LDPE (flow rate around 7.0 g / 10 min), to obtain thin films prepared in a laboratory balloon extruder with the following temperature profile 130 - 135 - 140 - 140 ° C from the feed to the die and also in the percentages of 5 and 10% to low density polyethylene (LDPE) flow rate around 30.0 g / 10 min) to obtain the injected compound, in a 65 tonne closing force injector, screw L / D ratio of 20 and 35 mm thread diameter and 180 to 200 ° C.
EXEMPLO 2 - Preparação do nanocompósito com adição de porcentagens específicas de argila modificada no polietileno (PE) Este exemplo consiste na mistura do polietileno (índice de fluidez em torno de 30,0 g/10 min), em geral 98,5 e 97%, e de diferentes quantidades de argila modificada, em geral 1 ,5 e 3,0% m/m, em homogeneizador intensivo a 3600 rotações por minuto, por aproximadamente dois ciclos de 10 segundos. Após a mistura, o material foi extrusado na forma de pellets, em extrusora monorosca de laboratório, com o seguinte perfil de temperatura 140 - 150 - 160 - 160°C, da alimentação até a matriz. EXAMPLE 2 - Preparation of Nanocomposite with Addition of Specific Percentages of Modified Polyethylene (PE) Clay This example consists of a mixture of polyethylene (melt index around 30.0 g / 10 min), generally 98.5 and 97%, and different amounts of modified clay, generally 1, 5 and 3.0%. m / m in an intensive homogenizer at 3600 revolutions per minute for approximately two 10 second cycles. After mixing, the material was extruded in pellet form in a laboratory single-screw extruder with the following temperature profile 140 - 150 - 160 - 160 ° C from the feed to the die.
Os nanocompósitos extrudados, após o resfriamento, foram granulados e injetados, com força de fechamento de 65 toneladas, relação L/D do parafuso igual a 20 e diâmetro da rosca de 35 mm e temperatura de processo de 180 a 200°C.  After cooling, the extruded nanocomposites were granulated and injected, with a closing force of 65 tons, screw L / D ratio of 20 and a thread diameter of 35 mm and a process temperature of 180 to 200 ° C.
EXEMPLO 3 - Preparação do nanocompósito com adição de porcentagens específicas de argila modificada no polietileno (PE) em extrusora dupla rosca  EXAMPLE 3 - Nanocomposite Preparation with Specific Percentages of Modified Polyethylene (PE) Modified Clay in Twin Screw Extruder
A terceira forma consiste no processamento do polietileno (índice de fluidez em torno de 30,0 g/10 min), em geral 98,5 e 97%, e de de argila modificada, em geral 1 ,0 e 3,0% m/m, em extrusora dupla rosca co-rotante, com o seguinte perfil de temperatura 140 - 150 - 160 - 160°C, da alimentação até a matriz, ou em um misturador com duas roscas acopladas.  The third form consists of the processing of polyethylene (flow rate around 30.0 g / 10 min), generally 98.5 and 97%, and modified clay, generally 1, 0 and 3.0% m / m, in a co-rotating twin screw extruder with the following temperature profile 140 - 150 - 160 - 160 ° C from feed to die or in a twin screw mixer.
Os nanocompósitos extrudados, após o resfriamento, foram granulados e injetados, com força de fechamento de 65 toneladas, relação L/D do parafuso igual a 20 e diâmetro da rosca de 35 mm e temperatura de processo de 180 a 200°C.  After cooling, the extruded nanocomposites were granulated and injected, with a closing force of 65 tons, screw L / D ratio of 20 and a thread diameter of 35 mm and a process temperature of 180 to 200 ° C.
Para caracterizar a estrutura dos materiais obtidos pelas metodologias descritas em todos os EXEMPLOS descritos acima foram utilizadas as técnicas de difratometria de raios X no equipamento Shimatzu XDR-6000 operando com uma velocidade de varredura de 2°/min, 26» entre 3o e 15°, radiação Cu-K« (λ = 1 ,5418 A), corrente de 40 mA e voltagem de 40 kV. To characterize the structure of materials obtained by the methods described in all the examples described above were used the techniques of X-ray diffraction in the machine Shimatzu XDR-6000 operating at a scan rate of 2 ° / min, 26 'between 3 and 15 °, Cu-K ' radiation (λ = 1 5418 A), 40 mA current and 40 kV voltage.
Também foram realizados ensaios mecânicos em uma máquina universal de ensaios, com velocidade de deformação de 4 mm min"1 e distância entre as garras de 40 mm. Foram analisados de 5 a 10 corpos de prova por composição. Mechanical tests were also performed on a universal testing machine, with a deformation speed of 4 mm min "1 and a distance between the claws of 40 mm. From 5 to 10 specimens per composition were analyzed.
Para os corpos de prova injetados, os ensaios mecânicos, foram realizados em uma máquina universal de ensaios, utilizando corpos de prova segundo norma ASTM D 638-08. A velocidade de afastamento entre as garras foi de 50 mm-min"1 e célula de carga de 500 kgf. Foram analisados 10 corpos de prova por composição. For the injected specimens, the mechanical tests were performed in a universal testing machine, using specimens according to ASTM D 638-08. The clearance speed between the claws was 50 mm-min "1 and load cell of 500 kgf. 10 specimens per composition were analyzed.
Com o propósito de estabelecer a correlação entre a estrutura e a morfologia dos materiais preparados e determinar a ocorrência da intercalação/esfoliação das camadas da nanoargila após a incorporação ao polímero, foi feita a análise de DRX nos filmes de polietileno de baixa densidade (índice de fluidez em torno de 7,0 g/10 min) com o concentrado PEBD/argila modificada (70/30) em seu interior, nas proporções de 3 e 5% (m/m). Os difratogramas são apresentados na Figura 1. In order to establish the correlation between the structure and morphology of prepared materials and to determine the occurrence of After intercalation / exfoliation of the nanoargyl layers after incorporation into the polymer, XRD analysis was performed on low density polyethylene films (melt index around 7.0 g / 10 min) with LDPE concentrate / modified clay (70 / 30) inside, in the proportions of 3 and 5% (w / w). The diffractograms are shown in Figure 1.
Nos nanocompósitos com 3 e 5% do concentrado PEBD/nanoargila ocorreu um aumento da distância basal, quando comparado aos dados do difratograma da argila modificada, sugerindo a intercalação das moléculas do polietileno nas camadas desta argila [Rodrigues, A. W.; Brasileiro, M. I.; Araújo, W. D.; Araújo, E. M.; Neves, G. A.; Melo, T. J. A. de. Desenvolvimento de nanocompósitos propileno/argila bentonita brasileira: I Tratamento de argila e influência de compatibilizantes polares nas propriedades mecânicas. Polímeros: Ciência e Tecnologia, vol. 17, n. 3, p. 219-227, 2007]. Outros ombros, correspondendo às distâncias menores, apareceram nessas amostras podendo indicar que uma pequena parte das camadas da argila modificada não foi intercalada pelas moléculas do polímero. Neste caso pode-se verificar que os materiais formados apresentam uma morfologia de nanocompósito intercalado. Resultados semelhantes já foram obtidos por Barbosa et ai e Zanetti et ai [Barbosa, R.; Araújo, E. M.; Maia, L. F.; Pereira, O. D.; Melo, T. J. A. Morfologia de nanocompósitos de polietileno e poliamida-6 contendo argila nacional. Polímeros: Ciência e Tecnologia, v. 16, n. 3, p. 246-251 , 2006.; Zanetti, M; Costa, L. Preparation and combustion behavior pf polymer/layered silicate nanocomposites based upon PE and EVA. Polymer, v. 45, p. 4367-4373, 2004.] No caso dos compostos injetados, o comportamento foi similar.  In nanocomposites with 3 and 5% of LDPE / nanoargyl concentrate there was an increase in the basal distance when compared to the modified clay diffractogram data, suggesting the intercalation of polyethylene molecules in the clay layers [Rodrigues, A. W .; Brazilian, M. I .; Araújo, W. D .; Araújo, E. M .; Neves, G. A .; Melo, T. J. A. de. Development of Brazilian propylene / bentonite clay nanocomposites: I Clay treatment and influence of polar compatibilizers on mechanical properties. Polymers: Science and Technology, vol. 17, no. 3, p. 219-227, 2007]. Other shoulders, corresponding to the shorter distances, appeared in these samples which may indicate that a small part of the modified clay layers was not interspersed by the polymer molecules. In this case it can be seen that the formed materials have an intercalated nanocomposite morphology. Similar results have already been obtained by Barbosa et al and Zanetti et al [Barbosa, R .; Araújo, E. M .; Maia, L. F .; Pereira, O. D .; Melo, T. J. A. Morphology of national clay-containing polyethylene and polyamide-6 nanocomposites. Polymers: Science and Technology, v. 16, no. 3, p. 246-251, 2006; Zanetti, M; Costa, L. Preparation and combustion behavior pf polymer / layered silicate nanocomposites based upon PE and EVA. Polymer, v. 45, p. 4367-4373, 2004.] In the case of injected compounds, the behavior was similar.
Os resultados dos ensaios mecânicos do polietileno puro e dos nanocompósitos, apresentados nas Tabelas 1 e 2, revelam que a presença da argila modificada exerceu um efeito considerável nas propriedades das composições.  The results of the mechanical tests of pure polyethylene and nanocomposites presented in Tables 1 and 2 show that the presence of the modified clay had a considerable effect on the properties of the compositions.
Tabela 1 - Propriedades mecânicas do PEBD puro e seus nanocompósitos na forma de filme (índice de fluidez em torno de 7,0 g/10 min). Ensaios Mecânicos Table 1 - Mechanical properties of pure LDPE and its nanocomposites in film form (melt index around 7.0 g / 10 min). Mechanical tests
Material Tensão de Deformação Módulo de  Material Strain Tension Module
tração (MPa) (%) elasticidade (MPa) tensile strength (MPa) (%) elasticity (MPa)
PEBD puro 10 ±1 ,0 32,5±12 166±19 Pure LDPE 10 ± 1.0 32.5 ± 12 166 ± 19
PEBD com 3% do 9,0±2,3 1 12+20 239±36 LDPE with 3% of 9.0 ± 2.3 1 12 + 20 239 ± 36
concentrado  focused
PEBD com 5% do 12,0±2,0 166±4,0 264±20  LDPE with 5% of 12.0 ± 2.0 166 ± 4.0 264 ± 20
concentrado  focused
Tabela 2 - Propriedades mecânicas do PEBD puro e seus nanocompósitos injetados (índice de fluidez em torno de 30,0 g/10 min).  Table 2 - Mechanical properties of pure LDPE and its injected nanocomposites (flow rate around 30.0 g / 10 min).
Figure imgf000018_0001
Figure imgf000018_0001
Esses materiais, quando comparado ao polietileno puro, apresentaram um aumento no módulo de elasticidade e na deformação, mantendo as características de tensão de tração. Esses dados confirmam a eficiência do nanocompósito formado. O tratamento na superfície da argila diminuiu a energia superficial das suas camadas e permitiu a sua compatibilidade com o polietileno (polímero apolar), deixando sua estrutura mais resistente.  These materials, when compared to pure polyethylene, showed an increase in elastic modulus and deformation, maintaining tensile stress characteristics. These data confirm the efficiency of the formed nanocomposite. The surface treatment of the clay decreased the surface energy of its layers and allowed its compatibility with the polyethylene (nonpolar polymer), making its structure more resistant.

Claims

REIVINDICAÇÕES
01. "APLICAÇÃO DE UMA ARGILA NANOESTRUTURADA ORGANOFÍLICA LIVRE DE SAL DE AMÓNIO EM POLIETILENO", caracterizado por compreender:  01. "APPLICATION OF A POLYETHYLENE-FREE ORGANOPHILIC NANO-RESTRUCTURED CLAY", characterized in that it comprises:
a) de 50 a 99% em massa ou partes por cem de resina (per) de um polímero pertencente à família das poliolefinas,  (a) from 50 to 99% by weight or parts per hundred of resin (per) of a polymer belonging to the family of polyolefins,
b) de 01 a 10% em massa ou partes por cem de resina (per) de um silicato lamelar, capaz de ser intercalado por um agente modificador de superfície livre de sal de amónio, e podendo ter suas lamelas separadas parcialmente ou totalmente mediante condições apropriadas,  (b) from 1 to 10% by weight or parts per 100 of resin (per) of a lamellar silicate capable of being intercalated by an ammonium salt free surface modifying agent and having its lamellas partially or wholly separated under conditions appropriate,
c) ou, no caso dos concentrados, de 20 a 50% em massa ou partes por cem de resina (per) de um silicato lamelar, capaz de ser intercalado por um agente modificador de superfície livre de sal de amónio, e podendo ter suas lamelas separadas parcialmente ou totalmente mediante condições apropriadas,  (c) or, in the case of concentrates, from 20 to 50% by weight or parts per hundred of a lamellar silicate resin (per) capable of being intercalated by an ammonium salt-free surface modifying agent and having coverslips partially or totally separated under appropriate conditions,
d) a adição da argila organofílica (ou nanocarga) ocorre técnica de intercalação do polímero fundido, através de três formas distintas de processamento.  d) the addition of the organophilic clay (or nanocharge) occurs technique of intercalation of the molten polymer, through three distinct forms of processing.
02. "APLICAÇÃO DE UMA ARGILA NANOESTRUTURADA ORGANOFÍLICA LIVRE DE SAL DE AMÓNIO EM POLIETILENO", conforme reivindicado em 01 , caracterizado pelo fato de utilizar uma poliolefina, pertencente à família dos polietilenos.  02. "APPLICATION OF A POLYETHYLENE FREE AMMONIUM ORGANOPHILIC NANO-STRUCTURED CLAY", as claimed in 01, characterized by the use of a polyolefin, belonging to the family of polyethylenes.
03. "APLICAÇÃO DE UMA ARGILA NANOESTRUTURADA ORGANOFÍLICA LIVRE DE SAL DE AMÓNIO EM POLIETILENO", conforme reivindicado em 01 , caracterizado pelo fato de utilizar uma poliolefina, pertencente à família dos polietilenos, podendo também ser uma blenda com este constituinte.  03. "APPLICATION OF A POLYETHYLENE FREE AMMONIUM ORGANOPHILIC NANO-STRUCTURED CLAY", as claimed in 01, characterized by the use of a polyolefin, belonging to the family of polyethylenes, which may also be a blend with this constituent.
04. "APLICAÇÃO DE UMA ARGILA NANOESTRUTURADA ORGANOFÍLICA LIVRE DE SAL DE AMÓNIO EM POLIETILENO", conforme reivindicado em 01 , caracterizado pelo fato de utilizar uma poliolefina, pertencente à família dos polipropilenos ou outro material polimérico, podendo também ser uma blenda com este constituinte.  04. "APPLICATION OF A POLYETHYLENE-FREE ORGANOPHILIC ORGANOPHILIC NANO-STRUCTURED CLAY", as claimed in 01, characterized by the use of a polyolefin, belonging to the family of polypropylenes or other polymeric material, and may also be a blend with this constituent.
05. "APLICAÇÃO DE UMA ARGILA NANOESTRUTURADA ORGANOFÍLICA LIVRE DE SAL DE AMÓNIO EM POLIETILENO", conforme reivindicado em 01 , caracterizado pelo fato de utilizar argila natural, pertencente à família dos filossilicatos, preferencialmente do grupo 2:1 , constituída por lamelas empilhadas umas sobre as outras, podendo ser intercaladas por um agente modificador de superfície livre de sal de amónio, e podendo ter suas lamelas separadas parcialmente ou totalmente mediante condições apropriadas. 05. "APPLICATION OF A POLYETHYLENE FREE AMMONIUM ORGANOPHILIC NANO-STRUCTURED CLAY", as claimed in 01, characterized by the use of natural clay, belonging to the family of phyllosilicates, preferably of the group 2: 1, consisting of lamellae stacked on top of each other and may be intercalated by an ammonium salt free surface modifying agent and may have their coverslips partially or wholly separated under appropriate conditions.
06. "APLICAÇÃO DE UMA ARGILA NANOESTRUTURADA ORGANOFÍLICA LIVRE DE SAL DE AMÓNIO EM POLIETILENO", conforme reivindicado em 01 , caracterizado pelo fato da argila organofílica obtida via tratamento químico de uma argila natural com um agente tensoativo derivado de ácido carboxílico recomendado para esta invenção é o estearato de sódio, CH3(CH2)i6COO"Na+ ou o lauril sulfato de sódio, CH3(CH2)nSO4 "Na+ (metodologia sob fase de obtenção de patente - DEPR 015100000646), ou seja, agente tensoativo diferente de sal de amónio. 06. "APPLICATION OF A POLYETHYLENE-FREE ORGANOPHILIC NANO-STRUCTURED NON-STRUCTURED CLAY", as claimed in 01, characterized in that the organophilic clay obtained via chemical treatment of a natural clay with a carboxylic acid derived surfactant recommended for this invention is sodium stearate, CH 3 (CH 2 ) i 6 COO " Na + or sodium lauryl sulphate, CH 3 (CH 2 ) nSO 4 " Na + (patent pending methodology - DEPR 015100000646), ie , surfactant other than ammonium salt.
07. "APLICAÇÃO DE UMA ARGILA NANOESTRUTURADA ORGANOFÍLICA LIVRE DE SAL DE AMÓNIO EM POLIETILENO", conforme reivindicado em 01 , caracterizado pelo fato de utilizar argila natural, pertencente à família dos filossilicatos, preferencialmente do grupo 2:1 , constituída por lamelas empilhadas umas sobre as outras, podendo ser intercaladas por um agente modificador de superfície com sal de amónio, e podendo ter suas lamelas separadas parcialmente ou totalmente mediante condições apropriadas.  07. "APPLICATION OF A POLYETHYLENE FREE AMMONIUM ORGANOPHILIC NANO-STRUCTURED CLAY", as claimed in 01, characterized by the use of natural clay, belonging to the family of phyllosilicates, preferably from the 2: 1 stacked coverslips. the others may be intercalated by an ammonium salt surface modifying agent and may have their coverslips partially or wholly separated under appropriate conditions.
08. "APLICAÇÃO DE UMA ARGILA NANOESTRUTURADA ORGANOFÍLICA LIVRE DE SAL DE AMÓNIO EM POLIETILENO", conforme reivindicado em 01 , caracterizado pelo fato de que a mistura poliolefina/nanocarga, será preparada pela técnica de intercalação do polímero fundido, através da preparação de um concentrado de polietileno/argila modificada (masterbatch) via extrusão e posterior injeção.  08. "APPLICATION OF A POLYETHYLENE-FREE AMMONIUM ORGANOPHILIC NANO-STRUCTURED CLAY" as claimed in 01, characterized in that the polyolefin / nanocarbon mixture will be prepared by the melt polymer intercalation technique by preparing a concentrate masterbatch via extrusion and subsequent injection.
09. "APLICAÇÃO DE UMA ARGILA NANOESTRUTURADA 09. "APPLICATION OF A NANOSTRUCTURED CLAY
ORGANOFÍLICA LIVRE DE SAL DE AMÓNIO EM POLIETILENO", conforme reivindicado em 01 , caracterizado pelo fato de que a mistura poliolefina/nanocarga, será preparada pela técnica de intercalação do polímero fundido, através da preparação do nanocompósito com adição de porcentagens específicas de argila modificada no polietileno (PE) via extrusão mono rosca ou e posterior injeção. POLYETHYLENE AMMONIUM SALT-FREE ORGANOPHILIC "as claimed in 01, characterized by the fact that the polyolefin / nanocarb mixture will be prepared by the melt polymer intercalation technique by preparing the nanocomposite with the addition of specific percentages of modified clay in the polyethylene (PE) via single screw extrusion or subsequent injection.
10. "APLICAÇÃO DE UMA ARGILA NANOESTRUTURADA ORGANOFÍLICA LIVRE DE SAL DE AMÓNIO EM POLIETILENO", conforme reivindicado em 01 , caracterizado pelo fato de que a mistura poliolefina/nanocarga, será preparada pela técnica de intercalação do polímero fundido com adição de porcentagens específicas de argila modificada no polietileno (PE) em extrusora dupla rosca e posterior injeção. 10. "APPLICATION OF A POLYETHYLENE AMMONIUM SALT-FREE ORGANOPHILIC NANO-STRUCTURED CLAY", as claimed in 01, characterized by the fact that the polyolefin / nanocarbon mixture will be prepared by the melt polymer intercalation technique with the addition of Specific percentages of modified polyethylene (PE) clay in double screw extruder and subsequent injection.
11. "APLICAÇÃO DE UMA ARGILA NANOESTRUTURADA ORGANOFÍLICA LIVRE DE SAL DE AMÓNIO EM POLIETILENO", conforme reivindicado em 01 , caracterizado pelo fato de que a mistura poliolefina/nanocarga, será preparada pela técnica de intercalação do polímero fundido com adição de porcentagens específicas de argila modificada no polietileno (PE), por diferentes formas de processamento, na presença ou não de um agente compatibilizante.  11. "APPLICATION OF A POLYETHYLENE-FREE ORGANOPHILIC NANO-STRUCTURED NON-STRUCTURED CLAY", as claimed in 01, characterized in that the polyolefin / nanocarbon mixture will be prepared by the melt polymer intercalation technique with the addition of specific percentages of clay. modified in polyethylene (PE) by different processing methods, whether or not present with a compatibilizing agent.
PCT/BR2013/000207 2012-06-13 2013-06-11 Use of an ammonium salt-free organophilic nanostructured clay in polyethylene WO2013185196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102012014230A BR102012014230A2 (en) 2012-06-13 2012-06-13 APPLICATION OF A NON-STRUCTURED ORGANOPHILIC CLAY FREE OF AMMONYM SALT IN POLYETHYLENE.
BRBR1020120142309 2012-06-13

Publications (1)

Publication Number Publication Date
WO2013185196A1 true WO2013185196A1 (en) 2013-12-19

Family

ID=49757347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000207 WO2013185196A1 (en) 2012-06-13 2013-06-11 Use of an ammonium salt-free organophilic nanostructured clay in polyethylene

Country Status (2)

Country Link
BR (1) BR102012014230A2 (en)
WO (1) WO2013185196A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412018A (en) * 1980-11-17 1983-10-25 Nl Industries, Inc. Organophilic clay complexes, their preparation and compositions comprising said complexes
US6521690B1 (en) * 1999-05-25 2003-02-18 Elementis Specialties, Inc. Smectite clay/organic chemical/polymer compositions useful as nanocomposites
US20030176537A1 (en) * 2002-03-18 2003-09-18 The University Of Chicago Composite materials with improved phyllosilicate dispersion
US20100274036A1 (en) * 2009-04-23 2010-10-28 National Taiwan University Organic/inorganic compositive dispersant including inorganic clay and organic surfactant
BRPI1001312A2 (en) * 2010-03-10 2011-11-01 Ioto Internat Ind E Com De Produtos Aromaticos Ltda process of obtaining modified nanoargyl for the production of polymeric nanocomposites and modified nanoargyl

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412018A (en) * 1980-11-17 1983-10-25 Nl Industries, Inc. Organophilic clay complexes, their preparation and compositions comprising said complexes
US6521690B1 (en) * 1999-05-25 2003-02-18 Elementis Specialties, Inc. Smectite clay/organic chemical/polymer compositions useful as nanocomposites
US20030176537A1 (en) * 2002-03-18 2003-09-18 The University Of Chicago Composite materials with improved phyllosilicate dispersion
US20100274036A1 (en) * 2009-04-23 2010-10-28 National Taiwan University Organic/inorganic compositive dispersant including inorganic clay and organic surfactant
BRPI1001312A2 (en) * 2010-03-10 2011-11-01 Ioto Internat Ind E Com De Produtos Aromaticos Ltda process of obtaining modified nanoargyl for the production of polymeric nanocomposites and modified nanoargyl

Also Published As

Publication number Publication date
BR102012014230A2 (en) 2014-12-02

Similar Documents

Publication Publication Date Title
Ahmadi et al. Fabrication and physical properties of EPDM–organoclay nanocomposites
Liu et al. Polyamide 66/clay nanocomposites via melt intercalation
Xu et al. Preparation of poly (propylene carbonate)/organo-vermiculite nanocomposites via direct melt intercalation
Mittal Polypropylene-layered silicate nanocomposites: filler matrix interactions and mechanical properties
Bhiwankar et al. Melt intercalation/exfoliation of polystyrene–sodium-montmorillonite nanocomposites using sulfonated polystyrene ionomer compatibilizers
Ardanuy et al. Mg–Al Layered double hydroxide nanoparticles: Evaluation of the thermal stability in polypropylene matrix
ES2393937T3 (en) Block copolymer reagents as additives for the preparation of silicate-polymer compounds
Ammala et al. Poly (ethylene terephthalate) clay nanocomposites: Improved dispersion based on an aqueous ionomer
Passador et al. Nanocomposites of polymer matrices and lamellar clays
Kotek et al. Chlorosulfonated polypropylene: preparation and its application as a coupling agent in polypropylene–clay nanocomposites
US7160942B2 (en) Polymer-phyllosilicate nanocomposites and their preparation
Haider et al. Overview of various sorts of polymer nanocomposite reinforced with layered silicate
Kausar Physical properties of hybrid polymer/clay composites
Ahmadi et al. Synthesis of EPDM-organoclay nanocomposites: Effect of the clay exfoliation on structure and physical properties
He et al. Investigation of thermal property and flame retardancy of ABS/montmorillonite nanocomposites
Nayak et al. Retracted: Mechanical and thermal properties enhancement of polycarbonate nanocomposites prepared by melt compounding
Zaharri et al. Effect of zeolite modification via cationic exchange method on mechanical, thermal, and morphological properties of ethylene vinyl acetate/zeolite composites
Jang et al. Effect of supercritical carbon dioxide as an exfoliation aid on bio-based polyethylene terephthalate glycol-modified/clay nanocomposites
Mazrouaa Polypropylene nanocomposites
WO2013185196A1 (en) Use of an ammonium salt-free organophilic nanostructured clay in polyethylene
Rzaev et al. A one‐step preparation of compatibilized polypropylene‐nanocomposites by reactive extrusion processing
Luecha et al. A novel and facile nanoclay aerogel masterbatch toward exfoliated polymer-clay nanocomposites through a melt-mixing process
Cogen et al. Novel synthetic nanocomposite materials and their application in polyolefin-based wire and cable compounds
Friedrich et al. Layered silicate/rubber nanocomposites via latex and solution intercalations
Chafidz Enhancing thermal and mechanical properties of polypropylene using masterbatches of nanoclay and nano-CaCO3: A review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803785

Country of ref document: EP

Kind code of ref document: A1