WO2014003530A1 - Method for increasing the potential for biofuel production from microalgae by using bio-modulators - Google Patents

Method for increasing the potential for biofuel production from microalgae by using bio-modulators Download PDF

Info

Publication number
WO2014003530A1
WO2014003530A1 PCT/MA2013/000020 MA2013000020W WO2014003530A1 WO 2014003530 A1 WO2014003530 A1 WO 2014003530A1 MA 2013000020 W MA2013000020 W MA 2013000020W WO 2014003530 A1 WO2014003530 A1 WO 2014003530A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
bio
increasing
modulators
biofuel production
Prior art date
Application number
PCT/MA2013/000020
Other languages
French (fr)
Other versions
WO2014003530A4 (en
Inventor
Imane WAHBY
Iman BENNIS
Hicham EL ARROUSSI
Redouane BENHIMA
Original Assignee
Moroccan Foundation For Advanced Science, Innovation & Research (Mascir)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moroccan Foundation For Advanced Science, Innovation & Research (Mascir) filed Critical Moroccan Foundation For Advanced Science, Innovation & Research (Mascir)
Publication of WO2014003530A1 publication Critical patent/WO2014003530A1/en
Publication of WO2014003530A4 publication Critical patent/WO2014003530A4/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/649Biodiesel, i.e. fatty acid alkyl esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the invention provides a method and composition for increasing the potential of a microalgal culture for the production of biofuel, and other high value-added products, using bio-modulators under selective culture conditions.
  • third generation biofuels obtained from microalgae seem to be the only source of transportation biofuels that could meet global demand (Chisti 2007, Biotechnol Adv, 25: 294-306).
  • Microalgae cover a diverse group of uni- or multicellular microorganisms, most of which are photosynthetic organisms. They incubate prokaryotes (cyanobacteria or chloroxybactria) and eukaryotes such as green algae (Chlorophyta), red algae (Rhodophyta) and diatoms (Bacillariophyta).
  • prokaryotes cyanobacteria or chloroxybactria
  • eukaryotes such as green algae (Chlorophyta), red algae (Rhodophyta) and diatoms (Bacillariophyta).
  • the benefits of using microalgae for biofuel production are: (1) their rapid growth; they can double their biomass in 3 to 3.5 hours during the exponential phase. (2) several species have a high lipid content (20-60%) per dry weight of the cell.
  • microalgae biomass consumes 1.83 kg of C0 2 per fixation, which would contribute to the reduction of greenhouse gas emissions.
  • cultivation of microalgae uses resources that can not be used in agriculture, such as non-arable land or seawater (for marine species) or wastewater, posing no threat to agricultural resources.
  • microalgae used for the production of biofuels is essentially evaluated in terms of growth and quantity and quality of lipids accumulated by the microalgal cell.
  • the optimal conditions of biomass production and those of lipid production are different.
  • Griffiths and Harrison (2009) J. App. Phycol. 21: 493-507 mentioned that there is no correlation between lipid content and lipid productivity: some lipid-rich species (greater than 50% by dry weight) have a productivity of less than 20 mg / L /day.
  • species with low lipid content (10% by dry weight) can show considerable productivities (more than 50 mg / L / day).
  • a profitable biofuel production process involves the optimization of both aspects: growth (biomass) and lipid content.
  • Productivity can be improved by modifying the physicochemical parameters such as temperature, light intensity, pH and nutritional composition of the growth medium as Microalgae are very sensitive to environmental conditions. Thus, in the face of adverse conditions, certain microlagues can respond with an increase in lipid reserves.
  • Another method for improving the yield of microalgae is the modification of the culture conditions, for example the change in trophic conditions (US Patent Publication 2009/0148928), or nutritional stress (US Patent Application No. 2012/0088279).
  • the invention provides a biofuel production process from microalgae optimized both for the production of biomass and lipids and for passive recovery of biomass once the microalgae are loaded with lipids. This allows the increase of the productivity of these microalgae and the decrease of the cost of production as the biomass harvest is done passively.
  • a microalgae culture refers to one or more species of microalgae living in an environment that ensures their growth and spread.
  • Crop components typically include water, C0 2 , minerals and light (for autotrophic species).
  • the culture temperature is also controlled.
  • a first aspect of the invention provides a method and composition for the production of biofuel from microalgae.
  • the culture medium is based on enriched seawater with non-stressful levels of nutrients, mainly nitrogen, phosphorus and potassium, iron and other microelements, chelators and buffers for pH control (Tris, MES). , HEPES, MOPS, mono-, di- or tri-basic phosphate, etc.).
  • the growth temperature is between 20 and 35 ° C depending on the species, for non-thermophilic microalgae object of this invention.
  • the microalgae species chosen may be oleaginous species and others, belonging to the classes Chlorophyceae, Cyanophyceae, Bacillariophyceae, Xantophyceae, Chrysophyceae.
  • Oleaginous microalgae are the species that can, under known conditions, accumulate a considerable lipid level with respect to their biomass.
  • oleaginous microalgae are capable of accumulating lipids up to at least 10%, at least 20%, at least 30%, at least 40%, at least 50% of their biomass.
  • microalgae may belong to the genera Dunaliella, Chlorella, Nannochloropsis, Haematococcus, Skeletonemas, Melosira, Thalassiosira, Nitzschia, Navicula, Tetraselmis, Nannochloris.
  • One of the recommended genera for biofuel production is Dunaliella which belong to the class of Chlorophyceae, Order Volvocales, family Dunaliellaceae, and contains the following species: D. bardawil, D. salina, D. acidophila, D. biolecta, D lateralis, D. maritima, D. minuta, D. parva, D. peircei, D. polymorpha, D. primolecta, D. pseudosalina, D. quartolecto, D. salina, D. tertiolecta, D. viridis and others capable of producing lipids up to at least 10%, at least 20% of the biomass.
  • the microalgae species may be Dunaliella tertiolecta.
  • a second aspect of the invention provides a method for selectively accelerating the growth of microalgae using plant growth factors as bio-modulators.
  • bio-modulators include at least one, two, three, or more molecules belonging to the auxin family, cytokinins, gibberellins, abscisic acid or ethylene.
  • Growth factors such as phytohormones or plant hormones, plant growth regulators and synthetic molecules having a similar effect, are involved or control, among others, cell division, growth and metabolism of plant cells. The concentration and combination of these phytohormones determines their mode of action.
  • the auxins may be 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), acid 1-naphthalene acetic acid (AIMA), indole acetic acid (AIA), indole-3-butyric acid (AIB).
  • 2,4-dichlorophenoxyacetic acid (2,4-D) 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)
  • AIMA acid 1-naphthalene acetic acid
  • AIA indole acetic acid
  • AIB indole-3-butyric acid
  • the cytokinins may be zeatin, thidiazuron (TDZ), benzylaminopurine (BAP), isopentenyladenine (IPA), kinetin.
  • gibberellins include GA 3 .
  • bio-modulators such as signaling molecules may be used. These molecules include jasmonates and salysilic acid at concentrations of 10 ⁇ 2 , 10 "3 , 10 “ 4 , 10 “5 , 10 “ 6 , 10 “7 , 10 “ 8 M in the culture medium.
  • the ratio (w / w) of the bio-modulators I in the case of auxin mixture: cytokinin, auxin: gibberellin can range from 1: 2 to 2: 1, preferably 1: 1. .
  • the addition of this first type of bio-modulators improves the growth of microalgae, 20%, 40%, 60%, 80%, 100% compared to the first culture conditions.
  • the bio-modulators I are added in the presence of vitamins B1 (Thiamine), B8 or H (biotin) and B12 (cobalamin or cyano-cobalamin) or similar substances having a similar effect. Vitamins are added alone or in combination at concentrations between 0.005 and 0.05 mg / L of culture medium.
  • bio-modulators I improves the accumulation of the accumulated lipid content per unit of biomass by 40%, 50%, 70% and 90%, 100% compared to the control no. treaty.
  • bio-modulators II a second type of biomodulator, called bio-modulators II, just at the beginning of the storage lipid storage phase (between 6 and 20 days depending on the species and culture conditions).
  • This second type of bio-modulators is osmo-regulators that potentiate the action of the first type of bio-modulators and generates the rapid accumulation of lipids.
  • these mineral salts are involved in: the control of the water balance, the action of hormones and enzymes, the regulation of the acid-base balance (pH), the catalysis of many biological reactions, etc.
  • the time of addition of the osmo-regulators is decisive for the yield: the early or late addition of the osmo-regulators can decrease the yield and even cause the slowdown of the growth of microalgae.
  • bio-modulators II include NaCl, KCl or other osmo-regulators at concentrations between 0.5 and 5 M relative to the culture medium.
  • the addition of bio-modulators II improves the total lipid level by 100%, 120%, 130%, 140%, 150%, 180%, 190% and more than 200%. compared to control.
  • the percentage represents the lipid level per unit of biomass.
  • the osmo-regulators improve the action of bio-modulators I between 30 and 80% compared to the use of bio-modulators I alone.
  • the neutral lipids generally represent the most sought-after lipids for the production of lipid biofuels.
  • the use of bio-modulators I improved the accumulation of neutral lipids by 5%, 20%, 30%, 50%, 90% and 120% and more over control.
  • the combination of the two biomodulators further improved the accumulation of neutral lipids with an increase of between 60%, 70%, 140%, 150% and 170%.
  • the bio-modulators II have potentiated the action of the first group of bio-modulators with percentages ranging from 20%, 30%, 50%, 60%, 80% relative to the use. bio-modulators I alone.
  • this combination of bio-modulators can be used for the production of other high value-added products such as carotenoids and polyunsaturated fatty acids.
  • Another aspect of the invention is the introduction of a third bio-modulator, which is an acid or a base or other product having an effect on the pH, in the presence of both bio-modulators I and II.
  • This third bio-modulator is added at the beginning of the production cycle and undergoes a modification (increase in concentration) 4 days after the addition of bio-modulator II, which causes the precipitation of the biomass and facilitates its harvest.
  • the biomass is separated from the culture medium by different methods alone or in combination. These methods can be centrifugation, pressure filtration, mechanical filtration or others, used alone or in combination.
  • the centrifuges or filtrating apparatuses are of high capacity (US Patent Appl Publ No. 20040121447, US Pat No. 6,524,486) which makes the harvesting process very expensive. .
  • Other methods of separating the microalgal biomass from the culture medium by including chemicals may be used. These substances have a flocculating or coagulating effect and may be aluminum sulphate, polyacrylamide or others.
  • the addition of these substances to the biomass can change its composition and negatively affect the next step which is the extraction of lipids.
  • the cultures are generally carried out in continuous mode and the elimination of these substances from the medium after the recovery of biomass can be very complicated, hence the difficulty of applying these methods of biomass recovery on an industrial scale.
  • the proposed method is based on point changes in the concentration of bio-modulator III in the culture medium to maintain the microalgae in suspension during the biomass and lipid accumulation phases and to cause the sedimentation of the charged cells. in lipids.
  • pH changes vary between 6 and 11.
  • a large number of acids can be used to modulate the pH including hydrochloric acid, lactic acid, acetic acid, sulfuric acid.
  • a large number of bases can be used to modulate the pH including potassium hydroxide, sodium hydroxide, calcium hydroxide.
  • the advantage of this method on an industrial scale is that it is low cost and reversible: a re-modification of the pH after the harvest makes that the young microalgae, used for a new production cycle, are maintained in suspension (natural state) until the accumulation of lipids, and so on.
  • Another aspect of the invention provides a method of cultivating microalgae and producing lipids suitable for industrial production of biofuel from microalgae.
  • the use of selective conditions increases productivity and limits contamination by other species, especially for open-water crops.
  • the possibility of the process of passively harvesting the biomass loaded with lipids makes it easier to harvest biomass and to reduce the cost of harvesting biomass by existing techniques such as centrifugation or filtration.
  • bioproducts such as lipids
  • mechanical methods press, glass beads, heat shock or osmotic, trituration, ultrasound or other known methods
  • chemical solvents, enzymes, surfactants or others
  • the separation of lipids from the remainder of the biomass can be done using a mixture of solvents such as hexane, methanol, ethanol, isopropanol, chloroform, dichloromethane, generally coupled with a mechanical method such as centrifugation.
  • the isolated product is therefore treated in different ways depending on the purpose.
  • a method which is transesterification as the example of the process used in US Pat. No. 5,354,878.
  • the standard transesterification protocol involves an alkaline or acid catalyst to convert triglycerides (and other lipids) into fatty acid esters (biodiesel) and glycerol.
  • FIG.l Explain the process developed.
  • the active or exponential growth phase represents the biomass accumulation phase, it can begin directly after the microalgae culture or be preceded by a latency phase during which the microalga adapts to its new environment.
  • the bio-modulator I is introduced into the medium during this phase, generally the same day of the launching of the culture.
  • the active growth phase is followed by a stationary phase where growth stops and begins the accumulation of biomolecules like the reserve lipids sought for the production of biofuels.
  • Type II biomodulators are introduced at the beginning of this phase.
  • the third type of biomodulators is added to increase the pH of the culture medium and precipitate microalgae to facilitate their harvest.
  • FIG.2. Shows a copy of the growth curve of Dunaliella tertiolecta in the presence and absence of bio-modulators I. Growth monitoring is performed by measuring the optical density of the cultures.
  • FIG.3. Shows a copy of the combined effect of bio-modulators I and II on lipid production by Dunaliella tertiolecta compared to untreated control. Lipid analysis is performed gravimetrically after 14 days of start of culture.
  • FIG. 4 Shows a copy of the combined effect of bio-modulators I and II on neutral lipid production by Dunaliella tertiolecta compared to untreated control and application of bio-modulators I alone. Lipid analysis is performed by flow cytometry after 4 days of treatment.
  • microalgae cultures were carried out (in triplicates and in three independent experiments) in previously sterilized glass bioreactors, containing filtered seawater, sterilized and enriched with the f / 2 growth medium ( Guillard and Ryther 1962, Guillard 1975). All cultures were agitated by bubbling using clean air, and the light intensity was set at 65 ⁇ ⁇ - ⁇ 2 under a continuous lighting regime.
  • 1 L of seawater enriched with the medium f / 2 1 L of natural or synthetic seawater is filtered, autoclaved and added with 1 ml of sterile stock solutions of NaNO 3 , 1 ml NaH 2 P0 4 H 2 0 and 1 ml of microelements and 0.5 ml of vitamid solution.
  • the initial pH of the medium is adjusted to 7.2-7.8 before inoculation of microalgae.
  • at least 10 bio-modulators were selected including 2,4-D (1 mg / L) and / or AIA (1 mg / L) and / or 6-BAP (1 mg / L).
  • microalgae The growth of microalgae was measured by regular sampling every 2 days to measure the optical density.
  • group I of bio-modulators caused an increase in biomass accumulation, mainly at concentrations between 0.5 and 1 mg / L of medium during the active growth phase.
  • of Dunaliella teriolecta This improves its growth for a later application in the production of products derived from microalgae.
  • the application of biomodulators I at selected concentrations improves growth between 20%, 30%, 40%, 50% and 60% compared to the untreated contract. In most cases, this improvement was 40% in the case of Dunaliella species.
  • Table 3 Table 3
  • the example deals with the effect of combined bio-modulators I and II on the accumulation of lipids in two strains of Dunaiiella tertiolecta.
  • the strains used in the example are D. tertiolecta (SAG 13.86) and D. tertiolecta (MAR 029) isolated from Morocco.
  • the cultures were carried out as described in Example 1.
  • the group I of bio-modulators was initially added to the culture medium and after 8 to 10 days, the group II containing osmo- regulators was added to the medium to potentiate The action of group I.
  • the osmo- regulators NaCl or KCl
  • were prepared in concentrated solutions and the necessary volumes were added to the culture medium to have a final concentration of 1 to 5M.
  • the concentration of osmo-regulators used was 2 M.
  • the microalgal biomass is harvested (using the method described in Example 4.
  • the total lipids are extracted using a modified protocol from the method of (Bligh and Dyer, 1959) Lipid extraction is done after biomass submission to ultrasound treatment for 15 min for cell disruption.
  • osmo-regulators increased the accumulated lipid level by 120%, 140%, 180%, 190% and more than 200% compared to control.
  • osmo-regulators improved the action of bio-modulators I by between 30 and 60% compared to the use of bio-modulators I alone.
  • the best combination was to use the bio-modulators I between 0.5 and 1 mg / L and the osmo-regulators with 2 M.
  • Neutral lipids generally represent the most sought-after lipids for the production of biodiesel. Neutral lipids can be analyzed by different methods including flow cytometry. The use of this method for the analysis of the lipids of microalgae has been previously developed (Doan et al., Bio Bioener, 35: 2534-2544, Lopes da Silva et al., 2009 Appl Biochem Biotechnol, 159: 568). 578, Alonzo and Mayzaud 1999. Marine Chem, 67: 289-301).
  • Table 5 shows the positive effect of the combination of the two bio-modulators I and II on the accumulation of neutral lipids by two strains of Dunaliella tertiolecta.
  • the strains used in the example are D. tertiolecta (SAG 13.86) and D. tertiolecta (MAR 029) isolated from Morocco. It is found that the use of bio-modulators I improved the accumulation of neutral lipids by 5%, 20%, 30%, 50%, 90% and 120% compared to the control, depending on the treatment and the strain.
  • Example 4 offers evidence that the method developed makes it possible to maintain the cells in suspension during the phase of growth and accumulation of lipids (periodic pH changes between 6 and 8). Once the cells loaded with lipids, spot changes in pH between (7 and 11) allowed them to precipitate.
  • the maximum pH to be applied in combination with bio-modulators II is 10.5. Different pH-fluctuation submission times were applied (30 min to 2 h) with total precipitation of the lipid-rich biomass at 2 hours of the last sudden change in pH.
  • Table 6 shows the progressive effect of the last change in pH on the precipitation of lipid-loaded cells, this pH change is applied 4 days after treatment with the osmo-regulators.
  • the positive control is a biomass for which this last change in pH has not been applied.
  • the results obtained were compared with the positive control and with a biomass of the same age and even percentage of lipids (70%) maintained at pH between 6 and 8 (depending on the state of the culture) and centrifuged for 5 min at 5000 rpm.

Abstract

The present invention proposes a method for cultivating and processing microalgae isolated from marine and extremophilic environments for optimal biofuel production. The species of microalgae selected can be species of the genus Dunaliella (D. bardawil, D. salina, D. acidophilo, D. biolecta, D. lateralis, D. maritima, D. minuta, D. parva, D. peircei, D. polymorpha, D. primolecta, D. pseudosalina, D. quartolecta, D. tertiolecta, D. viridis and others). For the purpose of cultivating microalgae for the production of biofuel, the optimal conditions for the production of biomass and lipids are different. This invention proposes a method which makes it possible to simultaneously stimulate the accumulation of biomass and intracellular lipids (more than 60% by dry weight), essentially the neutral lipids sought for the production of biodiesel, by reinforcing the action of natural bio-modulators or chemical analogues (auxins, cytoquinines, gibberellins, NaCI) in hypersaline and alkaline conditions. Another aspect of the invention is the application of ad hoc changes to the pH of the cultivation media causing the spontaneous precipitation of cells loaded with lipids once the cycle of growth and storage of lipids intended for the production of biodiesel is complete. This method makes it possible to recover microalgal biomass quickly and passively, requiring little energy and without the step of centrifugation or filtration, in order to extract the intracellular lipids and transform same into biodiesel. This method ensures very selective cultivation conditions which only a predetermined number of species has a similar response to and/or is able to tolerate, which limits the risks of contamination by other microalgae, bacteria or fungi, this frequently being a problem in open cultivation systems such as ponds. This offers a system for cultivating microalgae that is advantageous and applicable on a large scale for the biofuel application and others.

Description

Procédé pour augmenter le potentiel de production de biocarburant à partir de microalgues en utilisant des bio-modulateurs  Method for increasing the biofuel production potential from microalgae using bio-modulators
Domaine de l'invention : Field of the invention
[0001] L'invention fournit une méthode et composition pour augmenter le potentiel d'une culture de microalgues pour la production de biocarburant, et autres produits à haute valeur ajoutée, en utilisant des bio-modulateurs dans des conditions de culture sélectives. The invention provides a method and composition for increasing the potential of a microalgal culture for the production of biofuel, and other high value-added products, using bio-modulators under selective culture conditions.
Etat de la technique : State of the art:
[0002] Du à la diminution des réserves pétrolières mondiales ainsi que l'augmentation de la conscience mondiale envers le développement des énergies renouvelables, l'exploitation de nouvelles sources énergétiques alternatives aux carburants conventionnels attire de plus en plus l'attention mondiale. Parmi ces formes d'énergie propres on trouve le solaire, l'éolien et les biocarburants qui sont issus de sources biologiques fixatrices de carbone comme les organismes photosynthétiques. Ainsi, l'utilisation des biocarburants liquides dans le secteur du transport a connu une forte croissance due, majoritairement, aux politiques focalisées sur la sécurité énergétique et la diminution des émissions des gaz à effet de serre. Vu les contraintes techniques et socio-économiques liées à l'utilisation des biocarburants de première et deuxièmes génération (basés essentiellement sur l'utilisation de sources alimentaires comme les plantes pour la production de biodiesel), les biocarburants de troisième génération obtenus à partir des microalgues, semblent être la seule source de biocarburants de transport qui pourrait satisfaire la demande mondiale (Chisti 2007. Biotechnol Adv, 25: 294-306). Due to the decline in global oil reserves and increasing global awareness of the development of renewable energy, the exploitation of alternative energy sources alternative to conventional fuels is attracting more and more global attention. Among these forms of clean energy are solar, wind and biofuels that come from biological sources that fix carbon such as photosynthetic organisms. Thus, the use of liquid biofuels in the transport sector has experienced strong growth due, mainly, to policies focused on energy security and the reduction of greenhouse gas emissions. Given the technical and socio-economic constraints related to the use of first and second generation biofuels (based mainly on the use of food sources such as plants for the production of biodiesel), third generation biofuels obtained from microalgae , seem to be the only source of transportation biofuels that could meet global demand (Chisti 2007, Biotechnol Adv, 25: 294-306).
[0003] Les microalgues couvrent un groupe diversifié de microorganismes uni- ou pluricellulaires dont la plus part sont des organismes photosynthétiques. Ils couvent les procaryotes (cyanobactérie ou Chloroxybactria) et eucaryotes comme les algues vertes (Chlorophyta), algues rouges (Rhodophyta) et les diatomées (Bacillariophyta). Les avantages de l'utilisation des microalgues pour la production de biocarburant sont : (1) leur croissance rapide ; elles peuvent doubler leur biomasse en 3 à 3.5 h durant la phase exponentielle. (2) plusieurs espèces présentent un contenu lipidique élevé (20-60%) par poids sec de la cellule. (3) la production d'un kg de biomasse microalgale consomme 1.83 kg de C02 par fixation, ce qui contribuerait à la diminution des émissions des gaz à effet de serre. (4) la culture des microalgues fait appel à des ressources non utilisables en agriculture tels les terrains non arables ou les eaux de mer (pour les espèces marines) ou résiduaires, ne représentant aucune menace sur les ressources agricoles. [0003] Microalgae cover a diverse group of uni- or multicellular microorganisms, most of which are photosynthetic organisms. They incubate prokaryotes (cyanobacteria or chloroxybactria) and eukaryotes such as green algae (Chlorophyta), red algae (Rhodophyta) and diatoms (Bacillariophyta). The benefits of using microalgae for biofuel production are: (1) their rapid growth; they can double their biomass in 3 to 3.5 hours during the exponential phase. (2) several species have a high lipid content (20-60%) per dry weight of the cell. (3) the production of one kg of microalgae biomass consumes 1.83 kg of C0 2 per fixation, which would contribute to the reduction of greenhouse gas emissions. (4) the cultivation of microalgae uses resources that can not be used in agriculture, such as non-arable land or seawater (for marine species) or wastewater, posing no threat to agricultural resources.
[0004] De ce fait, sur la base de l'efficacité photosynthétique et du taux de croissance des microalgues, les calculs théoriques indiquent que la production annuelle en huiles algale pourrait dépasser les 30, 000 L, ou 200 barils par hectares dans des cultures massives de microalgues. Soit 100 fois supérieur à certaines plantes oléagineuses comme le soja; principale source utilisée actuellement pour la production de biodiesel aux Etats Unis. Malgré tous ces avantages, certains handicapes retardent l'avancement de ce type de projets vers le développement de procédés de production rentables à grande échelle. Parmi ces points critiques on cite: la méthode de culture, la productivité des microalgues et la méthode de récolte de la biomasse. Dans ce sens, le recours à la biotechnologie semble être la voie la plus prometteuse pour améliorer le rendement des microalgues oléagineuses et développer une industrie viable de biodiesel de troisième génération. [0004] Therefore, based on the photosynthetic efficiency and growth rate of microalgae, the theoretical calculations indicate that the annual production of algal oils could exceed 30,000 L, or 200 barrels per hectare in crops. massive microalgae. 100 times higher than some oil crops such as soybeans; the main source currently used for biodiesel production in the United States. Despite all these advantages, some handicaps delay the advancement of this type of project towards the development of profitable production processes on a large scale. These critical points include: the cultivation method, the productivity of microalgae and the method of harvesting biomass. In this sense, the use of biotechnology seems to be the most promising way to improve the yield of oilseed microalgae and to develop a viable third generation biodiesel industry.
[0005] Le rendement des microalgues utilisées pour la production de biocarburants est essentiellement évalué en termes de croissance et de quantité et qualité des lipides accumulés par la cellule microalgale. Cependant, pour les microalgues, les conditions optimales de production de la biomasse et celles de production des lipides sont différentes. Griffiths et Harrison (2009) J. Appli. Phycol. 21 : 493-507 ont mentionné qu'il n'y a pas de corrélation entre le contenu lipidique et la productivité lipidique : certaines espèces riches en lipides (plus de 50% par poids sec) ont une productivité de moins de 20 mg/L/jour. De même des espèces avec un faible contenu lipidique (10% par poids sec) peuvent montrer des productivités considérables (plus de 50 mg/L/jour). The yield of microalgae used for the production of biofuels is essentially evaluated in terms of growth and quantity and quality of lipids accumulated by the microalgal cell. However, for microalgae, the optimal conditions of biomass production and those of lipid production are different. Griffiths and Harrison (2009) J. App. Phycol. 21: 493-507 mentioned that there is no correlation between lipid content and lipid productivity: some lipid-rich species (greater than 50% by dry weight) have a productivity of less than 20 mg / L /day. Similarly, species with low lipid content (10% by dry weight) can show considerable productivities (more than 50 mg / L / day).
[0006] Un procédé de production de biocarburants rentable implique l'optimisation des deux aspects : croissance (biomasse) et contenu lipidique. La productivité peut être améliorée en modifiant les paramètres physicochimiques comme la température, l'intensité lumineuse, le pH et la composition nutritionnelle du milieu de croissance vu que les microalgues sont très sensibles aux conditions environnementales. Ainsi, face aux conditions adverses certaines microlagues peuvent répondre par une augmentation des lipides de réserves. Une autre méthode pour l'amélioration du rendement des microalgues est la modification des conditions de culture, par exemple le changement des conditions trophiques (U.S. Patent Publication 2009/0148928), ou le stress nutritionnel (U.S. Patent Appl. Publ. 2012/0088279, Rosenberg ef al., Curr Opin Biotech 19 : 430-436 (2008). Cependant ces méthodes peuvent causer une répression de la croissance et donc une diminution de la productivité. D'autres parts, elles sont difficilement applicables à grande échelle pour une production industrielle. Comme alternatives, plusieurs études ont montré l'efficacité de travailler en deux phases pour augmenter la productivité du procédé de production de biocarburant de troisième génération : une première phase pour stimuler la croissance des microalgues, et donc la biomasse, suivi par une deuxième phase d'accumulation des lipides par application d'un stress. Par exemple l'application de phytohormones ou modulateurs biochimiques/biologiques pour favoriser la croissance des microalgues suivie par une phase de carence en azote pour stimuler la production des lipides dans les espèces de microalgues qui répondent à ce type de stress (U.S. Patent Appl. Publ. 2010/021002). Le choix du type de stress et sa période d'application conditionne l'efficacité du procédé et dépend étroitement de l'exigence de la microalgue. En ce qui concernent les microalgues halophiles, et qui répondent au stress salin par une augmentation de leur teneur en lipides de réserve (recherchés pour la production de biocarburants), l'utilisation des phytohormones pour stimuler la croissance a été déjà décrite, cependant ce type de stress stimule essentiellement l'accumulation de la biomasse. La combinaison de ce type de bio-modulateurs avec un stress osmotique par augmentation de la salinité, à la fin de la phase de croissance active, augmenterais significativement la productivité des espèces halophiles. Description de l'invention [0006] A profitable biofuel production process involves the optimization of both aspects: growth (biomass) and lipid content. Productivity can be improved by modifying the physicochemical parameters such as temperature, light intensity, pH and nutritional composition of the growth medium as Microalgae are very sensitive to environmental conditions. Thus, in the face of adverse conditions, certain microlagues can respond with an increase in lipid reserves. Another method for improving the yield of microalgae is the modification of the culture conditions, for example the change in trophic conditions (US Patent Publication 2009/0148928), or nutritional stress (US Patent Application No. 2012/0088279). Rosenberg et al., Curr Opin Biotech 19: 430-436 (2008), but these methods can cause a repression of growth and hence a decrease in productivity, and in others they are difficult to apply on a large scale to production. As alternatives, several studies have shown the effectiveness of working in two phases to increase the productivity of the third-generation biofuel production process: a first phase to stimulate microalgae growth, and hence biomass, followed by a second phase phase of lipid accumulation by application of stress, for example the application of phytohormones or biochemical / biological modulators to promote the growth of microalgae followed by a nitrogen deficiency phase to stimulate lipid production in microalgae species that respond to this type of stress (US Patent Appl. Publ. 2010/021002). The choice of the type of stress and its period of application determines the effectiveness of the process and depends closely on the requirement of the microalgae. With regard to the halophilic microalgae, which respond to salt stress by an increase in their reserve lipid content (sought for biofuel production), the use of phytohormones to stimulate growth has already been described, however this type of stress essentially stimulates the accumulation of biomass. The combination of this type of bio-modulators with osmotic stress by increasing salinity, at the end of the active growth phase, would significantly increase the productivity of the halophilic species. Description of the invention
[0007] L'invention offre un procédé de production de biocarburant à partir des microalgues optimisé à la fois pour la production de la biomasse et des lipides et pour la récupération passive de la biomasse une fois les microalgues sont chargées en lipides. Ce qui permet l'augmentation de la productivité de ces microalgues et la diminution du coût de production vu que la récolte de la biomasse se fait de manière passive. The invention provides a biofuel production process from microalgae optimized both for the production of biomass and lipids and for passive recovery of biomass once the microalgae are loaded with lipids. This allows the increase of the productivity of these microalgae and the decrease of the cost of production as the biomass harvest is done passively.
[0008] Une culture de microalgues se réfère à une ou plusieurs espèces de microalgues vivant dans un environnement qui assure leur croissance et propagation. Les composants des cultures incluent généralement l'eau, le C02, les minéraux et la lumière (pour les espèces autotrophes). La température de culture est également contrôlée. [0008] A microalgae culture refers to one or more species of microalgae living in an environment that ensures their growth and spread. Crop components typically include water, C0 2 , minerals and light (for autotrophic species). The culture temperature is also controlled.
[0009] Un premier aspect de l'invention offre une méthode et composition pour la production de biocarburant à partir des microalgues. Le milieu de culture est basé sur l'eau de mer enrichie avec des niveaux non stressants de nutriments, essentiellement l'azote, phosphore et potassium, le fer et autres microéléments, les chélateurs et les tampons pour le contrôle du pH (Tris, MES, HEPES, MOPS, phosphate mono-, di- ou tri-basique, etc.). La température de croissance est comprise entre 20 et 35°C selon les espèces, pour les microalgues non thermophiles objet de cette invention. [0009] A first aspect of the invention provides a method and composition for the production of biofuel from microalgae. The culture medium is based on enriched seawater with non-stressful levels of nutrients, mainly nitrogen, phosphorus and potassium, iron and other microelements, chelators and buffers for pH control (Tris, MES). , HEPES, MOPS, mono-, di- or tri-basic phosphate, etc.). The growth temperature is between 20 and 35 ° C depending on the species, for non-thermophilic microalgae object of this invention.
[0010] Dans certains modes de réalisation, les espèces de microalgues choisies peuvent êtres des espèces oléagineuses et autres, appartenant aux classes des Chlorophyceae, Cyanophyceae, Bacillariophyceae, Xantophyceae, Chrysophyceae. Les microalgues oléagineuses sont les espèces qui peuvent, dans des conditions connues, accumuler un taux de lipides considérable par rapport à leur biomasse. Par exemple, les microalgues oléagineuses sont capables d'accumuler des lipides jusqu'au moins 10%, au moins 20%, au moins 30%, au moins 40%, au moins 50% de leur biomasse. Ces microalgues peuvent appartenir aux genres Dunaliella, Chlorella, Nannochloropsis, Haematococcus, skeletonemas, Melosira, Thalassiosira, Nitzschia, Navicula, Tetraselmis, Nannochloris. Un des genres recommandés pour la production de biocarburant est Dunaliella qui appartiennent à la classe des Chlorophyceae, ordre des Volvocales, famille des Dunaliellaceae, et contient les espèces suivants : D. bardawil, D. salina, D. acidophila, D. biolecta, D. lateralis, D. maritima, D. minuta, D. parva, D. peircei, D. polymorpha, D. primolecta, D. pseudosalina, D. quartolecto, D. salina, D. tertiolecta, D. viridis et autres capables de produire des lipides jusqu'au moins 10%, au moins 20% de la biomasse. In certain embodiments, the microalgae species chosen may be oleaginous species and others, belonging to the classes Chlorophyceae, Cyanophyceae, Bacillariophyceae, Xantophyceae, Chrysophyceae. Oleaginous microalgae are the species that can, under known conditions, accumulate a considerable lipid level with respect to their biomass. For example, oleaginous microalgae are capable of accumulating lipids up to at least 10%, at least 20%, at least 30%, at least 40%, at least 50% of their biomass. These microalgae may belong to the genera Dunaliella, Chlorella, Nannochloropsis, Haematococcus, Skeletonemas, Melosira, Thalassiosira, Nitzschia, Navicula, Tetraselmis, Nannochloris. One of the recommended genera for biofuel production is Dunaliella which belong to the class of Chlorophyceae, Order Volvocales, family Dunaliellaceae, and contains the following species: D. bardawil, D. salina, D. acidophila, D. biolecta, D lateralis, D. maritima, D. minuta, D. parva, D. peircei, D. polymorpha, D. primolecta, D. pseudosalina, D. quartolecto, D. salina, D. tertiolecta, D. viridis and others capable of producing lipids up to at least 10%, at least 20% of the biomass.
[0011] Dans certains modes de réalisation, l'espèce de microalgue peut être Dunaliella tertiolecta. In some embodiments, the microalgae species may be Dunaliella tertiolecta.
[0012] Un deuxième aspect de l'invention offre une méthode pour accélérer sélectivement la croissance des microalgues en utilisant des facteurs de croissances des plantes comme bio-modulateurs. Ces bio-modulateurs nommés de type I incluent au moins une, deux, trois, ou plusieurs molécules appartenant à la famille des auxines, cytokinines, gibbérellines, acide abscissique ou éthylène. A second aspect of the invention provides a method for selectively accelerating the growth of microalgae using plant growth factors as bio-modulators. These named type I bio-modulators include at least one, two, three, or more molecules belonging to the auxin family, cytokinins, gibberellins, abscisic acid or ethylene.
[0013] Les facteurs de croissance comme les phytohormones ou hormones végétales, les régulateurs de croissance des plantes et les molécules synthétiques ayant un effet similaire, sont impliqués ou contrôlent, entre autres, la division cellulaire, la croissance et le métabolisme des cellules végétales. La concentration et combinaison de ces phytohormones détermine leur mode d'action. Growth factors such as phytohormones or plant hormones, plant growth regulators and synthetic molecules having a similar effect, are involved or control, among others, cell division, growth and metabolism of plant cells. The concentration and combination of these phytohormones determines their mode of action.
[0014] Dans certains modes de réalisation, les auxines peuvent être l'acide 2,4- Dichlorophenoxyacetique (2,4-D), l'acide 2,4,5-Trichlorophenoxyacetique (2,4,5-T), acide 1- naphtalène acétique (AIMA), acide indole acétique (AIA), acide indole-3-butyrique (AIB). In certain embodiments, the auxins may be 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), acid 1-naphthalene acetic acid (AIMA), indole acetic acid (AIA), indole-3-butyric acid (AIB).
[0015] Dans certains modes de réalisation, les cytokinines peuvent êtres la zéatine, thidiazuron (TDZ), benzylaminopurine (BAP), isopentényladénine (IPA), kinétine. In some embodiments, the cytokinins may be zeatin, thidiazuron (TDZ), benzylaminopurine (BAP), isopentenyladenine (IPA), kinetin.
[0016] Dans certains modes de réalisation, les gibbérellines comprennent la GA3. In some embodiments, gibberellins include GA 3 .
[0017] Dans certains modes de réalisation, d'autres bio-modulateurs comme les molécules de signalisation peuvent être utilisées. Ces molécules incluent les jasmonates et l'acide salysilique à des concentrations allant de 10~2, 10"3, 10"4, 10"5, 10"6, 10"7, 10"8 M dans le milieu de culture. In some embodiments, other bio-modulators such as signaling molecules may be used. These molecules include jasmonates and salysilic acid at concentrations of 10 ~ 2 , 10 "3 , 10 " 4 , 10 "5 , 10 " 6 , 10 "7 , 10 " 8 M in the culture medium.
[0018] Dans certains modes de réalisation, le ratio (w/w) des bio-modulateurs I en cas de mélange auxine : cytokinine, auxine : gibbérelline peut allez de 1 : 2 jusqu' à 2 : 1, de préférence 1 :1. [0019] Dans certains modes de réalisation, l'ajout de ce premier type de bio-modulateurs améliore la croissance des microalgues, 20%, 40%, 60%, 80%, 100% par rapport aux premières conditions de culture. In certain embodiments, the ratio (w / w) of the bio-modulators I in the case of auxin mixture: cytokinin, auxin: gibberellin can range from 1: 2 to 2: 1, preferably 1: 1. . In some embodiments, the addition of this first type of bio-modulators improves the growth of microalgae, 20%, 40%, 60%, 80%, 100% compared to the first culture conditions.
[0020] Dans certains modes de réalisation, les bio-modulateurs I sont additionnés en présence des vitamines Bl (Thiamine), B8 ou H (biotine) et B12 (cobalamine ou cyano- cobalamine) ou substances analogues ayant un effet similaire. Les vitamines sont ajoutées seules ou combinées, à des concentrations entre 0,005 et 0,05 mg/L de milieu de culture. In some embodiments, the bio-modulators I are added in the presence of vitamins B1 (Thiamine), B8 or H (biotin) and B12 (cobalamin or cyano-cobalamin) or similar substances having a similar effect. Vitamins are added alone or in combination at concentrations between 0.005 and 0.05 mg / L of culture medium.
[0021] Dans certains modes de réalisation, l'ajout des bio-modulateurs I améliore l'accumulation du taux de lipides accumulés par unité de biomasse de 40%, 50% ,70% et 90%, 100% par rapport au control non traité. In some embodiments, the addition of bio-modulators I improves the accumulation of the accumulated lipid content per unit of biomass by 40%, 50%, 70% and 90%, 100% compared to the control no. treaty.
[0022] Un autre aspect de l'invention est l'introduction d'un deuxième type de biomodulateurs, nommés bio-modulateurs II, juste au début de la phase d'accumulation des lipides de réserves (entre 6 et 20 jours selon les espèces et conditions de culture). Ce deuxième type de bio-modulateurs est des osmo-régulateurs qui potentialisent l'action du premier type de bio-modulateurs et engendre l'accumulation rapide des lipides. Pour les organismes biologiques ces sels minéraux interviennent dans : le contrôle de l'équilibre hydrique, l'action des hormones et enzymes, la régulation de l'équilibre acide-base (pH), la catalyse de nombreuses réactions biologiques, etc. Dans certains modes de réalisation, le temps d'ajout des osmo-régulateurs est décisif pour le rendement : l'addition précoce ou tardive des osmo-régulateurs peut diminuer le rendement et même causer le ralentissement de la croissance des microalgues. Another aspect of the invention is the introduction of a second type of biomodulator, called bio-modulators II, just at the beginning of the storage lipid storage phase (between 6 and 20 days depending on the species and culture conditions). This second type of bio-modulators is osmo-regulators that potentiate the action of the first type of bio-modulators and generates the rapid accumulation of lipids. For biological organisms these mineral salts are involved in: the control of the water balance, the action of hormones and enzymes, the regulation of the acid-base balance (pH), the catalysis of many biological reactions, etc. In some embodiments, the time of addition of the osmo-regulators is decisive for the yield: the early or late addition of the osmo-regulators can decrease the yield and even cause the slowdown of the growth of microalgae.
[0023] Dans certains modes de réalisation, les bio-modulateurs II incluent NaCI, KCI ou autres osmo-régulateurs à des concentrations entre 0.5 et 5 M par rapport au milieu de culture. In some embodiments, bio-modulators II include NaCl, KCl or other osmo-regulators at concentrations between 0.5 and 5 M relative to the culture medium.
[0024] Dans certains modes de réalisation, l'ajout des bio-modulateurs II améliore le taux de lipides totaux de 100%, 120%, 130%, 140%, 150%, 180%, 190% et plus de 200% par rapport au control. Le pourcentage représente le taux de lipides par unité de biomasse. In some embodiments, the addition of bio-modulators II improves the total lipid level by 100%, 120%, 130%, 140%, 150%, 180%, 190% and more than 200%. compared to control. The percentage represents the lipid level per unit of biomass.
[0025] Dans certains modes de réalisation, les osmo-régulateurs améliorent l'action des bio-modulateurs I entre 30 et 80% par rapport à l'utilisation des bio-modulateurs I seuls. [0026] Dans certains modes de réalisation, les lipides neutres représentent généralement les lipides les plus recherchés pour la production de biocarburants lipidiques. L'utilisation des bio-modulateurs I a amélioré l'accumulation des lipides neutres entre 5%, 20%, 30%, 50%, 90% et 120% et plus par rapport au contrôle. La combinaison des deux biomodulateurs a d'avantage amélioré l'accumulation des lipides neutres avec une augmentation entre 60%, 70%, 140%, 150% et 170%. In some embodiments, the osmo-regulators improve the action of bio-modulators I between 30 and 80% compared to the use of bio-modulators I alone. In certain embodiments, the neutral lipids generally represent the most sought-after lipids for the production of lipid biofuels. The use of bio-modulators I improved the accumulation of neutral lipids by 5%, 20%, 30%, 50%, 90% and 120% and more over control. The combination of the two biomodulators further improved the accumulation of neutral lipids with an increase of between 60%, 70%, 140%, 150% and 170%.
[0027] Dans certains modes de réalisation les bio-modulateurs II ont potentialisé l'action du premier groupe de bio-modulateurs avec des pourcentages allant de 20%, 30%, 50%, 60%, 80% par rapport à l'utilisation des bio-modulateurs I seuls. In some embodiments, the bio-modulators II have potentiated the action of the first group of bio-modulators with percentages ranging from 20%, 30%, 50%, 60%, 80% relative to the use. bio-modulators I alone.
[0028] Dans certains modes de réalisation, cette combinaison de bio-modulateurs peut être utilisée pour la production d'autres produits à haute valeur ajoutée comme les caroténoïdes et les acides gras polyinsaturés. In some embodiments, this combination of bio-modulators can be used for the production of other high value-added products such as carotenoids and polyunsaturated fatty acids.
[0029] Un autre aspect de l'invention est l'introduction d'un troisième bio-modulateur, qui est un acide ou une base ou autre produit ayant un effet sur le pH, en présence des deux bio-modulateurs I et II. Ce troisième bio-modulateur est ajouté dés le début du cycle de production et subit une modification (augmentation de la concentration) 4 jours après l'addition de bio-modulateur II ce qui engendre la précipitation de la biomasse et facilite sa récolte. A la fin de la phase d'accumulation des lipides de réserves (et autres types de lipides) dans les cellules microalgales, la biomasse est séparée du milieu de culture par différentes méthodes seules ou combinées. Ces méthodes peuvent être la centrifugation, filtration sous pression, filtration mécanique ou autres, utilisées seules ou combinées. A l'échelle industrielle, vu les grands volumes utilisés, les centrifugeuses ou les appareils de filtrations sont de grande capacité (U.S. Patent Appl. Publ. No. 20040121447, U.S. Pat. No. 6,524,486) ce qui rend le procédé de récolte très coûteux. D'autres méthodes de séparation de la biomasse microalgale du milieu de culture en incluant des substances chimiques peuvent être utilisées. Ces substances ont un effet floculant ou coagulant et peuvent être le sulfate d'aluminium, polyacrylamide ou autres. Cependant l'ajout de ces substances à la biomasse peut modifier sa composition et affecter négativement l'étape suivante qui est l'extraction des lipides. En plus, à l'échelle industrielle les cultures sont généralement réalisées en mode continue et l'élimination de ces substances du milieu après la récupération de la biomasse peut être très compliquée, d'où la difficulté d'appliquer ces méthodes de récupération de la biomasse à l'échelle industrielle. Another aspect of the invention is the introduction of a third bio-modulator, which is an acid or a base or other product having an effect on the pH, in the presence of both bio-modulators I and II. This third bio-modulator is added at the beginning of the production cycle and undergoes a modification (increase in concentration) 4 days after the addition of bio-modulator II, which causes the precipitation of the biomass and facilitates its harvest. At the end of the storage lipid accumulation phase (and other types of lipids) in the microalgal cells, the biomass is separated from the culture medium by different methods alone or in combination. These methods can be centrifugation, pressure filtration, mechanical filtration or others, used alone or in combination. On an industrial scale, in view of the large volumes used, the centrifuges or filtrating apparatuses are of high capacity (US Patent Appl Publ No. 20040121447, US Pat No. 6,524,486) which makes the harvesting process very expensive. . Other methods of separating the microalgal biomass from the culture medium by including chemicals may be used. These substances have a flocculating or coagulating effect and may be aluminum sulphate, polyacrylamide or others. However, the addition of these substances to the biomass can change its composition and negatively affect the next step which is the extraction of lipids. In addition, on an industrial scale the cultures are generally carried out in continuous mode and the elimination of these substances from the medium after the recovery of biomass can be very complicated, hence the difficulty of applying these methods of biomass recovery on an industrial scale.
[0030] La méthode proposée est basée sur des changements ponctuels de la concentration du bio-modulateur III dans le milieu de culture pour maintenir les microalgues en suspension durant les phases d'accumulation de la biomasse et des lipides et provoquer la sédimentation des cellules chargées en lipides. Ces changements de pH varient entre 6 et 11. Un grand nombre d'acides peuvent êtres utilisé pour moduler le pH incluant l'acide chlorhydrique, l'acide lactique, l'acide acétique, l'acide sulfurique. De même, un grand nombre de bases peuvent être utilisé pour moduler le pH incluant l'hydroxyde de potassium, l'hydroxyde de sodium, l'hydroxyde de calcium. L'intérêt de cette méthode à l'échelle industrielle c'est qu'elle est à bas coût et réversible : une re-modification du pH après la récolte fait que les microalgues jeunes, utilisées pour un nouveau cycle de production, sont maintenues en suspension (état naturel) jusqu'à l'accumulation des lipides, et ainsi de suite. The proposed method is based on point changes in the concentration of bio-modulator III in the culture medium to maintain the microalgae in suspension during the biomass and lipid accumulation phases and to cause the sedimentation of the charged cells. in lipids. These pH changes vary between 6 and 11. A large number of acids can be used to modulate the pH including hydrochloric acid, lactic acid, acetic acid, sulfuric acid. Similarly, a large number of bases can be used to modulate the pH including potassium hydroxide, sodium hydroxide, calcium hydroxide. The advantage of this method on an industrial scale is that it is low cost and reversible: a re-modification of the pH after the harvest makes that the young microalgae, used for a new production cycle, are maintained in suspension (natural state) until the accumulation of lipids, and so on.
[0031] Un autre aspect de l'invention offre un procédé de culture des microalgues et production de lipides adapté à une production industrielle de biocarburant à partir des microalgues. L'utilisation de conditions sélectives augmente la productivité et limite la contamination par d'autres espèces surtout pour les cultures en bassins ouverts. La possibilité qu'offre le procédé, de récolter passivement la biomasse chargée en lipides, permet de faciliter la récolte de la biomasse et de diminuer le coût lié à la récolte de la biomasse par les techniques existantes comme la centrifugation ou la filtration. Another aspect of the invention provides a method of cultivating microalgae and producing lipids suitable for industrial production of biofuel from microalgae. The use of selective conditions increases productivity and limits contamination by other species, especially for open-water crops. The possibility of the process of passively harvesting the biomass loaded with lipids makes it easier to harvest biomass and to reduce the cost of harvesting biomass by existing techniques such as centrifugation or filtration.
[0032] Quand la biomasse microalgale est récoltée, les bioproduits (comme les lipides) sont libérés par des méthodes mécaniques (presse, billes en verre, choque thermique ou osmotique, trituration, ultrasons ou autres méthodes connues), chimique (solvants, enzymes, surfactants ou autres). La séparation des lipides du reste de la biomasse peut se faire à l'aide d'un mélange de solvants comme l'hexane, méthanol, éthanol, isopropanol, chloroforme, di-chloro-méthane couplés généralement avec une méthode mécanique comme la centrifugation. Le produit isolé est donc traité de différentes manières suivant la finalité. Par exemple, pour la production de biodiesel à partir des lipides extraits de la biomasse, on peut appliquer une méthode qui est la transestérification comme l'exemple du processus utilisée en U.S. Pat. No. 5,354,878. Le protocole standard de transestérification implique un catalyseur alcalin ou acide pour transformer les triglycérides (et autres lipides) en esters d'acides gras (biodiesel) et glycerol. When the microalgae biomass is harvested, bioproducts (such as lipids) are released by mechanical methods (press, glass beads, heat shock or osmotic, trituration, ultrasound or other known methods), chemical (solvents, enzymes, surfactants or others). The separation of lipids from the remainder of the biomass can be done using a mixture of solvents such as hexane, methanol, ethanol, isopropanol, chloroform, dichloromethane, generally coupled with a mechanical method such as centrifugation. The isolated product is therefore treated in different ways depending on the purpose. For example, for the production of biodiesel from lipids extracted from biomass, one can apply a method which is transesterification as the example of the process used in US Pat. No. 5,354,878. The standard transesterification protocol involves an alkaline or acid catalyst to convert triglycerides (and other lipids) into fatty acid esters (biodiesel) and glycerol.
Brève description des Figures Brief description of the Figures
[0033] FIG.l. Explique le procédé développé. La phase de croissance active ou exponentielle représente la phase d'accumulation de la biomasse, elle peut commencer directement après la mise en culture des microalgues ou être précédée par une phase de latence pendant laquelle la microalgue s'adapte à son nouvel environnement. Le bio-modulateur I est introduit au milieu pendant cette phase, généralement le même jour du lancement de la culture. La phase de croissance active est suivie par une phase stationnaire ou la croissance s'arrête et commence l'accumulation de biomolécules comme les lipides de réserve recherchés pour la production de biocarburants. Le type II de bio-modulateurs est introduit au début de cette phase. A la fin de la phase stationnaire le troisième type de biomodulateurs est ajouté pour augmenter le pH du milieu de culture et précipiter les microalgues pour faciliter leur récolte. FIG.l. Explain the process developed. The active or exponential growth phase represents the biomass accumulation phase, it can begin directly after the microalgae culture or be preceded by a latency phase during which the microalga adapts to its new environment. The bio-modulator I is introduced into the medium during this phase, generally the same day of the launching of the culture. The active growth phase is followed by a stationary phase where growth stops and begins the accumulation of biomolecules like the reserve lipids sought for the production of biofuels. Type II biomodulators are introduced at the beginning of this phase. At the end of the stationary phase the third type of biomodulators is added to increase the pH of the culture medium and precipitate microalgae to facilitate their harvest.
[0034] FIG.2. Montre un exemplaire de la courbe de croissance de Dunaliella tertiolecta en présence et absence des bio-modulateurs I. Le suivi de la croissance est effectué par mesure de la densité optique des cultures. FIG.2. Shows a copy of the growth curve of Dunaliella tertiolecta in the presence and absence of bio-modulators I. Growth monitoring is performed by measuring the optical density of the cultures.
[0035] FIG.3. Montre un exemplaire de l'effet combiné des bio-modulateurs I et II sur la production des lipides par Dunaliella tertiolecta par rapport au control non traité. L'analyse des lipides est effectuée par gravimétrie après 14 jours du démarrage de la culture. FIG.3. Shows a copy of the combined effect of bio-modulators I and II on lipid production by Dunaliella tertiolecta compared to untreated control. Lipid analysis is performed gravimetrically after 14 days of start of culture.
[0036] FIG. 4. Montre un exemplaire de l'effet combiné des bio-modulateurs I et II sur la production des lipides neutres par Dunaliella tertiolecta par rapport au control non traité et à l'application des bio-modulateurs I seuls. L'analyse des lipides est effectuée par cytométrie de flux après 4 jours de traitement. FIG. 4. Shows a copy of the combined effect of bio-modulators I and II on neutral lipid production by Dunaliella tertiolecta compared to untreated control and application of bio-modulators I alone. Lipid analysis is performed by flow cytometry after 4 days of treatment.
Exemples : Examples:
[0037] Après la description détaillée de l'invention, les exemples spécifiques cités ci- dessous sont donnés pour illustrer certains aspects de l'invention. Exemple 1. Effet de l'ajout des bio-modulateurs I sur l'accumulation de la biomasse de After the detailed description of the invention, the specific examples given below are given to illustrate certain aspects of the invention. Example 1. Effect of the addition of bio-modulators I on the accumulation of biomass
Dunaliella tertiolecta.  Dunaliella tertiolecta.
[0038] Les cultures des microalgues ont été réalisées (en triplicats et en trois expériences indépendantes) dans des bioréacteurs en verre ayant été préalablement stérilisés, contenant de l'eau de mer filtrée, stérilisée et enrichie avec le milieu de croissance f/2 (Guillard and Ryther 1962, Guillard 1975). Toutes les cultures ont été agitées par bullage en utilisant de l'air pur, et l'intensité lumineuse a été réglée à 65 μηηοΙ^-ιτΓ2 sous un régime d'éclairage continu. The microalgae cultures were carried out (in triplicates and in three independent experiments) in previously sterilized glass bioreactors, containing filtered seawater, sterilized and enriched with the f / 2 growth medium ( Guillard and Ryther 1962, Guillard 1975). All cultures were agitated by bubbling using clean air, and the light intensity was set at 65 μηηοΙ ^ -ιτΓ 2 under a continuous lighting regime.
[0039] Un exemple de la composition du milieu f/2 est donné dans le Tableau 1. An example of the composition of the medium f / 2 is given in Table 1.
Tableau 1 Table 1
Composé Quantité Solution stock Concentration finaleCompound Quantity Stock Solution Final Concentration
NalM03 1 mL/L 75 g/L dH20 8.83 10"4 M NalM0 3 1 mL / L 75 g / L dH 2 0 8.83 10 -4 M
NaH2P04 H20 l mL/L 5 g/L dH20 3.63 10~4 M NaH 2 P0 4 H 2 0 1 mL / L 5 g / L dH 2 0 3.63 10 -4 M
FeCI3 6H20 1 ml/L 3.15 g/L dH20 1 10"5 M FeCl 3 H 2 0 1 ml / L 3.15 g / L dH 2 0 1 10 -5 M
Na2EDTA 2H20 1 ml/L 4.36 g/L dH20 1 10"5 M Na 2 EDTA 2H 2 0 1 ml / L 4.36 g / L dH 2 0 1 10 -5 M
CuS04 5H20 1 mL/L 9.8 g/L dH20 4 10~8 M CuS0 4 5H 2 0 1 mL / L 9.8 g / L dH 2 0 4 10 ~ 8M
Na2Mo04 2H20 1 mL/L 6.3 g/L dH20 3 10"8 M Na 2 Mo0 4 .2H 2 0 1 mL / L 6.3 g / L dH 2 0 3 10 "8 M
ZnS04 7H20 1 mL/L 22.0 g/L dH20 8 10"8 M ZnS04 7H 2 0 1 mL / L 22.0 g / L dH 2 0 8 10 "8 M
CoCI2 6H20 1 mL/L 10.0 g/L dH20 5 10"8 M COCl 2 6H 2 0 1 mL / L 10.0 g / L dH 2 0 5 10 "8 M
MnCI2 4H20 1 mL/L 180.0 g/L dH20 9 10"7 M MnCl 2 4H 2 0 1 mL / L 180.0 g / L dH 2 0 9 10 "7 M
[0040] Pour préparer 1 L d'eau de mer enrichie avec le milieu f/2, 1 L d'eau de mer naturelle ou synthétique est filtré, autoclavé et additionné avec 1 ml des solutions stock stériles de NaN03, 1 ml NaH2P04 H20 et 1 ml des microéléments et 0,5 ml de solution vitamique. Le pH initial du milieu est ajusté à 7.2-7.8 avant inoculation des microalgues. [0041] Dans cet exemple au moins 10 bio-modulateurs ont été sélectionnés incluant le 2,4- D (1 mg/L) et /ou AIA (1 mg/L) et /ou 6-BAP (1 mg/L) et /ou GA (lmg/L) et 3 vitamines: Bl: 0.01 mg/L, B8 : 0.005 mg/ L et B12 0.05 mg/L (Tableau 2). Les solutions stocks sont préparées indépendamment, stérilisées par filtration (0.2 μιη) avant de préparer la formule finale de bio-modulateurs I. To prepare 1 L of seawater enriched with the medium f / 2, 1 L of natural or synthetic seawater is filtered, autoclaved and added with 1 ml of sterile stock solutions of NaNO 3 , 1 ml NaH 2 P0 4 H 2 0 and 1 ml of microelements and 0.5 ml of vitamid solution. The initial pH of the medium is adjusted to 7.2-7.8 before inoculation of microalgae. In this example at least 10 bio-modulators were selected including 2,4-D (1 mg / L) and / or AIA (1 mg / L) and / or 6-BAP (1 mg / L). and / or GA (lmg / L) and 3 vitamins: B1: 0.01 mg / L, B8: 0.005 mg / L and B12 0.05 mg / L (Table 2). Stock solutions are prepared independently, sterilized by filtration (0.2 μιη) before preparing the final formula of bio-modulators I.
Tableau 2 Table 2
Eléments inclus dans le Solution stock Concentration finale (L 1) Elements included in the Stock Solution Final Concentration (L 1 )
Bio-modulateur 1  Bio-modulator 1
Acide 2,4- 1 mg/ml 1 mg  2,4-1 mg / ml 1 mg acid
Dichlorophenoxyacetique  dichlorophénoxyacétique
Acide lndole-3-acétique 1 mg/ml 1 mg  Lindole-3-acetic acid 1 mg / ml 1 mg
6-Benzylaminopurine 1 mg/ml 1 mg  6-Benzylaminopurine 1 mg / ml 1 mg
Acide gibbérellique 1 mg/ml 1 mg  Gibberellic acid 1 mg / ml 1 mg
Vitamine Bl 200 mg/L 0.1 mg  Vitamin Bl 200 mg / L 0.1 mg
Vitamine B8 l mg/L 0.0005 mg  Vitamin B8 1 mg / L 0.0005 mg
Vitamine B12 l mg/L 0.0005 mg  Vitamin B12 1 mg / L 0.0005 mg
[0042] La croissance de microalgues a été mesurée par des prélèvements réguliers tous les 2 jours pour mesurer la densité optique. Dans le tableau 3, il est évident que l'ajout du groupe I de bio-modulateurs a engendré une augmentation de l'accumulation de la biomasse, essentiellement à des concentrations entre 0.5 et 1 mg/L de milieu durant la phase de croissance active de Dunaliella teriolecta. Ce qui améliore sa croissance pour une postérieure application dans la production de produits issus de microalgues. Selon la Figure 2, l'application des bio-modulateurs I aux concentrations choisies améliore la croissance entre 20%, 30%, 40%, 50% et 60% par rapport au contrat non traité. Dans la plus part des cas, cette amélioration était de 40% dans le cas des espèces du genre Dunaliella. Tableau 3 The growth of microalgae was measured by regular sampling every 2 days to measure the optical density. In Table 3, it is obvious that the addition of group I of bio-modulators caused an increase in biomass accumulation, mainly at concentrations between 0.5 and 1 mg / L of medium during the active growth phase. of Dunaliella teriolecta. This improves its growth for a later application in the production of products derived from microalgae. According to Figure 2, the application of biomodulators I at selected concentrations improves growth between 20%, 30%, 40%, 50% and 60% compared to the untreated contract. In most cases, this improvement was 40% in the case of Dunaliella species. Table 3
Effet des différentes concentrations de bio-modulateurs I sur la croissance de Dunaiiella tertiolecta Effect of different concentrations of bio-modulators I on the growth of Dunaiiella tertiolecta
Concentration Contrôle 0.5 mg/L 1 mg/L 1.5 mg/L des Biomodulateurs I  Control concentration 0.5 mg / L 1 mg / L 1.5 mg / L of Biomodulators I
T0 0.029 ± 0.001 0.030 ± 0.01 0.030 ± 0.001 0.024 ± 0.006 T0 0.029 ± 0.001 0.030 ± 0.01 0.030 ± 0.001 0.024 ± 0.006
Croissance TO+2 0.126 0.012 0.189 ± 0.006 0.139 ± 0.009 0.155 0.010 exprimée en TO+4 0.306 ± 0.020 0.361 ± 0.030 0.321 ± 0.010 0.289 ± 0.040 densité TO+6 0.402 ± 0.040 0.523 ± 0.024 0.511 ± 0.022 0.452 ± 0.042 optique TO+8 0.518 ± 0.050 0.700 ± 0.020 0.710 ± 0.040 0.550 ± 0.043Growth TO + 2 0.126 0.012 0.189 ± 0.006 0.139 ± 0.009 0.155 0.010 expressed in TO + 4 0.306 ± 0.020 0.361 ± 0.030 0.321 ± 0.010 0.289 ± 0.040 density TO + 6 0.402 ± 0.040 0.523 ± 0.024 0.511 ± 0.022 0.452 ± 0.042 optical TO + 8 0.518 ± 0.050 0.700 ± 0.020 0.710 ± 0.040 0.550 ± 0.043
Exemple 2. Effet des bio-modulateurs I et II sur l'accumulation des lipides totaux : analyses gravimétrique Example 2. Effect of Biomodulators I and II on Total Lipid Accumulation: Gravimetric Analyzes
[0043] L'exemple traite l'effet des bio-modulteurs I et II combinés sur l'accumulation des lipides chez deux souches de Dunaiiella tertiolecta. Les souches utilisées dans l'exemple sont D. tertiolecta (SAG 13.86) et D. tertiolecta (MAR 029) isolée du Maroc. Les cultures ont été réalisées comme décrit dans l'exemple 1. Le groupe I de bio-modulateurs a été initialement additionné au milieu de culture et après 8 à 10 jours, le groupe II contenant des osmo- régulateurs a été additionné au milieu pour potentialiser l'action du groupe I. Les osmo- régulateurs (NaCl ou KCI) ont été préparés en solutions concentrées et les volumes nécessaires ont été ajoutés au milieu de culture pour avoir une concentration finale de 1 à 5M. Dans cet exemple la concentration d'osmo-régulateurs utilisée était 2 M. Après 4 jours de culture en présence des deux bio-modulateurs, la biomasse microalgale est récoltée (en utilisant la méthode décrite dans l'exemple 4. Les lipides totaux sont extraits en utilisant un protocole modifié à partir de la méthode de (Bligh et Dyer, 1959). L'extraction des lipides se fait après soumission de la biomasse à un traitement par ultrasons pendant 15 min pour la rupture des cellules. L'extraction chimique est par la suite réalisée en utilisant un mélange de chloroforme : méthanol : eau (2 .1 :0 .75 v : v :v) suivie d'une centrifugation pendant 3 min pour séparer les phases organique et aqueuse. La phase organique est récupérée et additionnée avec du chlorure de sodium (0.9%, 1 : 5 v : v) et du sulfate de magnésium. Pour éviter l'oxydation des lipides, le protocole inclue l'utilisation de 1 à 5 ml de BHT (10%). Les solvants sont finalement évaporés et le poids des lipides mesuré. [0044] Le Tableau 4 montre l'amélioration des lipides suite aux traitements. L'ajout du groupe I de bio-modulateurs améliore l'accumulation des lipides (Figure 3). On note que l'utilisation du groupe I de bio-modulateurs a amélioré le taux de lipides accumulés de 40%, 50% ,70% et 96% par rapport au control. L'addition du deuxième groupe de biomodulateurs (osmo-régulateurs) a augmenté le taux de lipides accumulés de 120%, 140%, 180%, 190% et plus de 200% par rapport au control. Ainsi, les osmo-regulateurs ont amélioré l'action des bio-modulateurs I entre 30 et 60% par rapport à l'utilisation des bio-modulateurs I seuls. Dans cet exemple la meilleure combinaison était d'utiliser les bio-modulateurs I entre 0.5 et 1 mg/L et les osmo-régulateurs à 2 M. The example deals with the effect of combined bio-modulators I and II on the accumulation of lipids in two strains of Dunaiiella tertiolecta. The strains used in the example are D. tertiolecta (SAG 13.86) and D. tertiolecta (MAR 029) isolated from Morocco. The cultures were carried out as described in Example 1. The group I of bio-modulators was initially added to the culture medium and after 8 to 10 days, the group II containing osmo- regulators was added to the medium to potentiate The action of group I. The osmo- regulators (NaCl or KCl) were prepared in concentrated solutions and the necessary volumes were added to the culture medium to have a final concentration of 1 to 5M. In this example, the concentration of osmo-regulators used was 2 M. After 4 days of culture in the presence of the two bio-modulators, the microalgal biomass is harvested (using the method described in Example 4. The total lipids are extracted using a modified protocol from the method of (Bligh and Dyer, 1959) Lipid extraction is done after biomass submission to ultrasound treatment for 15 min for cell disruption. subsequently carried out using a mixture of chloroform: methanol: water (2.1: 0.75 v: v: v) followed by centrifugation for 3 min to separate the organic and aqueous phases The organic phase is recovered and added with sodium chloride (0.9%, 1: 5 v: v) and magnesium sulphate To avoid oxidation of lipids, the protocol includes the use of 1 to 5 ml of BHT (10%). solvents are finally evaporated and the weight of the lip measured ideas. Table 4 shows the improvement of lipids following the treatments. The addition of group I bio-modulators improves lipid accumulation (Figure 3). It is noted that the use of group I of bio-modulators improved the accumulated lipid level by 40%, 50%, 70% and 96% compared to control. The addition of the second group of biomodulators (osmo-regulators) increased the accumulated lipid level by 120%, 140%, 180%, 190% and more than 200% compared to control. Thus, osmo-regulators improved the action of bio-modulators I by between 30 and 60% compared to the use of bio-modulators I alone. In this example, the best combination was to use the bio-modulators I between 0.5 and 1 mg / L and the osmo-regulators with 2 M.
Tableau 4 Table 4
Effet de la combinaison des bio-modulateurs I et II sur l'accumulation des lipides chez Dunaliella tertiolecta. Les lipides sont quantifiés par gravimétrie et exprimés en % (g de lipide par g > de biomasse) Effect of the combination of bio-modulators I and II on lipid accumulation in Dunaliella tertiolecta. Lipids are quantified by gravimetry and expressed in% (g lipid per g of biomass)
Organisme Traitement  Body Treatment
D. tertiolecta 0.5 mg/L 1 mg/L 1.5 mg/L  D. tertiolecta 0.5 mg / L 1 mg / L 1.5 mg / L
Bio-modulateurs 1  Bio-modulators 1
(SAG 13.86) 38.33 % 43.14 % 35.02 %  (SAG 13.86) 38.33% 43.14% 35.02%
Bio-modulateurs l+ll 68.31 % 69.55 % 54.56 % Bio-modulators l + ll 68.31% 69.55% 54.56%
Contrôle 24.39 % Control 24.39%
D. tertiolecta Bio-modulateurs 1 48.62 % 42.04 % 37.13 % D. tertiolecta Bio-modulators 1 48.62% 42.04% 37.13%
(MAR 029) Bio-modulateurs l+ll 65.56 % 62.2 % 51.26 % (MAR 029) Bio-modulators l + ll 65.56% 62.2% 51.26%
Contrôle 21.39 %  Control 21.39%
Exemple 3. Effet des bio-modulateurs I et II sur l'accumulation des lipides neutres: analyses par cytométrie de flux  EXAMPLE 3 Effect of Biomodulators I and II on Neutral Lipid Accumulation: Flow Cytometry Analyzes
[0045] Les lipides neutres représentent généralement les lipides les plus recherchés pour la production de biodiesel. Les lipides neutres peuvent êtres analysés par différentes méthodes dont la cytométrie de flux. L'utilisation de cette méthode pour l'analyse des lipides des microalgues a été préalablement développée (Doan et al. 2011. Bio Bioener, 35: 2534-2544 ; Lopes da Silva et al. 2009. Appl Biochem Biotechnol, 159: 568-578 ; Alonzo et Mayzaud 1999. Marine Chem, 67: 289-301). La visualisation des lipides dans le cytomètre est possible suite à un marquage avec un marquer fluorescent nommé rouge Nile qui, après excitation par un laser à 488 nm, émet une fluorescence jaune intense (longueur d'émission 560-640 nm) quand il est associé aux lipides neutres. Quand le rouge Nile est dissocié dans des lipides polaires il émet une fluorescence rouge à plus de 650 nm (ces longueurs d'émission sont spécifiques à l'équipement utilisé : dans ce cas c'est un FACS Calibur System, Becton Dickinson). Pour le marquage des cellules de microalgues, 1 ml de culture est additionné avec 50 μΙ d'une solution stock de NR (préparé en acétone) et le mélange est incubé entre 2 à 10 min à 37°C en obscurité. L'échantillon est ensuite analysé dans le cytomètre en utilisant les longueurs d'ondes d'excitation et d'émission mentionnées. Neutral lipids generally represent the most sought-after lipids for the production of biodiesel. Neutral lipids can be analyzed by different methods including flow cytometry. The use of this method for the analysis of the lipids of microalgae has been previously developed (Doan et al., Bio Bioener, 35: 2534-2544, Lopes da Silva et al., 2009 Appl Biochem Biotechnol, 159: 568). 578, Alonzo and Mayzaud 1999. Marine Chem, 67: 289-301). Visualization of lipids in the cytometer is possible following a labeling with a fluorescent marker called red Nile which, after excitation by a laser at 488 nm, emits an intense yellow fluorescence (emission length 560-640 nm) when it is associated with neutral lipids. When Nile red is dissociated in polar lipids it emits a red fluorescence at more than 650 nm (these emission lengths are specific to the equipment used: in this case it is a FACS Calibur System, Becton Dickinson). For the labeling of the microalgae cells, 1 ml of culture is added with 50 μl of a stock solution of NR (prepared in acetone) and the mixture is incubated for 2 to 10 min at 37 ° C. in the dark. The sample is then analyzed in the cytometer using the excitation and emission wavelengths mentioned.
[0046] L'analyse de l'accumulation des lipides neutres suite aux traitements biomodulateur I et l+ll a été effectuée chaque 2 jours. Le Tableau 5 indique l'effet positif de la combinaison des deux bio-modulateurs I et II sur l'accumulation des lipides neutres par deux souches de Dunaliella tertiolecta. Les souches utilisées dans l'exemple sont D. tertiolecta (SAG 13.86) et D. tertiolecta (MAR 029) isolée du Maroc. On constate que l'utilisation des bio-modulateurs I a amélioré l'accumulation des lipides neutres entre 5%, 20%, 30%, 50%, 90% et 120% par rapport au contrôle, selon le traitement et la souche. La meilleure réponse à été obtenue en utilisant une concentration de bio-modulateur I de 1 mg/L et la souche MAR029 a généralement montré une meilleure réponse au traitement. La combinaison des deux bio-modulateurs a significativement amélioré l'accumulation des lipides avec une augmentation entre 60%, 70%, 140%, 150% et 170%. Par rapport au contrôle. Il est évident que les osmo-régulateurs ont potentialisé l'action du premier groupe de bio-modulateurs avec des pourcentages allant de 20%, 30%, 50% et plus de 60% par rapport à l'utilisation des bio-modulateurs I seuls (Figure 4). The analysis of the accumulation of neutral lipids following the biomodulator I and I + 11 treatments was performed every 2 days. Table 5 shows the positive effect of the combination of the two bio-modulators I and II on the accumulation of neutral lipids by two strains of Dunaliella tertiolecta. The strains used in the example are D. tertiolecta (SAG 13.86) and D. tertiolecta (MAR 029) isolated from Morocco. It is found that the use of bio-modulators I improved the accumulation of neutral lipids by 5%, 20%, 30%, 50%, 90% and 120% compared to the control, depending on the treatment and the strain. The best response was obtained using a 1 mg / L biomodulator I concentration and the MAR029 strain generally showed a better response to treatment. The combination of both bio-modulators significantly improved lipid accumulation with an increase of between 60%, 70%, 140%, 150% and 170%. Compared to the control. It is clear that osmo-regulators have potentiated the action of the first group of bio-modulators with percentages ranging from 20%, 30%, 50% and more than 60% compared to the use of bio-modulators alone. (Figure 4).
Unité arbitraire de fluorescence : F/FA Arbitrary unit of fluorescence: F / F A
F : fluorescence de l'échantillon après marquage  F: fluorescence of the sample after marking
FA : auto-fluorescence de l'échantillon avant marquage Tableau 5 F A : auto-fluorescence of the sample before marking Table 5
Effet de la combinaison des de bio-modulateurs I et il sur l'accumulation des lipides neutres chez Dunaliella tertiolecta. Les lipides sont analysés par cytométrie de flux et exprimés en Effect of the combination of bio-modulators I and II on the accumulation of neutral lipids in Dunaliella tertiolecta. Lipids are analyzed by flow cytometry and expressed in
unité arbitraire de fluorescence  arbitrary fluorescence unit
Organisme Traitement  Body Treatment
D. tertiolecta 0.5 mg/ L 1 mg/ L 1.5 mg/ L  D. tertiolecta 0.5 mg / L 1 mg / L 1.5 mg / L
Bio-modulateurs I  Bio-modulators I
(SAG 13.86) 16.9 20.9 18.8  (SAG 13.86) 16.9 20.9 18.8
Bio-modulateurs l+ll 26.7 26.1 25.6 Bio-modulators l + ll 26.7 26.1 25.6
Contrôle 15.9 Control 15.9
D. tertiolecta Bio-modulateurs 1 31.6 35.5 24.9 D. tertiolecta Bio-modulators 1 31.6 35.5 24.9
(MAR 029) Bio-modulateurs l+ll 39.1 44.7 40.5 (MAR 029) Bio-modulators l + ll 39.1 44.7 40.5
Contrôle 16.3  Control 16.3
Exemple 4. Récupération passive de la biomasse  Example 4. Passive recovery of biomass
[0047] Après accumulation des lipides, la biomasse micoalgale doit être récupérée quand le maximum des lipides est accumulé, sinon ces lipides peuvent être consommés par la cellule pour répondre à ces propres besoins énergétiques. Différentes méthodes peuvent être utilisées pour séparer la biomasse du milieu de culture comme la centrifugation ou la filtration. L'exemple 4 offre l'évidence que la méthode développée permet de maintenir les cellules en suspension durant la phase de croissance et d'accumulation des lipides (changement périodiques de pH entre 6 et 8). Une fois les cellules chargées de lipides des modifications ponctuelles du pH entre (7 et 11) ont permis de les précipiter. Le pH maximal à appliquer en combinaison avec les bio-modulateurs II est 10.5. Différents temps de soumission aux fluctuations de pH ont été appliqués (30 min à 2 h) avec une totale précipitation de la biomasse riche en lipides à 2 heures du dernier changement brusque de pH. Le Tableau 6 montre l'effet progressif de la dernière modification du pH sur la précipitation des cellules chargées de lipides, cette modification de pH est appliquée 4 jours après le traitement avec les osmo-régulateurs. Le contrôle positif est une biomasse pour laquelle cette dernière modification du pH n'a pas été appliquée. Les résultats obtenus ont été comparés avec le contrôle positif et avec une biomasse du même âge et mêmes pourcentage de lipides (70%) maintenue a des pH entre 6 et 8 (selon l'état de la culture) et centrifugée durant 5 min à 5000 rpm. After accumulation of lipids, the micoalgal biomass must be recovered when the maximum lipid is accumulated, otherwise these lipids can be consumed by the cell to meet these own energy needs. Different methods can be used to separate the biomass from the culture medium such as centrifugation or filtration. Example 4 offers evidence that the method developed makes it possible to maintain the cells in suspension during the phase of growth and accumulation of lipids (periodic pH changes between 6 and 8). Once the cells loaded with lipids, spot changes in pH between (7 and 11) allowed them to precipitate. The maximum pH to be applied in combination with bio-modulators II is 10.5. Different pH-fluctuation submission times were applied (30 min to 2 h) with total precipitation of the lipid-rich biomass at 2 hours of the last sudden change in pH. Table 6 shows the progressive effect of the last change in pH on the precipitation of lipid-loaded cells, this pH change is applied 4 days after treatment with the osmo-regulators. The positive control is a biomass for which this last change in pH has not been applied. The results obtained were compared with the positive control and with a biomass of the same age and even percentage of lipids (70%) maintained at pH between 6 and 8 (depending on the state of the culture) and centrifuged for 5 min at 5000 rpm.
Tableau 6 Table 6
Effet de la dernière modification du pH sur la précipitation des cellules de microalgues traitées avec les bio-modulateurs I et II. Les résultats sont exprimés en densité optiqueEffect of last modification of pH on the precipitation of microalgal cells treated with bio-modulators I and II. The results are expressed in optical density
Organisme Traitement Body Treatment
D. tertiolecta 30 min l h 2 h  D. tertiolecta 30 min l h 2 h
(SAG 13.86) KO H NaOH KOH NaOH KOH NaOH pH=9,5 0,311 0,287 0,090 0,086 0,057 0,048 pH=10 0,251 0,312 0,123 0,097 0,046 0,051 pH=10,5 0,227 0,230 0,173 0,187 0,010 0,020(SAG 13.86) KOH NaOH KOH NaOH KOH NaOH pH = 9.5 0.311 0.287 0.090 0.086 0.057 0.048 pH = 10 0.251 0.312 0.123 0.097 0.046 0.051 pH = 10.5 0.227 0.230 0.173 0.187 0.010 0.020
Control non 0,521 Control no 0.521
traité  treaty
Biomasse  biomass
centrifugée  centrifuged
[0048] L'augmentation du pH a engendré une précipitation rapide des cellules chargées de lipides essentiellement après 2h de maintient de cette valeur de pH. On constate la récupération de 90 à 100% des cellules de Dunaliella tertiolecta traitées sans aucun traitement additionnel, et à la fin la DO a était équivalente à celle obtenue après une récupération par centrifugation. The increase in pH caused rapid precipitation of cells loaded with lipids essentially after 2 hours of maintaining this pH value. Recovery of 90-100% of treated Dunaliella tertiolecta cells was observed without any additional treatment, and at the end the OD was equivalent to that obtained after centrifugation recovery.

Claims

Revendications claims
1. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, caractérisé en ce que des micro-algues sélectionnées subissent une phase de croissance dans de un milieu de culture enrichie par des bio-modulateurs I et exposé à la lumière , suivie d'une phase de stress par l'augmentation de la salinité du milieu (bio-modulateurs II), enfin, la phase de récupération passive de la biomasse par des changements ponctuels des valeurs du pH (bio-modulateurs III) du milieu de culture. A method for increasing the biofuel production potential from microalgae, characterized in that selected microalgae undergo a growth phase in a culture medium enriched by bio-modulators I and exposed to light followed by a stress phase by increasing the salinity of the medium (bio-modulators II), finally, the phase of passive biomass recovery by occasional changes in the pH values (bio-modulators III) of the medium of culture.
2. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, Selon la revendication 1, caractérisé en ce que les micro-algues utilisées sont des espèces halophiles et/ou appartenant aux classes des Chlorophyceae, Cyanophyceae, Baciilariophyceae, Xantophyceae, Chrysophyceae. Ces microalgues peuvent appartenir aux genres Dunaliella, Chlorella, Nannochloropsis, Haematococcus, skeletonemas, Melosira, Thalassiosira, Nitzschia, Navicula. 2. Process for increasing the biofuel production potential from microalgae according to claim 1, characterized in that the microalgae used are halophilic species and / or belonging to the classes Chlorophyceae, Cyanophyceae, Baciilariophyceae, Xantophyceae , Chrysophyceae. These microalgae may belong to the genera Dunaliella, Chlorella, Nannochloropsis, Haematococcus, Skeletonemas, Melosira, Thalassiosira, Nitzschia, Navicula.
3. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, Selon les revendications 1 et 2, caractérisé en ce que la micro-algue utilisée est Dunaliella tertiolecta. 3. Process for increasing the biofuel production potential from microalgae, according to claims 1 and 2, characterized in that the micro-alga used is Dunaliella tertiolecta.
4. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, Selon les revendications 1 à 3, caractérisé en ce que le bio-modulateur I est ajouté au milieu de culture pendant la phase de croissance active. 4. Process for increasing the biofuel production potential from microalgae, according to claims 1 to 3, characterized in that the biomodulator I is added to the culture medium during the active growth phase.
5. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, Selon les revendications 1 à 4, caractérisé en ce que le Bio-modulateur I est un phytohormone du type: 5. Process for increasing the biofuel production potential from microalgae, according to claims 1 to 4, characterized in that the Bio-modulator I is a phytohormone of the type:
• Une auxine (acide 2,4-Dichlorophenoxyacetique 2,4-D, acide naphtalène acétique ANA, acide indole acétique AIA, acide indole butyrique AIB), • Une cytokinique (zéatine, thidiazuron TDZ, benzylaminopurine BAP, isopentényladénine IPA, kinétine), An auxin (2,4-Dichlorophenoxyacetic acid 2,4-D, naphthalene acetic acid ANA, indole acetic acid AIA, indole butyric acid AIB), • A cytokine (zeatin, thidiazuron TDZ, benzylaminopurine BAP, isopentenyladenine IPA, kinetin),
• Une gibbérelline (acide gibbérellique GAS), • Gibberellin (gibberellic acid GA S ),
• Un composé de structure ou fonction similaire à une auxine, un composé de structure ou fonction similaire à une cytokinine, un facteur de croissance, un promoteur de croissance,  A compound of structure or function similar to an auxin, a compound of structure or function similar to a cytokinin, a growth factor, a growth promoter,
• Des molécules impliquées dans la signalisation cellulaire (acide salicylique SA, acide jasmonique JA, methyl jasmonate MeJa).  • Molecules involved in cell signaling (salicylic acid SA, jasmonic acid JA, methyl jasmonate MeJa).
6. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, Selon les revendications 1 à 5, caractérisé en ce que la concentration des phytohormones, utilisés seuls ou combinés, est comprise dans l'intervalle [0.01 - 2] mg/L. 6. Process for increasing the biofuel production potential from microalgae, according to claims 1 to 5, characterized in that the concentration of the phytohormones, used alone or in combination, is in the range [0.01 - 2] mg / L.
7. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, Selon la revendication 1, caractérisé en ce que dans la phase de croissance on utilise les vitamines Bl, B8, B12 ou des substances ayant un effet similaire comme nutriment. 7. Process for increasing the biofuel production potential from microalgae, according to claim 1, characterized in that in the growth phase vitamins B1, B8, B12 or substances having a similar effect as a nutrient are used. .
8. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, Selon la revendication 1, caractérisé en ce que la phase de stresse salin est obtenue par l'introduction à la fin de la phase de croissance active ou exponentielle d'un deuxième groupe de bio-modulateurs (bio-modulateur II) qui potentialise l'action du premier groupe et stimule l'accumulation rapide des lipides dans les cellules micro-algales. Ce deuxième groupe de bio-modulateurs représente les sels minéraux ayant un rôle osmo-régulateurs comme le NaCI, le KCI ou autres. 8. Process for increasing the biofuel production potential from microalgae according to claim 1, characterized in that the salt stress phase is obtained by introducing at the end of the active or exponential growth phase of a second group of bio-modulators (bio-modulator II) which potentiates the action of the first group and stimulates the rapid accumulation of lipids in the micro-algal cells. This second group of bio-modulators represents mineral salts having an osmo-regulating role such as NaCl, KCl or others.
9. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, Selon les revendications 1 et 8, caractérisé en ce que la durée du stresse salin est comprise entre le début et la fin de la phase stationnaire. 9. Process for increasing the biofuel production potential from microalgae, according to claims 1 and 8, characterized in that the duration of the salt stress is between the beginning and the end of the stationary phase.
10. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, Selon la revendication 9, caractérisé en ce que la durée du stresse salin est de 4 jours. 10. Process for increasing the biofuel production potential from microalgae according to claim 9, characterized in that the duration of the salt stress is 4 days.
11. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, Selon les revendications 9 et 10, caractérisé en ce que la concentration du bio-modulateur II dans le milieu de culture durant la phase du stresse salin est compris entre 0.5 et 5 M. 11. Process for increasing the production potential of biofuel from microalgae, according to claims 9 and 10, characterized in that the concentration of bio-modulator II in the culture medium during the salt stress phase is between 0.5 and 5 M.
12. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, Selon la revendication 1, caractérisé en ce que la récupération passive de la biomasse se fait par des changements ponctuels des valeurs du pH du milieu de culture par l'ajout d'un bio-modulateur III du genre NaOH ou KOH. 12. Process for increasing the biofuel production potential from microalgae according to claim 1, characterized in that the passive recovery of the biomass is done by spot changes in the pH values of the culture medium by the addition of a bio-modulator III of the genus NaOH or KOH.
13. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, Selon la revendication 12, caractérisé en ce que l'ajout du biomodulateur III est effectué entre 2 à 10 jours après l'ajout du bio-modulateur II. 13. Process for increasing the biofuel production potential from microalgae according to claim 12, characterized in that the addition of the biomodulator III is carried out between 2 to 10 days after the addition of the biomodulator II.
14. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, Selon la revendication 12, caractérisé en ce que le bio-modulateur III est maintenu en contact avec le milieu de culture entre 15 min et 2h avant la récupération de la biomasse. 14. Process for increasing the biofuel production potential from microalgae according to claim 12, characterized in that the biomodulator III is kept in contact with the culture medium between 15 minutes and 2 hours before the recovery of the microalgae. the biomass.
15. Procédé pour l'augmentation du potentiel de production de biocarburant à partir des microalgues, Selon les revendications précédentes, caractérisé en ce que le dit procédé est utilisé pour produire des molécules à haute valeur ajoutée comme les caroténoïdes et les acides gras polyinsaturés. 15. Process for increasing the biofuel production potential from microalgae according to the preceding claims, characterized in that the said process is used to produce high value-added molecules such as carotenoids and polyunsaturated fatty acids.
PCT/MA2013/000020 2012-06-28 2013-06-28 Method for increasing the potential for biofuel production from microalgae by using bio-modulators WO2014003530A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA35014 2012-06-28
MA35014A MA34793B1 (en) 2012-06-28 2012-06-28 PROCESS FOR INCREASING THE BIO-FUEL PRODUCTION POTENTIAL FROM MICROALGUES USING BIO-MODULATORS

Publications (2)

Publication Number Publication Date
WO2014003530A1 true WO2014003530A1 (en) 2014-01-03
WO2014003530A4 WO2014003530A4 (en) 2014-03-13

Family

ID=49170778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2013/000020 WO2014003530A1 (en) 2012-06-28 2013-06-28 Method for increasing the potential for biofuel production from microalgae by using bio-modulators

Country Status (2)

Country Link
MA (1) MA34793B1 (en)
WO (1) WO2014003530A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110484589A (en) * 2019-09-25 2019-11-22 浙江海洋大学 A method of condition of culture is improved to improve microalgae oil productive capacity
CN113564052A (en) * 2021-08-04 2021-10-29 华东理工大学 Microalgae directional culture solution and application thereof, device for preparing sludge hydrolysate and device for directionally culturing biomass-enriched microalgae
CN115074251A (en) * 2022-08-05 2022-09-20 青岛农业大学 Culture medium and culture method for improving fucoxanthin yield in phaeodactylum tricornutum

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616159A (en) * 2018-12-03 2019-04-12 山东省农业科学院作物研究所 A kind of soybean specific test approximation method for screening varieties based on phenotype distance
CN109599150A (en) * 2018-12-03 2019-04-09 山东省农业科学院作物研究所 A kind of peanut specific test approximation method for screening varieties based on phenotype distance
CN109616158A (en) * 2018-12-03 2019-04-12 山东省农业科学院作物研究所 A kind of rice specific test approximation method for screening varieties based on phenotype distance

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199895A (en) * 1977-05-25 1980-04-29 Yeda Research And Development Co. Ltd. Production of glycerol, carotenes and algae meal
US5354878A (en) 1992-03-26 1994-10-11 Joosten Connemann Process for the continuous production of lower alkyl esters of higher fatty acids
JPH07258203A (en) * 1994-03-17 1995-10-09 Agency Of Ind Science & Technol Production of sulfoxide compound
US6524486B2 (en) 2000-12-27 2003-02-25 Sepal Technologies Ltd. Microalgae separator apparatus and method
US20040121447A1 (en) 2002-11-07 2004-06-24 Real Fournier Method and apparatus for concentrating an aqueous suspension of microalgae
US20090148928A1 (en) 2007-11-29 2009-06-11 Hackworth Cheryl A Heterotrophic Shift
US20100021002A1 (en) 2006-08-22 2010-01-28 Toppan Printing Co., Ltd. Printed matter, image processing apparatus, printed matter authenticity determination apparatus, image processing method, printed matter authenticity determination method, and program
WO2010132413A1 (en) * 2009-05-11 2010-11-18 Phycal Llc Algal lipid production
US20110091945A1 (en) * 2009-10-21 2011-04-21 University Of Georgia Research Foundation, Inc. Methods of increasing biomass productivity, lipid induction, and controlling metabolites in algae for production of biofuels using biochemical stimulants

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199895A (en) * 1977-05-25 1980-04-29 Yeda Research And Development Co. Ltd. Production of glycerol, carotenes and algae meal
US5354878A (en) 1992-03-26 1994-10-11 Joosten Connemann Process for the continuous production of lower alkyl esters of higher fatty acids
JPH07258203A (en) * 1994-03-17 1995-10-09 Agency Of Ind Science & Technol Production of sulfoxide compound
US6524486B2 (en) 2000-12-27 2003-02-25 Sepal Technologies Ltd. Microalgae separator apparatus and method
US20040121447A1 (en) 2002-11-07 2004-06-24 Real Fournier Method and apparatus for concentrating an aqueous suspension of microalgae
US20100021002A1 (en) 2006-08-22 2010-01-28 Toppan Printing Co., Ltd. Printed matter, image processing apparatus, printed matter authenticity determination apparatus, image processing method, printed matter authenticity determination method, and program
US20090148928A1 (en) 2007-11-29 2009-06-11 Hackworth Cheryl A Heterotrophic Shift
WO2010132413A1 (en) * 2009-05-11 2010-11-18 Phycal Llc Algal lipid production
US20120088279A1 (en) 2009-05-11 2012-04-12 Phycal, Inc. Algal lipid production
US20110091945A1 (en) * 2009-10-21 2011-04-21 University Of Georgia Research Foundation, Inc. Methods of increasing biomass productivity, lipid induction, and controlling metabolites in algae for production of biofuels using biochemical stimulants

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
ALONZO; MAYZAUD, MARINE CHEM, vol. 67, 1999, pages 289 - 301
CHEN MENG ET AL: "Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta.", BIORESOURCE TECHNOLOGY JAN 2011, vol. 102, no. 2, January 2011 (2011-01-01), pages 1649 - 1655, XP002716655, ISSN: 1873-2976 *
CHISTI, BIOTECHNOL ADV, vol. 25, 2007, pages 294 - 306
DATABASE HCAPLUS [online] 24 August 2009 (2009-08-24), WANG, BENFAN: "Effect of four kinds of vitamins on growth of Dunaliella salina", XP002716653, retrieved from stn Database accession no. 2009:1024918 *
DATABASE WPI Week 199549, Derwent World Patents Index; AN 1995-380041, XP002716654 *
DOAN ET AL., BIO BIOENER, vol. 35, 2011, pages 2534 - 2544
GRIFFITHS; HARRISON, J. APPLI. PHYCOL., vol. 21, 2009, pages 493 - 507
HORIUCHI JUN-ICHI ET AL: "Effective cell harvesting of the halotolerant microalga Dunaliella tertiolecta with pH control.", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 95, no. 4, 2003, pages 412 - 415, XP002716652, ISSN: 1389-1723 *
LOPES DA SILVA ET AL., APPL BIOCHEM BIOTECHNOL, vol. 159, 2009, pages 568 - 578
MIXSON S M ET AL: "ENHANCING LIPID PRODUCTION IN THE MARINE MICROALGA DUNALIELLA THROUGH ENVIRONMENTAL STRESSORS", JOURNAL OF PHYCOLOGY, vol. 48, no. Suppl. 1, Sp. Iss. SI, August 2012 (2012-08-01), & ANNUAL MEETING OF THE PHYCOLOGICAL-SOCIETY-OF-AMERICA; CHARLESTON, SC, USA; JUNE 20 -23, 2012, pages S43 - S44, XP002716685 *
PROF. ANGELO CARPI: "Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications", part 22 August 2011, INTECH, ISBN: 978-953-307-268-5, article MANSOUR SHARIATI AND MOHAMMAD REZA HADI: "Microalgal Biotechnology and Bioenergy in Dunaliella", pages: 483 - 506, XP002716651, DOI: 10.5772/19046 *
ROSENBERG ET AL., CURR OPIN BIOTECH, vol. 19, 2008, pages 430 - 436

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110484589A (en) * 2019-09-25 2019-11-22 浙江海洋大学 A method of condition of culture is improved to improve microalgae oil productive capacity
CN113564052A (en) * 2021-08-04 2021-10-29 华东理工大学 Microalgae directional culture solution and application thereof, device for preparing sludge hydrolysate and device for directionally culturing biomass-enriched microalgae
CN115074251A (en) * 2022-08-05 2022-09-20 青岛农业大学 Culture medium and culture method for improving fucoxanthin yield in phaeodactylum tricornutum
CN115074251B (en) * 2022-08-05 2023-10-13 青岛农业大学 Culture medium and culture method for improving fucoxanthin yield in Phaeodactylum tricornutum

Also Published As

Publication number Publication date
WO2014003530A4 (en) 2014-03-13
MA34793B1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
EP3074522B1 (en) Process for enrichment of microalgal biomass with carotenoids and with proteins
Araujo et al. Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains
EP2616536B1 (en) Method for culturing mixotrophic single-cell algae in the presence of a discontinuous provision of light in the form of flashes
WO2014003530A1 (en) Method for increasing the potential for biofuel production from microalgae by using bio-modulators
Yeesang et al. Low-cost production of green microalga Botryococcus braunii biomass with high lipid content through mixotrophic and photoautotrophic cultivation
EP3019593B1 (en) Uncoupled cell culture method
JP5899115B2 (en) Method for producing lauric acid-containing fat
EP2825631B1 (en) Production of astaxanthin and docosahexaenoic acid in mixotrophic mode using schizochytrium
MX2010008112A (en) Algal culture production, harvesting, and processing.
Giovanardi et al. Growth and lipid synthesis promotion in mixotrophic Neochloris oleoabundans (Chlorophyta) cultivated with glucose
WO2012168663A1 (en) Novel strain of microalgae of the odontella genus for the production of epa and dha in mixotrophic cultivation mode
WO2012047120A1 (en) Heterotrophic microbial production of xanthophyll pigments
Celi et al. Phaeodactylum tricornutum as a source of value-added products: A review on recent developments in cultivation and extraction technologies
Wang et al. An auxin-like supermolecule to simultaneously enhance growth and cumulative eicosapentaenoic acid production in Phaeodactylum tricornutum
MARTIN Optimization Of Photobioreactor For Astaxanthin Production In Chlorella Zofingiensis.
EP2825628A1 (en) Production of eicosapentaenoic acid and/or arachidonic acid in mixotrophic mode using euglena
EP2844734A1 (en) Production of lutein in mixotrophic mode by scenedesmus
Nishshanka et al. Sustainable cultivation of Haematococcus pluvialis for the Production of Natural Astaxanthin
FR3003874A1 (en) PROCESS FOR ENRICHING PROTEIN FROM BIOMASS OF MICROALGUES
US11427799B2 (en) Method for enriching protists with lipids rich in polyunsaturated fatty acids
US9222111B2 (en) Method of producing lauric acid-containing oil or fat
Almutairi Phenol phycoremediation by Haematococcus pluvialis coupled with enhanced astaxanthin and lipid production under rac-GR24 supplementation for enhanced biodiesel production
Fakhri et al. Effect of photoperiod regimes on growth, biomass and pigment content of Nannochloropsis sp. BJ17
EP2836586A1 (en) Production of eicosapentaenoic acid and/or docosahexaenoic acid in mixotrophic mode by cyclotella
Tanguy Biocompatible extraction of metabolites from microalgae

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13762593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13762593

Country of ref document: EP

Kind code of ref document: A1