WO2014004954A1 - Converting linear internal olefins to linear alpha olefins - Google Patents

Converting linear internal olefins to linear alpha olefins Download PDF

Info

Publication number
WO2014004954A1
WO2014004954A1 PCT/US2013/048431 US2013048431W WO2014004954A1 WO 2014004954 A1 WO2014004954 A1 WO 2014004954A1 US 2013048431 W US2013048431 W US 2013048431W WO 2014004954 A1 WO2014004954 A1 WO 2014004954A1
Authority
WO
WIPO (PCT)
Prior art keywords
borane
adduct
scavenger
isomerization catalyst
alkyl group
Prior art date
Application number
PCT/US2013/048431
Other languages
French (fr)
Inventor
Timothy T. Wenzel
Thomas H. Peterson
Francis J. Timmers
Kevin A. Frazier
Thomas P. Clark
Robert FROESE
Original Assignee
Dow Global Technologies Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Llc filed Critical Dow Global Technologies Llc
Publication of WO2014004954A1 publication Critical patent/WO2014004954A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/23Rearrangement of carbon-to-carbon unsaturated bonds
    • C07C5/25Migration of carbon-to-carbon double bonds
    • C07C5/2506Catalytic processes
    • C07C5/2562Catalytic processes with hydrides or organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron

Definitions

  • This disclosure relates to methods for converting linear internal olefins to linear alpha olefins.
  • LAOs Linear alpha olefins
  • LIOs linear internal olefins
  • conversion of LIOs to LAOs can be a challenging process due to the contrathermodynamic double bond isomerization involved in converting LIOs to LAOs.
  • This disclosure provides a method for converting LIOs to LAOs including contacting a LIO with a borane isomerization catalyst in a reaction vessel to form a mixture that includes an adduct formed from the LIO and the borane isomerization catalyst, the adduct having an alkyl group bonded to boron at a non-terminal position of the alkyl group, isomerizing the adduct to move the alkyl group bonded to boron to a terminal position of the alkyl group, and dehydroborating the adduct in the presence of a scavenger olefin to form a LAO and a scavenger adduct that is formed from the scavenger olefin and the borane isomerization catalyst.
  • the present disclosure does not employ a dehydroboration catalyst, such as cobalt or nickel, which are employed for some other processes.
  • LIOs are linear olefins having from four carbons to twelve carbons including a double bond between two non-terminal carbons.
  • LIOs include, but are not limited to, 2-butene, 2-methyl-2-butene, 2-pentene, 4-octene, 2-hexene, 3- hexene or a combination thereof.
  • a mixture including 4-octene and 2- butene may be employed.
  • the method includes employing a borane isomerization catalyst that is selected from a group consisting of bis (trifluoromethyl)borane [HB(CF 3 ) 2 ],
  • the borane isomerization catalyst can be part of an initial feedstock to the reaction vessel and/or can be recycled to the reaction vessel.
  • the borane isomerization catalyst has a thermodynamically calculated activation energy for isomerizing an alkyl group from a non-terminal position (e.g., a secondary carbon) to a terminal position (e.g., a primary carbon) when bonded to a boron of an adduct, as discussed herein, in the range of from 1 kilocalories (kcal)/mole (mol) to 40 kcal/mol.
  • the borane isomerization catalyst has a ratio of boron at the primary carbon compared to boron bonded at an adjacent secondary carbon for a given reaction at equilibrium of greater than substantially 5.
  • the method includes employing the LIO and the borane isomerization catalyst in a mole ratio in a range of from 1 : 1 to 50: 1.
  • the LIO and the borane isomerization catalyst can be added to the reaction vessel in a mole ratio in a range of from 1 :1 to 50:1 to form a mixture including the adduct from the LIO and the borane isomerization catalyst, the adduct having an alkyl group bonded to boron at a nonterminal position of the alkyl group.
  • the LIO and the borane isomerization catalyst can form the adduct at a temperature in a range of from 10 °C to 30 °C.
  • the mixture can include the LIO, the borane isomerization catalyst, and the adduct, among others for example.
  • the method can include removing excess LIO from the mixture.
  • Removing excess LIO can be accomplished by devolitization, among other processes. Removing excess LIO can occur in another vessel (e.g., other than the reaction vessel). Removed excess LIO can be recycled to the reaction vessel.
  • the method includes isomerizing the adduct to move the alkyl group bonded to boron to a terminal position of the alkyl group.
  • the contents of the reaction vessel can be heated to a temperature in a range of from 25 °C to 140 °C to move the alkyl group bonded to the boron to a terminal position of the alkyl group.
  • the method includes dehydroborating the adduct in the presence of a scavenger olefin to form a LAO and a scavenger adduct that is formed from the scavenger olefin and the borane isomerization catalyst.
  • Dehydroborating the adduct can occur in the reaction vessel and/or another vessel such as a falling film evaporator, for example.
  • scavenger adducts are useful for separating LAOs from the borane isomerization catalyst, for example.
  • the scavenger olefin is any olefin capable of reacting with the adduct
  • the scavenger olefin may be selected from a group consisting of cyclododecene, limonene, pinene, carene or a combination thereof.
  • the reaction between the adduct and the scavenger olefin can be thermodynamically driven and/or driven by mass action (e.g., by selective removal of the LAO).
  • the scavenger olefin may be employed in mole ratio in a range of from 0.5:1 to 10: 1, where the mole ratio indicates the ratio of scavenger olefin to adduct, i.e. the adduct having the alkyl group bonded to boron to the terminal position of the alkyl group.
  • LAOs are linear alpha olefins having from four carbons to twelve carbons.
  • LAOs examples include, but are not limited, to 1-butene, 1-pentene, 1-octene, 1- hexene or a combination thereof.
  • the LAOs are formed as the alkyl group bonded to the boron at the terminal position of the alkyl group is separated from the adduct.
  • the scavenger adduct is formed by the scavenger olefin and the borane isomerization catalyst separated from the adduct.
  • the method can include regenerating the borane isomerization catalyst from the scavenger adduct.
  • the scavenger adduct can be heated to a temperature in a range of from 150 °C to 200 °C, to regenerate the borane isomerization catalyst (e.g., separate the borane isomerization catalyst and the scavenger olefin from the scavenger adduct).
  • the method can include recycling the borane isomerization catalyst to the reaction vessel.
  • the method can include removing a number of
  • the method can include dimerizing a portion of the LAO to form a LIO and adding the formed LIO to the reaction vessel.
  • the method can employ a solvent to form a solution including the LIO.
  • solvents include, but are not limited to, benzene, cyclohexane, toluene or a combination thereof.
  • the solvent may be employed in a range of from greater than 0 weight percent to 85 weight percent, where the weight percent is based upon weight of the LIO and the solvent.
  • the method can occur in one or more continuous flow reactors.
  • continuous flow reactors include, but are not limited to, plug-flow reactors and fluidized bed reactors.
  • portions and/or all of the method can occur in one or more batch reactors.
  • H-FAB 6w(pentafluorophenyl)borane
  • FAB triethylsilane
  • FAB tris(pentafluorophenyl)boron
  • Example (Ex) 1 Conversion of trans-4-octene to 1 -octene.
  • NMR indicates approximately an 80% yield of the adduct. Isomerize the adduct by heating the contents of the reaction vessel to 60 °C for 10 hrs to move the alkyl group bonded to boron to a terminal position of the alkyl group and form 1-octyl-FAB. NMR indicates
  • Ex 1 shows contacting a LIO with a borane isomerization catalyst in a reaction vessel forms 4-octyl-FAB, which isomerizes to 1-octyl-FAB.
  • 1-octene is produced via dehydroboration of 1-octyl FAB in the presence of limonene.

Abstract

Contacting a LIO with a borane isomerization catalyst in a reaction vessel to form a mixture that includes an adduct formed from the LIO and the borane isomerization catalyst, the adduct having an alkyl group bonded to boron at a non-terminal position of the alkyl group, isomerizing the adduct to move the alkyl group bonded to boron to a terminal position of the alkyl group, and dehydroborating the adduct in the presence of a scavenger olefin to form a LAO and a scavenger adduct that is formed from the scavenger olefin and the borane isomerization catalyst.

Description

CONVERTING LINEAR INTERNAL OLEFINS TO LINEAR ALPHA OLEFINS
[001] This disclosure relates to methods for converting linear internal olefins to linear alpha olefins.
[002] Linear alpha olefins (LAOs) are used in production of plastics, fuels, nylons, pesticides, textiles, disinfectants, reagents, detergents, solvents, and others. Some current production methods produce LAOs via ethylene oligomerization of linear internal olefins (LIOs). However, conversion of LIOs to LAOs can be a challenging process due to the contrathermodynamic double bond isomerization involved in converting LIOs to LAOs.
[003] This disclosure provides a method for converting LIOs to LAOs including contacting a LIO with a borane isomerization catalyst in a reaction vessel to form a mixture that includes an adduct formed from the LIO and the borane isomerization catalyst, the adduct having an alkyl group bonded to boron at a non-terminal position of the alkyl group, isomerizing the adduct to move the alkyl group bonded to boron to a terminal position of the alkyl group, and dehydroborating the adduct in the presence of a scavenger olefin to form a LAO and a scavenger adduct that is formed from the scavenger olefin and the borane isomerization catalyst. Advantageously, the present disclosure does not employ a dehydroboration catalyst, such as cobalt or nickel, which are employed for some other processes.
[004] LIOs are linear olefins having from four carbons to twelve carbons including a double bond between two non-terminal carbons. Examples of LIOs include, but are not limited to, 2-butene, 2-methyl-2-butene, 2-pentene, 4-octene, 2-hexene, 3- hexene or a combination thereof. For example, a mixture including 4-octene and 2- butene may be employed.
[005] The method includes employing a borane isomerization catalyst that is selected from a group consisting of bis (trifluoromethyl)borane [HB(CF3)2],
dinitroborane [HB(N02)2], dicyanoborane [HB(CN)2], bis (trichloromethyl)borane
[HB(CC13)2], bis (l,l,difluorobenzyl) borane [HB(CF2Ph)2], bis (tribromomethyl)borane HB(CBr3)2, bis(pentafluorophenyl)borane [H-FAB], HB(66B6-F), HB(656-F), bis (2- fluoro-2-propyl) borane [HB(CFMe2)2], duphenylaluminum [HAlPh2], bis (4- trifIuoromethylphenyl)borane [HB(p-CF3-Ph)2], dicyclohexylborane [HB(C6Hi 1)2], di- tert-butylborane [HB(tBu)2], diphenylborane [HBPh2],dimethylborane [HBMe2],
[dibromoborane HBBr2], benzo tetrafluoroborole [HB(-CF2-Ph-CF2)], HB(66B6-F), HB(656-F) or a combination thereof. The borane isomerization catalyst can be part of an initial feedstock to the reaction vessel and/or can be recycled to the reaction vessel.
[006] The borane isomerization catalyst has a thermodynamically calculated activation energy for isomerizing an alkyl group from a non-terminal position (e.g., a secondary carbon) to a terminal position (e.g., a primary carbon) when bonded to a boron of an adduct, as discussed herein, in the range of from 1 kilocalories (kcal)/mole (mol) to 40 kcal/mol. In some embodiments, the borane isomerization catalyst has a ratio of boron at the primary carbon compared to boron bonded at an adjacent secondary carbon for a given reaction at equilibrium of greater than substantially 5.
[007] The method includes employing the LIO and the borane isomerization catalyst in a mole ratio in a range of from 1 : 1 to 50: 1. For example, the LIO and the borane isomerization catalyst can be added to the reaction vessel in a mole ratio in a range of from 1 :1 to 50:1 to form a mixture including the adduct from the LIO and the borane isomerization catalyst, the adduct having an alkyl group bonded to boron at a nonterminal position of the alkyl group. The LIO and the borane isomerization catalyst can form the adduct at a temperature in a range of from 10 °C to 30 °C. The mixture can include the LIO, the borane isomerization catalyst, and the adduct, among others for example.
[008] The method can include removing excess LIO from the mixture.
Removing excess LIO can be accomplished by devolitization, among other processes. Removing excess LIO can occur in another vessel (e.g., other than the reaction vessel). Removed excess LIO can be recycled to the reaction vessel.
[009] The method includes isomerizing the adduct to move the alkyl group bonded to boron to a terminal position of the alkyl group. For example, the contents of the reaction vessel can be heated to a temperature in a range of from 25 °C to 140 °C to move the alkyl group bonded to the boron to a terminal position of the alkyl group. [010] The method includes dehydroborating the adduct in the presence of a scavenger olefin to form a LAO and a scavenger adduct that is formed from the scavenger olefin and the borane isomerization catalyst. Dehydroborating the adduct can occur in the reaction vessel and/or another vessel such as a falling film evaporator, for example. These scavenger adducts are useful for separating LAOs from the borane isomerization catalyst, for example.
[011] The scavenger olefin is any olefin capable of reacting with the adduct
(e.g., when boron is at the terminal position of the adduct) to form the LAO and the scavenger adduct. For example, the scavenger olefin may be selected from a group consisting of cyclododecene, limonene, pinene, carene or a combination thereof. The reaction between the adduct and the scavenger olefin can be thermodynamically driven and/or driven by mass action (e.g., by selective removal of the LAO). The scavenger olefin may be employed in mole ratio in a range of from 0.5:1 to 10: 1, where the mole ratio indicates the ratio of scavenger olefin to adduct, i.e. the adduct having the alkyl group bonded to boron to the terminal position of the alkyl group.
[012] LAOs are linear alpha olefins having from four carbons to twelve carbons.
Examples of LAOs include, but are not limited, to 1-butene, 1-pentene, 1-octene, 1- hexene or a combination thereof. The LAOs are formed as the alkyl group bonded to the boron at the terminal position of the alkyl group is separated from the adduct. The scavenger adduct is formed by the scavenger olefin and the borane isomerization catalyst separated from the adduct.
[013] The method can include regenerating the borane isomerization catalyst from the scavenger adduct. The scavenger adduct can be heated to a temperature in a range of from 150 °C to 200 °C, to regenerate the borane isomerization catalyst (e.g., separate the borane isomerization catalyst and the scavenger olefin from the scavenger adduct). The method can include recycling the borane isomerization catalyst to the reaction vessel.
[014] Alternatively or in addition, the method can include removing a number of
LAOs and substantially all of the scavenger adduct, collecting the number of LAOs from a distillation vessel, and/or recycling a portion of the number of LAOs as the one or more reactants. For example, the method can include dimerizing a portion of the LAO to form a LIO and adding the formed LIO to the reaction vessel.
[015] The method can employ a solvent to form a solution including the LIO.
Examples of solvents include, but are not limited to, benzene, cyclohexane, toluene or a combination thereof. For embodiments including the solvent, the solvent may be employed in a range of from greater than 0 weight percent to 85 weight percent, where the weight percent is based upon weight of the LIO and the solvent.
[016] The method can occur in one or more continuous flow reactors. Examples of continuous flow reactors include, but are not limited to, plug-flow reactors and fluidized bed reactors. Alternatively, and/or in addition, portions and/or all of the method can occur in one or more batch reactors.
[017] The following examples further illustrate the present disclosure in detail, but are not to be construed to limit the scope of the disclosure. All materials available from Sigma - Aldrich ®, unless otherwise noted. Use all materials without further purification, unless otherwise noted.
[018] Examples
[019] Prepare 6w(pentafluorophenyl)borane (H-FAB) by metathesis of triethylsilane and tris(pentafluorophenyl)boron (FAB) as follows. Prepare a 3.25 wt% solution of FAB in ISOPAR™ E (100 g, 6.35 mmol, available from Exxon Mobil Chemical Co.) in a container. Add triethylsilane (370 mg, 3.17 mmol, 0.5 equivalent) to contents of the container while stirring. Heat contents of the container to 55 °C for 72 hours (hrs) and subsequently to 90 °C for 24 hrs. Remove volatile materials by vacuum. Dissolve non-volatile materials in heated toluene then to -40 °C. Filter to collect H-FAB. Wash H-FAB with pentane and dry in vacuum.
[020] Example (Ex) 1— Conversion of trans-4-octene to 1 -octene.
[021] Mix H-FAB (0.12 mmol), cyclododecene (0.12 mmol), and cyclohexane- d12 (0.7 mL ,20 μΐ, of 1,2-difluorobenzene internal standard) in a reaction vessel at 23 °C. Add trans-4 -octene (0.12 mmol) to the contents of the reaction vessel to contact trans-4- octene with H-FAB to form an adduct from the trans-4-octene and the H-FAB, the adduct has an alkyl group bonded to boron at a non-terminal position of the alkyl group, as indicated by nuclear magnetic resonance (NMR) spectroscopy. NMR indicates approximately an 80% yield of the adduct. Isomerize the adduct by heating the contents of the reaction vessel to 60 °C for 10 hrs to move the alkyl group bonded to boron to a terminal position of the alkyl group and form 1-octyl-FAB. NMR indicates
approximately a 90% yield of 1-octyl -FAB from the adduct.
[022] Dehydroboration of 1-octyl-FAB to 1-octene
[023] Mix 37 milligrams (mg) of 1-octyl-FAB (0.081 mmol), as prepared above, with approximately a stoichiometric amount limonene in a reaction vessel. Heat contents of reaction vessel to 60 °C for 2 hrs. NMR analysis indicates Ex. 2 (a scavenger adduct) forms from 1-octyl-FAB and limonene. NMR indicates a 45% yield of 1-octene.
[024] Ex 1 shows contacting a LIO with a borane isomerization catalyst in a reaction vessel forms 4-octyl-FAB, which isomerizes to 1-octyl-FAB. 1-octene is produced via dehydroboration of 1-octyl FAB in the presence of limonene.

Claims

WHAT IS CLAIMED IS:
1. A method for converting linear internal olefins (LIOs) to linear alpha olefins (LAOs), comprising:
contacting a LIO with a borane isomerization catalyst in a reaction vessel to form a mixture that includes an adduct formed from the LIO and the borane isomerization catalyst, the adduct having an alkyl group bonded to boron at a non-terminal position of the alkyl group;
isomerizing the adduct to move the alkyl group bonded to boron to a terminal position of the alkyl group; and
dehydroborating the adduct in the presence of a scavenger olefin to form a LAO and a scavenger adduct that is formed from the scavenger olefin and the borane isomerization catalyst.
2. The method of claim 1 , wherein the LIO is selected from the group consisting of linear internal olefins having from four carbons to twelve carbons or a combination thereof.
3. The method of any one of the preceding claims wherein the borane isomerization catalyst is selected from the group consisting of bis (trifluoromethyl)borane [HB(CF3)2], dinitroborane [HB(N02)2], dicyanoborane [HB(CN)2], bis (trichloromethyl)borane
[HB(CC13)2], bis (l,l,difluorobenzyl) borane [HB(CF2Ph)2], bis (tribromomethyl)borane HB(CBr3)2, bis(pentafluorophenyl)borane [H-FAB], bis (2-fluoro-2-propyl) borane
[HB(CFMe2)2], duphenylaluminum [HAlPh2], bis (4-trifluoromethylphenyl)borane
[HB(p-CF3-Ph)2], dicyclohexylborane [HB(CfiHn)2], di-tert-butylborane [HB(tBu)2], diphenylborane [HBPh2],dimethylborane [HBMe2], [dibromoborane HBBr2], benzo tetrafluoroborole [HB(-CF2-Ph-CF2)], HB(66B6-F), HB(656-F) or a combination thereof.
4. The method of any one of the preceding claims, wherein the LAO is selected from the group consisting of linear alpha olefins having from four carbons to twelve carbons or a combination thereof.
5. The method of any one of the preceding claims, wherein the scavenger olefin is selected from the group consisting of cyclododecene, limonene, pinene, carene or a combination thereof.
6. The method of any one of the preceding claims, including employing the LIO and the borane isomerization catalyst in a mole ratio in a range of from 1 :1 to 50:1.
7. The method of any one of the preceding claims, including employing the scavenger olefin in mole ratio in a range of from 0.5:1 to 10:1, where the mole ratio indicates the ratio of scavenger olefin to the adduct having the alkyl group bonded to boron to a terminal position of the alkyl group.
8. The method of any one of the preceding claims, wherein method conditions include heating contents of the reaction vessel to a temperature in a range of from 25 °C to 140 °C.
9. The method of any one of the preceding claims, wherein dehydroborating the adduct in the presence of a scavenger olefin further includes separating the borane isomerization catalyst from the scavenger adduct by heating the scavenger adduct to a temperature in a range of from 150 °C to 200 °C to separate the scavenger olefin and the borane isomerization catalyst; and recycling the separated borane isomerization catalyst to the reaction vessel.
10. A scavenger adduct formed by the method of any one of the preceding claims.
PCT/US2013/048431 2012-06-29 2013-06-28 Converting linear internal olefins to linear alpha olefins WO2014004954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261666373P 2012-06-29 2012-06-29
US61/666,373 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014004954A1 true WO2014004954A1 (en) 2014-01-03

Family

ID=48877521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/048431 WO2014004954A1 (en) 2012-06-29 2013-06-28 Converting linear internal olefins to linear alpha olefins

Country Status (1)

Country Link
WO (1) WO2014004954A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB874507A (en) * 1958-11-28 1961-08-10 Exxon Research Engineering Co Method for isomerizing olefins
US3063966A (en) 1958-02-05 1962-11-13 Du Pont Process of making wholly aromatic polyamides
US3227793A (en) 1961-01-23 1966-01-04 Celanese Corp Spinning of a poly(polymethylene) terephthalamide
US3414645A (en) 1964-06-19 1968-12-03 Monsanto Co Process for spinning wholly aromatic polyamide fibers
US3600350A (en) 1970-04-20 1971-08-17 Du Pont Poly(p-benzamide) composition,process and product
US3767756A (en) 1972-06-30 1973-10-23 Du Pont Dry jet wet spinning process
US4018735A (en) 1974-07-10 1977-04-19 Teijin Limited Anisotropic dopes of aromatic polyamides
JPS62223134A (en) * 1979-03-28 1987-10-01 Kureha Chem Ind Co Ltd Production of isomerization product of higher internal olefin
RU2045586C1 (en) 1993-07-09 1995-10-10 Владимир Николаевич Сугак Anisotropic solution for molding thread and thread which is prepared of said solution
US5474842A (en) 1991-08-20 1995-12-12 Hoiness; David E. Aramid particles as wear additives
US5646234A (en) 1994-04-06 1997-07-08 Hoechst Ag Production of fibers or films using specific forming solutions and the fibers of films obtainable thereby
US5667743A (en) 1996-05-21 1997-09-16 E. I. Du Pont De Nemours And Company Wet spinning process for aramid polymer containing salts

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3063966A (en) 1958-02-05 1962-11-13 Du Pont Process of making wholly aromatic polyamides
GB874507A (en) * 1958-11-28 1961-08-10 Exxon Research Engineering Co Method for isomerizing olefins
US3227793A (en) 1961-01-23 1966-01-04 Celanese Corp Spinning of a poly(polymethylene) terephthalamide
US3414645A (en) 1964-06-19 1968-12-03 Monsanto Co Process for spinning wholly aromatic polyamide fibers
US3600350A (en) 1970-04-20 1971-08-17 Du Pont Poly(p-benzamide) composition,process and product
US3767756A (en) 1972-06-30 1973-10-23 Du Pont Dry jet wet spinning process
US4018735A (en) 1974-07-10 1977-04-19 Teijin Limited Anisotropic dopes of aromatic polyamides
JPS62223134A (en) * 1979-03-28 1987-10-01 Kureha Chem Ind Co Ltd Production of isomerization product of higher internal olefin
US5474842A (en) 1991-08-20 1995-12-12 Hoiness; David E. Aramid particles as wear additives
US5811042A (en) 1991-08-20 1998-09-22 E. I. Du Pont De Nemours And Company Process for making aramid particles as wear additives
RU2045586C1 (en) 1993-07-09 1995-10-10 Владимир Николаевич Сугак Anisotropic solution for molding thread and thread which is prepared of said solution
US5646234A (en) 1994-04-06 1997-07-08 Hoechst Ag Production of fibers or films using specific forming solutions and the fibers of films obtainable thereby
US5667743A (en) 1996-05-21 1997-09-16 E. I. Du Pont De Nemours And Company Wet spinning process for aramid polymer containing salts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DANIEL J. PARKS ET AL: "Synthesis, Properties, and Hydroboration Activity of the Highly Electrophilic Borane Bis(pentafluorophenyl)borane, HB(C 6 F 5 ) 2 1", ORGANOMETALLICS, vol. 17, no. 25, 1 December 1998 (1998-12-01), pages 5492 - 5503, XP055083837, ISSN: 0276-7333, DOI: 10.1021/om980673e *

Similar Documents

Publication Publication Date Title
TWI756197B (en) Novel catalytic composition based on nickel and a phosphine type ligand and a lewis base, and its use in a process for the oligomerization of olefins
Sémeril et al. Alkene metathesis catalysis in ionic liquids with ruthenium allenylidene salts
WO2012061272A2 (en) Synthesis of para-xylene and toluene
US2994725A (en) Organic chemical reactions
Borguet et al. Tandem catalysis of ring-closing metathesis/atom transfer radical reactions with homobimetallic ruthenium–arene complexes
JP2015209429A (en) Novel nickel-based complexes and use thereof in olefin transformation method
US3006976A (en) Condensations of alkyl aromatics and olefins
TWI727962B (en) Novel catalytic composition based on nickel and a nickel-complexed phosphine-type ligand, and its use in a process for oligomerizing olefins
Coutelier et al. Selective terminal alkyne metathesis: synthesis and use of a unique triple bonded dinuclear tungsten alkoxy complex containing a hemilabile ligand
US2849508A (en) Side chain alkylation of alkylaromatics with olefins using an organometallic compound as catalyst
FR3039430B1 (en) NOVEL NICKEL AND PHOSPHINE LIGAND CATALYST COMPOSITION AND USE THEREOF IN OLEFIN OLIGOMERIZATION PROCESS
WO2014004954A1 (en) Converting linear internal olefins to linear alpha olefins
Bézier et al. Transfer dehydrogenations of alkanes and related reactions using iridium pincer complexes
US3558515A (en) Complexes of mn,tc,and re with organoaluminum as olefin reaction catalysts
US3075027A (en) Dimerization of propylene to 4-methyl-1-pentene
Szeto et al. Tailoring the selectivity in 2-butene conversion over supported d 0 group 4, 5 and 6 metal hydrides: from dimerization to metathesis
Bogdan et al. Topologically novel multiple rotaxanes and catenanes based on tetraurea calix [4] arenes
JP6968336B2 (en) Method for Producing Alkyl Substituted Aromatic Hydrocarbons
US2751426A (en) Ethylation of olefins
EP3013841A1 (en) Novel nickel-based complex and use thereof in a method for the oligomerisation of olefins
WO2014207394A1 (en) Novel nickel-based catalytic composition and use thereof in a method for the oligomerisation of olefins
JP6384363B2 (en) Method for producing fluorine-containing olefin
US5414174A (en) Side-chain alkylation method
US8524963B2 (en) Supported organoiridium catalysts for alkane dehydrogenation
US10392320B2 (en) Preparation of alkylaromatic compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742306

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13742306

Country of ref document: EP

Kind code of ref document: A1