WO2014016347A1 - Nanofiltration membrane with a layer of polymer and oxide particles - Google Patents

Nanofiltration membrane with a layer of polymer and oxide particles Download PDF

Info

Publication number
WO2014016347A1
WO2014016347A1 PCT/EP2013/065637 EP2013065637W WO2014016347A1 WO 2014016347 A1 WO2014016347 A1 WO 2014016347A1 EP 2013065637 W EP2013065637 W EP 2013065637W WO 2014016347 A1 WO2014016347 A1 WO 2014016347A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer particles
membrane
rubbery polymer
membrane according
nanoiiltration
Prior art date
Application number
PCT/EP2013/065637
Other languages
German (de)
French (fr)
Inventor
Martin Mechelhoff
Thomas FRÜH
Christopher Kohl
Udo Schmidt
Georg KUNZENDORF
Original Assignee
Lanxess Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxess Deutschland Gmbh filed Critical Lanxess Deutschland Gmbh
Publication of WO2014016347A1 publication Critical patent/WO2014016347A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0004Organic membrane manufacture by agglomeration of particles
    • B01D67/00046Organic membrane manufacture by agglomeration of particles by deposition by filtration through a support or base layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0004Organic membrane manufacture by agglomeration of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/24Rubbers

Definitions

  • the invention relates to a nanofiltration membrane, a process for the preparation of this membrane and their use.
  • membranes are used for the separation of solid-liquid mixtures and liquids. In terms of environmental technology, these are also used in the purification of wastewater and the production of drinking water.
  • membrane separation processes are known from the prior art. These include microfiltration, ultrafiltration and nanofiltration, as well as reverse osmosis. These methods are to be assigned to the mechanical separation processes.
  • the separation mechanisms are caused by different membrane structures. They separate by means of membrane pores whose diameters are smaller than those of the particles to be separated.
  • Known processes for the treatment of liquids under pressure are microfiltration, ultrafiltration and nanofiltration.
  • the pore sizes of the nano-, ultra- and microfiltration membranes are about 0.001 ⁇ m to 10.0 ⁇ m.
  • the retention R with respect to a substance is usually used.
  • the highest possible flow is sought while at the same time at least equivalent retention of the membrane. This can e.g. be achieved by a hydrophilization of the membrane material.
  • Hydrophilization in addition to the corresponding chemical modification of the actual polymer material, also includes the addition of hydrophilic additives which are incorporated as uniformly as possible into the polymer matrix during membrane production.
  • BWRO Brackish Water Reverse Osmosis Membrane
  • SWRO Seawater Reverse Osmosis Membrane
  • membranes comprising a support membrane and a release active polymer coating with inorganic and organic particles for use as a separation membrane in batteries are known from US 2010/206804.
  • CN 101824118 A discloses release-active polymer coatings.
  • Further composite membranes are known from EP 1254697 and EP 071 1199 Bl. A disadvantage of these membranes is further that there is no sufficient stability of the membranes under extreme pH values and that a satisfactory flow can not be achieved.
  • one major problem with all known membrane synthesis methods is to control the adjustment of the pore size and the pore shape of the separation-active layer exactly and uniformly and thus to achieve a very narrow pore size distribution.
  • Polymeric membranes of a wide variety of polymers are available at relatively low cost for wide pH ranges and many applications, but are mostly not resistant to organic solvents as well as very high and / or very low pHs. Also, a permanent temperature resistance at over 80 ° C is rarely given. While there are many approaches to improve these properties on polymer membranes, one of the above is often one of the above.
  • Polymeric materials is the poor resistance to organic solvents or oils and the plasticizing effect of the oils on the polymers. As a result, the separation capacity of the membranes is impaired.
  • Membrane technology plays an important role in the purification of liquid mixtures.
  • dilute solutions are usually concentrated and separated organic solvents, water or salt solutions. Here are either recyclables or ⁇
  • Pollutants obtained in more concentrated and possibly lower-salt solutions which can be cost-effective subsequent storage, transport, disposal and processing.
  • wastewater treatment it is the goal of the membrane treatment to recover the largest part of the volume as permeate in a not or only slightly loaded form.
  • the concentrated retentate can with less effort with respect to still existing
  • Reclaimed recyclables or disposed of in this concentrated form for example by incineration, cheaper.
  • nanofiltration membranes are composite membranes prepared by interfacial condensation, such as described in US 5,049,167.
  • these known membranes can be prepared only very expensive and only in compliance with costly safety measures, since as starting materials z.
  • carcinogenic diamines and highly reactive acrylic chlorides are used.
  • Such membranes can be configured in many ways, for example as flat film modules, cassette modules, spiral wound modules or hollow fiber modules.
  • Another object of the invention is also to provide a method by which it is possible to produce defined pore sizes for the respective membranes. It is known in the art that polymer particles on a porous substrate having a broader pore size distribution can be deposited to obtain a composite membrane having a narrower pore size distribution. The voids between the particles form pores with which separation from a liquid can be performed.
  • the composite membranes obtained in this way can be used, for example, as ultrafiltration and micro-membranes. filtration membranes are used.
  • a nanofiltration membrane of the aforementioned type wherein the surface of the support membrane produced by emulsion rubbery polymer particles having a mean particle diameter ⁇ 70 nm, preferably between 30 to 65 nm, more preferably between 40 to 50 nm and with nanoparticles at least an oxide selected from Fe 2 O 3 , FesO i, Fe (OOH), TiO 2 , and SiO 2 , and both rubbery polymer particles and oxide nanoparticles form the release active layer and the rubbery polymers are prepared from monomers; which contain as functional group at least one conjugated diene. It is here to distinguish between the filtration property of a membrane, characterized for example by the cut-off, and the structure of the filtration membrane.
  • Separation, separation properties, separation behavior are used as synonyms.
  • the separation effect is with the help of 0. g. Cut-off defined.
  • Polymer particles also nanoparticles.
  • emulsion polymerized rubbery polymer particles having an average particle diameter ⁇ 70 nm, preferably between 30 to 65 nm, more preferably between 40 and 50 nm, offers numerous advantages over other polymer particles, since the chemical and physical properties of the rubbery polymer particles, such as
  • Particle size, particle morphology, swelling behavior, hardness, dimensional stability, and surface energy can be adjusted. This is done on the one hand by the manufacturing process, in particular by the polymerization process, as well as by the selection of suitable base monomers and on the other hand by the selection of suitable functional groups whose concentration and settlement area in the polymer particles can be selectively adjusted or tailored within wide limits.
  • the release-active layer is thus the rubber-like polymer particles produced by emulsion polymerization with a mean particle diameter ⁇ 70 nm, preferably between 30 to 65 nm, more preferably between 40 to 50 nm, layer also referred to as polymer layer, the nanofiltration membrane according to the invention, which moreover at least one Contains oxide in the form of nanoparticles.
  • Emulsion polymerization is understood to mean, in particular, a process which is known per se, in which water is usually used as the reaction medium, in which the monomers used are in the presence or absence of emulsifiers and free-radical-forming substances with formation r
  • Particles of size less than 500 nm are generally not accessible by suspension or dispersion polymerization and therefore these particles are generally unsuitable for the purposes of the present invention.
  • the flow through nanofiltration membranes can be considerably increased if the surface of the supporting membrane of a nanofiltration membrane is coated with rubbery polymer particles having an average particle diameter of ⁇ 70 nm and with nanoparticles of at least one oxide produced by emulsion polymerization and both rubber-like polymer particles and oxide particles. Nanoparticles form the separation-active layer.
  • the choice of monomers sets the glass transition temperature and the glass transition width of the rubbery polymer particles.
  • the determination of the glass transition temperature (Tg) and the width of the glass transition (ATg) of the rubbery polymer particles is carried out by differential scanning calorimetry (DSC), preferably as described below.
  • DSC differential scanning calorimetry
  • two cooling / heating cycles are carried out for the determination of Tg and ATg.
  • Tg and ATg are determined in the second heating cycle.
  • approximately 10-12 mg of the selected polymer particle is placed in a Perkin-Elmer DSC sample container (standard aluminum pan).
  • the first DSC cycle is carried out by first cooling the sample to -100 ° C with liquid nitrogen and then heating to + 150 ° C at a rate of 20K / min.
  • the second DSC cycle is started by immediately cooling the sample as soon as a sample temperature of + 150 ° C is reached.
  • the heating rate in the second cycle is again 20K / min.
  • Tg and ATg are determined graphically on the DSC curve of the second heating process.
  • three straight lines are applied to the DSC curve.
  • the 1st straight line is applied to the curve part of the DSC curve below Tg, the 2nd straight line to the curve branch with inflection point passing through Tg and the 3rd straight line to the curve branch of the DSC curve above Tg. In this way, three straight lines with two intersections are obtained. Both intersections are each characterized by a characteristic temperature.
  • the glass transition temperature Tg is obtained as the mean value of these two temperatures and the width of the glass transition ATg is obtained from the difference between the two temperatures.
  • the rubbery polymer particles have a glass transition temperature (Tg) of -85 ° C to 150 ° C, preferably -75 ° C to 110 ° C, more preferably -70 ° C to 90 ° C on.
  • the width of the glass transition is preferably greater than 5 ° C., more preferably greater than 10 ° C., in the case of the rubbery polymer particles used according to the invention.
  • Rubbery polymer particles according to the invention are prepared from monomers which contain at least one conjugated diene as the functional group.
  • (meth) denotes both the respective acrylic compound and the respective methacrylic compound.
  • from 1 to 80% by weight, preferably from 1 to 60% by weight, more preferably from 1 to 40% by weight, even more preferably from 1 to 30% by weight, of the stated monomers are used for the preparation of the rubbery polymer particles.
  • the rubbery polymer particles may be crosslinked or uncrosslinked.
  • the rubbery polymer particles may in particular be those based on homopolymers or random copolymers.
  • homopolymers and random copolymers are known to the person skilled in the art and are explained, for example, by Vollmert, Polymer Chemistry, Springer 1973. The following may be used in particular as the polymer base of the rubbery, crosslinked or uncrosslinked rubbery polymer particles containing functional groups:
  • BR polybutadiene
  • SBR styrene-butadiene random copolymers having styrene contents of 1-60, preferably 5-50 wt%
  • FKM fluororubber
  • ACM acrylate rubber
  • NBR polybutadiene-acrylonitrile copolymers having acrylonitrile contents of 5-60, preferably 10-60, weight percent,
  • EVM ethylene / vinyl acetate copolymers.
  • rubbery polymer particles are thermoplastic and those based on methacrylates, in particular methyl methacrylate, styrene, alpha-methylstyrene and acrylonitrile.
  • the rubbery polymer particles preferably have an approximately spherical geometry.
  • the rubbery polymer particles used according to the invention have an average particle diameter of less than 70 nm, preferably between 30 and 65 nm, particularly preferably between 40 and 50 nm.
  • the average particle diameter is determined by ultracentrifugation with the aqueous latex of the rubbery polymer particles from the emulsion polymerization.
  • the method gives a mean value for the particle diameter taking into account any agglomerates. (HG Müller (1996) Colloid Polymer Science 267: 1113-1116 and W. Scholtan, H. Lange (1972) Kolloid-Z and Z. Polymere 250: 782).
  • Ultracentrifugation has the advantage of characterizing the total particle size distribution and calculating various means such as number average and weight average from the distribution curve.
  • the average diameter data used according to the invention relate to the weight average. Diameter data such as dio, d 5 o and dgo can be used.
  • the rubbery polymer particles are prepared by emulsion polymerization, wherein the particle size is adjusted in a wide diameter range by varying the starting materials and emulsifier concentration, initiator concentration, liquor ratio of organic to aqueous phase, ratio of hydrophilic to hydrophobic monomers, amount of crosslinking monomer, polymerization temperature, etc. After polymerization, the latices are treated by vacuum distillation or by stripping with superheated steam to separate volatile components, especially unreacted monomers.
  • Polymer particles are at least partially crosslinked in a preferred embodiment.
  • Crosslinking of the rubbery polymer particles may be achieved directly during emulsion polymerization, such as by copolymerization with crosslinking multifunctional compounds or by subsequent crosslinking as described below. Direct crosslinking during emulsion polymerization is preferred.
  • 2- to 4-valent C 2 to C 10 alcohols such as ethylene glycol, 1,2-propanediol, butanediol, hexanediol, polyethylene glycol having from 2 to 20, preferably 2 to 8 oxyethylene units, neopentyl glycol,
  • the crosslinking during the emulsion polymerization can also be carried out by continuing the polymerization up to high conversions or in the monomer feed process by polymerization with high internal conversions. Another possibility is to carry out the emulsion polymerization in the absence of regulators.
  • Suitable crosslinking chemicals in this case are organic peroxides, in particular dicumyl peroxide, t-butylcumyl peroxide, bis (t-butyl-peroxy-isopropyl) benzene, di-t-butyl peroxide, 2,5-ditmethylhexane-2,5-dihydroperoxide, 2,5-dimethylhexine-3,2,5-dihydroperoxide, dibenzoyl peroxide, bis (2,4-dichlorobenzoyl) peroxide, t-butyl perbenzoate and organic azo compounds, in particular azo-bis-isobutyronitrile and azo-bis-cyclohexanenitrile and di- and Polymercaptoeducationen, in particular dimercaptoethane, 1,6-dimercaptohexane, 1,3,5-trimercaptotriazine and mercapto-terminated polysulfide rubbers, in particular mercap
  • the optimum temperature for carrying out the postcrosslinking is naturally dependent on the reactivity of the crosslinker and can be carried out at temperatures from room temperature - about 23 ° C - to about 180 ° C optionally under elevated pressure (see Houben- Weyl, Methods of the organic Chemistry, 4th Edition, Volume 14/2, page 848).
  • Particularly preferred crosslinking agents are peroxides.
  • degree of crosslinking is defined by the swelling index [dimensionless] and the gel content [wt%].
  • the rubber-like polymer particles which are at least partially crosslinked in a preferred embodiment according to the invention therefore have insoluble fractions (gel content) in toluene at 23 ° C. of at least about 50% by weight, preferably at least about 80% by weight, particularly preferably 90% by weight. more preferably at least about 98% by weight.
  • the insoluble in toluene content is determined in toluene at 23 ° C.
  • 250 mg of the rubbery polymer particles are swollen in 25 ml of toluene for 24 hours with shaking at 23 ° C.
  • the insoluble fraction is separated and dried.
  • the gel content results from the quotient of the dried residue and the weight and is given in percent by weight.
  • the rubber-like polymer particles which are at least partially crosslinked in a preferred embodiment therefore also have a swelling index of less than about 80, more preferably less than 60, even more preferably less than 40, in toluene at 23 ° C.
  • the swelling indices of the rubbery polymer particles (Qi) are between 1 and 20, more preferably between 1 and 10.
  • the swelling index is calculated from the weight of the solvent-containing rubbery polymer particles swollen in toluene at 23 ° C for 24 hours (after centrifugation at 20,000 rpm) and calculated on the weight of the dry rubbery polymer particles:
  • Qi wet weight of the polymer particles / dry weight of the rubbery polymer particles.
  • the release-active layer preferably consists of at least one monolayer of the rubber-like polymer particles to be produced by emulsion polymerization and of at least one oxide likewise in the form of nanoparticles, ie at least one oxide whose particle size is typically in the range from 1 to 100 nanometers.
  • Nanoparticulate oxides preferred according to the invention are those of the elements Al, Si, Ca, Fe, Mn, Cr, Ti, V, Zn, Zr, Sn. "
  • nanoparticulate oxides of the elements Fe, Al, Zn, Ti, Zr or Si are particularly preferred.
  • the nanoparticulate oxides are randomly distributed in the separating active layer.
  • the content of nanoparticulate oxides in the separation-active layer is preferably 0.1 to 75% by weight, more preferably 0.5 to 60% by weight, most preferably 1 to 50% by weight.
  • the application / incorporation of the nanoparticulate oxides on the support membrane or in the separation-active layer is preferably carried out by the mixing of oxides with the suspension of the rubbery polymer particles and the subsequent application of the mixture as a layer on a porous support membrane.
  • ZnO, Al 2 O 3 and ZrO 2 nanoparticles which are suitable according to the invention are obtainable, for example, from Sigma-Aldrich (St. Louis, MO). Nanoparticles of S1O 2 are available as Aerosil® 380 from Evonik Industries AG, Dusseldorf. Nanoparticulate, Ti0 2 is available from Kronos Titan (Leverkusen).
  • the supporting membrane of the nanofluid membrane consists of an inorganic or organic material.
  • the porous support membrane is chemically and / or mechanically stable. It should be pH-stable and also in organic solvents, such as aldehydes, ketones, monohydric and polyhydric alcohols, benzene derivatives, halogenated hydrocarbons, ethers, esters, carboxylic acids, cyclic hydrocarbons, amines, amides, lactams, lactones, sulfoxides, Alkanes, alkenes.
  • organic solvents such as aldehydes, ketones, monohydric and polyhydric alcohols, benzene derivatives, halogenated hydrocarbons, ethers, esters, carboxylic acids, cyclic hydrocarbons, amines, amides, lactams, lactones, sulfoxides, Alkanes, alkenes.
  • a support membrane is selected which is chemically stable in the following solvents: acetone, toluene, benzene, water, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, N-ethylpyrrolidone, pyridine, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentane , Hexane, heptane, octane, nonane, decane, methyl ethyl ketone, diethyl ether, dichloromethane, tetrachloroethane, carbon tetrachloride, methyl tert-butyl ether,
  • Chlorobenzene Chlorobenzene, dichlorobenzene, trichlorobenzene, nitrobenzene, ethyl acetate, cyclohexane.
  • the nanofluid membrane according to the invention is stable, in particular also in the pH range of 10 to 16 and / or in the pH range of 2 to 4.
  • the support membrane consists of a material which is thermally stable both at room temperature and in typical application process temperatures.
  • an inorganic, permeable supporting membrane preferably micro-glass fiber fleeces, metal fleeces, dense glass fiber fabric or metal fabric, but also ceramic or carbon fiber nonwovens or fabrics are used.
  • ceramic or carbon fiber nonwovens or fabrics are used as support membranes.
  • Composite materials can be used, in particular inorganic support materials of an oxide selected from Al 2 O 3 , titanium oxide, zirconium oxide or silicon oxide.
  • the inorganic support membrane comprises a material selected from ceramic, SiC, S1 3 N 4 , carbon, glass, metal or semimetal.
  • organic polymer materials having sufficient chemical and thermal resistance can be used as the supporting membrane, particularly polyimide, polytetrafluoroethylene, polyvinylidene fluoride, polyetherimide, polyetherketone, polyetheretherketone, polyethersulfone, polysulfone, polybenzimidazole, polyamide.
  • the porous support membranes have a pore size of less than 500 nm. With particular preference, they have a pore size of less than 100 nm and very particularly preferably less than 50 nm.
  • the pore size of the porous support membrane is particularly preferably smaller than the mean particle diameter of the polymer particles or of the nanoparticulate oxides.
  • the thickness of the support membrane 20 to 200 ⁇ more preferably from 40 to 150 ⁇ , most preferably from 50 to 140 ⁇ .
  • the rubbery polymer particles prepared by emulsion polymerization are at least partially functionalized by the addition of polyfunctional monomers in the polymerization.
  • Polyols and maleic acid, fumaric acid, and / or itaconic acid are examples of polyols and maleic acid, fumaric acid, and / or itaconic acid.
  • the separation-active layer of the nanofiltration membrane according to the invention preferably has at least one monolayer of the mixture of nanoparticulate oxides and polymer particles having the average particle diameter ⁇ 70 nm, preferably between 30 and 65 nm, particularly preferably between 40 and 50 nm. ⁇
  • a preferred embodiment of the nanofluid membrane according to the invention has a separation-active layer with a thickness of from 0.1 to 20 ⁇ m, with several layers of the polymer particles lying on top of one another.
  • the thickness of the separation-active layer is at most as thick as the support membrane.
  • Another invention is the production process of the nanofiltration membrane according to the invention, wherein a dispersion (latex) of rubbery polymer particles prepared by emulsion polymerization is applied to the support membrane together with at least one nanoparticulate oxide and a polymer layer (release active layer) is formed on the support membrane.
  • a dispersion (latex) of rubbery polymer particles prepared by emulsion polymerization is applied to the support membrane together with at least one nanoparticulate oxide and a polymer layer (release active layer) is formed on the support membrane.
  • the dispersion of rubbery polymer particles prepared by emulsion polymerization is largely monodisperse, i. H. According to the method of dynamic light scattering, 95.4% of the polymer particles are in a size class with a deviation of ⁇ 7 nm.
  • the nanoparticulate oxides are preferably incorporated by addition and mixing in the polymer suspension.
  • the process is carried out continuously.
  • the aqueous dispersion preferably comprises rubbery polymer particles having a mean particle diameter ⁇ 70 nm, preferably between 30 and 65 nm, particularly preferably between 40 and 50 nm, the dry rubber content after the polymerization being at least 20%, preferably at least 25%, more preferably at least
  • the concentration of latices to a dry rubber content of not more than 65% based on the total volume of the polymer is conceivable for the production of the membrane as well as a dilution of up to 1%.
  • the dry rubber content is determined as follows: The dry rubber content is determined with a halogen moisture meter, such as the Mettler Toledo Halogen Moisture Analyzer HG63. Here, a latex is dried at a temperature of 140 ° C and weighed continuously. The measurement is considered complete when the weight loss is less than 1 mg / 50 sec.
  • the dry rubber content after the polymerization is preferably at most 65%, based on the total volume of the polymer.
  • the latex with the rubbery polymer particles is applied to the support membrane by means of a nozzle.
  • the nanofiltration membrane formed in this way is dried.
  • the nanofiltration membrane formed in this way can additionally be crosslinked, whereby the rubber-like polymer particles with one another and / or with the
  • Supporting membrane to be connected.
  • chemical (covalent and / or ionic) as well as physical types of crosslinking are induced by electromagnetic (e.g., UV), thermal, and / or radioactive radiation. All conventional crosslinking aids can be used. This further reduces the pore size and modifies the filtration properties.
  • Another invention is the use of rubbery polymer particles prepared by emulsion polymerization with average particle diameters ⁇ 70 nm, preferably between 30 to 65 nm, more preferably between 40 to 50 nm together with at least one nanoparticulate oxide for producing a nanofiltration membrane.
  • rubbery polymer particles prepared by emulsion polymerization with average particle diameters ⁇ 70 nm, preferably between 30 to 65 nm, more preferably between 40 to 50 nm together with at least one nanoparticulate oxide for producing a nanofiltration membrane.
  • Invention is the use of the nanofiltration membrane for the food industry, for the chemical industry and for the biochemical industry. This list is not limiting.
  • nanofiltration membrane comprising at least one porous support membrane, which with, prepared by emulsion polymerization rubbery polymer particles having an average particle diameter smaller than 70 nm and with
  • Nanoparticles at least one oxide of the elements Al, Si, Ca, Fe, Mn, Cr, Ti, V, Zn, Zr, Sn is coated for the filtration of water and wastewater and for the purification of drinking water.
  • Another invention is the use of the nanofiltration membrane according to claim 1 for the filtration of water and wastewater and for the purification of drinking water. The invention will be explained below with reference to at least one example, which, however, is in no way limiting.
  • HEMA Hydroxyethyl methacrylate
  • Disproportionated rosin acid (abbreviated as HS) - calculated as the free acid starting from the amount of Dresinate® 835 used (Abieta® DR 835A from Arizona Chemical BV /
  • Dresinate® 835 batch used was characterized by the solids content and by the emulsifier components present as the sodium salt, as the free acid and as the neutral.
  • the solids content was determined according to the procedure described by Maron, S. H .; Madow, B.P .; Borneman, E. "The effective equivalent of certain rosin acids and soaps" Rubber Age, April 1952, 71-72.
  • the mean value of three aliquots of the Dresinate® 835 batch used was found to be 71% by weight solids.
  • the emulsifier components present as the sodium salt and as the free acid were determined by titration according to the method described by Maron, S.H., Ulevitch, I.N., Eider, M.E., Fatty and Rosin Acids, Soaps, and Their
  • Dresinate® 835 (71%) was dissolved in a mixture of 200 g of distilled water and 200 g of distilled isopropanol, treated with an excess of sodium hydroxide solution (5 ml 0.5 N NaOH) and with 0.5 N hydrochloric acid back titrated. The titration course was followed by potentiometric pH measurement. The evaluation of the titration curve was carried out as described in Analytical Chemistry, Vol. 21, 6, 691-695.
  • Dresinate® 835 batch Three aliquots of the Dresinate® 835 batch used were averaged:
  • FS Partially hydrogenated tallow fatty acid - abbreviated as FS (Edenor HTiCT N from Cognis Oleo Chemicals, CAS No. 61790-37-2).
  • the Automatemulgatorgehalt and the average molecular weight of Edenor ® HTiCT used N-batch were titrimetrically determined using the following methods: Maron, SH, Ulevitch, IN, Elder, ME "Fatty and Rosin Acids, soaps, and Their Mixtures, Analytical Chemistry, Vol 21, 6, 691-695; Maron, SH; Madow, BP; Borneman, E.
  • Free Acid FS
  • Rongalit C ® Na formaldehyde sulfoxylate 2-hydrate
  • Trigonox ® NT 50 from Akzo-Degussa CAS-No.
  • Trigonox ® NT 50 from Akzo-Degussa CAS-No.
  • styrene-containing Type 5 and g for the acrylonitrile-type 1.7g p-menthane hydroperoxide used which in 200 ml the emulsifier solution prepared in the reactor were emulsified.
  • the temperature control during the polymerization was carried out by adjusting the coolant quantity and the coolant temperature in the temperature ranges indicated in the tables.
  • the latex was subjected to steam distillation at atmospheric pressure.
  • the polymer particles thus prepared are used for a nanofiltration membrane according to the invention.
  • Table 2 shows the recipe of the rubbery polymer particles produced; the following indexes are used:
  • the support membrane used was an ultrafiltration membrane made of polysulphone which was placed in isopropanol for 30 minutes in a solution of 20% by weight of polyethylene glycol at 400 g / mol prior to processing. This membrane was coated by means of a spiral doctor with an aqueous dispersion.
  • the dispersion consisted solely of rubbery polymer particles as described above.
  • the mixture of the rubber-like polymer particles consisted by above preparation together with nanoscale particles of type SiC Bindzil ® cc301 and Levasil ® 200/30 [Akzo Nobel Chemicals Holding GmbH, Aachen, (Bindzil ® cc301 CAS No. 141029-67. 7631-86-9)] in a concentration of 5 and 10 -6) (Levasil ® 200/30 CAS-No.%., based on the solids content of the polymer dispersion urpsrün Mi.
  • the support membrane was coated at a rate of 20 mm / sec.
  • the wet film thickness of the dispersion layer results from the type of spiral doctor blade with about 6.7 ⁇ , resulting in a dry film thickness of the separating active layer of about 1.9 ⁇ results.
  • the drying was carried out at about 60 ° C under atmospheric pressure for 30 minutes.
  • the filtration properties of the nanofiltration membranes according to the invention were measured with a solution of 2000 ppm MgSÜ 4 in water. This feed solution was applied to the membrane in cross flow under a feed pressure of 5 bar at 20 ° C. and a flow rate of 4 l / min. The salt concentration remaining in the permeate was determined by the conductivity of the solution and related to the concentration in the feed in order to obtain the retention of the membrane.

Abstract

The invention relates to a nanofiltration membrane with a porous support membrane, the surface of the support membrane being coated with rubber-like polymer particles, produced by emulsion polymerisation and having an average particle diameter of less than 70 nm, preferably between 30 and 60 nm, particularly preferably between 40 and 50 nm and having at least one nanoparticulate oxide from the series Fe2O3, Fe3O4, Fe(OOH), ΤiΟ2 and SiO2. The rubber-like polymer particles are obtained from monomers which contain at least one conjugated diene as a functional group.

Description

NANOFILTRATIONSMEMBRAN MIT EINER SCHICHT AUS POLYMER- UND  NANOFILTRATION MEMBRANE WITH A LAYER OF POLYMER AND
OXIDPARTIKELN  oxide particles
Die Erfindung betrifft eine Nanofiltrationsmembran, ein Verfahren zur Herstellung dieser Membran und deren Verwendung. The invention relates to a nanofiltration membrane, a process for the preparation of this membrane and their use.
In der chemischen Industrie, Lebensmittelindustrie, Getränkeindustrie, Elektronikindustrie und in der pharmazeutischen Industrie werden unter anderem Membranen für die Trennung von Fest- Flüssig-Gemischen und Flüssigkeiten eingesetzt. Im Hinblick auf die Umwelttechnologie werden diese auch bei der Aufreinigung von Abwässern und der Herstellung von Trinkwasser eingesetzt. In the chemical industry, food industry, beverage industry, electronics industry and in the pharmaceutical industry, membranes are used for the separation of solid-liquid mixtures and liquids. In terms of environmental technology, these are also used in the purification of wastewater and the production of drinking water.
Aus dem Stand der Technik sind verschiedene Membrantrennverfahren bekannt. Zu nennen sind die Mikrofiltration, die Ultrafiltration und die Nanofiltration, sowie die Umkehrosmose. Diese Verfahren sind den mechanischen Trennprozessen zuzuordnen. Die Trennmechanismen sind durch unterschiedliche Membranstrukturen bedingt. Dabei trennen sie mittels Membranporen, deren Durchmesser kleiner als die der abzutrennenden Teilchen sind. Various membrane separation processes are known from the prior art. These include microfiltration, ultrafiltration and nanofiltration, as well as reverse osmosis. These methods are to be assigned to the mechanical separation processes. The separation mechanisms are caused by different membrane structures. They separate by means of membrane pores whose diameters are smaller than those of the particles to be separated.
Ein weiterer wesentlicher Mechanismus bei der Separation mit Nanofiltrations- und Umkehrosmosemembranen sind neben sterischen Effekten auch die elektrostatische Wechselwirkung von Ionen in Lösung bzw. teilweise dissoziierten Kohlenwasserstoffen mit entsprechenden geladenen Gruppen auf der Oberfläche einer Membran in wässriger Lösung. Diese Wechselwirkung ermöglicht eine Trennung zweier Substanzen mit ähnlich großem Partikelradius, aber unterschiedlicher Ladung bzw. Wertigkeit. Ebenso kann eine Trennung bei Membranen mit entsprechend kleinen Poren, wie z.B. für die Nanofiltration oder Umkehrosmose, auf der unterschiedlichen Diffusionsneigung bei der Permeation durch die Membran der in einer Lösung vorliegenden Substanzen basieren. Another important mechanism in the separation with nanofiltration and reverse osmosis membranes are, in addition to steric effects, the electrostatic interaction of ions in solution or partially dissociated hydrocarbons with corresponding charged groups on the surface of a membrane in aqueous solution. This interaction allows a separation of two substances with a similar particle radius, but different charge or valency. Likewise, separation may occur with membranes having correspondingly small pores, e.g. for nanofiltration or reverse osmosis, based on the different diffusion tendency in the permeation through the membrane of the substances present in a solution.
Bekannte Verfahren für die Behandlung von Flüssigkeiten unter Druck sind Mikrofiltration, Ultrafiltration und Nanofiltration. Die Porengröße der Nano-, Ultra- und Mikrofiltrationsmem- branen liegen bei ca. 0,001 μιη bis 10,0 μιη. Zur Charakterisierung von Membranen wird meist der Rückhalt R bezüglich eines Stoffes herangezogen. Known processes for the treatment of liquids under pressure are microfiltration, ultrafiltration and nanofiltration. The pore sizes of the nano-, ultra- and microfiltration membranes are about 0.001 μm to 10.0 μm. For the characterization of membranes, the retention R with respect to a substance is usually used.
R = wfFeed - wfPermeaf) x 100 [%] R = wfFeed - wfPermeaf) x 100 [%]
w(Feed) wobei w den Massenanteil eines beliebigen Stoffes kennzeichnet. Der Rückhalt beschreibt den Prozentanteil einer abgetrennten Substanz im Permeat (lateinisch „permeare" = durchgehen), bezogen auf die Konzentration im Feed. Er ist neben der Temperatur auch vom Transmembrandruck bzw. -fluss und der Konzentration der Ausgangslösung abhängig. „ w (feed) where w denotes the mass fraction of any substance. The retention describes the percentage of a separated substance in the permeate (in Latin "permeare"), based on the concentration in the feed, and depends not only on the temperature but also on the transmembrane pressure or flow and the concentration of the starting solution. "
- 2 - - 2 -
Das Retentat (lateinisch„retenere" = zurückhalten) beinhaltet die im Vergleich zum Feed erhöhte Konzentration der abzutrennenden Substanz. The retentate (Latin "retenere" = retain) contains the increased compared to the feed concentration of the substance to be separated.
Dies zeigt die Schwierigkeit bei der Beurteilung der Trenneigenschaften einer Membran. Eine grobe Klassifizierung der Membranen ist oft durch die molekulare Trenngrenze (Cut-off) zusammen mit dem Durchfluss gegeben. Diese Trenngrenze ist gleichbedeutend mit der Molmasse, für welche die Membran einen Rückhalt von mindestens 90 % aufweist und kann besonders im Bereich der Nanofiltration abhängig vom Molekularaufbau der abzutrennenden Stoffe sehr unterschiedlich verlaufen. Der Cut-off von Nanofiltrationsmembranen liegt üblicherweise bei < 1500 g/mol. Ultrafiltrationsmembranen haben üblicherweise einen Cut-off von < ca. 150 000 g/mol. This demonstrates the difficulty in assessing the separation properties of a membrane. A rough classification of the membranes is often given by the molecular cut-off (cut-off) along with the flow. This separation limit is equivalent to the molecular weight for which the membrane has a retention of at least 90% and can be very different, especially in the field of nanofiltration depending on the molecular structure of the substances to be separated. The cut-off of nanofiltration membranes is usually <1500 g / mol. Ultrafiltration membranes usually have a cut-off of <about 150 000 g / mol.
Neben keramischen Membranen die aufgrund ihrer Stabilität gegen organische Verbindungen, Säuren oder Laugen eine hohe Lebensdauer aufweisen, sind es vor allem Membranen auf der Basis organischer Polymere, die für Trennungen auf Molekularebene, insbesondere zur Reinigung von Flüssigkeiten eingesetzt werden. Insbesondere bei der Gewinnung von Trinkwasser aus Meerwasser, Flusswasser oder sogar Abwasser mittels Umkehrosmose und bei der Produktaufarbeitung werden zunehmend Ultra- und Nanofiltrationstechniken bzw. Umkehrosmosemembranen eingesetzt. In addition to ceramic membranes which have a long service life due to their stability against organic compounds, acids or alkalis, it is above all membranes based on organic polymers which are used for separations at the molecular level, in particular for the purification of liquids. In particular, in the extraction of drinking water from seawater, river water or even wastewater by reverse osmosis and in product processing increasingly ultra and nanofiltration or reverse osmosis membranes are used.
Um die Investitions- und Betriebskosten einer Membrananlage zu verringern, ist ein möglichst hoher Durchfluss angestrebt bei gleichzeitig zumindest gleichwertigem Rückhalt der Membran. Dies kann z.B. durch eine Hydrophilisierung des Membranmaterials erreicht werden. Methoden zurIn order to reduce the investment and operating costs of a membrane system, the highest possible flow is sought while at the same time at least equivalent retention of the membrane. This can e.g. be achieved by a hydrophilization of the membrane material. Methods for
Hydrophilisierung umfassen neben der entsprechenden chemischen Modifikation des eigentlichen Polymermaterials auch der Zusatz von hydrophilen Additiven, die während der Membranherstellung möglichst gleichmäßig in die Polymermatrix eingearbeitet werden. Hydrophilization, in addition to the corresponding chemical modification of the actual polymer material, also includes the addition of hydrophilic additives which are incorporated as uniformly as possible into the polymer matrix during membrane production.
CJ. Kurth et al, JDA Journal, Third Quarter 2010, 26-31, Membrane Systems, beschreiben deshalb den Einsatz von Zeolith-Nanopartikeln in Dünnschicht Nanocomposite Membranen (TFN) zurCJ. Kurth et al, JDA Journal, Third Quarter 2010, 26-31, Membrane Systems, therefore describe the use of zeolite nanoparticles in thin-film nanocomposite membranes (TFNs)
Erhöhung des Druchflusses von Brackish Water Reverse Osmose Membranen (BWRO) oder Seawater Reverse Osmose Membran (SWRO) (Seawater = Salzwasser, Brackish water = Brackwasser). Increase in the flow of Brackish Water Reverse Osmosis Membrane (BWRO) or Seawater Reverse Osmosis Membrane (SWRO) (Seawater = Brackish water).
E.M.V. Hoek et al, Desalination 283(2011) 89-99 beschreiben die Modifikation von Ultrafiltrationsmembranen mit anorganischen Partikeln, insbesondere Cu, Ag, und Zeoliten, zur Herstellung von Mixed-Matrix-Membranen. Insbesondere für die Verwendung von Zeoliten wurde eine Verbesserung des Durchflusses berichtet. Chan Hyun Lee et al, Journal of Membrane Science, 392-393 (2012). 157 - 166 beschreiben den Einsatz von hydrophilen SiC Nanopartikel in Poly(arylenethersulfon) Copolymermembranen, der zwar nicht zu einer signifikanten Verbesserung des Durchflusses, aber zu einem gestiegenen Salzrückhalt führte. Weitere Membranen umfassend eine Stützmembran und eine trennaktive Polymerbeschichtung mit anorganischen und organischen Partikeln zur Verwendung als Trennmembran in Batterien sind aus der US 2010/206804 bekannt. Aus CN 101824118 A sind trennaktive Polymerbeschichtungen bekannt. Weitere Kompositmembranen sind aus der EP 1254697 und der EP 071 1199 Bl bekannt. Nachteilig an diesen Membranen ist weiterhin, dass keine ausreichende Stabilität der Membranen unter extremen pH- Werten besteht und kein zufriedenstellender Durchfluss erzielt werden kann. EMV Hoek et al, Desalination 283 (2011) 89-99 describe the modification of ultrafiltration membranes with inorganic particles, in particular Cu, Ag, and zeolites, for the preparation of mixed-matrix membranes. In particular, the use of zeolites has been reported to improve flow. Chan Hyun Lee et al, Journal of Membrane Science, 392-393 (2012). 157-166 describe the use of hydrophilic SiC nanoparticles in poly (arylene ether sulfone) copolymer membranes, which did not lead to a significant improvement of the flow, but to an increased salt retention. Other membranes comprising a support membrane and a release active polymer coating with inorganic and organic particles for use as a separation membrane in batteries are known from US 2010/206804. CN 101824118 A discloses release-active polymer coatings. Further composite membranes are known from EP 1254697 and EP 071 1199 Bl. A disadvantage of these membranes is further that there is no sufficient stability of the membranes under extreme pH values and that a satisfactory flow can not be achieved.
Den Einsatz von ZnO-Nanopartikeln in Mixed-Matrix Polyethersulfon (PES) Membranen beschreiben S. Balta et al, Journal of Membrane Science 389 (2012) 155-161. The use of ZnO nanoparticles in mixed-matrix polyethersulfone (PES) membranes is described by S. Balta et al., Journal of Membrane Science 389 (2012) 155-161.
Zusätzlich ist zu sagen, dass bei allen bekannten Membran-Synthesemethoden ein Hauptproblem darin liegt, die Einstellung der Porengröße und der Porenform der trennaktiven Schicht exakt und einheitlich zu steuern und somit eine sehr enge Porengrößenverteilung zu erzielen. In addition, one major problem with all known membrane synthesis methods is to control the adjustment of the pore size and the pore shape of the separation-active layer exactly and uniformly and thus to achieve a very narrow pore size distribution.
Polymere Membranen aus den verschiedensten Polymeren sind für weite pH-Bereiche und viele Anwendungen relativ kostengünstig erhältlich, jedoch sind sie meistens nicht beständig gegenüber organischen Lösungsmitteln sowie bei sehr hohen und/oder sehr niedrigen pH- Werten. Auch ist eine dauerhafte Temperaturbeständigkeit bei über 80°C selten gegeben. Es gibt zwar viele Ansätze, die diese Eigenschaften an Polymermembranen verbessern sollen, jedoch ist oft eine der o. a.Polymeric membranes of a wide variety of polymers are available at relatively low cost for wide pH ranges and many applications, but are mostly not resistant to organic solvents as well as very high and / or very low pHs. Also, a permanent temperature resistance at over 80 ° C is rarely given. While there are many approaches to improve these properties on polymer membranes, one of the above is often one of the above.
Anforderungen nicht erfüllt. Zudem sind die meisten Polymere bei höheren Temperaturen plastisch verformbar. Dies bewirkt eine Kompaktierung der gesamten Membrane, wenn diese unter Druck bei höheren Temperaturen betrieben wird. Die Kompaktierung führt zu komplettem Zusammendrücken des Porengefüges einer Membran und somit zu einer starken Vergrößerung des Filtrations Widerstands. Der Flussabfall wird somit induziert. Ein weiterer Nachteil der üblichenRequirements not met. In addition, most polymers are plastically deformable at higher temperatures. This causes compaction of the entire membrane when operated under pressure at higher temperatures. The compaction leads to complete compression of the pore structure of a membrane and thus to a large increase in the filtration resistance. The flow drop is thus induced. Another disadvantage of the usual
Polymerwerkstoffe ist die schlechte Beständigkeit gegenüber organischen Lösungsmitteln oder Ölen und die weichmachende Wirkung der Öle auf die Polymere. Dadurch wird das Trennvermögen der Membranen beeinträchtigt. Polymeric materials is the poor resistance to organic solvents or oils and the plasticizing effect of the oils on the polymers. As a result, the separation capacity of the membranes is impaired.
Bei der Reinigung von Flüssigkeitsgemischen spielt die Membrantechnik eine bedeutende Rolle. Insbesondere bei der Gewinnung von Trinkwasser aus Meerwasser mittels Umkehrosmose und bei der Produktaufarbeitung werden zunehmend Ultra- und Nanofiltrationstechniken bzw. Umkehrosmosemembranen eingesetzt. Membrane technology plays an important role in the purification of liquid mixtures. In particular, in the extraction of drinking water from seawater by means of reverse osmosis and in product processing increasingly ultra and nanofiltration or reverse osmosis membranes are used.
In Membranprozessen werden in der Regel verdünnte Lösungen aufkonzentriert und organische Lösungsmittel, Wasser- oder Salzlösungen abgetrennt. Dabei werden entweder Wertstoffe oder Λ In membrane processes dilute solutions are usually concentrated and separated organic solvents, water or salt solutions. Here are either recyclables or Λ
- 4 - - 4 -
Schadstoffe in konzentrierteren und gegebenenfalls salzärmeren Lösungen erhalten, wodurch sich nachfolgende Lagerung, Transport, Entsorgung und Weiterverarbeitung kostengünstiger gestalten lassen. Insbesondere bei der Abwasseraufarbeitung ist es das Ziel der Membranbehandlung, den größten Teil des Volumens als Permeat in eine nicht oder nur gering belasteten Form zu gewinnen. Das aufkonzentrierte Retentat kann mit geringerem Aufwand bezüglich noch vorhandenerPollutants obtained in more concentrated and possibly lower-salt solutions, which can be cost-effective subsequent storage, transport, disposal and processing. In particular, in wastewater treatment, it is the goal of the membrane treatment to recover the largest part of the volume as permeate in a not or only slightly loaded form. The concentrated retentate can with less effort with respect to still existing
Wertstoffe aufgearbeitet oder in dieser konzentrierten Form, beispielsweise durch Verbrennung, kostengünstiger entsorgt werden. Reclaimed recyclables or disposed of in this concentrated form, for example by incineration, cheaper.
Das Gebiet der Membranverfahren umfasst sehr unterschiedliche Prozesse. Dementsprechend sind auch unterschiedliche Membranen und deren technische Bauformen vorhanden. Technisch relevante Membrantrennverfahren werden überwiegend als Querstromfiltrationen betrieben. Hohe Schubspannungen, bedingt durch hohe Strömungsgeschwindigkeiten und spezielle Modulkonstruktionen, sollen die Membranverschmutzung minimieren und die Konzentrationspolarisation verringern. The field of membrane processes involves very different processes. Accordingly, different membranes and their technical designs are available. Technically relevant membrane separation processes are predominantly operated as crossflow filtrations. High shear stresses due to high flow velocities and special module constructions are designed to minimize membrane contamination and reduce concentration polarization.
Kommerziell verfügbare Nanofiltrationsmembranen sind Kompositmembranen, die mit Hilfe der Phasengrenzflächenkondensation hergestellt werden, wie beispielsweise in der US 5,049,167 beschrieben ist. Diese bekannten Membranen können jedoch nur sehr aufwendig und nur unter Einhaltung von kostenträchtigen Sicherheitsmaßnahmen hergestellt werden, da als Edukte z. B. kanzerogene Diamine und hochreaktive Acrylchloride eingesetzt werden. Solche Membranen können vielseitig konfiguriert sein, beispielsweise als Flachfolienmodule, Kassettenmodule, spiralgewickelte Module oder Hohlfasermodule. Commercially available nanofiltration membranes are composite membranes prepared by interfacial condensation, such as described in US 5,049,167. However, these known membranes can be prepared only very expensive and only in compliance with costly safety measures, since as starting materials z. As carcinogenic diamines and highly reactive acrylic chlorides are used. Such membranes can be configured in many ways, for example as flat film modules, cassette modules, spiral wound modules or hollow fiber modules.
Weiterhin können kommerzielle Filtrationsmembranen meist nur bei Prozesstemperaturen bis ca. 80°C eingesetzt werden. Furthermore, commercial filtration membranes can usually be used only at process temperatures up to about 80 ° C.
Aufgabe der vorliegenden Erfindung ist es daher, eine leistungsfähige Nanofiltrationsmembran bereitzustellen, die eine hohe thermische Belastbarkeit, eine gute Stabilität in organischen und anorganischen Lösungsmitteln sowie bei hohen und niedrigen pH-Werten und zudem guteIt is therefore an object of the present invention to provide a high-performance nanofiltration membrane which has high thermal stability, good stability in organic and inorganic solvents and at high and low pH values, and also good
Trenneigenschaften auf der Basis einer geeigneten Oberflächenmodifizierung sowie einen erhöhten Durchfluss von Wasser aufweist. Eine weitere Aufgabe der Erfindung ist auch die Bereitstellung eines Verfahrens, mit dem es möglich ist, definierte Porengrößen für die jeweiligen Membranen herzustellen. Aus dem Stand der Technik ist bekannt, dass Polymerteilchen auf einem porösen Substrat, das eine breitere Porengrößenverteilung besitzt, zum Erhalt einer Verbundmembran mit einer schmaleren Porengrößenverteilung abgelagert werden können. Die Hohlräume zwischen den Teilchen bilden Poren, mit denen eine Trennung aus einer Flüssigkeit heraus durchgeführt werden kann. Die so erhaltenen Verbundmembranen können beispielsweise als Ultrafiltrations- und Mikro- filtrationsmembranen verwendet werden. Zur Lösung der Aufgabe wird daher eine Nanofiltrationsmembran der eingangs genannten Art bereitgestellt, wobei die Oberfläche der Stützmembran mit durch Emulsionspolymerisation hergestellten kautschukartigen Polymerteilchen mit einem mittleren Teilchendurchmesser < 70nm, bevorzugt zwischen 30 bis 65 nm, besonders bevorzugt zwischen 40 bis 50 nm sowie mit Nanopartikeln wenigstens eines Oxids ausgewählt aus der Reihe Fe203, FesO i, Fe(OOH), Ti02,und S1O2 beschichtet ist und sowohl kautschukartige Polymerteilchen als auch Oxid-Nanopartikel die trennaktive Schicht bilden und die kautschukartigen Polymere aus Monomeren hergestellt worden sind, welche als funktionelle Gruppe mindestens ein konjugiertes Dien enthalten. Es ist hier zwischen der Filtrationseigenschaft einer Membran, charakterisiert z.B. durch den Cut-off, und dem Aufbau der Filtrationsmembran zu unterscheiden. Separation properties based on a suitable surface modification and increased flow of water has. Another object of the invention is also to provide a method by which it is possible to produce defined pore sizes for the respective membranes. It is known in the art that polymer particles on a porous substrate having a broader pore size distribution can be deposited to obtain a composite membrane having a narrower pore size distribution. The voids between the particles form pores with which separation from a liquid can be performed. The composite membranes obtained in this way can be used, for example, as ultrafiltration and micro-membranes. filtration membranes are used. To achieve the object, therefore, a nanofiltration membrane of the aforementioned type is provided, wherein the surface of the support membrane produced by emulsion rubbery polymer particles having a mean particle diameter <70 nm, preferably between 30 to 65 nm, more preferably between 40 to 50 nm and with nanoparticles at least an oxide selected from Fe 2 O 3 , FesO i, Fe (OOH), TiO 2 , and SiO 2 , and both rubbery polymer particles and oxide nanoparticles form the release active layer and the rubbery polymers are prepared from monomers; which contain as functional group at least one conjugated diene. It is here to distinguish between the filtration property of a membrane, characterized for example by the cut-off, and the structure of the filtration membrane.
Trennwirkung, Trenneigenschaften, Trennverhalten werden als Synonyme verwandt. Die Trennwirkung wird mit Hilfe des 0. g. Cut-off definiert. Separation, separation properties, separation behavior are used as synonyms. The separation effect is with the help of 0. g. Cut-off defined.
Aufgrund ihrer Größe sind die durch Emulsionspolymerisation hergestellten und in der trennaktiven Schicht neben den Oxid-Nanopartikeln einzusetzenden kautschukartigenDue to their size, the rubbery ones prepared by emulsion polymerization and to be used in the release active layer besides the oxide nanoparticles
Polymerteilchen ebenfalls Nanopartikel. Polymer particles also nanoparticles.
Der Einsatz von durch Emulsionspolymerisation hergestellter kautschukartiger Polymerteilchen mit einem mittleren Teilchendurchmesser <70 nm, bevorzugt zwischen 30 bis 65 nm, besonders bevorzugt zwischen 40 und 50 nm, bietet gegenüber anderen Polymerteilchen zahlreiche Vorteile, da die chemischen und physikalischen Eigenschaften der kautschukartigen Polymerteilchen, wieThe use of emulsion polymerized rubbery polymer particles having an average particle diameter <70 nm, preferably between 30 to 65 nm, more preferably between 40 and 50 nm, offers numerous advantages over other polymer particles, since the chemical and physical properties of the rubbery polymer particles, such as
Teilchengröße, Teilchenmorphologie, Quellverhalten, Härte, Formstabilität, und Oberflächenenergie eingestellt werden können. Dies geschieht einerseits durch den Herstellungsprozess, insbesondere durch das Polymerisationsverfahren, sowie durch die Auswahl geeigneter Basismonomere und andererseits durch die Auswahl geeigneter funktioneller Gruppen, deren Konzentration und Ansiedlungsbereich im Polymerteilchen in weiten Grenzen gezielt eingestellt bzw. maßgeschneidert werden kann. Particle size, particle morphology, swelling behavior, hardness, dimensional stability, and surface energy can be adjusted. This is done on the one hand by the manufacturing process, in particular by the polymerization process, as well as by the selection of suitable base monomers and on the other hand by the selection of suitable functional groups whose concentration and settlement area in the polymer particles can be selectively adjusted or tailored within wide limits.
Die trennaktive Schicht ist somit die mit durch Emulsionspolymerisation hergestellten kautschukartigen Polymerteilchen mit einem mittleren Teilchendurchmesser < 70nm, bevorzugt zwischen 30 bis 65 nm, besonders bevorzugt zwischen 40 bis 50 nm, erzeugte Schicht, auch als Polymerschicht bezeichnet, der erfindungsgemäßen Nanofiltrationsmembran, die zudem wenigstens ein Oxid in Form von Nanopartikeln enthält. The release-active layer is thus the rubber-like polymer particles produced by emulsion polymerization with a mean particle diameter <70 nm, preferably between 30 to 65 nm, more preferably between 40 to 50 nm, layer also referred to as polymer layer, the nanofiltration membrane according to the invention, which moreover at least one Contains oxide in the form of nanoparticles.
Unter Emulsionspolymerisation wird insbesondere ein an sich bekanntes Verfahren verstanden, bei dem als Reaktionsmedium meist Wasser verwendet wird, worin die verwendeten Monomere in Anwesenheit oder Abwesenheit von Emulgatoren und radikalbildenden Substanzen unter Bildung r Emulsion polymerization is understood to mean, in particular, a process which is known per se, in which water is usually used as the reaction medium, in which the monomers used are in the presence or absence of emulsifiers and free-radical-forming substances with formation r
- 6 - von meist wässrigen Polymerlatices polymerisiert werden (s. u.a. Römpp Lexikon der Chemie, Band 2, 10. Auflage 1997; P. A. Lovell, M. S. El-Aasser, Emulsion Polymerization and Emulsion Polymers, John Wiley & Sons, ISBN: 0 471 96746 7; H. Gerrens, Fortschr. Hochpolym. Forsch. 1, 234 (1959)). Die Emulsionspolymerisation liefert im Unterschied zur Suspensions- oder Dispersionspolymerisation in der Regel feinere Teilchen, welche einen geringeren Zwickeldurchmesser und somit kleinere Porengrößen in der trennaktiven Schicht ermöglichen. Teilchen einer Größe von unterhalb 500 nm sind durch Suspensions- oder Dispersionspolymerisation im Allgemeinen nicht zugänglich, weshalb diese Teilchen in der Regel für die Zwecke der vorliegenden Erfindung ungeeignet sind. Überraschend wurde nun gefunden, dass der Durchfluss durch Nanofiltrationsmembranen erheblich gesteigert werden kann, wenn man die Oberfläche der Stützmembran einer Nanofiltrationsmembran mit durch Emulsionspolymerisation hergestellten kautschukartigen Polymerteilchen mit einem mittleren Teilchendurchmesser < 70nm sowie mit Nanopartikeln wenigstens eines Oxids beschichtet und sowohl kautschukartige Polymerteilchen als auch Oxid- Nanopartikel die trennaktive Schicht bilden.  Polymerization of mostly aqueous polymer latexes (see, for example, Römpp Lexikon der Chemie, Volume 2, 10th Edition 1997; PA Lovell, MS El-Aasser, Emulsion Polymerization and Emulsion Polymers, John Wiley & Sons, ISBN: 0 471 96746 7; H. Gerrens, Fortschr. Hochpolym. Forsch. 1, 234 (1959)). In contrast to the suspension or dispersion polymerization, the emulsion polymerization generally gives finer particles which allow a smaller gusset diameter and thus smaller pore sizes in the separation-active layer. Particles of size less than 500 nm are generally not accessible by suspension or dispersion polymerization and therefore these particles are generally unsuitable for the purposes of the present invention. Surprisingly, it has now been found that the flow through nanofiltration membranes can be considerably increased if the surface of the supporting membrane of a nanofiltration membrane is coated with rubbery polymer particles having an average particle diameter of <70 nm and with nanoparticles of at least one oxide produced by emulsion polymerization and both rubber-like polymer particles and oxide particles. Nanoparticles form the separation-active layer.
Durch die Wahl der Monomere stellt man die Glasübergangstemperatur und die Breite des Glasübergangs der kautschukartigen Polymerteilchen ein. Die Bestimmung der Glasübergangstemperatur (Tg) und der Breite des Glasübergangs (ATg) der kautschukartigen Polymerteilchen erfolgt mittels Differential-Scanning-Kalorimetrie (DSC), bevorzugt wie im Folgenden beschrieben. Dazu werden für die Bestimmung von Tg und ATg zwei Abkühl/Aufheiz- Zyklen durchgeführt. Tg und ATg werden im zweiten Aufheiz-Zyklus bestimmt. Für die Bestimmungen werden etwa 10-12 mg des ausgewählten Polymerteilchens in einem DSC- Probenbehälter (Standard- Aluminium-Pfanne) von Perkin-Elmer eingesetzt. Der erste DSC-Zyklus wird durchgeführt, indem die Probe zuerst mit flüssigem Stickstoff auf -100°C abgekühlt und dann mit einer Geschwindigkeit von 20K/min auf +150°C aufgeheizt wird. Der zweite DSC-Zyklus wird durch sofortige Abkühlung der Probe begonnen, sobald eine Probentemperatur von +150°C erreicht ist. Im zweiten Aufheizzyklus wird die Probe wie im ersten Zyklus noch einmal auf +150°C aufgeheizt. Die Aufheizgeschwindigkeit im zweiten Zyklus ist erneut 20K/min. Tg und ATg werden graphisch an der DSC-Kurve des zweiten Aufheizvorgangs bestimmt. Für diesen Zweck werden an die DSC-Kurve drei Geraden angelegt. Die 1. Gerade wird am Kurventeil der DSC-Kurve unterhalb Tg, die 2. Gerade an dem durch Tg verlaufenden Kurvenast mit Wendepunkt und die 3. Gerade an dem Kurvenast der DSC- Kurve oberhalb Tg angelegt. Auf diese Weise werden drei Geraden mit zwei Schnittpunkten erhalten. Beide Schnittpunkte sind jeweils durch eine charakteristische Temperatur gekennzeichnet. Die Glasübergangstemperatur Tg erhält man als Mittelwert dieser beiden Temperaturen und die Breite des Glasübergangs ATg erhält man aus der Differenz der beiden Temperaturen. Vorzugsweise weisen die kautschukartigen Polymerteilchen eine Glasübergangstemperatur (Tg) von -85°C bis 150° C, bevorzugt -75°C bis 110°C, besonders bevorzugt -70 °C bis 90°C, auf.The choice of monomers sets the glass transition temperature and the glass transition width of the rubbery polymer particles. The determination of the glass transition temperature (Tg) and the width of the glass transition (ATg) of the rubbery polymer particles is carried out by differential scanning calorimetry (DSC), preferably as described below. For this purpose, two cooling / heating cycles are carried out for the determination of Tg and ATg. Tg and ATg are determined in the second heating cycle. For the determinations, approximately 10-12 mg of the selected polymer particle is placed in a Perkin-Elmer DSC sample container (standard aluminum pan). The first DSC cycle is carried out by first cooling the sample to -100 ° C with liquid nitrogen and then heating to + 150 ° C at a rate of 20K / min. The second DSC cycle is started by immediately cooling the sample as soon as a sample temperature of + 150 ° C is reached. In the second heating cycle, the sample is again heated to + 150 ° C as in the first cycle. The heating rate in the second cycle is again 20K / min. Tg and ATg are determined graphically on the DSC curve of the second heating process. For this purpose, three straight lines are applied to the DSC curve. The 1st straight line is applied to the curve part of the DSC curve below Tg, the 2nd straight line to the curve branch with inflection point passing through Tg and the 3rd straight line to the curve branch of the DSC curve above Tg. In this way, three straight lines with two intersections are obtained. Both intersections are each characterized by a characteristic temperature. The glass transition temperature Tg is obtained as the mean value of these two temperatures and the width of the glass transition ATg is obtained from the difference between the two temperatures. Preferably, the rubbery polymer particles have a glass transition temperature (Tg) of -85 ° C to 150 ° C, preferably -75 ° C to 110 ° C, more preferably -70 ° C to 90 ° C on.
Die Breite des Glasübergangs ist bei den erfindungsgemäß verwendeten kautschukartigen Polymerteilchen bevorzugt größer als 5 °C, bevorzugter größer als 10°C. Kautschukartige Polymerteilchen werden erfindungsgemäß aus Monomeren hergestellt, welche als funktionelle Gruppe mindestens ein konjugiertes Dien beinhalten. The width of the glass transition is preferably greater than 5 ° C., more preferably greater than 10 ° C., in the case of the rubbery polymer particles used according to the invention. Rubbery polymer particles according to the invention are prepared from monomers which contain at least one conjugated diene as the functional group.
Bevorzugt werden erfindungsgemäß Monomere oder Monomerkombinationen ausgewählt aus der Reihe 1,3-Butadien, Isopren, 2-Chlorbutadien und 2,3-Dichlorbutadien, eingesetzt. According to the invention, preference is given to using monomers or monomer combinations selected from the series consisting of 1,3-butadiene, isoprene, 2-chlorobutadiene and 2,3-dichlorobutadiene.
Insbesondere bevorzugt sind Monomere oder Monomerkombinationen der Reihe 1,3-Butadien, Isopren,, Chloropren und 2,3-Dichlorbutadien. Particular preference is given to monomers or monomer combinations of the series 1,3-butadiene, isoprene, chloroprene and 2,3-dichlorobutadiene.
Erfindungsgemäß bezeichnet (Meth) sowohl die jeweilige Acrylverbindung als auch die jeweilige Methacrylverbindung.  According to the invention (meth) denotes both the respective acrylic compound and the respective methacrylic compound.
Erfindungsgemäß werden zur Herstellung der kautschukartigen Polymerteilchen 1 bis 80 Gew.-%, bevorzugt 1 bis 60 Gew.-%, weiter bevorzugte 1 bis 40 Gew.-%, noch weiter bevorzugt 1 bis 30 Gew.-% der genannten Monomeren eingesetzt. According to the invention, from 1 to 80% by weight, preferably from 1 to 60% by weight, more preferably from 1 to 40% by weight, even more preferably from 1 to 30% by weight, of the stated monomers are used for the preparation of the rubbery polymer particles.
Neben den Monomeren mit zumindest einer konjungierten DienFunktionalität können zur Herstellung der kautschukartigen Polymerteilchen weitere Monomere aus der Reihe Vinylacetat, Styrol oder Derivaten davon, Acrylnitril, Tetrafluorethylen, Vinylidenfluorid, Hexafluorpropen, Butyl(meth)acrylat, 2-Ethylhexyl(meth)acrylat, Hydroxyethyl(meth)acrylat, Glycidyl(meth)acrylat, Acrylsäure, Methacrylsäure, Diacetonacrylamid, doppelbindungshaltiger Hydroxy-, Epoxy, Carboxy-, oder Ketoverbindungen enthalten sein. In addition to the monomers having at least one conjugated diene functionality, other monomers from the series vinyl acetate, styrene or derivatives thereof, acrylonitrile, tetrafluoroethylene, vinylidene fluoride, hexafluoropropene, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, hydroxyethyl (for the preparation of the rubbery polymer particles meth) acrylate, glycidyl (meth) acrylate, acrylic acid, methacrylic acid, diacetoneacrylamide, double bond-containing hydroxy, epoxy, carboxy or keto compounds.
Insbesondere bevorzugt sind Monomere oder Monomerkombinationen der Reihe Acrylnitril, Styrol, alpha-Methylstyrol, Butyl(meth)acrylat, 2-Ethylhexyl(meth)acrylat,Particular preference is given to monomers or monomer combinations of the series acrylonitrile, styrene, α-methylstyrene, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate,
Hydroxyethyl(meth)acrylat, Glycidyl(meth)acrylat, Acrylsäure, Methacrylsäure, Diacetonacrylamid, Tetrafluorethylen, Vinylidenfluorid und Hexafluorpropen. Hydroxyethyl (meth) acrylate, glycidyl (meth) acrylate, acrylic acid, methacrylic acid, diacetoneacrylamide, tetrafluoroethylene, vinylidene fluoride and hexafluoropropene.
Die kautschukartigen Polymerteilchen können vernetzt oder unvernetzt sein. Die kautschukartigen Polymerteilchen können insbesondere solche auf Basis von Homopolymeren oder statistischen Copolymeren sein. Die Begriffe Homopolymere und statistische Copolymere sind dem Fachmann bekannt und beispielsweise erläutert bei Vollmert, Polymer Chemistry, Springer 1973. Als Polymerbasis der kautschukartigen, vernetzten oder unvernetzten kautschukartigen Polymerteilchen, enthaltend funktionale Gruppen, können insbesondere dienen: The rubbery polymer particles may be crosslinked or uncrosslinked. The rubbery polymer particles may in particular be those based on homopolymers or random copolymers. The terms homopolymers and random copolymers are known to the person skilled in the art and are explained, for example, by Vollmert, Polymer Chemistry, Springer 1973. The following may be used in particular as the polymer base of the rubbery, crosslinked or uncrosslinked rubbery polymer particles containing functional groups:
BR: Polybutadien, ABR:
Figure imgf000009_0001
BR: polybutadiene, ABR:
Figure imgf000009_0001
IR: Polyisopren, IR: polyisoprene,
SBR: statistische Styrol-Butadien-Copolymerisate mit Styrolgehalten von 1-60, vorzugsweise 5-50 Gewichtsprozent, FKM: Fluorkautschuk, SBR: styrene-butadiene random copolymers having styrene contents of 1-60, preferably 5-50 wt%, FKM: fluororubber,
ACM: Acrylatkautschuk, ACM: acrylate rubber,
NBR: Polybutadien-Acrylnitril-Copolymerisate mit Acrylnitrilgehalten von 5-60, vorzugsweise 10- 60 Gewichtsprozent, NBR: polybutadiene-acrylonitrile copolymers having acrylonitrile contents of 5-60, preferably 10-60, weight percent,
CR: Polychloropren EAM: Ethylen/Acrylatcopolymere, CR: polychloroprene EAM: ethylene / acrylate copolymers,
EVM: Ethylen/Vinylacetatcopolymere. EVM: ethylene / vinyl acetate copolymers.
Weitere bevorzugte kautschukartige Polymerteilchen sind thermoplastisch und solche auf Basis von Methacrylaten, insbesondere Methylmethacrylat, Styrol, alpha-Methylstyrol und Acrylnitril. Further preferred rubbery polymer particles are thermoplastic and those based on methacrylates, in particular methyl methacrylate, styrene, alpha-methylstyrene and acrylonitrile.
Die kautschukartigen Polymerteilchen weisen bevorzugt eine annähernd kugelförmige Geometrie auf. The rubbery polymer particles preferably have an approximately spherical geometry.
Die erfindungsgemäß verwendeten kautschukartigen Polymerteilchen weisen einen mittleren Teilchendurchmesser kleiner als 70 nm, bevorzugt zwischen 30 bis 65 nm, besonders bevorzugt zwischen 40 bis 50 nm auf. The rubbery polymer particles used according to the invention have an average particle diameter of less than 70 nm, preferably between 30 and 65 nm, particularly preferably between 40 and 50 nm.
Der mittlere Teilchendurchmesser wird mittels Ultrazentrifugation mit dem wässrigen Latex der kautschukartigen Polymerteilchen aus der Emulsionspolymerisation bestimmt. Die Methode liefert einen Mittelwert für den Teilchendurchmesser unter Berücksichtigung etwaiger Agglomerate. (H. G. Müller (1996) Colloid Polymer Science 267: 1113-1116 sowie W. Scholtan, H. Lange (1972) Kolloid-Z u. Z. Polymere 250: 782). Die Ultrazentrifugation hat den Vorteil, dass die gesamte Teilchengrößenverteilung charakterisiert wird und verschiedene Mittelwerte wie Zahlenmittel, Gewichtsmittel aus der Verteilungskurve berechnet werden können. Die erfindungsgemäß verwendeten mittleren Durchmesserangaben beziehen sich auf das Gewichtsmittel. Es können Durchmesserangaben wie dio, d5o und dgo verwendet werden. Diese Angaben bedeuten, dass 10, 50 bzw. 80 Gew. % der Teilchen einen Durchmesser besitzen, der kleiner als der entsprechende Zahlenwert in Gew. % ist. Die Durchmesserbestimmung mittels dynamischer Lichtstreuung wird am Latex durchgeführt. Üblich sind Laser, die bei 633 nm (rot) und bei 532 nm (grün) arbeiten. Bei der dynamischen Lichtstreuung erhält man einen Mittelwert der Partikelgrößenverteilungskurve. Die erfindungsgemäß verwendeten mittleren Durchmesserangaben beziehen sich auf diesen Mittelwert. Die kautschukartigen Polymerteilchen werden durch Emulsionspolymerisation hergestellt, wobei durch Variation der Einsatzstoffe sowie Emulgatorkonzentration, Initiatorkonzentration, Flottenverhältnis von organischer zu wässriger Phase, Verhältnis von hydrophilen zu hydrophoben Monomeren, Menge an vernetzendem Monomer, Polymerisationstemperatur etc. die Teilchengröße in einem weiten Durchmesserbereich eingestellt wird. Nach der Polymerisation werden die Latices durch Vakuumdestillation oder durch Strippung mit überhitztem Wasserdampf behandelt, um flüchtige Komponenten insbesondere nicht umgesetzte Monomeren abzutrennen. The average particle diameter is determined by ultracentrifugation with the aqueous latex of the rubbery polymer particles from the emulsion polymerization. The method gives a mean value for the particle diameter taking into account any agglomerates. (HG Müller (1996) Colloid Polymer Science 267: 1113-1116 and W. Scholtan, H. Lange (1972) Kolloid-Z and Z. Polymere 250: 782). Ultracentrifugation has the advantage of characterizing the total particle size distribution and calculating various means such as number average and weight average from the distribution curve. The average diameter data used according to the invention relate to the weight average. Diameter data such as dio, d 5 o and dgo can be used. These data mean that 10, 50 or 80% by weight of the particles have a diameter which is smaller than the corresponding numerical value in% by weight. The diameter determination by means of dynamic light scattering is carried out on the latex. Common are lasers operating at 633 nm (red) and 532 nm (green). Dynamic light scattering gives an average of the particle size distribution curve. The average diameter data used according to the invention relate to this mean value. The rubbery polymer particles are prepared by emulsion polymerization, wherein the particle size is adjusted in a wide diameter range by varying the starting materials and emulsifier concentration, initiator concentration, liquor ratio of organic to aqueous phase, ratio of hydrophilic to hydrophobic monomers, amount of crosslinking monomer, polymerization temperature, etc. After polymerization, the latices are treated by vacuum distillation or by stripping with superheated steam to separate volatile components, especially unreacted monomers.
Auf eine weitere Aufarbeitung der so hergestellten kautschukartigen Polymerteilchen, insbesondere durch Koagulationsverfahren, kann verzichtet werden. Die erfindungsgemäß verwendeten durch Emulsionspolymerisation hergestellten kautschukartigenFurther processing of the rubbery polymer particles thus prepared, in particular by coagulation processes, can be dispensed with. The rubber-like emulsion polymerization prepared according to the invention
Polymerteilchen sind in einer bevorzugten Ausführungsform mindestens teilweise vernetzt. Polymer particles are at least partially crosslinked in a preferred embodiment.
Die Vernetzung der durch Emulsionspolymerisation hergestellten kautschukartigen Polymerteilchen erfolgt bevorzugt durch den Zusatz polyfunktioneller Monomere bei der Polymerisation, besonders bevorzugt durch den Zusatz von Verbindungen mit mindestens zwei, vorzugsweise 2 bis 4 copolymerisierbaren C=C-Doppelbindungen, insbesondere durch Zusatz wenigstens einer Verbindung der Reihe Diisopropenylbenzol, Divinylbenzol, Divinylether, Divinylsulfon, Diallylphthalat, Triallylcyanurat, Triallylisocyanurat, 1 ,2-Polybutadien, N,N'-m- Phenylenmaleimid, 2,4-Toluylenbis(maleimid), Triallyltrimellitat, Glycidylmethacrylat, Acrylate und Methacrylate von mehrwertigen, vorzugsweise 2- bis 4-wertigen C2 bis CIO Alkoholen, insbesondere Ethylenglykol, Propandiol-1,2, Butandiol, Hexandiol, Polyethylenglykol mit 2 bis 20, vorzugsweise 2 bis 8 Oxyethyleneinheiten, Neopentylglykol, Bisphenol-A, Glycerin, Trimethylolpropan, Pentaerythrit, Sorbit sowie ungesättigten Polyestern aus aliphatischen Di- und Polyolen und Maleinsäure, Fumarsäure, und/oder Itaconsäure. The crosslinking of the rubbery polymer particles prepared by emulsion polymerization is preferably carried out by the addition of polyfunctional monomers in the polymerization, more preferably by the addition of compounds having at least two, preferably 2 to 4 copolymerizable C = C double bonds, in particular by adding at least one compound of the series Diisopropenylbenzol , Divinylbenzene, divinyl ether, divinylsulfone, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, 1,2-polybutadiene, N, N'-m-phenylene maleimide, 2,4-tolylene bis (maleimide), triallyl trimellitate, glycidyl methacrylate, acrylates and methacrylates of polyvalent, preferably 2- to 4-valent C 2 to C 10 alcohols, in particular ethylene glycol, 1,2-propanediol, butanediol, hexanediol, polyethylene glycol having 2 to 20, preferably 2 to 8 oxyethylene units, neopentyl glycol, bisphenol A, glycerol, trimethylolpropane, pentaerythritol, sorbitol and also unsaturated polyesters from aliphatic di- and polyol and maleic acid, fumaric acid, and / or itaconic acid.
Die Vernetzung der kautschukartigen Polymerteilchen kann direkt während der Emulsionspolymerisation, wie durch Copolymerisation mit vernetzend wirkenden multifunktionellen Verbindungen oder durch anschließende Vernetzung wie untenstehend beschrieben erreicht werden. Die direkte Vernetzung während der Emulsionspolymerisation ist bevorzugt. Bevorzugte multifunktionelle Comonomere sind Verbindungen mit mindestens zwei, vorzugsweise 2 bis 4 copolymerisierbaren C=C-Doppelbindungen, insbesondere Diisopropenylbenzol, Divinylbenzol, Divinylether, Divinylsulfon, Diallylphthalat, Triallylcyanurat, Triallylisocyanurat, 1 ,2-Polybutadien, N,N'-m-Phenylenmaleimid, 2,4-Toluylenbis(maleimid) und/oder Triallyltrimellitat. Darüber hinaus kommen in Betracht die Acrylate und Methacrylate von aliphatischen Aminen, Epoxiden und mehrwertigen, vorzugsweise 2- bis 4-wertigen C2 bis CIO Alkoholen, wie Ethylenglykol, Propandiol-1,2, Butandiol, Hexandiol, Polyethylenglykol mit 2 bis 20, vorzugsweise 2 bis 8 Oxyethyleneinheiten, Neopentylglykol, Bisphenol-A, Glycerin, Trimethylolpropan, Pentaerythrit, Sorbit mit ungesättigten Polyestern aus aliphatischen Di- und Polyolen sowie Maleinsäure, Fumarsäure, und/oder Itaconsäure. Crosslinking of the rubbery polymer particles may be achieved directly during emulsion polymerization, such as by copolymerization with crosslinking multifunctional compounds or by subsequent crosslinking as described below. Direct crosslinking during emulsion polymerization is preferred. Preferred multifunctional comonomers are compounds having at least two, preferably 2 to 4, copolymerizable C =C double bonds, in particular Diisopropenylbenzene, divinylbenzene, divinyl ether, divinylsulfone, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, 1,2-polybutadiene, N, N'-m-phenylene maleimide, 2,4-tolylene bis (maleimide) and / or triallyl trimellitate. In addition, the acrylates and methacrylates of aliphatic amines, epoxides and polyhydric, preferably 2- to 4-valent C 2 to C 10 alcohols, such as ethylene glycol, 1,2-propanediol, butanediol, hexanediol, polyethylene glycol having from 2 to 20, preferably 2 to 8 oxyethylene units, neopentyl glycol, bisphenol A, glycerol, trimethylolpropane, pentaerythritol, sorbitol with unsaturated polyesters of aliphatic di- and polyols and maleic acid, fumaric acid, and / or itaconic acid.
Die Vernetzung während der Emulsionspolymerisation kann auch durch Fortführung der Polymerisation bis zu hohen Umsätzen oder im Monomerzulaufverfahren durch Polymerisation mit hohen internen Umsätzen erfolgen. Eine andere Möglichkeit besteht auch in der Durchführung der Emulsionspolymerisation in Abwesenheit von Reglern. The crosslinking during the emulsion polymerization can also be carried out by continuing the polymerization up to high conversions or in the monomer feed process by polymerization with high internal conversions. Another possibility is to carry out the emulsion polymerization in the absence of regulators.
Für die Vernetzung der unvernetzten oder der schwach vernetzten kautschukartigen Polymerteilchen im Anschluss an die Emulsionspolymerisation setzt man am besten die Latices ein, die bei der Emulsionspolymerisation erhalten werden. For the crosslinking of the uncrosslinked or slightly crosslinked rubbery polymer particles following the emulsion polymerization, it is best to use the latices obtained in the emulsion polymerization.
Geeignete, vernetzend wirkende Chemikalien sind in diesem Fall organische Peroxide, insbesondere Dicumylperoxid, t-Butylcumylperoxid, Bis-(t-butyl-peroxy-isopropyl)benzol, Di-t- butylperoxid, 2,5-Ditmethylhexan-2,5-dihydroperoxid, 2,5-Dimethylhexin-3,2,5-dihydroper-oxid, Dibenzoyl-peroxid, Bis-(2,4-dichlorobenzoyl)peroxid, t-Butylperbenzoat sowie organische Azoverbindungen, insbesondere Azo-bis-isobutyronitril und Azo-bis-cyclohexannitril sowie Di- und Polymercaptoverbindungen, insbesondere Dimercaptoethan, 1,6-Dimercaptohexan, 1,3,5- Trimercaptotriazin und Mercapto-terminierte Polysulfidkautschuke, insbesondere Mercapto- terminierte Umsetzungsprodukte von Bis-Chlorethylformal mit Natriumpolysulfid. Suitable crosslinking chemicals in this case are organic peroxides, in particular dicumyl peroxide, t-butylcumyl peroxide, bis (t-butyl-peroxy-isopropyl) benzene, di-t-butyl peroxide, 2,5-ditmethylhexane-2,5-dihydroperoxide, 2,5-dimethylhexine-3,2,5-dihydroperoxide, dibenzoyl peroxide, bis (2,4-dichlorobenzoyl) peroxide, t-butyl perbenzoate and organic azo compounds, in particular azo-bis-isobutyronitrile and azo-bis-cyclohexanenitrile and di- and Polymercaptoverbindungen, in particular dimercaptoethane, 1,6-dimercaptohexane, 1,3,5-trimercaptotriazine and mercapto-terminated polysulfide rubbers, in particular mercapto-terminated reaction products of bis-chloroethyl formal with sodium polysulfide.
Die optimale Temperatur zur Durchführung der Nachvernetzung ist naturgemäß von der Reaktivität des Vernetzers abhängig und kann bei Temperaturen von Raumtemperatur - ca. 23°C - bis ca. 180 °C gegebenenfalls unter erhöhtem Druck durchgeführt werden (siehe hierzu Houben- Weyl, Methoden der organischen Chemie, 4. Auflage, Band 14/2, Seite 848). Besonders bevorzugte Vernetzungsmittel sind Peroxide. The optimum temperature for carrying out the postcrosslinking is naturally dependent on the reactivity of the crosslinker and can be carried out at temperatures from room temperature - about 23 ° C - to about 180 ° C optionally under elevated pressure (see Houben- Weyl, Methods of the organic Chemistry, 4th Edition, Volume 14/2, page 848). Particularly preferred crosslinking agents are peroxides.
Die Vernetzung C=C-Doppelbindungen-enthaltender Kautschuke zu erfindungsgemäß einzusetzenden kautschukartigen Polymerteilchen kann auch in Dispersion bzw. Emulsion bei gleichzeitiger, partieller, ggf. vollständiger, Hydrierung der C=C Doppelbindung durch Hydrazin wie in US 5,302,696 oder US 5,442,009 beschrieben oder ggf. andere Hydrierungsmittel, beispielsweise Organometallhydridkomplexe erfolgen. Im Rahmen der vorliegenden Erfindung ist der Grad der Vernetzung über den Quellungsindex [dimensionslos] und den Gelgehalt [ Gew.-%] definiert. The crosslinking of rubbers containing C =C double bonds to give rubbery polymer particles to be used according to the invention can also be described in dispersion or emulsion with simultaneous, partial or even complete hydrogenation of the C =C double bond by hydrazine as described in US Pat. No. 5,302,696 or US Pat. No. 5,442,009 or other hydrogenating agents, for example Organometallhydridkomplexe done. Within the scope of the present invention the degree of crosslinking is defined by the swelling index [dimensionless] and the gel content [wt%].
Vor, während oder nach der Nachvernetzung kann ggf. eine Teilchenvergrößerung durch Agglomeration durchgeführt werden. Die in einer bevorzugten Ausführungsform erfindungsgemäß zumindest teilweise vernetzten kautschukartigen Polymerteilchen weisen deshalb in Toluol bei 23 °C unlösliche Anteile (Gelgehalt) von mindestens etwa 50 Gew.-%, bevorzugt mindestens etwa 80 Gew.-%, besonders bevorzugt 90 Gew.-%, insbesondere bevorzugt mindestens etwa 98 Gew.-% auf. Der in Toluol unlösliche Anteil wird dabei in Toluol bei 23°C bestimmt. Hierbei werden 250 mg der kautschukartigen Polymerteilchen in 25 ml Toluol 24 Stunden unter Schütteln bei 23°C gequollen.Before, during or after postcrosslinking, an agglomeration of particles may possibly be carried out. The rubber-like polymer particles which are at least partially crosslinked in a preferred embodiment according to the invention therefore have insoluble fractions (gel content) in toluene at 23 ° C. of at least about 50% by weight, preferably at least about 80% by weight, particularly preferably 90% by weight. more preferably at least about 98% by weight. The insoluble in toluene content is determined in toluene at 23 ° C. Here, 250 mg of the rubbery polymer particles are swollen in 25 ml of toluene for 24 hours with shaking at 23 ° C.
Nach Zentrifugation mit 20.000 Upm wird der unlösliche Anteil abgetrennt und getrocknet. Der Gelgehalt ergibt sich aus dem Quotienten des getrockneten Rückstandes und der Einwaage und wird in Gewichtsprozent angegeben. After centrifugation at 20,000 rpm, the insoluble fraction is separated and dried. The gel content results from the quotient of the dried residue and the weight and is given in percent by weight.
Die in einer bevorzugten Ausführungsform zumindest teilweise vernetzten kautschukartigen Polymerteilchen weisen deshalb zudem - also zusätzlich zum Gelgehalt - in Toluol bei 23 °C einen Quellungsindex von weniger als etwa 80, bevorzugter von weniger als 60 noch bevorzugter von weniger als 40 auf. Insbesondere liegen die Quellungsindizes der kautschukartigen Polymerteilchen (Qi) zwischen 1 und 20, insbesondere bevorzugt zwischen 1 und 10. Der Quellungsindex wird aus dem Gewicht der in Toluol bei 23 °C für 24 Stunden gequollenen lösungsmittelhaltigen kautschukartigen Polymerteilchen (nach Zentrifugation mit 20.000 Upm) und dem Gewicht der trockenen kautschukartigen Polymerteilchen berechnet: The rubber-like polymer particles which are at least partially crosslinked in a preferred embodiment therefore also have a swelling index of less than about 80, more preferably less than 60, even more preferably less than 40, in toluene at 23 ° C. In particular, the swelling indices of the rubbery polymer particles (Qi) are between 1 and 20, more preferably between 1 and 10. The swelling index is calculated from the weight of the solvent-containing rubbery polymer particles swollen in toluene at 23 ° C for 24 hours (after centrifugation at 20,000 rpm) and calculated on the weight of the dry rubbery polymer particles:
Qi = Nassgewicht der Polymerteilchen / Trockengewicht der kautschukartigen Polymerteilchen. Qi = wet weight of the polymer particles / dry weight of the rubbery polymer particles.
Zur Ermittlung des Quellungsindex lässt man 250 mg der kautschukartigen Polymerteilchen in 25 ml Toluol 24 h unter Schütteln quellen. Das Gel wird abzentrifugiert und gewogen und anschließend bei 70 °C bis zur Gewichtskonstanz getrocknet und nochmals gewogen. To determine the swelling index, 250 mg of the rubbery polymer particles are allowed to swell in 25 ml of toluene with shaking for 24 hours. The gel is centrifuged off and weighed and then dried at 70 ° C to constant weight and weighed again.
Erfindungsgemäß bevorzugt besteht die trennaktive Schicht aus wenigstens einer Monolage der durch Emulsionspolymerisation herzustellenden kautschukartigen Polymerteilchen und aus wenigstens einem Oxid ebenfalls in Form von Nanopartikeln, also wenigstens einem Oxid, dessen Partikelgröße typischerweise im Bereich von 1 bis 100 Nanometern liegt. According to the invention, the release-active layer preferably consists of at least one monolayer of the rubber-like polymer particles to be produced by emulsion polymerization and of at least one oxide likewise in the form of nanoparticles, ie at least one oxide whose particle size is typically in the range from 1 to 100 nanometers.
Erfindungsgemäß bevorzugte nanopartikuläre Oxide sind solche der Elemente AI, Si, Ca, Fe, Mn, Cr, Ti, V, Zn, Zr, Sn. „ Nanoparticulate oxides preferred according to the invention are those of the elements Al, Si, Ca, Fe, Mn, Cr, Ti, V, Zn, Zr, Sn. "
- 12 -  - 12 -
Besonders bevorzugt werden nanopartikuläre Oxide der Elemente Fe, AI, Zn, Ti, Zr oder Si eingesetzt. Ganz besonders bevorzugt sind Fe2Ü3, Fe(OOH), AI2O3, ZnO, T1O2, ZrÜ2 oder S1O2. Noch weiter bevorzugt ist S1O2. Particular preference is given to using nanoparticulate oxides of the elements Fe, Al, Zn, Ti, Zr or Si. Very particular preference is given to Fe 2 O 3 , Fe (OOH), Al 2 O 3 , ZnO, TIO 2 , ZrO 2 or SIO 2 . Even more preferred is S1O second
Die nanopartikulären Oxide liegen statistisch verteilt in der trennaktiven Schicht vor. Der Gehalt nanopartikulärer Oxide in der trennaktiven Schicht beträgt bevorzugt 0, 1 - 75 Gew.- %, besonders bevorzugt 0,5 - 60 Gew.-%, ganz besonders bevorzugt 1 - 50 Gew.-%. The nanoparticulate oxides are randomly distributed in the separating active layer. The content of nanoparticulate oxides in the separation-active layer is preferably 0.1 to 75% by weight, more preferably 0.5 to 60% by weight, most preferably 1 to 50% by weight.
Die Aufbringung/Einbringung der nanopartikulären Oxide auf die Stützmembran bzw. in die trennaktive Schicht erfolgt bevorzugt durch die Vermischung von Oxiden mit der Suspension der kautschukartigen Polymerteilchen und dem anschließenden Aufbringen des Gemisches als Schicht auf einer porösen Stützmembran. The application / incorporation of the nanoparticulate oxides on the support membrane or in the separation-active layer is preferably carried out by the mixing of oxides with the suspension of the rubbery polymer particles and the subsequent application of the mixture as a layer on a porous support membrane.
Erfindungsgemäß geeignete ZnO-, AI2O3- und Zr02-Nanopartikel sind z.b. bei Sigma-Aldrich (St. Louis, MO) erhältlich. Nanopartikel aus S1O2 sind als Aerosil® 380 bei der Evonik Industries AG, Düsseldorf erhältlich. Nanopartikuläres, Ti02 ist erhältlich bei Kronos Titan (Leverkusen). ZnO, Al 2 O 3 and ZrO 2 nanoparticles which are suitable according to the invention are obtainable, for example, from Sigma-Aldrich (St. Louis, MO). Nanoparticles of S1O 2 are available as Aerosil® 380 from Evonik Industries AG, Dusseldorf. Nanoparticulate, Ti0 2 is available from Kronos Titan (Leverkusen).
Vorzugsweise besteht die Stützmembran der Nanofütrationsmembran aus einem anorganischen oder organischen Material. Preferably, the supporting membrane of the nanofluid membrane consists of an inorganic or organic material.
Darüber hinaus ist es vorteilhaft, dass die poröse Stützmembran chemisch und/oder mechanisch stabil ist. Sie soll pH-Wert-stabil sein und ebenso in organischen Lösungsmitteln, wie beispielsweise Aldehyden, Ketonen, ein- und mehrwertigen Alkoholen, Benzolderivaten, halogenierten Kohlenwasserstoffen, Ethern, Estern, Carbonsäuren, cyclische Kohlenwasserstoffen, Aminen, Amiden, Lactamen, Lactonen, Sulfoxiden, Alkanen, Alkenen. Moreover, it is advantageous that the porous support membrane is chemically and / or mechanically stable. It should be pH-stable and also in organic solvents, such as aldehydes, ketones, monohydric and polyhydric alcohols, benzene derivatives, halogenated hydrocarbons, ethers, esters, carboxylic acids, cyclic hydrocarbons, amines, amides, lactams, lactones, sulfoxides, Alkanes, alkenes.
Vorzugsweise wird eine Stützmembran gewählt, welche in folgenden Lösungsmitteln chemisch stabil ist: Aceton, Toluol, Benzol, Wasser, Tetrahydrofuran, Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, N-Ethylpyrrolidon, Pyridin Methanol, Ethanol, Propanol, Isopropanol, Butanol, Isobutanol, Pentan, Hexan, Heptan, Octan, Nonan, Decan, Methylethylketon, Diethylether, Dichlormethan, Tetrachlorethan, Tetrachlorkohlenstoff, Methyltertiärbutylether,Preferably, a support membrane is selected which is chemically stable in the following solvents: acetone, toluene, benzene, water, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, N-ethylpyrrolidone, pyridine, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentane , Hexane, heptane, octane, nonane, decane, methyl ethyl ketone, diethyl ether, dichloromethane, tetrachloroethane, carbon tetrachloride, methyl tert-butyl ether,
Chlorbenzol, Dichlorbenzol, Trichlorbenzol, Nitrobenzol, Ethylacetat, Cyclohexan. Chlorobenzene, dichlorobenzene, trichlorobenzene, nitrobenzene, ethyl acetate, cyclohexane.
Es wurde festgestellt, dass die erfindungsgemäße Nanofütrationsmembran insbesondere auch im pH-Bereich von 10 - 16 und/oder im pH-Bereich von 2 - 4 stabil ist. It has been found that the nanofluid membrane according to the invention is stable, in particular also in the pH range of 10 to 16 and / or in the pH range of 2 to 4.
Für die Anwendung der erfindungsgemäßen Nanofütrationsmembran ist es darüber hinaus sinnvoll, dass die Stützmembran aus einem Material besteht, welches sowohl bei Raumtemperatur als auch in typischen Anwendungsprozesstemperaturen temperaturstabil ist. Eine Temperaturstabilität von 50 bis 200°C, bevorzugt zwischen 70 und 150°C sowie 80 bis 120°C ist ebenso vorstellbar. Als anorganische, stoffdurchlässige Stützmembran werden bevorzugt Mikroglasfaservliese, Metallvliese, dichte Glasfasergewebe oder Metallgewebe, aber auch Keramik- oder Kohlefaser- Vliese oder -Gewebe eingesetzt. Dem Fachmann ist klar, dass hier auch alle anderen bekannten, vorzugsweise flexiblen, mit offenen Poren oder Öffnungen in der entsprechenden Größe versehenen Materialien als Stützmembranen verwendet werden können. Auch keramischeFor the application of the nanofluid membrane according to the invention, it is also useful that the support membrane consists of a material which is thermally stable both at room temperature and in typical application process temperatures. A temperature stability of 50 to 200 ° C, preferably between 70 and 150 ° C and 80 to 120 ° C is also conceivable. As an inorganic, permeable supporting membrane preferably micro-glass fiber fleeces, metal fleeces, dense glass fiber fabric or metal fabric, but also ceramic or carbon fiber nonwovens or fabrics are used. The skilled person will appreciate that all other known, preferably flexible, provided with open pores or openings in the appropriate size materials can be used as support membranes. Also ceramic
Verbundwerkstoffe können eingesetzt werden, insbesondere anorganische Trägermaterialien eines Oxids ausgewählt aus AI2O3, Titanoxid, Zirkoniumoxid oder Siliziumoxid. Ebenso bevorzugt weist die anorganische Stützmembran ein Material, ausgewählt aus Keramik, SiC, S13N4, Kohlenstoff, Glas, Metall oder Halbmetall, auf. Des Weiteren können organische Polymermaterialien, die eine ausreichende chemische und thermische Beständigkeit aufweisen, als Stützmembran verwendet werden, insbesondere Polyimid, Polytetraflourethylen, Polyvinylidenfluorid, Polyetherimid, Polyetherketon, Polyetheretherketon, Polyethersulfon, Polysulfon, Polybenzimidazol, Polyamid. Composite materials can be used, in particular inorganic support materials of an oxide selected from Al 2 O 3 , titanium oxide, zirconium oxide or silicon oxide. Also preferably, the inorganic support membrane comprises a material selected from ceramic, SiC, S1 3 N 4 , carbon, glass, metal or semimetal. Further, organic polymer materials having sufficient chemical and thermal resistance can be used as the supporting membrane, particularly polyimide, polytetrafluoroethylene, polyvinylidene fluoride, polyetherimide, polyetherketone, polyetheretherketone, polyethersulfone, polysulfone, polybenzimidazole, polyamide.
Vorzugsweise weisen die porösen Stützmembranen eine Porenweite von weniger als 500 nm auf. Besonders bevorzugt weisen sie eine Porenweite von weniger als 100 nm und ganz besonders bevorzugt von weniger als 50 nm. Preferably, the porous support membranes have a pore size of less than 500 nm. With particular preference, they have a pore size of less than 100 nm and very particularly preferably less than 50 nm.
Besonders bevorzugt ist die Porengröße der porösen Stützmembran kleiner als der mittlere Teilchendurchmesser der Polymerteilchen bzw. der nanopartikulären Oxide. The pore size of the porous support membrane is particularly preferably smaller than the mean particle diameter of the polymer particles or of the nanoparticulate oxides.
Vorzugsweise weist die Dicke der Stützmembran 20 bis 200 μιη auf, besonders bevorzugt von 40 bis 150 μηι, ganz besonders bevorzugt von 50 bis 140 μιη. Bevorzugt sind die durch Emulsionspolymerisation hergestellten kautschukartigen Polymerteilchen mindestens teilweise durch den Zusatz von polyfunktionellen Monomeren bei der Polymerisation funktionalisiert. Bevorzugt werdn die polyfunktionellen Monomere aus der Gruppe von Verbindungen mit mindestens zwei, vorzugsweise 2 bis 4 copolymerisierbaren C=C- Doppelbindungen, insbesondere Diisopropenylbenzol, Divinylbenzol, Divinylether, Divinylsulfon, Diallylphthalat, Triallylcyanurat, Triallylisocyanurat, 1 ,2-Polybutadien, N,N'-m-Phenylen- maleimid, 2,4-Toluylenbis(maleimid), Triallyltrimellitat, Acrylate und Methacrylate von aliphatischen Aminen, Epoxiden und mehrwertigen, vorzugsweise 2- bis 4-wertigen C2 bis C10- Alkoholen, insbesondere Ethylenglykol, Propandiol-1,2, Butandiol, Hexandiol, Polyethylenglykol mit 2 bis 20, vorzugsweise 2 bis 8 Oxyethyleneinheiten, Neopentylglykol, Bisphenol-A, Glycerin, Trimethylolpropan, Pentaerythrit, Sorbit sowie ungesättigten Polyestern aus aliphatischen Di- undPreferably, the thickness of the support membrane 20 to 200 μιη, more preferably from 40 to 150 μηι, most preferably from 50 to 140 μιη. Preferably, the rubbery polymer particles prepared by emulsion polymerization are at least partially functionalized by the addition of polyfunctional monomers in the polymerization. Preference is given to the polyfunctional monomers from the group of compounds having at least two, preferably 2 to 4, copolymerizable C =C double bonds, in particular diisopropenylbenzene, divinylbenzene, divinyl ether, divinylsulfone, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, 1, 2-polybutadiene, N, N ' -m-phenylene-maleimide, 2,4-toluylenebis (maleimide), triallyl trimellitate, acrylates and methacrylates of aliphatic amines, epoxides and polyhydric, preferably 2- to 4-valent C 2 to C 10 -alcohols, in particular ethylene glycol, 1,2-propanediol , Butanediol, hexanediol, polyethylene glycol having 2 to 20, preferably 2 to 8 oxyethylene units, neopentyl glycol, bisphenol A, glycerol, trimethylolpropane, pentaerythritol, sorbitol and unsaturated polyesters of aliphatic di- and
Polyolen und Maleinsäure, Fumarsäure, und/oder Itaconsäure ausgewählt. Polyols and maleic acid, fumaric acid, and / or itaconic acid.
Bevorzugt weist die trennaktive Schicht der erfindungsgemäßen Nanofiltrationsmembran mindestens eine Monolage des Gemisches aus nanopartikulären Oxiden und Polymerteilchen mit dem mittleren Teilchendurchmesser < 70nm, bevorzugt zwischen 30 bis 65 nm, besonders bevorzugt zwischen 40 bis 50 nm auf. Λ The separation-active layer of the nanofiltration membrane according to the invention preferably has at least one monolayer of the mixture of nanoparticulate oxides and polymer particles having the average particle diameter <70 nm, preferably between 30 and 65 nm, particularly preferably between 40 and 50 nm. Λ
- 14 - - 14 -
Eine bevorzugte Ausführung der erfindungsgemäßen Nanofütrationsmembran weist eine trennaktive Schicht mit 0.1 bis 20 μιη Dicke auf, wobei hier mehrere Lagen der Polymerteilchen aufeinander liegen. A preferred embodiment of the nanofluid membrane according to the invention has a separation-active layer with a thickness of from 0.1 to 20 μm, with several layers of the polymer particles lying on top of one another.
Vorzugsweise ist die Dicke der trennaktiven Schicht höchstens so dick wie die Stützmembran. Eine weitere Erfindung ist das Herstellungsverfahren der erfindungsgemäßen Nano- filtrationsmembran, wobei eine Dispersion (Latex) von durch Emulsionspolymerisation hergestellten kautschukartigen Polymerteilchen zusammen mit wenigstens einem nanopartikulären Oxid auf die Stützmembran aufgebracht und eine Polymerschicht (trennaktive Schicht) auf der Stützmembran ausgebildet wird. Es wurde festgestellt, dass die verwendete Dispersion von durch Emulsionspolymerisation hergestellten kautschukartigen Polymerteilchen weitestgehend monodispers ist, d. h. nach der Methode der dynamischen Lichtstreuung liegen 95,4 % der Polymerteilchen in einer Größenklasse mit einer Abweichung von ± 7 nm vor.  Preferably, the thickness of the separation-active layer is at most as thick as the support membrane. Another invention is the production process of the nanofiltration membrane according to the invention, wherein a dispersion (latex) of rubbery polymer particles prepared by emulsion polymerization is applied to the support membrane together with at least one nanoparticulate oxide and a polymer layer (release active layer) is formed on the support membrane. It has been found that the dispersion of rubbery polymer particles prepared by emulsion polymerization is largely monodisperse, i. H. According to the method of dynamic light scattering, 95.4% of the polymer particles are in a size class with a deviation of ± 7 nm.
Die nanopartikulären Oxide werden vorzugsweise durch Zugabe und Vermischung in die Polymersuspension eingearbeitet. The nanoparticulate oxides are preferably incorporated by addition and mixing in the polymer suspension.
Vorzugsweise wird das Verfahren kontinuierlich durchgeführt. Preferably, the process is carried out continuously.
Bevorzugt weist die wässrige Dispersion kautschukartige Polymerteilchen mit mittleren Teilchendurchmesser < 70 nm, bevorzugt zwischen 30 bis 65 nm, besonders bevorzugt zwischen 40 bis 50 nm auf, wobei der Trockenkautschukgehalt (Dry Rubber Content) nach der Polymerisation mindestens 20 %, bevorzugt mindestens 25 %, besonders bevorzugt mindestensThe aqueous dispersion preferably comprises rubbery polymer particles having a mean particle diameter <70 nm, preferably between 30 and 65 nm, particularly preferably between 40 and 50 nm, the dry rubber content after the polymerization being at least 20%, preferably at least 25%, more preferably at least
30 %, bezogen auf das Gesamtvolumen des Polymerisats beträgt. 30%, based on the total volume of the polymer.
Die Aufkonzentrierung der Latices auf einen Trockenkautschukgehalt von maximal 65 % bezogen auf das Gesamtvolumen des Polymerisats ist zur Herstellung der Membran ebenso vorstellbar wie eine Verdünnung auf bis zu 1 %. Die Bestimmung des Trockenkautschukgehalts (Dry Rubber Content) wird wie folgt durchgeführt: Der Trockenkautschukgehalt wird mit einem Halogenfeuchtigkeitsmessgerät bestimmt, wie z.B. dem Mettler Toledo Halogen Moisture Analyzer HG63. Hierbei wird ein Latex bei einer Temperatur von 140°C getrocknet und kontinuierlich gewogen. Die Messung gilt als beendet, wenn der Gewichtsverlust weniger als 1 mg/ 50 sec beträgt. Vorzugsweise beträgt der Trockenkautschukgehalt nach der Polymerisation maximal 65 %, bezogen auf das Gesamtvolumen des Polymerisats. Vorzugsweise wird der Latex mit den kautschukartigen Polymerteilchen mittels einer Düse auf die Stützmembran aufgebracht. The concentration of latices to a dry rubber content of not more than 65% based on the total volume of the polymer is conceivable for the production of the membrane as well as a dilution of up to 1%. The dry rubber content is determined as follows: The dry rubber content is determined with a halogen moisture meter, such as the Mettler Toledo Halogen Moisture Analyzer HG63. Here, a latex is dried at a temperature of 140 ° C and weighed continuously. The measurement is considered complete when the weight loss is less than 1 mg / 50 sec. The dry rubber content after the polymerization is preferably at most 65%, based on the total volume of the polymer. Preferably, the latex with the rubbery polymer particles is applied to the support membrane by means of a nozzle.
In einem nachfolgenden Schritt wird die so ausgebildete Nanofiltrationsmembran getrocknet. In einer bevorzugten Ausführungsform kann man die so ausgebildete Nanofiltrationsmembran zusätzlich vernetzen, wodurch die kautschukartigen Polymerteilchen miteinander und/oder mit derIn a subsequent step, the nanofiltration membrane formed in this way is dried. In a preferred embodiment, the nanofiltration membrane formed in this way can additionally be crosslinked, whereby the rubber-like polymer particles with one another and / or with the
Stützmembran verbunden werden. Es kommen üblicherweise chemische (kovalent und/oder ionisch) sowie physikalische Vernetzungsarten zur Anwendung ausgelöst durch elektromagnetische (z.B. UV), thermische und/oder radioaktive Strahlung. Alle herkömmlichen Vernetzungshilfsmittel können eingesetzt werden. Dadurch wird die Porengröße nochmals verkleinert und die Filtrationseigenschaften werden modifiziert. Supporting membrane to be connected. Usually, chemical (covalent and / or ionic) as well as physical types of crosslinking are induced by electromagnetic (e.g., UV), thermal, and / or radioactive radiation. All conventional crosslinking aids can be used. This further reduces the pore size and modifies the filtration properties.
Eine weitere Erfindung ist die Verwendung von durch Emulsionspolymerisation hergestellten kautschukartigen Polymerteilchen mit mittleren Teilchendurchmessern < 70 nm, bevorzugt zwischen 30 bis 65 nm, besonders bevorzugt zwischen 40 bis 50 nm zusammen mit wenigstens einem nanopartikulären Oxid zur Herstellung einer Nanofiltrationsmembran. Ebenso eineAnother invention is the use of rubbery polymer particles prepared by emulsion polymerization with average particle diameters <70 nm, preferably between 30 to 65 nm, more preferably between 40 to 50 nm together with at least one nanoparticulate oxide for producing a nanofiltration membrane. Likewise one
Erfindung ist die Verwendung der Nanofiltrationsmembran für die Lebensmittelindustrie, für die chemische Industrie und für die biochemische Industrie. Diese Aufzählung ist nicht limitierend. Invention is the use of the nanofiltration membrane for the food industry, for the chemical industry and for the biochemical industry. This list is not limiting.
Eine weitere Erfindung ist die Verwendung einer Nanofiltrationsmembran umfassend mindestens eine poröse Stützmembran, die mit, durch Emulsionspolymerisation hergestellten kautschukartigen Polymerteilchen mit einem mittleren Teilchendurchmesser kleiner als 70 nm sowie mitAnother invention is the use of a nanofiltration membrane comprising at least one porous support membrane, which with, prepared by emulsion polymerization rubbery polymer particles having an average particle diameter smaller than 70 nm and with
Nanopartikeln wenigstens eines Oxids der Elemente AI, Si, Ca, Fe, Mn, Cr, Ti, V, Zn, Zr, Sn beschichtet ist, zur Filtration von Wasser und Abwasser und zur Aufreinigung von Trinkwasser. Eine weitere Erfindung ist die Verwendung der Nanofiltrationsmembran gemäß Anspruch 1 zur Filtration von Wasser und Abwasser und zur Aufreinigung von Trinkwasser. Nachfolgend wird die Erfindung anhand wenigstens eines Beispiels erläutert, das jedoch keinesfalls limitierend auszulegen ist. BEISPIELE Nanoparticles at least one oxide of the elements Al, Si, Ca, Fe, Mn, Cr, Ti, V, Zn, Zr, Sn is coated for the filtration of water and wastewater and for the purification of drinking water. Another invention is the use of the nanofiltration membrane according to claim 1 for the filtration of water and wastewater and for the purification of drinking water. The invention will be explained below with reference to at least one example, which, however, is in no way limiting. EXAMPLES
Herstellung der Polymerteilchen Preparation of polymer particles
Für die Herstellung der kautschukartigen Polymerteilchen wurden folgende Einsatzstoffe verwendet. In der Tabelle 1 werden Rezepturbestandteile auf 100 Gew. -Teile der Monomermischung bezogen. The following starting materials were used for the preparation of the rubbery polymer particles. In Table 1, formulation ingredients are based on 100 parts by weight of the monomer mixture.
Monomere i) Butadien (99 %ig, entstabilisiert) der Lanxess Deutschland GmbH Monomers i) butadiene (99%, destabilized) of Lanxess Deutschland GmbH
2) Acrylnitril (99 %ig stabilisiert mit Hydrochinonmonomethylether), der Merck KGaA 3) Styrol (98%ig) von KMF Labor Chemie Handels GmbH  2) Acrylonitrile (99% stabilized with hydroquinone monomethyl ether), the Merck KGaA 3) styrene (98%) of KMF Laboratory Chemistry GmbH
4) Trimethylolpropantrimethacrylat (96%ig) von Aldrich; Produktnummer: 24684-0; 4) trimethylolpropane trimethacrylate (96%) from Aldrich; Product number: 24684-0;
(Abkürzung: TMPTMA)  (Abbreviation: TMPTMA)
Hydroxyethylmethacrylat (97% von Arcos; Abkürzung: HEMA) Emulgatoren  Hydroxyethyl methacrylate (97% of Arcos, abbreviation: HEMA) emulsifiers
6) Disproportionierte Harzsäure (abgekürzt als HS) - berechnet als freie Säure ausgehend von der Menge eingesetztem Dresinate® 835 (Abieta® DR 835A der Arizona Chemical B.V / 6) Disproportionated rosin acid (abbreviated as HS) - calculated as the free acid starting from the amount of Dresinate® 835 used (Abieta® DR 835A from Arizona Chemical BV /
CAS- Nr. 28161-39-9) CAS No. 28161-39-9)
Die eingesetzte Dresinate® 835-Charge wurde durch den Feststoffgehalt sowie durch die als Natriumsalz, als freie Säure und als Neutralkörper vorliegenden Emulgatorbestandteile charakterisiert. The Dresinate® 835 batch used was characterized by the solids content and by the emulsifier components present as the sodium salt, as the free acid and as the neutral.
Der Feststoffgehalt wurde nach der von Maron, S. H.; Madow, B. P.; Borneman, E.„The effective equivalent weights of some rosin acids and soaps" Rubber Age, April 1952, 71-72 publizierten Vorschrift bestimmt. The solids content was determined according to the procedure described by Maron, S. H .; Madow, B.P .; Borneman, E. "The effective equivalent of certain rosin acids and soaps" Rubber Age, April 1952, 71-72.
Als Mittelwert von drei aliquoten Proben der eingesetzten Dresinate® 835 Charge wurde ein Feststoffgehalt von 71 Gew. % ermittelt. The mean value of three aliquots of the Dresinate® 835 batch used was found to be 71% by weight solids.
Die als Natriumsalz und als freie Säure vorliegenden Emulgatoranteile wurden titrimetrisch nach dem von Maron, S. H., Ulevitch, I. N., Eider, M. E.„Fatty and Rosin Acids, Soaps, and TheirThe emulsifier components present as the sodium salt and as the free acid were determined by titration according to the method described by Maron, S.H., Ulevitch, I.N., Eider, M.E., Fatty and Rosin Acids, Soaps, and Their
Mixtures, Analytical Chemistry, Vol. 21, 6, 691-695 beschriebenen Verfahren ermittelt. - 17 -Mixtures, Analytical Chemistry, Vol. 21, 6, 691-695. - 17 -
Zur Bestimmung wurden (in einem Beispiel) 1,213 g Dresinate® 835 (71 %ig) in einer Mischung von 200 g destilliertem Wasser und 200 g destilliertem Isopropanol gelöst, mit einem Überschuss an Natronlauge (5 ml 0,5 N NaOH) versetzt und mit 0,5 N Salzsäure zurücktitriert. Der Titrationsverlauf wurde durch potentiometrische pH-Messung verfolgt. Die Auswertung der Titrationskurve erfolgte wie in Analytical Chemistry, Vol. 21, 6, 691-695 beschrieben. To determine (in an example) 1.213 g Dresinate® 835 (71%) was dissolved in a mixture of 200 g of distilled water and 200 g of distilled isopropanol, treated with an excess of sodium hydroxide solution (5 ml 0.5 N NaOH) and with 0.5 N hydrochloric acid back titrated. The titration course was followed by potentiometric pH measurement. The evaluation of the titration curve was carried out as described in Analytical Chemistry, Vol. 21, 6, 691-695.
An drei aliquoten Proben der eingesetzten Dresinate® 835-Charge wurde als Mittelwert erhalten: Three aliquots of the Dresinate® 835 batch used were averaged:
Gesamtemulgatorgehalt: 2,70 mmol / gTrockenmasse  Total emulsifier content: 2.70 mmol / g dry mass
Na-Salz: 2,42 mmol / gTrockenmasse  Na salt: 2.42 mmol / g dry mass
Freie Säure: 0,28 mmol / gTrockenmasse  Free acid: 0.28 mmol / g dry mass
Mit Hilfe der Molmassen für das Na-Salz der disproportionierten Abietinsäure (324 g / mol) sowie der Molmasse für die freie disproportionierte Abietinsäure (302 g / mol) wurden die Gewichtsanteile an Na-Salz, freier Säure und nicht erfasster Anteile der eingesetzten Dresinate® 835-Charge berechnet:  With the aid of the molar masses for the sodium salt of disproportionated abietic acid (324 g / mol) and the molar mass for the free disproportionated abietic acid (302 g / mol), the proportions by weight of Na salt, free acid and unperfected portions of the Dresinate® used were 835 batch calculated:
Natriumsalz disproportionierter Harzsäure: 78,4 Gew. % Sodium salt of disproportionated rosin acid: 78.4% by weight
Freie disproportionierte Harzsäure: 8,5 Gew. %  Free disproportionated rosin acid: 8.5% by weight
Nicht erfasste Anteile (Neutralkörper) 13,1 Gew. % In den folgenden Rezepturen wurden die bei den Polymerisationen eingesetzten Mengen an Dresinate® 835 in freie Säure umgerechnet (abgekürzt als HS) und als Gew. -Anteile bezogen auf 100 Gew. -Anteile Monomere angegeben. Bei dieser Umrechnung wurde der Neutralkörper nicht berücksichtigt.  Unrecorded proportions (neutral body) 13.1% by weight In the following formulations, the amounts of Dresinate® 835 used in the polymerizations were converted into free acid (abbreviated as HS) and as parts by weight based on 100 parts by weight of monomers specified. In this conversion, the neutral body was not considered.
Zum Nachvollzug der Umrechnung der in der Tabelle 1 angegebenen Mengen an disproportionierter Abietinsäure (HS) auf der Basis der eingesetzten Mengen an Dresinate 835® sei folgende Tabelle 1 angefügt: To reconstruct the conversion of the amounts of disproportionated abietic acid (HS) indicated in Table 1 on the basis of the amounts of Dresinate 835® used, the following Table 1 is added:
Tabelle 1: Table 1:
Einwaage an Dresinate® 835 Berechnete Menge an disproportionierter  Weighing in at Dresinate® 835 Calculated amount of disproportionate
Abietinsäure (ohne Neutralkörper)  Abietic acid (without neutral substance)
[g Trockenmasse] [g Trockenmasse]  [g dry matter] [g dry matter]
0,25 0,20  0.25 0.20
0,5 0,41  0.5 0.41
1,0 0,82  1.0 0.82
1,5 1,22  1.5 1.22
2,0 1,63  2.0 1.63
2,5 2,04  2.5 2.04
3,0 2,45  3.0 2.45
3,5 2,86  3.5 2.86
4,0 3,26 Einwaage an Dresinate® 835 Berechnete Menge an disproportionierter 4.0 3.26 Weighing in at Dresinate® 835 Calculated amount of disproportionate
Abietinsäure (ohne Neutralkörper)  Abietic acid (without neutral substance)
[g Trockenmasse] [g Trockenmasse]  [g dry matter] [g dry matter]
4,5 3,67  4.5 3.67
4,75 3,87  4.75 3.87
5,0 4,08  5.0 4.08
' Teilhydrierte Talgfettsäure - abgekürzt als FS (Edenor HTiCT N der Firma Cognis Oleo Chemicals; CAS-Nr. 61790-37-2). Der Gesamtemulgatorgehalt und das mittlere Molekulargewicht der verwendeten Edenor® HTiCT N-Charge wurden titrimetrisch mit Hilfe der folgenden Methoden bestimmt: Maron, S. H., Ulevitch, I. N., Elder, M. E. „Fatty and Rosin Acids, Soaps, and Their Mixtures, Analytical Chemistry, Vol. 21, 6, 691-695; Maron, S. H.; Madow, B. P.; Borneman, E. „The effective equivalent weights of some rosin acids and soaps" Rubber Age (1952), 71 71-2). Bei der Titration wurde (in einem Beispiel 1,5 g Edenor® HTiCT N in einer Mischung von 200 g destilliertem Wasser und 200 g destilliertem Isopropanol gelöst, mit einem Überschuss an 15 ml NaOH (0,5 mol/1) versetzt und mit 0,5 m Salzsäure zurücktitriert. Partially hydrogenated tallow fatty acid - abbreviated as FS (Edenor HTiCT N from Cognis Oleo Chemicals, CAS No. 61790-37-2). The Gesamtemulgatorgehalt and the average molecular weight of Edenor ® HTiCT used N-batch were titrimetrically determined using the following methods: Maron, SH, Ulevitch, IN, Elder, ME "Fatty and Rosin Acids, soaps, and Their Mixtures, Analytical Chemistry, Vol 21, 6, 691-695; Maron, SH; Madow, BP; Borneman, E. "The effective equivalent of certain rosin acids and soaps" Rubber Age (1952), 71 71-2) The titration (in one example, 1.5 g Edenor® HTiCT N in a mixture of 200 g distilled water and 200 g of distilled isopropanol, treated with an excess of 15 ml of NaOH (0.5 mol / 1) and titrated back with 0.5 M hydrochloric acid.
Hierbei wurde als Mittelwert von drei aliquoten Teilen der eingesetzten Edenor® HTiCT N-Charge erhalten: Here, was obtained as a mean of three aliquots of the Edenor ® used HTiCT N-Charge:
Gesamtemulgatorgehalt: 3,637 mmol / gTrockenmasse Total emulsifier content: 3.673 mmol / g dry mass
Molmasse (freie Säure):274,8 mg / mmol In den folgenden Rezepturen wurden die eingesetzten Mengen an teilhydrierter Talgfettsäure (wie kommerziell erhältlich) als„freie Säure = FS" angegeben.  Molecular Weight (Free Acid): 274.8 mg / mmol In the following formulations, the amounts of partially hydrogenated tallow fatty acid used (as commercially available) were reported as "Free Acid = FS".
Die Berechnung der zur Einstellung der in den Tabellen angegebenen Neutralisationsgrade erfolgte auf der Basis der titrimetrisch ermittelten Gehalte der verschiedenen Bestandteile der eingesetzten Dresinate® 835- und Edenor® HTiCT N-Chargen. Die Einstellung der Neutraliationsgrade erfolgte mit Kaliumhydroxid. The calculation of the carried out for setting the specified in the tables degrees of neutralization based on the titrimetrically determined contents of the various constituents of the Dresinate® used 835- and Edenor ® HTiCT N-batches. The neutralization grades were adjusted with potassium hydroxide.
Regler tert-Dodecylmercaptan der Chevron Phillips Chemical Company LP (Sulfole 120 / CAS-Tert-Dodecyl Mercaptan Regulator from Chevron Phillips Chemical Company LP (Sulfole 120 / CAS
Nr. 90501-34-1) Die Herstellung der kautschukartigen Polymerteilchen erfolgte durch Emulsionspolymerisation in einem 20 1- Autoklaven mit Rührwerk. Für die Polymerisationsansätze wurde 4,3 kg Monomere mit 0,34 g 4-Methoxyphenol (Arcos Organics, Artikel-Nr. 126001000, 99 %; CAS-Nr. 150-76-5) eingesetzt. Die der Tabelle angegebenen Gesamtemulgator- und Gesamtwassermengen (abzüglich der für die Herstellung der wässrigen Prämix- und p-Menthanhydroperoxidlösungen -siehe untenbenötigten Wassermengen) wurden jeweils zusammen mit den Emulgatoren und den notwendigen Kaliumhydroxid-Mengen im Autoklaven vorgelegt. No. 90501-34-1) The preparation of the rubbery polymer particles was carried out by emulsion polymerization in a 20 1 autoclave with stirrer. For the polymerization runs, 4.3 kg of monomers were used with 0.34 g of 4-methoxyphenol (Arcos Organics, Item No. 126001000, 99%, CAS No. 150-76-5). The total emulsifier and total amounts of water given in the table (minus the amounts of water required for the preparation of the aqueous premix and p-menthane hydroperoxide solutions) were initially introduced together with the emulsifiers and the necessary amounts of potassium hydroxide in the autoclave.
Nach Temperierung der Reaktionsmischung auf 15°C wurden bei den aufgelisteten Polymerisationsansätzen jeweils 50 % frisch hergestellte wässrige Prämixlösungen (4 %ig) in den Autoklaven gegeben. Diese Prämixlösungen bestanden aus: After temperature control of the reaction mixture to 15 ° C in the listed polymerization batches each 50% freshly prepared aqueous Premix solutions (4%) were added to the autoclave. These premix solutions consisted of:
0,284 g Ethylendiamintetraessigsäure (Fluka, Artikelnummer 03620), 0.284 g of ethylenediaminetetraacetic acid (Fluka, article number 03620),
0,238 g Eisen(II)-sulfat * 7 H20 (Riedel de Haen, Artikelnummer: 12354) (ohne 0.238 g of iron (II) sulfate * 7 H 2 O (Riedel de Haen, item number: 12354) (without
Kristallwasser berechnet)  Calculated water of crystallization)
0,576 g Rongalit® C, Na-Formaldehydsulfoxylat-2-hydrat (Merck-Schuchardt, 0.576 g Rongalit C ®, Na formaldehyde sulfoxylate 2-hydrate (Merck-Schuchardt,
Artikelnummer 8.06455 oder BASF Tl/T 5952 e Oktober 1996 ) (ohne  Item 8.06455 or BASF Tl / T 5952 e October 1996) (without
Kristallwasser berechnet) sowie  Calculated water of crystallization) as well
0,874 g Trinatriumphosphat * 12 H20 (Acros, Artikelnummer 206520010) (ohne 0.874 g trisodium phosphate * 12 H 2 O (Acros, article number 206520010) (without
Kristallwasser berechnet).  Calculated water of crystallization).
Für die Aktivierung der aufgelisteten Polymerisationen wurden für den styrolhaltigen Typ 5 g und für den acrylnitrilhaltigen Typ 1,7 g p-Menthanhydroperoxid (Trigonox® NT 50 der Akzo-Degussa CAS-Nr. 80-47-7) eingesetzt, die in 200 ml der im Reaktor hergestellten Emulgatorlösung emulgiert wurden. For the activation of the polymerizations are listed (80-47-7 Trigonox ® NT 50 from Akzo-Degussa CAS-No.) Of the styrene-containing Type 5 and g for the acrylonitrile-type 1.7g p-menthane hydroperoxide used, which in 200 ml the emulsifier solution prepared in the reactor were emulsified.
Bei Erreichen von 30 % Umsatz wurden die restlichen 50 % der Prämixlösung zudosiert.  When reaching 30% conversion, the remaining 50% of the premix solution was added.
Die Temperaturführung während der Polymerisation erfolgte durch Einstellung von Kühlmittelmenge und Kühlmitteltemperatur in den in den Tabellen angegebenen Temperaturbereichen. The temperature control during the polymerization was carried out by adjusting the coolant quantity and the coolant temperature in the temperature ranges indicated in the tables.
Bei Erreichen eines Polymerisationsumsatzes von mehr als 85 % (üblicherweise: 90 % bis 100 %) wurde die Polymerisation durch Zugabe einer wässrigen Lösung von 2,35 g Diethylhydroxylamin (DEHA, Aldrich, Artikelnummer 03620) abgestoppt. Entfernung flüchtiger Bestandteile Upon reaching a polymerization conversion of more than 85% (usually: 90% to 100%), the polymerization was stopped by adding an aqueous solution of 2.35 g of diethylhydroxylamine (DEHA, Aldrich, Article No. 03620). Removal of volatiles
Zur Entfernung flüchtiger Bestandteile aus dem Latex wurde der Latex bei Normaldruck einer Wasserdampfdestillation unterzogen. To remove volatiles from the latex, the latex was subjected to steam distillation at atmospheric pressure.
Die derart hergestellten Polymerteilchen werden für eine erfindungsgemäße Nanofiltrations- membran verwendet. The polymer particles thus prepared are used for a nanofiltration membrane according to the invention.
In Tabelle 2 ist die Rezeptur der hergestellten kautschukartigen Polymerteilchen dargestellt; es werden folgende Indizes verwendet: Table 2 shows the recipe of the rubbery polymer particles produced; the following indexes are used:
1) Butadien (unstabilisiert) 1) butadiene (unstabilized)
2) Acrylnitril (99 %ig stabilisiert mit Hydrochinonmonomethylether), der Merck KGaA 2) Acrylonitrile (99% stabilized with hydroquinone monomethyl ether), Merck KGaA
3) Styrol (stabilisiert mit 100 bis 150 ppm 4-tert.-Butylbrenzkatechin) 3) Styrene (stabilized with 100 to 150 ppm of 4-tert-butylpyrocatechol)
4) Trimethylolpropantrimethacrylat (96 %ig von Aldrich) 4) trimethylolpropane trimethacrylate (96% from Aldrich)
5) Hydroxyethylmethacrylat (97%ig von Arcos) 5) hydroxyethyl methacrylate (97% from Arcos)
6) Aus der Menge eingesetzten Dresinates 835 berechnete Menge an 6) Amount calculated from the amount of Dresinate 835 calculated
disproportionierter Harzsäure (abgekürzt als HS)  disproportionated rosin acid (abbreviated as HS)
7) Edenor® HTiCT N der Firma Oleo Chemicals (abgekürzt als FS / CAS-Nr. 61790-37-2) 7) Edenor ® HTiCT N from Oleo Chemicals (abbreviated as FS / CAS-No. 61790-37-2)
8) tert.-Dodecylmercaptan (Sulfol® 120 von Chevron Phillips) 8) tert-dodecylmercaptan (Sulfol® 120 from Chevron Phillips)
Die Eigenschaften der hergestellten Teilchen sind in Tabelle 3 dargestellt. The properties of the particles produced are shown in Table 3.
Tabelle 2:
Figure imgf000022_0001
Table 2:
Figure imgf000022_0001
Tabelle 3:
Figure imgf000022_0002
Table 3:
Figure imgf000022_0002
Herstellung der erfindungsgemäßen Nanofiltrationsmembran Production of the nanofiltration membrane according to the invention
Als Stützmembran wurde eine Ultrafiltrationsmembran aus Polysulphon verwendet, die vor der Verarbeitung für 30 Minuten in einer Lösung von 20 Gew.% Polyethylenglykol 400 g/mol in Isopropanol gelegt wurde. Diese Membran wurde mit Hilfe eines Spiralrakels mit einer wässrigen Dispersion beschichtet. The support membrane used was an ultrafiltration membrane made of polysulphone which was placed in isopropanol for 30 minutes in a solution of 20% by weight of polyethylene glycol at 400 g / mol prior to processing. This membrane was coated by means of a spiral doctor with an aqueous dispersion.
Für Typ 1 bestand die Dispersion ausschließlich aus kautschukartigen Polymerteilchen nach o.a. Herstellung. Für Typ 2 - 5 bestand die Mischung aus kautschukartigen Polymerteilchen nach o.a. Herstellung zusammen mit nanoskaligen SiC Teilchen der Sorte Bindzil® cc301 und Levasil® 200/30 [Akzo Nobel Chemicals Holding GmbH, Aachen, (Bindzil® cc301 CAS-Nr. 141029-67-6) (Levasil® 200/30 CAS-Nr. 7631-86-9)] in einer Konzentration von 5 und 10 Gew.% bezogen auf den Feststoffgehalt der urpsrünglichen Polymerdispersion. Die Stützmembran wurde mit einer Geschwindigkeit von 20 mm/s beschichtet. Die Nassfilmdicke der Dispersions-Schicht ergibt sich aus der Art des Spiralrakels mit ca. 6,7 μιη, woraus sich eine Trockenfilmdicke der trennaktiven Schicht von ca. 1,9 μιη ergibt. Die Trocknung erfolgte bei ca. 60°C unter Atmosphärendruck für 30 Minuten. For Type 1, the dispersion consisted solely of rubbery polymer particles as described above. For type 2 - 5, the mixture of the rubber-like polymer particles consisted by above preparation together with nanoscale particles of type SiC Bindzil ® cc301 and Levasil ® 200/30 [Akzo Nobel Chemicals Holding GmbH, Aachen, (Bindzil ® cc301 CAS No. 141029-67. 7631-86-9)] in a concentration of 5 and 10 -6) (Levasil ® 200/30 CAS-No.%., based on the solids content of the polymer dispersion urpsrünglichen. The support membrane was coated at a rate of 20 mm / sec. The wet film thickness of the dispersion layer results from the type of spiral doctor blade with about 6.7 μιη, resulting in a dry film thickness of the separating active layer of about 1.9 μιη results. The drying was carried out at about 60 ° C under atmospheric pressure for 30 minutes.
Bestimmung der Filtrationseigenschaften Determination of filtration properties
Die Filtrationseigenschaften der erfindungsgemäßen Nanofiltrationsmembranen wurden mit einer Lösung von 2000 ppm MgSÜ4 in Wasser gemessen. Diese Feedlösung wurde im Kreuzstrom unter einem Feeddruck von 5 bar bei 20°C und einem Volumenstrom von 4 1/min auf die Membran gebracht. Die im Permeat verbliebene Salzkonzentration wurde über die Leitfähigkeit der Lösung bestimmt und auf die Konzentration im Feed bezogen, um den Rückhalt der Membran zu erhalten. The filtration properties of the nanofiltration membranes according to the invention were measured with a solution of 2000 ppm MgSÜ 4 in water. This feed solution was applied to the membrane in cross flow under a feed pressure of 5 bar at 20 ° C. and a flow rate of 4 l / min. The salt concentration remaining in the permeate was determined by the conductivity of the solution and related to the concentration in the feed in order to obtain the retention of the membrane.
Filtrationseigenschaften der erfindungsgemäßen Nanofiltrationsmembranen Filtration properties of the nanofiltration membranes of the invention
Die in den Filtrationstests gemessenen Werte sind in Tabelle 4 dargestellt: The values measured in the filtration tests are shown in Table 4:
Konz / Conc
Typ Additiv Fluss / l/m2h Rückhalt / % Type Additive flux / l / m 2 h retention /%
Gew.%)  Wt.%)
1 - - 4,0 14,3  1 - - 4.0 14.3
2 Bindzil® cc301 5 25,9 23,6 2 Bindzil ® cc301 5 25,9 23,6
3 Bindzil® cc301 10 30,2 30,4 3 Bindzil ® cc301 10 30.2 30.4
Levasil® Levasil ®
4 5 22,6 21,4  4 5 22,6 21,4
200/30  200/30
Levasil® Levasil ®
5 10 38,0 27,8  5 10 38.0 27.8
200/30 Es ist deutlich zu erkennen, dass durch die Zugabe der SiCVTeilchen der Durchfluss der Membran ansteigt. Gleichzeitig ist auch eine Erhöhung des Rückhalts für MgSÜ4 zu verzeichnen. 200/30 It can be clearly seen that the flow of the membrane increases as a result of the addition of the SiCV particles. At the same time, there was also an increase in the backlog for MgSÜ 4 .

Claims

Patentansprüche claims
1. Nanoiiltrationsmembran mit einer porösen Stützmembran, dadurch gekennzeichnet, dass die Oberfläche der Stützmembran mit durch Emulsionspolymerisation hergestellten kautschukartigen Polymerteilchen mit einem mittleren Teilchendurchmesser kleiner als 70 nm sowie mit Nanopartikeln wenigstens eines Oxids ausgewählt aus der Reihe Fe203,1. Nanoiiltration membrane with a porous support membrane, characterized in that the surface of the support membrane produced by emulsion polymerization rubbery polymer particles having an average particle diameter smaller than 70 nm and with nanoparticles at least one oxide selected from the series Fe 2 0 3 ,
Fe30 i, Fe(OOH), T1O2 und S1O2 beschichtet ist und sowohl kautschukartige Polymerteilchen als auch Oxid-Nanopartikel die trennaktive Schicht bilden und die kautschukartigen Polymerteilchen aus Monomeren hergestellt worden sind, welche als funktionelle Gruppe mindestens ein konjugiertes Dien beinhalten. Fe 3 O 1 , Fe (OOH), TIO 2 and SIO 2 , and both rubbery polymer particles and oxide nanoparticles form the release active layer and the rubbery polymer particles have been prepared from monomers containing at least one conjugated diene as the functional group.
2. Nanoiiltrationsmembran gemäß Anspruch 1 dadurch gekennzeichnet, dass als Monomere zur Herstellung der kautschuartigen Polymerteilchen Monomere aus der Reihe Butadien, Isopren, 2-Chlorbutadien und 2,3-Dichlorbutadien, Vinylacetat, Styrol oder Derivate davon, 2-Vinylpyridin und 4-Vinylpyridin, Acrylnitril, Acrylamide, Methacrylamide, Tetrafluorethylen, Vinylidenfluorid, Hexafluorpropen, doppelbindungshaltige Hydroxy-, Epoxy-, Amino-, Carboxy-, Phosphor- oder Ketoverbindungen verwendet werden. 2. Nanoiiltration membrane according to claim 1, characterized in that as monomers for the preparation of the rubbery polymer particles monomers from the series butadiene, isoprene, 2-chlorobutadiene and 2,3-dichlorobutadiene, vinyl acetate, styrene or derivatives thereof, 2-vinylpyridine and 4-vinylpyridine, Acrylonitrile, acrylamides, methacrylamides, tetrafluoroethylene, vinylidene fluoride, hexafluoropropene, double bond-containing hydroxy, epoxy, amino, carboxy, phosphorus or keto compounds.
3. Nanoiiltrationsmembran gemäß Anspruch 2, dadurch gekennzeichnet, dass die kautschukartigen Polymerteilchen zu mehr als 60 Gew.- % aus den Monomeren bestehen. 3. Nanoiiltration membrane according to claim 2, characterized in that the rubbery polymer particles consist of more than 60% by weight of the monomers.
4. Nanoiiltrationsmembran nach Anspruch 1, dadurch gekennzeichnet, dass die Stützmembran aus einem anorganischen oder organischen Material besteht. 4. Nanoiiltration membrane according to claim 1, characterized in that the supporting membrane consists of an inorganic or organic material.
5. Nanoiiltrationsmembran nach Anspruch 4, dadurch gekennzeichnet, dass die Porengröße der Stützmembran kleiner als 500 nm, bevorzugt kleiner als 100 nm und besonders bevorzugt kleiner als 50 nm aufweist. 5. Nanoiiltration membrane according to claim 4, characterized in that the pore size of the supporting membrane is less than 500 nm, preferably less than 100 nm and particularly preferably less than 50 nm.
6. Nanoiiltrationsmembran nach Anspruch 5, dadurch gekennzeichnet, dass die Porengröße der Stützmembran kleiner ist als der mittlere Teilchendurchmesser der kautschukartigen Polymerteilchen.  6. Nanoiiltration membrane according to claim 5, characterized in that the pore size of the support membrane is smaller than the average particle diameter of the rubbery polymer particles.
7. Nanoiiltrationsmembran nach Anspruch 6, dadurch gekennzeichnet, dass die Dicke der Stützmembran 5 bis 100 μηι, bevorzugt 20 bis 80 μιη und ganz besonders bevorzugt von 30 μιη Μ8 60 μιη aufweist.  7. Nanoiiltration membrane according to claim 6, characterized in that the thickness of the support membrane 5 to 100 μηι, preferably 20 to 80 μιη and most preferably of 30 μιη Μ8 60 μιη.
8. Nanoiiltrationsmembran gemäß der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die kautschukartigen Polymerteilchen eine Glasübergangstemperatur (Tg) von -85°C bis 150° 8. Nanoiiltration membrane according to claims 1 to 7, characterized in that the rubbery polymer particles have a glass transition temperature (Tg) of -85 ° C to 150 °
C, bevorzugt - 75°C bis 110°C, besonders bevorzugt -70 °C bis 90°C, aufweisen. C, preferably - 75 ° C to 110 ° C, more preferably -70 ° C to 90 ° C, have.
9. Nanofiltrationsmembran nach Ansprach 8, dadurch gekennzeichnet, dass die durch Emulsionspolymerisation hergestellten kautschukartigen Polymerteilchen mindestens teilweise vernetzt sind. 9. nanofiltration membrane according to spoke 8, characterized in that the rubbery polymer particles produced by emulsion polymerization are at least partially crosslinked.
10. Nanofiltrationsmembran nach Ansprach 9, dadurch gekennzeichnet, dass die durch Emulsionspolymerisation hergestellten kautschukartigen Polymerteilchen mindestens teilweise durch den Zusatz von polyfunktionellen Monomeren bei der Polymerisation funktionalisiert sind.  10. nanofiltration membrane according to spoke 9, characterized in that the rubbery polymer particles produced by emulsion polymerization are at least partially functionalized by the addition of polyfunctional monomers in the polymerization.
11. Nanofiltrationsmembran nach Ansprach 10, dadurch gekennzeichnet, dass die polyfunktionellen Monomere aus der Gruppe ausgewählt werden, die besteht aus: Verbindungen mit mindestens zwei, vorzugsweise 2 bis 4 copolymerisierbaren C=C- 11. nanofiltration membrane according to spoke 10, characterized in that the polyfunctional monomers are selected from the group consisting of: compounds having at least two, preferably 2 to 4 copolymerisable C = C-
Doppelbindungen, wie Diisopropenylbenzol, Divinylbenzol, Divinylether, Divinylsulfon, Diallylphthalat, Triallylcyanurat, Triallylisocyanurat, 1 ,2-Polybutadien, N,N'-m- Phenylenmaleimid, 2,4-Toluylenbis(maleimid), Triallyltrimellitat, Acrylate und Methacrylate von aliphatischen Aminen, Epoxiden und mehrwertigen, vorzugsweise 2- bis 4-wertigen C2 bis C10 Alkoholen, wie Ethylenglykol, Propandiol-1,2, Butandiol,Double bonds such as diisopropenylbenzene, divinylbenzene, divinyl ether, divinylsulfone, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, 1,2-polybutadiene, N, N'-m-phenylene maleimide, 2,4-tolylene bis (maleimide), triallyl trimellitate, acrylates and methacrylates of aliphatic amines, Epoxides and polyhydric, preferably 2- to 4-valent C 2 to C 10 alcohols, such as ethylene glycol, 1,2-propanediol, butanediol,
Hexandiol, Polyethylenglykol mit 2 bis 20, vorzugsweise 2 bis 8 Oxyethyleneinheiten, Neopentylglykol, Bisphenol-A, Glycerin, Trimethylolpropan, Pentaerythrit, Sorbit sowie ungesättigten Polyestern aus aliphatischen Di- und Polyolen und Maleinsäure, Fumarsäure, und/oder Itaconsäure. Hexanediol, polyethylene glycol having 2 to 20, preferably 2 to 8 oxyethylene units, neopentyl glycol, bisphenol A, glycerol, trimethylolpropane, pentaerythritol, sorbitol and unsaturated polyesters of aliphatic diols and polyols and maleic acid, fumaric acid, and / or itaconic acid.
12. Nanofiltrationsmembran nach Ansprach 11, dadurch gekennzeichnet, dass die kautschukartigen Polymerteilchen eine annähernd kugelförmige Geometrie aufweisen.12. nanofiltration membrane according to spoke 11, characterized in that the rubbery polymer particles have an approximately spherical geometry.
13. Nanofiltrationsmembran nach Ansprach 12, dadurch gekennzeichnet, dass die kautschukartigen Polymerteilchen in Toluol bei 23°C unlösliche Anteile von mindestens etwa 70 Gew.- %, bevorzugt mindestens etwa 80 Gew.- %, besonders bevorzugt 90 Gew.- %, noch bevorzugter mindestens etwa 98 Gew.- % aufweisen. 13. nanofiltration membrane according to spoke 12, characterized in that the rubbery polymer particles in toluene at 23 ° C insoluble fractions of at least about 70% by weight, preferably at least about 80% by weight, more preferably 90% by weight, more preferably at least about 98% by weight.
14. Nanofiltrationsmembran gemäß Ansprach 1, dadurch gekennzeichnet, dass der Gehalt nanopartikulärer Oxide in der trennaktiven Schicht 0,1 - 60 Gew.-% beträgt.  14. Nanofiltration membrane according to spoke 1, characterized in that the content of nanoparticulate oxides in the separation-active layer is 0.1-60 wt .-%.
15. Verfahren zur Herstellung einer Nanofiltrationsmembran gemäß einem oder mehreren der Ansprüche 1 bis 14 mit einer porösen Stützmembran nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass eine Dispersion von durch 15. A process for producing a nanofiltration membrane according to one or more of claims 1 to 14 with a porous support membrane according to any one of the preceding claims, characterized in that a dispersion of
Emulsionspolymerisation hergestellten kautschukartigen Polymerteilchen auf die Stützmembran aufgebracht und eine Polymerschicht auf der Stützmembran ausgebildet wird. Emulsion polymerization prepared rubbery polymer particles applied to the support membrane and a polymer layer is formed on the support membrane.
16. Verwendung einer Nanofiltrationsmembran umfassend mindestens eine poröse Stützmembran, die mit, durch Emulsionspolymerisation hergestellten kautschukartigen Polymerteilchen mit einem mittleren Teilchendurchmesser kleiner als 70 nm sowie mit Nanopartikeln wenigstens eines Oxids der Elemente AI, Si, Ca, Fe, Mn, Cr, Ti, V, Zn, Zr, Sn beschichtet ist, zur Filtration von Wasser und Abwasser und zur Aufreinigung von Trinkwasser. 16. Use of a nanofiltration membrane comprising at least one porous support membrane, which with, produced by emulsion polymerization rubbery Polymer particles having an average particle diameter smaller than 70 nm and with nanoparticles of at least one oxide of the elements Al, Si, Ca, Fe, Mn, Cr, Ti, V, Zn, Zr, Sn coated for the filtration of water and wastewater and for purification of drinking water.
17. Verwendung der Nanoiiltrationsmembran gemäß einem der Ansprüche 1 bis 14 für die Lebensmittelindustrie, die chemische Industrie oder Biochemische Industrie. 17. Use of the Nanoiiltrationsmembran according to one of claims 1 to 14 for the food industry, the chemical industry or biochemical industry.
PCT/EP2013/065637 2012-07-25 2013-07-24 Nanofiltration membrane with a layer of polymer and oxide particles WO2014016347A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12177842 2012-07-25
EP12177842.7 2012-07-25

Publications (1)

Publication Number Publication Date
WO2014016347A1 true WO2014016347A1 (en) 2014-01-30

Family

ID=48856636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/065637 WO2014016347A1 (en) 2012-07-25 2013-07-24 Nanofiltration membrane with a layer of polymer and oxide particles

Country Status (1)

Country Link
WO (1) WO2014016347A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106833575A (en) * 2016-12-28 2017-06-13 浙江海洋大学 A kind of composition polymer microballoon of core shell structure and preparation method thereof
CN112403286A (en) * 2014-08-31 2021-02-26 浙江大学 Positively charged nanofiltration membrane based on tertiary amine type amphiphilic copolymer and preparation method thereof
CN114641342A (en) * 2019-10-25 2022-06-17 株式会社钟化 Process for producing aqueous polymer dispersion

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049167A (en) 1989-12-13 1991-09-17 Membrane Technology & Research, Inc. Multilayer interfacial composite membrane
US5075011A (en) * 1990-04-26 1991-12-24 Ionics, Incorporated Composite semipermeable membrane created by precipitation of emulsion polymers onto base film microporous surfaces
US5302696A (en) 1989-05-16 1994-04-12 Olin Corporation Process for minimizing residual free hydrazine in polymer latices
US5442009A (en) 1994-03-21 1995-08-15 The Goodyear Tire & Rubber Company Process for the preparation of hydrogenated rubber
EP0711199B1 (en) 1993-07-29 1999-03-17 The Dow Chemical Company Composite membranes and their preparation from polymer particles on a porous substrate
EP1254697A2 (en) 2001-05-03 2002-11-06 Air Products And Chemicals, Inc. Composite membranes
US20100206804A1 (en) 2007-09-07 2010-08-19 Carl Freudenberg Kg Nonwoven material with particle filler
CN101824118A (en) 2010-05-26 2010-09-08 华中科技大学 Porous polymer nanoparticles and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302696A (en) 1989-05-16 1994-04-12 Olin Corporation Process for minimizing residual free hydrazine in polymer latices
US5049167A (en) 1989-12-13 1991-09-17 Membrane Technology & Research, Inc. Multilayer interfacial composite membrane
US5075011A (en) * 1990-04-26 1991-12-24 Ionics, Incorporated Composite semipermeable membrane created by precipitation of emulsion polymers onto base film microporous surfaces
EP0711199B1 (en) 1993-07-29 1999-03-17 The Dow Chemical Company Composite membranes and their preparation from polymer particles on a porous substrate
US5442009A (en) 1994-03-21 1995-08-15 The Goodyear Tire & Rubber Company Process for the preparation of hydrogenated rubber
EP1254697A2 (en) 2001-05-03 2002-11-06 Air Products And Chemicals, Inc. Composite membranes
US20100206804A1 (en) 2007-09-07 2010-08-19 Carl Freudenberg Kg Nonwoven material with particle filler
CN101824118A (en) 2010-05-26 2010-09-08 华中科技大学 Porous polymer nanoparticles and preparation method thereof

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
"Römpp Lexikon der Chemie", vol. 2, 1997
ANALYTICAL CHEMISTRY, vol. 21, no. 6, pages 691 - 695
C.J. KURTH ET AL.: "Membrane Systems", JDA JOURNAL, 2010, pages 26 - 31
CHAN HYUN LEE ET AL., JOURNAL OF MEMBRANE SCIENCE, vol. 392-393, 2012, pages 157 - 166
E.M.V. HOEK ET AL., DESALINATION, vol. 283, 2011, pages 89 - 99
H. G. MÜLLER, COLLOID POLYMER SCIENCE, vol. 267, 1996, pages 1113 - 1116
H. GERRENS, FORTSCHR. HOCHPOLYM. FORSCH., vol. 1, 1959, pages 234
HOUBEN- WEYL: "Methoden der organischen Chemie", vol. 14/2, pages: 848
MARON, S. H.; MADOW, B. P.; BORNEMAN, E.: "The effective equivalent weights of some rosin acids and soaps", RUBBER AGE, April 1952 (1952-04-01), pages 71 - 72
MARON, S. H.; MADOW, B. P.; BORNEMAN, E.: "The effective equivalent weights of some rosin acids and soaps", RUBBER AGE, vol. 71, 1952, pages 71 - 2
MARON, S. H.; ULEVITCH, I. N.; ELDER, M. E.: "Fatty and Rosin Acids, Soaps, and Their Mixtures", ANALYTICAL CHEMISTRY, vol. 21, no. 6, pages 691 - 695
P. A. LOVELL; M. S. EL-AASSER: "Emulsion Polymerization and Emulsion Polymers", JOHN WILEY & SONS
S. BALTA ET AL., JOURNAL OF MEMBRANE SCIENCE, vol. 389, 2012, pages 155 - 161
VOLLMERT: "Polymer Chemistry", 1973, SPRINGER
W. SCHOLTAN; H. LANGE, KOLLOID-Z U. Z. POLYMERE, vol. 250, 1972, pages 782

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112403286A (en) * 2014-08-31 2021-02-26 浙江大学 Positively charged nanofiltration membrane based on tertiary amine type amphiphilic copolymer and preparation method thereof
CN106833575A (en) * 2016-12-28 2017-06-13 浙江海洋大学 A kind of composition polymer microballoon of core shell structure and preparation method thereof
CN106833575B (en) * 2016-12-28 2019-12-10 浙江海洋大学 Composite polymer microsphere with core-shell structure and preparation method thereof
CN114641342A (en) * 2019-10-25 2022-06-17 株式会社钟化 Process for producing aqueous polymer dispersion

Similar Documents

Publication Publication Date Title
WO2012107510A1 (en) Nanofiltration membrane
DE60223739T2 (en) Porous hydrophilic membranes
DE69908286T2 (en) battery separator
DE60013843T2 (en) IMPROVED POLYMER ELECTROLYTE MEMBRANES FROM MIXED DISPERSIONS
DE69912359T2 (en) TFE polymerization
EP2325238B1 (en) Stable fine-particle suspensions of functionalised, wholly or partially hydrated nitrile rubbers
DE60210851T2 (en) Porous hydrophilic membranes
DE602006000254T2 (en) Process for the preparation of fluoropolymer dispersions
DE4207171A1 (en) Surface-modified membranes, etc. useful for adsorptive sepn. - by forming a layer of special polymer on the substrate surface and then grafting with unsatd. monomers
DE102005017195A1 (en) Kompsitmaterial, in particular composite membrane and method for producing the same
WO2004076530A1 (en) Method for producing a polymer system capable of proton exchange, based on polyaryl ether ketones
EP3031516A1 (en) Reverse osmosis or nanofiltration membranes and method for their preparation
EP1373364B1 (en) Sulfonated polyetherketoneketone
WO2014016347A1 (en) Nanofiltration membrane with a layer of polymer and oxide particles
DE102015214896A1 (en) Membranes and process for their preparation
EP0113868A2 (en) Finely divided polyvinyl acetals, a process for their preparation, and their use for baked coatings
DE60032956T2 (en) ION-SENSORY MEMBRANES, METHOD FOR THE PRODUCTION THEREOF, THE USE OF THE ION-SENSITIVE MEMBRANES AND DEVICES PROVIDED BY THE ION-SENSITIVE MEMBRANES
EP1524277B1 (en) Process for forming purified elastomers from solution
EP2743288A1 (en) Method for producing chloride-free polyethylenimines
EP2131956A1 (en) Use of proton-supplying and/or proton-accepting polymer particles
WO2006136555A1 (en) Method for producing an aqueous polymer dispersion
WO2014016345A1 (en) Nanofiltration membrane having a layer made of polymer particles produced by emulsion polymerization
DE3916210A1 (en) COMPOSITE MEMBRANES, METHOD FOR THEIR PRODUCTION AND THEIR USE
DE102009036947B4 (en) Direct modification of polymer membranes with low molecular weight compounds and polymer membranes thus obtained and their use
WO2006089939A1 (en) Process for preparing an aqueous addition-polymer dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13740018

Country of ref document: EP

Kind code of ref document: A1