WO2014017795A1 - Complex sheet, method for manufacturing same, flexible substrate including same, and display device including same - Google Patents

Complex sheet, method for manufacturing same, flexible substrate including same, and display device including same Download PDF

Info

Publication number
WO2014017795A1
WO2014017795A1 PCT/KR2013/006551 KR2013006551W WO2014017795A1 WO 2014017795 A1 WO2014017795 A1 WO 2014017795A1 KR 2013006551 W KR2013006551 W KR 2013006551W WO 2014017795 A1 WO2014017795 A1 WO 2014017795A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composite sheet
formula
silicone
curing
Prior art date
Application number
PCT/KR2013/006551
Other languages
French (fr)
Korean (ko)
Inventor
정은환
이우진
김성국
최석원
임성한
김영권
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2014017795A1 publication Critical patent/WO2014017795A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen

Definitions

  • the present invention relates to a composite sheet, a manufacturing method thereof, a flexible substrate including the same, and a display device including the same.
  • Glass which is excellent in heat resistance and transparency and has a low coefficient of linear expansion is widely used as a liquid crystal display element, an organic EL display element substrate, a color filter substrate, a solar cell substrate, and the like.
  • plastic materials have been spotlighted as materials for replacing glass substrates.
  • plastic substrates such as polyethylene terephthalate (PET), polyether sulfone (PES), polyethylene naphthalate (PEN), polyarylate (PAR), polycarbonate (PC), and polyimide (PI) are used as plastic substrates.
  • PET polyethylene terephthalate
  • PES polyether sulfone
  • PEN polyethylene naphthalate
  • PAR polyarylate
  • PC polycarbonate
  • PI polyimide
  • Japanese Laid-Open Patent Publication No. 2004-51960 discloses a transparent composite optical sheet made from an alicyclic epoxy resin containing an ester group, a bisphenol A type epoxy resin, an acid anhydride-based curing agent, and a catalyst and a glass fiber cloth.
  • Japanese Unexamined Patent Application Publication No. 2005-146258 discloses a transparent composite optical sheet made from an alicyclic epoxy resin containing an ester group, an epoxy resin having a dicyclopentadiene skeleton, an acid anhydride curing agent, and a glass fiber cloth.
  • the above patents have a disadvantage in that stress is generated between the fiber and the resin matrix, thereby causing breakage and deteriorating display performance due to large optical anisotropy.
  • An object of the present invention is to provide a composite sheet having low thermal expansion and good flexibility, heat resistance and transparency.
  • Another object of the present invention is to provide a composite sheet having excellent surface properties by applying UV curing.
  • Still another object of the present invention is to provide a composite sheet capable of minimizing an increase in surface roughness value.
  • Another object of the present invention to provide a composite sheet manufacturing method that can minimize the rise of the surface roughness value that may occur in the process of curing the reinforcing material in the matrix and the rise of the surface roughness value due to curing shrinkage generated during high temperature curing. It is.
  • Still another object of the present invention is to provide a method for manufacturing a composite sheet having a short process time.
  • Still another object of the present invention is to provide a flexible substrate and a display device including the composite sheet.
  • the composite sheet of the present invention includes a matrix including a silicone-based resin, and a reinforcing material impregnated in the matrix, and may have a Young's modulus of about 2 MPa or more and a surface roughness (Ra) of about 50 nm or less.
  • Composite sheet manufacturing method of the present invention comprises the steps of preparing a composition for a matrix comprising a UV-curable silicone-based resin and an initiator; And impregnating a reinforcing material in the composition for the matrix and UV curing.
  • the flexible substrate and the display device of the present invention may include the composite sheet.
  • the present invention provides a composite sheet having low thermal expansion properties, good flexibility, heat resistance, and transparency, and having excellent surface properties by applying UV curing and minimizing an increase in surface roughness value.
  • the present invention can minimize the rise of the surface roughness value that may occur in the composite process of the reinforcing material and the increase of the surface roughness value due to the curing shrinkage generated during high temperature curing and shorten the process time in terms of processability Provided.
  • the present invention provides a flexible substrate and a display device including the composite sheet.
  • FIG. 1 is a cross-sectional view of a composite sheet of one embodiment of the present invention.
  • Composite sheet according to an aspect of the present invention is a matrix comprising a silicone-based resin; And a reinforcing material impregnated in the matrix.
  • the composite sheet may include a composition for a matrix impregnated with a reinforcing material and comprising a silicone-based resin.
  • the reinforcement material and the silicone resin have a difference in coefficient of thermal expansion.
  • the conventional composite sheet manufactured by thermal curing not only increases the surface roughness value that may occur in the compounding process of the reinforcing material, but also increases the surface roughness value due to curing shrinkage at high temperature curing.
  • the composite sheet according to embodiments of the present invention can minimize the rise of the surface roughness value as a UV cured product.
  • the composite sheet may have a surface roughness (Ra) of about 100 nm or less, specifically about 50 nm or less, more specifically about 5 nm to 50 nm, and the young's modulus is about 2 MPa or more, specifically about 2 MPa to 200 MPa, and more specifically about 2 MPa.
  • the composite sheet may have a thermal expansion coefficient of about 0 ppm / ° C. to 400 ppm / ° C., specifically about 0 ppm / ° C. to 10 ppm / ° C., more specifically about 3 ppm / ° C. to 7 ppm / ° C. In the above range, thermal deformation can be suppressed in manufacturing the flexible substrate.
  • the coefficient of thermal expansion is an ASTM E 831 method, which measures the dimensional change with temperature using a thermo-mechanical analyser (expansion mode, force 0.05N) and then measures it from the change curve of the sample length with temperature (30 to 250 ° C). can do.
  • the composite sheet may have a thickness of about 15 ⁇ m to 200 ⁇ m. In the above range, it can be used as a composite sheet for flexible substrate applications.
  • the composite sheet may be transparent in the visible region.
  • the composite sheet is a matrix; And reinforcing materials impregnated in the matrix.
  • 1 is a cross-sectional view of a composite sheet of one embodiment of the present invention.
  • the composite sheet 10 may have a structure in which the reinforcing material 2 is included in the matrix 1.
  • the matrix 1 may be formed of a composition for a matrix containing a silicone resin.
  • the silicone-based resin may include a UV curable silicone-based resin.
  • the UV-curable silicone-based resin may include a polyorganosiloxane having a UV-curable functional group as a binder of the matrix as a rubber compound, and specifically, may include a unit of Formula 1a:
  • Ra and Rb are the same or different, and a hydrogen atom, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C1-C20 alkoxy group, a C3-C30 cycloalkyl group, a C3-C30 cycloalke Or a C3-C30 cycloalkynyl group, a C6-C30 aryl group, a C6-C30 aryloxy group, or a UV curing functional group, at least one of Ra and Rb is a UV curing functional group, and n is an integer of 2-1000.
  • '*' represents a linking site.
  • the UV curable silicone-based resin may be a cyclic or linear silicone-based resin including a unit of Formula 1a.
  • the terminal when the UV-curable silicone-based resin is a linear silicone-based resin represented by Formula 1a, the terminal may be the following Formula 1b or Formula 1c:
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different, and each independently a hydrogen atom, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group , C1-C20 alkoxy group, C3-C30 cycloalkyl group, C3-C30 cycloalkenyl group, C3-C30 cycloalkynyl group, C6-C30 aryl group, C6-C30 aryloxy group or UV curing functional group.
  • the UV curing functional group may be located at the terminal or side chain of the UV curing silicone resin.
  • the UV curable silicone-based resin may include units of Formulas 2a, 2b, and 2c.
  • Rc and Rd are the same or different, hydrogen atom, C1-C20 alkyl group, C2-C20 alkenyl group, C2-C20 alkynyl group, C1-C20 alkoxy group, C3-C30 cycloalkyl group, C3-C30 cyclo Alkenyl group, C3-C30 cycloalkynyl group, C6-C30 aryl group, C6-C30 aryloxy group, n is an integer of 2-1000).
  • R 7 , R 8 , R 9 , R 10 , R 11 , R 12 are the same or different, each independently hydrogen atom, C1-C20 alkyl group, C2-C20 alkenyl group, C2-C20 alkoxy group, a C1-C20 alkoxycarbonyl group, C3-C30 cycloalkyl, C3-C30 cycloalkyl alkenyl group, C3-C30 cycloalkyl alkynyl, C6-C30 aryl group, C6-C30 aryloxy group or UV curing functional group, wherein R 7, At least one of R 8 , R 9 , R 10 , R 11 , and R 12 is a UV curing functional group).
  • the UV curable silicone-based resin may be a cyclic or linear silicone-based resin including the units of Chemical Formulas 2a, 2b, and 2c.
  • the 'UV curing functional group' herein is a functional group bonded to the terminal of the reactant so that cross linking can occur upon UV irradiation, for example, a (meth) acrylate group, an epoxyalkoxyalkyl group (eg, Functional group containing at least one of an alkyl group having 1 to 10 carbon atoms containing an alkoxy group having an epoxy group, an epoxy group, an epoxy alkyl group (eg, an alkyl group having 1 to 10 carbon atoms having an epoxy group), an allyl group, or a vinyl group Means.
  • a (meth) acrylate group eg, Functional group containing at least one of an alkyl group having 1 to 10 carbon atoms containing an alkoxy group having an epoxy group, an epoxy group, an epoxy alkyl group (eg, an alkyl group having 1 to 10 carbon atoms having an epoxy group), an allyl group, or a vinyl group Means.
  • the UV curable silicone-based resin may be used alone or as a mixture of two or more thereof, and the UV curable silicone-based resin may have a number average molecular weight of about 350 g / mol to 50,000 g / mol, specifically about 350 g / mol to 30,000 g / mol. . Within this range, flexibility and mechanical properties can be expected after impregnation and curing.
  • the composition for the matrix may further include silicone urethane (meth) acrylate.
  • the weight average molecular weight of the silicone urethane (meth) acrylate may be about 350 g / mol to 50,000 g / mol, specifically about 350 g / mol to 30,000 g / mol, more specifically about 350 g / mol to 10,000 g / mol. . Within this range, high curing rates and mechanical properties after UV curing can be expected.
  • the UV curable silicone-based resin in the sum of the UV-curable silicone-based resin and the silicone urethane (meth) acrylate may be included in the matrix composition in an amount of about 1 to 99% by weight and silicone urethane (meth) acrylate in an amount of about 99 to 1% by weight.
  • the UV curable silicone-based resin may be included in about 40 to 60% by weight, silicone urethane (meth) acrylate in about 60 to 40% by weight. In the above range, it may have excellent heat resistance and high crosslink density.
  • the matrix composition may further include an initiator, and the initiator may include a photopolymerization initiator, a photo acid generator (PAG), or a mixture thereof.
  • the initiator may be included in an amount of about 0.01 to 10 parts by weight, specifically about 0.1 to 3 parts by weight, based on 100 parts by weight of the UV curable silicone resin (or the sum of the UV curable silicone resin and the silicone urethane (meth) acrylate). Within this range, curing can be sufficient and no residual initiator is left.
  • a photoinitiator and a photo-acid generator can use a conventional kind without limitation.
  • the photopolymerization initiator may include a benzophenone series, phosphorus series, triazine series, acetophenone series, thioxanthone series, benzoin series, oxime series, or a mixture thereof.
  • a benzophenone system containing 1-hydroxycyclohexyl phenyl ketone or the like can be used.
  • the photoacid generator may use onium salts of cations and anions which are onium ions.
  • triaryl sulfonium such as diaryl iodonium, such as diphenyl iodonium and 4-methoxy diphenyl iodonium, triphenylsulfonium, and 4-phenylthiophenyl diphenyl sulfonium, etc.
  • the anion include tetrafluoroborate (BF 4- ), hexafluorophosphate (PF 6- ), hexafluoroantimonate (SbF 6- ), hexafluoroarsenate (AsF 6- ), hexa Chloro antimonate (SbCl 6 ⁇ ) and the like.
  • the composition for the matrix may further include a crosslinker, a catalyst, and an inhibitor in addition to the above components.
  • the crosslinking agent can use the crosslinking agent normally used in manufacture of the composite sheet for flexible substrates.
  • polyorganosiloxanes having Si—CH 3 and Si—H can be used.
  • the crosslinking agent may be included such that the molar equivalent ratio of the number of moles of Si—H of the crosslinking agent to the number of moles of C2-C20 alkenyl groups, for example vinyl groups, of the silicone resin is about 1.0 or more, specifically about 1.0 to 1.3.
  • the catalyst may be a catalyst commonly used in the production of a composite sheet for a flexible substrate, and the catalyst may be a platinum or rhodium-based catalyst, a complex of platinum and an organic compound, a platinum and vinylated organosiloxane complex, a rhodium and an olefin complex, or the like. Can be used. Specifically, the catalyst may use a vinylalkylsilane platinum complex including a Karstedt catalyst, platinum black, platinum chloride, chloroplatinic acid-olefin complex, chloroplatinic acid-alcohol coordination compound, or a mixture thereof.
  • the catalyst may be included in the weight of the metal, about 2 ppm to 2000 ppm, specifically about 5 ppm to 500 ppm with respect to the silicone-based resin.
  • the inhibitor can cure the matrix at high temperatures by inhibiting the action of the catalyst at about 25 ° C. and not inhibiting the catalyst during the high temperature curing process.
  • the inhibitor may be an inhibitor commonly used in the manufacture of a composite sheet for a flexible substrate, and specifically, an acetylenic alcohol including dimethyl-1-hexyn-3-ol, pyridine, phosphine, organic phosphite, unsaturated amide, di Alkylcarboxylates, dialkylacetylenedicarboxylates, alkylated maleates, diallyl maleates, or mixtures thereof.
  • the inhibitor may be included at about 100 ppm to 2500 ppm relative to the silicone based resin.
  • the reinforcement may be included in the matrix in a dispersed, single layer or multiple layer structure. 1 illustrates only a structure in which the reinforcement is impregnated in layers, but is not limited thereto.
  • the reinforcement may be dispersed in a matrix, impregnated in a woven form, or arranged in a uni direction.
  • the reinforcement may be formed of a single layer or a plurality of layers.
  • the matrix: reinforcement in the composite sheet may be included in a weight ratio of about 60:40 to 30:70, specifically about 50:50 to 35:65. Within this range, it is possible to ensure high heat resistance and mechanical properties of the flexible substrate, to improve transparency, flexibility and light weight, as well as to provide flexibility to the composite sheet.
  • the reinforcement is embedded in the matrix.
  • the reinforcement may have a refractive index difference from the matrix (absolute value of the refractive index of the reinforcement-matrix) of about 0.01 or less. Within this range, it may have excellent transparency and light transmittance.
  • the refractive index difference may be specifically about 0.005 or less, more specifically 0.0001 to 0.005.
  • the reinforcement is from the group consisting of glass fiber, glass fiber cloth, glass fabric, glass nonwoven, glass mesh, glass beads, glass flakes, silica particles and colloidal silica It may include one or more selected.
  • composition for a matrix according to another embodiment of the present invention may include a silicone-based resin and a UV curable catalyst including a unit of the following Chemical Formula 3. Since it is substantially the same as the composition for a matrix according to one embodiment of the present invention except that it includes a silicone-based resin and a UV-curable catalyst comprising a unit of Formula 3, the following description will focus on the silicone-based resin and UV-curable catalyst.
  • Re and Rf are the same or different, hydrogen atom, C1-C20 alkyl group, C2-C20 alkenyl group, C2-C20 alkynyl group, C1-C20 alkoxy group, C3-C30 cycloalkyl group, C3-C30 cycloalke And a C3-C30 cycloalkynyl group, a C6-C30 aryl group, a C6-C30 aryloxy group, and n may be an integer of 2 to 1000.
  • the silicone resin may be a cyclic or linear silicone resin including the unit of Formula 3 above.
  • the terminal of the silicone resin is -OSiR 13 R 14 R 15 or -SiR 16 R 17 R 18 (wherein R 13 , R 14 , R 15 , R 16 , R 17 , R 18 are the same or different and each independently represent a hydrogen atom, C1-C20 alkyl group, C2-C20 alkenyl group, C2-C20 alkynyl group, C1-C20 alkoxy group, C3-C30 cycloalkyl group, C3-C30 cycloalkenyl group, C3-C30 cycloalkynyl group, C6-C30 aryl group or C6 -C30 aryloxy group).
  • the silicone resin may include a polydimethylsiloxane (PDMS) resin.
  • PDMS polydimethylsiloxane
  • the silicone-based resin may have a weight average molecular weight of about 350 g / mol to 50,000 g / mol, specifically about 350 g / mol to 30,000 g / mol. Within this range, flexibility and mechanical properties can be expected after impregnation and curing.
  • the UV-curable catalyst is not particularly limited as long as it is a compound that is activated by light energy ray irradiation and promotes a hydrosilylation reaction. Examples thereof may be selected from the group consisting of platinum catalyst, ruthenium catalyst and rhodium catalyst, and may be a diene-based compound.
  • the UV curable catalyst may be included in an amount of about 0.001 to 1 part by weight, specifically about 0.01 to 0.1 part by weight, based on 100 parts by weight of the silicone-based resin. In the above range, the curing speed does not slow, does not affect the long-term storage stability of the composite sheet, yellowing may not occur in the composite sheet.
  • Composite sheet manufacturing method can be prepared by UV curing the composition for the matrix containing a silicone-based resin, and the reinforcing material impregnated in the composition for the mattress.
  • the composition for a matrix can be impregnated with a reinforcing material, laminated and then UV cured to produce the composition.
  • UV curing may be performed by irradiation of a dose of about 500mJ / cm 2 to 10,000mJ / cm 2, about 0.01 seconds to 10 minutes, but is not limited thereto.
  • Composite sheet manufacturing method may further comprise the step of heat treatment after UV curing.
  • Heat treatment includes treating for about 25 ° C. to 150 ° C. for about 0.1 to 5 hours.
  • the heat treatment after UV curing can impart an aging effect.
  • the composite sheet manufacturing method according to another embodiment of the present invention may further include heat treatment after impregnation of the reinforcing material and before UV curing (that is, between impregnation and UV curing).
  • Heat treatment includes treating for about 25 ° C. to 150 ° C. for about 0.1 to 5 hours.
  • the heat treatment between impregnating the reinforcement and UV curing may impart a heat curing effect.
  • composition for the matrix and the reinforcing material are as described above.
  • the composite sheet prepared by the composite sheet manufacturing method according to an embodiment of the present invention may have a surface roughness (Ra) of about 100 nm or less, specifically about 50 nm or less, more specifically about 5 nm to 50 nm, and a young's modulus of about 2 MPa or more. For example, about 2 MPa to 200 MPa, and more specifically about 2 MPa to 150 MPa.
  • Ra surface roughness
  • the flexible substrate and the display device including the same may include the composite sheet.
  • Flexible substrate is used for display or optical element such as substrate for liquid crystal display (LCD), substrate for color filter, substrate for organic EL display, substrate for solar cell, substrate for touch screen panel It can be used as.
  • D1silane (1,3,5,7-tetramethyl cyclotetrasiloxane) and allyl methacrylate were added in a molar ratio of 1: 1.1 equivalents, 1 wt% Pt catalyst (Karstedt catalyst) and 10 mol% hydroquinone (inhibitor) compared to allyl methacrylate. After reacting by reflux at 70 ° C. under toluene solvent. Thereafter, toluene was removed and filtered to obtain D4MA (methacrylate group-containing cyclic organosiloxane).
  • PMDMS + DMDMS Two kinds of PMDMS and DMDMS contents were synthesized by using VTMS as a constant ratio, and two PDMS resins were mixed and used to match the refractive index with D-glass cloth. .
  • Karstedt catalyst (PT-CS-1.8CS, Umicore) and inhibitor surfynol were used as a catalyst.
  • D4MA and Miramer SIU1000 (Miwon, Mw 530g / mol, silicone urethane acrylate) of Preparation Example 1 were mixed in a weight ratio of 40wt% / 60wt%.
  • the composition for a matrix was prepared by adding 1 wt% of initiator Igacure184. After impregnating the glass fiber cloth to 60% by weight with respect to the composite sheet and lamination (D-glass cloth), and irradiated with UV (mercury lamp, 5000mJ / cm 2 ) for 1 minute to give a composite sheet Prepared.
  • PMS-E11 (Gelest, epoxypropoxypropyl terminated polyphenylmethylsiloxane, Mn 500g / mol) and DMS-E09 (Gelest, epoxypropoxypropyl terminated polydimethylsiloxane, Mn 350g / mol) were mixed at a weight ratio of 40wt% / 60wt%.
  • 1 wt% of the photoacid generator CPI-210S was added to impregnate the glass fiber cloth and laminated in the same manner as in Example 1, and then irradiated with UV (mercury lamp, 5000 mJ / cm 2 ) for 1 minute to proceed with curing. Thereafter, heat treatment was further performed at 100 ° C. for 1 hour to prepare a composite sheet.
  • 0.05 wt% of the catalyst system A was added to the PDMS resin of Preparation Example 2, the glass fiber cloth was impregnated, and a high temperature curing (10 minutes at 80 ° C.) was performed to prepare a composite sheet.
  • 0.05 wt% of the catalyst system A was added to the PDMS resin of Preparation Example 2, the glass fiber cloth was impregnated, and room temperature curing (10 hours at 25 ° C.) was performed to prepare a composite sheet.
  • CTE Coefficient of thermal expansion
  • the composite sheet of the present invention was produced over a short time, the surface roughness was improved.
  • the composite sheet of Comparative Example 1 prepared by curing at high temperature was prepared in a short time, but the surface roughness value was high.
  • the composite sheet of Comparative Example 2 prepared by curing at room temperature was produced over a long time, although the surface roughness value is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The present invention relates to a complex sheet, to a method for manufacturing same, to a flexible substrate including same, and to a display device including same, wherein the complex sheet comprising a matrix including a silicone-based resin and a reinforcement material impregnated in the matrix, and the complex sheet has a Young's modulus of about 2 MPa or more and a surface roughness (Ra) of about 50 nm or less.

Description

복합시트, 이의 제조 방법, 이를 포함하는 플렉시블 기판 및 이를 포함하는 디스플레이 장치Composite sheet, manufacturing method thereof, flexible substrate comprising same and display device comprising same
본 발명은 복합시트, 이의 제조 방법, 이를 포함하는 플렉시블 기판 및 이를 포함하는 디스플레이 장치에 관한 것이다.The present invention relates to a composite sheet, a manufacturing method thereof, a flexible substrate including the same, and a display device including the same.
액정 표시 소자나 유기 EL 표시 소자용 기판, 컬러 필터 기판, 태양 전지 기판 등으로 내열성 및 투명성이 우수하고, 선팽창 계수가 낮은 유리가 널리 이용되고 있다. 최근에는 표시 소자용 기판 소재로 소형화, 박형화, 경량화, 내충격성, 유연성이 요구되고 있어 유리기판을 대체하기 위한 소재로서 플라스틱 소재가 각광을 받고 있다.Glass which is excellent in heat resistance and transparency and has a low coefficient of linear expansion is widely used as a liquid crystal display element, an organic EL display element substrate, a color filter substrate, a solar cell substrate, and the like. Recently, as a substrate material for display devices, miniaturization, thinning, weight reduction, impact resistance, and flexibility are required, plastic materials have been spotlighted as materials for replacing glass substrates.
근래에는 플라스틱 기판으로 폴리에틸렌테레프탈레이트(PET), 폴리에테르설폰(PES), 폴리에틸렌나프탈레이트(PEN), 폴리아릴레이트(PAR), 폴리카보네이트(PC), 폴리이미드(PI) 등의 소재가 사용되고 있다. 그러나, 이들 소재들은 열팽창계수가 상당히 높아 제품의 휘어짐이나 배선의 단선 등을 일으키는 문제가 있다. 폴리이미드계 수지는 비교적 낮은 열팽창계수를 갖지만, 투명성이 매우 낮고 높은 복굴절성, 흡습성 등으로 인해 기판 소재로는 적합하지 않다는 문제가 지적되고 있다.Recently, materials such as polyethylene terephthalate (PET), polyether sulfone (PES), polyethylene naphthalate (PEN), polyarylate (PAR), polycarbonate (PC), and polyimide (PI) are used as plastic substrates. . However, these materials have a problem that the thermal expansion coefficient is considerably high, causing warpage or disconnection of the product. Polyimide-based resins have a relatively low coefficient of thermal expansion, but the problem is pointed out that they are not suitable as substrate materials due to their very low transparency and high birefringence and hygroscopicity.
이와 관련하여, 일본 공개공보 2004-51960호에서는 에스테르기를 포함하는 지환식 에폭시 수지, 비스페놀 A형 에폭시 수지, 산무수물계 경화제 및 촉매와 유리섬유포(glass fiber cloth)로부터 제조되는 투명 복합 광학 시트가, 일본 공개공보 2005-146258호에서는 에스테르기를 포함하는 지환식 에폭시 수지와 디사이클로펜타디엔 골격을 가지는 에폭시 수지, 산무수물계 경화제와 유리섬유포로부터 제조되는 투명 복합 광학 시트가, 일본 공개공보 2004-233851호에서는 비스페놀 A형 에폭시 수지, 비스페놀 A 노볼락(novolac)형 에폭시 수지, 산무수물계 경화제 및 유리섬유포로 제조되는 투명 기판을 개시하고 있다. 그러나, 상기 특허들은 섬유와 수지 매트릭스간에 응력이 생기고, 그로 인해 파손이 발생하며, 광학이방성이 크기 때문에 표시성능이 저하되는 단점이 있다.In this regard, Japanese Laid-Open Patent Publication No. 2004-51960 discloses a transparent composite optical sheet made from an alicyclic epoxy resin containing an ester group, a bisphenol A type epoxy resin, an acid anhydride-based curing agent, and a catalyst and a glass fiber cloth. Japanese Unexamined Patent Application Publication No. 2005-146258 discloses a transparent composite optical sheet made from an alicyclic epoxy resin containing an ester group, an epoxy resin having a dicyclopentadiene skeleton, an acid anhydride curing agent, and a glass fiber cloth. Discloses a transparent substrate made of a bisphenol A epoxy resin, a bisphenol A novolac epoxy resin, an acid anhydride curing agent, and a glass fiber cloth. However, the above patents have a disadvantage in that stress is generated between the fiber and the resin matrix, thereby causing breakage and deteriorating display performance due to large optical anisotropy.
본 발명의 목적은 열팽창성이 낮고 유연성, 내열성 및 투명성이 좋은 복합시트를 제공하는 것이다.An object of the present invention is to provide a composite sheet having low thermal expansion and good flexibility, heat resistance and transparency.
본 발명의 다른 목적은 UV 경화를 적용하여 우수한 표면 특성을 갖는 복합시트를 제공하는 것이다.Another object of the present invention is to provide a composite sheet having excellent surface properties by applying UV curing.
본 발명의 또 다른 목적은 표면 조도값의 상승을 최소화할 수 있는 복합시트를 제공하는 것이다.Still another object of the present invention is to provide a composite sheet capable of minimizing an increase in surface roughness value.
본 발명의 또 다른 목적은 매트릭스에 보강재를 경화시키는 공정에서 발생할 수 있는 표면 조도값의 상승 및 고온 경화 시에 발생되는 경화 수축에 의한 표면 조도값의 상승을 최소화할 수 있는 복합시트 제조방법을 제공하는 것이다.Another object of the present invention to provide a composite sheet manufacturing method that can minimize the rise of the surface roughness value that may occur in the process of curing the reinforcing material in the matrix and the rise of the surface roughness value due to curing shrinkage generated during high temperature curing. It is.
본 발명의 또 다른 목적은 공정 시간을 단축한 복합시트 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a method for manufacturing a composite sheet having a short process time.
본 발명의 또 다른 목적은 상기 복합시트를 포함하는 플렉시블 기판 및 디스플레이 장치를 제공하는 것이다.Still another object of the present invention is to provide a flexible substrate and a display device including the composite sheet.
본 발명의 복합시트는 실리콘계 수지를 포함하는 매트릭스, 및 상기 매트릭스에 함침된 보강재를 포함하고, Young's modulus가 약 2MPa 이상이고 표면 조도(Ra)가 약 50nm 이하가 될 수 있다.The composite sheet of the present invention includes a matrix including a silicone-based resin, and a reinforcing material impregnated in the matrix, and may have a Young's modulus of about 2 MPa or more and a surface roughness (Ra) of about 50 nm or less.
본 발명의 복합시트 제조방법은 UV 경화형 실리콘계 수지와 개시제를 포함하는 매트릭스용 조성물을 제조하는 단계; 및 상기 매트릭스용 조성물에 보강재를 함침하고 UV 경화시키는 단계를 포함할 수 있다.Composite sheet manufacturing method of the present invention comprises the steps of preparing a composition for a matrix comprising a UV-curable silicone-based resin and an initiator; And impregnating a reinforcing material in the composition for the matrix and UV curing.
본 발명의 플렉시블 기판 및 디스플레이 장치는 상기 복합시트를 포함할 수 있다.The flexible substrate and the display device of the present invention may include the composite sheet.
본 발명은 열팽창성이 낮고 유연성, 내열성 및 투명성이 좋으며, UV 경화를 적용하여 우수한 표면 특성을 가지며, 표면 조도값의 상승을 최소화할 수 있는 복합시트를 제공하였다. 본 발명은 보강재의 복합화 공정에서 발생할 수 있는 표면 조도값의 상승 및 고온 경화 시에 발생되는 경화 수축에 의한 표면 조도값의 상승을 최소화할 수 있고 공정성 측면에서 공정 시간을 단축한 복합시트 제조 방법을 제공하였다. 본 발명은 상기 복합시트를 포함하는 플렉시블 기판 및 디스플레이 장치를 제공하였다.The present invention provides a composite sheet having low thermal expansion properties, good flexibility, heat resistance, and transparency, and having excellent surface properties by applying UV curing and minimizing an increase in surface roughness value. The present invention can minimize the rise of the surface roughness value that may occur in the composite process of the reinforcing material and the increase of the surface roughness value due to the curing shrinkage generated during high temperature curing and shorten the process time in terms of processability Provided. The present invention provides a flexible substrate and a display device including the composite sheet.
도 1은 본 발명 일 구체예의 복합시트의 단면도이다.1 is a cross-sectional view of a composite sheet of one embodiment of the present invention.
본 발명의 일 관점인 복합시트는 실리콘계 수지를 포함하는 매트릭스; 및 상기 매트릭스에 함침된 보강재를 포함할 수 있다. 구체예에서, 복합시트는 보강재가 함침되고, 실리콘계 수지를 포함하는 매트릭스용 조성물을 포함할 수 있다.Composite sheet according to an aspect of the present invention is a matrix comprising a silicone-based resin; And a reinforcing material impregnated in the matrix. In an embodiment, the composite sheet may include a composition for a matrix impregnated with a reinforcing material and comprising a silicone-based resin.
보강재와 실리콘계 수지는 열팽창 계수의 차이가 발생한다. 그 결과, 기존에 열 경화로 제조된 복합시트는 보강재의 복합화 공정에서 발생할 수 있는 표면 조도값의 상승뿐만 아니라, 고온 경화시에 경화 수축으로 인해 표면 조도값의 상승이 컸다. 반면에, 본 발명의 실시예들에 따른 복합시트는 UV 경화물로서 표면 조도값의 상승을 최소화할 수 있다.The reinforcement material and the silicone resin have a difference in coefficient of thermal expansion. As a result, the conventional composite sheet manufactured by thermal curing not only increases the surface roughness value that may occur in the compounding process of the reinforcing material, but also increases the surface roughness value due to curing shrinkage at high temperature curing. On the other hand, the composite sheet according to embodiments of the present invention can minimize the rise of the surface roughness value as a UV cured product.
복합시트는 표면 조도(Ra)가 약 100nm 이하, 구체적으로 약 50nm 이하, 보다 구체적으로 약 5nm 내지 50nm가 될 수 있고, young's modulus는 약 2MPa 이상, 구체적으로 약 2MPa 내지 200MPa, 보다 구체적으로 약 2MPa 내지 150MPa가 될 수 있다. 복합시트는 열팽창계수가 약 0ppm/℃ 내지 400ppm/℃, 구체적으로 약 0ppm/℃ 내지 10ppm/℃, 보다 구체적으로 약 3ppm/℃ 내지 7ppm/℃가 될 수 있다. 상기 범위에서, 플렉시블 기판으로 제조시 열 변형이 억제될 수 있다. 열팽창계수는 ASTM E 831 방법으로서, 온도에 따른 dimensional change를 Thermo-mechanical analyser(expansion mode, force 0.05N)를 이용하여 측정한 후, 온도(30 내지 250℃)에 따른 시료 길이의 변화 곡선으로부터 측정할 수 있다. 복합시트는 두께가 약 15㎛ 내지 200㎛가 될 수 있다. 상기 범위에서, 플렉시블 기판 용도의 복합시트로 사용될 수 있다. 복합시트는 가시광선 영역에서 투명할 수 있다.The composite sheet may have a surface roughness (Ra) of about 100 nm or less, specifically about 50 nm or less, more specifically about 5 nm to 50 nm, and the young's modulus is about 2 MPa or more, specifically about 2 MPa to 200 MPa, and more specifically about 2 MPa. To 150 MPa. The composite sheet may have a thermal expansion coefficient of about 0 ppm / ° C. to 400 ppm / ° C., specifically about 0 ppm / ° C. to 10 ppm / ° C., more specifically about 3 ppm / ° C. to 7 ppm / ° C. In the above range, thermal deformation can be suppressed in manufacturing the flexible substrate. The coefficient of thermal expansion is an ASTM E 831 method, which measures the dimensional change with temperature using a thermo-mechanical analyser (expansion mode, force 0.05N) and then measures it from the change curve of the sample length with temperature (30 to 250 ° C). can do. The composite sheet may have a thickness of about 15 μm to 200 μm. In the above range, it can be used as a composite sheet for flexible substrate applications. The composite sheet may be transparent in the visible region.
복합시트는 매트릭스; 및 매트릭스 내에 함침된 보강재를 포함할 수 있다. 도 1은 본 발명 일 구체예의 복합시트의 단면도이다. 도 1을 참조하면, 복합시트(10)는 매트릭스(1) 내에 보강재(2)가 포함된 구조를 가질 수 있다. 매트릭스(1)는 실리콘계 수지를 포함하는 매트릭스용 조성물로 형성될 수 있다.The composite sheet is a matrix; And reinforcing materials impregnated in the matrix. 1 is a cross-sectional view of a composite sheet of one embodiment of the present invention. Referring to FIG. 1, the composite sheet 10 may have a structure in which the reinforcing material 2 is included in the matrix 1. The matrix 1 may be formed of a composition for a matrix containing a silicone resin.
일 구체예에서, 실리콘계 수지는 UV 경화형 실리콘계 수지를 포함할 수 있다. UV 경화형 실리콘계 수지는 러버 화합물로 매트릭스의 바인더로서, UV 경화 작용기를 갖는 폴리오르가노실록산을 포함할 수 있고, 구체적으로 하기 화학식 1a의 단위를 포함할 수 있다:In one embodiment, the silicone-based resin may include a UV curable silicone-based resin. The UV-curable silicone-based resin may include a polyorganosiloxane having a UV-curable functional group as a binder of the matrix as a rubber compound, and specifically, may include a unit of Formula 1a:
<화학식 1a><Formula 1a>
Figure PCTKR2013006551-appb-I000001
Figure PCTKR2013006551-appb-I000001
상기 화학식 1a에서, Ra와 Rb는 동일하거나 다르고, 수소 원자, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기, C1-C20 알콕시기, C3-C30 사이클로알킬기, C3-C30 사이클로알케닐기, C3-C30 사이클로알키닐기, C6-C30 아릴기, C6-C30 아릴옥시기 또는 UV 경화 작용기이고, Ra와 Rb 중 적어도 하나 이상은 UV 경화 작용기이고, n은 2-1000의 정수이다. 본 명세서에서 '*'은 연결 부위를 나타낸다.In Formula 1a, Ra and Rb are the same or different, and a hydrogen atom, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C1-C20 alkoxy group, a C3-C30 cycloalkyl group, a C3-C30 cycloalke Or a C3-C30 cycloalkynyl group, a C6-C30 aryl group, a C6-C30 aryloxy group, or a UV curing functional group, at least one of Ra and Rb is a UV curing functional group, and n is an integer of 2-1000. In the present specification, '*' represents a linking site.
UV 경화형 실리콘계 수지는 화학식 1a의 단위를 포함하는 고리형 또는 선형 실리콘계 수지가 될 수 있다.The UV curable silicone-based resin may be a cyclic or linear silicone-based resin including a unit of Formula 1a.
다른 구체예에서, UV 경화형 실리콘계 수지가 상기 화학식 1a로 표시되는 선형 실리콘계 수지인 경우, 말단은 하기 화학식 1b 또는 화학식 1c가 될 수 있다:In another embodiment, when the UV-curable silicone-based resin is a linear silicone-based resin represented by Formula 1a, the terminal may be the following Formula 1b or Formula 1c:
<화학식 1b><Formula 1b>
R1R2R3SiO-R 1 R 2 R 3 SiO-
<화학식 1c><Formula 1c>
R4R5R6Si-R 4 R 5 R 6 Si-
상기 화학식 1b, 1c에서 R1,R2,R3,R4,R5,R6은 동일하거나 다르고, 각각 독립적으로 수소 원자, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기, C1-C20 알콕시기, C3-C30 사이클로알킬기, C3-C30 사이클로알케닐기, C3-C30 사이클로알키닐기, C6-C30 아릴기, C6-C30 아릴옥시기 또는 UV 경화 작용기가 될 수 있다. UV 경화 작용기는 UV 경화형 실리콘계 수지의 말단 또는 측쇄에 위치할 수 있다.In Formulas 1b and 1c, R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different, and each independently a hydrogen atom, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group , C1-C20 alkoxy group, C3-C30 cycloalkyl group, C3-C30 cycloalkenyl group, C3-C30 cycloalkynyl group, C6-C30 aryl group, C6-C30 aryloxy group or UV curing functional group. The UV curing functional group may be located at the terminal or side chain of the UV curing silicone resin.
또 다른 구체예에서, UV 경화형 실리콘계 수지는 하기 화학식 2a, 2b 및 2c의 단위를 포함할 수 있다.In another embodiment, the UV curable silicone-based resin may include units of Formulas 2a, 2b, and 2c.
<화학식 2a><Formula 2a>
Figure PCTKR2013006551-appb-I000002
Figure PCTKR2013006551-appb-I000002
(상기 화학식 2a에서, Rc와 Rd는 동일하거나 다르고, 수소 원자, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기, C1-C20 알콕시기, C3-C30 사이클로알킬기, C3-C30 사이클로알케닐기, C3-C30 사이클로알키닐기, C6-C30 아릴기, C6-C30 아릴옥시기이고, n은 2-1000의 정수이다).(In Formula 2a, Rc and Rd are the same or different, hydrogen atom, C1-C20 alkyl group, C2-C20 alkenyl group, C2-C20 alkynyl group, C1-C20 alkoxy group, C3-C30 cycloalkyl group, C3-C30 cyclo Alkenyl group, C3-C30 cycloalkynyl group, C6-C30 aryl group, C6-C30 aryloxy group, n is an integer of 2-1000).
<화학식 2b><Formula 2b>
R7R8R9SiO-R 7 R 8 R 9 SiO-
<화학식 2c><Formula 2c>
R10R11R12Si-R 10 R 11 R 12 Si-
(상기 화학식 2b, 2c에서 R7,R8,R9,R10,R11,R12은 동일하거나 다르고, 각각 독립적으로 수소 원자, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기, C1-C20 알콕시기, C3-C30 사이클로알킬기, C3-C30 사이클로알케닐기, C3-C30 사이클로알키닐기, C6-C30 아릴기, C6-C30 아릴옥시기 또는 UV 경화 작용기이고, 상기 R7,R8,R9,R10,R11,R12 중 적어도 하나 이상은 UV 경화 작용기이다)이 될 수 있다. UV 경화형 실리콘계 수지는 상기 화학식 2a, 2b, 2c의 단위를 포함하는 고리형 또는 선형 실리콘계 수지가 될 수 있다.(In Formula 2b, 2c, R 7 , R 8 , R 9 , R 10 , R 11 , R 12 are the same or different, each independently hydrogen atom, C1-C20 alkyl group, C2-C20 alkenyl group, C2-C20 alkoxy group, a C1-C20 alkoxycarbonyl group, C3-C30 cycloalkyl, C3-C30 cycloalkyl alkenyl group, C3-C30 cycloalkyl alkynyl, C6-C30 aryl group, C6-C30 aryloxy group or UV curing functional group, wherein R 7, At least one of R 8 , R 9 , R 10 , R 11 , and R 12 is a UV curing functional group). The UV curable silicone-based resin may be a cyclic or linear silicone-based resin including the units of Chemical Formulas 2a, 2b, and 2c.
본원에서 상기 'UV 경화 작용기'는 UV 조사시 가교 반응(cross linking)이 일어날 수 있도록 반응물의 말단(terminal)에 결합된 작용기로서 예를 들어, (메타)아크릴레이트기, 에폭시알콕시알킬기(예: 에폭시기를 갖는 탄소수 1-10의 알콕시기를 함유하는 탄소수 1-10의 알킬기), 에폭시기, 에폭시알킬기(예: 에폭시기를 갖는 탄소수 1-10의 알킬기), 알릴기 또는 비닐기 중 하나 이상을 포함하는 작용기를 의미한다.The 'UV curing functional group' herein is a functional group bonded to the terminal of the reactant so that cross linking can occur upon UV irradiation, for example, a (meth) acrylate group, an epoxyalkoxyalkyl group (eg, Functional group containing at least one of an alkyl group having 1 to 10 carbon atoms containing an alkoxy group having an epoxy group, an epoxy group, an epoxy alkyl group (eg, an alkyl group having 1 to 10 carbon atoms having an epoxy group), an allyl group, or a vinyl group Means.
UV 경화형 실리콘계 수지는 단독 또는 2종 이상의 혼합물로 사용될 수 있고, UV 경화형 실리콘계 수지는 수평균분자량이 약 350g/mol 내지 50,000g/mol, 구체적으로 약 350g/mol 내지 30,000g/mol이 될 수 있다. 상기 범위에서, 함침 및 경화 후 유연성 및 기계적 물성을 기대할 수 있다.The UV curable silicone-based resin may be used alone or as a mixture of two or more thereof, and the UV curable silicone-based resin may have a number average molecular weight of about 350 g / mol to 50,000 g / mol, specifically about 350 g / mol to 30,000 g / mol. . Within this range, flexibility and mechanical properties can be expected after impregnation and curing.
매트릭스용 조성물은 실리콘 우레탄 (메타)아크릴레이트(silicone urethane (meth)acrylate)를 더 포함할 수 있다. 실리콘 우레탄 (메타)아크릴레이트의 중량평균분자량은 약 350g/mol 내지 50,000g/mol, 구체적으로 약 350g/mol 내지 30,000g/mol, 보다 구체적으로 약 350g/mol 내지 10,000g/mol이 될 수 있다. 상기 범위에서, 높은 경화율과 UV 경화 후의 기계적 물성을 기대할 수 있다.The composition for the matrix may further include silicone urethane (meth) acrylate. The weight average molecular weight of the silicone urethane (meth) acrylate may be about 350 g / mol to 50,000 g / mol, specifically about 350 g / mol to 30,000 g / mol, more specifically about 350 g / mol to 10,000 g / mol. . Within this range, high curing rates and mechanical properties after UV curing can be expected.
매트릭스 조성물 중 UV 경화형 실리콘계 수지와 실리콘 우레탄 (메타)아크릴레이트의 합 중 UV 경화형 실리콘계 수지는 약 1 내지 99중량%, 실리콘 우레탄 (메타)아크릴레이트는 약 99 내지 1중량%로 포함될 수 있다. 구체적으로, UV 경화형 실리콘계 수지는 약 40 내지 60중량%, 실리콘 우레탄 (메타)아크릴레이트는 약 60 내지 40중량%로 포함될 수 있다. 상기 범위에서, 우수한 내열성과 높은 가교밀도를 가질 수 있다.The UV curable silicone-based resin in the sum of the UV-curable silicone-based resin and the silicone urethane (meth) acrylate may be included in the matrix composition in an amount of about 1 to 99% by weight and silicone urethane (meth) acrylate in an amount of about 99 to 1% by weight. Specifically, the UV curable silicone-based resin may be included in about 40 to 60% by weight, silicone urethane (meth) acrylate in about 60 to 40% by weight. In the above range, it may have excellent heat resistance and high crosslink density.
매트릭스용 조성물은 개시제를 더 포함할 수 있고, 개시제는 광중합 개시제, 광산 발생제(PAG, photo acid generator) 또는 이들의 혼합물을 포함할 수 있다. 개시제는 UV 경화형 실리콘계 수지(또는 UV 경화형 실리콘계 수지와 실리콘 우레탄 (메타)아크릴레이트의 합) 100중량부에 대하여 약 0.01 내지 10중량부, 구체적으로 약 0.1 내지 3중량부로 포함될 수 있다. 상기 범위에서, 경화가 충분히 될 수 있고 잔량의 개시제가 남지 않는다. 광중합 개시제와 광산 발생제는 통상의 종류를 제한없이 사용할 수 있다. 구체예로서, 광중합 개시제는 벤조페논계, 인계, 트리아진계, 아세토페논계, 티오크산톤계, 벤조인계, 옥심계 또는 이들의 혼합물을 포함할 수 있다. 예를 들면, 1-히드록시시클로헥실 페닐 케톤 등을 포함하는 벤조페논계를 사용할 수 있다. 광산 발생제는 오늄 이온인 양이온과 음이온의 오늄염을 사용할 수 있다. 양이온의 구체예로서는 디페닐요오드늄, 4-메톡시디페닐요오드늄 등의 디아릴요오드늄, 트리페닐술포늄, 4-페닐티오페닐디페닐술포늄 등의 트리아릴술포늄 등을 들 수 있다. 음이온의 구체예로서는, 테트라플루오로보레이트(BF4-), 헥사플루오로포스페이트(PF6-), 헥사플루오로안티모네이트(SbF6-), 헥사플루오로아르세네이트(AsF6-), 헥사클로로안티모네이트(SbCl6-) 등을 들 수 있다.The matrix composition may further include an initiator, and the initiator may include a photopolymerization initiator, a photo acid generator (PAG), or a mixture thereof. The initiator may be included in an amount of about 0.01 to 10 parts by weight, specifically about 0.1 to 3 parts by weight, based on 100 parts by weight of the UV curable silicone resin (or the sum of the UV curable silicone resin and the silicone urethane (meth) acrylate). Within this range, curing can be sufficient and no residual initiator is left. A photoinitiator and a photo-acid generator can use a conventional kind without limitation. As an embodiment, the photopolymerization initiator may include a benzophenone series, phosphorus series, triazine series, acetophenone series, thioxanthone series, benzoin series, oxime series, or a mixture thereof. For example, a benzophenone system containing 1-hydroxycyclohexyl phenyl ketone or the like can be used. The photoacid generator may use onium salts of cations and anions which are onium ions. As a specific example of cation, triaryl sulfonium, such as diaryl iodonium, such as diphenyl iodonium and 4-methoxy diphenyl iodonium, triphenylsulfonium, and 4-phenylthiophenyl diphenyl sulfonium, etc. are mentioned. Specific examples of the anion include tetrafluoroborate (BF 4- ), hexafluorophosphate (PF 6- ), hexafluoroantimonate (SbF 6- ), hexafluoroarsenate (AsF 6- ), hexa Chloro antimonate (SbCl 6 −) and the like.
매트릭스용 조성물은 상술한 성분 이외에, 가교제(crosslinker), 촉매, 억제제를 더 포함할 수 있다. 가교제는 플렉시블 기판용 복합시트 제조에서 통상적으로 사용되는 가교제를 사용할 수 있다. 예를 들면, Si-CH3와 Si-H를 갖는 폴리오르가노실록산을 사용할 수 있다. 가교제는 실리콘계 수지의 C2-C20 알케닐기 예를 들면 비닐기의 몰 수에 대해 가교제의 Si-H의 몰 수의 몰 당량비가 약 1.0 이상, 구체적으로 약 1.0 내지 1.3이 되도록 포함될 수 있다. 촉매는 플렉시블 기판용 복합시트 제조에서 통상적으로 사용되는 촉매를 사용할 수 있고, 촉매는 백금계 또는 로듐계 촉매로서 백금과 유기 화합물의 복합체, 백금과 비닐화된 오르가노실록산 복합체, 로듐과 올레핀 착체 등을 사용할 수 있다. 구체적으로는, 촉매는 Karstedt 촉매를 포함하는 비닐알킬실란 백금 착물, 백금흑(platinum black), 염화백금산, 염화백금산-올레핀 착체, 염화백금산-알코올 배위 화합물, 또는 이들의 혼합물을 사용할 수 있다. 촉매는 금속의 중량으로, 실리콘계 수지에 대해 약 2ppm 내지 2000ppm, 구체적으로 약 5ppm 내지 500ppm으로 포함될 수 있다. 억제제는 약 25℃에서는 촉매의 작용을 억제하고 고온의 경화 과정에서는 촉매 억제 작용을 하지 않음으로써, 고온에서 매트릭스를 경화시킬 수 있다. 억제제는 플렉시블 기판용 복합시트 제조에서 통상적으로 사용되는 억제제를 사용할 수 있고, 구체적으로 디메틸-1-헥신-3-올을 포함하는 아세틸렌성 알코올, 피리딘, 포스핀, 유기 포스파이트, 불포화아미드, 디알킬카르복실레이트, 디알킬아세틸렌디카르복실레이트, 알킬화된 말리에이트, 디알릴말리에이트, 또는 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다. 억제제는 실리콘계 수지에 대해 약 100ppm 내지 2500ppm으로 포함될 수 있다.The composition for the matrix may further include a crosslinker, a catalyst, and an inhibitor in addition to the above components. The crosslinking agent can use the crosslinking agent normally used in manufacture of the composite sheet for flexible substrates. For example, polyorganosiloxanes having Si—CH 3 and Si—H can be used. The crosslinking agent may be included such that the molar equivalent ratio of the number of moles of Si—H of the crosslinking agent to the number of moles of C2-C20 alkenyl groups, for example vinyl groups, of the silicone resin is about 1.0 or more, specifically about 1.0 to 1.3. The catalyst may be a catalyst commonly used in the production of a composite sheet for a flexible substrate, and the catalyst may be a platinum or rhodium-based catalyst, a complex of platinum and an organic compound, a platinum and vinylated organosiloxane complex, a rhodium and an olefin complex, or the like. Can be used. Specifically, the catalyst may use a vinylalkylsilane platinum complex including a Karstedt catalyst, platinum black, platinum chloride, chloroplatinic acid-olefin complex, chloroplatinic acid-alcohol coordination compound, or a mixture thereof. The catalyst may be included in the weight of the metal, about 2 ppm to 2000 ppm, specifically about 5 ppm to 500 ppm with respect to the silicone-based resin. The inhibitor can cure the matrix at high temperatures by inhibiting the action of the catalyst at about 25 ° C. and not inhibiting the catalyst during the high temperature curing process. The inhibitor may be an inhibitor commonly used in the manufacture of a composite sheet for a flexible substrate, and specifically, an acetylenic alcohol including dimethyl-1-hexyn-3-ol, pyridine, phosphine, organic phosphite, unsaturated amide, di Alkylcarboxylates, dialkylacetylenedicarboxylates, alkylated maleates, diallyl maleates, or mixtures thereof. The inhibitor may be included at about 100 ppm to 2500 ppm relative to the silicone based resin.
보강재는 분산, 단일 층 또는 복수층 구조로 매트릭스에 포함될 수 있다. 도 1 에는 보강재가 층상으로 함침된 구조만을 도시하나, 이에 한정되는 것은 아니며, 보강재는 매트릭스 내에 분산되어 있거나, 직조된 형태로 함침되거나, 일방향(uni direction)으로 배열되어 함침될 수도 있다. 또한, 보강재는 단일층 또는 복수층으로 형성될 수 있다. 복합시트 중 매트릭스:보강재는 약 60:40 내지 30:70의 중량비, 구체적으로 약 50:50 내지 35:65의 중량비로 포함될 수 있다. 상기 범위에서, 플렉시블 기판의 고내열성 및 기계적 물성을 확보할 수 있고, 투명성, 유연성, 경량성이 좋도록 할 수 있을 뿐만 아니라 복합시트에 유연성을 제공할 수 있다.The reinforcement may be included in the matrix in a dispersed, single layer or multiple layer structure. 1 illustrates only a structure in which the reinforcement is impregnated in layers, but is not limited thereto. The reinforcement may be dispersed in a matrix, impregnated in a woven form, or arranged in a uni direction. In addition, the reinforcement may be formed of a single layer or a plurality of layers. The matrix: reinforcement in the composite sheet may be included in a weight ratio of about 60:40 to 30:70, specifically about 50:50 to 35:65. Within this range, it is possible to ensure high heat resistance and mechanical properties of the flexible substrate, to improve transparency, flexibility and light weight, as well as to provide flexibility to the composite sheet.
보강재는 매트릭스 내에 포함(embedd)되어 있다. 보강재는 매트릭스와의 굴절률 차이(보강재의 굴절률-매트릭스의 굴절률의 절대값)가 약 0.01 이하가 될 수 있다. 상기 범위 내에서, 우수한 투명성과 투광성을 가질 수 있다. 굴절률 차이는 구체적으로, 약 0.005 이하, 보다 구체적으로 0.0001 내지 0.005가 될 수 있다. 보강재는 유리섬유, 유리 섬유포(glass fiber cloth), 유리 직물(glass fabric), 유리 부직포, 유리 메쉬(glass mesh), 유리 비드, 유리 플레이크(glass flake), 실리카 입자 및 콜로이달 실리카로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. The reinforcement is embedded in the matrix. The reinforcement may have a refractive index difference from the matrix (absolute value of the refractive index of the reinforcement-matrix) of about 0.01 or less. Within this range, it may have excellent transparency and light transmittance. The refractive index difference may be specifically about 0.005 or less, more specifically 0.0001 to 0.005. The reinforcement is from the group consisting of glass fiber, glass fiber cloth, glass fabric, glass nonwoven, glass mesh, glass beads, glass flakes, silica particles and colloidal silica It may include one or more selected.
이하, 본 발명의 또 다른 구체예에 따른 매트릭스용 조성물에 대해 설명한다. Hereinafter, a composition for a matrix according to another embodiment of the present invention will be described.
본 발명의 또 다른 구체예에 따른 매트릭스용 조성물은 하기 화학식 3의 단위를 포함하는 실리콘계 수지 및 UV 경화형 촉매를 포함할 수 있다. 하기 화학식 3의 단위를 포함하는 실리콘계 수지 및 UV 경화형 촉매를 포함하는 점 외에는 본 발명의 일 구체에에 따른 매트릭스용 조성물과 실질적으로 동일하므로, 여기서는 실리콘계 수지 및 UV 경화형 촉매를 중심으로 설명한다. The composition for a matrix according to another embodiment of the present invention may include a silicone-based resin and a UV curable catalyst including a unit of the following Chemical Formula 3. Since it is substantially the same as the composition for a matrix according to one embodiment of the present invention except that it includes a silicone-based resin and a UV-curable catalyst comprising a unit of Formula 3, the following description will focus on the silicone-based resin and UV-curable catalyst.
<화학식 3><Formula 3>
Figure PCTKR2013006551-appb-I000003
Figure PCTKR2013006551-appb-I000003
상기 화학식 3에서, Re와 Rf는 동일하거나 다르고, 수소 원자, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기, C1-C20 알콕시기, C3-C30 사이클로알킬기, C3-C30 사이클로알케닐기, C3-C30 사이클로알키닐기, C6-C30 아릴기, C6-C30 아릴옥시기이고, n은 2 내지 1000의 정수일 수 있다.In Formula 3, Re and Rf are the same or different, hydrogen atom, C1-C20 alkyl group, C2-C20 alkenyl group, C2-C20 alkynyl group, C1-C20 alkoxy group, C3-C30 cycloalkyl group, C3-C30 cycloalke And a C3-C30 cycloalkynyl group, a C6-C30 aryl group, a C6-C30 aryloxy group, and n may be an integer of 2 to 1000.
실리콘계 수지는 상기 화학식 3의 단위를 포함하는 고리형 또는 선형 실리콘계 수지가 될 수 있다. 실리콘계 수지의 말단은 -OSiR13R14R15 또는 -SiR16R17R18(상기에서 R13,R14,R15,R16,R17,R18은 동일하거나 다르고 각각 독립적으로 수소 원자, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기, C1-C20 알콕시기, C3-C30 사이클로알킬기, C3-C30 사이클로알케닐기, C3-C30 사이클로알키닐기, C6-C30 아릴기 또는 C6-C30 아릴옥시기)가 될 수 있다. 구체적으로, 실리콘계 수지는 PDMS(polydimethylsiloxane)계 수지를 포함할 수 있다. 실리콘계 수지는 중량평균분자량이 약 350g/mol 내지 50,000g/mol, 구체적으로 약 350g/mol 내지 30,000g/mol이 될 수 있다. 상기 범위에서, 함침 및 경화 후 유연성 및 기계적 물성을 기대할 수 있다.The silicone resin may be a cyclic or linear silicone resin including the unit of Formula 3 above. The terminal of the silicone resin is -OSiR 13 R 14 R 15 or -SiR 16 R 17 R 18 (wherein R 13 , R 14 , R 15 , R 16 , R 17 , R 18 are the same or different and each independently represent a hydrogen atom, C1-C20 alkyl group, C2-C20 alkenyl group, C2-C20 alkynyl group, C1-C20 alkoxy group, C3-C30 cycloalkyl group, C3-C30 cycloalkenyl group, C3-C30 cycloalkynyl group, C6-C30 aryl group or C6 -C30 aryloxy group). Specifically, the silicone resin may include a polydimethylsiloxane (PDMS) resin. The silicone-based resin may have a weight average molecular weight of about 350 g / mol to 50,000 g / mol, specifically about 350 g / mol to 30,000 g / mol. Within this range, flexibility and mechanical properties can be expected after impregnation and curing.
UV 경화형 촉매는 광에너지선 조사를 받아 활성을 띄고, 히드로실릴화 반응을 촉진시키는 화합물이기만 하면 특별히 제한되지 않는다. 이의 예로는 백금 촉매, 루테늄 촉매 및 로듐 촉매로 이루어진 군으로부터 선택될 수 있으며, 디엔계 화합물이 될 수 있다. UV 경화형 촉매는 실리콘계 수지 100중량부에 대하여 약 0.001 내지 1중량부, 구체적으로 약 0.01 내지 0.1중량부로 포함될 수 있다. 상기 범위에서, 경화 속도가 느려지지 않고, 복합시트의 장기 저장 안정성에 영향이 없으며, 복합시트에 황변이 발생하지 않을 수 있다.The UV-curable catalyst is not particularly limited as long as it is a compound that is activated by light energy ray irradiation and promotes a hydrosilylation reaction. Examples thereof may be selected from the group consisting of platinum catalyst, ruthenium catalyst and rhodium catalyst, and may be a diene-based compound. The UV curable catalyst may be included in an amount of about 0.001 to 1 part by weight, specifically about 0.01 to 0.1 part by weight, based on 100 parts by weight of the silicone-based resin. In the above range, the curing speed does not slow, does not affect the long-term storage stability of the composite sheet, yellowing may not occur in the composite sheet.
본 발명 일 실시예에 의한 복합시트 제조방법은 실리콘계 수지를 포함하는 매트릭스용 조성물과, 매트리스용 조성물에 함침된 보강재를 UV 경화시켜 제조될 수 있다. 일 구체예에서, UV 경화형 실리콘계 수지와 개시제를 포함하는 매트릭스용 조성물을 제조하는 단계; 및 상기 조성물에 보강재를 함침하고 UV 경화시키는 단계를 포함할 수 있다. 다른 구체예에서, 실리콘계 수지, UV 경화형 촉매 및 가교제를 포함하는 매트릭스용 조성물을 제조하는 단계; 및 상기 조성물에 보강재를 함침하고 UV 경화시키는 단계를 포함할 수 있다. 구체적으로는, 매트릭스용 조성물에 보강재를 함침하고, 라미네이션(lamination) 한 후, UV 경화시켜 제조할 수 있다. UV 경화는 약 500mJ/cm2 내지 10,000mJ/cm2의 조사량, 약 0.01초 내지 10분의 조사로 수행될 수 있지만, 이에 제한되지 않는다.Composite sheet manufacturing method according to an embodiment of the present invention can be prepared by UV curing the composition for the matrix containing a silicone-based resin, and the reinforcing material impregnated in the composition for the mattress. In one embodiment, preparing a composition for a matrix comprising a UV-curable silicone-based resin and an initiator; And impregnating a reinforcing material into the composition and UV curing. In another embodiment, to prepare a composition for the matrix comprising a silicone-based resin, a UV curable catalyst and a crosslinking agent; And impregnating a reinforcing material into the composition and UV curing. Specifically, the composition for a matrix can be impregnated with a reinforcing material, laminated and then UV cured to produce the composition. UV curing may be performed by irradiation of a dose of about 500mJ / cm 2 to 10,000mJ / cm 2, about 0.01 seconds to 10 minutes, but is not limited thereto.
본 발명 일 실시예에 의한 복합시트 제조방법은 UV 경화 후 열 처리하는 단계를 더 포함할 수 있다. 열 처리는 약 25℃ 내지 150℃, 약 0.1 내지 5시간 동안 처리하는 단계를 포함한다. UV 경화시킨 후 열 처리는 에이징(aging) 효과를 부여할 수 있다.Composite sheet manufacturing method according to an embodiment of the present invention may further comprise the step of heat treatment after UV curing. Heat treatment includes treating for about 25 ° C. to 150 ° C. for about 0.1 to 5 hours. The heat treatment after UV curing can impart an aging effect.
본 발명 다른 실시예에 의한 복합시트 제조방법은 보강재를 함침한 후 UV 경화시키기 전(즉, 보강재를 함침하는 단계와 UV 경화시키는 단계 사이)에 열 처리하는 단계를 더 포함할 수 있다. 열 처리는 약 25℃ 내지 150℃, 약 0.1 내지 5시간 동안 처리하는 단계를 포함한다. 보강재를 함침하는 단계와 UV 경화시키는 단계 사이에 열 처리는 열 경화 효과를 부여할 수 있다.The composite sheet manufacturing method according to another embodiment of the present invention may further include heat treatment after impregnation of the reinforcing material and before UV curing (that is, between impregnation and UV curing). Heat treatment includes treating for about 25 ° C. to 150 ° C. for about 0.1 to 5 hours. The heat treatment between impregnating the reinforcement and UV curing may impart a heat curing effect.
매트릭스용 조성물과 보강재에 대한 내용은 상술한 바와 같다.Details of the composition for the matrix and the reinforcing material are as described above.
본 발명 일 실시예에 의한 복합시트 제조방법으로 제조된 복합시트는 표면 조도(Ra) 약 100nm 이하, 구체적으로 약 50nm 이하, 보다 구체적으로 약 5nm 내지 50nm가 될 수 있고, young's modulus가 약 2MPa 이상, 구체적으로 약 2MPa 내지 200MPa, 보다 구체적으로 약 2MPa 내지 150MPa가 될 수 있다.The composite sheet prepared by the composite sheet manufacturing method according to an embodiment of the present invention may have a surface roughness (Ra) of about 100 nm or less, specifically about 50 nm or less, more specifically about 5 nm to 50 nm, and a young's modulus of about 2 MPa or more. For example, about 2 MPa to 200 MPa, and more specifically about 2 MPa to 150 MPa.
본 발명의 또 다른 관점인 플렉시블 기판 및 이를 포함하는 디스플레이 장치는 상기 복합시트를 포함할 수 있다. 플렉시블 기판은 액정 표시 소자(LCD)용 기판, 컬러 필터(color filter)용 기판, 유기 EL 표시소자용 기판, 태양 전지용 기판, 터치 스크린 패널(touch screen panel)용 기판 등의 디스플레이 또는 광 소자의 용도로서 이용할 수 있다. In another aspect of the present invention, the flexible substrate and the display device including the same may include the composite sheet. Flexible substrate is used for display or optical element such as substrate for liquid crystal display (LCD), substrate for color filter, substrate for organic EL display, substrate for solar cell, substrate for touch screen panel It can be used as.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로 본 발명을 제한하는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.
제조예 1:D4MA의 합성 및 제조Preparation Example 1 Synthesis and Preparation of D4MA
D4silane(1,3,5,7-tetramethyl cyclotetrasiloxane)과 allyl methacrylate를 몰비 1:1.1 당량으로 넣고, Pt촉매(Karstedt catalyst)를 1중량%, 히드로퀴논 (inhibitor)을 allyl methacrylate 대비 10 mol%를 첨가한 후 톨루엔 용제 하에서 70℃에서 리플럭스(reflux)하여 반응시켰다. 그 후에 톨루엔을 제거하고 여과하여 D4MA(메타아크릴레이트기 함유 고리형 오르가노실록산)를 얻었다.D1silane (1,3,5,7-tetramethyl cyclotetrasiloxane) and allyl methacrylate were added in a molar ratio of 1: 1.1 equivalents, 1 wt% Pt catalyst (Karstedt catalyst) and 10 mol% hydroquinone (inhibitor) compared to allyl methacrylate. After reacting by reflux at 70 ° C. under toluene solvent. Thereafter, toluene was removed and filtered to obtain D4MA (methacrylate group-containing cyclic organosiloxane).
제조예 2:실리콘계(PDMS) 수지 매트릭스의 합성 및 제조Preparation Example 2 Synthesis and Preparation of Silicon-Based (PDMS) Resin Matrix
페닐메틸 디메톡시 실록산(Phenylmethyl dimethoxy siloxane, PMDMS), 디메틸 디메톡시 실록산(Dimethyl dimethoxy siloxane, DMDMS), 비닐 트리메톡시 실록산(Vinyl trimethoxy siloxane, VTMS)를 사용하여 합성을 진행하였다. PDMDS, DMDMS 및 VTMS를 계량 후((PMDMS + DMDMS) : VTMS 중량비 95:5) 70℃에서 1시간 동안 탈이온수와 KOH 하에서 가수분해를 진행하였다. 90℃에서 반응을 진행한 후 톨루엔과 물을 첨가하여 25℃로 낮추고 물로 세정하였다. 그 후에 Vi-MM(1,1,3,3,-tetramethyl-1,3-divinyl disiloxane)을 첨가하여 50℃에서 5시간 가량 말단 캡핑(endcapping)을 진행하고, 25℃에서 물로 세정하고 용매를 제거하여 최종 PDMS 수지(페닐기, 메틸기, 비닐기 함유 폴리오르가노실록산 수지)를 합성하였다. (PMDMS + DMDMS) : VTMS를 일정비율로 하여 PMDMS과 DMDMS의 함량을 다르게 한 2종류를 합성하였으며, 유리 섬유포(D-glass cloth)와의 굴절률을 matching하기 위해 2종의 PDMS 수지를 혼합하여 사용하였다.Synthesis was performed using phenylmethyl dimethoxy siloxane (PMDMS), dimethyl dimethoxy siloxane (DMDMS), and vinyl trimethoxy siloxane (VTMS). After PDMDS, DMDMS and VTMS were weighed ((PMDMS + DMDMS): VTMS weight ratio 95: 5) hydrolysis was performed under deionized water and KOH for 1 hour at 70 ℃. After the reaction was carried out at 90 ℃, toluene and water were added to lower the temperature to 25 ℃ and washed with water. Thereafter, Vi-MM (1,1,3,3, -tetramethyl-1,3-divinyl disiloxane) was added to carry out endcapping at 50 ° C. for about 5 hours, washed with water at 25 ° C., and the solvent was washed. The final PDMS resin (phenyl group, methyl group, vinyl group-containing polyorganosiloxane resin) was synthesized. (PMDMS + DMDMS): Two kinds of PMDMS and DMDMS contents were synthesized by using VTMS as a constant ratio, and two PDMS resins were mixed and used to match the refractive index with D-glass cloth. .
제조예 3:촉매 시스템 A 제조Preparation Example 3 Preparation of Catalyst System A
촉매로 Karstedt catalyst(PT-CS-1.8CS, Umicore)와 억제제 surfynol를 배합하여 사용하였다.Karstedt catalyst (PT-CS-1.8CS, Umicore) and inhibitor surfynol were used as a catalyst.
실시예 1Example 1
제조예 1의 D4MA와 Miramer SIU1000(미원, Mw 530g/mol, silicone urethane acrylate)을 중량비 40wt%/60wt%로 혼합하였다. 개시제 Igacure184를 1wt% 첨가하여 매트릭스용 조성물을 제조하였다. 유리 섬유포(D-glass cloth)에 유리 섬유포가 상기 복합시트에 대하여 60중량%가 되도록 함침하고 라미네이션(Lamination)한 후, 1분 동안 UV를 조사(수은 lamp, 5000mJ/cm2)하여 복합시트를 제조하였다.D4MA and Miramer SIU1000 (Miwon, Mw 530g / mol, silicone urethane acrylate) of Preparation Example 1 were mixed in a weight ratio of 40wt% / 60wt%. The composition for a matrix was prepared by adding 1 wt% of initiator Igacure184. After impregnating the glass fiber cloth to 60% by weight with respect to the composite sheet and lamination (D-glass cloth), and irradiated with UV (mercury lamp, 5000mJ / cm 2 ) for 1 minute to give a composite sheet Prepared.
실시예 2Example 2
PMS-E11(Gelest, epoxypropoxypropyl terminated polyphenylmethylsiloxane, Mn 500g/mol)과 DMS-E09(Gelest, epoxypropoxypropyl terminated polydimethylsiloxane, Mn 350g/mol)를 중량비 40wt%/60wt%로 혼합하였다. 광산 발생제 CPI-210S를 1wt% 첨가하여 실시예 1과 마찬가지로 유리 섬유포에 함침하고 라미네이션한 후, 1분 동안 UV를 조사(수은 lamp, 5000mJ/cm2)하여 경화를 진행하였다. 그 후 100℃에서 1시간 더 열처리를 진행하여 복합시트를 제조하였다.PMS-E11 (Gelest, epoxypropoxypropyl terminated polyphenylmethylsiloxane, Mn 500g / mol) and DMS-E09 (Gelest, epoxypropoxypropyl terminated polydimethylsiloxane, Mn 350g / mol) were mixed at a weight ratio of 40wt% / 60wt%. 1 wt% of the photoacid generator CPI-210S was added to impregnate the glass fiber cloth and laminated in the same manner as in Example 1, and then irradiated with UV (mercury lamp, 5000 mJ / cm 2 ) for 1 minute to proceed with curing. Thereafter, heat treatment was further performed at 100 ° C. for 1 hour to prepare a composite sheet.
실시예 3Example 3
제조예 2의 PDMS 수지에 crosslinker로 HMS-501(Gelest)를 Si-H/vinyl 몰비 1.2로 배합 후 UV 경화형 백금 촉매(시클로펜타디엔기 함유 백금 촉매) 0.05 wt%를 첨가하고 유리 섬유포에 함침하고 라미네이션한 후, 1분 동안 UV를 조사(수은 lamp, 5000mJ/cm2)하여 복합시트를 제조하였다. After blending HMS-501 (Gelest) with Si-H / vinyl molar ratio 1.2 as a crosslinker to PDMS resin of Preparation Example 2, 0.05 wt% of a UV curable platinum catalyst (cyclopentadiene group-containing platinum catalyst) was added and impregnated into a glass fiber cloth. After lamination, a composite sheet was prepared by irradiating UV (mercury lamp, 5000 mJ / cm 2 ) for 1 minute.
비교예 1Comparative Example 1
제조예 2의 PDMS 수지에 촉매시스템 A를 0.05wt%를 첨가하고 유리 섬유포를 함침시키고 고온 경화(80℃에서 10분)를 진행하여 복합시트를 제조하였다. 0.05 wt% of the catalyst system A was added to the PDMS resin of Preparation Example 2, the glass fiber cloth was impregnated, and a high temperature curing (10 minutes at 80 ° C.) was performed to prepare a composite sheet.
비교예 2Comparative Example 2
제조예 2의 PDMS 수지에 촉매시스템 A를 0.05wt%를 첨가하고 유리 섬유포를 함침시키고 상온 경화(25℃에서 10시간)를 진행하여 복합시트를 제조하였다. 0.05 wt% of the catalyst system A was added to the PDMS resin of Preparation Example 2, the glass fiber cloth was impregnated, and room temperature curing (10 hours at 25 ° C.) was performed to prepare a composite sheet.
상기 제조한 복합시트에 대해 하기의 물성을 평가하고 표 1에 나타내었다.The physical properties of the composite sheet prepared above were evaluated and shown in Table 1.
(1)열팽창계수(CTE)(ppm/℃): ASTM E 831 방법에 따라 온도에 따른 dimensional change를 Thermo-mechanical Aanlyser(Expansion mode, Force 0.05N)를 이용하여 측정한 후, 온도 변화(30-250℃)에 따른 시료길이의 변화 곡선으로부터, 시료의 CTE(ppm/℃)를 구하였다.(1) Coefficient of thermal expansion (CTE) (ppm / ° C): After measuring the dimensional change with temperature according to the ASTM E 831 method using a thermo-mechanical analyzer (Expansion mode, Force 0.05N), the temperature change (30- The CTE (ppm / ° C) of the sample was obtained from the change curve of the sample length according to 250 ° C).
(2)Young's modulus(Mpa): Micro indentor(Fischer, H100)를 이용하여 indentation modulus를 측정하였다.(2) Young's modulus (Mpa): Indentation modulus was measured using a micro indentor (Fischer, H100).
(3)표면 조도(Ra, nm): Optical profiler를 이용하여 비접촉식으로 측정하였다. 복합 시트 1.2mm x 9mm의 면적에서 NT1100(Veeco사)를 사용하여 5 Point 측정하고 평균값을 취하였다.(3) Surface roughness (Ra, nm): It was measured by non-contact using an optical profiler. The composite sheet measured 5 points using NT1100 (Veeco) in the area of 1.2 mm x 9 mm, and averaged it.
표 1
  열팽창계수(ppm/℃) Young's modulus(MPa) 표면 조도(Ra, nm) 경화시간
실시예 1 5 150 40~50 1분
실시예 2 5 20 40~50 1분
실시예 3 5 3 40~50 1분
비교예 1 5 1.5 150~200 10분
비교예 2 5 1.5 40~50 10시간
Table 1
Thermal expansion coefficient (ppm / ℃) Young's modulus (MPa) Surface roughness (Ra, nm) Curing time
Example 1 5 150 40-50 1 min
Example 2 5 20 40-50 1 min
Example 3 5 3 40-50 1 min
Comparative Example 1 5 1.5 150-200 10 minutes
Comparative Example 2 5 1.5 40-50 10 hours
상기 표 1에서와 같이, 본 발명의 복합시트는 짧은 시간에 걸쳐 제조되었음에도 불구하고 표면 조도가 개선되었다. 반면에, 고온에서 경화시켜 제조된 비교예 1의 복합시트는 단시간에 제조되었지만 표면 조도 값이 높았다. 또한, 상온에서 경화시켜 제조된 비교예 2의 복합시트는 표면 조도 값은 낮지만 장시간에 걸쳐 제조되었다. As shown in Table 1, even though the composite sheet of the present invention was produced over a short time, the surface roughness was improved. On the other hand, the composite sheet of Comparative Example 1 prepared by curing at high temperature was prepared in a short time, but the surface roughness value was high. In addition, the composite sheet of Comparative Example 2 prepared by curing at room temperature was produced over a long time, although the surface roughness value is low.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다. Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (19)

  1. 실리콘계 수지를 포함하는 매트릭스, 및 A matrix comprising a silicone-based resin, and
    상기 매트릭스에 함침된 보강재를 포함하고, A reinforcing material impregnated in the matrix,
    Young's modulus가 약 2MPa 이상이고, 표면 조도(Ra)가 약 50nm 이하인 복합시트.A composite sheet having a Young's modulus of about 2 MPa or more and a surface roughness (Ra) of about 50 nm or less.
  2. 제1항에 있어서, 상기 실리콘계 수지는 UV 경화형 실리콘계 수지를 포함하는 복합시트.The composite sheet of claim 1, wherein the silicone resin comprises a UV curable silicone resin.
  3. 제2항에 있어서, 상기 UV 경화형 실리콘계 수지는 (메타)아크릴레이트기, 에폭시기, 에폭시알콕시알킬기, 에폭시알킬기, 알릴기 또는 비닐기 중 하나 이상의 작용기를 포함하는 복합시트.The composite sheet of claim 2, wherein the UV-curable silicone-based resin comprises at least one functional group of a (meth) acrylate group, an epoxy group, an epoxyalkoxyalkyl group, an epoxyalkyl group, an allyl group, or a vinyl group.
  4. 제2항에 있어서, 상기 UV 경화형 실리콘계 수지는 하기 화학식 1a의 단위를 포함하는 복합시트:The composite sheet of claim 2, wherein the UV curable silicone-based resin comprises a unit of Formula 1a:
    <화학식 1a><Formula 1a>
    Figure PCTKR2013006551-appb-I000004
    Figure PCTKR2013006551-appb-I000004
    (상기 화학식 1a에서, Ra와 Rb는 동일하거나 다르고, 수소 원자, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기, C1-C20 알콕시기, C3-C30 사이클로알킬기, C3-C30 사이클로알케닐기, C3-C30 사이클로알키닐기, C6-C30 아릴기, C6-C30 아릴옥시기 또는 UV 경화 작용기이고, Ra와 Rb 중 하나 이상은 UV 경화 작용기이고, n은 2 내지 1000의 정수이다).(In Formula 1a, Ra and Rb are the same or different, hydrogen atom, C1-C20 alkyl group, C2-C20 alkenyl group, C2-C20 alkynyl group, C1-C20 alkoxy group, C3-C30 cycloalkyl group, C3-C30 cyclo An alkenyl group, a C3-C30 cycloalkynyl group, a C6-C30 aryl group, a C6-C30 aryloxy group or a UV curing functional group, at least one of Ra and Rb is a UV curing functional group and n is an integer from 2 to 1000).
  5. 제2항에 있어서, 상기 UV 경화형 실리콘계 수지는 하기 화학식 2a, 2b 및 2c의 단위를 포함하는 복합시트:The composite sheet of claim 2, wherein the UV curable silicone-based resin comprises units of Formulas 2a, 2b, and 2c:
    <화학식 2a><Formula 2a>
    Figure PCTKR2013006551-appb-I000005
    Figure PCTKR2013006551-appb-I000005
    (상기 화학식 2a에서, Rc와 Rd는 동일하거나 다르고, 수소 원자, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기, C1-C20 알콕시기, C3-C30 사이클로알킬기, C3-C30 사이클로알케닐기, C3-C30 사이클로알키닐기, C6-C30 아릴기, C6-C30 아릴옥시기이고, n은 2 내지 1000의 정수이다).(In Formula 2a, Rc and Rd are the same or different, hydrogen atom, C1-C20 alkyl group, C2-C20 alkenyl group, C2-C20 alkynyl group, C1-C20 alkoxy group, C3-C30 cycloalkyl group, C3-C30 cyclo Alkenyl group, C3-C30 cycloalkynyl group, C6-C30 aryl group, C6-C30 aryloxy group, n is an integer of 2 to 1000).
    <화학식 2b><Formula 2b>
    R7R8R9SiO-R 7 R 8 R 9 SiO-
    <화학식 2c><Formula 2c>
    R10R11R12Si-R 10 R 11 R 12 Si-
    (상기, 화학식 2b, 2c에서, R7,R8,R9,R10,R11,R12은 동일하거나 다르고, 각각 독립적으로 수소 원자, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기, C1-C20 알콕시기, C3-C30 사이클로알킬기, C3-C30 사이클로알케닐기, C3-C30 사이클로알키닐기, C6-C30 아릴기, C6-C30 아릴옥시기 또는 UV 경화 작용기이고, 상기 R7,R8,R9,R10,R11,R12 중 하나 이상은 UV 경화 작용기이다).(In Formula 2b, 2c, R 7 , R 8 , R 9 , R 10 , R 11 , R 12 are the same or different, and each independently a hydrogen atom, a C1-C20 alkyl group, a C2-C20 alkenyl group, C2- C20 alkynyl group, C1-C20 alkoxy group, C3-C30 cycloalkyl group, C3-C30 cycloalkenyl group, C3-C30 cycloalkynyl group, C6-C30 aryl group, C6-C30 aryloxy group or UV curing functional group, R At least one of 7 , R 8 , R 9 , R 10 , R 11 , R 12 is a UV curing functional group).
  6. 제2항에 있어서, 상기 UV 경화형 실리콘계 수지는 수평균분자량이 약 350g/mol 내지 50,000g/mol인 복합시트.The composite sheet of claim 2, wherein the UV curable silicone-based resin has a number average molecular weight of about 350 g / mol to 50,000 g / mol.
  7. 제2항에 있어서, 상기 매트릭스는 실리콘 우레탄 (메타)아크릴레이트(silicone urethane (meth)acrylate)를 더 포함하는 복합시트.The composite sheet of claim 2, wherein the matrix further comprises silicone urethane (meth) acrylate.
  8. 제7항에 있어서, 상기 실리콘 우레탄 (메타)아크릴레이트는 중량평균분자량이 약 350g/mol 내지 50,000g/mol인 복합시트.The composite sheet of claim 7, wherein the silicone urethane (meth) acrylate has a weight average molecular weight of about 350 g / mol to 50,000 g / mol.
  9. 제1항에 있어서, 상기 실리콘계 수지는 하기 화학식 3의 단위를 포함하는 복합시트:The composite sheet of claim 1, wherein the silicone resin comprises a unit of Formula 3 below:
    [화학식 3][Formula 3]
    Figure PCTKR2013006551-appb-I000006
    Figure PCTKR2013006551-appb-I000006
    (상기 화학식 3에서, Re와 Rf는 서로 동일하거나 상이하며, 수소 원자, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기, C1-C20 알콕시기, C3-C30 사이클로알킬기, C3-C30 사이클로알케닐기, C3-C30 사이클로알키닐기, C6-C30 아릴기, C6-C30 아릴옥시기이고, n은 2 내지 1000의 정수이다).(In Formula 3, Re and Rf are the same or different from each other, hydrogen atom, C1-C20 alkyl group, C2-C20 alkenyl group, C2-C20 alkynyl group, C1-C20 alkoxy group, C3-C30 cycloalkyl group, C3- C30 cycloalkenyl group, C3-C30 cycloalkynyl group, C6-C30 aryl group, C6-C30 aryloxy group, n is an integer of 2 to 1000).
  10. 제1항에 있어서, 상기 실리콘계 수지는 폴리디메틸실록산(PDMS)계 수지인 복합시트.The composite sheet of claim 1, wherein the silicone resin is a polydimethylsiloxane (PDMS) resin.
  11. 제9항에 있어서, 상기 매트릭스는 UV 경화형 촉매를 더 포함하는 복합시트.The composite sheet of claim 9, wherein the matrix further comprises a UV curable catalyst.
  12. 제11항에 있어서, 상기 UV 경화형 촉매는 백금 함유 디엔(diene)계, 로듐 함유 디엔계 또는 루테늄 함유 디엔계 중 하나 이상을 포함하는 복합시트.The composite sheet of claim 11, wherein the UV curable catalyst comprises at least one of a platinum-containing diene-based, a rhodium-containing diene-based, or a ruthenium-containing diene-based.
  13. 제1항에 있어서, 상기 보강재는 유리 섬유(glass fiber), 유리 섬유포(glass fiber cloth), 유리 직물(glass fabric), 유리 부직포, 유리 메쉬(glass mesh), 유리 비드, 유리 플레이크(glass flake), 실리카 입자, 콜로이달 실리카 중 하나 이상을 포함하는 복합시트.The method of claim 1, wherein the reinforcing material is glass fiber, glass fiber cloth, glass fabric, glass nonwoven, glass mesh, glass beads, glass flake Composite sheet comprising one or more of silica particles, colloidal silica.
  14. 제1항에 있어서, 상기 복합시트 중 상기 보강재는 약 40 내지 70중량%로 포함되는 복합시트.The composite sheet of claim 1, wherein the reinforcement in the composite sheet is about 40 to 70 wt%.
  15. 제1항에 있어서, 상기 복합시트는 두께가 약 15㎛ 내지 200㎛인 복합시트.The composite sheet of claim 1, wherein the composite sheet has a thickness of about 15 μm to 200 μm.
  16. UV 경화형 실리콘계 수지와 개시제를 포함하는 매트릭스용 조성물에 보강재를 함침하고, UV 경화시켜 실리콘계 매트릭스를 제조하는 것을 포함하는 복합시트 제조방법.A method of manufacturing a composite sheet comprising impregnating a reinforcing material into a composition for a matrix comprising a UV curable silicone resin and an initiator, and then UV curing to prepare a silicone matrix.
  17. 제16항에 있어서, 상기 UV 경화 후에 또는 상기 보강재를 함침한 후 UV 경화시키기 전에 열 처리하는 것을 더 포함하는 복합시트 제조방법.The method of claim 16, further comprising heat treating after the UV curing or after impregnating the reinforcing material and before UV curing.
  18. 제1항 내지 제15항 중 어느 한 항의 복합시트를 포함하는 플렉시블 기판.A flexible substrate comprising the composite sheet of any one of claims 1 to 15.
  19. 제18항의 플렉시블 기판을 포함하는 디스플레이 장치.A display device comprising the flexible substrate of claim 18.
PCT/KR2013/006551 2012-07-24 2013-07-23 Complex sheet, method for manufacturing same, flexible substrate including same, and display device including same WO2014017795A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0080808 2012-07-24
KR1020120080808A KR101526003B1 (en) 2012-07-24 2012-07-24 Composite sheet, method for preparing the same, flexible substrate comprising the same and display apparatus comprising the same

Publications (1)

Publication Number Publication Date
WO2014017795A1 true WO2014017795A1 (en) 2014-01-30

Family

ID=49997545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006551 WO2014017795A1 (en) 2012-07-24 2013-07-23 Complex sheet, method for manufacturing same, flexible substrate including same, and display device including same

Country Status (2)

Country Link
KR (1) KR101526003B1 (en)
WO (1) WO2014017795A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015094308A1 (en) * 2013-12-19 2015-06-25 Carbitex, LLC Flexible fiber-reinforced composite material
US9370904B2 (en) 2013-12-19 2016-06-21 Carbitex, LLC Flexible fiber-reinforced composite material
WO2019201676A1 (en) 2018-04-19 2019-10-24 Festool Gmbh Plug connector

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786189B1 (en) 2015-08-07 2017-11-15 현대자동차주식회사 Composition for lightened and transparent composite, method for preparing the composites using the same and the composites prepared thereby
KR20170110998A (en) 2016-03-24 2017-10-12 다우 코닝 코포레이션 Optical Silicone Double-Side Tape Comprising a Silicone Substrate Layer Having Low Storage Modulus
KR102568774B1 (en) * 2018-03-14 2023-08-21 모멘티브퍼포먼스머티리얼스코리아 주식회사 Display panel and method for manufacturing thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060153990A1 (en) * 2004-11-26 2006-07-13 Rohm And Haas Electronic Materials Llc UV curable catalyst compositions
US20070042168A1 (en) * 2003-11-25 2007-02-22 Nitto Denko Corporation Resin sheet, liquid crystal cell substrate, liquid crystal display device, substrate for an electroluminescence display device, electroluminescence display device, and a substrate for a solar cell
US20100065880A1 (en) * 2008-09-11 2010-03-18 Shin-Etsu Chemical Co., Ltd. Silicone laminated substrate, method of producing same, silicone resin composition for producing silicone laminated substrate, and led device
US20100209687A1 (en) * 2007-10-12 2010-08-19 Bizhong Zhu Reinforced Silicone Resin Film and Nanofiber-Filled Silicone Composition
WO2011136977A1 (en) * 2010-04-29 2011-11-03 3M Innovative Properties Company Electron beam cured siliconized fibrous webs

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101228408B1 (en) * 2009-01-13 2013-01-31 한국과학기술원 Transparent composite compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070042168A1 (en) * 2003-11-25 2007-02-22 Nitto Denko Corporation Resin sheet, liquid crystal cell substrate, liquid crystal display device, substrate for an electroluminescence display device, electroluminescence display device, and a substrate for a solar cell
US20060153990A1 (en) * 2004-11-26 2006-07-13 Rohm And Haas Electronic Materials Llc UV curable catalyst compositions
US20100209687A1 (en) * 2007-10-12 2010-08-19 Bizhong Zhu Reinforced Silicone Resin Film and Nanofiber-Filled Silicone Composition
US20100065880A1 (en) * 2008-09-11 2010-03-18 Shin-Etsu Chemical Co., Ltd. Silicone laminated substrate, method of producing same, silicone resin composition for producing silicone laminated substrate, and led device
WO2011136977A1 (en) * 2010-04-29 2011-11-03 3M Innovative Properties Company Electron beam cured siliconized fibrous webs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015094308A1 (en) * 2013-12-19 2015-06-25 Carbitex, LLC Flexible fiber-reinforced composite material
US9370904B2 (en) 2013-12-19 2016-06-21 Carbitex, LLC Flexible fiber-reinforced composite material
WO2019201676A1 (en) 2018-04-19 2019-10-24 Festool Gmbh Plug connector

Also Published As

Publication number Publication date
KR20140014550A (en) 2014-02-06
KR101526003B1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
WO2014017795A1 (en) Complex sheet, method for manufacturing same, flexible substrate including same, and display device including same
EP1967540B1 (en) Curable composition
EP3281984B1 (en) Fluoroalkyl-containing curable organopolysiloxane composition, cured object obtained therefrom, and electronic component or display device including said cured object
US10370565B2 (en) Fluoroalkyl group-containing curable organopolysiloxane composition, cured product of same, and electronic component and display device each of which is provided with said cured product
CN102471585B (en) Silicon-containing curable composition and cured product thereof
EP2216336B1 (en) Process for production of cyclic polyorganosiloxane, curing agent, curable composition, and cured product of the curable composition
EP2479209A1 (en) Process for production of cured molded article, and cured molded article
JP4961584B2 (en) Transparent composite sheet
EP2343326A1 (en) Photocurable composition and cured product
WO2013094585A1 (en) Glass fiber composite resin substrate
KR20200008128A (en) Fluoroalkyl group containing curable organopolysiloxane composition, its hardened | cured material, the transducer provided with this hardened | cured material, etc.
WO2017116103A1 (en) Polyimide substrate and display substrate module comprising same
WO2012134032A1 (en) Composite sheet, and substrate for a display element using same
JP2012062457A (en) Nanofiber-reinforced transparent composite material
JPWO2019235108A1 (en) Modifiers, compositions, hard coat films, articles with hard coat films, and image display devices
JPWO2019235072A1 (en) Compositions, hard coat films, articles with hard coat films, and image display devices
EP3287275B1 (en) Silicone resin transparent substrate and method for manufacturing the same
JP2012158731A (en) Composite material, formed body, and method for manufacturing the same
KR20190023335A (en) Composition for window film, flexible window film prepared using the same and flexible display apparatus comprising the same
TWI656028B (en) Surface-reinforced transparent substrate and method of manufacturing same
KR20140073363A (en) Composite sheet and display device comprising the same
KR20130053063A (en) Composite sheet, flexible substrate comprising the same and display apparatus comprising the same
JP5551909B2 (en) Transparent sheet and method for producing transparent sheet
WO2014010826A1 (en) Composite sheet, method for manufacturing same, and flexible substrate including same
KR20130077701A (en) Flexible substrate and display apparatus comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823725

Country of ref document: EP

Kind code of ref document: A1