WO2014028137A1 - Preconditioning for bitumen displacement - Google Patents

Preconditioning for bitumen displacement Download PDF

Info

Publication number
WO2014028137A1
WO2014028137A1 PCT/US2013/049259 US2013049259W WO2014028137A1 WO 2014028137 A1 WO2014028137 A1 WO 2014028137A1 US 2013049259 W US2013049259 W US 2013049259W WO 2014028137 A1 WO2014028137 A1 WO 2014028137A1
Authority
WO
WIPO (PCT)
Prior art keywords
well
wells
hydrocarbons
injecting
fluid
Prior art date
Application number
PCT/US2013/049259
Other languages
French (fr)
Inventor
Wendell P. Menard
Original Assignee
Conocophillips Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conocophillips Company filed Critical Conocophillips Company
Publication of WO2014028137A1 publication Critical patent/WO2014028137A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water

Definitions

  • Embodiments of the invention relate to producing hydrocarbons with multiple horizontal wells through which injection processes precondition and displace the hydrocarbons.
  • SAGD Steam assisted gravity drainage
  • steam introduced into the reservoir through a horizontal injector well transfers heat upon condensation and develops a steam chamber in the reservoir.
  • the bitumen with reduced viscosity due to this heating drains together with steam condensate along a boundary of the steam chamber and is recovered via a producer well placed parallel and beneath the injector well.
  • a method of recovering hydrocarbons includes injecting during a first time a conditioning fluid through first and second wells and into a formation along lateral spaced apart and parallel horizontal lengths of the first and second wells. The method further includes producing the hydrocarbons recovered as backflow along the lengths of the first and second wells during a second time after the first time. Then, injecting the conditioning fluid into the formation along the length of the second well while producing the hydrocarbons along the length of the first well alternates with injecting the conditioning fluid into the formation along the length of the first well while producing the hydrocarbons along the length of the second well, thereby establishing fluid communication between the first and second wells. Next, injecting a displacement fluid into the formation along the length of the first well sweeps the hydrocarbons toward the second well and occurs while producing, along the length of the second well, the hydrocarbons being displaced.
  • a method of recovering hydrocarbons includes injecting a conditioning fluid through first and second wells and into a formation at dispersed locations along parallel horizontal lengths of the first and second wells such that the injecting via the first well is offset in a lateral direction from the second well and aligned between the dispersed locations of the second well across from portions of the second well without fluid communication to the formation.
  • Producing the hydrocarbons recovered as backflow at the dispersed locations along the first and second wells occurs after the injecting of the conditioning fluid.
  • injecting a displacement fluid into the formation via the dispersed locations along the first well sweeps the hydrocarbons toward the second well and occurs while producing, at the dispersed locations along the second well, the hydrocarbons being displaced.
  • Figure 1 is a schematic of three horizontal wells as viewed transverse to their horizontal length within a reservoir, according to one embodiment of the invention.
  • Figure 2 is a schematic top view of the wells with dispersed flow control along their length and operated in an all injection cycle as depicted by arrows indicating fluid flow direction, according to one embodiment of the invention.
  • Figure 3 is a schematic of the wells depicted in an all production cycle subsequent to the all injection cycle, according to one embodiment of the invention.
  • Figure 4 is a schematic of the wells depicted in a first alternating injection and production cycle subsequent to the all injection and the all production cycles, according to one embodiment of the invention.
  • Figure 5 is a schematic of the wells depicted in a second alternating injection and production cycle opposite and subsequent to the first alternating injection and production cycle, according to one embodiment of the invention.
  • Figure 6 is a schematic of the wells depicted in a final displacement operation once fluid communication is established between the wells, according to one embodiment of the invention.
  • Figure 7 is a schematic of the wells with resulting sweep of the reservoir by the final displacement operation shown by areas within dashed lines, according to one embodiment of the invention.
  • methods and systems produce petroleum products with multiple horizontal wells through which injection processes precondition and displace the hydrocarbons in a formation.
  • the wells extend through the formation spaced apart from one another in a lateral direction.
  • cyclic injections and production of resulting backflow initiates conditioning of immobile products. Alternating between injection and production at adjacent wells may then facilitate establishing the fluid communication.
  • a displacement procedure sweeps the hydrocarbons from one of the wells used for injection toward an adjacent one of the wells used for production.
  • Figure 1 illustrates a formation 100 defining a hydrocarbon reservoir bounded between a bottom layer 101 and a top layer 102. While methods disclosed herein are applicable even if the formation 100 is greater than 15 meters, the formation 100 in some embodiments extends in height less than 15 meters, thereby limiting commercial applications of processes such as steam assisted gravity drainage.
  • a first well 111, a second well 112 and a third well 113 each include horizontal lengths that pass through the formation 100.
  • all the wells 111, 112, 113 in some embodiments align in a common horizontal plane or otherwise have the horizontal length in substantial horizontal alignment with one another.
  • a lateral distance of between 5 and 50 meters may separate the wells 111, 112, 113 from one another. Costs of cycling depicted and described with respect to Figures 2 and 3 and accompanying revenue may influence duration of such cycling with longer durations enabling wider lateral separation, even greater than 50 meters, between the wells 111, 112, 113.
  • the second well 112 extends between and is adjacent the first well 111 and the third well 113 without any additional intervening wells disposed between any of the wells 111, 112, 113. As visible in Figures 2-7, the horizontal lengths of the wells 111, 112, 113 may extend parallel to one another.
  • Figure 2 shows the wells 111, 112, 113 operated in an all injection cycle as depicted by arrows indicating fluid flow direction.
  • the all injection cycle may initiate while the wells 111, 112, 113 lack fluid communication with one another across the formation and may be an initial operation of the wells 111, 112, 113.
  • the arrows in the all injection cycle indicate simultaneous injection of a conditioning fluid into the formation along the horizontal lengths of each of the wells 111, 112, 113.
  • flow control devices 200 dispersed along the horizontal lengths of the wells 111, 112, 113 facilitate uniform or patterned injection and/or production along the horizontal lengths of the wells 111, 112, 113.
  • the flow control devices 200 provide fluid communication from inside the wells 111, 112, 113 to the formation and can include orifices, perforations or slots in tubing or liner, well screen or other tortuous flow path assemblies. Valves or other metering devices may control inflow and/or outflow from the flow control devices 200.
  • Solid wall lined portions 201 of the horizontal lengths of the wells 111, 112, 113 may prevent fluid communication from inside the wells 111, 112, 113 to the formation.
  • the lined portions 201 without fluid communication to the formation may separate the flow control devices 200 from one another along the horizontal lengths of the wells 111, 112, 113.
  • the flow control devices 200 of the first well 111 align between the flow control devices 200 of the second well 112 and across from the lined portions 201 of the second well 112.
  • the flow control devices 200 of the third well 113 may also align across from the flow control devices 200 of the first well 111.
  • the conditioning fluid as referred to herein and used in the all injection cycle can be any fluid capable of reducing viscosity or increasing mobility of the hydrocarbons by dissolving into the hydrocarbons and/or transferring heat to the hydrocarbons.
  • the conditioning fluid may however not rely on any thermal application and may consist of only a solvent for the hydrocarbons. Economics may not support applying heat to the hydrocarbons with the conditioning fluid due to factors such thickness or extent of the formation.
  • the solvent may be a lighter hydrocarbon than contained in the formation and may have 1 to 20 carbon atoms (C 1 -C 20 ) or 1 to 4 carbon atoms (C 1 -C4) per molecule, or any mixture thereof.
  • Ci to C 4 hydrocarbon solvents include methane, ethane, propane and/or butane.
  • the hydrocarbon solvent used as the conditioning fluid can be introduced into the formation as a gas or as a liquid regardless of its phase under reservoir conditions.
  • Composition of the conditioning fluid may also transition during any injection operation disclosed herein.
  • the all injection cycle may first utilize a liquid hydrocarbon solvent under reservoir conditions, such as diesel, for the conditioning fluid followed by a gaseous solvent under reservoir conditions, such as a mix of propane and carbon dioxide, for the conditioning fluid.
  • a liquid hydrocarbon solvent under reservoir conditions such as diesel
  • a gaseous solvent under reservoir conditions such as a mix of propane and carbon dioxide
  • Figure 3 illustrates the wells 111, 112, 113 operated in an all production cycle during a subsequent time interval to the all injection cycle shown in Figure 2.
  • the arrows in the all production cycle indicate simultaneous recovery of the hydrocarbons along the horizontal lengths of each of the wells 111, 112, 113. Since the wells 111, 112, 113 still lack fluid communication with one another, the hydrocarbons can only backfiow along with accompanying conditioning fluid to each of the wells 111, 112, 113.
  • the flow control devices 200 permit controlled inflow of the hydrocarbons into the wells 111, 112, 113 at where dispersed along the horizontal lengths of the wells
  • Processing the hydrocarbons produced to surface during the all production cycle may separate out the conditioning fluid for recycle.
  • cycling during additional time intervals between the all injection cycle shown in Figure 2 and the all production cycle illustrated in Figure 3 continues for multiple times and facilitates even distribution of the conditioning fluid injected into the formation.
  • Figure 4 shows the wells 111, 112, 113 operated in a first alternating injection and production cycle subsequent to the all injection and the all production cycles.
  • injecting the conditioning fluid through the second well 112 and out the flow control devices 200 along the horizontal length thereof occurs while producing the hydrocarbons recovered through the flow control devices of the first and third wells 111, 113.
  • the third well 113 mirrors the first well 111 in function and arrangement and just provides a more complete picture of how further alternating well arrangements, i.e., the first well 111 and the second well
  • Figure 5 illustrates the wells 111, 112, 113 operated in a second alternating injection and production cycle opposite and subsequent to the first alternating injection and production cycle. Specifically, injecting the conditioning fluid through the first and third wells 111, 113 and out the flow control devices 200 along the horizontal lengths thereof occurs while producing the hydrocarbons recovered through the flow control devices of the second well 112. For some embodiments, cycling during additional time intervals between the alternating injection and production cycles shown in Figures 4 and 5 continues for multiple times and facilitates establishing fluid communication between the wells 111, 112, 113.
  • Figure 6 shows the wells 111, 112, 113 operated in a final displacement operation once fluid communication is established between the wells subsequent to operations illustrated in Figures 2-5.
  • the arrows for the displacement operation indicate injection of a displacement fluid through the second well 112 and out the flow control devices 200 along the horizontal length thereof while producing the hydrocarbons recovered through the flow control devices of the first and third wells 111, 113. While the second well 112 for explanation purposes is selected for injection in the final displacement operation, direction of the arrows in Figure 6 may match either Figure 4 or Figure 5.
  • Examples of the displacement fluid include gases or liquids capable of pushing the hydrocarbons through the formation.
  • the displacement fluid may in some embodiments also facilitate recovery by further decreasing viscosity of the hydrocarbons in the formation.
  • the displacement fluid may contain like constituents as the conditioning fluid described herein and which may likewise include any constituent described herein for use as the displacement fluid.
  • the displacement fluid includes any combination of gaseous or liquid solvents for the hydrocarbons, water, steam, emulsifiers (e.g., surfactants, alkalis, polymers), air, oxygen and carbon dioxide. Heating any of the fluids used for the displacement fluid enables heat transfer to the hydrocarbons for viscosity reduction. Injection of combustibles, such as air or oxygen, as the displacement fluid enables starting in situ combustion during the displacement operation for recovery, which depends on the fluid communication being established between the wells 111, 112, 113. [0034] Figure 7 illustrates the wells 111, 112, 113 with resulting sweep of the formation by the displacement operation shown by areas within dashed lines. The displacement operation thus drives the hydrocarbons that are now mobile toward the first and third wells 111, 113 for recovery. The displacement operation recovers the hydrocarbons not produced during the operations shown in Figures 2-5 to gain desired cumulative recovery needed for commercial success.
  • gaseous or liquid solvents for the hydrocarbons water, steam, emulsifiers

Abstract

Methods and systems produce petroleum products with multiple horizontal wells through which injection processes precondition and displace the hydrocarbons in a formation. The wells extend through the formation spaced apart from one another in a lateral direction. Before fluid communication is established between the wells, cyclic injections and production of resulting backflow initiates conditioning of immobile products. Alternating between injection and production at adjacent wells may then facilitate establishing the fluid communication. After the fluid communication is established, a displacement procedure sweeps the hydrocarbons from one of the wells used for injection toward an adjacent one of the wells used for production.

Description

PRECONDITIONING FOR BITUMEN DISPLACEMENT
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a non-provisional application which claims benefit under 35 USC § 119(e) to U.S. Provisional Application Ser. No. 61/683,373 filed August 15, 2012, entitled "PRECONDITIONING FOR BITUMEN DISPLACEMENT," which is incorporated herein in its entirety.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT
[0002] None.
FIELD OF THE INVENTION
[0003] Embodiments of the invention relate to producing hydrocarbons with multiple horizontal wells through which injection processes precondition and displace the hydrocarbons.
BACKGROUND OF THE INVENTION
[0004] Bitumen recovery from oil sands presents technical and economic challenges due to high viscosity of the bitumen at reservoir conditions. Steam assisted gravity drainage (SAGD) provides one process for producing the bitumen from a reservoir. During SAGD operations, steam introduced into the reservoir through a horizontal injector well transfers heat upon condensation and develops a steam chamber in the reservoir. The bitumen with reduced viscosity due to this heating drains together with steam condensate along a boundary of the steam chamber and is recovered via a producer well placed parallel and beneath the injector well.
[0005] However, costs associated with energy requirements for the SAGD operations limit economic returns and can make thin pay zones uneconomic to recover. Other past processes proposed to rely on cyclic injections but failed to recover enough of the bitumen for commercial success. Further, prior displacement methods utilized in reservoirs containing mobile hydrocarbons cannot enable recovery of the bitumen where immobile since the bitumen provides a barrier to flow between wells. [0006] Therefore, a need exists for methods and systems for recovering hydrocarbons from oil sands including thin pay zones of immobile bitumen.
BRIEF SUMMARY OF THE DISCLOSURE
[0007] In one embodiment, a method of recovering hydrocarbons includes injecting during a first time a conditioning fluid through first and second wells and into a formation along lateral spaced apart and parallel horizontal lengths of the first and second wells. The method further includes producing the hydrocarbons recovered as backflow along the lengths of the first and second wells during a second time after the first time. Then, injecting the conditioning fluid into the formation along the length of the second well while producing the hydrocarbons along the length of the first well alternates with injecting the conditioning fluid into the formation along the length of the first well while producing the hydrocarbons along the length of the second well, thereby establishing fluid communication between the first and second wells. Next, injecting a displacement fluid into the formation along the length of the first well sweeps the hydrocarbons toward the second well and occurs while producing, along the length of the second well, the hydrocarbons being displaced.
[0008] For one embodiment, a method of recovering hydrocarbons includes injecting a conditioning fluid through first and second wells and into a formation at dispersed locations along parallel horizontal lengths of the first and second wells such that the injecting via the first well is offset in a lateral direction from the second well and aligned between the dispersed locations of the second well across from portions of the second well without fluid communication to the formation. Producing the hydrocarbons recovered as backflow at the dispersed locations along the first and second wells occurs after the injecting of the conditioning fluid. Then, injecting a displacement fluid into the formation via the dispersed locations along the first well sweeps the hydrocarbons toward the second well and occurs while producing, at the dispersed locations along the second well, the hydrocarbons being displaced. BRIEF DESCRIPTION OF THE DRAWINGS
[0009] A more complete understanding of the present invention and benefits thereof may be acquired by referring to the follow description taken in conjunction with the accompanying drawings.
[0010] Figure 1 is a schematic of three horizontal wells as viewed transverse to their horizontal length within a reservoir, according to one embodiment of the invention.
[0011] Figure 2 is a schematic top view of the wells with dispersed flow control along their length and operated in an all injection cycle as depicted by arrows indicating fluid flow direction, according to one embodiment of the invention.
[0012] Figure 3 is a schematic of the wells depicted in an all production cycle subsequent to the all injection cycle, according to one embodiment of the invention.
[0013] Figure 4 is a schematic of the wells depicted in a first alternating injection and production cycle subsequent to the all injection and the all production cycles, according to one embodiment of the invention.
[0014] Figure 5 is a schematic of the wells depicted in a second alternating injection and production cycle opposite and subsequent to the first alternating injection and production cycle, according to one embodiment of the invention.
[0015] Figure 6 is a schematic of the wells depicted in a final displacement operation once fluid communication is established between the wells, according to one embodiment of the invention.
[0016] Figure 7 is a schematic of the wells with resulting sweep of the reservoir by the final displacement operation shown by areas within dashed lines, according to one embodiment of the invention.
DETAILED DESCRIPTION
[0017] Turning now to the detailed description of the preferred arrangement or arrangements of the present invention, it should be understood that the inventive features and concepts may be manifested in other arrangements and that the scope of the invention is not limited to the embodiments described or illustrated. The scope of the invention is intended only to be limited by the scope of the claims that follow.
[0018] For some embodiments, methods and systems produce petroleum products with multiple horizontal wells through which injection processes precondition and displace the hydrocarbons in a formation. The wells extend through the formation spaced apart from one another in a lateral direction. Before fluid communication is established between the wells, cyclic injections and production of resulting backflow initiates conditioning of immobile products. Alternating between injection and production at adjacent wells may then facilitate establishing the fluid communication. After the fluid communication is established, a displacement procedure sweeps the hydrocarbons from one of the wells used for injection toward an adjacent one of the wells used for production.
[0019] Figure 1 illustrates a formation 100 defining a hydrocarbon reservoir bounded between a bottom layer 101 and a top layer 102. While methods disclosed herein are applicable even if the formation 100 is greater than 15 meters, the formation 100 in some embodiments extends in height less than 15 meters, thereby limiting commercial applications of processes such as steam assisted gravity drainage. A first well 111, a second well 112 and a third well 113 each include horizontal lengths that pass through the formation 100.
[0020] As shown viewed transverse to the horizontal lengths, all the wells 111, 112, 113 in some embodiments align in a common horizontal plane or otherwise have the horizontal length in substantial horizontal alignment with one another. A lateral distance of between 5 and 50 meters may separate the wells 111, 112, 113 from one another. Costs of cycling depicted and described with respect to Figures 2 and 3 and accompanying revenue may influence duration of such cycling with longer durations enabling wider lateral separation, even greater than 50 meters, between the wells 111, 112, 113. The second well 112 extends between and is adjacent the first well 111 and the third well 113 without any additional intervening wells disposed between any of the wells 111, 112, 113. As visible in Figures 2-7, the horizontal lengths of the wells 111, 112, 113 may extend parallel to one another.
[0021] Figure 2 shows the wells 111, 112, 113 operated in an all injection cycle as depicted by arrows indicating fluid flow direction. The all injection cycle may initiate while the wells 111, 112, 113 lack fluid communication with one another across the formation and may be an initial operation of the wells 111, 112, 113. The arrows in the all injection cycle indicate simultaneous injection of a conditioning fluid into the formation along the horizontal lengths of each of the wells 111, 112, 113.
[0022] For some embodiments, flow control devices 200 dispersed along the horizontal lengths of the wells 111, 112, 113 facilitate uniform or patterned injection and/or production along the horizontal lengths of the wells 111, 112, 113. The flow control devices 200 provide fluid communication from inside the wells 111, 112, 113 to the formation and can include orifices, perforations or slots in tubing or liner, well screen or other tortuous flow path assemblies. Valves or other metering devices may control inflow and/or outflow from the flow control devices 200.
[0023] Solid wall lined portions 201 of the horizontal lengths of the wells 111, 112, 113 may prevent fluid communication from inside the wells 111, 112, 113 to the formation. The lined portions 201 without fluid communication to the formation may separate the flow control devices 200 from one another along the horizontal lengths of the wells 111, 112, 113. In some embodiments, the flow control devices 200 of the first well 111 align between the flow control devices 200 of the second well 112 and across from the lined portions 201 of the second well 112. The flow control devices 200 of the third well 113 may also align across from the flow control devices 200 of the first well 111.
[0024] In some embodiments, the conditioning fluid as referred to herein and used in the all injection cycle can be any fluid capable of reducing viscosity or increasing mobility of the hydrocarbons by dissolving into the hydrocarbons and/or transferring heat to the hydrocarbons. The conditioning fluid may however not rely on any thermal application and may consist of only a solvent for the hydrocarbons. Economics may not support applying heat to the hydrocarbons with the conditioning fluid due to factors such thickness or extent of the formation.
[0025] For example, the solvent may be a lighter hydrocarbon than contained in the formation and may have 1 to 20 carbon atoms (C1-C20) or 1 to 4 carbon atoms (C1-C4) per molecule, or any mixture thereof. Examples of Ci to C4 hydrocarbon solvents include methane, ethane, propane and/or butane. The hydrocarbon solvent used as the conditioning fluid can be introduced into the formation as a gas or as a liquid regardless of its phase under reservoir conditions. [0026] Composition of the conditioning fluid may also transition during any injection operation disclosed herein. For example, the all injection cycle may first utilize a liquid hydrocarbon solvent under reservoir conditions, such as diesel, for the conditioning fluid followed by a gaseous solvent under reservoir conditions, such as a mix of propane and carbon dioxide, for the conditioning fluid. Injecting the propane as a liquid may further provide drive energy upon flashing to gas in the formation to facilitate subsequent recovery.
[0027] Figure 3 illustrates the wells 111, 112, 113 operated in an all production cycle during a subsequent time interval to the all injection cycle shown in Figure 2. The arrows in the all production cycle indicate simultaneous recovery of the hydrocarbons along the horizontal lengths of each of the wells 111, 112, 113. Since the wells 111, 112, 113 still lack fluid communication with one another, the hydrocarbons can only backfiow along with accompanying conditioning fluid to each of the wells 111, 112, 113.
[0028] The flow control devices 200 permit controlled inflow of the hydrocarbons into the wells 111, 112, 113 at where dispersed along the horizontal lengths of the wells
111, 112, 113. Processing the hydrocarbons produced to surface during the all production cycle may separate out the conditioning fluid for recycle. In some embodiments, cycling during additional time intervals between the all injection cycle shown in Figure 2 and the all production cycle illustrated in Figure 3 continues for multiple times and facilitates even distribution of the conditioning fluid injected into the formation.
[0029] Figure 4 shows the wells 111, 112, 113 operated in a first alternating injection and production cycle subsequent to the all injection and the all production cycles. In the first alternating injection and production cycle, injecting the conditioning fluid through the second well 112 and out the flow control devices 200 along the horizontal length thereof occurs while producing the hydrocarbons recovered through the flow control devices of the first and third wells 111, 113. As evident, the third well 113 mirrors the first well 111 in function and arrangement and just provides a more complete picture of how further alternating well arrangements, i.e., the first well 111 and the second well
112, could continue to be disposed across the formation. [0030] Figure 5 illustrates the wells 111, 112, 113 operated in a second alternating injection and production cycle opposite and subsequent to the first alternating injection and production cycle. Specifically, injecting the conditioning fluid through the first and third wells 111, 113 and out the flow control devices 200 along the horizontal lengths thereof occurs while producing the hydrocarbons recovered through the flow control devices of the second well 112. For some embodiments, cycling during additional time intervals between the alternating injection and production cycles shown in Figures 4 and 5 continues for multiple times and facilitates establishing fluid communication between the wells 111, 112, 113.
[0031] Figure 6 shows the wells 111, 112, 113 operated in a final displacement operation once fluid communication is established between the wells subsequent to operations illustrated in Figures 2-5. The arrows for the displacement operation indicate injection of a displacement fluid through the second well 112 and out the flow control devices 200 along the horizontal length thereof while producing the hydrocarbons recovered through the flow control devices of the first and third wells 111, 113. While the second well 112 for explanation purposes is selected for injection in the final displacement operation, direction of the arrows in Figure 6 may match either Figure 4 or Figure 5.
[0032] Examples of the displacement fluid include gases or liquids capable of pushing the hydrocarbons through the formation. The displacement fluid may in some embodiments also facilitate recovery by further decreasing viscosity of the hydrocarbons in the formation. The displacement fluid may contain like constituents as the conditioning fluid described herein and which may likewise include any constituent described herein for use as the displacement fluid.
[0033] For some embodiments, the displacement fluid includes any combination of gaseous or liquid solvents for the hydrocarbons, water, steam, emulsifiers (e.g., surfactants, alkalis, polymers), air, oxygen and carbon dioxide. Heating any of the fluids used for the displacement fluid enables heat transfer to the hydrocarbons for viscosity reduction. Injection of combustibles, such as air or oxygen, as the displacement fluid enables starting in situ combustion during the displacement operation for recovery, which depends on the fluid communication being established between the wells 111, 112, 113. [0034] Figure 7 illustrates the wells 111, 112, 113 with resulting sweep of the formation by the displacement operation shown by areas within dashed lines. The displacement operation thus drives the hydrocarbons that are now mobile toward the first and third wells 111, 113 for recovery. The displacement operation recovers the hydrocarbons not produced during the operations shown in Figures 2-5 to gain desired cumulative recovery needed for commercial success.
[0035] In closing, it should be noted that the discussion of any reference is not an admission that it is prior art to the present invention, especially any reference that may have a publication date after the priority date of this application. At the same time, each and every claim below is hereby incorporated into this detailed description or specification as an additional embodiment of the present invention.
[0036] Although the systems and processes described herein have been described in detail, it should be understood that various changes, substitutions, and alterations can be made without departing from the spirit and scope of the invention as defined by the following claims. Those skilled in the art may be able to study the preferred embodiments and identify other ways to practice the invention that are not exactly as described herein. It is the intent of the inventors that variations and equivalents of the invention are within the scope of the claims, while the description, abstract and drawings are not to be used to limit the scope of the invention. The invention is specifically intended to be as broad as the claims below and their equivalents.

Claims

1. A method of recovering hydrocarbons, comprising:
injecting during a first time a conditioning fluid through first and second wells and into a formation along lateral spaced apart and parallel horizontal lengths of the first and second wells;
producing the hydrocarbons recovered as backflow along the lengths of the first and second wells during a second time after the first time; then
alternating between injecting the conditioning fluid into the formation along the length of the second well while producing the hydrocarbons along the length of the first well and injecting the conditioning fluid into the formation along the length of the first well while producing the hydrocarbons along the length of the second well, thereby establishing fluid communication between the first well and the second well; and then injecting a displacement fluid into the formation along the length of the first well to sweep the hydrocarbons toward the second well and while producing, along the length of the second well, the hydrocarbons being displaced.
2. The method according to claim 1, further comprising cycling during additional time intervals between the injecting of the conditioning fluid and the producing of the hydrocarbons recovered as backflow.
3. The method according to claim 1, wherein the conditioning fluid includes a solvent for the hydrocarbons.
4. The method according to claim 1, wherein the conditioning fluid includes a solvent for the hydrocarbons that includes a liquid component under reservoir conditions and a gaseous component under reservoir conditions.
5. The method according to claim 1, wherein the displacement fluid includes steam.
6. The method according to claim 1, wherein the conditioning fluid includes a hydrocarbon solvent with between one and twenty carbon atoms per molecule and the displacement fluid contains steam.
7. The method according to claim 1, wherein the displacement fluid includes at least one constituent selected from solvent for the hydrocarbons, water, steam, emulsifiers, air, oxygen and carbon dioxide.
8. The method according to claim 1, wherein the conditioning fluid and the displacement fluid contain like constituents.
9. The method according to claim 1, wherein the first and second wells are spaced between 5 meters and 50 meters apart in a common horizontal plane without intervening wells between the first and second wells.
10. A method of recovering hydrocarbons, comprising:
injecting a conditioning fluid through first and second wells and into a formation at dispersed locations along parallel horizontal lengths of the first and second wells such that the injecting via the first well is offset in a lateral direction from the second well and aligned between the dispersed locations of the second well across from portions of the second well without fluid communication to the formation;
producing the hydrocarbons recovered as backflow at the dispersed locations along the first and second wells after the injecting of the conditioning fluid; and then
injecting a displacement fluid into the formation via the dispersed locations along the first well to sweep the hydrocarbons toward the second well and while producing, at the dispersed locations along the second well, the hydrocarbons being displaced.
11. The method according to claim 10, further comprising injecting the conditioning fluid into the formation via the dispersed locations along the second well while producing the hydrocarbons at the dispersed locations along the first well.
12. The method according to claim 10, further comprising, following simultaneous injection through the first and second wells and simultaneous production through the first and second wells and until fluid communication is established between the first well and the second well, alternating between:
injecting the conditioning fluid into the formation via the dispersed locations along the second well while producing the hydrocarbons at the dispersed locations along the first well; and
injecting the conditioning fluid into the formation via the dispersed locations along the first well while producing the hydrocarbons at the dispersed locations along the second well.
13. The method according to claim 10, further comprising cycling multiple times between the injecting of the conditioning fluid and the producing the hydrocarbons recovered at the dispersed locations along the first and second wells.
14. The method according to claim 10, wherein the injecting of the conditioning fluid occurs simultaneously through the first and second wells and the producing the hydrocarbons recovered as backflow occurs simultaneously through the first and second wells.
15. The method according to claim 10, wherein the first and second wells lack fluid communication with one another across the formation upon initiating the injecting of the conditioning fluid.
16. The method according to claim 10, wherein the displacement fluid includes steam.
17. The method according to claim 10, wherein the displacement fluid includes at least one constituent selected from solvent for the hydrocarbons, water, steam, emulsifiers, air, oxygen and carbon dioxide.
18. The method according to claim 10, wherein the conditioning fluid is injected alone and consists of a solvent for the hydrocarbons.
19. The method according to claim 10, wherein the conditioning fluid includes a solvent for the hydrocarbons that includes a liquid component under reservoir conditions and a gaseous component under reservoir conditions.
20. The method according to claim 10, wherein the first and second wells are spaced between 5 meters and 50 meters apart.
PCT/US2013/049259 2012-08-15 2013-07-03 Preconditioning for bitumen displacement WO2014028137A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261683373P 2012-08-15 2012-08-15
US61/683,373 2012-08-15
US13/934,580 US20140048259A1 (en) 2012-08-15 2013-07-03 Preconditioning for bitumen displacement
US13/934,580 2013-07-03

Publications (1)

Publication Number Publication Date
WO2014028137A1 true WO2014028137A1 (en) 2014-02-20

Family

ID=50099245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/049259 WO2014028137A1 (en) 2012-08-15 2013-07-03 Preconditioning for bitumen displacement

Country Status (2)

Country Link
US (1) US20140048259A1 (en)
WO (1) WO2014028137A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9163491B2 (en) 2011-10-21 2015-10-20 Nexen Energy Ulc Steam assisted gravity drainage processes with the addition of oxygen
US9803456B2 (en) 2011-07-13 2017-10-31 Nexen Energy Ulc SAGDOX geometry for impaired bitumen reservoirs

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189555A1 (en) * 2013-05-22 2014-11-27 Total E&P Canada, Ltd. Fishbone sagd
CA2877640C (en) * 2014-01-13 2021-12-14 John A. Stanecki Oil recovery with fishbone wells and steam
CA2972203C (en) 2017-06-29 2018-07-17 Exxonmobil Upstream Research Company Chasing solvent for enhanced recovery processes
CA2974712C (en) 2017-07-27 2018-09-25 Imperial Oil Resources Limited Enhanced methods for recovering viscous hydrocarbons from a subterranean formation as a follow-up to thermal recovery processes
CA2978157C (en) 2017-08-31 2018-10-16 Exxonmobil Upstream Research Company Thermal recovery methods for recovering viscous hydrocarbons from a subterranean formation
CA2983541C (en) 2017-10-24 2019-01-22 Exxonmobil Upstream Research Company Systems and methods for dynamic liquid level monitoring and control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4844158A (en) * 1988-12-08 1989-07-04 Mobil Oil Corp. Solvent stimulation of viscous oil via a horizontal wellbore
US4850429A (en) * 1987-12-21 1989-07-25 Texaco Inc. Recovering hydrocarbons with a triangular horizontal well pattern
US8091636B2 (en) * 2008-04-30 2012-01-10 World Energy Systems Incorporated Method for increasing the recovery of hydrocarbons
US20120247760A1 (en) * 2011-03-29 2012-10-04 Conocophillips Company Dual injection points in sagd

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2494391C (en) * 2005-01-26 2010-06-29 Nexen, Inc. Methods of improving heavy oil production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850429A (en) * 1987-12-21 1989-07-25 Texaco Inc. Recovering hydrocarbons with a triangular horizontal well pattern
US4844158A (en) * 1988-12-08 1989-07-04 Mobil Oil Corp. Solvent stimulation of viscous oil via a horizontal wellbore
US8091636B2 (en) * 2008-04-30 2012-01-10 World Energy Systems Incorporated Method for increasing the recovery of hydrocarbons
US20120247760A1 (en) * 2011-03-29 2012-10-04 Conocophillips Company Dual injection points in sagd

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9803456B2 (en) 2011-07-13 2017-10-31 Nexen Energy Ulc SAGDOX geometry for impaired bitumen reservoirs
US9163491B2 (en) 2011-10-21 2015-10-20 Nexen Energy Ulc Steam assisted gravity drainage processes with the addition of oxygen

Also Published As

Publication number Publication date
US20140048259A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
US20140048259A1 (en) Preconditioning for bitumen displacement
US10145226B2 (en) Steam-solvent-gas process with additional horizontal production wells to enhance heavy oil / bitumen recovery
CA2740941C (en) Process for solvent assisted in situ bitumen recovery startup
CA2869217C (en) Alternating sagd injections
CA2827655C (en) In situ combustion following sagd
US10190400B2 (en) Solvent injection recovery process
US20160312592A1 (en) Sw-sagd with between heel and toe injection
US10526881B2 (en) Solvents and non-condensable gas coinjection
US9534482B2 (en) Thermal mobilization of heavy hydrocarbon deposits
US20120241150A1 (en) Methods for producing oil and/or gas
US10400561B2 (en) Method for accelerating heavy oil production
WO2013124742A1 (en) Toe connector between producer and injector wells
CA3087645A1 (en) In situ hydrocarbon recovery from pay zones between low permeability layers in a stratified reservoir region
US9845668B2 (en) Side-well injection and gravity thermal recovery processes
CA2935652A1 (en) Heavy oil extraction using liquids swept along by gas
US20190017361A1 (en) Solvents and ncg-co-injection with tapered pressure
CA3003532C (en) Solvents and ncg-co-injection with tapered pressure
CA2833068C (en) Bottom-up solvent-aided process and system for hydrocarbon recovery
US20140332210A1 (en) Top-down oil recovery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13829478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13829478

Country of ref document: EP

Kind code of ref document: A1