WO2014047068A1 - Map and ablate closed-loop cooled ablation catheter - Google Patents

Map and ablate closed-loop cooled ablation catheter Download PDF

Info

Publication number
WO2014047068A1
WO2014047068A1 PCT/US2013/060183 US2013060183W WO2014047068A1 WO 2014047068 A1 WO2014047068 A1 WO 2014047068A1 US 2013060183 W US2013060183 W US 2013060183W WO 2014047068 A1 WO2014047068 A1 WO 2014047068A1
Authority
WO
WIPO (PCT)
Prior art keywords
mapping
electrode
ablation
catheter
ablation electrode
Prior art date
Application number
PCT/US2013/060183
Other languages
French (fr)
Inventor
Zaya Tun
Isaac Kim
Josef V. Koblish
Minhchau N CAO
Steve HA
Original Assignee
Boston Scientific Scimed, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Scimed, Inc. filed Critical Boston Scientific Scimed, Inc.
Priority to CN201380048606.6A priority Critical patent/CN104640513A/en
Priority to EP13774278.9A priority patent/EP2897544B1/en
Publication of WO2014047068A1 publication Critical patent/WO2014047068A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • A61B5/6853Catheters with a balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0036Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room including treatment, e.g., using an implantable medical device, ablating, ventilating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00039Electric or electromagnetic phenomena other than conductivity, e.g. capacity, inductivity, Hall effect
    • A61B2017/00044Sensing electrocardiography, i.e. ECG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • A61B2018/00136Coatings on the energy applicator with polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG

Definitions

  • the present disclosure generally relates to systems and methods for providing a therapy to a patient. More particularly, the present disclosure relates to a catheter for mapping and ablating tissue within the heart of the patient including mapping electrodes deposited on an exterior surface of the ablation electrode.
  • Atrial fibrillation is a condition in the heart causing irregular heartbeats due to generation of abnormal electrical signals.
  • Various treatment regimens may be followed for treating arrhythmias, such as anti-arrhythmic medications and catheter ablation.
  • Catheter ablation is a non-surgical, minimally invasive procedure that involves killing an abnormal heart muscle responsible for heart racing. This produces a small area of dead heart muscle called a lesion.
  • abnormal heart muscles are first targeted and mapped, such as through a mapping technique.
  • a catheter generally includes one or more mapping electrodes configured to carry out mapping functions and a tip ablation electrode disposed at the tip portion configured to carry out the ablation function.
  • Mapping typically involves percutaneously introducing the catheter having one or more mapping electrodes into the patient, passing the catheter through a blood vessel (e.g., the femoral vein or artery) and into an endocardial site (e.g., the atrium or ventricle of the heart) to map bioelectrical signals arising from the myocardial tissues and thereby, recognize the tissue that is the source of the arrhythmia.
  • a blood vessel e.g., the femoral vein or artery
  • an endocardial site e.g., the atrium or ventricle of the heart
  • the tip of the ablation catheter including the tip ablation electrode can then deliver energy to the abnormal heart muscle, which disables it.
  • an ablation electrode including one or more mapping electrodes deposited on an exterior surface thereof at a distal end of a map and ablate catheter, as well map and ablate catheters including such deposited mapping electrodes.
  • a system for performing mapping and ablation functions includes a catheter sized and shaped for vascular access.
  • the catheter includes an elongate body extending between a proximal end and a distal end.
  • the catheter further includes a tip section positioned at the distal end of the body such that the tip section includes a proximal portion and a distal portion.
  • the system also includes one or more electrode structures on an exterior surface of the tip section such that the one or more electrode structures each includes a mapping electrode at the distal portion of the tip section and a contact pad electrically coupled to the mapping electrode.
  • Example 2 the system according to Example 1 , wherein the tip section includes an ablation electrode configured to deliver radio frequency (RF) energy for an RF ablation procedure, and wherein the one or more electrode structures are deposited on an exterior surface of the ablation electrode.
  • RF radio frequency
  • Example 3 the system according to either Example 1 or Example 2, wherein the one or more electrode structures further includes an insulative base layer between each of the one or more electrode structures and the ablation electrode.
  • Example 4 the system according to any of Examples 1 -3, wherein the catheter includes at least one inner fluid lumen, wherein the ablation electrode includes an exterior wall that defines an open interior region within the ablation electrode, and wherein the catheter system further includes a thermal mass within the open interior region and a cooling chamber in fluid communication with the at least one inner fluid lumen of the elongate body and positioned proximally to the thermal mass.
  • Example 5 the system according to any of Examples 1 -4, wherein the ablation electrode includes an exterior wall that defines an open interior region within the ablation electrode, wherein the exterior wall includes irrigation ports, and wherein the irrigation ports are in fluid communication with the open interior region to allow fluid to flow from the open interior region through the irrigation ports.
  • Example 6 the system according to any of Examples 1 -5, wherein the tip section includes a flexible balloon removably coupled to the distal end of the catheter.
  • Example 7 the system according to any of Examples 1 -6, and further comprising one or more mapping ring electrodes disposed on the body proximal to the one or more electrode structures.
  • each of the one or more electrode structures further includes a conductive trace between the contact pad and mapping electrode, and an insulative coating layer over the conductive trace.
  • Example 9 the system according to Example 8, wherein the conductive trace has an impedance of less than 100 ohms.
  • Example 10 the system according to any of Examples 1 -9, wherein the one or more electrode structures are formed via physical vapor deposition.
  • a system for performing mapping and ablation functions includes a catheter sized and shaped for vascular access.
  • the catheter includes an elongate body extending between a proximal end and a distal end and having at least one inner fluid lumen.
  • the system further includes an ablation electrode coupled to the distal end of the catheter body, wherein the ablation electrode is configured to deliver radio frequency (RF) energy for an RF ablation procedure.
  • the ablation electrode also includes an exterior wall that defines an open interior region within the ablation electrode.
  • the system further includes a thermal mass within the open interior region and a cooling chamber in fluid communication with the at least one inner fluid lumen of the elongate body and positioned proximally to the thermal mass.
  • the system further includes one or more insulative base layers on an exterior surface of the ablation electrode and one or more mapping electrodes each disposed on one of the one or more insulative base layers such that each mapping electrode can be proximate to a distal end of the ablation electrode.
  • Example 12 the system according to Example 1 1 , and further comprising one or more contact pads at a proximal end of the ablation electrode, wherein each contact pad is electrically coupled to one of the one or more mapping electrodes.
  • Example 13 the system according to either Example 1 1 or Example 12, wherein each contact pad is connected to one of the one or more mapping electrodes via a conductive trace.
  • Example 14 the system according to Example 13, and further comprising an insulative coating layer over the conductive trace.
  • Example 15 the system according to any of Examples 1 1 -14, and further comprising one or more mapping ring electrodes disposed on the body proximal to the one or more electrode structures.
  • Example 16 the system according to any of Examples 1 1 -15, wherein the mapping electrodes are formed via physical vapor deposition.
  • a system for performing mapping and ablation functions includes a radio frequency (RF) generator, a fluid reservoir and pump, a mapping signal processor, and a catheter sized and shaped for vascular access.
  • the catheter includes an elongate body extending between a proximal end and a distal end having at least one inner fluid lumen in fluid communication with the fluid reservoir and pump.
  • the system further includes an ablation electrode coupled to the distal end of the catheter body, and operably connected to the RF generator.
  • the ablation electrode includes an exterior wall that defines an open interior region within the ablation electrode.
  • the system further includes one or more insulative base layers on an exterior surface of the ablation electrode and one or more mapping electrodes operably connected to the mapping signal processor such that each mapping electrode can be disposed on one of the one or more insulative base layers. Each mapping electrode can be proximate to a distal end of the ablation electrode.
  • Example 18 the system according to Example 17, and further comprising a thermal mass within the open interior region and a cooling chamber in fluid communication with the at least one inner fluid lumen of the elongate body and positioned proximally to the thermal mass.
  • Example 19 the system according to either Example 17 or Example 18, and further comprising one or more contact pads at a proximal end of the ablation electrode electrically connected to the mapping signal processor, wherein each contact pad is electrically coupled to one of the one or more mapping electrodes via a conductive trace.
  • Example 20 the system according to Example 19, and further comprising an insulative coating layer over each conductive trace.
  • FIG. 1 is a schematic view of an embodiment of a system for performing mapping and ablation functions including a map and ablate catheter.
  • FIG. 2 is a schematic view of another embodiment of a system for performing mapping and ablation functions including a map and ablate catheter.
  • FIG. 3 is a side view of an embodiment of a tip section of a map and ablate catheter including an ablation electrode with one or more electrode structures deposited thereon.
  • FIG. 4 is a cross-sectional view of an embodiment of the tip section of the map and ablate catheter including deposited mapping electrode structures and a closed-loop cooling system.
  • FIG. 5 is a perspective view of an embodiment of an open irrigated tip section of a map and ablate catheter including deposited mapping electrode structures.
  • FIG. 6 is a perspective view of an embodiment of a non-irrigated tip section of a map and ablate catheter including deposited mapping electrode structures.
  • FIG. 7 is a perspective view of an embodiment of a mapping balloon including mapping electrodes deposited thereon.
  • FIG. 1 is a front view of a system 100 for performing mapping and ablation functions.
  • the system 100 includes a catheter 102 sized and shaped for vascular access.
  • the catheter 102 has a distal end 104 and a proximal end 106.
  • the proximal end 106 of the catheter 102 includes a handle 108 having a proximal portion 1 10 and a distal portion 1 12, and is configured to be comfortably held by a practitioner during a treatment procedure involving ablation.
  • the handle 108 can be composed of a durable and rigid material, such as medical grade plastic, and ergonomically molded to allow the physician to more easily manipulate the catheter 102.
  • the handle 108 can incorporate a plurality of conduits, conductors, and wires to facilitate control of the catheter 102 and/or mating of the catheter 102 with a source of fluid, a source of ablative energy, a source of mapping, temperature display, sensors, and/or control software/hardware.
  • the handle 108 further includes a connection port 1 13 through which ablative energy source and a mapping energy source can be operably coupled.
  • the catheter 102 can include an elongate body 1 14 having a proximal end 1 16 and a distal end 1 18.
  • the body houses electrical conductors/ cable assembly (e.g., wires) 120 for transmitting sensed signals and/or ablation energy.
  • the elongate body 1 14 is preferably about 1 .67 mm to 3 mm in diameter, and between 800 mm to 1500 mm in length.
  • the elongate body 1 14 preferably has a circular cross-sectional geometry. However, other cross-sectional shapes, such as elliptical, rectangular, triangular, and various other shapes, can be provided.
  • the elongate body 1 14 can be preformed of an inert, resilient plastic material that retains its shape and does not soften significantly at body temperature; for example, Pebax®, polyethylene, or Hytrel®) (polyester).
  • the elongate body 1 14 can be made of a variety of materials, including, but not limited to, metals and polymers.
  • the elongate body 1 14 is preferably flexible so that it is capable of winding through a tortuous path that leads to a target site, i.e., an area within the heart.
  • the elongate body 1 14 can be semi-rigid, i.e., by being made of a stiff material, or by being reinforced with a coating or coil, to limit the amount of flexing.
  • the movement of the distal end 1 18 of the elongate body 1 14 can be controlled by a control mechanism 122 included within the handle 120.
  • the system 100 can include an articulating section of the elongate body 1 14 (e.g., near the distal end 1 18) that is controlled via the control mechanism 122.
  • the distal end 1 18 of the elongate body 1 14 can be deflected or bent.
  • the articulation section of the body can facilitate insertion of the catheter 102 through a body lumen (e.g., vasculature) and/or placement of electrodes at a target tissue location.
  • the articulation section can provide one or more degrees of freedom and permit up/down and/or left/right articulation.
  • control mechanism 122 and the articulating section of the catheter 102 can include a variety of features associated with conventional articulating catheters.
  • the distal end 104 of the catheter 102 includes a tip section 124 positioned at the distal end 1 18 of the elongate body 1 14.
  • the tip section 124 includes a proximal portion 134 and a distal portion 136.
  • the tip section 124 is formed from a conductive material.
  • the tip section 124 is comprised of a platinum-iridium alloy.
  • the platinum iridium top section 124 comprises an alloy with approximately 90% platinum and 10% iridium. This conductive material is used to conduct radio frequency (RF) energy used to form lesions during the ablation procedure.
  • the ablation electrode 126 can have any suitable length, for example, in the range between 4 mm and 10 mm.
  • the ablation electrode 126 can be composed of a solid, electrically conductive material, such as platinum, gold, or stainless steel.
  • the ablation electrode 126 can be configured to deliver ablation energy to the myocardial tissues that are the source of arrhythmia, thereby destroying them or a portion thereof through heat.
  • the ablation electrode 126 can be electrically coupled to an RF generator, which will be discussed in further detail with regards to FIG. 2, so that ablation energy can be conveyed from the RF generator to the ablation electrode 126 to form localized lesions in the myocardial tissues.
  • an RF wire 128 can be electrically connected to the ablation electrode 126 using suitable means, such as soldering or welding.
  • the RF wire 128 can pass through a lumen 144 extending through the elongate body 1 14 of the catheter 102, where it is further electrically coupled to the cable assembly 120 located within the handle 108 and to the RF generator exteriorly coupled to the catheter system 100.
  • the system 100 includes one or more electrode structures 142 on an exterior surface 130 of the tip section 124.
  • the electrode structures 142 each include a mapping electrode 132 at the distal portion 136 of the tip section 124.
  • the mapping electrode 132 is deposited on the tissue ablation electrode 126, and in particular, is deposited on an exterior surface 130 of the ablation electrode 126. This can allow the localized intracardial electrical activity to be measured in real time at the point of RF energy delivery from the ablation electrode 126 thereby allowing the physician to ascertain lesion formation by measuring the electrical activity of the tissue in contact with the tip ablation electrode 126 (e.g., the lack of electrical activity indicates ablated tissue, whereas the presence of electrical activity indicates live tissue).
  • the mapping electrodes 132 are deposited on the exterior surface 130 of the ablation electrode 126.
  • the one or more electrode structures 142 are deposited via physical vapor deposition (PVD).
  • PVD physical vapor deposition
  • the physical vapor deposition may be used for the deposition of the electrodes formed of a metal.
  • other deposition techniques may be used for electrode deposition on the exterior surface 130 of the ablation electrode 126, such as sputtering.
  • the electrode structures 142 each includes a contact pad that is electrically coupled to the mapping electrode 132.
  • the contact pad can be configured to provide connection of the mapping electrode 132 with the cable assembly 120, thereby allowing the mapping electrode 132 to form electrical connection with the electrical circuitry of the catheter 102.
  • the mapping electrode 132 are electrically coupled to a mapping signal processor, which will be discussed in further detail with regards to FIG. 2, so that electrical events in myocardial tissue can be sensed for the generation of electrograms, monophasic action potentials (MAPs), isochronal electrical activity maps, and the like.
  • the signal wires 138 are respectively connected to the mapping electrodes 132 using suitable means such as soldering or welding. The signal wires 138 can pass through a lumen 144 extending through the elongate body 1 14 of the catheter 102, where it is electrically coupled to the cable assembly 120 located within the handle 108 and then to the mapping microprocessor.
  • the system 100 may also include one or more mapping ring electrodes 140.
  • the mapping ring electrodes 140 can be configured to map the bioelectrical signals arising from the myocardial tissues and thereby recognize the tissues that are the source of arrhythmia.
  • the mapping ring electrodes 140 can include a distal mapping ring electrode 140a, a medial mapping ring electrode 140b, and a proximal mapping ring electrode 140c.
  • the mapping ring electrodes 140a, 140b, and 140c as well as the ablation electrode 126 are capable of forming a bipolar mapping electrode pairs.
  • the ablation electrode 126 and distal mapping ring electrode 140a can be configured as a first bipolar mapping electrode pair
  • the distal mapping ring electrode 140a and the medial mapping ring electrode 140b can be configured as a second bipolar mapping electrode pair
  • the medial mapping ring electrode 140b and the proximal mapping ring electrode 140c can be configured as a third bipolar mapping electrode pair, or any combination thereof.
  • the mapping ring electrodes 140a-140c are also electrically coupled to the mapping signal processor via the signal wires 138 to map electrical events in the myocardial tissues.
  • FIG. 2 illustrates an embodiment of the mapping and ablation system 100 including cooling, ablation, and mapping system components and a closed-irrigated catheter 102.
  • the catheter 102 can be configured to be introduced through the vasculature of the patient, and into one of the chambers of the heart, where it can be used to map and ablate myocardial tissue.
  • the system 100 also comprises a radio frequency (RF) generator 202, a fluid reservoir and pump 204, a mapping signal processor 206, coupled to the catheter 102 via a cable assembly or through connection port 1 13.
  • the radio frequency (RF) generator 202, and the mapping signal processor 206 can be connected to the catheter 102 through the RF wire 128 and the signal wires 138 of the cable assembly 120.
  • the fluid reservoir and pump 204 can be connected to the catheter 102 through the connection port 1 13.
  • radio frequency (RF) generator 202 the fluid reservoir and the pump 204, and the mapping signal processor 206 are shown as discrete components, they can alternatively be incorporated into a single integrated device.
  • the ablation electrode 126 coupled to the distal end 1 18 of the catheter body 1 14 can be operably connected to the RF generator 202.
  • the RF generator 202 can be used to generate the energy for the ablation procedure.
  • the RF generator 202 includes a source 208 for the RF energy and a controller 210 for controlling the timing and the level of the RF energy delivered through the tip 204.
  • the illustrated system 100 also includes the fluid reservoir and pump 204 for pumping cooling fluid, such as a saline, through an inner fluid lumen of the catheter 102 (which will be discussed in greater detailed below) to the tip portion 124.
  • the mapping signal processor 206 can be operably coupled to the one or more electrodes similar to the mapping electrode 132.
  • the mapping signal processor 206 can be configured to detect, process, and record electrical signals within the heart via the one or more electrodes of the catheter 102. Based on the electrical signals sensed by the one or more electrodes, the physician can identify the specific target tissue sites within the heart, and ensure that the arrhythmia causing substrates have been electrically isolated by the ablative treatment. Based on the detected electrical signals, the mapping signal processor 206 outputs electrocardiograms (ECGs) to a display (not shown), which can be analyzed by the physician to determine the existence and/or location of arrhythmia substrates within the heart and/or determine the location of the catheter 102 within the heart. In some embodiments, the mapping signal processor 206 can generate an isochronal map of the detected electrical activity and output the map to the display for analysis by the physician.
  • ECGs electrocardiograms
  • FIG. 3 is a side view of the tip section 124 including the ablation electrode 126 with the one or more electrode structures 142 deposited thereon.
  • the tip section 124 comprises the ablation electrode 126 configured to deliver radio frequency (RF) energy for the RF ablation procedure and the electrode structures 142.
  • the electrode structures 142 each include the mapping electrode 132.
  • the mapping electrodes 132 can be disposed on the tissue ablation electrode tip 304, and in particular, are deposited on the exterior surface 130 of the tissue ablation electrode tip 304. This allows the localized intracardial electrical activity to be measured in real time at the point of energy delivery from the ablation electrode 126.
  • mapping electrodes 132 do not sense far field electrical potentials that would normally be associated with bipolar measurements taken between the tissue ablation electrode 126 and the mapping ring electrodes 140a, 140b, 140c, due to their relatively small size and spacing between each of the electrode structures 142. Instead, the mapping electrodes 132 measure the highly localized electrical activity at the point of contact between the ablation electrode 126 and the endocardial tissue. Thus, the arrangement of the mapping electrodes 132 substantially enhances the mapping resolution of the catheter 102.
  • mapping electrodes 132 allow a user to measure complex localized electrical activity more precisely, resulting in a powerful tool for diagnosing electrocardiogram (ECG) activity, for example, the high frequency potentials that are encountered around pulmonary veins or the fractioned ECGs associated with atrial fibrillation triggers.
  • ECG electrocardiogram
  • the arrangement of the mapping electrodes 132 can also allow generation of high density electrical activity maps such as electrical activity isochronal maps, which may be combined with anatomical maps, to create electro-anatomical maps.
  • detection of tissue contact and tissue characterization, including lesion formation assessment can be made more accurate due to the elimination or minimization of the detected far field electrical activity.
  • the mapping electrodes 132 can be small, independent diagnostic sensing electrodes deposited on the exterior surface 130 of the tip 304 of the RF ablation catheter 102.
  • Each mapping electrode 132 can be composed of an electrically conductive material, such as platinum, gold, or stainless steel.
  • the mapping electrodes 132 are comprised of a silver/silver chloride to maximize the coupling between the mapping electrode 132 and blood, thereby optimizing signal fidelity.
  • the electrode structures 142 are formed via physical vapor deposition (PVD) or other suitable methods for deposing the electrodes onto the exterior surface 130.
  • the mapping electrodes 132 can be disposed on the ablation electrode 126 in any one of a variety of different patterns. In an example, as shown in FIG. 3, the mapping electrodes 132 are circumferentially disposed about the cylindrical-shaped region of the ablation electrode 126 at 120° intervals so that they face radially outward in different directions.
  • each of the electrode structures 142 further includes a conductive trace 306 electrically coupled to the mapping electrode 132 and a contact pad 308 electrically connected to the conductive trace 306.
  • the contact pads 308 are disposed at a proximal portion of the tip 304.
  • the contact pad 308 may be configured for electrical connection to a diagnostic device such as the mapping processor 206.
  • the conductive trace 306 can be offset either along the longitudinal or lateral axes of the catheter system 102 from the mapping electrode 132 so long as some portion of the conductive trace 306 remains in contact with the mapping electrode 132.
  • the lateral and longitudinal cross-sections of both the mapping electrode 132 and the conductive trace 306 may vary similar to the variation in the depth or thickness of the conductive trace 306 and mapping electrode 132.
  • the conductive traces 306 have an impedance of less than 100 ohms.
  • the catheter 102 includes a plurality of internal conductors each coupled to one of the contact pads 306.
  • each of the mapping electrodes 132 can be electrically connected to other semiconductor devices, electronic components on the substrate, or components that are external to the catheter 102 such as the mapping processor.
  • the electrodes 126, 132, and/or 140, the conductive trace 306, and contact pad 308 can be made from the same conductive materials. In some embodiments, the electrodes 126, 132, and/or 140, conductive trace 306, and contact pad 308 can be made of different conductive materials.
  • the contact pads 308 can be formed of a material such as gold (Au), platinum (Pt), palladium (Pd), ruthenium (Ru), rhodium (Rh), iridium (Ir), carbon (C), or other material that resists oxidation.
  • the conductive traces 306 can be formed of any suitable conductive material, such as Au, Pt, or copper (Cu).
  • the electrodes 126, 132, and/or 140, conductive trace 306, or contact pad 308 may be comprised of any suitable material including, for example, Pt, Au, Pd, Ru, Rh, Ir, silver (Ag), C, and their alloys or oxides.
  • Conducting polymers such as polypyrrole (PPy), polyaniline (PANi), polythiophene, poly (3,4- ethylenedioxythiophene) (PEDOT) or their derivatives may also be employed for the conductive elements of the catheter 102.
  • the electrode structures 142 may further include a multi-layer dielectric material 310 such that the multi-layer dielectric material 310 includes an insulative base layer 312 and/or an insulative coating layer 314.
  • the multi-layer dielectric material 310 acts as a dielectric barrier between the ablation electrode 126 and the electrode structures 142 resisting the conductance of the RF energy from the ablation electrode 126 to the electrode structures 142.
  • the system 100 includes the insulative base layers 312 between each of the one or more electrode structures 142 and the ablation electrode 126.
  • the insulative base layer 312 can be composed of a suitable electrically and thermally insulative material, such as a high temperature thermoset plastic with high dielectric properties, e.g., polyimide or plastics from the phenolic group, such as Bakelite® or Ultem® plastics.
  • the electrically insulative material of the insulative base layer 312 makes the mapping electrode 132 electrically insulated from the ablation electrode 126, and thus, from each other, so that each of the mapping electrode 132 can provide independent mapping channels.
  • the thermal insulative material of the insulative base layer 312 makes the mapping electrode 132 thermally insulated from the ablation electrode 126 to prevent saturation of the mapping channels that would otherwise cause interference from the heat generated during a radio frequency (RF) ablation procedure.
  • RF radio frequency
  • the insulative base layer 310 can be formed on the exterior surface 130 of the ablation electrode 126 in a manner such that the mapping electrodes 132 can be each disposed on the insulative base layers 312 such that each of the mapping electrode 132 can be proximate to the ablation electrode 126.
  • the insulative base layer 312 can be further coated with an insulative coating layer 314 such that the insulative coating layer 314 is provided over each of the conductive trace 306.
  • the insulative coating layer 314 electrically isolates the conductive trace from surrounding structures.
  • FIG. 4 is a cross-sectional view of an embodiment of the tip section 124 of the map and ablate catheter including deposited electrode structures 142 and a closed-loop cooling system.
  • the tip section 124 includes at least one inner fluid lumen 402 in fluid communication with the fluid reservoir and pump 204 (shown in FIG. 2).
  • the ablation electrode 126 is configured to deliver RF energy for the RF ablation procedure.
  • the tip section 124 on which the ablation electrode 126 is formed can be a hollow tip section 124 and can include an open interior region 410 defined by the exterior wall 130 of the tip section 124.
  • the tip section 124 includes a thermal mass 404.
  • the thermal mass 404 comprises a material having a high thermal conductivity.
  • a temperature sensor 406 can be positioned at least partially within the thermal mass 404.
  • the thermal mass 404 substantially extends across the full width of the tip 124.
  • the tip section 124 further includes a cooling chamber 408 in fluid communication with the inner fluid lumens 402 of the elongate body 1 14 and positioned proximally to the thermal mass 404.
  • the cooling chamber 408 substantially extends across an entire width of the tip 124 between the exterior walls similar to the exterior wall 130 of the tip 304.
  • the cooling chamber 408 can be defined in the form of a cavity near the proximate end of the tip 124 that is bounded at its distal end 412 by the thermal mass 404 and is bounded at its proximal end 414 by a portion of the tip section 124 and/or by a portion of the elongate catheter body 1 14.
  • the cooling chamber 408 is positioned proximal to at least a portion of the thermal mass 404 and/or adjacent to the proximal portion 1 10 of the tip section 124.
  • ablation energy moves through the tip section 124, areas of increased current density can develop and result in localized hotspots.
  • the system 100 described herein, can reduce the effect of proximal hotspots through the use of the cooling chamber 408 in fluid communication with the fluid lumen 402 of the elongate body 1 14.
  • a first fluid lumen 402a and a second fluid lumen 402b are in fluid communication with the tip 124.
  • the first lumen 402a can deliver a cooling fluid into, for example, the cooling chamber 408.
  • the tip 124 includes the second fluid lumen 402b for removing cooling fluid after the cooling fluid has absorbed heat within the cooling chamber 408.
  • the second fluid lumen 402b can return the heated fluid through the catheter body 1 14 for egress from the system 100 to a proximal location, such as the fluid reservoir and pump 204 for cooling and/or recirculation. As a result, heat can be removed from the tip 124 through the path (as shown along the arrow directions) of the cooling fluid.
  • the tip section 124 includes one or more insulative base layers 416 on the exterior surface 130 of the ablation electrode 126 and one or more mapping electrodes similar to the mapping electrode 132 each disposed on one of insulative base layers 210.
  • the electrically insulative material of the insulative base layer 416 makes the mapping electrode 132 electrically insulated from the ablation electrode 126 and from each other so that each of the mapping electrodes 132 can provide independent mapping channels.
  • FIGS. 5 and 6 are perspective views of an open irrigated tip and a non-irrigated tip, respectively, including the deposited one or more electrode structures 142.
  • the catheter 102 as described in conjunction with the present invention can be a hybrid catheter 102 as it can be used simultaneously for both localized mapping and ablation functions.
  • the catheter 102 can be configured to provide localized, high resolution ECG signals during ablation.
  • the localized mapping enables the mapping to be precise.
  • the catheter 102 has an open-irrigated catheter design.
  • the hollow tip section 124 on which the ablation electrode 126 are formed includes the open interior region 410 defined by the exterior wall 130 of the tip section 124.
  • the exterior wall 130 further includes a plurality of irrigation ports 502.
  • the irrigation ports 502 are in fluid communication with the open interior region 410 to allow fluid to flow from the open interior region 410 through the irrigation ports 502.
  • a cooling fluid such as a saline fluid
  • a fluid reservoir and pump 202 shown in FIG. 2
  • Clinical benefits of such catheter 102 can include, but are not limited to, controlling the temperature and reducing coagulum formation on the tip section 124 of the catheter 102, preventing impedance rise of tissue in contact with the tip section 124, and maximizing potential energy transfer to the tissue.
  • the localized intra cardiac electrical activity can be recorded in real time or near-real time right at the point of energy delivery.
  • the hybrid catheter design of the present disclosure can also have a non-irrigated design as shown in FIG. 6 n a non- irrigated tip catheter 102.
  • FIG. 7 illustrates a perspective view of a mapping balloon 702 for the purpose of mapping anatomical features and tissue.
  • the tip section 124 comprises the mapping balloon 702 which is removably coupled to the distal end 104 of the catheter 102.
  • the balloon 702 can be mounted circumferentially on the distal end 1 18 of the elongate body 1 14 of the catheter 102.
  • the balloon 702 can be elastic, and may be comprised of polyethylene cross-linked latex, although other biocompatible elastomer materials can be used.
  • the balloon 702 at its surface can include an electrode diagnostic array feature.
  • the electrode diagnostic array feature can include any or all of the electrodes such as one or more electrode structures 142, ablation electrode 126, and the mapping ring electrodes 140 for the purpose of ablating and mapping tissues.
  • the electrode array diagnostic array feature can include one or more electrode structures 142 each containing a mapping electrode 132 configured for picking up bioelectrical signals from the walls of blood vessels.
  • the mapping electrodes 132 sense electrical potentials within the heart for the purpose of locating cardiac tissue containing abnormal electrical pathways.
  • the balloon 702 can have a structure that can be easily adaptable to any one of the cardiac chambers and which can be used in the right or left ventricles of the heart without resorting to a ventriculotomy for mapping and/or ablating tissues of the heart.
  • a proximal end 704 of the balloon 702 can be attached at the distal end 104 of the catheter 102 and can be constructed for insertion into a blood vessel.
  • the balloon 702 can be mounted on the distal end 104 of the catheter 102 and a heating device (not shown) can also be mounted on the distal end 104 of the catheter 102 such that the heating device can be arranged for heating tissue in contact with the balloon 702 while the balloon 702 is inflated.
  • the catheter body 1 14 and the balloon 702 are sized and constructed to permit the distal end 1 18 of the catheter body 1 14 to be inserted into an atrium or ventricle of a heart while the balloon 702 is in a deflated configuration.
  • the distal end 104 of the catheter 102 can be positioned within the atrium or ventricle and adjacent to a wall of the atrium or ventricle.
  • the balloon 702 can then be inflated with fluid while the balloon 702 can be within the atrium or ventricle, for example to engage in direct contact with a wall of the atrium or ventricle.
  • a tissue surrounding the balloon 702 can be heated through use of the heating device while the balloon 702 is inflated.

Abstract

A system for performing mapping and ablation functions includes a catheter sized and shaped for vascular access. The catheter includes an elongate body extending between a proximal end and a distal end. A tip section positioned at the distal end of the catheter body and includes a proximal portion and a distal portion. One or more electrode structures are formed on an exterior surface of the tip section. The one or more electrode structures each includes a mapping electrode at the distal portion of the tip section and a contact pad electrically coupled to the mapping electrode.

Description

MAP AND ABLATE CLOSED-LOOP COOLED ABLATION CATHETER
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit of Provisional Application No. 61/702,626, filed September 18, 2012, which is incorporated herein by reference in its entirety.
TECHNICAL FIELD
[0002] The present disclosure generally relates to systems and methods for providing a therapy to a patient. More particularly, the present disclosure relates to a catheter for mapping and ablating tissue within the heart of the patient including mapping electrodes deposited on an exterior surface of the ablation electrode.
BACKGROUND
[0003] Atrial fibrillation is a condition in the heart causing irregular heartbeats due to generation of abnormal electrical signals. Various treatment regimens may be followed for treating arrhythmias, such as anti-arrhythmic medications and catheter ablation.
[0004] Catheter ablation is a non-surgical, minimally invasive procedure that involves killing an abnormal heart muscle responsible for heart racing. This produces a small area of dead heart muscle called a lesion. In order to make lesions and thereby treat arrhythmia, abnormal heart muscles are first targeted and mapped, such as through a mapping technique. A catheter generally includes one or more mapping electrodes configured to carry out mapping functions and a tip ablation electrode disposed at the tip portion configured to carry out the ablation function. Mapping typically involves percutaneously introducing the catheter having one or more mapping electrodes into the patient, passing the catheter through a blood vessel (e.g., the femoral vein or artery) and into an endocardial site (e.g., the atrium or ventricle of the heart) to map bioelectrical signals arising from the myocardial tissues and thereby, recognize the tissue that is the source of the arrhythmia. The tip of the ablation catheter including the tip ablation electrode can then deliver energy to the abnormal heart muscle, which disables it.
SUMMARY
[0005] Disclosed herein are embodiments of an ablation electrode including one or more mapping electrodes deposited on an exterior surface thereof at a distal end of a map and ablate catheter, as well map and ablate catheters including such deposited mapping electrodes.
[0006] In Example 1 , a system for performing mapping and ablation functions includes a catheter sized and shaped for vascular access. The catheter includes an elongate body extending between a proximal end and a distal end. The catheter further includes a tip section positioned at the distal end of the body such that the tip section includes a proximal portion and a distal portion. The system also includes one or more electrode structures on an exterior surface of the tip section such that the one or more electrode structures each includes a mapping electrode at the distal portion of the tip section and a contact pad electrically coupled to the mapping electrode.
[0007] In Example 2, the system according to Example 1 , wherein the tip section includes an ablation electrode configured to deliver radio frequency (RF) energy for an RF ablation procedure, and wherein the one or more electrode structures are deposited on an exterior surface of the ablation electrode.
[0008] In Example 3, the system according to either Example 1 or Example 2, wherein the one or more electrode structures further includes an insulative base layer between each of the one or more electrode structures and the ablation electrode.
[0009] In Example 4, the system according to any of Examples 1 -3, wherein the catheter includes at least one inner fluid lumen, wherein the ablation electrode includes an exterior wall that defines an open interior region within the ablation electrode, and wherein the catheter system further includes a thermal mass within the open interior region and a cooling chamber in fluid communication with the at least one inner fluid lumen of the elongate body and positioned proximally to the thermal mass. [0010] In Example 5, the system according to any of Examples 1 -4, wherein the ablation electrode includes an exterior wall that defines an open interior region within the ablation electrode, wherein the exterior wall includes irrigation ports, and wherein the irrigation ports are in fluid communication with the open interior region to allow fluid to flow from the open interior region through the irrigation ports.
[0011] In Example 6, the system according to any of Examples 1 -5, wherein the tip section includes a flexible balloon removably coupled to the distal end of the catheter.
[0012] In Example 7, the system according to any of Examples 1 -6, and further comprising one or more mapping ring electrodes disposed on the body proximal to the one or more electrode structures.
[0013] In Example 8, the system according to any of Examples 1 -7, wherein each of the one or more electrode structures further includes a conductive trace between the contact pad and mapping electrode, and an insulative coating layer over the conductive trace.
[0014] In Example 9, the system according to Example 8, wherein the conductive trace has an impedance of less than 100 ohms.
[0015] In Example 10, the system according to any of Examples 1 -9, wherein the one or more electrode structures are formed via physical vapor deposition.
[0016] In Example 1 1 , a system for performing mapping and ablation functions includes a catheter sized and shaped for vascular access. The catheter includes an elongate body extending between a proximal end and a distal end and having at least one inner fluid lumen. The system further includes an ablation electrode coupled to the distal end of the catheter body, wherein the ablation electrode is configured to deliver radio frequency (RF) energy for an RF ablation procedure. The ablation electrode also includes an exterior wall that defines an open interior region within the ablation electrode. The system further includes a thermal mass within the open interior region and a cooling chamber in fluid communication with the at least one inner fluid lumen of the elongate body and positioned proximally to the thermal mass. The system further includes one or more insulative base layers on an exterior surface of the ablation electrode and one or more mapping electrodes each disposed on one of the one or more insulative base layers such that each mapping electrode can be proximate to a distal end of the ablation electrode.
[0017] In Example 12 the system according to Example 1 1 , and further comprising one or more contact pads at a proximal end of the ablation electrode, wherein each contact pad is electrically coupled to one of the one or more mapping electrodes.
[0018] In Example 13, the system according to either Example 1 1 or Example 12, wherein each contact pad is connected to one of the one or more mapping electrodes via a conductive trace.
[0019] In Example 14, the system according to Example 13, and further comprising an insulative coating layer over the conductive trace.
[0020] In Example 15, the system according to any of Examples 1 1 -14, and further comprising one or more mapping ring electrodes disposed on the body proximal to the one or more electrode structures.
[0021] In Example 16, the system according to any of Examples 1 1 -15, wherein the mapping electrodes are formed via physical vapor deposition.
[0022] In Example 17, a system for performing mapping and ablation functions includes a radio frequency (RF) generator, a fluid reservoir and pump, a mapping signal processor, and a catheter sized and shaped for vascular access. The catheter includes an elongate body extending between a proximal end and a distal end having at least one inner fluid lumen in fluid communication with the fluid reservoir and pump. The system further includes an ablation electrode coupled to the distal end of the catheter body, and operably connected to the RF generator. The ablation electrode includes an exterior wall that defines an open interior region within the ablation electrode. The system further includes one or more insulative base layers on an exterior surface of the ablation electrode and one or more mapping electrodes operably connected to the mapping signal processor such that each mapping electrode can be disposed on one of the one or more insulative base layers. Each mapping electrode can be proximate to a distal end of the ablation electrode. [0023] In Example 18 the system according to Example 17, and further comprising a thermal mass within the open interior region and a cooling chamber in fluid communication with the at least one inner fluid lumen of the elongate body and positioned proximally to the thermal mass.
[0024] In Example 19 the system according to either Example 17 or Example 18, and further comprising one or more contact pads at a proximal end of the ablation electrode electrically connected to the mapping signal processor, wherein each contact pad is electrically coupled to one of the one or more mapping electrodes via a conductive trace.
[0025] In Example 20, the system according to Example 19, and further comprising an insulative coating layer over each conductive trace.
[0026] While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
BRIEF DESCRIPTION OF THE DRAWINGS
[0027] FIG. 1 is a schematic view of an embodiment of a system for performing mapping and ablation functions including a map and ablate catheter.
[0028] FIG. 2 is a schematic view of another embodiment of a system for performing mapping and ablation functions including a map and ablate catheter.
[0029] FIG. 3 is a side view of an embodiment of a tip section of a map and ablate catheter including an ablation electrode with one or more electrode structures deposited thereon.
[0030] FIG. 4 is a cross-sectional view of an embodiment of the tip section of the map and ablate catheter including deposited mapping electrode structures and a closed-loop cooling system.
[0031] FIG. 5 is a perspective view of an embodiment of an open irrigated tip section of a map and ablate catheter including deposited mapping electrode structures. [0032] FIG. 6 is a perspective view of an embodiment of a non-irrigated tip section of a map and ablate catheter including deposited mapping electrode structures.
[0033] FIG. 7 is a perspective view of an embodiment of a mapping balloon including mapping electrodes deposited thereon.
[0034] While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
DETAILED DESCRIPTION
[0035] FIG. 1 is a front view of a system 100 for performing mapping and ablation functions. As shown, the system 100 includes a catheter 102 sized and shaped for vascular access. The catheter 102 has a distal end 104 and a proximal end 106. In one aspect, the proximal end 106 of the catheter 102 includes a handle 108 having a proximal portion 1 10 and a distal portion 1 12, and is configured to be comfortably held by a practitioner during a treatment procedure involving ablation. The handle 108 can be composed of a durable and rigid material, such as medical grade plastic, and ergonomically molded to allow the physician to more easily manipulate the catheter 102. The handle 108 can incorporate a plurality of conduits, conductors, and wires to facilitate control of the catheter 102 and/or mating of the catheter 102 with a source of fluid, a source of ablative energy, a source of mapping, temperature display, sensors, and/or control software/hardware. The handle 108 further includes a connection port 1 13 through which ablative energy source and a mapping energy source can be operably coupled.
[0036] The catheter 102 can include an elongate body 1 14 having a proximal end 1 16 and a distal end 1 18. The body houses electrical conductors/ cable assembly (e.g., wires) 120 for transmitting sensed signals and/or ablation energy. The elongate body 1 14 is preferably about 1 .67 mm to 3 mm in diameter, and between 800 mm to 1500 mm in length. The elongate body 1 14 preferably has a circular cross-sectional geometry. However, other cross-sectional shapes, such as elliptical, rectangular, triangular, and various other shapes, can be provided. In some embodiments, the elongate body 1 14 can be preformed of an inert, resilient plastic material that retains its shape and does not soften significantly at body temperature; for example, Pebax®, polyethylene, or Hytrel®) (polyester). Alternatively, the elongate body 1 14 can be made of a variety of materials, including, but not limited to, metals and polymers. The elongate body 1 14 is preferably flexible so that it is capable of winding through a tortuous path that leads to a target site, i.e., an area within the heart. Alternatively, the elongate body 1 14 can be semi-rigid, i.e., by being made of a stiff material, or by being reinforced with a coating or coil, to limit the amount of flexing.
[0037] In some embodiments, the movement of the distal end 1 18 of the elongate body 1 14 (such as to wind through the tortuous path that leads to a target site) can be controlled by a control mechanism 122 included within the handle 120. The system 100 can include an articulating section of the elongate body 1 14 (e.g., near the distal end 1 18) that is controlled via the control mechanism 122. In some embodiments, the distal end 1 18 of the elongate body 1 14 can be deflected or bent. The articulation section of the body can facilitate insertion of the catheter 102 through a body lumen (e.g., vasculature) and/or placement of electrodes at a target tissue location. The articulation section can provide one or more degrees of freedom and permit up/down and/or left/right articulation. One skilled in the art will understand that the control mechanism 122 and the articulating section of the catheter 102 can include a variety of features associated with conventional articulating catheters.
[0038] The distal end 104 of the catheter 102 includes a tip section 124 positioned at the distal end 1 18 of the elongate body 1 14. The tip section 124 includes a proximal portion 134 and a distal portion 136. In some embodiments, the tip section 124 is formed from a conductive material. For example, in some embodiments the tip section 124 is comprised of a platinum-iridium alloy. In one exemplary embodiment, the platinum iridium top section 124 comprises an alloy with approximately 90% platinum and 10% iridium. This conductive material is used to conduct radio frequency (RF) energy used to form lesions during the ablation procedure. The ablation electrode 126 can have any suitable length, for example, in the range between 4 mm and 10 mm. The ablation electrode 126 can be composed of a solid, electrically conductive material, such as platinum, gold, or stainless steel. The ablation electrode 126 can be configured to deliver ablation energy to the myocardial tissues that are the source of arrhythmia, thereby destroying them or a portion thereof through heat. In an embodiment, the ablation electrode 126 can be electrically coupled to an RF generator, which will be discussed in further detail with regards to FIG. 2, so that ablation energy can be conveyed from the RF generator to the ablation electrode 126 to form localized lesions in the myocardial tissues. In an embodiment, an RF wire 128 can be electrically connected to the ablation electrode 126 using suitable means, such as soldering or welding. The RF wire 128 can pass through a lumen 144 extending through the elongate body 1 14 of the catheter 102, where it is further electrically coupled to the cable assembly 120 located within the handle 108 and to the RF generator exteriorly coupled to the catheter system 100.
[0039] The system 100 includes one or more electrode structures 142 on an exterior surface 130 of the tip section 124. The electrode structures 142 each include a mapping electrode 132 at the distal portion 136 of the tip section 124. The mapping electrode 132 is deposited on the tissue ablation electrode 126, and in particular, is deposited on an exterior surface 130 of the ablation electrode 126. This can allow the localized intracardial electrical activity to be measured in real time at the point of RF energy delivery from the ablation electrode 126 thereby allowing the physician to ascertain lesion formation by measuring the electrical activity of the tissue in contact with the tip ablation electrode 126 (e.g., the lack of electrical activity indicates ablated tissue, whereas the presence of electrical activity indicates live tissue). In some embodiments, the mapping electrodes 132 are deposited on the exterior surface 130 of the ablation electrode 126. In some embodiments, the one or more electrode structures 142 are deposited via physical vapor deposition (PVD). The physical vapor deposition may be used for the deposition of the electrodes formed of a metal. In alternative embodiments, other deposition techniques may be used for electrode deposition on the exterior surface 130 of the ablation electrode 126, such as sputtering.
[0040] In some embodiments, the electrode structures 142 each includes a contact pad that is electrically coupled to the mapping electrode 132. The contact pad can be configured to provide connection of the mapping electrode 132 with the cable assembly 120, thereby allowing the mapping electrode 132 to form electrical connection with the electrical circuitry of the catheter 102. In some embodiments, the mapping electrode 132 are electrically coupled to a mapping signal processor, which will be discussed in further detail with regards to FIG. 2, so that electrical events in myocardial tissue can be sensed for the generation of electrograms, monophasic action potentials (MAPs), isochronal electrical activity maps, and the like. In some embodiments, the signal wires 138 are respectively connected to the mapping electrodes 132 using suitable means such as soldering or welding. The signal wires 138 can pass through a lumen 144 extending through the elongate body 1 14 of the catheter 102, where it is electrically coupled to the cable assembly 120 located within the handle 108 and then to the mapping microprocessor.
[0041] The system 100 may also include one or more mapping ring electrodes 140. The mapping ring electrodes 140 can be configured to map the bioelectrical signals arising from the myocardial tissues and thereby recognize the tissues that are the source of arrhythmia. The mapping ring electrodes 140 can include a distal mapping ring electrode 140a, a medial mapping ring electrode 140b, and a proximal mapping ring electrode 140c. The mapping ring electrodes 140a, 140b, and 140c as well as the ablation electrode 126 are capable of forming a bipolar mapping electrode pairs. For example, the ablation electrode 126 and distal mapping ring electrode 140a can be configured as a first bipolar mapping electrode pair, the distal mapping ring electrode 140a and the medial mapping ring electrode 140b can be configured as a second bipolar mapping electrode pair, the medial mapping ring electrode 140b and the proximal mapping ring electrode 140c can be configured as a third bipolar mapping electrode pair, or any combination thereof. Like the mapping electrodes 132, the mapping ring electrodes 140a-140c are also electrically coupled to the mapping signal processor via the signal wires 138 to map electrical events in the myocardial tissues.
[0042] FIG. 2 illustrates an embodiment of the mapping and ablation system 100 including cooling, ablation, and mapping system components and a closed-irrigated catheter 102. The catheter 102 can be configured to be introduced through the vasculature of the patient, and into one of the chambers of the heart, where it can be used to map and ablate myocardial tissue. The system 100 also comprises a radio frequency (RF) generator 202, a fluid reservoir and pump 204, a mapping signal processor 206, coupled to the catheter 102 via a cable assembly or through connection port 1 13. In an embodiment, the radio frequency (RF) generator 202, and the mapping signal processor 206 can be connected to the catheter 102 through the RF wire 128 and the signal wires 138 of the cable assembly 120. In an embodiment, the fluid reservoir and pump 204 can be connected to the catheter 102 through the connection port 1 13.
[0043] Although the radio frequency (RF) generator 202, the fluid reservoir and the pump 204, and the mapping signal processor 206 are shown as discrete components, they can alternatively be incorporated into a single integrated device.
[0044] In some embodiments, the ablation electrode 126 coupled to the distal end 1 18 of the catheter body 1 14 can be operably connected to the RF generator 202. The RF generator 202 can be used to generate the energy for the ablation procedure. The RF generator 202 includes a source 208 for the RF energy and a controller 210 for controlling the timing and the level of the RF energy delivered through the tip 204. The illustrated system 100 also includes the fluid reservoir and pump 204 for pumping cooling fluid, such as a saline, through an inner fluid lumen of the catheter 102 (which will be discussed in greater detailed below) to the tip portion 124.
[0045] The mapping signal processor 206 can be operably coupled to the one or more electrodes similar to the mapping electrode 132. The mapping signal processor 206 can be configured to detect, process, and record electrical signals within the heart via the one or more electrodes of the catheter 102. Based on the electrical signals sensed by the one or more electrodes, the physician can identify the specific target tissue sites within the heart, and ensure that the arrhythmia causing substrates have been electrically isolated by the ablative treatment. Based on the detected electrical signals, the mapping signal processor 206 outputs electrocardiograms (ECGs) to a display (not shown), which can be analyzed by the physician to determine the existence and/or location of arrhythmia substrates within the heart and/or determine the location of the catheter 102 within the heart. In some embodiments, the mapping signal processor 206 can generate an isochronal map of the detected electrical activity and output the map to the display for analysis by the physician.
[0046] FIG. 3 is a side view of the tip section 124 including the ablation electrode 126 with the one or more electrode structures 142 deposited thereon. As shown in FIG. 3, the tip section 124 comprises the ablation electrode 126 configured to deliver radio frequency (RF) energy for the RF ablation procedure and the electrode structures 142. The electrode structures 142 each include the mapping electrode 132. The mapping electrodes 132 can be disposed on the tissue ablation electrode tip 304, and in particular, are deposited on the exterior surface 130 of the tissue ablation electrode tip 304. This allows the localized intracardial electrical activity to be measured in real time at the point of energy delivery from the ablation electrode 126. In addition, the mapping electrodes 132 do not sense far field electrical potentials that would normally be associated with bipolar measurements taken between the tissue ablation electrode 126 and the mapping ring electrodes 140a, 140b, 140c, due to their relatively small size and spacing between each of the electrode structures 142. Instead, the mapping electrodes 132 measure the highly localized electrical activity at the point of contact between the ablation electrode 126 and the endocardial tissue. Thus, the arrangement of the mapping electrodes 132 substantially enhances the mapping resolution of the catheter 102. The high resolution inherent in the arrangement of the mapping electrodes 132 allows a user to measure complex localized electrical activity more precisely, resulting in a powerful tool for diagnosing electrocardiogram (ECG) activity, for example, the high frequency potentials that are encountered around pulmonary veins or the fractioned ECGs associated with atrial fibrillation triggers. The arrangement of the mapping electrodes 132 can also allow generation of high density electrical activity maps such as electrical activity isochronal maps, which may be combined with anatomical maps, to create electro-anatomical maps. In addition, detection of tissue contact and tissue characterization, including lesion formation assessment, can be made more accurate due to the elimination or minimization of the detected far field electrical activity.
[0047] The mapping electrodes 132 can be small, independent diagnostic sensing electrodes deposited on the exterior surface 130 of the tip 304 of the RF ablation catheter 102. Each mapping electrode 132 can be composed of an electrically conductive material, such as platinum, gold, or stainless steel. In some embodiments, the mapping electrodes 132 are comprised of a silver/silver chloride to maximize the coupling between the mapping electrode 132 and blood, thereby optimizing signal fidelity. In some embodiments, the electrode structures 142 are formed via physical vapor deposition (PVD) or other suitable methods for deposing the electrodes onto the exterior surface 130.
[0048] The mapping electrodes 132 can be disposed on the ablation electrode 126 in any one of a variety of different patterns. In an example, as shown in FIG. 3, the mapping electrodes 132 are circumferentially disposed about the cylindrical-shaped region of the ablation electrode 126 at 120° intervals so that they face radially outward in different directions.
[0049] In some embodiments, each of the electrode structures 142 further includes a conductive trace 306 electrically coupled to the mapping electrode 132 and a contact pad 308 electrically connected to the conductive trace 306. In some embodiments, the contact pads 308 are disposed at a proximal portion of the tip 304. The contact pad 308 may be configured for electrical connection to a diagnostic device such as the mapping processor 206. In an embodiment, the conductive trace 306 can be offset either along the longitudinal or lateral axes of the catheter system 102 from the mapping electrode 132 so long as some portion of the conductive trace 306 remains in contact with the mapping electrode 132. Accordingly, the lateral and longitudinal cross-sections of both the mapping electrode 132 and the conductive trace 306 may vary similar to the variation in the depth or thickness of the conductive trace 306 and mapping electrode 132. In some embodiments, the conductive traces 306 have an impedance of less than 100 ohms.
[0050] In some embodiments, the catheter 102 includes a plurality of internal conductors each coupled to one of the contact pads 306. Thus, each of the mapping electrodes 132 can be electrically connected to other semiconductor devices, electronic components on the substrate, or components that are external to the catheter 102 such as the mapping processor.
[0051] In some embodiments, the electrodes 126, 132, and/or 140, the conductive trace 306, and contact pad 308 can be made from the same conductive materials. In some embodiments, the electrodes 126, 132, and/or 140, conductive trace 306, and contact pad 308 can be made of different conductive materials. For example, the contact pads 308 can be formed of a material such as gold (Au), platinum (Pt), palladium (Pd), ruthenium (Ru), rhodium (Rh), iridium (Ir), carbon (C), or other material that resists oxidation. The conductive traces 306 can be formed of any suitable conductive material, such as Au, Pt, or copper (Cu). The electrodes 126, 132, and/or 140, conductive trace 306, or contact pad 308 may be comprised of any suitable material including, for example, Pt, Au, Pd, Ru, Rh, Ir, silver (Ag), C, and their alloys or oxides. Conducting polymers, such as polypyrrole (PPy), polyaniline (PANi), polythiophene, poly (3,4- ethylenedioxythiophene) (PEDOT) or their derivatives may also be employed for the conductive elements of the catheter 102.
[0052] The electrode structures 142 may further include a multi-layer dielectric material 310 such that the multi-layer dielectric material 310 includes an insulative base layer 312 and/or an insulative coating layer 314. The multi-layer dielectric material 310 acts as a dielectric barrier between the ablation electrode 126 and the electrode structures 142 resisting the conductance of the RF energy from the ablation electrode 126 to the electrode structures 142. For this purpose, the system 100 includes the insulative base layers 312 between each of the one or more electrode structures 142 and the ablation electrode 126.
[0053] The insulative base layer 312 can be composed of a suitable electrically and thermally insulative material, such as a high temperature thermoset plastic with high dielectric properties, e.g., polyimide or plastics from the phenolic group, such as Bakelite® or Ultem® plastics. The electrically insulative material of the insulative base layer 312 makes the mapping electrode 132 electrically insulated from the ablation electrode 126, and thus, from each other, so that each of the mapping electrode 132 can provide independent mapping channels. The thermal insulative material of the insulative base layer 312 makes the mapping electrode 132 thermally insulated from the ablation electrode 126 to prevent saturation of the mapping channels that would otherwise cause interference from the heat generated during a radio frequency (RF) ablation procedure. The insulative base layer 310 can be formed on the exterior surface 130 of the ablation electrode 126 in a manner such that the mapping electrodes 132 can be each disposed on the insulative base layers 312 such that each of the mapping electrode 132 can be proximate to the ablation electrode 126. The insulative base layer 312 can be further coated with an insulative coating layer 314 such that the insulative coating layer 314 is provided over each of the conductive trace 306. The insulative coating layer 314 electrically isolates the conductive trace from surrounding structures.
[0054] FIG. 4 is a cross-sectional view of an embodiment of the tip section 124 of the map and ablate catheter including deposited electrode structures 142 and a closed-loop cooling system. The tip section 124 includes at least one inner fluid lumen 402 in fluid communication with the fluid reservoir and pump 204 (shown in FIG. 2). The ablation electrode 126 is configured to deliver RF energy for the RF ablation procedure. Generally, the tip section 124 on which the ablation electrode 126 is formed can be a hollow tip section 124 and can include an open interior region 410 defined by the exterior wall 130 of the tip section 124.
[0055] In some embodiments, the tip section 124 includes a thermal mass 404. The thermal mass 404 comprises a material having a high thermal conductivity. A temperature sensor 406 can be positioned at least partially within the thermal mass 404. In an embodiment, the thermal mass 404 substantially extends across the full width of the tip 124.
[0056] The tip section 124 further includes a cooling chamber 408 in fluid communication with the inner fluid lumens 402 of the elongate body 1 14 and positioned proximally to the thermal mass 404. The cooling chamber 408 substantially extends across an entire width of the tip 124 between the exterior walls similar to the exterior wall 130 of the tip 304. The cooling chamber 408 can be defined in the form of a cavity near the proximate end of the tip 124 that is bounded at its distal end 412 by the thermal mass 404 and is bounded at its proximal end 414 by a portion of the tip section 124 and/or by a portion of the elongate catheter body 1 14.
[0057] In the illustrated embodiment, the cooling chamber 408 is positioned proximal to at least a portion of the thermal mass 404 and/or adjacent to the proximal portion 1 10 of the tip section 124. As ablation energy moves through the tip section 124, areas of increased current density can develop and result in localized hotspots. The system 100, described herein, can reduce the effect of proximal hotspots through the use of the cooling chamber 408 in fluid communication with the fluid lumen 402 of the elongate body 1 14. As shown in FIG. 4, a first fluid lumen 402a and a second fluid lumen 402b are in fluid communication with the tip 124. The first lumen 402a can deliver a cooling fluid into, for example, the cooling chamber 408. At least a portion of the cooling fluid can then continue on a path as shown along the arrow directions, and as illustrated in FIG. 4. The tip 124 includes the second fluid lumen 402b for removing cooling fluid after the cooling fluid has absorbed heat within the cooling chamber 408. The second fluid lumen 402b can return the heated fluid through the catheter body 1 14 for egress from the system 100 to a proximal location, such as the fluid reservoir and pump 204 for cooling and/or recirculation. As a result, heat can be removed from the tip 124 through the path (as shown along the arrow directions) of the cooling fluid.
[0058] The tip section 124 includes one or more insulative base layers 416 on the exterior surface 130 of the ablation electrode 126 and one or more mapping electrodes similar to the mapping electrode 132 each disposed on one of insulative base layers 210. The electrically insulative material of the insulative base layer 416 makes the mapping electrode 132 electrically insulated from the ablation electrode 126 and from each other so that each of the mapping electrodes 132 can provide independent mapping channels. [0059] FIGS. 5 and 6 are perspective views of an open irrigated tip and a non-irrigated tip, respectively, including the deposited one or more electrode structures 142. The catheter 102 as described in conjunction with the present invention can be a hybrid catheter 102 as it can be used simultaneously for both localized mapping and ablation functions. The catheter 102 can be configured to provide localized, high resolution ECG signals during ablation. The localized mapping enables the mapping to be precise. As shown in FIG. 5, the catheter 102 has an open-irrigated catheter design. The hollow tip section 124 on which the ablation electrode 126 are formed includes the open interior region 410 defined by the exterior wall 130 of the tip section 124. The exterior wall 130 further includes a plurality of irrigation ports 502. The irrigation ports 502 are in fluid communication with the open interior region 410 to allow fluid to flow from the open interior region 410 through the irrigation ports 502. A cooling fluid, such as a saline fluid, is delivered from a fluid reservoir and pump 202 (shown in FIG. 2) through the catheter 102 to the tip section 124, where the fluid exits through irrigation ports 502 to cool the ablation electrode 126 and surrounding tissue. Clinical benefits of such catheter 102 can include, but are not limited to, controlling the temperature and reducing coagulum formation on the tip section 124 of the catheter 102, preventing impedance rise of tissue in contact with the tip section 124, and maximizing potential energy transfer to the tissue. Additionally, the localized intra cardiac electrical activity can be recorded in real time or near-real time right at the point of energy delivery. However, the hybrid catheter design of the present disclosure can also have a non-irrigated design as shown in FIG. 6 n a non- irrigated tip catheter 102.
[0060] FIG. 7 illustrates a perspective view of a mapping balloon 702 for the purpose of mapping anatomical features and tissue. In an embodiment, the tip section 124 comprises the mapping balloon 702 which is removably coupled to the distal end 104 of the catheter 102. The balloon 702 can be mounted circumferentially on the distal end 1 18 of the elongate body 1 14 of the catheter 102. The balloon 702 can be elastic, and may be comprised of polyethylene cross-linked latex, although other biocompatible elastomer materials can be used. The balloon 702 at its surface can include an electrode diagnostic array feature. The electrode diagnostic array feature can include any or all of the electrodes such as one or more electrode structures 142, ablation electrode 126, and the mapping ring electrodes 140 for the purpose of ablating and mapping tissues. In some embodiments, the electrode array diagnostic array feature can include one or more electrode structures 142 each containing a mapping electrode 132 configured for picking up bioelectrical signals from the walls of blood vessels. The mapping electrodes 132 sense electrical potentials within the heart for the purpose of locating cardiac tissue containing abnormal electrical pathways. The balloon 702 can have a structure that can be easily adaptable to any one of the cardiac chambers and which can be used in the right or left ventricles of the heart without resorting to a ventriculotomy for mapping and/or ablating tissues of the heart. A proximal end 704 of the balloon 702 can be attached at the distal end 104 of the catheter 102 and can be constructed for insertion into a blood vessel. The balloon 702 can be mounted on the distal end 104 of the catheter 102 and a heating device (not shown) can also be mounted on the distal end 104 of the catheter 102 such that the heating device can be arranged for heating tissue in contact with the balloon 702 while the balloon 702 is inflated. In some embodiments, the catheter body 1 14 and the balloon 702 are sized and constructed to permit the distal end 1 18 of the catheter body 1 14 to be inserted into an atrium or ventricle of a heart while the balloon 702 is in a deflated configuration. The distal end 104 of the catheter 102 can be positioned within the atrium or ventricle and adjacent to a wall of the atrium or ventricle. The balloon 702 can then be inflated with fluid while the balloon 702 can be within the atrium or ventricle, for example to engage in direct contact with a wall of the atrium or ventricle. A tissue surrounding the balloon 702 can be heated through use of the heating device while the balloon 702 is inflated.
[0061] Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the above described features.

Claims

CLAIMS We claim:
1 . A system for performing mapping and ablation functions, the system comprising: a catheter sized and shaped for vascular access and including an elongate body extending between a proximal end and a distal end; a tip section positioned at the distal end of the body, the tip section
including a proximal portion and a distal portion; and one or more electrode structures on an exterior surface of the tip section, the one or more electrode structures each including a mapping electrode at the distal portion of the tip section and a contact pad electrically coupled to the mapping electrode.
2. The system of claim 1 , wherein the tip section comprises an ablation electrode configured to deliver radio frequency (RF) energy for an RF ablation procedure, and wherein the one or more electrode structures are on an exterior surface of the ablation electrode.
3. The system of either of claims 1 or 2, wherein the one or more electrode structures further includes an insulative base layer between each of the one or more electrode structures and the ablation electrode.
4. The system of any of claims 1 -3, wherein the catheter includes at least one inner fluid lumen, wherein the ablation electrode comprises an exterior wall that defines an open interior region within the ablation electrode, and wherein the catheter system further comprises: a thermal mass within the open interior region; and a cooling chamber in fluid communication with the at least one inner fluid lumen of the elongate body and positioned proximally to the thermal mass.
5. The system of any of claims 1 -4, wherein the ablation electrode comprises an exterior wall that defines an open interior region within the ablation electrode, wherein the exterior wall includes irrigation ports, and wherein the irrigation ports are in fluid communication with the open interior region to allow fluid to flow from the open interior region through the irrigation ports.
6. The system of any of claims 1 -5, wherein the tip section comprises a flexible balloon removably coupled to the distal end of the catheter.
7. The system of any of claims 1 -6, and further comprising one or more mapping ring electrodes disposed on the body proximal to the one or more electrode structures.
8. The system of any of claims 1 -7, wherein each of the one or more electrode structures further comprises: a conductive trace between the contact pad and mapping electrode; and an insulative coating layer over the conductive trace.
9. The system of claim 8, wherein the conductive trace has an impedance of less than 100 ohms.
10. The system of any of claims 1 -9, wherein the one or more electrode structures are formed via physical vapor deposition.
1 1 . A system for performing mapping and ablation functions, the system comprising: a catheter sized and shaped for vascular access and including an elongate body extending between a proximal end and a distal end and having at least one inner fluid lumen; an ablation electrode coupled to the distal end of the catheter body, the ablation electrode configured to deliver radio frequency (RF) energy for an RF ablation procedure, the ablation electrode including an exterior wall that defines an open interior region within the ablation electrode; a thermal mass within the open interior region; a cooling chamber in fluid communication with the at least one inner fluid lumen of the elongate body and positioned proximally to the thermal mass; one or more insulative base layers on an exterior surface of the ablation electrode; and one or more mapping electrodes each disposed on one of the one or more insulative base layers, each mapping electrode proximate a distal end of the ablation electrode.
12. The system of claim 1 1 , and further comprising: one or more contact pads at a proximal end of the ablation electrode,
wherein each contact pad is electrically coupled to one of the one or more mapping electrodes.
13. The system of either of claims 1 1 or 12, wherein each contact pad is connected to one of the one or more mapping electrodes via a conductive trace.
14. The system of claim 13, and further comprising an insulative coating layer over the conductive trace.
15. The system of any of claims 1 1 -14, and further comprising one or more mapping ring electrodes disposed on the body proximal to the one or more electrode structures.
16. The system of any of claims 1 1 -15, wherein the mapping electrodes are formed via physical vapor deposition.
17. A system for performing mapping and ablation functions, the system comprising: a radio frequency (RF) generator; a fluid reservoir and pump; a mapping signal processor; a catheter sized and shaped for vascular access and including an elongate body extending between a proximal end and a distal end and having at least one inner fluid lumen in fluid communication with the fluid reservoir and pump; an ablation electrode coupled to the distal end of the catheter body, the ablation electrode operably connected to the RF generator, the ablation electrode including an exterior wall that defines an open interior region within the ablation electrode; one or more insulative base layers on an exterior surface of the ablation electrode; and one or more mapping electrodes operably connected to the mapping signal processor, each mapping electrode disposed on one of the one or more insulative base layers, each mapping electrode proximate a distal end of the ablation electrode.
18. The system of claim 17, and further comprising: a thermal mass within the open interior region; and a cooling chamber in fluid communication with the at least one inner fluid lumen of the elongate body and positioned proximally to the thermal mass.
19. The system of either of claims 17 or 18, and further comprising: one or more contact pads at a proximal end of the ablation electrode electrically connected to the mapping signal processor, wherein each contact pad is electrically coupled to one of the one or more mapping electrodes via a conductive trace.
The system of claim 19, and further comprising:
an insulative coating layer over each conductive trace.
PCT/US2013/060183 2012-09-18 2013-09-17 Map and ablate closed-loop cooled ablation catheter WO2014047068A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380048606.6A CN104640513A (en) 2012-09-18 2013-09-17 Map and ablate closed-loop cooled ablation catheter
EP13774278.9A EP2897544B1 (en) 2012-09-18 2013-09-17 Map and ablate closed-loop cooled ablation catheter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261702626P 2012-09-18 2012-09-18
US61/702,626 2012-09-18

Publications (1)

Publication Number Publication Date
WO2014047068A1 true WO2014047068A1 (en) 2014-03-27

Family

ID=49322697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/060183 WO2014047068A1 (en) 2012-09-18 2013-09-17 Map and ablate closed-loop cooled ablation catheter

Country Status (4)

Country Link
US (1) US9370329B2 (en)
EP (1) EP2897544B1 (en)
CN (1) CN104640513A (en)
WO (1) WO2014047068A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3033995A1 (en) * 2014-12-18 2016-06-22 Biosense Webster (Israel) Ltd. Far field-insensitive intracardiac catheter electrodes

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US8945117B2 (en) 2009-02-11 2015-02-03 Boston Scientific Scimed, Inc. Insulated ablation catheter devices and methods of use
EP3391845B1 (en) 2009-06-30 2020-02-12 Boston Scientific Scimed, Inc. Map and ablate open irrigated hybrid catheter
EP2755587B1 (en) 2011-09-14 2018-11-21 Boston Scientific Scimed, Inc. Ablation device with multiple ablation modes
US9603659B2 (en) 2011-09-14 2017-03-28 Boston Scientific Scimed Inc. Ablation device with ionically conductive balloon
EP2802282A1 (en) 2012-01-10 2014-11-19 Boston Scientific Scimed, Inc. Electrophysiology system
EP2897544B1 (en) 2012-09-18 2018-12-12 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter
US9211156B2 (en) 2012-09-18 2015-12-15 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter with flat tip
US10398488B2 (en) * 2014-09-04 2019-09-03 Medtronic Cryocath Lp Cryoadhesive device for left atrial appendage occlusion
EP3206612B1 (en) 2014-10-13 2022-06-29 Boston Scientific Scimed Inc. Tissue diagnosis and treatment using mini-electrodes
WO2016065337A1 (en) 2014-10-24 2016-04-28 Boston Scientific Scimed Inc. Medical devices with a flexible electrode assembly coupled to an ablation tip
EP3220843B1 (en) 2014-11-19 2020-01-01 EPiX Therapeutics, Inc. Ablation devices and methods of using a high-resolution electrode assembly
CA2967829A1 (en) 2014-11-19 2016-05-26 Advanced Cardiac Therapeutics, Inc. Systems and methods for high-resolution mapping of tissue
JP6673598B2 (en) 2014-11-19 2020-03-25 エピックス セラピューティクス,インコーポレイテッド High resolution mapping of tissue with pacing
US9743854B2 (en) 2014-12-18 2017-08-29 Boston Scientific Scimed, Inc. Real-time morphology analysis for lesion assessment
US10034707B2 (en) 2014-12-30 2018-07-31 Biosense Webster (Israel) Ltd. Catheter with irrigated tip electrode with porous substrate and high density surface micro-electrodes
US11246655B2 (en) * 2015-01-07 2022-02-15 St. Jude Medical, Cardiology Division, Inc. Ablation catheter with electrodes
US9636164B2 (en) 2015-03-25 2017-05-02 Advanced Cardiac Therapeutics, Inc. Contact sensing systems and methods
US10980598B2 (en) 2015-11-20 2021-04-20 St. Jude Medical, Cardiology Division, Inc. Multi-electrode ablator tip having dual-mode, omni-directional feedback capabilities
SG11201807618QA (en) 2016-03-15 2018-10-30 Epix Therapeutics Inc Improved devices, systems and methods for irrigated ablation
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
KR20190062419A (en) 2016-10-04 2019-06-05 아벤트, 인크. The cooled RF probe
CN109788983B (en) * 2016-10-04 2022-04-19 圣犹达医疗用品心脏病学部门有限公司 Ablation catheter with flexible electronic circuit
WO2018200865A1 (en) 2017-04-27 2018-11-01 Epix Therapeutics, Inc. Determining nature of contact between catheter tip and tissue
WO2019023280A1 (en) * 2017-07-25 2019-01-31 Affera, Inc. Ablation catheters and related systems and methods
US11751937B2 (en) 2017-07-25 2023-09-12 Affera, Inc. Ablation catheters and related systems and methods
EP3694432A4 (en) * 2017-10-13 2020-12-16 Mayo Foundation for Medical Education and Research Methods and devices for electroporation for treatment of ventricular fibrillation
EP3473200B1 (en) * 2017-10-23 2020-10-07 VascoMed GmbH Ablation catheter with microelectrode and method for producing an ablation catheter
CN108310650A (en) * 2017-12-31 2018-07-24 复旦大学附属华山医院 A kind of recognition methods of pacemaker electrode
US11918751B2 (en) * 2019-11-12 2024-03-05 Biosense Webster (Israel) Ltd. Catheter with vapor deposited features on tip
US20220344025A1 (en) 2021-04-16 2022-10-27 Physcade, Inc. Personalized heart rhythm therapy
US11564591B1 (en) 2021-11-29 2023-01-31 Physcade, Inc. System and method for diagnosing and treating biological rhythm disorders

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025916A1 (en) * 1996-01-19 1997-07-24 Ep Technologies, Inc. Expandable-collapsible electrode structures with electrically conductive walls
WO1997025917A1 (en) * 1996-01-19 1997-07-24 Ep Technologies, Inc. Multi-function electrode structures for electrically analyzing and heating body tissue
WO1998058681A2 (en) * 1997-06-20 1998-12-30 Ep Technologies, Inc. Surface coatings for catheters, direct contacting diagnostic and therapeutic devices
WO2001058372A1 (en) * 2000-02-07 2001-08-16 Boston Scientific Limted Electro-cautery catheter
US20040092806A1 (en) * 2001-12-11 2004-05-13 Sagon Stephen W Microelectrode catheter for mapping and ablation
EP1502542A1 (en) * 2003-08-01 2005-02-02 Biosense Webster, Inc. Catheter with electrode strip
US20090093811A1 (en) * 2007-10-09 2009-04-09 Josef Koblish Cooled ablation catheter devices and methods of use
WO2010056771A1 (en) * 2008-11-11 2010-05-20 Shifamed Llc Low profile electrode assembly

Family Cites Families (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3501863A1 (en) 1985-01-22 1986-07-24 Hermann 7803 Gundelfingen Sutter BIPOLAR COAGULATION INSTRUMENT
US4763660A (en) 1985-12-10 1988-08-16 Cherne Industries, Inc. Flexible and disposable electrode belt device
US5254088A (en) 1990-02-02 1993-10-19 Ep Technologies, Inc. Catheter steering mechanism
US5238004A (en) 1990-04-10 1993-08-24 Boston Scientific Corporation High elongation linear elastic guidewire
US5482054A (en) 1990-05-10 1996-01-09 Symbiosis Corporation Edoscopic biopsy forceps devices with selective bipolar cautery
US5217460A (en) 1991-03-22 1993-06-08 Knoepfler Dennis J Multiple purpose forceps
CA2106378A1 (en) 1991-04-05 1992-10-06 Tom D. Bennett Subcutaneous multi-electrode sensing system
WO1992021285A1 (en) 1991-05-24 1992-12-10 Ep Technologies, Inc. Combination monophasic action potential/ablation catheter and high-performance filter system
US5383874A (en) 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
US5697882A (en) 1992-01-07 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US5318589A (en) 1992-04-15 1994-06-07 Microsurge, Inc. Surgical instrument for endoscopic surgery
US5324284A (en) 1992-06-05 1994-06-28 Cardiac Pathways, Inc. Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
WO1994002077A2 (en) 1992-07-15 1994-02-03 Angelase, Inc. Ablation catheter system
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5348554A (en) 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5358516A (en) 1992-12-11 1994-10-25 W. L. Gore & Associates, Inc. Implantable electrophysiology lead and method of making
US5579764A (en) 1993-01-08 1996-12-03 Goldreyer; Bruce N. Method and apparatus for spatially specific electrophysiological sensing in a catheter with an enlarged ablating electrode
US5385146A (en) 1993-01-08 1995-01-31 Goldreyer; Bruce N. Orthogonal sensing for use in clinical electrophysiology
US6233491B1 (en) 1993-03-16 2001-05-15 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5893847A (en) 1993-03-16 1999-04-13 Ep Technologies, Inc. Multiple electrode support structures with slotted hub and hoop spline elements
JP3423719B2 (en) 1993-03-16 2003-07-07 ボストン サイエンティフィック リミテッド Multiple electrode support mechanism
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
WO1995005212A2 (en) 1993-08-11 1995-02-23 Electro-Catheter Corporation Improved ablation electrode
US5582609A (en) 1993-10-14 1996-12-10 Ep Technologies, Inc. Systems and methods for forming large lesions in body tissue using curvilinear electrode elements
US5462521A (en) 1993-12-21 1995-10-31 Angeion Corporation Fluid cooled and perfused tip for a catheter
US5447529A (en) 1994-01-28 1995-09-05 Philadelphia Heart Institute Method of using endocardial impedance for determining electrode-tissue contact, appropriate sites for arrhythmia ablation and tissue heating during ablation
US6099524A (en) 1994-01-28 2000-08-08 Cardiac Pacemakers, Inc. Electrophysiological mapping and ablation catheter and method
US5573535A (en) 1994-09-23 1996-11-12 United States Surgical Corporation Bipolar surgical instrument for coagulation and cutting
US5722402A (en) 1994-10-11 1998-03-03 Ep Technologies, Inc. Systems and methods for guiding movable electrode elements within multiple-electrode structures
US5876336A (en) 1994-10-11 1999-03-02 Ep Technologies, Inc. Systems and methods for guiding movable electrode elements within multiple-electrode structure
US6409722B1 (en) 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
WO1996026675A1 (en) 1995-02-28 1996-09-06 Boston Scientific Corporation Deflectable catheter for ablating cardiac tissue
US5871483A (en) 1996-01-19 1999-02-16 Ep Technologies, Inc. Folding electrode structures
US6475213B1 (en) 1996-01-19 2002-11-05 Ep Technologies, Inc. Method of ablating body tissue
US5830213A (en) 1996-04-12 1998-11-03 Ep Technologies, Inc. Systems for heating and ablating tissue using multifunctional electrode structures
US5800482A (en) 1996-03-06 1998-09-01 Cardiac Pathways Corporation Apparatus and method for linear lesion ablation
WO1997036541A1 (en) 1996-04-02 1997-10-09 Cordis Webster, Inc. Electrophysiology catheter with a bullseye electrode
US5820568A (en) 1996-10-15 1998-10-13 Cardiac Pathways Corporation Apparatus and method for aiding in the positioning of a catheter
US5916213A (en) 1997-02-04 1999-06-29 Medtronic, Inc. Systems and methods for tissue mapping and ablation
US5868735A (en) 1997-03-06 1999-02-09 Scimed Life Systems, Inc. Cryoplasty device and method
US5913856A (en) 1997-05-19 1999-06-22 Irvine Biomedical, Inc. Catheter system having a porous shaft and fluid irrigation capabilities
US6547788B1 (en) 1997-07-08 2003-04-15 Atrionx, Inc. Medical device with sensor cooperating with expandable member
US5902299A (en) 1997-07-29 1999-05-11 Jayaraman; Swaminathan Cryotherapy method for reducing tissue injury after balloon angioplasty or stent implantation
US6490474B1 (en) 1997-08-01 2002-12-03 Cardiac Pathways Corporation System and method for electrode localization using ultrasound
US5836990A (en) 1997-09-19 1998-11-17 Medtronic, Inc. Method and apparatus for determining electrode/tissue contact
US6120476A (en) 1997-12-01 2000-09-19 Cordis Webster, Inc. Irrigated tip catheter
US6171277B1 (en) 1997-12-01 2001-01-09 Cordis Webster, Inc. Bi-directional control handle for steerable catheter
US5971979A (en) 1997-12-02 1999-10-26 Odyssey Technologies, Inc. Method for cryogenic inhibition of hyperplasia
US6917834B2 (en) 1997-12-03 2005-07-12 Boston Scientific Scimed, Inc. Devices and methods for creating lesions in endocardial and surrounding tissue to isolate focal arrhythmia substrates
US6517534B1 (en) 1998-02-11 2003-02-11 Cosman Company, Inc. Peri-urethral ablation
US6027500A (en) 1998-05-05 2000-02-22 Buckles; David S. Cardiac ablation system
US6050994A (en) 1998-05-05 2000-04-18 Cardiac Pacemakers, Inc. RF ablation apparatus and method using controllable duty cycle with alternate phasing
US6059778A (en) 1998-05-05 2000-05-09 Cardiac Pacemakers, Inc. RF ablation apparatus and method using unipolar and bipolar techniques
US6171305B1 (en) 1998-05-05 2001-01-09 Cardiac Pacemakers, Inc. RF ablation apparatus and method having high output impedance drivers
US6064905A (en) 1998-06-18 2000-05-16 Cordis Webster, Inc. Multi-element tip electrode mapping catheter
US6950689B1 (en) 1998-08-03 2005-09-27 Boston Scientific Scimed, Inc. Dynamically alterable three-dimensional graphical model of a body region
US6116027A (en) 1998-09-29 2000-09-12 Air Products And Chemicals, Inc. Supplemental air supply for an air separation system
US6845264B1 (en) 1998-10-08 2005-01-18 Victor Skladnev Apparatus for recognizing tissue types
WO2000027462A1 (en) 1998-11-06 2000-05-18 The Furukawa Electric Co., Ltd. NiTi-TYPE MEDICAL GUIDE WIRE AND METHOD OF PRODUCING THE SAME
US6673290B1 (en) 1998-11-12 2004-01-06 Scimed Life Systems, Inc. Electrode structure for heating and ablating tissue and method for making and assembling the same
US6290697B1 (en) 1998-12-01 2001-09-18 Irvine Biomedical, Inc. Self-guiding catheter system for tissue ablation
US6432102B2 (en) 1999-03-15 2002-08-13 Cryovascular Systems, Inc. Cryosurgical fluid supply
US6270493B1 (en) 1999-07-19 2001-08-07 Cryocath Technologies, Inc. Cryoablation structure
DE19938558A1 (en) 1999-08-17 2001-02-22 Axel Muntermann Catheters with improved electrical properties and treatment methods for improving the electrical properties of catheters
US6575966B2 (en) 1999-08-23 2003-06-10 Cryocath Technologies Inc. Endovascular cryotreatment catheter
CA2400753A1 (en) 2000-03-01 2001-09-07 Hans W. Kramer Cooling therapies/device for angioplasty with restenosis
US6932811B2 (en) 2000-04-27 2005-08-23 Atricure, Inc. Transmural ablation device with integral EKG sensor
US6579278B1 (en) 2000-05-05 2003-06-17 Scimed Life Systems, Inc. Bi-directional steerable catheter with asymmetric fulcrum
US6400981B1 (en) 2000-06-21 2002-06-04 Biosense, Inc. Rapid mapping of electrical activity in the heart
US6537271B1 (en) 2000-07-06 2003-03-25 Cryogen, Inc. Balloon cryogenic catheter
JP4099388B2 (en) 2000-07-13 2008-06-11 プロリズム,インコーポレイテッド A device for applying energy to the body of a living organism
US6656174B1 (en) 2000-07-20 2003-12-02 Scimed Life Systems, Inc. Devices and methods for creating lesions in blood vessels without obstructing blood flow
AU2001276954A1 (en) 2000-07-31 2002-02-13 Boston Scientific Limited Expandable atherectomy burr
JP2002078809A (en) 2000-09-07 2002-03-19 Shutaro Satake Balloon catheter for electrically isolating pulmonary vein
CA2391051C (en) 2000-09-08 2011-07-12 Atrionix, Inc. Medical device with sensor cooperating with expandable member
US6640120B1 (en) 2000-10-05 2003-10-28 Scimed Life Systems, Inc. Probe assembly for mapping and ablating pulmonary vein tissue and method of using same
US7047068B2 (en) 2000-12-11 2006-05-16 C.R. Bard, Inc. Microelectrode catheter for mapping and ablation
WO2002056783A1 (en) 2000-12-11 2002-07-25 C.R. Bard, Inc. Microelectrode catheter for mapping and ablation
US6666862B2 (en) 2001-03-01 2003-12-23 Cardiac Pacemakers, Inc. Radio frequency ablation system and method linking energy delivery with fluid flow
US6647281B2 (en) 2001-04-06 2003-11-11 Scimed Life Systems, Inc. Expandable diagnostic or therapeutic apparatus and system for introducing the same into the body
US6837884B2 (en) 2001-06-18 2005-01-04 Arthrocare Corporation Electrosurgical apparatus having compound return electrode
WO2002102234A2 (en) 2001-06-19 2002-12-27 Eva Corporation Positioning apparatus for use in repairing a vessel
JP3607231B2 (en) 2001-09-28 2005-01-05 有限会社日本エレクテル High frequency heating balloon catheter
US6585733B2 (en) 2001-09-28 2003-07-01 Ethicon, Inc. Surgical treatment for atrial fibrillation using radiofrequency technology
US6735465B2 (en) 2001-10-24 2004-05-11 Scimed Life Systems, Inc. Systems and processes for refining a registered map of a body cavity
US20030088240A1 (en) 2001-11-02 2003-05-08 Vahid Saadat Methods and apparatus for cryo-therapy
US6796980B2 (en) 2001-11-21 2004-09-28 Cardiac Pacemakers, Inc. System and method for validating and troubleshooting ablation system set-up
AU2002357166A1 (en) 2001-12-12 2003-06-23 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
AUPS226402A0 (en) 2002-05-13 2002-06-13 Advanced Metal Coatings Pty Limited An ablation catheter
TWI235073B (en) 2002-08-20 2005-07-01 Toray Industries Catheter for treating cardiac arrhythmias
US6796979B2 (en) 2002-12-11 2004-09-28 Cryocor, Inc. Coaxial catheter system for performing a single step cryoablation
US6922579B2 (en) 2002-12-12 2005-07-26 Scimed Life Systems, Inc. La placian electrode
JP4067976B2 (en) 2003-01-24 2008-03-26 有限会社日本エレクテル High frequency heating balloon catheter
WO2004078066A2 (en) 2003-03-03 2004-09-16 Sinus Rhythm Technologies, Inc. Primary examiner
US7569052B2 (en) 2003-09-12 2009-08-04 Boston Scientific Scimed, Inc. Ablation catheter with tissue protecting assembly
US20050059862A1 (en) 2003-09-12 2005-03-17 Scimed Life Systems, Inc. Cannula with integrated imaging and optical capability
US20050059963A1 (en) 2003-09-12 2005-03-17 Scimed Life Systems, Inc. Systems and method for creating transmural lesions
US7438714B2 (en) 2003-09-12 2008-10-21 Boston Scientific Scimed, Inc. Vacuum-based catheter stabilizer
US7736362B2 (en) 2003-09-15 2010-06-15 Boston Scientific Scimed, Inc. Catheter balloons
US7229437B2 (en) 2003-09-22 2007-06-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Medical device having integral traces and formed electrodes
US6958064B2 (en) 2003-11-14 2005-10-25 Boston Scientific Scimed, Inc. Systems and methods for performing simultaneous ablation
ATE549989T1 (en) 2004-04-16 2012-04-15 Sydney West Area Health Service BIOMEDICAL RETURN ELECTRODE WITH THERMOCHROME LAYER
US9320564B2 (en) 2005-05-05 2016-04-26 Boston Scientific Scimed Inc. Steerable catheter and method for performing medical procedure adjacent pulmonary vein ostia
US8657814B2 (en) 2005-08-22 2014-02-25 Medtronic Ablation Frontiers Llc User interface for tissue ablation system
US8679109B2 (en) 2005-10-13 2014-03-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Dynamic contact assessment for electrode catheters
US8449535B2 (en) 2005-12-06 2013-05-28 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing coupling between an electrode and tissue
EP1962710B1 (en) 2005-12-06 2015-08-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Apparatus for displaying catheter electrode-tissue contact in electro-anatomic mapping and navigation system
US20070173680A1 (en) 2005-12-29 2007-07-26 Boston Scientific Scimed, Inc Apparatus and method for performing therapeutic tissue ablation and brachytherapy
US8401650B2 (en) 2008-04-10 2013-03-19 Electrocore Llc Methods and apparatus for electrical treatment using balloon and electrode
US8409172B2 (en) 2006-08-03 2013-04-02 Hansen Medical, Inc. Systems and methods for performing minimally invasive procedures
US8728073B2 (en) 2006-10-10 2014-05-20 Biosense Webster, Inc. Multi-region staged inflation balloon
US8690870B2 (en) 2006-12-28 2014-04-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated ablation catheter system with pulsatile flow to prevent thrombus
US20080161705A1 (en) 2006-12-29 2008-07-03 Podmore Jonathan L Devices and methods for ablating near AV groove
JP5336465B2 (en) 2007-03-26 2013-11-06 ボストン サイエンティフィック リミテッド High resolution electrophysiology catheter
US8641704B2 (en) 2007-05-11 2014-02-04 Medtronic Ablation Frontiers Llc Ablation therapy system and method for treating continuous atrial fibrillation
US8216221B2 (en) 2007-05-21 2012-07-10 Estech, Inc. Cardiac ablation systems and methods
JP2008295728A (en) 2007-05-31 2008-12-11 Olympus Medical Systems Corp Treatment tool
US8160690B2 (en) 2007-06-14 2012-04-17 Hansen Medical, Inc. System and method for determining electrode-tissue contact based on amplitude modulation of sensed signal
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US20090062795A1 (en) 2007-08-31 2009-03-05 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US20090062790A1 (en) 2007-08-31 2009-03-05 Voyage Medical, Inc. Direct visualization bipolar ablation systems
EP2211981A1 (en) 2007-10-09 2010-08-04 Boston Scientific Limited Electrophysiology electrodes and apparatus including the same
US8579889B2 (en) 2008-01-11 2013-11-12 Boston Scientific Scimed Inc. Linear ablation devices and methods of use
WO2009120953A2 (en) 2008-03-27 2009-10-01 Mayo Foundation For Medical Education And Research Navigation and tissue capture systems and methods
JP5345678B2 (en) 2008-05-15 2013-11-20 ボストン サイエンティフィック サイムド,インコーポレイテッド A device that adjusts the cryogenic ablation area by treating the tissue with cryogenic ablation
US8128617B2 (en) 2008-05-27 2012-03-06 Boston Scientific Scimed, Inc. Electrical mapping and cryo ablating with a balloon catheter
WO2010042826A1 (en) 2008-10-09 2010-04-15 Sanjiv Narayan Machine and process for the automatic localization of sources of biological rhythm disorders
US8894643B2 (en) * 2008-10-10 2014-11-25 Intuitive Surgical Operations, Inc. Integral electrode placement and connection systems
JP5911726B2 (en) 2008-11-10 2016-04-27 カーディオインサイト テクノロジーズ インコーポレイテッド Visualization of electrophysiological data
US8515520B2 (en) 2008-12-08 2013-08-20 Medtronic Xomed, Inc. Nerve electrode
US20100152728A1 (en) 2008-12-11 2010-06-17 Park Christopher J Method and apparatus for determining the efficacy of a lesion
US20100168831A1 (en) 2008-12-30 2010-07-01 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Implantable clip-on micro-cuff electrode for functional stimulation and bio-potential recording
US20100168557A1 (en) 2008-12-30 2010-07-01 Deno D Curtis Multi-electrode ablation sensing catheter and system
EP3391845B1 (en) * 2009-06-30 2020-02-12 Boston Scientific Scimed, Inc. Map and ablate open irrigated hybrid catheter
US8280477B2 (en) 2009-07-29 2012-10-02 Medtronic Cryocath Lp Mono-phasic action potential electrogram recording catheter, and method
DE102009053470A1 (en) 2009-11-16 2011-05-26 Siemens Aktiengesellschaft Thermal ablation device, catheter, and method of performing a thermal ablation
WO2012092016A1 (en) 2010-12-30 2012-07-05 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for diagnosing arrhythmias and directing catheter therapies
US20140012251A1 (en) 2011-03-07 2014-01-09 Tidal Wave Technology, Inc. Ablation devices and methods
US8545408B2 (en) 2011-05-23 2013-10-01 St. Jude Medical, Inc. Combination catheter for forward and side lesioning with acoustic lesion feedback capability
US9119636B2 (en) 2011-06-27 2015-09-01 Boston Scientific Scimed Inc. Dispersive belt for an ablation system
EP2755587B1 (en) 2011-09-14 2018-11-21 Boston Scientific Scimed, Inc. Ablation device with multiple ablation modes
US9125668B2 (en) 2011-09-14 2015-09-08 Boston Scientific Scimed Inc. Ablation device with multiple ablation modes
US8825130B2 (en) 2011-12-30 2014-09-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrode support structure assemblies
EP2802282A1 (en) 2012-01-10 2014-11-19 Boston Scientific Scimed, Inc. Electrophysiology system
WO2014031865A1 (en) 2012-08-22 2014-02-27 Boston Scientific Scimed, Inc High resolution map and ablate catheter
US20140073893A1 (en) 2012-09-12 2014-03-13 Boston Scientific Scimed Inc. Open irrigated-mapping linear ablation catheter
EP2897544B1 (en) 2012-09-18 2018-12-12 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter
US9211156B2 (en) 2012-09-18 2015-12-15 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter with flat tip
US20140107453A1 (en) 2012-10-15 2014-04-17 Boston Scientific Scimed Inc. Real-time signal comparison to guide ablation catheter to the target location
BR112015010140A2 (en) 2012-11-08 2017-07-11 Koninklijke Philips Nv intervention device and method for mounting an intervention device
CN106102569A (en) 2014-03-18 2016-11-09 波士顿科学医学有限公司 Electro physiology system
US20150265348A1 (en) 2014-03-18 2015-09-24 Boston Scientific Scimed, Inc. Electrophysiology system
CN106455997A (en) 2014-05-30 2017-02-22 波士顿科学医学有限公司 Double micro-electrode catheter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025916A1 (en) * 1996-01-19 1997-07-24 Ep Technologies, Inc. Expandable-collapsible electrode structures with electrically conductive walls
WO1997025917A1 (en) * 1996-01-19 1997-07-24 Ep Technologies, Inc. Multi-function electrode structures for electrically analyzing and heating body tissue
WO1998058681A2 (en) * 1997-06-20 1998-12-30 Ep Technologies, Inc. Surface coatings for catheters, direct contacting diagnostic and therapeutic devices
WO2001058372A1 (en) * 2000-02-07 2001-08-16 Boston Scientific Limted Electro-cautery catheter
US20040092806A1 (en) * 2001-12-11 2004-05-13 Sagon Stephen W Microelectrode catheter for mapping and ablation
EP1502542A1 (en) * 2003-08-01 2005-02-02 Biosense Webster, Inc. Catheter with electrode strip
US20090093811A1 (en) * 2007-10-09 2009-04-09 Josef Koblish Cooled ablation catheter devices and methods of use
WO2010056771A1 (en) * 2008-11-11 2010-05-20 Shifamed Llc Low profile electrode assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3033995A1 (en) * 2014-12-18 2016-06-22 Biosense Webster (Israel) Ltd. Far field-insensitive intracardiac catheter electrodes

Also Published As

Publication number Publication date
US20140081111A1 (en) 2014-03-20
CN104640513A (en) 2015-05-20
US9370329B2 (en) 2016-06-21
EP2897544B1 (en) 2018-12-12
EP2897544A1 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
US9370329B2 (en) Map and ablate closed-loop cooled ablation catheter
US11857250B2 (en) Semi-circular ablation catheter
US9211156B2 (en) Map and ablate closed-loop cooled ablation catheter with flat tip
US5891138A (en) Catheter system having parallel electrodes
EP2136702B1 (en) High resolution electrophysiology catheter
JP5123665B2 (en) Pre-shaped ablation catheter for excising the pulmonary vein opening of the heart
US6029091A (en) Catheter system having lattice electrodes
US20140058375A1 (en) High resolution map and ablate catheter
CN106852708B (en) Ablation catheter with light-based contact sensor
JP6921613B2 (en) Catheter with shunting electrodes
US20190192222A1 (en) Open-irrigated ablation catheter
JP2019528955A (en) Open perfusion ablation catheter with proximal insert cooling
JP7374135B2 (en) Ablation cauterization nest formation device
EP3518741B1 (en) Mapping and/or ablation catheter with a closed distal loop

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13774278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE