WO2014054842A1 - Heat sink comprising metal mesh layer, and method for manufacturing same - Google Patents

Heat sink comprising metal mesh layer, and method for manufacturing same Download PDF

Info

Publication number
WO2014054842A1
WO2014054842A1 PCT/KR2013/003372 KR2013003372W WO2014054842A1 WO 2014054842 A1 WO2014054842 A1 WO 2014054842A1 KR 2013003372 W KR2013003372 W KR 2013003372W WO 2014054842 A1 WO2014054842 A1 WO 2014054842A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal mesh
layer
base substrate
adhesive layer
mesh layer
Prior art date
Application number
PCT/KR2013/003372
Other languages
French (fr)
Korean (ko)
Inventor
김만
이주열
정용수
차수섭
이상열
송영섭
이규환
장도연
임재홍
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120110244A external-priority patent/KR101422218B1/en
Priority claimed from KR1020120110246A external-priority patent/KR101425995B1/en
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2014054842A1 publication Critical patent/WO2014054842A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat sink including a metal mesh layer and a method for manufacturing the same, and more particularly, to attach to a component device such as a capacitor provided in a circuit of an electronic product to discharge heat generated from the device. It relates to a heat sink and a method of manufacturing the same.
  • a heat sink is a device that is attached to a component that generates high heat and naturally discharges the heat to the outside.
  • the heat sink is attached to a device such as a microcomputer or a transistor used in electronic products, and prevents the device from being degraded due to high heat generated from the device or from being damaged due to overheating.
  • Metals such as aluminum which are used as general heat sinks, have a very high thermal conductivity and a low specific heat, so that the temperature rises easily even with a small amount of heat.
  • the conventional heat sink reaches a saturation temperature which is short enough to match the temperature of the heating element immediately after the heating element starts to generate heat because the heat capacity is small, that is, a temperature at a steady state where the temperature does not change any longer.
  • the heat sink is not designed considering only the heat generated at the beginning of the operation. Considering the saturation temperature, the problem of designing a heat sink larger than necessary is shown.
  • the heat sink provided in the product used for 1 hour and the heat sink provided in the product used for 10 minutes had to be designed in the same size.
  • the heat sink In order to solve this problem, the heat sink must be made large to increase its heat dissipation area, which is a preferable solution because it increases the price of the electronic device equipped with the heating element and the heat sink and increases the size of the product. Can not.
  • the problem to be solved by the present invention is to provide a heat sink and a method of manufacturing the same that enables the miniaturization of the heat sink, thereby preventing the size increase of the product.
  • the present invention provides a base substrate; An adhesive layer positioned on the base substrate; And a metal mesh layer disposed on the adhesive layer, wherein the metal mesh layer provides a heat sink including a plurality of metal mesh patterns and a hole located between the metal mesh patterns.
  • the present invention provides a method for preparing a base substrate comprising: providing a base substrate; Providing a metal mesh layer including a plurality of metal mesh patterns and a hole located between the metal mesh patterns; Forming an adhesive layer on the base substrate; And positioning a metal mesh layer on the adhesive layer and compressing the metal mesh layer.
  • the present invention is a base substrate; A metal mesh layer positioned on the base substrate; And an adhesive layer positioned between the base substrate and the metal mesh layer, wherein the metal mesh layer includes a plurality of metal mesh patterns and holes disposed between the metal mesh patterns.
  • the present invention provides a method for preparing a base substrate comprising: providing a base substrate; Providing a metal mesh layer including a plurality of metal mesh patterns and a hole located between the metal mesh patterns; Forming an adhesive layer on the metal mesh layer; And positioning the adhesive layer on the base substrate and compressing the adhesive layer.
  • the heat sink since the thickness of the base substrate, metal mesh layer, and adhesive layer constituting the heat sink is very thin compared to the heat sink of the general structure, the heat sink itself is not largely manufactured, and therefore, The heat sink does not have a big influence in the sizing.
  • the heat sink according to the present invention can be manufactured in a very thin thickness, it is possible to apply the heat sink to the parts of electronic products that are increasingly miniaturized.
  • the heat sink according to the present invention can be easily manufactured in a large area, it is also possible to apply the heat sink to components of an enlarged electronic product.
  • 1 is a cross-sectional view showing a general heat sink.
  • FIG. 2 is a cross-sectional view showing a heat sink according to a first embodiment of the present invention
  • Figure 3 is a cross-sectional view showing a heat sink according to a second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing an application example of the heat sink according to the first embodiment of the present invention
  • Figure 5 is a cross-sectional view showing an application example of the heat sink according to the second embodiment of the present invention.
  • Figure 6 is a schematic perspective view showing a mesh-type negative electrode drum of the metal mesh manufacturing apparatus according to the present invention
  • Figure 7 is a cross-sectional view showing a part of the mesh-type negative electrode drum
  • Figure 8 is for manufacturing a metal mesh according to the present invention It is a schematic block diagram which shows a continuous pole apparatus
  • FIG. 9 is a process flowchart which shows the manufacturing method of the metal mesh which concerns on this invention.
  • 10 to 13 are cross-sectional views for explaining a method of manufacturing a heat sink according to the present invention.
  • FIG. 14 is a schematic configuration diagram for manufacturing a heat sink according to the first embodiment of the present invention
  • FIG. 15 is a process flowchart showing a method of manufacturing the heat sink according to the first embodiment of the present invention.
  • 16 is a schematic structural diagram for manufacturing a heat sink according to a second embodiment of the present invention.
  • FIG. 17 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the first embodiment of the present invention
  • FIG. 18 is a process showing a method for manufacturing a heat sink according to a modification of the first embodiment of the present invention
  • 19 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the second embodiment of the present invention.
  • FIG. 20 is a photograph showing an example of the metal mesh layer according to the present invention
  • FIG. 21 is a photograph showing another example of the metal mesh layer according to the present invention.
  • FIG. 22 is a cross-sectional view showing a heat sink according to a third embodiment of the present invention
  • FIG. 23 is a cross-sectional view showing a heat sink according to a fourth embodiment of the present invention
  • FIG. 24 is a fifth embodiment of the present invention. It is sectional drawing which shows the heat sink.
  • FIG. 25 is a photograph showing a cross section of the metal mesh pattern of the heat sink according to the third embodiment of the present invention
  • FIG. 26 is a photograph showing a cross section of the metal mesh pattern of the heat sink according to the fourth embodiment of the present invention
  • 27 is a photograph showing a cross section of the metal mesh pattern of the heat sink according to the fifth embodiment of the present invention.
  • FIG. 28 is a cross-sectional view illustrating a heat sink according to a sixth embodiment of the present invention.
  • FIG. 29 is a schematic configuration diagram for manufacturing a heat sink according to a sixth embodiment of the present invention
  • FIG. 30 is a process flowchart illustrating a method of manufacturing a heat sink according to a sixth embodiment of the present invention.
  • FIG. 31 is a schematic structural diagram for manufacturing a heat sink according to a modification of the sixth embodiment of the present invention
  • FIG. 32 is a process showing a method of manufacturing a heat sink according to a modification of the sixth embodiment of the present invention. It is a flow chart.
  • FIG. 33 is a cross-sectional view illustrating a heat sink according to a seventh embodiment of the present invention
  • FIG. 34 is a cross-sectional view showing a heat sink according to an eighth embodiment of the present invention.
  • FIG. 35 is a sectional view showing an application example of the heat sink according to the seventh embodiment of the present invention
  • FIG. 36 is a sectional view showing an application example of the heat sink according to the eighth embodiment of the present invention.
  • 37 to 40 are cross-sectional views illustrating a method of manufacturing a heat sink according to the present invention.
  • FIG. 41 is a schematic structural diagram for manufacturing a heat sink according to a seventh embodiment of the present invention.
  • FIG. 42 is a process flowchart showing a method of manufacturing a heat sink according to a seventh embodiment of the present invention.
  • 43 is a schematic structural diagram for manufacturing a heat sink according to an eighth embodiment of the present invention.
  • FIG. 44 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the seventh embodiment of the present invention
  • FIG. 45 is a process showing a method for manufacturing a heat sink according to a modification of the seventh embodiment of the present invention
  • 46 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the eighth embodiment of the present invention.
  • first, second, etc. are used to describe various components, these components are of course not limited by these terms. These terms are only used to distinguish one component from another. Therefore, of course, the first component mentioned below may be a second component within the technical spirit of the present invention.
  • spatially relative terms below “, “ beneath “, “ lower”, “ above “, “ upper” It can be used to easily describe a component's correlation with other components. Spatially relative terms are to be understood as including terms in different directions of components in use or operation in addition to the directions shown in the figures. For example, when flipping a component shown in the drawing, a component described as “below” or “beneath” of another component may be placed “above” the other component. Can be. Thus, the exemplary term “below” can encompass both an orientation of above and below. The components can be oriented in other directions as well, so that spatially relative terms can be interpreted according to the orientation.
  • 1 is a cross-sectional view showing a general heat sink.
  • a general heat sink is attached to a heat generating element 10 so as to absorb heat generated from the heat generating element 10 and quickly dissipate heat, and heat dissipation of the heat sink. It is composed of a plurality of heat sink fins 50 formed on the upper surface of the heat sink in order to widen the area to release more heat.
  • the heat sink may be made of a material having a high thermal conductivity such as aluminum to quickly dissipate heat generated from the heat dissipation element 10.
  • Heat generated by the heat generating element during the operation of the electronic product is conducted to the plurality of heat dissipation fins 50 through the heat sink 20 of the heat sink attached to the heat generating element, and then is discharged to the surrounding air.
  • the heat dissipation area of the heat generated by the heat generating element is widened by the heat dissipation fins 50 of the heat sink, and this heat is released more quickly and smoothly.
  • the general heat sink has a small heat capacity so that the heating element immediately reaches a saturation temperature that matches the temperature of the heating element, that is, a temperature at a steady state where the temperature does not change any longer. do.
  • increasing the size of the heat sink is directly related to increasing the size of the product, and thus may cause a price increase of the electronic product provided with the heat generating element and the heat sink.
  • FIG. 2 is a cross-sectional view showing a heat sink according to a first embodiment of the present invention
  • Figure 3 is a cross-sectional view showing a heat sink according to a second embodiment of the present invention.
  • the heat sink 100 includes a base substrate 110.
  • the base substrate 110 is configured to absorb heat generated from the heating element, and carbon, nickel on the surface of stainless steel, nickel, copper, iron, aluminum, titanium or alloys thereof, aluminum, copper, iron or stainless steel.
  • titanium, silver, and the like can be used.
  • aluminum or an aluminum alloy is preferable.
  • the heat sink 100 includes a first adhesive layer 120a positioned on the first surface of the base substrate 110. And a second adhesive layer 120b positioned on the second surface of the 110.
  • the first adhesive layer 120a and the second adhesive layer 120b are for attaching a metal mesh layer to be described later on the base substrate 110, and the first adhesive layer and the second adhesive layer may be solder layers.
  • the layer may be made of lead (Pb), tin (Sn), zinc (Zn), indium (In), cadmium (Cd), bismuth (Bi), or alloys thereof.
  • the heat sink 100 may include a first metal mesh layer 130a and a second adhesive layer 120b positioned on the first adhesive layer 120a. It includes a second metal mesh layer 130b located on the).
  • the first metal mesh layer 130a or the second metal mesh layer 130b receives heat from a base substrate serving as a heat sink, and serves as a heat sink fin for releasing heat.
  • Silver (Ag), chromium (Cr), nickel (Ni), iron (Fe), cobalt (Co), aluminum (Al) and an alloy thereof may be made of at least one of the materials, the metal mesh in the present invention Although the material of a layer is not limited, Among these, aluminum or an aluminum alloy is preferable.
  • the first metal mesh layer 130a includes a first hole 132a positioned between the plurality of first metal mesh patterns 131a and the first metal mesh pattern 131a
  • the second The metal mesh layer 130b includes a plurality of second metal mesh patterns 131b and a second hole 132b positioned between the second metal mesh patterns 131b.
  • the heat sink 100 includes metal mesh layers 130a and 130b formed on the first and second surfaces of the base substrate 110, respectively.
  • the holes located between the metal mesh patterns may increase the heat dissipation area, thereby allowing more heat to be emitted.
  • the heat sink according to the present invention absorbs heat generated by the heat generating element through the base substrate, and the metal mesh pattern receives heat from the base substrate to release heat. Holes located in between can increase the heat dissipation area, allowing more heat to be released.
  • the thickness of the base substrate may be 1 ⁇ 100 ⁇ m.
  • the width of the metal mesh layer 130 is 1 ⁇ 500 ⁇ m
  • the thickness of the metal mesh layer may be 1 ⁇ 500 ⁇ m
  • the size of the hole located between the may be 1 ⁇ m ⁇ 3mm.
  • the thickness of the first adhesive layer or the second adhesive layer may be 1 ⁇ 20 ⁇ m.
  • a general heat sink has a small heat capacity, and thus, in order to radiate heat smoothly, the heat sink must be made large to increase its heat dissipation area, which is directly related to increasing the size of the product, causing the price of electronic products to increase. This can be
  • the heat sink according to the present invention as can be seen in the manufacturing method of the heat sink as described later, because the thickness of the base substrate, the metal mesh layer, the adhesive layer is very thin compared to the heat sink of the general structure, heat The sink itself is not made large, and therefore, the heat sink does not have a great influence on the sizing of the product.
  • the heat sink according to the present invention can be manufactured in a very thin thickness, it is possible to apply the heat sink to the parts of electronic products that are increasingly miniaturized.
  • the heat sink according to the present invention as can be seen in the method of manufacturing a heat sink described later, is easy to manufacture in a large area, so that the heat sink can be applied to parts of an enlarged electronic product.
  • the heat sink 200 includes a base substrate 210, an adhesive layer 220 and an adhesive layer 220 positioned on the base substrate 210. It includes a metal mesh layer 230 positioned on.
  • the metal mesh layer 230 includes a plurality of metal mesh patterns 231 and holes 232 disposed between the metal mesh patterns 231.
  • the heat sink 200 according to the second embodiment of the present invention is an embodiment in which the metal mesh layer 230 is formed only on one surface of the base substrate 210. Therefore, in the present invention, the metal mesh layer is formed of the base substrate. It may be formed on the first surface and / or the second surface of the.
  • the heat sink according to the second embodiment may be the same as the heat sink according to the first embodiment except as described above, a detailed description thereof will be omitted.
  • FIG. 4 is a cross-sectional view showing an application example of the heat sink according to the first embodiment of the present invention
  • Figure 5 is a cross-sectional view showing an application example of the heat sink according to the second embodiment of the present invention.
  • the heat sink 100 includes metal mesh layers 130a and 130b formed on the first and second surfaces of the base substrate 110, respectively.
  • the metal mesh layer may include a plurality of metal mesh patterns 131a and 131b and holes 132a and 132b respectively disposed between the metal mesh patterns, and the base substrate and the metal mesh layer may be attached to each other.
  • One surface of the heat sink 100 is provided in a predetermined region of the heat generating element 10.
  • one surface of the heat sink 100 facing the heat generating element 10 may serve as a heat sink, and the other surface of the heat sink 100 opposite to the surface facing the heat generating element 10 may act as a heat sink fin.
  • the second metal mesh layer 130b and the base substrate 110 act as heat sinks, absorb heat generated from the heat generating element, and the first metal mesh layer 130a receives heat from the heat sinks.
  • the heat may be released, and in this case, the holes 132a located between the metal mesh patterns may expand the heat dissipation area to allow more heat to be emitted.
  • the surface on which the second metal mesh layer 130b is positioned is opposite to the heating element.
  • the surface on which the first metal mesh layer 130a is positioned may face the heating element. It is natural.
  • the heat sink 200 includes a base substrate 210, an adhesive layer 220 and an adhesive layer 220 positioned on the base substrate 210.
  • the metal mesh layer 230 may be disposed on the metal mesh layer 230, and the metal mesh layer 230 may include a plurality of metal mesh patterns 231 and holes 232 disposed between the metal mesh patterns 231. It includes.
  • the surface of the base substrate of the heat sink 200 is provided in a predetermined region of the heat generating element 10.
  • the base substrate 210 acts as a heat sink, absorbs heat generated from the heat generating element, and the metal mesh layer 230 may receive heat from the heat sink to release heat.
  • the holes 232 disposed therebetween can widen the heat dissipation area, thereby allowing more heat to be emitted.
  • the thickness of the base substrate in the present invention may be 1 ⁇ 100 ⁇ m
  • the thickness of the metal mesh layer may be 1 ⁇ 500 ⁇ m
  • the thickness of the adhesive layer may be 1 ⁇ 20 ⁇ m, that is,
  • the heat sink according to the invention since the thickness of the base substrate, the metal mesh layer and the adhesive layer is very thin as compared with the heat sink of the general structure, the heat sink itself is not largely manufactured. Does not have a big impact
  • Figure 6 is a schematic perspective view showing a mesh-type negative electrode drum of the metal mesh manufacturing apparatus according to the present invention
  • Figure 7 is a cross-sectional view showing a part of the mesh-type negative electrode drum
  • Figure 8 is for manufacturing a metal mesh according to the present invention It is a schematic block diagram which shows a continuous pole apparatus
  • FIG. 9 is a process flowchart which shows the manufacturing method of the metal mesh which concerns on this invention.
  • the mesh type cathode drum 40 of the metal mesh manufacturing apparatus has a constant width while surrounding the rotating shaft 41b and the rotating shaft 41b to be rotatable.
  • the branch includes a cylindrical drum 41a.
  • one side end of the rotating shaft 41b may be coupled to a chain connected to a motor providing a rotational force so that the drum 41a is rotated.
  • a mesh 42 having a shape to be manufactured is formed on the surface of the drum 40.
  • the mesh 42 may be formed in a net shape in which a plurality of hexagons are connected to each other, and may be configured as a honeycomb, but the shape of the mesh may be a quadrangle, a triangle, a pentagon, and the like.
  • the shape of the mesh is not limited.
  • the mesh 42 is a single metal or alloy according to the component of the electrolyte to be plated It can be configured to be used, by directly processing the surface of the cylindrical drum (41a) to be formed integrally with the cylindrical drum (41a), or a weaving type or arrangement formed by weaving like a thread with a metal wire
  • the mesh 50 processed into a batch type can be used by attaching to the surface of the cylindrical drum 41a.
  • an insulating layer 43 is positioned in the space between the mesh 42 and the mesh 42, and the insulating layer is made of plastic such as epoxy resin, teflon resin, or fluororesin. It may be a resin.
  • insulating layer 43 in the space between the mesh and the mesh, after forming the mesh 42 of the shape to be manufactured on the surface of the cylindrical drum (41a) as described above, known spray method or The insulating material may be applied by a vapor deposition method, and the cross section may be planarized by a known chemical mechanical polishing (CMP) process.
  • CMP chemical mechanical polishing
  • a metal mesh layer (not shown) is formed on the mesh 42 of the surface of the mesh type cathode drum through the mesh type cathode drum 40, and the metal mesh layer (not shown) is peeled off. In this manner, the metal mesh can be formed by the electroforming process.
  • the mesh type cathode drum corresponds to a pole master
  • the pole master includes a mesh having a shape corresponding to the shape of the metal mesh layer to be manufactured so as to form the metal mesh layer by the pole casting process. All members are referred to collectively, and may be a drum type as shown in Figure 6, otherwise, may be a flat plate type, thus, in the present invention, the pole master for the electroplating process may be a drum type or a flat plate type.
  • the electric pole master according to the present invention is formed on the base plate and the base plate, and includes a mesh of a shape corresponding to the shape of the metal mesh layer to be manufactured, the shape of the base plate is a drum type, the present invention
  • the master pole according to the present invention may be a drum type, and when the shape of the base plate is flat, it means that the master pole according to the present invention may be a flat type.
  • the continuous electroplating apparatus for manufacturing a metal mesh includes an electrolytic cell 34 containing an electrolytic solution to be plated and a portion of the electrolytic cell 34 so as to be immersed in the electrolytic solution of the electrolytic cell 34.
  • a mesh basket which is rotated by a power source and a cathode-type basket (31) which is installed to be completely immersed in the electrolyte of the electrolytic cell (34) and formed in a shape corresponding to the mesh-type cathode drum (40) and maintains a constant distance. ) May be included.
  • the electrolyte is formed of copper (Cu), silver (Ag), chromium (Cr), nickel (Ni), iron (Fe), cobalt (Co), aluminum (Al) and the like to form a metal mesh layer according to the present invention. It may be made of at least one of these alloys, but is not limited to the type of the electrolyte in the present invention.
  • the electrolytic cell 34 has a semi-cylindrical shape in which the lower surface of the electrolytic cell is perforated downward, and the electrolytic cell 34 has an electrolyte to be plated on the surface of the mesh type cathode drum 40. Can be accommodated.
  • an auxiliary tank 30 is formed below the electrolyzer 34 to accommodate the electrolyte flowing from the electrolyzer 34 so that the electrolyte is accommodated in a dual structure of the electrolyzer 34 and the auxiliary tank 30. Can be.
  • a part of the rotating mesh type cathode drum 40 that is, about half, is immersed in the electrolytic cell 34, and the electrolytic cell 34 of the electrolytic cell 34 is injected into the electrolytic solution injection passage 32 to be described later.
  • the electrolyte is stirred, and the electrolyte flowing through the electrolytic cell 34 while the electrolyte is stirred by the injection of the electrolyte in the electrolyte injection passage 32 is configured to be accommodated in the auxiliary tank 30.
  • the electrolyzer 34 is provided with a mesh type cathode drum 40 which is immersed in the electrolyte and rotates about halfway.
  • the mesh type cathode drum 40 is connected to the cathode (-) of the power applied to the cylindrical drum 41a having a constant width while surrounding the rotating shaft 41b and the rotating shaft 41b to be rotatable. Can be formed.
  • one end of the rotary shaft 41b is provided with a power supply for supplying a negative electrode (-) from the rectifier, the other end to provide a rotational force to rotate the cylindrical drum (41a)
  • the motor can be coupled.
  • a mesh 42 having a shape corresponding to a plurality of holes (132a and 132b of FIG. 2) provided in the metal mesh to be manufactured may be formed on the surface of the cylindrical drum 41a.
  • the mesh 42 may be formed in a net shape in which a plurality of hexagons are connected to each other and may be configured in a honeycomb form.
  • An anode basket 31 formed of an insoluble anode (+) or titanium (Ti) is installed under the mesh type cathode drum 40.
  • the anode basket 31 is formed so as to be immersed in the electrolyte of the electrolytic cell 34 and formed in the shape of an arc cut in half so as to correspond to the mesh type cathode drum 40 to maintain a constant distance.
  • a metal cluster 33 having the same component as the electrolyte of the electrolytic cell 34 may be accommodated inside the anode basket 31.
  • the metal cluster 33 is enclosed and stored in a separation prevention net to prevent the inside of the positive electrode basket 31 from being separated into the electrolytic cell 34.
  • the metal cluster 33 serves to match the amount and concentration of the electrolyte solution plated on the surface of the cylindrical drum 41a by dissolving in the electrolyte solution of the electrolytic cell 34 as a metal mass of the same component as the electrolyte solution of the electrolytic cell 34. Can be performed.
  • An electrolyte injection flow path 32 for injecting an electrolyte solution to agitate the electrolyte solution of the electrolytic cell 34 may be formed at a lower end portion of the electrolytic cell 34, more specifically, at the center of the lower end of the positive electrode basket 31.
  • the injection passage 32 may be formed as a cylindrical plastic pipe having a long length and communicating with an inside of the electrolytic cell 34.
  • the continuous electroforming device may further include circulation-filtering means, wherein the circulation-filtering means circulates the electrolyte in the auxiliary tank 30 to the electrolyzer 34 while foreign matter in the electrolyte. It may serve to remove, but, since it is a general configuration will be omitted the following detailed description.
  • the metal mesh 50 to be plated on the outer circumferential surface of the cylindrical drum 41a is peeled off on the upper right side of the mesh type cathode drum 40.
  • a guide roller 51 for vibrating may be provided, and a cleaning tank 60 for cleaning the surface of the metal mesh 50 may be provided.
  • a winding roller 70 may be provided on the right side of the cleaning tank 60, and the winding roller 70 may continuously wind the cleaned metal mesh 50 via the cleaning tank 60.
  • the current density in the electrodeposition step (S30) may be 0.1 to 30 mA / cm2, but does not limit the range of the current density in the present invention, depending on the material to be electrodeposited, the current density is different It can be done.
  • the range of the current density of 0.1 to 1 mA / cm 2 may be a range in which electrodeposition of copper (Cu) is actively generated, the range of 3 to 15 mA / cm 2 is the nickel (Ni) May be a range in which electrodeposition is actively occurring.
  • the electrodeposition of the metal mesh layer is preferably carried out within a certain temperature range of the electrolyte in order to be more actively electrodeposited in the above range of the current density.
  • the copper (Cu) or nickel (Ni) may be actively electrodeposited when the temperature of the electrolyte is 10 to 50 °C, but is not limited to the temperature of the electrolyte in the present invention.
  • a metal mesh layer is formed on the outer surface of the mesh type cathode drum 40, more specifically, on the mesh 42 (FIG. 7).
  • an electrodeposition layer peeling step S40 for peeling the metal mesh layer from the outer surface of the mesh type cathode drum 40, in particular, the mesh is continued.
  • the electrodeposition layer peeling step S40 is performed while the metal mesh layer attached to the outer surface of the mesh type cathode drum 40 is guided to the upper right side by the rotation of the guide roller 51.
  • the protective film (not shown), such as PET, PC, PMMA, after laminating it on top of the metal mesh layer formed on the mesh of the surface of the mesh-type cathode drum, the protective film (not even C) and the metal mesh layer may be peeled off simultaneously to form the metal mesh 50 by the electroforming process.
  • a protective film such as PET, PC, PMMA
  • the electrodeposited layer washing step (S50) of immersing the metal mesh 50 separated from the mesh type cathode drum 40 into the washing tank 60 is washed.
  • the metal mesh 50 washed through the electrodeposition layer washing step S50 is wound while being transferred to the take-up roller 70, and the metal mesh winding step S60 is performed.
  • the metal mesh 50 can be stored in a wound state on the winding roller 70, and can be applied to various fields by cutting the required length and shape as needed.
  • the electrodeposition layer peeling step in the above, by applying an adhesive to a protective film (not shown), after laminating it on top of the metal mesh layer formed on the mesh of the surface of the mesh-type cathode drum, the protective film C) and the metal mesh layer are peeled off at the same time to form the metal mesh 50 by the electroforming process.
  • the metal mesh layer may be separated from the mesh of the mesh type cathode drum without a protective film. In this case, since the thickness of the metal mesh layer is thin and difficult to process, the metal mesh 50 washed through the electrodeposition layer washing step S50 may be attached to a separate protective film.
  • the metal mesh layer may be formed through the continuous pole apparatus for manufacturing the metal mesh, and the metal mesh layer formed may be used as the metal mesh layer of the heat sink as described above.
  • FIG. 10 to 13 are cross-sectional views for explaining a method of manufacturing a heat sink according to the present invention.
  • a method of manufacturing the heat sink according to the present invention will be described based on the method of manufacturing the heat sink according to the first embodiment of the present invention of FIG.
  • the metal mesh layer 130 is manufactured through the metal mesh manufacturing apparatus as described above.
  • the metal mesh layer can also be produced by weaving or machining method, and thus, the metal mesh layer in the present invention It does not limit the method for producing the same.
  • the width d1 of the metal mesh layer 130 may be 1 to 500 ⁇ m
  • the thickness d2 of the metal mesh layer may be 1 to 500 ⁇ m
  • the interval between the metal mesh pattern and the metal mesh pattern may also be used. That is, the size of the holes 132 located between the metal mesh patterns 131 may be 1 ⁇ m to 3 mm, but the present invention is not limited thereto.
  • the first adhesive layer 120a is formed on the first surface of the base substrate 110
  • the second adhesive layer 120b is formed on the second surface of the base substrate 110.
  • the first adhesive layer 120a and the second adhesive layer 120b may be solder layers, and the solder layer may be formed by a known electroplating method or an electroless plating method, but the formation of the solder layer in the present invention. It does not limit the method.
  • the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
  • the thickness of the base substrate 110 is 1 ⁇ 100 ⁇ m
  • the thickness of the first adhesive layer or the second adhesive layer may be 1 ⁇ 20 ⁇ m
  • the thickness of the base substrate, the first adhesive layer and the second adhesive layer ( d3) may be 2 to 120 ⁇ m, but the present invention is not limited thereto.
  • the first metal mesh layer 130a is positioned on the first adhesive layer 120a, and the second metal mesh layer 130b is positioned on the second adhesive layer 120b. Thereafter, the first metal mesh layer and the second metal mesh layer are pressed onto the first adhesive layer and the second adhesive layer, respectively, through a pressing roller.
  • the constant temperature is 150 ⁇ 500 °C days Can be.
  • a heat sink including a metal mesh layer according to the present invention may be manufactured, that is, as shown in FIG. 13, the heat sink 100 according to the first embodiment of the present invention may include a base substrate 110.
  • 132a and 132b and at this time, adhesive layers 120a and 120b for attaching the base substrate and the metal mesh layer are included.
  • FIG. 14 is a schematic configuration diagram for manufacturing a heat sink according to the first embodiment of the present invention
  • FIG. 15 is a process flowchart showing a method of manufacturing the heat sink according to the first embodiment of the present invention
  • 16 is a schematic structural diagram for manufacturing a heat sink according to a second embodiment of the present invention.
  • the method of manufacturing the heat sink according to the second embodiment of the present invention may be the same as the method of manufacturing the first embodiment described above, except as will be described later. Shall be.
  • the method of manufacturing the heat sink according to the first embodiment of the present invention provides a base substrate 611 prepared from the base substrate supply unit 610 (S100).
  • the base substrate is pretreated (S110).
  • the pretreatment may be a general chemical pretreatment.
  • the chemical pretreatment may be performed by immersing a target material, ie, a base substrate in an acidic or alkaline solution, such as pickling and degreasing, or spraying the solution on the target material, such as oil, It may be a method for removing contaminants, impurities, and the like.
  • the pretreatment may be a chemical pretreatment method by immersing the base substrate in a pretreatment tank 601 containing a pretreatment solution, but is not limited to the method of pretreatment in the present invention, if necessary, The pretreatment step can be omitted.
  • the first washing step is a process for removing the pretreatment solution used in the pretreatment process, and may be by a method of immersing the base substrate in the first washing tank 602 containing the washing solution.
  • the method of washing with water is not limited, and if necessary, the first washing step can be omitted.
  • the adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by a method of immersing the base substrate in a plating bath 603 including a plating solution.
  • the method of forming the solder layer is not limited.
  • the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
  • a solder layer may be formed on the first and second surfaces of the base substrate, respectively.
  • the second washing step is a step for washing the plating solution used in the adhesive layer forming process, and the like, and may be by a method of dipping the base substrate in the second washing tank 604 in which the washing solution is contained.
  • the method of washing with water in the present invention is not limited, and if necessary, the second washing step can be omitted.
  • the drying step may be hot air drying performed in the hot air drying furnace 605, but the present invention is not limited to the drying method, and the drying process may be omitted if necessary.
  • the metal mesh layer 621 is manufactured through the metal mesh manufacturing apparatus as described above, and a metal mesh layer is provided (S160).
  • the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted.
  • the supply portion of the metal mesh layer 620a , 620b) may be located on the first and second surfaces of the base substrate, respectively.
  • the metal mesh layer is positioned on the adhesive layer of the base substrate including the adhesive layer and pressed by the pressing rollers 630a and 630b (S170).
  • the first metal mesh layer provided from the metal mesh layer first supply part 620a is positioned on the first adhesive layer positioned on the first surface of the base substrate, and the base is positioned.
  • the first metal mesh layer and the second metal through the pressing roller are placed.
  • the mesh layer may be pressed onto the first adhesive layer and the second adhesive layer, respectively.
  • the constant temperature is 150 ⁇ 500 °C days Can be.
  • a heat sink including the metal mesh layer according to the first embodiment of the present invention can be manufactured.
  • the heat sink 631 includes a metal mesh layer formed on each of the first and second surfaces of the base substrate, the metal mesh layer Each includes a plurality of metal mesh pattern and the hole located between the metal mesh pattern, wherein the base layer and the adhesive layer for attaching the metal mesh layer.
  • the method of manufacturing the heat sink according to the second embodiment of the present invention provides the base substrate 711 prepared from the base substrate supply unit 710.
  • the base substrate is pretreated.
  • the pretreatment may be a chemical pretreatment method by dipping the base substrate in a pretreatment bath 701 containing a pretreatment solution.
  • the first washing step may be based on a method of immersing the base substrate in the first washing tank 702 containing the washing solution.
  • an adhesive layer is formed on the base substrate.
  • the adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by a method of immersing the base substrate in a plating bath 703 including a plating solution.
  • the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
  • a solder layer may be formed on one of the first and second surfaces of the base substrate, for example, the first surface, by attaching a separate protective film to the second surface of the base substrate.
  • the solder layer may not be formed on the second surface of the base substrate.
  • the second washing step is a process for washing the plating solution used in the adhesive layer forming process, and may be immersed in a method of immersing the base substrate in the second washing tank 604 containing the washing solution.
  • the base substrate on which the adhesive layer is formed is dried.
  • the drying step may be hot air drying performed in the hot air drying furnace 705.
  • the metal mesh layer 721 is manufactured through the metal mesh manufacturing apparatus as described above to provide a metal mesh layer.
  • the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted.
  • the metal mesh layer is any one of the first surface and the second surface of the base substrate, for example, the first To supply the surface, the supply portion 720a of the metal mesh layer may be located only on the first surface of the base substrate.
  • the method of manufacturing the heat sink according to the second embodiment of the present invention is an embodiment in which the metal mesh layer is formed only on one surface of the base substrate. Or it can form in a 2nd surface.
  • the metal mesh layer is placed on the adhesive layer of the base substrate including the adhesive layer and pressed by the pressing rollers 730a and 730b.
  • the first metal mesh layer may be pressed onto the first adhesive layer.
  • the constant temperature may be 150 ⁇ 500 °C.
  • a heat sink including the metal mesh layer according to the second embodiment of the present invention can be manufactured.
  • the heat sink 731 according to the second embodiment of the present invention includes a metal mesh layer formed on the first surface of the base substrate, the metal mesh layer is a plurality of metal mesh A hole is disposed between the pattern and the metal mesh pattern.
  • an adhesive layer for attaching the base substrate and the metal mesh layer is included.
  • FIG. 17 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the first embodiment of the present invention
  • FIG. 18 is a process showing a method for manufacturing a heat sink according to a modification of the first embodiment of the present invention
  • 19 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the second embodiment of the present invention.
  • the method of manufacturing the heat sink according to the modification of the first embodiment of the present invention may be the same as the method of manufacturing the first embodiment described above.
  • the method of manufacturing the heat sink according to the modification of the second embodiment of the present invention may be the same as the method of manufacturing the modification of the first embodiment described above, except as will be described later. See 18.
  • the method of manufacturing the heat sink according to the modification of the first embodiment of the present invention provides the base substrate 811 prepared from the base substrate supply unit 810 (S200).
  • the base substrate is pretreated (S210).
  • the pretreatment may be a chemical pretreatment method by dipping the base substrate in a pretreatment bath 801 containing a pretreatment solution.
  • the first washing step may be based on a method of immersing the base substrate in a first washing tank 802 containing a washing solution.
  • the adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by a method of immersing the base substrate in a plating bath 803 including a plating solution.
  • the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
  • a solder layer may be formed on the first and second surfaces of the base substrate, respectively.
  • the second washing step may be by a method of immersing the base substrate in a second washing tank 804 containing a washing solution.
  • the drying step may be hot air drying performed in the hot air drying furnace 805.
  • the metal mesh layer 821 including the protective film is manufactured through the metal mesh manufacturing apparatus as described above, and a metal mesh layer including the protective film is provided (S260). ).
  • the electrodeposition layer peeling step of manufacturing a metal mesh layer by applying an adhesive to the protective film, it is laminated on top of the metal mesh layer formed on the mesh of the surface of the mesh-type cathode drum, the protection The film and the metal mesh layer can be peeled off simultaneously.
  • the metal mesh washed through the electrodeposition layer washing step is separated for easy handling. It can also be attached to a protective film.
  • the heat sink manufacturing method according to the modification of the first embodiment of the present invention corresponds to the use of such a metal mesh layer including a protective film.
  • the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted. Let's do it.
  • the supply portion of the metal mesh layer 820a and 820b may be located on the first and second surfaces of the base substrate, respectively.
  • the metal mesh layer is placed on the adhesive layer of the base substrate including the adhesive layer and pressed by the pressing rollers 830a and 830b (S270).
  • a metal mesh layer on the opposite side on which the protective film is positioned is placed on the adhesive layer.
  • the first metal mesh layer provided from the metal mesh layer first supply part 820a is positioned on the first adhesive layer positioned on the first surface of the base substrate.
  • the first metal mesh layer and the first metal mesh layer are formed through a pressing roller.
  • the bimetallic mesh layer may be pressed onto the first adhesive layer and the second adhesive layer, respectively.
  • the constant temperature is 150 ⁇ 500 °C days Can be.
  • the protective film is included on the opposite surface of the adhesive layer and the non-bonded metal mesh layer.
  • the protective film is removed from the metal mesh layer at the end of use (S280).
  • the modification of the first embodiment is because the protective film is included on the upper portion of the metal mesh layer, more specifically, the upper surface of the opposite side of the non-bonded metal mesh layer, The protective and storage characteristics of the heat sink can be facilitated.
  • the heat sink including the metal mesh layer according to the modification of the first embodiment of the present invention can be manufactured.
  • the method of manufacturing the heat sink according to the modification of the second embodiment of the present invention provides the base substrate 911 prepared from the base substrate supply unit 910.
  • the base substrate is pretreated.
  • the pretreatment may be a chemical pretreatment method by dipping the base substrate in a pretreatment bath 901 containing a pretreatment solution.
  • the first washing step may be by a method of immersing the base substrate in the first washing tank 902 containing the washing solution.
  • an adhesive layer is formed on the base substrate.
  • the adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by immersing the base substrate in a plating bath 903 including a plating solution.
  • the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
  • a solder layer may be formed on one of the first and second surfaces of the base substrate, for example, the first surface, by attaching a separate protective film to the second surface of the base substrate.
  • the solder layer may not be formed on the second surface of the base substrate.
  • the second washing step is a process for washing the plating solution used in the adhesive layer forming process, and may be immersed in a method of immersing the base substrate in the second washing tank 904 containing the washing solution.
  • the base substrate on which the adhesive layer is formed is dried.
  • the drying step may be hot air drying performed in the hot air drying furnace 905.
  • a metal mesh layer 921 including a protective film is manufactured through the metal mesh manufacturing apparatus as described above to provide a metal mesh layer including a protective film.
  • the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted.
  • the metal mesh layer may be one of the first and second surfaces of the base substrate, for example, In order to supply to the first surface, the supply portion 920a of the metal mesh layer may be located only on the first surface of the base substrate.
  • the method of manufacturing the heat sink according to the modification of the second embodiment of the present invention is an embodiment in which the metal mesh layer is formed only on one surface of the base substrate. Therefore, in the present invention, the metal mesh layer is formed on the first surface of the base substrate. And / or on the second surface.
  • the metal mesh layer is placed on the adhesive layer of the base substrate including the adhesive layer and pressed by the pressing rollers 930a and 930b.
  • the first metal mesh layer provided from the metal mesh layer first supply part 920a is positioned on the first adhesive layer positioned on the first surface of the base substrate. Afterwards, the first metal mesh layer may be pressed onto the first adhesive layer through a pressing roller.
  • the constant temperature may be 150 ⁇ 500 °C.
  • the metal mesh layer includes a protective film in the heat sink 931, the protective film is included on the opposite surface of the adhesive layer and the non-bonded metal mesh layer.
  • the protective film is removed from the metal mesh layer in the final use.
  • the modification of the second embodiment is because the protective film is included on the upper portion of the metal mesh layer, more specifically, the upper surface of the opposite side of the non-bonded metal mesh layer, The protective and storage characteristics of the heat sink can be facilitated.
  • a heat sink including a metal mesh layer according to a modification of the second embodiment of the present invention can be manufactured.
  • FIG. 20 is a photograph showing an example of the metal mesh layer according to the present invention
  • FIG. 21 is a photograph showing another example of the metal mesh layer according to the present invention.
  • the planar shape of the metal mesh layer according to the present invention may be a substantially rectangular shape, and as shown in FIG. 21, the planar shape of the metal mesh layer according to the present invention may be approximately hexagonal.
  • the continuous pole device includes a cylindrical drum, according to the shape of the mesh formed on the surface of the cylindrical drum, The shape of the metal mesh layer can be determined.
  • the mesh of the shape to be manufactured is formed on the surface of the cylindrical drum of the continuous electromotive apparatus, wherein the mesh is formed in a mesh shape in which a plurality of hexagons are connected, may be configured as a honeycomb form, In addition, it may be formed in the shape of a square, triangle, pentagons, etc., if the shape of the mesh is hexagon, the planar shape of the metal mesh layer is also hexagonal, if the shape of the mesh is a square, the metal mesh layer The planar shape of can also be square.
  • the shape of the metal mesh layer is not limited in the present invention.
  • FIG. 22 is a cross-sectional view showing a heat sink according to a third embodiment of the present invention
  • FIG. 23 is a cross-sectional view showing a heat sink according to a fourth embodiment of the present invention
  • FIG. 24 is a fifth embodiment of the present invention. It is sectional drawing which shows the heat sink.
  • the heat sinks according to the third to fifth embodiments may be the same as the heat sinks according to the first embodiment described above except for the following description.
  • the heat sink 300 includes metal mesh layers 330a and 330b formed on the first and second surfaces of the base substrate 110, respectively.
  • the metal mesh layer includes a plurality of metal mesh patterns 331a and 331b and holes 332a and 332b positioned between the metal mesh patterns, respectively, wherein the base substrate and the metal mesh layer are attached to each other.
  • the heat sink according to the third embodiment of the present invention may have a different shape of the metal mesh pattern compared with the first embodiment.
  • the first metal mesh pattern 331a of the first metal mesh layer 330a includes a lower end portion 331a 2 and an upper end portion 331a 1
  • the second metal mesh of the second metal mesh layer 330b includes a lower end portion 331b 2 and an upper end portion 331b 1 , wherein the widths of the upper end portions 331a 1 and 331b 1 are larger than the widths of the lower end portions 331a 2 and 331b 2 , respectively. It features.
  • the width of the upper end portions 331a 1 and 331b 1 is greater than the width of the lower end portions 331a 2 and 331b 2 , thereby increasing the surface area of the upper end portion to improve heat dissipation characteristics.
  • the upper end and the lower end are based on the surface of the base substrate to which each metal mesh layer is bonded, that is, the first metal mesh pattern is based on the first surface of the base substrate.
  • the second metal mesh pattern may distinguish the upper end and the lower end based on the second surface of the base substrate.
  • the heat sink 400 may include metal mesh layers 430a and 430b formed on the first and second surfaces of the base substrate 110, respectively.
  • the metal mesh layer includes a plurality of metal mesh patterns 431a and 431b and holes 432a and 432b respectively positioned between the metal mesh patterns, wherein the base substrate and the metal mesh layer are attached to each other.
  • the adhesive layers 120a and 120b are included.
  • the heat sink according to the fourth embodiment of the present invention may have a different shape of the metal mesh pattern compared with the first embodiment.
  • the first metal mesh pattern 431a of the first metal mesh layer 430a includes a lower end 431a 2 and an upper end 431a 1
  • the second metal mesh of the second metal mesh layer 430b includes a lower portion 431b 2 and an upper portion 431b 1 , wherein the widths of the upper portions 431a 1 and 431b 1 are larger than the widths of the lower portions 431a 2 and 431b 2 . It features.
  • the width of the upper end portions 431a 1 and 431b 1 may be greater than the width of the lower end portions 431a 2 and 431b 2 , and the width may increase from the lower end of the metal mesh pattern toward the upper end.
  • the upper end and the lower end are based on the surface of the base substrate to which each metal mesh layer is bonded, that is, the first metal mesh pattern is based on the first surface of the base substrate.
  • the second metal mesh pattern may distinguish the upper end and the lower end based on the second surface of the base substrate.
  • the heat sink 500 may include metal mesh layers 530a and 530b formed on the first and second surfaces of the base substrate 110, respectively.
  • the metal mesh layer includes a plurality of metal mesh patterns 531a and 531b and holes 532a and 532b positioned between the metal mesh patterns, respectively, wherein the base substrate and the metal mesh layer are attached to each other.
  • the adhesive layers 120a and 120b are included.
  • the heat sink according to the fifth embodiment of the present invention may have a different shape of the metal mesh pattern compared with the first embodiment.
  • the first metal mesh pattern 531a of the first metal mesh layer 530a includes a lower end 531a 2 and an upper end 531a 1 , and the second metal mesh of the second metal mesh layer 530b.
  • pattern (531b) is smaller than the width of the lower end (531b 2), and an upper end comprising a (531b 1), wherein, each of the upper end of (531a 1, 531b 1) the lower end is the width of each (531a 2, 531b 2) It features.
  • the width of the upper end portions 531a 1 and 531b 1 may be made smaller than the width of the lower end portions 531a 2 and 531b 2 , so that the width of the upper end portion is smaller than the width of the lower end portion.
  • the cross-sectional shape of the upper end portions 531a 1 and 531b 1 is illustrated in a semicircle shape in FIG. 24, the cross-sectional shape of the upper end portion is not limited within a range in which the upper end portion has a width smaller than that of the lower end portion. .
  • the upper end and the lower end are based on the surface of the base substrate to which each metal mesh layer is bonded, that is, the first metal mesh pattern is based on the first surface of the base substrate.
  • the second metal mesh pattern may distinguish the upper end and the lower end based on the second surface of the base substrate.
  • FIG. 25 is a photograph showing a cross section of the metal mesh pattern of the heat sink according to the third embodiment of the present invention
  • FIG. 26 is a photograph showing a cross section of the metal mesh pattern of the heat sink according to the fourth embodiment of the present invention
  • 27 is a photograph showing a cross section of the metal mesh pattern of the heat sink according to the fifth embodiment of the present invention.
  • the shape of the metal mesh patterns of the metal mesh layers 330a, 430a, and 530a may be manufactured as described with reference to FIGS. 22 to 24.
  • FIG. 28 is a cross-sectional view illustrating a heat sink according to a sixth embodiment of the present invention.
  • the heat sink according to the sixth embodiment may be the same as the heat sink according to the first embodiment described above, except as will be described later.
  • the heat sink 600 includes metal mesh layers 130a and 130b formed on the first and second surfaces of the base substrate 110, respectively.
  • the metal mesh layer includes a plurality of metal mesh patterns 131a and 131b and holes 132a and 132b positioned between the metal mesh patterns, respectively, and includes an adhesive layer for attaching the base substrate and the metal mesh layer. have.
  • the heat sink according to the sixth embodiment of the present invention may have a different structure of the adhesive layer compared to the first embodiment.
  • the adhesive layer is formed on the first adhesive layers 120a and 120b and the metal mesh layers 130a and 130b respectively positioned on the first and second surfaces of the base substrate 110.
  • a second adhesive layer 140a and 140b respectively positioned on the first adhesive layer, and the base substrate and the metal mesh layer may be attached to each other by attachment of the first adhesive layer 120a and 120b and the second adhesive layer 140a and 140b.
  • FIG. 29 is a schematic configuration diagram for manufacturing a heat sink according to a sixth embodiment of the present invention
  • FIG. 30 is a process flowchart illustrating a method of manufacturing a heat sink according to a sixth embodiment of the present invention.
  • the manufacturing method of the heat sink according to the sixth embodiment may be the same as the manufacturing method of the heat sink according to the first embodiment described above, except as will be described later.
  • the method of manufacturing the heat sink according to the sixth embodiment of the present invention provides a base substrate 1011 prepared from the base substrate supply unit 1010 (S300).
  • the base substrate is pretreated (S310).
  • the pretreatment may be a chemical pretreatment method by dipping the base substrate in a pretreatment tank 1001 containing a pretreatment solution.
  • the first washing step may be based on a method of immersing the base substrate in a first washing tank 1002 containing a washing solution.
  • a first adhesive layer is formed on the base substrate (S330).
  • the first adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by a method of immersing the base substrate in a plating bath 1003 including a plating liquid.
  • the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
  • a solder layer may be formed on the first and second surfaces of the base substrate, respectively.
  • the second washing step may be by a method of immersing the base substrate in a second washing tank 1004 containing a washing solution.
  • the drying step may be hot air drying performed in the hot air drying furnace 1005.
  • the metal mesh layer 1021 is manufactured through the metal mesh manufacturing apparatus as described above, and a metal mesh layer is provided (S360).
  • the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted.
  • the supply portion 1020a of the metal mesh layer , 1020b) may be located on the first and second surfaces of the base substrate, respectively.
  • the pretreatment may be a general chemical pretreatment.
  • the chemical pretreatment may be performed by immersing a target material, that is, a metal mesh layer in an acidic or alkaline solution, such as pickling and degreasing, or spraying the solution on the target material to provide oil on the surface of the metal material. , Contaminants, and impurities may be removed.
  • the pretreatment may be a chemical pretreatment method by immersing the metal mesh layer in the pretreatment tanks 1021a and 1021b containing the pretreatment solution, but the present invention is not limited to the method of pretreatment. Accordingly, the pretreatment step can be omitted.
  • the first washing step is a process for removing a pretreatment solution used in the pretreatment process, and may be by a method of immersing the metal mesh layer in the first washing baths 1022a and 1022b containing the washing solution.
  • the method of washing with water in the present invention is not limited, and the first washing step may be omitted as necessary.
  • the adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by a method of immersing the metal mesh layer in plating baths 1023a and 1023b including a plating solution.
  • the present invention is not limited to the method of forming the solder layer.
  • the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
  • the second washing step is a process for washing the plating solution used in the adhesive layer forming process, and may be by a method of immersing the metal mesh layer in the second washing tanks (1024a, 1024b) containing the washing solution.
  • the method of washing with water in the present invention is not limited, and if necessary, the second washing step may be omitted.
  • the drying step may be hot air drying performed in the hot air drying furnaces 1025a and 1025b, but the present invention is not limited to the drying method, and the drying process may be omitted if necessary.
  • the base substrate including the first adhesive layer and the metal mesh layer including the second adhesive layer is disposed, the second adhesive layer is positioned on the first adhesive layer, and pressed by the pressing rollers 1030a and 1030b. (S370).
  • the constant temperature may be 150 ⁇ 500 °C.
  • a heat sink including the metal mesh layer according to the sixth embodiment of the present invention can be manufactured.
  • the adhesive layer is a first adhesive layer and the metal mesh, respectively located on the first and second surfaces of the base substrate And a second adhesive layer positioned on each of the layers, and the base substrate and the metal mesh layer may be attached through the attachment of the first adhesive layer and the second adhesive layer.
  • the metal mesh layer may be located on only one of the first and second surfaces of the base substrate, similarly to the first embodiment. have.
  • FIG. 31 is a schematic structural diagram for manufacturing a heat sink according to a modification of the sixth embodiment of the present invention
  • FIG. 32 is a process showing a method of manufacturing a heat sink according to a modification of the sixth embodiment of the present invention. It is a flow chart.
  • the method of manufacturing the heat sink according to the modification of the sixth embodiment of the present invention may be the same as the method of manufacturing the sixth embodiment described above.
  • the method of manufacturing the heat sink according to the modification of the sixth embodiment of the present invention provides a base substrate 1111 prepared from the base substrate supply unit 1110 (S400).
  • the base substrate is pretreated (S410).
  • the pretreatment may be a chemical pretreatment method by dipping the base substrate in a pretreatment bath 1101 containing a pretreatment solution.
  • the first washing step may be based on a method of immersing the base substrate in a first washing bath 1102 containing a washing solution.
  • a first adhesive layer is formed on the base substrate (S430).
  • the first adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by a method of immersing the base substrate in a plating bath 1103 including a plating solution.
  • the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
  • a solder layer may be formed on the first and second surfaces of the base substrate, respectively.
  • the second washing step may be based on a method of immersing the base substrate in a second washing tank 1104 containing a washing solution.
  • the drying step may be hot air drying performed in the hot air drying furnace 1105.
  • a metal mesh layer 1121 including a protective film is manufactured through the metal mesh manufacturing apparatus as described above, and a metal mesh layer including a protective film is provided (S460). ).
  • the electrodeposition layer peeling step of manufacturing a metal mesh layer by applying an adhesive to the protective film, it is laminated on top of the metal mesh layer formed on the mesh of the surface of the mesh-type cathode drum, the protection The film and the metal mesh layer can be peeled off simultaneously.
  • the metal mesh washed through the electrodeposition layer washing step is separated for easy handling. It can also be attached to a protective film.
  • the heat sink manufacturing method according to the modification of the sixth embodiment of the present invention corresponds to the use of the metal mesh layer including the protective film.
  • the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted. Let's do it.
  • the supply portion of the metal mesh layer 1120a and 1120b may be located on the first and second surfaces of the base substrate, respectively.
  • the pretreatment may be a chemical pretreatment method by dipping the metal mesh layer in the pretreatment tanks 1121a and 1121b containing the pretreatment solution.
  • the first washing step may be a method of immersing the metal mesh layer in the first washing tanks 1122a and 1122b containing the washing solution.
  • the second adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by a method of immersing the metal mesh layer in plating baths 1123a and 1123b including a plating solution. Can be.
  • the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
  • the second washing step may be by a method of immersing the metal mesh layer in the second washing tank (1124a, 1124b) in which the washing solution is contained, but is not limited to the washing method in the present invention, it is necessary Accordingly, the second washing step can be omitted.
  • the drying step may be hot air drying performed in the hot air drying furnaces 1125a and 1125b, but the present invention is not limited to the drying method, and the drying process may be omitted as necessary.
  • the base substrate including the first adhesive layer and the metal mesh layer including the second adhesive layer is disposed, the second adhesive layer is positioned on the first adhesive layer, and pressed by the pressing rollers (1130a, 1130b) (S470).
  • the constant temperature may be 150 ⁇ 500 °C.
  • the metal mesh layer includes the protective film
  • the protective film is included on the opposite side of the adhesive layer and the non-bonded metal mesh layer.
  • the protective film is removed from the metal mesh layer at the end of use (S480).
  • the metal mesh layer is located only on any one of the first and second surfaces of the base substrate, similarly to the first embodiment described above. can do.
  • FIG. 33 is a cross-sectional view illustrating a heat sink according to a seventh embodiment of the present invention
  • FIG. 34 is a cross-sectional view showing a heat sink according to an eighth embodiment of the present invention.
  • the heat sink 3100 includes a base substrate 3110.
  • the base substrate 3110 is configured to absorb heat generated from the heating element, and carbon, nickel on the surface of stainless steel, nickel, copper, iron, aluminum, titanium or alloys thereof, aluminum, copper, iron or stainless steel.
  • titanium, silver, and the like can be used.
  • aluminum or an aluminum alloy is preferable.
  • the heat sink 3100 may include a first metal mesh layer 3130a and the base substrate (on the first surface of the base substrate 3110). It includes a second metal mesh layer 3130b located on the second surface of the 3110.
  • the first metal mesh layer 3130a or the second metal mesh layer 3130b receives heat from a base substrate serving as a heat sink, and serves as a heat sink fin for releasing heat.
  • Silver (Ag), chromium (Cr), nickel (Ni), iron (Fe), cobalt (Co), aluminum (Al) and an alloy thereof may be made of at least one of the materials, the metal mesh in the present invention Although the material of a layer is not limited, Among these, aluminum or an aluminum alloy is preferable.
  • the first metal mesh layer 3130a includes a first hole 3132a positioned between the plurality of first metal mesh patterns 3131a
  • the second metal mesh layer 3130b includes a plurality of first metal mesh layers 3130a.
  • the second hole 3132b is disposed between the two metal mesh patterns 3131b.
  • the heat sink 3100 according to the seventh embodiment of the present invention is disposed between the first surface of the base substrate 3110 and the first metal mesh layer 3130a.
  • the first adhesive layer 3120a and the second adhesive layer 3120b are disposed between the second surface of the base substrate 3110 and the second metal mesh layer 3130b.
  • the first adhesive layer is positioned between the first surface of the base substrate 3110 and the first metal mesh pattern 3131a, and the second adhesive layer is formed on the second surface of the base substrate 3110. Located between the second metal mesh pattern 3131b.
  • the first adhesive layer 3120a and the second adhesive layer 3120b are for attaching the metal mesh layer on the base substrate 3110.
  • the first adhesive layer and the second adhesive layer may be solder layers, and at this time, the solder layer It may be made of silver lead (Pb), tin (Sn), zinc (Zn), indium (In), cadmium (Cd), bismuth (Bi), or an alloy thereof.
  • the heat sink 3100 includes metal mesh layers 3130a and 3130b formed on the first and second surfaces of the base substrate 3110, respectively.
  • the adhesive layers 3120a and 3120b are included.
  • the holes located between the metal mesh patterns may increase the heat dissipation area, thereby allowing more heat to be emitted.
  • the thickness of the base substrate may be 1 ⁇ 100 ⁇ m.
  • the width of the metal mesh layer 3130 is 1 ⁇ 500 ⁇ m
  • the thickness of the metal mesh layer may be 1 ⁇ 500 ⁇ m
  • the size of the hole located between the may be 1 ⁇ m ⁇ 3mm.
  • the thickness of the first adhesive layer or the second adhesive layer may be 1 ⁇ 20 ⁇ m.
  • the heat sink 3200 includes a base substrate 3210 and a metal mesh layer 3230 positioned on the base substrate 3210.
  • the metal mesh layer 3230 may include a plurality of metal mesh patterns 3231 and holes 3322 disposed between the metal mesh patterns 3321.
  • the heat sink 3200 includes an adhesive layer 3220 disposed between the base substrate 3210 and the metal mesh pattern 3321.
  • the heat sink 3200 according to the eighth embodiment of the present invention is an embodiment in which the metal mesh layer 3230 is formed only on one surface of the base substrate 3210. Accordingly, in the present invention, the metal mesh layer is formed of the base substrate. It may be formed on the first surface and / or the second surface of the.
  • the heat sink according to the eighth embodiment may be the same as the heat sink according to the first embodiment except as described above, a detailed description thereof will be omitted.
  • FIG. 35 is a sectional view showing an application example of the heat sink according to the seventh embodiment of the present invention
  • FIG. 36 is a sectional view showing an application example of the heat sink according to the eighth embodiment of the present invention.
  • a heat sink 100 may include a base substrate 3110 and a metal mesh layer 3130 positioned on the base substrate; And an adhesive layer 3120 positioned between the base substrate and the metal mesh layer, wherein the metal mesh layer includes a plurality of metal mesh patterns 3131 and holes 3132 located between the metal mesh patterns 3131. ) Is included.
  • One surface of the heat sink 3100 is provided in a predetermined region of the heat generating element 3010.
  • one surface of the heat sink 3100 facing the heating element 3010 may serve as a heat sink, and the other surface of the heat sink 3100, which is the opposite side of the surface facing the heat generating element 3010, may act as a heat sink fin. .
  • the second metal mesh layer 3130b and the base substrate 3110 act as heat sinks, absorb heat generated from the heat generating element, and the first metal mesh layer 3130a receives heat from the heat sinks.
  • the heat may be released, and in this case, the holes 3132a located between the metal mesh patterns may expand the heat dissipation area to allow more heat to be emitted.
  • the surface on which the second metal mesh layer 3130b is positioned is opposite to the heating element.
  • the surface on which the first metal mesh layer 3130a is positioned may face the heating element. It is natural.
  • the heat sink 3200 includes a base substrate 3210 and a metal mesh layer 3230 positioned on the base substrate 3210.
  • the metal mesh layer 3230 includes a plurality of metal mesh patterns 3231 and holes 3322 disposed between the metal mesh patterns 3321, and the base substrate 3210 and the metal mesh pattern ( An adhesive layer 3220 is positioned between 3231.
  • the surface of the base substrate of the heat sink 3200 is provided in a predetermined region of the heat generating element 3010.
  • the base substrate 3210 serves as a heat sink, absorbs heat generated by the heat generating element, and the metal mesh layer 3230 may receive heat from the heat sink to release heat. Holes 3232 located between them can widen the heat dissipation area, allowing more heat to be released.
  • the thickness of the base substrate in the present invention may be 1 ⁇ 100 ⁇ m
  • the thickness of the metal mesh layer may be 1 ⁇ 500 ⁇ m
  • the thickness of the adhesive layer may be 1 ⁇ 20 ⁇ m, that is,
  • the heat sink according to the invention since the thickness of the base substrate, the metal mesh layer and the adhesive layer is very thin as compared with the heat sink of the general structure, the heat sink itself is not largely manufactured. Does not have a big impact
  • FIG. 37 to 40 are cross-sectional views illustrating a method of manufacturing a heat sink according to the present invention.
  • a method of manufacturing the heat sink according to the present invention will be described based on the method of manufacturing the heat sink according to the seventh embodiment of the present invention of FIG. 33 described above.
  • the metal mesh layer 130 is manufactured through the metal mesh manufacturing apparatus as described above.
  • the metal mesh layer can also be produced by weaving or machining method, and thus, the metal mesh layer in the present invention It does not limit the method for producing the same.
  • the width d1 of the metal mesh layer 3130 may be 1 to 500 ⁇ m
  • the thickness d2 of the metal mesh layer may be 1 to 500 ⁇ m
  • the interval between the metal mesh pattern and the metal mesh pattern may also be used. That is, the size of the holes 3132 located between the metal mesh patterns 3131 may be 1 ⁇ m to 3 mm, but the present invention is not limited thereto.
  • an adhesive layer 3120 is formed on one surface of the metal mesh layer 3130.
  • the adhesive layer 3120 may be a solder layer, and the solder layer may be formed through a known electroplating method or an electroless plating method, but the present invention is not limited to the method of forming the solder layer.
  • the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
  • the thickness (d3) of the adhesive layer may be 1 ⁇ 20 ⁇ m, but is not limited to these numerical values in the present invention.
  • a base substrate 3110 is prepared.
  • the thickness d4 of the base substrate 3110 may be 1 to 100 ⁇ m, but the present invention is not limited thereto.
  • a metal mesh layer having an adhesive layer formed on one surface thereof is positioned on the base substrate, and then the metal mesh layer is pressed onto the base substrate through a pressing roller.
  • the first metal mesh layer 3130a having the first adhesive layer 3120a formed on one surface thereof is positioned on the first surface of the base substrate, and the second metal mesh layer having the second adhesive layer 3120b formed on one surface thereof ( 3130b) is placed on the second surface of the base substrate, and then the metal mesh layer is pressed through a pressing roller to form a first metal mesh layer on the first surface of the base substrate.
  • the second metal mesh layer may be formed on two surfaces.
  • the constant temperature may be 150 ⁇ 500 °C have.
  • a heat sink including a metal mesh layer according to the present invention may be manufactured, that is, as shown in FIG. 40, the heat sink 3100 according to the seventh embodiment of the present invention may include a base substrate 3110.
  • Metal mesh layers 3130a and 3130b formed on the first and second surfaces of the metal mesh layers 3130a and 3130b, respectively, wherein the metal mesh layers are disposed between the plurality of metal mesh patterns 3131a and 3131b and the metal mesh patterns, respectively.
  • 3132a and 3132b, and the adhesive layers 3120a and 3120b for attaching the base substrate and the metal mesh layer to each other.
  • FIG. 41 is a schematic structural diagram for manufacturing a heat sink according to a seventh embodiment of the present invention.
  • FIG. 42 is a process flowchart showing a method of manufacturing a heat sink according to a seventh embodiment of the present invention.
  • 43 is a schematic structural diagram for manufacturing a heat sink according to an eighth embodiment of the present invention.
  • the method of manufacturing the heat sink according to the eighth embodiment of the present invention may be the same as the method of manufacturing the seventh embodiment described above, except as will be described later. Shall be.
  • the metal mesh layer 4021 is manufactured by the metal mesh manufacturing apparatus as described above, and the metal mesh is manufactured. Provide a layer (S4100).
  • the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted.
  • the supply portion of the metal mesh layer 4020a , 4020b) may be located on the first and second surfaces of the base substrate, respectively.
  • the metal mesh layer first supply part 4020a for providing the first metal mesh layer on the first surface of the base substrate
  • the metal mesh layer second supply part for providing the second metal mesh layer on the second surface of the base substrate.
  • the metal mesh layer is referred to as a metal mesh layer. do.
  • the metal mesh layer is pretreated (S4110).
  • the pretreatment may be a general chemical pretreatment.
  • the chemical pretreatment may be performed by immersing a target material, that is, a metal mesh layer in an acidic or alkaline solution, such as pickling and degreasing, or spraying the solution on the target material to provide oil on the surface of the metal material. , Contaminants, and impurities may be removed.
  • the pretreatment may be a chemical pretreatment method by immersing the metal mesh layer in the pretreatment tanks 4021a and 4021b containing the pretreatment solution, but the present invention is not limited to the method of pretreatment. Accordingly, the pretreatment step can be omitted.
  • the first washing step is a process for removing a pretreatment solution used in the pretreatment process, and may be by a method of immersing the metal mesh layer in the first washing tanks 4022a and 4022b in which the washing solution is accommodated.
  • the method of washing with water in the present invention is not limited, and the first washing step may be omitted as necessary.
  • the adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by immersing the metal mesh layer in plating baths 4023a and 4023b including a plating solution.
  • the present invention is not limited to the method of forming the solder layer.
  • the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
  • a first adhesive layer may be formed on the first metal mesh layer, and a second adhesive layer may be formed on the second metal mesh layer.
  • both surfaces of the first metal mesh layer that is, the first surface and the second layer
  • An adhesive layer may be formed on a surface thereof, and an adhesive layer may be formed on both surfaces of the second metal mesh layer, that is, the first surface and the second surface.
  • the adhesive layer may be formed on both sides of the metal mesh layer, but in the present invention, since the adhesive layer is sufficient to be formed on at least one side, the following description will be based on the fact that the adhesive layer is formed only on one side of both sides. Shall be.
  • the adhesive layer can be selectively formed only on one surface by a known printing method, vapor deposition method, or the like.
  • the second washing step is a process for washing the plating solution used in the adhesive layer forming process, and may be by a method of immersing the metal mesh layer in the second washing tanks 4024a and 4024b containing the washing solution.
  • the method of washing with water in the present invention is not limited, and if necessary, the second washing step may be omitted.
  • the drying step may be hot air drying performed in the hot air drying furnaces 4025a and 4025b, but the present invention is not limited to the drying method, and the drying process may be omitted if necessary.
  • a base substrate 4011 prepared from the base substrate supply unit 4010 is provided (S4160).
  • the supply portion of the metal mesh layer (4020a, 4020b) May be located on the first and second surfaces of the base substrate, respectively.
  • a second metal mesh layer including 4040b, thereby providing a first metal mesh layer including a first adhesive layer on a first surface of the base substrate, and including a second adhesive layer on a second surface of the base substrate. Can be provided.
  • the metal mesh layer 4022 including the adhesive layer is placed on the base substrate and pressed by the pressing rollers 4130a and 4130b (S4170).
  • the first metal mesh layer including the first adhesive layer is disposed on the first surface of the base substrate, and the second metal includes the second adhesive layer on the second surface of the base substrate.
  • the constant temperature is 150 ⁇ 500 °C days Can be.
  • a heat sink including the metal mesh layer according to the seventh embodiment of the present invention can be manufactured.
  • the heat sink 4031 includes a metal mesh layer formed on each of the first and second surfaces of the base substrate, the metal mesh layer Each includes a plurality of metal mesh pattern and the hole located between the metal mesh pattern, wherein the base layer and the adhesive layer for attaching the metal mesh layer.
  • the metal mesh layer 5021 is manufactured through the metal mesh manufacturing apparatus, thereby producing a metal mesh layer. to provide.
  • the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted.
  • the metal mesh layer may be one of the first and second surfaces of the base substrate, for example, the first surface.
  • the supply portion 5020a of the metal mesh layer may be located only on the first surface of the base substrate.
  • a metal mesh layer supply unit 5020a for providing a metal mesh layer on the first surface of the base substrate.
  • the method of manufacturing the heat sink according to the eighth embodiment of the present invention is an embodiment in which the metal mesh layer is formed only on one surface of the base substrate.
  • the metal mesh layer is formed on the first surface and / or the base substrate. Or it can form in a 2nd surface.
  • the metal mesh layer is pretreated.
  • the pretreatment may be a chemical pretreatment method by dipping the metal mesh layer in a pretreatment bath 5021a containing a pretreatment solution.
  • the first washing step may be based on a method of immersing the metal mesh layer in a first washing bath 5022a containing a washing solution.
  • an adhesive layer is formed on the metal mesh layer.
  • the adhesive layer may be a solder layer, and the solder layer may be formed through a known electroplating method or an electroless plating method by immersing the metal mesh layer in a plating bath 5023a including a plating solution.
  • the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
  • the second washing step may be a method of immersing the metal mesh layer in a second washing tank 5024a in which a washing solution is accommodated.
  • the drying step may be hot air drying performed in the hot air drying furnace 5025a.
  • the base substrate 5011 prepared from the base substrate supply part 5010 is provided.
  • the supply portion 5020a of the metal mesh layer is formed on the first base of the base substrate. It can only be located on the face.
  • the metal mesh layer 5022 including the adhesive layer is placed on the base substrate and pressed by the pressing rollers 5130a and 5130b.
  • the metal mesh layer including the adhesive layer is positioned on the first surface of the base substrate, and then the metal mesh layer is attached to the base substrate through a pressing roller. It can be crimped on one surface.
  • the constant temperature may be 150 ⁇ 500 °C.
  • the heat sink including the metal mesh layer according to the eighth embodiment of the present invention can be manufactured.
  • the heat sink 5031 according to the eighth embodiment of the present invention includes a metal mesh layer formed on the first surface of the base substrate, the metal mesh layer is a plurality of metal mesh A hole is disposed between the pattern and the metal mesh pattern.
  • an adhesive layer for attaching the base substrate and the metal mesh layer is included.
  • FIG. 44 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the seventh embodiment of the present invention
  • FIG. 45 is a process showing a method for manufacturing a heat sink according to a modification of the seventh embodiment of the present invention
  • 46 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the eighth embodiment of the present invention.
  • the method of manufacturing the heat sink according to the modification of the seventh embodiment of the present invention may be the same as the method of manufacturing the seventh embodiment described above.
  • the method of manufacturing the heat sink according to the modification of the eighth embodiment of the present invention may be the same as the method of manufacturing the modification of the seventh embodiment described above, except as will be described later. See 45.
  • a method of manufacturing a heat sink according to a modification of the seventh embodiment of the present invention includes a metal mesh layer 6121 including a protective film through the metal mesh manufacturing apparatus as described above. ) To provide a metal mesh layer including a protective film (S6200).
  • the electrodeposition layer peeling step of manufacturing a metal mesh layer by applying an adhesive to the protective film, it is laminated on top of the metal mesh layer formed on the mesh of the surface of the mesh-type cathode drum, the protection The film and the metal mesh layer can be peeled off simultaneously.
  • the metal mesh washed through the electrodeposition layer washing step is separated for easy handling. It can also be attached to a protective film.
  • the heat sink manufacturing method according to the modification of the seventh embodiment of the present invention corresponds to the use of the metal mesh layer including the protective film.
  • the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, and as described above, a detailed description thereof will be omitted.
  • the supply portion of the metal mesh layer 6120a and 6120b may be positioned on the first and second surfaces of the base substrate, respectively.
  • the metal mesh layer first supply part 6120a for providing the first metal mesh layer on the first surface of the base substrate and the metal mesh layer second supply part for providing the second metal mesh layer on the second surface of the base substrate 6120b.
  • the metal mesh layer is referred to as a metal mesh layer. do.
  • the metal mesh layer is pretreated (S6210).
  • the pretreatment may be a chemical pretreatment method by immersing the metal mesh layer in the pretreatment tanks 6121a and 6121b containing the pretreatment solution.
  • the first washing step may be a method of immersing the metal mesh layer in the first washing bath (6122a, 6122b) in which the washing solution is accommodated.
  • the adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by immersing the metal mesh layer in plating baths 6223a and 6123b including a plating solution. .
  • the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
  • a first adhesive layer may be formed on the first metal mesh layer, and a second adhesive layer may be formed on the second metal mesh layer.
  • the second washing step may be a method of immersing the metal mesh layer in the second washing tank (6124a, 6124b) in which the washing solution is accommodated.
  • the drying step may be hot air drying proceeded in the hot air drying furnace (6125a, 6125b).
  • the base substrate 6111 prepared from the base substrate supply part 6110 is provided (S6260).
  • the supply portions 6120a, 6120b) may be located on the first side and the second side of the base substrate, respectively.
  • the first metal mesh layer including the first adhesive layer may be provided on the first surface of the base substrate, and the second metal mesh layer including the second adhesive layer may be provided on the second surface of the base substrate.
  • the metal mesh layer 6122 including the adhesive layer is positioned on the base substrate and pressed by the pressing rollers 6130a and 6130b (S6270).
  • an adhesive layer positioned on the opposite surface on which the protective film is positioned is placed on the base substrate.
  • the first metal mesh layer including the first adhesive layer is disposed on the first surface of the base substrate, and the second adhesive layer includes the second adhesive layer on the second surface of the base substrate. After positioning the second metal mesh layer, the first metal mesh layer and the second metal mesh layer are formed on the first surface and the second surface of the base substrate through the pressing roller, respectively, through the first adhesive layer and the second adhesive layer, respectively. Each can be compressed to.
  • the constant temperature is 150 ⁇ 500 °C days Can be.
  • the heat sink (6131) proceeded to step S6270, because the metal mesh layer includes a protective film, the protective film is included on the opposite surface of the metal mesh layer that is not bonded to the base substrate.
  • the protective film is removed from the metal mesh layer at the end of use (S6280).
  • the modified example of the first embodiment is because the protective film is included on the upper portion of the metal mesh layer, more specifically, the upper surface of the opposite side of the metal mesh layer not adhered to the base substrate The protection and storage characteristics of the heat sink can be facilitated.
  • a heat sink including the metal mesh layer according to the modification of the seventh embodiment of the present invention can be manufactured.
  • the metal mesh layer 7121 including the protective film may be manufactured, and the metal mesh layer including the protective film. To provide.
  • the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted.
  • the metal mesh layer may be one of the first and second surfaces of the base substrate, for example, In order to supply to the first surface, the supply portion 7120a of the metal mesh layer may be located only on the first surface of the base substrate.
  • it includes a metal mesh layer supply unit 7120a for providing a metal mesh layer on the first surface of the base substrate.
  • the heat sink manufacturing method according to the modification of the eighth embodiment of the present invention is an embodiment in which the metal mesh layer is formed only on one surface of the base substrate. Therefore, in the present invention, the metal mesh layer is formed on the first surface of the base substrate. And / or on the second surface.
  • the metal mesh layer is pretreated.
  • the pretreatment may be a chemical pretreatment method by immersing the metal mesh layer in a pretreatment bath 7121a containing a pretreatment solution.
  • the first washing step may be a method of immersing the metal mesh layer in a first washing bath (7122a) in which a washing solution is accommodated.
  • an adhesive layer is formed on the metal mesh layer.
  • the adhesive layer may be a solder layer, and the solder layer may be formed through a known electroplating method or an electroless plating method by a method of immersing the metal mesh layer in a plating bath 7123a including a plating solution.
  • the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
  • the second washing step may be by a method of immersing the metal mesh layer in the second washing bath (7124a) in which the washing solution is accommodated.
  • the drying step may be hot air drying performed in the hot air drying furnace 7125a.
  • the base substrate 7111 prepared from the base substrate supply part 7110 is provided.
  • the supply portion 7120a of the metal mesh layer is formed of the base substrate. It may be located only on the first side.
  • the metal mesh layer 7122 including the adhesive layer is placed on the base substrate and pressed by the rollers 7130a and 7130b.
  • the metal mesh layer including the adhesive layer is positioned on the first surface of the base substrate, and then the metal mesh layer is attached to the base substrate through a pressing roller. It can be pressed on the first surface of the.
  • the constant temperature may be 150 ⁇ 500 °C.
  • the metal mesh layer includes a protective film in the heat sink 7131, the protective film is included on the opposite surface of the metal mesh layer not adhered to the base substrate.
  • the protective film is removed from the metal mesh layer in the final use.
  • the modification of the eighth embodiment is because the protective film is included in the upper portion of the metal mesh layer, more specifically, the upper surface of the opposite side of the metal mesh layer that is not bonded to the base substrate The protection and storage characteristics of the heat sink can be facilitated.
  • the shape of the metal mesh pattern may be changed.

Abstract

The present invention relates to a heat sink and a method for manufacturing the same, and the heat sink comprises: a base substrate; an adhesive layer placed on the base substrate; and a metal mesh layer placed on the adhesive layer, wherein the metal mesh layer includes a plurality of metal mesh patterns and holes placed between the metal mesh patterns. Since the thicknesses of the base substrate, the metal mesh layer, and the adhesive layer, which form the heat sink, are very thin when compared to conventional heat sink structures, the heat sink is manufactured to be small. Thus, the heat sink does not have a significant influence on the determination of the size of a product.

Description

금속메쉬층을 포함하는 히트싱크 및 이의 제조방법 Heat sink comprising metal mesh layer and manufacturing method thereof
본 발명은 금속메쉬층을 포함하는 히트싱크 및 이의 제조방법의 제조방법에 관한 것으로서, 더욱 상세하게는 전자제품의 회로에 구비되는 콘덴서 등과 같은 부품소자에 부착되어 상기 소자에서 발생하는 열을 방출하는 히트싱크 및 이의 제조방법에 관한 것이다.The present invention relates to a heat sink including a metal mesh layer and a method for manufacturing the same, and more particularly, to attach to a component device such as a capacitor provided in a circuit of an electronic product to discharge heat generated from the device. It relates to a heat sink and a method of manufacturing the same.
일반적으로 히트싱크는 고열이 발생되는 부품에 부착되어 그 열을 외부로 자연방출하는 장치이다.In general, a heat sink is a device that is attached to a component that generates high heat and naturally discharges the heat to the outside.
특히, 상기 히트싱크는 전자제품에 사용되는 마이컴 또는 트랜지스터와 같은 소자에 부착되어, 상기 소자에서 발생하는 고열에 의해 상기 소자의 성능이 저하되거나 과열로 인해 상기 소자가 손상되는 것을 방지한다.In particular, the heat sink is attached to a device such as a microcomputer or a transistor used in electronic products, and prevents the device from being degraded due to high heat generated from the device or from being damaged due to overheating.
일반적인 히트싱크로 사용되는 알루미늄과 같은 금속은 열전도율이 상당히 높으며, 비열이 낮아 적은 열량에도 온도가 쉽게 상승한다.Metals such as aluminum, which are used as general heat sinks, have a very high thermal conductivity and a low specific heat, so that the temperature rises easily even with a small amount of heat.
따라서, 종래의 히트싱크는 열용량이 작아서 발열소자가 발열을 시작한 후 곧바로 발열소자의 온도와 일치하는 포화온도, 즉 시간이 지남에 따라 더이상 온도가 변하지 않는 정상상태의 온도에 도달하게 된다.Therefore, the conventional heat sink reaches a saturation temperature which is short enough to match the temperature of the heating element immediately after the heating element starts to generate heat because the heat capacity is small, that is, a temperature at a steady state where the temperature does not change any longer.
그러므로, 상기 발열소자에서 상기 히트싱크로의 전도에 의한 열전달이 더이상 발생하지 않아 상기 발열소자에서 발생하는 열이 충분히 방출되지 못하여, 상기 발열소자가 손상되는 문제점을 나타내었다.Therefore, since the heat transfer by conduction from the heat generating element to the heat sink no longer occurs, heat generated in the heat generating element is not sufficiently discharged, and thus the heat generating element is damaged.
또한, 전기밥솥에 구비되는 발열소자와 같이 제품의 작동 초기에 많은 열이 발생하는 발열소자의 방열을 위한 히트싱크를 설계함에 있어서, 작동 초기에 발생하는 열만을 고려해 히트싱크를 설계하는 것이 아니라, 포화온도를 고려해 필요 이상으로 큰 히트싱크를 설계해야 하는 문제점을 나타내었다.In addition, in designing a heat sink for heat dissipation of a heat generating element that generates a lot of heat in the early stage of operation of the product, such as a heating element provided in the rice cooker, the heat sink is not designed considering only the heat generated at the beginning of the operation. Considering the saturation temperature, the problem of designing a heat sink larger than necessary is shown.
즉, 1시간 동안 사용하는 제품에 구비되는 히트싱크와 10분 동안 사용하는 제품에 구비되는 히트싱크를 동일한 크기로 설계해야만 했다.That is, the heat sink provided in the product used for 1 hour and the heat sink provided in the product used for 10 minutes had to be designed in the same size.
이러한 문제점을 해결하기 위해서는 상기 히트싱크를 크게 제작하여 그 방열면적을 증가시켜야 하는데, 이는 상기 발열소자 및 히트싱크가 구비되는 전자제품의 가격을 상승시키고 상기 제품의 크기를 증가시키기 때문에 바람직한 해결방법이라 할 수 없다.In order to solve this problem, the heat sink must be made large to increase its heat dissipation area, which is a preferable solution because it increases the price of the electronic device equipped with the heating element and the heat sink and increases the size of the product. Can not.
본 발명이 해결하고자 하는 과제는 히트싱크의 소형화를 가능하게 하여, 제품의 크기 증대를 방지할 수 있는 히트싱크 및 이의 제조방법을 제공하는데 그 목적이 있다.The problem to be solved by the present invention is to provide a heat sink and a method of manufacturing the same that enables the miniaturization of the heat sink, thereby preventing the size increase of the product.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects which are not mentioned will be clearly understood by those skilled in the art from the following description.
상기 지적된 문제점을 해결하기 위해서 본 발명은 베이스 기재; 상기 베이스 기재 상에 위치하는 접착층; 및 상기 접착층 상에 위치하는 금속메쉬층을 포함하며, 상기 금속메쉬층은 복수의 금속메쉬 패턴 및 상기 금속메쉬 패턴의 사이에 위치하는 홀을 포함하는 히트싱크를 제공한다.In order to solve the above-mentioned problems, the present invention provides a base substrate; An adhesive layer positioned on the base substrate; And a metal mesh layer disposed on the adhesive layer, wherein the metal mesh layer provides a heat sink including a plurality of metal mesh patterns and a hole located between the metal mesh patterns.
또한, 본 발명은 베이스 기재를 제공하는 단계; 복수의 금속메쉬 패턴 및 상기 금속메쉬 패턴의 사이에 위치하는 홀을 포함하는 금속메쉬층을 제공하는 단계; 상기 베이스 기재 상에 접착층을 형성하는 단계; 및 상기 접착층 상에 금속메쉬층을 위치시키고, 압착하는 단계를 포함하는 히트싱크의 제조방법을 제공한다.In addition, the present invention provides a method for preparing a base substrate comprising: providing a base substrate; Providing a metal mesh layer including a plurality of metal mesh patterns and a hole located between the metal mesh patterns; Forming an adhesive layer on the base substrate; And positioning a metal mesh layer on the adhesive layer and compressing the metal mesh layer.
또한, 본 발명은 베이스 기재; 상기 베이스 기재에 위치하는 금속메쉬층; 및 상기 베이스 기재와 상기 금속메쉬층 사이에 위치하는 접착층을 포함하며, 상기 금속메쉬층은 복수의 금속메쉬 패턴 및 상기 금속메쉬 패턴의 사이에 위치하는 홀을 포함하는 히트싱크를 제공한다.In addition, the present invention is a base substrate; A metal mesh layer positioned on the base substrate; And an adhesive layer positioned between the base substrate and the metal mesh layer, wherein the metal mesh layer includes a plurality of metal mesh patterns and holes disposed between the metal mesh patterns.
또한, 본 발명은 베이스 기재를 제공하는 단계; 복수의 금속메쉬 패턴 및 상기 금속메쉬 패턴의 사이에 위치하는 홀을 포함하는 금속메쉬층을 제공하는 단계; 상기 금속메쉬층 상에 접착층을 형성하는 단계; 및 상기 베이스 기재 상에 상기 접착층을 위치시키고, 압착하는 단계를 포함하는 히트싱크의 제조방법을 제공한다.In addition, the present invention provides a method for preparing a base substrate comprising: providing a base substrate; Providing a metal mesh layer including a plurality of metal mesh patterns and a hole located between the metal mesh patterns; Forming an adhesive layer on the metal mesh layer; And positioning the adhesive layer on the base substrate and compressing the adhesive layer.
상기한 바와 같은 본 발명에 따르면, 히트싱크를 구성하는 베이스 기재, 금속메쉬층, 접착층의 두께가 일반적인 구조의 히트싱크와 비교하여 매우 얇기 때문에, 히트싱크 자체가 크게 제작되지 않으며, 따라서, 제품의 크기 결정에 있어서 히트싱크가 큰 영향을 미치지 않는다.According to the present invention as described above, since the thickness of the base substrate, metal mesh layer, and adhesive layer constituting the heat sink is very thin compared to the heat sink of the general structure, the heat sink itself is not largely manufactured, and therefore, The heat sink does not have a big influence in the sizing.
또한, 본 발명에 따른 히트싱크는 매우 얇은 두께로 제조가 가능하기 때문에, 점점 더 소형화되는 전자제품의 부품에 히트싱크로의 적용이 가능하다.In addition, since the heat sink according to the present invention can be manufactured in a very thin thickness, it is possible to apply the heat sink to the parts of electronic products that are increasingly miniaturized.
또한, 본 발명에 따른 히트싱크는 대면적으로 제조가 용이하기 때문에, 대형화된 전자제품의 부품에 히트싱크로의 적용도 가능하다.In addition, since the heat sink according to the present invention can be easily manufactured in a large area, it is also possible to apply the heat sink to components of an enlarged electronic product.
도 1은 일반적인 히트싱크를 도시한 단면도이다.1 is a cross-sectional view showing a general heat sink.
도 2는 본 발명의 제1실시예에 따른 히트싱크를 도시한 단면도이고, 도 3은 본 발명의 제2실시예에 따른 히트싱크를 도시한 단면도이다. 2 is a cross-sectional view showing a heat sink according to a first embodiment of the present invention, Figure 3 is a cross-sectional view showing a heat sink according to a second embodiment of the present invention.
도 4는 본 발명의 제1실시예에 따른 히트싱크의 적용예를 도시한 단면도이고, 도 5는 본 발명의 제2실시예에 따른 히트싱크의 적용예를 도시한 단면도이다.4 is a cross-sectional view showing an application example of the heat sink according to the first embodiment of the present invention, Figure 5 is a cross-sectional view showing an application example of the heat sink according to the second embodiment of the present invention.
도 6은 본 발명에 따른 금속메쉬 제조장치의 메쉬형음극드럼을 도시한 개략적인 사시도이고, 도 7은 상기 메쉬형음극드럼의 일부를 도시한 단면도이며, 도 8은 본 발명에 따른 금속메쉬 제조용 연속전주장치를 도시하는 개략적인 구성도이고, 도 9는 본 발명에 따른 금속메쉬의 제조방법을 도시하는 공정 흐름도이다.Figure 6 is a schematic perspective view showing a mesh-type negative electrode drum of the metal mesh manufacturing apparatus according to the present invention, Figure 7 is a cross-sectional view showing a part of the mesh-type negative electrode drum, Figure 8 is for manufacturing a metal mesh according to the present invention It is a schematic block diagram which shows a continuous pole apparatus, and FIG. 9 is a process flowchart which shows the manufacturing method of the metal mesh which concerns on this invention.
도 10 내지 도 13은 본 발명에 따른 히트싱크를 제조하는 방법을 설명하기 위한 단면도이다.10 to 13 are cross-sectional views for explaining a method of manufacturing a heat sink according to the present invention.
도 14는 본 발명의 제1실시예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이고, 도 15는 본 발명의 제1실시예에 따른 히트싱크를 제조하는 방법을 도시하는 공정 흐름도이며, 도 16은 본 발명의 제2실시예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이다.14 is a schematic configuration diagram for manufacturing a heat sink according to the first embodiment of the present invention, and FIG. 15 is a process flowchart showing a method of manufacturing the heat sink according to the first embodiment of the present invention. 16 is a schematic structural diagram for manufacturing a heat sink according to a second embodiment of the present invention.
도 17은 본 발명의 제1실시예의 변형예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이고, 도 18은 본 발명의 제1실시예의 변형예에 따른 히트싱크를 제조하는 방법을 도시하는 공정 흐름도이며, 도 19는 본 발명의 제2실시예의 변형예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이다.17 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the first embodiment of the present invention, and FIG. 18 is a process showing a method for manufacturing a heat sink according to a modification of the first embodiment of the present invention. 19 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the second embodiment of the present invention.
도 20은 본 발명에 따른 금속메쉬층의 일 예를 도시한 실사진이며, 도 21은 본 발명에 따른 금속메쉬층의 다른 예를 도시한 실사진이다.FIG. 20 is a photograph showing an example of the metal mesh layer according to the present invention, and FIG. 21 is a photograph showing another example of the metal mesh layer according to the present invention.
도 22는 본 발명의 제3실시예에 따른 히트싱크를 도시한 단면도이고, 도 23은 본 발명의 제4실시예에 따른 히트싱크를 도시한 단면도이며, 도 24는 본 발명의 제5실시예에 따른 히트싱크를 도시한 단면도다.22 is a cross-sectional view showing a heat sink according to a third embodiment of the present invention, FIG. 23 is a cross-sectional view showing a heat sink according to a fourth embodiment of the present invention, and FIG. 24 is a fifth embodiment of the present invention. It is sectional drawing which shows the heat sink.
도 25는 본 발명의 제3실시예에 따른 히트싱크의 금속메쉬 패턴의 단면을 도시하는 사진이고, 도 26은 본 발명의 제4실시예에 따른 히트싱크의 금속메쉬 패턴의 단면을 도시하는 사진이며, 도 27은 본 발명의 제5실시예에 따른 히트싱크의 금속메쉬 패턴의 단면을 도시하는 사진이다.25 is a photograph showing a cross section of the metal mesh pattern of the heat sink according to the third embodiment of the present invention, and FIG. 26 is a photograph showing a cross section of the metal mesh pattern of the heat sink according to the fourth embodiment of the present invention. 27 is a photograph showing a cross section of the metal mesh pattern of the heat sink according to the fifth embodiment of the present invention.
도 28은 본 발명의 제6실시예에 따른 히트싱크를 도시한 단면도이다. 28 is a cross-sectional view illustrating a heat sink according to a sixth embodiment of the present invention.
도 29는 본 발명의 제6실시예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이고, 도 30은 본 발명의 제6실시예에 따른 히트싱크를 제조하는 방법을 도시하는 공정 흐름도이다. 29 is a schematic configuration diagram for manufacturing a heat sink according to a sixth embodiment of the present invention, and FIG. 30 is a process flowchart illustrating a method of manufacturing a heat sink according to a sixth embodiment of the present invention.
도 31은 본 발명의 제6실시예의 변형예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이고, 도 32는 본 발명의 제6실시예의 변형예에 따른 히트싱크를 제조하는 방법을 도시하는 공정 흐름도이다.31 is a schematic structural diagram for manufacturing a heat sink according to a modification of the sixth embodiment of the present invention, and FIG. 32 is a process showing a method of manufacturing a heat sink according to a modification of the sixth embodiment of the present invention. It is a flow chart.
도 33은 본 발명의 제7실시예에 따른 히트싱크를 도시한 단면도이고, 도 34는 본 발명의 제8실시예에 따른 히트싱크를 도시한 단면도이다. 33 is a cross-sectional view illustrating a heat sink according to a seventh embodiment of the present invention, and FIG. 34 is a cross-sectional view showing a heat sink according to an eighth embodiment of the present invention.
도 35는 본 발명의 제7실시예에 따른 히트싱크의 적용예를 도시한 단면도이고, 도 36은 본 발명의 제8실시예에 따른 히트싱크의 적용예를 도시한 단면도이다.35 is a sectional view showing an application example of the heat sink according to the seventh embodiment of the present invention, and FIG. 36 is a sectional view showing an application example of the heat sink according to the eighth embodiment of the present invention.
도 37 내지 도 40은 본 발명에 따른 히트싱크를 제조하는 방법을 설명하기 위한 단면도이다.37 to 40 are cross-sectional views illustrating a method of manufacturing a heat sink according to the present invention.
도 41은 본 발명의 제7실시예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이고, 도 42는 본 발명의 제7실시예에 따른 히트싱크를 제조하는 방법을 도시하는 공정 흐름도이며, 도 43은 본 발명의 제8실시예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이다.FIG. 41 is a schematic structural diagram for manufacturing a heat sink according to a seventh embodiment of the present invention. FIG. 42 is a process flowchart showing a method of manufacturing a heat sink according to a seventh embodiment of the present invention. 43 is a schematic structural diagram for manufacturing a heat sink according to an eighth embodiment of the present invention.
도 44는 본 발명의 제7실시예의 변형예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이고, 도 45는 본 발명의 제7실시예의 변형예에 따른 히트싱크를 제조하는 방법을 도시하는 공정 흐름도이며, 도 46은 본 발명의 제8실시예의 변형예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이다.44 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the seventh embodiment of the present invention, and FIG. 45 is a process showing a method for manufacturing a heat sink according to a modification of the seventh embodiment of the present invention. 46 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the eighth embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims.
아래 첨부된 도면을 참조하여 본 발명의 실시를 위한 구체적인 내용을 상세히 설명한다. 도면에 관계없이 동일한 부재번호는 동일한 구성요소를 지칭하며, "및/또는"은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Regardless of the drawings, the same reference numbers refer to the same components, and “and / or” includes each and every combination of one or more of the items mentioned.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.Although the first, second, etc. are used to describe various components, these components are of course not limited by these terms. These terms are only used to distinguish one component from another. Therefore, of course, the first component mentioned below may be a second component within the technical spirit of the present invention.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, "comprises" and / or "comprising" does not exclude the presence or addition of one or more other components in addition to the mentioned components.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used in a sense that can be commonly understood by those skilled in the art. In addition, the terms defined in the commonly used dictionaries are not ideally or excessively interpreted unless they are specifically defined clearly.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 구성 요소와 다른 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 구성요소들의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 구성요소를 뒤집을 경우, 다른 구성요소의 "아래(below)" 또는 "아래(beneath)"로 기술된 구성요소는 다른 구성요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성요소는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다. The spatially relative terms " below ", " beneath ", " lower ", " above ", " upper " It can be used to easily describe a component's correlation with other components. Spatially relative terms are to be understood as including terms in different directions of components in use or operation in addition to the directions shown in the figures. For example, when flipping a component shown in the drawing, a component described as "below" or "beneath" of another component may be placed "above" the other component. Can be. Thus, the exemplary term "below" can encompass both an orientation of above and below. The components can be oriented in other directions as well, so that spatially relative terms can be interpreted according to the orientation.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 일반적인 히트싱크를 도시한 단면도이다.1 is a cross-sectional view showing a general heat sink.
도 1을 참조하면, 일반적인 히트싱크는 발열소자(10)에 부착되어 상기 발열소자(10)에서 발생하는 열을 흡수하여 신속하게 발산시킬 수 있도록 판상의 방열판(20)과, 상기 히트싱크의 방열면적을 넓혀 보다 많은 열이 방출되기 위해 상기 방열판의 상면에 형성된 다수개의 방열핀(50)으로 구성된다.Referring to FIG. 1, a general heat sink is attached to a heat generating element 10 so as to absorb heat generated from the heat generating element 10 and quickly dissipate heat, and heat dissipation of the heat sink. It is composed of a plurality of heat sink fins 50 formed on the upper surface of the heat sink in order to widen the area to release more heat.
이때, 상기 히트싱크는 상기 방열소자(10)에서 발생하는 열을 신속하게 발산시키도록 알루미늄과 같이 열전도율이 높은 재료로 구성될 수 있다.In this case, the heat sink may be made of a material having a high thermal conductivity such as aluminum to quickly dissipate heat generated from the heat dissipation element 10.
전자제품의 작동시 발열소자에서 발생하는 열은 상기 발열소자에 부착된 히트싱크의 방열판(20)을 통해 상기 다수개의 방열핀(50)으로 전도된 후, 그 주위의 공기로 방출된다.Heat generated by the heat generating element during the operation of the electronic product is conducted to the plurality of heat dissipation fins 50 through the heat sink 20 of the heat sink attached to the heat generating element, and then is discharged to the surrounding air.
즉, 상기 히트싱크의 방열핀(50)에 의해 상기 발열소자에서 발생하는 열의 방열면적이 넓어져, 이 열이 보다 신속하고 원활하게 방출되는 것이다.That is, the heat dissipation area of the heat generated by the heat generating element is widened by the heat dissipation fins 50 of the heat sink, and this heat is released more quickly and smoothly.
하지만, 상술한 바와 같이, 일반적인 히트싱크는 열용량이 작아서 발열소자가 발열을 시작한 후 곧바로 발열소자의 온도와 일치하는 포화온도, 즉 시간이 지남에 따라 더이상 온도가 변하지 않는 정상상태의 온도에 도달하게 된다.However, as described above, the general heat sink has a small heat capacity so that the heating element immediately reaches a saturation temperature that matches the temperature of the heating element, that is, a temperature at a steady state where the temperature does not change any longer. do.
따라서, 상기 발열소자에서 상기 히트싱크로의 전도에 의한 열전달이 더이상 발생하지 않아 상기 발열소자에서 발생하는 열이 충분히 방출되지 못하여, 상기 발열소자가 손상되는 문제점이 있으며, 이를 해결하기 위해, 히트싱크를 크게 제작하여 그 방열면적을 증가시켜야 한다.Therefore, since heat transfer by conduction from the heat generating element to the heat sink no longer occurs, heat generated in the heat generating element is not sufficiently discharged, and thus the heat generating element is damaged. It should be made large to increase its heat dissipation area.
하지만, 히트싱크의 크기를 증가시키는 것은 결국, 제품의 크기를 증가시키는 것과 직결되고, 따라서, 발열소자 및 히트싱크가 구비되는 전자제품의 가격을 상승시키는 원인이 될 수 있다.However, increasing the size of the heat sink, in turn, is directly related to increasing the size of the product, and thus may cause a price increase of the electronic product provided with the heat generating element and the heat sink.
도 2는 본 발명의 제1실시예에 따른 히트싱크를 도시한 단면도이고, 도 3은 본 발명의 제2실시예에 따른 히트싱크를 도시한 단면도이다. 2 is a cross-sectional view showing a heat sink according to a first embodiment of the present invention, Figure 3 is a cross-sectional view showing a heat sink according to a second embodiment of the present invention.
먼저, 도 2를 참조하면, 본 발명의 제1실시예에 따른 히트싱크(100)는 베이스 기재(110)를 포함한다.First, referring to FIG. 2, the heat sink 100 according to the first embodiment of the present invention includes a base substrate 110.
상기 베이스 기재(110)는 발열소자에서 발생하는 열을 흡수하기 위한 구성으로, 스테인레스강, 니켈, 구리, 철, 알루미늄, 티탄 또는 이들의 합금, 알루미늄, 구리, 철 또는 스테인레스강의 표면에 카본, 니켈, 티탄, 은을 표면 처리시킨 것 등을 사용할 수 있고, 이들 중 알루미늄 또는 알루미늄 합금이 바람직하다.The base substrate 110 is configured to absorb heat generated from the heating element, and carbon, nickel on the surface of stainless steel, nickel, copper, iron, aluminum, titanium or alloys thereof, aluminum, copper, iron or stainless steel. , Titanium, silver, and the like can be used. Among these, aluminum or an aluminum alloy is preferable.
계속해서, 도 2를 참조하면, 본 발명의 제1실시예에 따른 히트싱크(100)는 상기 베이스 기재(110)의 제1면에 위치하는 제1접착층(120a)을 포함하고, 상기 베이스 기재(110)의 제2면에 위치하는 제2접착층(120b)을 포함한다.Subsequently, referring to FIG. 2, the heat sink 100 according to the first embodiment of the present invention includes a first adhesive layer 120a positioned on the first surface of the base substrate 110. And a second adhesive layer 120b positioned on the second surface of the 110.
제1접착층(120a) 및 제2접착층(120b)은 후술하는 금속 메쉬층을 베이스 기재(110) 상에 부착시키기 위한 것으로, 상기 제1접착층 및 제2접착층은 솔더층일 수 있으며, 이때, 상기 솔더층은 납(Pb), 주석(Sn), 아연(Zn), 인듐(In), 카드늄(Cd), 비스무스(Bi), 또는 이들의 합금으로 이루어질 수 있다.The first adhesive layer 120a and the second adhesive layer 120b are for attaching a metal mesh layer to be described later on the base substrate 110, and the first adhesive layer and the second adhesive layer may be solder layers. The layer may be made of lead (Pb), tin (Sn), zinc (Zn), indium (In), cadmium (Cd), bismuth (Bi), or alloys thereof.
계속해서, 도 2를 참조하면, 본 발명의 제1실시예에 따른 히트싱크(100)는 상기 제1접착층(120a) 상에 위치하는 제1금속메쉬층(130a) 및 상기 제2접착층(120b) 상에 위치하는 제2금속메쉬층(130b)을 포함한다.Subsequently, referring to FIG. 2, the heat sink 100 according to the first embodiment of the present invention may include a first metal mesh layer 130a and a second adhesive layer 120b positioned on the first adhesive layer 120a. It includes a second metal mesh layer 130b located on the).
상기 제1금속메쉬층(130a) 또는 제2금속메쉬층(130b)은 방열판의 역할을 하는 베이스 기재로부터 열을 전달받아, 열을 방출시키기 위한 방열핀의 역할을 하는 구성으로, 구리(Cu), 은(Ag), 크롬(Cr), 니켈(Ni), 철(Fe), 코발트(Co), 알루미늄(Al) 및 이들의 합금 중 적어도 어느 하나의 물질로 이루어질 수 있으며, 본 발명에서 상기 금속메쉬층의 재질을 한정하는 것은 아니나, 이들 중 알루미늄 또는 알루미늄 합금이 바람직하다.The first metal mesh layer 130a or the second metal mesh layer 130b receives heat from a base substrate serving as a heat sink, and serves as a heat sink fin for releasing heat. Silver (Ag), chromium (Cr), nickel (Ni), iron (Fe), cobalt (Co), aluminum (Al) and an alloy thereof may be made of at least one of the materials, the metal mesh in the present invention Although the material of a layer is not limited, Among these, aluminum or an aluminum alloy is preferable.
이때, 상기 제1금속메쉬층(130a)은 복수의 제1금속메쉬 패턴(131a) 및 상기 제1금속메쉬 패턴(131a)의 사이에 위치하는 제1홀(132a)을 포함하며, 상기 제2금속메쉬층(130b)은 복수의 제2금속메쉬 패턴(131b) 및 상기 제2금속메쉬 패턴(131b)의 사이에 위치하는 제2홀(132b)을 포함한다.In this case, the first metal mesh layer 130a includes a first hole 132a positioned between the plurality of first metal mesh patterns 131a and the first metal mesh pattern 131a, and the second The metal mesh layer 130b includes a plurality of second metal mesh patterns 131b and a second hole 132b positioned between the second metal mesh patterns 131b.
즉, 본 발명의 제1실시예에 따른 히트싱크(100)는 베이스 기재(110)의 제1면 및 제2면에 각각 형성되는 금속메쉬층(130a, 130b)을 포함하며, 상기 금속메쉬층은 각각 복수의 금속메쉬 패턴(131a, 131b) 및 금속메쉬 패턴의 사이에 위치하는 홀(132a, 132b)을 포함하고 있고, 또한, 상기 베이스 기재와 금속메쉬층을 부착하기 위한 접착층(120a, 120b)을 포함하고 있다.That is, the heat sink 100 according to the first embodiment of the present invention includes metal mesh layers 130a and 130b formed on the first and second surfaces of the base substrate 110, respectively. Each of the plurality of metal mesh patterns 131a and 131b and holes 132a and 132b positioned between the metal mesh patterns, and each of the adhesive layers 120a and 120b for attaching the base substrate and the metal mesh layer. ) Is included.
이때, 상기 금속메쉬 패턴의 사이에 위치하는 홀은 방열면적을 넓혀, 보다 많은 열이 방출되도록 할 수 있다.In this case, the holes located between the metal mesh patterns may increase the heat dissipation area, thereby allowing more heat to be emitted.
즉, 본 발명에의 히트싱크는, 상기 베이스 기재를 통해 발열소자에서 발생하는 열을 흡수하고, 상기 금속메쉬 패턴은 베이스 기재로부터 열을 전달받아, 열을 방출시키며, 이때, 상기 금속메쉬 패턴의 사이에 위치하는 홀은 방열면적을 넓혀, 보다 많은 열이 방출되도록 할 수 있다.That is, the heat sink according to the present invention absorbs heat generated by the heat generating element through the base substrate, and the metal mesh pattern receives heat from the base substrate to release heat. Holes located in between can increase the heat dissipation area, allowing more heat to be released.
이때, 후술할 바와 같이, 상기 베이스 기재의 두께는 1 ~ 100㎛ 일 수 있다.At this time, as will be described later, the thickness of the base substrate may be 1 ~ 100㎛.
또한, 상기 금속메쉬층(130)의 폭은 1 ~ 500㎛ 이고, 상기 금속메쉬층의 두께는 1 ~ 500㎛ 일 수 있고, 또한, 금속메쉬 패턴과 금속메쉬 패턴간의 간격, 즉, 금속메쉬 패턴의 사이에 위치하는 홀의 크기는 1㎛ ~ 3mm 일 수 있다.In addition, the width of the metal mesh layer 130 is 1 ~ 500㎛, the thickness of the metal mesh layer may be 1 ~ 500㎛, and also, the interval between the metal mesh pattern and the metal mesh pattern, that is, the metal mesh pattern The size of the hole located between the may be 1㎛ ~ 3mm.
또한, 상기 제1접착층 또는 상기 제2접착층의 두께는 1 ~ 20㎛ 일 수 있다.In addition, the thickness of the first adhesive layer or the second adhesive layer may be 1 ~ 20㎛.
상술한 바와 같이, 일반적인 히트싱크는 열용량이 작아서 원활한 방열을 위하여, 히트싱크를 크게 제작하여 그 방열면적을 증가시켜야 하며, 이는 제품의 크기를 증가시키는 것과 직결되어, 전자제품의 가격을 상승시키는 원인이 될 수 있다.As described above, a general heat sink has a small heat capacity, and thus, in order to radiate heat smoothly, the heat sink must be made large to increase its heat dissipation area, which is directly related to increasing the size of the product, causing the price of electronic products to increase. This can be
하지만, 본 발명에 따른 히트싱크는, 후술할 바와 같은 히트싱크의 제조방법에서 알 수 있는 바와 같이, 베이스 기재, 금속메쉬층, 접착층의 두께가 일반적인 구조의 히트싱크와 비교하여 매우 얇기 때문에, 히트싱크 자체가 크게 제작되지 않으며, 따라서, 제품의 크기 결정에 있어서 히트싱크가 큰 영향을 미치지 않는다.However, the heat sink according to the present invention, as can be seen in the manufacturing method of the heat sink as described later, because the thickness of the base substrate, the metal mesh layer, the adhesive layer is very thin compared to the heat sink of the general structure, heat The sink itself is not made large, and therefore, the heat sink does not have a great influence on the sizing of the product.
또한, 본 발명에 따른 히트싱크는 매우 얇은 두께로 제조가 가능하기 때문에, 점점 더 소형화되는 전자제품의 부품에 히트싱크로의 적용이 가능하다.In addition, since the heat sink according to the present invention can be manufactured in a very thin thickness, it is possible to apply the heat sink to the parts of electronic products that are increasingly miniaturized.
또한, 본 발명에 따른 히트싱크는 후술하는 히트싱크의 제조방법에서 알 수 있는 바와 같이, 대면적으로 제조가 용이하기 때문에, 대형화된 전자제품의 부품에 히트싱크로의 적용도 가능하다.In addition, the heat sink according to the present invention, as can be seen in the method of manufacturing a heat sink described later, is easy to manufacture in a large area, so that the heat sink can be applied to parts of an enlarged electronic product.
다음으로, 도 3을 참조하면, 본 발명의 제2실시예에 따른 히트싱크(200)는 베이스 기재(210), 상기 베이스 기재(210) 상에 위치하는 접착층(220) 및 상기 접착층(220) 상에 위치하는 금속메쉬층(230)을 포함한다.Next, referring to FIG. 3, the heat sink 200 according to the second embodiment of the present invention includes a base substrate 210, an adhesive layer 220 and an adhesive layer 220 positioned on the base substrate 210. It includes a metal mesh layer 230 positioned on.
상기 금속메쉬층(230)은 복수의 금속메쉬 패턴(231) 및 상기 금속메쉬 패턴(231)의 사이에 위치하는 홀(232)을 포함한다.The metal mesh layer 230 includes a plurality of metal mesh patterns 231 and holes 232 disposed between the metal mesh patterns 231.
즉, 본 발명의 제2실시예에 따른 히트싱크(200)는 베이스 기재(210)의 일면에만 금속메쉬층(230)을 형성하는 실시예로써, 따라서, 본 발명에서는 상기 금속메쉬층을 베이스 기재의 제1면 및/또는 제2면에 형성할 수 있다.That is, the heat sink 200 according to the second embodiment of the present invention is an embodiment in which the metal mesh layer 230 is formed only on one surface of the base substrate 210. Therefore, in the present invention, the metal mesh layer is formed of the base substrate. It may be formed on the first surface and / or the second surface of the.
상기 제2실시예에 따른 히트싱크는 상술하는 바를 제외하고는 제1실시예에 따른 히트싱크와 동일할 수 있으므로, 이하, 구체적인 설명은 생략하기로 한다.Since the heat sink according to the second embodiment may be the same as the heat sink according to the first embodiment except as described above, a detailed description thereof will be omitted.
도 4는 본 발명의 제1실시예에 따른 히트싱크의 적용예를 도시한 단면도이고, 도 5는 본 발명의 제2실시예에 따른 히트싱크의 적용예를 도시한 단면도이다.4 is a cross-sectional view showing an application example of the heat sink according to the first embodiment of the present invention, Figure 5 is a cross-sectional view showing an application example of the heat sink according to the second embodiment of the present invention.
먼저, 도 4를 참조하면, 본 발명의 제1실시예에 따른 히트싱크(100)는 베이스 기재(110)의 제1면 및 제2면에 각각 형성되는 금속메쉬층(130a, 130b)을 포함하며, 상기 금속메쉬층은 각각 복수의 금속메쉬 패턴(131a, 131b) 및 금속메쉬 패턴의 사이에 위치하는 홀(132a, 132b)을 포함하고 있고, 또한, 상기 베이스 기재와 금속메쉬층을 부착하기 위한 접착층(120a, 120b)을 포함하고 있다.First, referring to FIG. 4, the heat sink 100 according to the first embodiment of the present invention includes metal mesh layers 130a and 130b formed on the first and second surfaces of the base substrate 110, respectively. The metal mesh layer may include a plurality of metal mesh patterns 131a and 131b and holes 132a and 132b respectively disposed between the metal mesh patterns, and the base substrate and the metal mesh layer may be attached to each other. Adhesive layers 120a and 120b.
이와 같은 히트싱크(100)의 어느 일면을 발열소자(10)의 일정 영역에 설치한다.One surface of the heat sink 100 is provided in a predetermined region of the heat generating element 10.
이때, 발열소자(10)와 마주보는 히트싱크(100)의 일면은 방열판으로 작용할 수 있으며, 발열소자(10)와 마주보는 면의 반대면인 히트싱크(100)의 타면은 방열핀으로 작용할 수 있다.In this case, one surface of the heat sink 100 facing the heat generating element 10 may serve as a heat sink, and the other surface of the heat sink 100 opposite to the surface facing the heat generating element 10 may act as a heat sink fin. .
즉, 도 4에서 제2금속메쉬층(130b) 및 베이스 기재(110)는 방열판으로 작용하여, 발열소자에서 발생하는 열을 흡수하고, 제1금속메쉬층(130a)은 방열판으로부터 열을 전달받아 열을 방출시킬 수 있으며, 이때, 상기 금속메쉬 패턴의 사이에 위치하는 홀(132a)은 방열면적을 넓혀, 보다 많은 열이 방출되도록 할 수 있다.That is, in FIG. 4, the second metal mesh layer 130b and the base substrate 110 act as heat sinks, absorb heat generated from the heat generating element, and the first metal mesh layer 130a receives heat from the heat sinks. The heat may be released, and in this case, the holes 132a located between the metal mesh patterns may expand the heat dissipation area to allow more heat to be emitted.
한편, 도면에서는 제2금속메쉬층(130b)이 위치하는 면이 발열소자와 마주보는 것으로 도시하였으나, 이와는 달리, 제1금속메쉬층(130a)이 위치하는 면이 발열소자와 마주볼 수 있음은 당연한 것이다.Meanwhile, in the drawing, the surface on which the second metal mesh layer 130b is positioned is opposite to the heating element. However, the surface on which the first metal mesh layer 130a is positioned may face the heating element. It is natural.
다음으로, 도 5를 참조하면, 본 발명의 제2실시예에 따른 히트싱크(200)는 베이스 기재(210), 상기 베이스 기재(210) 상에 위치하는 접착층(220) 및 상기 접착층(220) 상에 위치하는 금속메쉬층(230)을 포함하고 있고, 또한, 상기 금속메쉬층(230)은 복수의 금속메쉬 패턴(231) 및 상기 금속메쉬 패턴(231)의 사이에 위치하는 홀(232)을 포함한다.Next, referring to FIG. 5, the heat sink 200 according to the second embodiment of the present invention includes a base substrate 210, an adhesive layer 220 and an adhesive layer 220 positioned on the base substrate 210. The metal mesh layer 230 may be disposed on the metal mesh layer 230, and the metal mesh layer 230 may include a plurality of metal mesh patterns 231 and holes 232 disposed between the metal mesh patterns 231. It includes.
이와 같은 히트싱크(200)의 베이스 기재의 면을 발열소자(10)의 일정 영역에 설치한다.The surface of the base substrate of the heat sink 200 is provided in a predetermined region of the heat generating element 10.
이때, 베이스 기재(210)는 방열판으로 작용하여, 발열소자에서 발생하는 열을 흡수하고, 금속메쉬층(230)은 방열판으로부터 열을 전달받아 열을 방출시킬 수 있으며, 이때, 상기 금속메쉬 패턴의 사이에 위치하는 홀(232)은 방열면적을 넓혀, 보다 많은 열이 방출되도록 할 수 있다.In this case, the base substrate 210 acts as a heat sink, absorbs heat generated from the heat generating element, and the metal mesh layer 230 may receive heat from the heat sink to release heat. The holes 232 disposed therebetween can widen the heat dissipation area, thereby allowing more heat to be emitted.
이때, 본 발명에서 상기 베이스 기재의 두께는 1 ~ 100㎛ 일 수 있고, 상기 금속메쉬층의 두께는 1 ~ 500㎛ 일 수 있으며, 상기 접착층의 두께는 1 ~ 20㎛ 일 수 있어, 즉, 본 발명에 따른 히트싱크는, 베이스 기재, 금속메쉬층, 접착층의 두께가 일반적인 구조의 히트싱크와 비교하여 매우 얇기 때문에, 히트싱크 자체가 크게 제작되지 않으며, 따라서, 제품의 크기 결정에 있어서 히트싱크가 큰 영향을 미치지 않는다.At this time, the thickness of the base substrate in the present invention may be 1 ~ 100㎛, the thickness of the metal mesh layer may be 1 ~ 500㎛, the thickness of the adhesive layer may be 1 ~ 20㎛, that is, In the heat sink according to the invention, since the thickness of the base substrate, the metal mesh layer and the adhesive layer is very thin as compared with the heat sink of the general structure, the heat sink itself is not largely manufactured. Does not have a big impact
이하에서는 본 발명에 따른 히트싱크를 제조하는 방법을 설명하기로 한다.Hereinafter, a method of manufacturing a heat sink according to the present invention will be described.
도 6은 본 발명에 따른 금속메쉬 제조장치의 메쉬형음극드럼을 도시한 개략적인 사시도이고, 도 7은 상기 메쉬형음극드럼의 일부를 도시한 단면도이며, 도 8은 본 발명에 따른 금속메쉬 제조용 연속전주장치를 도시하는 개략적인 구성도이고, 도 9는 본 발명에 따른 금속메쉬의 제조방법을 도시하는 공정 흐름도이다.Figure 6 is a schematic perspective view showing a mesh-type negative electrode drum of the metal mesh manufacturing apparatus according to the present invention, Figure 7 is a cross-sectional view showing a part of the mesh-type negative electrode drum, Figure 8 is for manufacturing a metal mesh according to the present invention It is a schematic block diagram which shows a continuous pole apparatus, and FIG. 9 is a process flowchart which shows the manufacturing method of the metal mesh which concerns on this invention.
먼저, 도 6 및 도 7을 참조하면, 본 발명에 따른 금속메쉬 제조장치의 메쉬형음극드럼(40)은 회전 가능하도록 중심이 되는 회전축(41b)과 상기 회전축(41b)을 감싸면서 일정한 폭을 가지는 원통형 드럼(41a)을 포함한다.First, referring to FIGS. 6 and 7, the mesh type cathode drum 40 of the metal mesh manufacturing apparatus according to the present invention has a constant width while surrounding the rotating shaft 41b and the rotating shaft 41b to be rotatable. The branch includes a cylindrical drum 41a.
이때, 상기 회전축(41b)의 일측 단부에는 상기 드럼(41a)이 회전되도록 회전력을 제공하는 모터와 연결되는 체인이 결합될 수 있다.At this time, one side end of the rotating shaft 41b may be coupled to a chain connected to a motor providing a rotational force so that the drum 41a is rotated.
한편, 상기 드럼(40)의 표면에는 제조하고자 하는 형상의 메쉬(42)가 형성된다. 이때, 상기 메쉬(42)는 대략 육각형이 여러 개 연결되는 망(網) 형상으로 형성되어 마치 벌집 형태로 구성될 수 있으며, 다만, 상기 메쉬의 형상은 사각형, 삼각형, 오각형 등일 수 있고, 따라서, 본 발명에서 상기 메쉬의 형상을 한정하는 것은 아니다.Meanwhile, a mesh 42 having a shape to be manufactured is formed on the surface of the drum 40. In this case, the mesh 42 may be formed in a net shape in which a plurality of hexagons are connected to each other, and may be configured as a honeycomb, but the shape of the mesh may be a quadrangle, a triangle, a pentagon, and the like. In the present invention, the shape of the mesh is not limited.
상기 메쉬(42)는 도금하고자 하는 전해액의 성분에 따라 단일금속 또는 합금(合
Figure f90a
)으로 구성할 수 있으며, 직접 상기 원통형 드럼(41a) 표면을 가공함으로써 원통형 드럼(41a)과 일체로 형성되도록 하여 사용하거나, 금속와이어로 실을 짜듯이 엮어서 형성되는 직조형(Weaving type) 또는 배치형(Batch type)으로 가공되는 메쉬(50)를 상기 원통형 드럼(41a)의 표면에 부착함으로써 사용할 수 있다.
The mesh 42 is a single metal or alloy according to the component of the electrolyte to be plated
Figure f90a
It can be configured to be used, by directly processing the surface of the cylindrical drum (41a) to be formed integrally with the cylindrical drum (41a), or a weaving type or arrangement formed by weaving like a thread with a metal wire The mesh 50 processed into a batch type can be used by attaching to the surface of the cylindrical drum 41a.
계속해서, 도 6 및 도 7을 참조하면, 메쉬(42)와 메쉬(42)의 사이 공간에는 절연층(43)이 위치하며, 상기 절연층은 에폭시 수지, 테프론계 수지 또는 불소수지 등의 플라스틱 수지일 수 있다.6 and 7, an insulating layer 43 is positioned in the space between the mesh 42 and the mesh 42, and the insulating layer is made of plastic such as epoxy resin, teflon resin, or fluororesin. It may be a resin.
이때, 메쉬와 메쉬의 사이 공간에 절연층(43)을 형성하는 것은, 상술한 바와 같은 원통형 드럼(41a)의 표면에 제조하고자 하는 형상의 메쉬(42)를 형성한 뒤, 공지된 스프레이법 또는 증착법에 의해 절연재 물질을 도포하고, 공지된 화학적 기계적 연마(CMP:Chemical Mechanical Polishing) 공정으로 그 단면을 평탄화하여 형성할 수 있다.At this time, forming the insulating layer 43 in the space between the mesh and the mesh, after forming the mesh 42 of the shape to be manufactured on the surface of the cylindrical drum (41a) as described above, known spray method or The insulating material may be applied by a vapor deposition method, and the cross section may be planarized by a known chemical mechanical polishing (CMP) process.
이후, 상기 메쉬형음극드럼(40)을 통해, 전주공정에 의해 메쉬형음극드럼의 표면의 메쉬(42)에 금속메쉬층(미도시)을 형성하고, 상기 금속메쉬층(미도시)을 박리시켜, 전주공정에 의해 금속메쉬를 형성할 수 있다.Thereafter, a metal mesh layer (not shown) is formed on the mesh 42 of the surface of the mesh type cathode drum through the mesh type cathode drum 40, and the metal mesh layer (not shown) is peeled off. In this manner, the metal mesh can be formed by the electroforming process.
한편, 상기 메쉬형음극드럼은 전주마스터에 해당하는 것으로, 본 발명에서 전주마스터는 전주공정에 의해 금속메쉬층을 형성할 수 있도록, 제조하고자 하는 금속메쉬층의 형상과 대응되는 형상의 메쉬를 포함하는 모든 부재를 통칭하며, 도 6에서와 같이 드럼형일 수 있고, 이와는 달리, 평판형일 수 있으며, 따라서, 본 발명에서 상기 전주공정을 위한 전주 마스터는 드럼형 또는 평판형일 수 있다.Meanwhile, the mesh type cathode drum corresponds to a pole master, and in the present invention, the pole master includes a mesh having a shape corresponding to the shape of the metal mesh layer to be manufactured so as to form the metal mesh layer by the pole casting process. All members are referred to collectively, and may be a drum type as shown in Figure 6, otherwise, may be a flat plate type, thus, in the present invention, the pole master for the electroplating process may be a drum type or a flat plate type.
즉, 본 발명에 따른 전주 마스터는 베이스 판 및 상기 베이스 판 상에 형성되고, 제조하고자 하는 금속메쉬층의 형상과 대응되는 형상의 메쉬를 포함하며, 상기 베이스 판의 형상이 드럼형인 경우, 본 발명에 따른 전주 마스터는 드럼형일 수 있고, 상기 베이스 판의 형상이 평판형인 경우, 본 발명에 따른 전주 마스터는 평판형일 수 있음을 의미한다.That is, the electric pole master according to the present invention is formed on the base plate and the base plate, and includes a mesh of a shape corresponding to the shape of the metal mesh layer to be manufactured, the shape of the base plate is a drum type, the present invention The master pole according to the present invention may be a drum type, and when the shape of the base plate is flat, it means that the master pole according to the present invention may be a flat type.
이하에서는 상술한 바와 같은 메쉬형음극드럼을 통해 금속메쉬층을 형성하는 것을 설명하기로 한다. Hereinafter, the formation of the metal mesh layer through the mesh type cathode drum as described above will be described.
도 8을 참조하면, 본 발명에 따른 금속메쉬 제조용 연속전주장치는 도금하고자 하는 전해액을 수용하는 전해조(34)와, 상기 전해조(34)의 전해액에 일부분이 침지(沈漬)되도록 설치되어 인가되는 전원으로 회전하는 메쉬형음극드럼(40)과, 상기 전해조(34)의 전해액에 완전히 침지되도록 설치되어 상기 메쉬형음극드럼(40)과 대응되는 형상으로 형성되며 일정한 거리를 유지하는 양극바스켓(31)을 포함할 수 있다.Referring to FIG. 8, the continuous electroplating apparatus for manufacturing a metal mesh according to the present invention includes an electrolytic cell 34 containing an electrolytic solution to be plated and a portion of the electrolytic cell 34 so as to be immersed in the electrolytic solution of the electrolytic cell 34. A mesh basket which is rotated by a power source and a cathode-type basket (31) which is installed to be completely immersed in the electrolyte of the electrolytic cell (34) and formed in a shape corresponding to the mesh-type cathode drum (40) and maintains a constant distance. ) May be included.
상기 전해액은 본 발명에 따른 금속메쉬층을 형성하기 위하여, 구리(Cu), 은(Ag), 크롬(Cr), 니켈(Ni), 철(Fe), 코발트(Co), 알루미늄(Al) 및 이들의 합금 중 적어도 어느 하나의 물질로 이루어질 수 있으나, 본 발명에서 상기 전해액의 종류를 한정하는 것은 아니다.The electrolyte is formed of copper (Cu), silver (Ag), chromium (Cr), nickel (Ni), iron (Fe), cobalt (Co), aluminum (Al) and the like to form a metal mesh layer according to the present invention. It may be made of at least one of these alloys, but is not limited to the type of the electrolyte in the present invention.
계속해서, 도 8을 참조하면, 상기 전해조(34)는 중앙 하면이 하방향으로 천공된 반원통 형상을 가지며, 이러한 전해조(34)에는 메쉬형음극드럼(40)의 표면에 도금하고자 하는 전해액이 수용될 수 있다.8, the electrolytic cell 34 has a semi-cylindrical shape in which the lower surface of the electrolytic cell is perforated downward, and the electrolytic cell 34 has an electrolyte to be plated on the surface of the mesh type cathode drum 40. Can be accommodated.
또한, 상기 전해조(34)의 하부에는 전해조(34)에서 흘러 넘치는 전해액을 수용하는 보조탱크(30)가 형성되어 전해액이 수용되는 구조는 전해조(34)와 보조탱크(30)의 이중구조로 구성될 수 있다.In addition, an auxiliary tank 30 is formed below the electrolyzer 34 to accommodate the electrolyte flowing from the electrolyzer 34 so that the electrolyte is accommodated in a dual structure of the electrolyzer 34 and the auxiliary tank 30. Can be.
따라서, 상기 전해조(34)에는 회전하는 메쉬형음극드럼(40)의 일부분 즉, 절반 정도가 침지(沈漬)되어, 후술할 전해액분사유로(32)에서 분사되는 전해액으로 상기 전해조(34)의 전해액이 교반(攪拌)되고, 이러한 전해액분사유로(32)의 전해액 분사에 의해 전해액이 교반되면서 상기 전해조(34)를 흘러 넘치는 전해액은 상기 보조탱크(30)에 수용되도록 구성된다.Therefore, a part of the rotating mesh type cathode drum 40, that is, about half, is immersed in the electrolytic cell 34, and the electrolytic cell 34 of the electrolytic cell 34 is injected into the electrolytic solution injection passage 32 to be described later. The electrolyte is stirred, and the electrolyte flowing through the electrolytic cell 34 while the electrolyte is stirred by the injection of the electrolyte in the electrolyte injection passage 32 is configured to be accommodated in the auxiliary tank 30.
상기 전해조(34)에는 전해액에 절반 정도 침지되어 회전하는 메쉬형음극드럼(40)이 설치된다. The electrolyzer 34 is provided with a mesh type cathode drum 40 which is immersed in the electrolyte and rotates about halfway.
상기 메쉬형음극드럼(40)은 인가되는 전원의 음극(-)에 연결되며, 회전 가능하도록 중심이 되는 회전축(41b)과 상기 회전축(41b)을 감싸면서 일정한 폭을 가지는 원통형 드럼(41a)으로 형성될 수 있다.The mesh type cathode drum 40 is connected to the cathode (-) of the power applied to the cylindrical drum 41a having a constant width while surrounding the rotating shaft 41b and the rotating shaft 41b to be rotatable. Can be formed.
한편, 도면에는 도시되지 않았으나, 상기 회전축(41b)의 일측 단부에는 정류기로부터 음극(-)이 공급되도록 하는 전원공급장치가 구비되고, 타측 단부에는 상기 원통형드럼(41a)이 회전되도록 회전력을 제공하는 모터가 결합될 수 있다.On the other hand, although not shown in the drawings, one end of the rotary shaft 41b is provided with a power supply for supplying a negative electrode (-) from the rectifier, the other end to provide a rotational force to rotate the cylindrical drum (41a) The motor can be coupled.
따라서, 상기 모터에 전원이 인가되어 회전동력이 발생되면 이러한 회전동력은 상기 회전축(41b)으로 전달되어 상기 원통형 드럼(41a)을 회전시키게 된다.Therefore, when power is applied to the motor to generate rotational power, the rotational power is transmitted to the rotational shaft 41b to rotate the cylindrical drum 41a.
한편, 도 6에 도시된 바와 같이, 상기 원통형 드럼(41a)의 표면에는 제조하고자 하는 금속메쉬에 구비되는 다수의 홀(도 2의 132a, 132b)과 대응되는 형상의 메쉬(42)가 형성될 수 있으며, 본 발명의 실시예에서 상기 메쉬(42)는 대략 육각형이 여러 개 연결되는 망(網) 형상으로 형성되어 마치 벌집 형태로 구성될 수 있다.Meanwhile, as shown in FIG. 6, a mesh 42 having a shape corresponding to a plurality of holes (132a and 132b of FIG. 2) provided in the metal mesh to be manufactured may be formed on the surface of the cylindrical drum 41a. In an embodiment of the present invention, the mesh 42 may be formed in a net shape in which a plurality of hexagons are connected to each other and may be configured in a honeycomb form.
이는 도 6에서 설명한 바를 참조하기로 하며, 따라서, 이하, 메쉬형음극드럼의 구체적인 설명은 생략하기로 한다.This will be described with reference to FIG. 6, and therefore, detailed description of the mesh type cathode drum will be omitted.
상기 메쉬형음극드럼(40)의 하부에는 불용성 양극(+) 또는 티타늄(Ti)으로 형성되는 양극바스켓(31)이 설치된다.An anode basket 31 formed of an insoluble anode (+) or titanium (Ti) is installed under the mesh type cathode drum 40.
상기 양극바스켓(31)은 상기 전해조(34)의 전해액에 완전히 침지되고 상기 메쉬형음극드럼(40)과 대응되도록 절반이 절개된 원호형상으로 형성되어 일정한 거리를 유지하도록 설치된다.The anode basket 31 is formed so as to be immersed in the electrolyte of the electrolytic cell 34 and formed in the shape of an arc cut in half so as to correspond to the mesh type cathode drum 40 to maintain a constant distance.
상기 양극바스켓(31) 내측에는 상기 전해조(34)의 전해액과 동일한 성분의 금속클러스터(Cluster)(33)가 수용될 수 있다.A metal cluster 33 having the same component as the electrolyte of the electrolytic cell 34 may be accommodated inside the anode basket 31.
상기 금속클러스터(33)는 양극바스켓(31)의 내측에서 전해조(34) 내부로 이탈되지 않도록 하는 이탈방지망으로 싸여져 보관된다.The metal cluster 33 is enclosed and stored in a separation prevention net to prevent the inside of the positive electrode basket 31 from being separated into the electrolytic cell 34.
또한, 상기 금속클러스터(33)는 상기 전해조(34)의 전해액과 동일한 성분의 금속 덩어리로 전해조(34)의 전해액에 용해됨으로써 상기 원통형 드럼(41a)의 표면에 도금되는 전해액의 양과 농도를 맞추는 역할을 수행할 수 있다.In addition, the metal cluster 33 serves to match the amount and concentration of the electrolyte solution plated on the surface of the cylindrical drum 41a by dissolving in the electrolyte solution of the electrolytic cell 34 as a metal mass of the same component as the electrolyte solution of the electrolytic cell 34. Can be performed.
따라서, 상기 양극바스켓(31)에 전류가 인가되면 상기 금속클러스터(33)로부터 용해된 양(+)이온들은 상기 원통형 드럼(41a)의 표면으로 이동하여 전착됨으로써 도금된다.Therefore, when a current is applied to the positive electrode basket 31, positive ions dissolved from the metal cluster 33 are plated by being electrodeposited by moving to the surface of the cylindrical drum 41a.
상기 전해조(34)의 하단부, 보다 상세하게는 상기 양극바스켓(31)의 하단 중앙에는 상기 전해조(34)의 전해액이 교반되도록 전해액을 분사하는 전해액분사유로(32)가 형성될 수 있으며, 상기 전해액분사유로(32)는 내부가 상기 전해조(34) 내부와 연통되며 길이가 긴 원통형의 플라스틱 파이프로 형성될 수 있다.An electrolyte injection flow path 32 for injecting an electrolyte solution to agitate the electrolyte solution of the electrolytic cell 34 may be formed at a lower end portion of the electrolytic cell 34, more specifically, at the center of the lower end of the positive electrode basket 31. The injection passage 32 may be formed as a cylindrical plastic pipe having a long length and communicating with an inside of the electrolytic cell 34.
따라서, 상기 전해액분사유로(32)를 통해 상기 전해조(34) 내부로 전해액을 분사하여 공급하게 되면 상기 전해조(34) 내부의 전해액은 교반되며, 상기 메쉬형음극드럼(40)에서 발생되는 수소(H2)가스를 원활하게 제거할 수 있게 된다.Therefore, when the electrolyte is injected and supplied into the electrolytic cell 34 through the electrolyte injection passage 32, the electrolytic solution in the electrolytic cell 34 is stirred, and the hydrogen generated in the mesh type cathode drum 40 ( H 2 ) The gas can be removed smoothly.
또한, 도면에는 도시되지 않았으나, 상기 연속전주장치에는 순환-필터링수단이 더 구비될 수 있으며, 상기 순환-필터링수단은 보조탱크(30) 내부의 전해액을 상기 전해조(34)로 순환시키면서 전해액 중의 이물을 제거하는 역할을 수행할 수 있으며, 다만, 이는 일반적인 구성이므로 이하 구체적인 설명은 생략하기로 한다.In addition, although not shown in the drawing, the continuous electroforming device may further include circulation-filtering means, wherein the circulation-filtering means circulates the electrolyte in the auxiliary tank 30 to the electrolyzer 34 while foreign matter in the electrolyte. It may serve to remove, but, since it is a general configuration will be omitted the following detailed description.
계속해서, 도 8을 참조하면, 상기 메쉬형음극드럼(40)의 우측상부에는 원통형 드럼(41a)의 외주면에 도금되는 금속메쉬(50)를 박리(
Figure 525d
離)하기 위한 가이드롤러(51)가 구비되고, 상기 금속메쉬(50)의 표면을 세정하기 위한 세정조(60)가 구비될 수 있다.
Subsequently, referring to FIG. 8, the metal mesh 50 to be plated on the outer circumferential surface of the cylindrical drum 41a is peeled off on the upper right side of the mesh type cathode drum 40.
Figure 525d
A guide roller 51 for vibrating may be provided, and a cleaning tank 60 for cleaning the surface of the metal mesh 50 may be provided.
상기 세정조(60)의 우측에는 권취롤러(70)가 구비될 수 있으며, 상기 권취롤러(70)는 세정조(60)를 경유하면서 세정된 금속메쉬(50)를 연속적으로 권취할 수 있다.A winding roller 70 may be provided on the right side of the cleaning tank 60, and the winding roller 70 may continuously wind the cleaned metal mesh 50 via the cleaning tank 60.
이하, 도 9를 참조하여, 연속전주장치를 이용하여 상기 금속메쉬를 제조하는 방법을 설명하면 다음과 같다.Hereinafter, referring to FIG. 9, a method of manufacturing the metal mesh by using a continuous pole device will be described.
먼저, 인가되는 전원에 의해 상기 전해조(34)의 전해액에 전기가 통전(通電)되게 하여 전기분해가 일어나도록 하고, 상기 전해액분사유로(32)에 의해 전해액을 상기 전해조(34)에 분사함으로써 전해액을 교반시키는 전해액교반단계(S10)가 진행된다. 다만, 본 발명에서 상기 전해액교반단계는 선택적인 사항으로, 경우에 따라 생략되어도 무방하다. First, electricity is supplied to the electrolytic solution of the electrolytic cell 34 by an applied power source so that electrolysis occurs, and the electrolytic solution is injected into the electrolytic cell 34 by the electrolytic solution injection passage 32. Stirring the electrolyte solution step (S10) is carried out. However, in the present invention, the electrolytic solution stirring step is optional and may be omitted in some cases.
그리고, 상기 전해액교반단계(S10)가 진행된 다음에는 상기 전해조(34) 내부에 설치된 메쉬형음극드럼(40)을 회전시키는 드럼회전단계(S20)를 실시하게 된다. 이때, 상기 드럼회전단계의 경우, 전주 마스터가 드럼형일 경우에 해당하는 단계이며, 전주 마스터가 평판형일 경우 생략될 수 있다.Then, after the electrolytic solution stirring step (S10) is carried out to perform a drum rotation step (S20) for rotating the mesh-type cathode drum 40 installed in the electrolytic cell 34. At this time, in the drum rotating step, the step corresponding to the case where the master pole is the drum type, it may be omitted when the master pole is the plate type.
이후 전해액에 녹아있는 구리(Cu), 은(Ag), 크롬(Cr), 니켈(Ni), 철(Fe), 코발트(Co), 알루미늄(Al) 및 이들의 합금 중 적어도 어느 하나 이상의 물질, 예를 들면, 구리(Cu)를 메쉬의 상면에 전착시켜 금속메쉬층을 형성하는 전착단계(S30)를 실시하게 된다. Since at least one material of copper (Cu), silver (Ag), chromium (Cr), nickel (Ni), iron (Fe), cobalt (Co), aluminum (Al) and alloys thereof dissolved in the electrolyte solution, For example, the electrodeposition step (S30) of electrodepositing copper (Cu) on the upper surface of the mesh to form a metal mesh layer.
상기 전착단계(S30)에서의 전류밀도는 0.1 내지 30 mA/㎠일 수 있으며, 다만, 본 발명에서 상기 전류밀도의 범위를 제한하는 것은 아니며, 전착을 하고자 하는 물질에 따라, 그 전류밀도를 상이하게 할 수 있다.The current density in the electrodeposition step (S30) may be 0.1 to 30 mA / ㎠, but does not limit the range of the current density in the present invention, depending on the material to be electrodeposited, the current density is different It can be done.
예를 들어, 상기한 전류밀도의 범위 중에서 0.1 내지 1 mA/㎠의 범위는 상기 구리(Cu)의 전착이 활발히 발생되는 범위일 수 있으며, 3 내지 15 mA/㎠의 범위는 상기 니켈(Ni)의 전착이 활발히 발생되는 범위일 수 있다. For example, the range of the current density of 0.1 to 1 mA / cm 2 may be a range in which electrodeposition of copper (Cu) is actively generated, the range of 3 to 15 mA / cm 2 is the nickel (Ni) May be a range in which electrodeposition is actively occurring.
또한, 금속메쉬층의 전착이 상기한 전류밀도의 범위에서 보다 활발하게 전착될 수 있도록 하기 위해 상기 전해액의 일정 온도 범위 내에서 실시됨이 바람직하다.In addition, the electrodeposition of the metal mesh layer is preferably carried out within a certain temperature range of the electrolyte in order to be more actively electrodeposited in the above range of the current density.
예를 들어, 상기 구리(Cu) 또는 니켈(Ni)은 전해액의 온도가 10 내지 50℃ 일 때 전착이 활발하게 진행될 수 있으며, 다만, 본 발명에서 상기 전해액의 온도를 한정하는 것은 아니다.For example, the copper (Cu) or nickel (Ni) may be actively electrodeposited when the temperature of the electrolyte is 10 to 50 ℃, but is not limited to the temperature of the electrolyte in the present invention.
상기한 조건에 따라 전착단계(S30)가 완료된 이후에는 상기 메쉬형음극드럼(40)의 외면, 보다 구체적으로는 메쉬(도 7의 42)의 상부에 금속메쉬층이 형성된다.After the electrodeposition step S30 is completed according to the above conditions, a metal mesh layer is formed on the outer surface of the mesh type cathode drum 40, more specifically, on the mesh 42 (FIG. 7).
상기 전착단계(S30)가 진행된 이후에는, 상기 메쉬형음극드럼(40)의 외면, 구체적으로 메쉬로부터 금속메쉬층을 박리하는 전착층박리단계(S40)가 이어지게 된다.After the electrodeposition step S30 is performed, an electrodeposition layer peeling step S40 for peeling the metal mesh layer from the outer surface of the mesh type cathode drum 40, in particular, the mesh is continued.
상기 전착층박리단계(S40)는 상기 메쉬형음극드럼(40)의 외면에 붙어 있던 금속메쉬층이 상기 가이드롤러(51)의 회전에 의해 상부 우측으로 안내되면서 진행된다.The electrodeposition layer peeling step S40 is performed while the metal mesh layer attached to the outer surface of the mesh type cathode drum 40 is guided to the upper right side by the rotation of the guide roller 51.
보다 구체적으로, PET, PC, PMMA 등과 같은 보호필름(미도시)에 접착제를 도포하여, 이를 상기 메쉬형음극드럼의 표면의 메쉬에 형성된 금속메쉬층의 상부에 라미네이션한 후, 상기 보호필름(미도시) 및 금속메쉬층을 동시에 박리하여, 전주공정에 의해 금속메쉬(50)를 형성할 수 있다.More specifically, by applying an adhesive to a protective film (not shown), such as PET, PC, PMMA, after laminating it on top of the metal mesh layer formed on the mesh of the surface of the mesh-type cathode drum, the protective film (not even C) and the metal mesh layer may be peeled off simultaneously to form the metal mesh 50 by the electroforming process.
상기 전착층박리단계(S40) 이후에는 상기 메쉬형음극드럼(40)으로부터 분리된 금속메쉬(50)를 세정조(60) 내부로 침지시켜 수세하는 전착층수세단계(S50)가 진행되며, 상기 전착층수세단계(S50)를 거쳐 수세된 금속메쉬(50)는 권취롤러(70)로 이송되면서 권취되어 금속메쉬권취단계(S60)가 수행된다.After the electrodeposition layer peeling step (S40), the electrodeposited layer washing step (S50) of immersing the metal mesh 50 separated from the mesh type cathode drum 40 into the washing tank 60 is washed. The metal mesh 50 washed through the electrodeposition layer washing step S50 is wound while being transferred to the take-up roller 70, and the metal mesh winding step S60 is performed.
상기한 모든 단계가 완료되면 상기 금속메쉬(50)는 권취롤러(70)에 권취된 상태로 보관이 가능하며, 필요에 따라 요구되는 길이 및 형상만큼 절단함으로써 다양한 분야에 적용 가능함은 물론이다.When all the above steps are completed, the metal mesh 50 can be stored in a wound state on the winding roller 70, and can be applied to various fields by cutting the required length and shape as needed.
한편, 전착층박리단계에 있어서, 상기에서는 보호필름(미도시)에 접착제를 도포하여, 이를 상기 메쉬형음극드럼의 표면의 메쉬에 형성된 금속메쉬층의 상부에 라미네이션한 후, 상기 보호필름(미도시) 및 금속메쉬층을 동시에 박리하여, 전주공정에 의해 금속메쉬(50)를 형성함을 도시하였으나, 이와는 달리, 별도의 보호필름 없이 메쉬형음극드럼의 메쉬로부터 금속메쉬층만을 분리하는 것도 가능하며, 이 경우, 금속메쉬층의 두께가 얇아 공정상 취급이 어려우므로, 상기 전착층수세단계(S50)를 거쳐 수세된 금속메쉬(50)를 별도의 보호필름에 부착하여 사용할 수도 있을 것이다.On the other hand, in the electrodeposition layer peeling step, in the above, by applying an adhesive to a protective film (not shown), after laminating it on top of the metal mesh layer formed on the mesh of the surface of the mesh-type cathode drum, the protective film C) and the metal mesh layer are peeled off at the same time to form the metal mesh 50 by the electroforming process. Alternatively, the metal mesh layer may be separated from the mesh of the mesh type cathode drum without a protective film. In this case, since the thickness of the metal mesh layer is thin and difficult to process, the metal mesh 50 washed through the electrodeposition layer washing step S50 may be attached to a separate protective film.
이상과 같이, 본 발명에서는 금속 메쉬 제조용 연속전주장치를 통해 금속메쉬층을 형성할 수 있으며, 형성된 금속메쉬층은 상술한 바와 같은 히트싱크의 금속메쉬층으로 사용이 가능하다.As described above, in the present invention, the metal mesh layer may be formed through the continuous pole apparatus for manufacturing the metal mesh, and the metal mesh layer formed may be used as the metal mesh layer of the heat sink as described above.
도 10 내지 도 13은 본 발명에 따른 히트싱크를 제조하는 방법을 설명하기 위한 단면도이다. 이하, 본 발명에 따른 히트싱크를 제조하는 방법은 상술한 도 2의 본 발명의 제1실시예에 따른 히트싱크를 제조하는 방법을 기준으로 설명하기로 한다.10 to 13 are cross-sectional views for explaining a method of manufacturing a heat sink according to the present invention. Hereinafter, a method of manufacturing the heat sink according to the present invention will be described based on the method of manufacturing the heat sink according to the first embodiment of the present invention of FIG.
먼저, 도 10을 참조하면, 상술한 바와 같은 금속메쉬 제조장치를 통해 금속메쉬층(130)을 제조한다. First, referring to FIG. 10, the metal mesh layer 130 is manufactured through the metal mesh manufacturing apparatus as described above.
한편, 상기에서는 금속메쉬층을 연속전주장치를 통한 전주공법에 의해 제조하는 것을 설명하였으나, 이와는 달리, 직조 또는 기계가공법에 의해서도 금속메쉬층을 제조할 수 있으며, 따라서, 본 발명에서 상기 금속메쉬층을 제조하는 방법을 한정하는 것은 아니다.On the other hand, in the above described the manufacturing of the metal mesh layer by the electroplating method through a continuous pole device, in contrast, the metal mesh layer can also be produced by weaving or machining method, and thus, the metal mesh layer in the present invention It does not limit the method for producing the same.
이때, 상기 금속메쉬층(130)의 폭(d1)은 1 ~ 500㎛ 이고, 상기 금속메쉬층의 두께(d2)는 1 ~ 500㎛ 일 수 있고, 또한, 금속메쉬 패턴과 금속메쉬 패턴간의 간격, 즉, 금속메쉬 패턴(131)의 사이에 위치하는 홀(132)의 크기는 1㎛ ~ 3mm 일 수 있으나, 다만 본 발명에서 이들의 수치를 한정하는 것은 아니다.In this case, the width d1 of the metal mesh layer 130 may be 1 to 500 μm, and the thickness d2 of the metal mesh layer may be 1 to 500 μm, and the interval between the metal mesh pattern and the metal mesh pattern may also be used. That is, the size of the holes 132 located between the metal mesh patterns 131 may be 1 μm to 3 mm, but the present invention is not limited thereto.
다음으로, 도 11을 참조하면, 베이스 기재(110)의 제1면에 제1접착층(120a)을 형성하고, 상기 베이스 기재(110)의 제2면에 제2접착층(120b)을 형성한다.Next, referring to FIG. 11, the first adhesive layer 120a is formed on the first surface of the base substrate 110, and the second adhesive layer 120b is formed on the second surface of the base substrate 110.
상기 제1접착층(120a) 및 제2접착층(120b)은 솔더층일 수 있으며, 상기 솔더층은 공지된 전해도금법 또는 무전해도금법 등을 통해 형성할 수 있고, 다만, 본 발명에서 상기 솔더층의 형성방법을 한정하는 것은 아니다.The first adhesive layer 120a and the second adhesive layer 120b may be solder layers, and the solder layer may be formed by a known electroplating method or an electroless plating method, but the formation of the solder layer in the present invention. It does not limit the method.
예를 들면, 상기 솔더층은 공지된 인쇄법에 의해 형성할 수 있으며, 보다 구체적으로, PbSn 또는 CuAgSn 등과 같이 Sn을 포함하는 도전성 페이스트를 인쇄하여 형성할 수 있다.For example, the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
이때, 상기 베이스 기재(110)의 두께는 1 ~ 100㎛ 이고, 상기 제1접착층 또는 상기 제2접착층의 두께는 1 ~ 20㎛ 일 수 있으며, 베이스 기재와 제1접착층 및 제2접착층의 두께(d3)는 2 ~ 120㎛ 일 수 있으나, 다만, 본 발명에서 이들의 수치를 한정하는 것은 아니다.At this time, the thickness of the base substrate 110 is 1 ~ 100㎛, the thickness of the first adhesive layer or the second adhesive layer may be 1 ~ 20㎛, the thickness of the base substrate, the first adhesive layer and the second adhesive layer ( d3) may be 2 to 120 µm, but the present invention is not limited thereto.
다음으로, 도 12를 참조하면, 상기 제1접착층(120a) 상에 제1금속메쉬층(130a)을 위치시키고, 상기 제2접착층(120b) 상에 제2금속메쉬층(130b)을 위치시킨 후, 압착롤러를 통해, 상기 제1금속메쉬층 및 제2금속메쉬층을 각각 제1접착층 및 제2접착층 상에 압착시킨다.Next, referring to FIG. 12, the first metal mesh layer 130a is positioned on the first adhesive layer 120a, and the second metal mesh layer 130b is positioned on the second adhesive layer 120b. Thereafter, the first metal mesh layer and the second metal mesh layer are pressed onto the first adhesive layer and the second adhesive layer, respectively, through a pressing roller.
이때, 상기 제1금속메쉬층 및 제2금속메쉬층을 압착시킴에 있어, 접착층과 금속메쉬층의 접착특성을 향상시키기 위해, 일정온도를 가하는 것이 바람직하며, 상기 일정온도는 150 ~ 500 ℃ 일 수 있다.At this time, in the pressing of the first metal mesh layer and the second metal mesh layer, in order to improve the adhesive properties of the adhesive layer and the metal mesh layer, it is preferable to apply a constant temperature, the constant temperature is 150 ~ 500 ℃ days Can be.
이로써, 본 발명에 따른 금속메쉬층을 포함하는 히트싱크를 제조할 수 있고, 즉, 도 13에 도시된 바와 같이, 본 발명의 제1실시예에 따른 히트싱크(100)는 베이스 기재(110)의 제1면 및 제2면에 각각 형성되는 금속메쉬층(130a, 130b)을 포함하며, 상기 금속메쉬층은 각각 복수의 금속메쉬 패턴(131a, 131b) 및 금속메쉬 패턴의 사이에 위치하는 홀(132a, 132b)을 포함하고 있고, 이때, 상기 베이스 기재와 금속메쉬층을 부착하기 위한 접착층(120a, 120b)을 포함하고 있다.As a result, a heat sink including a metal mesh layer according to the present invention may be manufactured, that is, as shown in FIG. 13, the heat sink 100 according to the first embodiment of the present invention may include a base substrate 110. Metal mesh layers 130a and 130b formed on the first and second surfaces of the metal mesh layers 130a and 130b, respectively, wherein the metal mesh layers each include holes disposed between the metal mesh patterns 131a and 131b and the metal mesh patterns. 132a and 132b, and at this time, adhesive layers 120a and 120b for attaching the base substrate and the metal mesh layer are included.
이하에서는 본 발명에 따른 히트싱크를 제조하는 방법을 보다 구체적으로 서술하기로 한다.Hereinafter, a method of manufacturing the heat sink according to the present invention will be described in more detail.
도 14는 본 발명의 제1실시예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이고, 도 15는 본 발명의 제1실시예에 따른 히트싱크를 제조하는 방법을 도시하는 공정 흐름도이며, 도 16은 본 발명의 제2실시예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이다. 다만, 본 발명의 제2실시예에 따른 히트싱크를 제조하는 방법은 후술할 바를 제외하고는 상술한 제1실시예의 제조하는 방법과 동일할 수 있으며, 구체적인 공정 흐름도는 후술하는 도 15를 참조하기로 한다.14 is a schematic configuration diagram for manufacturing a heat sink according to the first embodiment of the present invention, and FIG. 15 is a process flowchart showing a method of manufacturing the heat sink according to the first embodiment of the present invention. 16 is a schematic structural diagram for manufacturing a heat sink according to a second embodiment of the present invention. However, the method of manufacturing the heat sink according to the second embodiment of the present invention may be the same as the method of manufacturing the first embodiment described above, except as will be described later. Shall be.
먼저, 도 14 및 도 15를 참조하면, 본 발명의 제1실시예에 따른 히트싱크를 제조하는 방법은, 베이스 기재 공급부(610)로부터 준비된 베이스 기재(611)를 제공한다(S100).First, referring to FIGS. 14 and 15, the method of manufacturing the heat sink according to the first embodiment of the present invention provides a base substrate 611 prepared from the base substrate supply unit 610 (S100).
다음으로, 상기 베이스 기재를 전처리 한다(S110).Next, the base substrate is pretreated (S110).
상기 전처리는 일반적인 화학적 전처리법일 수 있으며, 상기 화학적 전처리법은 산세 및 탈지와 같이, 산성 또는 알카리성 용액에 대상재, 즉 베이스 기재를 침지시키거나, 이러한 용액을 대상재에 분무하여 금속재 표면의 기름, 오염물, 및 불순물 등을 제거하는 방법일 수 있다.The pretreatment may be a general chemical pretreatment. The chemical pretreatment may be performed by immersing a target material, ie, a base substrate in an acidic or alkaline solution, such as pickling and degreasing, or spraying the solution on the target material, such as oil, It may be a method for removing contaminants, impurities, and the like.
본 발명에서 상기 전처리는 전처리 용액이 수용된 전처리용 수조(601)에 상기 베이스 기재를 침지시키는 방법에 의한 화학적 전처리법일 수 있으며, 다만, 본 발명에서 전처리하는 방법을 한정하는 것은 아니며, 필요에 따라, 상기 전처리 공정은 생략할 수 있다.In the present invention, the pretreatment may be a chemical pretreatment method by immersing the base substrate in a pretreatment tank 601 containing a pretreatment solution, but is not limited to the method of pretreatment in the present invention, if necessary, The pretreatment step can be omitted.
다음으로, 전처리된 상기 베이스 기재를 수세하는 제1수세단계를 거친다(S120).Next, a first washing step of washing the pre-treated base substrate (S120).
상기 제1수세단계는 전처리 공정에서 사용된 전처리 용액 등을 제거하기 위한 공정으로, 수세 용액이 수용된 제1수세용 수조(602)에 상기 베이스 기재를 침지시키는 방법에 의할 수 있으며, 다만, 본 발명에서 수세하는 방법을 한정하는 것은 아니며, 필요에 따라, 상기 제1수세 공정은 생략할 수 있다.The first washing step is a process for removing the pretreatment solution used in the pretreatment process, and may be by a method of immersing the base substrate in the first washing tank 602 containing the washing solution. In the invention, the method of washing with water is not limited, and if necessary, the first washing step can be omitted.
다음으로, 상기 베이스 기재 상에 접착층을 형성한다(S130).Next, to form an adhesive layer on the base substrate (S130).
상기 접착층은 솔더층일 수 있으며, 상기 솔더층은 도금액을 포함하는 도금용 수조(603)에 상기 베이스 기재를 침지시키는 방법에 의해 공지된 전해도금법 또는 무전해도금법 등을 통해 형성할 수 있고, 다만, 본 발명에서 상기 솔더층의 형성방법을 한정하는 것은 아니다.The adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by a method of immersing the base substrate in a plating bath 603 including a plating solution. In the present invention, the method of forming the solder layer is not limited.
예를 들면, 상기 솔더층은 공지된 인쇄법에 의해 형성할 수 있으며, 보다 구체적으로, PbSn 또는 CuAgSn 등과 같이 Sn을 포함하는 도전성 페이스트를 인쇄하여 형성할 수 있다.For example, the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
이때, 상기 베이스 기재의 제1면 및 제2면에 각각 솔더층이 형성될 수 있다.In this case, a solder layer may be formed on the first and second surfaces of the base substrate, respectively.
다음으로, 상기 접착층이 형성된 베이스 기재(612)를 수세하는 제2수세단계를 거친다(S140).Next, a second washing step of washing the base substrate 612, the adhesive layer is formed (S140).
상기 제2수세단계는 접착층 형성 공정에서 사용된 도금 용액 등을 수세하기 위한 공정으로, 수세 용액이 수용된 제2수세용 수조(604)에 상기 베이스 기재를 침지시키는 방법에 의할 수 있으며, 다만, 본 발명에서 수세하는 방법을 한정하는 것은 아니며, 필요에 따라, 상기 제2수세 공정은 생략할 수 있다.The second washing step is a step for washing the plating solution used in the adhesive layer forming process, and the like, and may be by a method of dipping the base substrate in the second washing tank 604 in which the washing solution is contained. The method of washing with water in the present invention is not limited, and if necessary, the second washing step can be omitted.
다음으로, 상기 접착층이 형성된 베이스 기재를 건조하는 단계를 거친다(S150).Next, the step of drying the base substrate on which the adhesive layer is formed (S150).
상기 건조 단계는 열풍건조로(605)에서 진행되는 열풍건조일 수 있으며, 다만, 본 발명에서 상기 건조 방법을 한정하는 것은 아니며, 필요에 따라, 상기 건조 공정은 생략할 수 있다.The drying step may be hot air drying performed in the hot air drying furnace 605, but the present invention is not limited to the drying method, and the drying process may be omitted if necessary.
계속해서, 도 14 및 도 15를 참조하면, 상술한 바와 같은 금속메쉬 제조장치를 통해 금속메쉬층(621)을 제조하여, 금속메쉬층을 제공한다(S160).14 and 15, the metal mesh layer 621 is manufactured through the metal mesh manufacturing apparatus as described above, and a metal mesh layer is provided (S160).
이때, 상술한 바와 같이, 상기 금속메쉬층은 금속메쉬 패턴 및 금속메쉬 패턴 사이의 홀을 포함할 수 있으며, 이는 상술한 바와 같으므로, 이하 구체적인 설명은 생략하기로 한다.In this case, as described above, the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted.
한편, 도 14에 도시한 바와 같이, 본 발명의 제1실시예에 따른 히트싱크에서는 상기 금속메쉬층을 상기 베이스 기재의 제1면 및 제2면에 공급하기 위해, 금속메쉬층의 공급부(620a, 620b)가 베이스 기재의 제1면 및 제2면에 각각 위치할 수 있다.On the other hand, as shown in Figure 14, in the heat sink according to the first embodiment of the present invention, in order to supply the metal mesh layer to the first surface and the second surface of the base substrate, the supply portion of the metal mesh layer 620a , 620b) may be located on the first and second surfaces of the base substrate, respectively.
다음으로, 접착층을 포함하는 베이스 기재의 상기 접착층 상에, 상기 금속메쉬층을 위치시키고 압착롤러(630a, 630b)에 의해 이를 압착시킨다(S170).Next, the metal mesh layer is positioned on the adhesive layer of the base substrate including the adhesive layer and pressed by the pressing rollers 630a and 630b (S170).
이때, 본 발명의 제1실시예에 따른 히트싱크에서는 베이스 기재의 제1면에 위치하는 제1접착층 상에 상기 금속메쉬층 제1공급부(620a)로부터 제공된 제1금속메쉬층을 위치시키고, 베이스 기재의 제2면에 위치하는 제2접착층 상에 상기 금속메쉬층 제2공급부(620b)로부터 제공된 제2금속메쉬층을 위치시킨후, 압착롤러를 통해, 상기 제1금속메쉬층 및 제2금속메쉬층을 각각 제1접착층 및 제2접착층 상에 압착시킬 수 있다.At this time, in the heat sink according to the first embodiment of the present invention, the first metal mesh layer provided from the metal mesh layer first supply part 620a is positioned on the first adhesive layer positioned on the first surface of the base substrate, and the base is positioned. After placing the second metal mesh layer provided from the metal mesh layer second supply part 620b on the second adhesive layer located on the second surface of the substrate, the first metal mesh layer and the second metal through the pressing roller are placed. The mesh layer may be pressed onto the first adhesive layer and the second adhesive layer, respectively.
이때, 상기 제1금속메쉬층 및 제2금속메쉬층을 압착시킴에 있어, 접착층과 금속메쉬층의 접착특성을 향상시키기 위해, 일정온도를 가하는 것이 바람직하며, 상기 일정온도는 150 ~ 500 ℃ 일 수 있다.At this time, in the pressing of the first metal mesh layer and the second metal mesh layer, in order to improve the adhesive properties of the adhesive layer and the metal mesh layer, it is preferable to apply a constant temperature, the constant temperature is 150 ~ 500 ℃ days Can be.
이로써, 본 발명의 제1실시예에 따른 금속메쉬층을 포함하는 히트싱크를 제조할 수 있다.As a result, a heat sink including the metal mesh layer according to the first embodiment of the present invention can be manufactured.
즉, 도 13에 도시된 바와 같이, 본 발명의 제1실시예에 따른 히트싱크(631)는 베이스 기재의 제1면 및 제2면에 각각 형성되는 금속메쉬층을 포함하며, 상기 금속메쉬층은 각각 복수의 금속메쉬 패턴 및 금속메쉬 패턴의 사이에 위치하는 홀을 포함하고 있고, 이때, 상기 베이스 기재와 금속메쉬층을 부착하기 위한 접착층을 포함하고 있다.That is, as shown in Figure 13, the heat sink 631 according to the first embodiment of the present invention includes a metal mesh layer formed on each of the first and second surfaces of the base substrate, the metal mesh layer Each includes a plurality of metal mesh pattern and the hole located between the metal mesh pattern, wherein the base layer and the adhesive layer for attaching the metal mesh layer.
다음으로, 도 16을 참조하면, 본 발명의 제2실시예에 따른 히트싱크를 제조하는 방법은 베이스 기재 공급부(710)로부터 준비된 베이스 기재(711)를 제공한다.Next, referring to FIG. 16, the method of manufacturing the heat sink according to the second embodiment of the present invention provides the base substrate 711 prepared from the base substrate supply unit 710.
다음으로, 상기 베이스 기재를 전처리 한다.Next, the base substrate is pretreated.
상기 전처리는 전처리 용액이 수용된 전처리용 수조(701)에 상기 베이스 기재를 침지시키는 방법에 의한 화학적 전처리법일 수 있다.The pretreatment may be a chemical pretreatment method by dipping the base substrate in a pretreatment bath 701 containing a pretreatment solution.
다음으로, 전처리된 상기 베이스 기재를 수세하는 제1수세단계를 거친다.Next, a first washing step of washing the pretreated base substrate is performed.
상기 제1수세단계는 수세 용액이 수용된 제1수세용 수조(702)에 상기 베이스 기재를 침지시키는 방법에 의할 수 있다.The first washing step may be based on a method of immersing the base substrate in the first washing tank 702 containing the washing solution.
다음으로, 상기 베이스 기재 상에 접착층을 형성한다.Next, an adhesive layer is formed on the base substrate.
상기 접착층은 솔더층일 수 있으며, 상기 솔더층은 도금액을 포함하는 도금용 수조(703)에 상기 베이스 기재를 침지시키는 방법에 의해 공지된 전해도금법 또는 무전해도금법 등을 통해 형성할 수 있다.The adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by a method of immersing the base substrate in a plating bath 703 including a plating solution.
한편, 상기 솔더층은 공지된 인쇄법에 의해 형성할 수 있으며, 보다 구체적으로, PbSn 또는 CuAgSn 등과 같이 Sn을 포함하는 도전성 페이스트를 인쇄하여 형성할 수 있다.Meanwhile, the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
이때, 상기 베이스 기재의 제1면 및 제2면 중 어느 하나의 면, 예를 들면 제1면에 솔더층이 형성될 수 있으며, 이는 상기 베이스 기재의 제2면에 별도의 보호필름을 부착함으로써, 베이스 기재의 제2면에는 솔더층을 형성하지 않을 수 있다.In this case, a solder layer may be formed on one of the first and second surfaces of the base substrate, for example, the first surface, by attaching a separate protective film to the second surface of the base substrate. The solder layer may not be formed on the second surface of the base substrate.
다음으로, 상기 접착층이 형성된 베이스 기재(712)를 수세하는 제2수세단계를 거친다.Next, a second washing step of washing the base substrate 712 having the adhesive layer formed thereon is performed.
상기 제2수세단계는 접착층 형성 공정에서 사용된 도금 용액 등을 수세하기 위한 공정으로, 수세 용액이 수용된 제2수세용 수조(604)에 상기 베이스 기재를 침지시키는 방법에 의할 수 있다.The second washing step is a process for washing the plating solution used in the adhesive layer forming process, and may be immersed in a method of immersing the base substrate in the second washing tank 604 containing the washing solution.
다음으로, 상기 접착층이 형성된 베이스 기재를 건조하는 단계를 거친다.Next, the base substrate on which the adhesive layer is formed is dried.
상기 건조 단계는 열풍건조로(705)에서 진행되는 열풍건조일 수 있다.The drying step may be hot air drying performed in the hot air drying furnace 705.
계속해서, 도 16을 참조하면, 상술한 바와 같은 금속메쉬 제조장치를 통해 금속메쉬층(721)을 제조하여, 금속메쉬층을 제공한다.Subsequently, referring to FIG. 16, the metal mesh layer 721 is manufactured through the metal mesh manufacturing apparatus as described above to provide a metal mesh layer.
이때, 상술한 바와 같이, 상기 금속메쉬층은 금속메쉬 패턴 및 금속메쉬 패턴 사이의 홀을 포함할 수 있으며, 이는 상술한 바와 같으므로, 이하 구체적인 설명은 생략하기로 한다.In this case, as described above, the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted.
한편, 도 16에 도시한 바와 같이, 본 발명의 제2실시예에 따른 히트싱크에서는 상기 금속메쉬층을 상기 베이스 기재의 제1면 및 제2면 중 어느 하나의 면, 예를 들면, 제1면에 공급하기 위해, 금속메쉬층의 공급부(720a)가 베이스 기재의 제1면에만 위치할 수 있다.On the other hand, as shown in Figure 16, in the heat sink according to the second embodiment of the present invention, the metal mesh layer is any one of the first surface and the second surface of the base substrate, for example, the first To supply the surface, the supply portion 720a of the metal mesh layer may be located only on the first surface of the base substrate.
즉, 본 발명의 제2실시예에 따른 히트싱크의 제조방법은 베이스 기재의 일면에만 금속메쉬층을 형성하는 실시예로써, 따라서, 본 발명에서는 상기 금속메쉬층을 베이스 기재의 제1면 및/또는 제2면에 형성할 수 있다.That is, the method of manufacturing the heat sink according to the second embodiment of the present invention is an embodiment in which the metal mesh layer is formed only on one surface of the base substrate. Or it can form in a 2nd surface.
다음으로, 접착층을 포함하는 베이스 기재의 상기 접착층 상에, 상기 금속메쉬층을 위치시키고 압착롤러(730a, 730b)에 의해 이를 압착시킨다.Next, the metal mesh layer is placed on the adhesive layer of the base substrate including the adhesive layer and pressed by the pressing rollers 730a and 730b.
이때, 본 발명의 제2실시예에 따른 히트싱크에서는 베이스 기재의 제1면에 위치하는 제1접착층 상에 상기 금속메쉬층 제1공급부(720a)로부터 제공된 제1금속메쉬층을 위치시킨후, 압착롤러를 통해, 상기 제1금속메쉬층을 제1접착층 상에 압착시킬 수 있다.At this time, in the heat sink according to the second embodiment of the present invention, after placing the first metal mesh layer provided from the metal mesh layer first supply unit 720a on the first adhesive layer located on the first surface of the base substrate, Through the pressing roller, the first metal mesh layer may be pressed onto the first adhesive layer.
이때, 상기 제1금속메쉬층을 압착시킴에 있어, 접착층과 금속메쉬층의 접착특성을 향상시키기 위해, 일정온도를 가하는 것이 바람직하며, 상기 일정온도는 150 ~ 500 ℃ 일 수 있다.At this time, in the pressing of the first metal mesh layer, in order to improve the adhesive properties of the adhesive layer and the metal mesh layer, it is preferable to apply a constant temperature, the constant temperature may be 150 ~ 500 ℃.
이로써, 본 발명의 제2실시예에 따른 금속메쉬층을 포함하는 히트싱크를 제조할 수 있다.As a result, a heat sink including the metal mesh layer according to the second embodiment of the present invention can be manufactured.
즉, 도 3에 도시된 바와 같이, 본 발명의 제2실시예에 따른 히트싱크(731)는 베이스 기재의 제1면에 형성되는 금속메쉬층을 포함하며, 상기 금속메쉬층은 복수의 금속메쉬 패턴 및 금속메쉬 패턴의 사이에 위치하는 홀을 포함하고 있고, 이때, 상기 베이스 기재와 금속메쉬층을 부착하기 위한 접착층을 포함하고 있다.That is, as shown in Figure 3, the heat sink 731 according to the second embodiment of the present invention includes a metal mesh layer formed on the first surface of the base substrate, the metal mesh layer is a plurality of metal mesh A hole is disposed between the pattern and the metal mesh pattern. In this case, an adhesive layer for attaching the base substrate and the metal mesh layer is included.
도 17은 본 발명의 제1실시예의 변형예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이고, 도 18은 본 발명의 제1실시예의 변형예에 따른 히트싱크를 제조하는 방법을 도시하는 공정 흐름도이며, 도 19는 본 발명의 제2실시예의 변형예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이다. 다만, 본 발명의 제1실시예의 변형예에 따른 히트싱크를 제조하는 방법은 상술한 제1실시예의 제조하는 방법과 동일할 수 있다. 또한, 본 발명의 제2실시예의 변형예에 따른 히트싱크를 제조하는 방법은 후술할 바를 제외하고는 상술한 제1실시예 변형예의 제조하는 방법과 동일할 수 있으며, 구체적인 공정 흐름도는 후술하는 도 18을 참조하기로 한다.17 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the first embodiment of the present invention, and FIG. 18 is a process showing a method for manufacturing a heat sink according to a modification of the first embodiment of the present invention. 19 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the second embodiment of the present invention. However, the method of manufacturing the heat sink according to the modification of the first embodiment of the present invention may be the same as the method of manufacturing the first embodiment described above. In addition, the method of manufacturing the heat sink according to the modification of the second embodiment of the present invention may be the same as the method of manufacturing the modification of the first embodiment described above, except as will be described later. See 18.
먼저, 도 17 및 도 18을 참조하면, 본 발명의 제1실시예의 변형예에 따른 히트싱크를 제조하는 방법은, 베이스 기재 공급부(810)로부터 준비된 베이스 기재(811)를 제공한다(S200).First, referring to FIGS. 17 and 18, the method of manufacturing the heat sink according to the modification of the first embodiment of the present invention provides the base substrate 811 prepared from the base substrate supply unit 810 (S200).
다음으로, 상기 베이스 기재를 전처리 한다(S210).Next, the base substrate is pretreated (S210).
상기 전처리는 전처리 용액이 수용된 전처리용 수조(801)에 상기 베이스 기재를 침지시키는 방법에 의한 화학적 전처리법일 수 있다.The pretreatment may be a chemical pretreatment method by dipping the base substrate in a pretreatment bath 801 containing a pretreatment solution.
다음으로, 전처리된 상기 베이스 기재를 수세하는 제1수세단계를 거친다(S220).Next, a first washing step of washing the pre-treated base substrate (S220).
상기 제1수세단계는 수세 용액이 수용된 제1수세용 수조(802)에 상기 베이스 기재를 침지시키는 방법에 의할 수 있다.The first washing step may be based on a method of immersing the base substrate in a first washing tank 802 containing a washing solution.
다음으로, 상기 베이스 기재 상에 접착층을 형성한다(S230).Next, to form an adhesive layer on the base substrate (S230).
상기 접착층은 솔더층일 수 있으며, 상기 솔더층은 도금액을 포함하는 도금용 수조(803)에 상기 베이스 기재를 침지시키는 방법에 의해 공지된 전해도금법 또는 무전해도금법 등을 통해 형성할 수 있다.The adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by a method of immersing the base substrate in a plating bath 803 including a plating solution.
한편, 상기 솔더층은 공지된 인쇄법에 의해 형성할 수 있으며, 보다 구체적으로, PbSn 또는 CuAgSn 등과 같이 Sn을 포함하는 도전성 페이스트를 인쇄하여 형성할 수 있다.Meanwhile, the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
이때, 상기 베이스 기재의 제1면 및 제2면에 각각 솔더층이 형성될 수 있다.In this case, a solder layer may be formed on the first and second surfaces of the base substrate, respectively.
다음으로, 상기 접착층이 형성된 베이스 기재(812)를 수세하는 제2수세단계를 거친다(S240).Next, a second washing step of washing the base substrate 812, the adhesive layer is formed (S240).
상기 제2수세단계는 수세 용액이 수용된 제2수세용 수조(804)에 상기 베이스 기재를 침지시키는 방법에 의할 수 있다.The second washing step may be by a method of immersing the base substrate in a second washing tank 804 containing a washing solution.
다음으로, 상기 접착층이 형성된 베이스 기재를 건조하는 단계를 거친다(S250).Next, the base substrate on which the adhesive layer is formed is dried (S250).
상기 건조 단계는 열풍건조로(805)에서 진행되는 열풍건조일 수 있다.The drying step may be hot air drying performed in the hot air drying furnace 805.
계속해서, 도 17 및 도 18을 참조하면, 상술한 바와 같은 금속메쉬 제조장치를 통해 보호필름을 포함하는 금속메쉬층(821)을 제조하여, 보호필름을 포함하는 금속메쉬층을 제공한다(S260).17 and 18, the metal mesh layer 821 including the protective film is manufactured through the metal mesh manufacturing apparatus as described above, and a metal mesh layer including the protective film is provided (S260). ).
상술한 바와 같이, 금속메쉬층을 제조하는 전착층박리단계에 있어서, 보호필름에 접착제를 도포하여, 이를 상기 메쉬형음극드럼의 표면의 메쉬에 형성된 금속메쉬층의 상부에 라미네이션한 후, 상기 보호필름 및 금속메쉬층을 동시에 박리할 수 있다.As described above, in the electrodeposition layer peeling step of manufacturing a metal mesh layer, by applying an adhesive to the protective film, it is laminated on top of the metal mesh layer formed on the mesh of the surface of the mesh-type cathode drum, the protection The film and the metal mesh layer can be peeled off simultaneously.
또한, 이와는 달리, 별도의 보호필름 없이 메쉬형음극드럼의 메쉬로부터 금속메쉬층만을 분리하는 것도 가능하며, 이 경우, 공정상 용이 취급을 위하여, 전착층수세단계를 거쳐 수세된 금속메쉬를 별도의 보호필름에 부착하여 사용할 수도 있다.Alternatively, it is also possible to separate only the metal mesh layer from the mesh of the mesh type cathode drum without a separate protective film. In this case, the metal mesh washed through the electrodeposition layer washing step is separated for easy handling. It can also be attached to a protective film.
본 발명의 제1실시예의 변형예에 따른 히트싱크의 제조방법은 이러한, 보호필름을 포함하는 금속메쉬층을 사용한 것에 해당한다.The heat sink manufacturing method according to the modification of the first embodiment of the present invention corresponds to the use of such a metal mesh layer including a protective film.
계속해서, 도 17 및 도 18을 참조하면, 상술한 바와 같이, 상기 금속메쉬층은 금속메쉬 패턴 및 금속메쉬 패턴 사이의 홀을 포함할 수 있으며, 이는 상술한 바와 같으므로, 이하 구체적인 설명은 생략하기로 한다.17 and 18, as described above, the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted. Let's do it.
한편, 도 17에 도시한 바와 같이, 본 발명의 제1실시예의 변형예에 따른 히트싱크에서는 상기 금속메쉬층을 상기 베이스 기재의 제1면 및 제2면에 공급하기 위해, 금속메쉬층의 공급부(820a, 820b)가 베이스 기재의 제1면 및 제2면에 각각 위치할 수 있다.On the other hand, as shown in Figure 17, in the heat sink according to a modification of the first embodiment of the present invention, in order to supply the metal mesh layer to the first surface and the second surface of the base substrate, the supply portion of the metal mesh layer 820a and 820b may be located on the first and second surfaces of the base substrate, respectively.
다음으로, 접착층을 포함하는 베이스 기재의 상기 접착층 상에, 상기 금속메쉬층을 위치시키고 압착롤러(830a, 830b)에 의해 이를 압착시킨다(S270).Next, the metal mesh layer is placed on the adhesive layer of the base substrate including the adhesive layer and pressed by the pressing rollers 830a and 830b (S270).
상기 접착층에 상기 금속메쉬층을 위치시킴에 있어서, 상기 보호필름이 위치하는 반대면의 금속메쉬층을 상기 접착층 상에 위치시킨다.In positioning the metal mesh layer on the adhesive layer, a metal mesh layer on the opposite side on which the protective film is positioned is placed on the adhesive layer.
이때, 본 발명의 제1실시예의 변형예에 따른 히트싱크에서는 베이스 기재의 제1면에 위치하는 제1접착층 상에 상기 금속메쉬층 제1공급부(820a)로부터 제공된 제1금속메쉬층을 위치시키고, 베이스 기재의 제2면에 위치하는 제2접착층 상에 상기 금속메쉬층 제2공급부(820b)로부터 제공된 제2금속메쉬층을 위치시킨후, 압착롤러를 통해, 상기 제1금속메쉬층 및 제2금속메쉬층을 각각 제1접착층 및 제2접착층 상에 압착시킬 수 있다.At this time, in the heat sink according to the modification of the first embodiment of the present invention, the first metal mesh layer provided from the metal mesh layer first supply part 820a is positioned on the first adhesive layer positioned on the first surface of the base substrate. After placing the second metal mesh layer provided from the metal mesh layer second supply part 820b on the second adhesive layer positioned on the second surface of the base substrate, the first metal mesh layer and the first metal mesh layer are formed through a pressing roller. The bimetallic mesh layer may be pressed onto the first adhesive layer and the second adhesive layer, respectively.
이때, 상기 제1금속메쉬층 및 제2금속메쉬층을 압착시킴에 있어, 접착층과 금속메쉬층의 접착특성을 향상시키기 위해, 일정온도를 가하는 것이 바람직하며, 상기 일정온도는 150 ~ 500 ℃ 일 수 있다.At this time, in the pressing of the first metal mesh layer and the second metal mesh layer, in order to improve the adhesive properties of the adhesive layer and the metal mesh layer, it is preferable to apply a constant temperature, the constant temperature is 150 ~ 500 ℃ days Can be.
한편, S270 단계까지 진행한 히트싱크(831)는 금속메쉬층이 보호필름을 포함하고 있기 때문에, 접착층과 접착하지 않은 금속메쉬층의 반대면에는 보호필름이 포함되어 있다.On the other hand, since the heat sink 831 proceeds to step S270 because the metal mesh layer includes a protective film, the protective film is included on the opposite surface of the adhesive layer and the non-bonded metal mesh layer.
따라서, 본 발명의 제1실시예의 변형예에 따른 히트싱크의 제조방법은, 최종 사용시, 상기 금속메쉬층으로부터 보호필름을 제거한다(S280).Therefore, in the method of manufacturing the heat sink according to the modification of the first embodiment of the present invention, the protective film is removed from the metal mesh layer at the end of use (S280).
한편, 제1실시예와 비교하여, 상기 제1실시예의 변형예는 금속메쉬층의 상부, 보다 구체적으로, 접착층과 접착하지 않은 금속메쉬층의 반대면의 상부에 보호필름이 포함되어 있기 때문에, 히트싱크의 보호 특성 및 보관 특성이 용이할 수 있다.On the other hand, compared with the first embodiment, the modification of the first embodiment is because the protective film is included on the upper portion of the metal mesh layer, more specifically, the upper surface of the opposite side of the non-bonded metal mesh layer, The protective and storage characteristics of the heat sink can be facilitated.
이로써, 본 발명의 제1실시예의 변형예에 따른 금속메쉬층을 포함하는 히트싱크를 제조할 수 있다.Thus, the heat sink including the metal mesh layer according to the modification of the first embodiment of the present invention can be manufactured.
다음으로, 도 19를 참조하면, 본 발명의 제2실시예의 변형예에 따른 히트싱크를 제조하는 방법은 베이스 기재 공급부(910)로부터 준비된 베이스 기재(911)를 제공한다.Next, referring to FIG. 19, the method of manufacturing the heat sink according to the modification of the second embodiment of the present invention provides the base substrate 911 prepared from the base substrate supply unit 910.
다음으로, 상기 베이스 기재를 전처리 한다.Next, the base substrate is pretreated.
상기 전처리는 전처리 용액이 수용된 전처리용 수조(901)에 상기 베이스 기재를 침지시키는 방법에 의한 화학적 전처리법일 수 있다.The pretreatment may be a chemical pretreatment method by dipping the base substrate in a pretreatment bath 901 containing a pretreatment solution.
다음으로, 전처리된 상기 베이스 기재를 수세하는 제1수세단계를 거친다.Next, a first washing step of washing the pretreated base substrate is performed.
상기 제1수세단계는 수세 용액이 수용된 제1수세용 수조(902)에 상기 베이스 기재를 침지시키는 방법에 의할 수 있다.The first washing step may be by a method of immersing the base substrate in the first washing tank 902 containing the washing solution.
다음으로, 상기 베이스 기재 상에 접착층을 형성한다.Next, an adhesive layer is formed on the base substrate.
상기 접착층은 솔더층일 수 있으며, 상기 솔더층은 도금액을 포함하는 도금용 수조(903)에 상기 베이스 기재를 침지시키는 방법에 의해 공지된 전해도금법 또는 무전해도금법 등을 통해 형성할 수 있다.The adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by immersing the base substrate in a plating bath 903 including a plating solution.
한편, 상기 솔더층은 공지된 인쇄법에 의해 형성할 수 있으며, 보다 구체적으로, PbSn 또는 CuAgSn 등과 같이 Sn을 포함하는 도전성 페이스트를 인쇄하여 형성할 수 있다.Meanwhile, the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
이때, 상기 베이스 기재의 제1면 및 제2면 중 어느 하나의 면, 예를 들면 제1면에 솔더층이 형성될 수 있으며, 이는 상기 베이스 기재의 제2면에 별도의 보호필름을 부착함으로써, 베이스 기재의 제2면에는 솔더층을 형성하지 않을 수 있다.In this case, a solder layer may be formed on one of the first and second surfaces of the base substrate, for example, the first surface, by attaching a separate protective film to the second surface of the base substrate. The solder layer may not be formed on the second surface of the base substrate.
다음으로, 상기 접착층이 형성된 베이스 기재를 수세하는 제2수세단계를 거친다.Next, a second washing step of washing the base substrate on which the adhesive layer is formed is performed.
상기 제2수세단계는 접착층 형성 공정에서 사용된 도금 용액 등을 수세하기 위한 공정으로, 수세 용액이 수용된 제2수세용 수조(904)에 상기 베이스 기재를 침지시키는 방법에 의할 수 있다.The second washing step is a process for washing the plating solution used in the adhesive layer forming process, and may be immersed in a method of immersing the base substrate in the second washing tank 904 containing the washing solution.
다음으로, 상기 접착층이 형성된 베이스 기재를 건조하는 단계를 거친다.Next, the base substrate on which the adhesive layer is formed is dried.
상기 건조 단계는 열풍건조로(905)에서 진행되는 열풍건조일 수 있다.The drying step may be hot air drying performed in the hot air drying furnace 905.
계속해서, 도 19를 참조하면, 상술한 바와 같은 금속메쉬 제조장치를 통해 보호필름을 포함하는 금속메쉬층(921)을 제조하여, 보호필름을 포함하는 금속메쉬층을 제공한다.Subsequently, referring to FIG. 19, a metal mesh layer 921 including a protective film is manufactured through the metal mesh manufacturing apparatus as described above to provide a metal mesh layer including a protective film.
이때, 상술한 바와 같이, 상기 금속메쉬층은 금속메쉬 패턴 및 금속메쉬 패턴 사이의 홀을 포함할 수 있으며, 이는 상술한 바와 같으므로, 이하 구체적인 설명은 생략하기로 한다.In this case, as described above, the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted.
한편, 도 19에 도시한 바와 같이, 본 발명의 제2실시예의 변형예에 따른 히트싱크에서는 상기 금속메쉬층을 상기 베이스 기재의 제1면 및 제2면 중 어느 하나의 면, 예를 들면, 제1면에 공급하기 위해, 금속메쉬층의 공급부(920a)가 베이스 기재의 제1면에만 위치할 수 있다.On the other hand, as shown in Fig. 19, in the heat sink according to the modification of the second embodiment of the present invention, the metal mesh layer may be one of the first and second surfaces of the base substrate, for example, In order to supply to the first surface, the supply portion 920a of the metal mesh layer may be located only on the first surface of the base substrate.
즉, 본 발명의 제2실시예의 변형예에 따른 히트싱크의 제조방법은 베이스 기재의 일면에만 금속메쉬층을 형성하는 실시예로써, 따라서, 본 발명에서는 상기 금속메쉬층을 베이스 기재의 제1면 및/또는 제2면에 형성할 수 있다.That is, the method of manufacturing the heat sink according to the modification of the second embodiment of the present invention is an embodiment in which the metal mesh layer is formed only on one surface of the base substrate. Therefore, in the present invention, the metal mesh layer is formed on the first surface of the base substrate. And / or on the second surface.
다음으로, 접착층을 포함하는 베이스 기재의 상기 접착층 상에, 상기 금속메쉬층을 위치시키고 압착롤러(930a, 930b)에 의해 이를 압착시킨다.Next, the metal mesh layer is placed on the adhesive layer of the base substrate including the adhesive layer and pressed by the pressing rollers 930a and 930b.
이때, 본 발명의 제2실시예의 변형예에 따른 히트싱크에서는 베이스 기재의 제1면에 위치하는 제1접착층 상에 상기 금속메쉬층 제1공급부(920a)로부터 제공된 제1금속메쉬층을 위치시킨후, 압착롤러를 통해, 상기 제1금속메쉬층을 제1접착층 상에 압착시킬 수 있다.At this time, in the heat sink according to the modification of the second embodiment of the present invention, the first metal mesh layer provided from the metal mesh layer first supply part 920a is positioned on the first adhesive layer positioned on the first surface of the base substrate. Afterwards, the first metal mesh layer may be pressed onto the first adhesive layer through a pressing roller.
이때, 상기 제1금속메쉬층을 압착시킴에 있어, 접착층과 금속메쉬층의 접착특성을 향상시키기 위해, 일정온도를 가하는 것이 바람직하며, 상기 일정온도는 150 ~ 500 ℃ 일 수 있다.At this time, in the pressing of the first metal mesh layer, in order to improve the adhesive properties of the adhesive layer and the metal mesh layer, it is preferable to apply a constant temperature, the constant temperature may be 150 ~ 500 ℃.
한편, 상술한 바와 같이, 상기 단계까지 진행한 히트싱크(931)는 금속메쉬층이 보호필름을 포함하고 있기 때문에, 접착층과 접착하지 않은 금속메쉬층의 반대면에는 보호필름이 포함되어 있다.On the other hand, as described above, since the metal mesh layer includes a protective film in the heat sink 931, the protective film is included on the opposite surface of the adhesive layer and the non-bonded metal mesh layer.
따라서, 본 발명의 제2실시예의 변형예에 따른 히트싱크의 제조방법은, 최종 사용시, 상기 금속메쉬층으로부터 보호필름을 제거한다.Therefore, in the method of manufacturing the heat sink according to the modification of the second embodiment of the present invention, the protective film is removed from the metal mesh layer in the final use.
한편, 제2실시예와 비교하여, 상기 제2실시예의 변형예는 금속메쉬층의 상부, 보다 구체적으로, 접착층과 접착하지 않은 금속메쉬층의 반대면의 상부에 보호필름이 포함되어 있기 때문에, 히트싱크의 보호 특성 및 보관 특성이 용이할 수 있다.On the other hand, compared with the second embodiment, the modification of the second embodiment is because the protective film is included on the upper portion of the metal mesh layer, more specifically, the upper surface of the opposite side of the non-bonded metal mesh layer, The protective and storage characteristics of the heat sink can be facilitated.
이로써, 본 발명의 제2실시예의 변형예에 따른 금속메쉬층을 포함하는 히트싱크를 제조할 수 있다.As a result, a heat sink including a metal mesh layer according to a modification of the second embodiment of the present invention can be manufactured.
도 20은 본 발명에 따른 금속메쉬층의 일 예를 도시한 실사진이며, 도 21은 본 발명에 따른 금속메쉬층의 다른 예를 도시한 실사진이다.FIG. 20 is a photograph showing an example of the metal mesh layer according to the present invention, and FIG. 21 is a photograph showing another example of the metal mesh layer according to the present invention.
도 20에서와 같이, 본 발명에 따른 금속메쉬층의 평면 형상은 대략 사각형 형상일 수 있으며, 도 21에서와 같이, 본 발명에 따른 금속메쉬층의 평면 형상은 대략 육각형일 수 있다.As shown in FIG. 20, the planar shape of the metal mesh layer according to the present invention may be a substantially rectangular shape, and as shown in FIG. 21, the planar shape of the metal mesh layer according to the present invention may be approximately hexagonal.
상술한 바와 같이, 본 발명에 따른 금속메쉬층을 금속 메쉬 제조용 연속전주장치를 통해 제조하는 경우, 상기 연속전주장치는 원통형 드럼을 포함하는데, 상기 원통형 드럼의 표면에 형성된 메쉬의 형태에 따라, 상기 금속메쉬층의 형상이 결정될 수 있다.As described above, in the case of manufacturing the metal mesh layer according to the present invention through a continuous pole device for producing a metal mesh, the continuous pole device includes a cylindrical drum, according to the shape of the mesh formed on the surface of the cylindrical drum, The shape of the metal mesh layer can be determined.
즉, 연속전주장치의 원통형 드럼의 표면에는 제조하고자 하는 형상의 메쉬가 형성되고, 이때, 상기 메쉬는 대략 육각형이 여러 개 연결되는 망(網) 형상으로 형성되어 마치 벌집 형태로 구성될 수 있으며, 또한, 사각형, 삼각형, 오각형 등의 형상으로 형성될 수 있는데, 상기 메쉬의 형상이 육각형인 경우, 상기 금속메쉬층의 평면 형상도 육각형이 되고, 상기 메쉬의 형상이 사각형인 경우, 상기 금속메쉬층의 평면 형상도 사각형이 될 수 있다. 다만, 본 발명에서 상기 금속메쉬층의 형상을 한정하는 것은 아니다.That is, the mesh of the shape to be manufactured is formed on the surface of the cylindrical drum of the continuous electromotive apparatus, wherein the mesh is formed in a mesh shape in which a plurality of hexagons are connected, may be configured as a honeycomb form, In addition, it may be formed in the shape of a square, triangle, pentagons, etc., if the shape of the mesh is hexagon, the planar shape of the metal mesh layer is also hexagonal, if the shape of the mesh is a square, the metal mesh layer The planar shape of can also be square. However, the shape of the metal mesh layer is not limited in the present invention.
도 22는 본 발명의 제3실시예에 따른 히트싱크를 도시한 단면도이고, 도 23은 본 발명의 제4실시예에 따른 히트싱크를 도시한 단면도이며, 도 24는 본 발명의 제5실시예에 따른 히트싱크를 도시한 단면도다.22 is a cross-sectional view showing a heat sink according to a third embodiment of the present invention, FIG. 23 is a cross-sectional view showing a heat sink according to a fourth embodiment of the present invention, and FIG. 24 is a fifth embodiment of the present invention. It is sectional drawing which shows the heat sink.
이때, 제3실시예 내지 제5실시예에 따른 히트싱크는 후술할 바를 제외하고는 상술한 제1실시예에 따른 히트싱크와 동일할 수 있다.In this case, the heat sinks according to the third to fifth embodiments may be the same as the heat sinks according to the first embodiment described above except for the following description.
먼저, 도 22를 참조하면, 본 발명의 제3실시예에 따른 히트싱크(300)는 베이스 기재(110)의 제1면 및 제2면에 각각 형성되는 금속메쉬층(330a, 330b)을 포함하며, 상기 금속메쉬층은 각각 복수의 금속메쉬 패턴(331a, 331b) 및 금속메쉬 패턴의 사이에 위치하는 홀(332a, 332b)을 포함하고 있고, 이때, 상기 베이스 기재와 금속메쉬층을 부착하기 위한 접착층(120a, 120b)을 포함하고 있다.First, referring to FIG. 22, the heat sink 300 according to the third embodiment of the present invention includes metal mesh layers 330a and 330b formed on the first and second surfaces of the base substrate 110, respectively. The metal mesh layer includes a plurality of metal mesh patterns 331a and 331b and holes 332a and 332b positioned between the metal mesh patterns, respectively, wherein the base substrate and the metal mesh layer are attached to each other. Adhesive layers 120a and 120b.
이때, 본 발명의 제3실시예에 따른 히트싱크는 제1실시예와 비교하여, 금속메쉬 패턴의 형상이 상이할 수 있다.In this case, the heat sink according to the third embodiment of the present invention may have a different shape of the metal mesh pattern compared with the first embodiment.
보다 구체적으로, 제1금속메쉬층(330a)의 제1금속메쉬 패턴(331a)는 하단부(331a2) 및 상단부(331a1)를 포함하고, 제2금속메쉬층(330b)의 제2금속메쉬 패턴(331b)는 하단부(331b2) 및 상단부(331b1)를 포함하며, 이때, 각각의 상단부(331a1, 331b1)의 폭은 각각의 하단부(331a2, 331b2)의 폭보다 큰 것을 특징으로 한다.More specifically, the first metal mesh pattern 331a of the first metal mesh layer 330a includes a lower end portion 331a 2 and an upper end portion 331a 1 , and the second metal mesh of the second metal mesh layer 330b. The pattern 331b includes a lower end portion 331b 2 and an upper end portion 331b 1 , wherein the widths of the upper end portions 331a 1 and 331b 1 are larger than the widths of the lower end portions 331a 2 and 331b 2 , respectively. It features.
즉, 본 발명에서는 상단부(331a1, 331b1)의 폭을 하단부(331a2, 331b2)의 폭보다 크게 형성함으로써, 상단부의 표면적을 증대시켜 방열특성을 향상시킬 수 있다.That is, in the present invention, the width of the upper end portions 331a 1 and 331b 1 is greater than the width of the lower end portions 331a 2 and 331b 2 , thereby increasing the surface area of the upper end portion to improve heat dissipation characteristics.
한편, 본 발명에서 상단부와 하단부의 기준은 각각의 금속메쉬층이 접합되는 베이스 기재의 면을 기준으로 하는 것으로, 즉, 제1금속메쉬 패턴은 베이스 기재의 제1면을 기준으로 상단부와 하단부를 구분할 수 있으며, 제2금속메쉬 패턴은 베이스 기재의 제2면을 기준으로 상단부와 하단부를 구분할 수 있다.Meanwhile, in the present invention, the upper end and the lower end are based on the surface of the base substrate to which each metal mesh layer is bonded, that is, the first metal mesh pattern is based on the first surface of the base substrate. The second metal mesh pattern may distinguish the upper end and the lower end based on the second surface of the base substrate.
다음으로, 도 23을 참조하면, 본 발명의 제4실시예에 따른 히트싱크(400)는 베이스 기재(110)의 제1면 및 제2면에 각각 형성되는 금속메쉬층(430a, 430b)을 포함하며, 상기 금속메쉬층은 각각 복수의 금속메쉬 패턴(431a, 431b) 및 금속메쉬 패턴의 사이에 위치하는 홀(432a, 432b)을 포함하고 있고, 이때, 상기 베이스 기재와 금속메쉬층을 부착하기 위한 접착층(120a, 120b)을 포함하고 있다.Next, referring to FIG. 23, the heat sink 400 according to the fourth embodiment of the present invention may include metal mesh layers 430a and 430b formed on the first and second surfaces of the base substrate 110, respectively. The metal mesh layer includes a plurality of metal mesh patterns 431a and 431b and holes 432a and 432b respectively positioned between the metal mesh patterns, wherein the base substrate and the metal mesh layer are attached to each other. The adhesive layers 120a and 120b are included.
이때, 본 발명의 제4실시예에 따른 히트싱크는 제1실시예와 비교하여, 금속메쉬 패턴의 형상이 상이할 수 있다.In this case, the heat sink according to the fourth embodiment of the present invention may have a different shape of the metal mesh pattern compared with the first embodiment.
보다 구체적으로, 제1금속메쉬층(430a)의 제1금속메쉬 패턴(431a)은 하단부(431a2) 및 상단부(431a1)를 포함하고, 제2금속메쉬층(430b)의 제2금속메쉬 패턴(431b)은 하단부(431b2) 및 상단부(431b1)를 포함하며, 이때, 각각의 상단부(431a1, 431b1)의 폭은 각각의 하단부(431a2, 431b2)의 폭보다 큰 것을 특징으로 한다.More specifically, the first metal mesh pattern 431a of the first metal mesh layer 430a includes a lower end 431a 2 and an upper end 431a 1 , and the second metal mesh of the second metal mesh layer 430b. The pattern 431b includes a lower portion 431b 2 and an upper portion 431b 1 , wherein the widths of the upper portions 431a 1 and 431b 1 are larger than the widths of the lower portions 431a 2 and 431b 2 . It features.
즉, 본 발명에서는 상단부(431a1, 431b1)의 폭을 하단부(431a2, 431b2)의 폭보다 크게 하고, 금속메쉬 패턴의 하단부에서 상단부로 갈수록 폭이 증가하는 형태일 수 있다.That is, in the present invention, the width of the upper end portions 431a 1 and 431b 1 may be greater than the width of the lower end portions 431a 2 and 431b 2 , and the width may increase from the lower end of the metal mesh pattern toward the upper end.
한편, 본 발명에서 상단부와 하단부의 기준은 각각의 금속메쉬층이 접합되는 베이스 기재의 면을 기준으로 하는 것으로, 즉, 제1금속메쉬 패턴은 베이스 기재의 제1면을 기준으로 상단부와 하단부를 구분할 수 있으며, 제2금속메쉬 패턴은 베이스 기재의 제2면을 기준으로 상단부와 하단부를 구분할 수 있다.Meanwhile, in the present invention, the upper end and the lower end are based on the surface of the base substrate to which each metal mesh layer is bonded, that is, the first metal mesh pattern is based on the first surface of the base substrate. The second metal mesh pattern may distinguish the upper end and the lower end based on the second surface of the base substrate.
다음으로, 도 24를 참조하면, 본 발명의 제5실시예에 따른 히트싱크(500)는 베이스 기재(110)의 제1면 및 제2면에 각각 형성되는 금속메쉬층(530a, 530b)을 포함하며, 상기 금속메쉬층은 각각 복수의 금속메쉬 패턴(531a, 531b) 및 금속메쉬 패턴의 사이에 위치하는 홀(532a, 532b)을 포함하고 있고, 이때, 상기 베이스 기재와 금속메쉬층을 부착하기 위한 접착층(120a, 120b)을 포함하고 있다.Next, referring to FIG. 24, the heat sink 500 according to the fifth embodiment of the present invention may include metal mesh layers 530a and 530b formed on the first and second surfaces of the base substrate 110, respectively. The metal mesh layer includes a plurality of metal mesh patterns 531a and 531b and holes 532a and 532b positioned between the metal mesh patterns, respectively, wherein the base substrate and the metal mesh layer are attached to each other. The adhesive layers 120a and 120b are included.
이때, 본 발명의 제5실시예에 따른 히트싱크는 제1실시예와 비교하여, 금속메쉬 패턴의 형상이 상이할 수 있다.In this case, the heat sink according to the fifth embodiment of the present invention may have a different shape of the metal mesh pattern compared with the first embodiment.
보다 구체적으로, 제1금속메쉬층(530a)의 제1금속메쉬 패턴(531a)는 하단부(531a2) 및 상단부(531a1)를 포함하고, 제2금속메쉬층(530b)의 제2금속메쉬 패턴(531b)는 하단부(531b2) 및 상단부(531b1)를 포함하며, 이때, 각각의 상단부(531a1, 531b1)의 폭은 각각의 하단부(531a2, 531b2)의 폭보다 작은 것을 특징으로 한다.More specifically, the first metal mesh pattern 531a of the first metal mesh layer 530a includes a lower end 531a 2 and an upper end 531a 1 , and the second metal mesh of the second metal mesh layer 530b. pattern (531b) is smaller than the width of the lower end (531b 2), and an upper end comprising a (531b 1), wherein, each of the upper end of (531a 1, 531b 1) the lower end is the width of each (531a 2, 531b 2) It features.
즉, 본 발명에서는 상단부(531a1, 531b1)의 폭을 하단부(531a2, 531b2)의 폭보다 작게 하여, 상단부의 폭이 하단부의 폭보다 작게 형성할 수 있다.That is, in the present invention, the width of the upper end portions 531a 1 and 531b 1 may be made smaller than the width of the lower end portions 531a 2 and 531b 2 , so that the width of the upper end portion is smaller than the width of the lower end portion.
이때, 도 24에는 상기 상단부(531a1, 531b1)의 단면 형상이 반원형태로 도시되어 있으나, 상단부의 폭이 하단부의 폭보다 작게 형성되는 범위 내에서, 상기 상단부의 단면 형상을 제한하는 것은 아니다. In this case, although the cross-sectional shape of the upper end portions 531a 1 and 531b 1 is illustrated in a semicircle shape in FIG. 24, the cross-sectional shape of the upper end portion is not limited within a range in which the upper end portion has a width smaller than that of the lower end portion. .
한편, 본 발명에서 상단부와 하단부의 기준은 각각의 금속메쉬층이 접합되는 베이스 기재의 면을 기준으로 하는 것으로, 즉, 제1금속메쉬 패턴은 베이스 기재의 제1면을 기준으로 상단부와 하단부를 구분할 수 있으며, 제2금속메쉬 패턴은 베이스 기재의 제2면을 기준으로 상단부와 하단부를 구분할 수 있다.Meanwhile, in the present invention, the upper end and the lower end are based on the surface of the base substrate to which each metal mesh layer is bonded, that is, the first metal mesh pattern is based on the first surface of the base substrate. The second metal mesh pattern may distinguish the upper end and the lower end based on the second surface of the base substrate.
도 25는 본 발명의 제3실시예에 따른 히트싱크의 금속메쉬 패턴의 단면을 도시하는 사진이고, 도 26은 본 발명의 제4실시예에 따른 히트싱크의 금속메쉬 패턴의 단면을 도시하는 사진이며, 도 27은 본 발명의 제5실시예에 따른 히트싱크의 금속메쉬 패턴의 단면을 도시하는 사진이다.25 is a photograph showing a cross section of the metal mesh pattern of the heat sink according to the third embodiment of the present invention, and FIG. 26 is a photograph showing a cross section of the metal mesh pattern of the heat sink according to the fourth embodiment of the present invention. 27 is a photograph showing a cross section of the metal mesh pattern of the heat sink according to the fifth embodiment of the present invention.
도 25 내지 도 27에 도시된 바와 같이, 금속메쉬층(330a, 430a, 530a)의 금속메쉬 패턴의 형상이, 상술한 도 22 내지 도 24에서 설명한 바와 같이 제조될 수 있다.As illustrated in FIGS. 25 to 27, the shape of the metal mesh patterns of the metal mesh layers 330a, 430a, and 530a may be manufactured as described with reference to FIGS. 22 to 24.
도 28은 본 발명의 제6실시예에 따른 히트싱크를 도시한 단면도이다. 이때, 제6실시예에 따른 히트싱크는 후술할 바를 제외하고는 상술한 제1실시예에 따른 히트싱크와 동일할 수 있다.28 is a cross-sectional view illustrating a heat sink according to a sixth embodiment of the present invention. In this case, the heat sink according to the sixth embodiment may be the same as the heat sink according to the first embodiment described above, except as will be described later.
도 28을 참조하면, 본 발명의 제6실시예에 따른 히트싱크(600)는 베이스 기재(110)의 제1면 및 제2면에 각각 형성되는 금속메쉬층(130a, 130b)을 포함하며, 상기 금속메쉬층은 각각 복수의 금속메쉬 패턴(131a, 131b) 및 금속메쉬 패턴의 사이에 위치하는 홀(132a, 132b)을 포함하고, 상기 베이스 기재와 금속메쉬층을 부착하기 위한 접착층을 포함하고 있다.Referring to FIG. 28, the heat sink 600 according to the sixth embodiment of the present invention includes metal mesh layers 130a and 130b formed on the first and second surfaces of the base substrate 110, respectively. The metal mesh layer includes a plurality of metal mesh patterns 131a and 131b and holes 132a and 132b positioned between the metal mesh patterns, respectively, and includes an adhesive layer for attaching the base substrate and the metal mesh layer. have.
이때, 본 발명의 제6실시예에 따른 히트싱크는 제1실시예와 비교하여, 접착층의 구조가 상이할 수 있다.At this time, the heat sink according to the sixth embodiment of the present invention may have a different structure of the adhesive layer compared to the first embodiment.
즉, 도 28에 도시된 바와 같이, 상기 접착층은 상기 베이스 기재(110)의 제1면 및 제2면에 각각 위치하는 제1접착층(120a, 120b) 및 상기 금속메쉬층(130a, 130b) 상에 각각 위치하는 제2접착층(140a, 140b)을 포함하며, 제1접착층(120a, 120b)과 제2접착층(140a, 140b)의 부착을 통해, 상기 베이스 기재와 상기 금속메쉬층이 부착될 수 있다.That is, as shown in FIG. 28, the adhesive layer is formed on the first adhesive layers 120a and 120b and the metal mesh layers 130a and 130b respectively positioned on the first and second surfaces of the base substrate 110. And a second adhesive layer 140a and 140b respectively positioned on the first adhesive layer, and the base substrate and the metal mesh layer may be attached to each other by attachment of the first adhesive layer 120a and 120b and the second adhesive layer 140a and 140b. have.
도 29는 본 발명의 제6실시예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이고, 도 30은 본 발명의 제6실시예에 따른 히트싱크를 제조하는 방법을 도시하는 공정 흐름도이다. 이때, 제6실시예에 따른 히트싱크의 제조방법은 후술할 바를 제외하고는 상술한 제1실시예에 따른 히트싱크의 제조방법과 동일할 수 있다.29 is a schematic configuration diagram for manufacturing a heat sink according to a sixth embodiment of the present invention, and FIG. 30 is a process flowchart illustrating a method of manufacturing a heat sink according to a sixth embodiment of the present invention. At this time, the manufacturing method of the heat sink according to the sixth embodiment may be the same as the manufacturing method of the heat sink according to the first embodiment described above, except as will be described later.
도 29 및 도 30을 참조하면, 본 발명의 제6실시예에 따른 히트싱크를 제조하는 방법은, 베이스 기재 공급부(1010)로부터 준비된 베이스 기재(1011)를 제공한다(S300).29 and 30, the method of manufacturing the heat sink according to the sixth embodiment of the present invention provides a base substrate 1011 prepared from the base substrate supply unit 1010 (S300).
다음으로, 상기 베이스 기재를 전처리 한다(S310).Next, the base substrate is pretreated (S310).
상기 전처리는 전처리 용액이 수용된 전처리용 수조(1001)에 상기 베이스 기재를 침지시키는 방법에 의한 화학적 전처리법일 수 있다.The pretreatment may be a chemical pretreatment method by dipping the base substrate in a pretreatment tank 1001 containing a pretreatment solution.
다음으로, 전처리된 상기 베이스 기재를 수세하는 제1수세단계를 거친다(S320).Next, a first washing step of washing the pre-treated base substrate (S320).
상기 제1수세단계는 수세 용액이 수용된 제1수세용 수조(1002)에 상기 베이스 기재를 침지시키는 방법에 의할 수 있다.The first washing step may be based on a method of immersing the base substrate in a first washing tank 1002 containing a washing solution.
다음으로, 상기 베이스 기재 상에 제1접착층을 형성한다(S330).Next, a first adhesive layer is formed on the base substrate (S330).
상기 제1접착층은 솔더층일 수 있으며, 상기 솔더층은 도금액을 포함하는 도금용 수조(1003)에 상기 베이스 기재를 침지시키는 방법에 의해 공지된 전해도금법 또는 무전해도금법 등을 통해 형성할 수 있다.The first adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by a method of immersing the base substrate in a plating bath 1003 including a plating liquid.
한편, 상기 솔더층은 공지된 인쇄법에 의해 형성할 수 있으며, 보다 구체적으로, PbSn 또는 CuAgSn 등과 같이 Sn을 포함하는 도전성 페이스트를 인쇄하여 형성할 수 있다.Meanwhile, the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
이때, 상기 베이스 기재의 제1면 및 제2면에 각각 솔더층이 형성될 수 있다.In this case, a solder layer may be formed on the first and second surfaces of the base substrate, respectively.
다음으로, 상기 제1접착층이 형성된 베이스 기재(1012)를 수세하는 제2수세단계를 거친다(S340).Next, a second washing step of washing the base substrate 1012 having the first adhesive layer is washed (S340).
상기 제2수세단계는 수세 용액이 수용된 제2수세용 수조(1004)에 상기 베이스 기재를 침지시키는 방법에 의할 수 있다.The second washing step may be by a method of immersing the base substrate in a second washing tank 1004 containing a washing solution.
다음으로, 상기 제1접착층이 형성된 베이스 기재를 건조하는 단계를 거친다(S350).Next, the step of drying the base substrate on which the first adhesive layer is formed (S350).
상기 건조 단계는 열풍건조로(1005)에서 진행되는 열풍건조일 수 있다.The drying step may be hot air drying performed in the hot air drying furnace 1005.
계속해서, 도 29 및 도 30을 참조하면, 상술한 바와 같은 금속메쉬 제조장치를 통해 금속메쉬층(1021)을 제조하여, 금속메쉬층을 제공한다(S360).29 and 30, the metal mesh layer 1021 is manufactured through the metal mesh manufacturing apparatus as described above, and a metal mesh layer is provided (S360).
이때, 상술한 바와 같이, 상기 금속메쉬층은 금속메쉬 패턴 및 금속메쉬 패턴 사이의 홀을 포함할 수 있으며, 이는 상술한 바와 같으므로, 이하 구체적인 설명은 생략하기로 한다.In this case, as described above, the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted.
한편, 도 29에 도시한 바와 같이, 본 발명의 제6실시예에 따른 히트싱크에서는 상기 금속메쉬층을 상기 베이스 기재의 제1면 및 제2면에 공급하기 위해, 금속메쉬층의 공급부(1020a, 1020b)가 베이스 기재의 제1면 및 제2면에 각각 위치할 수 있다.On the other hand, as shown in Figure 29, in the heat sink according to the sixth embodiment of the present invention, in order to supply the metal mesh layer to the first surface and the second surface of the base substrate, the supply portion 1020a of the metal mesh layer , 1020b) may be located on the first and second surfaces of the base substrate, respectively.
다음으로, 상기 금속메쉬층을 전처리 한다(S361).Next, the metal mesh layer is pretreated (S361).
상기 전처리는 일반적인 화학적 전처리법일 수 있으며, 상기 화학적 전처리법은 산세 및 탈지와 같이, 산성 또는 알카리성 용액에 대상재, 즉 금속메쉬층을 침지시키거나, 이러한 용액을 대상재에 분무하여 금속재 표면의 기름, 오염물, 및 불순물 등을 제거하는 방법일 수 있다.The pretreatment may be a general chemical pretreatment. The chemical pretreatment may be performed by immersing a target material, that is, a metal mesh layer in an acidic or alkaline solution, such as pickling and degreasing, or spraying the solution on the target material to provide oil on the surface of the metal material. , Contaminants, and impurities may be removed.
본 발명에서 상기 전처리는 전처리 용액이 수용된 전처리용 수조(1021a, 1021b)에 상기 금속메쉬층을 침지시키는 방법에 의한 화학적 전처리법일 수 있으며, 다만, 본 발명에서 전처리하는 방법을 한정하는 것은 아니며, 필요에 따라, 상기 전처리 공정은 생략할 수 있다.In the present invention, the pretreatment may be a chemical pretreatment method by immersing the metal mesh layer in the pretreatment tanks 1021a and 1021b containing the pretreatment solution, but the present invention is not limited to the method of pretreatment. Accordingly, the pretreatment step can be omitted.
다음으로, 전처리된 상기 금속메쉬층을 수세하는 제1수세단계를 거친다(S362).Next, a first washing step of washing the pre-treated metal mesh layer is performed (S362).
상기 제1수세단계는 전처리 공정에서 사용된 전처리 용액 등을 제거하기 위한 공정으로, 수세 용액이 수용된 제1수세용 수조(1022a, 1022b)에 상기 금속메쉬층을 침지시키는 방법에 의할 수 있으며, 다만, 본 발명에서 수세하는 방법을 한정하는 것은 아니며, 필요에 따라, 상기 제1수세 공정은 생략할 수 있다.The first washing step is a process for removing a pretreatment solution used in the pretreatment process, and may be by a method of immersing the metal mesh layer in the first washing baths 1022a and 1022b containing the washing solution. However, the method of washing with water in the present invention is not limited, and the first washing step may be omitted as necessary.
다음으로, 상기 금속메쉬층 상에 제2접착층을 형성한다(S363).Next, a second adhesive layer is formed on the metal mesh layer (S363).
상기 접착층은 솔더층일 수 있으며, 상기 솔더층은 도금액을 포함하는 도금용 수조(1023a, 1023b)에 상기 금속메쉬층을 침지시키는 방법에 의해 공지된 전해도금법 또는 무전해도금법 등을 통해 형성할 수 있고, 다만, 본 발명에서 상기 솔더층의 형성방법을 한정하는 것은 아니다.The adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by a method of immersing the metal mesh layer in plating baths 1023a and 1023b including a plating solution. However, the present invention is not limited to the method of forming the solder layer.
예를 들면, 상기 솔더층은 공지된 인쇄법에 의해 형성할 수 있으며, 보다 구체적으로, PbSn 또는 CuAgSn 등과 같이 Sn을 포함하는 도전성 페이스트를 인쇄하여 형성할 수 있다.For example, the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
다음으로, 상기 제2접착층이 형성된 금속메쉬층(1022)을 수세하는 제2수세단계를 거친다(S364).Next, a second washing step of washing the metal mesh layer 1022 on which the second adhesive layer is formed is performed (S364).
상기 제2수세단계는 접착층 형성 공정에서 사용된 도금 용액 등을 수세하기 위한 공정으로, 수세 용액이 수용된 제2수세용 수조(1024a, 1024b)에 상기 금속메쉬층을 침지시키는 방법에 의할 수 있으며, 다만, 본 발명에서 수세하는 방법을 한정하는 것은 아니며, 필요에 따라, 상기 제2수세 공정은 생략할 수 있다.The second washing step is a process for washing the plating solution used in the adhesive layer forming process, and may be by a method of immersing the metal mesh layer in the second washing tanks (1024a, 1024b) containing the washing solution. However, the method of washing with water in the present invention is not limited, and if necessary, the second washing step may be omitted.
다음으로, 상기 제2접착층이 형성된 금속메쉬층을 건조하는 단계를 거친다(S365).Next, the step of drying the metal mesh layer on which the second adhesive layer is formed (S365).
상기 건조 단계는 열풍건조로(1025a, 1025b)에서 진행되는 열풍건조일 수 있으며, 다만, 본 발명에서 상기 건조 방법을 한정하는 것은 아니며, 필요에 따라, 상기 건조 공정은 생략할 수 있다.The drying step may be hot air drying performed in the hot air drying furnaces 1025a and 1025b, but the present invention is not limited to the drying method, and the drying process may be omitted if necessary.
다음으로, 제1접착층을 포함하는 베이스 기재와 제2접착층을 포함하는 금속메쉬층을 배치하되, 상기 제1접착층 상에 상기 제2접착층을 위치시키고, 압착롤러(1030a, 1030b)에 의해 이를 압착시킨다(S370).Next, the base substrate including the first adhesive layer and the metal mesh layer including the second adhesive layer is disposed, the second adhesive layer is positioned on the first adhesive layer, and pressed by the pressing rollers 1030a and 1030b. (S370).
이때, 상기 제1접착층 및 제2접착층을 압착시킴에 있어, 접착특성을 향상시키기 위해, 일정온도를 가하는 것이 바람직하며, 상기 일정온도는 150 ~ 500 ℃ 일 수 있다.At this time, in pressing the first adhesive layer and the second adhesive layer, in order to improve the adhesive properties, it is preferable to apply a constant temperature, the constant temperature may be 150 ~ 500 ℃.
이로써, 본 발명의 제6실시예에 따른 금속메쉬층을 포함하는 히트싱크를 제조할 수 있다.As a result, a heat sink including the metal mesh layer according to the sixth embodiment of the present invention can be manufactured.
즉, 도 28에 도시된 바와 같이, 본 발명의 제6실시예에 따른 히트싱크(1031)는 상기 접착층은 상기 베이스 기재의 제1면 및 제2면에 각각 위치하는 제1접착층 및 상기 금속메쉬층 상에 각각 위치하는 제2접착층을 포함하며, 제1접착층과 제2접착층의 부착을 통해, 상기 베이스 기재와 상기 금속메쉬층이 부착될 수 있다.That is, as shown in Figure 28, the heat sink 1031 according to the sixth embodiment of the present invention, the adhesive layer is a first adhesive layer and the metal mesh, respectively located on the first and second surfaces of the base substrate And a second adhesive layer positioned on each of the layers, and the base substrate and the metal mesh layer may be attached through the attachment of the first adhesive layer and the second adhesive layer.
한편, 도면에는 도시하지 않았으나, 본 발명의 제6실시예에서도, 상술한 제1실시예와 동일하게, 베이스 기재의 제1면 및 제2면 중 어느 하나의 면에만 금속메쉬층이 위치할 수 있다.Although not shown in the drawings, in the sixth embodiment of the present invention, the metal mesh layer may be located on only one of the first and second surfaces of the base substrate, similarly to the first embodiment. have.
도 31은 본 발명의 제6실시예의 변형예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이고, 도 32는 본 발명의 제6실시예의 변형예에 따른 히트싱크를 제조하는 방법을 도시하는 공정 흐름도이다. 다만, 본 발명의 제6실시예의 변형예에 따른 히트싱크를 제조하는 방법은 상술한 제6실시예의 제조하는 방법과 동일할 수 있다. 31 is a schematic structural diagram for manufacturing a heat sink according to a modification of the sixth embodiment of the present invention, and FIG. 32 is a process showing a method of manufacturing a heat sink according to a modification of the sixth embodiment of the present invention. It is a flow chart. However, the method of manufacturing the heat sink according to the modification of the sixth embodiment of the present invention may be the same as the method of manufacturing the sixth embodiment described above.
도 31 및 도 32를 참조하면, 본 발명의 제6실시예의 변형예에 따른 히트싱크를 제조하는 방법은, 베이스 기재 공급부(1110)로부터 준비된 베이스 기재(1111)를 제공한다(S400).31 and 32, the method of manufacturing the heat sink according to the modification of the sixth embodiment of the present invention provides a base substrate 1111 prepared from the base substrate supply unit 1110 (S400).
다음으로, 상기 베이스 기재를 전처리 한다(S410).Next, the base substrate is pretreated (S410).
상기 전처리는 전처리 용액이 수용된 전처리용 수조(1101)에 상기 베이스 기재를 침지시키는 방법에 의한 화학적 전처리법일 수 있다.The pretreatment may be a chemical pretreatment method by dipping the base substrate in a pretreatment bath 1101 containing a pretreatment solution.
다음으로, 전처리된 상기 베이스 기재를 수세하는 제1수세단계를 거친다(S420).Next, a first washing step of washing the pre-treated base substrate (S420).
상기 제1수세단계는 수세 용액이 수용된 제1수세용 수조(1102)에 상기 베이스 기재를 침지시키는 방법에 의할 수 있다.The first washing step may be based on a method of immersing the base substrate in a first washing bath 1102 containing a washing solution.
다음으로, 상기 베이스 기재 상에 제1접착층을 형성한다(S430).Next, a first adhesive layer is formed on the base substrate (S430).
상기 제1접착층은 솔더층일 수 있으며, 상기 솔더층은 도금액을 포함하는 도금용 수조(1103)에 상기 베이스 기재를 침지시키는 방법에 의해 공지된 전해도금법 또는 무전해도금법 등을 통해 형성할 수 있다.The first adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by a method of immersing the base substrate in a plating bath 1103 including a plating solution.
예를 들면, 상기 솔더층은 공지된 인쇄법에 의해 형성할 수 있으며, 보다 구체적으로, PbSn 또는 CuAgSn 등과 같이 Sn을 포함하는 도전성 페이스트를 인쇄하여 형성할 수 있다.For example, the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
이때, 상기 베이스 기재의 제1면 및 제2면에 각각 솔더층이 형성될 수 있다.In this case, a solder layer may be formed on the first and second surfaces of the base substrate, respectively.
다음으로, 상기 제1접착층이 형성된 베이스 기재(1112)를 수세하는 제2수세단계를 거친다(S440).Next, a second washing step of washing the base substrate 1112 on which the first adhesive layer is formed is performed (S440).
상기 제2수세단계는 수세 용액이 수용된 제2수세용 수조(1104)에 상기 베이스 기재를 침지시키는 방법에 의할 수 있다.The second washing step may be based on a method of immersing the base substrate in a second washing tank 1104 containing a washing solution.
다음으로, 상기 접착층이 형성된 베이스 기재를 건조하는 단계를 거친다(S450).Next, the base substrate on which the adhesive layer is formed is dried (S450).
상기 건조 단계는 열풍건조로(1105)에서 진행되는 열풍건조일 수 있다.The drying step may be hot air drying performed in the hot air drying furnace 1105.
계속해서, 도 31 및 도 32를 참조하면, 상술한 바와 같은 금속메쉬 제조장치를 통해 보호필름을 포함하는 금속메쉬층(1121)을 제조하여, 보호필름을 포함하는 금속메쉬층을 제공한다(S460).Subsequently, referring to FIGS. 31 and 32, a metal mesh layer 1121 including a protective film is manufactured through the metal mesh manufacturing apparatus as described above, and a metal mesh layer including a protective film is provided (S460). ).
상술한 바와 같이, 금속메쉬층을 제조하는 전착층박리단계에 있어서, 보호필름에 접착제를 도포하여, 이를 상기 메쉬형음극드럼의 표면의 메쉬에 형성된 금속메쉬층의 상부에 라미네이션한 후, 상기 보호필름 및 금속메쉬층을 동시에 박리할 수 있다.As described above, in the electrodeposition layer peeling step of manufacturing a metal mesh layer, by applying an adhesive to the protective film, it is laminated on top of the metal mesh layer formed on the mesh of the surface of the mesh-type cathode drum, the protection The film and the metal mesh layer can be peeled off simultaneously.
또한, 이와는 달리, 별도의 보호필름 없이 메쉬형음극드럼의 메쉬로부터 금속메쉬층만을 분리하는 것도 가능하며, 이 경우, 공정상 용이 취급을 위하여, 전착층수세단계를 거쳐 수세된 금속메쉬를 별도의 보호필름에 부착하여 사용할 수도 있다.Alternatively, it is also possible to separate only the metal mesh layer from the mesh of the mesh type cathode drum without a separate protective film. In this case, the metal mesh washed through the electrodeposition layer washing step is separated for easy handling. It can also be attached to a protective film.
본 발명의 제6실시예의 변형예에 따른 히트싱크의 제조방법은 이러한, 보호필름을 포함하는 금속메쉬층을 사용한 것에 해당한다.The heat sink manufacturing method according to the modification of the sixth embodiment of the present invention corresponds to the use of the metal mesh layer including the protective film.
계속해서, 도 31 및 도 32를 참조하면, 상술한 바와 같이, 상기 금속메쉬층은 금속메쉬 패턴 및 금속메쉬 패턴 사이의 홀을 포함할 수 있으며, 이는 상술한 바와 같으므로, 이하 구체적인 설명은 생략하기로 한다.Subsequently, referring to FIGS. 31 and 32, as described above, the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted. Let's do it.
한편, 도 31에 도시한 바와 같이, 본 발명의 제6실시예의 변형예에 따른 히트싱크에서는 상기 금속메쉬층을 상기 베이스 기재의 제1면 및 제2면에 공급하기 위해, 금속메쉬층의 공급부(1120a, 1120b)가 베이스 기재의 제1면 및 제2면에 각각 위치할 수 있다.On the other hand, as shown in Figure 31, in the heat sink according to a modification of the sixth embodiment of the present invention, in order to supply the metal mesh layer to the first surface and the second surface of the base substrate, the supply portion of the metal mesh layer 1120a and 1120b may be located on the first and second surfaces of the base substrate, respectively.
다음으로, 상기 금속메쉬층을 전처리 한다(S461).Next, the metal mesh layer is pretreated (S461).
상기 전처리는 전처리 용액이 수용된 전처리용 수조(1121a, 1121b)에 상기 금속메쉬층을 침지시키는 방법에 의한 화학적 전처리법일 수 있다.The pretreatment may be a chemical pretreatment method by dipping the metal mesh layer in the pretreatment tanks 1121a and 1121b containing the pretreatment solution.
다음으로, 전처리된 상기 금속메쉬층을 수세하는 제1수세단계를 거친다(S462).Next, a first washing step of washing the pre-treated metal mesh layer (S462).
상기 제1수세단계는 수세 용액이 수용된 제1수세용 수조(1122a, 1122b)에 상기 금속메쉬층을 침지시키는 방법에 의할 수 있다.The first washing step may be a method of immersing the metal mesh layer in the first washing tanks 1122a and 1122b containing the washing solution.
다음으로, 상기 금속메쉬층 상에 제2접착층을 형성한다(S463).Next, a second adhesive layer is formed on the metal mesh layer (S463).
상기 제2접착층은 솔더층일 수 있으며, 상기 솔더층은 도금액을 포함하는 도금용 수조(1123a, 1123b)에 상기 금속메쉬층을 침지시키는 방법에 의해 공지된 전해도금법 또는 무전해도금법 등을 통해 형성할 수 있다.The second adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by a method of immersing the metal mesh layer in plating baths 1123a and 1123b including a plating solution. Can be.
한편, 상기 솔더층은 공지된 인쇄법에 의해 형성할 수 있으며, 보다 구체적으로, PbSn 또는 CuAgSn 등과 같이 Sn을 포함하는 도전성 페이스트를 인쇄하여 형성할 수 있다.Meanwhile, the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
다음으로, 상기 제2접착층이 형성된 금속메쉬층(1122)을 수세하는 제2수세단계를 거친다(S464).Next, a second washing step of washing the metal mesh layer 1122 on which the second adhesive layer is formed is passed (S464).
상기 제2수세단계는 수세 용액이 수용된 제2수세용 수조(1124a, 1124b)에 상기 금속메쉬층을 침지시키는 방법에 의할 수 있으며, 다만, 본 발명에서 수세하는 방법을 한정하는 것은 아니며, 필요에 따라, 상기 제2수세 공정은 생략할 수 있다.The second washing step may be by a method of immersing the metal mesh layer in the second washing tank (1124a, 1124b) in which the washing solution is contained, but is not limited to the washing method in the present invention, it is necessary Accordingly, the second washing step can be omitted.
다음으로, 상기 제2접착층이 형성된 금속메쉬층을 건조하는 단계를 거친다(S465).Next, the step of drying the metal mesh layer on which the second adhesive layer is formed (S465).
상기 건조 단계는 열풍건조로(1125a, 1125b)에서 진행되는 열풍건조일 수 있으며, 다만, 본 발명에서 상기 건조 방법을 한정하는 것은 아니며, 필요에 따라, 상기 건조 공정은 생략할 수 있다.The drying step may be hot air drying performed in the hot air drying furnaces 1125a and 1125b, but the present invention is not limited to the drying method, and the drying process may be omitted as necessary.
다음으로, 제1접착층을 포함하는 베이스 기재와 제2접착층을 포함하는 금속메쉬층을 배치하되, 상기 제1접착층 상에 상기 제2접착층을 위치시키고, 압착롤러(1130a, 1130b)에 의해 이를 압착시킨다(S470).Next, the base substrate including the first adhesive layer and the metal mesh layer including the second adhesive layer is disposed, the second adhesive layer is positioned on the first adhesive layer, and pressed by the pressing rollers (1130a, 1130b) (S470).
이때, 상기 제1접착층 및 제2접착층을 압착시킴에 있어, 접착특성을 향상시키기 위해, 일정온도를 가하는 것이 바람직하며, 상기 일정온도는 150 ~ 500 ℃ 일 수 있다.At this time, in pressing the first adhesive layer and the second adhesive layer, in order to improve the adhesive properties, it is preferable to apply a constant temperature, the constant temperature may be 150 ~ 500 ℃.
한편, S470 단계까지 진행한 히트싱크(1131)는 금속메쉬층이 보호필름을 포함하고 있기 때문에, 접착층과 접착하지 않은 금속메쉬층의 반대면에는 보호필름이 포함되어 있다.On the other hand, since the heat sink 1131 proceeds to step S470, since the metal mesh layer includes the protective film, the protective film is included on the opposite side of the adhesive layer and the non-bonded metal mesh layer.
따라서, 본 발명의 제6실시예의 변형예에 따른 히트싱크의 제조방법은, 최종 사용시, 상기 금속메쉬층으로부터 보호필름을 제거한다(S480).Therefore, in the method of manufacturing the heat sink according to the modification of the sixth embodiment of the present invention, the protective film is removed from the metal mesh layer at the end of use (S480).
이로써, 본 발명의 제6실시예의 변형예에 따른 금속메쉬층을 포함하는 히트싱크를 제조할 수 있다.As a result, a heat sink including the metal mesh layer according to the modification of the sixth embodiment of the present invention can be manufactured.
한편, 도면에는 도시하지 않았으나, 본 발명의 제6실시예의 변형예에서도, 상술한 제1실시예와 동일하게, 베이스 기재의 제1면 및 제2면 중 어느 하나의 면에만 금속메쉬층이 위치할 수 있다.On the other hand, although not shown in the drawings, in the modification of the sixth embodiment of the present invention, the metal mesh layer is located only on any one of the first and second surfaces of the base substrate, similarly to the first embodiment described above. can do.
도 33은 본 발명의 제7실시예에 따른 히트싱크를 도시한 단면도이고, 도 34는 본 발명의 제8실시예에 따른 히트싱크를 도시한 단면도이다. 33 is a cross-sectional view illustrating a heat sink according to a seventh embodiment of the present invention, and FIG. 34 is a cross-sectional view showing a heat sink according to an eighth embodiment of the present invention.
먼저, 도 33을 참조하면, 본 발명의 제1실시예에 따른 히트싱크(3100)는 베이스 기재(3110)를 포함한다.First, referring to FIG. 33, the heat sink 3100 according to the first embodiment of the present invention includes a base substrate 3110.
상기 베이스 기재(3110)는 발열소자에서 발생하는 열을 흡수하기 위한 구성으로, 스테인레스강, 니켈, 구리, 철, 알루미늄, 티탄 또는 이들의 합금, 알루미늄, 구리, 철 또는 스테인레스강의 표면에 카본, 니켈, 티탄, 은을 표면 처리시킨 것 등을 사용할 수 있고, 이들 중 알루미늄 또는 알루미늄 합금이 바람직하다.The base substrate 3110 is configured to absorb heat generated from the heating element, and carbon, nickel on the surface of stainless steel, nickel, copper, iron, aluminum, titanium or alloys thereof, aluminum, copper, iron or stainless steel. , Titanium, silver, and the like can be used. Among these, aluminum or an aluminum alloy is preferable.
계속해서, 도 33을 참조하면, 본 발명의 제7실시예에 따른 히트싱크(3100)는 상기 베이스 기재(3110)의 제1면에 위치하는 제1금속메쉬층(3130a) 및 상기 베이스 기재(3110)의 제2면에 위치하는 제2금속메쉬층(3130b)을 포함한다.33, the heat sink 3100 according to the seventh embodiment of the present invention may include a first metal mesh layer 3130a and the base substrate (on the first surface of the base substrate 3110). It includes a second metal mesh layer 3130b located on the second surface of the 3110.
상기 제1금속메쉬층(3130a) 또는 제2금속메쉬층(3130b)은 방열판의 역할을 하는 베이스 기재로부터 열을 전달받아, 열을 방출시키기 위한 방열핀의 역할을 하는 구성으로, 구리(Cu), 은(Ag), 크롬(Cr), 니켈(Ni), 철(Fe), 코발트(Co), 알루미늄(Al) 및 이들의 합금 중 적어도 어느 하나의 물질로 이루어질 수 있으며, 본 발명에서 상기 금속메쉬층의 재질을 한정하는 것은 아니나, 이들 중 알루미늄 또는 알루미늄 합금이 바람직하다.The first metal mesh layer 3130a or the second metal mesh layer 3130b receives heat from a base substrate serving as a heat sink, and serves as a heat sink fin for releasing heat. Silver (Ag), chromium (Cr), nickel (Ni), iron (Fe), cobalt (Co), aluminum (Al) and an alloy thereof may be made of at least one of the materials, the metal mesh in the present invention Although the material of a layer is not limited, Among these, aluminum or an aluminum alloy is preferable.
이때, 상기 제1금속메쉬층(3130a)은 복수의 제1금속메쉬 패턴(3131a)의 사이에 위치하는 제1홀(3132a)을 포함하며, 상기 제2금속메쉬층(3130b)은 복수의 제2금속메쉬 패턴(3131b)의 사이에 위치하는 제2홀(3132b)을 포함한다.In this case, the first metal mesh layer 3130a includes a first hole 3132a positioned between the plurality of first metal mesh patterns 3131a, and the second metal mesh layer 3130b includes a plurality of first metal mesh layers 3130a. The second hole 3132b is disposed between the two metal mesh patterns 3131b.
계속해서, 도 33을 참조하면, 본 발명의 제7실시예에 따른 히트싱크(3100)는 상기 베이스기재(3110)의 제1면과 상기 제1금속메쉬층(3130a)의 사이에 위치하는 제1접착층(3120a) 및 상기 베이스기재(3110)의 제2면과 상기 제2금속메쉬층(3130b)의 사이에 위치하는 제2접착층(3120b)을 포함한다.33, the heat sink 3100 according to the seventh embodiment of the present invention is disposed between the first surface of the base substrate 3110 and the first metal mesh layer 3130a. The first adhesive layer 3120a and the second adhesive layer 3120b are disposed between the second surface of the base substrate 3110 and the second metal mesh layer 3130b.
보다 구체적으로, 상기 제1접착층은 상기 베이스기재(3110)의 제1면과 상기 제1금속메쉬 패턴(3131a)의 사이에 위치하고, 상기 제2접착층은 상기 베이스기재(3110)의 제2면과 상기 제2금속메쉬 패턴(3131b)의 사이에 위치한다.More specifically, the first adhesive layer is positioned between the first surface of the base substrate 3110 and the first metal mesh pattern 3131a, and the second adhesive layer is formed on the second surface of the base substrate 3110. Located between the second metal mesh pattern 3131b.
제1접착층(3120a) 및 제2접착층(3120b)은 상기 금속 메쉬층을 베이스 기재(3110) 상에 부착시키기 위한 것으로, 상기 제1접착층 및 제2접착층은 솔더층일 수 있으며, 이때, 상기 솔더층은 납(Pb), 주석(Sn), 아연(Zn), 인듐(In), 카드늄(Cd), 비스무스(Bi), 또는 이들의 합금으로 이루어질 수 있다.The first adhesive layer 3120a and the second adhesive layer 3120b are for attaching the metal mesh layer on the base substrate 3110. The first adhesive layer and the second adhesive layer may be solder layers, and at this time, the solder layer It may be made of silver lead (Pb), tin (Sn), zinc (Zn), indium (In), cadmium (Cd), bismuth (Bi), or an alloy thereof.
즉, 본 발명의 제7실시예에 따른 히트싱크(3100)는 베이스 기재(3110)의 제1면 및 제2면에 각각 형성되는 금속메쉬층(3130a, 3130b)을 포함하며, 상기 금속메쉬층은 각각 복수의 금속메쉬 패턴(3131a, 3131b) 및 각각의 금속메쉬 패턴(3131a, 3131b)의 사이에 위치하는 홀(3132a, 3132b)을 포함하고 있고, 이때, 상기 베이스 기재와 금속메쉬층을 부착하기 위한 접착층(3120a, 3120b)을 포함하고 있다.That is, the heat sink 3100 according to the seventh embodiment of the present invention includes metal mesh layers 3130a and 3130b formed on the first and second surfaces of the base substrate 3110, respectively. Each of the plurality of metal mesh patterns 3131a and 3131b and holes 3132a and 3132b positioned between the metal mesh patterns 3131a and 3131b, wherein the base substrate and the metal mesh layer are attached to each other. The adhesive layers 3120a and 3120b are included.
이때, 상기 금속메쉬 패턴의 사이에 위치하는 홀은 방열면적을 넓혀, 보다 많은 열이 방출되도록 할 수 있다.In this case, the holes located between the metal mesh patterns may increase the heat dissipation area, thereby allowing more heat to be emitted.
이때, 후술할 바와 같이, 상기 베이스 기재의 두께는 1 ~ 100㎛ 일 수 있다.At this time, as will be described later, the thickness of the base substrate may be 1 ~ 100㎛.
또한, 상기 금속메쉬층(3130)의 폭은 1 ~ 500㎛ 이고, 상기 금속메쉬층의 두께는 1 ~ 500㎛ 일 수 있고, 또한, 금속메쉬 패턴과 금속메쉬 패턴간의 간격, 즉, 금속메쉬 패턴의 사이에 위치하는 홀의 크기는 1㎛ ~ 3mm 일 수 있다.In addition, the width of the metal mesh layer 3130 is 1 ~ 500㎛, the thickness of the metal mesh layer may be 1 ~ 500㎛, and also, the interval between the metal mesh pattern and the metal mesh pattern, that is, the metal mesh pattern The size of the hole located between the may be 1㎛ ~ 3mm.
또한, 상기 제1접착층 또는 상기 제2접착층의 두께는 1 ~ 20㎛ 일 수 있다.In addition, the thickness of the first adhesive layer or the second adhesive layer may be 1 ~ 20㎛.
다음으로, 도 34를 참조하면, 본 발명의 제8실시예에 따른 히트싱크(3200)는 베이스 기재(3210) 및 상기 베이스 기재(3210)에 위치하는 금속메쉬층(3230)을 포함하며, 상기 금속메쉬층(3230)은 복수의 금속메쉬 패턴(3231) 및 상기 금속메쉬 패턴(3231)의 사이에 위치하는 홀(3232)을 포함한다. Next, referring to FIG. 34, the heat sink 3200 according to the eighth embodiment of the present invention includes a base substrate 3210 and a metal mesh layer 3230 positioned on the base substrate 3210. The metal mesh layer 3230 may include a plurality of metal mesh patterns 3231 and holes 3322 disposed between the metal mesh patterns 3321.
또한, 본 발명의 제8실시예에 따른 히트싱크(3200)는 상기 베이스기재(3210)와 상기 금속메쉬 패턴(3231)의 사이에 위치하는 접착층(3220)을 포함한다.In addition, the heat sink 3200 according to the eighth embodiment of the present invention includes an adhesive layer 3220 disposed between the base substrate 3210 and the metal mesh pattern 3321.
즉, 본 발명의 제8실시예에 따른 히트싱크(3200)는 베이스 기재(3210)의 일면에만 금속메쉬층(3230)을 형성하는 실시예로써, 따라서, 본 발명에서는 상기 금속메쉬층을 베이스 기재의 제1면 및/또는 제2면에 형성할 수 있다.That is, the heat sink 3200 according to the eighth embodiment of the present invention is an embodiment in which the metal mesh layer 3230 is formed only on one surface of the base substrate 3210. Accordingly, in the present invention, the metal mesh layer is formed of the base substrate. It may be formed on the first surface and / or the second surface of the.
상기 제8실시예에 따른 히트싱크는 상술하는 바를 제외하고는 제1실시예에 따른 히트싱크와 동일할 수 있으므로, 이하, 구체적인 설명은 생략하기로 한다.Since the heat sink according to the eighth embodiment may be the same as the heat sink according to the first embodiment except as described above, a detailed description thereof will be omitted.
도 35는 본 발명의 제7실시예에 따른 히트싱크의 적용예를 도시한 단면도이고, 도 36은 본 발명의 제8실시예에 따른 히트싱크의 적용예를 도시한 단면도이다.35 is a sectional view showing an application example of the heat sink according to the seventh embodiment of the present invention, and FIG. 36 is a sectional view showing an application example of the heat sink according to the eighth embodiment of the present invention.
먼저, 도 35를 참조하면, 본 발명의 제7실시예에 따른 히트싱크(100)는 베이스 기재(3110), 상기 베이스 기재에 위치하는 금속메쉬층(3130); 및 상기 베이스 기재와 상기 금속메쉬층 사이에 위치하는 접착층(3120)을 포함하며, 상기 금속메쉬층은 복수의 금속메쉬 패턴(3131) 및 상기 금속메쉬 패턴(3131)의 사이에 위치하는 홀(3132)을 포함하고 있다.First, referring to FIG. 35, a heat sink 100 according to a seventh embodiment of the present invention may include a base substrate 3110 and a metal mesh layer 3130 positioned on the base substrate; And an adhesive layer 3120 positioned between the base substrate and the metal mesh layer, wherein the metal mesh layer includes a plurality of metal mesh patterns 3131 and holes 3132 located between the metal mesh patterns 3131. ) Is included.
이와 같은 히트싱크(3100)의 어느 일면을 발열소자(3010)의 일정 영역에 설치한다.One surface of the heat sink 3100 is provided in a predetermined region of the heat generating element 3010.
이때, 발열소자(3010)와 마주보는 히트싱크(3100)의 일면은 방열판으로 작용할 수 있으며, 발열소자(3010)와 마주보는 면의 반대면인 히트싱크(3100)의 타면은 방열핀으로 작용할 수 있다.In this case, one surface of the heat sink 3100 facing the heating element 3010 may serve as a heat sink, and the other surface of the heat sink 3100, which is the opposite side of the surface facing the heat generating element 3010, may act as a heat sink fin. .
즉, 도 35에서 제2금속메쉬층(3130b) 및 베이스 기재(3110)는 방열판으로 작용하여, 발열소자에서 발생하는 열을 흡수하고, 제1금속메쉬층(3130a)은 방열판으로부터 열을 전달받아 열을 방출시킬 수 있으며, 이때, 상기 금속메쉬 패턴의 사이에 위치하는 홀(3132a)은 방열면적을 넓혀, 보다 많은 열이 방출되도록 할 수 있다.That is, in FIG. 35, the second metal mesh layer 3130b and the base substrate 3110 act as heat sinks, absorb heat generated from the heat generating element, and the first metal mesh layer 3130a receives heat from the heat sinks. The heat may be released, and in this case, the holes 3132a located between the metal mesh patterns may expand the heat dissipation area to allow more heat to be emitted.
한편, 도면에서는 제2금속메쉬층(3130b)이 위치하는 면이 발열소자와 마주보는 것으로 도시하였으나, 이와는 달리, 제1금속메쉬층(3130a)이 위치하는 면이 발열소자와 마주볼 수 있음은 당연한 것이다.Meanwhile, in the drawing, the surface on which the second metal mesh layer 3130b is positioned is opposite to the heating element. However, the surface on which the first metal mesh layer 3130a is positioned may face the heating element. It is natural.
다음으로, 도 36을 참조하면, 본 발명의 제8실시예에 따른 히트싱크(3200)는 베이스 기재(3210), 상기 베이스 기재(3210)에 위치하는 금속메쉬층(3230)을 포함하고, 상기 금속메쉬층(3230)은 복수의 금속메쉬 패턴(3231) 및 상기 금속메쉬 패턴(3231)의 사이에 위치하는 홀(3232)을 포함하며, 또한, 상기 베이스기재(3210)와 상기 금속메쉬 패턴(3231)의 사이에 위치하는 접착층(3220)을 포함한다.Next, referring to FIG. 36, the heat sink 3200 according to the eighth embodiment of the present invention includes a base substrate 3210 and a metal mesh layer 3230 positioned on the base substrate 3210. The metal mesh layer 3230 includes a plurality of metal mesh patterns 3231 and holes 3322 disposed between the metal mesh patterns 3321, and the base substrate 3210 and the metal mesh pattern ( An adhesive layer 3220 is positioned between 3231.
이와 같은 히트싱크(3200)의 베이스 기재의 면을 발열소자(3010)의 일정 영역에 설치한다.The surface of the base substrate of the heat sink 3200 is provided in a predetermined region of the heat generating element 3010.
이때, 베이스 기재(3210)는 방열판으로 작용하여, 발열소자에서 발생하는 열을 흡수하고, 금속메쉬층(3230)은 방열판으로부터 열을 전달받아 열을 방출시킬 수 있으며, 이때, 상기 금속메쉬 패턴의 사이에 위치하는 홀(3232)은 방열면적을 넓혀, 보다 많은 열이 방출되도록 할 수 있다.In this case, the base substrate 3210 serves as a heat sink, absorbs heat generated by the heat generating element, and the metal mesh layer 3230 may receive heat from the heat sink to release heat. Holes 3232 located between them can widen the heat dissipation area, allowing more heat to be released.
이때, 본 발명에서 상기 베이스 기재의 두께는 1 ~ 100㎛ 일 수 있고, 상기 금속메쉬층의 두께는 1 ~ 500㎛ 일 수 있으며, 상기 접착층의 두께는 1 ~ 20㎛ 일 수 있어, 즉, 본 발명에 따른 히트싱크는, 베이스 기재, 금속메쉬층, 접착층의 두께가 일반적인 구조의 히트싱크와 비교하여 매우 얇기 때문에, 히트싱크 자체가 크게 제작되지 않으며, 따라서, 제품의 크기 결정에 있어서 히트싱크가 큰 영향을 미치지 않는다.At this time, the thickness of the base substrate in the present invention may be 1 ~ 100㎛, the thickness of the metal mesh layer may be 1 ~ 500㎛, the thickness of the adhesive layer may be 1 ~ 20㎛, that is, In the heat sink according to the invention, since the thickness of the base substrate, the metal mesh layer and the adhesive layer is very thin as compared with the heat sink of the general structure, the heat sink itself is not largely manufactured. Does not have a big impact
도 37 내지 도 40은 본 발명에 따른 히트싱크를 제조하는 방법을 설명하기 위한 단면도이다. 이하, 본 발명에 따른 히트싱크를 제조하는 방법은 상술한 도 33의 본 발명의 제7실시예에 따른 히트싱크를 제조하는 방법을 기준으로 설명하기로 한다.37 to 40 are cross-sectional views illustrating a method of manufacturing a heat sink according to the present invention. Hereinafter, a method of manufacturing the heat sink according to the present invention will be described based on the method of manufacturing the heat sink according to the seventh embodiment of the present invention of FIG. 33 described above.
먼저, 도 37을 참조하면, 상술한 바와 같이 금속메쉬 제조장치를 통해 금속메쉬층(130)을 제조한다. First, referring to FIG. 37, the metal mesh layer 130 is manufactured through the metal mesh manufacturing apparatus as described above.
한편, 상기에서는 금속메쉬층을 연속전주장치를 통한 전주공법에 의해 제조하는 것을 설명하였으나, 이와는 달리, 직조 또는 기계가공법에 의해서도 금속메쉬층을 제조할 수 있으며, 따라서, 본 발명에서 상기 금속메쉬층을 제조하는 방법을 한정하는 것은 아니다.On the other hand, in the above described the manufacturing of the metal mesh layer by the electroplating method through a continuous pole device, in contrast, the metal mesh layer can also be produced by weaving or machining method, and thus, the metal mesh layer in the present invention It does not limit the method for producing the same.
이때, 상기 금속메쉬층(3130)의 폭(d1)은 1 ~ 500㎛ 이고, 상기 금속메쉬층의 두께(d2)는 1 ~ 500㎛ 일 수 있고, 또한, 금속메쉬 패턴과 금속메쉬 패턴간의 간격, 즉, 금속메쉬 패턴(3131)의 사이에 위치하는 홀(3132)의 크기는 1㎛ ~ 3mm 일 수 있으나, 다만 본 발명에서 이들의 수치를 한정하는 것은 아니다.In this case, the width d1 of the metal mesh layer 3130 may be 1 to 500 μm, and the thickness d2 of the metal mesh layer may be 1 to 500 μm, and the interval between the metal mesh pattern and the metal mesh pattern may also be used. That is, the size of the holes 3132 located between the metal mesh patterns 3131 may be 1 μm to 3 mm, but the present invention is not limited thereto.
계속해서, 도 37을 참조하면, 상기 금속메쉬층(3130)의 일면에 접착층(3120)을 형성한다.Subsequently, referring to FIG. 37, an adhesive layer 3120 is formed on one surface of the metal mesh layer 3130.
상기 접착층(3120)은 솔더층일 수 있으며, 상기 솔더층은 공지된 전해도금법 또는 무전해도금법 등을 통해 형성할 수 있고, 다만, 본 발명에서 상기 솔더층의 형성방법을 한정하는 것은 아니다.The adhesive layer 3120 may be a solder layer, and the solder layer may be formed through a known electroplating method or an electroless plating method, but the present invention is not limited to the method of forming the solder layer.
예를 들면, 상기 솔더층은 공지된 인쇄법에 의해 형성할 수 있으며, 보다 구체적으로, PbSn 또는 CuAgSn 등과 같이 Sn을 포함하는 도전성 페이스트를 인쇄하여 형성할 수 있다.For example, the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
이때, 상기 접착층의 두께(d3)는 1 ~ 20㎛ 일 수 있으나, 다만, 본 발명에서 이들의 수치를 한정하는 것은 아니다.At this time, the thickness (d3) of the adhesive layer may be 1 ~ 20㎛, but is not limited to these numerical values in the present invention.
다음으로, 도 38을 참조하면, 베이스 기재(3110)를 준비한다.Next, referring to FIG. 38, a base substrate 3110 is prepared.
이때, 상기 베이스 기재(3110)의 두께(d4)는 1 ~ 100㎛ 일 수 있으나, 다만, 본 발명에서 이들의 수치를 한정하는 것은 아니다.In this case, the thickness d4 of the base substrate 3110 may be 1 to 100 μm, but the present invention is not limited thereto.
다음으로, 도 39를 참조하면, 일면에 접착층이 형성된 금속메쉬층을 상기 베이스 기재 상에 위치시킨 후, 압착롤러를 통해, 상기 금속메쉬층을 상기 베이스 기재에 압착시킨다.Next, referring to FIG. 39, a metal mesh layer having an adhesive layer formed on one surface thereof is positioned on the base substrate, and then the metal mesh layer is pressed onto the base substrate through a pressing roller.
보다 구체적으로, 일면에 제1접착층(3120a)이 형성된 제1금속메쉬층(3130a)을 상기 베이스 기재의 제1면에 위치시키고, 일면에 제2접착층(3120b)이 형성된 제2금속메쉬층(3130b)을 상기 베이스 기재의 제2면에 위치시킨 후, 압착롤러를 통해, 상기 금속메쉬층을 압착시켜, 상기 베이스 기재의 제1면에 제1금속메쉬층을 형성하고, 상기 베이스 기재의 제2면에 제2금속메쉬층을 형성할 수 있다.More specifically, the first metal mesh layer 3130a having the first adhesive layer 3120a formed on one surface thereof is positioned on the first surface of the base substrate, and the second metal mesh layer having the second adhesive layer 3120b formed on one surface thereof ( 3130b) is placed on the second surface of the base substrate, and then the metal mesh layer is pressed through a pressing roller to form a first metal mesh layer on the first surface of the base substrate. The second metal mesh layer may be formed on two surfaces.
이때, 상기 제1금속메쉬층 및 제2금속메쉬층을 압착시킴에 있어, 접착층과 베이스 기재의 접착특성을 향상시키기 위해, 일정온도를 가하는 것이 바람직하며, 상기 일정온도는 150 ~ 500 ℃ 일 수 있다.At this time, in the pressing of the first metal mesh layer and the second metal mesh layer, in order to improve the adhesive properties of the adhesive layer and the base substrate, it is preferable to apply a constant temperature, the constant temperature may be 150 ~ 500 ℃ have.
이로써, 본 발명에 따른 금속메쉬층을 포함하는 히트싱크를 제조할 수 있고, 즉, 도 40에 도시된 바와 같이, 본 발명의 제7실시예에 따른 히트싱크(3100)는 베이스 기재(3110)의 제1면 및 제2면에 각각 형성되는 금속메쉬층(3130a, 3130b)을 포함하며, 상기 금속메쉬층은 각각 복수의 금속메쉬 패턴(3131a, 3131b) 및 금속메쉬 패턴의 사이에 위치하는 홀(3132a, 3132b)을 포함하고 있고, 이때, 상기 베이스 기재와 금속메쉬층을 부착하기 위한 접착층(3120a, 3120b)을 포함하고 있다.As a result, a heat sink including a metal mesh layer according to the present invention may be manufactured, that is, as shown in FIG. 40, the heat sink 3100 according to the seventh embodiment of the present invention may include a base substrate 3110. Metal mesh layers 3130a and 3130b formed on the first and second surfaces of the metal mesh layers 3130a and 3130b, respectively, wherein the metal mesh layers are disposed between the plurality of metal mesh patterns 3131a and 3131b and the metal mesh patterns, respectively. 3132a and 3132b, and the adhesive layers 3120a and 3120b for attaching the base substrate and the metal mesh layer to each other.
이하에서는 본 발명에 따른 히트싱크를 제조하는 방법을 보다 구체적으로 서술하기로 한다.Hereinafter, a method of manufacturing the heat sink according to the present invention will be described in more detail.
도 41은 본 발명의 제7실시예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이고, 도 42는 본 발명의 제7실시예에 따른 히트싱크를 제조하는 방법을 도시하는 공정 흐름도이며, 도 43은 본 발명의 제8실시예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이다. 다만, 본 발명의 제8실시예에 따른 히트싱크를 제조하는 방법은 후술할 바를 제외하고는 상술한 제7실시예의 제조하는 방법과 동일할 수 있으며, 구체적인 공정 흐름도는 후술하는 도 42를 참조하기로 한다.FIG. 41 is a schematic structural diagram for manufacturing a heat sink according to a seventh embodiment of the present invention. FIG. 42 is a process flowchart showing a method of manufacturing a heat sink according to a seventh embodiment of the present invention. 43 is a schematic structural diagram for manufacturing a heat sink according to an eighth embodiment of the present invention. However, the method of manufacturing the heat sink according to the eighth embodiment of the present invention may be the same as the method of manufacturing the seventh embodiment described above, except as will be described later. Shall be.
먼저, 도 41 및 도 42를 참조하면, 본 발명의 제7실시예에 따른 히트싱크를 제조하는 방법은, 상술한 바와 같은 금속메쉬 제조장치를 통해 금속메쉬층(4021)을 제조하여, 금속메쉬층을 제공한다(S4100).First, referring to FIGS. 41 and 42, in the method of manufacturing the heat sink according to the seventh embodiment of the present invention, the metal mesh layer 4021 is manufactured by the metal mesh manufacturing apparatus as described above, and the metal mesh is manufactured. Provide a layer (S4100).
이때, 상술한 바와 같이, 상기 금속메쉬층은 금속메쉬 패턴 및 금속메쉬 패턴 사이의 홀을 포함할 수 있으며, 이는 상술한 바와 같으므로, 이하 구체적인 설명은 생략하기로 한다.In this case, as described above, the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted.
한편, 도 41에 도시한 바와 같이, 본 발명의 제7실시예에 따른 히트싱크에서는 상기 금속메쉬층을 상기 베이스 기재의 제1면 및 제2면에 공급하기 위해, 금속메쉬층의 공급부(4020a, 4020b)가 베이스 기재의 제1면 및 제2면에 각각 위치할 수 있다.On the other hand, as shown in Figure 41, in the heat sink according to the seventh embodiment of the present invention, in order to supply the metal mesh layer to the first surface and the second surface of the base substrate, the supply portion of the metal mesh layer 4020a , 4020b) may be located on the first and second surfaces of the base substrate, respectively.
즉, 베이스 기재의 제1면에 제1금속메쉬층을 제공하기 위한 금속메쉬층 제1공급부(4020a) 및 베이스 기재의 제2면에 제2금속메쉬층을 제공하기 위한 금속메쉬층 제2공급부(4020b)를 포함한다.That is, the metal mesh layer first supply part 4020a for providing the first metal mesh layer on the first surface of the base substrate, and the metal mesh layer second supply part for providing the second metal mesh layer on the second surface of the base substrate. 4020b.
이하에서 진행되는 제1금속메쉬층 및 제2금속메쉬층의 공정은 동일하므로, 설명의 편의를 위하여, 제1금속메쉬층 및 제2금속메쉬층을 구분하지 않고, 금속메쉬층으로 명명하기로 한다.Since the processes of the first metal mesh layer and the second metal mesh layer which are performed below are the same, for convenience of description, the first metal mesh layer and the second metal mesh layer are not distinguished, and thus, the metal mesh layer is referred to as a metal mesh layer. do.
다음으로, 상기 금속메쉬층을 전처리 한다(S4110).Next, the metal mesh layer is pretreated (S4110).
상기 전처리는 일반적인 화학적 전처리법일 수 있으며, 상기 화학적 전처리법은 산세 및 탈지와 같이, 산성 또는 알카리성 용액에 대상재, 즉 금속메쉬층을 침지시키거나, 이러한 용액을 대상재에 분무하여 금속재 표면의 기름, 오염물, 및 불순물 등을 제거하는 방법일 수 있다.The pretreatment may be a general chemical pretreatment. The chemical pretreatment may be performed by immersing a target material, that is, a metal mesh layer in an acidic or alkaline solution, such as pickling and degreasing, or spraying the solution on the target material to provide oil on the surface of the metal material. , Contaminants, and impurities may be removed.
본 발명에서 상기 전처리는 전처리 용액이 수용된 전처리용 수조(4021a, 4021b)에 상기 금속메쉬층을 침지시키는 방법에 의한 화학적 전처리법일 수 있으며, 다만, 본 발명에서 전처리하는 방법을 한정하는 것은 아니며, 필요에 따라, 상기 전처리 공정은 생략할 수 있다.In the present invention, the pretreatment may be a chemical pretreatment method by immersing the metal mesh layer in the pretreatment tanks 4021a and 4021b containing the pretreatment solution, but the present invention is not limited to the method of pretreatment. Accordingly, the pretreatment step can be omitted.
다음으로, 전처리된 상기 금속메쉬층을 수세하는 제1수세단계를 거친다(S4120).Next, a first washing step of washing the pre-treated metal mesh layer (S4120).
상기 제1수세단계는 전처리 공정에서 사용된 전처리 용액 등을 제거하기 위한 공정으로, 수세 용액이 수용된 제1수세용 수조(4022a, 4022b)에 상기 금속메쉬층을 침지시키는 방법에 의할 수 있으며, 다만, 본 발명에서 수세하는 방법을 한정하는 것은 아니며, 필요에 따라, 상기 제1수세 공정은 생략할 수 있다.The first washing step is a process for removing a pretreatment solution used in the pretreatment process, and may be by a method of immersing the metal mesh layer in the first washing tanks 4022a and 4022b in which the washing solution is accommodated. However, the method of washing with water in the present invention is not limited, and the first washing step may be omitted as necessary.
다음으로, 상기 금속메쉬층 상에 접착층을 형성한다(S4130).Next, to form an adhesive layer on the metal mesh layer (S4130).
상기 접착층은 솔더층일 수 있으며, 상기 솔더층은 도금액을 포함하는 도금용 수조(4023a, 4023b)에 상기 금속메쉬층을 침지시키는 방법에 의해 공지된 전해도금법 또는 무전해도금법 등을 통해 형성할 수 있고, 다만, 본 발명에서 상기 솔더층의 형성방법을 한정하는 것은 아니다.The adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by immersing the metal mesh layer in plating baths 4023a and 4023b including a plating solution. However, the present invention is not limited to the method of forming the solder layer.
예를 들면, 상기 솔더층은 공지된 인쇄법에 의해 형성할 수 있으며, 보다 구체적으로, PbSn 또는 CuAgSn 등과 같이 Sn을 포함하는 도전성 페이스트를 인쇄하여 형성할 수 있다.For example, the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
이때, 제1금속메쉬층에는 제1접착층이 형성될 수 있으며, 제2금속메쉬층에는 제2접착층이 형성될 수 있다.In this case, a first adhesive layer may be formed on the first metal mesh layer, and a second adhesive layer may be formed on the second metal mesh layer.
한편, 도 41에 도시된 S4130 단계의 도금용 수조(4023a, 4023b)에 금속메쉬층을 침지시키는 방법에 의한 접착층의 형성시에는 상기 제1금속메쉬층의 양면, 즉, 제1면과 제2면에 접착층이 형성될 수 있고, 상기 제2금속메쉬층의 양면, 즉, 제1면과 제2면에 접착층이 형성될 수 있다.Meanwhile, when the adhesive layer is formed by immersing the metal mesh layer in the plating baths 4023a and 4023b of step S4130 illustrated in FIG. 41, both surfaces of the first metal mesh layer, that is, the first surface and the second layer, are formed. An adhesive layer may be formed on a surface thereof, and an adhesive layer may be formed on both surfaces of the second metal mesh layer, that is, the first surface and the second surface.
물론, 본 발명에서 금속메쉬층의 양면에 접착층이 형성되는 것도 무방하나, 본 발명에서는 적어도 1면에만 접착층이 형성되는 것으로 충분하므로, 이하에서는 양면 중 1면에만 접착층이 형성되는 것을 기준으로 설명하기로 한다.Of course, in the present invention, the adhesive layer may be formed on both sides of the metal mesh layer, but in the present invention, since the adhesive layer is sufficient to be formed on at least one side, the following description will be based on the fact that the adhesive layer is formed only on one side of both sides. Shall be.
한편, 공지된 인쇄법, 증착법 등에 의해서는 상기 접착층을 1면에만 선택적으로 형성하는 것도 가능함은 자명한 것이다.On the other hand, it is apparent that the adhesive layer can be selectively formed only on one surface by a known printing method, vapor deposition method, or the like.
다음으로, 상기 접착층이 형성된 금속메쉬층(4022)을 수세하는 제2수세단계를 거친다(S4140).Next, a second washing step of washing the metal mesh layer 4022 having the adhesive layer formed thereon is performed (S4140).
상기 제2수세단계는 접착층 형성 공정에서 사용된 도금 용액 등을 수세하기 위한 공정으로, 수세 용액이 수용된 제2수세용 수조(4024a, 4024b)에 상기 금속메쉬층을 침지시키는 방법에 의할 수 있으며, 다만, 본 발명에서 수세하는 방법을 한정하는 것은 아니며, 필요에 따라, 상기 제2수세 공정은 생략할 수 있다.The second washing step is a process for washing the plating solution used in the adhesive layer forming process, and may be by a method of immersing the metal mesh layer in the second washing tanks 4024a and 4024b containing the washing solution. However, the method of washing with water in the present invention is not limited, and if necessary, the second washing step may be omitted.
다음으로, 상기 접착층이 형성된 금속메쉬층을 건조하는 단계를 거친다(S4150).Next, the step of drying the metal mesh layer on which the adhesive layer is formed (S4150).
상기 건조 단계는 열풍건조로(4025a, 4025b)에서 진행되는 열풍건조일 수 있으며, 다만, 본 발명에서 상기 건조 방법을 한정하는 것은 아니며, 필요에 따라, 상기 건조 공정은 생략할 수 있다.The drying step may be hot air drying performed in the hot air drying furnaces 4025a and 4025b, but the present invention is not limited to the drying method, and the drying process may be omitted if necessary.
계속해서, 도 41 및 도 42를 참조하면, 베이스 기재 공급부(4010)로부터 준비된 베이스 기재(4011)를 제공한다(S4160).41 and 42, a base substrate 4011 prepared from the base substrate supply unit 4010 is provided (S4160).
한편, 상술한 바와 같이, 본 발명의 제7실시예에 따른 히트싱크에서는 상기 금속메쉬층을 상기 베이스 기재의 제1면 및 제2면에 공급하기 위해, 금속메쉬층의 공급부(4020a, 4020b)가 베이스 기재의 제1면 및 제2면에 각각 위치할 수 있다.On the other hand, as described above, in the heat sink according to the seventh embodiment of the present invention, in order to supply the metal mesh layer to the first and second surfaces of the base substrate, the supply portion of the metal mesh layer (4020a, 4020b) May be located on the first and second surfaces of the base substrate, respectively.
즉, 베이스 기재의 제1면에 제1금속메쉬층을 제공하기 위한 금속메쉬층 제1공급부(4020a) 및 베이스 기재의 제2면에 제2금속메쉬층을 제공하기 위한 금속메쉬층 제2공급부(4020b)를 포함하며, 이를 통해, 베이스 기재의 제1면에 제1접착층을 포함하는 제1금속메쉬층을 제공하고, 베이스 기재의 제2면에 제2접착층을 포함하는 제2금속메쉬층을 제공할 수 있다.That is, the metal mesh layer first supply part 4020a for providing the first metal mesh layer on the first surface of the base substrate, and the metal mesh layer second supply part for providing the second metal mesh layer on the second surface of the base substrate. A second metal mesh layer including 4040b, thereby providing a first metal mesh layer including a first adhesive layer on a first surface of the base substrate, and including a second adhesive layer on a second surface of the base substrate. Can be provided.
다음으로, 베이스 기재 상에 접착층을 포함하는 금속메쉬층(4022)을 위치시키고 압착롤러(4130a, 4130b)에 의해 이를 압착시킨다(S4170).Next, the metal mesh layer 4022 including the adhesive layer is placed on the base substrate and pressed by the pressing rollers 4130a and 4130b (S4170).
본 발명의 제7실시예에 따른 히트싱크에서는 베이스 기재의 제1면에 제1접착층을 포함하는 제1금속메쉬층을 위치시키고, 베이스 기재의 제2면에 제2접착층을 포함하는 제2금속메쉬층을 위치시킨후, 압착롤러를 통해, 상기 제1금속메쉬층 및 제2금속메쉬층을 각각 제1접착층 및 제2접착층을 통해, 상기 베이스 기재의 제1면 및 제2면 상에 각각 압착시킬 수 있다.In the heat sink according to the seventh embodiment of the present invention, the first metal mesh layer including the first adhesive layer is disposed on the first surface of the base substrate, and the second metal includes the second adhesive layer on the second surface of the base substrate. After placing the mesh layer, the first metal mesh layer and the second metal mesh layer through the first roller and the second adhesive layer, respectively, through the pressing roller, respectively on the first and second surfaces of the base substrate Can be compressed.
이때, 상기 제1금속메쉬층 및 제2금속메쉬층을 압착시킴에 있어, 접착층과 금속메쉬층의 접착특성을 향상시키기 위해, 일정온도를 가하는 것이 바람직하며, 상기 일정온도는 150 ~ 500 ℃ 일 수 있다.At this time, in the pressing of the first metal mesh layer and the second metal mesh layer, in order to improve the adhesive properties of the adhesive layer and the metal mesh layer, it is preferable to apply a constant temperature, the constant temperature is 150 ~ 500 ℃ days Can be.
이로써, 본 발명의 제7실시예에 따른 금속메쉬층을 포함하는 히트싱크를 제조할 수 있다.As a result, a heat sink including the metal mesh layer according to the seventh embodiment of the present invention can be manufactured.
즉, 도 40에 도시된 바와 같이, 본 발명의 제7실시예에 따른 히트싱크(4031)는 베이스 기재의 제1면 및 제2면에 각각 형성되는 금속메쉬층을 포함하며, 상기 금속메쉬층은 각각 복수의 금속메쉬 패턴 및 금속메쉬 패턴의 사이에 위치하는 홀을 포함하고 있고, 이때, 상기 베이스 기재와 금속메쉬층을 부착하기 위한 접착층을 포함하고 있다.That is, as shown in Figure 40, the heat sink 4031 according to the seventh embodiment of the present invention includes a metal mesh layer formed on each of the first and second surfaces of the base substrate, the metal mesh layer Each includes a plurality of metal mesh pattern and the hole located between the metal mesh pattern, wherein the base layer and the adhesive layer for attaching the metal mesh layer.
다음으로, 도 43을 참조하면, 본 발명의 제8실시예에 따른 히트싱크를 제조하는 방법은, 상술한 바와 같이 금속메쉬 제조장치를 통해 금속메쉬층(5021)을 제조하여, 금속메쉬층을 제공한다.Next, referring to FIG. 43, in the method of manufacturing the heat sink according to the eighth embodiment of the present invention, as described above, the metal mesh layer 5021 is manufactured through the metal mesh manufacturing apparatus, thereby producing a metal mesh layer. to provide.
이때, 상술한 바와 같이, 상기 금속메쉬층은 금속메쉬 패턴 및 금속메쉬 패턴 사이의 홀을 포함할 수 있으며, 이는 상술한 바와 같으므로, 이하 구체적인 설명은 생략하기로 한다.In this case, as described above, the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted.
한편, 도 43에 도시한 바와 같이, 본 발명의 제8실시예에 따른 히트싱크에서는 상기 금속메쉬층을 상기 베이스 기재의 제1면 및 제2면 중 어느 하나의 면, 예를 들면, 제1면에 공급하기 위해, 금속메쉬층의 공급부(5020a)가 베이스 기재의 제1면에만 위치할 수 있다.On the other hand, as shown in Figure 43, in the heat sink according to the eighth embodiment of the present invention, the metal mesh layer may be one of the first and second surfaces of the base substrate, for example, the first surface. To supply the surface, the supply portion 5020a of the metal mesh layer may be located only on the first surface of the base substrate.
즉, 베이스 기재의 제1면에 금속메쉬층을 제공하기 위한 금속메쉬층 공급부(5020a)를 포함한다.That is, it includes a metal mesh layer supply unit 5020a for providing a metal mesh layer on the first surface of the base substrate.
즉, 본 발명의 제8실시예에 따른 히트싱크의 제조방법은 베이스 기재의 일면에만 금속메쉬층을 형성하는 실시예로써, 따라서, 본 발명에서는 상기 금속메쉬층을 베이스 기재의 제1면 및/또는 제2면에 형성할 수 있다.That is, the method of manufacturing the heat sink according to the eighth embodiment of the present invention is an embodiment in which the metal mesh layer is formed only on one surface of the base substrate. Thus, in the present invention, the metal mesh layer is formed on the first surface and / or the base substrate. Or it can form in a 2nd surface.
다음으로, 상기 금속메쉬층을 전처리 한다.Next, the metal mesh layer is pretreated.
상기 전처리는 전처리 용액이 수용된 전처리용 수조(5021a)에 상기 금속메쉬층을 침지시키는 방법에 의한 화학적 전처리법일 수 있다.The pretreatment may be a chemical pretreatment method by dipping the metal mesh layer in a pretreatment bath 5021a containing a pretreatment solution.
다음으로, 전처리된 상기 금속메쉬층을 수세하는 제1수세단계를 거친다.Next, a first washing step of washing the pre-treated metal mesh layer is performed.
상기 제1수세단계는 수세 용액이 수용된 제1수세용 수조(5022a)에 상기 금속메쉬층을 침지시키는 방법에 의할 수 있다.The first washing step may be based on a method of immersing the metal mesh layer in a first washing bath 5022a containing a washing solution.
다음으로, 상기 금속메쉬층 상에 접착층을 형성한다.Next, an adhesive layer is formed on the metal mesh layer.
상기 접착층은 솔더층일 수 있으며, 상기 솔더층은 도금액을 포함하는 도금용 수조(5023a)에 상기 금속메쉬층을 침지시키는 방법에 의해 공지된 전해도금법 또는 무전해도금법 등을 통해 형성할 수 있다.The adhesive layer may be a solder layer, and the solder layer may be formed through a known electroplating method or an electroless plating method by immersing the metal mesh layer in a plating bath 5023a including a plating solution.
한편, 상기 솔더층은 공지된 인쇄법에 의해 형성할 수 있으며, 보다 구체적으로, PbSn 또는 CuAgSn 등과 같이 Sn을 포함하는 도전성 페이스트를 인쇄하여 형성할 수 있다.Meanwhile, the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
다음으로, 상기 접착층이 형성된 금속메쉬층(5022)을 수세하는 제2수세단계를 거친다.Next, a second washing step of washing the metal mesh layer 5022 having the adhesive layer formed thereon is performed.
상기 제2수세단계는 수세 용액이 수용된 제2수세용 수조(5024a)에 상기 금속메쉬층을 침지시키는 방법에 의할 수 있다.The second washing step may be a method of immersing the metal mesh layer in a second washing tank 5024a in which a washing solution is accommodated.
다음으로, 상기 접착층이 형성된 금속메쉬층을 건조하는 단계를 거친다.Next, the step of drying the metal mesh layer on which the adhesive layer is formed.
상기 건조 단계는 열풍건조로(5025a)에서 진행되는 열풍건조일 수 있다.The drying step may be hot air drying performed in the hot air drying furnace 5025a.
계속해서, 도 43을 참조하면, 베이스 기재 공급부(5010)로부터 준비된 베이스 기재(5011)를 제공한다.43, the base substrate 5011 prepared from the base substrate supply part 5010 is provided.
한편, 상술한 바와 같이, 본 발명의 제8실시예에 따른 히트싱크에서는 상기 금속메쉬층을 상기 베이스 기재의 제1면에 공급하기 위해, 금속메쉬층의 공급부(5020a)가 베이스 기재의 제1면에만 위치할 수 있다.On the other hand, as described above, in the heat sink according to the eighth embodiment of the present invention, in order to supply the metal mesh layer to the first surface of the base substrate, the supply portion 5020a of the metal mesh layer is formed on the first base of the base substrate. It can only be located on the face.
다음으로, 베이스 기재 상에 접착층을 포함하는 금속메쉬층(5022)을 위치시키고 압착롤러(5130a, 5130b)에 의해 이를 압착시킨다.Next, the metal mesh layer 5022 including the adhesive layer is placed on the base substrate and pressed by the pressing rollers 5130a and 5130b.
본 발명의 제8실시예에 따른 히트싱크에서는 베이스 기재의 제1면에 접착층을 포함하는 금속메쉬층을 위치시킨후, 압착롤러를 통해, 상기 금속메쉬층을 접착층을 통해, 상기 베이스 기재의 제1면 상에 압착시킬 수 있다.In the heat sink according to the eighth embodiment of the present invention, the metal mesh layer including the adhesive layer is positioned on the first surface of the base substrate, and then the metal mesh layer is attached to the base substrate through a pressing roller. It can be crimped on one surface.
이때, 상기 금속메쉬층을 압착시킴에 있어, 접착층과 금속메쉬층의 접착특성을 향상시키기 위해, 일정온도를 가하는 것이 바람직하며, 상기 일정온도는 150 ~ 500 ℃ 일 수 있다.At this time, in the pressing of the metal mesh layer, in order to improve the adhesive properties of the adhesive layer and the metal mesh layer, it is preferable to apply a constant temperature, the constant temperature may be 150 ~ 500 ℃.
이로써, 본 발명의 제8실시예에 따른 금속메쉬층을 포함하는 히트싱크를 제조할 수 있다.Thus, the heat sink including the metal mesh layer according to the eighth embodiment of the present invention can be manufactured.
즉, 도 34에 도시된 바와 같이, 본 발명의 제8실시예에 따른 히트싱크(5031)는 베이스 기재의 제1면에 형성되는 금속메쉬층을 포함하며, 상기 금속메쉬층은 복수의 금속메쉬 패턴 및 금속메쉬 패턴의 사이에 위치하는 홀을 포함하고 있고, 이때, 상기 베이스 기재와 금속메쉬층을 부착하기 위한 접착층을 포함하고 있다.That is, as shown in Figure 34, the heat sink 5031 according to the eighth embodiment of the present invention includes a metal mesh layer formed on the first surface of the base substrate, the metal mesh layer is a plurality of metal mesh A hole is disposed between the pattern and the metal mesh pattern. In this case, an adhesive layer for attaching the base substrate and the metal mesh layer is included.
도 44는 본 발명의 제7실시예의 변형예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이고, 도 45는 본 발명의 제7실시예의 변형예에 따른 히트싱크를 제조하는 방법을 도시하는 공정 흐름도이며, 도 46은 본 발명의 제8실시예의 변형예에 따른 히트싱크를 제조하기 위한 개략적인 구성도이다. 다만, 본 발명의 제7실시예의 변형예에 따른 히트싱크를 제조하는 방법은 상술한 제7실시예의 제조하는 방법과 동일할 수 있다. 또한, 본 발명의 제8실시예의 변형예에 따른 히트싱크를 제조하는 방법은 후술할 바를 제외하고는 상술한 제7실시예 변형예의 제조하는 방법과 동일할 수 있으며, 구체적인 공정 흐름도는 후술하는 도 45를 참조하기로 한다.44 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the seventh embodiment of the present invention, and FIG. 45 is a process showing a method for manufacturing a heat sink according to a modification of the seventh embodiment of the present invention. 46 is a schematic configuration diagram for manufacturing a heat sink according to a modification of the eighth embodiment of the present invention. However, the method of manufacturing the heat sink according to the modification of the seventh embodiment of the present invention may be the same as the method of manufacturing the seventh embodiment described above. In addition, the method of manufacturing the heat sink according to the modification of the eighth embodiment of the present invention may be the same as the method of manufacturing the modification of the seventh embodiment described above, except as will be described later. See 45.
먼저, 도 44 및 도 45를 참조하면, 본 발명의 제7실시예의 변형예에 따른 히트싱크를 제조하는 방법은, 상술한 바와 같은 금속메쉬 제조장치를 통해 보호필름을 포함하는 금속메쉬층(6121)을 제조하여, 보호필름을 포함하는 금속메쉬층을 제공한다(S6200).First, referring to FIGS. 44 and 45, a method of manufacturing a heat sink according to a modification of the seventh embodiment of the present invention includes a metal mesh layer 6121 including a protective film through the metal mesh manufacturing apparatus as described above. ) To provide a metal mesh layer including a protective film (S6200).
상술한 바와 같이, 금속메쉬층을 제조하는 전착층박리단계에 있어서, 보호필름에 접착제를 도포하여, 이를 상기 메쉬형음극드럼의 표면의 메쉬에 형성된 금속메쉬층의 상부에 라미네이션한 후, 상기 보호필름 및 금속메쉬층을 동시에 박리할 수 있다.As described above, in the electrodeposition layer peeling step of manufacturing a metal mesh layer, by applying an adhesive to the protective film, it is laminated on top of the metal mesh layer formed on the mesh of the surface of the mesh-type cathode drum, the protection The film and the metal mesh layer can be peeled off simultaneously.
또한, 이와는 달리, 별도의 보호필름 없이 메쉬형음극드럼의 메쉬로부터 금속메쉬층만을 분리하는 것도 가능하며, 이 경우, 공정상 용이 취급을 위하여, 전착층수세단계를 거쳐 수세된 금속메쉬를 별도의 보호필름에 부착하여 사용할 수도 있다.Alternatively, it is also possible to separate only the metal mesh layer from the mesh of the mesh type cathode drum without a separate protective film. In this case, the metal mesh washed through the electrodeposition layer washing step is separated for easy handling. It can also be attached to a protective film.
본 발명의 제7실시예의 변형예에 따른 히트싱크의 제조방법은 이러한, 보호필름을 포함하는 금속메쉬층을 사용한 것에 해당한다.The heat sink manufacturing method according to the modification of the seventh embodiment of the present invention corresponds to the use of the metal mesh layer including the protective film.
계속해서, 도 44 및 도 45를 참조하면, 상기 금속메쉬층은 금속메쉬 패턴 및 금속메쉬 패턴 사이의 홀을 포함할 수 있으며, 이는 상술한 바와 같으므로, 이하 구체적인 설명은 생략하기로 한다.44 and 45, the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, and as described above, a detailed description thereof will be omitted.
한편, 도 44에 도시한 바와 같이, 본 발명의 제7실시예의 변형예에 따른 히트싱크에서는 상기 금속메쉬층을 상기 베이스 기재의 제1면 및 제2면에 공급하기 위해, 금속메쉬층의 공급부(6120a, 6120b)가 베이스 기재의 제1면 및 제2면에 각각 위치할 수 있다.On the other hand, as shown in Figure 44, in the heat sink according to a modification of the seventh embodiment of the present invention, in order to supply the metal mesh layer to the first surface and the second surface of the base substrate, the supply portion of the metal mesh layer 6120a and 6120b may be positioned on the first and second surfaces of the base substrate, respectively.
즉, 베이스 기재의 제1면에 제1금속메쉬층을 제공하기 위한 금속메쉬층 제1공급부(6120a) 및 베이스 기재의 제2면에 제2금속메쉬층을 제공하기 위한 금속메쉬층 제2공급부(6120b)를 포함한다.That is, the metal mesh layer first supply part 6120a for providing the first metal mesh layer on the first surface of the base substrate and the metal mesh layer second supply part for providing the second metal mesh layer on the second surface of the base substrate 6120b.
이하에서 진행되는 제1금속메쉬층 및 제2금속메쉬층의 공정은 동일하므로, 설명의 편의를 위하여, 제1금속메쉬층 및 제2금속메쉬층을 구분하지 않고, 금속메쉬층으로 명명하기로 한다.Since the processes of the first metal mesh layer and the second metal mesh layer which are performed below are the same, for convenience of description, the first metal mesh layer and the second metal mesh layer are not distinguished, and thus, the metal mesh layer is referred to as a metal mesh layer. do.
다음으로, 상기 금속메쉬층을 전처리 한다(S6210).Next, the metal mesh layer is pretreated (S6210).
상기 전처리는 전처리 용액이 수용된 전처리용 수조(6121a, 6121b)에 상기 금속메쉬층을 침지시키는 방법에 의한 화학적 전처리법일 수 있다.The pretreatment may be a chemical pretreatment method by immersing the metal mesh layer in the pretreatment tanks 6121a and 6121b containing the pretreatment solution.
다음으로, 전처리된 상기 금속메쉬층을 수세하는 제1수세단계를 거친다(S6220).Next, a first washing step of washing the pre-treated metal mesh layer is performed (S6220).
상기 제1수세단계는 수세 용액이 수용된 제1수세용 수조(6122a, 6122b)에 상기 금속메쉬층을 침지시키는 방법에 의할 수 있다.The first washing step may be a method of immersing the metal mesh layer in the first washing bath (6122a, 6122b) in which the washing solution is accommodated.
다음으로, 상기 금속메쉬층 상에 접착층을 형성한다(S6230).Next, an adhesive layer is formed on the metal mesh layer (S6230).
상기 접착층은 솔더층일 수 있으며, 상기 솔더층은 도금액을 포함하는 도금용 수조(6123a, 6123b)에 상기 금속메쉬층을 침지시키는 방법에 의해 공지된 전해도금법 또는 무전해도금법 등을 통해 형성할 수 있다.The adhesive layer may be a solder layer, and the solder layer may be formed by a known electroplating method or an electroless plating method by immersing the metal mesh layer in plating baths 6223a and 6123b including a plating solution. .
한편, 상기 솔더층은 공지된 인쇄법에 의해 형성할 수 있으며, 보다 구체적으로, PbSn 또는 CuAgSn 등과 같이 Sn을 포함하는 도전성 페이스트를 인쇄하여 형성할 수 있다.Meanwhile, the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
이때, 제1금속메쉬층에는 제1접착층이 형성될 수 있으며, 제2금속메쉬층에는 제2접착층이 형성될 수 있다.In this case, a first adhesive layer may be formed on the first metal mesh layer, and a second adhesive layer may be formed on the second metal mesh layer.
다음으로, 상기 접착층이 형성된 금속메쉬층(6122)을 수세하는 제2수세단계를 거친다(S6240).Next, a second washing step of washing the metal mesh layer 6222 formed with the adhesive layer is passed (S6240).
상기 제2수세단계는 수세 용액이 수용된 제2수세용 수조(6124a, 6124b)에 상기 금속메쉬층을 침지시키는 방법에 의할 수 있다.The second washing step may be a method of immersing the metal mesh layer in the second washing tank (6124a, 6124b) in which the washing solution is accommodated.
다음으로, 상기 접착층이 형성된 금속메쉬층을 건조하는 단계를 거친다(S6250).Next, the step of drying the metal mesh layer on which the adhesive layer is formed (S6250).
상기 건조 단계는 열풍건조로(6125a, 6125b)에서 진행되는 열풍건조일 수 있다.The drying step may be hot air drying proceeded in the hot air drying furnace (6125a, 6125b).
계속해서, 도 44 및 도 45를 참조하면, 베이스 기재 공급부(6110)로부터 준비된 베이스 기재(6111)를 제공한다(S6260).44 and 45, the base substrate 6111 prepared from the base substrate supply part 6110 is provided (S6260).
한편, 상술한 바와 같이, 본 발명의 제7실시예의 변형예에 따른 히트싱크에서는 상기 금속메쉬층을 상기 베이스 기재의 제1면 및 제2면에 공급하기 위해, 금속메쉬층의 공급부(6120a, 6120b)가 베이스 기재의 제1면 및 제2면에 각각 위치할 수 있다.Meanwhile, as described above, in the heat sink according to the modification of the seventh embodiment of the present invention, in order to supply the metal mesh layer to the first and second surfaces of the base substrate, the supply portions 6120a, 6120b) may be located on the first side and the second side of the base substrate, respectively.
즉, 베이스 기재의 제1면에 제1접착층을 포함하는 제1금속메쉬층을 제공하고, 베이스 기재의 제2면에 제2접착층을 포함하는 제2금속메쉬층을 제공할 수 있다.That is, the first metal mesh layer including the first adhesive layer may be provided on the first surface of the base substrate, and the second metal mesh layer including the second adhesive layer may be provided on the second surface of the base substrate.
다음으로, 베이스 기재 상에 접착층을 포함하는 금속메쉬층(6122)을 위치시키고 압착롤러(6130a, 6130b)에 의해 이를 압착시킨다(S6270).Next, the metal mesh layer 6122 including the adhesive layer is positioned on the base substrate and pressed by the pressing rollers 6130a and 6130b (S6270).
상기 베이스 기재 상에 접착층을 포함하는 금속메쉬층을 위치시킴에 있어서, 상기 보호필름이 위치하는 반대면에 위치하는 접착층을 상기 베이스 기재 상에 위치시킨다.In positioning the metal mesh layer including the adhesive layer on the base substrate, an adhesive layer positioned on the opposite surface on which the protective film is positioned is placed on the base substrate.
본 발명의 제7실시예의 변형예에 따른 히트싱크에서는 베이스 기재의 제1면에 제1접착층을 포함하는 제1금속메쉬층을 위치시키고, 베이스 기재의 제2면에 제2접착층을 포함하는 제2금속메쉬층을 위치시킨후, 압착롤러를 통해, 상기 제1금속메쉬층 및 제2금속메쉬층을 각각 제1접착층 및 제2접착층을 통해, 상기 베이스 기재의 제1면 및 제2면 상에 각각 압착시킬 수 있다.In the heat sink according to the modification of the seventh embodiment of the present invention, the first metal mesh layer including the first adhesive layer is disposed on the first surface of the base substrate, and the second adhesive layer includes the second adhesive layer on the second surface of the base substrate. After positioning the second metal mesh layer, the first metal mesh layer and the second metal mesh layer are formed on the first surface and the second surface of the base substrate through the pressing roller, respectively, through the first adhesive layer and the second adhesive layer, respectively. Each can be compressed to.
이때, 상기 제1금속메쉬층 및 제2금속메쉬층을 압착시킴에 있어, 접착층과 금속메쉬층의 접착특성을 향상시키기 위해, 일정온도를 가하는 것이 바람직하며, 상기 일정온도는 150 ~ 500 ℃ 일 수 있다.At this time, in the pressing of the first metal mesh layer and the second metal mesh layer, in order to improve the adhesive properties of the adhesive layer and the metal mesh layer, it is preferable to apply a constant temperature, the constant temperature is 150 ~ 500 ℃ days Can be.
한편, S6270 단계까지 진행한 히트싱크(6131)는 금속메쉬층이 보호필름을 포함하고 있기 때문에, 베이스 기재와 접착하지 않은 금속메쉬층의 반대면에는 보호필름이 포함되어 있다.On the other hand, the heat sink (6131) proceeded to step S6270, because the metal mesh layer includes a protective film, the protective film is included on the opposite surface of the metal mesh layer that is not bonded to the base substrate.
따라서, 본 발명의 제7실시예의 변형예에 따른 히트싱크의 제조방법은, 최종 사용시, 상기 금속메쉬층으로부터 보호필름을 제거한다(S6280).Therefore, in the method of manufacturing the heat sink according to the modification of the seventh embodiment of the present invention, the protective film is removed from the metal mesh layer at the end of use (S6280).
한편, 제1실시예와 비교하여, 상기 제1실시예의 변형예는 금속메쉬층의 상부, 보다 구체적으로, 베이스 기재와 접착하지 않은 금속메쉬층의 반대면의 상부에 보호필름이 포함되어 있기 때문에, 히트싱크의 보호 특성 및 보관 특성이 용이할 수 있다.On the other hand, compared with the first embodiment, the modified example of the first embodiment is because the protective film is included on the upper portion of the metal mesh layer, more specifically, the upper surface of the opposite side of the metal mesh layer not adhered to the base substrate The protection and storage characteristics of the heat sink can be facilitated.
이로써, 본 발명의 제7실시예의 변형예에 따른 금속메쉬층을 포함하는 히트싱크를 제조할 수 있다.As a result, a heat sink including the metal mesh layer according to the modification of the seventh embodiment of the present invention can be manufactured.
다음으로, 도 46을 참조하면, 본 발명의 제8실시예의 변형예에 따른 히트싱크를 제조하는 방법은 보호필름을 포함하는 금속메쉬층(7121)을 제조하여, 보호필름을 포함하는 금속메쉬층을 제공한다.Next, referring to FIG. 46, in the method of manufacturing the heat sink according to the eighth embodiment of the present invention, the metal mesh layer 7121 including the protective film may be manufactured, and the metal mesh layer including the protective film. To provide.
이때, 상술한 바와 같이, 상기 금속메쉬층은 금속메쉬 패턴 및 금속메쉬 패턴 사이의 홀을 포함할 수 있으며, 이는 상술한 바와 같으므로, 이하 구체적인 설명은 생략하기로 한다.In this case, as described above, the metal mesh layer may include a hole between the metal mesh pattern and the metal mesh pattern, as described above, and thus, a detailed description thereof will be omitted.
한편, 도 46에 도시한 바와 같이, 본 발명의 제8실시예의 변형예에 따른 히트싱크에서는 상기 금속메쉬층을 상기 베이스 기재의 제1면 및 제2면 중 어느 하나의 면, 예를 들면, 제1면에 공급하기 위해, 금속메쉬층의 공급부(7120a)가 베이스 기재의 제1면에만 위치할 수 있다.46, in the heat sink according to the modification of the eighth embodiment of the present invention, the metal mesh layer may be one of the first and second surfaces of the base substrate, for example, In order to supply to the first surface, the supply portion 7120a of the metal mesh layer may be located only on the first surface of the base substrate.
즉, 베이스 기재의 제1면에 금속메쉬층을 제공하기 위한 금속메쉬층 공급부(7120a)를 포함한다.That is, it includes a metal mesh layer supply unit 7120a for providing a metal mesh layer on the first surface of the base substrate.
즉, 본 발명의 제8실시예의 변형예에 따른 히트싱크의 제조방법은 베이스 기재의 일면에만 금속메쉬층을 형성하는 실시예로써, 따라서, 본 발명에서는 상기 금속메쉬층을 베이스 기재의 제1면 및/또는 제2면에 형성할 수 있다.That is, the heat sink manufacturing method according to the modification of the eighth embodiment of the present invention is an embodiment in which the metal mesh layer is formed only on one surface of the base substrate. Therefore, in the present invention, the metal mesh layer is formed on the first surface of the base substrate. And / or on the second surface.
다음으로, 상기 금속메쉬층을 전처리 한다.Next, the metal mesh layer is pretreated.
상기 전처리는 전처리 용액이 수용된 전처리용 수조(7121a)에 상기 금속메쉬층을 침지시키는 방법에 의한 화학적 전처리법일 수 있다.The pretreatment may be a chemical pretreatment method by immersing the metal mesh layer in a pretreatment bath 7121a containing a pretreatment solution.
다음으로, 전처리된 상기 금속메쉬층을 수세하는 제1수세단계를 거친다.Next, a first washing step of washing the pre-treated metal mesh layer is performed.
상기 제1수세단계는 수세 용액이 수용된 제1수세용 수조(7122a)에 상기 금속메쉬층을 침지시키는 방법에 의할 수 있다.The first washing step may be a method of immersing the metal mesh layer in a first washing bath (7122a) in which a washing solution is accommodated.
다음으로, 상기 금속메쉬층 상에 접착층을 형성한다.Next, an adhesive layer is formed on the metal mesh layer.
상기 접착층은 솔더층일 수 있으며, 상기 솔더층은 도금액을 포함하는 도금용 수조(7123a)에 상기 금속메쉬층을 침지시키는 방법에 의해 공지된 전해도금법 또는 무전해도금법 등을 통해 형성할 수 있다.The adhesive layer may be a solder layer, and the solder layer may be formed through a known electroplating method or an electroless plating method by a method of immersing the metal mesh layer in a plating bath 7123a including a plating solution.
한편, 상기 솔더층은 공지된 인쇄법에 의해 형성할 수 있으며, 보다 구체적으로, PbSn 또는 CuAgSn 등과 같이 Sn을 포함하는 도전성 페이스트를 인쇄하여 형성할 수 있다.Meanwhile, the solder layer may be formed by a known printing method, and more specifically, may be formed by printing a conductive paste containing Sn, such as PbSn or CuAgSn.
다음으로, 상기 접착층이 형성된 금속메쉬층(7122)을 수세하는 제2수세단계를 거친다.Next, a second washing step of washing the metal mesh layer 7122 having the adhesive layer formed thereon is performed.
상기 제2수세단계는 수세 용액이 수용된 제2수세용 수조(7124a)에 상기 금속메쉬층을 침지시키는 방법에 의할 수 있다.The second washing step may be by a method of immersing the metal mesh layer in the second washing bath (7124a) in which the washing solution is accommodated.
다음으로, 상기 접착층이 형성된 금속메쉬층을 건조하는 단계를 거친다.Next, the step of drying the metal mesh layer on which the adhesive layer is formed.
상기 건조 단계는 열풍건조로(7125a)에서 진행되는 열풍건조일 수 있다.The drying step may be hot air drying performed in the hot air drying furnace 7125a.
계속해서, 도 46을 참조하면, 베이스 기재 공급부(7110)로부터 준비된 베이스 기재(7111)를 제공한다.46, the base substrate 7111 prepared from the base substrate supply part 7110 is provided.
한편, 상술한 바와 같이, 본 발명의 제8실시예의 변형예에 따른 히트싱크에서는 상기 금속메쉬층을 상기 베이스 기재의 제1면에 공급하기 위해, 금속메쉬층의 공급부(7120a)가 베이스 기재의 제1면에만 위치할 수 있다.On the other hand, as described above, in the heat sink according to the modification of the eighth embodiment of the present invention, in order to supply the metal mesh layer to the first surface of the base substrate, the supply portion 7120a of the metal mesh layer is formed of the base substrate. It may be located only on the first side.
다음으로, 베이스 기재 상에 접착층을 포함하는 금속메쉬층(7122)을 위치시키고 압착롤러(7130a, 7130b)에 의해 이를 압착시킨다.Next, the metal mesh layer 7122 including the adhesive layer is placed on the base substrate and pressed by the rollers 7130a and 7130b.
본 발명의 제8실시예의 변형예에 따른 히트싱크에서는 베이스 기재의 제1면에 접착층을 포함하는 금속메쉬층을 위치시킨후, 압착롤러를 통해, 상기 금속메쉬층을 접착층을 통해, 상기 베이스 기재의 제1면 상에 압착시킬 수 있다.In the heat sink according to the modified example of the eighth embodiment of the present invention, the metal mesh layer including the adhesive layer is positioned on the first surface of the base substrate, and then the metal mesh layer is attached to the base substrate through a pressing roller. It can be pressed on the first surface of the.
이때, 상기 금속메쉬층을 압착시킴에 있어, 접착층과 금속메쉬층의 접착특성을 향상시키기 위해, 일정온도를 가하는 것이 바람직하며, 상기 일정온도는 150 ~ 500 ℃ 일 수 있다.At this time, in the pressing of the metal mesh layer, in order to improve the adhesive properties of the adhesive layer and the metal mesh layer, it is preferable to apply a constant temperature, the constant temperature may be 150 ~ 500 ℃.
한편, 상술한 바와 같이, 상기 단계까지 진행한 히트싱크(7131)는 금속메쉬층이 보호필름을 포함하고 있기 때문에, 베이스 기재와 접착하지 않은 금속메쉬층의 반대면에는 보호필름이 포함되어 있다.On the other hand, as described above, since the metal mesh layer includes a protective film in the heat sink 7131, the protective film is included on the opposite surface of the metal mesh layer not adhered to the base substrate.
따라서, 본 발명의 제8실시예의 변형예에 따른 히트싱크의 제조방법은, 최종 사용시, 상기 금속메쉬층으로부터 보호필름을 제거한다.Therefore, in the method of manufacturing the heat sink according to the modification of the eighth embodiment of the present invention, the protective film is removed from the metal mesh layer in the final use.
한편, 제8실시예와 비교하여, 상기 제8실시예의 변형예는 금속메쉬층의 상부, 보다 구체적으로, 베이스 기재와 접착하지 않은 금속메쉬층의 반대면의 상부에 보호필름이 포함되어 있기 때문에, 히트싱크의 보호 특성 및 보관 특성이 용이할 수 있다.On the other hand, compared with the eighth embodiment, the modification of the eighth embodiment is because the protective film is included in the upper portion of the metal mesh layer, more specifically, the upper surface of the opposite side of the metal mesh layer that is not bonded to the base substrate The protection and storage characteristics of the heat sink can be facilitated.
이로써, 본 발명의 제8실시예의 변형예에 따른 금속메쉬층을 포함하는 히트싱크를 제조할 수 있다.As a result, a heat sink including the metal mesh layer according to the modification of the eighth embodiment of the present invention can be manufactured.
한편, 도면에는 도시하지 않았으나, 본 발명의 제7실시예 및 제8실시예의 경우에도, 도 22 내지 도 24에 도시된 바와 같이, 금속메쉬 패턴의 형상을 변경할 수 있다.Although not shown in the drawing, in the case of the seventh and eighth embodiments of the present invention, as shown in FIGS. 22 to 24, the shape of the metal mesh pattern may be changed.
이상과 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains may implement the present invention in other specific forms without changing the technical spirit or essential features thereof. You will understand that. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (22)

  1. 베이스 기재;Base substrate;
    상기 베이스 기재 상에 위치하는 접착층; 및An adhesive layer positioned on the base substrate; And
    상기 접착층 상에 위치하는 금속메쉬층을 포함하며,It includes a metal mesh layer located on the adhesive layer,
    상기 금속메쉬층은 복수의 금속메쉬 패턴 및 상기 금속메쉬 패턴의 사이에 위치하는 홀을 포함하는 히트싱크.The metal mesh layer may include a plurality of metal mesh patterns and holes disposed between the metal mesh patterns.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 금속메쉬층은 구리(Cu), 은(Ag), 크롬(Cr), 니켈(Ni), 철(Fe), 코발트(Co), 알루미늄(Al) 및 이들의 합금 중 적어도 어느 하나의 물질로 이루어지는 것을 특징으로 하는 히트싱크.The metal mesh layer is formed of at least one of copper (Cu), silver (Ag), chromium (Cr), nickel (Ni), iron (Fe), cobalt (Co), aluminum (Al), and alloys thereof. Heat sink, characterized in that made.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 접착층은 솔더층이고, 상기 솔더층은 납(Pb), 주석(Sn), 아연(Zn), 인듐(In), 카드늄(Cd), 비스무스(Bi), 또는 이들의 합금으로 이루어지는 것을 특징으로 하는 히트싱크.The adhesive layer is a solder layer, the solder layer is made of lead (Pb), tin (Sn), zinc (Zn), indium (In), cadmium (Cd), bismuth (Bi), or an alloy thereof Heatsink.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 접착층은 제1접착층 및 제2접착층을 포함하고, 상기 금속메쉬층은 제1금속메쉬층 및 제2금속메쉬층을 포함하며,The adhesive layer includes a first adhesive layer and a second adhesive layer, the metal mesh layer includes a first metal mesh layer and a second metal mesh layer,
    상기 제1접착층은 상기 베이스 기재의 제1면에 위치하고, 상기 제2접착층은 상기 베이스 기재의 제2면에 위치하며, The first adhesive layer is located on the first surface of the base substrate, the second adhesive layer is located on the second surface of the base substrate,
    상기 제1금속메쉬층은 상기 제1접착층 상에 위치하고, 상기 제2금속메쉬층은 상기 제2접착층 상에 위치하는 히트싱크.And the first metal mesh layer is on the first adhesive layer, and the second metal mesh layer is on the second adhesive layer.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 베이스 기재는 스테인레스강, 니켈, 구리, 철, 알루미늄, 티탄 또는 이들의 합금이거나, 알루미늄, 구리, 철 또는 스테인레스강의 표면에 카본, 니켈, 티탄, 은을 표면 처리시킨 것 중 어느 하나인 것을 특징으로 하는 히트싱크.The base substrate may be stainless steel, nickel, copper, iron, aluminum, titanium, or an alloy thereof, or any one of surface treated carbon, nickel, titanium, and silver on the surface of aluminum, copper, iron, or stainless steel. Heat sink to make.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 베이스 기재 및 상기 금속메쉬층은 알루미늄 또는 알루미늄 합금인 것을 특징으로 하는 히트싱크.The base substrate and the metal mesh layer are heat sinks, characterized in that the aluminum or aluminum alloy.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 금속메쉬 패턴은 하단부 및 상단부를 포함하고,The metal mesh pattern includes a lower end and an upper end,
    상기 상단부의 폭은 상기 하단부의 폭보다 큰 것을 특징으로 하는 히트싱크.The width of the upper end is greater than the width of the lower end of the heat sink.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 금속메쉬 패턴은 하단부 및 상단부를 포함하고,The metal mesh pattern includes a lower end and an upper end,
    상기 하단부에서 상기 상단부로 갈수록 상기 금속메쉬 패턴의 폭이 증가하는 것을 특징으로 하는 히트싱크.Heat sink, characterized in that the width of the metal mesh pattern increases from the lower end to the upper end.
  9. 베이스 기재;Base substrate;
    상기 베이스 기재의 제1면 및 제2면에 각각 형성되고, 복수의 금속메쉬 패턴 및 상기 금속메쉬 패턴의 사이에 위치하는 홀을 포함하는 금속메쉬층; 및A metal mesh layer formed on each of the first and second surfaces of the base substrate, the metal mesh layer including a plurality of metal mesh patterns and holes disposed between the metal mesh patterns; And
    상기 베이스 기재와 금속메쉬층을 부착하기 위한 접착층을 포함하고,An adhesive layer for attaching the base substrate and the metal mesh layer,
    상기 접착층은 상기 베이스 기재의 제1면 및 제2면에 각각 위치하는 제1접착층 및 상기 금속메쉬층 상에 각각 위치하는 제2접착층을 포함하며, 상기 제1접착층과 상기 제2접착층이 부착되는 히트싱크.The adhesive layer may include a first adhesive layer positioned on the first and second surfaces of the base substrate and a second adhesive layer positioned on the metal mesh layer, respectively, wherein the first adhesive layer and the second adhesive layer are attached to each other. Heatsink.
  10. 베이스 기재를 제공하는 단계;Providing a base substrate;
    복수의 금속메쉬 패턴 및 상기 금속메쉬 패턴의 사이에 위치하는 홀을 포함하는 금속메쉬층을 제공하는 단계;Providing a metal mesh layer including a plurality of metal mesh patterns and a hole located between the metal mesh patterns;
    상기 베이스 기재 상에 접착층을 형성하는 단계; 및Forming an adhesive layer on the base substrate; And
    상기 접착층 상에 금속메쉬층을 위치시키고, 압착하는 단계를 포함하는 히트싱크의 제조방법.Positioning a metal mesh layer on the adhesive layer and compressing the heat sink.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 베이스 기재 상에 접착층을 형성하는 단계는, 상기 베이스 기재의 제1면에 제1접착층을 형성하는 단계 및 상기 베이스 기재의 제2면에 제2접착층을 형성하는 단계를 포함하고,Forming an adhesive layer on the base substrate, includes forming a first adhesive layer on the first surface of the base substrate and forming a second adhesive layer on the second surface of the base substrate,
    상기 금속메쉬층을 제공하는 단계는, 제1금속메쉬층을 제공하는 단계 및 제2금속메쉬층을 제공하는 단계를 포함하며,The providing of the metal mesh layer may include providing a first metal mesh layer and providing a second metal mesh layer.
    상기 제1금속메쉬층은 상기 제1접착층 상에 위치하고, 상기 제2금속메쉬층은 상기 제2접착층 상에 위치하는 히트싱크의 제조방법.And the first metal mesh layer is located on the first adhesive layer, and the second metal mesh layer is located on the second adhesive layer.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 금속메쉬층을 제공하는 단계는,Providing the metal mesh layer,
    제조하고자 하는 금속메쉬층의 형상과 대응되는 형상의 메쉬를 포함하는 전주마스터를 제공하는 단계;Providing a pole master including a mesh having a shape corresponding to the shape of the metal mesh layer to be manufactured;
    전해액에 녹아있는 구리(Cu), 은(Ag), 크롬(Cr), 니켈(Ni), 철(Fe), 코발트(Co) 및 이들의 합금 중 적어도 어느 하나의 물질을 상기 메쉬의 상면에 전착시켜 금속메쉬를 전착하는 전착단계;Electrode at least one of copper (Cu), silver (Ag), chromium (Cr), nickel (Ni), iron (Fe), cobalt (Co) and alloys thereof dissolved in the electrolyte is deposited on the upper surface of the mesh Electrodeposition step of electrodepositing a metal mesh by the;
    상기 금속메쉬를 상기 메쉬로부터 박리하는 전착층 박리단계; 및An electrodeposition layer exfoliation step of exfoliating the metal mesh from the mesh; And
    상기 박리된 전착층을 수세하는 전착층수세단계를 포함하는 히트싱크의 제조방법.A method of manufacturing a heat sink comprising an electrodeposition layer washing step of washing the exfoliated electrodeposition layer.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 금속메쉬층을 제공하는 단계는 보호필름을 포함하는 금속메쉬층을 제공하는 단계이고,The providing of the metal mesh layer is a step of providing a metal mesh layer including a protective film.
    상기 접착층 상에 금속메쉬층을 위치시키고, 압착하는 단계이후, 상기 금속메쉬층으로부터 상기 보호필름을 제거하는 단계를 더 포함하는 히트싱크의 제조방법.Positioning the metal mesh layer on the adhesive layer, and after the step of pressing, further comprising the step of removing the protective film from the metal mesh layer.
  14. 베이스 기재를 제공하는 단계;Providing a base substrate;
    복수의 금속메쉬 패턴 및 상기 금속메쉬 패턴의 사이에 위치하는 홀을 포함하는 금속메쉬층을 제공하는 단계;Providing a metal mesh layer including a plurality of metal mesh patterns and a hole located between the metal mesh patterns;
    상기 베이스 기재 상에 제1접착층을 형성하는 단계;Forming a first adhesive layer on the base substrate;
    상기 금속메쉬층 상에 제2접착층을 형성하는 단계; 및Forming a second adhesive layer on the metal mesh layer; And
    상기 제1접착층을 포함하는 베이스 기재와 상기 제2접착층을 포함하는 금속메쉬층을 배치하되, 상기 제1접착층 상에 상기 제2접착층을 위치시키고, 압착하는 단계를 포함하는 히트싱크의 제조방법.Disposing a base substrate including the first adhesive layer and a metal mesh layer including the second adhesive layer, placing the second adhesive layer on the first adhesive layer, and compressing the heat sink.
  15. 베이스 기재;Base substrate;
    상기 베이스 기재에 위치하는 금속메쉬층; 및A metal mesh layer positioned on the base substrate; And
    상기 베이스 기재와 상기 금속메쉬층 사이에 위치하는 접착층을 포함하며,An adhesive layer positioned between the base substrate and the metal mesh layer,
    상기 금속메쉬층은 복수의 금속메쉬 패턴 및 상기 금속메쉬 패턴의 사이에 위치하는 홀을 포함하는 히트싱크.The metal mesh layer may include a plurality of metal mesh patterns and holes disposed between the metal mesh patterns.
  16. 제 15 항에 있어서,The method of claim 15,
    상기 접착층은 솔더층이고, 상기 솔더층은 납(Pb), 주석(Sn), 아연(Zn), 인듐(In), 카드늄(Cd), 비스무스(Bi), 또는 이들의 합금으로 이루어지는 것을 특징으로 하는 히트싱크.The adhesive layer is a solder layer, the solder layer is made of lead (Pb), tin (Sn), zinc (Zn), indium (In), cadmium (Cd), bismuth (Bi), or an alloy thereof Heatsink.
  17. 제 15 항에 있어서,The method of claim 15,
    상기 접착층은 제1접착층 및 제2접착층을 포함하고, 상기 금속메쉬층은 제1금속메쉬층 및 제2금속메쉬층을 포함하며,The adhesive layer includes a first adhesive layer and a second adhesive layer, the metal mesh layer includes a first metal mesh layer and a second metal mesh layer,
    상기 제1접착층은 상기 베이스 기재의 제1면과 상기 제1금속메쉬층의 사이에 위치하고, 상기 제2접착층은 상기 베이스 기재의 제2면과 상기 제2금속메쉬층의 사이에 위치하는 히트싱크.The first adhesive layer is positioned between the first surface of the base substrate and the first metal mesh layer, and the second adhesive layer is positioned between the second surface of the base substrate and the second metal mesh layer. .
  18. 제 15 항에 있어서,The method of claim 15,
    상기 접착층은 제1접착층 및 제2접착층을 포함하고, 상기 금속메쉬층은 제1금속메쉬층 및 제2금속메쉬층을 포함하며,The adhesive layer includes a first adhesive layer and a second adhesive layer, the metal mesh layer includes a first metal mesh layer and a second metal mesh layer,
    상기 제1금속메쉬층은 복수의 제1금속메쉬 패턴을 포함하고, 상기 제2금속메쉬층은 복수의 제2금속메쉬 패턴을 포함하며, The first metal mesh layer includes a plurality of first metal mesh patterns, and the second metal mesh layer includes a plurality of second metal mesh patterns.
    상기 제1접착층은 상기 베이스 기재의 제1면과 상기 제1금속메쉬 패턴의 사이에 위치하고, 상기 제2접착층은 상기 베이스 기재의 제2면과 상기 제2금속메쉬 패턴의 사이에 위치하는 히트싱크.The first adhesive layer is positioned between the first surface of the base substrate and the first metal mesh pattern, and the second adhesive layer is positioned between the second surface of the base substrate and the second metal mesh pattern. .
  19. 베이스 기재를 제공하는 단계;Providing a base substrate;
    복수의 금속메쉬 패턴 및 상기 금속메쉬 패턴의 사이에 위치하는 홀을 포함하는 금속메쉬층을 제공하는 단계;Providing a metal mesh layer including a plurality of metal mesh patterns and a hole located between the metal mesh patterns;
    상기 금속메쉬층 상에 접착층을 형성하는 단계; 및Forming an adhesive layer on the metal mesh layer; And
    상기 베이스 기재 상에 상기 접착층을 위치시키고, 압착하는 단계를 포함하는 히트싱크의 제조방법.Positioning the adhesive layer on the base substrate and compressing the heat sink.
  20. 제 19 항에 있어서,The method of claim 19,
    상기 금속메쉬층은 제1금속메쉬층 및 제2금속메쉬층을 포함하고,The metal mesh layer includes a first metal mesh layer and a second metal mesh layer,
    상기 금속메쉬층 상에 접착층을 형성하는 단계는, 상기 제1금속메쉬층 상에 제1접착층을 형성하는 단계 및 상기 제2금속메쉬층 상에 제2접착층을 형성하는 단계를 포함하고,Forming an adhesive layer on the metal mesh layer includes forming a first adhesive layer on the first metal mesh layer and forming a second adhesive layer on the second metal mesh layer,
    상기 제1접착층은 상기 베이스 기재의 제1면 상에 위치하고, 상기 제2접착층은 상기 베이스 기재의 제2면 상에 위치하는 히트싱크의 제조방법.And the first adhesive layer is located on a first surface of the base substrate, and the second adhesive layer is located on a second surface of the base substrate.
  21. 제 19 항에 있어서,The method of claim 19,
    상기 금속메쉬층을 제공하는 단계는,Providing the metal mesh layer,
    제조하고자 하는 금속메쉬층의 형상과 대응되는 형상의 메쉬를 포함하는 전주마스터를 제공하는 단계;Providing a pole master including a mesh having a shape corresponding to the shape of the metal mesh layer to be manufactured;
    전해액에 녹아있는 구리(Cu), 은(Ag), 크롬(Cr), 니켈(Ni), 철(Fe), 코발트(Co) 및 이들의 합금 중 적어도 어느 하나의 물질을 상기 메쉬의 상면에 전착시켜 금속메쉬를 전착하는 전착단계;Electrode at least one of copper (Cu), silver (Ag), chromium (Cr), nickel (Ni), iron (Fe), cobalt (Co) and alloys thereof dissolved in an electrolyte is deposited on the upper surface of the mesh Electrodeposition step of electrodepositing a metal mesh by the;
    상기 금속메쉬를 상기 메쉬로부터 박리하는 전착층 박리단계; 및An electrodeposition layer peeling step of peeling the metal mesh from the mesh; And
    상기 박리된 전착층을 수세하는 전착층수세단계를 포함하는 히트싱크의 제조방법.A method of manufacturing a heat sink comprising an electrodeposition layer washing step of washing the exfoliated electrodeposition layer.
  22. 제 21 항에 있어서,The method of claim 21,
    상기 금속메쉬층을 제공하는 단계는 보호필름을 포함하는 금속메쉬층을 제공하는 단계이고,The providing of the metal mesh layer is a step of providing a metal mesh layer including a protective film.
    상기 접착층 상에 금속메쉬층을 위치시키고, 압착하는 단계이후, 상기 금속메쉬층으로부터 상기 보호필름을 제거하는 단계를 더 포함하는 히트싱크의 제조방법.Positioning the metal mesh layer on the adhesive layer, and after the step of pressing, further comprising the step of removing the protective film from the metal mesh layer.
PCT/KR2013/003372 2012-10-04 2013-04-22 Heat sink comprising metal mesh layer, and method for manufacturing same WO2014054842A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120110244A KR101422218B1 (en) 2012-10-04 2012-10-04 A Heat Sink comprising a Metal Mesh and Fab ricating Method of the same
KR1020120110246A KR101425995B1 (en) 2012-10-04 2012-10-04 A Heat Sink comprising a Metal Mesh and Fabricating Method of the same
KR10-2012-0110244 2012-10-04
KR10-2012-0110246 2012-10-04

Publications (1)

Publication Number Publication Date
WO2014054842A1 true WO2014054842A1 (en) 2014-04-10

Family

ID=50435154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003372 WO2014054842A1 (en) 2012-10-04 2013-04-22 Heat sink comprising metal mesh layer, and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2014054842A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6735077B2 (en) * 2001-10-01 2004-05-11 Fujitsu Limited Thermal diffuser and radiator
KR20050074287A (en) * 2004-01-13 2005-07-18 제팬 마텍스 카부시키가이샤 A heat spreader and a heat sink
KR20060104532A (en) * 2005-03-30 2006-10-09 엘에스전선 주식회사 Method for manufacturing elctrowave shielder using electroforming and electrowave shielder using the same
KR20080022938A (en) * 2006-09-08 2008-03-12 삼성코닝정밀유리 주식회사 Method of mesh film and mesh film by the same
KR100847047B1 (en) * 2007-03-29 2008-07-18 한국기계연구원 Manufacturing method of heat rays

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6735077B2 (en) * 2001-10-01 2004-05-11 Fujitsu Limited Thermal diffuser and radiator
KR20050074287A (en) * 2004-01-13 2005-07-18 제팬 마텍스 카부시키가이샤 A heat spreader and a heat sink
KR20060104532A (en) * 2005-03-30 2006-10-09 엘에스전선 주식회사 Method for manufacturing elctrowave shielder using electroforming and electrowave shielder using the same
KR20080022938A (en) * 2006-09-08 2008-03-12 삼성코닝정밀유리 주식회사 Method of mesh film and mesh film by the same
KR100847047B1 (en) * 2007-03-29 2008-07-18 한국기계연구원 Manufacturing method of heat rays

Similar Documents

Publication Publication Date Title
WO2013168910A1 (en) Current collector for battery comprising metal mesh layer and manufacturing method therefor
WO2018052197A1 (en) Metal plate for deposition mask, and deposition mask and manufacturing method therefor
WO2019117692A1 (en) Electronic device having interference shielding structure
WO2013141658A1 (en) Antenna assembly and method for manufacturing same
WO2017142231A1 (en) Metal plate, mask for deposition and manufacturing method therefor
WO2020145718A1 (en) Display substrate
WO2019088563A1 (en) Flexible circuit board and chip package comprising same
WO2010036051A2 (en) Structure and manufacture method for multi-row lead frame and semiconductor package
WO2011083923A2 (en) Light emitting diode having electrode pads
WO2011162473A2 (en) Planar transformer
WO2019240538A1 (en) Printed circuit board and camera device comprising same
WO2012087058A2 (en) Printed circuit board and method for manufacturing the same
WO2018212498A1 (en) Flexible printed circuit board for all-in-one chip on film, chip package including same flexible printed circuit board, and electronic device including same chip package
WO2016099061A1 (en) Semiconductor light emitting device and method of manufacturing the same
WO2018124459A1 (en) Perovskite compound and preparation method therefor, and solar cell comprising perovskite compound and manufacturing method therefor
WO2018199507A1 (en) Electronic component carrier sheet, and adhesion device and thin film forming apparatus using same
WO2018004183A1 (en) Solar cell module, method for manufacturing solar cell module, method for manufacturing electronic device having solar cell module
WO2020105910A1 (en) Alloy metal plate and deposition mask including same
WO2017111561A1 (en) Alloy-coated steel sheet and manufacturing method therefor
WO2014054842A1 (en) Heat sink comprising metal mesh layer, and method for manufacturing same
WO2011013966A2 (en) Method for manufacturing a heat-dissipating substrate for an led, and structure thereof
WO2019066233A1 (en) Controller and motor assembly comprising same
WO2018101802A2 (en) Heating assembly
WO2020013643A1 (en) Metal plate deposition mask for oled pixel deposition
WO2020246812A1 (en) Printed circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843252

Country of ref document: EP

Kind code of ref document: A1