WO2014073492A1 - Treatment tool - Google Patents

Treatment tool Download PDF

Info

Publication number
WO2014073492A1
WO2014073492A1 PCT/JP2013/079746 JP2013079746W WO2014073492A1 WO 2014073492 A1 WO2014073492 A1 WO 2014073492A1 JP 2013079746 W JP2013079746 W JP 2013079746W WO 2014073492 A1 WO2014073492 A1 WO 2014073492A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
energy
clamping
sandwiching
treatment instrument
Prior art date
Application number
PCT/JP2013/079746
Other languages
French (fr)
Japanese (ja)
Inventor
智之 高篠
秀雄 傍島
武井 祐介
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Publication of WO2014073492A1 publication Critical patent/WO2014073492A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • A61B18/085Forceps, scissors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/1452Probes having pivoting end effectors, e.g. forceps including means for cutting
    • A61B2018/1455Probes having pivoting end effectors, e.g. forceps including means for cutting having a moving blade for cutting tissue grasped by the jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/033Abutting means, stops, e.g. abutting on tissue or skin
    • A61B2090/034Abutting means, stops, e.g. abutting on tissue or skin abutting on parts of the device itself

Definitions

  • the present invention relates to a therapeutic treatment instrument for treating a living tissue by applying energy.
  • examples of the energy applied to join the living tissues include high-frequency energy and resistance heating energy.
  • a gap maintaining means for defining a minimum distance between the electrodes is provided in order to prevent a short circuit between the electrodes.
  • one or more stop members 175 are disposed on the conductive seal surface 122 and the like.
  • Member 175 preferably defines the distance between the jaws during sealing to a gap distance G, the gap distance G being from about 0.001 inch to about 0.006 inch.
  • the stop member 175 is preferably located on either side of the knife channel 115 (however, as can be seen in FIG.
  • the tip of the conductive sealing surface 122 is not only provided at a close position, but is remote from the knife channel 115. It is also provided).
  • paragraph [0106] of FIG. 23 of US Patent Application Publication No. 2007 / 0078458A1 and FIG. 23 include a description similar to that of US Patent Application Publication No. 2005 / 0154387A1 described above.
  • the distance between the electrodes should be about 0.03 to 0.16 mm.
  • the distance between the electrodes should be set to determine whether appropriate tissue sealing, bonding, etc. can be performed. It depends on which one of them.
  • a technique for changing the distance between the electrodes for each living tissue to be treated has also been proposed, but this is not necessarily a practical solution.
  • the present invention has been made in view of the above circumstances, and provides a treatment instrument capable of performing treatment on a plurality of types of tissues without changing the distance between electrodes for each target tissue. It is an object.
  • a therapeutic treatment instrument is a therapeutic treatment instrument for treating a living tissue by applying energy, and sandwiches the living tissue with a pair of opposing clamping surfaces, and can be opened and closed. And an energy output provided as at least one of the pair of sandwiching surfaces, which is provided in at least one of the pair of sandwiching portions and applies high-frequency energy to the living tissue and then applies resistance heating energy to the living tissue. And a gap for projecting from at least one of the pair of sandwiching surfaces and maintaining a distance between the pair of sandwiching surfaces facing each other when the pair of sandwiching portions are closed at a constant distance of 0.7 mm or less And a maintenance unit.
  • FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4 of the first clamping member of the treatment instrument in the first embodiment.
  • FIG. 13 is a cross-sectional view taken along line 13-13 of FIG. 12 of the first holding member of the treatment instrument in the first modification of the first embodiment.
  • the top view which shows the 1st clamping member of the treatment tool in the 2nd modification of the said 1st Embodiment.
  • FIG. 16-16 is a cross-sectional view taken along the line 16-16 of FIG. 15 of the first holding member of the treatment instrument in the third modification of the first embodiment.
  • FIG. 18-18 is a cross-sectional view taken along the line 18-18 in FIG. 17 of the first holding member of the treatment instrument in the fourth modification of the first embodiment.
  • the side view which shows the structure of the clamping part comprised as a seesaw type of the treatment tool in the 2nd Embodiment of this invention.
  • the perspective view which shows the structure of the therapeutic treatment system provided with the circular type therapeutic treatment tool in the 3rd Embodiment of this invention.
  • the longitudinal cross-sectional view which shows the treatment instrument in the state which separated the detachment
  • the top view which shows the structure of the clamping surface of the main body side clamping part of a treatment instrument in the said 3rd Embodiment.
  • FIG. 1 to FIG. 19 show a first embodiment of the present invention
  • FIG. 1 is a perspective view showing a configuration of a treatment system including a linear type treatment device.
  • the therapeutic treatment tool is a linear type therapeutic treatment tool 2 for performing a treatment through, for example, the abdominal wall.
  • the therapeutic treatment tool may be a linear type therapeutic treatment tool 2 for performing a treatment through, for example, the abdominal wall.
  • it may be an open linear type treatment instrument that takes out a living tissue to be treated out of the body through the abdominal wall and performs treatment.
  • the therapeutic treatment system 1 includes a therapeutic treatment instrument 2, an energy source 4, and a foot switch 6.
  • the treatment instrument 2 includes a handle 11, an elongated shaft 12 extending on the distal end side of the handle 11, and an openable and closable clamping portion 13 disposed on the distal end side of the shaft 12.
  • the handle 11 is connected to the energy source 4 having the display unit 43 via the cable 16.
  • the energy source 4 is connected to a foot switch 6 having a pedal 6a (but not limited to a foot switch, for example, a hand switch).
  • a foot switch 6a but not limited to a foot switch, for example, a hand switch.
  • the handle 11 is formed in a shape that is easy for an operator to grip, for example, a substantially L-shape.
  • a shaft 12 is disposed at one end of the handle 11.
  • the cable 16 described above extends from the proximal end of the handle 11 that is coaxial with the shaft 12. Further, the other end side of the handle 11 is a grasping portion 11a that is held by a surgeon with a hand.
  • the handle 11 is provided with a clamping part opening / closing lever 14 provided so as to be rotatable so as to be arranged in parallel with the gripping part 11a.
  • the sandwiching portion opening / closing lever 14 is connected to a proximal end portion of a later-described sheath 34 (see FIGS. 2 and 3) constituting the outer shell of the shaft 12 at a substantially central portion of the handle 11.
  • the sandwiching section opening / closing lever 14 is operated so as to approach or separate from the gripping section 11 a of the handle 11, the sheath 34 moves along the axial direction of the shaft 12.
  • the sandwiching portion 13 is closed, and when the sheath 34 moves to the proximal end side in the axial direction, the sandwiching portion 13 is opened.
  • the handle 11 is further provided with a cutter drive lever 15 provided so as to be rotatable so as to be juxtaposed with the holding portion opening / closing lever 14.
  • a cutter 36 (see FIGS. 2 and 3), which will be described later, moves along the axial direction of the shaft 12. In addition, the biological tissue is cut.
  • FIG. 2 is a longitudinal sectional view showing the shaft of the treatment instrument and the sandwiched portion in the closed state
  • FIG. 3 is a longitudinal sectional view showing the shaft of the treatment instrument and the sandwiched portion in the opened state.
  • the shaft 12 includes, for example, a cylindrical body 33 having a substantially cylindrical shape, and a thin-cylindrical sheath 34 that is slidable with respect to the outer periphery of the cylindrical body 33.
  • the cylindrical body 33 is fixed to the handle 11 (see FIG. 1) at its proximal end.
  • the sheath 34 is slidable along the axial direction of the cylindrical body 33.
  • a groove 33 a along the axial direction of the cylinder 33 is formed on the outer periphery of the cylinder 33.
  • a first high-frequency electrode energization line 21e and a heater energization line 22a are disposed in the groove 33a.
  • the first high-frequency electrode energization line 21e is connected to a first high-frequency electrode 21a described later, and the heater energization line 22a is connected to a resistance heater 22 described later.
  • the second high-frequency electrode energization line 21 f is inserted into the cylindrical body 33.
  • the second high-frequency electrode conducting line 21f is connected to a second high-frequency electrode 21b described later.
  • a drive rod 35 having a columnar shape is disposed so as to be movable along its axial direction.
  • a thin plate-like cutter 36 which is a cutting member as a treatment auxiliary tool, is fixed to the distal end portion of the drive rod 35. Further, the base end portion of the drive rod 35 is connected to the cutter drive lever 15. Accordingly, when the cutter drive lever 15 is operated, the cutter 36 moves in the axial direction via the drive rod 35.
  • the cutter 36 is formed with a blade 36a for cutting the living tissue at the tip thereof.
  • a long hole 36 b serving as an axial guide hole is formed between the distal end and the proximal end of the cutter 36.
  • a movement restricting pin 37 is engaged with the long hole 36b.
  • the movement restricting pin 37 is fixed to the cylindrical body 33 so as to extend in a direction orthogonal to the axial direction of the shaft 12. For this reason, the cutter 36 linearly moves in the axial direction while maintaining the state in which the long hole 36 b is engaged with the movement restriction pin 37.
  • the cutter 36 moves in the distal direction, it enters into cutter guide grooves 23a, 24a of a first clamping member 23 and a second clamping member 24 described later.
  • the movement restricting pins 37 are locked to control the movement of the cutter 36 in at least three places, one end, the other end, and between the one end and the other end, of the long hole 36b of the cutter 36.
  • a locking portion 36c is formed.
  • the sandwiching portion 13 has a shape that forms a longitudinal direction from the proximal end portion toward the distal end portion, and includes a first sandwiching member 23 that is also called a first jaw, and a second jaw.
  • a second clamping member 24, also called a second clamping member 24, is connected to the base end side via a rotation shaft, and at least one (second clamping member 24 as shown in FIG. 3 in this embodiment) rotates around the rotation shaft. It is configured to be movable.
  • first clamping member 23 and the second clamping member 24 have insulating properties as a whole except for electric circuit portions such as electrodes, heaters, and energization lines. Therefore, the first clamping member main body 25 constituting the first clamping member 23 and the second clamping member main body 26 constituting the second clamping member 24 are formed of an insulating material.
  • a base portion 25 a that is a base end portion of the first holding member main body 25 is fixed to a distal end portion of the cylindrical body 33 of the shaft 12.
  • a base portion 26 a that is a base end portion of the second holding member main body 26 is attached to the distal end portion of the cylindrical body 33 of the shaft 12 by a support pin 31 disposed in a direction orthogonal to the axial direction of the shaft 12. It is rotatably supported. Therefore, the second clamping member 24 can be opened and closed with respect to the first clamping member 23 by rotating around the axis of the support pin 31. Further, the second clamping member 24 is urged in an opening direction with respect to the first clamping member 23 by an elastic member 32 such as a leaf spring.
  • the first sandwiching member body 25 and the second sandwiching member body 26 When the first sandwiching member body 25 and the second sandwiching member body 26 are closed, the first sandwiching member body has a smooth curved surface such as a substantially circular shape or a substantially elliptical shape when the two are sandwiched. 25 and the outer surface of the 2nd clamping member main body 26 are formed. The outer surfaces of the base portions 25a and 26a are similarly formed in a smooth circular shape, but are configured to have a slightly smaller diameter than the distal end side, so that steps 25c and 26c are formed between the distal ends. ing.
  • the diameters of the base portions 25a and 26a when the first holding member main body 25 and the second holding member main body 26 are closed are substantially the same as or slightly smaller than the inner diameter of the sheath 34 (the cylindrical body 33 of the shaft 12).
  • the diameters of the first and second holding member bodies 25 and 26 are larger than the inner diameter of the sheath 34. Therefore, when the sheath 34 is slid with respect to the cylindrical body 33, the sheath 34 can advance to a position covering the base portions 25a and 26a, but the progress is stopped at the positions of the steps 25c and 26c.
  • a cutter guide groove 23a is formed in the first holding member main body 25, and a cutter guide groove 24a is formed in the second holding member main body 26 so as to face each other when the holding portion 13 is closed. It is formed to be a direction along the direction.
  • These cutter guide grooves 23a and 24a are structural portions for guiding the cutter 36 described above into the clamping portion 13 along the central axis in the longitudinal direction from the proximal end portion toward the distal end portion.
  • the cutter 36 advances and retreats in a hole formed by combining the two cutter guide grooves 23a and 24a. Both of these two cutter guide grooves 23a and 24a are terminated at the leading end side inside the clamping portion 13, that is, are not communicated from the leading end side to the outside. Accordingly, the cutter 36 stops inside the clamping unit 13 even when it is most advanced in the distal direction.
  • FIG. 4 is a plan view showing a first holding member of the treatment instrument
  • FIG. 5 is a cross-sectional view of the first holding member of the treatment tool in FIG.
  • a holding surface 25b is formed on the first holding member body 25, and a first output as an energy output unit for applying high-frequency energy to the living tissue is applied to the holding surface 25b.
  • a high frequency electrode 21a is provided.
  • a holding surface 26b is formed on the second clamping member main body 26, and the holding surface 26b serves as an energy output unit for applying high-frequency energy to the living tissue.
  • Two high-frequency electrodes 21b are provided.
  • the first high-frequency electrode 21a and the second high-frequency electrode 21b are members made of a conductive material.
  • the first high-frequency electrode 21 a is formed in a flat plate shape that fits on the inner peripheral side with respect to the edge of the holding surface 25 b, and extends along the axial direction of the first clamping member 23. Since the cutter guide groove 23a is formed so as to terminate in the clamping portion 13 as described above, it is a substantially U-shaped flat plate, for example.
  • the second high-frequency electrode 21b is also formed in such a manner that the cutter guide groove 24a terminates in the clamping portion 13 in substantially the same manner as the first high-frequency electrode 21a shown in FIG. It is a flat plate.
  • a gap maintaining portion 27 formed of an insulating material (non-conductive material) at the end of the front end of the cutter guide groove 23a of the first holding member main body 25 is formed into a cutter guide groove of the second holding member main body 26.
  • a gap maintaining portion 28 made of an insulating material is provided at the end on the front end side in 24a.
  • the insulating material constituting the gap maintaining portions 27 and 28 include a metal subjected to non-conductive treatment, a non-conductive ceramic, or a non-conductive resin.
  • the gap maintaining portions 27 and 28 are formed of at least one material. Therefore, the gap maintaining units 27 and 28 do not contribute to the application of high-frequency energy, which is electrical energy, even if they contact the living tissue.
  • a hole 27h for inserting such a gap maintaining portion 27 is provided in the first high-frequency electrode 21a as shown in FIG. 6 (or FIG. 7 according to a modified example) described later.
  • the second high-frequency electrode 21b is also provided with a hole through which the gap maintaining portion 28 is inserted.
  • the gap maintaining portions 27 and 28 are described as having a larger diameter than the groove width of the cutter guide grooves 23a and 24a, but of course, they may be configured to have the same width as the groove width. Absent. However, the gap maintaining portions 27 and 28 are provided with a pair of opposing clamping surfaces (the energy application surface of the first high-frequency electrode 21a and the energy of the second high-frequency electrode 21b as shown in FIGS. 2, 3, 5, etc.). When the distance between the application surfaces) is to be maintained at a constant distance at one place, it is preferable that the diameter is large because stability and reliability can be improved.
  • the gap maintaining portions 27 and 28 are arranged so that the energy application surface of the first high-frequency electrode 21a and the first application surface of the first high-frequency electrode 21a become a pair of opposing clamping surfaces when the first clamping member 23 and the second clamping member 24 are closed. This is for maintaining the distance between the electrode surfaces of the second high-frequency electrode 21b and the energy application surface at a constant distance ⁇ (see FIG. 2). That is, in the example shown in FIGS. 2 to 5, the gap maintaining portions 27 and 28 are formed as bosses (however, of course, the shape is not limited to the boss shape).
  • the constant distance ⁇ is configured.
  • the constant distance ⁇ is a distance of 0.7 mm or less, and for example, a distance of 0.2 mm or more. And at the time of this close, a pair of opposing clamping surfaces are parallel, for example.
  • the constant distance ⁇ is maintained when nothing is sandwiched between the pair of sandwiching surfaces or when a thickness structure or the like having a distance ⁇ or less is sandwiched. Therefore, when considering the case where a tissue thicker than the distance ⁇ is sandwiched, the gap maintaining portions 27 and 28 are for maintaining the distance between the pair of clamping surfaces at a certain distance ⁇ or more. I can say that.
  • the gap maintaining portions 27 and 28 are formed of an insulating material and do not contribute to the application of high-frequency energy. Therefore, the gap maintaining portions 27 and 28 are halfway on the energy application surfaces of the first high-frequency electrode 21a and the second high-frequency electrode 21b. If it is formed at the position (position that is not the periphery), a discontinuous island-like discontinuous portion is generated on the energy application surface to the living tissue. When such discontinuous island-like discontinuous parts are connected to the islands in the structure where the discontinuous parts are connected (inside the edges) or are connected in a line, they become weak parts of the connected structure, resulting in pressure resistance. (See also FIG. 8, FIG. 9, etc.).
  • the energy application surface has continuity. Maintained. Therefore, when the living tissues are joined, high pressure resistance can be maintained without causing a fragile portion.
  • FIG. 6 is a perspective view showing the back surface of the first high-frequency electrode provided with a resistance heater.
  • the resistance heater 22 has a chip shape, and is discretely formed on the back surface of the first high-frequency electrode 21a along the substantially U-shape of the first high-frequency electrode 21a. It is arranged. However, the first high-frequency electrode 21a and the resistance heater 22 are insulated. When the resistance heater 22 generates heat, the heat is conducted to the first high-frequency electrode 21a, and the heat is transferred to the living tissue via the first high-frequency electrode 21a.
  • the first holding member body 25 has only an insulating property as described above. In addition, it is preferable to cover the outer periphery of the resistance heater 22 with heat insulation.
  • FIG. 7 is a perspective view showing another configuration example of the resistance heater provided on the back surface of the first high-frequency electrode 21a.
  • the U-shaped outer peripheral edge of the resistance heater 22A is an inner side that does not protrude from the U-shaped outer peripheral edge of the first high-frequency electrode 21a.
  • the peripheral edge is the inner side that does not protrude from the U-shaped inner peripheral edge of the first high-frequency electrode 21a.
  • Such a resistance heater 22A is, for example, a screen-printed thick film heating resistor or a thin film heating resistor formed by physical vapor deposition (PVD) on the back surface of the first high-frequency electrode 21a, It is formed as a disposed nichrome wire or other heating element.
  • PVD physical vapor deposition
  • the first and second high-frequency electrodes 21a and 21b are connected to the first and second electrode connectors 21c and 21d provided at the base end portions, respectively. It is connected to the second high-frequency electrode energization lines 21 e and 21 f and further connected to the energy source 4 via the cable 16.
  • the resistance heater 22 is connected to the heater energization line 22 a and further connected to the energy source 4 via the cable 16.
  • the mutually opposing surfaces of the first high-frequency electrode 21a and the second high-frequency electrode 21b are holding surfaces for holding and holding the living tissue, and the high-frequency energy and the resistance heating energy are transferred to the living tissue. It is also an energy application surface to be applied.
  • FIG. 8 is a graph showing an experimental example of the pressure resistance performance and target achievement rate of the sealed biological tissue when energy is applied with different gaps with respect to the first tissue sample
  • FIG. 9 shows the second tissue. It is a graph which shows the experimental example of the pressure
  • the first tissue sample and the second tissue sample are samples obtained from different parts of the living tissue.
  • the average pressure resistance of the sealed tissue is shown in arbitrary units (AU: Arbitrary Unit) as the vertical axis, and the target pressure resistance is achieved with a certain probability.
  • the target achievement rate indicating whether or not it has been done is shown in percent units (%).
  • the first tissue sample When the first tissue sample is treated by applying only high frequency energy (HF) as shown in the right half of FIG. 8, it is sealed regardless of the gap between 0.1 mm and 1 mm.
  • the average pressure resistance of the stopped tissue is about 1.2A. U. To about 1.5 A. U. There is little dependence on the gap.
  • the target achievement rate also increases when the gap becomes larger or smaller than 66% when the gap is 0.5 mm, and when the gap is 0.3 mm and 1 mm. Both are 82%. However, it is recognized that a high target achievement rate of 80% or more can be obtained when the gap is 0.3 mm or less.
  • the treatment is performed by applying only high frequency energy (HF) to the second tissue sample as shown in the right half of FIG. 9, if the gap is 0.5 mm or less, sealing is performed.
  • the average pressure resistance of the stopped structure is about 1.3A. U or more, but when the gap is 0.7 mm, the average pressure resistance is about 0.8 A.m. U. When the gap is further 1 mm, it is about 0.1 A.m. U. It will drop to the extent and extremely.
  • the target achievement rate is 99% when the gap is 0.1 mm, the maximum value, and gradually decreases when the gap becomes larger, and extremely decreases to 11% when the gap is 1 mm.
  • FIG. 8 and FIG. 9 are taken together, if an attempt is made to achieve a target achievement rate of 80% or more when a treatment is performed on a plurality of types of tissues by applying only high frequency energy (HF), a gap will be obtained. It can be seen that it is preferable to set the thickness to 0.3 mm or less.
  • HF high frequency energy
  • the gap was 0.7 mm.
  • the average pressure resistance of the sealed structure is 2A. U. The above is obtained, but when the gap is 1 mm, the average breakdown voltage is about 1.2 A.m. U. Decrease to a degree.
  • the target achievement rate is less than 90% (89%) or more if the gap is 0.7 mm or less, but when the gap is 1 mm, the target achievement rate is drastically reduced to 59%.
  • the gap is 0.7 mm or less. If so, the average pressure resistance of the sealed tissue is about 2.5A. U. The above is obtained, but when the gap is 1 mm, the average breakdown voltage is about 0.6 A.m. U. Decrease to a large extent.
  • HF high frequency energy
  • Heat resistance heating energy
  • the target achievement rate is 99% or more when the gap is 0.7 mm or less, but when the gap is 1 mm, it is extremely reduced to 65%.
  • FIG. 8 and FIG. 9 when a treatment is performed on a plurality of types of tissues by applying high frequency energy (HF) and resistance heating energy (Heat), the gap should be 0.7 mm or less. It can be seen that a high target achievement rate of about 90% or more can be obtained.
  • HF high frequency energy
  • Heat resistance heating energy
  • the above-mentioned fixed distance ⁇ is preferably set to 0.3 mm or less, and the energy to be treated is high-frequency energy (HF) and resistance heating energy (Heat). In some cases, it can be said that the above-mentioned fixed distance ⁇ is preferably 0.7 mm or less.
  • FIG. 10 is a block diagram mainly showing an electrical configuration of the treatment system.
  • the energy source 4 includes a control unit 40, a high frequency energy output circuit (HF energy output circuit) 41, a resistance heater driving circuit 42, and a display unit 43.
  • a high-frequency energy output circuit 41, a resistance heater driving circuit 42, and a display unit 43 are connected to the control unit 40.
  • the foot switch 6 is also connected to the control unit 40.
  • the control unit 40 controls the high frequency energy output circuit (HF energy output circuit) 41 and the resistance heater driving circuit 42 so that the treatment by the treatment instrument 2 is performed.
  • the control unit 40 further controls the display unit 43 to display various displays indicating the progress of the treatment.
  • the display unit 43 has a display function when setting the control unit 40 and also has an operation input function related to the setting operation. As described above, the control unit 40 controls the therapeutic treatment system 1 in an integrated manner.
  • the high frequency energy output circuit 41 is electrically connected to the high frequency electrode 21 (first high frequency electrode 21a and second high frequency electrode 21b) of the treatment instrument 2 and outputs high frequency energy to the high frequency electrode 21. is there.
  • the high frequency energy output circuit 41 is further configured to detect the impedance of the circuit based on a signal flowing through the high frequency energy output circuit 41. Since the impedance relating to the treatment system 1 itself is known, the impedance Z of the living tissue sandwiched between the first high-frequency electrode 21a and the second high-frequency electrode 21b based on the detected impedance of the circuit. Can be calculated. Therefore, the high frequency energy output circuit 41 has a sensor function for measuring the impedance Z of the living tissue.
  • the resistance heater driving circuit 42 is electrically connected to the resistance heater 22 of the treatment instrument 2 and outputs electrical energy for resistance heating to the resistance heater 22.
  • the resistance heater driving circuit 42 further has a sensor function for measuring the heat generation temperature T of the resistance heater 22.
  • FIG. 11 is a flowchart showing processing when a treatment using high-frequency energy and thermal energy is performed on a living tissue using the treatment system.
  • the action of the therapeutic treatment system 1 also shows a therapeutic treatment method for treating a living tissue by applying energy.
  • the surgeon turns on the power of the treatment system 1 and then operates the display unit 43 of the energy source 4 to output an output condition of the treatment system 1, for example, the set power Pset of the high frequency energy output.
  • [W] specifically, about 20 [W] to 80 [W]
  • set temperature Tset [° C.] of thermal energy output specifically about 100 [° C.] to 300 [° C.]
  • the threshold values Z1 and Z2 of the impedance Z are set in advance.
  • control unit 40 of the energy source 4 enters a state of waiting for the foot switch 6 to be turned on (step S11).
  • the clamping part 13 closed as shown in FIG. 2, for example, the clamping part 13 and the shaft 12 of the treatment instrument 2 are inserted into the abdominal cavity through the abdominal wall. Then, the surgeon confronts the sandwiching portion 13 of the treatment instrument 2 with the biological tissue to be treated.
  • the surgeon operates the clamping part opening / closing lever 14 of the handle 11 to move the sheath 34 to the proximal end side of the shaft 12 in order to hold the living tissue to be treated by the clamping part 13.
  • the sheath 34 is moved to a predetermined position, the urging force of the elastic member 32 cannot be locked by the sheath 34, and the second holding member 24 is moved relative to the first holding member 23 as shown in FIG. open.
  • the surgeon places the biological tissue to be treated between the first high-frequency electrode 21a of the first holding member 23 and the second high-frequency electrode 21b of the second holding member 24.
  • the surgeon operates the holding portion opening / closing lever 14 of the handle 11 to move the sheath 34 toward the distal end side of the shaft 12.
  • the sheath 34 closes between the base portions 25a and 26a against the urging force of the elastic member 32, that is, as shown in FIG. 23, the second clamping member 24 is closed. In this way, the biological tissue to be treated is gripped between the first clamping member 23 and the second clamping member 24.
  • the living tissue to be treated is sandwiched between both the energy application surface of the first high-frequency electrode 21a and the energy application surface of the second high-frequency electrode 21b, which are sandwiching surfaces. become.
  • the control unit 40 determines that the foot switch 6 is turned ON in step S11 described above, and controls the high frequency energy output circuit 41 to apply the high frequency energy of the set power Pset [W] described above to the high frequency electrode 21. Is output (step S12).
  • high frequency energy is applied to the living tissue sandwiched between the first high frequency electrode 21a and the second high frequency electrode 21b.
  • Joule heat is generated in the living tissue, the cell membrane is destroyed, the intracellular components and the extracellular components are made uniform, and cauterization is performed.
  • the impedance Z of the living tissue increases.
  • the impedance Z of the grasped living tissue at the time of high frequency energy output is measured by the high frequency energy output circuit 41.
  • the impedance Z when the treatment is started is, for example, about 60 [ ⁇ ].
  • the high-frequency current flows through the living tissue and the living tissue is cauterized the cells of the living tissue are dehydrated and the value of the impedance Z increases.
  • the thickness of the biological tissue held between the first clamping member 23 and the second clamping member 24 is reduced.
  • the distance between the energy application surface of the first high-frequency electrode 21a and the energy application surface of the second high-frequency electrode 21b is maintained at a certain distance ⁇ or more. Is done.
  • the control unit 40 monitors the impedance Z detected by the high-frequency energy output circuit 41, and determines whether the impedance Z is equal to or higher than a preset threshold value Z1 (step S13).
  • the threshold value Z1 is set to a value that is known in advance when the rate of increase in the value of the impedance Z slows down (that is, a value that is known in advance that dehydration of the cells of the living tissue has progressed to some extent).
  • the control unit 40 determines that the impedance Z is smaller than the threshold value Z1
  • the control unit 40 continuously performs the process of step S12, that is, the process of applying high-frequency energy to the living tissue.
  • the control unit 40 determines that the impedance Z is equal to or greater than the threshold value Z1
  • the control unit 40 controls the resistance heater driving circuit 42 so that the resistance heater 22 has a preset temperature Tset [° C.]. Electric power is supplied to the heater 22 (step S14).
  • the control unit 40 controls the power supplied to the resistance heater 22 while monitoring the heat generation temperature T of the resistance heater 22 measured by the resistance heater driving circuit 42.
  • the grasped living tissue is solidified by heat from the surface side of the living tissue in close contact with the first high-frequency electrode 21a toward the inside.
  • the gap maintaining portions 27 and 28 maintain the distance between the pair of sandwiching surfaces at a certain distance ⁇ or more, as described above.
  • the control unit 40 continues to monitor the impedance Z detected by the high-frequency energy output circuit 41, and determines whether the impedance Z is equal to or higher than a preset threshold value Z2 (step S15).
  • the threshold value Z2 is set to a value that determines that the coagulation of the living tissue has been completed. Then, when the control unit 40 determines that the impedance Z is smaller than the threshold value Z2, the control unit 40 continues the process of step S14.
  • the control unit 40 when determining that the impedance Z is equal to or higher than the threshold value Z2, the control unit 40 generates a buzzer sound, for example, stops the high-frequency energy output circuit 41 from outputting high-frequency energy, and heats the resistance heater driving circuit 42. The output of energy is stopped (step S16).
  • the living tissue is joined so as to maintain high pressure resistance performance without causing discontinuous portions due to the gap maintaining portions 27 and 28 as described above.
  • the operator operates the cutter drive lever 15 with the pair of clamping surfaces holding the biological tissue to be treated in order to excise the biological tissue to be treated, and moves the cutter 36 in the distal direction. Move.
  • the solidified living tissue sandwiched between the pair of sandwiching surfaces is gradually cut by the blade 36a from the proximal end side toward the distal end side.
  • the movement restricting pin 37 contacts the proximal end side of the long hole 36b, the movement of the cutter 36 toward the distal end side stops.
  • the blade 36 a of the cutter 36 reaches the vicinity of the gap maintaining portions 27 and 28. That is, the living tissue with which the gap maintaining portions 27 and 28 are in contact is located on the distal end side where the cutter 36 reaches, that is, on the distal end side of the portion to be cut of the living tissue, so that the joint portion of the living tissue is affected. There is no effect.
  • Coagulation treatment is performed by applying resistance heating energy to the living tissue from the resistance heater 54 after applying high frequency energy to the living tissue to break the cell membrane and increasing the thermal conductivity of the living tissue. For this reason, resistance heating energy can be applied in an efficient state.
  • the gap maintaining portions 27 and 28 are set so that the distance ⁇ between the energy application surfaces serving as the pair of sandwiching surfaces is a constant distance of 0.7 mm or less (or 0.2 mm or more) as described above. Since it comprises, a multiple types of biological tissue can be reliably sealed with high pressure
  • the state of the living tissue grasped by the holding unit 13 is monitored, and based on a preset threshold value Z1. Switching time from high-frequency energy input to heat energy input is automatically determined and switched, and the energy input end time is automatically determined based on a preset threshold value Z2. For this purpose, treatment variations due to the operator's senses are prevented, and treatments are performed efficiently and stably according to the state of tissue degeneration (cauterized or coagulated) to make the tissue uniform (stable ).
  • the gap maintaining portions 27 and 28 are embedded in the cutter guide grooves 23a and 24a so that they are not located in the form of islands in the energy application plane, they are vulnerable to the sealed living tissue. Does not occur, that is, the pressure resistance performance is not deteriorated.
  • FIG. 12 is a plan view showing the first holding member of the treatment instrument in the first modification
  • FIG. 13 is a cross-sectional view of the first holding member of the treatment tool in the first modification shown in FIG.
  • FIG. 13 is a sectional view.
  • a gap maintaining portion 29 is further provided.
  • the gap maintaining portion 27 shown in FIG. 12 has substantially the same configuration as the gap maintaining portion 27 shown in FIG. 4 and the like, but is slightly different in that it has the same width as the cutter guide groove 23a. ing.
  • a plurality of pairs of gap maintaining portions 29 are provided on both inner side surfaces of the cutter guide groove 23a at regular intervals along the axial direction.
  • the pair of gap maintaining portions 29 are provided so as to face each other with the same axial position.
  • one gap maintaining portion 29 is erected in a state of being embedded in the cutter guide groove 23a, and protrudes from the energy application surface of the first high-frequency electrode 21a that is the clamping surface. Yes.
  • the gap maintaining portion 29 also has a distance ⁇ between the energy application surfaces as a pair of sandwiching surfaces of 0 as described above in cooperation with the gap maintaining portion similarly provided on the second sandwiching member 24 side. It is for making it a fixed distance of 7 mm or less.
  • the gap maintaining portion 27 on the distal end side and the plurality of gap maintaining portions 29 along the cutter guide groove 23a the distance between the pair of sandwiching surfaces when the sandwiching portion is closed is further stabilized. Can be kept constant, and the holding surface can be kept parallel without being inclined.
  • both gap maintaining portions 27 and 29 are embedded in the cutter guide groove 23a, the untreated island-like irregularity is not formed on the living tissue to be treated by the first and second high-frequency electrodes 21a and 21b. A continuous portion is not generated, and a treatment that maintains high pressure resistance can be performed.
  • FIG. 14 is a plan view showing the first holding member of the treatment instrument in the second modification.
  • This second modification is such that, in the first modification described above, the gap maintaining portions 29 provided at regular intervals are alternately arranged with different axial positions.
  • the gap maintaining portions 29 arranged on one inner side surface of the cutter guide groove 23a and the gap maintaining portions 29 arranged on the other inner side surface are alternately arranged with the axial position shifted.
  • FIG. 15 is a plan view showing the first holding member of the treatment instrument in the third modification
  • FIG. 16 is a plan view of the first holding member of the treatment tool in the third modification shown in FIG. It is 16 sectional drawing.
  • This third modification is provided with a single gap maintaining portion 27A, but the configuration is different from that of the first modification.
  • the gap maintaining portion 27A is formed on the energy application surface of the first high-frequency electrode 21a, which is the clamping surface, so as to protrude from the energy application surface.
  • This gap maintaining portion 27A also has a distance ⁇ between the energy application surfaces as a pair of sandwiching surfaces of 0 as described above in cooperation with the gap maintaining portion similarly provided on the second sandwiching member 24 side. It is for making it a fixed distance of 7 mm or less.
  • this gap maintenance part 27A is provided adjacent to the front end side end of the cutter guide groove 23a so as to be flush with each other. That is, the base end side end surface of the gap maintaining portion 27A and the end surface of the cutter guide groove 23a are configured to be the same end surface.
  • an untreated island-like discontinuous portion is not generated in the living tissue treated by the first and second high-frequency electrodes 21a and 21b, and a treatment that maintains high pressure resistance is performed. Is possible.
  • FIG. 17 is a plan view showing the first holding member of the treatment instrument in the fourth modification
  • FIG. 18 is a cross-sectional view of the first holding member of the treatment tool in the fourth modification shown in FIG.
  • FIG. 18 is a sectional view.
  • a gap maintaining portion 29A is further provided in addition to the gap maintaining portion 27A as described above.
  • a plurality of gap maintaining portions 29A are provided at regular intervals along the axial direction so as to protrude from the energy application surface on the energy application surface of the first high-frequency electrode 21a, which is the clamping surface, on both sides of the cutter guide groove 23a. Pairs are provided.
  • This gap maintaining portion 29A also has a distance ⁇ between the energy application surfaces as a pair of clamping surfaces of 0 as described above in cooperation with the gap maintaining portion similarly provided on the second clamping member 24 side. It is for making it a fixed distance of 7 mm or less.
  • the pair of gap maintaining portions 29A are provided so as to face each other with the same axial position.
  • one gap maintaining portion 29A is provided adjacent to the inner side surface of the cutter guide groove 23a so as to be flush with each other. That is, the end surface on the cutter guide groove 23a side of the gap maintaining portion 29A and the end surface on the first high-frequency electrode 21a side of the cutter guide groove 23a are configured to be the same surface.
  • the gap maintaining portion 27A on the distal end side and the plurality of gap maintaining portions 29A along the cutter guide groove 23a the distance between the pair of sandwiching surfaces when the sandwiching portion is closed is further stabilized. Can be kept constant, and the holding surface can be kept parallel without being inclined.
  • any gap maintaining portions 27A and 29A are provided adjacent to each other so as to face the cutter guide groove 23a, the living body tissue to be treated by the first and second high-frequency electrodes 21a and 21b is provided. In this way, a treatment that maintains a high pressure resistance performance can be performed without causing an untreated island-like discontinuous portion.
  • FIG. 14 is a plan view showing the first clamping member of the treatment instrument in the fifth modification.
  • the gap maintaining portions 29A provided at regular intervals are alternately arranged with different positions in the axial direction.
  • the gap maintaining portions 29A arranged on one side surface of the cutter guide groove 23a and the gap maintaining portions 29A arranged on the other side surface are alternately arranged with the axial position shifted.
  • the fifth modification example as described above can achieve substantially the same effect as the fourth modification example described above.
  • the gap maintaining portion is provided in both of the pair of sandwiching portions, but of course the present invention is not limited to this, and a configuration in which only one of them is provided may be employed. Absent.
  • the gap maintenance part was shown.
  • the gap maintaining part 27 or the gap maintaining part 27A is not necessarily provided, but may not be provided.
  • FIG. 20 shows a second embodiment of the present invention, and is a side view showing a configuration of a clamping portion configured as a seesaw type of a treatment instrument.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals, description thereof is omitted, and only different points will be mainly described.
  • the present embodiment is an embodiment in which the treatment instrument (energy treatment instrument) is a linear treatment instrument 2 and a seesaw type jaw is further employed.
  • tip side of the shaft 12 is provided with the 1st clamping member 23 and the 2nd clamping member 24. As shown in FIG.
  • the first clamping member 23 includes a first clamping member main body 25, and the first clamping member main body 25 is provided integrally with the shaft 12 so as to extend in the axial direction of the shaft 12. .
  • the second clamping member 24 includes a proximal-side clamping unit pivot body 26A and a distal-side second clamping member main body 26B, and is based on the clamping unit pivot body 26A.
  • the end side is pivotally supported with respect to the shaft 12 and the first holding member 23 via the rotation shaft 52.
  • the second sandwiching member main body 26B is pivotally supported via the swing shaft 51 with respect to the sandwiching portion pivot support body 26A. That is, the second clamping member 24 is a second clamping member main body 26B pivotally supported by the swing shaft 51 as a seesaw mechanism that brings the clamping surface closer to the clamping surface of the first clamping member 23 in parallel. It has the structure which has.
  • a cam hole 53 is formed on the proximal end side of the sandwiching portion pivot 26A with respect to the rotation shaft 52.
  • an axial cam hole 54 is formed in the shaft body 12 a of the shaft 12. And the cam hole 53 and the cam hole 54 are comprised so that it may mutually cross
  • the cam pin 55 is fixed to the distal end side of the opening / closing drive shaft 56.
  • the proximal end side of the opening / closing drive shaft 56 is mechanically connected to the clamping portion opening / closing lever 14 (see FIG. 1 and the like).
  • the first high-frequency electrode 21a is provided on the holding surface 25b of the first holding member main body 25, and the second high-frequency electrode 21b is provided on the holding surface 26Bb of the second holding member main body 26B.
  • the energy application surfaces of the first high-frequency electrode 21a and the second high-frequency electrode 21b facing each other are sandwiching surfaces.
  • the gap maintaining part is provided only on one of the pair of sandwiching parts. That is, a gap maintaining portion 27B formed in a boss shape with an insulating material is provided so as to protrude from the surface of the first high-frequency electrode 21a facing the second high-frequency electrode 21b.
  • the gap maintaining portion 27B is in contact with the surface of the second high-frequency electrode 21b facing the first high-frequency electrode 21a, and the distance between the electrode surfaces of the first high-frequency electrode 21a and the second high-frequency electrode 21b is constant. This is for maintaining the distance ⁇ (see FIG. 2). Therefore, the protrusion height of the gap maintaining portion 27B from the energy application surface of the first high-frequency electrode 21a is a constant distance ⁇ .
  • the constant distance ⁇ is configured to be a distance of 0.7 mm or less, for example.
  • the cutter 36 is provided so as to be movable along the axial direction of the shaft 12 as in the first embodiment described above, and the first clamping member main body 25 and the second clamping member are provided.
  • the member main body 26B is provided with cutter guide grooves 23a and 24a similar to those described above.
  • the gap maintaining portion 27B is erected in a state of being embedded at the distal end side end in the cutter guide groove 23a, for example, as shown in FIGS.
  • the seesaw-type jaw as employed in the present embodiment can realize parallelism between a pair of clamping surfaces in a wider opening range of the clamping part (that is, not only in a state where the clamping part is closed but also in a closed state). Even if the state is somewhat opened, it is possible to maintain the parallelism of the pair of clamping surfaces). Therefore, in the configuration of the present embodiment, it is preferable to employ a configuration in which gap maintaining portions are provided at a plurality of locations as shown in FIGS. 12, 14, 17, and 19, for example.
  • the treatment instrument includes the seesaw type jaw, so that the living body to be treated can be obtained.
  • the pair of clamping surfaces can be easily made parallel without depending on the thickness of the tissue. In such a highly parallel treatment instrument, the distance between the pair of clamping surfaces can be more reliably maintained at the constant distance ⁇ .
  • one of the pair of clamping members is fixed to the shaft, and the other clamping member is configured to be rotatable with respect to the shaft.
  • FIG. 21 to FIG. 23 show a third embodiment of the present invention
  • FIG. 21 is a perspective view showing the configuration of a therapeutic treatment system including a circular type therapeutic treatment instrument
  • FIG. FIG. 23 is a longitudinal sectional view showing the treatment instrument in a state in which the detachable side clamping part is spaced apart from FIG. 23, and FIG.
  • This embodiment is an embodiment in which the therapeutic treatment tool (energy treatment tool) is a circular type bipolar therapeutic treatment tool 102 for performing treatment through, for example, the abdominal wall or outside the abdominal wall.
  • the treatment system 101 includes a treatment instrument 102, an energy source 4 having a display unit 43, and a foot switch 6 having a pedal 6a.
  • the treatment instrument 102 includes a handle 111, a shaft 112, and an openable / closable clamping portion 113.
  • the handle 111 is connected to the energy source 4 via the cable 16.
  • the holding part 113 includes a main body side holding part 123 and a detachable side holding part 124 configured to be able to perform separation / proximity with respect to the main body side holding part 123.
  • the handle 111 is provided with a clamping portion opening / closing knob 114 which is a rotatable operation member and a cutter driving lever 115 which is a swingable operation member.
  • a clamping portion opening / closing knob 114 which is a rotatable operation member
  • a cutter driving lever 115 which is a swingable operation member.
  • the shaft 112 is formed in an elongated cylindrical shape. In the example shown in FIG. 21, the shaft 112 is appropriately curved in consideration of the insertion property into the living tissue. Of course, the shaft 112 may be formed in a straight line.
  • the clamping part 113 is arrange
  • the sandwiching portion 113 is a first sandwiching member formed at the tip of the shaft 112 and is also referred to as a first jaw, and a second sandwiching member that can be attached to and detached from the body sandwiching portion 123.
  • a detachable side holding portion 124 also called a second jaw is provided.
  • the main body side holding portion 123 includes a cylindrical body 126, a frame 133, and a current-carrying pipe 131.
  • the cylindrical body 126 and the frame 133 have insulating properties.
  • the cylindrical body 126 is connected to the tip of the shaft 112.
  • the frame 133 is disposed on the inner peripheral side of the cylindrical body 126 while being fixed to the cylindrical body 126.
  • the frame 133 has a cylindrical shape with a central axis portion serving as a communication hole.
  • An energization pipe 131 is disposed in the communication hole in the central axis portion of the frame 133 so as to be movable within a predetermined range along the central axis of the frame 133.
  • the energization pipe 131 is formed in a cylindrical shape from a conductive material, and is connected to the energy source 4 via the shaft 112, the handle 111, and the cable 16. The movement of the energizing pipe 131 along the central axis of the frame 133 is performed by the rotation of the holding portion opening / closing knob 114.
  • a cutter guide groove (space) 123 a is formed between the cylindrical body 126 and the frame 133.
  • a cylindrical cutter 136 is disposed in the cutter guide groove 123a.
  • the base end portion of the cutter 136 is fixed to the outer peripheral surface of the distal end portion of the cutter pusher 135 disposed inside the shaft 112.
  • the base end portion of the cutter pusher 135 is connected to the cutter driving lever 115 of the handle 111 via a mechanism (not shown). For this reason, when the cutter driving lever 115 of the handle 111 is operated, the cutter 136 moves in the direction along the central axis of the frame 133 via the cutter pusher 135 and moves forward and backward.
  • a first high-frequency electrode 121a and a resistance heater 122 are disposed on the outer peripheral side of the cutter guide groove 123a at the tip of the cylindrical body 126 as an energy output unit.
  • the first high-frequency electrode 121a is for outputting high-frequency energy, and is a member formed in an annular shape with a conductive material.
  • the energy application surface of the first high-frequency electrode 121a is a sandwiching surface and is, for example, flush with the holding surface 126b of the cylindrical body 126.
  • the tip of the first high-frequency electrode conducting line 121e is fixed to the first high-frequency electrode 121a.
  • the first high-frequency electrode energization line 121 e is connected to the energy source 4 via the main body side clamping portion 123, the shaft 112, the handle 111, and the cable 16.
  • a plurality of resistance heaters 122 are provided, and are discretely arranged on the circumference of the back surface of the first high-frequency electrode 121a at appropriate regular intervals.
  • the tip of the heater energization line 122a is fixed to the resistance heater 122.
  • the heater energization line 122 a is connected to the energy source 4 via the main body side clamping portion 123, the shaft 112, the handle 111, and the cable 16.
  • An annular gap maintaining portion 129 is formed on the inner peripheral side of the first high-frequency electrode 121a facing the cutter guide groove 123a from the energy application surface of the first high-frequency electrode 121a toward the separation-side clamping portion 124. It protrudes toward you.
  • the inner peripheral surface of the gap maintaining portion 129 is flush with the outer peripheral surface of the cutter guide groove 123a.
  • the gap maintaining unit 129 contacts an energy application surface of a second high-frequency electrode 121b, which will be described later, and sets the distance between the electrode surfaces of the first high-frequency electrode 121a and the second high-frequency electrode 121b to a certain distance ⁇ (FIG. 22). For reference).
  • the protrusion height of the gap maintaining portion 27B from the energy application surface of the first high-frequency electrode 121a is a constant distance ⁇ .
  • the constant distance ⁇ is configured to be a distance of 0.7 mm or less (or 0.2 mm or more), for example.
  • the detachable side clamping portion 124 includes an energizing shaft 132 having an axial shape, and a head portion 125 provided on the distal end side of the energizing shaft 132.
  • the energizing shaft 132 is formed in a cylindrical shape from a conductive material, the distal end portion is fixed to the head portion 125, the proximal end portion is formed in a tapered shape, and is attached to and detached from the energizing pipe 131 through irregularities. Engaged as possible.
  • the energizing shaft 132 is insulated by coating or the like on the outer surface except for the portion that comes into contact with the energizing pipe 131.
  • a second high-frequency electrode 121b formed in an annular shape with a conductive material is disposed so as to face the first high-frequency electrode 121a of the body-side clamping portion 123.
  • the energy application surface of the second high-frequency electrode 121b is a clamping surface and is, for example, flush with the holding surface 125b of the separation-side clamping unit 124.
  • One end of the second energization line 121f is fixed to the second high-frequency electrode 121b.
  • the other end of the second energization line 121f is electrically connected to the energization shaft 132.
  • the second high-frequency electrode 121b and the energization pipe 131 are electrically connected. Accordingly, the second high-frequency electrode 121b is connected to the energy source 4 via the second energization line 121f, the energization shaft 132, the energization pipe 131, the shaft 112, the handle 111, and the cable 16.
  • An annular cutter receiving portion 127 for receiving the blade of the cutter 136 is formed on the inner peripheral side of the second high-frequency electrode 121b disposed in the head portion 125.
  • the receiving surface of the cutter receiving portion 127 is on the inner side of the head portion 125 (the side away from the main body side holding portion 123) than the holding surface 125b of the detachable side holding portion 124.
  • the clamping portion 113 and the shaft 112 of the treatment instrument 102 are inserted into the abdominal cavity through the abdominal wall, for example. And the clamping part 113 is made to oppose the biological tissue which wants to treat.
  • the operator operates the holding portion opening / closing knob 114 of the handle 111 to rotate it clockwise, for example.
  • the detachable side clamping part 124 moves in the distal direction while maintaining the parallelism of the pair of clamping surfaces, and the detachable side clamping part 124 is detached from the main body side clamping part 123.
  • the living tissue to be treated is disposed between the main body side holding portion 123 and the detachable side holding portion 124 in the opened state.
  • the surgeon operates the holding portion opening / closing knob 114 of the handle 111 and rotates it counterclockwise, for example.
  • the detachable side clamping part 124 approaches the main body side clamping part 123 side while maintaining the parallelism of the pair of clamping surfaces, and the living tissue to be treated is separated from the first high-frequency electrode 121a of the main body side clamping part 123 and the detachable side. It is held between the second high-frequency electrode 121b of the holding part 124.
  • the gap maintaining portion 129 is provided, the distance between the electrode surfaces of the first high-frequency electrode 121a and the second high-frequency electrode 121b is maintained at a certain distance ⁇ or more.
  • the biological tissue is heated and dehydrated by Joule heat by the application of high-frequency energy, and the biological tissue is coagulated by the application of resistance heating energy, as in the first embodiment described above.
  • the living tissue is denatured continuously (substantially annular or arcuate).
  • the distance between the electrode surfaces of the first high-frequency electrode 121a and the second high-frequency electrode 121b is maintained at a certain distance ⁇ or more by the action of the gap maintaining portion 129.
  • the operator operates the cutter driving lever 115 to move the cutter 136 in the distal direction.
  • the solidified living tissue is cut into a circular shape or an arc shape.
  • the operator operates the clamping unit opening / closing knob 114 to open the clamping unit 113.
  • the grasped living tissue is detached from the clamping unit 113.
  • gap maintaining portion 129 having an annular shape
  • a plurality of gap maintaining portions having a boss shape may be discretely arranged along the cutter guide groove 123a at regular intervals. .
  • the gap maintaining portion 129 is provided adjacent to the cutter guide groove 123a so as to be flush with the cutter guide groove 123a.
  • the gap maintaining portion 129 may be provided so as to be embedded in the cutter guide groove 123a instead. .
  • the gap maintaining portion is provided only in the main body side holding portion, it may be provided only in the detachable side holding portion, or may be provided in both the main body side holding portion and the detaching side holding portion. This is the same as the embodiment.
  • the configuration example in which the energy output unit is provided on both of the pair of sandwiching surfaces (that is, the bipolar treatment instrument) is described as the treatment instrument. It is also possible to have a configuration (that is, a monopolar type treatment instrument) including only an energy output unit.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various aspects of the invention can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, you may delete some components from all the components shown by embodiment.
  • the constituent elements over different embodiments may be appropriately combined.

Abstract

A treatment tool which comprises: a pair of openable/closable holding portions which hold bodily tissue with an opposing pair of holding faces; an energy output portion which is provided on at least one of the pair of holding portions and which comprises, as at least one of the pair of holding faces, an energy applying face which applies high frequency energy to the bodily tissue and then applies resistance heating energy to the bodily tissue; and a gap maintaining portion which protrudes from at least one of the pair of holding faces and maintains the distance between the opposing pair of holding faces at a constant distance of 0.7 mm or less when the pair of holding portions is closed.

Description

治療処置具Treatment instrument
 本発明は、生体組織にエネルギーを加えて処置するための治療処置具に関する。 The present invention relates to a therapeutic treatment instrument for treating a living tissue by applying energy.
 従来より、生体組織にエネルギーを加えて処置するための治療処置具および治療処置方法は、種々のものが提案されている。 Conventionally, various treatment tools and treatment methods for treating a living tissue by applying energy have been proposed.
 ここに、生体組織を例えば接合するために印加するエネルギーとしては、幾つかの例として、高周波エネルギーや抵抗加熱エネルギーが挙げられる。例えば高周波エネルギーを電極から印加する場合には、電極同士の短絡を防ぐために、電極間の最小間隔を規定するギャップ維持手段が設けられる。 Here, examples of the energy applied to join the living tissues, for example, include high-frequency energy and resistance heating energy. For example, when high frequency energy is applied from the electrodes, a gap maintaining means for defining a minimum distance between the electrodes is provided in order to prevent a short circuit between the electrodes.
 例えば、米国特許出願公開公報2005/0154387A1の段落[0062]、図9、図20、図24B等には、導電性シール面122等に1つ以上のストップ部材175が配置されること、このストップ部材175は好ましくはシーリング中のジョー間の距離をギャップ距離Gに規定すること、このギャップ距離Gが約0.001インチ(約0.03mm)から約0.006インチ(約0.16mm)であること、さらにストップ部材175はナイフチャンネル115の何れかの側に位置していることが好ましいことが記載されている(ただし、図9を見れば分かるように、ストップ部材175はナイフチャンネル115に近い位置に設けられているだけではなく、ナイフチャンネル115から離れた導電性シール面122の先端部にも設けられている)。 For example, in paragraph [0062], FIG. 9, FIG. 20, FIG. 24B, etc. of US Patent Application Publication No. 2005 / 0154387A1, one or more stop members 175 are disposed on the conductive seal surface 122 and the like. Member 175 preferably defines the distance between the jaws during sealing to a gap distance G, the gap distance G being from about 0.001 inch to about 0.006 inch. In addition, it is described that the stop member 175 is preferably located on either side of the knife channel 115 (however, as can be seen in FIG. The tip of the conductive sealing surface 122 is not only provided at a close position, but is remote from the knife channel 115. It is also provided).
 また、米国特許出願公開公報2007/0078458A1の段落[0106]、図23にも、上述した米国特許出願公開公報2005/0154387A1と類似する記載がなされている。 Also, paragraph [0106] of FIG. 23 of US Patent Application Publication No. 2007 / 0078458A1 and FIG. 23 include a description similar to that of US Patent Application Publication No. 2005 / 0154387A1 described above.
 さらに、米国特許出願公開公報2008/0015575A1の段落[0042]、[0059]、図7等には、ジョー部材の1つが、伝導性シール面632等の内側表面に位置する少なくとも1つのストップ部材675を備えても良く、特に血管封止に関しては、ギャップ距離が約0.001インチ(約0.03mm)~約0.006インチ(約0.16mm)にあることが記載されている。 Further, in paragraphs [0042], [0059], FIG. 7, etc. of US Patent Application Publication No. 2008 / 0015575A1, at least one stop member 675 where one of the jaw members is located on an inner surface such as the conductive seal surface 632 is shown. In particular, with regard to vascular sealing, it is described that the gap distance is from about 0.001 inch (about 0.03 mm) to about 0.006 inch (about 0.16 mm).
 すなわち、上記各公報には、共通して、電極間の距離を約0.03~0.16mmにすると良いことが記載されている。 That is, in each of the above publications, it is described in common that the distance between the electrodes should be about 0.03 to 0.16 mm.
 ただし、電極間の距離をどの程度に設定すれば適切な組織封止、接合等の処理を行うことができるかは、処置対象とする生体組織が、血管や腸管、実質組織等の様々な組織の何れであるかに応じて異なる。これに対して、処置対象とする生体組織毎に電極間の距離を変更する技術も提案されているが、これは必ずしも現実的な解決手段であるとはいえない。 However, the distance between the electrodes should be set to determine whether appropriate tissue sealing, bonding, etc. can be performed. It depends on which one of them. On the other hand, a technique for changing the distance between the electrodes for each living tissue to be treated has also been proposed, but this is not necessarily a practical solution.
 従って、電極間の距離を対象組織毎に変更することなく、治療処置を、複数種類の組織に対して行うことができるような現実的な解決手段が望まれている。 Therefore, there is a demand for a practical solution that can perform therapeutic treatment on a plurality of types of tissues without changing the distance between the electrodes for each target tissue.
 本発明は上記事情に鑑みてなされたものであり、電極間の距離を対象組織毎に変更することなく、治療処置を、複数種類の組織に対して行うことができる治療処置具を提供することを目的としている。 The present invention has been made in view of the above circumstances, and provides a treatment instrument capable of performing treatment on a plurality of types of tissues without changing the distance between electrodes for each target tissue. It is an object.
 本発明の一態様による治療処置具は、生体組織にエネルギーを加えて処置するための治療処置具において、対向する一対の挟持面により前記生体組織を挟持するものであり開閉可能な一対の挟持部と、前記一対の挟持部の少なくとも一方に設けられ高周波エネルギーを前記生体組織へ印加しその後に抵抗加熱エネルギーを該生体組織へ印加するエネルギー印加面を前記一対の挟持面の少なくとも一方として備えるエネルギー出力部と、前記一対の挟持面の少なくとも一方から突出されており前記一対の挟持部が閉じた際に対向する前記一対の挟持面間の距離を0.7mm以下の一定距離に維持するためのギャップ維持部と、を具備したものである。 A therapeutic treatment instrument according to one aspect of the present invention is a therapeutic treatment instrument for treating a living tissue by applying energy, and sandwiches the living tissue with a pair of opposing clamping surfaces, and can be opened and closed. And an energy output provided as at least one of the pair of sandwiching surfaces, which is provided in at least one of the pair of sandwiching portions and applies high-frequency energy to the living tissue and then applies resistance heating energy to the living tissue. And a gap for projecting from at least one of the pair of sandwiching surfaces and maintaining a distance between the pair of sandwiching surfaces facing each other when the pair of sandwiching portions are closed at a constant distance of 0.7 mm or less And a maintenance unit.
本発明の第1の実施形態における、リニアタイプの治療処置具を備えた治療処置システムの構成を示す斜視図。The perspective view which shows the structure of the therapeutic treatment system provided with the linear type therapeutic treatment tool in the 1st Embodiment of this invention. 上記第1の実施形態における治療処置具の、シャフトおよび閉じた状態の挟持部を示す縦断面図。The longitudinal cross-sectional view which shows the clamping part of the closed state of the shaft of the treatment tool in the said 1st Embodiment. 上記第1の実施形態における治療処置具の、シャフトおよび開いた状態の挟持部を示す縦断面図。The longitudinal cross-sectional view which shows the clamping part of the open state of the shaft of the treatment tool in the said 1st Embodiment. 上記第1の実施形態における治療処置具の第1の挟持部材を示す平面図。The top view which shows the 1st clamping member of the treatment tool in the said 1st Embodiment. 上記第1の実施形態における治療処置具の第1の挟持部材の、図4における5-5断面図。FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4 of the first clamping member of the treatment instrument in the first embodiment. 上記第1の実施形態において、抵抗加熱ヒータが設けられている第1の高周波電極の裏面を示す斜視図。The perspective view which shows the back surface of the 1st high frequency electrode in which the resistance heater is provided in the said 1st Embodiment. 上記第1の実施形態において、第1の高周波電極の裏面に設けられている抵抗加熱ヒータの他の構成例を示す斜視図。The perspective view which shows the other structural example of the resistance heater provided in the back surface of the 1st high frequency electrode in the said 1st Embodiment. 上記第1の実施形態において、第1の組織サンプルに対してギャップを異ならせてエネルギーを印加したときの、封止された生体組織の耐圧性能および目標達成率の実験例を示すグラフ。In the said 1st Embodiment, the graph which shows the experimental example of the pressure | voltage resistant performance and target achievement rate of the sealed biological tissue when energy is applied with different gaps with respect to the first tissue sample. 上記第1の実施形態において、第2の組織サンプルに対してギャップを異ならせてエネルギーを印加したときの、封止された生体組織の耐圧性能および目標達成率の実験例を示すグラフ。In the said 1st Embodiment, the graph which shows the experimental example of the pressure | voltage resistant performance and target achievement rate of the sealed biological tissue when applying a different gap with respect to a 2nd tissue sample. 上記第1の実施形態における治療処置システムの主に電気的な構成を示すブロック図。The block diagram which shows mainly the electrical structure of the treatment system in the said 1st Embodiment. 上記第1の実施形態の治療処置システムを用いて生体組織に高周波エネルギーおよび熱エネルギーを用いた処置を行う際の処理を示すフローチャート。The flowchart which shows the process at the time of performing the treatment using a high frequency energy and a thermal energy to a biological tissue using the therapeutic treatment system of the said 1st Embodiment. 上記第1の実施形態の第1の変形例における治療処置具の第1の挟持部材を示す平面図。The top view which shows the 1st clamping member of the treatment tool in the 1st modification of the said 1st Embodiment. 上記第1の実施形態の第1の変形例における治療処置具の第1の挟持部材の図12における13-13断面図。FIG. 13 is a cross-sectional view taken along line 13-13 of FIG. 12 of the first holding member of the treatment instrument in the first modification of the first embodiment. 上記第1の実施形態の第2の変形例における治療処置具の第1の挟持部材を示す平面図。The top view which shows the 1st clamping member of the treatment tool in the 2nd modification of the said 1st Embodiment. 上記第1の実施形態の第3の変形例における治療処置具の第1の挟持部材を示す平面図。The top view which shows the 1st clamping member of the treatment tool in the 3rd modification of the said 1st Embodiment. 上記第1の実施形態の第3の変形例における治療処置具の第1の挟持部材の図15における16-16断面図。FIG. 16-16 is a cross-sectional view taken along the line 16-16 of FIG. 15 of the first holding member of the treatment instrument in the third modification of the first embodiment. 上記第1の実施形態の第4の変形例における治療処置具の第1の挟持部材を示す平面図。The top view which shows the 1st clamping member of the treatment tool in the 4th modification of the said 1st Embodiment. 上記第1の実施形態の第4の変形例における治療処置具の第1の挟持部材の図17における18-18断面図。FIG. 18-18 is a cross-sectional view taken along the line 18-18 in FIG. 17 of the first holding member of the treatment instrument in the fourth modification of the first embodiment. 上記第1の実施形態の第5の変形例における治療処置具の第1の挟持部材を示す平面図。The top view which shows the 1st clamping member of the treatment tool in the 5th modification of the said 1st Embodiment. 本発明の第2の実施形態における治療処置具の、シーソータイプとして構成された挟持部の構成を示す側面図。The side view which shows the structure of the clamping part comprised as a seesaw type of the treatment tool in the 2nd Embodiment of this invention. 本発明の第3の実施形態におけるサーキュラタイプの治療処置具を備えた治療処置システムの構成を示す斜視図。The perspective view which shows the structure of the therapeutic treatment system provided with the circular type therapeutic treatment tool in the 3rd Embodiment of this invention. 上記第3の実施形態において、本体側挟持部に対して離脱側挟持部を離隔させた状態の治療処置具を示す縦断面図。In the said 3rd Embodiment, the longitudinal cross-sectional view which shows the treatment instrument in the state which separated the detachment | leave side clamping part with respect to the main body side clamping part. 上記第3の実施形態において、治療処置具の本体側挟持部の挟持面の構成を示す平面図。The top view which shows the structure of the clamping surface of the main body side clamping part of a treatment instrument in the said 3rd Embodiment.
 以下、図面を参照して本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[第1の実施形態]
 図1から図19は本発明の第1の実施形態を示したものであり、図1はリニアタイプの治療処置具を備えた治療処置システムの構成を示す斜視図である。
[First Embodiment]
FIG. 1 to FIG. 19 show a first embodiment of the present invention, and FIG. 1 is a perspective view showing a configuration of a treatment system including a linear type treatment device.
 本実施形態は、治療処置具(エネルギー処置具)が、例えば腹壁を通して処置を行うための、リニアタイプの治療処置具2である実施形態となっている。ただし、腹壁を通して体外に処置対象の生体組織を取り出して処置を行うオープン用のリニアタイプの治療処置具であっても構わない。 This embodiment is an embodiment in which the therapeutic treatment tool (energy treatment tool) is a linear type therapeutic treatment tool 2 for performing a treatment through, for example, the abdominal wall. However, it may be an open linear type treatment instrument that takes out a living tissue to be treated out of the body through the abdominal wall and performs treatment.
 図1に示すように、治療処置システム1は、治療処置具2と、エネルギー源4と、フットスイッチ6とを備えている。 As shown in FIG. 1, the therapeutic treatment system 1 includes a therapeutic treatment instrument 2, an energy source 4, and a foot switch 6.
 治療処置具2は、ハンドル11と、このハンドル11の先端側に延設された細長のシャフト12と、このシャフト12の先端側に配設された開閉可能な挟持部13とを備えている。 The treatment instrument 2 includes a handle 11, an elongated shaft 12 extending on the distal end side of the handle 11, and an openable and closable clamping portion 13 disposed on the distal end side of the shaft 12.
 ハンドル11は、ケーブル16を介して、表示部43を有するエネルギー源4に接続されている。エネルギー源4には、ペダル6aを有するフットスイッチ6(ただし、フットスイッチに限るものではなく、例えばハンドスイッチ等であっても構わない)が接続されている。このフットスイッチ6のペダル6aを術者が操作することにより、エネルギー源4から治療処置具2へのエネルギーの供給のON/OFFが切り換えられるようになっている。 The handle 11 is connected to the energy source 4 having the display unit 43 via the cable 16. The energy source 4 is connected to a foot switch 6 having a pedal 6a (but not limited to a foot switch, for example, a hand switch). When the operator operates the pedal 6a of the foot switch 6, ON / OFF of energy supply from the energy source 4 to the treatment instrument 2 can be switched.
 ハンドル11は、術者が握り易い形状、例えば略L字状に形成されている。ハンドル11の一端には、シャフト12が配設されている。一方、このシャフト12と同軸上となるハンドル11の基端からは、上述したケーブル16が延出されている。また、ハンドル11の他端側は、術者に手で保持される把持部11aとなっている。 The handle 11 is formed in a shape that is easy for an operator to grip, for example, a substantially L-shape. A shaft 12 is disposed at one end of the handle 11. On the other hand, the cable 16 described above extends from the proximal end of the handle 11 that is coaxial with the shaft 12. Further, the other end side of the handle 11 is a grasping portion 11a that is held by a surgeon with a hand.
 ハンドル11は、把持部11aに並設されるように、回動操作可能に設けられた挟持部開閉レバー14を備えている。この挟持部開閉レバー14は、ハンドル11の略中央部分において、シャフト12の外殻を構成する後述するシース34(図2および図3参照)の基端部に連結されている。この挟持部開閉レバー14をハンドル11の把持部11aに対して近接または離隔させるように操作すると、シース34がシャフト12の軸方向に沿って移動する。シース34がシャフト12の軸方向先端側へ移動すると挟持部13が閉じ、軸方向基端側へ移動すると挟持部13が開くようになっている。 The handle 11 is provided with a clamping part opening / closing lever 14 provided so as to be rotatable so as to be arranged in parallel with the gripping part 11a. The sandwiching portion opening / closing lever 14 is connected to a proximal end portion of a later-described sheath 34 (see FIGS. 2 and 3) constituting the outer shell of the shaft 12 at a substantially central portion of the handle 11. When the sandwiching section opening / closing lever 14 is operated so as to approach or separate from the gripping section 11 a of the handle 11, the sheath 34 moves along the axial direction of the shaft 12. When the sheath 34 moves to the distal end side in the axial direction of the shaft 12, the sandwiching portion 13 is closed, and when the sheath 34 moves to the proximal end side in the axial direction, the sandwiching portion 13 is opened.
 ハンドル11は、さらに、挟持部開閉レバー14に並設されるように、回動操作可能に設けられたカッタ駆動レバー15を備えている。このカッタ駆動レバー15をハンドル11の把持部11aに対して近接または離隔させるように操作すると、後述する切断部材であるカッタ36(図2および図3参照)がシャフト12の軸方向に沿って移動し、生体組織の切断が行われるようになっている。 The handle 11 is further provided with a cutter drive lever 15 provided so as to be rotatable so as to be juxtaposed with the holding portion opening / closing lever 14. When the cutter driving lever 15 is operated so as to approach or separate from the grip portion 11a of the handle 11, a cutter 36 (see FIGS. 2 and 3), which will be described later, moves along the axial direction of the shaft 12. In addition, the biological tissue is cut.
 図2は治療処置具のシャフトおよび閉じた状態の挟持部を示す縦断面図、図3は治療処置具のシャフトおよび開いた状態の挟持部を示す縦断面図である。 FIG. 2 is a longitudinal sectional view showing the shaft of the treatment instrument and the sandwiched portion in the closed state, and FIG. 3 is a longitudinal sectional view showing the shaft of the treatment instrument and the sandwiched portion in the opened state.
 図2および図3に示すように、シャフト12は、例えば略円筒形状をなす筒体33と、この筒体33の外周に対して摺動可能に配設された薄肉円筒形状のシース34とを備えている。筒体33は、その基端部でハンドル11(図1参照)に固定されている。シース34は、筒体33の軸方向に沿ってスライド可能である。 As shown in FIGS. 2 and 3, the shaft 12 includes, for example, a cylindrical body 33 having a substantially cylindrical shape, and a thin-cylindrical sheath 34 that is slidable with respect to the outer periphery of the cylindrical body 33. I have. The cylindrical body 33 is fixed to the handle 11 (see FIG. 1) at its proximal end. The sheath 34 is slidable along the axial direction of the cylindrical body 33.
 筒体33の外周には、筒体33の軸方向に沿った溝33aが形成されている。この溝33aには、第1の高周波電極用通電ライン21eとヒータ用通電ライン22aとが配設されている。第1の高周波電極用通電ライン21eは後述する第1の高周波電極21aに接続され、ヒータ用通電ライン22aは後述する抵抗加熱ヒータ22に接続されている。 A groove 33 a along the axial direction of the cylinder 33 is formed on the outer periphery of the cylinder 33. A first high-frequency electrode energization line 21e and a heater energization line 22a are disposed in the groove 33a. The first high-frequency electrode energization line 21e is connected to a first high-frequency electrode 21a described later, and the heater energization line 22a is connected to a resistance heater 22 described later.
 また、筒体33の内部には、第2の高周波電極用通電ライン21fが挿通されている。この第2の高周波電極用通電ライン21fは、後述する第2の高周波電極21bに接続されている。 The second high-frequency electrode energization line 21 f is inserted into the cylindrical body 33. The second high-frequency electrode conducting line 21f is connected to a second high-frequency electrode 21b described later.
 さらに、筒体33の内部には、例えば円柱状をなす駆動ロッド35がその軸方向に沿って移動可能に配設されている。この駆動ロッド35の先端部には、治療補助具としての切断部材である薄板状のカッタ36が固定されている。また、駆動ロッド35の基端部は、カッタ駆動レバー15に連結されている。従って、カッタ駆動レバー15を操作すると、駆動ロッド35を介してカッタ36が軸方向に移動する。 Furthermore, inside the cylindrical body 33, for example, a drive rod 35 having a columnar shape is disposed so as to be movable along its axial direction. A thin plate-like cutter 36, which is a cutting member as a treatment auxiliary tool, is fixed to the distal end portion of the drive rod 35. Further, the base end portion of the drive rod 35 is connected to the cutter drive lever 15. Accordingly, when the cutter drive lever 15 is operated, the cutter 36 moves in the axial direction via the drive rod 35.
 カッタ36は、その先端に、生体組織を切断するための刃36aが形成されている。このカッタ36の先端と基端との間には、軸方向のガイド孔となる長孔36bが形成されている。この長孔36bには、移動規制ピン37が係合している。この移動規制ピン37は、シャフト12の軸方向に直交する方向に延びるように、筒体33に固定されている。このため、カッタ36は、長孔36bを移動規制ピン37に係合させた状態を維持しながら、軸方向に直線移動する。そして、カッタ36は、先端方向へ移動すると、後述する第1の挟持部材23および第2の挟持部材24のカッタ案内溝23a,24a内に進入するようになっている。 The cutter 36 is formed with a blade 36a for cutting the living tissue at the tip thereof. A long hole 36 b serving as an axial guide hole is formed between the distal end and the proximal end of the cutter 36. A movement restricting pin 37 is engaged with the long hole 36b. The movement restricting pin 37 is fixed to the cylindrical body 33 so as to extend in a direction orthogonal to the axial direction of the shaft 12. For this reason, the cutter 36 linearly moves in the axial direction while maintaining the state in which the long hole 36 b is engaged with the movement restriction pin 37. When the cutter 36 moves in the distal direction, it enters into cutter guide grooves 23a, 24a of a first clamping member 23 and a second clamping member 24 described later.
 なお、カッタ36の長孔36bの、一端と、他端と、一端と他端の間と、の少なくとも3箇所には、移動規制ピン37を係止してカッタ36の移動を制御するための係止部36cが形成されている。 It should be noted that the movement restricting pins 37 are locked to control the movement of the cutter 36 in at least three places, one end, the other end, and between the one end and the other end, of the long hole 36b of the cutter 36. A locking portion 36c is formed.
 図2および図3に示すように、挟持部13は、基端部から先端部へ向かって長手方向をなす形状であり、第1のジョーとも呼ばれる第1の挟持部材23と、第2のジョーとも呼ばれる第2の挟持部材24とを基端側において回動軸を介して連結し、少なくとも一方(本実施形態では図3に示すように第2の挟持部材24)が回動軸周りに回動可能となるように構成されている。 As shown in FIGS. 2 and 3, the sandwiching portion 13 has a shape that forms a longitudinal direction from the proximal end portion toward the distal end portion, and includes a first sandwiching member 23 that is also called a first jaw, and a second jaw. A second clamping member 24, also called a second clamping member 24, is connected to the base end side via a rotation shaft, and at least one (second clamping member 24 as shown in FIG. 3 in this embodiment) rotates around the rotation shaft. It is configured to be movable.
 第1の挟持部材23および第2の挟持部材24自体は、電極やヒーターや通電ライン等の電気回路部分を除いて、全体的に絶縁性を有することが好ましい。そこで、第1の挟持部材23を構成する第1の挟持部材本体25と、第2の挟持部材24を構成する第2の挟持部材本体26とは、絶縁性の素材により形成されている。 It is preferable that the first clamping member 23 and the second clamping member 24 have insulating properties as a whole except for electric circuit portions such as electrodes, heaters, and energization lines. Therefore, the first clamping member main body 25 constituting the first clamping member 23 and the second clamping member main body 26 constituting the second clamping member 24 are formed of an insulating material.
 第1の挟持部材本体25の基端部である基部25aは、シャフト12の筒体33の先端部に固定されている。一方、第2の挟持部材本体26の基端部である基部26aは、シャフト12の軸方向に対して直交する方向に配設された支持ピン31によって、シャフト12の筒体33の先端部に回動可能に支持されている。従って、第2の挟持部材24は、支持ピン31の軸回りに回動することにより第1の挟持部材23に対して開閉可能である。さらに、この第2の挟持部材24は、例えば板バネなどの弾性部材32により、第1の挟持部材23に対して開く方向に付勢されている。 A base portion 25 a that is a base end portion of the first holding member main body 25 is fixed to a distal end portion of the cylindrical body 33 of the shaft 12. On the other hand, a base portion 26 a that is a base end portion of the second holding member main body 26 is attached to the distal end portion of the cylindrical body 33 of the shaft 12 by a support pin 31 disposed in a direction orthogonal to the axial direction of the shaft 12. It is rotatably supported. Therefore, the second clamping member 24 can be opened and closed with respect to the first clamping member 23 by rotating around the axis of the support pin 31. Further, the second clamping member 24 is urged in an opening direction with respect to the first clamping member 23 by an elastic member 32 such as a leaf spring.
 第1の挟持部材本体25および第2の挟持部材本体26を閉じたときには、両者を合わせた断面が略円形または略楕円形などの滑らかな曲面の形状になるように、第1の挟持部材本体25および第2の挟持部材本体26の外表面が形成されている。基部25a,26aの外表面も同様に滑らかな円形状に形成されているが、先端側よりもやや小径をなすように構成されているために、先端側との間に段差25c,26cを生じている。より詳しくは、第1の挟持部材本体25および第2の挟持部材本体26を閉じたときの、基部25a,26aの径はシース34の内径と略同一または僅かに小径(シャフト12の筒体33の径と略同一または僅かに大径)であり、第1および第2の挟持部材本体25,26の径はシース34の内径よりも大径である。従って、シース34を筒体33に対してスライドさせると、シース34は基部25a,26aを覆う位置までは進行可能であるが、段差25c,26cの位置において進行を停止される。 When the first sandwiching member body 25 and the second sandwiching member body 26 are closed, the first sandwiching member body has a smooth curved surface such as a substantially circular shape or a substantially elliptical shape when the two are sandwiched. 25 and the outer surface of the 2nd clamping member main body 26 are formed. The outer surfaces of the base portions 25a and 26a are similarly formed in a smooth circular shape, but are configured to have a slightly smaller diameter than the distal end side, so that steps 25c and 26c are formed between the distal ends. ing. More specifically, the diameters of the base portions 25a and 26a when the first holding member main body 25 and the second holding member main body 26 are closed are substantially the same as or slightly smaller than the inner diameter of the sheath 34 (the cylindrical body 33 of the shaft 12). The diameters of the first and second holding member bodies 25 and 26 are larger than the inner diameter of the sheath 34. Therefore, when the sheath 34 is slid with respect to the cylindrical body 33, the sheath 34 can advance to a position covering the base portions 25a and 26a, but the progress is stopped at the positions of the steps 25c and 26c.
 このような構成により、弾性部材32の付勢力に抗してシース34を先端側へスライドさせれば、図2に示すように、第1の挟持部材23および第2の挟持部材24が閉じる。一方、シース34の先端部で基部25a,26aを覆った状態から、シース34を基端側へスライドさせると、図3に示すように、弾性部材32の付勢力によって第1の挟持部材23に対して第2の挟持部材24が開く。 With this configuration, when the sheath 34 is slid toward the distal end against the urging force of the elastic member 32, the first clamping member 23 and the second clamping member 24 are closed as shown in FIG. On the other hand, when the sheath 34 is slid to the proximal end side from the state where the distal end portion of the sheath 34 covers the base portions 25a and 26a, the first clamping member 23 is moved by the urging force of the elastic member 32 as shown in FIG. On the other hand, the 2nd clamping member 24 opens.
 第1の挟持部材本体25にはカッタ案内溝23aが、第2の挟持部材本体26にはカッタ案内溝24aが、挟持部13を閉じたときに、互いに対向するように、かつシャフト12の軸方向に沿った方向となるように形成されている。これらのカッタ案内溝23a,24aは、上述したカッタ36を基端部から先端部へ向かった長手方向の中心軸に沿って挟持部13内へ案内するための構造部であり、挟持部13を閉じた状態において、2つのカッタ案内溝23a,24aを合わせて構成される孔内を、カッタ36が進退する。これら2つのカッタ案内溝23a,24aは、何れも、挟持部13の内部において先端側が終端しており、すなわち、先端側から外部へは連通していない。従って、カッタ36は、最も先端方向へ進行したときであっても、挟持部13の内部に止まることになる。 A cutter guide groove 23a is formed in the first holding member main body 25, and a cutter guide groove 24a is formed in the second holding member main body 26 so as to face each other when the holding portion 13 is closed. It is formed to be a direction along the direction. These cutter guide grooves 23a and 24a are structural portions for guiding the cutter 36 described above into the clamping portion 13 along the central axis in the longitudinal direction from the proximal end portion toward the distal end portion. In the closed state, the cutter 36 advances and retreats in a hole formed by combining the two cutter guide grooves 23a and 24a. Both of these two cutter guide grooves 23a and 24a are terminated at the leading end side inside the clamping portion 13, that is, are not communicated from the leading end side to the outside. Accordingly, the cutter 36 stops inside the clamping unit 13 even when it is most advanced in the distal direction.
 図4は治療処置具の第1の挟持部材を示す平面図、図5は治療処置具の第1の挟持部材の図4における5-5断面図である。 FIG. 4 is a plan view showing a first holding member of the treatment instrument, and FIG. 5 is a cross-sectional view of the first holding member of the treatment tool in FIG.
 図2~図5に示すように、第1の挟持部材本体25には保持面25bが形成されていて、この保持面25bに高周波エネルギーを生体組織へ印加するためのエネルギー出力部として第1の高周波電極21aが配設されている。また、図2、図3に示すように、第2の挟持部材本体26には保持面26bが形成されていて、この保持面26bに高周波エネルギーを生体組織へ印加するためのエネルギー出力部として第2の高周波電極21bが配設されている。これら第1の高周波電極21aおよび第2の高周波電極21bは、導電性材料で形成された部材である。 As shown in FIGS. 2 to 5, a holding surface 25b is formed on the first holding member body 25, and a first output as an energy output unit for applying high-frequency energy to the living tissue is applied to the holding surface 25b. A high frequency electrode 21a is provided. As shown in FIGS. 2 and 3, a holding surface 26b is formed on the second clamping member main body 26, and the holding surface 26b serves as an energy output unit for applying high-frequency energy to the living tissue. Two high-frequency electrodes 21b are provided. The first high-frequency electrode 21a and the second high-frequency electrode 21b are members made of a conductive material.
 図4に示すように、第1の高周波電極21aは、保持面25bの端縁よりも内周側に収まるような平板形状に形成されていて、第1の挟持部材23の軸方向に沿ったカッタ案内溝23aが上述したように挟持部13内で終端するように形成されているために、例えば略U字状の平板となっている。 As shown in FIG. 4, the first high-frequency electrode 21 a is formed in a flat plate shape that fits on the inner peripheral side with respect to the edge of the holding surface 25 b, and extends along the axial direction of the first clamping member 23. Since the cutter guide groove 23a is formed so as to terminate in the clamping portion 13 as described above, it is a substantially U-shaped flat plate, for example.
 第2の高周波電極21bも、図4に示した第1の高周波電極21aとほぼ同様に、カッタ案内溝24aが挟持部13内で終端するように形成されているために、例えば略U字状の平板となっている。 The second high-frequency electrode 21b is also formed in such a manner that the cutter guide groove 24a terminates in the clamping portion 13 in substantially the same manner as the first high-frequency electrode 21a shown in FIG. It is a flat plate.
 そして、第1の挟持部材本体25のカッタ案内溝23a内の先端側終端に絶縁素材(非導電性の材料)で形成されたギャップ維持部27が、第2の挟持部材本体26のカッタ案内溝24a内の先端側終端に絶縁素材で形成されたギャップ維持部28が、それぞれ設けられている。これらのギャップ維持部27,28は、カッタ案内溝23a,24a内にそれぞれ埋設された状態で立設され、一対の挟持面(第1の高周波電極21aのエネルギー印加面と第2の高周波電極21bのエネルギー印加面)からそれぞれ突出されている。ここに、ギャップ維持部27,28を構成する絶縁素材の具体例としては、非導電性処理を施した金属、非導電性のセラミックス、または非導電性の樹脂などが挙げられ、これらの内の少なくとも1つの材料によりギャップ維持部27,28が形成されている。従って、ギャップ維持部27,28は、生体組織に当接しても、電気エネルギーである高周波エネルギーの印加には寄与しない。 A gap maintaining portion 27 formed of an insulating material (non-conductive material) at the end of the front end of the cutter guide groove 23a of the first holding member main body 25 is formed into a cutter guide groove of the second holding member main body 26. A gap maintaining portion 28 made of an insulating material is provided at the end on the front end side in 24a. These gap maintaining portions 27 and 28 are erected in a state of being embedded in the cutter guide grooves 23a and 24a, respectively, and a pair of clamping surfaces (the energy application surface of the first high-frequency electrode 21a and the second high-frequency electrode 21b). Projecting from the energy application surface). Specific examples of the insulating material constituting the gap maintaining portions 27 and 28 include a metal subjected to non-conductive treatment, a non-conductive ceramic, or a non-conductive resin. The gap maintaining portions 27 and 28 are formed of at least one material. Therefore, the gap maintaining units 27 and 28 do not contribute to the application of high-frequency energy, which is electrical energy, even if they contact the living tissue.
 また、このようなギャップ維持部27を挿通するための孔27hが、後述する図6(あるいは変形例に係る図7)に示すように、第1の高周波電極21aに設けられている。図示はしないが同様に、第2の高周波電極21bにもギャップ維持部28を挿通するための孔が設けられている。 Further, a hole 27h for inserting such a gap maintaining portion 27 is provided in the first high-frequency electrode 21a as shown in FIG. 6 (or FIG. 7 according to a modified example) described later. Similarly, although not shown, the second high-frequency electrode 21b is also provided with a hole through which the gap maintaining portion 28 is inserted.
 なお、図示の例では、ギャップ維持部27,28はカッタ案内溝23a,24aの溝幅よりも大径として記載しているが、勿論、溝幅と同じ幅となるように構成しても構わない。ただし、ギャップ維持部27,28が、図2、図3、図5等に示すような、対向する一対の挟持面(第1の高周波電極21aのエネルギー印加面と第2の高周波電極21bのエネルギー印加面)間の距離を、一箇所において一定距離に維持するためのものである場合には、大径とした方が安定性や確実性を向上することができて好ましい。 In the illustrated example, the gap maintaining portions 27 and 28 are described as having a larger diameter than the groove width of the cutter guide grooves 23a and 24a, but of course, they may be configured to have the same width as the groove width. Absent. However, the gap maintaining portions 27 and 28 are provided with a pair of opposing clamping surfaces (the energy application surface of the first high-frequency electrode 21a and the energy of the second high-frequency electrode 21b as shown in FIGS. 2, 3, 5, etc.). When the distance between the application surfaces) is to be maintained at a constant distance at one place, it is preferable that the diameter is large because stability and reliability can be improved.
 これらのギャップ維持部27,28は、第1の挟持部材23と第2の挟持部材24とが閉じた際に、対向する一対の挟持面となる第1の高周波電極21aのエネルギー印加面と第2の高周波電極21bのエネルギー印加面との電極面間距離を一定距離δ(図2参照)に維持するためのものである。すなわち、図2~図5に示す例においては、ギャップ維持部27,28はボスとして形成されている(ただし、ボス形状に限るものでないことは勿論である)。そして、第1の挟持部材23と第2の挟持部材24とが閉じた際にギャップ維持部27の頭部27aとギャップ維持部28の頭部28aとが突き当たり、上述した一定距離δが維持される。すなわち、第1の高周波電極21aのエネルギー印加面からのギャップ維持部27の突出高さと、第2の高周波電極21bのエネルギー印加面からのギャップ維持部28の突出高さと、を合計した高さが、一定距離δとなるように構成されている。ここに、一定距離δは、後で図8、図9を参照して説明するように、0.7mm以下の距離であり、さらに例えば0.2mm以上の距離となっている。そして、この閉じ時には、対向する一対の挟持面は、例えば平行となっている。 The gap maintaining portions 27 and 28 are arranged so that the energy application surface of the first high-frequency electrode 21a and the first application surface of the first high-frequency electrode 21a become a pair of opposing clamping surfaces when the first clamping member 23 and the second clamping member 24 are closed. This is for maintaining the distance between the electrode surfaces of the second high-frequency electrode 21b and the energy application surface at a constant distance δ (see FIG. 2). That is, in the example shown in FIGS. 2 to 5, the gap maintaining portions 27 and 28 are formed as bosses (however, of course, the shape is not limited to the boss shape). And when the 1st clamping member 23 and the 2nd clamping member 24 close, the head 27a of the gap maintenance part 27 and the head 28a of the gap maintenance part 28 contact | abut, and the above-mentioned fixed distance (delta) is maintained. The That is, the total height of the protruding height of the gap maintaining portion 27 from the energy application surface of the first high-frequency electrode 21a and the protruding height of the gap maintaining portion 28 from the energy application surface of the second high-frequency electrode 21b is The constant distance δ is configured. Here, as will be described later with reference to FIGS. 8 and 9, the constant distance δ is a distance of 0.7 mm or less, and for example, a distance of 0.2 mm or more. And at the time of this close, a pair of opposing clamping surfaces are parallel, for example.
 ただし、この一定距離δが維持されるのは、一対の挟持面間に何も挟み込まれていないか、もしくは距離δ以下の厚さ組織等が挟み込まれている場合である。従って、距離δよりも厚い組織が挟み込まれる場合までを考えに入れれば、ギャップ維持部27,28は、一対の挟持面間の距離を一定距離δ以上に維持するためのものであるということがいえる。 However, the constant distance δ is maintained when nothing is sandwiched between the pair of sandwiching surfaces or when a thickness structure or the like having a distance δ or less is sandwiched. Therefore, when considering the case where a tissue thicker than the distance δ is sandwiched, the gap maintaining portions 27 and 28 are for maintaining the distance between the pair of clamping surfaces at a certain distance δ or more. I can say that.
 上述したように、ギャップ維持部27,28は、絶縁素材により形成され、高周波エネルギーの印加には寄与しないために、第1の高周波電極21aや第2の高周波電極21bのエネルギー印加面上の中途の位置(周縁でない位置)に形成すると、生体組織へのエネルギー印加面に、離島状の不連続部分が生じてしまうことになる。このような離島状の不連続部分が接合された組織内(辺縁ではない内部)において列島状に連なっていたり線状に連結されていたりすると、接合組織の脆弱部分となってしまい、耐圧性能(図8、図9等も参照)を低下させる原因となる。 As described above, the gap maintaining portions 27 and 28 are formed of an insulating material and do not contribute to the application of high-frequency energy. Therefore, the gap maintaining portions 27 and 28 are halfway on the energy application surfaces of the first high-frequency electrode 21a and the second high-frequency electrode 21b. If it is formed at the position (position that is not the periphery), a discontinuous island-like discontinuous portion is generated on the energy application surface to the living tissue. When such discontinuous island-like discontinuous parts are connected to the islands in the structure where the discontinuous parts are connected (inside the edges) or are connected in a line, they become weak parts of the connected structure, resulting in pressure resistance. (See also FIG. 8, FIG. 9, etc.).
 これに対して、上述したような本実施形態の構成、すなわち、ギャップ維持部27,28をカッタ案内溝23a,24aの先端側終端にそれぞれ埋設した構成によれば、エネルギー印加面の連続性が維持される。従って、生体組織を接合したときに、脆弱部分を生じさせることなく、高い耐圧性能を維持することができる。 On the other hand, according to the configuration of the present embodiment as described above, that is, the configuration in which the gap maintaining portions 27 and 28 are embedded in the distal ends of the cutter guide grooves 23a and 24a, the energy application surface has continuity. Maintained. Therefore, when the living tissues are joined, high pressure resistance can be maintained without causing a fragile portion.
 さらに、図2、図3、図6に示すように、第1の高周波電極21aの裏面側には、抵抗加熱エネルギーを発生するエネルギー出力部として抵抗加熱ヒータ22が配設されている。図6は、抵抗加熱ヒータが設けられている第1の高周波電極の裏面を示す斜視図である。 Furthermore, as shown in FIGS. 2, 3, and 6, a resistance heater 22 is disposed on the back side of the first high-frequency electrode 21a as an energy output section that generates resistance heating energy. FIG. 6 is a perspective view showing the back surface of the first high-frequency electrode provided with a resistance heater.
 図2、図3、図6に示す例においては、抵抗加熱ヒータ22はチップ状をなし、第1の高周波電極21aの裏面に、第1の高周波電極21aの略U字形状に沿って離散的に配設されている。ただし、第1の高周波電極21aと抵抗加熱ヒータ22との間は絶縁されている。そして、抵抗加熱ヒータ22を発熱させると、第1の高周波電極21aにその熱が伝導され、生体組織への熱の伝達は第1の高周波電極21aを介して行われる。 In the example shown in FIGS. 2, 3, and 6, the resistance heater 22 has a chip shape, and is discretely formed on the back surface of the first high-frequency electrode 21a along the substantially U-shape of the first high-frequency electrode 21a. It is arranged. However, the first high-frequency electrode 21a and the resistance heater 22 are insulated. When the resistance heater 22 generates heat, the heat is conducted to the first high-frequency electrode 21a, and the heat is transferred to the living tissue via the first high-frequency electrode 21a.
 このような構成において、抵抗加熱ヒータ22から発生した熱を、第1の高周波電極21aへ少ない熱損失で伝えるためには、第1の挟持部材本体25は、上述したように絶縁性を有するだけでなく、さらに、断熱性を有して抵抗加熱ヒータ22の外周を覆うことが好ましい。 In such a configuration, in order to transmit the heat generated from the resistance heater 22 to the first high-frequency electrode 21a with a small heat loss, the first holding member body 25 has only an insulating property as described above. In addition, it is preferable to cover the outer periphery of the resistance heater 22 with heat insulation.
 また、図7は第1の高周波電極21aの裏面に設けられている抵抗加熱ヒータの他の構成例を示す斜視図である。 FIG. 7 is a perspective view showing another configuration example of the resistance heater provided on the back surface of the first high-frequency electrode 21a.
 図7に示す抵抗加熱ヒータ22Aは、略U字状をなす第1の高周波電極21aの形状に沿って、U字状に形成されたエネルギー出力部である。ここに、抵抗加熱ヒータ22AのU字状外周側の端縁は第1の高周波電極21aのU字状外周側の端縁からはみ出ることのない内側であり、抵抗加熱ヒータ22AのU字状内周側の端縁は第1の高周波電極21aのU字状内周側の端縁からはみ出ることのない内側である。 7 is an energy output portion formed in a U shape along the shape of the first high-frequency electrode 21a having a substantially U shape. Here, the U-shaped outer peripheral edge of the resistance heater 22A is an inner side that does not protrude from the U-shaped outer peripheral edge of the first high-frequency electrode 21a. The peripheral edge is the inner side that does not protrude from the U-shaped inner peripheral edge of the first high-frequency electrode 21a.
 このような抵抗加熱ヒータ22Aは、第1の高周波電極21aの裏面に対して、例えばスクリーンプリントされた厚膜の発熱抵抗体や、物理蒸着法(PVD)により形成された薄膜の発熱抵抗体、配設されたニクロム線、あるいはその他の発熱体などとして形成される。 Such a resistance heater 22A is, for example, a screen-printed thick film heating resistor or a thin film heating resistor formed by physical vapor deposition (PVD) on the back surface of the first high-frequency electrode 21a, It is formed as a disposed nichrome wire or other heating element.
 図2、図3に示すように、第1および第2の高周波電極21a,21bは、各基端部に設けられた第1および第2の電極コネクタ21c,21dをそれぞれ介して、第1および第2の高周波電極用通電ライン21e,21fに接続され、さらにケーブル16を介してエネルギー源4に接続されている。また、抵抗加熱ヒータ22は、ヒータ用通電ライン22aに接続され、さらにケーブル16を介してエネルギー源4に接続されている。 As shown in FIGS. 2 and 3, the first and second high- frequency electrodes 21a and 21b are connected to the first and second electrode connectors 21c and 21d provided at the base end portions, respectively. It is connected to the second high-frequency electrode energization lines 21 e and 21 f and further connected to the energy source 4 via the cable 16. The resistance heater 22 is connected to the heater energization line 22 a and further connected to the energy source 4 via the cable 16.
 このように、第1の高周波電極21aと第2の高周波電極21bの互いに対向する面は、生体組織に接触して挟持するための挟持面であり、高周波エネルギーと抵抗加熱エネルギーとを生体組織へ印加するエネルギー印加面でもある。 Thus, the mutually opposing surfaces of the first high-frequency electrode 21a and the second high-frequency electrode 21b are holding surfaces for holding and holding the living tissue, and the high-frequency energy and the resistance heating energy are transferred to the living tissue. It is also an energy application surface to be applied.
 次に、図8および図9を参照して、上述した一対の挟持面間のギャップ(一定距離δ)を異ならせたときの実験例について説明する。図8は第1の組織サンプルに対してギャップを異ならせてエネルギーを印加したときの、封止された生体組織の耐圧性能および目標達成率の実験例を示すグラフ、図9は第2の組織サンプルに対してギャップを異ならせてエネルギーを印加したときの、封止された生体組織の耐圧性能および目標達成率の実験例を示すグラフである。ここに、第1の組織サンプルと第2の組織サンプルとは、生体組織の異なる部位から取得されたサンプルである。 Next, with reference to FIG. 8 and FIG. 9, an experimental example when the gap (constant distance δ) between the pair of clamping surfaces described above is varied will be described. FIG. 8 is a graph showing an experimental example of the pressure resistance performance and target achievement rate of the sealed biological tissue when energy is applied with different gaps with respect to the first tissue sample, and FIG. 9 shows the second tissue. It is a graph which shows the experimental example of the pressure | voltage resistant performance and target achievement rate of the sealed biological tissue when energy is applied with different gaps to the sample. Here, the first tissue sample and the second tissue sample are samples obtained from different parts of the living tissue.
 図8、図9は、左半分に高周波エネルギー(HF)および抵抗加熱エネルギー(Heat)を印加したときの結果を、右半分に高周波エネルギー(HF)のみを印加したときの結果を示しており、横軸にギャップの大きさをmm単位で示している。 8 and 9 show the results when high frequency energy (HF) and resistance heating energy (Heat) are applied to the left half, and the results when only high frequency energy (HF) is applied to the right half, The horizontal axis indicates the gap size in mm.
 また、図8、図9においては、縦軸として、封止した組織の平均耐圧を任意単位(A.U.:Arbitrary Unit)で示すと共に、さらに、目標とする耐圧をどの程度の確率で達成したかを示す目標達成率をパーセント単位(%)で示している。 8 and 9, the average pressure resistance of the sealed tissue is shown in arbitrary units (AU: Arbitrary Unit) as the vertical axis, and the target pressure resistance is achieved with a certain probability. The target achievement rate indicating whether or not it has been done is shown in percent units (%).
 第1の組織サンプルに対して、図8の右半分に示すように高周波エネルギー(HF)のみを印加して処置を行った場合には、ギャップが0.1mm~1mmの何れであっても封止された組織の平均耐圧は約1.2A.U.~約1.5A.U.の間であり、ギャップに対する依存性はあまり認められない。 When the first tissue sample is treated by applying only high frequency energy (HF) as shown in the right half of FIG. 8, it is sealed regardless of the gap between 0.1 mm and 1 mm. The average pressure resistance of the stopped tissue is about 1.2A. U. To about 1.5 A. U. There is little dependence on the gap.
 また、目標達成率も、ギャップが0.5mmのときの66%を最低値として、それよりもギャップが大きくなっても小さくなっても増加しており、ギャップが0.3mmおよび1mmのときに共に82%となっている。ただし、ギャップが0.3mm以下のときには80%以上の高い目標達成率が得られることは認められる。 In addition, the target achievement rate also increases when the gap becomes larger or smaller than 66% when the gap is 0.5 mm, and when the gap is 0.3 mm and 1 mm. Both are 82%. However, it is recognized that a high target achievement rate of 80% or more can be obtained when the gap is 0.3 mm or less.
 一方、第2の組織サンプルに対して、図9の右半分に示すように高周波エネルギー(HF)のみを印加して処置を行った場合には、ギャップが0.5mm以下の場合には、封止された組織の平均耐圧が約1.3A.U以上であるが、ギャップが0.7mmになると平均耐圧が約0.8A.U.に下がり、ギャップがさらに1mmになると約0.1A.U.程度と極端に下がってしまう。 On the other hand, when the treatment is performed by applying only high frequency energy (HF) to the second tissue sample as shown in the right half of FIG. 9, if the gap is 0.5 mm or less, sealing is performed. The average pressure resistance of the stopped structure is about 1.3A. U or more, but when the gap is 0.7 mm, the average pressure resistance is about 0.8 A.m. U. When the gap is further 1 mm, it is about 0.1 A.m. U. It will drop to the extent and extremely.
 また、目標達成率も、ギャップが0.1mmのときの99%を最高値として、それよりもギャップが大きくなると徐々に減少し、ギャップが1mmのときに極端に減少して11%となる。 Also, the target achievement rate is 99% when the gap is 0.1 mm, the maximum value, and gradually decreases when the gap becomes larger, and extremely decreases to 11% when the gap is 1 mm.
 従って、図8と図9を総合すると、高周波エネルギー(HF)のみの印加により、複数種類の組織に対して処置を行う場合には、80%以上の目標達成率を得ようとすれば、ギャップを0.3mm以下にすると好ましいことが分かる。 Therefore, when FIG. 8 and FIG. 9 are taken together, if an attempt is made to achieve a target achievement rate of 80% or more when a treatment is performed on a plurality of types of tissues by applying only high frequency energy (HF), a gap will be obtained. It can be seen that it is preferable to set the thickness to 0.3 mm or less.
 次に、第1の組織サンプルに対して、図8の左半分に示すように高周波エネルギー(HF)および抵抗加熱エネルギー(Heat)を印加して処置を行った場合には、ギャップが0.7mm以下であれば封止された組織の平均耐圧として2A.U.以上が得られるが、ギャップが1mmになると平均耐圧が約1.2A.U.程度に減少する。 Next, when the first tissue sample was treated by applying high frequency energy (HF) and resistance heating energy (Heat) as shown in the left half of FIG. 8, the gap was 0.7 mm. In the following cases, the average pressure resistance of the sealed structure is 2A. U. The above is obtained, but when the gap is 1 mm, the average breakdown voltage is about 1.2 A.m. U. Decrease to a degree.
 また、目標達成率も、ギャップが0.7mm以下であれば90%弱(89%)以上の目標達成率が得られるが、ギャップが1mmになると59%の目標達成率に激減する。 Also, the target achievement rate is less than 90% (89%) or more if the gap is 0.7 mm or less, but when the gap is 1 mm, the target achievement rate is drastically reduced to 59%.
 一方、第2の組織サンプルに対して、図9の左半分に示すように高周波エネルギー(HF)および抵抗加熱エネルギー(Heat)を印加して処置を行った場合には、ギャップが0.7mm以下であれば封止された組織の平均耐圧として約2.5A.U.以上が得られるが、ギャップが1mmになると平均耐圧が約0.6A.U.程度に大きく減少する。 On the other hand, when the treatment is performed by applying high frequency energy (HF) and resistance heating energy (Heat) to the second tissue sample as shown in the left half of FIG. 9, the gap is 0.7 mm or less. If so, the average pressure resistance of the sealed tissue is about 2.5A. U. The above is obtained, but when the gap is 1 mm, the average breakdown voltage is about 0.6 A.m. U. Decrease to a large extent.
 また、目標達成率も、ギャップが0.7mm以下であれば99%以上の値が得られるが、ギャップが1mmになると極端に減少して65%となる。 Also, the target achievement rate is 99% or more when the gap is 0.7 mm or less, but when the gap is 1 mm, it is extremely reduced to 65%.
 従って、図8と図9を総合すると、高周波エネルギー(HF)および抵抗加熱エネルギー(Heat)の印加により、複数種類の組織に対して処置を行う場合には、ギャップを0.7mm以下にすれば、約90%以上の高い目標達成率を得られることが分かる。 Therefore, when FIG. 8 and FIG. 9 are combined, when a treatment is performed on a plurality of types of tissues by applying high frequency energy (HF) and resistance heating energy (Heat), the gap should be 0.7 mm or less. It can be seen that a high target achievement rate of about 90% or more can be obtained.
 こうして、処置するエネルギーが高周波エネルギー(HF)のみである場合には上述した一定距離δを0.3mm以下にすることが好ましく、処置するエネルギーが高周波エネルギー(HF)および抵抗加熱エネルギー(Heat)である場合には、上述した一定距離δを0.7mm以下にすることが好ましいということができる。 Thus, when the energy to be treated is only high-frequency energy (HF), the above-mentioned fixed distance δ is preferably set to 0.3 mm or less, and the energy to be treated is high-frequency energy (HF) and resistance heating energy (Heat). In some cases, it can be said that the above-mentioned fixed distance δ is preferably 0.7 mm or less.
 図10は治療処置システムの主に電気的な構成を示すブロック図である。 FIG. 10 is a block diagram mainly showing an electrical configuration of the treatment system.
 図10に示すように、エネルギー源4は、制御部40と、高周波エネルギー出力回路(HFエネルギー出力回路)41と、抵抗加熱ヒータ駆動回路42と、表示部43と、を備えている。制御部40には、高周波エネルギー出力回路41と、抵抗加熱ヒータ駆動回路42と、表示部43とが接続されている。また、制御部40には、フットスイッチ6も接続されている。 As shown in FIG. 10, the energy source 4 includes a control unit 40, a high frequency energy output circuit (HF energy output circuit) 41, a resistance heater driving circuit 42, and a display unit 43. A high-frequency energy output circuit 41, a resistance heater driving circuit 42, and a display unit 43 are connected to the control unit 40. Further, the foot switch 6 is also connected to the control unit 40.
 制御部40は、フットスイッチ6がONに切り換えられると、治療処置具2による処置が行われるように高周波エネルギー出力回路(HFエネルギー出力回路)41および抵抗加熱ヒータ駆動回路42を制御し、フットスイッチ6がOFFに切り換えられると該処置が停止されるように高周波エネルギー出力回路(HFエネルギー出力回路)41および抵抗加熱ヒータ駆動回路42を制御する。この治療処置の際に、制御部40は、さらに表示部43を制御して、処置経過を示す各種の表示を行わせる。また、表示部43は、制御部40に対して設定を行う際の表示機能を備えるとともに、設定操作に係る操作入力機能も備えたものとなっている。このように制御部40は、治療処置システム1を統合的に制御している。 When the foot switch 6 is switched ON, the control unit 40 controls the high frequency energy output circuit (HF energy output circuit) 41 and the resistance heater driving circuit 42 so that the treatment by the treatment instrument 2 is performed. When 6 is switched to OFF, the high-frequency energy output circuit (HF energy output circuit) 41 and the resistance heater driving circuit 42 are controlled so that the treatment is stopped. At the time of this therapeutic treatment, the control unit 40 further controls the display unit 43 to display various displays indicating the progress of the treatment. In addition, the display unit 43 has a display function when setting the control unit 40 and also has an operation input function related to the setting operation. As described above, the control unit 40 controls the therapeutic treatment system 1 in an integrated manner.
 高周波エネルギー出力回路41は、治療処置具2の高周波電極21(第1の高周波電極21aおよび第2の高周波電極21b)と電気的に接続されており、高周波電極21に高周波エネルギーを出力するものである。高周波エネルギー出力回路41は、さらに、高周波エネルギー出力回路41を流れる信号に基づいて、回路のインピーダンスを検出することができるように構成されている。治療処置システム1自体に係るインピーダンスは既知であるために、検出した回路のインピーダンスに基づいて、第1の高周波電極21aと第2の高周波電極21bとの間に挟持されている生体組織のインピーダンスZを算出することができる。従って、高周波エネルギー出力回路41は、該生体組織のインピーダンスZを計測するセンサ機能を有している。 The high frequency energy output circuit 41 is electrically connected to the high frequency electrode 21 (first high frequency electrode 21a and second high frequency electrode 21b) of the treatment instrument 2 and outputs high frequency energy to the high frequency electrode 21. is there. The high frequency energy output circuit 41 is further configured to detect the impedance of the circuit based on a signal flowing through the high frequency energy output circuit 41. Since the impedance relating to the treatment system 1 itself is known, the impedance Z of the living tissue sandwiched between the first high-frequency electrode 21a and the second high-frequency electrode 21b based on the detected impedance of the circuit. Can be calculated. Therefore, the high frequency energy output circuit 41 has a sensor function for measuring the impedance Z of the living tissue.
 抵抗加熱ヒータ駆動回路42は、治療処置具2の抵抗加熱ヒータ22と電気的に接続されており、抵抗加熱ヒータ22に抵抗加熱用の電気エネルギーを出力するものである。抵抗加熱ヒータ駆動回路42は、さらに、抵抗加熱ヒータ22の発熱温度Tを計測するセンサ機能を有している。 The resistance heater driving circuit 42 is electrically connected to the resistance heater 22 of the treatment instrument 2 and outputs electrical energy for resistance heating to the resistance heater 22. The resistance heater driving circuit 42 further has a sensor function for measuring the heat generation temperature T of the resistance heater 22.
 次に、本実施形態の治療処置システム1の作用について、図11を参照して説明する。図11は治療処置システムを用いて生体組織に高周波エネルギーおよび熱エネルギーを用いた処置を行う際の処理を示すフローチャートである。この治療処置システム1の作用はまた、生体組織にエネルギーを加えて処置するための治療処置方法を示している。 Next, the operation of the treatment system 1 of the present embodiment will be described with reference to FIG. FIG. 11 is a flowchart showing processing when a treatment using high-frequency energy and thermal energy is performed on a living tissue using the treatment system. The action of the therapeutic treatment system 1 also shows a therapeutic treatment method for treating a living tissue by applying energy.
 処置を行うに当たって、術者は、治療処置システム1の電源をONしてから、エネルギー源4の表示部43を操作して、治療処置システム1の出力条件、例えば、高周波エネルギー出力の設定電力Pset[W](具体例としては20[W]~80[W]程度)、熱エネルギー出力の設定温度Tset[℃](具体例としては100[℃]~300[℃]程度)、生体組織のインピーダンスZの閾値Z1,Z2(ここに、Z1<Z2であり、具体例としてはZ1が約1000[Ω]、Z2が約2000[Ω])等を予め設定しておく。 In performing the treatment, the surgeon turns on the power of the treatment system 1 and then operates the display unit 43 of the energy source 4 to output an output condition of the treatment system 1, for example, the set power Pset of the high frequency energy output. [W] (specifically, about 20 [W] to 80 [W]), set temperature Tset [° C.] of thermal energy output (specifically about 100 [° C.] to 300 [° C.]), The threshold values Z1 and Z2 of the impedance Z (here, Z1 <Z2, where Z1 is about 1000 [Ω] and Z2 is about 2000 [Ω]) are set in advance.
 一連の設定が終了すると、エネルギー源4の制御部40は、フットスイッチ6がONに切り換えられるのを待機する状態となる(ステップS11)。 When the series of settings is completed, the control unit 40 of the energy source 4 enters a state of waiting for the foot switch 6 to be turned on (step S11).
 その後、図2に示すように挟持部13を閉じた状態で、例えば、腹壁を通して腹腔内に治療処置具2の挟持部13およびシャフト12を挿入する。そして、術者は、治療処置具2の挟持部13を処置対象の生体組織に対峙させる。 Then, with the clamping part 13 closed as shown in FIG. 2, for example, the clamping part 13 and the shaft 12 of the treatment instrument 2 are inserted into the abdominal cavity through the abdominal wall. Then, the surgeon confronts the sandwiching portion 13 of the treatment instrument 2 with the biological tissue to be treated.
 次に、術者は、挟持部13によって処置対象の生体組織を保持するために、ハンドル11の挟持部開閉レバー14を操作し、シース34をシャフト12の基端部側へ移動させる。シース34を所定位置まで移動させると、シース34では弾性部材32の付勢力を係止することができなくなり、図3に示すように第1の挟持部材23に対して第2の挟持部材24が開く。 Next, the surgeon operates the clamping part opening / closing lever 14 of the handle 11 to move the sheath 34 to the proximal end side of the shaft 12 in order to hold the living tissue to be treated by the clamping part 13. When the sheath 34 is moved to a predetermined position, the urging force of the elastic member 32 cannot be locked by the sheath 34, and the second holding member 24 is moved relative to the first holding member 23 as shown in FIG. open.
 そして、術者は、第1の挟持部材23の第1の高周波電極21aと第2の挟持部材24の第2の高周波電極21bとの間に、処置対象の生体組織を配置する。この状態で、術者は、ハンドル11の挟持部開閉レバー14を操作し、シース34をシャフト12の先端部側へ移動させる。シース34が先端部側へ移動して行くと、シース34が弾性部材32の付勢力に抗して基部25a,26a間を筒状に閉じ、すなわち、図2に示すように第1の挟持部材23に対して第2の挟持部材24が閉じられる。このようにして、処置対象の生体組織が、第1の挟持部材23と第2の挟持部材24との間に把持される。 Then, the surgeon places the biological tissue to be treated between the first high-frequency electrode 21a of the first holding member 23 and the second high-frequency electrode 21b of the second holding member 24. In this state, the surgeon operates the holding portion opening / closing lever 14 of the handle 11 to move the sheath 34 toward the distal end side of the shaft 12. When the sheath 34 moves toward the distal end, the sheath 34 closes between the base portions 25a and 26a against the urging force of the elastic member 32, that is, as shown in FIG. 23, the second clamping member 24 is closed. In this way, the biological tissue to be treated is gripped between the first clamping member 23 and the second clamping member 24.
 このときにはすなわち、挟持面である、第1の高周波電極21aのエネルギー印加面と、第2の高周波電極21bのエネルギー印加面と、の両方に処置対象の生体組織が接触して挟み込まれていることになる。 That is, the living tissue to be treated is sandwiched between both the energy application surface of the first high-frequency electrode 21a and the energy application surface of the second high-frequency electrode 21b, which are sandwiching surfaces. become.
 こうして生体組織を把持した状態で、術者は、フットスイッチ6をONに操作する。すると、制御部40は、上述したステップS11において、フットスイッチ6がONに切り換えられたと判断し、高周波エネルギー出力回路41を制御して、高周波電極21へ上述した設定電力Pset[W]の高周波エネルギーを出力させる(ステップS12)。これにより、第1の高周波電極21aと第2の高周波電極21bとの間に挟持されている生体組織に、高周波エネルギーが印加される。すると、生体組織内でジュール熱が発生し、細胞膜が破壊されて細胞内成分と細胞外成分とが均一化されるとともに焼灼が行われる。これにより、生体組織のインピーダンスZが上昇する。 In this way, the operator operates the foot switch 6 to ON while holding the living tissue. Then, the control unit 40 determines that the foot switch 6 is turned ON in step S11 described above, and controls the high frequency energy output circuit 41 to apply the high frequency energy of the set power Pset [W] described above to the high frequency electrode 21. Is output (step S12). As a result, high frequency energy is applied to the living tissue sandwiched between the first high frequency electrode 21a and the second high frequency electrode 21b. Then, Joule heat is generated in the living tissue, the cell membrane is destroyed, the intracellular components and the extracellular components are made uniform, and cauterization is performed. As a result, the impedance Z of the living tissue increases.
 この高周波エネルギー出力時における把持した生体組織のインピーダンスZは、高周波エネルギー出力回路41により測定されている。処置を始めたときのインピーダンスZは、例えば60[Ω]程度である。そして、生体組織に高周波電流が流れて生体組織が焼灼されるにつれて、生体組織の細胞が脱水され、インピーダンスZの値が上昇していく。また、生体組織の脱水と共に、第1の挟持部材23と第2の挟持部材24との間に把持されている生体組織の厚みが薄くなるが、上述したように、ギャップ維持部27,28が設けられているために、第1の高周波電極21aのエネルギー印加面と第2の高周波電極21bのエネルギー印加面との間の距離(一対の挟持面間の距離)は、一定距離δ以上に維持される。 The impedance Z of the grasped living tissue at the time of high frequency energy output is measured by the high frequency energy output circuit 41. The impedance Z when the treatment is started is, for example, about 60 [Ω]. As the high-frequency current flows through the living tissue and the living tissue is cauterized, the cells of the living tissue are dehydrated and the value of the impedance Z increases. In addition, as the biological tissue is dehydrated, the thickness of the biological tissue held between the first clamping member 23 and the second clamping member 24 is reduced. Thus, the distance between the energy application surface of the first high-frequency electrode 21a and the energy application surface of the second high-frequency electrode 21b (the distance between the pair of sandwiching surfaces) is maintained at a certain distance δ or more. Is done.
 制御部40は、高周波エネルギー出力回路41により検出されているインピーダンスZをモニタしており、インピーダンスZが予め設定した閾値Z1以上となったかを判断する(ステップS13)。閾値Z1は、インピーダンスZの値の上昇率が鈍化すると予め分かっている値(すなわち、生体組織の細胞の脱水がある程度進んだと予め分かっている値)に設定されている。そして、制御部40は、インピーダンスZが閾値Z1よりも小さいと判断した場合には、ステップS12の処理、すなわち、生体組織に高周波エネルギーを与える処理を継続して行わせる。 The control unit 40 monitors the impedance Z detected by the high-frequency energy output circuit 41, and determines whether the impedance Z is equal to or higher than a preset threshold value Z1 (step S13). The threshold value Z1 is set to a value that is known in advance when the rate of increase in the value of the impedance Z slows down (that is, a value that is known in advance that dehydration of the cells of the living tissue has progressed to some extent). When the control unit 40 determines that the impedance Z is smaller than the threshold value Z1, the control unit 40 continuously performs the process of step S12, that is, the process of applying high-frequency energy to the living tissue.
 制御部40は、インピーダンスZが閾値Z1以上になったと判断した場合、抵抗加熱ヒータ駆動回路42を制御して、抵抗加熱ヒータ22の温度が予め設定した温度Tset[℃]になるように、抵抗加熱ヒータ22に電力を供給させる(ステップS14)。このとき、制御部40は、抵抗加熱ヒータ駆動回路42により計測されている抵抗加熱ヒータ22の発熱温度Tをモニタしながら、抵抗加熱ヒータ22への供給電力を制御する。これにより、把持されている生体組織は、第1の高周波電極21aに密着した生体組織の表面側から内部に向かって、熱により凝固される。 When the control unit 40 determines that the impedance Z is equal to or greater than the threshold value Z1, the control unit 40 controls the resistance heater driving circuit 42 so that the resistance heater 22 has a preset temperature Tset [° C.]. Electric power is supplied to the heater 22 (step S14). At this time, the control unit 40 controls the power supplied to the resistance heater 22 while monitoring the heat generation temperature T of the resistance heater 22 measured by the resistance heater driving circuit 42. Thereby, the grasped living tissue is solidified by heat from the surface side of the living tissue in close contact with the first high-frequency electrode 21a toward the inside.
 水は良く知られているように比熱が大きく、生体組織を脱水する前の状態では熱を加えたとしても温度上昇が緩やかである。これに対して、本実施形態では生体組織をある程度の段階まで脱水した後に抵抗加熱エネルギーを加えるようにしているために、印加した熱量に対して効率的に生体組織の温度上昇を図ることができる。 As is well known, water has a large specific heat, and the temperature rises slowly even if heat is applied in a state before dehydrating the living tissue. On the other hand, in this embodiment, since resistance heating energy is applied after dehydrating the living tissue to a certain level, the temperature of the living tissue can be efficiently increased with respect to the amount of heat applied. .
 また、生体組織が熱により凝固された後であっても、ギャップ維持部27,28が一対の挟持面間の距離を一定距離δ以上に維持しているのは、上述と同様である。 Further, even after the living tissue is solidified by heat, the gap maintaining portions 27 and 28 maintain the distance between the pair of sandwiching surfaces at a certain distance δ or more, as described above.
 制御部40は、高周波エネルギー出力回路41により検出されているインピーダンスZを引き続きモニタしており、インピーダンスZが予め設定した閾値Z2以上になったかを判断する(ステップS15)。閾値Z2は、生体組織の凝固が終了したと判定される値に設定されている。そして、制御部40は、インピーダンスZが閾値Z2よりも小さいと判断した場合には、ステップS14の処理を継続して行わせる。 The control unit 40 continues to monitor the impedance Z detected by the high-frequency energy output circuit 41, and determines whether the impedance Z is equal to or higher than a preset threshold value Z2 (step S15). The threshold value Z2 is set to a value that determines that the coagulation of the living tissue has been completed. Then, when the control unit 40 determines that the impedance Z is smaller than the threshold value Z2, the control unit 40 continues the process of step S14.
 一方、インピーダンスZが閾値Z2以上になったと判断した場合、制御部40は、例えばブザー音を発するとともに、高周波エネルギー出力回路41に高周波エネルギーの出力を停止させ、かつ抵抗加熱ヒータ駆動回路42に熱エネルギーの出力を停止させる(ステップS16)。 On the other hand, when determining that the impedance Z is equal to or higher than the threshold value Z2, the control unit 40 generates a buzzer sound, for example, stops the high-frequency energy output circuit 41 from outputting high-frequency energy, and heats the resistance heater driving circuit 42. The output of energy is stopped (step S16).
 このときには生体組織は、上述したように、ギャップ維持部27,28による不連続部分を生じさせることなく、高い耐圧性能を維持するように接合される。 At this time, the living tissue is joined so as to maintain high pressure resistance performance without causing discontinuous portions due to the gap maintaining portions 27 and 28 as described above.
 その後、術者は、処置対象の生体組織を切除するために、一対の挟持面により処置対象の生体組織を把持した状態のままで、カッタ駆動レバー15を操作して、カッタ36を先端方向へ移動させる。 Thereafter, the operator operates the cutter drive lever 15 with the pair of clamping surfaces holding the biological tissue to be treated in order to excise the biological tissue to be treated, and moves the cutter 36 in the distal direction. Move.
 これにより、一対の挟持面間に挟持されている凝固された生体組織は、基端側から先端側へ向けて、刃36aによって次第に切断される。移動規制ピン37が長孔36bの基端側に当接すると、カッタ36の先端側への移動が停止する。このときには、カッタ36の刃36aは、ギャップ維持部27,28の近傍に到達する。つまり、ギャップ維持部27,28が当接する生体組織は、カッタ36が到達する先端側、すなわち生体組織の切断される部分の先端側に位置しているために、生体組織の接合部分に影響を及ぼすことはない。 Thereby, the solidified living tissue sandwiched between the pair of sandwiching surfaces is gradually cut by the blade 36a from the proximal end side toward the distal end side. When the movement restricting pin 37 contacts the proximal end side of the long hole 36b, the movement of the cutter 36 toward the distal end side stops. At this time, the blade 36 a of the cutter 36 reaches the vicinity of the gap maintaining portions 27 and 28. That is, the living tissue with which the gap maintaining portions 27 and 28 are in contact is located on the distal end side where the cutter 36 reaches, that is, on the distal end side of the portion to be cut of the living tissue, so that the joint portion of the living tissue is affected. There is no effect.
 その後、切断された生体組織を挟持部13から離脱させる際には、術者が挟持部開閉レバー14を操作して挟持部13を開く。これにより、把持されている生体組織が挟持部13から離脱する。 Thereafter, when the cut biological tissue is detached from the clamping unit 13, the operator operates the clamping unit opening / closing lever 14 to open the clamping unit 13. As a result, the grasped biological tissue is detached from the clamping unit 13.
 処置対象の生体組織がさらに存在する場合には、上述したような処理を同様にして行う。こうして、全ての処置対象の生体組織に対する処置が終了したところで、治療処置システム1を用いた生体組織の処置が完了する。 If there are more living tissues to be treated, the above-described processing is performed in the same manner. Thus, when the treatment for all the biological tissues to be treated is completed, the treatment of the biological tissue using the therapeutic treatment system 1 is completed.
 このような第1の実施形態によれば、以下の効果が得られる。 According to such a first embodiment, the following effects can be obtained.
 高周波エネルギーを生体組織に印加して細胞膜を破壊し、生体組織の熱伝導率を上昇させた上で、抵抗加熱ヒータ54から抵抗加熱エネルギーを生体組織に印加することにより凝固処置を行っている。このために、効率的な状態で抵抗加熱エネルギーの印加を行うことができる。 Coagulation treatment is performed by applying resistance heating energy to the living tissue from the resistance heater 54 after applying high frequency energy to the living tissue to break the cell membrane and increasing the thermal conductivity of the living tissue. For this reason, resistance heating energy can be applied in an efficient state.
 また、電極同士が短絡すると、生体組織を介して高周波エネルギーを投入することができなくなる。これに対して、本実施形態によれば、ギャップ維持部27,28を設けたことにより、電極同士の短絡がないために、処置効果の低下を確実に防止することができる。 Also, when the electrodes are short-circuited, high-frequency energy cannot be input through the living tissue. On the other hand, according to the present embodiment, since the gap maintaining portions 27 and 28 are provided, there is no short circuit between the electrodes, so that it is possible to reliably prevent a reduction in treatment effect.
 加えて、一対の挟持面となるエネルギー印加面間の距離δが、上述したように0.7mm以下(あるいは、さらに0.2mm以上)の一定距離となるように、ギャップ維持部27,28を構成しているために、高い耐圧性能および高い目標達成率で、複数種類の生体組織を確実に封止することができる。 In addition, the gap maintaining portions 27 and 28 are set so that the distance δ between the energy application surfaces serving as the pair of sandwiching surfaces is a constant distance of 0.7 mm or less (or 0.2 mm or more) as described above. Since it comprises, a multiple types of biological tissue can be reliably sealed with high pressure | voltage resistance performance and a high target achievement rate.
 さらに、挟持部13に把持した生体組織の状態(生体組織のインピーダンスZや、生体組織へ熱を与える抵抗加熱ヒータ22の温度Tなど)をモニタし、予め設定しておいた閾値Z1に基づいて高周波エネルギーの投入から熱エネルギーの投入への切り換え時点を自動で判断して切り換えるようにし、予め設定しておいた閾値Z2に基づいてエネルギーの投入終了時点を自動で判断するようにしている。このために、術者の感覚による処置のバラツキを防止して、効率的かつ安定的に生体組織の組織変性の状態(焼灼状態や凝固状態)に合わせた処置を行い、組織を均一化(安定化)することができる。 Furthermore, the state of the living tissue grasped by the holding unit 13 (impedance Z of the living tissue, temperature T of the resistance heater 22 that applies heat to the living tissue, etc.) is monitored, and based on a preset threshold value Z1. Switching time from high-frequency energy input to heat energy input is automatically determined and switched, and the energy input end time is automatically determined based on a preset threshold value Z2. For this purpose, treatment variations due to the operator's senses are prevented, and treatments are performed efficiently and stably according to the state of tissue degeneration (cauterized or coagulated) to make the tissue uniform (stable ).
 こうして、術者の手を煩わせることなく、エネルギーの投入ロスをできるだけ少なくした状態で生体組織に効率良く処置を行うことができ、処置時間の短縮を図り、患者にかける負担を大きく軽減することができる。 In this way, it is possible to efficiently perform treatment on living tissue with less energy input loss as much as possible without bothering the surgeon, shortening the treatment time, and greatly reducing the burden on the patient. Can do.
 また、ギャップ維持部27,28を、カッタ案内溝23a,24a内に埋設させるようにし、エネルギー印加面内に離島状に位置することがないようにしたために、封止された生体組織に脆弱部分を生じさせることがなく、すなわち耐圧性能を低下させることがない。 In addition, since the gap maintaining portions 27 and 28 are embedded in the cutter guide grooves 23a and 24a so that they are not located in the form of islands in the energy application plane, they are vulnerable to the sealed living tissue. Does not occur, that is, the pressure resistance performance is not deteriorated.
 次に、図12から図19を参照して、挟持部に設けるギャップ維持部の幾つかの変形例を説明する。なお、以下では簡単のために、第1の挟持部材23側に設けたギャップ維持部について説明するが、第2の挟持部材24側にも同様のギャップ維持部が設けられるものとする。 Next, with reference to FIG. 12 to FIG. 19, some modified examples of the gap maintaining part provided in the holding part will be described. In the following, for the sake of simplicity, the gap maintaining portion provided on the first clamping member 23 side will be described. However, the same gap maintaining portion is also provided on the second clamping member 24 side.
 まず、図12および図13を参照して第1の変形例を説明する。ここに、図12は第1の変形例における治療処置具の第1の挟持部材を示す平面図、図13は第1の変形例における治療処置具の第1の挟持部材の図12における13-13断面図である。 First, a first modification will be described with reference to FIGS. FIG. 12 is a plan view showing the first holding member of the treatment instrument in the first modification, and FIG. 13 is a cross-sectional view of the first holding member of the treatment tool in the first modification shown in FIG. FIG. 13 is a sectional view.
 この第1の変形例においては、上述したようなギャップ維持部27以外に、さらにギャップ維持部29を設けている。 In the first modification, in addition to the gap maintaining portion 27 as described above, a gap maintaining portion 29 is further provided.
 まず、図12に示すギャップ維持部27は、図4等に示したギャップ維持部27とほぼ同様の構成であるが、カッタ案内溝23aの溝幅と同じ幅となるようにした点がやや異なっている。 First, the gap maintaining portion 27 shown in FIG. 12 has substantially the same configuration as the gap maintaining portion 27 shown in FIG. 4 and the like, but is slightly different in that it has the same width as the cutter guide groove 23a. ing.
 また、ギャップ維持部29は、カッタ案内溝23aの両内側面に、軸方向に沿って一定間隔で複数対設けられている。ここに、1対となるギャップ維持部29は、軸方向位置を同一として互いに対向するように設けられている。そして、1つのギャップ維持部29は、図13に示すように、カッタ案内溝23a内に埋設された状態で立設され、挟持面である第1の高周波電極21aのエネルギー印加面から突出されている。このギャップ維持部29も、第2の挟持部材24側に同様に設けられているギャップ維持部との協働により、一対の挟持面となるエネルギー印加面間の距離δが、上述したような0.7mm以下の一定距離となるようにするためのものである。 Further, a plurality of pairs of gap maintaining portions 29 are provided on both inner side surfaces of the cutter guide groove 23a at regular intervals along the axial direction. Here, the pair of gap maintaining portions 29 are provided so as to face each other with the same axial position. As shown in FIG. 13, one gap maintaining portion 29 is erected in a state of being embedded in the cutter guide groove 23a, and protrudes from the energy application surface of the first high-frequency electrode 21a that is the clamping surface. Yes. The gap maintaining portion 29 also has a distance δ between the energy application surfaces as a pair of sandwiching surfaces of 0 as described above in cooperation with the gap maintaining portion similarly provided on the second sandwiching member 24 side. It is for making it a fixed distance of 7 mm or less.
 このように先端側のギャップ維持部27と、カッタ案内溝23aに沿った複数のギャップ維持部29と、を設けることにより、挟持部を閉じたときの一対の挟持面間の距離をより安定して一定に保つことができ、挟持面が傾くことなく平行を保つことができる。 Thus, by providing the gap maintaining portion 27 on the distal end side and the plurality of gap maintaining portions 29 along the cutter guide groove 23a, the distance between the pair of sandwiching surfaces when the sandwiching portion is closed is further stabilized. Can be kept constant, and the holding surface can be kept parallel without being inclined.
 また、何れのギャップ維持部27,29もカッタ案内溝23a内に埋設されているために、第1、第2の高周波電極21a,21bにより処置される生体組織に、未処置の離島状の不連続部分を生じさせることはなく、高い耐圧性能を維持した処置を行うことができる。 In addition, since both gap maintaining portions 27 and 29 are embedded in the cutter guide groove 23a, the untreated island-like irregularity is not formed on the living tissue to be treated by the first and second high- frequency electrodes 21a and 21b. A continuous portion is not generated, and a treatment that maintains high pressure resistance can be performed.
 続いて、図14を参照して第2の変形例を説明する。ここに、図14は第2の変形例における治療処置具の第1の挟持部材を示す平面図である。 Subsequently, a second modification will be described with reference to FIG. FIG. 14 is a plan view showing the first holding member of the treatment instrument in the second modification.
 この第2の変形例は、上述した第1の変形例において、一定間隔で設けられたギャップ維持部29を、軸方向位置を異ならせながら互い違いに配置したものとなっている。 This second modification is such that, in the first modification described above, the gap maintaining portions 29 provided at regular intervals are alternately arranged with different axial positions.
 すなわち、カッタ案内溝23aの一方の内側面に配置されたギャップ維持部29と、他方の内側面に配置されたギャップ維持部29とは、軸方向位置をずらして互い違いに配置されている。 That is, the gap maintaining portions 29 arranged on one inner side surface of the cutter guide groove 23a and the gap maintaining portions 29 arranged on the other inner side surface are alternately arranged with the axial position shifted.
 このような第2の変形例によっても、上述した第1の変形例とほぼ同様の効果を奏することができる。 Even with such a second modification, it is possible to achieve substantially the same effect as the first modification described above.
 さらに、図15および図16を参照して第3の変形例を説明する。ここに、図15は第3の変形例における治療処置具の第1の挟持部材を示す平面図、図16は第3の変形例における治療処置具の第1の挟持部材の図15における16-16断面図である。 Furthermore, a third modification will be described with reference to FIG. 15 and FIG. FIG. 15 is a plan view showing the first holding member of the treatment instrument in the third modification, and FIG. 16 is a plan view of the first holding member of the treatment tool in the third modification shown in FIG. It is 16 sectional drawing.
 この第3の変形例は、単一のギャップ維持部27Aを設けているが、第1の変形例とは構成が異なるものとなっている。 This third modification is provided with a single gap maintaining portion 27A, but the configuration is different from that of the first modification.
 すなわち、ギャップ維持部27Aは、図16に示すように、挟持面である第1の高周波電極21aのエネルギー印加面上に、該エネルギー印加面から突出するように形成されている。このギャップ維持部27Aも、第2の挟持部材24側に同様に設けられているギャップ維持部との協働により、一対の挟持面となるエネルギー印加面間の距離δが、上述したような0.7mm以下の一定距離となるようにするためのものである。 That is, as shown in FIG. 16, the gap maintaining portion 27A is formed on the energy application surface of the first high-frequency electrode 21a, which is the clamping surface, so as to protrude from the energy application surface. This gap maintaining portion 27A also has a distance δ between the energy application surfaces as a pair of sandwiching surfaces of 0 as described above in cooperation with the gap maintaining portion similarly provided on the second sandwiching member 24 side. It is for making it a fixed distance of 7 mm or less.
 そして、このギャップ維持部27Aは、カッタ案内溝23aの先端側終端に、面一で臨むように隣接して設けられている。すなわち、ギャップ維持部27Aの基端側端面と、カッタ案内溝23aの先端側終端の端面とは、同一面となるように構成されている。 And this gap maintenance part 27A is provided adjacent to the front end side end of the cutter guide groove 23a so as to be flush with each other. That is, the base end side end surface of the gap maintaining portion 27A and the end surface of the cutter guide groove 23a are configured to be the same end surface.
 このような構成によっても、第1、第2の高周波電極21a,21bにより処置される生体組織に、未処置の離島状の不連続部分を生じさせることはなく、高い耐圧性能を維持した処置を行うことが可能である。 Even with such a configuration, an untreated island-like discontinuous portion is not generated in the living tissue treated by the first and second high- frequency electrodes 21a and 21b, and a treatment that maintains high pressure resistance is performed. Is possible.
 次に、図17および図18を参照して第4の変形例を説明する。ここに、図17は第4の変形例における治療処置具の第1の挟持部材を示す平面図、図18は第4の変形例における治療処置具の第1の挟持部材の図17における18-18断面図である。 Next, a fourth modification will be described with reference to FIGS. 17 and 18. FIG. 17 is a plan view showing the first holding member of the treatment instrument in the fourth modification, and FIG. 18 is a cross-sectional view of the first holding member of the treatment tool in the fourth modification shown in FIG. FIG. 18 is a sectional view.
 この第4の変形例においては、上述したようなギャップ維持部27A以外に、さらにギャップ維持部29Aを設けている。 In the fourth modification example, a gap maintaining portion 29A is further provided in addition to the gap maintaining portion 27A as described above.
 ギャップ維持部29Aは、カッタ案内溝23aの両側の、挟持面である第1の高周波電極21aのエネルギー印加面上に、該エネルギー印加面から突出するように、軸方向に沿って一定間隔で複数対設けられている。このギャップ維持部29Aも、第2の挟持部材24側に同様に設けられているギャップ維持部との協働により、一対の挟持面となるエネルギー印加面間の距離δが、上述したような0.7mm以下の一定距離となるようにするためのものである。 A plurality of gap maintaining portions 29A are provided at regular intervals along the axial direction so as to protrude from the energy application surface on the energy application surface of the first high-frequency electrode 21a, which is the clamping surface, on both sides of the cutter guide groove 23a. Pairs are provided. This gap maintaining portion 29A also has a distance δ between the energy application surfaces as a pair of clamping surfaces of 0 as described above in cooperation with the gap maintaining portion similarly provided on the second clamping member 24 side. It is for making it a fixed distance of 7 mm or less.
 ここに、1対となるギャップ維持部29Aは、軸方向位置を同一として互いに対向するように設けられている。そして、1つのギャップ維持部29Aは、図18に示すように、カッタ案内溝23aの内側面に、面一で臨むように隣接して設けられている。すなわち、ギャップ維持部29Aのカッタ案内溝23a側端面と、カッタ案内溝23aの第1の高周波電極21a側の端面とは、同一面となるように構成されている。 Here, the pair of gap maintaining portions 29A are provided so as to face each other with the same axial position. As shown in FIG. 18, one gap maintaining portion 29A is provided adjacent to the inner side surface of the cutter guide groove 23a so as to be flush with each other. That is, the end surface on the cutter guide groove 23a side of the gap maintaining portion 29A and the end surface on the first high-frequency electrode 21a side of the cutter guide groove 23a are configured to be the same surface.
 このように先端側のギャップ維持部27Aと、カッタ案内溝23aに沿った複数のギャップ維持部29Aと、を設けることにより、挟持部を閉じたときの一対の挟持面間の距離をより安定して一定に保つことができ、挟持面が傾くことなく平行を保つことができる。 Thus, by providing the gap maintaining portion 27A on the distal end side and the plurality of gap maintaining portions 29A along the cutter guide groove 23a, the distance between the pair of sandwiching surfaces when the sandwiching portion is closed is further stabilized. Can be kept constant, and the holding surface can be kept parallel without being inclined.
 また、何れのギャップ維持部27A,29Aもカッタ案内溝23aに面一で臨むように隣接して設けられているために、第1、第2の高周波電極21a,21bにより処置される生体組織に、未処置の離島状の不連続部分を生じさせることはなく、高い耐圧性能を維持した処置を行うことができる。 In addition, since any gap maintaining portions 27A and 29A are provided adjacent to each other so as to face the cutter guide groove 23a, the living body tissue to be treated by the first and second high- frequency electrodes 21a and 21b is provided. In this way, a treatment that maintains a high pressure resistance performance can be performed without causing an untreated island-like discontinuous portion.
 そして、図19を参照して第5の変形例を説明する。ここに、図14は第5の変形例における治療処置具の第1の挟持部材を示す平面図である。 And a 5th modification is demonstrated with reference to FIG. FIG. 14 is a plan view showing the first clamping member of the treatment instrument in the fifth modification.
 この第5の変形例は、上述した第4の変形例において、一定間隔で設けられたギャップ維持部29Aを、軸方向位置を異ならせながら互い違いに配置したものとなっている。 In the fifth modification example, in the fourth modification example described above, the gap maintaining portions 29A provided at regular intervals are alternately arranged with different positions in the axial direction.
 すなわち、カッタ案内溝23aの一方の側面側に配置されたギャップ維持部29Aと、他方の側面側に配置されたギャップ維持部29Aとは、軸方向位置をずらして互い違いに配置されている。 That is, the gap maintaining portions 29A arranged on one side surface of the cutter guide groove 23a and the gap maintaining portions 29A arranged on the other side surface are alternately arranged with the axial position shifted.
 このような第5の変形例によっても、上述した第4の変形例とほぼ同様の効果を奏することができる。 The fifth modification example as described above can achieve substantially the same effect as the fourth modification example described above.
 なお、複数のギャップ維持部を設けた例は、上述においては、カッタ案内溝内に埋設されたギャップ維持部のみが複数であるか、または、カッタ案内溝に面一で臨むようにカッタ案内溝に隣接されたギャップ維持部のみが複数であるかの何れかであったが、これらを組み合わせても勿論構わない。 In addition, in the example in which the plurality of gap maintaining portions are provided, in the above description, there are only a plurality of gap maintaining portions embedded in the cutter guide groove, or the cutter guide groove so as to be flush with the cutter guide groove. Although there are only a plurality of gap maintaining portions adjacent to each other, it is needless to say that these may be combined.
 また、上述した実施形態1や各変形例においては、ギャップ維持部を一対の挟持部の両方に設けているが、もちろんこれに限るものではなく、何れか一方にのみ設ける構成であっても構わない。 Further, in the first embodiment and each modification described above, the gap maintaining portion is provided in both of the pair of sandwiching portions, but of course the present invention is not limited to this, and a configuration in which only one of them is provided may be employed. Absent.
 そして、上述した変形例においては、ギャップ維持部27にギャップ維持部29を加えて設けた例や、ギャップ維持部27Aにギャップ維持部29Aを加えて設けた例などを示したが、ギャップ維持部29またはギャップ維持部29Aを設けた場合には、ギャップ維持部27またはギャップ維持部27Aを必ず設けるに限るものではなく、設けなくても構わない。 And in the modification mentioned above, although the example which added the gap maintenance part 29 to the gap maintenance part 27, the example which added the gap maintenance part 29A to the gap maintenance part 27A, etc. were shown, the gap maintenance part was shown. When 29 or the gap maintaining part 29A is provided, the gap maintaining part 27 or the gap maintaining part 27A is not necessarily provided, but may not be provided.
[第2の実施形態]
 図20は本発明の第2の実施形態を示したものであり、治療処置具のシーソータイプとして構成された挟持部の構成を示す側面図である。この第2の実施形態において、上述の第1の実施形態と同様である部分については同一の符号を付して説明を省略し、主として異なる点についてのみ説明する。
[Second Embodiment]
FIG. 20 shows a second embodiment of the present invention, and is a side view showing a configuration of a clamping portion configured as a seesaw type of a treatment instrument. In the second embodiment, the same parts as those in the first embodiment described above are denoted by the same reference numerals, description thereof is omitted, and only different points will be mainly described.
 本実施形態は、治療処置具(エネルギー処置具)がリニアタイプの治療処置具2であって、さらにシーソータイプのジョーを採用した実施形態となっている。 The present embodiment is an embodiment in which the treatment instrument (energy treatment instrument) is a linear treatment instrument 2 and a seesaw type jaw is further employed.
 シャフト12の先端側に配設されている挟持部13は、第1の挟持部材23と、第2の挟持部材24と、を備えている。 The clamping part 13 arrange | positioned at the front-end | tip side of the shaft 12 is provided with the 1st clamping member 23 and the 2nd clamping member 24. As shown in FIG.
 第1の挟持部材23は、第1の挟持部材本体25を備え、この第1の挟持部材本体25は、シャフト12の軸方向に延出するように、シャフト12と一体的に設けられている。 The first clamping member 23 includes a first clamping member main body 25, and the first clamping member main body 25 is provided integrally with the shaft 12 so as to extend in the axial direction of the shaft 12. .
 また、第2の挟持部材24は、基端側の挟持部枢支体26Aと、先端側の第2の挟持部材本体26Bとを有して構成されており、挟持部枢支体26Aの基端側が回動軸52を介してシャフト12および第1の挟持部材23に対して回動可能に軸支されている。第2の挟持部材本体26Bは、挟持部枢支体26Aに対して、揺動軸51を介して揺動可能に枢支されている。すなわち、第2の挟持部材24は、挟持面を、第1の挟持部材23の挟持面に対して平行に近付けるシーソー機構としての、揺動軸51により枢支された第2の挟持部材本体26Bを有する構造となっている。 The second clamping member 24 includes a proximal-side clamping unit pivot body 26A and a distal-side second clamping member main body 26B, and is based on the clamping unit pivot body 26A. The end side is pivotally supported with respect to the shaft 12 and the first holding member 23 via the rotation shaft 52. The second sandwiching member main body 26B is pivotally supported via the swing shaft 51 with respect to the sandwiching portion pivot support body 26A. That is, the second clamping member 24 is a second clamping member main body 26B pivotally supported by the swing shaft 51 as a seesaw mechanism that brings the clamping surface closer to the clamping surface of the first clamping member 23 in parallel. It has the structure which has.
 挟持部枢支体26Aの、回動軸52よりも基端側には、カム孔53が形成されている。一方、シャフト12のシャフト本体12aには、軸方向のカム孔54が形成されている。そして、カム孔53とカム孔54とは互いに交差するように構成されていて、交差位置において貫通するように、カムピン55が係合されている。このカムピン55は、開閉駆動軸56の先端側に固着されている。一方、開閉駆動軸56の基端側は、挟持部開閉レバー14(図1等参照)に機構的に接続されている。 A cam hole 53 is formed on the proximal end side of the sandwiching portion pivot 26A with respect to the rotation shaft 52. On the other hand, an axial cam hole 54 is formed in the shaft body 12 a of the shaft 12. And the cam hole 53 and the cam hole 54 are comprised so that it may mutually cross | intersect, and the cam pin 55 is engaged so that it may penetrate in an intersection position. The cam pin 55 is fixed to the distal end side of the opening / closing drive shaft 56. On the other hand, the proximal end side of the opening / closing drive shaft 56 is mechanically connected to the clamping portion opening / closing lever 14 (see FIG. 1 and the like).
 このようなカム機構の採用により、挟持部開閉レバー14(図1等参照)を操作して開閉駆動軸56を先端側へ移動させると、第1の挟持部材23に対して第2の挟持部材24が開く。一方、挟持部開閉レバー14(図1等参照)を操作して開閉駆動軸56を基端側へ移動させると、第1の挟持部材23に対して第2の挟持部材24が閉じる。 By adopting such a cam mechanism, when the holding portion opening / closing lever 14 (see FIG. 1 or the like) is operated and the opening / closing drive shaft 56 is moved to the distal end side, the second holding member with respect to the first holding member 23. 24 opens. On the other hand, when the opening / closing drive shaft 56 is moved to the proximal end side by operating the holding portion opening / closing lever 14 (see FIG. 1 and the like), the second holding member 24 is closed with respect to the first holding member 23.
 第1の挟持部材本体25の保持面25bには第1の高周波電極21aが設けられ、第2の挟持部材本体26Bの保持面26Bbには第2の高周波電極21bが設けられている。これら第1の高周波電極21aおよび第2の高周波電極21bの互いに対向するエネルギー印加面は、挟持面である。 The first high-frequency electrode 21a is provided on the holding surface 25b of the first holding member main body 25, and the second high-frequency electrode 21b is provided on the holding surface 26Bb of the second holding member main body 26B. The energy application surfaces of the first high-frequency electrode 21a and the second high-frequency electrode 21b facing each other are sandwiching surfaces.
 また、本実施形態においては、ギャップ維持部は、一対の挟持部の一方にのみ設けられたものとなっている。すなわち、第1の高周波電極21aの第2の高周波電極21bに対向する面からは、絶縁素材でボス状に形成されたギャップ維持部27Bが突設して設けられている。このギャップ維持部27Bは、第2の高周波電極21bの第1の高周波電極21aに対向する面に当接して、第1の高周波電極21aと第2の高周波電極21bとの電極面間距離を一定距離δ(図2参照)に維持するためのものである。従って、第1の高周波電極21aのエネルギー印加面からのギャップ維持部27Bの突出高さは、一定距離δである。この一定距離δは、上述したように、例えば0.7mm以下の距離となるように構成されている。 In the present embodiment, the gap maintaining part is provided only on one of the pair of sandwiching parts. That is, a gap maintaining portion 27B formed in a boss shape with an insulating material is provided so as to protrude from the surface of the first high-frequency electrode 21a facing the second high-frequency electrode 21b. The gap maintaining portion 27B is in contact with the surface of the second high-frequency electrode 21b facing the first high-frequency electrode 21a, and the distance between the electrode surfaces of the first high-frequency electrode 21a and the second high-frequency electrode 21b is constant. This is for maintaining the distance δ (see FIG. 2). Therefore, the protrusion height of the gap maintaining portion 27B from the energy application surface of the first high-frequency electrode 21a is a constant distance δ. As described above, the constant distance δ is configured to be a distance of 0.7 mm or less, for example.
 本実施形態においても、上述した第1の実施形態と同様にカッタ36がシャフト12の軸方向に沿って移動可能となるように設けられており、第1の挟持部材本体25と第2の挟持部材本体26Bには上述と同様のカッタ案内溝23a,24aが設けられている。そして、ギャップ維持部27Bは、例えば図4および図5に示したのと同様に、カッタ案内溝23a内の先端側終端に埋設された状態で立設されている。 Also in this embodiment, the cutter 36 is provided so as to be movable along the axial direction of the shaft 12 as in the first embodiment described above, and the first clamping member main body 25 and the second clamping member are provided. The member main body 26B is provided with cutter guide grooves 23a and 24a similar to those described above. The gap maintaining portion 27B is erected in a state of being embedded at the distal end side end in the cutter guide groove 23a, for example, as shown in FIGS.
 ただし、本実施形態においても、上述した第1の実施形態と同様の、種々の変形例を適用可能である。本実施形態で採用したようなシーソータイプのジョーは、一対の挟持面の平行を、より広い挟持部の開き範囲において実現することができる(すなわち、挟持部が閉じた状態だけでなく、閉じた状態から幾らか開いた状態になったとしても、一対の挟持面の平行を維持することが可能である)。従って、本実施形態の構成においては、例えば、図12、図14、図17、図19に示したような、複数箇所にギャップ維持部を設ける構成を採用すると好適である。 However, also in this embodiment, various modifications similar to those in the first embodiment described above can be applied. The seesaw-type jaw as employed in the present embodiment can realize parallelism between a pair of clamping surfaces in a wider opening range of the clamping part (that is, not only in a state where the clamping part is closed but also in a closed state). Even if the state is somewhat opened, it is possible to maintain the parallelism of the pair of clamping surfaces). Therefore, in the configuration of the present embodiment, it is preferable to employ a configuration in which gap maintaining portions are provided at a plurality of locations as shown in FIGS. 12, 14, 17, and 19, for example.
 このような第2の実施形態によれば、上述した第1の実施形態とほぼ同様の効果を奏することができるとともに、治療処置具がシーソータイプのジョーを備えているために、処置対象の生体組織の厚みに依ることなく、一対の挟持面を容易に平行にすることができる。そして、このような平行性の高い治療処置具において、一対の挟持面間の距離をより確実に一定距離δに維持することができる。 According to the second embodiment as described above, substantially the same effect as that of the first embodiment described above can be obtained, and the treatment instrument includes the seesaw type jaw, so that the living body to be treated can be obtained. The pair of clamping surfaces can be easily made parallel without depending on the thickness of the tissue. In such a highly parallel treatment instrument, the distance between the pair of clamping surfaces can be more reliably maintained at the constant distance δ.
 なお、上述した第1、第2の実施形態では、リニアタイプの治療処置具として、一対の挟持部材の一方がシャフトに対して固定され、他方の挟持部材がシャフトに対して回動可能に構成された例を説明したが、両方の挟持部材がシャフトに対して回動可能に構成されていても勿論構わない。 In the first and second embodiments described above, as a linear type treatment instrument, one of the pair of clamping members is fixed to the shaft, and the other clamping member is configured to be rotatable with respect to the shaft. Although the example which was made was demonstrated, of course, it does not matter even if both clamping members are comprised so that rotation with respect to the shaft is possible.
[第3の実施形態]
 図21から図23は本発明の第3の実施形態を示したものであり、図21はサーキュラタイプの治療処置具を備えた治療処置システムの構成を示す斜視図、図22は本体側挟持部に対して離脱側挟持部を離隔させた状態の治療処置具を示す縦断面図、図23は治療処置具の本体側挟持部の挟持面の構成を示す平面図である。
[Third Embodiment]
FIG. 21 to FIG. 23 show a third embodiment of the present invention, FIG. 21 is a perspective view showing the configuration of a therapeutic treatment system including a circular type therapeutic treatment instrument, and FIG. FIG. 23 is a longitudinal sectional view showing the treatment instrument in a state in which the detachable side clamping part is spaced apart from FIG. 23, and FIG.
 この第3の実施形態において、上述の第1,2の実施形態と同様である部分については同一の符号を付して説明を省略し、主として異なる点についてのみ説明する。 In the third embodiment, the same parts as those in the first and second embodiments described above are denoted by the same reference numerals, description thereof will be omitted, and only different points will be mainly described.
 本実施形態は、治療処置具(エネルギー処置具)が、例えば腹壁を通して、もしくは腹壁外で処置を行うための、サーキュラタイプのバイポーラ型治療処置具102である実施形態となっている。 This embodiment is an embodiment in which the therapeutic treatment tool (energy treatment tool) is a circular type bipolar therapeutic treatment tool 102 for performing treatment through, for example, the abdominal wall or outside the abdominal wall.
 図21に示すように、治療処置システム101は、治療処置具102と、表示部43を有するエネルギー源4と、ペダル6aを有するフットスイッチ6とを備えている。 As shown in FIG. 21, the treatment system 101 includes a treatment instrument 102, an energy source 4 having a display unit 43, and a foot switch 6 having a pedal 6a.
 治療処置具102は、ハンドル111と、シャフト112と、開閉可能な挟持部113とを備えている。ハンドル111は、ケーブル16を介してエネルギー源4に接続されている。挟持部113は、本体側挟持部123と、この本体側挟持部123に対して離隔/近接を行い得るように構成された離脱側挟持部124とを備えている。 The treatment instrument 102 includes a handle 111, a shaft 112, and an openable / closable clamping portion 113. The handle 111 is connected to the energy source 4 via the cable 16. The holding part 113 includes a main body side holding part 123 and a detachable side holding part 124 configured to be able to perform separation / proximity with respect to the main body side holding part 123.
 ハンドル111には、回転可能な操作部材である挟持部開閉ノブ114と、揺動可能な操作部材であるカッタ駆動レバー115とが配設されている。挟持部開閉ノブ114をハンドル111に対して、例えば、右回りに回転させると挟持部113の離脱側挟持部124が本体側挟持部123に対して一対の挟持面の平行を維持しながら離隔し、左回りに回転させると離脱側挟持部124が本体側挟持部123に対して一対の挟持面の平行を維持しながら近接する。 The handle 111 is provided with a clamping portion opening / closing knob 114 which is a rotatable operation member and a cutter driving lever 115 which is a swingable operation member. For example, when the clamping part opening / closing knob 114 is rotated clockwise with respect to the handle 111, the detaching side clamping part 124 of the clamping part 113 is separated from the main body side clamping part 123 while maintaining the parallelism of the pair of clamping surfaces. When rotated counterclockwise, the detachable side clamping portion 124 comes close to the main body side clamping portion 123 while maintaining the parallelism of the pair of clamping surfaces.
 シャフト112は、細長の円筒状に形成されている。この図21に示す例においては、生体組織への挿入性を考慮して、シャフト112が適度に湾曲されている。ただし、シャフト112が直線状に形成されていても勿論構わない。 The shaft 112 is formed in an elongated cylindrical shape. In the example shown in FIG. 21, the shaft 112 is appropriately curved in consideration of the insertion property into the living tissue. Of course, the shaft 112 may be formed in a straight line.
 シャフト112の先端には、挟持部113が配設されている。挟持部113は、シャフト112の先端に形成された第1の挟持部材であり第1のジョーとも呼ばれる本体側挟持部123と、この本体側挟持部123に着脱可能な第2の挟持部材であり第2のジョーとも呼ばれる離脱側挟持部124とを備えている。 The clamping part 113 is arrange | positioned at the front-end | tip of the shaft 112. As shown in FIG. The sandwiching portion 113 is a first sandwiching member formed at the tip of the shaft 112 and is also referred to as a first jaw, and a second sandwiching member that can be attached to and detached from the body sandwiching portion 123. A detachable side holding portion 124 also called a second jaw is provided.
 図22、図23に示すように、本体側挟持部123は、円筒体126と、フレーム133と、通電用パイプ131とを備えている。これら円筒体126およびフレーム133は、絶縁性を有している。円筒体126は、シャフト112の先端に連結されている。フレーム133は、円筒体126に対して固定された状態で円筒体126の内周側に配設されている。 As shown in FIGS. 22 and 23, the main body side holding portion 123 includes a cylindrical body 126, a frame 133, and a current-carrying pipe 131. The cylindrical body 126 and the frame 133 have insulating properties. The cylindrical body 126 is connected to the tip of the shaft 112. The frame 133 is disposed on the inner peripheral side of the cylindrical body 126 while being fixed to the cylindrical body 126.
 フレーム133は、その中心軸部分が連通孔となった筒状をなしている。このフレーム133の中心軸部分の連通孔には、通電用パイプ131が、フレーム133の中心軸に沿って所定の範囲内で移動可能となるように配設されている。この通電用パイプ131は、導電性の素材により円筒状に形成されていて、シャフト112、ハンドル111、およびケーブル16を介してエネルギー源4に接続されている。そして、通電用パイプ131のフレーム133の中心軸に沿った移動は、挟持部開閉ノブ114の回転により行われる。 The frame 133 has a cylindrical shape with a central axis portion serving as a communication hole. An energization pipe 131 is disposed in the communication hole in the central axis portion of the frame 133 so as to be movable within a predetermined range along the central axis of the frame 133. The energization pipe 131 is formed in a cylindrical shape from a conductive material, and is connected to the energy source 4 via the shaft 112, the handle 111, and the cable 16. The movement of the energizing pipe 131 along the central axis of the frame 133 is performed by the rotation of the holding portion opening / closing knob 114.
 円筒体126とフレーム133との間には、カッタ案内溝(空間)123aが形成されている。このカッタ案内溝123aには、円筒状のカッタ136が配設されている。このカッタ136の基端部は、シャフト112の内側に配設されたカッタ用プッシャ135の先端部外周面に固定されている。このカッタ用プッシャ135の基端部は、図示しない機構を介して、ハンドル111のカッタ駆動レバー115に接続されている。このため、ハンドル111のカッタ駆動レバー115を操作すると、カッタ用プッシャ135を介して、カッタ136がフレーム133の中心軸に沿った方向に移動して進退する。 A cutter guide groove (space) 123 a is formed between the cylindrical body 126 and the frame 133. A cylindrical cutter 136 is disposed in the cutter guide groove 123a. The base end portion of the cutter 136 is fixed to the outer peripheral surface of the distal end portion of the cutter pusher 135 disposed inside the shaft 112. The base end portion of the cutter pusher 135 is connected to the cutter driving lever 115 of the handle 111 via a mechanism (not shown). For this reason, when the cutter driving lever 115 of the handle 111 is operated, the cutter 136 moves in the direction along the central axis of the frame 133 via the cutter pusher 135 and moves forward and backward.
 円筒体126の先端のカッタ案内溝123aの外周側には、エネルギー出力部として、第1の高周波電極121aと抵抗加熱ヒータ122とが配設されている。 A first high-frequency electrode 121a and a resistance heater 122 are disposed on the outer peripheral side of the cutter guide groove 123a at the tip of the cylindrical body 126 as an energy output unit.
 第1の高周波電極121aは、高周波エネルギーを出力するためのものであり、導電性材料で円環状に形成された部材である。この第1の高周波電極121aのエネルギー印加面は、挟持面であって、円筒体126の保持面126bと例えば面一である。この第1の高周波電極121aには、第1の高周波電極用通電ライン121eの先端が固定されている。第1の高周波電極用通電ライン121eは、本体側挟持部123、シャフト112、ハンドル111、およびケーブル16を介してエネルギー源4に接続されている。 The first high-frequency electrode 121a is for outputting high-frequency energy, and is a member formed in an annular shape with a conductive material. The energy application surface of the first high-frequency electrode 121a is a sandwiching surface and is, for example, flush with the holding surface 126b of the cylindrical body 126. The tip of the first high-frequency electrode conducting line 121e is fixed to the first high-frequency electrode 121a. The first high-frequency electrode energization line 121 e is connected to the energy source 4 via the main body side clamping portion 123, the shaft 112, the handle 111, and the cable 16.
 また、抵抗加熱ヒータ122は、複数設けられていて、第1の高周波電極121aの裏面の円周上に適当な一定間隔をおいて離散的に配設されている。この抵抗加熱ヒータ122には、ヒータ用通電ライン122aの先端が固定されている。このヒータ用通電ライン122aは、本体側挟持部123、シャフト112、ハンドル111、およびケーブル16を介してエネルギー源4に接続されている。 Also, a plurality of resistance heaters 122 are provided, and are discretely arranged on the circumference of the back surface of the first high-frequency electrode 121a at appropriate regular intervals. The tip of the heater energization line 122a is fixed to the resistance heater 122. The heater energization line 122 a is connected to the energy source 4 via the main body side clamping portion 123, the shaft 112, the handle 111, and the cable 16.
 第1の高周波電極121aの内周側の、カッタ案内溝123aに臨む辺縁には、円環状のギャップ維持部129が、第1の高周波電極121aのエネルギー印加面から離脱側挟持部124側へ向かって突設されている。このギャップ維持部129の内周面は、カッタ案内溝123aの外周面と面一となっている。このギャップ維持部129は、後述する第2の高周波電極121bのエネルギー印加面に当接して、第1の高周波電極121aと第2の高周波電極121bとの電極面間距離を一定距離δ(図22参照)に維持するためのものである。従って、第1の高周波電極121aのエネルギー印加面からのギャップ維持部27Bの突出高さは、一定距離δである。この一定距離δは、上述したように、例えば0.7mm以下(あるいは、さらに0.2mm以上)の距離となるように構成されている。 An annular gap maintaining portion 129 is formed on the inner peripheral side of the first high-frequency electrode 121a facing the cutter guide groove 123a from the energy application surface of the first high-frequency electrode 121a toward the separation-side clamping portion 124. It protrudes toward you. The inner peripheral surface of the gap maintaining portion 129 is flush with the outer peripheral surface of the cutter guide groove 123a. The gap maintaining unit 129 contacts an energy application surface of a second high-frequency electrode 121b, which will be described later, and sets the distance between the electrode surfaces of the first high-frequency electrode 121a and the second high-frequency electrode 121b to a certain distance δ (FIG. 22). For reference). Accordingly, the protrusion height of the gap maintaining portion 27B from the energy application surface of the first high-frequency electrode 121a is a constant distance δ. As described above, the constant distance δ is configured to be a distance of 0.7 mm or less (or 0.2 mm or more), for example.
 一方、離脱側挟持部124は、軸状をなす通電用シャフト132と、この通電用シャフト132の先端側に設けられたヘッド部125と、を備えている。 On the other hand, the detachable side clamping portion 124 includes an energizing shaft 132 having an axial shape, and a head portion 125 provided on the distal end side of the energizing shaft 132.
 通電用シャフト132は、導電性の素材により円柱状に形成されていて、先端部がヘッド部125に固定され、基端部がテーパ状に形成されて、凹凸を介して通電用パイプ131に着脱可能に係合されている。そして、通電用シャフト132は、通電用パイプ131に装着された際に当接する部分を除いた外表面が、コーティング等により絶縁されている。 The energizing shaft 132 is formed in a cylindrical shape from a conductive material, the distal end portion is fixed to the head portion 125, the proximal end portion is formed in a tapered shape, and is attached to and detached from the energizing pipe 131 through irregularities. Engaged as possible. The energizing shaft 132 is insulated by coating or the like on the outer surface except for the portion that comes into contact with the energizing pipe 131.
 ヘッド部125には、本体側挟持部123の第1の高周波電極121aに対向するように、導電性材料で円環状に形成された第2の高周波電極121bが配設されている。この第2の高周波電極121bのエネルギー印加面は、挟持面であって、離脱側挟持部124の保持面125bと例えば面一である。 In the head portion 125, a second high-frequency electrode 121b formed in an annular shape with a conductive material is disposed so as to face the first high-frequency electrode 121a of the body-side clamping portion 123. The energy application surface of the second high-frequency electrode 121b is a clamping surface and is, for example, flush with the holding surface 125b of the separation-side clamping unit 124.
 この第2の高周波電極121bには、第2の通電ライン121fの一端が固定されている。また、第2の通電ライン121fの他端は、通電用シャフト132に電気的に接続されている。このため、通電用パイプ131に通電用シャフト132が挿入されると、第2の高周波電極121bと通電用パイプ131とが電気的に接続される。従って、第2の高周波電極121bは、第2の通電ライン121f、通電用シャフト132、通電用パイプ131、シャフト112、ハンドル111、およびケーブル16を介してエネルギー源4に接続されることになる。 One end of the second energization line 121f is fixed to the second high-frequency electrode 121b. The other end of the second energization line 121f is electrically connected to the energization shaft 132. For this reason, when the energization shaft 132 is inserted into the energization pipe 131, the second high-frequency electrode 121b and the energization pipe 131 are electrically connected. Accordingly, the second high-frequency electrode 121b is connected to the energy source 4 via the second energization line 121f, the energization shaft 132, the energization pipe 131, the shaft 112, the handle 111, and the cable 16.
 ヘッド部125に配設された第2の高周波電極121bの内周側には、カッタ136の刃を受けるための、円環状のカッタ受部127が形成されている。このカッタ受部127の受面は、離脱側挟持部124の保持面125bよりもヘッド部125の内部側(本体側挟持部123から離隔した側)となっている。 An annular cutter receiving portion 127 for receiving the blade of the cutter 136 is formed on the inner peripheral side of the second high-frequency electrode 121b disposed in the head portion 125. The receiving surface of the cutter receiving portion 127 is on the inner side of the head portion 125 (the side away from the main body side holding portion 123) than the holding surface 125b of the detachable side holding portion 124.
 次に、この実施形態に係る治療処置システム101の作用について説明する。 Next, the operation of the treatment system 101 according to this embodiment will be described.
 本体側挟持部123を離脱側挟持部124に対して閉じた状態で、例えば腹壁を通して腹腔内へ、治療処置具102の挟持部113およびシャフト112を挿入する。そして、挟持部113を処置したい生体組織に対峙させる。 With the main body side clamping portion 123 closed with respect to the detachable side clamping portion 124, the clamping portion 113 and the shaft 112 of the treatment instrument 102 are inserted into the abdominal cavity through the abdominal wall, for example. And the clamping part 113 is made to oppose the biological tissue which wants to treat.
 次に、ハンドル111の挟持部開閉ノブ114を術者が操作して、例えば右回りに回動させる。すると、離脱側挟持部124が一対の挟持面の平行を維持しながら先端方向へ移動して、離脱側挟持部124が本体側挟持部123から離脱する。 Next, the operator operates the holding portion opening / closing knob 114 of the handle 111 to rotate it clockwise, for example. Then, the detachable side clamping part 124 moves in the distal direction while maintaining the parallelism of the pair of clamping surfaces, and the detachable side clamping part 124 is detached from the main body side clamping part 123.
 そして、処置したい生体組織を、開いた状態の本体側挟持部123と離脱側挟持部124との間に配置する。この状態で、ハンドル111の挟持部開閉ノブ114を術者が操作して、例えば左回りに回動させる。これにより、離脱側挟持部124が一対の挟持面の平行を維持しながら本体側挟持部123側へ近接し、処置対象の生体組織が本体側挟持部123の第1の高周波電極121aと離脱側挟持部124の第2の高周波電極121bとの間で保持される。 Then, the living tissue to be treated is disposed between the main body side holding portion 123 and the detachable side holding portion 124 in the opened state. In this state, the surgeon operates the holding portion opening / closing knob 114 of the handle 111 and rotates it counterclockwise, for example. As a result, the detachable side clamping part 124 approaches the main body side clamping part 123 side while maintaining the parallelism of the pair of clamping surfaces, and the living tissue to be treated is separated from the first high-frequency electrode 121a of the main body side clamping part 123 and the detachable side. It is held between the second high-frequency electrode 121b of the holding part 124.
 このときには、ギャップ維持部129が設けられているために、第1の高周波電極121aと第2の高周波電極121bとの電極面間距離が一定距離δ以上に維持される。 At this time, since the gap maintaining portion 129 is provided, the distance between the electrode surfaces of the first high-frequency electrode 121a and the second high-frequency electrode 121b is maintained at a certain distance δ or more.
 その後の、高周波エネルギーの印加によって生体組織がジュール熱により加熱されて脱水され、抵抗加熱エネルギーの印加により生体組織が凝固されるのは上述した第1の実施形態と同様である。 Thereafter, the biological tissue is heated and dehydrated by Joule heat by the application of high-frequency energy, and the biological tissue is coagulated by the application of resistance heating energy, as in the first embodiment described above.
 生体組織へのエネルギー印加が終了したときには、生体組織は連続的(略円環状、または略円弧状)に変性されている。 When the application of energy to the living tissue is completed, the living tissue is denatured continuously (substantially annular or arcuate).
 このときであっても、ギャップ維持部129の作用により、第1の高周波電極121aと第2の高周波電極121bとの電極面間距離が一定距離δ、もしくはそれ以上に維持される。 Even at this time, the distance between the electrode surfaces of the first high-frequency electrode 121a and the second high-frequency electrode 121b is maintained at a certain distance δ or more by the action of the gap maintaining portion 129.
 続いて、術者はカッタ駆動レバー115を操作して、カッタ136を先端方向へ移動させる。これにより、凝固された生体組織が円形状や円弧状などに切断される。切断された生体組織を挟持部113から離脱させる際には、術者が挟持部開閉ノブ114を操作して挟持部113を開く。これにより、把持されている生体組織が挟持部113から離脱する。 Subsequently, the operator operates the cutter driving lever 115 to move the cutter 136 in the distal direction. Thereby, the solidified living tissue is cut into a circular shape or an arc shape. When detaching the cut biological tissue from the clamping unit 113, the operator operates the clamping unit opening / closing knob 114 to open the clamping unit 113. As a result, the grasped living tissue is detached from the clamping unit 113.
 なお、上述では円環状をなす1つのギャップ維持部129のみを設けたが、例えばボス状をなす複数のギャップ維持部をカッタ案内溝123aに沿って一定間隔で離散的に配置しても構わない。 In the above description, only one gap maintaining portion 129 having an annular shape is provided. However, for example, a plurality of gap maintaining portions having a boss shape may be discretely arranged along the cutter guide groove 123a at regular intervals. .
 さらに、上述ではギャップ維持部129を、カッタ案内溝123aに面一で臨むように隣接させて設けたが、これに代えて、カッタ案内溝123a内に埋設されるように設けても勿論構わない。 Further, in the above description, the gap maintaining portion 129 is provided adjacent to the cutter guide groove 123a so as to be flush with the cutter guide groove 123a. However, the gap maintaining portion 129 may be provided so as to be embedded in the cutter guide groove 123a instead. .
 また、ギャップ維持部を本体側挟持部にのみ設けているが、離脱側挟持部のみに設けても構わないし、本体側挟持部と離脱側挟持部の両方に設けても良いことは上述した各実施形態と同様である。 In addition, although the gap maintaining portion is provided only in the main body side holding portion, it may be provided only in the detachable side holding portion, or may be provided in both the main body side holding portion and the detaching side holding portion. This is the same as the embodiment.
 このような第3の実施形態によれば、サーキュラタイプの治療処置具においても、上述した第1,2の実施形態とほぼ同様の効果を奏することができ、封止された生体組織に脆弱部分を生じさせることなく、高い耐圧性能および高い目標達成率で、複数種類の生体組織を確実に封止することができる。 According to the third embodiment as described above, even in the circular type treatment instrument, it is possible to achieve substantially the same effect as in the first and second embodiments described above, and the fragile portion in the sealed biological tissue. Without causing any problems, it is possible to reliably seal a plurality of types of living tissues with high pressure resistance and high target achievement rate.
 さらに、サーキュラタイプの治療処置具を用いれば、生体組織同士を略円環状に封止することも可能となる。 Furthermore, if a circular type treatment instrument is used, it becomes possible to seal living tissues in a substantially annular shape.
 なお、上述した各実施形態においては、治療処置具として、一対の挟持面の両方にエネルギー出力部を備える構成例(つまり、バイポーラ型の治療処置具)を説明したが、一対の挟持面の一方にのみエネルギー出力部を備える構成(すなわち、モノポーラ型の治療処置具)であっても構わない。 In each of the above-described embodiments, the configuration example in which the energy output unit is provided on both of the pair of sandwiching surfaces (that is, the bipolar treatment instrument) is described as the treatment instrument. It is also possible to have a configuration (that is, a monopolar type treatment instrument) including only an energy output unit.
 なお、本発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化することができる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明の態様を形成することができる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除しても良い。さらに、異なる実施形態にわたる構成要素を適宜組み合わせても良い。このように、発明の主旨を逸脱しない範囲内において種々の変形や応用が可能であることは勿論である。 It should be noted that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various aspects of the invention can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, you may delete some components from all the components shown by embodiment. Furthermore, the constituent elements over different embodiments may be appropriately combined. Thus, it goes without saying that various modifications and applications are possible without departing from the spirit of the invention.
 本出願は、2012年11月9日に米国に日本語出願されたUSSN 61/724,706を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。 This application is filed on the basis of USSN 61 / 724,706, filed in the United States on November 9, 2012, as a basis for claiming priority. Shall be cited in

Claims (9)

  1.  生体組織にエネルギーを加えて処置するための治療処置具において、
     対向する一対の挟持面により前記生体組織を挟持するものであり、開閉可能な一対の挟持部と、
     前記一対の挟持部の少なくとも一方に設けられ、高周波エネルギーを前記生体組織へ印加し、その後に抵抗加熱エネルギーを該生体組織へ印加するエネルギー印加面を、前記一対の挟持面の少なくとも一方として備えるエネルギー出力部と、
     前記一対の挟持面の少なくとも一方から突出されており、前記一対の挟持部が閉じた際に、対向する前記一対の挟持面間の距離を0.7mm以下の一定距離に維持するためのギャップ維持部と、
     を具備したことを特徴とする治療処置具。
    In a therapeutic treatment device for treating a living tissue by applying energy,
    The biological tissue is clamped by a pair of opposing clamping surfaces, and a pair of clamping parts that can be opened and closed,
    Energy provided on at least one of the pair of sandwiching portions and having an energy application surface for applying high-frequency energy to the living tissue and then applying resistance heating energy to the living tissue as at least one of the pair of sandwiching surfaces An output section;
    Gap maintenance for projecting from at least one of the pair of clamping surfaces and maintaining a distance between the pair of opposing clamping surfaces at a constant distance of 0.7 mm or less when the pair of clamping parts are closed. And
    A therapeutic treatment instrument comprising:
  2.  前記ギャップ維持部は、対向する前記一対の挟持面間の距離を、所定箇所を含む一箇所以上において前記0.7mm以下の一定距離に維持するべく、前記一対の挟持面の一方または両方の一箇所以上に対応する位置に設けられたものであることを特徴とする請求項1に記載の治療処置具。 The gap maintaining portion is configured to maintain a distance between the pair of sandwiching surfaces facing each other at one or both of the pair of sandwiching surfaces in order to maintain a constant distance of 0.7 mm or less at one or more locations including a predetermined location. The treatment instrument according to claim 1, wherein the treatment instrument is provided at a position corresponding to more than one place.
  3.  前記挟持部内を進退可能であって、該挟持部に挟持されている前記生体組織を切断するための切断部材と、
     前記エネルギー印加面の端面に沿って設けられ、前記切断部材を前記挟持部内で進退可能に案内し、前記挟持部の内部において先端側が終端している案内溝と、
     をさらに具備し、
     前記ギャップ維持部は、前記案内溝の先端側終端に対応する位置を前記所定箇所として、前記案内溝内の先端側終端に面一で臨むように該案内溝に隣接されるか、または該案内溝内の先端側終端に埋設されたものであることを特徴とする請求項2に記載の治療処置具。
    A cutting member capable of advancing and retreating in the clamping part, and for cutting the living tissue clamped in the clamping part;
    A guide groove provided along an end surface of the energy application surface, guiding the cutting member so as to advance and retreat in the sandwiching portion, and a leading end terminating in the sandwiching portion;
    Further comprising
    The gap maintaining portion is adjacent to the guide groove so as to be flush with the tip end in the guide groove with the position corresponding to the tip end of the guide groove as the predetermined location, or the guide The treatment instrument according to claim 2, wherein the treatment instrument is embedded at a distal end side end in the groove.
  4.  前記ギャップ維持部は、さらに、対向する前記一対の挟持面間の距離を、複数箇所において前記0.7mm以下の一定距離に維持するべく、前記一対の挟持面の一方または両方の前記複数箇所に対応する位置に設けられたものであることを特徴とする請求項3に記載の治療処置具。 The gap maintaining portion is further provided at one or both of the plurality of locations of the pair of clamping surfaces in order to maintain the distance between the pair of clamping surfaces facing each other at a constant distance of 0.7 mm or less at the plurality of locations. The treatment instrument according to claim 3, wherein the treatment instrument is provided at a corresponding position.
  5.  前記複数のギャップ維持部は、前記案内溝に沿って、一定間隔をおいて設けられていることを特徴とする請求項4に記載の治療処置具。 The treatment instrument according to claim 4, wherein the plurality of gap maintaining portions are provided at regular intervals along the guide groove.
  6.  前記エネルギー出力部は、前記高周波エネルギーを発生する高周波電極と、前記抵抗加熱エネルギーを発生する抵抗加熱ヒーターと、を有することを特徴とする請求項1に記載の治療処置具。 The therapeutic treatment device according to claim 1, wherein the energy output unit includes a high-frequency electrode that generates the high-frequency energy and a resistance heater that generates the resistance heating energy.
  7.  前記ギャップ維持部は、非導電性処理を施した金属、非導電性のセラミックス、または非導電性の樹脂の少なくとも1つの材料により形成されていることを特徴とする請求項1に記載の治療処置具。 The therapeutic treatment according to claim 1, wherein the gap maintaining portion is formed of at least one material of a metal subjected to non-conductive treatment, non-conductive ceramics, or non-conductive resin. Ingredients.
  8.  前記一対の挟持部は、開閉を回動軸周りに行う基端部から先端部へ向かって長手方向をなす形状であって、前記一対の挟持部を閉じたときは前記一対の挟持面を平行に形成するため、前記一対の挟持部の少なくとも一方に対して前記エネルギー出力部を長手軸方向に回動自在に保持し、
     前記一対の挟持部を開いたときにも、前記一対の挟持面を平行に維持し得るようにするためのシーソー機構をさらに具備したことを特徴とする請求項1に記載の治療処置具。
    The pair of sandwiching portions has a shape that forms a longitudinal direction from a base end portion that opens and closes around a rotation axis to a distal end portion, and when the pair of sandwiching portions is closed, the pair of sandwiching surfaces are parallel to each other. In order to form the energy output unit, the energy output unit is rotatably held in the longitudinal axis direction with respect to at least one of the pair of sandwiching units,
    The treatment instrument according to claim 1, further comprising a seesaw mechanism for maintaining the pair of clamping surfaces in parallel even when the pair of clamping parts is opened.
  9.  前記一対の挟持部は、前記一対の挟持面が平行を維持しながら離隔または近接を行うことにより開閉を行うように構成されたものであることを特徴とする請求項1に記載の治療処置具。 The treatment instrument according to claim 1, wherein the pair of sandwiching portions are configured to be opened and closed by separating or approaching the pair of sandwiching surfaces while maintaining parallelism. .
PCT/JP2013/079746 2012-11-09 2013-11-01 Treatment tool WO2014073492A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261724706P 2012-11-09 2012-11-09
US61/724706 2012-11-09

Publications (1)

Publication Number Publication Date
WO2014073492A1 true WO2014073492A1 (en) 2014-05-15

Family

ID=50684598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079746 WO2014073492A1 (en) 2012-11-09 2013-11-01 Treatment tool

Country Status (1)

Country Link
WO (1) WO2014073492A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111372529A (en) * 2017-11-22 2020-07-03 奥林巴斯株式会社 Treatment tool and method for manufacturing treatment tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102545A (en) * 1997-06-18 2000-04-11 Eggers & Associates Inc Electric tweezers for surgery
JP2005218868A (en) * 2004-02-03 2005-08-18 Sherwood Services Ag Arterial hole closure apparatus
US20100057082A1 (en) * 2008-08-28 2010-03-04 Tyco Healthcare Group Lp Tissue Fusion Jaw Angle Improvement
JP2011194059A (en) * 2010-03-19 2011-10-06 Olympus Corp Therapeutic treatment system
US20120022584A1 (en) * 2010-07-23 2012-01-26 Stephen Donnigan Jaw Movement Mechanism and Method for a Surgical Tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102545A (en) * 1997-06-18 2000-04-11 Eggers & Associates Inc Electric tweezers for surgery
JP2005218868A (en) * 2004-02-03 2005-08-18 Sherwood Services Ag Arterial hole closure apparatus
US20100057082A1 (en) * 2008-08-28 2010-03-04 Tyco Healthcare Group Lp Tissue Fusion Jaw Angle Improvement
JP2011194059A (en) * 2010-03-19 2011-10-06 Olympus Corp Therapeutic treatment system
US20120022584A1 (en) * 2010-07-23 2012-01-26 Stephen Donnigan Jaw Movement Mechanism and Method for a Surgical Tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111372529A (en) * 2017-11-22 2020-07-03 奥林巴斯株式会社 Treatment tool and method for manufacturing treatment tool

Similar Documents

Publication Publication Date Title
US10245103B2 (en) End effector assemblies and methods of manufacturing end effector assemblies for treating and/or cutting tissue
US10098688B2 (en) Treatment system, and treatment method for living tissue using energy
JP5116383B2 (en) Vessel sealing device with preheating electrode
US8454599B2 (en) Treatment apparatus and electro-surgical device
US7717914B2 (en) Treatment device
US8814865B2 (en) Electrical cutting and vessel sealing jaw members
JP5160168B2 (en) Vascular sealing device having multiple electrode configurations
JP6461275B2 (en) Treatment tool and treatment system
US20150080887A1 (en) Surgical device using energy
JP5690449B2 (en) Treatment instrument
JP6125117B2 (en) Medical equipment
JP2003299667A (en) Bipolar-type high frequency cutting accessory for endoscope
WO2014141530A1 (en) Treatment device and treatment method
WO2014073492A1 (en) Treatment tool
US9247987B2 (en) Electrosurgical gripping element
WO2014148199A1 (en) Therapeutic treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13852936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP