WO2014074795A1 - High dose levodopa capsules for pulmonary use - Google Patents

High dose levodopa capsules for pulmonary use Download PDF

Info

Publication number
WO2014074795A1
WO2014074795A1 PCT/US2013/069102 US2013069102W WO2014074795A1 WO 2014074795 A1 WO2014074795 A1 WO 2014074795A1 US 2013069102 W US2013069102 W US 2013069102W WO 2014074795 A1 WO2014074795 A1 WO 2014074795A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule
powder
levodopa
dosator
dppc
Prior art date
Application number
PCT/US2013/069102
Other languages
French (fr)
Inventor
Kevin D. KEE
Ernest D. PENACHIO
Abhijit Kamerkar
Michael M. Lipp
Richard P. Batycky
Original Assignee
Civitas Therapeutics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/679,245 external-priority patent/US8545878B1/en
Priority to KR1020157015345A priority Critical patent/KR102257164B1/en
Priority to AU2013342246A priority patent/AU2013342246B2/en
Priority to KR1020237025814A priority patent/KR20230116102A/en
Priority to RU2015121092A priority patent/RU2676093C2/en
Priority to JP2015541915A priority patent/JP6347786B2/en
Priority to CA2890451A priority patent/CA2890451C/en
Priority to KR1020217015347A priority patent/KR102389785B1/en
Priority to PL13852876T priority patent/PL2916821T3/en
Priority to EP13852876.5A priority patent/EP2916821B1/en
Priority to MX2015005767A priority patent/MX2015005767A/en
Priority to DK13852876.5T priority patent/DK2916821T3/en
Priority to BR112015010603-0A priority patent/BR112015010603B1/en
Priority to ES13852876T priority patent/ES2844153T3/en
Priority to SG11201503543PA priority patent/SG11201503543PA/en
Priority to NZ70868413A priority patent/NZ708684A/en
Priority to CN201380068998.2A priority patent/CN104918607B/en
Priority to KR1020227013071A priority patent/KR20220054703A/en
Priority to EP20202500.3A priority patent/EP3815679A1/en
Application filed by Civitas Therapeutics, Inc. filed Critical Civitas Therapeutics, Inc.
Publication of WO2014074795A1 publication Critical patent/WO2014074795A1/en
Priority to ZA2015/04058A priority patent/ZA201504058B/en
Priority to HK16101181.9A priority patent/HK1213186A1/en
Priority to HK16102954.2A priority patent/HK1214957A1/en
Priority to AU2018204674A priority patent/AU2018204674B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4833Encapsulating processes; Filling of capsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/07Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use
    • A61J3/071Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use into the form of telescopically engaged two-piece capsules
    • A61J3/074Filling capsules; Related operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/12Aerosols; Foams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1611Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4816Wall or shell material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4858Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B1/00Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B1/04Methods of, or means for, filling the material into the containers or receptacles
    • B65B1/16Methods of, or means for, filling the material into the containers or receptacles by pneumatic means, e.g. by suction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B1/00Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B1/20Reducing volume of filled material
    • B65B1/26Reducing volume of filled material by pneumatic means, e.g. suction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B1/00Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B1/30Devices or methods for controlling or determining the quantity or quality or the material fed or filled
    • B65B1/36Devices or methods for controlling or determining the quantity or quality or the material fed or filled by volumetric devices or methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B63/00Auxiliary devices, not otherwise provided for, for operating on articles or materials to be packaged
    • B65B63/02Auxiliary devices, not otherwise provided for, for operating on articles or materials to be packaged for compressing or compacting articles or materials prior to wrapping or insertion in containers or receptacles
    • B65B63/028Auxiliary devices, not otherwise provided for, for operating on articles or materials to be packaged for compressing or compacting articles or materials prior to wrapping or insertion in containers or receptacles by pneumatic means

Definitions

  • Parkinson's disease is a debilitating disease caused by the death of dopamine neurons in the central nervous system. Parkinson's disease patients experience life altering symptoms of tremors, slowness in moving, and difficulty walking. While no drugs exist which cure the disease or stop its progression, a number of drugs exist to help with symptoms. The most commonly used drug and the drug all Parkinson's patients eventually use is levodopa. Levodopa (also referred to herein as "levodopa”) is currently supplied in tablets with or without one or two other drugs. The other drugs typically function to prevent the body from metabolizing the levodopa before it can take its effect. Many patients initially respond well to levodopa treatment, but over time the effect becomes diminished.
  • Dyskinesis are involuntary movements due to too much levodopa.
  • patients experience freezing episodes where the patient has significant difficulty moving. Once a freezing episode occurs, patient can take a tablet of levodopa, but they have to wait until the levodopa is absorbed to become unfrozen. Further complicating the freezing problem is that Parkinson's patients have poor stomach motility resulting in slow drug absorption. An inhalable formulation of levodopa could help patients with these freezing issues.
  • a difficulty in creating an inhalable levodopa product is delivering enough dose to the patient, since levodopa is a high dose drug. Another difficulty is delivering an inhaled drug to a Parkinson's patient. Since these patients are movement impaired, they need a quick and simple process to inhale the levodopa.
  • a dry powder containing a drug can vary greatly in density. Modifying the density of the powder can affect stability and the ability of the drug to reach the lungs appropriately.
  • optimizing the density of the levodopa inhalable powder enables the effective delivery of high doses of levodopa to the patient by inhalation. Even if appropriate density can be reached for a high dose drug such as levodopa, the efficient emptying of the powder from the capsule is also a critical factor. If the emptying characteristics of the capsule are poor, the increased dosage achieved by optimal loading of the powder into the capsule is diminished.
  • Pulmonary powders may be provided in amorphous form as amorphous forms of a compound have faster dissolution and would be more likely to show a fast onset of action.
  • amorphous powders are difficult to manufacture and difficult to keep stable under long term storage conditions, as required by the drug regulatory agencies. Further, filling large volumes of amorphous powders in a capsule can be challenging due to electrostatic charges.
  • the present invention provides a capsule containing an inhalable powder composition wherein the composition comprises about 75% by weight or more levodopa, dipalmitoylphosphatidylcholine (DPPC) and a salt characterized by a working density of less than about 0.1 g/cm 3 .
  • the invention further provides a capsule containing an inhalable powder composition wherein the composition comprises about 75% by weight or more levodopa, dipalmitoylphosphatidylcholine (DPPC) and a salt characterized by a working density of less than about 0.1 g/cm 3 wherein the capsule material comprises hydroxypropylmethylcellulose (HPMC) and titanium dioxide.
  • the present invention also provides a method and dosator apparatus for dispensing low density, high flowing powders into capsules at high target fill weights with accuracy and repeatability.
  • FIG. 1 is a schematic of a purge gas humidification setup using pressure pot.
  • FIG. 2A is a schematic of a standard versus setup for introduction of purge gas.
  • FIG. 2B is a schematic of an angled setup for introduction of purge gas.
  • FIG. 3 A is a schematic of an angled-inlet purge set up with a 0° downward facing purge stream.
  • FIG. 3B is a schematic of an angled-inlet purge set up with a 0° upward facing purge stream.
  • FIG. 3C is a schematic of an angled-inlet purge set up with a 25-30° downward facing purge stream.
  • FIG. 3D is a schematic of an angled-inlet purge set up with a 25-30° upward facing purge stream.
  • FIG. 4 is a schematic of the side view of a full bore dosator setup.
  • FIG. 5 is a schematic of the process steps in capsule filling operation utilizing the full bore dosator. The process is shown in five steps.
  • Step 1 shows the dosator immersed into the powder bed.
  • Step 2 shows the vacuum applied to the dosator that pulls the powder into the dosator.
  • Step 3 shows the vacuum application continued, and the dosator moved from the powder bed to the capsule filling station.
  • Step 4 shows the vacuum application continued and the dosator positioned above an empty capsule in the capsule filling station.
  • Step 5 shows the vacuum discontinued and expulsion pressure applied to the dosator expelling the powder from the dosator into the empty capsule thereby filling the capsule.
  • FIG. 6 is a table showing the exemplary specifications for various gelatin capsules used in combination with the dosator of the invention.
  • the capsules according to the invention are for use in an inhalation device and contain, as the inhalable powder, levodopa mixed with one or more physiologically acceptable excipients, characterized in that the powder has a working density (also referred to herein as "bulk density") of about 100 g/L or less which can also be expressed as about 0.1 g/cm 3 or less.
  • a working density also referred to herein as "bulk density”
  • a low density powder could allow for a significantly higher dose of levodopa per capsule than an average density powder.
  • a difficulty is that low density levodopa powders are difficult to achieve while still allowing for a powder that can be easily filled into a capsule.
  • the invention provides capsules containing an inhalable powder comprising levodopa wherein the capsule has superior emptying characteristics upon delivery of the powder from the capsule upon actuation when used in conjunction with an inhaler. Superior emptying from the capsule is an important characteristic of a capsule containing an inhalable powder comprising levodopa.
  • the capsules for inhalation according to the invention are filled with inhalable powder containing levodopa, wherein that the powder has a working density of less than about 0.1 g/cm 3 .
  • the powder has a working density of about 0.01 g/cm 3 , 0.02 g/cm 3 , 0.03g/cm 3 , 0.04 g/cm 3 , 0.05 g/cm 3 , 0.06 g/cm 3 , 0.07 g/cm 3 , 0.08 g/cm 3 , 0.9 g/cm 3 or 0.1 g/cm 3 .
  • the powder has a working density of about 0.01 g/cm 3 to 0.1 g/cm 3 and preferably about 0.02 g/cm 3 and 0.08 g/cm 3 .
  • working density is interchangeable with the term "bulk density” and is defined herein as the weight of the powder (m) divided by the volume it occupies (Vo) and is expressed herein as grams per liter (g/L) as determined by measurement in a graduated cylinder. Briefly, a graduated cylinder is first weighed, filled with powder without compacting, leveled if necessary without compacting and weighed again. The unsettled apparent volume is read to the nearest graduated unit. The working density is calculated by the formula mlVo. Working density may also be expressed for example in grams per cubic centimeter (g/cm 3 ). In one embodiment the working density is less than 0.1 g/cm 3 .
  • the working density ranges from about 0.01 g/cm 3 to about 0.1 g/cm 3 . In one embodiment the working density ranges from about 0.02 g/cm 3 to about 0.08 g/cm 3 and preferably from about 0.02 g/cm 3 to about 0.05 g/cm 3 .
  • the capsules contain powder with a working density between about 0.03 g/cm 3 to about 0.06 g/cm 3 . In another embodiment, the capsules contain powder with a working density between about 0.04 g/cm 3 to about 0.05 g/cm 3 . In a further embodiment, the capsules contain powder with a working density of about 0.04 g/cm 3 . In a further embodiment, the capsules contain powder with a working density of about 0.045 g/cm 3 . In a further embodiment, the capsules contain powder with a working density of about 0.05 g/cm 3 . In a further embodiment, the capsules contain powder with a working density of about 0.035 g/cm 3 .
  • the capsules contain powder with a working density of about 0.03 g/cm 3 . In one embodiment, the capsules contain powder with a working density between about 0.03 g/cm 3 to about 0.05 g/cm 3 . In another embodiment, the capsules contain powder with a working density between about 0.04 g/cm 3 to about 0.06 g/cm 3 . In another embodiment, the capsules contain powder with a working density between about 0.05 g/cm 3 to about 0.06 g/cm 3 . In another embodiment, the capsules contain powder with a working density between about 0.06 g/cm 3 to about 0.07 g/cm 3 .
  • the inhalable powder contained in the capsules of the invention comprises at least 50% by weight levodopa by weight of solids in the powder.
  • the inhalable powder in a capsule of this invention may contain at least 60%, 70%, 80%, 90% by dry weight or more levodopa.
  • the inhalable powder contains about 75% by dry weight or more levodopa.
  • the inhalable powder contains about 85% by dry weight by weight or more levodopa.
  • the inhalable powder in the capsule contains about 90% by dry weight by weight or more levodopa.
  • the inhalable powder in the capsule contains between 80- 95% by dry weight levodopa of solids in the powder.
  • the inhalable powder in the capsule contains between 85-95% by dry weight levodopa of solids in the powder. In one embodiment, the inhalable powder in the capsule contains between 88- 92% by dry weight levodopa of solids in the powder.
  • the inhalation powder may contain additional excipients. Examples of excipients include salts such as sodium chloride ( aCl), sodium citrate, sodium lactate, and potassium chloride and phospholipids such as dipalmitoylphosphatidylcholine (DPPC) dilauroylphosphatidylcholine (DLPC), disaturated-phosphatidylcholine (DSPC).
  • DPPC dipalmitoylphosphatidylcholine
  • DLPC dilauroylphosphatidylcholine
  • DSPC disaturated-phosphatidylcholine
  • the capsule contains a powder comprising 90% levodopa, 8% dipalmitoylphosphatidylcholine, and 2% sodium chloride as measured by % of solids in the powder.
  • the capsule contains an inhalable powder having a dry weight ratio of 90:8:2 of levodopa:DPPC:NaCl.
  • the capsule contains an inhalable powder having a dry weight ratio of 90:5:5 of
  • the capsules of the invention comprising the inhalable powders are useful for delivery of levodopa to the pulmonary system, in particular to the deep lung.
  • the inhalable powder contained in the capsule of the invention is characterized by a fine particle fraction (FPF), geometric and aerodynamic dimensions and by other properties, as further described below.
  • FPF fine particle fraction
  • the Andersen Cascade Impactor is an eight- stage impactor that can separate aerosols into nine distinct fractions based on aerodynamic size. The size cutoffs of each stage are dependent upon the flow rate at which the ACI is operated. Preferably the ACI is calibrated at 60 L/min.
  • a two-stage collapsed ACI is used for particle optimization.
  • the two-stage collapsed ACI consists of stages 0, 2 and F of the eight-stage ACI and allows for the collection of two separate powder fractions. At each stage an aerosol stream passes through the nozzles and impinges upon the surface. Particles in the aerosol stream with a large enough inertia will impact upon the plate. Smaller particles that do not have enough inertia to impact on the plate will remain in the aerosol stream and be carried to the next stage.
  • the ACI is calibrated so that the fraction of powder that is collected on a first stage is referred to herein as "fine particle fraction” or "FPF".
  • the FPF corresponds to the percentage of particles that have an aerodynamic diameter of less than 5.6 ⁇ .
  • the fraction of powder that passed the first stage of the ACI and is deposited on the collection filter is referred to as "FPF(3.4)”. This corresponds to the percentage of particles having an aerodynamic diameter of less than 3.4 ⁇ .
  • the FPF fraction has been demonstrated to correlate to the fraction of the powder that is deposited in the lungs of the patient, while the FPF(3.4) has been demonstrated to correlate to the fraction of the powder that reaches the deep lung of a patient.
  • the FPF of the inhalable powder of the nominal dose contained in the capsule is about 40% or more.
  • the FPF of the nominal dose of the inhalable powder contained in the capsule is about 50%, 60%, or 70%, or 80%, or 90%.
  • the FPF is about 50% to about 60% of the nominal dose of the inhalable powder contained in the inhaler.
  • the FPF is about 55% to about 65% of the nominal dose of the inhalable powder contained in the inhaler.
  • the FPF is about 50% to about 70% of the nominal dose of the inhalable powder contained in the inhaler.
  • the FPF is about 57% to about 62% of the nominal dose of the inhalable powder contained in the inhaler.
  • the FPF is about 50% to about 69% of the nominal dose of the inhalable powder contained in the inhaler.
  • the FPF is about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, or 65% of the nominal dose of the inhalable powder contained in the inhaler.
  • nominal powder dose is the total amount of powder held in the capsule.
  • nominal drug dose is the total amount of Levodopa contained in the nominal powder dose.
  • the nominal powder dose is related to the nominal drug dose by the load percent of drug in the powder.
  • the nominal powder dose is 25-50 mg by dry weight. In a further embodiment, the nominal powder dose is 25-40 mg by dry weight. In a still further embodiment, the nominal powder dose is 30-35 mg by dry weight or 32-38 mg by dry weight.
  • MSLI multi-stage liquid impinger
  • MSLI Multi-stage liquid Impinger
  • ACI Anderson Cascade Impactor
  • MSLI stage consists of a methanol-wetted glass frit. The wetted stage is used to prevent bouncing and re-entrainment, which can occur using the ACI.
  • the MSLI is used to provide an indication of the flow rate dependence of the powder. This can be accomplished by operating the MSLI at 30, 60, and 90 L/min and measuring the fraction of the powder collected on stage 1 and the collection filter. If the fractions on each stage remain relatively constant across the different flow rates then the powder is considered to be approaching flow rate independence.
  • the inhalable powders of the invention have a tap density of less than about 0.4 g/cm 3 .
  • the particles have a tap density less than about 0.3 g/cm 3 , or a tap density less than about 0.2 g/cm 3 , a tap density less than about 0.1 g/cm 3 .
  • Tap density can be measured by using instruments known to those skilled in the art such as the Dual Platform Microprocessor Controlled Tap Density Tester (Vankel, N.C.) or a GEOPYCTM instrument (Micrometrics Instrument Corp., Norcross, GA,
  • Tap density is a standard measure of the envelope mass density. Tap density can be determined using the method of USP Bulk Density and Tapped Density, United States Pharmacopia convention, Rockville, Md., 10 th Supplement, 4950-4951, 1999. Features which can contribute to low tap density include irregular surface texture and porous structure.
  • the envelope mass density of an isotropic particle is defined as the mass of the particle divided by the minimum sphere envelope volume within which it can be enclosed. In one embodiment of the invention, the particles have an envelope mass density of less than about 0.4 g/cm 3 .
  • the inhalable powder of the invention has a preferred particle size, e.g., a volume median geometric diameter (VMGD) of at least about 1 micron ( ⁇ ).
  • VMGD volume median geometric diameter
  • the diameter of the spray-dried particles, for example, the VMGD can be measured using a laser diffraction instrument (for example Helos, manufactured by Sympatec, Princeton, N.J.). Other instruments for measuring particle diameter are well known in the art.
  • the diameter of particles in a sample will range depending upon factors such as particle composition and methods of synthesis.
  • the distribution of size of particles in a sample can be selected to permit optimal deposition to targeted sites within the respiratory tract.
  • the particles of the inhalable powder of the invention preferably have a "mass median aerodynamic diameter” (MMAD), also referred to herein as “aerodynamic diameter", between about 1 ⁇ and about 5 ⁇ or any subrange encompassed between about 1 ⁇ and about 5 ⁇ .
  • MMAD mass median aerodynamic diameter
  • aerodynamic diameter can be determined by employing a gravitational settling method, whereby the time for an ensemble of powder particles to settle a certain distance is used to infer directly the aerodynamic diameter of the particles.
  • An indirect method for measuring the mass median aerodynamic diameter (MMAD) is the multistage liquid impinger (MSLI).
  • MSLI multistage liquid impinger
  • d g is the geometric diameter, for example the MMGD
  • p is the powder density
  • the particles have a mass mean geometric diameter (MMGD) of between about 5 ⁇ and about 18 ⁇ . In another embodiment, the particles have a mass mean geometric diameter (MMGD) of between about 5 ⁇ and about 12 ⁇ . In another embodiment, the particles have a mass mean geometric diameter (MMGD) of between about 8 ⁇ and about 10 ⁇ . In another embodiment, the particles have a mass mean geometric diameter (MMGD) of between about 8 ⁇ and about 15 ⁇ .
  • Powders for use in capsules of this invention are typically produced by spray drying.
  • spray-drying can produce extremely dry particles which may have poor handling properties and may be difficult to compact into a capsule in a dense manner.
  • a nitrogen source with a specified moisture level may be flown over, across, or through the dry powder to add a specific moisture content to the dry powder. Such moisture can provide the desired working density of the powder.
  • Spray drying methods in accordance with the invention are described in the Examples herein and in U.S. Patent Numbers: 6,848, 197 and 8, 197,845, incorporated herein by reference.
  • the inhalable powder comprising levodopa as described above is used to fill capsules suitable for use in an inhaler.
  • capsule material refers to the material from which the shell of the capsule for inhalation is made.
  • the shell of the capsule is also referred to herein as the "capsule shell” or the "capsule's shell”.
  • the capsule material according to the invention is selected from among gelatin, cellulose derivatives, starch, starch derivatives, chitosan and synthetic plastics.
  • examples according to the invention may be selected from among polyethyleneglycol (PEG), PEG 3350, glycerol, sorbitol, propyleneglycol, PEO-PPO block copolymers and other polyalcohols and polyethers.
  • examples according to the invention may be selected from hydroxypropylmethylcellulose (HPMC),
  • the capsule material further comprises titanium dioxide.
  • the capsule comprises HPMC and titanium dioxide.
  • the capsule comprises carrageenan.
  • the capsule comprises potassium chloride.
  • the capsule comprises, HPMC, carrageenan, potassium chloride, and titanium dioxide .
  • the capsule size is selected from 000, 00, 0, 1, or 2. In a specific embodiment, the capsule size is 00.
  • the capsule is a hydroxypropylmethylcellulose
  • the capsule is a
  • hydroxypropylmethylcellulose size 00 capsule hydroxypropylmethylcellulose size 00 capsule.
  • the capsule material comprises HPMC and titanium dioxide and the capsule size is 00.
  • a 00 capsule contains between 15 and 50 grams of levodopa by dry weight. In another embodiment, a 00 capsule contains between 20 and 40 grams of levodopa by dry weight. In another embodiment, a 00 capsule contains between 25 and 35 grams of levodopa by dry weight. In another embodiment, a 00 capsule contains about 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 grams of levodopa by dry weight.
  • the powders have low electrostatic charge to enable high dispersion from the capsule.
  • the invention further provides a method and dosator apparatus for dispensing low density, high flowing powders into capsules at high target fill weights with accuracy and repeatability.
  • the dosator 20 of the invention is described
  • the dosator of the invention is also referred to herein as the "full bore dosator" because the inner diameter of the dosator chamber as measured at the mesh screen 26 is large, approximately 0.280 to 0.315 inches and is preferably 0.286 inches. This is larger than the inner diameter of the dosator chamber of a standard size dosator which typically has a diameter of 0.250 inches.
  • the larger inner diameter of the dosator chamber of the dosator of the present invention allows more powder to be held due to the pressure drop through the powder.
  • the dosator 20 is preferably in the form of a tube which tapers from the top 50 of the dosator to the bottom 56 of the dosator and has an axial passage therein forming an elongate cavity.
  • a stationary plunger 22 is disposed within the cavity.
  • a removable mesh screen 26 having an area that is equal to nd 2 /4 (wherein d is the inner diameter of the dosator chamber as measured at the mesh screen) and a mesh size that is smaller than the mass median diameter (D50) of the dry powder is disposed between the stationary plunger 22 and the bottom 56 of the dosator.
  • a dosator chamber 27 of a predetermined height is defined by the space between the mesh screen 26 and the bottom 56 of the dosator for receiving powder from a powder source and holding the powder until it is expelled into the capsule.
  • the height of the dosator chamber is in the range of 5 mm to 20 mm.
  • the height of the dosator chamber may be chosen to accommodate the required fill weight of the capsule.
  • At least one vacuum pump is operably linked to the dosator via a linking means such as a port 24, and is capable of drawing dry powder into the dosator chamber 27 from a powder source and compacting the powder into a slug of powder having a predetermined bulk density prior to expelling the slug of powder into a capsule.
  • at least one source of positive pressure operably linked to the dosator and capable of providing positive pressure to expel the powder slug from the dosator.
  • the mesh screen 26 is designed to be removable and replaceable and to allow powders to be filled based on geometry and traits.
  • a mesh screen 26 is needed to prevent powder from traveling up towards the vacuum pump operably linked to the dosator and clogging the system. This maintains constant vacuum throughout the course of a filling run, which keeps the accuracy at the target fill weight. If powder was to pass the mesh screen 26, fill weights would continue to drop as the filling run progresses.
  • the mesh size of the screen 26 is smaller than the D 50 of the given powder to ensure powder does not clog the lines. If the particle size is larger, a larger mesh can be used to minimize the resistance and therefore maximize fill weights.
  • the mesh screen is a 2 micron mesh screen. In one embodiment, the mesh screen is a 5 micron mesh screen.
  • the dosator 20 is operably linked to at least one vacuum pump. In one embodiment the dosator is operably linked to at least two vacuum pumps. The dosator 20 may be linked to one or more vacuum pumps via, for example, one or more ports 24. In one embodiment the dosator 20 is operably linked to a positive pressure source suitable for applying positive pressure to expel a slug from the dosator chamber 27 into a capsule. In one embodiment the positive pressure source is a nitrogen containing source such as a nitrogen tank.
  • powder is loaded into hopper and is conveyed to bowl 52 via an auger to remove air and maintain powder bed height 51 throughout the filling run.
  • the bed height 51 is maintained at a height double the stroke height of the dosator.
  • stroke height means the measure from the bottom 56 of the dosator to the mesh screen 26.
  • the manifold 60 is common to both negative and positive pressure systems used.
  • vacuum is generated by two vacuum pumps to achieve a pressure of— latm (-98KPa).
  • the low pressure creates a large pressure differential ( ⁇ ) across the mesh screen 26.
  • a large vacuum and large bore design can allow high fill weights be achieved for the given powders.
  • the bed height, vacuum and push pressure allow the high fill weight to be achieved.
  • the accuracy is achieved by adjusting the stroke height, which makes small adjustments back to the intended fill weight.
  • the advantages of the improved dosator of the invention is that the vacuum dosing arrangement allows for low density, high flowing particles (e.g. particles that do not adhere to each other) to be filed at high target fill weights with accuracy and repeatability.
  • the relative standard deviation (RSD) for the levodopa powders such as the 90:8:2 levodopa:DPPC:NaCl powder fill per each run is less than 4% for a 32 mg capsule fill using a 00 capsule.
  • FIG. 6 is a table showing exemplary technical specifications for various gelatin capsules used in accordance with the dosator of the invention.
  • the invention comprises a method of filling a capsule using the dosator of the invention, the method comprising the steps of: creating a low pressure vacuum within the dosator; positioning the dosator in a bowl filled with powder and drawing the powder into the dosator chamber; maintaining the powder in the dosator chamber with the low pressure vacuum to form a slug of powder having a predetermined bulk density and expelling the slug of powder into a capsule.
  • the bulk density of the powder slug is between about 0.02 g/cm 3 to about 0.05 g/cm 3 .
  • the capsule is a 00 size capsule.
  • the powder slug comprises between about 15 and 50 milligrams of powder. In one embodiment the powder slug comprises between about 25 and 35 milligrams of powder.
  • At least one vacuum pump achieves a pressure of about -1 atmosphere (atm). In one embodiment, at least two vacuum pumps achieve a pressure of about - 1 atm.
  • the diameter of the dosator chamber a measured at the mesh screen is between 0.280 and 0.315 inches. In one embodiment, the diameter of the dosator chamber as measured at the mesh screen is 0.286 inches. In one embodiment, the hopper is filled with powder to achieve a bed height that is twice the stroke height of the dosator.
  • the dosator fills a 00 capsule with about 25 to 50 mg of powder. In one embodiment, the dosator fills the 00 capsule with at least 30 mg of dry powder.
  • the dosator fills 2 or more 00 capsules with about 30 mg or more of dry powder wherein the relative standard deviation in the amount of powder filled in all capsules is less than 4%.
  • the capsules of the invention are particularly suitable for use in a dry powder inhaler for the delivery of a dry powder composition comprising levodopa to a patient afflicted with, for example, Parkinson's disease and in need of treatment with levodopa.
  • the patient in need of treatment may require maintenance therapy for Parkinson's disease or rescue therapy for Parkinson's disease such as would be necessary in the case of an acute and/or freezing episode due to Parkinson's disease.
  • the capsules are used in a dry powder inhaler to deliver an effective amount of the dry powder composition to the patient in a single breath as is described in U.S. Patent Numbers, 6,858, 199 and 7,556,798 incorporated herein by reference.
  • the term "effective amount” means the amount needed to achieve the desired effect or efficacy.
  • the actual effective amounts of drug can vary according to the specific drug or combination thereof being utilized, the particular composition formulated, the mode of administration, and the age, weight, condition of the patient, and severity of the episode being treated.
  • a dopamine precursor, agonist or combination thereof it is an amount which reduces the Parkinson's symptoms which require therapy.
  • Dosages for a particular patient are described herein and can be determined by one of ordinary skill in the art using conventional considerations, (e.g. by means of an appropriate, conventional pharmacological protocol).
  • effective amounts of oral levodopa range from about 50 milligrams (mg) to about 500 mg.
  • a common ongoing (oral) levodopa treatment schedule is 100 mg eight (8) times a day.
  • dopamine precursor, agonist or combination thereof in particular levodopa, carbidopa, apomorphine, and other drugs
  • Carbidopa or benserazide for example, is often administered to ensure that peripheral carboxylase activity is completely shut down.
  • Intramuscular, subcutaneous, oral and other administration routes can be employed.
  • these other agents are delivered to the pulmonary system.
  • These compounds or compositions can be administered before, after or at the same time.
  • particles that are administered to the respiratory tract include both Levodopa and carbidopa.
  • co-administration is used herein to mean that the specific dopamine precursor, agonist or combination thereof and/or other compositions are administered at times to treat the episodes, as well as the underlying conditions described herein.
  • chronic levodopa therapy includes the use of the capsules of the invention in a dry powder inhaler for pulmonary delivery of levodopa combined with oral carbidopa.
  • pulmonary delivery of levodopa is provided during the episode, while chronic treatment can employ conventional oral administration of levodopa/carbidopa.
  • chronic levodopa therapy includes the use of the capsules of the invention in a dry powder inhaler for pulmonary delivery of levodopa combined with oral benserazide.
  • pulmonary delivery of levodopa is provided during the episode, while chronic treatment can employ conventional oral administration of levodopa/ benserazide.
  • levodopa dipalmitoylphosphatidylcholine (DPPC):sodium chloride (NaCl) composition referred to herein as "90:8:2".
  • the 90:8:2 spray drying operation that was developed for the production of initial lots of powders containing levodopa involved the production of a 90:8:2 levodopa: DPPC: NaCl powder that was fully amorphous with a water content of approximately 4%, a fine particle fraction in the range of 50-60% ⁇ 5.4 microns and a maximum capsule fill weight of approximately 23 mg per size 00 capsule.
  • powder collected on the filter bags in the product filter is exposed to the moisture-laden environment of the product filter because of water vapor moving from the spray drying unit towards the exhaust across the product filter bags.
  • this powder When this powder is pulsed off the filter bags for collection, it tends to retain the residual moisture that it picked up in the product filter, which may act to facilitate a solid-state conversion from an amorphous to a crystalline form, either immediately or at some point during storage.
  • the powder must be dried effectively prior to collection, which is achieved by introducing dry nitrogen as a purge stream between the product filter and the collection vessel. However, during this drying operation, the powder becomes electrostatically charged, possibly due to bone dry conditions of the incoming nitrogen purge gas.
  • This electrostatic charge decreases the bulk density of the powder, which in-turn decreases the amount of powder that can be filled in a capsule hence reducing the fine particle mass (FPM) per capsule.
  • the methods and modifications indicated below were performed and evaluated for their ability to increase the FPM by eliminating the electrostatic charge on the powder and/or increasing the bulk density of the powder without predisposing the powder to solid-state conversion.
  • Exposure to a humid environment helps decrease the static charge stored on a material because moisture in the air increases the conductivity of air, thereby enabling gas discharge. Since the dry nitrogen used as the purge gas to dry the powder was thought to be the primary cause for generation of the electrostatic charge on the 90:8:2 powder humidification of the purge gas may allow for charge dissipation and help eliminate the electrostatic charge stored on the surface of the powder particles. This can act to increase the bulk density, which will in-turn increase the fine particle mass per capsule.
  • Humidification of the purge gas was carried out using two types of purge inlet setups (i) a standard inlet setup as shown in FIG. 2A, in which the purge gas entered the product filter horizontally in at the bottom of the product filter and (ii) an angled inlet setup as shown in FIG. 2B, in which the purge gas enters the product filter at an angle to the vertical axis at the bottom of the product filter.
  • the powder pulsed off the product filter bags has contact with the dry purge gas for only a fraction of a second due to the narrow stream of purge gas entering in such a setup.
  • This setup may help more efficient elimination static charging as compared to a humidifying purge gas coming in through a standard horizontal inlet, which in turn may increase the fine particle mass and decrease the electrostatic charging of the powder.
  • humidification of the purge gas was carried out by passing the gas through a pressure pot 1 filled with water 2 for irrigation.
  • a bypass line 3 with a control valve 8 was attached in parallel with the pressure pot 1.
  • Humidity of the exiting purge gas was measured using a dew-point meter 4 attached in series downstream of the humidification pressure pot 1 apparatus.
  • the purge gas is then passed through rotameter 5 which functions to control the flow of the purge gas to the product filter and facilitates adjusting the water content of the final powder.
  • Butterfly valve 31 functions to isolate the product filter from the environment when the collection vessel 7 is changed.
  • Butterfly valve 32 functions to isolate the collection vessel from the environment during the product transfer step from the collection vessel into a holding container which is stored at optimized temperature and relative humidity.
  • the humidified purge gas was then introduced at the bottom of the product filter apparatus 6 through (i) standard horizontal purge inlet (FIG. 2A), or (ii) angled purge inlet setup (FIG. 2B).
  • a directional inlet 9 for the purge gas stream was used, as opposed to a standard horizontal inlet 10 (FIG. 2 A).
  • This directional inlet 9 can be rotated along its own axis, and can hence be directed towards either the product filter 6 or the collection vessel 7 as shown in FIG. 1 and FIGs. 3A-D.
  • Purge gas was humidified to different relative humidity levels. Rotameter for purge gas inlet was set to 3.5 g / min or 20 scfh.
  • Powders generated using nitrogen purge gas humidified to different RHs were observed to have similar particle sizes and fine particle fractions as compared to the powders manufactured under standard purge gas condition of 0 % relative humidity (Table 1).
  • Table 1 FPF and geometric particle size distribution (gPSD) results for powders produced using different purge relative humidities.
  • Table 2 FPF for different purge gas inlet orientations with constant atomization gas flow rate (22 g/min).
  • the powder produced with a downward angled orientation could not be sampled due to the very high electrostatic charge present when the collection vessel was opened for sampling.
  • Table 3 FPF for upward facing purge gas inlet orientation with different atomization gas flow rates.
  • Powders having an alternate ratio of DPPC:NaCl were evaluated for their efficiency in increasing the density and reducing electrostatic charging of the 90% levodopa powders. It was hypothesized that increasing the salt content of the powders could potentially act to help dissipate and thus reduce their electrostatic charge.
  • a DPPC:NaCl ratio of 4:6 was initially selected as a starting point to evaluate the influence of a higher amount of sodium chloride on the FPF and density of the 90:8:2 powders. Purge gas relative humidities were maintained at both 0% and 10%.
  • the 90:4:6 levodopa:DPPC:NaCl powders produced possessed bulk and tap densities substantially higher than those seen for 90:4:6 levodopa:DPPC:NaCl powders made using similar conditions (typically 0.02 g/cc for bulk density and 0.04 g/cc for tap density). Since this trial produced favorable bulk and tap density results along with favorable results for FPF and gPSD, a decision was made to evaluate additional alternative DPPC:NaCl ratios of 2:8 and 6:4 and compare the results to 4:6 and control (8:2) powders. Results for powders produced utilizing the standard conditions for the 90:8:2 formulations are shown in Table 5.
  • Table 7 Reproducibility results for 90:5:5 levodopa:DPPC:NaCl formulation.
  • the 90:5:5 levodopa:DPPC:NaCl formulations show very desirable FPF values, which are in the same range of the standard 90:8:2 levodopa:DPPC:NaCl formulation, and at the same time show desirable bulk and tap density values that were substantially increased as compared to the 90:8:2 formulation and are in the range of previously evaluated 90:4:6 levodopa:DPPC:NaCl formulation.
  • excipients or substitution of excipients was also investigated as a potential route towards optimizing the FPM and bulk density of 90:8:2 powders.
  • the standard 90:8:2 formulation powder is a low density powder with a high electrostatic charge. Because of the high volume which the low density 90:8:2 powders occupies, the amount of powder which can be filled into a capsule without affecting its aerodynamic performance is greatly limited. When such a low density powder has a high electrostatic charge, a high degree of variability can be seen in the fill weights of capsules due to the constant interaction of the charged powder with the walls of the capsules and the filling equipment. Capsule filling operations for such a powder, which displays a low fill weight and high weight variability at the same time, presented a set of unique challenges, all of which necessitated filling equipment modifications which helped achieve the fill weight goals without affecting the physical and chemical properties of the powder.
  • a Gast vacuum pump (model # 1023-101Q-G608X) was used as a vacuum for the dosators instead of the vacuum on-board the KFM machine.
  • Table 9 Average fill weights per capsule filling modification for 90:4:6 using external vacuum. Standard size 00 vacuum dosator with 90:8:2 levodopa:DPPC:NaCl:
  • levodopa:DPPC:NaCl formulation The variables evaluated for fill weight accuracy included (i) low powder bed height, (ii) use of blade and a rake to break down powder in the powder bed, and (iii) high versus low dosator vacuum. The results for this experiment are summarized in Table 10.
  • Table 10 Average fill weights per capsule filling modification for 90:8:2 using external vacuum. Standard size 00 vacuum dosator with 90:5:5 levodopa:DPPC:NaCl:
  • Table 11 Average fill weights per dosator vacuum modification for 90:5:5 using external vacuum.
  • a full bore dosator 20 is a standard vacuum dosator which has been modified to increase the inner diameter of the dosator chamber at the mesh screen 26 to 0.286 inches as compared to 0.250 inches which is the typical inner diameter of a standard dosator chamber.
  • the dosator 20 was also modified in such a way that the dosator plunger 22 stays stationary, and powder is pulled into the dosator 20 by applying a vacuum and expelled out of the dosator 20 by applying expulsion pressure as illustrated in the schematic of FIG. 5.
  • Vacuum was generated by means of a pump attached to the dosator 20 at the port 24 with appropriate tubing.
  • a two (2) micron mesh screen 26 was added at the bottom of the plunger 22 to prevent powder from crossing over and interfering with the vacuum pump and tubing. Expulsion pressure was provided by means of compressed nitrogen sourced from an external storage tank.
  • the dosator chamber height was dialed in against a standard vacuum of -15" Hg, until capsules having sufficient accuracy and reproducibility of the desired fill weight were produced.
  • the temperature of the room was maintained around 20°C and the relative humidity of the room was maintained around 20% R.H.
  • Table 12 Target fill weights and average fill weights for 90:8:2 LDOPA:DPPC:NaCl formulation filled using a full bore vacuum dosator.
  • fill weights obtained using the full bore vacuum dosator are significantly greater than the previous attempts. For example, fill weights of 28 to 40mg may be achieved. Examples of fill weights include, but are not limited to, 28-32mg, 30-34mg, or 35-40mg.
  • Lactose monohydrate NF was used as a placebo for the 90:8:2 formulation.
  • the target fill weight of lactose was 10 mg.
  • Typical filling of large amounts of powder are uncommon for pulmonary products. Applicants have identified new parameters and processes which allow for filling large amounts of powder in a capsule for pulmonary delivery.
  • an external vacuum assisted size 00 full-bore vacuum dosator can be used in order to achieve higher maximum fill weights (up to 38 mg or higher) as compared to the previous maximum fill weight of 23 mg seen for the 90:8:2 powder, as well as accurate and reproducible fill weights on the KFM III-C capsule filling machine.
  • the powder with an levodopa:DPPC:NaCl ratio of 90:8:2 can be filled much more accurately and reproducibly to the target fill weight, as compared to the 90:5:5 and 90:4:6 ratios.
  • an external vacuum assisted size 5 plunger dosator is the setup of choice to achieve the desired target weight accurately and reproducibly.
  • HPMC “clear” capsules and HPMC/ titanium dioxide “white” capsules were chosen.
  • Two workstations with an inhaler configured with emitted dose tubes were provided. Clear or white capsules were filled to 28 mg with inhalable levodopa powder (dry weight ratio of 90:8:2 of levodopa:DPPC: NaCl) prepared in accordance with Example 1 to a target load and placed in the inhaler.
  • An analyst was assigned to each station and actuated the inhaler into the ED tube at 28.3 L/min for 4.2 seconds and rinsed for content.
  • the FPF of the content was measured using standard procedures.
  • Tables 13-20 show the comparison of white capsule sourced from Shionogi, Inc. as compared to the clear capsule (no titanium dioxide).
  • Tables 15 and 16 show the same study but the analysts have switched workstations and used each other's inhaler technique.
  • Tables 17 and 18 are a compilation of the results from Tables 15 and 16.
  • Tables 19 and 20 show the comparison of a white capsule sourced from Capsugel, Inc. as compared to the clear capsule (no titanium dioxide).
  • the data shows that more powder was emitted from the white capsules having a capsule material that comprises HPMC and titanium dioxide as compared to the powder emitted from the clear capsules that do not contain titanium dioxide in the capsule material. This data is surprising. Without being limited to any theory, it is believed that the titanium dioxide present in the capsule material reduces the amount of powder that sticks to the capsule wall upon emptying from the capsule.
  • Capsules will be stored in 25°C/75%RH chamber for the times listed below in Table 23. Capsules will be tested with the capsule cap on during exposure and the cap off during exposure for each type of capsule.

Abstract

The present invention provides a capsule containing an inhalable powder composition wherein the composition comprises about 75% by weight or more levodopa, dipalmitoylphosphatidylcholine (DPPC) and a salt characterized by a working density of less than about 100 g/L. The invention further provides a capsule containing an inhalable powder composition wherein the composition comprises about 75% by weight or more levodopa, dipalmitoylphosphatidylcholine (DPPC) and a salt characterized by a working density of less than about 100 g/L wherein the capsule's shell comprises hydroxypropylmethylcellulose (HPMC) and titanium dioxide.

Description

Title: HIGH DOSE LEVODOPA CAPSULES FOR PULMONARY USE
RELATED APPLICATION
This application claims the benefit of U.S. Provisional Application No.
61/724,781, filed on November 9, 2012; U.S. Provisional Application No. 61/884,319; U.S. Provisional Application No. 61/884,315; U.S. Provisional Application No.
61/884,436, all filed on September 30, 2013. This application is a continuation-in-part of Application No. 13/679,245, filed November 16, 2012, now U.S. Patent 8,545,878 and a continuation-in-part of U.S. Application No. 13/945,160, filed July 18, 2013. The entire teachings of the above applications are incorporated herein by reference.
BACKGROUND OF THE INVENTION
Parkinson's disease is a debilitating disease caused by the death of dopamine neurons in the central nervous system. Parkinson's disease patients experience life altering symptoms of tremors, slowness in moving, and difficulty walking. While no drugs exist which cure the disease or stop its progression, a number of drugs exist to help with symptoms. The most commonly used drug and the drug all Parkinson's patients eventually use is levodopa. Levodopa (also referred to herein as "levodopa") is currently supplied in tablets with or without one or two other drugs. The other drugs typically function to prevent the body from metabolizing the levodopa before it can take its effect. Many patients initially respond well to levodopa treatment, but over time the effect becomes diminished. Patients typically start increasing their levodopa dosage as their disease progresses. A patient at the early stages of taking levodopa may only take 200 mg of levodopa per day, but a later stage patient could be taking 600 to 1200 mg of levodopa a day. Once the doses increase, patients become prone to dyskinesis.
Dyskinesis are involuntary movements due to too much levodopa. When patient levodopa concentrations go to low, patients experience freezing episodes where the patient has significant difficulty moving. Once a freezing episode occurs, patient can take a tablet of levodopa, but they have to wait until the levodopa is absorbed to become unfrozen. Further complicating the freezing problem is that Parkinson's patients have poor stomach motility resulting in slow drug absorption. An inhalable formulation of levodopa could help patients with these freezing issues. A difficulty in creating an inhalable levodopa product is delivering enough dose to the patient, since levodopa is a high dose drug. Another difficulty is delivering an inhaled drug to a Parkinson's patient. Since these patients are movement impaired, they need a quick and simple process to inhale the levodopa.
In addition to the above difficulties with delivering levodopa, a number of difficulties exist with delivering high doses of any drug by the pulmonary route. A dry powder containing a drug can vary greatly in density. Modifying the density of the powder can affect stability and the ability of the drug to reach the lungs appropriately. However, optimizing the density of the levodopa inhalable powder enables the effective delivery of high doses of levodopa to the patient by inhalation. Even if appropriate density can be reached for a high dose drug such as levodopa, the efficient emptying of the powder from the capsule is also a critical factor. If the emptying characteristics of the capsule are poor, the increased dosage achieved by optimal loading of the powder into the capsule is diminished.
A number of important challenges exist to deliver a high dose of levodopa to a Parkinson's patient while also keeping the drug product stable and easy to use for the patient. Pulmonary powders may be provided in amorphous form as amorphous forms of a compound have faster dissolution and would be more likely to show a fast onset of action. Despite the advantage of fast onset of action for an amorphous powder, amorphous powders are difficult to manufacture and difficult to keep stable under long term storage conditions, as required by the drug regulatory agencies. Further, filling large volumes of amorphous powders in a capsule can be challenging due to electrostatic charges. For crystalline powders, increasing the relative humidity can reduce the electrostatic charge of the powder and allow for better capsule filling, but increasing the relative humidity is not a viable option for an amorphous powder. Amorphous powders become prone to amorphous to crystalline transitions under elevated relative humidity. Thus, a significant difficulty exists in identifying a fast acting amorphous powder which is stable with a low electrostatic charge. SUMMARY OF THE INVENTION
The present invention provides a capsule containing an inhalable powder composition wherein the composition comprises about 75% by weight or more levodopa, dipalmitoylphosphatidylcholine (DPPC) and a salt characterized by a working density of less than about 0.1 g/cm3. The invention further provides a capsule containing an inhalable powder composition wherein the composition comprises about 75% by weight or more levodopa, dipalmitoylphosphatidylcholine (DPPC) and a salt characterized by a working density of less than about 0.1 g/cm3 wherein the capsule material comprises hydroxypropylmethylcellulose (HPMC) and titanium dioxide. The present invention also provides a method and dosator apparatus for dispensing low density, high flowing powders into capsules at high target fill weights with accuracy and repeatability.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic of a purge gas humidification setup using pressure pot. FIG. 2A is a schematic of a standard versus setup for introduction of purge gas. FIG. 2B is a schematic of an angled setup for introduction of purge gas.
FIG. 3 A is a schematic of an angled-inlet purge set up with a 0° downward facing purge stream.
FIG. 3B is a schematic of an angled-inlet purge set up with a 0° upward facing purge stream.
FIG. 3C is a schematic of an angled-inlet purge set up with a 25-30° downward facing purge stream.
FIG. 3D is a schematic of an angled-inlet purge set up with a 25-30° upward facing purge stream.
FIG. 4 is a schematic of the side view of a full bore dosator setup.
FIG. 5 is a schematic of the process steps in capsule filling operation utilizing the full bore dosator. The process is shown in five steps. Step 1 shows the dosator immersed into the powder bed. Step 2 shows the vacuum applied to the dosator that pulls the powder into the dosator. Step 3 shows the vacuum application continued, and the dosator moved from the powder bed to the capsule filling station. Step 4 shows the vacuum application continued and the dosator positioned above an empty capsule in the capsule filling station. Step 5 shows the vacuum discontinued and expulsion pressure applied to the dosator expelling the powder from the dosator into the empty capsule thereby filling the capsule.
FIG. 6 is a table showing the exemplary specifications for various gelatin capsules used in combination with the dosator of the invention.
DETAILED DESCRIPTION OF THE INVENTION
The capsules according to the invention are for use in an inhalation device and contain, as the inhalable powder, levodopa mixed with one or more physiologically acceptable excipients, characterized in that the powder has a working density (also referred to herein as "bulk density") of about 100 g/L or less which can also be expressed as about 0.1 g/cm3 or less. Because levodopa is a high dose drug and delivering large amounts of levodopa is difficult for pulmonary delivery, it would be desirable to have a low density powder. A low density powder could allow for a significantly higher dose of levodopa per capsule than an average density powder. A difficulty is that low density levodopa powders are difficult to achieve while still allowing for a powder that can be easily filled into a capsule. In one embodiment the invention provides capsules containing an inhalable powder comprising levodopa wherein the capsule has superior emptying characteristics upon delivery of the powder from the capsule upon actuation when used in conjunction with an inhaler. Superior emptying from the capsule is an important characteristic of a capsule containing an inhalable powder comprising levodopa.
The capsules for inhalation according to the invention are filled with inhalable powder containing levodopa, wherein that the powder has a working density of less than about 0.1 g/cm3. In one embodiment the powder has a working density of about 0.01 g/cm3, 0.02 g/cm3, 0.03g/cm3, 0.04 g/cm3, 0.05 g/cm3, 0.06 g/cm3, 0.07 g/cm3, 0.08 g/cm3, 0.9 g/cm3 or 0.1 g/cm3. In one embodiment the powder has a working density of about 0.01 g/cm3 to 0.1 g/cm3 and preferably about 0.02 g/cm3 and 0.08 g/cm3.
The term "working density" as used herein is interchangeable with the term "bulk density" and is defined herein as the weight of the powder (m) divided by the volume it occupies (Vo) and is expressed herein as grams per liter (g/L) as determined by measurement in a graduated cylinder. Briefly, a graduated cylinder is first weighed, filled with powder without compacting, leveled if necessary without compacting and weighed again. The unsettled apparent volume is read to the nearest graduated unit. The working density is calculated by the formula mlVo. Working density may also be expressed for example in grams per cubic centimeter (g/cm3). In one embodiment the working density is less than 0.1 g/cm3. In one embodiment the working density ranges from about 0.01 g/cm3 to about 0.1 g/cm3. In one embodiment the working density ranges from about 0.02 g/cm3 to about 0.08 g/cm3 and preferably from about 0.02 g/cm3 to about 0.05 g/cm3.
In one embodiment, the capsules contain powder with a working density between about 0.03 g/cm3 to about 0.06 g/cm3. In another embodiment, the capsules contain powder with a working density between about 0.04 g/cm3 to about 0.05 g/cm3. In a further embodiment, the capsules contain powder with a working density of about 0.04 g/cm3. In a further embodiment, the capsules contain powder with a working density of about 0.045 g/cm3. In a further embodiment, the capsules contain powder with a working density of about 0.05 g/cm3. In a further embodiment, the capsules contain powder with a working density of about 0.035 g/cm3. In a further embodiment, the capsules contain powder with a working density of about 0.03 g/cm3. In one embodiment, the capsules contain powder with a working density between about 0.03 g/cm3 to about 0.05 g/cm3. In another embodiment, the capsules contain powder with a working density between about 0.04 g/cm3 to about 0.06 g/cm3. In another embodiment, the capsules contain powder with a working density between about 0.05 g/cm3 to about 0.06 g/cm3. In another embodiment, the capsules contain powder with a working density between about 0.06 g/cm3 to about 0.07 g/cm3.
The inhalable powder contained in the capsules of the invention comprises at least 50% by weight levodopa by weight of solids in the powder. In some embodiments, the inhalable powder in a capsule of this invention may contain at least 60%, 70%, 80%, 90% by dry weight or more levodopa. In one embodiment the inhalable powder contains about 75% by dry weight or more levodopa. In one embodiment, the inhalable powder contains about 85% by dry weight by weight or more levodopa. In one embodiment the inhalable powder in the capsule contains about 90% by dry weight by weight or more levodopa. In one embodiment, the inhalable powder in the capsule contains between 80- 95% by dry weight levodopa of solids in the powder. In one embodiment, the inhalable powder in the capsule contains between 85-95% by dry weight levodopa of solids in the powder. In one embodiment, the inhalable powder in the capsule contains between 88- 92% by dry weight levodopa of solids in the powder. The inhalation powder may contain additional excipients. Examples of excipients include salts such as sodium chloride ( aCl), sodium citrate, sodium lactate, and potassium chloride and phospholipids such as dipalmitoylphosphatidylcholine (DPPC) dilauroylphosphatidylcholine (DLPC), disaturated-phosphatidylcholine (DSPC). In one embodiment, the capsule contains a powder comprising 90% levodopa, 8% dipalmitoylphosphatidylcholine, and 2% sodium chloride as measured by % of solids in the powder. In one embodiment the capsule contains an inhalable powder having a dry weight ratio of 90:8:2 of levodopa:DPPC:NaCl. In another embodiment the capsule contains an inhalable powder having a dry weight ratio of 90:5:5 of
levodopa:DPPC:NaCl.
The capsules of the invention comprising the inhalable powders are useful for delivery of levodopa to the pulmonary system, in particular to the deep lung. The inhalable powder contained in the capsule of the invention is characterized by a fine particle fraction (FPF), geometric and aerodynamic dimensions and by other properties, as further described below.
Gravimetric analysis, using Cascade impactors, is a method of measuring the size distribution of airborne particles. The Andersen Cascade Impactor (ACI) is an eight- stage impactor that can separate aerosols into nine distinct fractions based on aerodynamic size. The size cutoffs of each stage are dependent upon the flow rate at which the ACI is operated. Preferably the ACI is calibrated at 60 L/min. In one embodiment, a two-stage collapsed ACI is used for particle optimization. The two-stage collapsed ACI consists of stages 0, 2 and F of the eight-stage ACI and allows for the collection of two separate powder fractions. At each stage an aerosol stream passes through the nozzles and impinges upon the surface. Particles in the aerosol stream with a large enough inertia will impact upon the plate. Smaller particles that do not have enough inertia to impact on the plate will remain in the aerosol stream and be carried to the next stage.
The ACI is calibrated so that the fraction of powder that is collected on a first stage is referred to herein as "fine particle fraction" or "FPF". The FPF corresponds to the percentage of particles that have an aerodynamic diameter of less than 5.6 μιη. The fraction of powder that passed the first stage of the ACI and is deposited on the collection filter is referred to as "FPF(3.4)". This corresponds to the percentage of particles having an aerodynamic diameter of less than 3.4 μιη. The FPF fraction has been demonstrated to correlate to the fraction of the powder that is deposited in the lungs of the patient, while the FPF(3.4) has been demonstrated to correlate to the fraction of the powder that reaches the deep lung of a patient. In accordance with the invention, the FPF of the inhalable powder of the nominal dose contained in the capsule (i.e. the percentage of particles in the powder contained in the capsule that have an aerodynamic diameter of less than 5.6 μιη) is about 40% or more. In one embodiment the FPF of the nominal dose of the inhalable powder contained in the capsule is about 50%, 60%, or 70%, or 80%, or 90%. In one embodiment the FPF is about 50% to about 60% of the nominal dose of the inhalable powder contained in the inhaler. In one embodiment the FPF is about 55% to about 65% of the nominal dose of the inhalable powder contained in the inhaler. In one embodiment the FPF is about 50% to about 70% of the nominal dose of the inhalable powder contained in the inhaler. In one embodiment the FPF is about 57% to about 62% of the nominal dose of the inhalable powder contained in the inhaler. In one embodiment the FPF is about 50% to about 69% of the nominal dose of the inhalable powder contained in the inhaler. In one
embodiment the FPF is about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, or 65% of the nominal dose of the inhalable powder contained in the inhaler.
As used herein, the term "nominal powder dose" is the total amount of powder held in the capsule. As used herein, the term "nominal drug dose" is the total amount of Levodopa contained in the nominal powder dose. The nominal powder dose is related to the nominal drug dose by the load percent of drug in the powder.
In one embodiment, the nominal powder dose is 25-50 mg by dry weight. In a further embodiment, the nominal powder dose is 25-40 mg by dry weight. In a still further embodiment, the nominal powder dose is 30-35 mg by dry weight or 32-38 mg by dry weight.
Another method for measuring the size distribution of airborne particles is the multi-stage liquid impinger (MSLI). The Multi-stage liquid Impinger (MSLI) operates on the same principles as the Anderson Cascade Impactor (ACI), but instead of eight stages there are five in the MSLI. Additionally, instead of each stage consisting of a solid plate, each MSLI stage consists of a methanol-wetted glass frit. The wetted stage is used to prevent bouncing and re-entrainment, which can occur using the ACI. The MSLI is used to provide an indication of the flow rate dependence of the powder. This can be accomplished by operating the MSLI at 30, 60, and 90 L/min and measuring the fraction of the powder collected on stage 1 and the collection filter. If the fractions on each stage remain relatively constant across the different flow rates then the powder is considered to be approaching flow rate independence.
In one embodiment, the inhalable powders of the invention have a tap density of less than about 0.4 g/cm3. For example, the particles have a tap density less than about 0.3 g/cm3, or a tap density less than about 0.2 g/cm3, a tap density less than about 0.1 g/cm3. Tap density can be measured by using instruments known to those skilled in the art such as the Dual Platform Microprocessor Controlled Tap Density Tester (Vankel, N.C.) or a GEOPYC™ instrument (Micrometrics Instrument Corp., Norcross, GA,
30093). Tap density is a standard measure of the envelope mass density. Tap density can be determined using the method of USP Bulk Density and Tapped Density, United States Pharmacopia convention, Rockville, Md., 10th Supplement, 4950-4951, 1999. Features which can contribute to low tap density include irregular surface texture and porous structure. The envelope mass density of an isotropic particle is defined as the mass of the particle divided by the minimum sphere envelope volume within which it can be enclosed. In one embodiment of the invention, the particles have an envelope mass density of less than about 0.4 g/cm3.
The inhalable powder of the invention has a preferred particle size, e.g., a volume median geometric diameter (VMGD) of at least about 1 micron (μιη). The diameter of the spray-dried particles, for example, the VMGD, can be measured using a laser diffraction instrument (for example Helos, manufactured by Sympatec, Princeton, N.J.). Other instruments for measuring particle diameter are well known in the art. The diameter of particles in a sample will range depending upon factors such as particle composition and methods of synthesis. The distribution of size of particles in a sample can be selected to permit optimal deposition to targeted sites within the respiratory tract.
The particles of the inhalable powder of the invention preferably have a "mass median aerodynamic diameter" (MMAD), also referred to herein as "aerodynamic diameter", between about 1 μιη and about 5 μιη or any subrange encompassed between about 1 μιη and about 5 μιη. For example, but not limited to, the MMAD is between about 1 μιη and about 3 μιη, or the MMAD is between about 3 μιη and about 5 μιη. Experimentally, aerodynamic diameter can be determined by employing a gravitational settling method, whereby the time for an ensemble of powder particles to settle a certain distance is used to infer directly the aerodynamic diameter of the particles. An indirect method for measuring the mass median aerodynamic diameter (MMAD) is the multistage liquid impinger (MSLI). The aerodynamic diameter, daer, can be calculated from the equation:
Figure imgf000011_0001
where dg is the geometric diameter, for example the MMGD, and p is the powder density.
In one embodiment, the particles have a mass mean geometric diameter (MMGD) of between about 5 μιη and about 18 μιη. In another embodiment, the particles have a mass mean geometric diameter (MMGD) of between about 5 μιη and about 12 μιη. In another embodiment, the particles have a mass mean geometric diameter (MMGD) of between about 8 μιη and about 10 μιη. In another embodiment, the particles have a mass mean geometric diameter (MMGD) of between about 8 μιη and about 15 μιη.
Powders for use in capsules of this invention are typically produced by spray drying. In some cases, spray-drying can produce extremely dry particles which may have poor handling properties and may be difficult to compact into a capsule in a dense manner. A nitrogen source with a specified moisture level may be flown over, across, or through the dry powder to add a specific moisture content to the dry powder. Such moisture can provide the desired working density of the powder. Spray drying methods in accordance with the invention are described in the Examples herein and in U.S. Patent Numbers: 6,848, 197 and 8, 197,845, incorporated herein by reference.
The inhalable powder comprising levodopa as described above is used to fill capsules suitable for use in an inhaler. The term "capsule material" as used herein refers to the material from which the shell of the capsule for inhalation is made. The shell of the capsule is also referred to herein as the "capsule shell" or the "capsule's shell". In one embodiment, the capsule material according to the invention is selected from among gelatin, cellulose derivatives, starch, starch derivatives, chitosan and synthetic plastics.
If gelatin is used as the capsule material, examples according to the invention may be selected from among polyethyleneglycol (PEG), PEG 3350, glycerol, sorbitol, propyleneglycol, PEO-PPO block copolymers and other polyalcohols and polyethers. If cellulose derivatives are used as the capsule material, examples according to the invention may be selected from hydroxypropylmethylcellulose (HPMC),
hydroxypropylcellulose, methylcellulose, hydroxymethylcellulose and hydroxyethylcellulose. If synthetic plastics are used as the capsule material, examples according to the invention may be selected from polyethylene, polycarbonate, polyester, polypropylene and polyethylene terephthalate. In one embodiment, the capsule material further comprises titanium dioxide. In one preferred embodiment the capsule comprises HPMC and titanium dioxide. In one embodiment, the capsule comprises carrageenan. In a further embodiment, the capsule comprises potassium chloride. In a still further embodiment, the capsule comprises, HPMC, carrageenan, potassium chloride, and titanium dioxide .In one embodiment, the capsule size is selected from 000, 00, 0, 1, or 2. In a specific embodiment, the capsule size is 00.
In one specific embodiment, the capsule is a hydroxypropylmethylcellulose
(HPMC) capsule. In another specific embodiment, the capsule is a
hydroxypropylmethylcellulose size 00 capsule. In one specific embodiment the capsule material comprises HPMC and titanium dioxide and the capsule size is 00.
In one embodiment, a 00 capsule contains between 15 and 50 grams of levodopa by dry weight. In another embodiment, a 00 capsule contains between 20 and 40 grams of levodopa by dry weight. In another embodiment, a 00 capsule contains between 25 and 35 grams of levodopa by dry weight. In another embodiment, a 00 capsule contains about 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 grams of levodopa by dry weight.
In one aspect of the invention, the powders have low electrostatic charge to enable high dispersion from the capsule.
The invention further provides a method and dosator apparatus for dispensing low density, high flowing powders into capsules at high target fill weights with accuracy and repeatability. Referring to FIG. 4, the dosator 20 of the invention is described The dosator of the invention is also referred to herein as the "full bore dosator" because the inner diameter of the dosator chamber as measured at the mesh screen 26 is large, approximately 0.280 to 0.315 inches and is preferably 0.286 inches. This is larger than the inner diameter of the dosator chamber of a standard size dosator which typically has a diameter of 0.250 inches. The larger inner diameter of the dosator chamber of the dosator of the present invention allows more powder to be held due to the pressure drop through the powder. Continuing to refer to FIG. 4, the dosator 20 is preferably in the form of a tube which tapers from the top 50 of the dosator to the bottom 56 of the dosator and has an axial passage therein forming an elongate cavity. A stationary plunger 22 is disposed within the cavity. A removable mesh screen 26 having an area that is equal to nd2/4 (wherein d is the inner diameter of the dosator chamber as measured at the mesh screen) and a mesh size that is smaller than the mass median diameter (D50) of the dry powder is disposed between the stationary plunger 22 and the bottom 56 of the dosator. A dosator chamber 27 of a predetermined height is defined by the space between the mesh screen 26 and the bottom 56 of the dosator for receiving powder from a powder source and holding the powder until it is expelled into the capsule. In one embodiment, the height of the dosator chamber is in the range of 5 mm to 20 mm. The height of the dosator chamber may be chosen to accommodate the required fill weight of the capsule. At least one vacuum pump is operably linked to the dosator via a linking means such as a port 24, and is capable of drawing dry powder into the dosator chamber 27 from a powder source and compacting the powder into a slug of powder having a predetermined bulk density prior to expelling the slug of powder into a capsule. And, at least one source of positive pressure operably linked to the dosator and capable of providing positive pressure to expel the powder slug from the dosator.
The mesh screen 26 is designed to be removable and replaceable and to allow powders to be filled based on geometry and traits. A mesh screen 26 is needed to prevent powder from traveling up towards the vacuum pump operably linked to the dosator and clogging the system. This maintains constant vacuum throughout the course of a filling run, which keeps the accuracy at the target fill weight. If powder was to pass the mesh screen 26, fill weights would continue to drop as the filling run progresses. The mesh size of the screen 26 is smaller than the D50 of the given powder to ensure powder does not clog the lines. If the particle size is larger, a larger mesh can be used to minimize the resistance and therefore maximize fill weights. In one embodiment the mesh screen is a 2 micron mesh screen. In one embodiment, the mesh screen is a 5 micron mesh screen.
In one embodiment, the dosator 20 is operably linked to at least one vacuum pump. In one embodiment the dosator is operably linked to at least two vacuum pumps. The dosator 20 may be linked to one or more vacuum pumps via, for example, one or more ports 24. In one embodiment the dosator 20 is operably linked to a positive pressure source suitable for applying positive pressure to expel a slug from the dosator chamber 27 into a capsule. In one embodiment the positive pressure source is a nitrogen containing source such as a nitrogen tank.
Referring now to FIG. 5, to operate the full bore dosator of the invention, powder is loaded into hopper and is conveyed to bowl 52 via an auger to remove air and maintain powder bed height 51 throughout the filling run. The bed height 51 is maintained at a height double the stroke height of the dosator. As used herein the phrase "stroke height" means the measure from the bottom 56 of the dosator to the mesh screen 26.
The manifold 60 is common to both negative and positive pressure systems used. In one embodiment, vacuum is generated by two vacuum pumps to achieve a pressure of— latm (-98KPa). The low pressure creates a large pressure differential (ΔΡ) across the mesh screen 26.
In accordance with the invention a large vacuum and large bore design, can allow high fill weights be achieved for the given powders. Once the dosator 20 filled with powder is aligned over the capsule 62, preferably a size 00 capsule, the manifold 60 is transitioned to positive pressure to expel the slug 64 from the dosator into the capsule 62. As used herein the term "slug" refers to the compacted powder after the vacuum has been applied through the dosator as shown in FIG. 5 element 64. The "push" pressure generated is just enough to remove powder from the dosator 20. Too much pressure results in the slug 64 being broken up and expelled from the capsule 62 due to the density and flowability of the powder. Too little pressure results in the slug 64 not being fully expelled from the dosator.
The bed height, vacuum and push pressure allow the high fill weight to be achieved. The accuracy is achieved by adjusting the stroke height, which makes small adjustments back to the intended fill weight.
The advantages of the improved dosator of the invention is that the vacuum dosing arrangement allows for low density, high flowing particles (e.g. particles that do not adhere to each other) to be filed at high target fill weights with accuracy and repeatability. The relative standard deviation (RSD) for the levodopa powders such as the 90:8:2 levodopa:DPPC:NaCl powder fill per each run is less than 4% for a 32 mg capsule fill using a 00 capsule. The high vacuum used,—1 atmospheres, compacts the low density powder to allow as much as about 50 mg of powder to be filled into a size 00 HPMC capsule. FIG. 6 is a table showing exemplary technical specifications for various gelatin capsules used in accordance with the dosator of the invention.
Therefore, in one embodiment, the invention comprises a method of filling a capsule using the dosator of the invention, the method comprising the steps of: creating a low pressure vacuum within the dosator; positioning the dosator in a bowl filled with powder and drawing the powder into the dosator chamber; maintaining the powder in the dosator chamber with the low pressure vacuum to form a slug of powder having a predetermined bulk density and expelling the slug of powder into a capsule.
In one embodiment, the bulk density of the powder slug is between about 0.02 g/cm3 to about 0.05 g/cm3. In one embodiment, the capsule is a 00 size capsule. In one embodiment the powder slug comprises between about 15 and 50 milligrams of powder. In one embodiment the powder slug comprises between about 25 and 35 milligrams of powder.
In one embodiment at least one vacuum pump achieves a pressure of about -1 atmosphere (atm). In one embodiment, at least two vacuum pumps achieve a pressure of about - 1 atm.
In one embodiment, the diameter of the dosator chamber a measured at the mesh screen is between 0.280 and 0.315 inches. In one embodiment, the diameter of the dosator chamber as measured at the mesh screen is 0.286 inches. In one embodiment, the hopper is filled with powder to achieve a bed height that is twice the stroke height of the dosator.
In one embodiment, the dosator fills a 00 capsule with about 25 to 50 mg of powder. In one embodiment, the dosator fills the 00 capsule with at least 30 mg of dry powder.
In one embodiment, the dosator fills 2 or more 00 capsules with about 30 mg or more of dry powder wherein the relative standard deviation in the amount of powder filled in all capsules is less than 4%.
The capsules of the invention are particularly suitable for use in a dry powder inhaler for the delivery of a dry powder composition comprising levodopa to a patient afflicted with, for example, Parkinson's disease and in need of treatment with levodopa. The patient in need of treatment may require maintenance therapy for Parkinson's disease or rescue therapy for Parkinson's disease such as would be necessary in the case of an acute and/or freezing episode due to Parkinson's disease. In one embodiment, the capsules are used in a dry powder inhaler to deliver an effective amount of the dry powder composition to the patient in a single breath as is described in U.S. Patent Numbers, 6,858, 199 and 7,556,798 incorporated herein by reference.
As used herein, the term "effective amount" means the amount needed to achieve the desired effect or efficacy. The actual effective amounts of drug can vary according to the specific drug or combination thereof being utilized, the particular composition formulated, the mode of administration, and the age, weight, condition of the patient, and severity of the episode being treated. In the case of a dopamine precursor, agonist or combination thereof it is an amount which reduces the Parkinson's symptoms which require therapy. Dosages for a particular patient are described herein and can be determined by one of ordinary skill in the art using conventional considerations, (e.g. by means of an appropriate, conventional pharmacological protocol). For example, effective amounts of oral levodopa range from about 50 milligrams (mg) to about 500 mg. In many instances, a common ongoing (oral) levodopa treatment schedule is 100 mg eight (8) times a day.
The administration of more than one dopamine precursor, agonist or combination thereof, in particular levodopa, carbidopa, apomorphine, and other drugs can be provided, either simultaneously or sequentially in time. Carbidopa or benserazide, for example, is often administered to ensure that peripheral carboxylase activity is completely shut down. Intramuscular, subcutaneous, oral and other administration routes can be employed. In one embodiment, these other agents are delivered to the pulmonary system. These compounds or compositions can be administered before, after or at the same time. In a preferred embodiment, particles that are administered to the respiratory tract include both Levodopa and carbidopa. The term "co-administration" is used herein to mean that the specific dopamine precursor, agonist or combination thereof and/or other compositions are administered at times to treat the episodes, as well as the underlying conditions described herein.
In one embodiment chronic levodopa therapy includes the use of the capsules of the invention in a dry powder inhaler for pulmonary delivery of levodopa combined with oral carbidopa. In another embodiment, pulmonary delivery of levodopa is provided during the episode, while chronic treatment can employ conventional oral administration of levodopa/carbidopa. In a further embodiment chronic levodopa therapy includes the use of the capsules of the invention in a dry powder inhaler for pulmonary delivery of levodopa combined with oral benserazide. In another embodiment, pulmonary delivery of levodopa is provided during the episode, while chronic treatment can employ conventional oral administration of levodopa/ benserazide.
The present invention will be further understood by reference to the following non-limiting examples.
EXAMPLES
Example 1
This example summarizes a series of studies examining modifications performed on the spray drying operation for the production of a 90:8:2
levodopa:dipalmitoylphosphatidylcholine (DPPC):sodium chloride (NaCl) composition referred to herein as "90:8:2". The 90:8:2 spray drying operation that was developed for the production of initial lots of powders containing levodopa involved the production of a 90:8:2 levodopa: DPPC: NaCl powder that was fully amorphous with a water content of approximately 4%, a fine particle fraction in the range of 50-60% < 5.4 microns and a maximum capsule fill weight of approximately 23 mg per size 00 capsule. This combination of properties resulted in a maximum delivered dose of levodopa (fine particle mass of levodopa) of approximately 12 mg per capsule, with these powders exhibiting a high degree of electrostatic charging and low bulk (typically 0.01 - 0.02 g/cc) and tap density (typically 0.02 - 0.04 g/cc), which made it extremely difficult to fill these powders reproducibly into size 00 capsules. Based on this, it was desired to attempt to increase the delivered dose of levodopa per capsule to 17 mg or greater. Additionally, it was desired to increase the physical stability of the 90:8:2 powders, as some powder lots were also observed to undergo an amorphous to crystalline conversion upon storage, particularly for lots that were filled under conditions for which the laboratory humidity was not controlled, thus potentially exposing these lots to elevated humidity.
During the spray drying operation, powder collected on the filter bags in the product filter is exposed to the moisture-laden environment of the product filter because of water vapor moving from the spray drying unit towards the exhaust across the product filter bags. When this powder is pulsed off the filter bags for collection, it tends to retain the residual moisture that it picked up in the product filter, which may act to facilitate a solid-state conversion from an amorphous to a crystalline form, either immediately or at some point during storage. To prevent this conversion, the powder must be dried effectively prior to collection, which is achieved by introducing dry nitrogen as a purge stream between the product filter and the collection vessel. However, during this drying operation, the powder becomes electrostatically charged, possibly due to bone dry conditions of the incoming nitrogen purge gas. This electrostatic charge decreases the bulk density of the powder, which in-turn decreases the amount of powder that can be filled in a capsule hence reducing the fine particle mass (FPM) per capsule. The methods and modifications indicated below were performed and evaluated for their ability to increase the FPM by eliminating the electrostatic charge on the powder and/or increasing the bulk density of the powder without predisposing the powder to solid-state conversion.
The studies described herein were thus conducted with the goals of (1) optimizing the fine particle mass (FPM) per capsule, (2) increasing the capsule fill weight and (3) stabilizing the amorphous solid state structure of bulk spray dried 90:8:2. Process parameter, unit operation and formulation modifications were executed and evaluated for their effectiveness in achieving endpoints (1-3).
Types of Modifications
Three types of modifications, (1) unit operation modifications, (2) process parameter modifications and (3) formulation modifications were evaluated.
(1) Unit operation modifications
Two types of unit operation modifications were studied, (i) the use of humidified purge gas and (ii) in-line ionization. Of these two, the use of humidified purge gas showed the best results with respect to decreasing electrostatic charge and increasing the maximum fill weight of the capsules. The details of this modification are described below.
Exposure to a humid environment helps decrease the static charge stored on a material because moisture in the air increases the conductivity of air, thereby enabling gas discharge. Since the dry nitrogen used as the purge gas to dry the powder was thought to be the primary cause for generation of the electrostatic charge on the 90:8:2 powder humidification of the purge gas may allow for charge dissipation and help eliminate the electrostatic charge stored on the surface of the powder particles. This can act to increase the bulk density, which will in-turn increase the fine particle mass per capsule.
Humidification of the purge gas was carried out using two types of purge inlet setups (i) a standard inlet setup as shown in FIG. 2A, in which the purge gas entered the product filter horizontally in at the bottom of the product filter and (ii) an angled inlet setup as shown in FIG. 2B, in which the purge gas enters the product filter at an angle to the vertical axis at the bottom of the product filter.
In a standard configuration, the powder pulsed off the product filter bags has contact with the dry purge gas for only a fraction of a second due to the narrow stream of purge gas entering in such a setup. By changing the angle of the purge gas inlet, as in the angled inlet configuration, one can increase the exposure time for powder pulsed off the bags to incoming dry purge gas. This setup may help more efficient elimination static charging as compared to a humidifying purge gas coming in through a standard horizontal inlet, which in turn may increase the fine particle mass and decrease the electrostatic charging of the powder.
Referring to FIG. 1, humidification of the purge gas was carried out by passing the gas through a pressure pot 1 filled with water 2 for irrigation. A bypass line 3 with a control valve 8 was attached in parallel with the pressure pot 1. By controlling the ratio of the amount of nitrogen that passes through the pressure pot 1 to the amount that bypasses it, one can control the resulting relative humidity (RH) of the purge gas.
Humidity of the exiting purge gas was measured using a dew-point meter 4 attached in series downstream of the humidification pressure pot 1 apparatus.
The purge gas is then passed through rotameter 5 which functions to control the flow of the purge gas to the product filter and facilitates adjusting the water content of the final powder. Butterfly valve 31 functions to isolate the product filter from the environment when the collection vessel 7 is changed. Butterfly valve 32 functions to isolate the collection vessel from the environment during the product transfer step from the collection vessel into a holding container which is stored at optimized temperature and relative humidity.
The humidified purge gas was then introduced at the bottom of the product filter apparatus 6 through (i) standard horizontal purge inlet (FIG. 2A), or (ii) angled purge inlet setup (FIG. 2B). In an angled inlet setup (FIG. 2B), a directional inlet 9 for the purge gas stream was used, as opposed to a standard horizontal inlet 10 (FIG. 2 A). This directional inlet 9 can be rotated along its own axis, and can hence be directed towards either the product filter 6 or the collection vessel 7 as shown in FIG. 1 and FIGs. 3A-D.
Directional inlet 9 configurations used included: downward 0° (FIG. 3A), upwards 0° (FIG. 3B), downwards angled 25-30° (FIG. 3C) and upwards angled 25 - 30° (FIG. 3D) with items in parenthesis indicating the angle to the vertical axis of the product filter.
Additionally, with the purge gas inlet at 0° to the vertical axis, different atomization gas flow (25 g/min to 55 g/min) rates were evaluated.
Experimental conditions
Purge gas was humidified to different relative humidity levels. Rotameter for purge gas inlet was set to 3.5 g / min or 20 scfh.
Results
Standard setup
Powders generated using nitrogen purge gas humidified to different RHs were observed to have similar particle sizes and fine particle fractions as compared to the powders manufactured under standard purge gas condition of 0 % relative humidity (Table 1).
Figure imgf000020_0001
Table 1 : FPF and geometric particle size distribution (gPSD) results for powders produced using different purge relative humidities.
However, visual observation of the powders indicated that the powders were much denser compared to the standard powder. Additionally, X-ray powder diffraction (XRPD) analysis of these powders showed evidence of crystalline peaks starting to form for the powders produced with purge gas humidities in excess of 10%. It is expected that this initial amount of crystalline phase will act to catalyze further recrystallization of these powders upon storage, which has been observed to result in undesirable decreases in FPF and water content. Thus, it was determined that a purge gas humidification in the range of 5-10% RH was optimal with respect to decreasing the electrostatic charge of the spray-dried powders utilizing the standard setup.
Angled setup
The results obtained from the use of different orientations of the purge gas inlet and constant atomization gas flow rates are summarized in Table 2 below.
Figure imgf000021_0001
Table 2: FPF for different purge gas inlet orientations with constant atomization gas flow rate (22 g/min).
The powder produced with a downward angled orientation could not be sampled due to the very high electrostatic charge present when the collection vessel was opened for sampling.
The results obtained from the use a single orientation of the purge gas inlet and a different atomization gas flow rates are summarized in Table 3 below. Purge gas orientation Atomization
(Angle to the vertical axis and gas flow rate Water content RH) (g/min) FPF (%) (%)
Upwards (0° at 10% RH) 25 49 4.01
Upwards (0° at 10% RH) 35 55 3.88
Upwards (0° at 10% RH) 45 56 3.95
Upwards (0° at 10% RH) 55 48 3.85
Upwards (0° at 10% RH) 30 55 2.64
Table 3 : FPF for upward facing purge gas inlet orientation with different atomization gas flow rates.
Visually, all powders except for the one produced with downward angled orientation appeared to be much denser and to possess a relatively less amount of electrostatic charge as compared to the powders produced with the standard purge gas inlet orientation.
Results
Although humidification of the purge gas was observed to make the powders denser while keeping the FPF and water content the same, these formulations were observed in some cases to display evidence of the formation of a crystalline phase via XRPD, in particular for purge gas humidities in excess of 10%. As a result, the use of purge gas humidified to greater than 10% RH was determined to not be a viable option, with the use of a purge gas relative humidity in the range of 5 to 10% providing a mechanism for reducing powder electrostatic charge and increasing powder density without decreasing powder FPF or causing an amorphous to crystalline conversion.
(2) Formulation Modifications
Alternative formulations to the 90:8:2 levodopa:DPPC:NaCl powder were evaluated for their effectiveness in optimizing the FPF, fill weight and solid state stability. Modification of DPPC; Sodium chloride ratio
Powders having an alternate ratio of DPPC:NaCl were evaluated for their efficiency in increasing the density and reducing electrostatic charging of the 90% levodopa powders. It was hypothesized that increasing the salt content of the powders could potentially act to help dissipate and thus reduce their electrostatic charge.
Experimental design:
A DPPC:NaCl ratio of 4:6 was initially selected as a starting point to evaluate the influence of a higher amount of sodium chloride on the FPF and density of the 90:8:2 powders. Purge gas relative humidities were maintained at both 0% and 10%.
Results:
The physical and aerodynamic properties of 90:4:6 levodopa:DPPC:NaCl lots produced utilizing the standard conditions for the 90:8:2 formulation are shown in Table 4.
Figure imgf000023_0001
Table 4: Analytical results for initial trial runs of 90:4:6 levodopa:DPPC:NaCl.
As can be seen in Table 4, the 90:4:6 levodopa:DPPC:NaCl powders produced possessed bulk and tap densities substantially higher than those seen for 90:4:6 levodopa:DPPC:NaCl powders made using similar conditions (typically 0.02 g/cc for bulk density and 0.04 g/cc for tap density). Since this trial produced favorable bulk and tap density results along with favorable results for FPF and gPSD, a decision was made to evaluate additional alternative DPPC:NaCl ratios of 2:8 and 6:4 and compare the results to 4:6 and control (8:2) powders. Results for powders produced utilizing the standard conditions for the 90:8:2 formulations are shown in Table 5. levodopa: DPPC: NaCl Tap density ratio FPF (%) gPSD (um) Bulk density (g/cc) (g/cc)
90:8:2 52 7.97 0.023 0.042
90:4:6 40
90:4:6 63 6.87 0.037 0.069
Table 5: Analytical results for alternative DPPC:NaCl ratios compared to the control.
Since a DPPC:NaCl ratio of 4:6 was observed to produce both high FPF and high bulk/tap density, this formulation was replicated to check for reproducibility. Results for the repeat runs for the 90:4:6 levodopa:DPPC:NaCl formulation are shown in Table 6 below.
Figure imgf000024_0001
Table 6: Reproducibility runs for 90:4:6 levodopa:DPPC:NaCl.
Levodopa:DPPC:NaCl formulations.
Based on these results, a DPPC:NaCl ratio of 5:5 was also produced and analyzed. The fine particle fraction, bulk/tap densities and geometric particle size three runs of this formulation are summarized in Table 7 below.
Figure imgf000024_0002
Table 7: Reproducibility results for 90:5:5 levodopa:DPPC:NaCl formulation. The 90:5:5 levodopa:DPPC:NaCl formulations show very desirable FPF values, which are in the same range of the standard 90:8:2 levodopa:DPPC:NaCl formulation, and at the same time show desirable bulk and tap density values that were substantially increased as compared to the 90:8:2 formulation and are in the range of previously evaluated 90:4:6 levodopa:DPPC:NaCl formulation.
Addition of L-Leucine, Sodium citrate or Calcium chloride
The addition of excipients or substitution of excipients was also investigated as a potential route towards optimizing the FPM and bulk density of 90:8:2 powders. The excipients 1-leucine, sodium citrate and calcium chloride, which were available in-house, were used and evaluated as additives or as substitutes to the excipients currently in the 90:8:2 levodopa:DPPC:NaCl formulation.
Experimental setup
Sodium citrate was evaluated as a potential alternative to Sodium chloride, Calcium chloride was investigated as another potential salt additive to the current formulation and 1-leucine was evaluated as a potential alternative to DPPC. When Calcium chloride was used, the amount of levodopa was reduced from 90% to 50%. The solid concentration for the solutions to be spray dried was maintained at 1 g/L. Observations: The results observed when 1-leucine, sodium citrate and calcium chloride are used as an additive or as a substitute in the formulation are summarized in Table 8 below.
Figure imgf000025_0001
Table 8: Analytical results from excipient addition and substitution to 90:8:2 powder. Discussion
Although addition of 1-leucine increased the tap and bulk densities of the powder, the FPF was significantly lower than that of the standard 90:8:2 levodopa:DPPC:NaCl formulation.
Substitution of sodium chloride by sodium citrate in the same ratio produced a capsule fill weight of 27.3 mg. An XRPD analysis of the powder concluded that it maintained its amorphous state. However, no other tests could be performed, as the yield was significantly low.
Addition of sodium citrate and calcium chloride, in addition to increasing the load of DPPC and reducing the load of Levodopa (50:25: 15: 10
Levodopa:DPPC:NaCitrate:CaCi2) was observed to increase the FPF of the powder to 65%. However, XRPD analysis of the powder concluded the presence crystal growth. Example 2 Optimization of capsule filling operations
The standard 90:8:2 formulation powder is a low density powder with a high electrostatic charge. Because of the high volume which the low density 90:8:2 powders occupies, the amount of powder which can be filled into a capsule without affecting its aerodynamic performance is greatly limited. When such a low density powder has a high electrostatic charge, a high degree of variability can be seen in the fill weights of capsules due to the constant interaction of the charged powder with the walls of the capsules and the filling equipment. Capsule filling operations for such a powder, which displays a low fill weight and high weight variability at the same time, presented a set of unique challenges, all of which necessitated filling equipment modifications which helped achieve the fill weight goals without affecting the physical and chemical properties of the powder.
This example summarizes the experiments and modifications carried out the optimize the powder filling operations conducted using the Harro H5fliger KFM III-C capsule filling machine for filling 90:8:2 powders into size 00 capsules.
Different KFM III-C variables and formulation compositions were evaluated under different vacuum configurations for their effectiveness in achieving an optimal and reproducible fill weight with different 90:8:2 formulations. Three vacuum
configurations were used (i) no vacuum to the dosators, (ii) Use of pre-installed KFM vacuum to the dosators, and (iii) Use of external vacuum to the dosators. For the 90:8:2 active powders, an external vacuum assisted size 00 full-bore vacuum dosator was determined to be the optimal configuration in order to achieve accurate and reproducible fill weights on the KFM III-C capsule filling machine. The analysis of this set up is described below.
Filling with the use of external vacuum on dosator
In this vacuum setup, a Gast vacuum pump (model # 1023-101Q-G608X) was used as a vacuum for the dosators instead of the vacuum on-board the KFM machine.
Dosator configurations and formulation variables that were evaluated for capsule filling accuracy and reproducibility using the external vacuum included:
(i) Standard size 00 vacuum dosator with 90:4:6 levodopa:DPPC:NaCl,
(ii) Standard size 00 vacuum dosator with 90:8:2 levodopa:DPPC:NaCl,
(iii) Standard size 00 vacuum dosator with 90:5:5 levodopa:DPPC:NaCl,
(iv) Full bore size 00 vacuum dosator with 90:8:2 levodopa:DPPC:NaCl, and
(v) Full bore size 00 vacuum dosator, size 4 plunging dosator and size 5 plunging dosator with lactose monohydrate NF.
Standard size 00 vacuum dosator with 90:4:6 levodopa:DPPC:NaCl:
For this experiment, the standard size 00 dosator was used to fill powder obtained by spray drying a 90:4:6 levodopa:DPPC:NaCl formulation. The variables evaluated for fill weight accuracy in this experiment included - (i) leveling blade versus platform for the powder bed, and (ii) low versus high powder bed height. The results for this experiment are summarized in Table 9 below.
Figure imgf000027_0001
Table 9: Average fill weights per capsule filling modification for 90:4:6 using external vacuum. Standard size 00 vacuum dosator with 90:8:2 levodopa:DPPC:NaCl:
In this experiment, a standard size 00 dosator was used to fill 90:8:2
levodopa:DPPC:NaCl formulation. The variables evaluated for fill weight accuracy included (i) low powder bed height, (ii) use of blade and a rake to break down powder in the powder bed, and (iii) high versus low dosator vacuum. The results for this experiment are summarized in Table 10.
Figure imgf000028_0001
Table 10: Average fill weights per capsule filling modification for 90:8:2 using external vacuum. Standard size 00 vacuum dosator with 90:5:5 levodopa:DPPC:NaCl:
In this experiment, a standard size 00 dosator was used to fill 90:5:5
levodopa:DPPC:NaCl formulation. In this experiment, only one variable was evaluated for fill weight accuracy - low dosator vacuum versus a high dosator vacuum. The results for this experiment are summarized in Table 1 1 below.
Figure imgf000028_0002
Table 11 : Average fill weights per dosator vacuum modification for 90:5:5 using external vacuum.
Full bore size 00 vacuum dosator with 90:8:2 and 90:5:5 levodopa:DPPC:NaCl
Referring now to FIG. 4, a full bore dosator 20 is a standard vacuum dosator which has been modified to increase the inner diameter of the dosator chamber at the mesh screen 26 to 0.286 inches as compared to 0.250 inches which is the typical inner diameter of a standard dosator chamber. The dosator 20 was also modified in such a way that the dosator plunger 22 stays stationary, and powder is pulled into the dosator 20 by applying a vacuum and expelled out of the dosator 20 by applying expulsion pressure as illustrated in the schematic of FIG. 5. Vacuum was generated by means of a pump attached to the dosator 20 at the port 24 with appropriate tubing. A two (2) micron mesh screen 26 was added at the bottom of the plunger 22 to prevent powder from crossing over and interfering with the vacuum pump and tubing. Expulsion pressure was provided by means of compressed nitrogen sourced from an external storage tank.
In this experiment, a full bore vacuum dosator was used for filling 90:8:2 powder which was produced using a nitrogen gas overlay on the aqueous phase. As discussed previously, the 90:5:5 90:8:2 powder formulations were observed to have almost twice the original fill weights due to increased bulk density and tap density values. Using a full-bore vacuum dosator, it was possible to produce similar high fill weights using the standard 90:8:2 90:8:2 powder.
To achieve the target capsule fill weight, the dosator chamber height was dialed in against a standard vacuum of -15" Hg, until capsules having sufficient accuracy and reproducibility of the desired fill weight were produced. The temperature of the room was maintained around 20°C and the relative humidity of the room was maintained around 20% R.H.
One lot of 90:8:2 levodopa:DPPC:NaCl was filled for a trial fill, followed by another lot of the same composition. After these two lots were produced, a third lot with 90:5:5 levodopa:DPPC:NaCl was filled. All 3 lots are evaluated for the KFM's effectiveness in producing an accurate and reproducible fill weight.
The results for this experiment are summarized in Table 12 below.
Figure imgf000029_0001
Table 12: Target fill weights and average fill weights for 90:8:2 LDOPA:DPPC:NaCl formulation filled using a full bore vacuum dosator.
Previous attempts at filling to 90:8:2 formulations resulted in a maximum fill weight of 23 milligrams per capsule. The fill weights obtained using the full bore vacuum dosator are significantly greater than the previous attempts. For example, fill weights of 28 to 40mg may be achieved. Examples of fill weights include, but are not limited to, 28-32mg, 30-34mg, or 35-40mg.
Full bore size 00 vacuum dosator, size 4 plunging dosator and size 5 plunging dosator with lactose monohydrate NF: Lactose monohydrate NF was used as a placebo for the 90:8:2 formulation. The target fill weight of lactose was 10 mg.
Conclusion
Typical filling of large amounts of powder are uncommon for pulmonary products. Applicants have identified new parameters and processes which allow for filling large amounts of powder in a capsule for pulmonary delivery. For the 90:8:2 active powders, an external vacuum assisted size 00 full-bore vacuum dosator can be used in order to achieve higher maximum fill weights (up to 38 mg or higher) as compared to the previous maximum fill weight of 23 mg seen for the 90:8:2 powder, as well as accurate and reproducible fill weights on the KFM III-C capsule filling machine.
Additionally, of the three ratios of powders that were evaluated using this setup, the powder with an levodopa:DPPC:NaCl ratio of 90:8:2 can be filled much more accurately and reproducibly to the target fill weight, as compared to the 90:5:5 and 90:4:6 ratios.
For the Lactose placebo powder, an external vacuum assisted size 5 plunger dosator is the setup of choice to achieve the desired target weight accurately and reproducibly.
Example 3-Analysis of capsule materials and emitted dose
It was hypothesized that certain types of capsules may be useful in increasing the emitted dose of powder. HPMC "clear" capsules and HPMC/ titanium dioxide "white" capsules were chosen. Two workstations with an inhaler configured with emitted dose tubes were provided. Clear or white capsules were filled to 28 mg with inhalable levodopa powder (dry weight ratio of 90:8:2 of levodopa:DPPC: NaCl) prepared in accordance with Example 1 to a target load and placed in the inhaler. An analyst was assigned to each station and actuated the inhaler into the ED tube at 28.3 L/min for 4.2 seconds and rinsed for content. The FPF of the content was measured using standard procedures. Analysts also switched work stations and used each other's inhaler technique. The results are provided in the following Tables 13-20. Tables 13 and 14 show the comparison of white capsule sourced from Shionogi, Inc. as compared to the clear capsule (no titanium dioxide). Tables 15 and 16 show the same study but the analysts have switched workstations and used each other's inhaler technique. Tables 17 and 18 are a compilation of the results from Tables 15 and 16. Tables 19 and 20 show the comparison of a white capsule sourced from Capsugel, Inc. as compared to the clear capsule (no titanium dioxide).
Table 13 : FPFTD<5.6% (N=10 Per Analyst Per Capsule Type)
Figure imgf000031_0001
Table 14: FPFED<5.6% (N=10 Per Analyst Per Capsule Type)
Figure imgf000031_0002
Table 15: FPFTD<5.6% ( =5 Per Analyst Per Capsule Type)
Figure imgf000031_0003
Table 16: FPFED<5.6% ( =5 per Analyst Per Capsule Type)
FPF Analyst 1 Analyst 2 Average
White Capsule 50 52 51
Clear Capsule 47 45 46
Table 17: FPFTD<5.6% (N= 15 per Analyst Per Capsule Type)
Figure imgf000031_0004
Table 18: FPFED<5.6% ( =15 per Analyst Per Capsule Type)
Figure imgf000031_0005
Table 19: FPF total c lose<5.6%
FPF Analyst 1 Analyst 2 Average
White Capsule (n=10) 47 42 45
Clear Capsule (n=2) 46 39 43
Table 20: FPF emitted dose<5.6%
FPF Analyst 1 Analyst 2 Average
White Capsule (n=10) 52 46 49
Clear Capsule (n=2) 51 43 47
Discussion
The data shows that more powder was emitted from the white capsules having a capsule material that comprises HPMC and titanium dioxide as compared to the powder emitted from the clear capsules that do not contain titanium dioxide in the capsule material. This data is surprising. Without being limited to any theory, it is believed that the titanium dioxide present in the capsule material reduces the amount of powder that sticks to the capsule wall upon emptying from the capsule. Example 4 Stability Studies
Purpose
To characterize 90/8/2 and 90/5/5 Levodopa powder in machine filled capsules that have been exposed to 75% relative humidity and 25°C conditions for 15, 30 and 60 minutes using gravimetric ACI-3 and XRPD. Additional time points were added at 240 and 360 minutes of exposure, white and clear capsules were tested with lot 41021 (90/8/2).
Experimental Design: Samples from Lot 28100 (90/8/2) and Lot 28109 (90/5/5) were exposed to pre-stated conditions in a humidity chamber and then immediately analyzed.
Table 21 : Data Summary (clear capsules):
Figure imgf000033_0001
A= Amorphous
C= Crystalline Table 22: Data Summary (white vs. clear capsules):
Figure imgf000033_0002
A= Amorphous
C= Crystalline
Materials and Methods
1. Material
• Hand Filled 90% L-Dopa Capsules Blistered in white and clear HPMC capsules
4 capsules per pull
• Filled with Lot 41018
2. Test Schedule
· Capsules will be stored in 25°C/75%RH chamber for the times listed below in Table 23. Capsules will be tested with the capsule cap on during exposure and the cap off during exposure for each type of capsule.
Table 23 :
Figure imgf000033_0003
3. Results a. gPSD
Table 24: gPSD
Figure imgf000034_0001
b. XRPD
Table 25: XRPD
Figure imgf000034_0002
c. %FPF < 5.6μιη Table 26: %FPF<5.6nm
Figure imgf000034_0003
The patent and scientific literature referred to herein establishes the knowledge that is available to those with skill in the art. All United States patents and published or unpublished United States patent applications cited herein are incorporated by reference. All published foreign patents and patent applications cited herein are hereby incorporated by reference. All other published references, documents, manuscripts and scientific literature cited herein are hereby incorporated by reference.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims. It should also be understood that the embodiments described herein are not mutually exclusive and that features from the various embodiments may be combined in whole or in part in accordance with the invention.

Claims

CLAIMS What is claimed is:
1. A capsule for use in an inhalation device wherein said capsule is filled with a dry powder comprising levodopa wherein the dry powder has a working density of between about 0.01 g/cm3 to about 0.1 g/cm3, and wherein the capsule's shell comprises hydroxypropyl methylcellulose (HPMC) and titanium dioxide;
wherein said capsule emits more powder comprising levodopa upon actuation of the inhalation device as compared to a capsule having a capsule shell that comprises HPMC and that is free of titanium dioxide; and
wherein said dry powder comprises about 75% by weight or more of levodopa.
2. The capsule of claim I, wherein said working density is between about 0.02 g/cm3 to about 0.05 g/cm3.
3. The capsule of claim I, wherein said dry powder comprises from about 2 to about 8% of water by weight.
4. The capsule of claim 3, wherein said dry powder comprises from about 5 to about 6 % of water by weight.
5. The capsule of claim 1, wherein said capsule is a 00 size capsule.
6. The capsule of claim 5, wherein said dry powder comprises between about 15 and 50 milligrams of levodopa.
7. The capsule of claim 6, wherein said dry powder comprises between about 25 and 35 milligrams of levodopa.
8. The capsule of claim 1, wherein said dry powder further comprises a salt.
9. The capsule of claim 8, wherein said salt is sodium chloride.
10. The capsule of claim 8, wherein said dry powder further comprises a
phospholipid.
The capsule of claim 10, wherein said phospholipid is
dipalmitoylphosphatidylcholine (DPPC).
The capsule of claim 1, wherein the dry powder further comprises DPPC and sodium chloride.
13. The capsule of claim 1, wherein the FPF of the dry powder is about
about 70% of the nominal dose.
14. The capsule of claim 1, wherein the capsule is filled with about 30 to about 50 milligrams of dry powder.
15. A capsule for use in an inhalation device wherein said capsule is filled with a dry powder comprising levodopa wherein the capsule's shell comprises
hydroxypropyl methylcellulose (HPMC) and titanium dioxide.
16. The capsule of claim 15, wherein said dry powder comprises about 75% by weight or more of levodopa.
17. The capsule of claim 15, wherein upon actuation of said powder from an
inhalation device, the emitted dose of powder has an FPF (5.6) of 50 to 65%.
18. The capsule of claim 17, wherein upon actuation of said powder from an
inhalation device, the emitted dose of powder has an FPF (5.6) of 50 to 55%.
PCT/US2013/069102 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use WO2014074795A1 (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
DK13852876.5T DK2916821T3 (en) 2012-11-09 2013-11-08 HIGH DOSE LEVODOPA CAPSULES FOR PULMONAL USE
KR1020227013071A KR20220054703A (en) 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use
KR1020237025814A KR20230116102A (en) 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use
RU2015121092A RU2676093C2 (en) 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use
JP2015541915A JP6347786B2 (en) 2012-11-09 2013-11-08 Capsules containing high doses of levodopa for lung use
CA2890451A CA2890451C (en) 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use
KR1020217015347A KR102389785B1 (en) 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use
PL13852876T PL2916821T3 (en) 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use
EP13852876.5A EP2916821B1 (en) 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use
MX2015005767A MX2015005767A (en) 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use.
BR112015010603-0A BR112015010603B1 (en) 2012-11-09 2013-11-08 HIGH DOSE LEVODOPA CAPSULES FOR LUNG USE
KR1020157015345A KR102257164B1 (en) 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use
NZ70868413A NZ708684A (en) 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use
SG11201503543PA SG11201503543PA (en) 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use
ES13852876T ES2844153T3 (en) 2012-11-09 2013-11-08 High-dose levodopa capsules for pulmonary use
CN201380068998.2A CN104918607B (en) 2012-11-09 2013-11-08 The high dose levodopa capsule used for lung
AU2013342246A AU2013342246B2 (en) 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use
EP20202500.3A EP3815679A1 (en) 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use
ZA2015/04058A ZA201504058B (en) 2012-11-09 2015-06-05 High dose levodopa capsules for pulmonary use
HK16101181.9A HK1213186A1 (en) 2012-11-09 2016-02-02 High dose levodopa capsules for pulmonary use
HK16102954.2A HK1214957A1 (en) 2012-11-09 2016-03-15 High dose levodopa capsules for pulmonary use
AU2018204674A AU2018204674B2 (en) 2012-11-09 2018-06-27 High Dose Levodopa Capsules For Pulmonary Use

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201261724781P 2012-11-09 2012-11-09
US61/724,781 2012-11-09
US13/679,245 US8545878B1 (en) 2012-11-09 2012-11-16 Capsules containing high doses of levodopa for pulmonary use
US13/679,245 2012-11-16
US13/945,160 2013-07-18
US13/945,160 US8685442B1 (en) 2012-11-09 2013-07-18 Capsules containing high doses of levodopa for pulmonary use
US201361884436P 2013-09-30 2013-09-30
US201361884319P 2013-09-30 2013-09-30
US201361884315P 2013-09-30 2013-09-30
US61/884,436 2013-09-30
US61/884,315 2013-09-30
US61/884,319 2013-09-30

Publications (1)

Publication Number Publication Date
WO2014074795A1 true WO2014074795A1 (en) 2014-05-15

Family

ID=50685169

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2013/069107 WO2014074797A1 (en) 2012-11-09 2013-11-06 Ultra low density pulmonary powders
PCT/US2013/069102 WO2014074795A1 (en) 2012-11-09 2013-11-08 High dose levodopa capsules for pulmonary use
PCT/US2013/069104 WO2014074796A1 (en) 2012-11-09 2013-11-08 Dosator for filling a capsule with powder

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2013/069107 WO2014074797A1 (en) 2012-11-09 2013-11-06 Ultra low density pulmonary powders

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2013/069104 WO2014074796A1 (en) 2012-11-09 2013-11-08 Dosator for filling a capsule with powder

Country Status (19)

Country Link
US (3) US9539211B2 (en)
EP (5) EP2925611B1 (en)
JP (6) JP6836834B2 (en)
KR (6) KR102257164B1 (en)
CN (4) CN105120843A (en)
AU (6) AU2013342248B2 (en)
BR (2) BR112015010601B1 (en)
CA (3) CA2890454C (en)
DK (1) DK2916821T3 (en)
ES (2) ES2844153T3 (en)
HK (5) HK1212884A1 (en)
MX (3) MX371008B (en)
NZ (4) NZ708684A (en)
PL (1) PL2916821T3 (en)
PT (1) PT2916821T (en)
RU (2) RU2670987C2 (en)
SG (5) SG11201503547TA (en)
WO (3) WO2014074797A1 (en)
ZA (2) ZA201504058B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9539211B2 (en) 2012-11-09 2017-01-10 Civitas Therapeutics, Inc. Ultra low density pulmonary powders
WO2017057865A1 (en) * 2015-09-30 2017-04-06 Hanmi Pharm. Co., Ltd. Inhalation capsule with enhanced delivery of active ingredient
GB2550961A (en) * 2016-06-03 2017-12-06 Res Center Pharmaceutical Engineering Gmbh Apparatus for dosing a solid material into at least one receptacle
IT202000008962A1 (en) * 2020-04-24 2021-10-24 Romaco Srl EQUIPMENT FOR FILLING CONTAINERS WITH A POWDER MATERIAL

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA40910A (en) * 2014-11-07 2017-09-12 Civitas Therapeutics Inc RAPAMYCIN POWDERS FOR PULMONARY ADMINISTRATION
CN108700448B (en) * 2016-02-06 2020-08-04 德国翰辉包装机械有限责任公司 Pricking pipette
ITUA20163077A1 (en) * 2016-05-02 2017-11-02 Mg 2 Srl POWER SUPPLY GROUP FOR DETERMINATION OF GRANULES, IN PARTICULAR MICROGRANULES, IN CAPSULES
CN106394953A (en) * 2016-06-24 2017-02-15 湖南千山制药机械股份有限公司 Vacuum filling system
WO2019060797A1 (en) 2017-09-22 2019-03-28 Teva Branded Pharmaceutical Products R&D, Inc. Method for manufacture of inhalation powders
WO2019067708A1 (en) 2017-09-27 2019-04-04 Teva Branded Pharmaceutical Products R&D, Inc. Method for particle size reduction
ES2953293T3 (en) 2018-08-07 2023-11-10 Norton Waterford Ltd Application of Raman Spectroscopy for the Manufacturing of Inhalation Powders
EP3608015B1 (en) * 2018-08-08 2021-10-06 Harro Höfliger Verpackungsmaschinen GmbH Powder provision device for a powder metering apparatus
CN108995838A (en) * 2018-09-10 2018-12-14 江西克莱威纳米碳材料有限公司 A kind of powder tinning system
CN109178367B (en) * 2018-10-15 2021-01-26 楚天科技股份有限公司 Filling head and filling device for powder split charging
CN110040519A (en) * 2019-04-30 2019-07-23 裕东(中山)机械工程有限公司 A kind of quantitatively Dual-Phrase Distribution of Gas olid conveying device and dose delivery system
RU2716294C1 (en) * 2019-10-04 2020-03-11 Владимир Александрович Трусов Tandem reflecting furnace for aluminum scrap remelting
CN116546980A (en) * 2020-12-11 2023-08-04 江苏恒瑞医药股份有限公司 Pharmaceutical composition for pulmonary delivery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007112581A1 (en) * 2006-04-03 2007-10-11 Isa Odidi Controlled release delivery device comprising an organosol coat
US20100040691A1 (en) * 2005-11-18 2010-02-18 Vectura Group Plc Pharmaceutical compositions comprising methotrexate
US8231375B2 (en) * 2002-11-26 2012-07-31 Universiteit Gent Process and apparatus for continuous wet granulation of powder material
EP2494962A2 (en) * 2002-03-20 2012-09-05 Civitas Therapeutics, Inc. Pulmonary delivery for levodopa

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2540059A (en) * 1947-08-02 1951-01-30 American Cyanamid Co Method of and apparatus for measuring and filling powders volumetrically
US3656518A (en) * 1967-03-27 1972-04-18 Perry Ind Inc Method and apparatus for measuring and dispensing predetermined equal amounts of powdered material
US3847191A (en) * 1971-08-23 1974-11-12 T Aronson Means and methods for measuring and dispensing equal amounts of powdered material
IT1069354B (en) * 1976-03-05 1985-03-25 Zanasi Nigris Spa IMPROVEMENTS IN VOLUME DOSING UNITS
IT1156553B (en) * 1982-03-03 1987-02-04 Mg 2 Spa PROCEDURE FOR WITHDRAWING A PREFIXED QUANTITY OF POWDER FROM INSIDE A ROTATING CONTAINER AND FOR STORING SUCH QUANTITY INSIDE A BOTTOM OF A CONTAINER OF SHAPE OF ANY AND MACHINE WHICH OPERATES THAT PROCEDURE
JPS59115201A (en) * 1982-12-10 1984-07-03 武田薬品工業株式会社 Treating machine for powdered and granular body
IT1245757B (en) * 1991-01-15 1994-10-14 Mg 2 Spa MACHINE FOR DOSING PHARMACEUTICAL PRODUCTS IN POWDER.
US5111642A (en) * 1991-01-23 1992-05-12 Macofar S.P.A. Machine for the dosage of powders in capsules, in particular for the pharmaceutical industry
US5756123A (en) 1994-12-01 1998-05-26 Japan Elanco Co., Ltd. Capsule shell
US5826633A (en) * 1996-04-26 1998-10-27 Inhale Therapeutic Systems Powder filling systems, apparatus and methods
AU724503B2 (en) * 1996-04-29 2000-09-21 Dura Pharmaceuticals, Inc. Methods of dry powder inhalation
US5855913A (en) 1997-01-16 1999-01-05 Massachusetts Instite Of Technology Particles incorporating surfactants for pulmonary drug delivery
US6254854B1 (en) 1996-05-24 2001-07-03 The Penn Research Foundation Porous particles for deep lung delivery
US5985309A (en) 1996-05-24 1999-11-16 Massachusetts Institute Of Technology Preparation of particles for inhalation
US20020052310A1 (en) 1997-09-15 2002-05-02 Massachusetts Institute Of Technology The Penn State Research Foundation Particles for inhalation having sustained release properties
US6652837B1 (en) * 1996-05-24 2003-11-25 Massachusetts Institute Of Technology Preparation of novel particles for inhalation
USRE37053E1 (en) 1996-05-24 2001-02-13 Massachusetts Institute Of Technology Particles incorporating surfactants for pulmonary drug delivery
US6503480B1 (en) 1997-05-23 2003-01-07 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US5874064A (en) 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
EP0971698A4 (en) * 1996-12-31 2006-07-26 Nektar Therapeutics Aerosolized hydrophobic drug
US7052678B2 (en) 1997-09-15 2006-05-30 Massachusetts Institute Of Technology Particles for inhalation having sustained release properties
US20030077227A1 (en) * 1997-10-01 2003-04-24 Dugger Harry A. Buccal, polar and non-polar spray or capsule containing drugs for treating disorders of the central nervous system
US20040028735A1 (en) 1997-11-14 2004-02-12 Unchalee Kositprapa Pharmaceutical formulation
EP1069889B1 (en) * 1998-04-09 2004-06-30 Celanese Ventures GmbH Partikulärer wirkstoffträger für die pulmonale applikation
MA25590A1 (en) * 1998-09-14 2002-12-31 Inhale Therapeutic Syst ACTIVE AGENT FOR DRY POWDER DELIVERY
IT1304779B1 (en) * 1998-12-03 2001-03-29 Ima Spa DISC AND PESTEL DISPENSER, INTERMITTENTLY OPERATING, SINGLE-SIDED, PARTICULARLY SUITABLE FOR PACKAGING DOSES
US6858199B1 (en) 2000-06-09 2005-02-22 Advanced Inhalation Research, Inc. High efficient delivery of a large therapeutic mass aerosol
US6586008B1 (en) 1999-08-25 2003-07-01 Advanced Inhalation Research, Inc. Use of simple amino acids to form porous particles during spray drying
US7252840B1 (en) 1999-08-25 2007-08-07 Advanced Inhalation Research, Inc. Use of simple amino acids to form porous particles
GB9926335D0 (en) * 1999-11-05 2000-01-12 Powderject Res Ltd Apparatus and method for dispensing small quantities of particles
GB2356386A (en) 1999-11-17 2001-05-23 Tagra Biotechnologies Ltd Microencapsulation
US20030180352A1 (en) 1999-11-23 2003-09-25 Patel Mahesh V. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
GB0014082D0 (en) * 2000-06-10 2000-08-02 Glaxo Group Ltd Method and apparatus for transferring a defined quantity of powder
US6613308B2 (en) 2000-09-19 2003-09-02 Advanced Inhalation Research, Inc. Pulmonary delivery in treating disorders of the central nervous system
US6514482B1 (en) 2000-09-19 2003-02-04 Advanced Inhalation Research, Inc. Pulmonary delivery in treating disorders of the central nervous system
US20020122773A1 (en) * 2000-12-20 2002-09-05 Michel Pairet Pharmaceutical compositions based on anticholinergics and dopamine agonists
AU2002230993B2 (en) 2000-12-29 2006-02-02 Alkermes, Inc. Particles for inhalation having sustained release properties
US6766799B2 (en) 2001-04-16 2004-07-27 Advanced Inhalation Research, Inc. Inhalation device
US6848197B2 (en) * 2001-04-18 2005-02-01 Advanced Inhalation Research, Inc. Control of process humidity to produce large, porous particles
DE60223017T2 (en) * 2001-04-20 2008-07-31 Glaxo Group Ltd., Greenford MEASURING METHOD FOR PARTICLE MATERIAL
WO2002096422A2 (en) 2001-05-25 2002-12-05 Boehringer Ingelheim Pharma Gmbh & Co. Kg Combination of a dopamine d2-receptor agonist and tiotropium or a derivative thereof for treating obstructive airways
US6531153B2 (en) 2001-05-29 2003-03-11 Drugtech Corporation Composition with sustained release of levodopa and carbidopa
US7122143B2 (en) * 2001-09-28 2006-10-17 Mcneil-Ppc, Inc. Methods for manufacturing dosage forms
US6767200B2 (en) * 2001-09-28 2004-07-27 Mcneil-Ppc, Inc. Systems, methods and apparatuses for manufacturing dosage forms
CA2465675C (en) * 2001-11-20 2008-06-10 Advanced Inhalation Research, Inc. Improved particulate compositions for pulmonary delivery
EP1487411B1 (en) 2002-03-20 2019-01-02 Civitas Therapeutics, Inc. Inhalable sustained therapeutic formulations
US20110123574A1 (en) * 2002-03-20 2011-05-26 Alkermes, Inc. Inhalable sustained therapeutic formulations
JP4897198B2 (en) 2002-03-20 2012-03-14 アルカームズ,インコーポレイテッド Perforation means for use with inhalation devices
US7754242B2 (en) 2002-03-20 2010-07-13 Alkermes, Inc. Inhalable sustained therapeutic formulations
US7008644B2 (en) 2002-03-20 2006-03-07 Advanced Inhalation Research, Inc. Method and apparatus for producing dry particles
WO2003094900A1 (en) * 2002-05-13 2003-11-20 Alexza Molecular Delivery Corporation Delivery of drug amines through an inhalation route
CA2484950C (en) * 2002-06-27 2011-05-24 Nektar Therapeutics Device and method for controlling the flow of a powder
US6941980B2 (en) * 2002-06-27 2005-09-13 Nektar Therapeutics Apparatus and method for filling a receptacle with powder
US7947742B2 (en) 2002-06-28 2011-05-24 Civitas Therapeutics, Inc. Inhalable epinephrine
ITBO20020525A1 (en) * 2002-08-08 2004-02-09 Ima Spa OPERATING MACHINE.
US7763280B2 (en) 2002-11-28 2010-07-27 Boehringer Ingelheim Pharma Gmbh & Co. Kg Tiotropium containing powder formulation for inhalation
DE10255387A1 (en) * 2002-11-28 2004-06-09 Boehringer Ingelheim Pharma Gmbh & Co. Kg New tiotropium-containing powder formulation for inhalation
JP2006522634A (en) * 2003-04-14 2006-10-05 ベクトゥラ・リミテッド Device and pharmaceutical composition for improving administration efficiency
DE20309279U1 (en) * 2003-06-12 2004-10-21 Harro Höfliger Verpackungsmaschinen GmbH Filter piston unit for filling predetermined volumes of powdery materials into containers comprises a hollow cylindrical piston with a transverse slit and an opposing internal groove in its wall
US7134459B2 (en) * 2003-06-12 2006-11-14 Symyx Technologies, Inc. Methods and apparatus for mixing powdered samples
WO2004112702A2 (en) 2003-06-13 2004-12-29 Advanced Inhalation Research, Inc. Low dose pharmaceutical powders for inhalation
SE0303269L (en) * 2003-12-03 2005-06-04 Microdrug Ag Medical product
BRPI0418276B8 (en) * 2003-12-31 2021-05-25 Cydex Pharmaceuticals Inc inhalable liquid formulation comprising budesonide
SE0401842D0 (en) * 2004-07-12 2004-07-12 Dizlin Medical Design Ab Infusion and injection solution of levodopa
GB0425758D0 (en) * 2004-11-23 2004-12-22 Vectura Ltd Preparation of pharmaceutical compositions
US20060216345A1 (en) 2005-03-24 2006-09-28 Sun Pharmaceutical Industries Limited Oral pharmaceutical composition including paroxetine
US20060222699A1 (en) 2005-03-29 2006-10-05 Jonathan Gilinski Flavored vegetarian cellulose capsule and methods for producing said capsule.
JP5694643B2 (en) * 2005-08-05 2015-04-01 スリーエム イノベイティブ プロパティズ カンパニー Composition exhibiting improved fluidity
AR055106A1 (en) 2005-08-05 2007-08-08 Osmotica Pharmaceutical Argent SOLID PHARMACEUTICAL COMPOSITION OF EXTENDED LIBERATION CONTAINING CARBIDOPA AND LEVODOPA
DE102005039765A1 (en) * 2005-08-23 2007-03-01 Robert Bosch Gmbh sensing device
US20120128728A1 (en) * 2005-12-28 2012-05-24 Novartis Pharma Ag Compositions Comprising Amphotericin B
EP1803432B1 (en) * 2005-12-29 2010-03-31 MG 2 - S.r.l. Machine for filling capsules with a product
US20080063722A1 (en) 2006-09-08 2008-03-13 Advanced Inhalation Research, Inc. Composition of a Spray-Dried Powder for Pulmonary Delivery of a Long Acting Neuraminidase Inhibitor (LANI)
US20080066739A1 (en) 2006-09-20 2008-03-20 Lemahieu Edward Methods and systems of delivering medication via inhalation
US20100168410A1 (en) 2006-10-27 2010-07-01 Pfizer Products Inc. Hydroxypropyl Methyl Cellulose Hard Capsules and Process of Manufacture
CA2673511A1 (en) 2006-12-22 2008-07-03 Combinatorx, Incorporated Pharmaceutical compositions for treatment of parkinson's disease and related disorders
AU2008258596B2 (en) 2007-06-04 2013-02-14 Egalet Ltd Controlled release pharmaceutical compositions for prolonged effect
US8496002B2 (en) 2007-06-12 2013-07-30 Civitas Therapeutics, Inc. Powder inhaler devices
PE20090907A1 (en) * 2007-07-21 2009-08-05 Boehringer Ingelheim Int NEW POWDER DRUGS CONTAINING THOTROPE AND SALMETEROL, AS WELL AS LACTOSE AS AN EXCIPIENT
WO2009026434A1 (en) 2007-08-21 2009-02-26 Alkermes, Inc. Pulmonary pharmaceutical formulations
GB2454480A (en) 2007-11-07 2009-05-13 Vectura Group Plc Pulmonary inhalation of levodopa containing compositions in the treatment of Parkinsons disease and other central nervous system disorders
CN102119026A (en) 2008-06-13 2011-07-06 葛兰素集团有限公司 Hydroxypropyl cellulose capsule shell
US8485180B2 (en) * 2008-06-13 2013-07-16 Mannkind Corporation Dry powder drug delivery system
CA2982550C (en) * 2008-06-13 2020-08-25 Mannkind Corporation A dry powder inhaler and system for drug delivery
US20110268666A1 (en) 2008-09-29 2011-11-03 Yissum Research Development Company of the Research University of Jerusalem, Ltd. Novel gastroretentive delivery system
IT1390803B1 (en) * 2008-09-30 2011-10-19 Mg2 Srl EQUIPMENT FOR DOSING PULVERULATING OR GRANULAR MATERIALS IN CAPSULES OR SIMILAR
US8399513B2 (en) 2008-10-20 2013-03-19 Xenoport, Inc. Levodopa prodrug mesylate hydrate
US20120135969A1 (en) * 2008-11-27 2012-05-31 Boehringer Ingelheim International Gmbh Novel powdered crystalline medicines for inhalation
RU2577698C2 (en) * 2009-03-26 2016-03-20 Пулмэтрикс, Инк. Dry powder formulations and methods of treating pulmonary diseases
US20120160944A1 (en) * 2009-04-24 2012-06-28 Aaron Dodd Method for the production of commercial nanoparticle and micro particle powders
IT1394027B1 (en) * 2009-05-11 2012-05-25 Mg 2 Srl MACHINE FOR FILLING CAPSULES WITH PHARMACEUTICALS
US8359815B2 (en) * 2009-05-11 2013-01-29 Mg 2—S.R.L. Machine for filling capsules with pharmaceutical products
GB0918450D0 (en) * 2009-10-21 2009-12-09 Innovata Ltd Composition
RU2445119C2 (en) * 2010-05-25 2012-03-20 Сергей Викторович Чепур Pharmaceutical composition and method for pulmonary administration thereof
US20120164233A1 (en) 2010-07-30 2012-06-28 Ranbaxy Laboratories Limited Pulsatile release pharmaceutical formulation of dexlansoprazole
CN105640925B (en) * 2010-08-30 2019-08-16 普马特里克斯营业公司 Dried powder formula and method for treating pulmonary disease
TW201304822A (en) 2010-11-15 2013-02-01 Vectura Ltd Compositions and uses
KR102237007B1 (en) 2012-10-22 2021-04-06 키비타스 테라퓨틱스, 인코포레이티드. Reducing inter-patient variability of levodopa plasma concentrations
NZ708414A (en) 2012-10-22 2018-11-30 Civitas Therapeutics Inc Levodopa formulations for rapid relief of parkinson’s disease
US8545878B1 (en) * 2012-11-09 2013-10-01 Civitas Therapeutics, Inc. Capsules containing high doses of levodopa for pulmonary use
BR112015010601B1 (en) 2012-11-09 2022-07-19 Civitas Therapeutics, Inc. PHARMACEUTICAL COMPOSITION AND USE OF THE COMPOSITION
EP3134077A4 (en) 2014-04-21 2017-12-20 Civitas Therapeutics, Inc. Rapid relief of motor fluctuations in parkinson's disease

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2494962A2 (en) * 2002-03-20 2012-09-05 Civitas Therapeutics, Inc. Pulmonary delivery for levodopa
US8231375B2 (en) * 2002-11-26 2012-07-31 Universiteit Gent Process and apparatus for continuous wet granulation of powder material
US20100040691A1 (en) * 2005-11-18 2010-02-18 Vectura Group Plc Pharmaceutical compositions comprising methotrexate
WO2007112581A1 (en) * 2006-04-03 2007-10-11 Isa Odidi Controlled release delivery device comprising an organosol coat

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9539211B2 (en) 2012-11-09 2017-01-10 Civitas Therapeutics, Inc. Ultra low density pulmonary powders
WO2017057865A1 (en) * 2015-09-30 2017-04-06 Hanmi Pharm. Co., Ltd. Inhalation capsule with enhanced delivery of active ingredient
KR101748796B1 (en) * 2015-09-30 2017-06-19 한미약품 주식회사 Inhalation capsule with enhanced delivery rate of active ingredients
GB2550961A (en) * 2016-06-03 2017-12-06 Res Center Pharmaceutical Engineering Gmbh Apparatus for dosing a solid material into at least one receptacle
IT202000008962A1 (en) * 2020-04-24 2021-10-24 Romaco Srl EQUIPMENT FOR FILLING CONTAINERS WITH A POWDER MATERIAL
WO2021214808A1 (en) * 2020-04-24 2021-10-28 Romaco S.R.L. Apparatus for filling containers with a powdered material

Also Published As

Publication number Publication date
DK2916821T3 (en) 2021-01-18
HK1214957A1 (en) 2016-08-12
JP2018150355A (en) 2018-09-27
HK1212884A1 (en) 2016-06-24
NZ747376A (en) 2020-02-28
HK1213187A1 (en) 2016-06-30
AU2018222983B2 (en) 2020-02-27
EP2925611A1 (en) 2015-10-07
SG10201706465XA (en) 2017-09-28
US20150342885A1 (en) 2015-12-03
CA2890459C (en) 2022-08-23
KR20230116102A (en) 2023-08-03
EP2916821A1 (en) 2015-09-16
AU2013342246A1 (en) 2015-07-02
JP6348501B2 (en) 2018-06-27
CN109106697B (en) 2022-02-15
AU2018204674A1 (en) 2018-07-12
US20150342890A1 (en) 2015-12-03
RU2015121092A (en) 2017-01-10
RU2015121091A (en) 2017-01-10
US9539211B2 (en) 2017-01-10
WO2014074797A1 (en) 2014-05-15
RU2670987C2 (en) 2018-10-29
NZ733459A (en) 2019-09-27
BR112015010601A8 (en) 2018-01-16
CA2890454C (en) 2020-10-27
KR102389785B1 (en) 2022-04-22
AU2013342247B2 (en) 2017-09-21
CN105120843A (en) 2015-12-02
KR102337781B1 (en) 2021-12-09
CN104918607B (en) 2018-10-12
AU2017279626B2 (en) 2019-09-12
AU2017279626A1 (en) 2018-01-18
AU2018204674B2 (en) 2019-09-19
KR20150108816A (en) 2015-09-30
CN109106697A (en) 2019-01-01
JP6721629B2 (en) 2020-07-15
KR20150110480A (en) 2015-10-02
MX2015005768A (en) 2015-11-25
CA2890451C (en) 2022-07-19
WO2014074797A8 (en) 2014-06-26
HK1213535A1 (en) 2016-07-08
EP2916826A4 (en) 2016-07-27
JP2018162258A (en) 2018-10-18
US10238607B2 (en) 2019-03-26
AU2013342247C1 (en) 2017-12-21
EP3815679A1 (en) 2021-05-05
JP2015536989A (en) 2015-12-24
BR112015010601A2 (en) 2017-08-15
AU2013342247A1 (en) 2015-07-02
JP2015536988A (en) 2015-12-24
KR20210152020A (en) 2021-12-14
BR112015010603A2 (en) 2017-08-15
AU2013342248B2 (en) 2018-05-31
BR112015010601B1 (en) 2022-07-19
SG11201503547TA (en) 2015-06-29
CA2890451A1 (en) 2014-05-15
PL2916821T3 (en) 2021-07-05
NZ708682A (en) 2017-11-24
ZA201504060B (en) 2016-04-28
NZ708684A (en) 2019-09-27
MX2015005767A (en) 2015-11-25
ZA201504058B (en) 2016-11-30
AU2013342248A1 (en) 2015-07-02
SG11201503543PA (en) 2015-06-29
SG10202109328QA (en) 2021-10-28
AU2013342246B2 (en) 2018-03-29
AU2018222983A1 (en) 2018-09-20
JP2015536197A (en) 2015-12-21
KR20210062730A (en) 2021-05-31
BR112015010603B1 (en) 2022-10-11
US20180036253A1 (en) 2018-02-08
EP2925611B1 (en) 2022-03-09
ES2844153T3 (en) 2021-07-21
EP2916826B1 (en) 2021-04-28
MX2020012506A (en) 2021-02-15
JP6669808B2 (en) 2020-03-18
HK1213186A1 (en) 2016-06-30
EP3957301A1 (en) 2022-02-23
EP2925611A4 (en) 2016-09-07
CN104918607A (en) 2015-09-16
CA2890459A1 (en) 2014-05-15
JP2019213867A (en) 2019-12-19
PT2916821T (en) 2021-01-21
ES2880271T3 (en) 2021-11-24
EP2916821A4 (en) 2016-08-03
EP2916821B1 (en) 2020-10-21
JP6836834B2 (en) 2021-03-03
JP6347786B2 (en) 2018-06-27
US9642812B2 (en) 2017-05-09
WO2014074796A1 (en) 2014-05-15
KR20220054703A (en) 2022-05-03
CN110833539A (en) 2020-02-25
EP2916826A1 (en) 2015-09-16
MX371008B (en) 2020-01-13
SG10201707103SA (en) 2017-10-30
CA2890454A1 (en) 2014-05-15
KR102257164B1 (en) 2021-05-26
RU2676093C2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
AU2018204674B2 (en) High Dose Levodopa Capsules For Pulmonary Use
US9393210B2 (en) Capsules containing high doses of levodopa for pulmonary use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2890451

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/005767

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015541915

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013852876

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015121092

Country of ref document: RU

Kind code of ref document: A

Ref document number: 20157015345

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013342246

Country of ref document: AU

Date of ref document: 20131108

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015010603

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015010603

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150508