WO2014081892A1 - Methods and apparatus for treating embolism - Google Patents

Methods and apparatus for treating embolism Download PDF

Info

Publication number
WO2014081892A1
WO2014081892A1 PCT/US2013/071101 US2013071101W WO2014081892A1 WO 2014081892 A1 WO2014081892 A1 WO 2014081892A1 US 2013071101 W US2013071101 W US 2013071101W WO 2014081892 A1 WO2014081892 A1 WO 2014081892A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulmonary embolism
flow restoration
expandable
treatment device
clot
Prior art date
Application number
PCT/US2013/071101
Other languages
French (fr)
Inventor
Robert Rosenbluth
Brian J. Cox
Paul Lubock
Richard Quick
Original Assignee
Robert Rosenbluth
Cox Brian J
Paul Lubock
Richard Quick
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Rosenbluth, Cox Brian J, Paul Lubock, Richard Quick filed Critical Robert Rosenbluth
Priority to US14/646,358 priority Critical patent/US10004531B2/en
Publication of WO2014081892A1 publication Critical patent/WO2014081892A1/en
Priority to US15/949,350 priority patent/US10709471B2/en
Priority to US16/913,073 priority patent/US11648028B2/en
Priority to US18/184,981 priority patent/US20230218313A1/en
Priority to US18/191,685 priority patent/US20230240705A1/en
Priority to US18/191,728 priority patent/US20230240706A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320725Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with radially expandable cutting or abrading elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22031Gripping instruments, e.g. forceps, for removing or smashing calculi
    • A61B17/22032Gripping instruments, e.g. forceps, for removing or smashing calculi having inflatable gripping elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/32075Pullback cutting; combined forward and pullback cutting, e.g. with cutters at both sides of the plaque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00809Lung operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00862Material properties elastic or resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22031Gripping instruments, e.g. forceps, for removing or smashing calculi
    • A61B2017/22034Gripping instruments, e.g. forceps, for removing or smashing calculi for gripping the obstruction or the tissue part from inside
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22038Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22081Treatment of vulnerable plaque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22094Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for crossing total occlusions, i.e. piercing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B2017/320716Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions comprising means for preventing embolism by dislodged material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/04Access sites having pierceable self-sealing members

Definitions

  • This invention relates to the apparatus and methods of endovascular treatment of blood clots obstructing passageways in the circulatory system and particularly the endovascular treatment of pulmonary embolism.
  • Thromboembolism is the formation in a blood vessel of a clot (thrombus) that breaks loose (embolizes) and is carried by the blood stream to another location in the circulatory system resulting in a clot or obstruction at that new location.
  • a clot may embolize and plug a vessel in the lungs (pulmonary embolism), the brain (stroke), the gastrointestinal tract, the kidneys, or the legs.
  • Thromboembolism is a significant cause of morbidity (disease) and mortality (death), especially in adults.
  • a thromboembolism can be sudden and massive or it may be small and multiple.
  • a thromboembolism can be any size and a thromboembolic event can happen at any time.
  • a thrombus When a thrombus forms in the venous circulation of the body it often embolizes to the lungs. Such a thrombus typically embolizes from the veins of the legs, pelvis, or inferior vena cava and travels to the right heart cavities and then into the pulmonary arteries thus resulting in a pulmonary embolism.
  • a pulmonary embolism results in right heart failure and decreased blood flow through the lungs with subsequent decreased oxygenation of the lungs, heart and the rest of the body. More specifically, when such a thrombus enters the pulmonary arteries, obstruction and spasm of the different arteries of the lung occurs which further decreases blood flow and gaseous exchange through the lung tissue resulting in pulmonary edema.
  • the known treatment methods do not emphasize sufficiently the goal of urgently restoring blood flow through the thrombus once the thrombus has been identified.
  • the known methods focus primarily and firstly on overall clot reduction and removal instead of first focusing on relief of the acute blockage condition followed then by the goal of clot reduction and removal.
  • known methods are not providing optimal patient care, particularly as such care relates to treatment of a pulmonary embolism.
  • FIG. 1 A is a schematic view of a patient with a pulmonary embolism
  • Fig. 1 B is an enlarged view of the lung area of the patient depicted in Fig. 1 A;
  • Fig. 1C is an enlarged view of the introducer device depicted being used in the femoral vein of the patient in Fig. 1 A;
  • FIG. 2 is a cross-sectional view of a patient's heart
  • FIG. 3 is a perspective view of a patients main pulmonary artery and right and left pulmonary arteries with a clot located in the left pulmonary artery;
  • FIG. 4 is a cross-sectional view of an embodiment of a clot treatment device in accordance with the present technology in a compressed, undeployed state;
  • FIG. 5A is a side cross-sectional view of a clot treatment device in a compressed, undeployed state within a delivery catheter in accordance with the present technology
  • FIG. 5B is a top view of the a clot treatment device in a deployed state in accordance with the present technology
  • Figs. 6A-6F are a series of cross-sectional views of embodiments of the method and device of the present technology.
  • Figs. 7A-7B are a series of cross-sectional views of embodiments of the method and device of the present technology.
  • Fig. 8 is a cross-sectional view of another embodiment of the method and device of the present technology.
  • FIGs. 9A-9G show cross-sectional views of embodiments of a clot treatment device in accordance with the present technology.
  • FIG. 10 is a cross-sectional view of a clot treatment device in accordance with another embodiment of the present technology.
  • Figs. 11 and 12 are detailed cross-sectional views of a distal portion and a proximal portion, respectively, of an expandable member of a clot treatment device in accordance with an embodiment of the present technology.
  • Figs. 13 and 14 are detailed cross-sectional views of a proximal portion and a distal portion, respectively, of an expandable member of a clot treatment device in accordance with another embodiment of the technology.
  • FIGs. 15-18 are side views of guide catheters for use with clot treatment devices and methods in accordance with embodiments of the present technology.
  • Fig, 19 is a side view of a clot treatment device including arcuate clot engagement members configured in accordance with an embodiment of the present technology.
  • FIGs. 20-23 show embodiments of arcuate clot engagement members configured in accordance with the present technology.
  • FIGs. 24-25 are side views of clot treatment devices configured in accordance with embodiments of the present technology.
  • Fig. 26 is a circumferential structure including arcuate clot engagement members in accordance with embodiments of the present technology.
  • Fig. 27 is a side view of a clot treatment device having a distal radially extending member configured in accordance with another embodiment of the present technology.
  • FIGS. 1A-1C show the typical locations in a human patient where clots 100, such as pulmonary embolisms, thromboses, or other obstructions, occur in the pulmonary arteries and further discloses the pathway through which access to such clots 100 is achieved.
  • an introducer device e.g., a hemostatic valve
  • a hemostatic valve which supports relatively large diameter devices is inserted into the patient into the femoral vein FV in the pelvic area of the patient.
  • the tools and devices needed to treat the pulmonary embolism are then inserted through the introducer 102 into the femoral vein FV through the inferior vena cava IVC to the patient's heart.
  • the user can gain access through the jugular vein, the subclavian vein, the brachial vein or any other vein that connects or eventually leads to the superior vena cava.
  • Use of other vessels that are closer to right atrium RA of the patient's heart may be attractive as this will reduce the length of the instruments needed to reach the pulmonary embolism.
  • the tools/devices are then guided through the right atrium RA through the tricuspid valve TV, into the right ventricle RV, through the pulmonary valve PV into the main pulmonary artery (MPA).
  • the tools/devices are then guided to one or more of the branches of the right pulmonary artery RPA or the left pulmonary artery LPA, including deeper branches thereof, to the location of the pulmonary embolism 100.
  • a clot treatment device 402 for restoring blood flow through the clot 100 and for removing at least a portion of the clot is depicted in its undeployed, or compressed state.
  • the device 402 is constrained by a delivery catheter 606.
  • the device 402 comprises a braided material having ends that are captured distally by a tip 405 and proximally by an attachment member 403 that connects to a wire 401 configured to push and/or pull the clot treatment device 402.
  • the clot treatment device 402 may be an "over the wire” device, in which case, the wire 401 is a tube or coil having a lumen, and the attachment member 403 and the tip 405 have a hollow central lumen for receiving a guide wire.
  • the distal end of the clot treatment device shall have a flexible, atraumatic extension from the device.
  • the tip 405 is tapered to better penetrate the clot material in the vessel.
  • the clot treatment device 402 of the present technology has a generally cylindrical shape that, during use, creates a flow lumen through the clot material that restores significant blood flow across a clot.
  • the treatment device 402 is not, however, limited to a generally cylindrical shape.
  • the shape can be generally conical, generally concave or generally convex along its axis such that the clot treatment device 402 creates a lumen for restoring the blood flow.
  • FIG. 5A shows one embodiment of the treatment device 402 in a low-profile, undeployed state in which the clot treatment device is configured to fit within a delivery catheter
  • Fig. 5B shows the clot treatment device 402 of Fig. 5A in a deployed state configured to restore blood flow and capture clot material for removal.
  • the clot treatment device 402 is compressed to fit within the diameter D L of a lumen 607 of the delivery catheter 606 in the undeployed state.
  • the clot treatment device 402 has a plurality of capture elements, such as a series of radially extending capture portions 406 which are separated from each other by flow restoration portions 412.
  • the flow restoration portions 412 are configured to expand outwardly from the low-profile undeployed state within the delivery catheter lumen 607 to a first cross-sectional dimension D-i (e.g., diameter) in the deployed state.
  • D-i e.g., diameter
  • the flow restoration portions 412 can be generally cylindrical braided sections that expand radially outward from the undeployed stated to the deployed state.
  • the first cross-sectional dimension is greater than the diameter D L of the delivery catheter lumen 607.
  • the capture portions 406 are configured to expand outwardly from the low-profile undeployed state to a second cross-sectional dimension D 2 greater than the first cross-sectional dimension D-i in the deployed state.
  • the capture portions 406 can project into the clot such that they extend transverse to a longitudinal axis L-L of the clot treatment device 402, while the flow restoration portions 412 expand radially outward into the clot to open a passage through which blood can quickly resume flow through the vessel.
  • the clot treatment device 402 can be porous so blood flows therethrough.
  • many embodiments of the clot treatment device 402 are made from a mesh or braided material.
  • the material can be a super-elastic material such as Nitinol or an alternative material such as cobalt chrome alloy.
  • the device can be made from a wire lattice, wire braid or stent. Specific preferred embodiments are discussed throughout this specification.
  • the clot treatment device 402 can comprise a single mesh structure that is generally cylindrical in the low-profile undeployed state (shown in Fig. 5A).
  • the series of radially extending capture portions 406 accordingly extend from the same mesh as the corresponding series of flow restoration portions 412.
  • the flow restoration portions 412 can be generally cylindrical sections in the deployed state, or in other embodiments the flow restoration portions 412 may taper in the distal direction individually and/or collectively to form a conical lumen (not shown).
  • Each of the capture portions 406 can be a radial or otherwise transversely projecting disk that projects outward relative to the flow restoration portions 412.
  • the clot treatment device 402 can self-expand from the undeployed state to the deployed state.
  • the clot treatment device 402 can be a shape-memory material, such as Nitinol, and may be formed as a braid or a stent that is set to have the expanded configuration of the deployed state shown in Fig. 5B unless it is otherwise deformed or constrained, such as being elongated along the longitudinal axis L-L to fit within the delivery catheter 606 as shown in Fig. 5A.
  • the clot treatment device 402 can be actuated by a push/pull wire, tube or coil to move from the low-profile undeployed state to the expanded deployed state as explained in more detail below with reference to Figs. 10-12.
  • Figs. 1-6F show embodiments of methods for restoring blood flow and retrieving/removing clot material with the clot treatment device 402 in a body lumen L.
  • a guide wire 602 is inserted into the patient via an introducer 102 and maneuvered through the femoral vein FV into the inferior vena cava IVC to the heart. As stated above, access can also be achieved through one of the veins leading to the superior vena cava SVC.
  • the guide wire 602 is then urged through the right atrium RA, through the tricuspid valve TV, through the right ventricle RV, through the pulmonary valve PV to the main pulmonary artery MPA and then to a location of the clot 100 in one of the branches or lumens L of either the right or left pulmonary artery RPA, LPA.
  • the guide wire 602 is extended through the clot 100 in the body lumen L as shown in Fig. 6A.
  • a guide catheter 604 is placed over the guide wire 602 and moved to a location where a distal end of the guide catheter 604 is positioned proximal to the clot 100. At this point, the guide wire can optionally be withdrawn. However, in the embodiment shown in Fig. 6C, the guide wire 602 remains positioned through the clot 100 and a delivery catheter 606 is then moved through the guide catheter 604 over the guide wire 602 and pushed through the clot 100.
  • the guide wire 602 is then withdrawn and the clot treatment device 402 in its undeployed (i.e., compressed) state is then moved through the delivery catheter 606 until it is positioned at the distal end of the delivery catheter 606.
  • the guide wire 602 may be left in place while the treatment device 402 is deployed and retracted.
  • the delivery catheter 606 is then retracted in a proximal direction while maintaining forward pressure on the clot retrieval device 402 via the pusher wire 401 so that the clot treatment device 402 is exposed and released from the delivery catheter 606.
  • the clot treatment device 402 radially expands into the clot 100 and, in some embodiments, at least a portion of the clot treatment device 402 expands distal of the clot 100.
  • at least one of the radially extending capture portions 406 of the clot treatment device 402 is located distal to the clot 100 upon expansion of the clot treatment device 402.
  • the flow restoration portions 412 between the capture portions 406 also expand outwardly against a portion of the clot 100 to form a flow passage 430 though the clot treatment device 402.
  • the clot treatment device 402 accordingly restores blood flow through the clot 100 immediately or at least quickly after expanding to the deployed state as shown by arrows 407 in Fig.
  • the blood freely moves through the mesh of the clot treatment device 402, travels through the device lumen and exits the clot treatment device 402 distal to the clot 100.
  • the acute condition of blockage is mediated thus immediately improving the circulation of oxygenated blood in the patient.
  • the restoration of blood flow is anticipated to equate with restoration of a substantial portion of the normal blood flow rate for the patient.
  • the clot treatment device 402 may increase blood flow rate by at least about 50 ml/min, at least about 150 ml/min or between about 100 to 250 ml/min.
  • a larger amount of the pulmonary artery flow is compromised.
  • at least about 500 ml/min of blood flow rate may be restored.
  • at least a portion of the flow restoration is expected to occur prior to the removal of the clot 100, or any portion thereof.
  • the restoration of blood flow by the clot treatment device 402 can be achieved in a low pressure environment.
  • the pressure in the target vessel can be less than 60 mmHg and the blood can be venous blood, substantially non- oxygenated blood or low oxygenated blood.
  • the expansion of the clot treatment device 402 also deforms the clot material by pushing, penetrating and/or otherwise cutting into the clot material. This enhances the subsequent removal of the clot 100 since portions of the clot 100 may be captured and retained (1) between the radially extending portions 406; (2) through the pores of the mesh forming the radially extending portions 406; (3) along the longitudinal cylindrical sections 412 between the radially extending portions 406 of the removal device 402; and (4) within the clot treatment device 402 itself.
  • the deployment of the clot treatment device 402 results in an outwardly expanding generally cylindrical force being urged against an inner surface of the clot 100 because the flow restoration portions 412 expand to the first cross-sectional dimension greater than the diameter D L of the delivery catheter lumen 607.
  • This force pushes the clot material outwardly and creates a lumen through which blood flow is restored.
  • the presence of the radially extending capture portions 406 on the clot treatment device 402 causes the outwardly expanding generally cylindrical force to vary in magnitude along the axis of the clot treatment device 402.
  • the force on the clot material may be greater at the locations of the radially extending capture portions 406.
  • the user retracts the clot treatment device 402 in a proximal direction as shown in Fig. 6F. Since the capture portions 406 extend transverse to the longitudinal dimension of the vessel, the capture portions 406 form transverse surfaces relative to the force exerted against the clot 100 as the clot treatment device 402 is pulled in the proximal direction. The capture portions 406 accordingly enhance the ability of the clot treatment device 402 to securely dislodge and retain the clot 100 as the clot treatment device 402 is moved axially along the vessel to retrieve the clot 100 from the patient.
  • the clot treatment device 402 and the delivery catheter 606 are pulled back simultaneously into the guide catheter 604. This is followed by the entire apparatus (e.g., clot treatment device 402, delivery catheter 606 and guide catheter 604) being withdrawn through the heart and the venous circulation and out from the body.
  • the entire apparatus e.g., clot treatment device 402, delivery catheter 606 and guide catheter 604
  • the clot treatment device 402 may elongate as it is being withdrawn into the guide catheter 604 due to the resistance it encounters from the presence of clot material of the clot 100.
  • the presence of the radially extending portions 406 may allow elongation that enhances the capability of the device 402 to capture the maximum amount of clot material. This is further discussed below with respect to the surface area and expansion ratio of preferred embodiments of the clot treatment device 402.
  • a guide catheter 604 may not be necessary or desirable and the user may choose to use only the delivery catheter 606 for placing and manipulation of the clot treatment device 402.
  • the clot may be of such a nature that the user may desire repeat the above-described process, or at least portions of it, in order to more fully remove the clot 100 or clot material.
  • a collection or funnel catheter 612 to assist in the removal of the clot 100.
  • a funnel catheter 612 has an expandable portion 614 at its distal end and may be situated between the guide catheter 604 and the delivery catheter 608 or may be part of the guide catheter 604.
  • the clot treatment device 402 is pulled proximally into the collection catheter 612 such that the clot or portions of it are captured within the collection catheter 612.
  • the collection catheter 612 can be pushed distally over the clot treatment device 402 such that the collection catheter 612 captures the clot or portions thereof. If the collection catheter 612 is separate from the guide catheter 606, the collection catheter with the clot treatment device 402 is then pulled into the guide catheter for ultimate removal of all devices (and the clot) from the patient.
  • the expandable portion 614 of the collection catheter 612 is a conical funnel or other tapered member constructed from a mesh, braid or stent structure. Such structure assists in retrieving and containing the clot material in the withdrawal process.
  • the collection catheter 612 contains structural features to assist in the expansion of the expandable portion 614 and to hold the expandable portion 614 open towards the wall of the blood vessel. Such features (not shown) include interwoven support struts, self expanding material (e.g., Nitinol), longitudinal wire supports, stent supports, polymeric webbing, etc.
  • a vacuum apparatus may be used to aid in the removal of the clot material.
  • a syringe 802 is shown connected to a vacuum manifold 806 that is in fluid communication with the proximal end of the guide catheter 604.
  • vacuum is applied by pulling on the syringe.
  • Alternative sources of vacuum 804 are also acceptable, e.g., a vacuum pump.
  • a system is also contemplated whereby vacuum is actuated automatically when the clot treatment device 402 (and the clot material) is being withdrawn.
  • Fig. 7B shows how vacuum causes flow 701 into the catheter 612.
  • FIGs. 9A-9H alternative preferred embodiments of the clot treatment device 402 are disclosed.
  • the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a rounded triangular cross-section.
  • the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a rounded triangular cross-section wherein the diameter of the disk increases along the length of the device 402 thus forming a conical exterior extent.
  • the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a rectangular cross-section.
  • the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a linear (non-rounded) triangular cross-section.
  • some of the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a rounded cross-section and others have a rectangular cross section.
  • the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 alternate between cylindrical disk shape with a T-shaped cross-section and a flare-shaped cross-section.
  • the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a partial cylindrical disk shapes.
  • the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by tabs and bumps or protuberances arising from the cylindrical surface of the device 402.
  • Fig. 10 is a cross-sectional view of another embodiment of the clot treatment device 402 in accordance with the technology having an expandable member 1010, an elongated inner member 1020, and an elongated outer member 1022.
  • the expandable member 1010 is configured to have an undeployed state in which the expandable member 1010 is elongated axially to have a low profile that fits within a delivery catheter as shown in Fig. 4.
  • the expandable member 1010 is further configurable into a deployed state in which the expandable member 1010 forms a flow channel 1012 for restoring blood flow through the region obstructed by the clot.
  • the expandable member 1010 can be a mesh, braid, stent-type device, or other suitable member through which blood flows in the deployed state.
  • the expandable member 1010 is a continuous braid formed from a shape-memory material that has been heat set such that, in the deployed state, the expandable member 1010 has a plurality of flow restoration portions 412 that expand to the first cross-sectional dimension D- to form the flow channel 1012 and a plurality of capture portions 406 that expand to the second cross-section dimension D 2 greater than the first cross-sectional dimension D-i .
  • the flow restoration members 412 accordingly exert an outward force (arrows O) against clot material (not shown) to create the flow channel 1012, and the capture portions 406 accordingly exert a longitudinal force L (arrows L) against the clot material as the clot treatment device 402 is moved proximally.
  • the elongated inner member 1020 can be a tube or coil having inner lumen configured to receive the guidewire 602 for over-the-wire or rapid exchange delivery of the expandable member 1010 to the clot.
  • the outer elongated member 1022 can be a tube or coil having a lumen configured to receive the inner elongated member 1020 such that the inner elongated member 1020 and/or the outer elongated member 1022 can move relative to each other along the longitudinal dimension of the clot treatment device 402.
  • Figs. 1 and 12 are detailed views of a distal portion 10 1a (Fig. ) and a proximal portion 101 1 b (Fig. 12) of the expandable member 1010 of the clot treatment device 402 shown in Fig. 10.
  • the distal portion 101 1 a is attached to a distal end of the inner elongated member 1020 by the tip 405.
  • the tip 405 can be blunt as described above with reference to the embodiment of the clot treatment device 402 shown in Fig. 4, or the tip 405 can have a tapered distal portion 1040 configured to pass through the clot as shown in Fig. 1 1.
  • the tip 405 can have a proximal opening 1042 configured to receive the distal end of the inner elongated member 1020 and the distal end of the expandable member 1010.
  • the proximal portion 101 1 b is attached to the distal end of the outer elongated member 1022 by a proximal hub 1030.
  • the distal and proximal portions 101 1a and 1011 b can be attached to the inner elongated member 1020 and the outer elongated member 1022, respectively, using welds, adhesives, crimping or clamping forces, and/or other suitable attachment mechanisms.
  • the expandable member 1010 can self-expand from the undeployed state to the deployed state without an actuator.
  • the inner elongated member 1020 can be held in place to hold the distal portion 101 a of the expandable member 1010 distally of the clot.
  • the outer elongated member 1022 will slide distally as the expandable member 1010 expands until the expandable member 1010 reaches its predetermined deployed size or otherwise reaches equilibrium with the clot.
  • the inner elongated member 1020 and/or the outer elongated member 1022 can be actuators that are moved proximally and/or distally to control the radial expansion and/or the radial contraction of the expandable member 1010.
  • Figs. 13 and 14 are detailed views of the proximal and distal portions 1011 b and 1011a, respectively, of an expandable member 1010 and other components of a clot treatment device 402 in accordance with another embodiment of the technology.
  • the clot treatment device 402 has a proximal tube 1410 (Fig. 13) and an expansion element 1420 having one end attached to the proximal tube 1410 and another end attached to the distal portion 1011a (Fig. 14) of the expandable member 1010.
  • the expansion element 1420 for example, can be a coil or spring that is stretched from its normal state when the expandable member 1010 is the low-profile, undeployed state inside the delivery catheter.
  • the expansion element 1420 contracts axially under its own stored spring force causing the expandable member 1010 to contract axially and expand radially outward. In the embodiments where the expandable member 1010 is self-expanding, the expansion element 1420 assists the expansion of the expandable member 1010.
  • the expandable member 1010 may not be self-expanding or may be inherently spring-biased into the low-profile undeployed state, and the expansion element 1420 can have enough stored energy when it is stretched in the low-profile undeployed state to pull the distal portion 101 1a and the proximal portion 1011 b of the expandable member 1010 toward each other and thereby radially expand the expandable member 1010.
  • the radially extending capture portions 406 provide more surface area along the device than a device that is uniformly cylindrical. Moreover, the radially extending capture portions 406 extend transversely to the longitudinal dimension of the device to more effectively transfer the axial force as the device is moved axially along the vessel after deployment.
  • the device will have an external surface area between 1.5x and 6x the surface area of a uniformly cylindrical device of the same general diameter of the cylindrical sections 412. In other preferred embodiments the ratio will be 2x to 4x.
  • the clot treatment device 402 may become elongated as it is being withdrawn through the clot 100. Such elongation causes the clot material to encounter greater surface area of the clot treatment device 402 than would otherwise occur with a device that was only generally cylindrical, i.e., that did not incorporate radially extending portions 406. Accordingly the clot treatment device 402 is particularly adept at capturing the maximum amount of clot material during withdrawal.
  • the clot treatment device 402 is intended for use in large vessels, i.e., vessels with a diameter greater than 8mm.
  • the diameter of the pulmonary arteries typically range from 15 to 30mm whereas the first branches of the pulmonary arteries typically range from 10 to 15mm and the secondary and tertiary branches typically range from 5 to 10mm.
  • the clot treatment device 402 has a large expansion ratio.
  • the expansion ratio from the diameter of the cylindrical sections 412 in the collapsed state to the expanded state will be between 4 and 8. In another preferred embodiment the ratio will be between 5 and 7.
  • the large expansion ratio also enables the formation of a flow channel in the clot 100 that is large, e.g., on the order of 4-8mm.
  • the radially extending portions 406, in their fully expanded position are intended to have a size that matches the diameter of the target blood vessel. However, the diameters may be slightly larger than the vessel diameter so to apply greater radial force against the blood vessel (without causing trauma) in those circumstances when it is desirable to improve clot collection. Similarly, in those circumstances where there is a concern of creating trauma on delicate blood vessels, the radially extending portions 406 may have a diameter that is smaller than the vessel diameter. It is contemplated that different sizes of the device 402 will be available for selection by the user for a particular presentation of the patient.
  • the length of the clot treatment device 402 it is known that a typical pulmonary embolism will have a length within the range between about 2 cm and 10 cm and sometimes between about 1 cm and 20 cm. Accordingly, in a preferred embodiment, the clot treatment device 402 will have a length that exceeds the length of the embolism so that a portion of the clot treatment device is positioned distal of the clot 100 during expansion.
  • the size will be around 1 F-6F. Smaller diameters will pass through the clot 100 more easily.
  • the delivery catheter 606 may have stiffness characteristics to assist in making sure the delivery catheter 606 passes through the clot in a smooth manner. Such stiffness characteristics include self expanding Nitinol wire braids or stent structures that are contained within the structure of the delivery catheter 606.
  • the delivery catheter 606 also has sufficient flexibility so that it may carry the clot treatment device 402 and still pass through a tortuous vessel path as described above starting with insertion of the delivery catheter 606 in the femoral vein FV.
  • the method and device in accordance with the present invention may reduce the Mean Resting Pulmonary Artery Pressure (MRPAP).
  • MRPAP Mean Resting Pulmonary Artery Pressure
  • the reduction in MRPAP may be about 25-50%.
  • the reduction in MRPAP may be about 15% to 40% and in other embodiments between about 30% and 75%.
  • Such a reduction in MRPAP can occur in two steps.
  • a first step is when the clot treatment device 402 is first deployed and blood flow is at least partially restored.
  • a second step may be when the clot treatment device 402 is retracted and at least some of the clot 100 is removed from the vessel.
  • a third step may be after the clot treatment device 402 has been removed and the effect of the body's own processes and/or thrombolytic drugs that may have been used before, during or after the procedure take effect upon clot that has been disrupted by the clot treatment device.
  • Fig. 15 is a side view of an embodiment of a guide catheter 1500 for use with any of the foregoing embodiments of the clot treatment devices 402 (not shown in Fig. 15).
  • the guide catheter 1500 can include a shaft 1502 having a sufficiently large lumen to accommodate the delivery catheter 606 (Figs. 4 and 5A).
  • the guide catheter 1500 can further include an expandable guide member 1510 at the distal end of the shaft 1502 configured to expand radially outward to contact or nearly contact the vessel wall VW.
  • the guide member can be formed from a permeable, radially expanding material, such as a mesh or other macroporous structure (e.g., a braid of wires or filaments).
  • the guide member 1510 may be formed from a tubular braid of elastic or super-elastic filaments such as Nitinol that has been heat set into the desired expanded shape.
  • the permeable, radially expanding guide member 1510 may have advantages over an occlusive member such as a balloon or impermeable funnel.
  • the guide member 1510 allows a substantial amount of blood flow BF to continue flowing through the blood vessel where therapy is being directed.
  • the guide member 1510 positions the shaft 1502 and delivery catheter 606 at or near the center of the vessel.
  • the clot treatment device 402 (not shown in Fig.
  • the guide member 1510 may also be substantially self-centering upon deployment, and the guide member 1510 may further guide the clot material captured by the clot treatment device 402 into the shaft 1502 as the clot treatment device 402 moves into proximity of the distal end of the shaft 1502. This is expected to enhance aspiration of the clot material.
  • the radially expanding guide member 1510 has a funnel shape adjacent the distal end of the shaft 1502 to guide thrombus material into the distal opening of the shaft 1502 where it can be more readily aspirated.
  • the radially expanding guide member 1510 may also be formed by conventional machining, laser cutting, electrical discharge machining (EDM) or other means known in the art to make a fenestrated, mesh or porous structure that can be affixed near the distal end of the shaft 1502.
  • EDM electrical discharge machining
  • the radially expanding guide member 1510 may self-expand, but in other embodiments it may be actuated by an operator using, for example, electrical or electromechanical means.
  • the guide catheter 1500 may be substantially centered within a vessel without blocking a large portion of the flow around the catheter.
  • the radially expanding guide member 1510 may block less than about 50% of the flow about the catheter and in other embodiments less than about 25% of the flow.
  • the guide member 1510 When the guide member 1510 is made with a braid of filaments (e.g. wires), it may be formed from a tubular braid. In some embodiments, the tubular braid may be formed with approximately 12 to approximately 144 filaments, or in other embodiments from about 36 to about 96 filaments. The pores as measured by the largest circle that can be inscribed within an opening of the mesh may be between about 0.5 mm and 5 mm.
  • Figs. 16 and 17 show additional embodiments of guide members 1610 and 1710, respectively, that can be used instead of or in addition to the guide member 1510.
  • one or both ends of the tubular braid of the guide members 1510 and 1610 may be inverted and attached to the catheter body.
  • neither end of the guide member 1710 is inverted. With the distal end inverted, it advantageously may form a funnel adjacent the distal opening of the catheter that may enhance clot capture and aspiration.
  • Fig. 18 shows an embodiment of a guide catheter 1900 having a shaft 1902 and a guide member 1910 in accordance with another embodiment of the technology.
  • the guide member 1910 has a tapered or funnel shape, and includes a non-permeable portion 1912 and a permeable portion 1914.
  • the permeable portion 1914 can comprise a flared radially expanding mesh that has, at least in part, a tapered or funnel shape, and the non-permeable portion 1912 may have a substantially non-porous or otherwise non-permeable material or coating over the mesh.
  • the non-permeable material is a highly elastic material such as polyurethane, silicone, latex rubber and the like so that it can flex with the expansion of the mesh.
  • the non-permeable material covers a proximal portion of the mesh as shown in Fig. 18.
  • the non-permeable portion 1912 may divert some flow away from the distal end of the catheter.
  • the covering may cover a portion of the mesh to a diameter "d".
  • the diameter d of the covering is less than about 75% of the diameter "D" of the mesh funnel.
  • the diameter d may be less than about 50% of diameter D.
  • the concept of a non- permeable material can also be applied to the guide catheter 1500 shown above in Fig. 15.
  • the expandable member 1510 of the guide catheter 1500 can have a non-permeable portion 1512 at the proximal portion of the expandable guide member 1510 similar to the non-permeable portion 1912 shown and described with reference to Fig. 18.
  • Figs. 19-27 show additional embodiments of clot treatment devices 402 in accordance with the present technology.
  • the embodiments of the clot treatment devices 402 shown in Figs. 19-27 can restore blood flow and capture clot material in a manner similar to the embodiments of the clot treatment devices 402 described above with respect to Figs. 4-18.
  • the embodiments of the clot treatment devices 402 related to Figs. 19-27 can also be made from the same materials and be deployed in the same manner as described above with respect to Figs. 4-18. As such, many of the features, materials and benefits of the clot treatment devices 402 shown in Figs. 4-18 are applicable to the clot treatment devices shown in Figs. 19-27.
  • Fig. 19 shows an embodiment of the clot treatment device 402 that includes a plurality of capture elements, such as clot engagement ("CE") members 1952.
  • the CE members 1952 can be (a) arcuate as shown in Fig. 19, (b) bent at one or more angles (e.g., 30°, 45°, 60°, 90°, 135°, etc.), and/or (c) straight (e.g., project outward along a straight line).
  • the clot treatment device 402 can include a combination of arcuate, angled and/or straight CE members.
  • the clot treatment device 402 can include a single CE member 1952.
  • the CE members 1952 can be interwoven into the mesh structure of the device 402 (see Fig. 21).
  • the CE members 1952 can also be bonded, soldered, welded, tied or otherwise secured to the mesh structure or mechanically interlocked with the mesh structure.
  • the CE members 1952 can radially extend and form a heat-set shape configured to penetrate and fasten the clot to the treatment device 402.
  • the CE members 1952 can accordingly define hook-like capture elements in several embodiments of the present technology.
  • the CE members 1952 can be disposed about an exterior surface of the device 402.
  • the CE members 1952 can be arranged in one or more circumferential rows 1954 that are evenly positioned along a longitudinal axis of the device 402.
  • the CE members 1952 can have any suitable arrangement and/or positioning about the device (e.g., arranged in a helical pattern, off-set rows, random, or irregular or otherwise uneven/non-uniform spacing, etc.).
  • the CE members 1952 can curve proximally such that a concave portion 1956 of the CE members 1952 face a proximal region 402b of the device 402.
  • the CE members 1952 can curve distally such that a concave portion of the CE members 1952 face a distal region 402a of the device 402 (not shown).
  • the clot treatment device 402 includes both distally-curving and proximally-curving CE members.
  • the CE members can have a single radius of curvature or have regions with different radii or have a complex or changing radius of curvature.
  • one or more of the CE members 1952 can have a first portion 1958 that has a first radius R and a second portion 1960 (e.g., the distal region of the CE member 1952) that has a second radius r that is smaller than the first radius R.
  • the first radius R may range from about 2 mm to about 15 mm
  • the second radius r may range from about 0.25 mm to about 5 mm.
  • the CE members 1952 can have a range of arc lengths.
  • the CE members 1952 can have an arc length greater than 180 degrees. In certain embodiments, the arc length can be between 180 degrees and 330 degrees.
  • Fig. 22 shows another embodiment of a CE member 2202 having a V-shaped base 2204 that branches into a first arm 2206a and a second arm 2206b.
  • the V- shaped base 2204 and/or any portion of the first and/or second arms 2206a, 2206b can be interwoven into the mesh structure of the clot treatment device 402, as shown in Figs. 24 and 25.
  • the angle a between the first and second arms 2206a, 2206b may be between about 40 degrees and about 100 degrees.
  • Fig. 24 shows a plurality of such CE members 2202 disposed about a clot treatment device 402, in other embodiments the device 402 can only include a single CE member 2202.
  • the first arm 2206a and the second arm 2206b can extend into a first distal portion 2208a and a second distal portion 2208b, respectively, where the first distal portion 2208a and the second distal portion 2208b are generally arcuate. As shown in Fig. 24, in some embodiments the first distal portion 2208a and the second distal portion 2208b can be generally linear.
  • two or more CE members can be connected to form a circumferential structure 2602 that extends around at least a portion of a circumference of a clot treatment device 402.
  • the device 402 can include one or more circumferential structures 2602 spaced along a longitudinal axis of the device. These circumferential structures 2602 can allow for the CE members to flex with the mesh structure as it expands and contracts.
  • the angle ⁇ formed by the circumferential structure 2602 can be between about 40 degrees and about 100 degrees.
  • Fig. 23 shows one embodiment of an CE member 2302 having a double-wire arcuate portion 2306.
  • the clot treatment device 402 can include a plurality of CE member 1952 and a radially extended member 406 at a distal end.
  • the radially extended member 406 could be a disc, balloon, screen or other clot capture member. Examples
  • a device for treating a pulmonary embolism comprising:
  • a plurality of capture elements including at least a first capture element and a second capture element, wherein the flow restoration portion is between the first and second capture elements, and wherein the flow restoration portion and the capture elements are configured to move from a low-profile undeployed state sized to fit within a delivery catheter to a deployed state in which the flow restoration portion has a first cross-sectional dimension greater than that of the low-profile state such that the flow restoration portion forms a flow channel through the device and the capture elements project outwardly from the flow restoration portion.
  • the flow restoration portions comprise expandable cylindrical sections and the capture elements comprise radially expandable disk-like capture portions of the braided material.
  • the flow restoration portion comprises a radially expandable cylindrical braided material and the capture elements comprise protuberances projecting from the flow restoration portion.
  • the device of example 11 wherein the clot engagement members are formed from wires of the expandable braided tube that defines the flow restoration portion. 14. The device of example 11 wherein the clot engagement members are formed from separate wires that project through interstices of the expandable braided tube that defines the flow restoration portion.
  • a pulmonary embolism treatment device comprising:
  • an expandable member having a proximal portion attached to the distal end of the outer elongated member and a distal portion attached to the distal end of the inner elongated member, the expandable member having a flow restoration portion and a plurality of capture elements arranged along the flow restoration portion, wherein the flow restoration portion and the capture elements are configured to move from a low-profile undeployed state sized to fit within a delivery catheter to a deployed state in which the flow restoration portion has a first cross-sectional dimension greater than that of the low-profile state that defines a flow channel through the device and the capture elements project outwardly from the flow restoration portion.
  • the pulmonary embolism treatment device of example 15 wherein the device has a plurality of flow restoration portions and the capture elements are separated by individual flow restoration portions, and wherein (a) the capture elements comprise capture portions formed from a continuous shape-memory braided material heat-set to the deployed state and (b) the capture portions project from the flow restoration portions to a second cross-sectional dimension in the deployed state.
  • the flow restoration portions comprise cylindrical portions and the first cross-sectional dimension comprises a first diameter in the deployed state, and the capture portions comprise disklike projections having a second diameter greater than the first diameter in the deployed state.
  • pulmonary embolism treatment device of any of examples 1 1-25, further comprising a guide catheter having a shaft with a distal end and an expandable guide member at the distal end of the shaft, wherein the shaft has a lumen configured to receive the expandable member in the undeployed state.
  • a pulmonary embolism treatment device comprising:
  • an expansion portion having a proximal end attached to the distal end of the elongated member, and the expansion portion having a distal end; and an expandable member having a proximal portion attached to the distal end of the elongated member and a distal portion attached to the distal end of the expansion portion, the expandable member having at least one of flow restoration portion and a plurality of capture elements arranged such that the capture elements are separated by individual flow restoration portion, wherein the flow restoration portion and the capture elements are configured to move from a low-profile undeployed state sized to fit within a delivery catheter to a deployed state in which (a) the flow restoration portion has a first cross-sectional dimension greater than that of the low- profile state that defines a flow channel through the device and (b) the capture elements project outwardly from the flow restoration portion, and wherein the expansion portion is stretched from a normal state when the expandable member is in the undeployed state such that the expansion portion is configured to axially contract the expandable member from the undeployed state to the
  • a method of treating a pulmonary embolism comprising:
  • an embolectomy device through the heart to a pulmonary embolism that at least partially restricts blood flow through a pulmonary vessel, wherein the embolectomy device has a plurality of capture elements separated by an expandable cylindrical section;
  • the embolectomy device within the pulmonary embolism by expanding the cylindrical section into the pulmonary embolism so that the cylindrical section forms an expanded flow channel through the pulmonary embolism and thereby restores blood flow through the pulmonary embolism and by expanding the capture elements to a greater extent than the cylindrical section so that at least a portion of the pulmonary embolism is captured the capture elements;
  • withdrawing the embolectomy device includes urging the portion of the pulmonary embolism into a funnel catheter.
  • deploying the embolectomy device comprises expanding the device such that a surface area of the embolectomy device expands within a range of at least 200% to 400% of the surface area of a uniformly cylindrical device.
  • deploying the embolectomy device comprises expanding the generally cylindrical section by 400% to 800% of its diameter in the undeployed state.
  • deploying the embolectomy device comprises expanding a braided material into a preset shape having a plurality of radially extending disk-like capture portions that define the capture elements.

Abstract

A method and apparatus for treating a clot in the blood vessel of a patient, and particularly the treatment of a pulmonary embolism is disclosed. The treatment includes restoring flow through the clot followed by clot removal, either partially or substantially completely. The clot treatment device is expandable into the blood vessel and may contain radial extensions that assist in restoring flow as well as in removing clot material.

Description

METHODS AND APPARATUS FOR TREATING EMBOLISM
RELATED APPLICATIONS
[0001] This application claims priority to U.S. Patent Application No. 13/843,742, filed on March 15, 2013, and entitled Methods and Apparatus for Treating Embolism, which examples priority to U.S. Provisional Application Serial No. 61/750,277 filed January 8, 2013 entitled Devices and Methods for Treatment of Vascular Occlusion and U.S. Provisional Application Serial No. 61/728,775 filed November 20, 2012 entitled Devices and Methods for Treatment of Vascular Occlusion, all of which are hereby incorporated herein by reference in their entireties.
FIELD OF THE INVENTION
[0002] This invention relates to the apparatus and methods of endovascular treatment of blood clots obstructing passageways in the circulatory system and particularly the endovascular treatment of pulmonary embolism.
BACKGROUND OF THE INVENTION
[0003] Thromboembolism is the formation in a blood vessel of a clot (thrombus) that breaks loose (embolizes) and is carried by the blood stream to another location in the circulatory system resulting in a clot or obstruction at that new location. For example, a clot may embolize and plug a vessel in the lungs (pulmonary embolism), the brain (stroke), the gastrointestinal tract, the kidneys, or the legs. Thromboembolism is a significant cause of morbidity (disease) and mortality (death), especially in adults. A thromboembolism can be sudden and massive or it may be small and multiple. A thromboembolism can be any size and a thromboembolic event can happen at any time.
[0004] When a thrombus forms in the venous circulation of the body it often embolizes to the lungs. Such a thrombus typically embolizes from the veins of the legs, pelvis, or inferior vena cava and travels to the right heart cavities and then into the pulmonary arteries thus resulting in a pulmonary embolism. [0005] A pulmonary embolism results in right heart failure and decreased blood flow through the lungs with subsequent decreased oxygenation of the lungs, heart and the rest of the body. More specifically, when such a thrombus enters the pulmonary arteries, obstruction and spasm of the different arteries of the lung occurs which further decreases blood flow and gaseous exchange through the lung tissue resulting in pulmonary edema. All of these factors decrease the oxygen in the blood in the left heart. As a result, the oxygenated blood supplied by the coronary arteries to the musculature of both the left and right heart is insufficient for proper contractions of the muscle which further decreases the entire oxygenated blood flow to the rest of the body. This often leads to heart dysfunction and specifically right ventricle dysfunction.
[0006] This condition is relatively common and has many causes. Some of the more common causes are prolonged inactivity such as bed rest, extended sitting (e.g., lengthy aircraft travel), dehydration, extensive surgery or protracted disease. Almost all of these causes are characterized by the blood of the inferior peripheral major circulatory system coagulating to varying degrees and resulting in permanent drainage problems.
[0007] There exist a number of approaches to treating thromboembolism and particularly pulmonary embolism. Some of those approaches include the use of anticoagulants, thrombolytics and endovascular attempts at removal of the emboli from the pulmonary artery. The endovascular attempts often rely on catheterization of the affected vessels and application of chemical or mechanical agents or both to disintegrate the clot. Invasive surgical intervention in which the emboli is removed by accessing the chest cavity, opening the embolized pulmonary artery and/or its branches and removing the clot is also possible.
[0008] The prior approaches to treatment, however, are lacking. For example, the use of agents such as anticoagulants and/or thrombolytics to reduce or remove a pulmonary embolism typically takes a prolonged period of time, e.g., hours and even days, before the treatment is effective. In some instances, such agents can cause hemorrhage in a patient. Moreover, the known mechanical devices for removing an embolism are typically highly complex, prone to cause undue trauma to the vessel, and can be difficult and expensive to manufacture.
[0009] Lastly, the known treatment methods do not emphasize sufficiently the goal of urgently restoring blood flow through the thrombus once the thrombus has been identified. In other words, the known methods focus primarily and firstly on overall clot reduction and removal instead of first focusing on relief of the acute blockage condition followed then by the goal of clot reduction and removal. Hence, known methods are not providing optimal patient care, particularly as such care relates to treatment of a pulmonary embolism.
SUMMARY OF THE PRESENT TECHNOLOGY
[0010] In view of the foregoing, several embodiments of the present technology to provide a method and system that initially restores an acceptable level of oxygenated blood to the patient's circulatory system followed by safe and effective removal of the thrombus.
[0011] Several embodiments of the present technology treat pulmonary embolism in a minimally invasive manner.
[0012] Several embodiments of the present technology can also provide a system that does not cause undue trauma to the vessel.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] These and other objects, aspects, features and advantages of which the present technology is capable will be apparent from the following description of embodiments of the present technology, reference being made to the accompanying drawings, in which
[0014] Fig. 1 A is a schematic view of a patient with a pulmonary embolism;
[0015] Fig. 1 B is an enlarged view of the lung area of the patient depicted in Fig. 1 A; [0016] Fig. 1C is an enlarged view of the introducer device depicted being used in the femoral vein of the patient in Fig. 1 A;
[0017] Fig. 2 is a cross-sectional view of a patient's heart;
[0018] Fig. 3 is a perspective view of a patients main pulmonary artery and right and left pulmonary arteries with a clot located in the left pulmonary artery;
[0019] Fig. 4 is a cross-sectional view of an embodiment of a clot treatment device in accordance with the present technology in a compressed, undeployed state;
[0020] Fig. 5A is a side cross-sectional view of a clot treatment device in a compressed, undeployed state within a delivery catheter in accordance with the present technology;
[0021] Fig. 5B is a top view of the a clot treatment device in a deployed state in accordance with the present technology;
[0022] Figs. 6A-6F are a series of cross-sectional views of embodiments of the method and device of the present technology;
[0023] Figs. 7A-7B are a series of cross-sectional views of embodiments of the method and device of the present technology;
[0024] Fig. 8 is a cross-sectional view of another embodiment of the method and device of the present technology; and,
[0025] Figs. 9A-9G show cross-sectional views of embodiments of a clot treatment device in accordance with the present technology.
[0026] Fig. 10 is a cross-sectional view of a clot treatment device in accordance with another embodiment of the present technology.
[0027] Figs. 11 and 12 are detailed cross-sectional views of a distal portion and a proximal portion, respectively, of an expandable member of a clot treatment device in accordance with an embodiment of the present technology. [0028] Figs. 13 and 14 are detailed cross-sectional views of a proximal portion and a distal portion, respectively, of an expandable member of a clot treatment device in accordance with another embodiment of the technology.
[0029] Figs. 15-18 are side views of guide catheters for use with clot treatment devices and methods in accordance with embodiments of the present technology.
[0030] Fig, 19 is a side view of a clot treatment device including arcuate clot engagement members configured in accordance with an embodiment of the present technology.
[0031] Figs. 20-23 show embodiments of arcuate clot engagement members configured in accordance with the present technology.
[0032] Figs. 24-25 are side views of clot treatment devices configured in accordance with embodiments of the present technology.
[0033] Fig. 26 is a circumferential structure including arcuate clot engagement members in accordance with embodiments of the present technology.
[0034] Fig. 27 is a side view of a clot treatment device having a distal radially extending member configured in accordance with another embodiment of the present technology.
DESCRIPTION OF EMBODIMENTS
[0035] Specific embodiments of the present technology will now be described with reference to the accompanying drawings. This present technology may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the present technology to those skilled in the art. The terminology used in the detailed description of the embodiments illustrated in the accompanying drawings is not intended to be limiting of the present technology. In the drawings, like numbers refer to like elements. [0036] Referring to Figures 1A-1C, these drawings show the typical locations in a human patient where clots 100, such as pulmonary embolisms, thromboses, or other obstructions, occur in the pulmonary arteries and further discloses the pathway through which access to such clots 100 is achieved. In particular, an introducer device (e.g., a hemostatic valve) 102 which supports relatively large diameter devices is inserted into the patient into the femoral vein FV in the pelvic area of the patient. The tools and devices needed to treat the pulmonary embolism are then inserted through the introducer 102 into the femoral vein FV through the inferior vena cava IVC to the patient's heart.
[0037] It will be understood, however, that other access locations into the venous circulatory system of a patient are possible and which are consistent with the present technology. For example, the user can gain access through the jugular vein, the subclavian vein, the brachial vein or any other vein that connects or eventually leads to the superior vena cava. Use of other vessels that are closer to right atrium RA of the patient's heart may be attractive as this will reduce the length of the instruments needed to reach the pulmonary embolism.
[0038] Referring to Figs. 2 and 3, the tools/devices are then guided through the right atrium RA through the tricuspid valve TV, into the right ventricle RV, through the pulmonary valve PV into the main pulmonary artery (MPA). Depending on the location of the embolism 100, the tools/devices are then guided to one or more of the branches of the right pulmonary artery RPA or the left pulmonary artery LPA, including deeper branches thereof, to the location of the pulmonary embolism 100.
[0039] Referring to Figure 4, an embodiment of a clot treatment device 402 for restoring blood flow through the clot 100 and for removing at least a portion of the clot is depicted in its undeployed, or compressed state. The device 402 is constrained by a delivery catheter 606. In many embodiments, the device 402 comprises a braided material having ends that are captured distally by a tip 405 and proximally by an attachment member 403 that connects to a wire 401 configured to push and/or pull the clot treatment device 402. [0040] In alternative embodiments, the clot treatment device 402 may be an "over the wire" device, in which case, the wire 401 is a tube or coil having a lumen, and the attachment member 403 and the tip 405 have a hollow central lumen for receiving a guide wire.
[0041] In yet a further embodiment, the distal end of the clot treatment device shall have a flexible, atraumatic extension from the device. In an alternative embodiment, the tip 405 is tapered to better penetrate the clot material in the vessel.
[0042] In preferred embodiments the clot treatment device 402 of the present technology has a generally cylindrical shape that, during use, creates a flow lumen through the clot material that restores significant blood flow across a clot. The treatment device 402 is not, however, limited to a generally cylindrical shape. For example, the shape can be generally conical, generally concave or generally convex along its axis such that the clot treatment device 402 creates a lumen for restoring the blood flow.
[0043] Fig. 5A shows one embodiment of the treatment device 402 in a low-profile, undeployed state in which the clot treatment device is configured to fit within a delivery catheter, and Fig. 5B shows the clot treatment device 402 of Fig. 5A in a deployed state configured to restore blood flow and capture clot material for removal. Referring to Fig. 5A, the clot treatment device 402 is compressed to fit within the diameter DL of a lumen 607 of the delivery catheter 606 in the undeployed state. In the deployed state shown in Fig. 5B, the clot treatment device 402 has a plurality of capture elements, such as a series of radially extending capture portions 406 which are separated from each other by flow restoration portions 412. The flow restoration portions 412 are configured to expand outwardly from the low-profile undeployed state within the delivery catheter lumen 607 to a first cross-sectional dimension D-i (e.g., diameter) in the deployed state. For example, the flow restoration portions 412 can be generally cylindrical braided sections that expand radially outward from the undeployed stated to the deployed state. In many applications, the first cross-sectional dimension
Figure imgf000008_0001
is greater than the diameter DL of the delivery catheter lumen 607. The capture portions 406 are configured to expand outwardly from the low-profile undeployed state to a second cross-sectional dimension D2 greater than the first cross-sectional dimension D-i in the deployed state. As explained in more detail below, the capture portions 406 can project into the clot such that they extend transverse to a longitudinal axis L-L of the clot treatment device 402, while the flow restoration portions 412 expand radially outward into the clot to open a passage through which blood can quickly resume flow through the vessel. The clot treatment device 402 can be porous so blood flows therethrough. In this regard, many embodiments of the clot treatment device 402 are made from a mesh or braided material. The material can be a super-elastic material such as Nitinol or an alternative material such as cobalt chrome alloy. The device can be made from a wire lattice, wire braid or stent. Specific preferred embodiments are discussed throughout this specification.
[0044] Referring again to Fig. 5B, the clot treatment device 402 can comprise a single mesh structure that is generally cylindrical in the low-profile undeployed state (shown in Fig. 5A). The series of radially extending capture portions 406 accordingly extend from the same mesh as the corresponding series of flow restoration portions 412. The flow restoration portions 412 can be generally cylindrical sections in the deployed state, or in other embodiments the flow restoration portions 412 may taper in the distal direction individually and/or collectively to form a conical lumen (not shown). Each of the capture portions 406 can be a radial or otherwise transversely projecting disk that projects outward relative to the flow restoration portions 412.
[0045] The clot treatment device 402 can self-expand from the undeployed state to the deployed state. For example, the clot treatment device 402 can be a shape-memory material, such as Nitinol, and may be formed as a braid or a stent that is set to have the expanded configuration of the deployed state shown in Fig. 5B unless it is otherwise deformed or constrained, such as being elongated along the longitudinal axis L-L to fit within the delivery catheter 606 as shown in Fig. 5A. In other embodiments, the clot treatment device 402 can be actuated by a push/pull wire, tube or coil to move from the low-profile undeployed state to the expanded deployed state as explained in more detail below with reference to Figs. 10-12.
[0046] Figs. 1-6F show embodiments of methods for restoring blood flow and retrieving/removing clot material with the clot treatment device 402 in a body lumen L. [0047] Referring to Figs. 1A, 1 B and 6A, a guide wire 602 is inserted into the patient via an introducer 102 and maneuvered through the femoral vein FV into the inferior vena cava IVC to the heart. As stated above, access can also be achieved through one of the veins leading to the superior vena cava SVC. The guide wire 602 is then urged through the right atrium RA, through the tricuspid valve TV, through the right ventricle RV, through the pulmonary valve PV to the main pulmonary artery MPA and then to a location of the clot 100 in one of the branches or lumens L of either the right or left pulmonary artery RPA, LPA. In several embodiments, the guide wire 602 is extended through the clot 100 in the body lumen L as shown in Fig. 6A.
[0048] Referring to Fig. 6B, a guide catheter 604 is placed over the guide wire 602 and moved to a location where a distal end of the guide catheter 604 is positioned proximal to the clot 100. At this point, the guide wire can optionally be withdrawn. However, in the embodiment shown in Fig. 6C, the guide wire 602 remains positioned through the clot 100 and a delivery catheter 606 is then moved through the guide catheter 604 over the guide wire 602 and pushed through the clot 100.
[0049] Referring to Figure 6D, the guide wire 602 is then withdrawn and the clot treatment device 402 in its undeployed (i.e., compressed) state is then moved through the delivery catheter 606 until it is positioned at the distal end of the delivery catheter 606. Alternatively, if an over-the-wire device configuration (as shown in Figure 10) is used, the guide wire 602 may be left in place while the treatment device 402 is deployed and retracted. Referring to Fig. 6E, the delivery catheter 606 is then retracted in a proximal direction while maintaining forward pressure on the clot retrieval device 402 via the pusher wire 401 so that the clot treatment device 402 is exposed and released from the delivery catheter 606. The clot treatment device 402 radially expands into the clot 100 and, in some embodiments, at least a portion of the clot treatment device 402 expands distal of the clot 100. For example, at least one of the radially extending capture portions 406 of the clot treatment device 402 is located distal to the clot 100 upon expansion of the clot treatment device 402. Additionally, the flow restoration portions 412 between the capture portions 406 also expand outwardly against a portion of the clot 100 to form a flow passage 430 though the clot treatment device 402. [0050] The clot treatment device 402 accordingly restores blood flow through the clot 100 immediately or at least quickly after expanding to the deployed state as shown by arrows 407 in Fig. 6E. More specifically, the blood freely moves through the mesh of the clot treatment device 402, travels through the device lumen and exits the clot treatment device 402 distal to the clot 100. As a result, the acute condition of blockage is mediated thus immediately improving the circulation of oxygenated blood in the patient.
[0051] The restoration of blood flow is anticipated to equate with restoration of a substantial portion of the normal blood flow rate for the patient. In less severe, e.g., "sub-massive," pulmonary embolism patients, the clot treatment device 402 may increase blood flow rate by at least about 50 ml/min, at least about 150 ml/min or between about 100 to 250 ml/min. In severe, e.g., "massive," pulmonary embolism patients, a larger amount of the pulmonary artery flow is compromised. Hence, in some embodiments, at least about 500 ml/min of blood flow rate may be restored. Moreover, at least a portion of the flow restoration is expected to occur prior to the removal of the clot 100, or any portion thereof.
[0052] The restoration of blood flow by the clot treatment device 402 can be achieved in a low pressure environment. For example, the pressure in the target vessel can be less than 60 mmHg and the blood can be venous blood, substantially non- oxygenated blood or low oxygenated blood.
[0053] In addition to restoring blood flow, the expansion of the clot treatment device 402 also deforms the clot material by pushing, penetrating and/or otherwise cutting into the clot material. This enhances the subsequent removal of the clot 100 since portions of the clot 100 may be captured and retained (1) between the radially extending portions 406; (2) through the pores of the mesh forming the radially extending portions 406; (3) along the longitudinal cylindrical sections 412 between the radially extending portions 406 of the removal device 402; and (4) within the clot treatment device 402 itself.
[0054] As can be understood from the above description and figures, the deployment of the clot treatment device 402 results in an outwardly expanding generally cylindrical force being urged against an inner surface of the clot 100 because the flow restoration portions 412 expand to the first cross-sectional dimension greater than the diameter DL of the delivery catheter lumen 607. This force pushes the clot material outwardly and creates a lumen through which blood flow is restored. As can also be appreciated, the presence of the radially extending capture portions 406 on the clot treatment device 402 causes the outwardly expanding generally cylindrical force to vary in magnitude along the axis of the clot treatment device 402. The force on the clot material may be greater at the locations of the radially extending capture portions 406.
[0055] In braided embodiments of the clot treatment device 402, deployment/expansion of the device leads the filaments of the braid to change their angular orientation with respect to the axis of the device. This angular change may improve or enhance adherence of clot material to the clot treatment device 402.
[0056] After the clot treatment device 402 has been expanded and blood flow restored, the user then retracts the clot treatment device 402 in a proximal direction as shown in Fig. 6F. Since the capture portions 406 extend transverse to the longitudinal dimension of the vessel, the capture portions 406 form transverse surfaces relative to the force exerted against the clot 100 as the clot treatment device 402 is pulled in the proximal direction. The capture portions 406 accordingly enhance the ability of the clot treatment device 402 to securely dislodge and retain the clot 100 as the clot treatment device 402 is moved axially along the vessel to retrieve the clot 100 from the patient. In one embodiment, the clot treatment device 402 and the delivery catheter 606 are pulled back simultaneously into the guide catheter 604. This is followed by the entire apparatus (e.g., clot treatment device 402, delivery catheter 606 and guide catheter 604) being withdrawn through the heart and the venous circulation and out from the body.
[0057] As further shown in Fig. 6F, the clot treatment device 402 may elongate as it is being withdrawn into the guide catheter 604 due to the resistance it encounters from the presence of clot material of the clot 100. The presence of the radially extending portions 406 may allow elongation that enhances the capability of the device 402 to capture the maximum amount of clot material. This is further discussed below with respect to the surface area and expansion ratio of preferred embodiments of the clot treatment device 402.
[0058] It will be appreciated that variations in the above-described method are contemplated. For example, in certain circumstances a guide catheter 604 may not be necessary or desirable and the user may choose to use only the delivery catheter 606 for placing and manipulation of the clot treatment device 402. As a further example, the clot may be of such a nature that the user may desire repeat the above-described process, or at least portions of it, in order to more fully remove the clot 100 or clot material.
[0059] Referring next to Figs. 7A-7B, it may be advantageous to include the use of a collection or funnel catheter 612 to assist in the removal of the clot 100. Such a funnel catheter 612 has an expandable portion 614 at its distal end and may be situated between the guide catheter 604 and the delivery catheter 608 or may be part of the guide catheter 604. In the presence of the collection catheter 612, the clot treatment device 402 is pulled proximally into the collection catheter 612 such that the clot or portions of it are captured within the collection catheter 612. In an alternative embodiment, the collection catheter 612 can be pushed distally over the clot treatment device 402 such that the collection catheter 612 captures the clot or portions thereof. If the collection catheter 612 is separate from the guide catheter 606, the collection catheter with the clot treatment device 402 is then pulled into the guide catheter for ultimate removal of all devices (and the clot) from the patient.
[0060] In certain circumstances, it may be advisable to remove the clot 100 without capturing it in the guide catheter 606 or the collection catheter 612 (if used) and remove the clot 100 by withdrawing the entire system, e.g., guide catheter 605, delivery catheter 604, clot treatment device 402 and collection catheter 612 (if used) simultaneously.
[0061] In several embodiments, the expandable portion 614 of the collection catheter 612 is a conical funnel or other tapered member constructed from a mesh, braid or stent structure. Such structure assists in retrieving and containing the clot material in the withdrawal process. In yet further preferred embodiments, the collection catheter 612 contains structural features to assist in the expansion of the expandable portion 614 and to hold the expandable portion 614 open towards the wall of the blood vessel. Such features (not shown) include interwoven support struts, self expanding material (e.g., Nitinol), longitudinal wire supports, stent supports, polymeric webbing, etc.
[0062] In another embodiment of the present invention, a vacuum apparatus may be used to aid in the removal of the clot material. Referring to Fig. 8, a syringe 802 is shown connected to a vacuum manifold 806 that is in fluid communication with the proximal end of the guide catheter 604. At the time the clot treatment device 402 (and clot material) is being withdrawn into the guide catheter 604 (or the collection catheter 612), vacuum is applied by pulling on the syringe. Alternative sources of vacuum 804 are also acceptable, e.g., a vacuum pump. A system is also contemplated whereby vacuum is actuated automatically when the clot treatment device 402 (and the clot material) is being withdrawn. A representation of the effect of the use of vacuum can be seen with reference to Fig. 7B which shows how vacuum causes flow 701 into the catheter 612.
[0063] Referring now to Figs. 9A-9H, alternative preferred embodiments of the clot treatment device 402 are disclosed.
[0064] Referring to Fig. 9A, the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a rounded triangular cross-section.
[0065] Referring to Fig. 9B, the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a rounded triangular cross-section wherein the diameter of the disk increases along the length of the device 402 thus forming a conical exterior extent.
[0066] Referring to Fig. 9C, the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a rectangular cross-section. [0067] Referring to Fig. 9D, the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a linear (non-rounded) triangular cross-section.
[0068] Referring to Fig. 9E, some of the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a cylindrical disk shape with a rounded cross-section and others have a rectangular cross section.
[0069] Referring to Fig. 9F, the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 alternate between cylindrical disk shape with a T-shaped cross-section and a flare-shaped cross-section.
[0070] Referring to Fig. 9G, the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by a partial cylindrical disk shapes.
[0071] Referring to Fig. 9H, the radially extending portions 406 between the generally cylindrical sections 412 of the clot treatment device 402 are defined by tabs and bumps or protuberances arising from the cylindrical surface of the device 402.
[0072] Fig. 10 is a cross-sectional view of another embodiment of the clot treatment device 402 in accordance with the technology having an expandable member 1010, an elongated inner member 1020, and an elongated outer member 1022. The expandable member 1010 is configured to have an undeployed state in which the expandable member 1010 is elongated axially to have a low profile that fits within a delivery catheter as shown in Fig. 4. The expandable member 1010 is further configurable into a deployed state in which the expandable member 1010 forms a flow channel 1012 for restoring blood flow through the region obstructed by the clot. The expandable member 1010, for example, can be a mesh, braid, stent-type device, or other suitable member through which blood flows in the deployed state. In one embodiment, the expandable member 1010 is a continuous braid formed from a shape-memory material that has been heat set such that, in the deployed state, the expandable member 1010 has a plurality of flow restoration portions 412 that expand to the first cross-sectional dimension D- to form the flow channel 1012 and a plurality of capture portions 406 that expand to the second cross-section dimension D2 greater than the first cross-sectional dimension D-i . The flow restoration members 412 accordingly exert an outward force (arrows O) against clot material (not shown) to create the flow channel 1012, and the capture portions 406 accordingly exert a longitudinal force L (arrows L) against the clot material as the clot treatment device 402 is moved proximally.
[0073] The elongated inner member 1020 can be a tube or coil having inner lumen configured to receive the guidewire 602 for over-the-wire or rapid exchange delivery of the expandable member 1010 to the clot. The outer elongated member 1022 can be a tube or coil having a lumen configured to receive the inner elongated member 1020 such that the inner elongated member 1020 and/or the outer elongated member 1022 can move relative to each other along the longitudinal dimension of the clot treatment device 402.
[0074] Figs. 1 and 12 are detailed views of a distal portion 10 1a (Fig. ) and a proximal portion 101 1 b (Fig. 12) of the expandable member 1010 of the clot treatment device 402 shown in Fig. 10. Referring to Fig. 11 , the distal portion 101 1 a is attached to a distal end of the inner elongated member 1020 by the tip 405. The tip 405 can be blunt as described above with reference to the embodiment of the clot treatment device 402 shown in Fig. 4, or the tip 405 can have a tapered distal portion 1040 configured to pass through the clot as shown in Fig. 1 1. Additionally, the tip 405 can have a proximal opening 1042 configured to receive the distal end of the inner elongated member 1020 and the distal end of the expandable member 1010. Referring to Fig. 12, the proximal portion 101 1 b is attached to the distal end of the outer elongated member 1022 by a proximal hub 1030. For example, the distal and proximal portions 101 1a and 1011 b can be attached to the inner elongated member 1020 and the outer elongated member 1022, respectively, using welds, adhesives, crimping or clamping forces, and/or other suitable attachment mechanisms.
[0075] In the operation of the clot treatment device 402 shown in Figs. 10-12, the expandable member 1010 can self-expand from the undeployed state to the deployed state without an actuator. For example, as a delivery catheter is drawn proximally to release the expandable member 1010, the inner elongated member 1020 can be held in place to hold the distal portion 101 a of the expandable member 1010 distally of the clot. As the distal end of the delivery catheter moves proximally, the outer elongated member 1022 will slide distally as the expandable member 1010 expands until the expandable member 1010 reaches its predetermined deployed size or otherwise reaches equilibrium with the clot. In other embodiments, the inner elongated member 1020 and/or the outer elongated member 1022 can be actuators that are moved proximally and/or distally to control the radial expansion and/or the radial contraction of the expandable member 1010.
[0076] Figs. 13 and 14 are detailed views of the proximal and distal portions 1011 b and 1011a, respectively, of an expandable member 1010 and other components of a clot treatment device 402 in accordance with another embodiment of the technology. In this embodiment, the clot treatment device 402 has a proximal tube 1410 (Fig. 13) and an expansion element 1420 having one end attached to the proximal tube 1410 and another end attached to the distal portion 1011a (Fig. 14) of the expandable member 1010. The expansion element 1420, for example, can be a coil or spring that is stretched from its normal state when the expandable member 1010 is the low-profile, undeployed state inside the delivery catheter. As the distal portion 1011a and then the proximal portion 1011 b of the expandable member 1010 are released from the delivery catheter, the expansion element 1420 contracts axially under its own stored spring force causing the expandable member 1010 to contract axially and expand radially outward. In the embodiments where the expandable member 1010 is self-expanding, the expansion element 1420 assists the expansion of the expandable member 1010. In other embodiments, the expandable member 1010 may not be self-expanding or may be inherently spring-biased into the low-profile undeployed state, and the expansion element 1420 can have enough stored energy when it is stretched in the low-profile undeployed state to pull the distal portion 101 1a and the proximal portion 1011 b of the expandable member 1010 toward each other and thereby radially expand the expandable member 1010. [0077] In the foregoing embodiments, the radially extending capture portions 406 provide more surface area along the device than a device that is uniformly cylindrical. Moreover, the radially extending capture portions 406 extend transversely to the longitudinal dimension of the device to more effectively transfer the axial force as the device is moved axially along the vessel after deployment. Such increased surface area facilitates the treatment and/or retrieval of a much larger portion of the clot 100 than is generally feasible with a uniformly cylindrical device. For example, in a preferred embodiment of the clot treatment device 402, the device will have an external surface area between 1.5x and 6x the surface area of a uniformly cylindrical device of the same general diameter of the cylindrical sections 412. In other preferred embodiments the ratio will be 2x to 4x.
[0078] This is advantageous particularly during retraction of the clot treatment device 402 through the clot 100. As shown in Fig. 6F, the clot treatment device 402 may become elongated as it is being withdrawn through the clot 100. Such elongation causes the clot material to encounter greater surface area of the clot treatment device 402 than would otherwise occur with a device that was only generally cylindrical, i.e., that did not incorporate radially extending portions 406. Accordingly the clot treatment device 402 is particularly adept at capturing the maximum amount of clot material during withdrawal.
[0079] The clot treatment device 402 is intended for use in large vessels, i.e., vessels with a diameter greater than 8mm. For example, the diameter of the pulmonary arteries typically range from 15 to 30mm whereas the first branches of the pulmonary arteries typically range from 10 to 15mm and the secondary and tertiary branches typically range from 5 to 10mm. At the same time, however, it is important to minimize the size of catheter providing access to the clot 100. Accordingly, the clot treatment device 402 has a large expansion ratio. In a preferred embodiment the expansion ratio from the diameter of the cylindrical sections 412 in the collapsed state to the expanded state will be between 4 and 8. In another preferred embodiment the ratio will be between 5 and 7. The large expansion ratio also enables the formation of a flow channel in the clot 100 that is large, e.g., on the order of 4-8mm. [0080] The radially extending portions 406, in their fully expanded position are intended to have a size that matches the diameter of the target blood vessel. However, the diameters may be slightly larger than the vessel diameter so to apply greater radial force against the blood vessel (without causing trauma) in those circumstances when it is desirable to improve clot collection. Similarly, in those circumstances where there is a concern of creating trauma on delicate blood vessels, the radially extending portions 406 may have a diameter that is smaller than the vessel diameter. It is contemplated that different sizes of the device 402 will be available for selection by the user for a particular presentation of the patient.
[0081] As for the length of the clot treatment device 402, it is known that a typical pulmonary embolism will have a length within the range between about 2 cm and 10 cm and sometimes between about 1 cm and 20 cm. Accordingly, in a preferred embodiment, the clot treatment device 402 will have a length that exceeds the length of the embolism so that a portion of the clot treatment device is positioned distal of the clot 100 during expansion.
[0082] With regard to the delivery catheter 606, in a preferred embodiment for use with a pulmonary embolism, the size will be around 1 F-6F. Smaller diameters will pass through the clot 100 more easily. In addition, the delivery catheter 606 may have stiffness characteristics to assist in making sure the delivery catheter 606 passes through the clot in a smooth manner. Such stiffness characteristics include self expanding Nitinol wire braids or stent structures that are contained within the structure of the delivery catheter 606. The delivery catheter 606 also has sufficient flexibility so that it may carry the clot treatment device 402 and still pass through a tortuous vessel path as described above starting with insertion of the delivery catheter 606 in the femoral vein FV.
[0083] In some preferred embodiments, the method and device in accordance with the present invention may reduce the Mean Resting Pulmonary Artery Pressure (MRPAP). Upon at least partial relief from the clot 100, MRPAP may be reduced by about 20-50mmHg to a normal range of 8-20 mmHg. In some embodiments, the reduction in MRPAP may be about 25-50%. In some embodiments, the reduction in MRPAP may be about 15% to 40% and in other embodiments between about 30% and 75%.
[0084] Such a reduction in MRPAP can occur in two steps. A first step is when the clot treatment device 402 is first deployed and blood flow is at least partially restored. A second step may be when the clot treatment device 402 is retracted and at least some of the clot 100 is removed from the vessel. A third step may be after the clot treatment device 402 has been removed and the effect of the body's own processes and/or thrombolytic drugs that may have been used before, during or after the procedure take effect upon clot that has been disrupted by the clot treatment device.
[0085] Fig. 15 is a side view of an embodiment of a guide catheter 1500 for use with any of the foregoing embodiments of the clot treatment devices 402 (not shown in Fig. 15). The guide catheter 1500 can include a shaft 1502 having a sufficiently large lumen to accommodate the delivery catheter 606 (Figs. 4 and 5A). The guide catheter 1500 can further include an expandable guide member 1510 at the distal end of the shaft 1502 configured to expand radially outward to contact or nearly contact the vessel wall VW. The guide member can be formed from a permeable, radially expanding material, such as a mesh or other macroporous structure (e.g., a braid of wires or filaments). The guide member 1510, for example, may be formed from a tubular braid of elastic or super-elastic filaments such as Nitinol that has been heat set into the desired expanded shape. The permeable, radially expanding guide member 1510 may have advantages over an occlusive member such as a balloon or impermeable funnel. For example, the guide member 1510 allows a substantial amount of blood flow BF to continue flowing through the blood vessel where therapy is being directed. In addition, the guide member 1510 positions the shaft 1502 and delivery catheter 606 at or near the center of the vessel. The clot treatment device 402 (not shown in Fig. 15) may also be substantially self-centering upon deployment, and the guide member 1510 may further guide the clot material captured by the clot treatment device 402 into the shaft 1502 as the clot treatment device 402 moves into proximity of the distal end of the shaft 1502. This is expected to enhance aspiration of the clot material. For example, in the embodiment shown in Fig. 15, the radially expanding guide member 1510 has a funnel shape adjacent the distal end of the shaft 1502 to guide thrombus material into the distal opening of the shaft 1502 where it can be more readily aspirated.
[0086] The radially expanding guide member 1510 may also be formed by conventional machining, laser cutting, electrical discharge machining (EDM) or other means known in the art to make a fenestrated, mesh or porous structure that can be affixed near the distal end of the shaft 1502. In some embodiments the radially expanding guide member 1510 may self-expand, but in other embodiments it may be actuated by an operator using, for example, electrical or electromechanical means. By having a porous radially expanding guide member 1510, the guide catheter 1500 may be substantially centered within a vessel without blocking a large portion of the flow around the catheter. In some embodiments, the radially expanding guide member 1510 may block less than about 50% of the flow about the catheter and in other embodiments less than about 25% of the flow. When the guide member 1510 is made with a braid of filaments (e.g. wires), it may be formed from a tubular braid. In some embodiments, the tubular braid may be formed with approximately 12 to approximately 144 filaments, or in other embodiments from about 36 to about 96 filaments. The pores as measured by the largest circle that can be inscribed within an opening of the mesh may be between about 0.5 mm and 5 mm.
[0087] Figs. 16 and 17 show additional embodiments of guide members 1610 and 1710, respectively, that can be used instead of or in addition to the guide member 1510. Referring to Figs. 15 and 16, one or both ends of the tubular braid of the guide members 1510 and 1610 may be inverted and attached to the catheter body. Referring to Fig. 17, neither end of the guide member 1710 is inverted. With the distal end inverted, it advantageously may form a funnel adjacent the distal opening of the catheter that may enhance clot capture and aspiration.
[0088] Fig. 18 shows an embodiment of a guide catheter 1900 having a shaft 1902 and a guide member 1910 in accordance with another embodiment of the technology. In the embodiment shown in Fig. 18, the guide member 1910 has a tapered or funnel shape, and includes a non-permeable portion 1912 and a permeable portion 1914. The permeable portion 1914 can comprise a flared radially expanding mesh that has, at least in part, a tapered or funnel shape, and the non-permeable portion 1912 may have a substantially non-porous or otherwise non-permeable material or coating over the mesh. Preferably, the non-permeable material is a highly elastic material such as polyurethane, silicone, latex rubber and the like so that it can flex with the expansion of the mesh. In some embodiments, the non-permeable material covers a proximal portion of the mesh as shown in Fig. 18. The non-permeable portion 1912 may divert some flow away from the distal end of the catheter. The covering may cover a portion of the mesh to a diameter "d". In some embodiments, the diameter d of the covering is less than about 75% of the diameter "D" of the mesh funnel. In some embodiments, the diameter d may be less than about 50% of diameter D. The concept of a non- permeable material can also be applied to the guide catheter 1500 shown above in Fig. 15. For example, the expandable member 1510 of the guide catheter 1500 can have a non-permeable portion 1512 at the proximal portion of the expandable guide member 1510 similar to the non-permeable portion 1912 shown and described with reference to Fig. 18.
[0089] Figs. 19-27 show additional embodiments of clot treatment devices 402 in accordance with the present technology. The embodiments of the clot treatment devices 402 shown in Figs. 19-27 can restore blood flow and capture clot material in a manner similar to the embodiments of the clot treatment devices 402 described above with respect to Figs. 4-18. The embodiments of the clot treatment devices 402 related to Figs. 19-27 can also be made from the same materials and be deployed in the same manner as described above with respect to Figs. 4-18. As such, many of the features, materials and benefits of the clot treatment devices 402 shown in Figs. 4-18 are applicable to the clot treatment devices shown in Figs. 19-27.
[0090] Fig. 19 shows an embodiment of the clot treatment device 402 that includes a plurality of capture elements, such as clot engagement ("CE") members 1952. The CE members 1952 can be (a) arcuate as shown in Fig. 19, (b) bent at one or more angles (e.g., 30°, 45°, 60°, 90°, 135°, etc.), and/or (c) straight (e.g., project outward along a straight line). In some embodiments, the clot treatment device 402 can include a combination of arcuate, angled and/or straight CE members. In other embodiments, the clot treatment device 402 can include a single CE member 1952. The CE members 1952 can be interwoven into the mesh structure of the device 402 (see Fig. 21). The CE members 1952 can also be bonded, soldered, welded, tied or otherwise secured to the mesh structure or mechanically interlocked with the mesh structure. As the clot treatment device 402 is unsheathed during deployment, the CE members 1952 can radially extend and form a heat-set shape configured to penetrate and fasten the clot to the treatment device 402. The CE members 1952 can accordingly define hook-like capture elements in several embodiments of the present technology.
[0091] The CE members 1952 can be disposed about an exterior surface of the device 402. For example, as shown in Fig. 19, the CE members 1952 can be arranged in one or more circumferential rows 1954 that are evenly positioned along a longitudinal axis of the device 402. In other embodiments, the CE members 1952 can have any suitable arrangement and/or positioning about the device (e.g., arranged in a helical pattern, off-set rows, random, or irregular or otherwise uneven/non-uniform spacing, etc.).
[0092] As shown in Fig. 19, the CE members 1952 can curve proximally such that a concave portion 1956 of the CE members 1952 face a proximal region 402b of the device 402. In some embodiments, the CE members 1952 can curve distally such that a concave portion of the CE members 1952 face a distal region 402a of the device 402 (not shown). In particular embodiments, the clot treatment device 402 includes both distally-curving and proximally-curving CE members.
[0093] The CE members can have a single radius of curvature or have regions with different radii or have a complex or changing radius of curvature. For example, as shown in Fig. 20, one or more of the CE members 1952 can have a first portion 1958 that has a first radius R and a second portion 1960 (e.g., the distal region of the CE member 1952) that has a second radius r that is smaller than the first radius R. In some embodiments, the first radius R may range from about 2 mm to about 15 mm, and the second radius r may range from about 0.25 mm to about 5 mm. Additionally, the CE members 1952 can have a range of arc lengths. For example, in some embodiments the CE members 1952 can have an arc length greater than 180 degrees. In certain embodiments, the arc length can be between 180 degrees and 330 degrees.
[0094] Fig. 22 shows another embodiment of a CE member 2202 having a V-shaped base 2204 that branches into a first arm 2206a and a second arm 2206b. The V- shaped base 2204 and/or any portion of the first and/or second arms 2206a, 2206b can be interwoven into the mesh structure of the clot treatment device 402, as shown in Figs. 24 and 25. In some embodiments, the angle a between the first and second arms 2206a, 2206b may be between about 40 degrees and about 100 degrees. Although Fig. 24 shows a plurality of such CE members 2202 disposed about a clot treatment device 402, in other embodiments the device 402 can only include a single CE member 2202.
[0095] As shown in Fig. 25, the first arm 2206a and the second arm 2206b can extend into a first distal portion 2208a and a second distal portion 2208b, respectively, where the first distal portion 2208a and the second distal portion 2208b are generally arcuate. As shown in Fig. 24, in some embodiments the first distal portion 2208a and the second distal portion 2208b can be generally linear.
[0096] Referring to Fig. 26, two or more CE members can be connected to form a circumferential structure 2602 that extends around at least a portion of a circumference of a clot treatment device 402. The device 402 can include one or more circumferential structures 2602 spaced along a longitudinal axis of the device. These circumferential structures 2602 can allow for the CE members to flex with the mesh structure as it expands and contracts. In some embodiments, the angle Θ formed by the circumferential structure 2602 can be between about 40 degrees and about 100 degrees.
[0097] Fig. 23 shows one embodiment of an CE member 2302 having a double-wire arcuate portion 2306. Referring to Fig. 27, in some embodiments, the clot treatment device 402 can include a plurality of CE member 1952 and a radially extended member 406 at a distal end. The radially extended member 406 could be a disc, balloon, screen or other clot capture member. Examples
[0098] Several examples of the present technology are as follows:
1. A device for treating a pulmonary embolism, comprising:
an expandable flow restoration portion; and
a plurality of capture elements including at least a first capture element and a second capture element, wherein the flow restoration portion is between the first and second capture elements, and wherein the flow restoration portion and the capture elements are configured to move from a low-profile undeployed state sized to fit within a delivery catheter to a deployed state in which the flow restoration portion has a first cross-sectional dimension greater than that of the low-profile state such that the flow restoration portion forms a flow channel through the device and the capture elements project outwardly from the flow restoration portion.
2. The device of example 1 wherein the flow restoration portion and the capture elements comprise an expandable braided material that is heat set to have the deployed state.
3. The device of any of examples 1 and 2 wherein the flow restoration portion and the capture elements are integrally formed from a common braided material.
4. The device of any of examples 1-3, further comprising a plurality of flow restoration portions and the capture elements comprise a series of radially extending capture portions, and wherein the radially extending capture portions are separated from each other by individual flow restoration portions.
5. The device of example 4 wherein the flow restoration portions comprise expandable cylindrical sections and the capture elements comprise radially expandable disk-like capture portions of the braided material. 6. The device of example 1 wherein the flow restoration portion comprises a radially expandable cylindrical braided material and the capture elements comprise protuberances projecting from the flow restoration portion.
7. The device of any of examples 1-6 wherein the flow restoration portion has an expansion ratio from the undeployed state to the deployed state of approximately 1 :4 to 1 :8.
8. The device of any of examples 1-6 wherein the flow restoration portion has an expansion ratio from the undeployed state to the deployed state of approximately 1 :5 to 1 :7.
9. The device of any of examples 1-8 wherein the flow restoration portion has a diameter of approximately 4-8 mm in the deployed state to restore blood flow through a pulmonary embolism.
10. The device of any of examples 1-9 wherein the flow restoration portions and the capture elements comprises a self-expanding braided material, and the capture elements comprise capture portions that have a second diameter greater than the first cross-sectional dimension of the flow restoration portions in the deployed state.
11. The device of any of examples 1-3 and 6-9 wherein the flow restoration portion comprises a single expandable braided tube, and the capture elements comprise clot engagement members configured to project from the flow restoration portion in the deployed state.
12. The device of example 11 wherein the clot engagement members comprise arcuate members that form hook-like elements projecting from the flow restoration portion.
13. The device of example 11 wherein the clot engagement members are formed from wires of the expandable braided tube that defines the flow restoration portion. 14. The device of example 11 wherein the clot engagement members are formed from separate wires that project through interstices of the expandable braided tube that defines the flow restoration portion.
15. A pulmonary embolism treatment device, comprising:
an outer elongated member having a distal end;
an inner elongated member within the outer elongated member, wherein the inner elongated member and/or the outer elongated member slides relative to the other, and wherein the inner elongated member has a distal end; and
an expandable member having a proximal portion attached to the distal end of the outer elongated member and a distal portion attached to the distal end of the inner elongated member, the expandable member having a flow restoration portion and a plurality of capture elements arranged along the flow restoration portion, wherein the flow restoration portion and the capture elements are configured to move from a low-profile undeployed state sized to fit within a delivery catheter to a deployed state in which the flow restoration portion has a first cross-sectional dimension greater than that of the low-profile state that defines a flow channel through the device and the capture elements project outwardly from the flow restoration portion.
16. The pulmonary embolism treatment device of example 15 wherein the expandable member comprises a braided material.
17. The pulmonary embolism treatment device of example 15 wherein the device has a plurality of flow restoration portions and the capture elements are separated by individual flow restoration portions, and wherein (a) the capture elements comprise capture portions formed from a continuous shape-memory braided material heat-set to the deployed state and (b) the capture portions project from the flow restoration portions to a second cross-sectional dimension in the deployed state. 18. The pulmonary embolism treatment device of example 17 wherein the flow restoration portions comprise cylindrical portions and the first cross-sectional dimension comprises a first diameter in the deployed state, and the capture portions comprise disklike projections having a second diameter greater than the first diameter in the deployed state.
19. The pulmonary embolism treatment device of any of examples 11-18 wherein the flow restoration portion(s) have an expansion ratio from the undeployed state to the deployed state from 1 :4 to 1 :8.
20. The pulmonary embolism treatment device of any of examples 11-18 wherein the flow restoration portion(s) have an expansion ratio from the undeployed state to the deployed state from 1 :5 to 1 :7.
21. The pulmonary embolism treatment device of any of examples 11-20 wherein the first elongated member comprises an outer tube and the second elongated member comprises an inner tube within the outer tube.
22. The pulmonary embolism treatment device of any of examples 11-20 wherein the first elongated member comprises an outer tube and the second elongated member comprises a coil within the outer tube.
23. The pulmonary embolism device of any of examples 11-20 wherein the first elongated member comprises an outer coil and the second elongated member comprises an inner coil.
24. The pulmonary embolism treatment device of any of examples 1 1-23 wherein the flow restoration portion(s) and the capture elements comprise a self-expanding braided material.
25. The pulmonary embolism treatment device of any of examples 1 1-24 wherein the outer elongated member is configured to slide distally with respect to the inner elongated member to move the expansion member from the undeployed state to the deployed state.
26. The pulmonary embolism treatment device of any of examples 1 1-25, further comprising a guide catheter having a shaft with a distal end and an expandable guide member at the distal end of the shaft, wherein the shaft has a lumen configured to receive the expandable member in the undeployed state.
27. The pulmonary embolism treatment device of example 26 wherein the expandable guide member comprises radially expandable mesh.
28. The pulmonary embolism treatment device of example 27 wherein the radially expandable mesh comprises a braided material.
29. The pulmonary embolism treatment device of any of examples 26-28 wherein the expandable guide member has a funnel shape.
30. The pulmonary embolism treatment device of any of examples 26-29 wherein at least a portion of the expandable guide member is permeable to allow blood to flow through the expandable guide member when the expandable guide member is expanded.
31. The pulmonary embolism treatment device of any of examples 26-29 wherein the expandable guide member has a non-permeable portion at the distal end of the shaft and a permeable portion extending distally from the non-permeable portion.
32. A pulmonary embolism treatment device, comprising:
an elongated member having a distal end;
an expansion portion having a proximal end attached to the distal end of the elongated member, and the expansion portion having a distal end; and an expandable member having a proximal portion attached to the distal end of the elongated member and a distal portion attached to the distal end of the expansion portion, the expandable member having at least one of flow restoration portion and a plurality of capture elements arranged such that the capture elements are separated by individual flow restoration portion, wherein the flow restoration portion and the capture elements are configured to move from a low-profile undeployed state sized to fit within a delivery catheter to a deployed state in which (a) the flow restoration portion has a first cross-sectional dimension greater than that of the low- profile state that defines a flow channel through the device and (b) the capture elements project outwardly from the flow restoration portion, and wherein the expansion portion is stretched from a normal state when the expandable member is in the undeployed state such that the expansion portion is configured to axially contract the expandable member from the undeployed state to the deployed state.
A method of treating a pulmonary embolism, comprising:
delivering an embolectomy device through the heart to a pulmonary embolism that at least partially restricts blood flow through a pulmonary vessel, wherein the embolectomy device has a plurality of capture elements separated by an expandable cylindrical section;
deploying the embolectomy device within the pulmonary embolism by expanding the cylindrical section into the pulmonary embolism so that the cylindrical section forms an expanded flow channel through the pulmonary embolism and thereby restores blood flow through the pulmonary embolism and by expanding the capture elements to a greater extent than the cylindrical section so that at least a portion of the pulmonary embolism is captured the capture elements;
moving the embolectomy device and at least a portion of the pulmonary embolism along the pulmonary vessel; and
withdrawing the embolectomy device and at least a portion of the pulmonary embolism from the pulmonary vessel. 34. The method of example 33 wherein deploying the embolectomy device comprises expanding a plurality of radial extendable capture elements of the embolectomy device.
35. The method of example 34, wherein at least one of the plurality of radial extendable capture elements is expanded distal relative to the pulmonary embolism.
36. The method of example 33, further comprising applying vacuum while withdrawing the embolectomy device.
37. The method of example 36, wherein withdrawing the embolectomy device includes urging the portion of the pulmonary embolism into a funnel catheter.
38. The method of example 37, wherein deploying the embolectomy device comprises expanding the device such that a surface area of the embolectomy device expands within a range of at least 200% to 400% of the surface area of a uniformly cylindrical device.
39. The method of example 33 wherein deploying the embolectomy device comprises expanding the generally cylindrical section by 400% to 800% of its diameter in the undeployed state.
40. The method according to and of examples 33-39 wherein deploying the embolectomy device comprises expanding a braided material into a preset shape having a plurality of radially extending disk-like capture portions that define the capture elements.
[0099] Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the exampleed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.

Claims

What is claimed is:
1. A device for treating a pulmonary embolism, comprising:
an expandable flow restoration portion; and
a plurality of capture elements including at least a first capture element and a second capture element, wherein the flow restoration portion is between the first and second capture elements, and wherein the flow restoration portion and the capture elements are configured to move from a low-profile undeployed state sized to fit within a delivery catheter to a deployed state in which the flow restoration portion has a first cross-sectional dimension greater than that of the low-profile state such that the flow restoration portion forms a flow channel through the device and the capture elements project outwardly from the flow restoration portion.
2. The device of claim 1 wherein the flow restoration portion and the capture elements comprise an expandable braided material that is heat set to have the deployed state.
3. The device of any of claims 1 and 2 wherein the flow restoration portion and the capture elements are integrally formed from a common braided material.
4. The device of any of claims 1-3, further comprising a plurality of flow restoration portions and the capture elements comprise a series of radially extending capture portions, and wherein the radially extending capture portions are separated from each other by individual flow restoration portions.
5. The device of claim 4 wherein the flow restoration portions comprise expandable cylindrical sections and the capture elements comprise radially expandable disk-like capture portions of the braided material.
6. The device of claim 1 wherein the flow restoration portion comprises a radially expandable cylindrical braided material and the capture elements comprise protuberances projecting from the flow restoration portion.
7. The device of any of claims 1-6 wherein the flow restoration portion has an expansion ratio from the undeployed state to the deployed state of approximately 1 :4 to 1 :8.
8. The device of any of claims 1-6 wherein the flow restoration portion has an expansion ratio from the undeployed state to the deployed state of approximately 1 :5 to 1 :7.
9. The device of any of claims 1-8 wherein the flow restoration portion has a diameter of approximately 4-8 mm in the deployed state to restore blood flow through a pulmonary embolism.
10. The device of any of claims 1-9 wherein the flow restoration portions and the capture elements comprises a self-expanding braided material, and the capture elements comprise capture portions that have a second diameter greater than the first cross-sectional dimension of the flow restoration portions in the deployed state.
11. The device of any of claims 1-3 and 6-9 wherein the flow restoration portion comprises a single expandable braided tube, and the capture elements comprise clot engagement members configured to project from the flow restoration portion in the deployed state.
12. The device of claim 11 wherein the clot engagement members comprise arcuate members that form hook-like members projecting from the flow restoration portion.
13. The device of claim 11 wherein the clot engagement members are formed from wires of the expandable braided tube that defines the flow restoration portion.
14. The device of claim 11 wherein the clot engagement members are formed from separate wires that project through interstices of the expandable braided tube that defines the flow restoration portion.
15. A pulmonary embolism treatment device, comprising:
an outer elongated member having a distal end;
an inner elongated member within the outer elongated member, wherein the inner elongated member and/or the outer elongated member slides relative to the other, and wherein the inner elongated member has a distal end; and
an expandable member having a proximal portion attached to the distal end of the outer elongated member and a distal portion attached to the distal end of the inner elongated member, the expandable member having a flow restoration portion and a plurality of capture elements arranged along the flow restoration portion, wherein the flow restoration portion and the capture elements are configured to move from a low-profile undeployed state sized to fit within a delivery catheter to a deployed state in which the flow restoration portion have a first cross-sectional dimension greater than that of the low-profile state that defines a flow channel through the device and the capture elements project outwardly from the flow restoration portion.
16. The pulmonary embolism treatment device of claim 15 wherein the expandable member comprises a braided material.
17. The pulmonary embolism treatment device of claim 15 wherein the device has a plurality of flow restoration portions and the capture elements are separated by individual flow restoration portions, and wherein (a) the capture elements comprise capture portions formed from a continuous shape-memory braided material heat-set to the deployed state and (b) the capture portions project from the flow restoration portions to a second cross-sectional dimension in the deployed state.
18. The pulmonary embolism treatment device of claim 17 wherein the flow restoration portions comprise cylindrical portions and the first cross-sectional dimension comprises a first diameter in the deployed state, and the capture portions comprise disklike projections having a second diameter greater than the first diameter in the deployed state.
19. The pulmonary embolism treatment device of any of claims 11-18 wherein the flow restoration portion(s) have an expansion ratio from the undeployed state to the deployed state from 1 :4 to 1 :8.
20. The pulmonary embolism treatment device of any of claims 11-18 wherein the flow restoration portion(s) have an expansion ratio from the undeployed state to the deployed state from 1 :5 to 1 :7.
21. The pulmonary embolism treatment device of any of claims 11-20 wherein the first elongated member comprises an outer tube and the second elongated member comprises an inner tube within the outer tube.
22. The pulmonary embolism treatment device of any of claims 11-20 wherein the first elongated member comprises an outer tube and the second elongated member comprises a coil within the outer tube.
23. The pulmonary embolism device of any of claims 11-20 wherein the first elongated member comprises an outer coil and the second elongated member comprises an inner coil.
24. The pulmonary embolism treatment device of any of claims 11-23 wherein the flow restoration portion(s) and the capture elements comprise a self-expanding braided material.
25. The pulmonary embolism treatment device of any of claims 11-24 wherein the outer elongated member is configured to slide distally with respect to the inner elongated member to move the expansion member from the undeployed state to the deployed state.
26. The pulmonary embolism treatment device of any of claims 11-25, further comprising a guide catheter having a shaft with a distal end and an expandable guide member at the distal end of the shaft, wherein the shaft has a lumen configured to receive the expandable member in the undeployed state.
27. The pulmonary embolism treatment device of claim 26 wherein the expandable guide member comprises radially expandable mesh.
28. The pulmonary embolism treatment device of claim 27 wherein the radially expandable mesh comprises a braided material.
29. The pulmonary embolism treatment device of any of claims 26-28 wherein the expandable guide member has a funnel shape.
30. The pulmonary embolism treatment device of any of claims 26-29 wherein at least a portion of the expandable guide member is permeable to allow blood to flow through the expandable guide member when the expandable guide member is expanded.
31. The pulmonary embolism treatment device of any of claims 26-29 wherein the expandable guide member has a non-permeable portion at the distal end of the shaft and a permeable portion extending distally from the non-permeable portion.
32. A pulmonary embolism treatment device, comprising:
an elongated member having a distal end;
an expansion portion having a proximal end attached to the distal end of the elongated member, and the expansion portion having a distal end; and an expandable member having a proximal portion attached to the distal end of the elongated member and a distal portion attached to the distal end of the expansion portion, the expandable member having at least one of flow restoration portion and a plurality of capture elements arranged such that the capture elements are separated by individual flow restoration portion, wherein the flow restoration portion and the capture elements are configured to move from a low-profile undeployed state sized to fit within a delivery catheter to a deployed state in which (a) the flow restoration portion has a first cross-sectional dimension greater than that of the low- profile state that defines a flow channel through the device and (b) the capture elements project outwardly from the flow restoration portion, and wherein the expansion portion is stretched from a normal state when the expandable member is in the undeployed state such that the expansion portion is configured to axially contract the expandable member from the undeployed state to the deployed state.
A method of treating a pulmonary embolism, comprising:
delivering an embolectomy device through the heart to a pulmonary embolism that at least partially restricts blood flow through a pulmonary vessel, wherein the embolectomy device has a plurality of capture elements separated by an expandable cylindrical section;
deploying the embolectomy device within the pulmonary embolism by expanding the cylindrical section into the pulmonary embolism so that the cylindrical section forms an expanded flow channel through the pulmonary embolism and thereby restores blood flow through the pulmonary embolism and by expanding the capture elements to a greater extent than the cylindrical section so that at least a portion of the pulmonary embolism is captured the capture elements;
moving the embolectomy device and at least a portion of the pulmonary embolism along the pulmonary vessel; and
withdrawing the embolectomy device and at least a portion of the pulmonary embolism from the pulmonary vessel.
34. The method of claim 33 wherein deploying the embolectomy device comprises expanding a plurality of radial extendable capture elements of the embolectomy device.
35. The method of claim 34, wherein at least one of the plurality of radial extendable capture elements is expanded distal relative to the pulmonary embolism.
36. The method of claim 33, further comprising applying vacuum while withdrawing the embolectomy device.
37. The method of claim 36, wherein withdrawing the embolectomy device includes urging the portion of the pulmonary embolism into a funnel catheter.
38. The method of claim 37, wherein deploying the embolectomy device comprises expanding the device such that a surface area of the embolectomy device expands within a range of at least 200% to 400% of the surface area of a uniformly cylindrical device.
39. The method of claim 33 wherein deploying the embolectomy device comprises expanding the generally cylindrical section by 400% to 800% of its diameter in the undeployed state.
40. The method according to and of claims 33-39 wherein deploying the embolectomy device comprises expanding a braided material into a preset shape having a plurality of radially extending disk-like capture portions that define the capture elements.
PCT/US2013/071101 2012-11-20 2013-11-20 Methods and apparatus for treating embolism WO2014081892A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/646,358 US10004531B2 (en) 2012-11-20 2013-11-20 Methods and apparatus for treating embolism
US15/949,350 US10709471B2 (en) 2012-11-20 2018-04-10 Methods and apparatus for treating embolism
US16/913,073 US11648028B2 (en) 2012-11-20 2020-06-26 Methods and apparatus for treating embolism
US18/184,981 US20230218313A1 (en) 2012-11-20 2023-03-16 Methods and apparatus for treating embolism
US18/191,685 US20230240705A1 (en) 2012-11-20 2023-03-28 Methods and apparatus for treating embolism
US18/191,728 US20230240706A1 (en) 2012-11-20 2023-03-28 Methods and apparatus for treating embolism

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261728775P 2012-11-20 2012-11-20
US61/728,775 2012-11-20
US201361750277P 2013-01-08 2013-01-08
US61/750,277 2013-01-08
US13/843,742 2013-03-15
US13/843,742 US8784434B2 (en) 2012-11-20 2013-03-15 Methods and apparatus for treating embolism

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/843,742 Continuation-In-Part US8784434B2 (en) 2012-11-20 2013-03-15 Methods and apparatus for treating embolism

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/646,358 A-371-Of-International US10004531B2 (en) 2012-11-20 2013-11-20 Methods and apparatus for treating embolism
US15/949,350 Continuation US10709471B2 (en) 2012-11-20 2018-04-10 Methods and apparatus for treating embolism

Publications (1)

Publication Number Publication Date
WO2014081892A1 true WO2014081892A1 (en) 2014-05-30

Family

ID=50776539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/071101 WO2014081892A1 (en) 2012-11-20 2013-11-20 Methods and apparatus for treating embolism

Country Status (2)

Country Link
US (12) US8784434B2 (en)
WO (1) WO2014081892A1 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968330B2 (en) 2012-11-20 2015-03-03 Inceptus Medical, Llc Methods and apparatus for treating embolism
US9259237B2 (en) 2013-07-12 2016-02-16 Inceptus Medical, Llc Methods and apparatus for treating pulmonary embolism
US9351749B2 (en) 2010-10-22 2016-05-31 Neuravi Limited Clot engagement and removal system
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
US9445829B2 (en) 2013-03-14 2016-09-20 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US9526864B2 (en) 2014-06-09 2016-12-27 Inceptus Medical, Llc Retraction and aspiration device for treating embolism and associated systems and methods
WO2017019572A1 (en) * 2015-07-24 2017-02-02 Ichor Vascular Inc. Embolectomy system and methods of making same
US9642635B2 (en) 2013-03-13 2017-05-09 Neuravi Limited Clot removal device
US9642639B2 (en) 2011-03-09 2017-05-09 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US9844387B2 (en) 2015-10-23 2017-12-19 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
JP2018503465A (en) * 2015-01-28 2018-02-08 トリティカム リミテッド Apparatus and method for removing occlusions in a biological tube
US9931495B2 (en) 2010-02-23 2018-04-03 Covidien Lp Devices and methods for vascular recanalization
US10045790B2 (en) 2012-09-24 2018-08-14 Inari Medical, Inc. Device and method for treating vascular occlusion
US10098651B2 (en) 2017-01-10 2018-10-16 Inari Medical, Inc. Devices and methods for treating vascular occlusion
US10201360B2 (en) 2013-03-14 2019-02-12 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10238406B2 (en) 2013-10-21 2019-03-26 Inari Medical, Inc. Methods and apparatus for treating embolism
US10265086B2 (en) 2014-06-30 2019-04-23 Neuravi Limited System for removing a clot from a blood vessel
US10285720B2 (en) 2014-03-11 2019-05-14 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US10342571B2 (en) 2015-10-23 2019-07-09 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US10363054B2 (en) 2014-11-26 2019-07-30 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
US10441301B2 (en) 2014-06-13 2019-10-15 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10617435B2 (en) 2014-11-26 2020-04-14 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10792056B2 (en) 2014-06-13 2020-10-06 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10842498B2 (en) 2018-09-13 2020-11-24 Neuravi Limited Systems and methods of restoring perfusion to a vessel
US11000682B2 (en) 2017-09-06 2021-05-11 Inari Medical, Inc. Hemostasis valves and methods of use
WO2021129667A1 (en) * 2019-12-23 2021-07-01 杭州唯强医疗科技有限公司 Intracavitary occluder
US11147572B2 (en) 2016-09-06 2021-10-19 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
US11154314B2 (en) 2018-01-26 2021-10-26 Inari Medical, Inc. Single insertion delivery system for treating embolism and associated systems and methods
US11253278B2 (en) 2014-11-26 2022-02-22 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US11259824B2 (en) 2011-03-09 2022-03-01 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
US11311304B2 (en) 2019-03-04 2022-04-26 Neuravi Limited Actuated clot retrieval catheter
US11382643B2 (en) 2017-10-16 2022-07-12 Retriever Medical, Inc. Clot removal methods and devices with multiple independently controllable elements
US11395667B2 (en) 2016-08-17 2022-07-26 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US11395669B2 (en) 2020-06-23 2022-07-26 Neuravi Limited Clot retrieval device with flexible collapsible frame
US11406416B2 (en) 2018-10-02 2022-08-09 Neuravi Limited Joint assembly for vasculature obstruction capture device
US11433218B2 (en) 2015-12-18 2022-09-06 Inari Medical, Inc. Catheter shaft and associated devices, systems, and methods
US11439418B2 (en) 2020-06-23 2022-09-13 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11517340B2 (en) 2019-12-03 2022-12-06 Neuravi Limited Stentriever devices for removing an occlusive clot from a vessel and methods thereof
US11529158B2 (en) 2004-03-25 2022-12-20 Inari Medical, Inc. Method for treating vascular occlusion
US11529495B2 (en) 2019-09-11 2022-12-20 Neuravi Limited Expandable mouth catheter
US11554005B2 (en) 2018-08-13 2023-01-17 Inari Medical, Inc. System for treating embolism and associated devices and methods
US11589881B2 (en) 2017-10-16 2023-02-28 Retriever Medical, Inc. Clot removal methods and devices with multiple independently controllable elements
US11633202B1 (en) 2017-10-16 2023-04-25 Retriever Medical, Inc. Catheter based retrieval device with proximal body having axial freedom of movement
US11633198B2 (en) 2020-03-05 2023-04-25 Neuravi Limited Catheter proximal joint
US11712231B2 (en) 2019-10-29 2023-08-01 Neuravi Limited Proximal locking assembly design for dual stent mechanical thrombectomy device
US11717308B2 (en) 2020-04-17 2023-08-08 Neuravi Limited Clot retrieval device for removing heterogeneous clots from a blood vessel
US11730501B2 (en) 2020-04-17 2023-08-22 Neuravi Limited Floating clot retrieval device for removing clots from a blood vessel
US11737771B2 (en) 2020-06-18 2023-08-29 Neuravi Limited Dual channel thrombectomy device
US11759217B2 (en) 2020-04-07 2023-09-19 Neuravi Limited Catheter tubular support
US11779364B2 (en) 2019-11-27 2023-10-10 Neuravi Limited Actuated expandable mouth thrombectomy catheter
US11839725B2 (en) 2019-11-27 2023-12-12 Neuravi Limited Clot retrieval device with outer sheath and inner catheter
US11864781B2 (en) 2020-09-23 2024-01-09 Neuravi Limited Rotating frame thrombectomy device
US11864779B2 (en) 2019-10-16 2024-01-09 Inari Medical, Inc. Systems, devices, and methods for treating vascular occlusions
US11872354B2 (en) 2021-02-24 2024-01-16 Neuravi Limited Flexible catheter shaft frame with seam
US11871946B2 (en) 2020-04-17 2024-01-16 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11883043B2 (en) 2020-03-31 2024-01-30 DePuy Synthes Products, Inc. Catheter funnel extension
US11918244B2 (en) 2015-10-23 2024-03-05 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US11937837B2 (en) 2020-12-29 2024-03-26 Neuravi Limited Fibrin rich / soft clot mechanical thrombectomy device
US11937839B2 (en) 2021-09-28 2024-03-26 Neuravi Limited Catheter with electrically actuated expandable mouth
US11937836B2 (en) 2020-06-22 2024-03-26 Neuravi Limited Clot retrieval system with expandable clot engaging framework
US11944327B2 (en) 2020-03-05 2024-04-02 Neuravi Limited Expandable mouth aspirating clot retrieval catheter

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2120737B1 (en) 2007-02-05 2020-04-01 Boston Scientific Limited Thrombectomy apparatus
US9034007B2 (en) 2007-09-21 2015-05-19 Insera Therapeutics, Inc. Distal embolic protection devices with a variable thickness microguidewire and methods for their use
US11589880B2 (en) 2007-12-20 2023-02-28 Angiodynamics, Inc. System and methods for removing undesirable material within a circulatory system utilizing during a surgical procedure
US10517617B2 (en) 2007-12-20 2019-12-31 Angiodynamics, Inc. Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter
US8858609B2 (en) * 2008-02-07 2014-10-14 Intuitive Surgical Operations, Inc. Stent delivery under direct visualization
US20110295181A1 (en) 2008-03-05 2011-12-01 Hemosphere, Inc. Implantable and removable customizable body conduit
US9510854B2 (en) 2008-10-13 2016-12-06 Boston Scientific Scimed, Inc. Thrombectomy catheter with control box having pressure/vacuum valve for synchronous aspiration and fluid irrigation
WO2011083460A2 (en) * 2010-01-11 2011-07-14 Assis Medical Ltd. Device system and method for reshaping tissue openings
CA2860301C (en) 2012-01-15 2019-04-23 Triticum Ltd. Device and method for removing occlusions in a biological vessel
US11083475B2 (en) 2012-02-22 2021-08-10 Carter J. Kovarik Medical device to remove an obstruction from a body lumen, vessel or organ
USD780547S1 (en) 2013-08-08 2017-03-07 Carter J. Kovarik Pick up device with flexible shaft portion
US10226266B2 (en) 2012-02-22 2019-03-12 Carter J. Kovarik Selectively bendable remote gripping tool
US9592066B2 (en) 2012-02-22 2017-03-14 Carter J. Kovarik Selectively bendable remote gripping tool
US9901245B2 (en) 2012-02-22 2018-02-27 Carter J. Kovarik Selectively bendable remote gripping tool
US9832980B2 (en) 2012-02-22 2017-12-05 Carter J. Kovarik Selectively bendable remote gripping tool
US11419620B2 (en) 2012-10-03 2022-08-23 The University Of Toledo Minimally invasive thrombectomy
CN116172656A (en) 2013-03-15 2023-05-30 伊瑟拉医疗公司 Vascular treatment devices and methods
US8679150B1 (en) 2013-03-15 2014-03-25 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy methods
US8715314B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment measurement methods
US8690907B1 (en) 2013-03-15 2014-04-08 Insera Therapeutics, Inc. Vascular treatment methods
WO2017142874A2 (en) 2016-02-16 2017-08-24 Insera Therapeutics, Inc. Aspiration devices and anchored flow diverting devices
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
EP3094365B1 (en) 2014-01-15 2021-12-08 Tufts Medical Center, Inc. Endovascular cerebrospinal fluid shunt
US10004512B2 (en) * 2014-01-29 2018-06-26 Cook Biotech Incorporated Occlusion device and method of use thereof
US9855071B2 (en) * 2014-02-03 2018-01-02 Covidien Lp Thrombectomy catheter system with reference member
US9883877B2 (en) 2014-05-19 2018-02-06 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US20160089172A1 (en) * 2014-09-30 2016-03-31 Boston Scientific Scimed, Inc. Devices and methods for applying suction
FR3031041B1 (en) * 2014-12-26 2020-11-06 Commissariat Energie Atomique IMPLANTABLE OPTICAL BRAIN STIMULATION DEVICE INCLUDING A MULTI-CHANNEL CATHETER
ES2577288B8 (en) * 2015-01-13 2019-01-10 Anaconda Biomed S L Device for thrombectomy
US11771446B2 (en) 2020-10-19 2023-10-03 Anaconda Biomed, S.L. Thrombectomy system and method of use
US11065019B1 (en) 2015-02-04 2021-07-20 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
ES2770321T3 (en) 2015-02-04 2020-07-01 Route 92 Medical Inc Rapid Aspiration Thrombectomy System
US10499935B2 (en) * 2015-04-08 2019-12-10 Lawrence Livermore National Security, Llc Shape memory embolectomy devices and systems
EP3721818A1 (en) * 2015-08-06 2020-10-14 KP Medcure, Inc. Axially lengthening thrombus capture system
US9744024B2 (en) 2015-08-06 2017-08-29 Kp Medcure, Inc. Axial lengthening thrombus capture system
US9999493B2 (en) * 2015-08-06 2018-06-19 Kp Medcure, Inc. Axial lengthening thrombus capture system
US10561440B2 (en) 2015-09-03 2020-02-18 Vesatek, Llc Systems and methods for manipulating medical devices
MX2018006446A (en) * 2015-11-25 2019-06-06 Neuravi Ltd A clot retrieval device for removing occlusive clot from a blood vessel.
US10372948B2 (en) * 2015-12-15 2019-08-06 Taiwan Semiconductor Manufacturing Company Ltd. Scrambling apparatus and method thereof
WO2017147493A1 (en) 2016-02-24 2017-08-31 Incept, Llc Enhanced flexibility neurovascular catheter
US10492805B2 (en) 2016-04-06 2019-12-03 Walk Vascular, Llc Systems and methods for thrombolysis and delivery of an agent
JP2018019207A (en) * 2016-07-27 2018-02-01 富士ゼロックス株式会社 Cooperation management device and communication system
US11259820B2 (en) * 2016-09-07 2022-03-01 Daniel Ezra Walzman Methods and devices to ameliorate vascular obstruction
US11877752B2 (en) 2016-09-07 2024-01-23 Daniel Ezra Walzman Filterless aspiration, irrigating, macerating, rotating microcatheter and method of use
US11439492B2 (en) 2016-09-07 2022-09-13 Daniel Ezra Walzman Lasso filter tipped microcatheter for simultaneous rotating separator, irrigator for thrombectomy and method for use
CN113215721B (en) 2016-10-14 2023-02-17 因赛普特斯医学有限责任公司 Knitting machine and method of use
US10265085B2 (en) * 2016-11-16 2019-04-23 Osama O. Zaidat System and device for engulfing thrombi
CN110381855B (en) 2017-01-06 2023-07-04 因赛普特有限责任公司 Antithrombotic coating for aneurysm treatment devices
CN114984407A (en) 2017-01-10 2022-09-02 92号医疗公司 System, catheter and catheter advancement device for performing medical procedures in intracranial vessels
EP3568173A4 (en) 2017-01-12 2020-11-25 Merit Medical Systems, Inc. Methods and systems for selection and use of connectors between conduits
WO2018148174A1 (en) * 2017-02-08 2018-08-16 Kp Medcure, Inc. Axial lengthening thrombus capture system
US10376267B2 (en) 2017-02-24 2019-08-13 Inceptus Medical, Llc Vascular occlusion devices and methods
WO2018160966A1 (en) 2017-03-02 2018-09-07 Cerevasc, Llc Catheter systems and methods for medical procedures using catheters
WO2018164945A1 (en) * 2017-03-06 2018-09-13 Merit Medical Systems, Inc. Vascular access assembly declotting systems and methods
US11234723B2 (en) * 2017-12-20 2022-02-01 Mivi Neuroscience, Inc. Suction catheter systems for applying effective aspiration in remote vessels, especially cerebral arteries
IL252608B (en) * 2017-06-01 2021-06-30 Amnis Therapeutics Ltd Devices for the removal of clots
CN110831523B (en) 2017-06-12 2022-09-13 柯惠有限合伙公司 Tool for sheathing a treatment device, and associated systems and methods
US10478322B2 (en) * 2017-06-19 2019-11-19 Covidien Lp Retractor device for transforming a retrieval device from a deployed position to a delivery position
US11179543B2 (en) 2017-07-14 2021-11-23 Merit Medical Systems, Inc. Releasable conduit connectors
WO2019018653A1 (en) 2017-07-20 2019-01-24 Merit Medical Systems, Inc. Methods and systems for coupling conduits
US11885051B2 (en) 2017-10-14 2024-01-30 Inceptus Medical, Llc Braiding machine and methods of use
WO2019094749A1 (en) 2017-11-09 2019-05-16 Contego Medical, Llc Thrombectomy device and methods of use
US11006939B2 (en) 2017-12-08 2021-05-18 Tendyne Holdings, Inc. Introducer sheath with seal and methods of using the same
US11191556B2 (en) 2018-03-01 2021-12-07 Covidien Lp Catheter including an expandable member
US11013900B2 (en) 2018-03-08 2021-05-25 CereVasc, Inc. Systems and methods for minimally invasive drug delivery to a subarachnoid space
JP2021522885A (en) 2018-05-01 2021-09-02 インセプト・リミテッド・ライアビリティ・カンパニーIncept,Llc Devices and methods for removing obstructive substances from intravascular sites
US11395665B2 (en) 2018-05-01 2022-07-26 Incept, Llc Devices and methods for removing obstructive material, from an intravascular site
CN112423824B (en) 2018-05-17 2023-02-21 92号医疗公司 Aspiration catheter system and method of use
US11172948B2 (en) 2018-05-25 2021-11-16 Mubin I. Syed Arterial embolus retriever
US11471582B2 (en) 2018-07-06 2022-10-18 Incept, Llc Vacuum transfer tool for extendable catheter
US11517335B2 (en) 2018-07-06 2022-12-06 Incept, Llc Sealed neurovascular extendable catheter
US11678905B2 (en) 2018-07-19 2023-06-20 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US11406540B2 (en) * 2018-09-05 2022-08-09 Acclarent, Inc. Linked assembly with isthmus anchor for treating patulous eustachian tube
US11272945B2 (en) 2018-10-10 2022-03-15 Innova Vascular, Inc. Device for removing an embolus
CN113795204A (en) 2019-01-11 2021-12-14 阿纳康达生物医学有限公司 Loading device and method for loading a medical instrument into a catheter
CN109875642A (en) * 2019-03-11 2019-06-14 恩脉(上海)医疗科技有限公司 One kind taking pin device
US11766539B2 (en) 2019-03-29 2023-09-26 Incept, Llc Enhanced flexibility neurovascular catheter
JP2022551988A (en) 2019-10-15 2022-12-14 インパラティブ、ケア、インク. Systems and methods for multivariate stroke detection
EP4054480A1 (en) 2019-11-05 2022-09-14 Vascular Medcure, Inc. Axial lengthening thrombus capture system, tensioning system and expandable funnel catheter
US20210315598A1 (en) 2019-12-18 2021-10-14 Imperative Care, Inc. Methods of placing large bore aspiration catheters
JP2023507553A (en) 2019-12-18 2023-02-24 インパラティブ、ケア、インク. Methods and systems for treating venous thromboembolism
US11633272B2 (en) 2019-12-18 2023-04-25 Imperative Care, Inc. Manually rotatable thrombus engagement tool
US11648020B2 (en) 2020-02-07 2023-05-16 Angiodynamics, Inc. Device and method for manual aspiration and removal of an undesirable material
CN113747934A (en) 2020-03-10 2021-12-03 因普瑞缇夫护理公司 Enhanced flexible neurovascular catheter
US11207497B1 (en) 2020-08-11 2021-12-28 Imperative Care, Inc. Catheter with enhanced tensile strength
EP4329643A1 (en) 2021-04-27 2024-03-06 Contego Medical, Inc. Thrombus aspiration system and methods for controlling blood loss

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254571B1 (en) * 1996-04-18 2001-07-03 Applied Medical Resources Corporation Remote clot management
US6645222B1 (en) * 1998-05-13 2003-11-11 Arteria Medical Science, Inc. Puncture resistant branch artery occlusion device and methods of use
US20060282111A1 (en) * 2005-06-09 2006-12-14 Baylor College Of Medicine Segmented Embolectomy Catheter
US20080167678A1 (en) * 2007-01-05 2008-07-10 Hesham Morsi Embolectomy Catheter
US20110213403A1 (en) * 2010-02-23 2011-09-01 Maria Aboytes Devices and methods for vascular recanalization

Family Cites Families (590)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1004579A (en) 1909-12-15 1911-10-03 Welcome H Lawson Spring.
US1034257A (en) 1910-04-05 1912-07-30 Victor H Latendorf Aeroplane.
US1000453A (en) 1910-07-20 1911-08-15 Harper Stratton Flue-cleaner for boilers.
US1009865A (en) 1910-12-19 1911-11-28 James H Sherman Hollow metal tile.
US1033518A (en) 1911-09-27 1912-07-23 Gustav A Bader Cap.
US1034996A (en) 1911-10-12 1912-08-06 Alberto Irving Gerry Blend-making machine for staple goods.
US1023840A (en) 1911-12-15 1912-04-23 Julius Graber Transfer mechanism for calculating-machines.
US2955592A (en) 1955-12-29 1960-10-11 Kenneth S Maclean Diagnostic instrument
US2846179A (en) 1956-11-16 1958-08-05 Monckton Mary Catherine Sleeve valve
US3197173A (en) 1960-07-12 1965-07-27 John H Van Dyke Pinch valve
US3088363A (en) 1962-07-17 1963-05-07 Sparks William Braiding apparatus
US3435826A (en) 1964-05-27 1969-04-01 Edwards Lab Inc Embolectomy catheter
US3515137A (en) 1966-10-26 1970-06-02 Deseret Pharma Intravenous catheter unit with inserter means for sequential feeding of catheter
US3613664A (en) 1969-06-25 1971-10-19 Marshall Eskridge Controllable tip brush for medical use
US3675657A (en) 1969-07-14 1972-07-11 Clebel Inc L Ange Gardien Co R Tourniquet
US3892161A (en) 1974-06-06 1975-07-01 Vincent Sokol Braiding machine wire control
US3923065A (en) 1974-09-09 1975-12-02 Jerome Nozick Embolectomy catheter
US4030503A (en) 1975-11-05 1977-06-21 Clark Iii William T Embolectomy catheter
GB1565509A (en) 1975-12-10 1980-04-23 Nat Res Dev Drive mechanism
US4034642A (en) 1976-09-27 1977-07-12 Rockwell International Corporation Braiding machine
GB1588072A (en) 1977-02-11 1981-04-15 Beecher W H Extracting device for removing objects from human body passages
US4222380A (en) 1977-12-02 1980-09-16 Olympus Optical Co., Ltd. Celiac injector
US4324262A (en) 1979-01-02 1982-04-13 University Of Virginia Alumni Patents Foundation Aspirating culture catheter and method of use
US4243040A (en) 1979-09-17 1981-01-06 Beecher William H Extracting device for removing objects from human body passages
US4393872A (en) 1980-05-27 1983-07-19 Eder Instrument Co., Inc. Aspirating surgical forceps
US4523738A (en) 1982-03-05 1985-06-18 Red Valve Co. Inc. Deformable sleeve for a pinch valve
US4643184A (en) 1982-09-29 1987-02-17 Mobin Uddin Kazi Embolus trap
US4551862A (en) 1982-12-15 1985-11-12 Haber Terry M Prosthetic sphincter
US4469100A (en) 1983-03-14 1984-09-04 Hardwick Charles W Intussuscepting balloon catheter for stone extraction
US4611594A (en) 1984-04-11 1986-09-16 Northwestern University Medical instrument for containment and removal of calculi
US5443443A (en) 1984-05-14 1995-08-22 Surgical Systems & Instruments, Inc. Atherectomy system
US4883458A (en) 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
US6440148B1 (en) 1984-05-14 2002-08-27 Samuel Shiber Stent unclogging system with stepped spiral
US4604094A (en) 1984-09-06 1986-08-05 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Toposcopic catheter and method of fabrication
US4646736A (en) 1984-09-10 1987-03-03 E. R. Squibb & Sons, Inc. Transluminal thrombectomy apparatus
JPS6190049A (en) 1984-10-11 1986-05-08 Sekisui Plastics Co Ltd Method for detecting carbon dioxide and detecting element thereof
US4650466A (en) 1985-11-01 1987-03-17 Angiobrade Partners Angioplasty device
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4790812A (en) 1985-11-15 1988-12-13 Hawkins Jr Irvin F Apparatus and method for removing a target object from a body passsageway
US4863440A (en) 1985-12-23 1989-09-05 Thomas J. Fogarty Pressurized manual advancement dilatation catheter
US4898575A (en) 1987-08-31 1990-02-06 Medinnovations, Inc. Guide wire following tunneling catheter system and method for transluminal arterial atherectomy
DE3731242A1 (en) 1987-09-17 1989-03-30 Joka Kathetertechnik Gmbh SHUT-OFF DEVICE ON A LIQUID DRAWING OR INFUSION DEVICE
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US4870953A (en) 1987-11-13 1989-10-03 Donmicheal T Anthony Intravascular ultrasonic catheter/probe and method for treating intravascular blockage
JPH0725924Y2 (en) 1987-11-17 1995-06-14 オリンパス光学工業株式会社 Bending mechanism of medical treatment tool
US4873978A (en) 1987-12-04 1989-10-17 Robert Ginsburg Device and method for emboli retrieval
US5421824A (en) 1988-02-10 1995-06-06 Boston Scientific Corporation Bladder evacuator
US4890611A (en) 1988-04-05 1990-01-02 Thomas J. Fogarty Endarterectomy apparatus and method
DE8904025U1 (en) 1988-04-07 1989-05-24 Schneider (Europe) Ag, Zuerich, Ch
US4921484A (en) 1988-07-25 1990-05-01 Cordis Corporation Mesh balloon catheter device
JPH0255064A (en) 1988-08-03 1990-02-23 Toa O Skin removal for throm bus in blood vessel using catheter and throm bus removing system in blood vessel using catheter
US4946440A (en) 1988-10-05 1990-08-07 Hall John E Evertible membrane catheter and method of use
US5011488A (en) 1988-12-07 1991-04-30 Robert Ginsburg Thrombus extraction system
DE8910603U1 (en) 1989-09-06 1989-12-07 Guenther, Rolf W., Prof. Dr.
US5009659A (en) 1989-10-30 1991-04-23 Schneider (Usa) Inc. Fiber tip atherectomy catheter
US5127626A (en) 1989-10-31 1992-07-07 Applied Vascular Devices, Inc. Apparatus for sealing around members extending therethrough
US5158564A (en) 1990-02-14 1992-10-27 Angiomed Ag Atherectomy apparatus
US5135484A (en) 1990-05-09 1992-08-04 Pioneering Technologies, Inc. Method of removing plaque from vessels
US5154724A (en) 1990-05-14 1992-10-13 Andrews Winston A Atherectomy catheter
US5100423A (en) 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
US5192290A (en) 1990-08-29 1993-03-09 Applied Medical Resources, Inc. Embolectomy catheter
US5329923A (en) 1991-02-15 1994-07-19 Lundquist Ingemar H Torquable catheter
US5158533A (en) 1991-03-26 1992-10-27 Gish Biomedical, Inc. Combined cardiotomy/venous/pleural drainage autotransfusion unit with filter and integral manometer and water seal
US5192274A (en) 1991-05-08 1993-03-09 Bierman Steven F Anchor pad for catheterization system
US5192286A (en) 1991-07-26 1993-03-09 Regents Of The University Of California Method and device for retrieving materials from body lumens
US5129910A (en) 1991-07-26 1992-07-14 The Regents Of The University Of California Stone expulsion stent
US5197485A (en) 1991-10-15 1993-03-30 Pilling Co. Method and apparatus for sampling aortic plaque
US5364345A (en) 1991-10-18 1994-11-15 Imagyn Medical, Inc. Method of tubal recanalization and catheter system therefor
US5389100A (en) 1991-11-06 1995-02-14 Imagyn Medical, Inc. Controller for manipulation of instruments within a catheter
WO1993019679A1 (en) 1992-04-07 1993-10-14 The Johns Hopkins University A percutaneous mechanical fragmentation catheter system
CA2093748C (en) 1992-04-24 1996-11-12 Roy D. Gravener Valve assembly for introducing instruments into body cavities
US5713848A (en) 1993-05-19 1998-02-03 Dubrul; Will R. Vibrating catheter
US5974938A (en) 1992-06-02 1999-11-02 Lloyd; Carter Francis Braiding machine
DE69328096T2 (en) 1992-06-26 2000-09-14 Schneider Usa Inc CATHETER WITH EXTENDABLE MACHINE WIRE TIP
US5496365A (en) 1992-07-02 1996-03-05 Sgro; Jean-Claude Autoexpandable vascular endoprosthesis
JPH06190049A (en) 1992-07-22 1994-07-12 Edward Iindo Dewar Thrombosis removal catheter
US5330442A (en) 1992-10-09 1994-07-19 United States Surgical Corporation Suture retaining clip
US5643297A (en) 1992-11-09 1997-07-01 Endovascular Instruments, Inc. Intra-artery obstruction clearing apparatus and methods
US5490859A (en) 1992-11-13 1996-02-13 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
FR2699809B1 (en) 1992-12-28 1995-02-17 Celsa Lg Device which can selectively constitute a temporary blood filter.
US5527326A (en) 1992-12-29 1996-06-18 Thomas J. Fogarty Vessel deposit shearing apparatus
US5456667A (en) 1993-05-20 1995-10-10 Advanced Cardiovascular Systems, Inc. Temporary stenting catheter with one-piece expandable segment
EP0630617B1 (en) 1993-06-24 1998-09-02 Schneider (Europe) GmbH Suction catheter assembly
US5419774A (en) 1993-07-13 1995-05-30 Scimed Life Systems, Inc. Thrombus extraction device
US5370653A (en) 1993-07-22 1994-12-06 Micro Therapeutics, Inc. Thrombectomy method and apparatus
US5462529A (en) 1993-09-29 1995-10-31 Technology Development Center Adjustable treatment chamber catheter
US5476450A (en) 1993-11-04 1995-12-19 Ruggio; Joseph M. Apparatus and method for aspirating intravascular, pulmonary and cardiac obstructions
JP3659664B2 (en) 1994-05-31 2005-06-15 テルモ株式会社 Medical tube
US6123715A (en) 1994-07-08 2000-09-26 Amplatz; Curtis Method of forming medical devices; intravascular occlusion devices
EP0769926B2 (en) 1994-07-08 2006-11-22 ev3 Inc. Intravascular filtering device
WO2000053120A1 (en) 1994-07-08 2000-09-14 Microvena Corporation Minimally invasive medical device deployment and retrieval system
US5549626A (en) 1994-12-23 1996-08-27 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Vena caval filter
US5762995A (en) 1995-01-13 1998-06-09 Fuji Photo Optical Co., Ltd. Flexible sheathing tube construction, and method for fabrication thereof
RU2170059C2 (en) 1995-03-28 2001-07-10 Штрауб Медикал Аг Catheter for removal of hazardous deposits from individual's blood vessels
AU699965B2 (en) 1995-03-28 1998-12-17 Straub Medical Ag Catheter for detaching abnormal deposits from blood vessels in humans
CA2218072A1 (en) 1995-04-14 1996-10-17 Schneider (Usa) Inc. Rolling membrane stent delivery device
US6824553B1 (en) 1995-04-28 2004-11-30 Target Therapeutics, Inc. High performance braided catheter
US5827229A (en) 1995-05-24 1998-10-27 Boston Scientific Corporation Northwest Technology Center, Inc. Percutaneous aspiration thrombectomy catheter system
US5591137A (en) 1995-07-14 1997-01-07 Merit Medical Systems, Inc. Hemostasis valve with locking seal
US5681335A (en) 1995-07-31 1997-10-28 Micro Therapeutics, Inc. Miniaturized brush with hollow lumen brush body
US6264663B1 (en) 1995-10-06 2001-07-24 Metamorphic Surgical Devices, Llc Device for removing solid objects from body canals, cavities and organs including an invertable basket
US5782817A (en) 1995-11-06 1998-07-21 Cordis Corporation Catheter introducer having toroidal valve
US5769816A (en) 1995-11-07 1998-06-23 Embol-X, Inc. Cannula with associated filter
US5827304A (en) 1995-11-16 1998-10-27 Applied Medical Resources Corporation Intraluminal extraction catheter
US5895406A (en) 1996-01-26 1999-04-20 Cordis Corporation Axially flexible stent
US5895398A (en) 1996-02-02 1999-04-20 The Regents Of The University Of California Method of using a clot capture coil
AR001162A1 (en) 1996-03-06 1997-09-24 Parodi Juan C Non-migratory positioning endovascular expander
US5860938A (en) 1996-03-07 1999-01-19 Scimed Life Systems, Inc. Medical pressure sensing guide wire
US5814026A (en) 1996-03-19 1998-09-29 Yoon; Inbae Endoscopic portal having a universal seal and methods for introducing instruments therethrough
US5971938A (en) 1996-04-02 1999-10-26 Hart; Charles C. Access device with expandable containment member
US5846251A (en) 1996-07-22 1998-12-08 Hart; Charles C. Access device with expandable containment member
US6800080B1 (en) 1996-05-03 2004-10-05 Scimed Life Systems, Inc. Medical retrieval device
US20010049517A1 (en) 1997-03-06 2001-12-06 Gholam-Reza Zadno-Azizi Method for containing and removing occlusions in the carotid arteries
US6544276B1 (en) 1996-05-20 2003-04-08 Medtronic Ave. Inc. Exchange method for emboli containment
US5972019A (en) 1996-07-25 1999-10-26 Target Therapeutics, Inc. Mechanical clot treatment device
US6066158A (en) 1996-07-25 2000-05-23 Target Therapeutics, Inc. Mechanical clot encasing and removal wire
EP1226796B1 (en) 1997-02-03 2005-06-01 Angioguard, Inc. Vascular filter
US5827321A (en) 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
US5882329A (en) 1997-02-12 1999-03-16 Prolifix Medical, Inc. Apparatus and method for removing stenotic material from stents
US5800457A (en) 1997-03-05 1998-09-01 Gelbfish; Gary A. Intravascular filter and associated methodology
US7094249B1 (en) 1997-03-06 2006-08-22 Boston Scientific Scimed, Inc. Distal protection device and method
WO1998038929A1 (en) 1997-03-06 1998-09-11 Percusurge, Inc. Intravascular aspiration system
EP0934092A4 (en) 1997-03-06 2008-03-26 Boston Scient Scimed Inc Distal protection device and method
US6152946A (en) 1998-03-05 2000-11-28 Scimed Life Systems, Inc. Distal protection device and method
US5814064A (en) 1997-03-06 1998-09-29 Scimed Life Systems, Inc. Distal protection device
WO1998047447A1 (en) 1997-04-23 1998-10-29 Dubrul William R Bifurcated stent and distal protection system
US5911710A (en) 1997-05-02 1999-06-15 Schneider/Namic Medical insertion device with hemostatic valve
US5868708A (en) 1997-05-07 1999-02-09 Applied Medical Resources Corporation Balloon catheter apparatus and method
US5911734A (en) 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
WO1998051237A1 (en) 1997-05-16 1998-11-19 Jonathan Gertler Catheter-filter set having a compliant seal
US5836966A (en) 1997-05-22 1998-11-17 Scimed Life Systems, Inc. Variable expansion force stent
US5895400A (en) 1997-06-27 1999-04-20 Abela; George S. Catheter with bristles
ATE286687T1 (en) * 1997-07-17 2005-01-15 Schneider Europ Gmbh STENT AND PRODUCTION METHOD THEREOF
JP3070735B2 (en) 1997-07-23 2000-07-31 株式会社日立製作所 Friction stir welding method
US6361545B1 (en) 1997-09-26 2002-03-26 Cardeon Corporation Perfusion filter catheter
WO1999015088A1 (en) 1997-09-26 1999-04-01 Duke University Perfusion-occlusion catheter and methods
US6066149A (en) 1997-09-30 2000-05-23 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
US5908435A (en) 1997-10-23 1999-06-01 Samuels; Shaun L. W. Expandable lumen device and method of use
IES81060B2 (en) 1997-11-07 2000-01-12 Salviac Ltd An embolic protection device
JP2001522631A (en) 1997-11-07 2001-11-20 プロリフィックス メディカル, インコーポレイテッド Method and system for treating obstruction in a body lumen
US20100030256A1 (en) 1997-11-12 2010-02-04 Genesis Technologies Llc Medical Devices and Methods
US20040199202A1 (en) 1997-11-12 2004-10-07 Genesis Technologies Llc Biological passageway occlusion removal
US5947985A (en) 1997-11-12 1999-09-07 Imran; Mir A. Apparatus and method for cleaning diseased vein grafts
US9498604B2 (en) 1997-11-12 2016-11-22 Genesis Technologies Llc Medical device and method
US6530923B1 (en) 1998-02-10 2003-03-11 Artemis Medical, Inc. Tissue removal methods and apparatus
DE69839888D1 (en) 1997-11-12 2008-09-25 Genesis Technologies Llc DEVICE FOR REMOVING OCCLUSIONS IN BIOLOGICAL PASSES
US5954737A (en) 1997-12-19 1999-09-21 Neurovasx, Inc. Thrombus macerator catheter
US9586023B2 (en) 1998-02-06 2017-03-07 Boston Scientific Limited Direct stream hydrodynamic catheter system
WO1999039649A1 (en) 1998-02-10 1999-08-12 Dubrul William R Occlusion, anchoring, tensioning and flow direction apparatus and methods for use
US6602265B2 (en) 1998-02-10 2003-08-05 Artemis Medical, Inc. Tissue separation medical device and method
JP2002502626A (en) 1998-02-10 2002-01-29 アーテミス・メディカル・インコーポレイテッド Supplementary device and method of using the same
US6824550B1 (en) 2000-04-06 2004-11-30 Norbon Medical, Inc. Guidewire for crossing occlusions or stenosis
US6423032B2 (en) 1998-03-13 2002-07-23 Arteria Medical Science, Inc. Apparatus and methods for reducing embolization during treatment of carotid artery disease
US6960222B2 (en) 1998-03-13 2005-11-01 Gore Enterprise Holdins, Inc. Catheter having a funnel-shaped occlusion balloon of uniform thickness and methods of manufacture
AR017498A1 (en) 1998-03-13 2001-09-12 Arteria Medical Science Llc DEVICE FOR PROTECTION AGAINST EMBOLIZATIONS, IN ANGIOPLASTIA DE CAROTIDA
US6666874B2 (en) 1998-04-10 2003-12-23 Endicor Medical, Inc. Rotational atherectomy system with serrated cutting tip
US6450989B2 (en) 1998-04-27 2002-09-17 Artemis Medical, Inc. Dilating and support apparatus with disease inhibitors and methods for use
US6511492B1 (en) 1998-05-01 2003-01-28 Microvention, Inc. Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
US5911754A (en) 1998-07-24 1999-06-15 Uni-Cath Inc. Flexible stent with effective strut and connector patterns
US6306163B1 (en) 1998-08-04 2001-10-23 Advanced Cardiovascular Systems, Inc. Assembly for collecting emboli and method of use
US6228060B1 (en) 1998-09-02 2001-05-08 Becton, Dickinson And Company Blood seal having a spring-biased septum
US6458103B1 (en) 1998-10-23 2002-10-01 Scimed Life Systems, Inc. Axially activated hemostasis valve with lumen size selection
US6544278B1 (en) 1998-11-06 2003-04-08 Scimed Life Systems, Inc. Rolling membrane stent delivery system
IE991011A1 (en) 1998-12-01 2000-07-12 Atropos Ltd A Device
US6623460B1 (en) 1998-12-08 2003-09-23 St. Jude Medical, Daig Division Partitioned hemostasis valve system
CA2256131A1 (en) 1998-12-16 2000-06-16 Micro Therapeutics, Inc. Miniaturized medical brush
WO2000041633A1 (en) * 1999-01-15 2000-07-20 Ventrica, Inc. Methods and devices for forming vascular anastomoses
US6767353B1 (en) 2002-03-01 2004-07-27 Samuel Shiber Thrombectomy catheter
US6146396A (en) 1999-03-05 2000-11-14 Board Of Regents, The University Of Texas System Declotting method and apparatus
US20020169474A1 (en) 1999-03-08 2002-11-14 Microvena Corporation Minimally invasive medical device deployment and retrieval system
US6632236B2 (en) 1999-03-12 2003-10-14 Arteria Medical Science, Inc. Catheter having radially expandable main body
US6156055A (en) 1999-03-23 2000-12-05 Nitinol Medical Technologies Inc. Gripping device for implanting, repositioning or extracting an object within a body vessel
JP3533107B2 (en) 1999-04-26 2004-05-31 ペンタックス株式会社 Endoscope snare
US6350271B1 (en) 1999-05-17 2002-02-26 Micrus Corporation Clot retrieval device
US6068645A (en) 1999-06-07 2000-05-30 Tu; Hosheng Filter system and methods for removing blood clots and biological material
US6458139B1 (en) 1999-06-21 2002-10-01 Endovascular Technologies, Inc. Filter/emboli extractor for use in variable sized blood vessels
US7637905B2 (en) 2003-01-15 2009-12-29 Usgi Medical, Inc. Endoluminal tool deployment system
US6179859B1 (en) 1999-07-16 2001-01-30 Baff Llc Emboli filtration system and methods of use
US6544279B1 (en) 2000-08-09 2003-04-08 Incept, Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US20020022858A1 (en) 1999-07-30 2002-02-21 Demond Jackson F. Vascular device for emboli removal having suspension strut and methods of use
US20020026211A1 (en) 1999-12-23 2002-02-28 Farhad Khosravi Vascular device having emboli and thrombus removal element and methods of use
US6530939B1 (en) 1999-07-30 2003-03-11 Incept, Llc Vascular device having articulation region and methods of use
US7306618B2 (en) 1999-07-30 2007-12-11 Incept Llc Vascular device for emboli and thrombi removal and methods of use
US6620182B1 (en) 1999-07-30 2003-09-16 Incept Llc Vascular filter having articulation region and methods of use in the ascending aorta
US6203561B1 (en) 1999-07-30 2001-03-20 Incept Llc Integrated vascular device having thrombectomy element and vascular filter and methods of use
US6589263B1 (en) 1999-07-30 2003-07-08 Incept Llc Vascular device having one or more articulation regions and methods of use
US6142987A (en) 1999-08-03 2000-11-07 Scimed Life Systems, Inc. Guided filter with support wire and methods of use
US6168579B1 (en) 1999-08-04 2001-01-02 Scimed Life Systems, Inc. Filter flush system and methods of use
US6620179B2 (en) 1999-08-10 2003-09-16 Neurovasx, Inc. Clot disrupting wire/catheter assembly
US6322572B1 (en) 1999-08-10 2001-11-27 Neurovasx, Inc. Thrombus macerator catheter
ES2209503T3 (en) 1999-08-27 2004-06-16 Ev3 Inc. FOLDING MEDICAL DEVICE.
US6702830B1 (en) 1999-09-17 2004-03-09 Bacchus Vascular, Inc. Mechanical pump for removal of fragmented matter and methods of manufacture and use
US6454775B1 (en) 1999-12-06 2002-09-24 Bacchus Vascular Inc. Systems and methods for clot disruption and retrieval
US6939361B1 (en) 1999-09-22 2005-09-06 Nmt Medical, Inc. Guidewire for a free standing intervascular device having an integral stop mechanism
US6660013B2 (en) 1999-10-05 2003-12-09 Omnisonics Medical Technologies, Inc. Apparatus for removing plaque from blood vessels using ultrasonic energy
US6364895B1 (en) 1999-10-07 2002-04-02 Prodesco, Inc. Intraluminal filter
US6264672B1 (en) 1999-10-25 2001-07-24 Biopsy Sciences, Llc Emboli capturing device
US6402771B1 (en) 1999-12-23 2002-06-11 Guidant Endovascular Solutions Snare
US6660021B1 (en) 1999-12-23 2003-12-09 Advanced Cardiovascular Systems, Inc. Intravascular device and system
JP3369523B2 (en) 1999-12-27 2003-01-20 日本ピラー工業株式会社 Check valve
WO2001049341A2 (en) 1999-12-31 2001-07-12 Bacchus Vascular Inc. Method and system for re-infusing filtered bodily aspirates
US6663613B1 (en) 2000-01-25 2003-12-16 Bacchus Vascular, Inc. System and methods for clot dissolution
WO2001067989A2 (en) 2000-03-10 2001-09-20 Don Michael T Anthony Vascular embolism preventon device employing filters
US20030153873A1 (en) 2000-03-13 2003-08-14 Luther Ronald B. Hard tip over-the-needle intravenous catheter
US6719717B1 (en) 2000-03-17 2004-04-13 Advanced Research & Technology Institute, Inc. Thrombectomy treatment system and method
US6695865B2 (en) 2000-03-20 2004-02-24 Advanced Bio Prosthetic Surfaces, Ltd. Embolic protection device
US6514273B1 (en) 2000-03-22 2003-02-04 Endovascular Technologies, Inc. Device for removal of thrombus through physiological adhesion
US20040167567A1 (en) 2001-03-23 2004-08-26 Cano Gerald G. Method and apparatus for capturing objects beyond an operative site in medical procedures
US20010031981A1 (en) * 2000-03-31 2001-10-18 Evans Michael A. Method and device for locating guidewire and treating chronic total occlusions
US6602271B2 (en) 2000-05-24 2003-08-05 Medtronic Ave, Inc. Collapsible blood filter with optimal braid geometry
US7285126B2 (en) 2000-06-29 2007-10-23 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US7766921B2 (en) 2000-06-29 2010-08-03 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US20040073243A1 (en) 2000-06-29 2004-04-15 Concentric Medical, Inc., A Delaware Corporation Systems, methods and devices for removing obstructions from a blood vessel
CA2411699A1 (en) 2000-06-29 2002-01-10 Ivan Sepetka Systems, methods and devices for removing obstructions from a blood vessel
US7727242B2 (en) 2000-06-29 2010-06-01 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US6663650B2 (en) 2000-06-29 2003-12-16 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US8298257B2 (en) 2000-06-29 2012-10-30 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US20070208371A1 (en) 2000-06-29 2007-09-06 Concentric Medical, Inc. Devices and methods for removing obstructions from a patient and methods for making obstruction removing devices
US6824545B2 (en) 2000-06-29 2004-11-30 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US6575995B1 (en) 2000-07-14 2003-06-10 Advanced Cardiovascular Systems, Inc. Expandable cage embolic material filter system and method
DE60119343T2 (en) 2000-09-05 2006-09-07 Medevert Ltd., Lymington Body cavity lining
US6569181B1 (en) 2000-12-20 2003-05-27 Advanced Cardiovascular Systems, Inc. Stent retrieval system
US6936059B2 (en) 2001-01-16 2005-08-30 Scimed Life Systems, Inc. Endovascular guidewire filter and methods of use
US6743237B2 (en) 2001-01-17 2004-06-01 Innon Holdings, Llc Endoscopic stone extraction device with improved basket
US6610077B1 (en) 2001-01-23 2003-08-26 Endovascular Technologies, Inc. Expandable emboli filter and thrombectomy device
US6802846B2 (en) 2001-02-12 2004-10-12 Ams Research Corporation Foreign body retrieval device and method
US6818006B2 (en) 2001-04-03 2004-11-16 Medtronic Vascular, Inc. Temporary intraluminal filter guidewire
US6800083B2 (en) 2001-04-09 2004-10-05 Scimed Life Systems, Inc. Compressible atherectomy burr
US6500186B2 (en) 2001-04-17 2002-12-31 Scimed Life Systems, Inc. In-stent ablative tool
EP1254634B1 (en) 2001-05-03 2003-07-23 Radi Medical Systems Ab Guiding tool for wound closure element
US6635070B2 (en) 2001-05-21 2003-10-21 Bacchus Vascular, Inc. Apparatus and methods for capturing particulate material within blood vessels
US7041084B2 (en) 2001-05-24 2006-05-09 Fojtik Shawn P Hand-held, hand operated power syringe and methods
US6596011B2 (en) 2001-06-12 2003-07-22 Cordis Corporation Emboli extraction catheter and vascular filter system
US20050085769A1 (en) 2001-07-17 2005-04-21 Kerberos Proximal Solutions Fluid exchange system for controlled and localized irrigation and aspiration
US6846029B1 (en) 2001-08-09 2005-01-25 Gary Dean Ragner Torus-shaped mechanical gripper
US6902540B2 (en) 2001-08-22 2005-06-07 Gerald Dorros Apparatus and methods for treating stroke and controlling cerebral flow characteristics
US6551342B1 (en) 2001-08-24 2003-04-22 Endovascular Technologies, Inc. Embolic filter
US6755847B2 (en) 2001-10-05 2004-06-29 Scimed Life Systems, Inc. Emboli capturing device and method of manufacture therefor
US7052500B2 (en) 2001-10-19 2006-05-30 Scimed Life Systems, Inc. Embolus extractor
US20040138692A1 (en) 2003-01-13 2004-07-15 Scimed Life Systems, Inc. Embolus extractor
US7147656B2 (en) 2001-12-03 2006-12-12 Xtent, Inc. Apparatus and methods for delivery of braided prostheses
JP2005511989A (en) 2001-12-04 2005-04-28 ウイリアム エー.クック オーストラリア ピティワイ、リミティド. Access valve
US7485125B2 (en) 2001-12-17 2009-02-03 Smith & Nephew, Inc. Cutting instrument
US6913594B2 (en) 2001-12-31 2005-07-05 Biosense Webster, Inc. Dual-function catheter handle
US7306574B2 (en) 2002-01-17 2007-12-11 Optivia Medical, Llc Steerable dilatation system, dilator, and related methods for stepped dilatation
US7029494B2 (en) * 2002-02-08 2006-04-18 Scimed Life Systems, Inc. Braided modular stent with hourglass-shaped interfaces
AU2003220066A1 (en) 2002-03-06 2003-09-22 Boston Scientific Limited Medical retrieval device
US20030176884A1 (en) 2002-03-12 2003-09-18 Marwane Berrada Everted filter device
US6866679B2 (en) 2002-03-12 2005-03-15 Ev3 Inc. Everting stent and stent delivery system
US6960189B2 (en) 2002-03-29 2005-11-01 Gore Enterprise Holdings Proximal catheter assembly allowing for natural and suction-assisted aspiration
US7033336B2 (en) 2002-03-29 2006-04-25 Gore Enterprise Holdings, Inc. Proximal catheter assembly having a relief valve
US7052511B2 (en) 2002-04-04 2006-05-30 Scimed Life Systems, Inc. Delivery system and method for deployment of foreshortening endoluminal devices
US8070769B2 (en) 2002-05-06 2011-12-06 Boston Scientific Scimed, Inc. Inverted embolic protection filter
US6830561B2 (en) 2002-05-08 2004-12-14 Scimed Life Systems, Inc. Catheter with protective sleeve
US7585309B2 (en) 2002-05-16 2009-09-08 Boston Scientific Scimed, Inc. Aortic filter
US7232452B2 (en) 2002-07-12 2007-06-19 Ev3 Inc. Device to create proximal stasis
DE10233085B4 (en) 2002-07-19 2014-02-20 Dendron Gmbh Stent with guide wire
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US7223253B2 (en) 2002-07-29 2007-05-29 Gore Enterprise Holdings, Inc. Blood aspiration system and methods of use
EP1402826B1 (en) 2002-08-20 2013-06-12 Nipro Corporation Thrombus capture catheter
JP2004097807A (en) 2002-08-20 2004-04-02 Nipro Corp Thrombus capturing catheter
JP4243080B2 (en) 2002-08-23 2009-03-25 旭有機材工業株式会社 Pinch valve
DE10242444A1 (en) 2002-09-11 2004-04-01 pfm Produkte für die Medizin AG extractor
DE10242984B4 (en) 2002-09-17 2010-09-23 Sanatis Gmbh Device for producing mixtures of two components
US7056328B2 (en) 2002-09-18 2006-06-06 Arnott Richard J Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire
US7998163B2 (en) 2002-10-03 2011-08-16 Boston Scientific Scimed, Inc. Expandable retrieval device
US20040199201A1 (en) 2003-04-02 2004-10-07 Scimed Life Systems, Inc. Embolectomy devices
US7736300B2 (en) 2003-04-14 2010-06-15 Softscope Medical Technologies, Inc. Self-propellable apparatus and method
US7862584B2 (en) 2003-05-07 2011-01-04 Anpa Medical, Inc. Suture lock
US20040267272A1 (en) 2003-05-12 2004-12-30 Henniges Bruce D Bone cement mixing and delivery system
US7722634B2 (en) 2003-07-03 2010-05-25 Regents Of The University Of Minnesota Medical device and method of intravenous filtration
WO2005025643A2 (en) 2003-09-04 2005-03-24 Secant Medical, Llc Endovascular snare for capture and removal of arterial emboli
US7172579B2 (en) 2003-09-09 2007-02-06 Civco Medical Instruments Co., Inc. System and method for irrigation and tissue evacuation and collection
US8034003B2 (en) 2003-09-11 2011-10-11 Depuy Mitek, Inc. Tissue extraction and collection device
US20050059993A1 (en) 2003-09-17 2005-03-17 Kamal Ramzipoor Embolectomy device
US8388630B2 (en) 2003-09-18 2013-03-05 Boston Scientific Scimed, Inc. Medical retrieval devices and methods
JP3660931B2 (en) 2003-09-22 2005-06-15 新 石丸 Thrombus embolus capture device
US20070255252A1 (en) 2003-10-07 2007-11-01 Mehta Bharat A Embolectomy Catheter
US20050085826A1 (en) 2003-10-21 2005-04-21 Scimed Life Systems, Inc. Unfolding balloon catheter for proximal embolus protection
US7344550B2 (en) 2003-10-21 2008-03-18 Boston Scientific Scimed, Inc. Clot removal device
US7220269B1 (en) 2003-11-06 2007-05-22 Possis Medical, Inc. Thrombectomy catheter system with occluder and method of using same
JP2005230132A (en) 2004-02-18 2005-09-02 Asahi Intecc Co Ltd Medical treatment tool
NL1027728C2 (en) 2003-12-24 2005-07-05 Kedge Holding Bv Safety device installed on roof of object e.g. house, comprises flexible fastening flap that extends laterally between flange portions, for firm and durable connection to object
US20070179513A1 (en) 2004-01-09 2007-08-02 Deutsch Harvey L Method and device for removing an occlusion
US7069835B2 (en) 2004-01-12 2006-07-04 Surpass Medical Ltd. Striped braided element
EP1740122A2 (en) 2004-01-20 2007-01-10 Massachusetts General Hospital Permanent thrombus filtering stent
US7637903B2 (en) 2004-02-09 2009-12-29 Cryocor, Inc. Catheter articulation segment with alternating cuts
EP1987787A1 (en) 2004-02-19 2008-11-05 Applied Medical Resources Corporation Embolectomy capture sheath
ATE431724T1 (en) 2004-03-04 2009-06-15 Straub Medical Ag CATHETER FOR SUCTIONING, FRAGMENTING AND EXTRACTING REMOVABLE MATERIAL FROM BLOOD VESSELS
US20070118165A1 (en) 2004-03-08 2007-05-24 Demello Jonathan R System and method for removal of material from a blood vessel using a small diameter catheter
US20080228209A1 (en) 2004-03-08 2008-09-18 Demello Richard M System and method for removal of material from a blood vessel using a small diameter catheter
DE102004012351A1 (en) * 2004-03-11 2005-09-29 pfm Produkte für die Medizin AG Device for recanalizing a cavity, organ or vessel
US9039724B2 (en) 2004-03-19 2015-05-26 Aga Medical Corporation Device for occluding vascular defects
WO2005094283A2 (en) 2004-03-25 2005-10-13 Hauser David L Vascular filter device
US20160022293A1 (en) 2004-04-15 2016-01-28 Genesis Technologies Llc Medical device and method
JP2005323702A (en) 2004-05-13 2005-11-24 Asahi Intecc Co Ltd Medical treatment instrument
US20050283165A1 (en) 2004-06-17 2005-12-22 Gadberry Donald L Hemostasis valve and method for assembling same
US20050283166A1 (en) 2004-06-17 2005-12-22 Secant Medical, Llc Expandible snare
US20060020286A1 (en) 2004-07-22 2006-01-26 Volker Niermann Device for filtering blood in a vessel with helical elements
DE102004040868A1 (en) 2004-08-23 2006-03-09 Miloslavski, Elina Device for removing thrombi
US20060047286A1 (en) 2004-08-31 2006-03-02 Stephen West Clot retrieval device
CN100529637C (en) 2004-09-01 2009-08-19 鸿富锦精密工业(深圳)有限公司 Heat pipe and its manufacturing method
JP2008515467A (en) 2004-09-17 2008-05-15 コーディス・ニューロバスキュラー・インコーポレイテッド Vascular occlusion device with embolic mesh ribbon
JP4324535B2 (en) 2004-09-28 2009-09-02 朝日インテック株式会社 Medical treatment tool
US7306585B2 (en) 2004-09-30 2007-12-11 Engineering Resources Group, Inc. Guide catheter
US20060217664A1 (en) 2004-11-15 2006-09-28 Hattler Brack G Telescoping vascular dilator
US8512350B2 (en) 2004-12-01 2013-08-20 Boston Scientific Scimed, Inc. Single operator medical device handles and related methods of use
US20060173525A1 (en) 2005-02-02 2006-08-03 Percutaneous Systems, Inc. Methods and systems for deploying luminal prostheses
US7632296B2 (en) 2005-03-03 2009-12-15 Boston Scientific Scimed, Inc. Rolling membrane with hydraulic recapture means for self expanding stent
US7244243B2 (en) 2005-03-10 2007-07-17 Banning Gray Lary Catheter for treatment of severe pulmonary emboli
US7955345B2 (en) 2005-04-01 2011-06-07 Nexgen Medical Systems, Inc. Thrombus removal system and process
US7955344B2 (en) 2005-04-01 2011-06-07 Nexgen Medical Systems, Inc. Thrombus removal system and process
US8475487B2 (en) 2005-04-07 2013-07-02 Medrad, Inc. Cross stream thrombectomy catheter with flexible and expandable cage
US20060270911A1 (en) 2005-04-08 2006-11-30 Voegele James W Tissue retraction device
EP1871286A2 (en) 2005-04-18 2008-01-02 Salviac Limited A retrieval catheter
US7645290B2 (en) 2005-05-05 2010-01-12 Lucas Paul R Multi-functional thrombectomy device
US20060270974A1 (en) 2005-05-16 2006-11-30 Kerberos Proximal Solutions, Inc. Methods and systems for filtering aspirated materials
US8663312B2 (en) 2005-05-27 2014-03-04 Hlt, Inc. Intravascular cuff
US8109962B2 (en) 2005-06-20 2012-02-07 Cook Medical Technologies Llc Retrievable device having a reticulation portion with staggered struts
JP4926055B2 (en) 2005-06-20 2012-05-09 テルモ株式会社 Intravascular foreign matter removal wire and medical device
US8221348B2 (en) 2005-07-07 2012-07-17 St. Jude Medical, Cardiology Division, Inc. Embolic protection device and methods of use
US7766934B2 (en) 2005-07-12 2010-08-03 Cook Incorporated Embolic protection device with an integral basket and bag
US8123769B2 (en) 2005-08-12 2012-02-28 Cook Medical Technologies Llc Thrombus removal device
WO2007022055A1 (en) 2005-08-12 2007-02-22 Massicotte J Mathieu Method and device for extracting objects from the body
US7938820B2 (en) 2005-08-18 2011-05-10 Lumen Biomedical, Inc. Thrombectomy catheter
JP4995830B2 (en) 2005-10-11 2012-08-08 コヴィディエン・アクチェンゲゼルシャフト IV catheter with in-line valve and method related thereto
US8252017B2 (en) 2005-10-18 2012-08-28 Cook Medical Technologies Llc Invertible filter for embolic protection
US20070149996A1 (en) 2005-12-28 2007-06-28 Medtronic Vascular, Inc. Low profile filter
US20070161963A1 (en) 2006-01-09 2007-07-12 Smalling Medical Ventures, Llc Aspiration thrombectomy catheter system, and associated methods
ES2524778T3 (en) 2006-02-01 2014-12-12 The Cleveland Clinic Foundation An apparatus to increase blood flow through a clogged blood vessel
EP1986568B1 (en) 2006-02-03 2017-04-05 Covidien LP Methods and devices for restoring blood flow within blocked vasculature
DE602007003871D1 (en) 2006-03-06 2010-02-04 Terumo Corp atherectomy
WO2007103167A1 (en) 2006-03-08 2007-09-13 Wilson-Cook Medical Inc. Stent-cleaning assembly and method
US7993302B2 (en) 2006-05-09 2011-08-09 Stephen Hebert Clot retrieval device
US7534234B2 (en) 2006-05-09 2009-05-19 Fojtik Shawn P Hand-held aspiration syringe and methods
US7905877B1 (en) 2006-05-12 2011-03-15 Micrus Design Technology, Inc. Double helix reinforced catheter
US20070288054A1 (en) 2006-06-13 2007-12-13 Tanaka Don A Vascular thrombectomby apparatus and method of use
US20080234722A1 (en) 2006-06-14 2008-09-25 Possis Medical, Inc. Inferior vena cava filter on guidewire
US20090018566A1 (en) 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
US20100190156A1 (en) 2006-08-07 2010-07-29 Nsure Holding B.V. Quality control of agricultural products based on gene expression
US20080097401A1 (en) 2006-09-22 2008-04-24 Trapp Benjamin M Cerebral vasculature device
DE102006048573B4 (en) 2006-10-13 2011-03-10 Festo Ag & Co. Kg pinch
US9149609B2 (en) 2006-10-16 2015-10-06 Embolitech, Llc Catheter for removal of an organized embolic thrombus
US7674247B2 (en) 2006-10-24 2010-03-09 Control Medical Technology, Llc Double barrel syringe and handles for use with double barrel syringes
WO2008057554A1 (en) 2006-11-08 2008-05-15 Cook Incorporated Thrombus removal device
AU2007342106B2 (en) 2007-01-03 2013-01-24 Cook Medical Technologies Llc Valve assembly
US7722568B2 (en) 2007-01-29 2010-05-25 Onset Medical Corporation Expandable intra-aortic balloon pump sheath
MX348111B (en) 2007-02-09 2017-05-26 Kci Licensing Inc System and method for applying reduced pressure at a tissue site.
US10064635B2 (en) 2007-04-17 2018-09-04 Covidien Lp Articulating retrieval devices
US8535334B2 (en) 2007-04-17 2013-09-17 Lazarus Effect, Inc. Complex wire formed devices
US8133174B2 (en) 2007-05-30 2012-03-13 Tyco Healthcare Group Lp Self constricting orifice seal
EP2157937B1 (en) 2007-06-04 2017-03-22 Sequent Medical, Inc. Devices for treatment of vascular defects
US9125683B2 (en) 2007-06-26 2015-09-08 Roxwood Medical Inc. Method and apparatus for placing a catheter within a vasculature
US9358037B2 (en) 2007-06-26 2016-06-07 Roxwood Medical, Inc. Method and apparatus for centering a microcatheter within a vasculature
US8858490B2 (en) 2007-07-18 2014-10-14 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US8343167B2 (en) 2007-08-06 2013-01-01 Reverse Medical Corporation Thrombectomy system and method
US20090076417A1 (en) 2007-08-08 2009-03-19 Gregory Allen Jones Glide Clip
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
WO2009055782A1 (en) 2007-10-26 2009-04-30 Possis Medical, Inc. Intravascular guidewire filter system for pulmonary embolism protection and embolism removal or maceration
ES2555204T3 (en) 2007-11-21 2015-12-29 T.J. Smith & Nephew Limited Suction and bandage device
US8636270B2 (en) 2007-12-19 2014-01-28 Boston Scientific Scimed, Inc. Structure for use as part of a medical device
JP5739159B2 (en) 2007-12-20 2015-06-24 ボーテックス・メディカル・インコーポレイテッドVortex Medical, Inc. System and apparatus for removing undesirable substances in the circulatory system
US20110213290A1 (en) 2007-12-20 2011-09-01 Vortex Medical Systems and Methods for Removing Undesirable Material Within a Circulatory System
EP2231037B1 (en) 2007-12-26 2015-08-12 Lazarus Effect, Inc. Retrieval systems
US8021380B2 (en) 2008-01-11 2011-09-20 Dustin Thompson Obstruction removal system
WO2009094511A1 (en) 2008-01-24 2009-07-30 Boston Scientific Scimed, Inc. Structure for use as part of a medical device
AU2009217354B2 (en) 2008-02-22 2013-10-10 Covidien Lp Methods and apparatus for flow restoration
US20090248059A1 (en) 2008-03-25 2009-10-01 Hesham Morsi Embolectomy Catheter
US7938809B2 (en) 2008-04-14 2011-05-10 Merit Medical Systems, Inc. Quick release hemostasis valve
US9101748B2 (en) 2008-05-08 2015-08-11 Becton, Dickinson And Company Push-button blood control
US20090292307A1 (en) 2008-05-22 2009-11-26 Nasser Razack Mechanical embolectomy device and method
EP2299916B1 (en) 2008-06-08 2018-08-08 Hotspur Technologies, Inc Apparatus for removing obstructive material from body lumens
US8939991B2 (en) 2008-06-08 2015-01-27 Hotspur Technologies, Inc. Apparatus and methods for removing obstructive material from body lumens
WO2009154441A1 (en) 2008-06-19 2009-12-23 Wittens Cornelis Hendrikus Ann A thrombectomy catheter and a device comprising the same
US20100023034A1 (en) 2008-06-19 2010-01-28 Coherex Medical, Inc. Clot retrieval method and device
WO2009157873A1 (en) 2008-06-27 2009-12-30 Singapore Health Services Pte. Ltd. Haemostatic valve
EP2307086B1 (en) 2008-07-03 2015-04-15 Hotspur Technologies, Inc Apparatus for treating obstructions within body lumens
US9101382B2 (en) 2009-02-18 2015-08-11 Hotspur Technologies, Inc. Apparatus and methods for treating obstructions within body lumens
US8475431B2 (en) 2008-07-18 2013-07-02 Cook Medical Technologies Llc Introducer sheath having a braided member and methods of manufacture
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
US8777976B2 (en) 2008-07-22 2014-07-15 Neuravi Limited Clot capture systems and associated methods
DE102008038195A1 (en) 2008-08-19 2010-02-25 Phenox Gmbh Device for opening occluded blood vessels
EP2301450B1 (en) 2008-08-29 2011-11-23 Rapid Medical Ltd. Embolectomy device
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
JP5529141B2 (en) 2008-09-22 2014-06-25 ホットスパー テクノロジーズ,インコーポレイテッド Fluid recovery system and usage
US20100087850A1 (en) 2008-10-03 2010-04-08 Nasser Razack Mechanical Embolectomy Device and Method
US8057496B2 (en) 2008-10-06 2011-11-15 Cook Medical Technologies Llc Mechanical thrombectomy device
DE102008053635A1 (en) 2008-10-29 2010-05-12 Acandis Gmbh & Co. Kg Medical device for recanalization of thrombi
DE102008043541A1 (en) 2008-11-07 2010-05-12 Biotronik Vi Patent Ag catheter shaft
CH699981A2 (en) 2008-11-27 2010-05-31 Straub Medical Ag Catheter for aspirating, fragmenting and out transport of removable material from blood vessels.
US8986291B2 (en) 2008-12-01 2015-03-24 Percutaneous Systems, Inc. Methods and systems for capturing and removing urinary stones from body cavities
US20110152920A1 (en) 2008-12-02 2011-06-23 Rapid Medical Ltd. Embolectomy device
US20110245807A1 (en) 2008-12-11 2011-10-06 Kaneka Corporation Medical Tube
JP2012513292A (en) 2008-12-23 2012-06-14 シルク・ロード・メディカル・インコーポレイテッド Method and system for treating acute ischemic stroke
GB0823658D0 (en) 2008-12-30 2009-02-04 Angiomed Ag Stent delivery device
US20100204712A1 (en) 2009-02-11 2010-08-12 Mark Mallaby Neurovascular microcatheter device, system and methods for use thereof
US8672835B2 (en) 2009-02-16 2014-03-18 Fujifilm Corporation Propellable apparatus and related methods
KR101006972B1 (en) 2009-02-19 2011-01-12 신경민 The stent that food counter current prevention and internal decomposition are possible
EP2403583B1 (en) 2009-03-06 2016-10-19 Lazarus Effect, Inc. Retrieval systems
US20100249815A1 (en) 2009-03-25 2010-09-30 Cook Incorporated Everted sheath thrombectomy device
DK2442860T3 (en) 2009-06-15 2019-06-24 Perflow Medical Ltd APPARATUS FOR POSSIBLE BLOOD FLOWING THROUGH AN UNCLUDED CAR
AU2015210338B2 (en) 2009-06-24 2018-02-01 Shifamed Holdings, Llc Steerable medical delivery devices and methods of use
US8357178B2 (en) 2009-07-08 2013-01-22 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8795345B2 (en) 2009-07-08 2014-08-05 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8057497B1 (en) 2009-07-28 2011-11-15 Seshadri Raju Thrombectomy removal device kit
WO2011017189A1 (en) 2009-08-04 2011-02-10 Wilson-Cook Medical Inc. Roll sleeve mechanism for proximal release stent delivery device
CH701695A1 (en) 2009-08-27 2011-02-28 Straub Medical Ag Catheter with protection system for aspirating, fragmenting and out pumping of removable material from hollow bodies or vessels, in particular of the human or animal body.
US7967790B2 (en) 2009-09-01 2011-06-28 Pacesetter, Inc. Hemostasis valve with iris seal
WO2011032712A1 (en) 2009-09-21 2011-03-24 Alexandrina Magierka Medical device
GB2474866B8 (en) 2009-10-29 2013-04-10 Xiros Ltd Knot slip resistant woven cord
US20110152993A1 (en) 2009-11-05 2011-06-23 Sequent Medical Inc. Multiple layer filamentary devices or treatment of vascular defects
DE102009052002B4 (en) 2009-11-05 2012-09-27 Acandis Gmbh & Co. Kg A medical device for recanalizing body cavities and set comprising such device
US20110118817A1 (en) 2009-11-17 2011-05-19 Boston Scientific Scimed, Inc. Stent delivery system
DE102009056450A1 (en) 2009-12-01 2011-06-09 Acandis Gmbh & Co. Kg Medical device for introduction into a hollow organ and method for producing such a device
WO2011073176A1 (en) 2009-12-15 2011-06-23 Novartis Ag Syringe
US8771289B2 (en) 2009-12-21 2014-07-08 Acist Medical Systems, Inc. Thrombus removal device and system
US8267897B2 (en) 2010-01-06 2012-09-18 W. L. Gore & Associates, Inc. Center twist hemostatic valve
US8801748B2 (en) 2010-01-22 2014-08-12 Lazarus Effect, Inc. Retrieval systems and methods for use thereof
WO2011097402A1 (en) 2010-02-05 2011-08-11 Stryker Nv Operations Limited Multimode occlusion and stenosis treatment apparatus and method of use
US20110196309A1 (en) 2010-02-10 2011-08-11 Wells John F Multifunctional Device And Methods For Tissue Surgery
CA2790345A1 (en) 2010-02-18 2011-08-25 BiO2 Medical, Inc. Vena cava filter catheter and method
US20110264133A1 (en) 2010-03-01 2011-10-27 Tyco Healthcare Group Lp Introducer sheaths, thrombus collection devices and associated methods
US8777893B2 (en) 2010-04-09 2014-07-15 Medtronic, Inc. Variable hemostasis valve and method of use
JP5808792B2 (en) 2010-04-13 2015-11-10 ミビ・ニューロサイエンス・リミテッド・ライアビリティ・カンパニーMivi Neuroscience LLC Acute stroke treatment device and system
US20130126559A1 (en) 2010-04-30 2013-05-23 Bayer Intellectual Property Gmbh Displacement Syringe
US9126016B2 (en) 2010-05-19 2015-09-08 Nfusion Vascular Systems Llc Augmented delivery catheter and method
JP4846044B1 (en) 2010-06-30 2011-12-28 テルモ株式会社 Medical device
WO2012009675A2 (en) 2010-07-15 2012-01-19 Lazarus Effect, Inc. Retrieval systems and methods for use thereof
WO2012011097A1 (en) 2010-07-19 2012-01-26 The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center Device of removing embolisms
US8753322B2 (en) 2010-08-10 2014-06-17 Spiracur Inc. Controlled negative pressure apparatus and alarm mechanism
US8858497B2 (en) 2010-09-07 2014-10-14 Angio Dynamics, Inc. Device and method for removing material from a hollow anatomical structure
US10039900B2 (en) 2010-09-07 2018-08-07 Angiodynamics, Inc. Fluid delivery and treatment device and method of use
US9039749B2 (en) 2010-10-01 2015-05-26 Covidien Lp Methods and apparatuses for flow restoration and implanting members in the human body
US9795408B2 (en) 2010-10-06 2017-10-24 Cruzar Medsystems, Inc. Catheter with vessel lining and methods for using same
US9381028B2 (en) 2010-10-15 2016-07-05 Endogrowth (Proprietary) Limited Inversible tubular member and a gripping device including such a member
US8845621B2 (en) 2010-10-19 2014-09-30 Distal Access, Llc Apparatus for rotating medical devices, systems including the apparatus, and associated methods
US20120101480A1 (en) 2010-10-21 2012-04-26 Boston Scientific Scimed, Inc. Catheter shaft
EP2629684B1 (en) 2010-10-22 2018-07-25 Neuravi Limited Clot engagement and removal system
DE102010051740A1 (en) 2010-11-19 2012-05-24 Phenox Gmbh thrombectomy
US8807517B2 (en) 2010-12-01 2014-08-19 Nelson Irrigation Corporation Rotary pinch valve
WO2012075415A1 (en) 2010-12-03 2012-06-07 Vortex Medical, Inc. Devices and methods for removing clots
US9345565B2 (en) 2010-12-30 2016-05-24 Claret Medical, Inc. Steerable dual filter cerebral protection system
US20120197277A1 (en) 2011-02-01 2012-08-02 Stinis Curtiss T Vascular plaque removal systems, devices, and methods
GB2487970B (en) 2011-02-11 2013-07-10 Cook Medical Technologies Llc Obstruction capture and removal device
WO2014139845A1 (en) 2013-03-14 2014-09-18 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
WO2012120490A2 (en) 2011-03-09 2012-09-13 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
WO2012132725A1 (en) 2011-03-25 2012-10-04 富士フイルム株式会社 Self-propelled device
US9107576B2 (en) 2011-04-20 2015-08-18 Fujifilm Corporation Endoscope insertion assisting device
US20120271231A1 (en) 2011-04-25 2012-10-25 Sony Agrawal Aspiration thrombectomy device
ES2683178T3 (en) 2011-05-23 2018-09-25 Covidien Lp Extraction systems
US9345499B2 (en) 2011-05-26 2016-05-24 Covidien Lp Pressure activated foreign body removal system and method of use
EP2540338B1 (en) 2011-06-03 2015-09-16 Cook Medical Technologies LLC Hemostatic valve with multi-layer valve structure
FR2976814B1 (en) 2011-06-22 2014-05-23 Perouse Medical HEMOSTATIC VALVE DEVICE FOR INTRODUCING MEDICAL DEVICE IN PATIENT, AND ASSOCIATED METHOD
US11026708B2 (en) 2011-07-26 2021-06-08 Thrombx Medical, Inc. Intravascular thromboembolectomy device and method using the same
US20130030460A1 (en) 2011-07-26 2013-01-31 Marks Michael P Intravascular thromboembolectomy device and method using the same
JP2014521462A (en) 2011-08-05 2014-08-28 シルク・ロード・メディカル・インコーポレイテッド Method and system for treating acute ischemic stroke
US10779855B2 (en) 2011-08-05 2020-09-22 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US8784442B2 (en) 2011-08-19 2014-07-22 Empirilon Technology, Llc Methods and systems for performing thrombectomy procedures
JP6133307B2 (en) 2011-10-17 2017-05-24 シークエント メディカル インコーポレイテッド Braiding machine and method of use
US8261648B1 (en) 2011-10-17 2012-09-11 Sequent Medical Inc. Braiding mechanism and methods of use
US9039721B2 (en) 2011-11-07 2015-05-26 C.R. Bard, Inc. Instruments for delivering transfascial sutures and methods of transfascial suturing
GB2498349B (en) 2012-01-10 2013-12-11 Cook Medical Technologies Llc Object capture device
CN104159535A (en) 2012-01-17 2014-11-19 波士顿科学西美德公司 Renal nerve modulation devices and methods for making and using the same
US9555217B2 (en) 2012-01-31 2017-01-31 Terumo Kabushiki Kaisha Catheter
US9216277B2 (en) 2012-03-20 2015-12-22 Cook Medical Technologies, LLC Hemostasis mechanism and method
US9211132B2 (en) 2012-06-27 2015-12-15 MicoVention, Inc. Obstruction removal system
US9445828B2 (en) 2012-07-05 2016-09-20 Cognition Medical Corp. Methods, devices, and systems for postconditioning with clot removal
US9332998B2 (en) 2012-08-13 2016-05-10 Covidien Lp Apparatus and methods for clot disruption and evacuation
US9308007B2 (en) 2012-08-14 2016-04-12 W. L. Gore & Associates, Inc. Devices and systems for thrombus treatment
US9597171B2 (en) 2012-09-11 2017-03-21 Covidien Lp Retrieval catheter with expandable tip
WO2014047650A1 (en) 2012-09-24 2014-03-27 Inceptus Medical LLC Device and method for treating vascular occlusion
US20220211400A1 (en) 2012-09-24 2022-07-07 Inari Medical, Inc. Device and method for treating vascular occlusion
WO2014055609A1 (en) 2012-10-03 2014-04-10 The University Of Toledo Minimally invasive thrombectomy invention
US11419620B2 (en) 2012-10-03 2022-08-23 The University Of Toledo Minimally invasive thrombectomy
US9456834B2 (en) 2012-10-31 2016-10-04 Covidien Lp Thrombectomy device with distal protection
US8784434B2 (en) 2012-11-20 2014-07-22 Inceptus Medical, Inc. Methods and apparatus for treating embolism
US10219924B2 (en) 2012-12-26 2019-03-05 Stryker Corporation Multilayer stent
KR101248472B1 (en) 2013-01-04 2013-04-03 (주)휴바이오메드 Hemostasis valve
US20140303658A1 (en) 2013-02-13 2014-10-09 Bayer Medical Care Inc. Thrombectomy Catheter System
US9585741B2 (en) 2013-02-22 2017-03-07 NeuroVasc Technologies, Inc Embolus removal device with blood flow restriction and related methods
US20160256255A9 (en) 2013-02-22 2016-09-08 Jianlu Ma Design and methods for a device with blood flow restriction feature for embolus removal in human vasculature
US9848882B2 (en) 2013-03-08 2017-12-26 Scientia Vascular, Llc Micro-fabricated embolic devices
BR112015022230A2 (en) 2013-03-11 2017-07-18 Boston Scient Scimed Inc medical device handles and related methods of use
US20140276403A1 (en) 2013-03-13 2014-09-18 DePuy Synthes Products, LLC Ischemic stroke device
US9439751B2 (en) 2013-03-15 2016-09-13 Bolton Medical, Inc. Hemostasis valve and delivery systems
US8715314B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment measurement methods
JP6435280B2 (en) 2013-03-15 2018-12-05 ナショナル ユニバーシティー オブ アイルランド, ゴールウェイ A device suitable for removing material from inside the lumen and from the walls of the body lumen
CN104068910A (en) 2013-03-26 2014-10-01 上海微创医疗器械(集团)有限公司 Blood vessel thrombus extracting system
WO2014160613A1 (en) 2013-03-29 2014-10-02 Silk Road Medical, Inc, Systems and methods for aspirating from a body lumen
AU2014250845B2 (en) 2013-04-12 2017-05-04 Don Michael International, Llc Apparatus and procedure for trapping embolic debris
US20140330286A1 (en) 2013-04-25 2014-11-06 Michael P. Wallace Methods and Devices for Removing Obstructing Material From the Human Body
US9439664B2 (en) 2013-05-29 2016-09-13 Thomas A. Sos Thrombus removal and intravascular distal embolic protection device
US10231751B2 (en) 2013-05-29 2019-03-19 Thomas A. Sos Thrombus removal and intravascular distal embolic protection device
WO2014193989A1 (en) 2013-05-29 2014-12-04 Sos Thomas A Thrombus removal and intravascular distal embolic protection device
US20140364896A1 (en) 2013-06-07 2014-12-11 Abott Cardiovascular Systems, Inc. Device, system, and method for thrombus retrieval
US9514490B2 (en) 2013-06-13 2016-12-06 Elbex Video Ltd. Method for propagating combination of signals for operating a closed circuit e-commerce
CA2919458C (en) 2013-06-28 2021-08-17 Gmedix, Inc. Introducer sheath for radial artery access
KR101455630B1 (en) 2013-06-30 2014-10-28 안지용 Manual thrombectomy device
US9259237B2 (en) 2013-07-12 2016-02-16 Inceptus Medical, Llc Methods and apparatus for treating pulmonary embolism
EP3019097A4 (en) 2013-07-12 2017-03-08 Inceptus Medical, LLC Methods and apparatus for treating pulmonary embolism
US9402708B2 (en) 2013-07-25 2016-08-02 Covidien Lp Vascular devices and methods with distal protection
US9782186B2 (en) 2013-08-27 2017-10-10 Covidien Lp Vascular intervention system
DE102013109362B4 (en) 2013-08-29 2018-07-26 NORRES Beteiligungs-GmbH Plastic tube with fabric reinforcement
US9814477B2 (en) 2013-09-24 2017-11-14 Cook Medical Technologies Llc Clot retrieval system with inverted sleeve
US10383644B2 (en) 2013-10-17 2019-08-20 Covidien Lp Mechanical thrombectomy with proximal occlusion
US10238406B2 (en) 2013-10-21 2019-03-26 Inari Medical, Inc. Methods and apparatus for treating embolism
US9028401B1 (en) 2013-11-11 2015-05-12 Cross Bay Medical, Inc. Apparatus and methods for accessing and sealing bodily vessels and cavities
CN105722474B (en) 2013-11-13 2018-09-21 柯惠有限合伙公司 The attachment of assist devices and thrombus in a manner of primary battery
RU2016119033A (en) 2013-11-28 2017-12-29 Инновеншнс Лтд. FILTRATION AND RETAINING DEVICE AND METHOD OF ITS USE
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
US9173668B2 (en) 2014-01-03 2015-11-03 Legacy Ventures LLC Clot retrieval system
KR20160119118A (en) 2014-01-29 2016-10-12 콘센트릭 메디칼, 인크. Vascular and bodily duct treatment devices and methods
FR3017439B1 (en) 2014-02-13 2016-10-14 Technip France FLUID TRANSPORT FLEXIBLE DRIVE WITH EXTENDED SHAPE INSERT AND METHOD FOR MANUFACTURING THE SAME
US9980803B2 (en) 2014-03-05 2018-05-29 Cook Medical Technologies Llc Medical device retrieval system and method
US20150374391A1 (en) 2014-03-07 2015-12-31 Inceptus Medical, Llc Methods and apparatus for treating small vessel thromboembolisms
US9820761B2 (en) 2014-03-21 2017-11-21 Route 92 Medical, Inc. Rapid aspiration thrombectomy system and method
CN103932756B (en) 2014-03-21 2016-07-20 吴智群 A kind of Biochemical analyzer system
US9980813B2 (en) 2014-04-28 2018-05-29 Cook Medical Technologies Llc Selective fluid barrier valve device and method of treatment
EP3094363A4 (en) 2014-06-09 2017-10-04 Inceptus Medical, LLC Retraction and aspiration device for treating embolism and associated systems and methods
US10792056B2 (en) 2014-06-13 2020-10-06 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10441301B2 (en) 2014-06-13 2019-10-15 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US9616213B2 (en) 2014-07-09 2017-04-11 Freudenberg Medical, Llc Medical valve with a variable diameter seal
CA2955841C (en) 2014-09-10 2017-06-27 Vascular Solutions, Inc. Capture assembly and method
JP2017532104A (en) 2014-09-15 2017-11-02 オーバスネイチ メディカル、インコーポレイテッド Revascularization catheter
US20160217261A1 (en) 2014-09-18 2016-07-28 Aetna Inc. System for analyzing patient out-of-network utilization and improving retention
US11253278B2 (en) 2014-11-26 2022-02-22 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
ES2577288B8 (en) 2015-01-13 2019-01-10 Anaconda Biomed S L Device for thrombectomy
ES2770321T3 (en) 2015-02-04 2020-07-01 Route 92 Medical Inc Rapid Aspiration Thrombectomy System
JP6544795B2 (en) 2015-03-13 2019-07-17 テルモ株式会社 Medical device
CA2992081C (en) 2015-07-13 2019-12-31 Integrated Surgical LLC Surgical suction device that uses positive pressure gas
EP3721818A1 (en) 2015-08-06 2020-10-14 KP Medcure, Inc. Axially lengthening thrombus capture system
US9999493B2 (en) 2015-08-06 2018-06-19 Kp Medcure, Inc. Axial lengthening thrombus capture system
US9744024B2 (en) 2015-08-06 2017-08-29 Kp Medcure, Inc. Axial lengthening thrombus capture system
US9920462B2 (en) 2015-08-07 2018-03-20 Nike, Inc. Braiding machine with multiple rings of spools
US10179046B2 (en) 2015-08-14 2019-01-15 Edwards Lifesciences Corporation Gripping and pushing device for medical instrument
US10188777B2 (en) 2015-08-20 2019-01-29 Aurastem Llc Liposuction device and system and use thereof
US10702292B2 (en) 2015-08-28 2020-07-07 Incuvate, Llc Aspiration monitoring system and method
US10648268B2 (en) 2015-08-31 2020-05-12 Cameron International Corporation Annual blowout preventer with radial actuating member
ES2784779T3 (en) 2015-09-28 2020-09-30 Stryker Corp Mechanical thrombectomy appliances
US20170100142A1 (en) 2015-10-09 2017-04-13 Incuvate, Llc Systems and methods for management of thrombosis
US10342571B2 (en) 2015-10-23 2019-07-09 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
EP3364891B1 (en) 2015-10-23 2023-08-09 Inari Medical, Inc. Device for intravascular treatment of vascular occlusion
US9700332B2 (en) 2015-10-23 2017-07-11 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US11433218B2 (en) 2015-12-18 2022-09-06 Inari Medical, Inc. Catheter shaft and associated devices, systems, and methods
US10226263B2 (en) 2015-12-23 2019-03-12 Incuvate, Llc Aspiration monitoring system and method
US10368884B2 (en) 2016-01-11 2019-08-06 Boston Scientific Scimed, Inc. Irrigation devices, methods, and systems
WO2017131663A1 (en) 2016-01-27 2017-08-03 Karg Corporation Rotary braiding machine
US10828061B2 (en) 2016-03-03 2020-11-10 Boston Scientific Scimed, Inc. Accessory devices for use with catheters
ES2859656T3 (en) 2016-04-25 2021-10-04 Stryker Corp Anti-jam and macerant thrombectomy appliances
ES2809160T3 (en) 2016-04-25 2021-03-03 Stryker Corp Inversion mechanical thrombectomy appliance
CN109310446B (en) 2016-04-25 2021-08-27 斯瑞克公司 Preloaded eversion retractor thrombectomy devices and methods
CN109069169B (en) 2016-05-06 2021-07-20 波士顿科学医学有限公司 Medical systems, devices, and related methods
EP3463126A4 (en) 2016-05-26 2020-02-26 Merit Medical Systems, Inc. Expandable introducer assembly
WO2017210487A1 (en) 2016-06-03 2017-12-07 Stryker Corporation Inverting thrombectomy apparatuses
JP7010925B2 (en) 2016-07-26 2022-01-26 ニューラヴィ・リミテッド Clot recovery system for removing obstructive clots from blood vessels
US20180042623A1 (en) 2016-08-11 2018-02-15 Stanley Batiste Blood Clot Aspiration Catheter
US9993257B2 (en) 2016-09-07 2018-06-12 NeuroVarc Technologies Inc. Clot retrieval device for ischemic stroke treatment
WO2018049317A1 (en) 2016-09-12 2018-03-15 Stryker Corporation Self-rolling thrombectomy apparatuses and methods
US10939831B2 (en) 2016-10-12 2021-03-09 Cygnus Medical, Llc Pressure-sensing bleed-back control valve with improved sealing
US10456519B2 (en) 2016-10-14 2019-10-29 Acclarent, Inc. Apparatus and method for irrigating sinus cavity
CN113215721B (en) 2016-10-14 2023-02-17 因赛普特斯医学有限责任公司 Knitting machine and method of use
CN110312481B (en) 2016-10-24 2023-04-11 伊纳里医疗有限公司 Devices and methods for treating vascular occlusions
WO2018148174A1 (en) 2017-02-08 2018-08-16 Kp Medcure, Inc. Axial lengthening thrombus capture system
JP2020508153A (en) 2017-02-23 2020-03-19 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Loading device for use with medical devices
DE102017004383B3 (en) 2017-05-06 2018-07-12 Michael Verlage Fitting and fitting with fitting
US10478535B2 (en) 2017-05-24 2019-11-19 Mivi Neuroscience, Inc. Suction catheter systems for applying effective aspiration in remote vessels, especially cerebral arteries
JP7224308B2 (en) 2017-07-06 2023-02-17 ストライカー コーポレイション Inverted thrombectomy device and method
AU2018328011B2 (en) 2017-09-06 2022-09-15 Inari Medical, Inc. Hemostasis valves and methods of use
US11885051B2 (en) 2017-10-14 2024-01-30 Inceptus Medical, Llc Braiding machine and methods of use
US11406801B2 (en) 2017-10-27 2022-08-09 Transit Scientific, LLC Exoskeleton device with expandable section for scoring
US10779843B2 (en) 2017-11-09 2020-09-22 Stryker Corporation Inverting thrombectomy apparatuses having enhanced tracking
US11154314B2 (en) 2018-01-26 2021-10-26 Inari Medical, Inc. Single insertion delivery system for treating embolism and associated systems and methods
EP3742989B1 (en) 2018-01-26 2022-12-14 Smith & Nephew, Inc. Tissue collection and delivery device
CN112423683A (en) 2018-05-14 2021-02-26 史赛克公司 Reverse thrombectomy device and method of use
CN111989022A (en) 2018-06-19 2020-11-24 直观外科手术操作公司 System and method for maintaining a flexible elongate device in a pose
EP3836855A4 (en) 2018-08-13 2022-08-10 Inari Medical, Inc. System for treating embolism and associated devices and methods
EP3636133B1 (en) 2018-10-12 2024-04-03 Ambu A/S An articulated tip part for an endoscope
CN211724332U (en) 2019-08-13 2020-10-23 上海沃比医疗科技有限公司 Multi-layered catheter body and catheter assembly thereof
CA3151405A1 (en) 2019-09-30 2021-04-08 Bo Yang YU Medicament filling system
CN114845648A (en) 2019-10-16 2022-08-02 伊纳里医疗有限公司 Systems, devices, and methods for treating vascular occlusions
WO2021127202A1 (en) 2019-12-18 2021-06-24 Inari Medical, Inc. Devices and methods for treating vascular occlusion
US20210315598A1 (en) 2019-12-18 2021-10-14 Imperative Care, Inc. Methods of placing large bore aspiration catheters
JP2023534895A (en) 2020-06-05 2023-08-15 イナリ メディカル, インコーポレイテッド Recapturable funnel catheter and related systems and methods
CA3190598A1 (en) 2020-08-06 2022-02-10 Inari Medical, Inc. Automatically-locking vacuum syringes, and associated systems and methods
CN116761556A (en) 2020-11-10 2023-09-15 伊纳里医疗有限公司 Devices for adjustably tensioning suture and related systems and methods
WO2022109034A1 (en) 2020-11-18 2022-05-27 Inari Medical, Inc. Catheters having steerable distal portions, and associated systems and methods
AU2021381331A1 (en) 2020-11-18 2023-05-11 Inari Medical, Inc. Catheters having shaped distal portions, and associated systems and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254571B1 (en) * 1996-04-18 2001-07-03 Applied Medical Resources Corporation Remote clot management
US6645222B1 (en) * 1998-05-13 2003-11-11 Arteria Medical Science, Inc. Puncture resistant branch artery occlusion device and methods of use
US20060282111A1 (en) * 2005-06-09 2006-12-14 Baylor College Of Medicine Segmented Embolectomy Catheter
US20080167678A1 (en) * 2007-01-05 2008-07-10 Hesham Morsi Embolectomy Catheter
US20110213403A1 (en) * 2010-02-23 2011-09-01 Maria Aboytes Devices and methods for vascular recanalization

Cited By (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11529158B2 (en) 2004-03-25 2022-12-20 Inari Medical, Inc. Method for treating vascular occlusion
US11832838B2 (en) 2004-03-25 2023-12-05 Inari Medical, Inc. Method for treating vascular occlusion
US11925369B2 (en) 2004-03-25 2024-03-12 Inari Medical, Inc. Method for treating vascular occlusion
US11839393B2 (en) 2004-03-25 2023-12-12 Inari Medical, Inc. Method for treating vascular occlusion
US11832837B2 (en) 2004-03-25 2023-12-05 Inari Medical, Inc. Method for treating vascular occlusion
US11529157B2 (en) 2008-07-22 2022-12-20 Neuravi Limited Clot capture systems and associated methods
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
US10582939B2 (en) 2008-07-22 2020-03-10 Neuravi Limited Clot capture systems and associated methods
US9931495B2 (en) 2010-02-23 2018-04-03 Covidien Lp Devices and methods for vascular recanalization
US10300256B2 (en) 2010-02-23 2019-05-28 Covidien Lp Devices and methods for vascular recanalization
US9463036B2 (en) 2010-10-22 2016-10-11 Neuravi Limited Clot engagement and removal system
US11871949B2 (en) 2010-10-22 2024-01-16 Neuravi Limited Clot engagement and removal system
US10292723B2 (en) 2010-10-22 2019-05-21 Neuravi Limited Clot engagement and removal system
US11246612B2 (en) 2010-10-22 2022-02-15 Neuravi Limited Clot engagement and removal system
US9351749B2 (en) 2010-10-22 2016-05-31 Neuravi Limited Clot engagement and removal system
US10588649B2 (en) 2011-03-09 2020-03-17 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10743894B2 (en) 2011-03-09 2020-08-18 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10952760B2 (en) 2011-03-09 2021-03-23 Neuravi Limited Clot retrieval device for removing a clot from a blood vessel
US10292722B2 (en) 2011-03-09 2019-05-21 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10034680B2 (en) 2011-03-09 2018-07-31 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US9642639B2 (en) 2011-03-09 2017-05-09 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10299811B2 (en) 2011-03-09 2019-05-28 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11259824B2 (en) 2011-03-09 2022-03-01 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
US10045790B2 (en) 2012-09-24 2018-08-14 Inari Medical, Inc. Device and method for treating vascular occlusion
US11147571B2 (en) 2012-09-24 2021-10-19 Inari Medical, Inc. Device and method for treating vascular occlusion
US8968330B2 (en) 2012-11-20 2015-03-03 Inceptus Medical, Llc Methods and apparatus for treating embolism
US9717519B2 (en) 2012-11-20 2017-08-01 Inceptus Medical, Llc Methods and apparatus for treating embolism
US11648028B2 (en) 2012-11-20 2023-05-16 Inari Medical, Inc. Methods and apparatus for treating embolism
US10709471B2 (en) 2012-11-20 2020-07-14 Inari Medical, Inc. Methods and apparatus for treating embolism
US10335186B2 (en) 2012-11-20 2019-07-02 Inari Medical, Inc. Methods and apparatus for treating embolism
US10588655B2 (en) 2012-11-20 2020-03-17 Inari Medical, Inc. Methods and apparatus for treating embolism
US9408620B2 (en) 2012-11-20 2016-08-09 Inari Medical, Inc. Methods and apparatus for treating embolism
US10004531B2 (en) 2012-11-20 2018-06-26 Inari Medical, Inc. Methods and apparatus for treating embolism
US10517622B2 (en) 2013-03-13 2019-12-31 Neuravi Limited Clot removal device
US9642635B2 (en) 2013-03-13 2017-05-09 Neuravi Limited Clot removal device
US10675045B2 (en) 2013-03-14 2020-06-09 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11871945B2 (en) 2013-03-14 2024-01-16 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10420570B2 (en) 2013-03-14 2019-09-24 Neuravi Limited Clot retrieval devices
US9445829B2 (en) 2013-03-14 2016-09-20 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
US10278717B2 (en) 2013-03-14 2019-05-07 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11839392B2 (en) 2013-03-14 2023-12-12 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10357265B2 (en) 2013-03-14 2019-07-23 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US11547427B2 (en) 2013-03-14 2023-01-10 Neuravi Limited Clot retrieval devices
US10588648B2 (en) 2013-03-14 2020-03-17 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10610246B2 (en) 2013-03-14 2020-04-07 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10390850B2 (en) 2013-03-14 2019-08-27 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11103264B2 (en) 2013-03-14 2021-08-31 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US11937835B2 (en) 2013-03-14 2024-03-26 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10201360B2 (en) 2013-03-14 2019-02-12 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US9259237B2 (en) 2013-07-12 2016-02-16 Inceptus Medical, Llc Methods and apparatus for treating pulmonary embolism
US10238406B2 (en) 2013-10-21 2019-03-26 Inari Medical, Inc. Methods and apparatus for treating embolism
US11937838B2 (en) 2013-10-21 2024-03-26 Inari Medical, Inc. Methods and apparatus for treating embolism
US11058445B2 (en) 2013-10-21 2021-07-13 Inari Medical, Inc. Methods and apparatus for treating embolism
US10285720B2 (en) 2014-03-11 2019-05-14 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US11484328B2 (en) 2014-03-11 2022-11-01 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US9526865B2 (en) 2014-06-09 2016-12-27 Inceptus Medical, Llc Retraction and aspiration device for treating embolism and associated systems and methods
US10349960B2 (en) 2014-06-09 2019-07-16 Inari Medical, Inc. Retraction and aspiration device for treating embolism and associated systems and methods
US9526864B2 (en) 2014-06-09 2016-12-27 Inceptus Medical, Llc Retraction and aspiration device for treating embolism and associated systems and methods
CN106470728A (en) * 2014-06-09 2017-03-01 因赛普特斯医学有限责任公司 For treating retraction and aspirator and related system and the method for thromboembolism
US10682152B2 (en) 2014-06-13 2020-06-16 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10441301B2 (en) 2014-06-13 2019-10-15 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10792056B2 (en) 2014-06-13 2020-10-06 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US11446045B2 (en) 2014-06-13 2022-09-20 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10265086B2 (en) 2014-06-30 2019-04-23 Neuravi Limited System for removing a clot from a blood vessel
US11076876B2 (en) 2014-06-30 2021-08-03 Neuravi Limited System for removing a clot from a blood vessel
US11944333B2 (en) 2014-06-30 2024-04-02 Neuravi Limited System for removing a clot from a blood vessel
US10617435B2 (en) 2014-11-26 2020-04-14 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11253278B2 (en) 2014-11-26 2022-02-22 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US11712256B2 (en) 2014-11-26 2023-08-01 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
US10363054B2 (en) 2014-11-26 2019-07-30 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
US11857210B2 (en) 2014-11-26 2024-01-02 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
JP2018503465A (en) * 2015-01-28 2018-02-08 トリティカム リミテッド Apparatus and method for removing occlusions in a biological tube
US11103263B2 (en) 2015-07-24 2021-08-31 Ichor Vascular Inc. Embolectomy system and methods of making and using same
EP4272660A3 (en) * 2015-07-24 2024-01-03 Ichor Vascular Inc. Embolectomy system
WO2017019572A1 (en) * 2015-07-24 2017-02-02 Ichor Vascular Inc. Embolectomy system and methods of making same
US11918244B2 (en) 2015-10-23 2024-03-05 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US10524811B2 (en) 2015-10-23 2020-01-07 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US9844387B2 (en) 2015-10-23 2017-12-19 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US10342571B2 (en) 2015-10-23 2019-07-09 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US11058451B2 (en) 2015-10-23 2021-07-13 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US11918243B2 (en) 2015-10-23 2024-03-05 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US11433218B2 (en) 2015-12-18 2022-09-06 Inari Medical, Inc. Catheter shaft and associated devices, systems, and methods
US11395667B2 (en) 2016-08-17 2022-07-26 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US11147572B2 (en) 2016-09-06 2021-10-19 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
US11806033B2 (en) 2017-01-10 2023-11-07 Inari Medical, Inc. Devices and methods for treating vascular occlusion
US10098651B2 (en) 2017-01-10 2018-10-16 Inari Medical, Inc. Devices and methods for treating vascular occlusion
US10912577B2 (en) 2017-01-10 2021-02-09 Inari Medical, Inc. Devices and methods for treating vascular occlusion
US11865291B2 (en) 2017-09-06 2024-01-09 Inari Medical, Inc. Hemostasis valves and methods of use
US11697012B2 (en) 2017-09-06 2023-07-11 Inari Medical, Inc. Hemostasis valves and methods of use
US11697011B2 (en) 2017-09-06 2023-07-11 Inari Medical, Inc. Hemostasis valves and methods of use
US11000682B2 (en) 2017-09-06 2021-05-11 Inari Medical, Inc. Hemostasis valves and methods of use
US11844921B2 (en) 2017-09-06 2023-12-19 Inari Medical, Inc. Hemostasis valves and methods of use
US11382643B2 (en) 2017-10-16 2022-07-12 Retriever Medical, Inc. Clot removal methods and devices with multiple independently controllable elements
US11589881B2 (en) 2017-10-16 2023-02-28 Retriever Medical, Inc. Clot removal methods and devices with multiple independently controllable elements
US11633202B1 (en) 2017-10-16 2023-04-25 Retriever Medical, Inc. Catheter based retrieval device with proximal body having axial freedom of movement
US11154314B2 (en) 2018-01-26 2021-10-26 Inari Medical, Inc. Single insertion delivery system for treating embolism and associated systems and methods
US11849963B2 (en) 2018-01-26 2023-12-26 Inari Medical, Inc. Single insertion delivery system for treating embolism and associated systems and methods
US11744691B2 (en) 2018-08-13 2023-09-05 Inari Medical, Inc. System for treating embolism and associated devices and methods
US11833023B2 (en) 2018-08-13 2023-12-05 Inari Medical, Inc. System for treating embolism and associated devices and methods
US11554005B2 (en) 2018-08-13 2023-01-17 Inari Medical, Inc. System for treating embolism and associated devices and methods
US11890180B2 (en) 2018-08-13 2024-02-06 Inari Medical, Inc. System for treating embolism and associated devices and methods
US11559382B2 (en) 2018-08-13 2023-01-24 Inari Medical, Inc. System for treating embolism and associated devices and methods
US11642209B2 (en) 2018-08-13 2023-05-09 Inari Medical, Inc. System for treating embolism and associated devices and methods
US10842498B2 (en) 2018-09-13 2020-11-24 Neuravi Limited Systems and methods of restoring perfusion to a vessel
US11406416B2 (en) 2018-10-02 2022-08-09 Neuravi Limited Joint assembly for vasculature obstruction capture device
US11311304B2 (en) 2019-03-04 2022-04-26 Neuravi Limited Actuated clot retrieval catheter
US11529495B2 (en) 2019-09-11 2022-12-20 Neuravi Limited Expandable mouth catheter
US11864779B2 (en) 2019-10-16 2024-01-09 Inari Medical, Inc. Systems, devices, and methods for treating vascular occlusions
US11937834B2 (en) 2019-10-16 2024-03-26 Inari Medical, Inc. Systems, devices, and methods for treating vascular occlusions
US11712231B2 (en) 2019-10-29 2023-08-01 Neuravi Limited Proximal locking assembly design for dual stent mechanical thrombectomy device
US11839725B2 (en) 2019-11-27 2023-12-12 Neuravi Limited Clot retrieval device with outer sheath and inner catheter
US11779364B2 (en) 2019-11-27 2023-10-10 Neuravi Limited Actuated expandable mouth thrombectomy catheter
US11517340B2 (en) 2019-12-03 2022-12-06 Neuravi Limited Stentriever devices for removing an occlusive clot from a vessel and methods thereof
WO2021129667A1 (en) * 2019-12-23 2021-07-01 杭州唯强医疗科技有限公司 Intracavitary occluder
US11944327B2 (en) 2020-03-05 2024-04-02 Neuravi Limited Expandable mouth aspirating clot retrieval catheter
US11633198B2 (en) 2020-03-05 2023-04-25 Neuravi Limited Catheter proximal joint
US11883043B2 (en) 2020-03-31 2024-01-30 DePuy Synthes Products, Inc. Catheter funnel extension
US11759217B2 (en) 2020-04-07 2023-09-19 Neuravi Limited Catheter tubular support
US11871946B2 (en) 2020-04-17 2024-01-16 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11717308B2 (en) 2020-04-17 2023-08-08 Neuravi Limited Clot retrieval device for removing heterogeneous clots from a blood vessel
US11730501B2 (en) 2020-04-17 2023-08-22 Neuravi Limited Floating clot retrieval device for removing clots from a blood vessel
US11737771B2 (en) 2020-06-18 2023-08-29 Neuravi Limited Dual channel thrombectomy device
US11937836B2 (en) 2020-06-22 2024-03-26 Neuravi Limited Clot retrieval system with expandable clot engaging framework
US11395669B2 (en) 2020-06-23 2022-07-26 Neuravi Limited Clot retrieval device with flexible collapsible frame
US11439418B2 (en) 2020-06-23 2022-09-13 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11864781B2 (en) 2020-09-23 2024-01-09 Neuravi Limited Rotating frame thrombectomy device
US11937837B2 (en) 2020-12-29 2024-03-26 Neuravi Limited Fibrin rich / soft clot mechanical thrombectomy device
US11872354B2 (en) 2021-02-24 2024-01-16 Neuravi Limited Flexible catheter shaft frame with seam
US11937839B2 (en) 2021-09-28 2024-03-26 Neuravi Limited Catheter with electrically actuated expandable mouth

Also Published As

Publication number Publication date
US20210330344A1 (en) 2021-10-28
US20160262790A1 (en) 2016-09-15
US20230240706A1 (en) 2023-08-03
US20150305756A1 (en) 2015-10-29
US8968330B2 (en) 2015-03-03
US20170325839A1 (en) 2017-11-16
US20140155908A1 (en) 2014-06-05
US9408620B2 (en) 2016-08-09
US10709471B2 (en) 2020-07-14
US10335186B2 (en) 2019-07-02
US11648028B2 (en) 2023-05-16
US8784434B2 (en) 2014-07-22
US20180296240A1 (en) 2018-10-18
US20140324091A1 (en) 2014-10-30
US20230240705A1 (en) 2023-08-03
US20170105745A1 (en) 2017-04-20
US20230218313A1 (en) 2023-07-13
US10004531B2 (en) 2018-06-26
US20160008014A1 (en) 2016-01-14
US9717519B2 (en) 2017-08-01
US10588655B2 (en) 2020-03-17

Similar Documents

Publication Publication Date Title
US11648028B2 (en) Methods and apparatus for treating embolism
US11147571B2 (en) Device and method for treating vascular occlusion
US20230066304A1 (en) Axial lengthening thrombus capture system
US20160143721A1 (en) Methods and apparatus for treating pulmonary embolism
EP3019097A1 (en) Methods and apparatus for treating pulmonary embolism
US20220211400A1 (en) Device and method for treating vascular occlusion
CN114711895A (en) System for removing clots or emboli from blood vessels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14646358

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13857425

Country of ref document: EP

Kind code of ref document: A1