WO2014092246A1 - Highly branched polycarbonate resin, and method for preparing same - Google Patents

Highly branched polycarbonate resin, and method for preparing same Download PDF

Info

Publication number
WO2014092246A1
WO2014092246A1 PCT/KR2013/001575 KR2013001575W WO2014092246A1 WO 2014092246 A1 WO2014092246 A1 WO 2014092246A1 KR 2013001575 W KR2013001575 W KR 2013001575W WO 2014092246 A1 WO2014092246 A1 WO 2014092246A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
branched polycarbonate
highly branched
branching agent
linear
Prior art date
Application number
PCT/KR2013/001575
Other languages
French (fr)
Korean (ko)
Inventor
이승환
이종원
최우석
장복남
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2014092246A1 publication Critical patent/WO2014092246A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/14Aromatic polycarbonates not containing aliphatic unsaturation containing a chain-terminating or -crosslinking agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a highly branched polycarbonate resin and a method for producing the same. More specifically, the present invention relates to a highly branched polycarbonate resin having a high degree of branching without deterioration of quality due to a post-addition reaction such as networking between resins even when the melt polymerization method by a transesterification reaction is applied, and a manufacturing method thereof. .
  • Polycarbonate is very excellent in heat resistance, impact resistance, mechanical strength, transparency, etc., and is widely used in the manufacture of compact discs, transparent sheets, packaging materials, automobile bumpers, and sunscreen films, and the demand is rapidly increasing.
  • extrusion molding polycarbonate resin a product having a non-uniform thickness is made due to the low viscosity coefficient of the molten state, or a satisfactory molded product is not obtained due to the shrinkage of the product.
  • a specific polycarbonate resin having a viscosity average molecular weight and a viscosity coefficient different from a general polycarbonate resin is required.
  • Such specific polycarbonates can be obtained by introducing an appropriate amount of branching agent into the polycarbonate resin.
  • this branched polycarbonate production process can be divided into an interfacial polymerization process using phosgene, a melt polymerization process without phosgene, and a solid phase polymerization process.
  • the melt polymerization process is a method of proceeding polymerization in the state of melting the raw material monomer, there is an advantage that there is little risk because no toxic substances are used, but in order to produce a high amount of extrusion polycarbonate to process a high viscosity reactant Not only the high temperature and high vacuum equipment is required, but also the quality may be degraded.
  • the ratio of the terminal hydroxyl group which may adversely affect the heat resistance and color tone of the polycarbonate resin should be minimized.
  • the branching agent there is a problem of increasing the terminal hydroxyl group.
  • KR 2008-0131363 discloses a technique using a branching agent with modified terminal hydroxy to produce branched polycarbonates with reduced hydroxyl groups.
  • the weight-average molecular weight of the prepared branched polycarbonate is lower than 25,000 and the Mark-Houwink constant ⁇ is 0.65 or more, which is similar to that of the linear polycarbonate having almost no branching degree.
  • An object of the present invention is to provide a highly branched polycarbonate resin and a method for producing the same, wherein the reactivity is adjustable and the degree of branching is maximized while minimizing the resin networking.
  • Another object of the present invention relates to a highly branched polycarbonate resin and a method for producing the same, without deterioration of quality due to networking-adding reaction between resins even using environmentally friendly melt polymerization.
  • Still another object of the present invention is to provide a highly branched polycarbonate resin in which the weight average molecular weight of the polycarbonate is significantly increased even with the use of a small amount of branched body, and a method for producing the same.
  • Still another object of the present invention relates to a highly branched polycarbonate resin having excellent polymerization stability and a method for producing the same.
  • Another object of the present invention relates to a highly branched polycarbonate resin and a method for producing the same that can be economically produced.
  • One aspect of the present invention relates to a highly branched polycarbonate resin.
  • the high-branched polycarbonate resin has a mark-ink ink constant of about 0.50 to about 0.60, and branches of about 0.5 to about 1.
  • the weight average molecular weight of the highly branched polycarbonate resin may be about 30,000 to about 50,000 Dalton.
  • the highly branched polycarbonate resin may have a branch frequency of about 0.1 to about 0.5 Hz.
  • the highly branched polycarbonate resin has a length of about 290 ° C. spiral injection of about 20 cm or more and a length of about 330 ° C. spiral injection of about 30 cm based on a flow index (Melt Flow Index, 300 ° C./1.2 kg) 8. Can be.
  • the highly branched polycarbonate resin may have a polydispersity index (PDI) of about 3 to about 5.
  • PDI polydispersity index
  • the highly branched polycarbonate resin may have a mark-ink ink constant of about 0.50 to about 0.57, and branches of about 0.7 to about 1.
  • the high branched polycarbonate resin is obtained from a linear polycarbonate, a branching agent and a diaryl carbonate, and the branching agent may be represented by the following Chemical Formula 1:
  • X, Y and W are each independently a hydrogen atom, a halogen atom, a C 1 -C 18 alkoxy group, a C 1 -C 10 alkyl group or a C 6 -C 18 aryl group, n is 0-4 R is hydrogen, a substituted or unsubstituted C 1 -C 10 alkyl group, a substituted or unsubstituted C 6 -C 18 aryl group.
  • the unit represented by Formula 1 may include about 0.6 to about 0.9 mol%.
  • the linear polycarbonate may have a weight average molecular weight of about 1,000 or more and less than about 10,000 daltons.
  • the highly branched polycarbonate resin may have a concentration of terminal hydroxyl groups of about 5 mol% or less of the total terminal groups.
  • Another aspect of the present invention relates to a method for producing the highly branched polycarbonate resin.
  • the method may include the step of melt polymerization by adding a diaryl carbonate and a branching agent to a linear polycarbonate.
  • the linear polycarbonate may have a weight average molecular weight of about 1,000 or more and less than about 10,000 daltons.
  • the diaryl carbonate may be added at about 0.6 to about 0.9 moles based on 100 parts by weight of the linear polycarbonate, and the branching agent may be added at about 0.6 to about 0.9 moles based on 100 parts by weight of the linear polycarbonate.
  • the diaryl carbonate and the branching agent may be introduced at a molar ratio of about 1: 1 to 1.05.
  • the present invention is capable of controlling reactivity and maximizing branching while minimizing resin-to- resin networking, and using environmentally friendly melt polymerization, without deterioration in quality due to additive reactions such as resin-to- resin networking, and using a small amount of branching agent.
  • substituted means that the hydrogen atom is selected from the group consisting of a halogen group, C1 'to C30 alkyl group, C1' to C30 haloalkyl group, C6 'to C30 aryl group, C1' to C20 alkoxy group and combinations thereof Mean substituted by a substituent.
  • branching agent means a low molecular monomer having three or more functional groups.
  • the high-branched polycarbonate resin according to the present invention may be prepared by melt polymerization by adding a diaryl carbonate and a branching agent to a linear polycarbonate.
  • a linear polycarbonate may be prepared by transesterifying an aromatic dihydroxy compound and a diaryl carbonate, and then, by adding a diaryl carbonate and a branching agent to the linear polycarbonate and melt-polymerized by an in-situ reaction. Can be.
  • the linear polycarbonate may have a weight average molecular weight of about 1,000 daltons or more and less than about 10,000 daltons, preferably about 4,000 to about 9,000 daltons. In the above range, the molecular weight control and the viscosity control according to the reaction time are advantageous.
  • the aromatic dihydroxy compound may be represented by the following formula (2):
  • A is a single bond, substituted or unsubstituted C 1 to C 30 linear or branched alkylene group, substituted or unsubstituted C 2 to C 5 alkenylene group, substituted or unsubstituted C 2 to C 5 alkylidene group, substituted or unsubstituted C 1 to C 30 straight or branched haloalkylene group, substituted or unsubstituted C 5 to C 6 cycloalkylene group, substituted or unsubstituted C 5 to C 6 cycloalkenylene group, substituted or unsubstituted C 5 to C 10 cycloalkylidene group, substituted or unsubstituted C 6 to C 30 arylene group, substituted or unsubstituted C 1 to C 20 is a linear or branched alkoxylene group, a halogen acid ester group, a carbonate ester group, a linking group selected from the group consisting of CO, S and SO 2 ,
  • the diaryl carbonate may be represented by the following Chemical Formula # 3 '.
  • R 1 and R 2 are each independently a substituted or unsubstituted C 6 -C 20 aryl group.
  • the diaryl carbonate may be added at about 0.60 to about 0.90 mol, preferably about 0.65 to about 0.85 mol, based on 100 parts by weight of the linear polycarbonate. Within this range, branches can be highly increased.
  • the branching agent may be represented by the following Chemical Formula 1.
  • X, Y and W are each independently a hydrogen atom, a halogen atom, a C 1 -C 18 alkoxy group, a C 1 -C 10 alkyl group or a C 6 -C 18 aryl group, n is 0-4 R is hydrogen, a substituted or unsubstituted C 1 -C 10 alkyl group, a substituted or unsubstituted C 6 -C 18 aryl group.
  • the branching agent may be added in an amount of about 0.60 to about 0.90 moles, preferably about 0.60 to about 0.80 moles, based on 100 parts by weight of the linear polycarbonate. Within this range, the degree of branching can be highly increased.
  • the branching agent and the diaryl carbonate are added together.
  • a branching agent and a diaryl carbonate are added together.
  • the branching agent and the diaryl carbonate may be introduced at a molar ratio of about 1: 1 to 1.05.
  • the branching agent and the diaryl carbonate may be introduced at a molar ratio of about 1: 1 to 1.05.
  • the melt polymerization may be carried out at a temperature range of about 200 to about 300 °C. Melting is carried out at this temperature to proceed with stirring, and the reaction pressure is reduced to about 1 to 10 Torr for about 30 minutes to about 3 hours. Stirring may be performed for about 3 to about 10 hours at this high temperature and reduced pressure. Preferably about 5 to about 9 hours of stirring is performed. It is easy to control phenol recovery, molecular weight and viscosity in the above range, it is easy to control the oxidation and reactivity of the branching agent.
  • Phenol generated during the reaction can be recovered by a conventional method.
  • the mark hulk equation is established between the molecular weight and the intrinsic viscosity of the polymer, and the a value of the above equation is called the mark huw constant.
  • the value of a can easily be measured when using GPC for relative viscosity comparison.
  • linear polymers have MarkHuken constant values of about 0.65- about 0.7, and branched polymers have values of less than about 0.65. The smaller the value of a, the higher the degree of branching.
  • the highly branched polycarbonate resins of the present invention have a Mark-Hink constant of about 0.50 to about 0.60, in particular about 0.50 to about 0.57.
  • the highly branched polycarbonate resin may have a polydispersity index (PDI) of about 3 to about 5, for example about 3.5 to about 5.
  • PDI polydispersity index
  • the high branched polycarbonate resin is characterized in that the branching (branches) is highly branched from about 0.5 to about 1.0, preferably from about 0.6 to about 0.95, more preferably from about 0.7 to about 0.9.
  • the high branched polycarbonate resin may have a branch frequency of about 0.1 to about 0.5, preferably about 0.15 to about 0.45.
  • the highly branched polycarbonate resin of the present invention has excellent branches and has high viscosity compared to linear polycarbonate at low shear, low viscosity at high shear, and spiral injection molding.
  • the practical fluidity is high due to the shear thinning effect compared to the linear polycarbonate in the same flow.
  • the highly branched polycarbonate resin has a length of 290 ° C. spiral injection of at least about 20 cm, for example about 21-35 cm, based on a Melt Flow Index (300 ° C./1.2 kg) 8, 330
  • the spiral injection may be at least about 30 cm in length, for example about 35-45 cm.
  • the highly branched polycarbonate resin does not form a gel by minimizing inter-resin networking.
  • 0.1 g of the highly branched polycarbonate resin is added to dichloromethane (1 mL), and stirred at room temperature for about 1 hour, and no more than about 0.5 mm of insoluble particles are present.
  • the weight average group molecular weight of the highly branched polycarbonate resin may be about 30,000 to about 50,000 daltons.
  • the weight-average molecular weight is measured by GPC (Gel Permeation Chromatography) by dissolving polycarbonate resin (20 mg) in dichloromethane solvent (4 mL) with VISCOTEC TDA 302 GPC equipment.
  • the highly branched polycarbonate resin may have a concentration of terminal hydroxyl groups of about 5 mol% or less of the total terminal groups. In the above range, there is a merit of minimizing the thermal stability decrease due to the terminal group phenol.
  • Example 2 The same procedure as in Example 1 was conducted except that a linear polycarbonate having a weight average molecular weight of 20,000 daltons was applied.
  • Example 2 The same procedure as in Example 1 was conducted except that no DPC and a branching agent were used.
  • Mark-Houwink Contant (MH, "a"): Mark-Houwink Contant (MH, “a”): Mark-Houwink Contant (MH) is a slope when the proportional relationship between the weight average molecular weight (Mw) and the intrinsic viscosity ) And measured by the GPC-TDA method.
  • Mw weight average molecular weight
  • MH Mark-Houwink Contant
  • MH is a slope when the proportional relationship between the weight average molecular weight (Mw) and the intrinsic viscosity ) And measured by the GPC-TDA method.
  • Mw weight average molecular weight
  • the M-H constant is measured to be close to 0.7. The higher the degree of branching, the smaller the M-H constant.
  • Comparative Example 3 with the addition of a branching agent was found to have a higher molecular weight rise and higher PDI than Comparative Example 4 without the administration of a branching agent, the branching reaction proceeded. However, in Comparative Example 3 in which only the branching agent was administered, the inter resin networking side reaction occurred. In Comparative Example 2, in which the branching agent and the diphenyl carbonate were used in less than 0.6 mol, the inter-resin networking could not be confirmed, but the branching degree was low. It can be seen that in the case of Comparative Example 1 in which the molecular weight of the linear PC exceeds 10,000 daltons, the branching degree is low. In addition, in the case of Comparative Example 5, in which the branching agent and the diphenyl carbonate were used exceeding 0.9 mol, the inter-resin networking side reaction occurred.

Abstract

The present invention relates to a highly branched polycarbonate resin which has Mark-Houwink constant of approximately 0.50 to approximately 0.60 and branches of approximately 0.5 to approximately 1. The highly branched polycarbonate resin of the present invention is prepared by a specific polymerization mode so as to be eco-friendly, has maximized branches, and is a without a loss of quality caused by an addition reaction such as a formation of networking between resins.

Description

고분지형 폴리카보네이트 수지 및 그 제조방법 Highly branched polycarbonate resin and its manufacturing method
본 발명은 고분지형 폴리카보네이트 수지 및 그 제조 방법에 관한 것이다. 보다 구체적으로, 본 발명은 에스테르 교환반응에 의한 용융중합법을 적용하고도 수지간 네트워킹(networking) 같은 부가 반응으로 인한 품질 저하 없이 분지도가 극대화된 고분지형 폴리카보네이트 수지 및 그 제조방법에 관한 것이다. The present invention relates to a highly branched polycarbonate resin and a method for producing the same. More specifically, the present invention relates to a highly branched polycarbonate resin having a high degree of branching without deterioration of quality due to a post-addition reaction such as networking between resins even when the melt polymerization method by a transesterification reaction is applied, and a manufacturing method thereof. .
 
폴리카보네이트는 내열성, 내충격성, 기계적 강도, 투명성 등이 매우 우수하여, 콤팩트디스크, 투명 쉬트, 포장재, 자동차 범퍼, 자외선차단 필름 등의 제조에 광범위하게 사용되고 있으며, 그 수요량이 급속히 증가하고 있다. 하지만 폴리카보네이트 수지를 압출 성형을 하는 경우에는 용융 상태의 낮은 점도 계수로 인하여 균일하지 않은 두께의 제품이 만들어지거나 제품의 축소현상으로 인하여 만족할만한 성형제품을 얻지 못한다. Polycarbonate is very excellent in heat resistance, impact resistance, mechanical strength, transparency, etc., and is widely used in the manufacture of compact discs, transparent sheets, packaging materials, automobile bumpers, and sunscreen films, and the demand is rapidly increasing. However, in the case of extrusion molding polycarbonate resin, a product having a non-uniform thickness is made due to the low viscosity coefficient of the molten state, or a satisfactory molded product is not obtained due to the shrinkage of the product.
따라서 대용량의 속 빈 용기나 큰 크기의 판넬을 제작하는 경우에는 일반적인 폴리카보네이트 수지와는 다른 점도 평균 분자량과 점도 계수를 가진 특정 폴리카보네이트 수지가 필요하다. 이러한 특정 폴리카보네이트는 폴리카보네이트 수지에 적절한 양의 분지제를 도입함으로써 얻어질 수 있다. 종래 이 분지형 폴리카보네이트의 생산공정으로는 포스겐을 사용하는 계면중합공정과 포스겐을 사용하지 않는 용융중합공정 및 고상중합공정으로 나눌 수 있다.Therefore, when manufacturing a large-capacity hollow container or a large size panel, a specific polycarbonate resin having a viscosity average molecular weight and a viscosity coefficient different from a general polycarbonate resin is required. Such specific polycarbonates can be obtained by introducing an appropriate amount of branching agent into the polycarbonate resin. Conventionally, this branched polycarbonate production process can be divided into an interfacial polymerization process using phosgene, a melt polymerization process without phosgene, and a solid phase polymerization process.
계면중합공정은 미국특허 제 3,799,953호에 개시된 바와 같이, 비스페놀A와 같은 방향족 하이드록시 화합물과 1,1,1-트리스(4-하이드록시페닐)에탄, 1-[α-메틸-α-(4'-하이드록시페닐)에틸]-4-[α',α'-비스(4'-하이드록시페닐)에틸]벤젠,α,α',α-트리스(4-하이드록시페닐)-1,3,5-트리이소프로필벤젠 등과 같은 분지제의 수용액과 기상의 포스겐을 유기용매 내에서 혼합하여 수용액층과 유기용매층 사이의 계면에서 중합반응이 진행되도록 하는 공정이다. 상기 공정은 고분자량의 폴리카보네이트 수지를 연속공정으로 비교적 쉽게 생산할 수 있으나, 유독한 독가스와 공해 물질인 염소계 유기용매를 사용하므로 위험성이 매우 크고, 이에 따른 막대한 설비비가 요구된다는 문제점이 있다.The interfacial polymerization process is described in US Pat. No. 3,799,953, which includes aromatic hydroxy compounds such as bisphenol A, 1,1,1-tris (4-hydroxyphenyl) ethane, 1- [α-methyl-α- (4 '-Hydroxyphenyl) ethyl] -4- [α', α'-bis (4'-hydroxyphenyl) ethyl] benzene, α, α ', α-tris (4-hydroxyphenyl) -1,3 A process of mixing a solution of a branching agent such as, 5-triisopropylbenzene and a gaseous phosgene in an organic solvent to allow a polymerization reaction to proceed at an interface between the aqueous solution layer and the organic solvent layer. The process is relatively easy to produce a high molecular weight polycarbonate resin in a continuous process, but the use of toxic poisonous gases and pollutant chlorine-based organic solvents are very dangerous, there is a problem that requires a huge equipment cost.
한편, 용융중합공정은 원료 단량체를 용융시킨 상태에서 중합을 진행하는 방법으로, 유독 물질을 사용하지 않아 위험성이 적다는 장점이 있지만, 고분량의 압출용 폴리카보네이트를 생산하기 위해서는 고점도의 반응물 처리시 고온, 고진공의 설비가 필요할 뿐 아니라, 이에 따라 품질이 저하될 수 있다. On the other hand, the melt polymerization process is a method of proceeding polymerization in the state of melting the raw material monomer, there is an advantage that there is little risk because no toxic substances are used, but in order to produce a high amount of extrusion polycarbonate to process a high viscosity reactant Not only the high temperature and high vacuum equipment is required, but also the quality may be degraded.
미국특허 제4,888,400호에서는 수평균 분자량이 10,000에서 30,000인 선형 폴리카보네이트와 분지제를 촉매의 존재하에서 압출을 하면서 용융중합시키는 기술이 공지되어 있다. 또한, 미국특허 제5,021,521호에서는 선형 폴리카보네이트와 분지제를 촉매의 존재하에서 용융중합하여 분지형 폴리카보네이트를 제조하는 기술이 공지되어 있다. 미국특허 제5,597,887호에서는 높은 농도의 분지제가 포함된 분지형 폴리카보네이트를 용융중합으로 제조한 다음 선형 폴리카보네이트와 용융중합하여 최종적으로 분지형 폴리카보네이트를 제조하는 기술이 공지되어 있다.In US Pat. No. 4,888,400, a technique is known for melt polymerizing linear polycarbonates and branching agents having a number average molecular weight of 10,000 to 30,000 while extruding in the presence of a catalyst. In addition, US Pat. No. 5,021,521 discloses a technique for producing branched polycarbonates by melt polymerizing linear polycarbonates and branching agents in the presence of a catalyst. U.S. Patent No. 5,597,887 discloses a technique for producing branched polycarbonates containing high concentrations of branching agents by melt polymerization and then melt polymerizing with linear polycarbonates to finally produce branched polycarbonates.
그런데, 친환경 방법으로 각광받고 있는 용융중합 시 상기 분지제를 도입하는 과정에서 분지제의 투입량 또는 분지제의 종류 또는 투입 시점 등에 의하여 반응성 조절에 어렵고 수지간 네트워킹 현상 등의 부가 반응이 발생하며 제조된 분지형 폴리카보네이트의 특성에 변화가 발생하기도 한다. However, in the process of introducing the branching agent during melt polymerization, which has been spotlighted as an environmentally friendly method, it is difficult to control the reactivity by the amount of branching agent or the type or timing of the branching agent, and an addition reaction such as networking phenomena between resins is produced. There are also changes in the properties of branched polycarbonates.
특히 고도 분지된 폴리카보네이트를 제조하기 위해서 디하이드록시 1몰당 용융중합용 다관능성 페놀류 분지제를 과량 (0.5몰 이상) 사용하게 되면 겔 형성이 더욱 빠르게 발생하는 문제가 발생하여 생산공정에서 고도 분지된 폴리카보네이트 제조가 어려울 수 있다.In particular, when an excessive amount (more than 0.5 mole) of polyfunctional phenolic branching agent for melt polymerization is used per mole of dihydroxy to produce highly branched polycarbonate, gel formation occurs more rapidly. Polycarbonate production can be difficult.
또한 용융중합방식의 경우, 폴리카보네이트 수지의 내열성 및 색조에 악영향을 미칠 수 있는 말단 하이드록시기의 비율을 최소화하여야 하는데, 분지제로 다관능성 페놀류를 사용할 경우, 말단 하이드록시기가 증가하는 문제점이 있다. In addition, in the case of the melt polymerization method, the ratio of the terminal hydroxyl group which may adversely affect the heat resistance and color tone of the polycarbonate resin should be minimized. When the polyfunctional phenols are used as the branching agent, there is a problem of increasing the terminal hydroxyl group.
KR 2008-0131363호에서는 하이드록시기를 줄인 분지형 폴리카보네이트를 제조하기 위하여 말단 하이드록시를 개질한 분지제를 사용한 기술을 개시하고 있다. 제조된 분지형 폴리카보네이트의 중량평균분자량이 25,000 이하로 낮고, 마크-휴잉크(Mark-Houwink) 상수 α가 0.65 이상으로 분지도가 거의 없는 선형 폴리카보네이트와 유사한 특성을 보이고 있다.KR 2008-0131363 discloses a technique using a branching agent with modified terminal hydroxy to produce branched polycarbonates with reduced hydroxyl groups. The weight-average molecular weight of the prepared branched polycarbonate is lower than 25,000 and the Mark-Houwink constant α is 0.65 or more, which is similar to that of the linear polycarbonate having almost no branching degree.
고분지형 폴리카보네이트를 제조하기 위하여 분지제를 투입하여 용융 중합 시 겔 형성 부반응이 발생하여 폴리카보네이트의 품질을 떨어뜨리는 문제가 있고, 분지도를 높이기 위하여 분지제의 양을 과량 (0.5 몰 이상) 사용 시 겔이 다량 형성된다. 이를 해소하기 위하여 분지제를 개질하는 경우 오히려 반응성이 떨어져 분자량 및 분지도가 낮아 고분지형 폴리카보네이트 제조가 어려운 문제점이 있다. In order to manufacture high-branched polycarbonate, there is a problem of degrading the quality of polycarbonate due to gel formation side reaction during melt polymerization by adding branching agent, and excessive amount of branching agent (more than 0.5 mol) is used to increase branching. A large amount of cyan gel is formed. In the case of modifying the branching agent to solve this problem, there is a problem in that it is difficult to manufacture a highly branched polycarbonate due to low reactivity and low molecular weight and degree of branching.
본 발명의 목적은 반응성이 조절 가능하고 수지간 네트워킹을 최소화하면서 분지도가 극대화된 고분지형 폴리카보네이트 수지 및 그 제조 방법을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a highly branched polycarbonate resin and a method for producing the same, wherein the reactivity is adjustable and the degree of branching is maximized while minimizing the resin networking.
본 발명의 다른 목적은 친환경적인 용융중합을 이용하고도 수지간 네트워킹 부가반응으로 인한 품질 저하 없는 고분지형 폴리카보네이트 수지 및 그 제조방법에 관한 것이다. Another object of the present invention relates to a highly branched polycarbonate resin and a method for producing the same, without deterioration of quality due to networking-adding reaction between resins even using environmentally friendly melt polymerization.
본 발명의 또 다른 목적은 적은 양의 분지체 사용으로도 폴리카보네이트의 중량 평균 분자량이 현저히 상승된 고분지형 폴리카보네이트 수지 및 그 제조방법에 관한 것이다. Still another object of the present invention is to provide a highly branched polycarbonate resin in which the weight average molecular weight of the polycarbonate is significantly increased even with the use of a small amount of branched body, and a method for producing the same.
본 발명의 또 다른 목적은 중합 안정성이 우수한 고분지형 폴리카보네이트 수지 및 그 제조방법에 관한 것이다. Still another object of the present invention relates to a highly branched polycarbonate resin having excellent polymerization stability and a method for producing the same.
본 발명의 또 다른 목적은 경제적으로 제조할 수 있는 고분지형 폴리카보네이트 수지 및 그 제조방법에 관한 것이다.  Another object of the present invention relates to a highly branched polycarbonate resin and a method for producing the same that can be economically produced.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.
본 발명의 하나의 관점은 고분지형 폴리카보네이트 수지에 관한 것이다. One aspect of the present invention relates to a highly branched polycarbonate resin.
상기 고분지형 폴리카보네이트 수지는 마크-휴잉크 상수가 약 0.50 내지 약 0.60이며, 분지도(branches)가 약 0.5 내지 약 1 인 것을 특징으로 한다. The high-branched polycarbonate resin has a mark-ink ink constant of about 0.50 to about 0.60, and branches of about 0.5 to about 1.
상기 고분지형 폴리카보네이트 수지 약 0.1 g을 디클로로메탄 (1mL)에 넣고 약 1시간 동안 상온에서 교반 시 약 0.5mm 이상의 불용성 파티클이 존재하지 않는다. About 0.1 g of the highly branched polycarbonate resin is added to dichloromethane (1 mL), and there is no insoluble particle of about 0.5 mm or more when stirred at room temperature for about 1 hour.
구체예에서 상기 고분지형 폴리카보네이트 수지의 중량평균분자량은 약 30,000 내지 약 50,000 dalton 일 수 있다. In embodiments, the weight average molecular weight of the highly branched polycarbonate resin may be about 30,000 to about 50,000 Dalton.
구체예에서 상기 고분지형 폴리카보네이트 수지는 브랜치 프리퀀시(branch frequency)가 약 0.1 내지 약 0.5 일 수 있다. In embodiments, the highly branched polycarbonate resin may have a branch frequency of about 0.1 to about 0.5 Hz.
구체예에서 상기 고분지형 폴리카보네이트 수지는 유동지수 (Melt Flow Index, 300℃/1.2kg) 8 기준에서 290℃ 스파이럴 사출물의 길이가 약 20 cm 이상이고, 330℃ 스파이럴 사출물의 길이가 약 30 cm 이상 일 수 있다. In embodiments, the highly branched polycarbonate resin has a length of about 290 ° C. spiral injection of about 20 cm or more and a length of about 330 ° C. spiral injection of about 30 cm based on a flow index (Melt Flow Index, 300 ° C./1.2 kg) 8. Can be.
구체예에서 상기 고분지형 폴리카보네이트 수지는 다분산지수(PDI)가 약 3 내지 약 5일 수 있다. In embodiments, the highly branched polycarbonate resin may have a polydispersity index (PDI) of about 3 to about 5.
구체예에서 상기 고분지형 폴리카보네이트 수지는 마크-휴잉크 상수가 약 0.50 내지 약 0.57이며, 분지도(branches)가 약 0.7 내지 약 1 일 수 있다. In embodiments, the highly branched polycarbonate resin may have a mark-ink ink constant of about 0.50 to about 0.57, and branches of about 0.7 to about 1.
상기 고분지형 폴리카보네이트 수지는 선형폴리카보네이트, 분지제 및 디아릴 카보네이트로부터 얻어지고, 상기 분지제는 하기 화학식 1로 표시될 수 있다:The high branched polycarbonate resin is obtained from a linear polycarbonate, a branching agent and a diaryl carbonate, and the branching agent may be represented by the following Chemical Formula 1:
 
[화학식 1][Formula 1]
Figure PCTKR2013001575-appb-I000001
Figure PCTKR2013001575-appb-I000001
상기 화학식 1에서, X, Y 및 W는 각각 독립적으로, 수소 원자, 할로겐 원자, C1-C18 알콕시기, C1-C10 알킬기 또는 C6-C18 아릴기이고, n 은 0~4이며, R은 수소, 치환 또는 비치환된 C1-C10 알킬기, 치환 또는 비치환된 C6-C18 아릴기임. In Formula 1, X, Y and W are each independently a hydrogen atom, a halogen atom, a C 1 -C 18 alkoxy group, a C 1 -C 10 alkyl group or a C 6 -C 18 aryl group, n is 0-4 R is hydrogen, a substituted or unsubstituted C 1 -C 10 alkyl group, a substituted or unsubstituted C 6 -C 18 aryl group.
상기 화학식 1로 표시되는 단위를 약 0.6 내지 약 0.9 몰% 로 포함할 수 있다. The unit represented by Formula 1 may include about 0.6 to about 0.9 mol%.
상기 선형폴리카보네이트는 중량평균분자량이 약 1,000 이상 약 10,000 dalton 미만일 수 있다. The linear polycarbonate may have a weight average molecular weight of about 1,000 or more and less than about 10,000 daltons.
구체예에서 상기 고분지형 폴리카보네이트 수지는 말단 하이드록시기의 농도가 전체 말단기의 약 5 몰% 이하 일 수 있다. In embodiments, the highly branched polycarbonate resin may have a concentration of terminal hydroxyl groups of about 5 mol% or less of the total terminal groups.
본 발명의 다른 관점은 상기 고분지형 폴리카보네이트 수지의 제조방법에 관한 것이다. 상기 방법은 선형 폴리카보네이트에 디아릴카보네이트와 분지제를 투입하여 용융중합하는 단계를 포함할 수 있다. Another aspect of the present invention relates to a method for producing the highly branched polycarbonate resin. The method may include the step of melt polymerization by adding a diaryl carbonate and a branching agent to a linear polycarbonate.
상기 선형폴리카보네이트는 중량평균분자량이 약 1,000 이상 약 10,000 dalton 미만일 수 있다. The linear polycarbonate may have a weight average molecular weight of about 1,000 or more and less than about 10,000 daltons.
상기 디아릴카보네이트는 상기 선형폴리카보네이트 100 중량부에 대하여 약 0.6 ~ 약 0.9 몰로 투입하며, 상기 분지제는 상기 선형폴리카보네이트 100 중량부에 대하여 약 0.6 ~ 약 0.9 몰로 투입할 수 있다.The diaryl carbonate may be added at about 0.6 to about 0.9 moles based on 100 parts by weight of the linear polycarbonate, and the branching agent may be added at about 0.6 to about 0.9 moles based on 100 parts by weight of the linear polycarbonate.
상기 디아릴카보네이트 및 상기 분지제는 약 1 : 1 ~ 1.05의 몰비로 투입할 수 있다. The diaryl carbonate and the branching agent may be introduced at a molar ratio of about 1: 1 to 1.05.
본 발명은 반응성이 조절 가능하고 수지간 네트워킹을 최소화하면서 분지도가 극대화되고, 친환경적인 용융중합을 이용하고도 수지간 네트워킹 같은 부가 반응으로 인한 품질 저하 없으며, 적은 양의 분지제 사용으로도 폴리카보네이트의 중량 평균 분자량이 현저히 상승되고, 중합 안정성이 우수하며, 저분자 선형 폴리카보네이트에 분지제를 투입함으로써 경제적으로 제조할 수 있는 고분지형 폴리카보네이트 수지 및 그 제조방법을 제공하는 발명의 효과를 갖는다.  The present invention is capable of controlling reactivity and maximizing branching while minimizing resin-to- resin networking, and using environmentally friendly melt polymerization, without deterioration in quality due to additive reactions such as resin-to- resin networking, and using a small amount of branching agent. Has an effect of providing a highly branched polycarbonate resin and a method for producing the same, which have a markedly increased weight average molecular weight, excellent polymerization stability, and can be economically produced by adding a branching agent to a low molecular weight linear polycarbonate.
본 발명에서, "치환된"이란 수소 원자가 할로겐기, C1 내지 C30의 알킬기, C1 내지 C30의 할로알킬기, C6 내지 C30의 아릴기, C1 내지 C20의 알콕시기 및 이들의 조합으로 이루어진 군에서 선택되는 치환기로 치환된 것을 의미한다.In the present invention, "substituted" means that the hydrogen atom is selected from the group consisting of a halogen group, C1 'to C30 alkyl group, C1' to C30 haloalkyl group, C6 'to C30 aryl group, C1' to C20 alkoxy group and combinations thereof Mean substituted by a substituent.
본 발명에서 "분지제(branching agent)"는 관능기 3개 이상을 갖는 저분자 단량체를 의미한다. In the present invention, "branching agent" means a low molecular monomer having three or more functional groups.
본 발명에 따른 고분지형 폴리카보네이트 수지는 선형 폴리카보네이트에 디아릴카보네이트와 분지제를 투입하여 용융중합하여 제조될 수 있다. The high-branched polycarbonate resin according to the present invention may be prepared by melt polymerization by adding a diaryl carbonate and a branching agent to a linear polycarbonate.
다른 구체예에서는 방향족 디히드록시 화합물과 디아릴카보네이트를 에스테르 교환반응시켜 선형 폴리카보네이트를 제조한 후, 상기 선형 폴리카보네이트에 디아릴카보네이트와 분지제를 투입하여 in-situ 반응으로 용융중합하여 제조될 수 있다.In another embodiment, a linear polycarbonate may be prepared by transesterifying an aromatic dihydroxy compound and a diaryl carbonate, and then, by adding a diaryl carbonate and a branching agent to the linear polycarbonate and melt-polymerized by an in-situ reaction. Can be.
상기 선형 폴리카보네이트는 중량평균분자량은 약 1,000 dalton 이상 약 10,000 dalton 미만, 바람직하게는 약 4,000 내지 약 9,000 dalton 일 수 있다. 상기 범위에서 반응시간에 따른 분자량 조절 및 점도 조절이 유리하다. The linear polycarbonate may have a weight average molecular weight of about 1,000 daltons or more and less than about 10,000 daltons, preferably about 4,000 to about 9,000 daltons. In the above range, the molecular weight control and the viscosity control according to the reaction time are advantageous.
상기 방향족 디히드록시 화합물은 하기 화학식 2로 표시될 수 있다: The aromatic dihydroxy compound may be represented by the following formula (2):
[화학식  2] [Formula 2]
Figure PCTKR2013001575-appb-I000002
Figure PCTKR2013001575-appb-I000002
상기 화학식  2에서, A는 단일 결합, 치환 또는 비치환된 C1 내지 C30의 직쇄상 또는 분지상의 알킬렌기, 치환 또는 비치환된 C2 내지 C5의 알케닐렌기, 치환 또는 비치환된 C2 내지 C5의 알킬리덴기, 치환 또는 비치환된 C1 내지 C30의 직쇄상 또는 분지상의 할로알킬렌기, 치환 또는 비치환된 C5 내지 C6의 사이클로알킬렌기, 치환 또는 비치환된 C5 내지 C6의 사이클로알케닐렌기, 치환 또는 비치환된 C5 내지 C10의 사이클로알킬리덴기, 치환 또는 비치환된 C6 내지 C30의 아릴렌기, 치환 또는 비치환된 C1 내지 C20의 직쇄상 또는 분지상의 알콕실렌기, 할로겐산 에스테르기, 탄산 에스테르기, CO, S 및 SO2로 이루어진 군에서 선택되는 연결기이고, R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C30의 알킬기 또는 치환 또는 비치환된 C6 내지 C30의 아릴기이고, n1 및 n2는 각각 독립적으로 0 내지 4의 정수이다.In Formula 2, A is a single bond, substituted or unsubstituted C 1 to C 30 linear or branched alkylene group, substituted or unsubstituted C 2 to C 5 alkenylene group, substituted or unsubstituted C 2 to C 5 alkylidene group, substituted or unsubstituted C 1 to C 30 straight or branched haloalkylene group, substituted or unsubstituted C 5 to C 6 cycloalkylene group, substituted or unsubstituted C 5 to C 6 cycloalkenylene group, substituted or unsubstituted C 5 to C 10 cycloalkylidene group, substituted or unsubstituted C 6 to C 30 arylene group, substituted or unsubstituted C 1 to C 20 is a linear or branched alkoxylene group, a halogen acid ester group, a carbonate ester group, a linking group selected from the group consisting of CO, S and SO 2 , R 1 and R 2 are each independently substituted or unsubstituted a C 1 to C 30 alkyl group or a substituted or unsubstituted in the C 6 ring Not an aryl group of C 30 and, n 1 and n 2 are each independently an integer of 0 to 4.
상기 디아릴 카보네이트는 하기 화학식  3 으로 표시될 수 있다. The diaryl carbonate may be represented by the following Chemical Formula # 3 '.
[화학식 3][Formula 3]
Figure PCTKR2013001575-appb-I000003
Figure PCTKR2013001575-appb-I000003
(상기 화학식 3에서 R1과 R2는 서로 독립적으로 치환 또는 비치환된 C6-C20의 아릴기이다)(In Formula 3, R 1 and R 2 are each independently a substituted or unsubstituted C 6 -C 20 aryl group.)
구체예에서는 상기 디아릴카보네이트는 상기 선형폴리카보네이트 100 중량부에 대하여 약 0.60 ~약 0.90 몰, 바람직하게는 약 0.65 내지 약 0.85 몰 로 투입할 수 있다. 상기 범위에서 분지도(branches)를 고도로 높일 수 있다.  In embodiments, the diaryl carbonate may be added at about 0.60 to about 0.90 mol, preferably about 0.65 to about 0.85 mol, based on 100 parts by weight of the linear polycarbonate. Within this range, branches can be highly increased.
 
상기 분지제는 하기 화학식 1로 표시될 수 있다. The branching agent may be represented by the following Chemical Formula 1.
[화학식 1][Formula 1]
Figure PCTKR2013001575-appb-I000004
Figure PCTKR2013001575-appb-I000004
상기 화학식 1에서, X, Y 및 W는 각각 독립적으로, 수소 원자, 할로겐 원자, C1-C18 알콕시기, C1-C10 알킬기 또는 C6-C18 아릴기이고, n 은 0~4이며, R은 수소, 치환 또는 비치환된 C1-C10 알킬기, 치환 또는 비치환된 C6-C18 아릴기임. In Formula 1, X, Y and W are each independently a hydrogen atom, a halogen atom, a C 1 -C 18 alkoxy group, a C 1 -C 10 alkyl group or a C 6 -C 18 aryl group, n is 0-4 R is hydrogen, a substituted or unsubstituted C 1 -C 10 alkyl group, a substituted or unsubstituted C 6 -C 18 aryl group.
구체예에서는 상기 분지제는 선형폴리카보네이트 100 중량부에 대하여 약 0.60~약 0.90 몰, 바람직하게는 약 0.60 내지 약 0.80 몰로 투입할 수 있다. 상기 범위에서 분지도를 고도로 높일 수 있다. In some embodiments, the branching agent may be added in an amount of about 0.60 to about 0.90 moles, preferably about 0.60 to about 0.80 moles, based on 100 parts by weight of the linear polycarbonate. Within this range, the degree of branching can be highly increased.
 
바람직하게는 상기 분지제와 상기 디아릴카보네이트는 함께 투입된다. 이와 같이 분지제와 디아릴카보네이트를 함께 투입함으로서, 수지간 네트워킹(networking) 같은 부가반응을 억제하면서 고분지화를 얻을 수 있다. Preferably, the branching agent and the diaryl carbonate are added together. By injecting a branching agent and a diaryl carbonate in this manner, it is possible to obtain high branching while suppressing the addition reaction such as networking between resins.
바람직하게는 상기 분지제와 상기 디아릴카보네이트는 약 1 : 1 ~ 1.05의 몰비로 투입할 수 있다. 상기 범위에서 분지제의 반응성을 조절하여 분지제에 의한 네트워킹 (networking) 형성을 줄일 수 있다. Preferably, the branching agent and the diaryl carbonate may be introduced at a molar ratio of about 1: 1 to 1.05. By controlling the reactivity of the branching agent in the above range it is possible to reduce the networking (networking) formation by the branching agent.
상기 용융중합은 약 200 내지 약 300 ℃ 의 온도범위에서 수행될 수 있다. 상기온도에서 용융하여 교반을 진행하고, 이때 반응 압력을 약 30분 내지 약 3 시간동안 약 1~10 Torr 까지 감압한다. 이러한 고온 감압 상태에서 약 3 내지 약 10 시간 동안 교반을 수행할 수 있다. 바람직하게는 약 5 내지 약 9 시간 교반을 수행한다. 상기 범위에서 페놀 회수, 분자량 및 점도 조절이 용이하고, 분지제의 산화 및 반응성을 조절하기 용이하다. The melt polymerization may be carried out at a temperature range of about 200 to about 300 ℃. Melting is carried out at this temperature to proceed with stirring, and the reaction pressure is reduced to about 1 to 10 Torr for about 30 minutes to about 3 hours. Stirring may be performed for about 3 to about 10 hours at this high temperature and reduced pressure. Preferably about 5 to about 9 hours of stirring is performed. It is easy to control phenol recovery, molecular weight and viscosity in the above range, it is easy to control the oxidation and reactivity of the branching agent.
상기 반응중 발생하는 페놀은 통상의 방법으로 회수할 수 있다. Phenol generated during the reaction can be recovered by a conventional method.
고분자의 분자량과 고유점도 사이에는 마크휴잉크식이 성립하며, 상기 식의 a 값을 마크휴잉크 상수라고 한다. 상대적인 점도 비교를 위해 GPC를 이용할 경우 a값을 쉽게 측정할 수 있다.  일반적으로 선형 폴리머는 마크휴잉크 상수값이 약 0.65-약 0.7 이며, 분지형 폴리머의 경우 약 0.65 미만의 수치를 갖는다. a값이 작을 수록 분지화도가 높은 것을 의미한다. The mark hulk equation is established between the molecular weight and the intrinsic viscosity of the polymer, and the a value of the above equation is called the mark huw constant. The value of a can easily be measured when using GPC for relative viscosity comparison. In general, linear polymers have MarkHuken constant values of about 0.65- about 0.7, and branched polymers have values of less than about 0.65. The smaller the value of a, the higher the degree of branching.
본 발명의 고분지형 폴리카보네이트 수지는 마크-휴잉크 상수가 약 0.50 내지 약 0.60, 구체예에서는 약 0.50 내지 약 0.57 이다. The highly branched polycarbonate resins of the present invention have a Mark-Hink constant of about 0.50 to about 0.60, in particular about 0.50 to about 0.57.
또한 상기 고분지형 폴리카보네이트 수지는 다분산지수(PDI)가 3 내지 약 5, 예를 들면 약 3.5 내지 약 5일 수 있다. In addition, the highly branched polycarbonate resin may have a polydispersity index (PDI) of about 3 to about 5, for example about 3.5 to about 5.
상기 고분지형 폴리카보네이트 수지는 분지도 (branches)가 약 0.5 내지 약 1.0, 바람직하게는 약 0.6 내지 약 0.95, 보다 바람직하게는 약 0.7 내지 약 0.9 로 고도 분지된 것을 특징으로 한다. The high branched polycarbonate resin is characterized in that the branching (branches) is highly branched from about 0.5 to about 1.0, preferably from about 0.6 to about 0.95, more preferably from about 0.7 to about 0.9.
상기 고분지형 폴리카보네이트 수지는 브랜치 프리퀀시(branch frequency)가 약 0.1 내지 약 0.5, 바람직하게는 약 0.15 내지 약 0.45 일 수 있다. The high branched polycarbonate resin may have a branch frequency of about 0.1 to about 0.5, preferably about 0.15 to about 0.45.
이와 같이 본 발명의 고분지형 폴리카보네이트 수지는 분지도(branches)가 우수하여 저 전단 (low shear)에서는 선형 폴리카보네이트 대비 고점도이고, 고 전단 (high shear)에서는 저점도이며, 스파이럴 사출 (spiral injection molding) 시 같은 유동의 선형 폴리카보네이트 대비 전단 얇아짐 효과 (shear thinning effect)에 의해 실용유동성이 높다. As described above, the highly branched polycarbonate resin of the present invention has excellent branches and has high viscosity compared to linear polycarbonate at low shear, low viscosity at high shear, and spiral injection molding. The practical fluidity is high due to the shear thinning effect compared to the linear polycarbonate in the same flow.
구체예에서, 상기 고분지형 폴리카보네이트 수지는 유동지수 (Melt Flow Index, 300℃/1.2kg) 8 기준에서 290℃ 스파이럴 사출물의 길이가 약 20 cm 이상, 예를 들면 약 21~35 cm 이고, 330℃ 스파이럴 사출물의 길이가 약 30 cm 이상, 예를 들면 약 35~45 cm 일 수 있다. In embodiments, the highly branched polycarbonate resin has a length of 290 ° C. spiral injection of at least about 20 cm, for example about 21-35 cm, based on a Melt Flow Index (300 ° C./1.2 kg) 8, 330 The spiral injection may be at least about 30 cm in length, for example about 35-45 cm.
또한, 상기 고분지형 폴리카보네이트 수지는 수지간 네트워킹 (networking)을 최소화하여 겔을 형성하지 않는다. 구체예에서는 상기 고분지형 폴리카보네이트 수지 0.1g을 디클로로메탄 (1mL)에 넣고 상온에서 약 1시간 동안 교반 후 약 0.5mm 이상의 불용성 파티클이 존재하지 않는다. In addition, the highly branched polycarbonate resin does not form a gel by minimizing inter-resin networking. In an embodiment, 0.1 g of the highly branched polycarbonate resin is added to dichloromethane (1 mL), and stirred at room temperature for about 1 hour, and no more than about 0.5 mm of insoluble particles are present.
상기 고분지형 폴리카보네이트 수지의 중량평군분자량은 약 30,000 내지 약 50,000 dalton 일 수 있다. 상기 중량평군분자량은 VISCOTEC TDA 302 GPC 장비로 폴리카보네이트 수지 (20mg)를 디클로로메탄 용매 (4 mL)에 녹여 GPC (Gel Permeation Chromatography)로 측정한 값이다. The weight average group molecular weight of the highly branched polycarbonate resin may be about 30,000 to about 50,000 daltons. The weight-average molecular weight is measured by GPC (Gel Permeation Chromatography) by dissolving polycarbonate resin (20 mg) in dichloromethane solvent (4 mL) with VISCOTEC TDA 302 GPC equipment.
구체 예에서는 상기 고분지형 폴리카보네이트 수지는 말단 하이드록시기의 농도가 전체 말단기의 약 5 몰% 이하 일 수 있다. 상기 범위에서 말단기 페놀에 의한 열안정성 저하를 최소화 할 수 있는 장점이 있다. In embodiments, the highly branched polycarbonate resin may have a concentration of terminal hydroxyl groups of about 5 mol% or less of the total terminal groups. In the above range, there is a merit of minimizing the thermal stability decrease due to the terminal group phenol.
 
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로, 본 발명의 범위가 하기 실시예에 한정되지는 않는다. 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다. Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, the following examples are provided to help the understanding of the present invention, and the scope of the present invention is not limited to the following examples. Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
실시예Example
실시예 1Example 1
응축기를 장착한 500 ml의 교반형 유리 재질 반응기에 중량평균분자량이 8000 달톤 (dalton) 인 비스페놀-A (BPA) 저분자 선형 폴리카보네이트 100.0 g 및 디페닐 카보네이트 (DPC, 제일모직 제조) 0.686 g (0.82 몰)와 분지제로 트리하이드록시페닐에테인 (THPE, 시그마-알드리치 코리아 326844 (Batch # 03901BH)) 0.934g (0.78 몰) (분지제: 디페닐 카보네이트 = 1 : 1.05 )을 투입하여 상압에서 280 ℃로 승온 한 후 30분 동안 용융시켰다. 용융하여 교반 시작 할 때, 반응 압력을 1 Torr 까지 1 시간 동안 서서히 낮추었다. 상기 고온 감압 상태에서 7시간 동안 교반 하였다. 반응 중 소량의 반응 부산물, 페놀이 발생하였고, 발생한 페놀은 응축기에서 회수 하였다. 반응 종료 후 GPC를 통해 분석한 분지된 폴리카보네이트 수지의 중량 평균 분자량은 35,729 dalton이었다. 또한, 제조된 분지된 폴리카보네이트 수지를 GPC-TDA을 통하여 분석한 결과, Mark-Houwink 상수 ('a')가 0.557로 분지가 형성된 것 을 확인할 수 있었고, 분지도 0.754로 고도 분지가 형성된 것을 알 수 있었다. 특히 0.5 몰 이상의 과량 분지제를 사용하였으나 수지간 네트워크 형성 등의 부가반응은 없었다.500 ml stirred glass reactor equipped with condenser with weight average molecular weight of 8000 daltons   100.0 g of phosphorus bisphenol-A (BPA) low molecular linear polycarbonate and 0.686 g (0.82 mole) of diphenyl carbonate (DPC, manufactured by Cheil Industries) and trihydroxyphenylethane (THPE, Sigma-Aldrich Korea 326844 (Batch # 03901BH) as a branching agent )) 0.934 g (0.78 mol) (branching agent: diphenyl carbonate = 1: 1.05) was added thereto, the temperature was raised to 280 ℃ at normal pressure, and melted for 30 minutes. When melting to start stirring, the reaction pressure was slowly lowered to 1 Torr for 1 hour. The mixture was stirred for 7 hours at the high temperature and reduced pressure. During the reaction, a small amount of reaction by-products and phenol were generated, and the phenol generated was recovered in the condenser. After the reaction, the weight average molecular weight of the branched polycarbonate resin analyzed by GPC was 35,729 daltons. In addition, as a result of analyzing the prepared branched polycarbonate resin through GPC-TDA, it was confirmed that the branch was formed with a Mark-Houwink constant ('a') of 0.557, and the branch was formed with a high branch of 0.754. Could. In particular, 0.5 mole excess of branching agent was used, but there was no addition reaction such as network formation between resins.
 
비교예 1Comparative Example 1
중량평균분자량이 20,000 dalton인 선형 폴리카보네이트를 적용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. The same procedure as in Example 1 was conducted except that a linear polycarbonate having a weight average molecular weight of 20,000 daltons was applied.
 
비교예 2  Comparative Example 2
디페닐카보네이트 (DPC) 0.480 g (0.57 몰) 와 분지제로 트리하이드록시페닐에테인 (THPE) 0.654 g (0.54 몰) (분지제: 디페닐 카보네이트 = 1 : 1.05)을 투입한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. The above procedure was carried out except that 0.48 μg (0.57 mmol) of diphenyl carbonate (DPC) and 0.654 μg (0.54 mmol) of trihydroxyphenylethane (THPE) were added as a branching agent (branching agent: diphenyl carbonate = 1: 1.05). It carried out similarly to Example 1.
 
비교예 3Comparative Example 3
DPC없이, 분지제로 트리하이드록시페닐에테인 (THPE) 0.747g (0.62 몰)만 을 투입한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.  Without DPC, it was carried out in the same manner as in Example 1 except that only 0.747 g (0.62 mmol) of trihydroxyphenylethane (THPE) was added as a branching agent.
 
비교예 4Comparative Example 4
DPC와 분지제를 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.  The same procedure as in Example 1 was conducted except that no DPC and a branching agent were used.
 
비교예 5Comparative Example 5
디페닐카보네이트 (DPC) 0.823 g (0.98 몰) 와 분지제로 트리하이드록시페닐에테인 (THPE) 1.121g (0.94 몰) (분지제: 디페닐 카보네이트 = 1 : 1.05)을 투입한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. The above operation was carried out except that 0.823 μg (0.98 mmol) of diphenyl carbonate (DPC) and 1.121 g (0.94 mmol) of trihydroxyphenylethane (THPE) were added as a branching agent (branching agent: diphenyl carbonate = 1: 1.05). It carried out similarly to Example 1.
 
상기 실시예 1 및 비교예 1~4의 폴리카보네이트계 수지에 대해 하기의 방법으로 물성을 평가하였으며, 그 결과를 표 1에 나타내었다: The physical properties of the polycarbonate-based resins of Examples 1 and Comparative Examples 1 to 4 were evaluated by the following methods, and the results are shown in Table 1:
물성측정방법Property measurement method
(1) 중량평균분자량 및 수평균분자량 :  VISCOTEC TDA 302 GPC 장비로 폴리카보네이트 수지 (20mg)를 디클로로메탄 용매 (4 mL)에 녹여 GPC (Gel Permeation Chromatography)로 측정하였다. PDI는 Mw/Mn 으로 계산하였다. (1) Weight average molecular weight and number average molecular weight: Polycarbonate resin (20 mg) was dissolved in dichloromethane solvent (4 mL) using VISCOTEC TDA 302 GPC and measured by GPC (Gel Permeation Chromatography). PDI was calculated as Mw / Mn.
(2) 마크-휴잉크 상수 (Mark-Houwink Contant, M-H, "a") : 마크-휴잉크 상수 a는 중량평균분자량 (Mw)와 고유점도 (intrinsic viscosity) 간의 비례 관계를 보일 때 기울기 (slope)이며, GPC-TDA방법으로 측정하였다. 선형 구조의 경우는 M-H상수가 0.7에 가까운 값으로 측정되며 분지화도가 높을 수록 M-H상수는 작은 값을 나타낸다. Mark-Houwink Contant (MH, "a"): Mark-Houwink Contant (MH, "a"): Mark-Houwink Contant (MH) is a slope when the proportional relationship between the weight average molecular weight (Mw) and the intrinsic viscosity ) And measured by the GPC-TDA method. In the case of the linear structure, the M-H constant is measured to be close to 0.7. The higher the degree of branching, the smaller the M-H constant.
(3) 분지도(branches) : 분자량의 크기를 기준 분자량으로 가정할 때 가지의  평균 개수로 GPC-TDA 방법으로 측정하였다.(3) Branches: Assuming the molecular weight as the reference molecular weight, the average number of branches was measured by the GPC-TDA method.
(4) branch frequency: 고분자 사슬 하나에 붙어 있는 가지의 평균 개수로 GPC-TDA 방법으로 측정하였다.(4) branch frequency: The average number of branches attached to one polymer chain was measured by GPC-TDA method.
(5) 수지간 네트워킹 (networking): 디클로로메탄 용매에 선형 및 분지된 폴리카보네이트는 잘 녹지만, 네트워크 형성된 수지는 잘 녹지 않으므로 용해도 차이를 이용하여 육안 확인하였다. 스크루캡이 있는 용기 (10mL용량 vial)에 중합된 분지형 PC(0.1mg)을 디클로로메탄 (1mL)에 넣고 1시간 동안 상온에서 교반 (stirring) 후 0.5mm 이상의 불용성 파티클이 보이면 겔 (gel)이 존재하며 네트워크가 형성된 수지인 것으로 판단하였다.(5) Networking between resins: Linear and branched polycarbonates in dichloromethane solvents are well dissolved, but the networked resins are not very well dissolved and visually confirmed using solubility differences. In a container with a screw cap (10 mL volume vial), polymerized branched PC (0.1 mg) was placed in dichloromethane (1 mL), and stirred at room temperature for 1 hour, after which insoluble particles of 0.5 mm or more were observed. It was judged that the resin exists and the network was formed.
(6) 말단 하이드록시기의 농도: Bruker 500 MHz 수소 핵자기공명 (1H Nuclear Magnetic Resonance, NMR)을 이용하여 고분자의 구조분석을 하고 수지의 말단 페놀의 수소와 말단 페닐의 수소의 비를 정량적으로 계산하였다.6, the terminal hydroxyl group concentration of: Bruker 500 MHz 1H magnetic resonance (1 H Nuclear Magnetic Resonance, NMR) quantitative structural analysis of the polymers and the ratio of hydrogen of the hydrogen and the terminal phenyl of the terminal phenol resin using Calculated as
(7) 스파이럴 테스트: 유동지수 (Melt Flow Index, 300℃/1.2kg) 8 g/10 min 을 기준으로 샘플을 각각 290℃ 와 330℃에서 일반적인 스파이럴 금형을 사용하여 사출 후 사출물 의 점간 (1cm) 개수를 새어 길이를 측정하였다. (7) Spiral test: Sample injection point (1 cm) after injection using a common spiral mold at 290 ° C and 330 ° C, based on 8 g / 10 min of Melt Flow Index (300 ° C / 1.2kg). The number was measured by measuring the length.
 
표 1
실시예 1 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5
반응원료 선형PC(중량부) 8000g/mol 100 - 100 100 100 100
20,000g/mol - 100 - - - -
분지제 (몰) 0.781 0.781 0.547 0.625 - 0.937
DPC (몰) 0.820 0.820 0.574 - - 0.984
분석결과 Mn 7,258 25,343 9,272 11,689 7,732 11,698
Mw 35,729 62,422 20,387 31,717 15,232 37,622
PDI 4.956 2.463 2.112 2.714 1.970 3.216
M-H a 0.557 0.639 0.599 0.595 0.700 0.555
branches 0.754 0.335 0.333 0.538 - 1.138
branch frequency 0.274 0.169 0.141 0.479 - 0.743
수지간 네트워크 형성 X X X X
말단 OH의 농도(몰%) 2.4 3.5 7.2 21.5 22.7 3.1
스파이럴 길이(cm) 290℃ 22 13 25 21 17 23
330℃ 37 22 39 35 28 36
Table 1
Example 1 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5
Reaction Raw Material Linear PC (parts by weight) 8000g / mol 100 - 100 100 100 100
20,000g / mol - 100 - - - -
Basin (Mall) 0.781 0.781 0.547 0.625 - 0.937
DPC (Mall) 0.820 0.820 0.574 - - 0.984
Analysis Mn 7,258 25,343 9,272 11,689 7,732 11,698
Mw 35,729 62,422 20,387 31,717 15,232 37,622
PDI 4.956 2.463 2.112 2.714 1.970 3.216
MH a 0.557 0.639 0.599 0.595 0.700 0.555
branches 0.754 0.335 0.333 0.538 - 1.138
branch frequency 0.274 0.169 0.141 0.479 - 0.743
Formation of resin network X X X X
Concentration of terminal OH (mol%) 2.4 3.5 7.2 21.5 22.7 3.1
Spiral Length (cm) 290 ℃ 22 13 25 21 17 23
330 ℃ 37 22 39 35 28 36
상기 표 1에 나타난 바와 같이, 분지제를 투입한 비교예 3이 분지제를 투여하지 않은 비교예 4 보다 분자량 상승이 높았고 PDI도 높아서 분지반응이 진행되었음을 알 수 있었다. 그러나 분지제만 투여한 비교예 3에서는 수지간 네트워킹 부반응이 발생하였다. 분지제와 디페닐카보네이트를 0.6 몰 미만으로 적용한 비교예 2 경우 수지간 네트워킹을 확인할 수 없었지만 분지도가 낮게 나타나는 것을 알 수 있다. 선형 PC의 분자량이 10,000 dalton을 초과한 것을 적용한 비교예 1의 경우 분지도가 낮게 나타나는 것을 알 수 있다.  또한  분지제와 디페닐카보네이트를 0.9 몰 초과하여 적용한 비교예 5 경우 수지간 네트워킹 부반응이 발생하였다.As shown in Table 1, Comparative Example 3 with the addition of a branching agent was found to have a higher molecular weight rise and higher PDI than Comparative Example 4 without the administration of a branching agent, the branching reaction proceeded. However, in Comparative Example 3 in which only the branching agent was administered, the inter resin networking side reaction occurred. In Comparative Example 2, in which the branching agent and the diphenyl carbonate were used in less than 0.6 mol, the inter-resin networking could not be confirmed, but the branching degree was low. It can be seen that in the case of Comparative Example 1 in which the molecular weight of the linear PC exceeds 10,000 daltons, the branching degree is low. In addition, in the case of Comparative Example 5, in which the branching agent and the diphenyl carbonate were used exceeding 0.9 mol, the inter-resin networking side reaction occurred.
 
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (15)

  1. 마크-휴잉크 상수가 약 0.50 내지 약 0.60이며, 분지도(branches)가 약 0.5 내지 약 1 인 고분지형 폴리카보네이트 수지.A highly branched polycarbonate resin having a mark-ink ink constant of about 0.50 to about 0.60 and a branching degree of about 0.5 to about 1.
     
  2. 제1항에 있어서, 상기 고분지형 폴리카보네이트 수지 약 0.1g을 디클로로메탄 (1mL)에 넣고 약 1시간 동안 상온에서 교반 후 약 0.5mm 이상의 불용성 파티클이 존재하지 않는 고분지형 폴리카보네이트 수지.The high-branched polycarbonate resin according to claim 1, wherein about 0.1 g of the highly branched polycarbonate resin is added to dichloromethane (1 mL), and then stirred at room temperature for about 1 hour, wherein no insoluble particles are present.
  3. 제1항에 있어서, 상기 고분지형 폴리카보네이트 수지의 중량평균분자량은 약 30,000 내지 약 50,000 dalton인 고분지형 폴리카보네이트 수지.The highly branched polycarbonate resin of claim 1, wherein the weight average molecular weight of the highly branched polycarbonate resin is about 30,000 to about 50,000 Daltons.
  4. 제1항에 있어서, 상기 고분지형 폴리카보네이트 수지는 브랜치 프리퀀시(branch frequency)가 약 0.1 내지 약 0.5 인 고분지형 폴리카보네이트 수지. The highly branched polycarbonate resin of claim 1, wherein the branched polycarbonate resin has a branch frequency of about 0.1 to about 0.5 Hz.
  5. 제1항에 있어서, 상기 고분지형 폴리카보네이트 수지는 유동지수 (Melt Flow Index, 300℃/1.2kg) 8 기준에서 290℃ 스파이럴 사출물의 길이가 약 20 cm 이상이고, 330℃ 스파이럴 사출물의 길이가 약 30 cm 이상인 고분지형 폴리카보네이트 수지.According to claim 1, wherein the high-branched polycarbonate resin has a flow rate (Melt Flow Index, 300 ℃ / 1.2kg) 8 based on the length of the 290 ℃ spiral injection is about 20 cm or more, the 330 ℃ spiral injection length of about Highly branched polycarbonate resin that is 30 cm or larger.
  6. 제1항에 있어서, 상기 고분지형 폴리카보네이트 수지는 다분산지수(PDI)가 3 내지 약 5인 고분지형 폴리카보네이트 수지.2. The highly branched polycarbonate resin of claim 1, wherein the highly branched polycarbonate resin has a polydispersity index (PDI) of about 3 to about 5.
  7. 제1항에 있어서, 상기 고분지형 폴리카보네이트 수지는 마크-휴잉크 상수가 약 0.50 내지 약 0.57이며, 분지도(branches)가 약 0.7 내지 약 1 인 고분지형 폴리카보네이트 수지.The high branched polycarbonate resin of claim 1, wherein the high branched polycarbonate resin has a mark-ink ink constant of about 0.50 to about 0.57 and a branching of about 0.7 to about 1.
  8. 제1항에 있어서, 상기 고분지형 폴리카보네이트 수지는 선형폴리카보네이트, 분지제 및 디아릴 카보네이트로부터 얻어지고, 상기 분지제는 하기 화학식 1로 표시되는 것을 특징으로 하는 고분지형 폴리카보네이트 수지: The high-branched polycarbonate resin according to claim 1, wherein the highly branched polycarbonate resin is obtained from a linear polycarbonate, a branching agent, and a diaryl carbonate, and the branching agent is represented by the following Chemical Formula 1:
    [화학식 1][Formula 1]
    Figure PCTKR2013001575-appb-I000005
    Figure PCTKR2013001575-appb-I000005
    상기 화학식 1에서, X, Y 및 W는 각각 독립적으로, 수소 원자, 할로겐 원자, C1-C18 알콕시기, C1-C10 알킬기 또는 C6-C18 아릴기이고, n 은 0~4이며, R은 수소, 치환 또는 비치환된 C1-C10 알킬기, 치환 또는 비치환된 C6-C18 아릴기임. In Formula 1, X, Y and W are each independently a hydrogen atom, a halogen atom, a C 1 -C 18 alkoxy group, a C 1 -C 10 alkyl group or a C 6 -C 18 aryl group, n is 0-4 R is hydrogen, a substituted or unsubstituted C 1 -C 10 alkyl group, a substituted or unsubstituted C 6 -C 18 aryl group.
  9. 제8항에 있어서, 상기 화학식 1로 표시되는 단위를 약 0.6 내지 약 0.9 몰% 로 포함하는 고분지형 폴리카보네이트 수지.The highly branched polycarbonate resin according to claim 8, wherein the unit represented by Chemical Formula 1 contains about 0.6 to about 0.9 mol%.
  10. 제8항에 있어서, 상기 선형폴리카보네이트는 중량평균분자량이 1,000 이상 10,000 dalton 미만인 고분지형 폴리카보네이트 수지.9. The highly branched polycarbonate resin according to claim 8, wherein the linear polycarbonate has a weight average molecular weight of 1,000 or more and less than 10,000 daltons.
  11. 제1항에 있어서, 상기 고분지형 폴리카보네이트 수지는 말단 하이드록시기의 농도가 전체 말단기의 5 몰% 이하인 것을 특징으로 하는 고분지형 폴리카보네이트 수지.The high-branched polycarbonate resin according to claim 1, wherein the high-branched polycarbonate resin has a concentration of terminal hydroxyl groups of 5 mol% or less of all terminal groups.
  12. 선형 폴리카보네이트에 디아릴카보네이트와 분지제를 투입하여 용융중합하는 단계를 포함하는 고분지형 폴리카보네이트 수지의 제조방법.Method for producing a highly branched polycarbonate resin comprising the step of melt polymerization by adding a diaryl carbonate and a branching agent to a linear polycarbonate.
     
  13. 제12항에 있어서, 상기 선형폴리카보네이트는 중량평균분자량이 1,000 이상 10,000 dalton 미만인 방법.The method of claim 12, wherein the linear polycarbonate has a weight average molecular weight of 1,000 or more and less than 10,000 daltons.
  14. 제12항에 있어서, 상기 디아릴카보네이트는 상기 선형폴리카보네이트 100 중량부에 대하여 약 0.6 ~ 약 0.9 몰로 투입하며, 상기 분지제는 상기 선형폴리카보네이트 100 중량부에 대하여 약 0.6 ~ 약 0.9 몰로 투입하는 것을 특징으로 하는 방법.The method of claim 12, wherein the diaryl carbonate is added in an amount of about 0.6 to about 0.9 mol based on 100 parts by weight of the linear polycarbonate, and the branching agent is added in an amount of about 0.6 to about 0.9 mol based on 100 parts by weight of the linear polycarbonate. Characterized in that the method.
  15. 제12항에 있어서, 상기 디아릴카보네이트 및 상기 분지제는 1 : 1 ~ 1.05의 몰비로 투입하는 것을 특징으로 하는 방법. 13. The method of claim 12, wherein the diaryl carbonate and the branching agent are introduced at a molar ratio of 1: 1 to 1.05.
PCT/KR2013/001575 2012-12-11 2013-02-27 Highly branched polycarbonate resin, and method for preparing same WO2014092246A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0143943 2012-12-11
KR1020120143943A KR20140075516A (en) 2012-12-11 2012-12-11 Highly branched polycarbonate resin and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2014092246A1 true WO2014092246A1 (en) 2014-06-19

Family

ID=50934515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001575 WO2014092246A1 (en) 2012-12-11 2013-02-27 Highly branched polycarbonate resin, and method for preparing same

Country Status (2)

Country Link
KR (1) KR20140075516A (en)
WO (1) WO2014092246A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041484A (en) * 2018-01-17 2019-07-23 宇部兴产株式会社 Highly -branched polycarbonate polyol composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101779188B1 (en) 2014-09-05 2017-09-15 주식회사 엘지화학 Copolycarbonate and composition comprising the same
KR20160067714A (en) 2014-12-04 2016-06-14 주식회사 엘지화학 Copolycarbonate and article containing the same
KR101685665B1 (en) 2014-12-04 2016-12-12 주식회사 엘지화학 Copolycarbonate and composition comprising the same
KR101795136B1 (en) 2015-05-29 2017-11-08 롯데첨단소재(주) Polycarbonate resin and method for preparing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307006B1 (en) * 1997-06-30 2001-10-23 Bayer Aktiengesellschaft Method for producing branched polycarbonates
US20070037957A1 (en) * 2003-09-12 2007-02-15 Basf Aktiengesellschaft Highly functional highly branched or hyperbranched polycarbonates and the production and use hereof
KR100862243B1 (en) * 2007-12-26 2008-10-09 제일모직주식회사 Branched polycarbonate resin which can control molecular structure effectively and method for producing the same
US20100160572A1 (en) * 2008-12-23 2010-06-24 Cheil Industries Inc. Branched Polycarbonate Resin Composition, and Branched Polycarbonate Resin and Molded Product Made Using the Same
KR20100072836A (en) * 2008-12-22 2010-07-01 제일모직주식회사 Branching agent for branched polycarbonate, method for preparing thereof and branched polycarbonate using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307006B1 (en) * 1997-06-30 2001-10-23 Bayer Aktiengesellschaft Method for producing branched polycarbonates
US20070037957A1 (en) * 2003-09-12 2007-02-15 Basf Aktiengesellschaft Highly functional highly branched or hyperbranched polycarbonates and the production and use hereof
KR100862243B1 (en) * 2007-12-26 2008-10-09 제일모직주식회사 Branched polycarbonate resin which can control molecular structure effectively and method for producing the same
KR20100072836A (en) * 2008-12-22 2010-07-01 제일모직주식회사 Branching agent for branched polycarbonate, method for preparing thereof and branched polycarbonate using the same
US20100160572A1 (en) * 2008-12-23 2010-06-24 Cheil Industries Inc. Branched Polycarbonate Resin Composition, and Branched Polycarbonate Resin and Molded Product Made Using the Same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041484A (en) * 2018-01-17 2019-07-23 宇部兴产株式会社 Highly -branched polycarbonate polyol composition
CN110041484B (en) * 2018-01-17 2022-12-06 Ube株式会社 Highly branched polycarbonate polyol compositions

Also Published As

Publication number Publication date
KR20140075516A (en) 2014-06-19

Similar Documents

Publication Publication Date Title
WO2014092246A1 (en) Highly branched polycarbonate resin, and method for preparing same
CN110062792B (en) Polycarbonate resin composition having excellent heat resistance and flowability, and molded article comprising same
WO2015041441A1 (en) Copolycarbonate resin and product comprising same
WO2016099185A1 (en) Polycarbonate copolymer and preparation method therefor
WO2013066000A1 (en) Polycarbonate resin composition having improved low-temperature impact resistance and method of manufacturing the same
US8871875B2 (en) Polycarbonate resin and thermoplastic resin composition including polycarbonate resin
WO2017126901A1 (en) Polyester-polycarbonate copolymer and method for producing same
WO2015002429A1 (en) Hydroxy-capping monomer, polycarbonate thereof and article comprising same
WO2015030535A1 (en) Terminal-modified polyoxyalkylene glycol and polycarbonate resin composition with improved optical properties, comprising same
CN109776783B (en) Preparation method of weather-resistant and solvent-resistant copolymerized polycarbonate
WO2015047046A1 (en) Polycarbonate having high fluidity and production method therefor
WO2013137531A1 (en) Polycarbonate-polysiloxane copolymer, and method for preparing same
WO2012091308A2 (en) Polycarbonate-polysiloxane copolymer, and method for preparing same
WO2013100288A1 (en) Branched polycarbonate-polysiloxane copolymer and preparation method thereof
WO2013077490A1 (en) Polycarbonate, production method for same and optical film comprising same
WO2016195312A1 (en) Polycarbonate resin and preparation method therefor
WO2014104484A1 (en) Polycarbonate resin composition and molded product formed from same
KR20140086774A (en) Branched polycarbonate and method for preparing the same
KR100888621B1 (en) End-capped polycarbonate resin and method of preparing thereof
WO2016137065A1 (en) Polyester carbonate resin, preparation method therefor, and molded product comprising same
WO2015102173A1 (en) Copolymerized polycarbonate resin, preparation method therefor and molding comprising same
WO2014025107A1 (en) Branched polycarbonate resin, and method for preparing same
WO2023018136A1 (en) Polycarbonate copolymer
US20140213681A1 (en) Method for Preparing Polycarbonate Resin
KR101714834B1 (en) Polycarbonate resin, method for preparing the same, and article comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862424

Country of ref document: EP

Kind code of ref document: A1