WO2014185565A1 - Method for manufacturing transducer and transducer manufactured by method - Google Patents

Method for manufacturing transducer and transducer manufactured by method Download PDF

Info

Publication number
WO2014185565A1
WO2014185565A1 PCT/KR2013/004286 KR2013004286W WO2014185565A1 WO 2014185565 A1 WO2014185565 A1 WO 2014185565A1 KR 2013004286 W KR2013004286 W KR 2013004286W WO 2014185565 A1 WO2014185565 A1 WO 2014185565A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
grooves
filling
transducer
forming
Prior art date
Application number
PCT/KR2013/004286
Other languages
French (fr)
Korean (ko)
Inventor
김성학
신은희
채수평
Original Assignee
알피니언메디칼시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알피니언메디칼시스템 주식회사 filed Critical 알피니언메디칼시스템 주식회사
Publication of WO2014185565A1 publication Critical patent/WO2014185565A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0629Square array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present embodiment relates to a method for manufacturing a transducer, and more particularly, a method of manufacturing a transducer provided in an ultrasonic diagnostic apparatus or the like for acquiring image information inside an object by using ultrasonic waves, and a transducer manufactured by the method. It is about.
  • the ultrasound diagnosis apparatus transmits an ultrasound signal to a diagnosis site of a test subject by a probe, and then receives an ultrasound signal reflected from a tissue boundary in the test subject having a different acoustic impedance by the probe. Obtain video information.
  • the image information is output to the monitor of the ultrasound diagnosis apparatus, and the diagnoser may perform diagnosis on the subject through the image information output to the monitor.
  • the probe is provided with a transducer for transmitting an ultrasonic signal to the inspected object and receiving an ultrasonic signal reflected from the inspected object.
  • the transducer has a configuration in which a piezoelectric layer, a matching layer, and the like are stacked on a backing material.
  • the piezoelectric layer is formed of a piezoelectric element made of only a piezoelectric material, or is formed of a piezoelectric composite in which a polymer material is composited in the piezoelectric element in order to increase ultrasonic transmission and reception performance.
  • the transducer including the piezoelectric composite it goes through the following process. After the plurality of filling grooves are cut side by side by a grooving process on the upper surface of the piezoelectric element, the filling grooves are filled with a polymer. Thereafter, the upper and lower surfaces of the piezoelectric element filled with the polymer are polished to make the piezoelectric composite to a predetermined thickness. The piezoelectric composite thus processed is laminated on the backing material.
  • the base material of the piezoelectric composite is composed of a piezoelectric single crystal
  • the single crystal has a high brittleness, which makes it difficult to grind.
  • An object of the present invention to provide a transducer manufacturing method and a transducer manufactured by the method that can reduce the process time and cost.
  • Transducer manufacturing method for achieving the above object, the step of laminating the first electrode portion on the upper surface of the backing material; Stacking a piezoelectric element on an upper surface of the first electrode unit; Forming a plurality of filling grooves on a top surface of the piezoelectric element by a grooving process; And filling polymers in the filling grooves while sequentially stacking a second electrode part and a matching layer on the upper surface of the piezoelectric element.
  • the process of polishing the upper and lower surfaces of the piezoelectric composite in the process of making the piezoelectric composite can be eliminated, thereby reducing the process time and cost.
  • the transducer can be configured to have higher ultrasonic transmission and reception performance.
  • FIG. 1 is a flow chart for a transducer manufacturing method according to an embodiment of the present invention.
  • FIG. 2 to 7 are perspective views for explaining a process of manufacturing the transducer by the manufacturing method of FIG.
  • FIG. 8 is a perspective view illustrating another example in which a plurality of filling grooves are formed on an upper surface of the piezoelectric element in FIG. 4.
  • FIG. 9 is a flowchart illustrating a transducer manufacturing method according to another embodiment of the present invention.
  • 10 to 13 are perspective views illustrating a process of manufacturing the transducer by the manufacturing method of FIG.
  • FIG. 1 is a flow chart for a transducer manufacturing method according to an embodiment of the present invention.
  • 2 to 7 are perspective views for explaining a process of manufacturing the transducer by the manufacturing method of FIG.
  • the backing material 110 is provided as shown in FIG.
  • the backing material 110 may be configured to have sound absorption.
  • the backing material 110 reduces the pulse width of the ultrasonic wave by suppressing free vibration of the piezoelectric element 130 stacked on the upper side, and prevents unnecessary propagation of the ultrasonic wave to the lower side of the piezoelectric element 130 to prevent image distortion. You can prevent it.
  • the backing material 110 may be configured to have a flat top surface.
  • the backing material 110 may be formed of a material filled with a high density powder material such as tungsten (W), lead (Pb), zinc oxide (ZnO), and the like.
  • the first electrode portion 120 for laminating on the upper surface of the backing material 110 is provided.
  • the first electrode unit 120 may be configured as a flexible printed circuit board on which the first electrodes 121 are formed in a stripe shape.
  • the lower surface of the first electrode portion 120 may be bonded to the upper surface of the backing material 110 by an adhesive or the like.
  • the first electrodes 121 may be made of conductive metal materials such as copper, gold, and silver, respectively.
  • a piezoelectric element 130 is prepared.
  • the piezoelectric element 130 may generate an ultrasonic signal by resonating when a voltage is applied, and generate an electrical signal by vibrating when the ultrasonic signal is received.
  • the piezoelectric element 130 may be formed of a piezoelectric ceramic such as lead zirconate titanate (PZT), piezoelectric single crystal, or the like.
  • PZT lead zirconate titanate
  • the piezoelectric element 130 may be configured in a form in which electrode layers are formed on the top and bottom surfaces thereof, for example, by deposition.
  • the electrode layer formed on the lower surface of the piezoelectric element 130 may be connected to the first electrode 120, and the electrode layer formed on the upper surface of the piezoelectric element 130 may be connected to the second electrode 140.
  • the piezoelectric element 130 is stacked on the upper surface of the first electrode unit 120. In this case, the lower surface of the piezoelectric element 130 may be bonded to the upper surface of the first electrode part 120 by an adhesive or the like.
  • step S130 the plurality of filling grooves 131 are formed side by side by a grooving process on the upper surface of the piezoelectric element 130.
  • the charging grooves 131 are formed in a stripe shape in a direction crossing the first electrodes 121.
  • the filling grooves 131 may be formed to have a predetermined width and a predetermined depth, respectively.
  • each bottom surface position of the filling grooves 131 may be set to be the same as the bottom surface position of the piezoelectric element 130. Accordingly, the piezoelectric element 130 has a form in which both portions are separated with the filling groove 131 interposed therebetween.
  • the polymer 132 is formed in the filling grooves 131 while sequentially stacking the second electrode part 140 and the matching layer 150 on the upper surface of the piezoelectric element 130.
  • the second electrode unit 140 may be configured as a flexible printed circuit board having second electrodes (not shown) formed in a stripe shape on a lower surface thereof.
  • the second electrodes may be made of a conductive metal material such as copper, gold, silver, or the like, and may be formed in the same pattern as the first electrodes 121.
  • the lower surface of the second electrode unit 140 may be bonded to the upper surface of the piezoelectric element 130 by using an adhesive or the like.
  • the first electrodes 121 function as signal electrodes for transmitting and receiving electrical signals
  • the second electrodes may function as ground electrodes.
  • the second electrodes may function as signal electrodes, in which case the first electrodes 121 may function as ground electrodes.
  • the matching layer 150 may be bonded to the upper surface of the second electrode unit 140 with an adhesive or the like.
  • the matching layer 150 may reduce the acoustic impedance difference between the piezoelectric element 130 and the object under test.
  • the matching layer 150 may be formed of an epoxy resin or the like, and may include a plurality of layers.
  • the piezoelectric composite may be formed between the first electrode portion 120 and the second electrode portion 140.
  • the polymer 132 may be made of epoxy or the like.
  • step S150 as shown in FIG. 6, the matching layer 150, the second electrode part 140, and the piezoelectric element 130 are cut from the upper surface of the matching layer 150 by a dicing process to separate the channel separation grooves. To form 160.
  • each channel separation groove 160 is formed to correspond to each of the first electrodes 121.
  • the channel separation grooves 160 may be formed to have a predetermined width and a predetermined depth, respectively.
  • each bottom depth of the channel separation grooves 160 may be set to be the same as that of the bottom surface of the piezoelectric element 130. Accordingly, the piezoelectric element 130 has a form in which both portions are separated with the channel separation groove 160 therebetween.
  • the vibration modules constituting each channel may be separated from each other in a stripe pattern on the backing material 110. These vibration modules allow the transducer to be configured to have multiple channels.
  • the polymer 170 is filled in the channel separation grooves 160, respectively.
  • the polymer 170 may mutually support the vibration modules between the vibration modules.
  • An acoustic lens 180 that focuses the ultrasonic waves generated from the piezoelectric element 130 may be disposed on an upper surface of the matching layer 150.
  • the process of polishing the upper and lower surfaces of the piezoelectric composite in the process of making the piezoelectric composite can be eliminated, thereby reducing the process time and cost.
  • the transducer manufactured by the manufacturing method according to an embodiment of the present invention may be configured to have a higher ultrasonic transmission and reception performance.
  • each bottom position of the filling grooves 131 may be set higher than a lower surface position of the piezoelectric element 130. Accordingly, the piezoelectric element 130 may be formed in a form in which all portions close to the lower surface are continued.
  • each bottom surface position of the channel separation grooves 160 may be set lower than a bottom surface position of the piezoelectric element 130.
  • FIG. 9 is a flowchart illustrating a transducer manufacturing method according to another embodiment of the present invention. 10 to 13 are perspective views illustrating a process of manufacturing the transducer by the manufacturing method of FIG.
  • the method of manufacturing a transducer includes stacking a first electrode part on an upper surface of a backing material (S210) and stacking a piezoelectric element on an upper surface of a first electrode part (S220). ), And forming the first filling grooves and the second filling grooves to cross each other by a grooving process on the upper surface of the piezoelectric element (S230), and sequentially laminating the second electrode portion and the matching layer on the upper surface of the piezoelectric element. Filling the polymer into the first and second filling grooves (S240), respectively.
  • the first electrode unit 220 may be formed of a flexible printed circuit board having first electrodes 221 formed in a stripe shape on an upper surface thereof.
  • each of the first electrodes 221 may be formed to have a width enough to position at least one of the first charging grooves 231a.
  • the piezoelectric element 230 is stacked on the upper surface of the first electrode unit 220.
  • the first charging grooves 231a and the second charging grooves 231b are formed to cross each other on the upper surface of the piezoelectric element 230.
  • the extending direction of the first charging grooves 231a may be set to be the same as the extending direction of the first electrodes 221.
  • At least one first charging groove 231a is formed to correspond to the first electrodes 221, respectively. Therefore, two or more vibration modules are connected to one first electrode 221.
  • the bottom surface positions of the first and second filling grooves 231a and 231b may be set to be the same as the bottom surface of the piezoelectric element 230.
  • each bottom surface of the first charging grooves 231a among the first charging grooves 231a corresponding to the first electrodes 221 may be set higher than the bottom surface of the piezoelectric element 230.
  • Each bottom surface of the first charging grooves 231a positioned between the first electrodes 221 among the first charging grooves 231a may be set lower than the bottom surface of the piezoelectric element 230.
  • each bottom surface position of the second filling grooves 231b may be set higher than a bottom surface position of the piezoelectric element 230.
  • the first and second filling grooves 231a and 231b are sequentially stacked with the second electrode part 240 and the matching layer 250 on the top surface of the piezoelectric element 230.
  • the polymer 270 is filled in each.
  • the second electrodes of the second electrode part 240 may be formed in the same pattern as the first electrodes 221.
  • the acoustic lens 280 may be disposed on the top surface of the matching layer 250.
  • the process of polishing the upper and lower surfaces of the piezoelectric composite in the process of making the piezoelectric composite can be eliminated, thereby reducing the process time and cost.
  • the polishing process not only PZT but also highly brittle piezoelectric single crystals can be applied as a base material of the piezoelectric composite.

Abstract

Provided are a method for manufacturing a transducer and a transducer manufactured by the method. The method for manufacturing a transducer comprises the steps of: stacking a first electrode unit on the upper surface of a backing material; stacking a piezoelectric device on the upper surface of the first electrode unit; forming a plurality of filling grooves on the upper surface of the piezoelectric device through a grooving process; and respectively filling up the filling grooves with a polymer while sequentially stacking a second electrode unit and a matching layer on the upper surface of the piezoelectric device.

Description

트랜스듀서 제조방법 및 그 방법에 의해 제조된 트랜스듀서Transducer manufacturing method and transducer manufactured by the method
본 실시예는 트랜스듀서 제조방법에 관한 것으로, 더욱 상세하게는 초음파를 이용하여 피검사체 내부의 영상 정보를 획득하는 초음파 진단장치 등에 구비되는 트랜스듀서를 제조하는 방법 및 그 방법에 의해 제조된 트랜스듀서에 관한 것이다.The present embodiment relates to a method for manufacturing a transducer, and more particularly, a method of manufacturing a transducer provided in an ultrasonic diagnostic apparatus or the like for acquiring image information inside an object by using ultrasonic waves, and a transducer manufactured by the method. It is about.
이 부분에 기술된 내용은 단순히 본 발명의 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The contents described in this section merely provide background information on the embodiments of the present invention and do not constitute a prior art.
초음파 진단장치는 프로브(probe)에 의해 피검사체의 진단 부위에 초음파 신호를 송신한 후, 프로브에 의해 음향 임피던스(acoustic impedance)가 다른 피검사체 내의 조직 경계로부터 반사된 초음파 신호를 수신하여, 진단 부위의 영상 정보를 획득한다. 이러한 영상 정보는 초음파 진단장치의 모니터로 출력되고, 진단자는 모니터로 출력되는 영상 정보를 통해 피검사체에 대한 진단을 실시할 수 있다. 프로브에는 초음파 신호를 피검사체로 송신하고 피검사체로부터 반사된 초음파 신호를 수신하기 위한 트랜스듀서가 구비된다.The ultrasound diagnosis apparatus transmits an ultrasound signal to a diagnosis site of a test subject by a probe, and then receives an ultrasound signal reflected from a tissue boundary in the test subject having a different acoustic impedance by the probe. Obtain video information. The image information is output to the monitor of the ultrasound diagnosis apparatus, and the diagnoser may perform diagnosis on the subject through the image information output to the monitor. The probe is provided with a transducer for transmitting an ultrasonic signal to the inspected object and receiving an ultrasonic signal reflected from the inspected object.
일반적으로, 트랜스듀서는 배킹재(backing material) 상에 압전층과 정합층(matching layer) 등이 적층된 구성으로 이루어진다. 압전층은 압전 재료만으로 이루어진 압전소자로 형성되거나, 초음파 송수신 성능을 높이기 위해 압전소자에 폴리머 재료가 복합된 압전 복합체로 형성된다. 종래의 일 예에 따르면, 압전 복합체를 포함하여 트랜스듀서를 제조할 때, 다음과 같은 공정을 거치게 된다. 압전소자의 상면에 그루빙(grooving) 공정에 의해 복수의 충전 홈들을 나란히 절삭한 후, 충전 홈들에 폴리머를 충전한다. 이후, 폴리머가 충전된 압전소자의 상면과 하면을 연마 가공해서 압전 복합체를 설정 두께로 만든다. 이와 같이 가공된 압전 복합체를 배킹재 상에 적층한다.In general, the transducer has a configuration in which a piezoelectric layer, a matching layer, and the like are stacked on a backing material. The piezoelectric layer is formed of a piezoelectric element made of only a piezoelectric material, or is formed of a piezoelectric composite in which a polymer material is composited in the piezoelectric element in order to increase ultrasonic transmission and reception performance. According to the conventional example, when manufacturing the transducer including the piezoelectric composite, it goes through the following process. After the plurality of filling grooves are cut side by side by a grooving process on the upper surface of the piezoelectric element, the filling grooves are filled with a polymer. Thereafter, the upper and lower surfaces of the piezoelectric element filled with the polymer are polished to make the piezoelectric composite to a predetermined thickness. The piezoelectric composite thus processed is laminated on the backing material.
그런데, 전술한 바와 같이, 압전 복합체를 만드는 과정에서 두 번의 연마 가공을 거쳐야 한다. 이로 인해, 트랜스듀서를 제조하는데 많은 공정 시간과 비용이 소요된다. 또한, 압전 복합체의 모재를 압전 단결정(single crystal)으로 구성하는 경우, 단결정은 취성이 높기 때문에 연마 가공에 어려움이 있다.However, as described above, two polishing operations must be performed in the process of making the piezoelectric composite. This requires a lot of process time and cost to manufacture the transducer. In addition, when the base material of the piezoelectric composite is composed of a piezoelectric single crystal, the single crystal has a high brittleness, which makes it difficult to grind.
본 발명의 과제는 공정 시간과 비용을 절감할 수 있는 트랜스듀서 제조방법 및 그 방법에 의해 제조된 트랜스듀서를 제공함에 있다.An object of the present invention to provide a transducer manufacturing method and a transducer manufactured by the method that can reduce the process time and cost.
상기의 과제를 달성하기 위한 본 발명에 따른 트랜스듀서 제조방법은, 배킹재의 상면에 제1 전극부를 적층하는 단계; 상기 제1 전극부의 상면에 압전소자를 적층하는 단계; 상기 압전소자의 상면에 그루빙 공정에 의해 복수의 충전 홈들을 형성하는 단계; 및 상기 압전소자의 상면에 제2 전극부와 정합층을 차례로 적층하면서 상기 충전 홈들에 폴리머를 각각 충전하는 단계;를 포함한다.Transducer manufacturing method according to the present invention for achieving the above object, the step of laminating the first electrode portion on the upper surface of the backing material; Stacking a piezoelectric element on an upper surface of the first electrode unit; Forming a plurality of filling grooves on a top surface of the piezoelectric element by a grooving process; And filling polymers in the filling grooves while sequentially stacking a second electrode part and a matching layer on the upper surface of the piezoelectric element.
본 발명에 따르면, 압전 복합체를 만드는 과정에서 압전 복합체의 상면 및 하면을 연마하는 공정을 없앨 수 있으므로, 공정 시간과 비용을 절감할 수 있다. 또한, 연마 공정의 생략으로 인해, 압전 복합체의 모재로 PZT 뿐만 아니라 취성이 높은 압전 단결정까지 적용이 가능하다. 따라서, 트랜스듀서를 보다 높은 초음파 송수신 성능을 갖도록 구성할 수 있다.According to the present invention, the process of polishing the upper and lower surfaces of the piezoelectric composite in the process of making the piezoelectric composite can be eliminated, thereby reducing the process time and cost. In addition, due to the omission of the polishing process, not only PZT but also highly brittle piezoelectric single crystals can be applied as a base material of the piezoelectric composite. Therefore, the transducer can be configured to have higher ultrasonic transmission and reception performance.
도 1은 본 발명의 일 실시예에 따른 트랜스듀서 제조방법에 대한 순서도이다.1 is a flow chart for a transducer manufacturing method according to an embodiment of the present invention.
도 2 내지 도 7은 도 1의 제조방법에 의해 트랜스듀서를 제조하는 과정을 설명하기 위한 사시도이다.2 to 7 are perspective views for explaining a process of manufacturing the transducer by the manufacturing method of FIG.
도 8은 도 4에 있어서, 압전소자의 상면에 복수의 충전 홈들을 형성하는 다른 예를 설명하기 위한 사시도이다.FIG. 8 is a perspective view illustrating another example in which a plurality of filling grooves are formed on an upper surface of the piezoelectric element in FIG. 4.
도 9는 본 발명의 다른 실시예에 따른 트랜스듀서 제조방법에 대한 순서도이다.9 is a flowchart illustrating a transducer manufacturing method according to another embodiment of the present invention.
도 10 내지 도 13은 도 9의 제조방법에 의해 트랜스듀서를 제조하는 과정을 설명하기 위한 사시도이다. 10 to 13 are perspective views illustrating a process of manufacturing the transducer by the manufacturing method of FIG.
본 발명에 대해 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 동일한 구성에 대해서는 동일부호를 사용하며, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.When described in detail with reference to the accompanying drawings for the present invention. Here, the same reference numerals are used for the same components, and repeated descriptions and detailed descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted. Embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. Accordingly, the shape and size of elements in the drawings may be exaggerated for clarity.
도 1은 본 발명의 일 실시예에 따른 트랜스듀서 제조방법에 대한 순서도이다. 도 2 내지 도 7은 도 1의 제조방법에 의해 트랜스듀서를 제조하는 과정을 설명하기 위한 사시도이다.1 is a flow chart for a transducer manufacturing method according to an embodiment of the present invention. 2 to 7 are perspective views for explaining a process of manufacturing the transducer by the manufacturing method of FIG.
도 1을 참조하면, 본 발명의 일 실시예에 따른 트랜스듀서 제조방법은, 배킹재의 상면에 제1 전극부를 적층하는 단계(S110)와, 제1 전극부의 상면에 압전소자를 적층하는 단계(S120)와, 압전소자의 상면에 그루빙 공정에 의해 복수의 충전 홈들을 나란히 형성하는 단계(S130)와, 압전소자의 상면에 제2 전극부와 정합층을 차례로 적층하면서 충전 홈들에 폴리머를 각각 충전하는 단계(S140)와, 다이싱(dicing) 공정에 의해 정합층의 상면으로부터 정합층과 제2 전극부 및 압전소자를 절삭해서 채널분리 홈들을 형성하되 각각의 채널분리 홈을 제1 전극들 사이마다 대응시키도록 형성하는 단계(S150), 및 채널분리 홈들에 폴리머를 각각 충전하는 단계(S160)를 포함한다.Referring to FIG. 1, in the method of manufacturing a transducer according to an exemplary embodiment of the present disclosure, a step (S110) of stacking a first electrode part on an upper surface of a backing material and a step of stacking a piezoelectric element on a top surface of a first electrode part (S120) ), And forming a plurality of filling grooves side by side by a grooving process on the upper surface of the piezoelectric element (S130), and filling the polymer into the filling grooves while sequentially stacking the second electrode portion and the matching layer on the upper surface of the piezoelectric element. And dividing the matching layer, the second electrode portion, and the piezoelectric element from the upper surface of the matching layer by a dicing process (S140) and forming channel separation grooves between the first electrodes. Forming a corresponding one at every step (S150), and filling the polymer into the channel separation grooves (S160), respectively.
도 2 내지 도 7을 참조하여, 본 발명의 일 실시예에 따른 트랜스듀서 제조방법에 대해 더욱 상세하게 설명하면 다음과 같다.With reference to Figures 2 to 7, with reference to the transducer manufacturing method according to an embodiment of the present invention in more detail as follows.
S110 단계에서는, 도 2에 도시된 바와 같이 배킹재(110)를 마련한다. 이때, 배킹재(110)는 흡음성을 갖도록 구성될 수 있다. 이러한 배킹재(110)는 상측에 적층되는 압전소자(130)의 자유 진동을 억제하여 초음파의 펄스 폭을 감소시키며, 압전소자(130)의 하측으로 초음파가 불필요하게 전파되는 것을 차단하여 영상 왜곡을 방지할 수 있다. 예컨대, 트랜스듀서를 리니어 어레이 타입(linear array type)으로 구성할 경우, 배킹재(110)는 상면이 편평한 형태를 갖도록 구성될 수 있다. 배킹재(110)는 에폭시 수지에 텅스텐(W), 납(Pb), 산화 아연(ZnO) 등과 같이 밀도가 높은 분말재료를 충전한 재질로 구성될 수 있다.In step S110, the backing material 110 is provided as shown in FIG. At this time, the backing material 110 may be configured to have sound absorption. The backing material 110 reduces the pulse width of the ultrasonic wave by suppressing free vibration of the piezoelectric element 130 stacked on the upper side, and prevents unnecessary propagation of the ultrasonic wave to the lower side of the piezoelectric element 130 to prevent image distortion. You can prevent it. For example, when the transducer is configured as a linear array type, the backing material 110 may be configured to have a flat top surface. The backing material 110 may be formed of a material filled with a high density powder material such as tungsten (W), lead (Pb), zinc oxide (ZnO), and the like.
그리고, 이러한 배킹재(110)의 상면에 적층하기 위한 제1 전극부(120)를 마련한다. 이때, 제1 전극부(120)는 상면에 제1 전극(121)들이 스트라이프(stripe) 형태로 형성된 플렉시블 인쇄회로기판으로 구성될 수 있다. 이러한 제1 전극부(120)의 하면을 접착제 등에 의해 배킹재(110)의 상면에 접합할 수 있다. 제1 전극(121)들은 구리, 금, 은 등과 같은 도전성 금속 물질로 각각 구성될 수 있다. Then, the first electrode portion 120 for laminating on the upper surface of the backing material 110 is provided. In this case, the first electrode unit 120 may be configured as a flexible printed circuit board on which the first electrodes 121 are formed in a stripe shape. The lower surface of the first electrode portion 120 may be bonded to the upper surface of the backing material 110 by an adhesive or the like. The first electrodes 121 may be made of conductive metal materials such as copper, gold, and silver, respectively.
S120 단계에서는, 도 3에 도시된 바와 같이, 압전소자(130)를 마련한다. 압전소자(130)는 전압이 인가되면 공진하여 초음파 신호를 발생시키고, 초음파 신호를 수신하게 되면 진동하여 전기적 신호를 발생시킨다. 압전소자(130)는 티탄산 지르콘산 납(PZT, lead zirconate titanate)계 등의 압전 세라믹, 압전 단결정 등으로 구성될 수 있다. 그리고, 압전소자(130)는 상면과 하면에 증착 등의 방법으로 전극층이 각각 형성된 형태로 구성될 수 있다. 압전소자(130)의 하면에 형성된 전극층은 제1 전극부(120)와 접속되고, 압전소자(130)의 상면에 형성된 전극층은 제2 전극부(140)와 접속될 수 있다. 이러한 압전소자(130)를 제1 전극부(120)의 상면에 적층한다. 이때, 압전소자(130)의 하면을 접착제 등에 의해 제1 전극부(120)의 상면에 접합할 수 있다. In step S120, as shown in FIG. 3, a piezoelectric element 130 is prepared. The piezoelectric element 130 may generate an ultrasonic signal by resonating when a voltage is applied, and generate an electrical signal by vibrating when the ultrasonic signal is received. The piezoelectric element 130 may be formed of a piezoelectric ceramic such as lead zirconate titanate (PZT), piezoelectric single crystal, or the like. In addition, the piezoelectric element 130 may be configured in a form in which electrode layers are formed on the top and bottom surfaces thereof, for example, by deposition. The electrode layer formed on the lower surface of the piezoelectric element 130 may be connected to the first electrode 120, and the electrode layer formed on the upper surface of the piezoelectric element 130 may be connected to the second electrode 140. The piezoelectric element 130 is stacked on the upper surface of the first electrode unit 120. In this case, the lower surface of the piezoelectric element 130 may be bonded to the upper surface of the first electrode part 120 by an adhesive or the like.
S130 단계에서는, 도 4에 도시된 바와 같이, 압전소자(130)의 상면에 그루빙 공정에 의해 복수의 충전 홈(131)들을 나란히 형성한다. 이때, 충전 홈(131)들을 제1 전극(121)들과 교차하는 방향으로 스트라이프 형태로 형성한다. 충전 홈(131)들은 일정 폭과 일정 깊이를 갖도록 각각 형성될 수 있다. 충전 홈(131)들을 형성할 때, 충전 홈(131)들의 각 저면 위치를 압전소자(130)의 하면 위치와 동일하게 설정할 수 있다. 이에 따라, 압전소자(130)는 충전 홈(131)을 사이에 두고 양쪽 부위가 분리된 형태를 이루게 된다.In step S130, as shown in FIG. 4, the plurality of filling grooves 131 are formed side by side by a grooving process on the upper surface of the piezoelectric element 130. In this case, the charging grooves 131 are formed in a stripe shape in a direction crossing the first electrodes 121. The filling grooves 131 may be formed to have a predetermined width and a predetermined depth, respectively. When the filling grooves 131 are formed, each bottom surface position of the filling grooves 131 may be set to be the same as the bottom surface position of the piezoelectric element 130. Accordingly, the piezoelectric element 130 has a form in which both portions are separated with the filling groove 131 interposed therebetween.
S140 단계에서는, 도 5에 도시된 바와 같이, 압전소자(130)의 상면에 제2 전극부(140)와 정합층(150)을 차례로 적층하면서 충전 홈(131)들에 폴리머(132)를 각각 충전한다. 제2 전극부(140)는 하면에 제2 전극(미도시)들이 스트라이프 형태로 형성된 플렉시블 인쇄회로기판으로 구성될 수 있다. 제2 전극들은 구리, 금, 은 등과 같은 도전성 금속 물질로 각각 구성될 수 있으며, 제1 전극(121)들과 동일한 패턴으로 형성될 수 있다. 이러한 제2 전극부(140)의 하면을 접착제 등에 의해 압전소자(130)의 상면에 접합할 수 있다. 제1 전극(121)들이 전기적 신호의 송수신을 위한 신호 전극들로 기능하는 경우, 제2 전극들은 그라운드 전극들로 기능할 수 있다. 물론, 제2 전극들이 신호 전극들로 기능할 수 있으며, 이 경우 제1 전극(121)들이 그라운드 전극들로 기능할 수 있다.In step S140, as shown in FIG. 5, the polymer 132 is formed in the filling grooves 131 while sequentially stacking the second electrode part 140 and the matching layer 150 on the upper surface of the piezoelectric element 130. To charge. The second electrode unit 140 may be configured as a flexible printed circuit board having second electrodes (not shown) formed in a stripe shape on a lower surface thereof. The second electrodes may be made of a conductive metal material such as copper, gold, silver, or the like, and may be formed in the same pattern as the first electrodes 121. The lower surface of the second electrode unit 140 may be bonded to the upper surface of the piezoelectric element 130 by using an adhesive or the like. When the first electrodes 121 function as signal electrodes for transmitting and receiving electrical signals, the second electrodes may function as ground electrodes. Of course, the second electrodes may function as signal electrodes, in which case the first electrodes 121 may function as ground electrodes.
정합층(150)을 제2 전극부(140)의 상면에 접착제 등에 의해 접합할 수 있다. 정합층(150)은 압전소자(130)와 피검사체 사이의 음향 임피던스 차이를 감소시킬 수 있게 한다. 예컨대, 정합층(150)은 에폭시 수지 등을 포함하여 형성될 수 있으며, 복수의 층들로 구성될 수 있다. 압전소자(130)의 충전 홈(131)들에 폴리머(132)를 각각 충전함으로써, 제1 전극부(120)와 제2 전극부(140) 사이에 압전 복합체를 구성해서 배치할 수 있다. 폴리머(132)는 에폭시 등으로 구성될 수 있다. The matching layer 150 may be bonded to the upper surface of the second electrode unit 140 with an adhesive or the like. The matching layer 150 may reduce the acoustic impedance difference between the piezoelectric element 130 and the object under test. For example, the matching layer 150 may be formed of an epoxy resin or the like, and may include a plurality of layers. By filling the polymers 132 in the filling grooves 131 of the piezoelectric element 130, the piezoelectric composite may be formed between the first electrode portion 120 and the second electrode portion 140. The polymer 132 may be made of epoxy or the like.
S150 단계에서는, 도 6에 도시된 바와 같이, 다이싱 공정에 의해 정합층(150)의 상면으로부터 정합층(150)과 제2 전극부(140) 및 압전소자(130)를 절삭해서 채널분리 홈(160)들을 형성한다. 이때, 각각의 채널분리 홈(160)을 제1 전극(121)들 사이마다 대응시키도록 형성한다. In step S150, as shown in FIG. 6, the matching layer 150, the second electrode part 140, and the piezoelectric element 130 are cut from the upper surface of the matching layer 150 by a dicing process to separate the channel separation grooves. To form 160. In this case, each channel separation groove 160 is formed to correspond to each of the first electrodes 121.
채널분리 홈(160)들은 일정 폭과 일정 깊이를 갖도록 각각 형성될 수 있다. 채널분리 홈(160)들을 형성할 때, 채널분리 홈(160)들의 각 저면 위치(kerf depth)를 압전소자(130)의 하면 위치와 동일하게 설정할 수 있다. 이에 따라, 압전소자(130)가 채널분리 홈(160)을 사이에 두고 양쪽 부위가 분리된 형태를 이루게 된다. 또한, 채널분리 홈(160)들에 의해, 배킹재(110) 상에는 각 채널을 구성하는 진동 모듈들이 스트라이프 패턴으로 상호 분리되어 배열될 수 있다. 이러한 진동 모듈들에 의해 트랜스듀서는 다채널을 갖도록 구성될 수 있다.The channel separation grooves 160 may be formed to have a predetermined width and a predetermined depth, respectively. When the channel separation grooves 160 are formed, each bottom depth of the channel separation grooves 160 may be set to be the same as that of the bottom surface of the piezoelectric element 130. Accordingly, the piezoelectric element 130 has a form in which both portions are separated with the channel separation groove 160 therebetween. In addition, by the channel separation grooves 160, the vibration modules constituting each channel may be separated from each other in a stripe pattern on the backing material 110. These vibration modules allow the transducer to be configured to have multiple channels.
S160 단계에서는, 도 7에 도시된 바와 같이, 채널분리 홈(160)들에 폴리머(170)를 각각 충전한다. 폴리머(170)는 진동 모듈들 사이에서 진동 모듈들을 상호 지지할 수 있다. 정합층(150)의 상면에는 압전소자(130)로부터 발생된 초음파를 집속시키는 음향렌즈(180)를 배치할 수 있다.In operation S160, as shown in FIG. 7, the polymer 170 is filled in the channel separation grooves 160, respectively. The polymer 170 may mutually support the vibration modules between the vibration modules. An acoustic lens 180 that focuses the ultrasonic waves generated from the piezoelectric element 130 may be disposed on an upper surface of the matching layer 150.
전술한 트랜스듀서 제조방법에 의하면, 압전 복합체를 만드는 과정에서 압전 복합체의 상면 및 하면을 연마하는 공정을 없앨 수 있으므로, 공정 시간과 비용을 절감할 수 있다. 또한, 연마 공정의 생략으로 인해, 압전 복합체의 모재로 PZT 뿐만 아니라 취성이 높은 압전 단결정까지 적용이 가능하다. 따라서, 본 발명의 일 실시예에 따른 제조방법에 의해 제조된 트랜스듀서는 보다 높은 초음파 송수신 성능을 갖도록 구성될 수 있다.According to the transducer manufacturing method described above, the process of polishing the upper and lower surfaces of the piezoelectric composite in the process of making the piezoelectric composite can be eliminated, thereby reducing the process time and cost. In addition, due to the omission of the polishing process, not only PZT but also highly brittle piezoelectric single crystals can be applied as a base material of the piezoelectric composite. Therefore, the transducer manufactured by the manufacturing method according to an embodiment of the present invention may be configured to have a higher ultrasonic transmission and reception performance.
한편, S130 단계에서는, 도 8에 도시된 바와 같이, 충전 홈(131)들을 형성할 때, 충전 홈(131)들의 각 저면 위치를 압전소자(130)의 하면 위치보다 높게 설정할 수 있다. 이에 따라, 압전소자(130)는 하면에 가까운 부위가 모두 이어진 형태로 이루어질 수 있다. 도시하고 있지 않지만, S150 단계에서 채널분리 홈(160)들을 형성할 때, 채널분리 홈(160)들의 각 저면 위치를 압전소자(130)의 하면 위치보다 낮게 설정할 수 있다.Meanwhile, in step S130, when forming the filling grooves 131, each bottom position of the filling grooves 131 may be set higher than a lower surface position of the piezoelectric element 130. Accordingly, the piezoelectric element 130 may be formed in a form in which all portions close to the lower surface are continued. Although not shown, when the channel separation grooves 160 are formed in step S150, each bottom surface position of the channel separation grooves 160 may be set lower than a bottom surface position of the piezoelectric element 130.
도 9는 본 발명의 다른 실시예에 따른 트랜스듀서 제조방법에 대한 순서도이다. 도 10 내지 도 13은 도 9의 제조방법에 의해 트랜스듀서를 제조하는 과정을 설명하기 위한 사시도이다.9 is a flowchart illustrating a transducer manufacturing method according to another embodiment of the present invention. 10 to 13 are perspective views illustrating a process of manufacturing the transducer by the manufacturing method of FIG.
도 9를 참조하면, 본 발명의 다른 실시예에 따른 트랜스듀서 제조방법은, 배킹재의 상면에 제1 전극부를 적층하는 단계(S210)와, 제1 전극부의 상면에 압전소자를 적층하는 단계(S220)와, 압전소자의 상면에 그루빙 공정에 의해 제1 충전 홈들과 제2 충전 홈들을 상호 교차하도록 형성하는 단계(S230), 및 압전소자의 상면에 제2 전극부와 정합층을 차례로 적층하면서 제1,2 충전 홈들에 폴리머를 각각 충전하는 단계(S240)를 포함한다. Referring to FIG. 9, the method of manufacturing a transducer according to another exemplary embodiment of the present invention includes stacking a first electrode part on an upper surface of a backing material (S210) and stacking a piezoelectric element on an upper surface of a first electrode part (S220). ), And forming the first filling grooves and the second filling grooves to cross each other by a grooving process on the upper surface of the piezoelectric element (S230), and sequentially laminating the second electrode portion and the matching layer on the upper surface of the piezoelectric element. Filling the polymer into the first and second filling grooves (S240), respectively.
도 10 내지 도 13을 참조하여, 본 발명의 다른 실시예에 따른 트랜스듀서 제조방법에 대해 더욱 상세하게 설명하면 다음과 같다. 이하에서는, 전술한 실시예와 차이가 있는 부분에 대해 중점적으로 설명하기로 한다.10 to 13, the transducer manufacturing method according to another embodiment of the present invention will be described in detail as follows. Hereinafter, description will be focused on the parts that differ from the above-described embodiment.
S210 단계에서는, 도 10에 도시된 바와 같이, 제1 전극부(220)는 상면에 제1 전극(221)들이 스트라이프 형태로 형성된 플렉시블 인쇄회로기판으로 구성될 수 있다. 이때, 각각의 제1 전극(221)은 제1 충전 홈(231a)을 적어도 하나 이상씩 위치시킬 수 있을 정도의 폭을 갖도록 형성될 수 있다. S220 단계에서는, 도 11에 도시된 바와 같이, 제1 전극부(220)의 상면에 압전소자(230)를 적층한다.In operation S210, as illustrated in FIG. 10, the first electrode unit 220 may be formed of a flexible printed circuit board having first electrodes 221 formed in a stripe shape on an upper surface thereof. In this case, each of the first electrodes 221 may be formed to have a width enough to position at least one of the first charging grooves 231a. In operation S220, as illustrated in FIG. 11, the piezoelectric element 230 is stacked on the upper surface of the first electrode unit 220.
S230 단계에서는, 도 12에 도시된 바와 같이, 압전소자(230)의 상면에 제1 충전 홈(231a)들과 제2 충전 홈(231b)들을 상호 교차하도록 형성한다. 이때, 제1 충전 홈(231a)들의 연장 방향을 제1 전극(221)들의 연장 방향과 동일하게 설정할 수 있다. 그리고, 제1 충전 홈(231a)을 적어도 하나 이상씩 제1 전극(221)들에 각각 대응시키도록 형성한다. 따라서, 하나의 제1 전극(221)에 2개 이상의 진동 모듈들이 접속된 형태를 이루게 된다. 제1,2 충전 홈(231a)(231b)들을 형성할 때, 제1,2 충전 홈(231a)(231b)들의 각 저면 위치를 압전소자(230)의 하면 위치와 동일하게 설정할 수 있다. 물론, 제1 충전 홈(231a)들 중 제1 전극(221)들에 대응되게 위치하는 제1 충전 홈(231a)들의 각 저면 위치를 압전소자(230)의 하면 위치보다 높게 설정할 수도 있다. 제1 충전 홈(231a)들 중 제1 전극(221)들 사이에 위치하는 제1 충전 홈(231a)들의 각 저면 위치를 압전소자(230)의 하면 위치보다 낮게 설정할 수도 있다. 그리고, 제2 충전 홈(231b)들의 각 저면 위치를 압전소자(230)의 하면 위치보다 높게 설정할 수도 있다. In operation S230, as shown in FIG. 12, the first charging grooves 231a and the second charging grooves 231b are formed to cross each other on the upper surface of the piezoelectric element 230. In this case, the extending direction of the first charging grooves 231a may be set to be the same as the extending direction of the first electrodes 221. At least one first charging groove 231a is formed to correspond to the first electrodes 221, respectively. Therefore, two or more vibration modules are connected to one first electrode 221. When the first and second filling grooves 231a and 231b are formed, the bottom surface positions of the first and second filling grooves 231a and 231b may be set to be the same as the bottom surface of the piezoelectric element 230. Of course, each bottom surface of the first charging grooves 231a among the first charging grooves 231a corresponding to the first electrodes 221 may be set higher than the bottom surface of the piezoelectric element 230. Each bottom surface of the first charging grooves 231a positioned between the first electrodes 221 among the first charging grooves 231a may be set lower than the bottom surface of the piezoelectric element 230. In addition, each bottom surface position of the second filling grooves 231b may be set higher than a bottom surface position of the piezoelectric element 230.
S240 단계에서는, 도 13에 도시된 바와 같이, 압전소자(230)의 상면에 제2 전극부(240)와 정합층(250)을 차례로 적층하면서 제1,2 충전 홈(231a)(231b)들에 폴리머(270)를 각각 충전한다. 이때, 제2 전극부(240)의 제2 전극들을 제1 전극(221)들과 동일한 패턴으로 형성할 수 있다. 그리고, 정합층(250)의 상면에는 음향렌즈(280)를 배치할 수 있다. In operation S240, as shown in FIG. 13, the first and second filling grooves 231a and 231b are sequentially stacked with the second electrode part 240 and the matching layer 250 on the top surface of the piezoelectric element 230. The polymer 270 is filled in each. In this case, the second electrodes of the second electrode part 240 may be formed in the same pattern as the first electrodes 221. The acoustic lens 280 may be disposed on the top surface of the matching layer 250.
본 실시예에 따른 트랜스듀서 제조방법에 의해서도, 압전 복합체를 만드는 과정에서 압전 복합체의 상면 및 하면을 연마하는 공정을 없앨 수 있으므로, 공정 시간과 비용을 절감할 수 있다. 또한, 연마 공정의 생략으로 인해, 압전 복합체의 모재로 PZT 뿐만 아니라 취성이 높은 압전 단결정까지 적용이 가능하다.In the transducer manufacturing method according to the present embodiment, the process of polishing the upper and lower surfaces of the piezoelectric composite in the process of making the piezoelectric composite can be eliminated, thereby reducing the process time and cost. In addition, due to the omission of the polishing process, not only PZT but also highly brittle piezoelectric single crystals can be applied as a base material of the piezoelectric composite.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.Although the present invention has been described with reference to one embodiment shown in the accompanying drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Could be. Accordingly, the true scope of protection of the invention should be defined only by the appended claims.

Claims (10)

  1. 배킹재의 상면에 제1 전극부를 적층하는 단계;Stacking a first electrode on an upper surface of the backing material;
    상기 제1 전극부의 상면에 압전소자를 적층하는 단계;Stacking a piezoelectric element on an upper surface of the first electrode unit;
    상기 압전소자의 상면에 그루빙(grooving) 공정에 의해 복수의 충전 홈들을 형성하는 단계; 및Forming a plurality of filling grooves on a top surface of the piezoelectric element by a grooving process; And
    상기 압전소자의 상면에 제2 전극부와 정합층을 차례로 적층하면서 상기 충전 홈들에 폴리머를 각각 충전하는 단계;Filling the filling grooves with a polymer, respectively, by sequentially stacking a second electrode portion and a matching layer on an upper surface of the piezoelectric element;
    를 포함하는 트랜스듀서 제조방법.Transducer manufacturing method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 전극부를 적층하는 단계는,Stacking the first electrode unit,
    상기 제1 전극부를 상면에 제1 전극들이 스트라이프 형태로 형성된 플렉시블 인쇄회로기판으로 마련해서 상기 배킹재의 상면에 적층하는 과정을 포함하는 것을 특징으로 하는 트랜스듀서 제조방법.And providing a first printed circuit board on the upper surface of the first electrode part and stacking the first electrode on a top surface of the backing material.
  3. 제2항에 있어서,The method of claim 2,
    상기 충전 홈들을 형성하는 단계는,Forming the filling grooves,
    상기 충전 홈들을 상기 제1 전극들과 교차하는 방향으로 스트라이프 형태로 형성하는 과정을 포함하는 것을 특징으로 하는 트랜스듀서 제조방법.And forming the filling grooves in a stripe shape in a direction crossing the first electrodes.
  4. 제3항에 있어서, The method of claim 3,
    상기 충전 홈들을 형성하는 단계는,Forming the filling grooves,
    상기 충전 홈들의 각 저면 위치를 상기 압전소자의 하면 위치에 대해 동일하거나 높게 설정하는 과정을 포함하는 것을 특징으로 하는 트랜스듀서 제조방법.And setting the bottom position of each of the filling grooves to be the same or higher than the bottom position of the piezoelectric element.
  5. 제3항에 있어서,The method of claim 3,
    상기 충전 홈들에 폴리머를 각각 충전하는 단계 이후에는,After each filling the polymer into the filling grooves,
    다이싱(dicing) 공정에 의해 상기 정합층의 상면으로부터 상기 정합층과 제2 전극부 및 압전소자를 절삭해서 채널분리 홈들을 형성하되 상기 각각의 채널분리 홈을 상기 제1 전극들 사이마다 대응시키도록 형성하는 단계; 및A channel dividing groove is formed by cutting the matching layer, the second electrode part, and the piezoelectric element from an upper surface of the matching layer by a dicing process, and the channel separating grooves correspond to each of the first electrodes. Forming to make; And
    상기 채널분리 홈들에 폴리머를 각각 충전하는 단계;Respectively filling polymer into the channel separation grooves;
    를 포함하는 것을 특징으로 하는 트랜스듀서 제조방법.Transducer manufacturing method comprising a.
  6. 제2항에 있어서,The method of claim 2,
    상기 충전 홈들을 형성하는 단계는,Forming the filling grooves,
    제1 충전 홈들과 제2 충전 홈들을 상호 교차하도록 형성하되 상기 제1 충전 홈들을 적어도 하나 이상씩 상기 제1 전극들에 각각 대응시키도록 형성하는 과정을 포함하는 것을 특징으로 하는 트랜스듀서 제조방법.And forming the first filling grooves and the second filling grooves so as to cross each other, and forming the first filling grooves to correspond to the first electrodes by at least one or more, respectively.
  7. 제6항에 있어서,The method of claim 6,
    상기 충전 홈들을 형성하는 단계는,Forming the filling grooves,
    상기 제2 충전 홈들의 각 저면 위치를 상기 압전소자의 하면 위치에 대해 동일하거나 높게 설정하는 과정을 포함하는 것을 특징으로 하는 트랜스듀서 제조방법.And setting the bottom surface positions of the second filling grooves to be the same as or higher than the bottom position of the piezoelectric element.
  8. 제6항에 있어서,The method of claim 6,
    상기 충전 홈들을 형성하는 단계는,Forming the filling grooves,
    상기 제1 충전 홈들 중 상기 제1 전극들에 대응되게 위치한 제1 충전 홈들의 각 저면 위치를 상기 압전소자의 하면 위치에 대해 동일하거나 높게 설정하는 과정을 포함하는 것을 특징으로 하는 트랜스듀서 제조방법.And setting a bottom position of each of the first charging grooves corresponding to the first electrodes among the first charging grooves to be equal to or higher than a lower surface position of the piezoelectric element.
  9. 제1항에 있어서, The method of claim 1,
    상기 제1 전극부의 상면에 압전소자를 적층하는 단계는, The step of stacking a piezoelectric element on the upper surface of the first electrode portion,
    상기 압전소자를 PZT계의 압전 세라믹과 압전 단결정 중 선택된 어느 하나로 마련해서 상기 제1 전극부의 상면에 적층하는 과정을 포함하는 것을 특징으로 하는 트랜스듀서 제조방법.And arranging the piezoelectric element as one selected from a PZT-based piezoelectric ceramic and a piezoelectric single crystal, and stacking the piezoelectric element on an upper surface of the first electrode part.
  10. 제1항 내지 제9항 중 어느 하나에 기재된 제조방법에 의해 제조된 트랜스듀서.The transducer manufactured by the manufacturing method in any one of Claims 1-9.
PCT/KR2013/004286 2013-05-13 2013-05-15 Method for manufacturing transducer and transducer manufactured by method WO2014185565A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130053695A KR101491800B1 (en) 2013-05-13 2013-05-13 Method of manufacturing transducer and transducer manufactured thereby
KR10-2013-0053695 2013-05-13

Publications (1)

Publication Number Publication Date
WO2014185565A1 true WO2014185565A1 (en) 2014-11-20

Family

ID=51898534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004286 WO2014185565A1 (en) 2013-05-13 2013-05-15 Method for manufacturing transducer and transducer manufactured by method

Country Status (2)

Country Link
KR (1) KR101491800B1 (en)
WO (1) WO2014185565A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347818B2 (en) * 2016-03-31 2019-07-09 General Electric Company Method for manufacturing ultrasound transducers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398325A (en) * 1980-06-25 1983-08-16 Commissariat A L'energie Atomique Process for producing ultrasonic transducers having complex shapes
US6238481B1 (en) * 1998-03-05 2001-05-29 Kabushiki Kaisha Toshiba Method of manufacturing ultrasonic probe and ultrasonic diagnostic apparatus
KR20100091466A (en) * 2009-02-10 2010-08-19 주식회사 휴먼스캔 Ultrasonic probe, ultrasonic imaging apparatus and fabricating method thereof
KR101222911B1 (en) * 2011-01-14 2013-01-16 경북대학교 산학협력단 Two dimensional ultrasonic transducer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398325A (en) * 1980-06-25 1983-08-16 Commissariat A L'energie Atomique Process for producing ultrasonic transducers having complex shapes
US6238481B1 (en) * 1998-03-05 2001-05-29 Kabushiki Kaisha Toshiba Method of manufacturing ultrasonic probe and ultrasonic diagnostic apparatus
KR20100091466A (en) * 2009-02-10 2010-08-19 주식회사 휴먼스캔 Ultrasonic probe, ultrasonic imaging apparatus and fabricating method thereof
KR101222911B1 (en) * 2011-01-14 2013-01-16 경북대학교 산학협력단 Two dimensional ultrasonic transducer

Also Published As

Publication number Publication date
KR101491800B1 (en) 2015-02-11
KR20140134058A (en) 2014-11-21

Similar Documents

Publication Publication Date Title
US10707407B2 (en) Ultrasonic device, method for manufacturing the same, electronic device and ultrasonic imaging device
US9172024B2 (en) Ultrasound probe and method of manufacturing ultrasound probe
JP4778003B2 (en) Multilayer ultrasonic transducer and manufacturing method thereof
CN103210665B (en) The manufacture method of ultrasonic transducer, ultrasound probe and ultrasonic transducer
CN102497938B (en) Ultrasound imaging transducer acoustic stack with integral electrical connections
US11806752B2 (en) Ultrasound transducer and method for wafer level front face attachment
US9321082B2 (en) Ultrasonic transducer, manufacturing method thereof, and ultrasonic probe
CN102297901A (en) Ultrasound probe and manufacturing method thereof
US20080224567A1 (en) Ultrasonic sensor having piezoelectric element and acoustic matching member
JP2002305792A (en) Multilayer piezoelectric structure with uniform electric field
JP4519259B2 (en) Two-dimensional array ultrasonic probe and manufacturing method thereof
US7898154B2 (en) Ultrasound probe and method for manufacturing the same
JP4426513B2 (en) Ultrasonic probe and manufacturing method thereof
WO2014185565A1 (en) Method for manufacturing transducer and transducer manufactured by method
US9566612B2 (en) Ultrasonic probe
WO2014185557A1 (en) Ultrasonic transducer and manufacturing method therefor
JP2005210245A (en) Ultrasonic probe
WO2014185559A1 (en) Method for manufacturing transducer and transducer manufactured using same
JP5462077B2 (en) Transducer and ultrasonic probe
JP6549001B2 (en) Ultrasound probe
JP6876645B2 (en) Ultrasonic probe and its manufacturing method
KR20130097550A (en) Ultrasonic probe and manufacturing method thereof
WO2018098159A1 (en) 2d ultrasound transducer array methods of making the same
JPS6385353A (en) Array probe
JP2013026425A (en) Multilayer piezoelectric, multilayer piezoelectric element using the same, and manufacturing method of multilayer piezoelectric element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884587

Country of ref document: EP

Kind code of ref document: A1