WO2014203479A1 - Light source, and vehicle headlamp equipped with light source - Google Patents

Light source, and vehicle headlamp equipped with light source Download PDF

Info

Publication number
WO2014203479A1
WO2014203479A1 PCT/JP2014/002935 JP2014002935W WO2014203479A1 WO 2014203479 A1 WO2014203479 A1 WO 2014203479A1 JP 2014002935 W JP2014002935 W JP 2014002935W WO 2014203479 A1 WO2014203479 A1 WO 2014203479A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
light source
blue
wavelength conversion
Prior art date
Application number
PCT/JP2014/002935
Other languages
French (fr)
Japanese (ja)
Inventor
純久 長崎
白石 誠吾
森本 廉
山中 一彦
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2014203479A1 publication Critical patent/WO2014203479A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/12Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of emitted light
    • F21S41/125Coloured light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/321Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Definitions

  • the present disclosure relates to a semiconductor light emitting device, and more particularly, to a light source that converts the wavelength of light from a semiconductor laser using a phosphor, and a vehicle headlamp including the light source.
  • a lamp that generates light a semiconductor light-emitting element that generates light, a phosphor that is provided apart from the semiconductor light-emitting element, and a first that focuses light generated by the semiconductor light-emitting element on the phosphor
  • An optical member and a second optical member having an optical center at a position where the phosphor is provided and irradiating the outside of the lamp with light generated by the phosphor in response to the light collected by the first optical member There was a headlamp provided with (patent document 1).
  • the present disclosure has been made in view of the above problems, and provides a light source capable of improving at least one of safety and luminous efficiency.
  • a light source includes at least two types of semiconductor lasers, and a wavelength conversion member that emits wavelength-converted light that is irradiated with light emitted from these semiconductor lasers. At least a blue phosphor and a yellow phosphor.
  • At least one of safety and luminous efficiency can be improved.
  • a light source according to the first aspect (aspect) of the present disclosure includes at least two types of semiconductor lasers and a wavelength conversion member that emits wavelength-converted light that is irradiated with light emitted from these semiconductor lasers.
  • the wavelength conversion member includes at least a blue phosphor and a yellow phosphor.
  • the semiconductor laser includes at least a blue-violet laser and a blue laser.
  • the light source according to the third aspect of the present disclosure is the light source according to the first or second aspect, wherein the blue phosphor is (Sr 1-x Ba x ) 3 MgSi 2 O 8 : Eu [where 0 ⁇ x ⁇ 1].
  • the light source according to the fourth aspect of the present disclosure is the light source according to any one of the first to third aspects, wherein the blue phosphor includes Sr 5 (PO 4 ) 3 Cl: Eu.
  • the blue phosphor includes BaMgAl 10 O 17 : Eu.
  • the light source according to the sixth aspect of the present disclosure is the light source according to the first to fifth aspects, wherein the yellow phosphor is a phosphor having a garnet structure.
  • the phosphor having a garnet structure is a ceramic sintered body having translucency.
  • the light source according to the eighth aspect of the present disclosure is the light source according to the first to fifth aspects, wherein the yellow phosphor is (Ba 1-y Sr y ) Si 2 O 2 N 2 : Eu [where 0 ⁇ y ⁇ 1].
  • the light source according to the ninth aspect of the present disclosure is the light source according to the first to eighth aspects, in which the wavelength conversion member has at least first and second layers.
  • the first layer is closer to the side on which light from the semiconductor laser is incident than the second layer, and includes a yellow phosphor.
  • the second layer includes a blue phosphor.
  • a vehicle headlamp according to a tenth aspect of the present disclosure includes the light source according to any one of the first to ninth aspects.
  • FIG. 1 shows a schematic configuration of a light source 80 according to the first embodiment of the present disclosure.
  • the light source 80 includes a wavelength conversion member 81 and two or more types of semiconductor light emitting elements 84 and 85.
  • the semiconductor light emitting elements 84 and 85 are, for example, an LED, a super luminescent diode (SLD), a laser diode (LD), or the like.
  • SLD super luminescent diode
  • LD laser diode
  • Each of the semiconductor light emitting elements 84 and 85 may be one LD, or may be one in which a plurality of LDs are optically coupled.
  • the semiconductor light emitting element 84 emits blue-violet light.
  • blue-violet light refers to light having a peak wavelength of 380 nm to 420 nm.
  • the case where the semiconductor light emitting element 84 emits light having a wavelength of 405 nm will be described.
  • the semiconductor light emitting element 85 emits blue light.
  • blue light refers to light having a wavelength of 420 nm or more and 480 nm or less.
  • a case where the semiconductor light emitting element 85 emits light having a wavelength of 445 nm will be described.
  • the wavelength conversion member 81 converts the light from the semiconductor light emitting elements 84 and 85 into light having a longer wavelength.
  • the wavelength conversion member 81 includes at least two wavelength conversion layers having different emission spectra. Each wavelength conversion layer corresponds to any one of the semiconductor light emitting elements, and is arranged side by side so that light from the corresponding semiconductor light emitting element enters without passing through the other wavelength conversion layers. Each wavelength conversion layer may be disposed so as to be in contact with each other, or may be disposed separately.
  • the first phosphor layer 82 includes a plurality of first phosphors 88 that emit light upon receiving light from the semiconductor light emitting element 84, and a binder 89 disposed between the plurality of first phosphors 88.
  • the second phosphor layer 83 includes a plurality of second phosphors 90 that emit light upon receiving light from the semiconductor light emitting element 85, and a binder 91 disposed between the plurality of second phosphors 90.
  • the first phosphor layer 82 and the second phosphor layer 83 are provided side by side so that light from the corresponding semiconductor light emitting element 84 or 85 enters without passing through the other phosphor layer.
  • the second phosphor 90 is, for example, a yellow phosphor.
  • the yellow phosphor refers to a phosphor having an emission spectrum peak wavelength of 540 nm or more and 590 nm or less.
  • the second phosphor 90 is, Y 3 Al 5 O 12: Ce ( hereinafter, YAG) may be a, (Ba 1-y Sr y ) Si 2 O 2 N 2: Eu [ where, 0 ⁇ y ⁇ 1].
  • the first phosphor 88 is, for example, a blue phosphor.
  • the blue phosphor refers to a phosphor having an emission spectrum peak wavelength of 420 nm or more and 480 nm or less.
  • the first phosphor 88 may be Sr 3 MgSi 2 O 8 : Eu (hereinafter, SMS).
  • the first phosphor 88 includes BaMgAl 10 O 17 : Eu, Sr 5 (PO 4 ) 3 Cl: Eu, and (Sr 1-x Ba x ) 3 MgSi 2 O 8 : Eu [where 0 ⁇ x ⁇ 1] may be used.
  • the binders 89 and 91 are media, such as resin, glass, or a transparent crystal, for example.
  • the binders 89 and 91 may be made of the same material or different materials.
  • an incident optical system 86 that guides the light of the semiconductor light emitting element 84 to the first phosphor layer 82 may be provided.
  • an incident optical system 87 that guides the light of the semiconductor light emitting element 85 to the second phosphor layer 83 may be provided.
  • the incident optical systems 86 and 87 include, for example, a lens, a mirror, and / or an optical fiber.
  • the light emitted from the semiconductor light emitting element 84 passes through the incident optical system 86 and enters the first phosphor layer 82 of the wavelength conversion member 81.
  • the plurality of first phosphors 88 of the first phosphor layer 82 are excited to emit blue light.
  • the light emitted from the semiconductor light emitting device 85 passes through the incident optical system 87 and enters the second phosphor layer 83 of the wavelength conversion member 81.
  • the plurality of second phosphors 90 of the second phosphor layer 83 are excited to emit yellow light. These yellow light and blue light are mixed to become white light.
  • the blue phosphor and the yellow phosphor are excited by at least two types of semiconductor lasers. Therefore, the luminous efficiency can be improved by using excitation light corresponding to each phosphor.
  • the blue-violet laser e.g. SMS
  • yellow phosphor with a blue laser (e.g. YAG, (Ba 1-y Sr y) Si 2 O 2 N 2: Eu [where 0 ⁇ y ⁇ 1] is excited.
  • the SMS phosphor has a small decrease in light emission efficiency even at high light density excitation of a blue-violet (for example, 405 nm) laser.
  • the YAG phosphor has a small decrease in light emission efficiency even at high light density excitation of a blue (for example, 445 nm) laser.
  • (Ba 1-y Sr y ) Si 2 O 2 N 2 : Eu [where 0 ⁇ y ⁇ 1] is excited by a blue (eg, 445 nm) laser rather than excited by a blue-violet (eg, 405 nm) laser.
  • high light density means light density of 0.1 kW / cm 2 or more. Therefore, it is possible to suppress a decrease in light emission efficiency even at a high light density.
  • blue light is obtained by a phosphor, white light can be generated without emitting light from a blue laser to the outside.
  • FIG. 2 shows a schematic configuration of the light source 100 according to the second embodiment of the present disclosure.
  • the same members as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the light source 100 includes a wavelength conversion member 101 and semiconductor light emitting elements 84 and 85.
  • Incident optical systems 104 and 105 that guide the light of the semiconductor light emitting elements 84 and 85 to the wavelength converting member 101 may be provided between the wavelength conversion member 101 and the semiconductor light emitting elements 84 and 85.
  • the incident optical systems 104 and 105 may guide the light of the semiconductor light emitting elements 84 and 85 so that the irradiation positions on the wavelength conversion member 101 overlap, and the semiconductors so that the irradiation positions on the wavelength conversion member 101 do not overlap.
  • the light from the light emitting elements 84 and 85 may be guided.
  • the wavelength conversion member 101 converts the light from the semiconductor light emitting elements 84 and 85 into light having a longer wavelength.
  • the wavelength conversion member 101 includes at least two wavelength conversion layers having different emission spectra.
  • the plurality of wavelength conversion layers are provided so that at least a part thereof overlaps.
  • the wavelength conversion member 101 includes a third phosphor layer 102 and a fourth phosphor layer 103 as a wavelength conversion layer.
  • the third phosphor layer 102 mainly includes a plurality of third phosphors 106 that emit light upon receiving light from the semiconductor light emitting element 85, and a binder 107 disposed between the plurality of third phosphors 106.
  • Have The fourth phosphor layer 103 mainly includes a plurality of fourth phosphors 108 that emit light upon receiving light from the semiconductor light emitting element 84, and a binder 109 disposed between the plurality of fourth phosphors 108.
  • the third phosphor layer 102 is provided at a position farther from the side on which light from the semiconductor light emitting elements 84 and 85 is incident than the fourth phosphor layer 103.
  • the third phosphor layer 102 is provided at a position closer to the side on which light from the semiconductor light emitting elements 84 and 85 is incident than the fourth phosphor layer 103.
  • the third phosphor 106 is, for example, a yellow phosphor.
  • the fourth phosphor 108 is, for example, a blue phosphor.
  • the binders 107 and 109 are media, such as resin, glass, or a transparent crystal, for example. The binders 107 and 109 may be made of the same material or different materials.
  • Light emitted from the semiconductor light emitting element 84 passes through the incident optical system 104 and enters the fourth phosphor layer 103 of the wavelength conversion member 101.
  • the plurality of fourth phosphors 108 in the fourth phosphor layer 103 are excited to emit blue light.
  • a part of the light from the semiconductor light emitting element 85 passes through the fourth phosphor layer 103 and enters the third phosphor layer 102 of the wavelength conversion member 101.
  • the incident light excites the plurality of third phosphors 106 of the third phosphor layer 102 to emit yellow light. These blue light and yellow light are mixed to become white light.
  • a blue phosphor for example, SMS
  • a yellow phosphor for example, with a blue laser
  • FIG. 3 shows a schematic configuration of the light source 110 according to the third embodiment of the present disclosure.
  • the same members as those in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the light source 110 includes a wavelength conversion member 111 and semiconductor light emitting elements 84 and 85.
  • Incident optical systems 104 and 105 that guide the light of the semiconductor light emitting elements 84 and 85 to the wavelength converting member 111 may be provided between the wavelength conversion member 111 and the semiconductor light emitting elements 84 and 85.
  • the incident optical systems 104 and 105 may guide the light of the semiconductor light emitting elements 84 and 85 so that the irradiation positions on the wavelength conversion member 111 overlap, and the semiconductors so that the irradiation positions on the wavelength conversion member 111 do not overlap.
  • the light from the light emitting elements 84 and 85 may be guided.
  • the wavelength conversion member 111 converts the light from the semiconductor light emitting elements 84 and 85 into light having a longer wavelength.
  • the wavelength conversion member 111 includes at least two wavelength conversion layers having different emission spectra.
  • the plurality of wavelength conversion layers are provided so that at least a part thereof overlaps. At least one of the plurality of wavelength conversion layers does not contain, for example, a resin binder.
  • the wavelength conversion member 111 has the fourth phosphor layer 103 and the phosphor sintered body layer 112 as the wavelength conversion layer will be described.
  • the phosphor sintered body layer 112 mainly receives light from the semiconductor light emitting element 85 and emits light.
  • the phosphor sintered body layer 112 has a peak wavelength of an emission spectrum of 540 nm or more and 590 nm or less.
  • the phosphor sintered body layer 112 does not contain a resin binder.
  • the phosphor sintered body layer 112 is, for example, a transparent YAG sintered body.
  • the phosphor sintered body layer 112 is provided at a position closer to the side on which light from the semiconductor light emitting elements 84 and 85 is incident than the fourth phosphor layer 103.
  • the phosphor sintered body layer 112 is provided at a position farther from the side on which the light from the semiconductor light emitting elements 84 and 85 is incident than the fourth phosphor layer 103. Also good.
  • the light emitted from the semiconductor light emitting element 85 passes through the incident optical system 105 and enters the phosphor sintered body layer 112. This incident light excites the phosphor sintered body layer 112 to emit yellow light. Part of the light from the semiconductor light emitting element 84 passes through the phosphor sintered body layer 112 and enters the fourth phosphor layer 103. By this incident light, the plurality of fourth phosphors 108 in the fourth phosphor layer 103 are excited to emit blue light. These blue light and yellow light are mixed to become white light.
  • the phosphor sintered body layer 112 does not contain a resin binder.
  • the effect of reducing cracks due to the above can be obtained.
  • the layer including the yellow phosphor is provided at a position closer to the side on which the excitation light is incident than the layer including the blue phosphor. Therefore, when light is extracted from the side containing the yellow phosphor, it is possible to reduce the yellow light from being absorbed by the blue phosphor.
  • FIG. 4 shows a schematic configuration of a vehicle headlamp 120 according to the fourth embodiment of the present disclosure.
  • the vehicle headlamp 120 of this embodiment includes any one of the light sources 80, 100, and 110 of the first to third embodiments, and an emission optical system 122 that guides light from the light source forward. You may provide the wavelength cut filter 121 which absorbs or reflects so that the blue-violet light from the semiconductor light-emitting device of a light source may not come outside.
  • the emission optical system 122 is, for example, a reflector.
  • the emission optical system 122 includes, for example, a metal film such as Al or Ag, or an Al film having a protective film formed on the surface.
  • the vehicle headlamp 120 may be a so-called reflector type or a projector type. In the present disclosure, the vehicle includes an automobile, a two-wheeled vehicle, and a special vehicle.
  • the effects of the first to third embodiments can be obtained in the vehicle headlamp.
  • FIG. 5 shows a schematic configuration of a vehicle 130 according to the fifth embodiment of the present disclosure.
  • the vehicle 130 includes the vehicle headlamp 120 and the power supply source 131 according to the fourth embodiment.
  • the vehicle 130 may have a generator 132 that is rotationally driven by a drive source such as an engine and generates electric power.
  • the power generated by the generator 132 is stored in the power supply source 131.
  • the power supply source 131 is a secondary battery that can be charged and discharged.
  • the vehicle headlamp 120 is turned on by the power from the power supply source 131.
  • the vehicle 130 is, for example, an automobile, a motorcycle, or a special vehicle.
  • the vehicle 130 may be an engine vehicle, an electric vehicle, or a hybrid vehicle.
  • the effects of the first to third embodiments can be obtained in the vehicle.
  • the first to fifth embodiments can be appropriately combined.
  • the wavelength conversion member may be rotated by making the wavelength conversion member into a wheel shape, providing the fin for receiving the airflow in the wavelength conversion member, and feeding air into the wavelength conversion member.
  • the wavelength conversion member rotates the irradiation position by the semiconductor light emitting element (for example, a semiconductor laser) moves.
  • the wavelength conversion member and other portions may be separated by a glass wall or the like, and the wavelength conversion member may be rotated by sending air into the glass wall.
  • the wavelength conversion member and the light emitting end of the optical fiber and other portions may be separated by a glass wall or the like, and the wavelength conversion member may be rotated by feeding air into the glass wall.
  • the light source of the present disclosure can be used for, for example, special lighting, a head-up display, a projector, and a vehicle headlamp.

Abstract

This light source (80) includes at least two types of semiconductor laser (84, 85), and a wavelength conversion member (81) which is illuminated by emitted light from the semiconductor lasers, and emits light of converted wavelength. The wavelength conversion member (81) includes at least a blue phosphor and a yellow phosphor (90). The semiconductor lasers (84, 85) may include at least a blue-violet semiconductor laser (84) and a blue semiconductor laser (85).

Description

光源、及び光源を具備する車両用ヘッドランプLight source and vehicle headlamp having light source
 本開示は、半導体発光素子、特に半導体レーザーからの光を蛍光体により波長変換する光源、及びその光源を備えた車両用ヘッドランプに関する。 The present disclosure relates to a semiconductor light emitting device, and more particularly, to a light source that converts the wavelength of light from a semiconductor laser using a phosphor, and a vehicle headlamp including the light source.
 従来、光を発生する灯具であって、光を発生する半導体発光素子と、半導体発光素子から離間して設けられた蛍光体と、半導体発光素子が発生する光を蛍光体に集光する第1光学部材と、蛍光体が設けられている位置に光学的中心を有し、第1光学部材により集光された光に応じて蛍光体が発生する光を灯具の外部に照射する第2光学部材とを備えるヘッドランプがあった(特許文献1)。 2. Description of the Related Art Conventionally, a lamp that generates light, a semiconductor light-emitting element that generates light, a phosphor that is provided apart from the semiconductor light-emitting element, and a first that focuses light generated by the semiconductor light-emitting element on the phosphor An optical member and a second optical member having an optical center at a position where the phosphor is provided and irradiating the outside of the lamp with light generated by the phosphor in response to the light collected by the first optical member There was a headlamp provided with (patent document 1).
特開2005-150041号公報JP 2005-150041 A
 しかしながら、従来の技術によれば、特に半導体発光素子としてレーザーダイオードを使用する場合の安全性又は発光効率の向上が求められていた。 However, according to the conventional technology, there has been a demand for improvement in safety or luminous efficiency particularly when a laser diode is used as a semiconductor light emitting element.
 本開示は、上記課題に鑑みてなされたものであって、安全性及び発光効率の少なくとも一方を向上させることができる光源を提供する。 The present disclosure has been made in view of the above problems, and provides a light source capable of improving at least one of safety and luminous efficiency.
 本開示の一態様に係る光源は、少なくとも2種類の半導体レーザーと、これらの半導体レーザーからの出射光により照射され、波長変換した光を出射する波長変換部材と、を備え、この波長変換部材は、少なくとも青色蛍光体と黄色蛍光体とを含む。 A light source according to an aspect of the present disclosure includes at least two types of semiconductor lasers, and a wavelength conversion member that emits wavelength-converted light that is irradiated with light emitted from these semiconductor lasers. At least a blue phosphor and a yellow phosphor.
 本開示によれば、安全性及び発光効率の少なくと一方を向上させることができる。 According to the present disclosure, at least one of safety and luminous efficiency can be improved.
第1の実施の形態に係る光源の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the light source which concerns on 1st Embodiment. 第2の実施の形態に係る光源の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the light source which concerns on 2nd Embodiment. 第3の実施の形態に係る光源の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the light source which concerns on 3rd Embodiment. 第4の実施の形態に係る車両用ヘッドランプの概略構成を示す構成図である。It is a block diagram which shows schematic structure of the vehicle headlamp which concerns on 4th Embodiment. 第5の実施の形態に係る車両の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the vehicle which concerns on 5th Embodiment.
 本開示の第1の側面(アスペクト)に係る光源は、少なくとも2種類の半導体レーザーと、これらの半導体レーザーからの出射光により照射され、波長変換した光を出射する波長変換部材と、を備える。波長変換部材は、少なくとも青色蛍光体と黄色蛍光体とを含む。本開示の第2の側面に係る光源は、第1の側面に係る光源において、半導体レーザーが、少なくとも青紫色レーザーと青色レーザーとを含む。 A light source according to the first aspect (aspect) of the present disclosure includes at least two types of semiconductor lasers and a wavelength conversion member that emits wavelength-converted light that is irradiated with light emitted from these semiconductor lasers. The wavelength conversion member includes at least a blue phosphor and a yellow phosphor. In the light source according to the second aspect of the present disclosure, in the light source according to the first aspect, the semiconductor laser includes at least a blue-violet laser and a blue laser.
 本開示の第3の側面に係る光源は、第1又は2の側面に係る光源において、青色蛍光体が、(Sr1-xBaMgSi:Eu[但し、0<x<1]を含む。本開示の第4の側面に係る光源は、第1~3の何れかの側面に係る光源において、青色蛍光体が、Sr(POCl:Euを含む。本開示の第5の側面に係る第1~4の何れかの側面に係る光源において、青色蛍光体が、BaMgAl1017:Euを含む。 The light source according to the third aspect of the present disclosure is the light source according to the first or second aspect, wherein the blue phosphor is (Sr 1-x Ba x ) 3 MgSi 2 O 8 : Eu [where 0 <x < 1]. The light source according to the fourth aspect of the present disclosure is the light source according to any one of the first to third aspects, wherein the blue phosphor includes Sr 5 (PO 4 ) 3 Cl: Eu. In the light source according to any one of the first to fourth aspects according to the fifth aspect of the present disclosure, the blue phosphor includes BaMgAl 10 O 17 : Eu.
 本開示の第6の側面に係る光源は、第1~第5の側面に係る光源において、黄色蛍光体が、ガーネット構造を有する蛍光体である。 The light source according to the sixth aspect of the present disclosure is the light source according to the first to fifth aspects, wherein the yellow phosphor is a phosphor having a garnet structure.
 本開示の第7の側面に係る光源は、第6の側面に係る光源において、ガーネット構造を有する蛍光体が、透光性を有するセラミック焼結体である。本開示の第8の側面に係る光源は、第1~第5の側面に係る光源において、黄色蛍光体は、(Ba1-ySr)Si:Eu[但し、0≦y≦1]を含む。 In the light source according to the seventh aspect of the present disclosure, in the light source according to the sixth aspect, the phosphor having a garnet structure is a ceramic sintered body having translucency. The light source according to the eighth aspect of the present disclosure is the light source according to the first to fifth aspects, wherein the yellow phosphor is (Ba 1-y Sr y ) Si 2 O 2 N 2 : Eu [where 0 ≦ y ≦ 1].
 本開示の第9の側面に係る光源は、第1~第8の側面に係る光源において、波長変換部材は、少なくとも第1および第2の層を有する。第1の層は、第2の層に比して半導体レーザーからの光が入射する側に近く、且つ黄色蛍光体を含む。第2の層は青色蛍光体を含む。本開示の第10の側面に係る車両用ヘッドランプは、第1~第9の何れかの側面に係る光源を具備する。 The light source according to the ninth aspect of the present disclosure is the light source according to the first to eighth aspects, in which the wavelength conversion member has at least first and second layers. The first layer is closer to the side on which light from the semiconductor laser is incident than the second layer, and includes a yellow phosphor. The second layer includes a blue phosphor. A vehicle headlamp according to a tenth aspect of the present disclosure includes the light source according to any one of the first to ninth aspects.
 (第1の実施の形態)
 図1は、本開示の第1の実施の形態に係る光源80の概略構成を示している。光源80は、波長変換部材81と、2種類以上の半導体発光素子84及び85とを備える。半導体発光素子84及び85は、例えば、LED、スーパールミネッセントダイオード(SLD)又はレーザーダイオード(LD)などである。本実施の形態では、半導体発光素子84及び85が2種のLDである場合を説明する。半導体発光素子84及び85は、それぞれ1つのLDであってもよく、また、複数のLDを光学的に結合させたものでもよい。
(First embodiment)
FIG. 1 shows a schematic configuration of a light source 80 according to the first embodiment of the present disclosure. The light source 80 includes a wavelength conversion member 81 and two or more types of semiconductor light emitting elements 84 and 85. The semiconductor light emitting elements 84 and 85 are, for example, an LED, a super luminescent diode (SLD), a laser diode (LD), or the like. In the present embodiment, the case where the semiconductor light emitting elements 84 and 85 are two types of LDs will be described. Each of the semiconductor light emitting elements 84 and 85 may be one LD, or may be one in which a plurality of LDs are optically coupled.
 半導体発光素子84は、青紫光を射出する。本開示において、青紫光とは、ピーク波長が380nm以上420nm以下の光をいう。本実施の形態では、半導体発光素子84が波長405nmの光を射出する場合を説明する。半導体発光素子85は、青色光を射出する。本開示において、青色光とは、波長が420nm以上480nm以下の光をいう。本実施の形態では、半導体発光素子85が波長445nmの光を射出する場合を説明する。 The semiconductor light emitting element 84 emits blue-violet light. In the present disclosure, blue-violet light refers to light having a peak wavelength of 380 nm to 420 nm. In the present embodiment, the case where the semiconductor light emitting element 84 emits light having a wavelength of 405 nm will be described. The semiconductor light emitting element 85 emits blue light. In the present disclosure, blue light refers to light having a wavelength of 420 nm or more and 480 nm or less. In the present embodiment, a case where the semiconductor light emitting element 85 emits light having a wavelength of 445 nm will be described.
 波長変換部材81は、半導体発光素子84及び85からの光をより長波長の光に波長変換する。波長変換部材81は、少なくとも2層の互いに異なる発光スペクトルを有する波長変換層を含む。各波長変換層は、何れか1つの半導体発光素子に対応し、対応する半導体発光素子からの光が他の波長変換層を経由せずに入射するように並べて配置されている。各波長変換層は、互いに接触するように配置されていてもよく、また、分離して配置されていてもよい。 The wavelength conversion member 81 converts the light from the semiconductor light emitting elements 84 and 85 into light having a longer wavelength. The wavelength conversion member 81 includes at least two wavelength conversion layers having different emission spectra. Each wavelength conversion layer corresponds to any one of the semiconductor light emitting elements, and is arranged side by side so that light from the corresponding semiconductor light emitting element enters without passing through the other wavelength conversion layers. Each wavelength conversion layer may be disposed so as to be in contact with each other, or may be disposed separately.
 本実施の形態では、波長変換部材81が、波長変換層として、第1の蛍光体層82及び第2の蛍光体層83を有する場合を説明する。第1の蛍光体層82は、半導体発光素子84からの光を受けて発光する複数の第1の蛍光体88と、複数の第1の蛍光体88の間に配置されたバインダー89とを有する。第2の蛍光体層83は、半導体発光素子85からの光を受けて発光する複数の第2の蛍光体90と、複数の第2の蛍光体90の間に配置されたバインダー91とを有する。第1の蛍光体層82及び第2の蛍光体層83は、それぞれ、他方の蛍光体層を経由せずに、対応する半導体発光素子84又は85からの光が入射するように並べて設けられる。 In the present embodiment, the case where the wavelength conversion member 81 includes the first phosphor layer 82 and the second phosphor layer 83 as the wavelength conversion layer will be described. The first phosphor layer 82 includes a plurality of first phosphors 88 that emit light upon receiving light from the semiconductor light emitting element 84, and a binder 89 disposed between the plurality of first phosphors 88. . The second phosphor layer 83 includes a plurality of second phosphors 90 that emit light upon receiving light from the semiconductor light emitting element 85, and a binder 91 disposed between the plurality of second phosphors 90. . The first phosphor layer 82 and the second phosphor layer 83 are provided side by side so that light from the corresponding semiconductor light emitting element 84 or 85 enters without passing through the other phosphor layer.
 第2の蛍光体90は、例えば、黄色蛍光体である。本開示において、黄色蛍光体とは、発光スペクトルのピーク波長が540nm以上590nm以下である蛍光体をいう。第2の蛍光体90は、YAl12:Ce(以下、YAG)であってもよいし、(Ba1-ySr)Si:Eu[但し、0≦y≦1]であってもよい。第1の蛍光体88は、例えば、青色蛍光体である。本開示において、青色蛍光体とは、発光スペクトルのピーク波長が420nm以上480nm以下である蛍光体をいう。第1の蛍光体88は、SrMgSi:Eu(以下、SMS)であってもよい。また、第1の蛍光体88は、BaMgAl1017:Eu,Sr(POCl:Eu,及び(Sr1-xBaMgSi:Eu[但し、0<x<1]のいずれかであってもよい。バインダー89及び91は、例えば、樹脂、ガラス又は透明結晶などの媒体である。バインダー89及び91は、同じ材質であってもよく、また、異なる材質であってもよい。 The second phosphor 90 is, for example, a yellow phosphor. In the present disclosure, the yellow phosphor refers to a phosphor having an emission spectrum peak wavelength of 540 nm or more and 590 nm or less. The second phosphor 90 is, Y 3 Al 5 O 12: Ce ( hereinafter, YAG) may be a, (Ba 1-y Sr y ) Si 2 O 2 N 2: Eu [ where, 0 ≦ y ≦ 1]. The first phosphor 88 is, for example, a blue phosphor. In the present disclosure, the blue phosphor refers to a phosphor having an emission spectrum peak wavelength of 420 nm or more and 480 nm or less. The first phosphor 88 may be Sr 3 MgSi 2 O 8 : Eu (hereinafter, SMS). The first phosphor 88 includes BaMgAl 10 O 17 : Eu, Sr 5 (PO 4 ) 3 Cl: Eu, and (Sr 1-x Ba x ) 3 MgSi 2 O 8 : Eu [where 0 <x <1] may be used. The binders 89 and 91 are media, such as resin, glass, or a transparent crystal, for example. The binders 89 and 91 may be made of the same material or different materials.
 波長変換部材81と半導体発光素子84との間には、半導体発光素子84の光を第1の蛍光体層82に導く入射光学系86が設けられていてもよい。波長変換部材81と半導体発光素子85との間には、半導体発光素子85の光を第2の蛍光体層83に導く入射光学系87が設けられていてもよい。入射光学系86及び87は、例えば、レンズ、ミラー及び/又は光ファイバなどを備えている。 Between the wavelength conversion member 81 and the semiconductor light emitting element 84, an incident optical system 86 that guides the light of the semiconductor light emitting element 84 to the first phosphor layer 82 may be provided. Between the wavelength conversion member 81 and the semiconductor light emitting element 85, an incident optical system 87 that guides the light of the semiconductor light emitting element 85 to the second phosphor layer 83 may be provided. The incident optical systems 86 and 87 include, for example, a lens, a mirror, and / or an optical fiber.
 次に、光源80の動作について説明する。半導体発光素子84から射出された光は、入射光学系86を通り、波長変換部材81の第1の蛍光体層82に入射する。この入射光により、第1の蛍光体層82の複数の第1の蛍光体88が励起されて青色光を射出する。また、半導体発光素子85から射出された光は、入射光学系87を通り、波長変換部材81の第2の蛍光体層83に入射する。この入射光により、第2の蛍光体層83の複数の第2の蛍光体90が励起されて黄色光を射出する。これらの黄色光及び青色光が混合して白色光となる。 Next, the operation of the light source 80 will be described. The light emitted from the semiconductor light emitting element 84 passes through the incident optical system 86 and enters the first phosphor layer 82 of the wavelength conversion member 81. By this incident light, the plurality of first phosphors 88 of the first phosphor layer 82 are excited to emit blue light. Further, the light emitted from the semiconductor light emitting device 85 passes through the incident optical system 87 and enters the second phosphor layer 83 of the wavelength conversion member 81. By this incident light, the plurality of second phosphors 90 of the second phosphor layer 83 are excited to emit yellow light. These yellow light and blue light are mixed to become white light.
 上述したように、本開示の第1の実施の形態によれば、少なくとも2種類の半導体レーザーで青色蛍光体および黄色蛍光体を励起する。よって、それぞれの蛍光体に応じた励起光を用いて発光効率を向上されることが出来る。特に、本実施の形態によれば、青紫色レーザーで青色蛍光体(例えばSMS)を励起し、青色レーザーで黄色蛍光体(例えばYAG、(Ba1-ySr)Si:Eu[但し、0≦y≦1]など)を励起する。SMS蛍光体は、青紫色(例えば405nm)レーザーの高光密度励起においても発光効率の低下が小さい。また、YAG蛍光体は、青色(例えば445nm)レーザーの高光密度励起においても発光効率の低下が小さい。また、(Ba1-ySr)Si:Eu[但し、0≦y≦1]は、青紫色(例えば405nm)レーザーで励起するよりも青色(例えば445nm)レーザーで励起する方が、青紫色光と青色光のエネルギーの差分により、エネルギー損失が少なくなる。本開示において、高光密度とは、0.1kW/cm以上の光密度をいう。よって、高光密度においても発光効率の低下を抑制できる。また、青色光は、蛍光体によって得られるので、青色レーザーからの光を外部出射させることなく、白色光を生成することができる。 As described above, according to the first embodiment of the present disclosure, the blue phosphor and the yellow phosphor are excited by at least two types of semiconductor lasers. Therefore, the luminous efficiency can be improved by using excitation light corresponding to each phosphor. In particular, according to this embodiment, by exciting the blue phosphor in the blue-violet laser (e.g. SMS), yellow phosphor with a blue laser (e.g. YAG, (Ba 1-y Sr y) Si 2 O 2 N 2: Eu [where 0 ≦ y ≦ 1] is excited. The SMS phosphor has a small decrease in light emission efficiency even at high light density excitation of a blue-violet (for example, 405 nm) laser. In addition, the YAG phosphor has a small decrease in light emission efficiency even at high light density excitation of a blue (for example, 445 nm) laser. Also, (Ba 1-y Sr y ) Si 2 O 2 N 2 : Eu [where 0 ≦ y ≦ 1] is excited by a blue (eg, 445 nm) laser rather than excited by a blue-violet (eg, 405 nm) laser. However, energy loss is reduced due to the difference in energy between blue-violet light and blue light. In the present disclosure, high light density means light density of 0.1 kW / cm 2 or more. Therefore, it is possible to suppress a decrease in light emission efficiency even at a high light density. Further, since blue light is obtained by a phosphor, white light can be generated without emitting light from a blue laser to the outside.
 (第2の実施の形態)
 図2は、本開示の第2の実施の形態に係る光源100の概略構成を示している。第1の実施の形態と同一の部材については同一の符号を付してその説明を省略する。光源100は、波長変換部材101と、半導体発光素子84及び85とを備える。波長変換部材101と半導体発光素子84及び85との間には、半導体発光素子84及び85の光を波長変換部材101に導く入射光学系104及び105が設けられていてもよい。入射光学系104及び105は、波長変換部材101上の照射位置が重なるように半導体発光素子84及び85の光を導いてもよく、また、波長変換部材101上の照射位置が重ならないように半導体発光素子84及び85の光を導いてもよい。
(Second Embodiment)
FIG. 2 shows a schematic configuration of the light source 100 according to the second embodiment of the present disclosure. The same members as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The light source 100 includes a wavelength conversion member 101 and semiconductor light emitting elements 84 and 85. Incident optical systems 104 and 105 that guide the light of the semiconductor light emitting elements 84 and 85 to the wavelength converting member 101 may be provided between the wavelength conversion member 101 and the semiconductor light emitting elements 84 and 85. The incident optical systems 104 and 105 may guide the light of the semiconductor light emitting elements 84 and 85 so that the irradiation positions on the wavelength conversion member 101 overlap, and the semiconductors so that the irradiation positions on the wavelength conversion member 101 do not overlap. The light from the light emitting elements 84 and 85 may be guided.
 波長変換部材101は、半導体発光素子84及び85からの光をより長波長の光に波長変換する。波長変換部材101は、少なくとも2層の互いに異なる発光スペクトルを有する波長変換層を含む。複数の波長変換層は、少なくとも一部が重なるように設けられている。波長変換部材101は、波長変換層として、第3の蛍光体層102及び第4の蛍光体層103を有する。第3の蛍光体層102は、主に半導体発光素子85からの光を受けて発光する複数の第3の蛍光体106と、複数の第3の蛍光体106の間に配置されたバインダー107とを有する。第4の蛍光体層103は、主に半導体発光素子84からの光を受けて発光する複数の第4の蛍光体108と、複数の第4の蛍光体108の間に配置されたバインダー109とを有する。 The wavelength conversion member 101 converts the light from the semiconductor light emitting elements 84 and 85 into light having a longer wavelength. The wavelength conversion member 101 includes at least two wavelength conversion layers having different emission spectra. The plurality of wavelength conversion layers are provided so that at least a part thereof overlaps. The wavelength conversion member 101 includes a third phosphor layer 102 and a fourth phosphor layer 103 as a wavelength conversion layer. The third phosphor layer 102 mainly includes a plurality of third phosphors 106 that emit light upon receiving light from the semiconductor light emitting element 85, and a binder 107 disposed between the plurality of third phosphors 106. Have The fourth phosphor layer 103 mainly includes a plurality of fourth phosphors 108 that emit light upon receiving light from the semiconductor light emitting element 84, and a binder 109 disposed between the plurality of fourth phosphors 108. Have
 本実施の形態では、第3の蛍光体層102が、第4の蛍光体層103に比して、半導体発光素子84、85からの光が入射する側により遠い位置に設けられる例を説明するが、これとは逆に、第3の蛍光体層102が、第4の蛍光体層103に比して、半導体発光素子84、85からの光が入射する側により近い位置に設けられていてもよい。第3の蛍光体106は、例えば、黄色蛍光体である。第4の蛍光体108は、例えば、青色蛍光体である。バインダー107及び109は、例えば、樹脂、ガラス又は透明結晶などの媒体である。バインダー107及び109は、同じ材質であってもよく、また、異なる材質であってもよい。 In the present embodiment, an example will be described in which the third phosphor layer 102 is provided at a position farther from the side on which light from the semiconductor light emitting elements 84 and 85 is incident than the fourth phosphor layer 103. However, on the contrary, the third phosphor layer 102 is provided at a position closer to the side on which light from the semiconductor light emitting elements 84 and 85 is incident than the fourth phosphor layer 103. Also good. The third phosphor 106 is, for example, a yellow phosphor. The fourth phosphor 108 is, for example, a blue phosphor. The binders 107 and 109 are media, such as resin, glass, or a transparent crystal, for example. The binders 107 and 109 may be made of the same material or different materials.
 次に、光源100の動作について説明する。半導体発光素子84から射出された光は、入射光学系104を通り、波長変換部材101の第4の蛍光体層103に入射する。この入射光により、第4の蛍光体層103の複数の第4の蛍光体108が励起されて青色光を射出する。半導体発光素子85からの光の一部は第4の蛍光体層103を透過して波長変換部材101の第3の蛍光体層102に入射する。この入射光により、第3の蛍光体層102の複数の第3の蛍光体106が励起されて黄色光を射出する。これらの青色光及び黄色光が混合して白色光となる。 Next, the operation of the light source 100 will be described. Light emitted from the semiconductor light emitting element 84 passes through the incident optical system 104 and enters the fourth phosphor layer 103 of the wavelength conversion member 101. By this incident light, the plurality of fourth phosphors 108 in the fourth phosphor layer 103 are excited to emit blue light. A part of the light from the semiconductor light emitting element 85 passes through the fourth phosphor layer 103 and enters the third phosphor layer 102 of the wavelength conversion member 101. The incident light excites the plurality of third phosphors 106 of the third phosphor layer 102 to emit yellow light. These blue light and yellow light are mixed to become white light.
 本開示の第2の実施の形態によれば、第1の実施の形態と同様に、青紫色レーザーで主に青色蛍光体(例えばSMS)を励起し、青色レーザーで主に黄色蛍光体(例えばYAG、(Ba1-ySr)Si:Eu[但し、0≦y≦1]など)を励起する。よって、高光密度においても発光効率低下を抑制できる。また、青色光は、蛍光体によって得られるので、青色レーザーからの光を外部出射させることなく、白色光を生成することができる。 According to the second embodiment of the present disclosure, as in the first embodiment, a blue phosphor (for example, SMS) is mainly excited with a blue-violet laser, and a yellow phosphor (for example, with a blue laser), for example. YAG, (Ba 1-y Sr y ) Si 2 O 2 N 2 : Eu [provided that 0 ≦ y ≦ 1] is excited. Therefore, it is possible to suppress a decrease in light emission efficiency even at a high light density. Further, since blue light is obtained by a phosphor, white light can be generated without emitting light from a blue laser to the outside.
 (第3の実施の形態)
 図3は、本開示の第3の実施の形態に係る光源110の概略構成を示している。第2の実施の形態と同一の部材については同一の符号を付してその説明を省略する。光源110は、波長変換部材111と、半導体発光素子84及び85とを備える。波長変換部材111と半導体発光素子84及び85との間には、半導体発光素子84及び85の光を波長変換部材111に導く入射光学系104及び105が設けられていてもよい。入射光学系104及び105は、波長変換部材111上の照射位置が重なるように半導体発光素子84及び85の光を導いてもよく、また、波長変換部材111上の照射位置が重ならないように半導体発光素子84及び85の光を導いてもよい。
(Third embodiment)
FIG. 3 shows a schematic configuration of the light source 110 according to the third embodiment of the present disclosure. The same members as those in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted. The light source 110 includes a wavelength conversion member 111 and semiconductor light emitting elements 84 and 85. Incident optical systems 104 and 105 that guide the light of the semiconductor light emitting elements 84 and 85 to the wavelength converting member 111 may be provided between the wavelength conversion member 111 and the semiconductor light emitting elements 84 and 85. The incident optical systems 104 and 105 may guide the light of the semiconductor light emitting elements 84 and 85 so that the irradiation positions on the wavelength conversion member 111 overlap, and the semiconductors so that the irradiation positions on the wavelength conversion member 111 do not overlap. The light from the light emitting elements 84 and 85 may be guided.
 波長変換部材111は、半導体発光素子84及び85からの光をより長波長の光に波長変換する。波長変換部材111は、少なくとも2層の互いに異なる発光スペクトルを有する波長変換層を含む。複数の波長変換層は、少なくとも一部が重なるように設けられている。複数の波長変換層のうちの少なくとも1つが、例えば樹脂バインダーを含んでいない。本実施の形態では、波長変換部材111は、波長変換層として、第4の蛍光体層103及び蛍光体焼結体層112を有する場合を説明する。蛍光体焼結体層112は、主に半導体発光素子85からの光を受けて発光する。蛍光体焼結体層112は、例えば、発光スペクトルのピーク波長が540nm以上590nm以下である。蛍光体焼結体層112は、樹脂バインダーを含んでいない。蛍光体焼結体層112は、例えば、透明なYAG焼結体である。 The wavelength conversion member 111 converts the light from the semiconductor light emitting elements 84 and 85 into light having a longer wavelength. The wavelength conversion member 111 includes at least two wavelength conversion layers having different emission spectra. The plurality of wavelength conversion layers are provided so that at least a part thereof overlaps. At least one of the plurality of wavelength conversion layers does not contain, for example, a resin binder. In the present embodiment, the case where the wavelength conversion member 111 has the fourth phosphor layer 103 and the phosphor sintered body layer 112 as the wavelength conversion layer will be described. The phosphor sintered body layer 112 mainly receives light from the semiconductor light emitting element 85 and emits light. For example, the phosphor sintered body layer 112 has a peak wavelength of an emission spectrum of 540 nm or more and 590 nm or less. The phosphor sintered body layer 112 does not contain a resin binder. The phosphor sintered body layer 112 is, for example, a transparent YAG sintered body.
 本実施の形態では、蛍光体焼結体層112は、第4の蛍光体層103に比して、半導体発光素子84、85からの光が入射する側により近い位置に設けられる例を説明するが、これとは逆に、蛍光体焼結体層112は、第4の蛍光体層103に比して、半導体発光素子84、85からの光が入射する側により遠い位置に設けられていてもよい。 In the present embodiment, an example in which the phosphor sintered body layer 112 is provided at a position closer to the side on which light from the semiconductor light emitting elements 84 and 85 is incident than the fourth phosphor layer 103 will be described. However, on the contrary, the phosphor sintered body layer 112 is provided at a position farther from the side on which the light from the semiconductor light emitting elements 84 and 85 is incident than the fourth phosphor layer 103. Also good.
 次に、光源110の動作について説明する。半導体発光素子85から射出された光は、入射光学系105を通り、蛍光体焼結体層112に入射する。この入射光により、蛍光体焼結体層112が励起されて黄色光を射出する。半導体発光素子84からの光の一部は、蛍光体焼結体層112を透過して第4の蛍光体層103に入射する。この入射光により、第4の蛍光体層103の複数の第4の蛍光体108が励起されて青色光を射出する。これらの青色光及び黄色光が混合して白色光となる。 Next, the operation of the light source 110 will be described. The light emitted from the semiconductor light emitting element 85 passes through the incident optical system 105 and enters the phosphor sintered body layer 112. This incident light excites the phosphor sintered body layer 112 to emit yellow light. Part of the light from the semiconductor light emitting element 84 passes through the phosphor sintered body layer 112 and enters the fourth phosphor layer 103. By this incident light, the plurality of fourth phosphors 108 in the fourth phosphor layer 103 are excited to emit blue light. These blue light and yellow light are mixed to become white light.
 本開示の第3の実施の形態によれば、第1及び第2の実施の形態と同様の効果に加え、さらに、蛍光体焼結体層112が樹脂バインダーを含まないので、急激な温度変化による割れを低減するという効果を得ることができる。また、本開示の第3の実施の形態によれば、黄色蛍光体を含む層が青色蛍光体を含む層に比して励起光が入射する側により近い位置に設けられている。よって、黄色蛍光体を含む層の側から光を取り出す場合、黄色光が青色蛍光体で吸収されることを低減することができる。 According to the third embodiment of the present disclosure, in addition to the same effects as those of the first and second embodiments, the phosphor sintered body layer 112 does not contain a resin binder. The effect of reducing cracks due to the above can be obtained. Further, according to the third embodiment of the present disclosure, the layer including the yellow phosphor is provided at a position closer to the side on which the excitation light is incident than the layer including the blue phosphor. Therefore, when light is extracted from the side containing the yellow phosphor, it is possible to reduce the yellow light from being absorbed by the blue phosphor.
 (第4の実施の形態)
 図4は、本開示の第4の実施の形態に係る車両用ヘッドランプ120の概略構成を示している。本実施の形態の車両用ヘッドランプ120は、第1~第3の実施の形態の光源80、100及び110の何れかと、その光源からの光を前方に導く出射光学系122とを備える。光源の半導体発光素子からの青紫光が外部に出ないように吸収又は反射する波長カットフィルター121を設けてもよい。出射光学系122は、例えばリフレクタである。出射光学系122は、例えばAl、Agなどの金属膜又は表面に保護膜が形成されたAl膜を有する。車両用ヘッドランプ120は、いわゆるリフレクタータイプであってもよく、また、プロジェクタータイプであってもよい。本開示において、車両とは、自動車、2輪車及び特殊車両を含む。
(Fourth embodiment)
FIG. 4 shows a schematic configuration of a vehicle headlamp 120 according to the fourth embodiment of the present disclosure. The vehicle headlamp 120 of this embodiment includes any one of the light sources 80, 100, and 110 of the first to third embodiments, and an emission optical system 122 that guides light from the light source forward. You may provide the wavelength cut filter 121 which absorbs or reflects so that the blue-violet light from the semiconductor light-emitting device of a light source may not come outside. The emission optical system 122 is, for example, a reflector. The emission optical system 122 includes, for example, a metal film such as Al or Ag, or an Al film having a protective film formed on the surface. The vehicle headlamp 120 may be a so-called reflector type or a projector type. In the present disclosure, the vehicle includes an automobile, a two-wheeled vehicle, and a special vehicle.
 第4の実施の形態によれば、車両用ヘッドランプにおいて、第1~第3の実施の形態の効果を得ることができる。 According to the fourth embodiment, the effects of the first to third embodiments can be obtained in the vehicle headlamp.
 (第5の実施の形態)
 図5は本開示の第5の実施の形態に係る車両130の概略構成を示している。車両130は、第4の実施の形態の車両用ヘッドランプ120と、電力供給源131とを備える。車両130は、エンジン等の駆動源によって回転駆動され、電力を発生する発電機132を有していてもよい。発電機132が生成した電力は、電力供給源131に蓄えられる。電力供給源131は、充放電が可能な2次電池である。車両用ヘッドランプ120は電力供給源131からの電力によって点灯する。車両130は、例えば、自動車、2輪車又は特殊車両である。さらに、車両130は、エンジン車、電気車、又はハイブリッド車であってもよい。
(Fifth embodiment)
FIG. 5 shows a schematic configuration of a vehicle 130 according to the fifth embodiment of the present disclosure. The vehicle 130 includes the vehicle headlamp 120 and the power supply source 131 according to the fourth embodiment. The vehicle 130 may have a generator 132 that is rotationally driven by a drive source such as an engine and generates electric power. The power generated by the generator 132 is stored in the power supply source 131. The power supply source 131 is a secondary battery that can be charged and discharged. The vehicle headlamp 120 is turned on by the power from the power supply source 131. The vehicle 130 is, for example, an automobile, a motorcycle, or a special vehicle. Furthermore, the vehicle 130 may be an engine vehicle, an electric vehicle, or a hybrid vehicle.
 第5の実施の形態によれば、車両において、第1~第3の実施の形態の効果を得ることができる。 According to the fifth embodiment, the effects of the first to third embodiments can be obtained in the vehicle.
 第1~第5の実施の形態は適宜組み合わせることができる。 The first to fifth embodiments can be appropriately combined.
 (他の実施の形態)
 波長変換部材をホイール状にし、波長変換部材に気流を受けるフィンを設け、波長変換部材に空気を送り込むことにより、波長変換部材を回してもよい。波長変換部材が回ることにより、半導体発光素子(例えば半導体レーザ)による照射位置が移動する。さらに、波長変換部材と他の部分とをガラス壁等で分離し、当該ガラス壁内に空気を送り込んで波長変換部材を回してもよい。波長変換部材及び光ファイバの光出射端と他の部分とをガラス壁等で分離し、当該ガラス壁内に空気を送り込んで波長変換部材を回してもよい。
(Other embodiments)
The wavelength conversion member may be rotated by making the wavelength conversion member into a wheel shape, providing the fin for receiving the airflow in the wavelength conversion member, and feeding air into the wavelength conversion member. When the wavelength conversion member rotates, the irradiation position by the semiconductor light emitting element (for example, a semiconductor laser) moves. Furthermore, the wavelength conversion member and other portions may be separated by a glass wall or the like, and the wavelength conversion member may be rotated by sending air into the glass wall. The wavelength conversion member and the light emitting end of the optical fiber and other portions may be separated by a glass wall or the like, and the wavelength conversion member may be rotated by feeding air into the glass wall.
 本実施の形態によれば、照射位置が移動するので、発熱が分散され、波長変換部材を抑制することができる。よって、発光効率を高めることができる。 According to this embodiment, since the irradiation position moves, heat generation is dispersed, and the wavelength conversion member can be suppressed. Therefore, light emission efficiency can be increased.
 本開示の光源は、例えば、特殊照明、ヘッドアップディスプレイ、プロジェクタ及び車両用ヘッドランプなどに用いることができる。 The light source of the present disclosure can be used for, for example, special lighting, a head-up display, a projector, and a vehicle headlamp.
 80,100,110 光源
 81,101,111 波長変換部材
 84,85 半導体発光素子
 82,83,102,103 蛍光体層
 88,90,106,108 蛍光体
 89,91,107,109 バインダー
 86,87,104,105 入射光学系
 112 蛍光体焼結体層
 120 車両用ヘッドランプ
 121 波長カットフィルター
 122 出射光学系
 130 車両
 131 電力供給源
 132 発電機
80, 100, 110 Light source 81, 101, 111 Wavelength converting member 84, 85 Semiconductor light emitting device 82, 83, 102, 103 Phosphor layer 88, 90, 106, 108 Phosphor 89, 91, 107, 109 Binder 86, 87 , 104, 105 Incident optical system 112 Phosphor sintered body layer 120 Vehicle headlamp 121 Wavelength cut filter 122 Emitting optical system 130 Vehicle 131 Power supply source 132 Generator

Claims (10)

  1.  少なくとも2種類の半導体レーザーと、
    前記少なくとも2種類の半導体レーザーからの出射光により照射され、波長変換した光を出射する波長変換部材と、
    を備え、
     前記波長変換部材は、少なくとも青色蛍光体と黄色蛍光体とを含む光源。
    At least two types of semiconductor lasers;
    A wavelength conversion member that emits light that is irradiated with light emitted from the at least two types of semiconductor lasers and wavelength-converted; and
    With
    The wavelength conversion member is a light source including at least a blue phosphor and a yellow phosphor.
  2.  前記半導体レーザーは、少なくとも青紫色レーザーと青色レーザーとを含む、請求項1に記載の光源。 The light source according to claim 1, wherein the semiconductor laser includes at least a blue-violet laser and a blue laser.
  3.  前記青色蛍光体は、(Sr1-xBaMgSi:Eu[但し、0<x<1]を含む請求項1又は2に記載の光源。 The light source according to claim 1, wherein the blue phosphor contains (Sr 1-x Ba x ) 3 MgSi 2 O 8 : Eu [where 0 <x <1].
  4.  前記青色蛍光体は、Sr(POCl:Euを含む請求項1~3の何れかに記載の光源。 The light source according to any one of claims 1 to 3, wherein the blue phosphor contains Sr 5 (PO 4 ) 3 Cl: Eu.
  5.  前記青色蛍光体は、BaMgAl1017:Euを含む請求項1~4の何れかに記載の光源。 The light source according to any one of claims 1 to 4, wherein the blue phosphor contains BaMgAl 10 O 17 : Eu.
  6.  前記黄色蛍光体は、ガーネット構造を有する蛍光体である請求項1~5の何れかに記載の光源。 The light source according to any one of claims 1 to 5, wherein the yellow phosphor is a phosphor having a garnet structure.
  7.  前記ガーネット構造を有する蛍光体は、透光性を有するセラミック焼結体である請求項6に記載の光源。 The light source according to claim 6, wherein the phosphor having a garnet structure is a ceramic sintered body having translucency.
  8.  前記黄色蛍光体は、(Ba1-ySr)Si:Eu[但し、0≦y≦1]を含む請求項1~5の何れかに記載の光源。 The yellow phosphor, (Ba 1-y Sr y ) Si 2 O 2 N 2: Eu [ where, 0 ≦ y ≦ 1] light source according to any one of claims 1 to 5 containing.
  9.  前記波長変換部材は、少なくとも第1および第2の層を有し、
    前記第1の層は、前記第2の層に比して半導体レーザーからの光が入射する側に近く、且つ黄色蛍光体を含み、
    前記第2の層は前記青色蛍光体を含む請求項1~8のいずれかに記載の光源。
    The wavelength conversion member has at least first and second layers,
    The first layer is closer to the side on which light from the semiconductor laser is incident than the second layer, and includes a yellow phosphor.
    The light source according to any one of claims 1 to 8, wherein the second layer contains the blue phosphor.
  10.  請求項1~9の何れか1項に記載の光源を具備する車両用ヘッドランプ。 A vehicle headlamp comprising the light source according to any one of claims 1 to 9.
PCT/JP2014/002935 2013-06-21 2014-06-03 Light source, and vehicle headlamp equipped with light source WO2014203479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013130569A JP2016154062A (en) 2013-06-21 2013-06-21 Light source, and vehicle head lamp comprising light source
JP2013-130569 2013-06-21

Publications (1)

Publication Number Publication Date
WO2014203479A1 true WO2014203479A1 (en) 2014-12-24

Family

ID=52104231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002935 WO2014203479A1 (en) 2013-06-21 2014-06-03 Light source, and vehicle headlamp equipped with light source

Country Status (2)

Country Link
JP (1) JP2016154062A (en)
WO (1) WO2014203479A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135988A1 (en) * 2015-08-26 2017-03-01 MAN Truck & Bus AG Illumination device for a vehicle
WO2017073054A1 (en) * 2015-10-28 2017-05-04 パナソニックIpマネジメント株式会社 Light emitting device
WO2017115778A1 (en) * 2015-12-28 2017-07-06 株式会社タムラ製作所 Light emitting device
FR3050800A1 (en) * 2016-04-28 2017-11-03 Valeo Vision BRIGHT SYSTEM
CN107917401A (en) * 2017-12-21 2018-04-17 超视界激光科技(苏州)有限公司 Vehicle head lamp
WO2018077577A1 (en) * 2016-10-28 2018-05-03 Osram Gmbh Lighting device
FR3062894A1 (en) * 2017-02-14 2018-08-17 Valeo Vision LUMINOUS DEVICE OF LASER SCANNING VEHICLE
US10365551B2 (en) 2016-04-22 2019-07-30 Panasonic Corporation Wavelength conversion member including phosphor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055849A1 (en) * 2016-09-26 2018-03-29 パナソニックIpマネジメント株式会社 Phosphor, and wavelength conversion member and electronic device in which the phosphor is used

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111344A (en) * 2002-09-19 2004-04-08 Kasei Optonix Co Ltd Light emitting element
JP2004179644A (en) * 2002-11-12 2004-06-24 Nichia Chem Ind Ltd Phosphor lamination and light source using the same
JP2004259466A (en) * 2003-02-24 2004-09-16 Sharp Corp Lighting device and display device
JP2004363564A (en) * 2003-04-30 2004-12-24 Samsung Electronics Co Ltd Light emitting diode element comprising fluorescent multilayer
JP2005020010A (en) * 2003-06-27 2005-01-20 Agilent Technol Inc White light emitting device
WO2005119797A1 (en) * 2004-06-03 2005-12-15 Philips Intellectual Property & Standards Gmbh Luminescent ceramic for a light emitting device
JP2006210887A (en) * 2004-12-28 2006-08-10 Sharp Corp Light emitting device, and illumination apparatus and display apparatus using light emitting device
JP2006253125A (en) * 2005-02-14 2006-09-21 Mitsubishi Chemicals Corp Light source, solid-state light-emitting element module, phosphor module, light distribution element module, illumination device and image display device, and light control method for the light source
WO2007105647A1 (en) * 2006-03-10 2007-09-20 Nichia Corporation Light emitting device
JP2008027947A (en) * 2006-07-18 2008-02-07 Nichia Chem Ind Ltd Light emitting device
JP2008282984A (en) * 2007-05-10 2008-11-20 Nichia Corp Semiconductor light-emitting device
JP2009277734A (en) * 2008-05-12 2009-11-26 Olympus Corp Semiconductor light source device
WO2012014439A1 (en) * 2010-07-26 2012-02-02 株式会社小糸製作所 Light-emitting module

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111344A (en) * 2002-09-19 2004-04-08 Kasei Optonix Co Ltd Light emitting element
JP2004179644A (en) * 2002-11-12 2004-06-24 Nichia Chem Ind Ltd Phosphor lamination and light source using the same
JP2004259466A (en) * 2003-02-24 2004-09-16 Sharp Corp Lighting device and display device
JP2004363564A (en) * 2003-04-30 2004-12-24 Samsung Electronics Co Ltd Light emitting diode element comprising fluorescent multilayer
JP2005020010A (en) * 2003-06-27 2005-01-20 Agilent Technol Inc White light emitting device
WO2005119797A1 (en) * 2004-06-03 2005-12-15 Philips Intellectual Property & Standards Gmbh Luminescent ceramic for a light emitting device
JP2006210887A (en) * 2004-12-28 2006-08-10 Sharp Corp Light emitting device, and illumination apparatus and display apparatus using light emitting device
JP2006253125A (en) * 2005-02-14 2006-09-21 Mitsubishi Chemicals Corp Light source, solid-state light-emitting element module, phosphor module, light distribution element module, illumination device and image display device, and light control method for the light source
WO2007105647A1 (en) * 2006-03-10 2007-09-20 Nichia Corporation Light emitting device
JP2008027947A (en) * 2006-07-18 2008-02-07 Nichia Chem Ind Ltd Light emitting device
JP2008282984A (en) * 2007-05-10 2008-11-20 Nichia Corp Semiconductor light-emitting device
JP2009277734A (en) * 2008-05-12 2009-11-26 Olympus Corp Semiconductor light source device
WO2012014439A1 (en) * 2010-07-26 2012-02-02 株式会社小糸製作所 Light-emitting module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135988A1 (en) * 2015-08-26 2017-03-01 MAN Truck & Bus AG Illumination device for a vehicle
WO2017073054A1 (en) * 2015-10-28 2017-05-04 パナソニックIpマネジメント株式会社 Light emitting device
JPWO2017073054A1 (en) * 2015-10-28 2018-05-24 パナソニックIpマネジメント株式会社 Light emitting device
WO2017115778A1 (en) * 2015-12-28 2017-07-06 株式会社タムラ製作所 Light emitting device
JP2017120864A (en) * 2015-12-28 2017-07-06 株式会社タムラ製作所 Light emitting device
US10975497B2 (en) 2015-12-28 2021-04-13 Tamura Corporation Light emitting device
US10365551B2 (en) 2016-04-22 2019-07-30 Panasonic Corporation Wavelength conversion member including phosphor
FR3050800A1 (en) * 2016-04-28 2017-11-03 Valeo Vision BRIGHT SYSTEM
WO2018077577A1 (en) * 2016-10-28 2018-05-03 Osram Gmbh Lighting device
FR3062894A1 (en) * 2017-02-14 2018-08-17 Valeo Vision LUMINOUS DEVICE OF LASER SCANNING VEHICLE
CN107917401A (en) * 2017-12-21 2018-04-17 超视界激光科技(苏州)有限公司 Vehicle head lamp

Also Published As

Publication number Publication date
JP2016154062A (en) 2016-08-25

Similar Documents

Publication Publication Date Title
WO2014203479A1 (en) Light source, and vehicle headlamp equipped with light source
US9142733B2 (en) Light source device including a high energy light source and a wavelength conversion member, illuminating device comprising the same, and vehicle
JP6427721B1 (en) Stacked luminescence collector
JP5970661B2 (en) Wavelength conversion member, light source, and automotive headlamp
JP5232815B2 (en) Vehicle headlamp
JP2017198982A (en) Wavelength conversion member, light source, and vehicle head lamp
JP2015005650A (en) Wavelength conversion member, light source having wavelength conversion member and vehicle headlamp having light source
JP6493946B2 (en) Multiple excitation luminescence rod configurations for ultra-high brightness
JP5053416B2 (en) Light emitting device, lighting device, and vehicle headlamp
US20120139409A1 (en) Lighting device and vehicle headlamp
WO2014203488A1 (en) Wavelength conversion member, light source, and lamp
JP5487204B2 (en) Light emitting module, method for manufacturing light emitting module, and lamp unit
WO2014080705A1 (en) Light emitting apparatus, method for manufacturing same, lighting apparatus, and headlamp
JP2012099282A (en) Lighting system and headlight for vehicle
JP2012009380A (en) Light-emitting device, lighting device, vehicular headlight, and manufacturing method of light-emitting device
WO2013051623A1 (en) Light-emitting body, illumination device, and headlight
US9651207B2 (en) Oxychloride phosphor, light emitting device, lighting apparatus, and vehicle
JP2012193283A (en) Light-emitting body, illuminating device, and headlight
JP5271340B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP2013079311A (en) Light-emitting body, illumination device, and headlight
US20140353696A1 (en) Solid State Lighting Device
JP2012230914A (en) Light-emitting device
JP2012221635A (en) Light-emitting device, lighting device, and vehicle headlamp
JP5557883B2 (en) Light emitting device, lighting device, vehicle headlamp
JP2012199078A (en) Light-emitting device, illumination device, headlight for vehicle, and method for manufacturing light-emitting part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP