WO2014208083A1 - Dehumidification device and dehumidification system - Google Patents

Dehumidification device and dehumidification system Download PDF

Info

Publication number
WO2014208083A1
WO2014208083A1 PCT/JP2014/003387 JP2014003387W WO2014208083A1 WO 2014208083 A1 WO2014208083 A1 WO 2014208083A1 JP 2014003387 W JP2014003387 W JP 2014003387W WO 2014208083 A1 WO2014208083 A1 WO 2014208083A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
adsorption
heat exchanger
heat exchange
adsorption heat
Prior art date
Application number
PCT/JP2014/003387
Other languages
French (fr)
Japanese (ja)
Inventor
尚利 藤田
敏幸 夏目
中山 浩
松井 伸樹
Original Assignee
ダイキン工業株式会社
株式会社ダイキンアプライドシステムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社, 株式会社ダイキンアプライドシステムズ filed Critical ダイキン工業株式会社
Priority to CN201480036707.6A priority Critical patent/CN105358915B/en
Priority to KR1020167002316A priority patent/KR101630143B1/en
Priority to US14/897,098 priority patent/US20160146479A1/en
Priority to EP14818067.2A priority patent/EP3015778A4/en
Priority to BR112015032117A priority patent/BR112015032117A2/en
Publication of WO2014208083A1 publication Critical patent/WO2014208083A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1458Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators

Definitions

  • the present invention relates to a dehumidifying apparatus and a dehumidifying system for dehumidifying air and supplying it to a humidity control space, and more particularly to a dehumidifying apparatus having an adsorption heat exchanger carrying an adsorbent.
  • Patent Document 1 describes a humidity control device that includes a refrigerant circuit having two adsorption heat exchangers and adjusts the humidity of air in the adsorption heat exchanger.
  • the first adsorption heat exchanger serves as a condenser and the second adsorption heat exchanger serves as an evaporator
  • the first adsorption heat exchanger serves as an evaporator and the second adsorption heat exchanger serves as a condenser. This operation is repeated alternately.
  • this humidity control apparatus supplies the air dehumidified in the adsorption heat exchanger functioning as an evaporator to the room and discharges the air humidified in the adsorption heat exchanger functioning as a condenser to the outside. Perform dehumidifying operation.
  • an object of the present invention is to provide a dehumidifying device capable of improving the dehumidifying capability while suppressing an increase in power consumption.
  • the first invention has first and second adsorption heat exchangers (101, 102) carrying an adsorbent, and the first adsorption heat exchanger (101) serves as an evaporator to dehumidify the air.
  • the first adsorption heat exchanger (102) serves as a condenser to regenerate the adsorbent
  • the first adsorption heat exchanger (101) serves as a condenser to regenerate the adsorbent and the second heat of adsorption.
  • a refrigerant circuit (100) that alternately performs a second operation of dehumidifying air by using the exchanger (102) as an evaporator, and a first and a second adsorption heat exchanger (101, 102) provided with the first and second adsorption heat exchangers (101, 102), respectively.
  • a heat exchange chamber provided with an adsorption heat exchanger (101, 102) serving as an evaporator (S11, S12)
  • the air that has passed through S11, S12) is supplied to the humidity control space (S0) and adsorbed in the heat exchange chamber (S12, S11) where the adsorption heat exchanger (102, 101), which is a condenser, is installed.
  • a dehumidifying device comprising a second adsorption block (302) provided at a position downstream of the adsorption heat exchanger (102).
  • air to be supplied to the humidity control space (S0) is circulated in the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator.
  • the adsorption heat exchanger (101, 102) serving as an evaporator.
  • moisture in the air can be adsorbed on the adsorbents of the adsorption heat exchanger (101, 102) and the adsorption block (301, 302) to dehumidify the air.
  • Adsorption heat exchange is performed in the air by circulating air to regenerate the adsorbent in the heat exchange chamber (S12, S11) where the adsorption heat exchanger (102, 101), which is a condenser, is provided.
  • the air in the first and second heat exchange chambers (S11, S12) is obtained by adding the first and second adsorption blocks (301, 302) to the first and second heat exchange chambers (S11, S12), respectively.
  • the amount of dehumidification can be increased.
  • the adsorption heat exchanger (101, 102) when the adsorption heat exchanger (101, 102) is an evaporator, the adsorption heat exchanger (101, 102) By disposing the adsorption block (301, 302) at the downstream position, the air dehumidified and cooled by the adsorption heat exchanger (101, 102) can be supplied to the adsorption block (301, 302). Thereby, adsorption
  • the switching mechanism (200) is configured such that the flow direction of air passing through each of the first and second adsorption heat exchangers (101, 102) is the adsorption heat exchanger.
  • a dehumidifier characterized by switching the air flow so that the opposite direction is obtained when the (101,102) is an evaporator and when the adsorption heat exchanger (101,102) is a condenser. is there.
  • the adsorption block (301, 302) is adsorbed when the adsorption heat exchanger (101, 102) is an evaporator.
  • the adsorption heat exchanger (101, 102) is a condenser, it is located on the upstream side of the adsorption heat exchanger (101, 102). That is, in each of the first and second heat exchange chambers (S11, S12), the air supplied to the heat exchange chambers (S11, S12) is the case where the adsorption heat exchanger (101, 102) is an evaporator.
  • the switching mechanism (200) is such that the flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) is the adsorption heat exchanger.
  • a dehumidifier characterized by switching the air flow so that the direction is the same when the (101, 102) is an evaporator and when the adsorption heat exchanger (101, 102) is a condenser. is there.
  • the adsorption block (301, 302) in each of the first and second heat exchange chambers (S11, S12), includes the case where the adsorption heat exchanger (101, 102) is an evaporator and the adsorption heat exchange. In either case where the condenser (101, 102) is a condenser, it is located downstream of the adsorption heat exchanger (101, 102).
  • the air dehumidified and cooled by the adsorption heat exchanger (101, 102) can be supplied to the adsorption block (301,302), and when the adsorption heat exchanger (101,102) is a condenser, the air heated by the adsorption heat exchanger (101,102) is supplied to the adsorption block (301,302) can do.
  • the first and second adsorption blocks (301, 302) are respectively connected to the first and second adsorption heat exchangers (101, 102). It is a dehumidifier characterized by being arranged at intervals.
  • the adsorption block (301, 302) is disposed in the first and second heat exchange chambers (S11, S12) at a distance from the adsorption heat exchanger (101, 102). 301, 302) can suppress temperature distribution deviation and air drift.
  • the first and second adsorption blocks (301, 302) are respectively connected to the first and second adsorption heat exchangers (101, 102).
  • the dehumidifying device is arranged so as to be in contact with each other.
  • the adsorption heat exchange is performed by arranging the adsorption block (301, 302) in contact with the adsorption heat exchanger (101, 102) in each of the first and second heat exchange chambers (S11, S12). Heat conduction between the vessel (101, 102) and the adsorption block (301, 302) can be promoted. That is, when the adsorption heat exchanger (101, 102) is an evaporator, the adsorption block (301, 302) can be cooled by the endothermic action of the refrigerant flowing through the adsorption heat exchanger (101, 102). When (101,102) is a condenser, the adsorption block (301,302) can be heated by the heat radiation action of the refrigerant flowing through the adsorption heat exchanger (101,102).
  • a sixth invention includes the dehumidifying device (10) of the second invention and a heater (21) for heating air for regenerating the adsorbent, wherein the switching mechanism (200) is the first device.
  • the air that has passed through the heater (21) enters the heat exchange chamber (S12, S11) in which the adsorption heat exchanger (102, 101) serving as a condenser is provided.
  • It is a dehumidification system characterized by switching the flow of air so that it circulates.
  • the air supplied to the heat exchange chamber (S11, S12) is the evaporator of the adsorption heat exchanger (101, 102). Is passed through the adsorption heat exchanger (101,102) and then through the adsorption block (301,302), and when the adsorption heat exchanger (101,102) is a condenser, the adsorption block (301,302) ) And the adsorption heat exchanger (101, 102).
  • the heat exchange chamber (S11, S12) is circulated.
  • the air heated by the heater (21) can be supplied to the adsorption block (301, 302) located upstream of the adsorption heat exchanger (101, 102) which is the condenser.
  • an adsorption heat exchanger (101, 102) which carries an adsorbent and serves as an evaporator of the first and second heat exchange chambers (S11, S12).
  • An adsorption rotor (70) having a regeneration unit (72) for regenerating the adsorbent is further provided, and the adsorption heat exchanger (101, 102) serving as an evaporator in the first and second heat exchange chambers (S11, S12).
  • the air that has passed through the heat exchange chambers (S11, S12) provided with a) passes through the adsorption portion (71) of the adsorption rotor (70) and is supplied to the humidity control space (S0), and the switching mechanism ( 200) is a heat exchange provided with an adsorption heat exchanger (102, 101) which is a condenser in the first and second heat exchange chambers (S11, S12).
  • a dehumidification system that switches the flow of air so that the air that has passed through the heater (21) and the regeneration section (72) of the adsorption rotor (70) flows in sequence to the chambers (S12, S11) It is.
  • the air to be supplied to the humidity control space (S0) is dehumidified in the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator. Later, it is further dehumidified in the adsorption part (71) of the adsorption rotor (70).
  • the air heated by the heater (21) passes through the regeneration section (72) of the adsorption rotor (70), and then is provided with an adsorption heat exchanger (102, 101) serving as a condenser. Pass through (S12, S11). That is, the air that has passed through the regeneration unit (72) of the adsorption rotor (70) can be used for regeneration of the adsorbent of the adsorption heat exchanger (102, 101) and the adsorption block (302, 301).
  • the first and second inventions it is possible to increase the amount of air dehumidified in the first and second heat exchange chambers (S11, S12), and further, Since adsorption
  • the air heated by the adsorption heat exchanger (101, 102) can be supplied to the adsorption block (301, 302).
  • the regeneration of the adsorbent of the adsorption block (301, 302) can be promoted.
  • the temperature distribution bias and air drift in the adsorption block (301, 302) can be suppressed, the decrease in adsorption capacity and regeneration capacity in the adsorption block (301, 302) can be suppressed.
  • heat conduction between the adsorption heat exchanger (101,102) and the adsorption block (301,302) can be promoted, so that moisture is adsorbed and adsorbed on the adsorbent in the adsorption block (301,302).
  • the regeneration of the agent can be promoted.
  • the adsorption block (301, 302) located upstream of the adsorption heat exchanger (101, 102) serving as a condenser in the heat exchange chamber (S11, S12) is provided with a heater (21). Therefore, the regeneration of the adsorbent of the adsorption block (301, 302) can be promoted.
  • the dehumidifying capacity of the dehumidifying system (1) can be improved by adding the adsorption rotor (70).
  • the air that has passed through the regeneration unit (72) of the adsorption rotor (70) can be used for regeneration of the adsorbent of the adsorption heat exchanger (102, 101) and the adsorption block (302, 301), the heater (21) The air heated by can be used effectively.
  • FIG. Schematic for demonstrating the structure of the dehumidification apparatus of Embodiment 1, and the flow of the air in 1st dehumidification operation
  • FIG. Schematic for demonstrating the structure of the dehumidification apparatus of Embodiment 2, and the flow of the air in 1st dehumidification operation
  • FIG. The piping system figure for demonstrating the structural example of the dehumidification system of Embodiment 3.
  • FIG. The piping system diagram for demonstrating the structural example of the dehumidification system of Embodiment 4.
  • FIG. 1 shows a configuration example of a dehumidification system (1) according to the first embodiment.
  • This dehumidification system (1) dehumidifies air (in this example, outdoor air (OA)) and supplies it to the humidity control space (S0).
  • the humidity control space (S0) is configured by an indoor space (S1).
  • the indoor space (S1) is a space where supply of air having a low dew point temperature (for example, air having a dew point temperature of about ⁇ 30 ° C. to ⁇ 50 ° C.) is required, and is provided, for example, in a lithium battery production line It is a dry clean room.
  • the dehumidification system (1) includes a dehumidifier (10) and a controller (20).
  • the dehumidifier (10) is provided with an air supply passage (P1) and a regeneration passage (P2).
  • the dehumidifier (10) includes first and second heat exchange chambers (S11, S12), a refrigerant circuit (100), a switching mechanism (200), and first and second adsorption blocks (301, 302). Yes.
  • Air to be supplied to the humidity control space (S0) (in this example, air to be supplied to the indoor space (S1)) flows through the air supply passage (P1).
  • the air supply passage (P1) is configured to take outdoor air (OA) from the outdoor space and supply supply air (RA) to the indoor space (S1).
  • the air supply passage (P1) includes a first air supply passage portion (P11) whose inflow end is connected to the outdoor space, and a second air supply passage whose outflow end is connected to the indoor space (S1). Part (P12).
  • a cooler (11) is provided in the first air supply passage (P1) of the air supply passage (P1), and a drain pan (12) is provided in the vicinity of the cooler (11). Yes.
  • Air for regenerating the adsorbent flows through the regeneration passage (P2).
  • the regeneration passage (P2) is configured to take in indoor air (RA) from the indoor space (S1) and discharge exhaust air (EA) to the outdoor space.
  • the regeneration passage (P2) includes a first regeneration passage portion (P21) whose inflow end is connected to the indoor space (S1) and a second regeneration passage portion (P22) whose outflow end is connected to the outdoor space. ).
  • part of the air in the indoor space (S1) is discharged to the outdoor space as exhaust air (EA) without passing through the regeneration passage (P2).
  • the first and second heat exchange chambers (S11, S12) incorporate one heat exchange chamber into the supply passage (P1) as a part of the supply passage (P1) and the other heat exchange chamber as a regeneration passage (P2). ) Can be incorporated into the regeneration passage (P2) as a part of. Specifically, each of the first and second heat exchange chambers (S11, S12) is between the outflow end of the first supply passage portion (P11) and the inflow end of the second supply passage portion (P12).
  • the cooler (11) cools and dehumidifies outdoor air (OA).
  • the cooler (11) may be configured by a heat exchanger (specifically, a fin-and-tube heat exchanger) that functions as an evaporator of a refrigerant circuit (not shown).
  • the drain pan (12) collects the water condensed in the cooler (11).
  • the drain pan (12) is configured by a container having an open upper surface and disposed below the cooler (11) so that water condensed in the cooler (11) can be received.
  • the cooler (11) is provided in the first air supply passage portion (P11) of the air supply passage (P1).
  • the refrigerant circuit (100) circulates refrigerant to execute a refrigeration cycle operation.
  • Each of the first and second adsorption heat exchangers (101, 102) is configured by supporting an adsorbent on the surface of a heat exchanger (for example, a cross fin type fin-and-tube heat exchanger).
  • the first and second adsorption heat exchangers (101, 102) are provided in the first and second heat exchange chambers (S11, S12), respectively.
  • As the adsorbent zeolite, silica gel, activated carbon, an organic polymer material having a hydrophilic functional group may be used, or a material having not only a function of adsorbing moisture but also a function of absorbing moisture (so-called “concentration”). Adhesive) may be used.
  • the generic name of the first and second adsorption heat exchangers (101, 102) is simply referred to as “adsorption heat exchanger (101, 102)”.
  • the compressor (103) compresses and discharges the refrigerant. Moreover, the compressor (103) is comprised so that a rotation speed (operation frequency) can be changed by control of a controller (20).
  • the compressor (103) is configured by a variable capacity compressor (rotary, swing, scroll, etc. compressor) whose rotation speed can be adjusted by an inverter circuit (not shown).
  • the expansion valve (104) adjusts the pressure of the refrigerant.
  • the expansion valve (104) is configured by an electronic expansion valve that can change the opening degree in response to control by the controller (20).
  • the four-way switching valve (105) has first to fourth ports, the first port is connected to the discharge side of the compressor (103), and the second port is connected to the suction side of the compressor (103).
  • the third port is connected to the end of the second adsorption heat exchanger (102), and the fourth port is connected to the end of the first adsorption heat exchanger (101).
  • the four-way switching valve (105) is in a first connection state (a state indicated by a solid line in FIG. 1) and a second connection state (a state indicated by a broken line in FIG. 1). ) And can be set.
  • the refrigerant circuit (100) uses the first adsorption heat exchanger (101) as an evaporator to dehumidify the air and to remove the second adsorption heat exchanger ( 102) becomes a condenser and performs a first refrigeration cycle operation (first operation) that humidifies air (that is, regenerates the adsorbent).
  • the refrigerant circuit (100) serves as the first adsorption heat exchanger (102) for dehumidifying the air by using the evaporator as the second adsorption heat exchanger (102).
  • the second refrigeration cycle operation (second operation) is performed in which the vessel (101) becomes a condenser to humidify the air (that is, regenerate the adsorbent).
  • the refrigerant circuit (100) is configured to be able to execute the first and second refrigeration cycle operations in response to the control by the controller (20).
  • the refrigerant circuit (100) is configured to alternately perform the first and second refrigeration cycle operations.
  • the refrigerant that dissipates heat and condenses in the second adsorption heat exchanger (102) is decompressed by the expansion valve (104), and then flows into the first adsorption heat exchanger (101).
  • the first adsorption heat exchanger (101) an adsorption operation in which moisture in the air is adsorbed by the adsorbent is performed, and the adsorption heat generated at that time is imparted to the refrigerant.
  • the refrigerant that has absorbed heat and evaporated in the first adsorption heat exchanger (101) is sucked into the compressor (103) and compressed.
  • the second adsorption heat exchanger (102) an adsorption operation in which moisture in the air is adsorbed by the adsorbent is performed, and adsorption heat generated at that time is imparted to the refrigerant.
  • the refrigerant that has absorbed heat and evaporated in the second adsorption heat exchanger (102) is sucked into the compressor (103) and compressed.
  • the switching mechanism (200) changes the connection state between the first and second heat exchange chambers (S11, S12), the supply passage (P1), and the regeneration passage (P2),
  • the first passage state (state indicated by the solid line in FIG. 1) and the second passage state (state indicated by the broken line in FIG. 1) can be set.
  • First passage state When the connection state of the first and second heat exchange chambers (S11, S12) becomes the first passage state, the first heat exchange chamber (S11) is located between the first and second air supply passage portions (P11, P12). Is connected to the intake passage (P1) and the second heat exchange chamber (S12) is connected between the first and second regeneration passage portions (P21, P22) and incorporated into the regeneration passage (P2). It is.
  • the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the first passage state when the four-way switching valve (105) is in the first connection state, When the four-way switching valve (105) is in the second connection state, the connection state of the first and second heat exchange chambers (S11, S12) is set to the second passage state.
  • the switching mechanism (200) is configured such that the heat exchange chamber provided with the adsorption heat exchanger serving as an evaporator of the first and second heat exchange chambers (S11, S12) is provided in the supply passage (P1).
  • the switching mechanism (200) has the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator among the first and second heat exchange chambers (S11, S12).
  • Passed air is supplied to the humidity control space (S0), and air for regenerating the adsorbent flows in the heat exchange chamber (S12, S11) where the adsorption heat exchanger (102, 101), which is a condenser, is installed. The air flow is switched.
  • connection state of the first and second heat exchange chambers (S11, S12) is the first passage state (that is, the first heat exchange chamber (S11) is a part of the air supply passage (P1).
  • the connection state of the first and second heat exchange chambers (S11, S12) is the second passage state.
  • the flow direction is the same as the flow direction of the air passing through the first adsorption heat exchanger (101). (So-called parallel flow).
  • the flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) is switched from the evaporator to the condenser (or from the condenser to the evaporator). It doesn't change. That is, the switching mechanism (200) has a case where the flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) is the same as when the adsorption heat exchanger (101, 102) is an evaporator. The air flow is switched so that the adsorption heat exchanger (101, 102) is in the same direction as the condenser.
  • Each of the first and second adsorption blocks (301, 302) is configured to carry an adsorbent and bring air into contact with the adsorbent.
  • each of the first and second adsorption blocks (301, 302) is configured by supporting an adsorbent on the surface of a structure (specifically, a structure having a honeycomb structure).
  • the first and second adsorption blocks (301, 302) are provided in the first and second heat exchange chambers (S11, S12), respectively.
  • the generic name of the first and second adsorption blocks (301, 302) is simply referred to as “adsorption block (301, 302)”.
  • the first adsorption block (301) is located downstream of the first adsorption heat exchanger (101) when the first adsorption heat exchanger (101) is an evaporator in the first heat exchange chamber (S11) ( Air dehumidified by the first adsorption heat exchanger (101) passes when the position becomes the leeward side (that is, when the first heat exchange chamber (S11) is incorporated as a part of the air supply passage (P1)) Position).
  • the connection state of the first and second heat exchange chambers (S11, S12) is the first passage state (shown by the solid line in FIG. 1). In this case, it is disposed at a position downstream of the first adsorption heat exchanger (101).
  • the second adsorption heat exchanger (102) when the second adsorption heat exchanger (102) is an evaporator in the second heat exchange chamber (S12), the second adsorption block (302) has the second adsorption heat exchanger (102).
  • the second adsorption heat exchanger (102) On the downstream side (leeward side) (that is, when the second heat exchange chamber (S12) is incorporated as a part of the air supply passage (P1), the second adsorption heat exchanger (102) removes the moisture. At a position where the generated air passes).
  • the connection state of the first and second heat exchange chambers (S11, S12) is the second passage state (indicated by the broken line in FIG. 1).
  • the second adsorption heat exchanger (102) is disposed at a position downstream of the second adsorption heat exchanger (102).
  • the flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) depends on whether the adsorption heat exchanger (101, 102) is an evaporator or the adsorption heat exchange.
  • the direction is the same as when the condenser (101, 102) is a condenser. Therefore, when the connection state of the first and second heat exchange chambers (S11, S12) is the first passage state (the state indicated by the solid line in FIG.
  • the downstream side of the first adsorption heat exchanger (101) Is located downstream of the first adsorption heat exchanger (101) when the connection state of the first and second heat exchange chambers (S11, S12) is the second passage state (shown by the broken line in FIG. 1). It is the same position as the side position.
  • the connection state of the first and second heat exchange chambers (S11, S12) is the second passage state (the state indicated by the broken line in FIG. 1)
  • the second adsorption heat exchanger (102) The position on the downstream side is the second adsorption heat exchanger (102 when the connection state of the first and second heat exchange chambers (S11, S12) is the first passage state (the state shown by the solid line in FIG. 1).
  • the adsorption block (301, 302) includes an adsorption heat exchanger (101, 102) as an evaporator and an adsorption heat exchanger (101, 102). In either case of a condenser, it is located downstream of the adsorption heat exchanger (101, 102).
  • the controller (20) controls the dehumidifier (10) based on detection values of various sensors (for example, a temperature sensor, a humidity sensor, etc.).
  • the controller (20) is constituted by a CPU and a memory.
  • the dehumidifier (10) repeats the first and second dehumidifying operations alternately at a predetermined time interval (for example, every 10 minutes).
  • First dehumidifying operation In the first dehumidifying operation, the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the first connection state (the state shown by the solid line in FIG. 1). .
  • the refrigerant circuit (100) performs a first refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as an evaporator and the second adsorption heat exchanger (102) serves as a condenser. Further, the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the first passage state (the state indicated by the solid line in FIG. 1).
  • the air taken into the supply passage (P1) (in this example, outdoor air (OA)) is cooled and dehumidified by the cooler (11), and then supplied to the first heat exchange chamber (S11).
  • the air supplied to the first heat exchange chamber (S11) passes through the first adsorption heat exchanger (101) functioning as an evaporator. At this time, moisture in the air passing through the first adsorption heat exchanger (101) is adsorbed by the adsorbent of the first adsorption heat exchanger (101). Further, the heat of adsorption generated during the adsorption is absorbed by the refrigerant flowing through the first adsorption heat exchanger (101).
  • the first adsorption heat exchanger (101) functioning as an evaporator is deprived of moisture by the adsorbent of the first adsorption heat exchanger (101), the humidity decreases, It is cooled by the endothermic action of the refrigerant flowing through the first adsorption heat exchanger (101), and the temperature also decreases.
  • the air dehumidified and cooled by the first adsorption heat exchanger (101) passes through the first adsorption block (301). At this time, moisture in the air is adsorbed on the adsorbent of the first adsorption block (301).
  • the air dehumidified by the first adsorption heat exchanger (101) is further dehumidified by the first adsorption block (301).
  • the air dehumidified after passing through the first adsorption heat exchanger (101) and the first adsorption block (301) is supplied to the indoor space (S1) as supply air (SA).
  • the second adsorption heat exchanger (102) functioning as a condenser is given moisture from the adsorbent of the second adsorption heat exchanger (102), the humidity rises, It is heated by the heat radiation action of the refrigerant flowing through the second adsorption heat exchanger (102), and the temperature also rises.
  • the air humidified and heated by the second adsorption heat exchanger (102) passes through the second adsorption block (302).
  • the moisture of the adsorbent of the second adsorption block (302) is released to the air passing through the second adsorption block (302).
  • the adsorbent of the second adsorption block (302) is regenerated.
  • the air that has passed through the second adsorption heat exchanger (102) and the second adsorption block (302) is exhausted to the outdoor space as exhaust air (EA).
  • the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the second connection state (the state indicated by the broken line in FIG. 1). .
  • the refrigerant circuit (100) performs a second refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as a condenser and the second adsorption heat exchanger (102) serves as an evaporator.
  • the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the second passage state (the state indicated by the broken line in FIG. 1).
  • the air taken into the supply passage (P1) (in this example, outdoor air (OA)) is cooled and dehumidified by the cooler (11), and then supplied to the second heat exchange chamber (S12).
  • the air supplied to the second heat exchange chamber (S12) passes through the second adsorption heat exchanger (102) functioning as an evaporator.
  • the air passing through the second adsorption heat exchanger (102) functioning as an evaporator is deprived of moisture by the adsorbent of the second adsorption heat exchanger (102), and the humidity decreases.
  • the refrigerant is cooled by the endothermic action of the refrigerant flowing through the two-adsorption heat exchanger (102), and the temperature also decreases.
  • the air dehumidified and cooled by the second adsorption heat exchanger (102) passes through the second adsorption block (302). At this time, moisture in the air is adsorbed to the adsorbent of the second adsorption block (302). Thereby, the air dehumidified by the second adsorption heat exchanger (102) is further dehumidified by the second adsorption block (302).
  • the air dehumidified after passing through the second adsorption heat exchanger (102) and the second adsorption block (302) is supplied to the indoor space (S1) as supply air (SA).
  • the -Air flow in the regeneration passage- Air (in this example, room air (RA)) taken into the regeneration passage (P2) is supplied to the first heat exchange chamber (S11).
  • the air supplied to the first heat exchange chamber (S11) passes through the first adsorption heat exchanger (101) functioning as a condenser.
  • the air passing through the first adsorption heat exchanger (101) functioning as a condenser is given moisture from the adsorbent of the first adsorption heat exchanger (101), and the humidity rises.
  • the air humidified and heated by the first adsorption heat exchanger (101) passes through the first adsorption block (301).
  • the moisture of the adsorbent of the first adsorption block (301) is released to the air passing through the first adsorption block (301).
  • the adsorbent of the first adsorption block (301) is regenerated.
  • the air that has passed through the first adsorption heat exchanger (101) and the first adsorption block (301) is exhausted to the outdoor space as exhaust air (EA).
  • the central view is a plan view of the dehumidifying device (10)
  • the right view is a right side view of the dehumidifying device (10)
  • the left view is a left side view of the dehumidifying device (10). It is.
  • the dehumidifier (10) includes a casing (41) that houses the components of the refrigerant circuit (100).
  • the casing (41) is formed in a substantially flat and relatively low rectangular parallelepiped shape, and has a front panel (42), a rear panel (43), a left side panel (44), and a right side panel (45). ing.
  • the longitudinal direction of the casing (41) is the front-rear direction.
  • the casing (41) has an adsorption side suction port (51), a regeneration side suction port (52), an air supply port (53), and an exhaust port (54).
  • the suction side suction port (51) is provided in the upper part of the back panel (43), and the regeneration side suction port (52) is provided in the lower part of the back panel (43).
  • the air supply port (53) is provided near the end of the right side panel (45) on the front panel (42) side, and the exhaust port (54) is provided on the left side panel (44) on the front panel (42) side. It is provided near the end.
  • a first partition plate (46), a second partition plate (47), and a central partition plate (48) are provided in the internal space of the casing (41). These partition plates (46, 47, 48) are installed upright on the bottom plate of the casing (41) and partition the internal space of the casing (41) from the bottom plate of the casing (41) to the top plate. Yes.
  • the first and second partition plates (46, 47) are arranged at a predetermined interval in the front-rear direction of the casing (41) in a posture parallel to the front panel (42) and the rear panel (43).
  • the first partition plate (46) is disposed closer to the rear panel (43), and the second partition plate (47) is disposed closer to the front panel (42).
  • the arrangement of the central partition plate (48) will be described later.
  • the space between the first partition plate (46) and the back panel (43) is partitioned into two upper and lower spaces, and the lower space is the first adsorption side internal passage (S21).
  • the upper space constitutes the first reproduction side internal passage (S22).
  • the first adsorption side internal passage (S21) communicates with the outdoor space via a duct (corresponding to the first air supply passage portion (P11) in FIG. 1) connected to the adsorption side suction port (51).
  • the first regeneration side internal passage (S22) communicates with the indoor space (S1) via a duct (corresponding to the first regeneration passage portion (P21) in FIG. 1) connected to the regeneration side suction port (52). Yes.
  • An adsorption side filter (63) is installed in the first adsorption side internal passage (S21), and a regeneration side filter (64) is installed in the first regeneration side internal passage (S22).
  • the space between the first partition plate (46) and the second partition plate (47) is partitioned on the left and right by the center partition plate (48).
  • the space on the left side constitutes the first heat exchange chamber (S11), and the space on the right side of the central partition plate (48) constitutes the second heat exchange chamber (S12).
  • a first adsorption heat exchanger (101) is accommodated in the first heat exchange chamber (S11), and a second adsorption heat exchanger (102) is accommodated in the second heat exchange chamber (S12).
  • the second heat exchange chamber (S12) accommodates an expansion valve (104) (not shown) of the refrigerant circuit (100).
  • Each of the first and second adsorption heat exchangers (101, 102) is formed into a rectangular thick plate shape or flat rectangular parallelepiped shape as a whole, and two main surfaces (wide side surfaces) facing each other are surfaces through which air passes. It has become.
  • the 1st adsorption heat exchanger (101) stood up in the 1st heat exchange room (S11) with the posture where the two principal surfaces became parallel to the 1st and 2nd partition plates (46, 47). It is installed in a state.
  • the second adsorptive heat exchanger (102) has a configuration in which the two main surfaces thereof are parallel to the first and second partition plates (46, 47) and in the second heat exchange chamber (S12). It is installed in a standing state.
  • Each of the first and second adsorption blocks (301, 302) is formed in a rectangular thick plate shape or flat rectangular parallelepiped shape as a whole, and two main surfaces (wide side surfaces) facing each other serve as surfaces through which air passes. ing.
  • each of the first and second adsorption blocks (301, 302) is a honeycomb-like structure having a large number of holes penetrating from one main surface to the other main surface.
  • the first adsorption block (301) stands up in the first heat exchange chamber (S11) with its two main surfaces parallel to the first and second partition plates (46, 47). is set up.
  • the second adsorption block (302) stands up in the second heat exchange chamber (S12) with its two main surfaces parallel to the first and second partition plates (46, 47). Installed.
  • the first adsorption block (301) is disposed between the first adsorption heat exchanger (101) and the second partition plate (47) in the first heat exchange chamber (S11), and the second The adsorption block (302) is disposed between the second adsorption heat exchanger (102) and the second partition plate (47) in the second heat exchange chamber (S12).
  • the first adsorption block (301) is spaced apart from the first adsorption heat exchanger (101) in the front-rear direction
  • the second adsorption block (302) is arranged in the second adsorption heat exchanger (101) in the front-rear direction. 102) and spaced apart.
  • the space along the front surface of the second partition plate (47) is vertically partitioned, and the upper part of the vertically partitioned space is the second suction side interior.
  • the passage (S23) is configured, and the lower part configures the second regeneration side internal passage (S24).
  • the first partition plate (46) is provided with first to fourth dampers (D1 to D4), and the second partition plate (47) is provided with fifth to eighth dampers (D5 to D8). Yes.
  • Each of the first to eighth dampers (D1 to D8) is configured to be switchable between an open state and a closed state in response to control by the controller (20).
  • These first to eighth dampers (D1 to D8) constitute a switching mechanism (200).
  • the first damper (D1) is attached to the right side of the central partition plate (48) in the upper portion of the first partition plate (46) (the portion facing the first regeneration side internal passage (S22)), and the second damper (D2) is attached to the left side of the central partition plate (48) in the upper part of the first partition plate (46).
  • the third damper (D3) is attached to the right side of the central partition plate (48) in the lower portion of the first partition plate (46) (the portion facing the first suction side internal passage (S21)).
  • the damper (D4) is attached to the left side of the central partition plate (48) in the lower portion of the first partition plate (46).
  • the fifth damper (D5) is attached to the right side of the central partition plate (48) in the upper portion of the second partition plate (47) (the portion facing the second suction side internal passage (S23)).
  • (D6) is attached to the left side of the central partition plate (48) in the upper part of the second partition plate (47).
  • the seventh damper (D7) is attached to the right side of the central partition plate (48) in the lower portion of the second partition plate (47) (the portion facing the second regeneration side internal passage (S24)),
  • the damper (D8) is attached to the left side of the central partition plate (48) in the lower portion of the second partition plate (47).
  • the space between the second adsorption side internal passage (S23) and the second regeneration side internal passage (S24) and the front panel (42) is partitioned left and right by the partition plate (49).
  • the space on the right side of the partition plate (49) constitutes an air supply fan chamber (S25), and the space on the left side of the partition plate (49) constitutes an exhaust fan chamber (S26).
  • the air supply fan chamber (S25) communicates with the indoor space (S1) through a duct (corresponding to the second air supply passage portion (P12) in FIG. 1) connected to the air supply port (53).
  • the exhaust fan chamber (S26) communicates with the outdoor space via a duct (corresponding to the second regeneration passage portion (P22) in FIG. 1) connected to the exhaust port (54).
  • the supply fan chamber (S25) accommodates the supply fan (61), and the exhaust fan chamber (S26) accommodates the exhaust fan (62).
  • the air supply fan (61) has an air outlet connected to the air supply port (53), and blows air sucked in from the second partition (47) side to the air supply port (53).
  • the exhaust fan (62) has an outlet connected to the exhaust outlet (54), and blows out air sucked from the second partition (47) side to the exhaust outlet (54).
  • each of the air supply fan (61) and the exhaust fan (62) is constituted by a centrifugal multiblade fan (so-called sirocco fan).
  • the compressor fan (103) and the four-way switching valve (105) (not shown) of the refrigerant circuit (100) are accommodated in the air supply fan chamber (S25).
  • the first adsorption heat exchanger (101) serves as an evaporator
  • the second adsorption heat exchanger (102) serves as a condenser.
  • the first, fourth, sixth and seventh dampers (D1, D4, D6, D7) are opened
  • the second, third, fifth and eighth dampers (D2, D3) are opened.
  • D5, D8) are closed.
  • connection state of the first and second heat exchange chambers (S11, S12) is set to the first passage state (the state shown by the solid line in FIG. 1), and the first heat exchange chamber (S11) is set to the air supply passage. (P1) and the second heat exchange chamber (S12) is incorporated into the regeneration passage (P2).
  • the air (in this example, outdoor air (OA)) supplied to the first adsorption side internal passage (S21) via the adsorption side suction port (51) passes through the adsorption side filter (63), It passes through 4 dampers (D4) and is supplied to the first heat exchange chamber (S11).
  • OA outdoor air
  • the dehumidified air that has passed through the first adsorption heat exchanger (101) and the first adsorption block (301) passes through the sixth damper (D6) and flows into the second adsorption side internal passage (S23).
  • the air passes through the air fan chamber (S25) and the air supply port (53) and is supplied to the indoor space (S1) as supply air (SA).
  • RA room air
  • Air flow in the second dehumidifying operation by the dehumidifying device (10) of the first embodiment will be described with reference to FIG.
  • the first adsorption heat exchanger (101) serves as a condenser
  • the second adsorption heat exchanger (102) serves as an evaporator.
  • the second, third, fifth, and eighth dampers (D2, D3, D5, and D8) are opened, and the first, fourth, sixth, and seventh dampers (D1, D4) are opened. , D6, D7) are closed.
  • connection state of the first and second heat exchange chambers (S11, S12) is set to the second passage state (the state indicated by the broken line in FIG. 1), and the first heat exchange chamber (S11) is set to the regeneration passage ( P2) and the second heat exchange chamber (S12) is incorporated into the air supply passage (P1).
  • OA outdoor air
  • the dehumidified air that has passed through the second adsorption heat exchanger (102) and the second adsorption block (302) passes through the fifth damper (D5) and flows into the second adsorption side internal passage (S23).
  • the air passes through the air fan chamber (S25) and the air supply port (53) and is supplied to the indoor space (S1) as supply air (SA).
  • RA room air
  • the first and second heat exchange chambers (301, 302) are added to the first and second heat exchange chambers (S11, S12).
  • the amount of dehumidified air in S11 and S12) can be increased.
  • the first adsorption block (301) is located at a position where the air dehumidified by the first adsorption heat exchanger (101) passes.
  • the air dehumidified and cooled by the first adsorption heat exchanger (101) can be supplied to the first adsorption block (301).
  • moisture content to adsorption agent can be accelerated
  • the air dehumidified and cooled by the second adsorption heat exchanger (102) is transferred to the second adsorption block. Since it can be supplied to (302), the adsorption of moisture to the adsorbent can be promoted in the second adsorption block (302). That is, in each of the first and second heat exchange chambers (S11, S12), when the adsorption heat exchanger (101, 102) is an evaporator, the adsorption is performed at a position downstream of the adsorption heat exchanger (101, 102).
  • the air dehumidified and cooled by the adsorption heat exchanger (101,102) can be supplied to the adsorption block (301,302), so that the moisture to the adsorbent of the adsorption block (301,302) can be supplied. Adsorption can be promoted.
  • the amount of air dehumidified in the first and second heat exchange chambers (S11, S12) can be increased, and further, the adsorption of moisture to the adsorbent of the adsorption block (301, 302) can be promoted. Therefore, the dehumidifying capacity of the dehumidifying device (10) can be improved.
  • the increase in power consumption of the dehumidifying device (10) is suppressed. can do.
  • the adsorption block (301, 302) includes the case where the adsorption heat exchanger (101, 102) is an evaporator and the adsorption heat exchange.
  • the condenser (101, 102) is a condenser, it is located downstream of the adsorption heat exchanger (101, 102). Therefore, in the first heat exchange chamber (S11), when the first adsorption heat exchanger (101) is a condenser (that is, the first heat exchange chamber (S11) is incorporated in the regeneration passage (P2)).
  • the air heated by the first adsorption heat exchanger (101) can be supplied to the first adsorption block (301).
  • the first adsorption block (301) at a distance from the first adsorption heat exchanger (101), it is possible to suppress temperature distribution deviation and air drift in the first adsorption block (301). .
  • the temperature distribution and air drift can be suppressed in the first and second adsorption blocks (301, 302), the decrease in adsorption capacity and regeneration capacity in the first and second adsorption blocks (301, 302) is suppressed. can do.
  • the regeneration passage (P2) may be configured to take in outdoor air (OA) and discharge exhaust air (EA) to the outdoor space.
  • the inflow end of the first regeneration passage portion (P21) is connected to an intermediate portion of the first air supply passage portion (P11) (specifically, downstream of the cooler (11)).
  • Other configurations are the same as those shown in FIG.
  • the indoor air (RA) does not return from the indoor space (S1) toward the dehumidifier (10). Therefore, even if the indoor space (S1) is contaminated with chemical substances, etc., the indoor air (S1) is dehumidified by the dehumidifier (10) with the outdoor air (OA) that is cleaner than the indoor air (RA). Therefore, the cleanliness of the indoor space (S1) can be maintained.
  • the air supply passage (P1) may be configured to take in indoor air (RA) and supply supply air (SA) to the indoor space (S1).
  • the regeneration passage (P2) may be configured to take in outdoor air (OA) and discharge exhaust air (EA) to the outdoor space.
  • the inflow end of the first supply passage portion (P11) is connected to the indoor space (S1)
  • the inflow end of the first regeneration passage portion (P21) is connected to the outdoor space.
  • the cooler (11) is provided in the first regeneration passage portion (P21).
  • Other configurations are the same as those shown in FIG.
  • the indoor air (RA) with a low dew point is further dehumidified by the dehumidifier (10) and supplied to the indoor space (S1). ) Can be set to a lower dew point.
  • the dehumidification system (1) may include a pretreatment dehumidifier (30) in addition to the dehumidifier (10) and the controller (20) shown in FIG.
  • the humidity control space (S0) includes an indoor space (S1) and a chamber (S2) provided in the indoor space (S1).
  • the indoor space (S1) is a space where supply of air having a low dew point temperature (for example, air having a dew point temperature of about ⁇ 30 ° C.) is required, and the chamber (S2) has a dew point higher than that of the indoor space (S1).
  • the dehumidification system (1) is provided with a pretreatment passage (P3) and a posttreatment passage (P4). And in this dehumidification system (1), the air (in this example, outdoor air (OA)) dehumidified by the pretreatment dehumidifier (30) is supplied to the indoor space (S1) as supply air (SA0), Air dehumidified by the dehumidifier (10) (in this example, room air (RA)) is supplied to the chamber (S2) as supply air (SA).
  • the controller (20) controls the dehumidifier (10) and the pretreatment dehumidifier (30) based on the detection values of the various sensors.
  • Pretreatment passage Air to be supplied to the humidity control space (S0) (in this example, air to be supplied to the indoor space (S1)) flows through the pretreatment passage (P3).
  • the pretreatment passage (P3) is configured to take outdoor air (OA) from the outdoor space and supply supply air (SA0) to the indoor space (S1).
  • the pretreatment passage (P3) includes a first pretreatment passage portion (P31) whose inflow end is connected to the outdoor space and a second pretreatment passage whose outflow end is connected to the indoor space (S1). Part (P32).
  • the cooler (11) is provided in the first pretreatment passage portion (P31).
  • the post-processing passage (P4) air for regenerating the adsorbent (in this example, air supplied from the regeneration passage (P2)) flows.
  • the post-processing passage (P4) is configured to take in air from the outflow end of the regeneration passage (P2) and discharge the exhaust air (EA) to the outdoor space.
  • the post-processing passage (P4) includes a first post-processing passage portion (P41) whose inflow end is connected to the outflow end of the regeneration passage (P2) and a second outflow end connected to the outdoor space. And a post-processing passage portion (P42).
  • part of the air in the chamber (S2) is discharged to the outdoor space as exhaust air (EA) without passing through the indoor space (S1), and is a part of the air in the indoor space (S1).
  • the section is discharged into the outdoor space as exhaust air (EA) without passing through the regeneration path (P2) and the post-processing path (P4).
  • the supply passage (P1) is configured to take in indoor air (RA) from the indoor space (S1) and supply supply air (SA) to the chamber (S2).
  • the inflow end of the first supply passage portion (P11) is connected to the indoor space (S1)
  • the outflow end of the second supply passage portion (P12) is connected to the chamber (S2).
  • the regeneration passage (P2) is configured to take in indoor air (RA) from the indoor space (S1) and discharge the regeneration air (air for regenerating the adsorbent) to the post-treatment passage (P4). Yes.
  • the inflow end of the first regeneration passage portion (P21) is connected to the intermediate portion of the first supply air passage portion (P11), and the outflow end of the second regeneration passage portion (P22) is the first rear passage. It is connected to the inflow end of the processing passage (P41).
  • the pretreatment dehumidifier (30) has the same configuration as the dehumidifier (10).
  • the structure of the pretreatment dehumidifier (30) is the same as the structure of the dehumidifier (10) shown in FIG.
  • the refrigerant circuit (100) of the pretreatment dehumidifying device (30) responds to the control by the controller (20) in response to the first adsorption heat exchanger (101).
  • the air is dehumidified, and the first adsorption heat exchanger (101) serves as a condenser to alternately perform the second refrigeration cycle operation for regenerating the adsorbent.
  • the switching mechanism (200) of the pretreatment dehumidifier (30) is responsive to the control by the controller (20) to the first and second heat exchange chambers (S11, S12) of the pretreatment dehumidifier (30).
  • the connection state between the pre-processing passage (P3) and the post-processing passage (P4) includes a third passage state (state shown by a solid line in FIG. 6) and a fourth passage state (state shown by a broken line in FIG. 6). It is configured to be configurable.
  • the switching mechanism (200) of the pretreatment dehumidifier (30) is connected to the first and second heat exchange chambers (S11, S12) when the four-way switching valve (105) is in the first connection state. Is set to the third passage state, and when the four-way switching valve (105) is in the second connection state, the connection state of the first and second heat exchange chambers (S11, S12) is set to the third passage state. That is, the switching mechanism (200) of the pretreatment dehumidifier (30) is the same as the switching mechanism (200) of the dehumidifier (10) in the first and second heat exchange chambers (S11, S12).
  • the air that has passed through the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as a chamber is supplied to the humidity control space (S0) (in this example, the indoor space (S1)), Air for regenerating the adsorbent in the heat exchange chamber (S12, S11) provided with the adsorption heat exchanger (102, 101) serving as a condenser (in this example, the first and second dehumidifiers (10))
  • the flow of air is circulated so that the air passing through the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) that is the condenser in the heat exchange chamber (S11, S12) is circulated. Switch.
  • the connection state of the first and second heat exchange chambers (S11, S12) is the third passage state (that is, the first heat exchange chamber (S11). ) Is incorporated as part of the pretreatment passage (P3)), the flow direction of the air passing through the first adsorption heat exchanger (101) is the first and second heat exchange chambers (S11, S12).
  • the connection state is the fourth passage state (that is, when the first heat exchange chamber (S11) is incorporated as a part of the post-treatment passage (P4))
  • the first adsorption heat exchanger (101) is installed. It is the same direction as the flow direction of the passing air.
  • the switching mechanism (200) of the pretreatment dehumidifier (30) passes through each of the first and second adsorption heat exchangers (101, 102), similarly to the switching mechanism (200) of the dehumidifier (10).
  • the air flow direction is the same when the adsorption heat exchanger (101,102) is an evaporator and when the adsorption heat exchanger (101,102) is a condenser. Switch the flow.
  • the pretreatment dehumidifier (30) repeats the third and fourth dehumidifying operations alternately at predetermined time intervals (for example, every 10 minutes).
  • the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the first connection state (the state shown by the solid line in FIG. 6).
  • the refrigerant circuit (100) performs a first refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as an evaporator and the second adsorption heat exchanger (102) serves as a condenser.
  • the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the third passage state (the state indicated by the solid line in FIG. 6).
  • the air taken into the pretreatment passage (P3) (in this example, outdoor air (OA)) is cooled and dehumidified by the cooler (11) and then supplied to the first heat exchange chamber (S11).
  • the air supplied to the first heat exchange chamber (S11) passes through the first adsorption heat exchanger (101) and the first adsorption block (301) in order, the first adsorption heat exchanger (101) and Moisture is taken away by the adsorbent of the first adsorption block (301) and dehumidified.
  • the air dehumidified in the first heat exchange chamber (S11) is supplied to the indoor space (S1) as supply air (SA0).
  • the air taken into the post-processing passage (P4) (in this example, air supplied from the regeneration passage (P2)) is supplied to the second heat exchange chamber (S12).
  • the air supplied to the second heat exchange chamber (S12) sequentially passes through the second adsorption heat exchanger (102) and the second adsorption block (302), the second adsorption heat exchanger (102) and Water is applied from the adsorbent of the second adsorption block (302). Thereby, the adsorbent of the second adsorption heat exchanger (102) and the second adsorption block (302) is regenerated.
  • the air that has passed through the second heat exchange chamber (S12) is exhausted to the outdoor space as exhaust air (EA).
  • ⁇ 4th dehumidifying action In the fourth dehumidifying operation, the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the second connection state (the state indicated by the broken line in FIG. 6). .
  • the refrigerant circuit (100) performs a second refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as a condenser and the second adsorption heat exchanger (102) serves as an evaporator. Further, the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the fourth passage state (the state indicated by the broken line in FIG. 6).
  • the air taken into the pretreatment passage (P3) (in this example, outdoor air (OA)) is cooled and dehumidified by the cooler (11) and then supplied to the second heat exchange chamber (S12).
  • the air supplied to the second heat exchange chamber (S12) sequentially passes through the second adsorption heat exchanger (102) and the second adsorption block (302), the second adsorption heat exchanger (102) and Moisture is taken away by the adsorbent of the second adsorption block (302) and dehumidified.
  • the air dehumidified in the second heat exchange chamber (S12) is supplied to the indoor space (S1) as supply air (SA0).
  • the air taken into the post-processing passage (P4) (in this example, air supplied from the regeneration passage (P2)) is supplied to the first heat exchange chamber (S11).
  • the air supplied to the first heat exchange chamber (S11) passes through the first adsorption heat exchanger (101) and the first adsorption block (301) in order, the first adsorption heat exchanger (101) and Water is applied from the adsorbent of the first adsorption block (301). Thereby, the adsorbent of the first adsorption heat exchanger (101) and the first adsorption block (301) is regenerated.
  • the air that has passed through the first heat exchange chamber (S11) is exhausted to the outdoor space as exhaust air (EA).
  • the air to be supplied to the indoor space (S1) (in this example, the outdoor air (OA)) is dehumidified by the pretreatment dehumidifier (30) and supplied to the indoor space (S1).
  • the indoor air (RA) supplied from the indoor space (S1) is dehumidified by the dehumidifier (10) and supplied to the chamber (S2) as the supply air (SA).
  • the dew point temperature of the air can be made lower than the dew point temperature of the air in the indoor space (S1).
  • the dehumidification system (1) can be operated more than when the entire indoor space (S1) is set to a low dew point. The power consumption required can be reduced.
  • FIG. 7 shows a configuration example of the dehumidification system (1) according to the second embodiment.
  • the dehumidifying system (1) includes a dehumidifying device (10), a controller (20), and a heater (21).
  • the structure of the dehumidification apparatus (10) of Embodiment 2 differs from the structure (FIG. 2) of the dehumidification apparatus (10) of Embodiment 1.
  • FIG. Specifically, the flow direction of the air passing through the first and second adsorption heat exchangers (101, 102) and the arrangement of the first and second adsorption blocks (301, 302) are different from those in the first embodiment. Other configurations are the same as those of the first embodiment.
  • the heater (21) is provided in the regeneration passage (P2) and is upstream of the heat exchange chamber in which the adsorption heat exchanger serving as a condenser is provided among the first and second heat exchange chambers (S11, S12). It is arranged on the side (windward side). That is, the heater (21) is configured to heat air for regenerating the adsorbent.
  • the heater (21) is disposed in the first regeneration passage portion (P21).
  • the heater (21) is constituted by a sensible heat exchanger that exchanges heat between the air flowing through the first regeneration passage (P21) and the air flowing through the second regeneration passage (P22).
  • a heat exchanger specifically, a fin-and-tube heat exchanger that functions as a condenser of a refrigerant circuit (not shown) may be used.
  • the refrigerant circuit (100) responds to the control by the controller (20), and the first adsorption heat exchanger (101) serves as an evaporator to dehumidify the air and the second adsorption heat exchanger.
  • the second refrigeration cycle operation for regenerating the adsorbent as a condenser is performed alternately.
  • the switching mechanism (200) changes the connection state of the first and second heat exchange chambers (S11, S12) to the first passage state (state shown by the solid line in FIG. 7). And a second passage state (state shown by a broken line in FIG. 7). Further, the switching mechanism (200) connects the first and second heat exchange chambers (S11, S12) when the four-way switching valve (105) is in the first connection state (the state shown by the solid line in FIG. 7). When the state is set to the first passage state and the four-way switching valve (105) is in the second connection state (the state indicated by the broken line in FIG.
  • the switching mechanism (200) includes a heat exchange chamber (S11, S12) provided with an adsorption heat exchanger (101, 102) serving as an evaporator among the first and second heat exchange chambers (S11, S12).
  • the air passing through the air is supplied to the humidity control space (S0), and the air for regenerating the adsorbent in the heat exchange chamber (S12, S11) provided with the adsorption heat exchanger (102, 101) serving as a condenser (
  • the air flow is switched so that the air passing through the heater (21) flows.
  • connection state of the first and second heat exchange chambers (S11, S12) is the first passage state (that is, the first heat exchange chamber (S11) is a part of the air supply passage (P1).
  • the connection state of the first and second heat exchange chambers (S11, S12) is the second passage state.
  • the flow direction of the air passing through the first adsorption heat exchanger (101) is opposite. (So-called counter flow).
  • the switching mechanism (200) has a case where the flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) is the same as when the adsorption heat exchanger (101, 102) is an evaporator. The air flow is switched so that the adsorption heat exchanger (101, 102) is in the opposite direction to the case where it is a condenser.
  • the first adsorption block (301) is located downstream of the first adsorption heat exchanger (101) when the first adsorption heat exchanger (101) is an evaporator in the first heat exchange chamber (S11) ( Air dehumidified by the first adsorption heat exchanger (101) passes when the position becomes the leeward side (that is, when the first heat exchange chamber (S11) is incorporated as a part of the air supply passage (P1)) Position).
  • the second adsorption block (302) is located downstream of the second adsorption heat exchanger (102) when the second adsorption heat exchanger (102) is an evaporator in the second heat exchange chamber (S12). Air dehumidified by the second adsorption heat exchanger (102) passes when the position becomes the leeward side (that is, when the second heat exchange chamber (S12) is incorporated as a part of the air supply passage (P1)) Position).
  • the flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) depends on whether the adsorption heat exchanger (101, 102) is an evaporator or the adsorption heat exchange.
  • the direction is opposite to the case where the condenser (101, 102) is a condenser. Therefore, when the connection state of the first and second heat exchange chambers (S11, S12) is the first passage state (the state indicated by the solid line in FIG.
  • the downstream side of the first adsorption heat exchanger (101) Is located upstream of the first adsorption heat exchanger (101) when the connection state of the first and second heat exchange chambers (S11, S12) is the second passage state (the state indicated by the broken line in FIG. 7). This is the same position as the position (in this example, the position between the heater (21) and the first adsorption heat exchanger (101)). Similarly, when the connection state of the first and second heat exchange chambers (S11, S12) is the second passage state (the state indicated by the broken line in FIG.
  • the second adsorption heat exchanger (102) The position on the downstream side is the second adsorption heat exchanger (102 when the connection state of the first and second heat exchange chambers (S11, S12) is the first passage state (the state shown by the solid line in FIG. 1). ) On the upstream side (in this example, the position between the heater (21) and the second adsorption heat exchanger (102)). That is, in each of the first and second heat exchange chambers (S11, S12), the adsorption block (301, 302) has an adsorption heat exchanger (101, 102) when the adsorption heat exchanger (101, 102) is an evaporator. When the adsorption heat exchanger (101, 102) is a condenser, it is located upstream of the adsorption heat exchanger (101, 102).
  • the dehumidifying operation of the dehumidifying device (10) of the second embodiment will be described with reference to FIG. Similar to the dehumidifying device (10) of the first embodiment, the dehumidifying device (10) of the second embodiment alternately repeats the first and second dehumidifying operations at predetermined time intervals (for example, every 10 minutes).
  • First dehumidifying operation In the first dehumidifying operation, the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the first connection state (the state shown by the solid line in FIG. 7). .
  • the refrigerant circuit (100) performs a first refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as an evaporator and the second adsorption heat exchanger (102) serves as a condenser. Further, the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the first passage state (the state indicated by the solid line in FIG. 7).
  • the air taken into the supply passage (P1) (in this example, outdoor air (OA)) is cooled and dehumidified by the cooler (11), and then supplied to the first heat exchange chamber (S11).
  • the air supplied to the first heat exchange chamber (S11) passes through the first adsorption heat exchanger (101) functioning as an evaporator.
  • the air passing through the first adsorption heat exchanger (101) functioning as an evaporator is deprived of moisture by the adsorbent of the first adsorption heat exchanger (101), and the humidity decreases. It is cooled by the endothermic action of the refrigerant flowing through the one adsorption heat exchanger (101), and the temperature also decreases.
  • the air dehumidified and cooled by the first adsorption heat exchanger (101) passes through the first adsorption block (301). At this time, moisture in the air is adsorbed on the adsorbent of the first adsorption block (301). Thereby, the air dehumidified by the first adsorption heat exchanger (101) is further dehumidified by the first adsorption block (301).
  • the air dehumidified after passing through the first adsorption heat exchanger (101) and the first adsorption block (301) is supplied to the indoor space (S1) as supply air (SA).
  • the air (in this example, room air (RA)) taken into the regeneration passage (P2) is heated by the heater (21) and then supplied to the second heat exchange chamber (S12).
  • the air supplied to the second heat exchange chamber (S12) passes through the second adsorption block (302).
  • the moisture of the adsorbent of the second adsorption block (302) is released to the air passing through the second adsorption block (302).
  • the adsorbent of the second adsorption block (302) is regenerated.
  • the air humidified by the second adsorption block (302) passes through the second adsorption heat exchanger (102) functioning as a condenser.
  • the air passing through the second adsorption heat exchanger (102) functioning as a condenser is given moisture from the adsorbent of the second adsorption heat exchanger (102) to increase the humidity and the second adsorption heat. It is heated by the heat radiation action of the refrigerant flowing through the exchanger (102), and the temperature also rises. Thereby, the adsorbent of the second adsorption heat exchanger (102) is regenerated.
  • the air that has passed through the second adsorption heat exchanger (102) and the second adsorption block (302) is exhausted to the outdoor space as exhaust air (EA).
  • the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the second connection state (the state indicated by the broken line in FIG. 7).
  • the refrigerant circuit (100) performs a second refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as a condenser and the second adsorption heat exchanger (102) serves as an evaporator.
  • the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the second passage state (the state indicated by the broken line in FIG. 7).
  • the air taken into the supply passage (P1) (in this example, outdoor air (OA)) is cooled and dehumidified by the cooler (11), and then supplied to the second heat exchange chamber (S12).
  • the air supplied to the second heat exchange chamber (S12) passes through the second adsorption heat exchanger (102) functioning as an evaporator.
  • the air passing through the second adsorption heat exchanger (102) functioning as an evaporator is deprived of moisture by the adsorbent of the second adsorption heat exchanger (102), and the humidity decreases.
  • the refrigerant is cooled by the endothermic action of the refrigerant flowing through the two-adsorption heat exchanger (102), and the temperature also decreases.
  • the air dehumidified and cooled by the second adsorption heat exchanger (102) passes through the second adsorption block (302). At this time, moisture in the air is adsorbed to the adsorbent of the second adsorption block (302). Thereby, the air dehumidified by the second adsorption heat exchanger (102) is further dehumidified by the second adsorption block (302).
  • the air dehumidified after passing through the second adsorption heat exchanger (102) and the second adsorption block (302) is supplied to the indoor space (S1) as supply air (SA).
  • the air taken into the regeneration passage (P2) (in this example, room air (RA)) is heated by the heater (21) and then supplied to the first heat exchange chamber (S11).
  • the air supplied to the first heat exchange chamber (S11) passes through the first adsorption block (301).
  • the moisture of the adsorbent of the first adsorption block (301) is released to the air passing through the first adsorption block (301).
  • the adsorbent of the first adsorption block (301) is regenerated.
  • the air humidified by the first adsorption block (301) passes through the first adsorption heat exchanger (101) functioning as a condenser.
  • the air passing through the first adsorption heat exchanger (101) functioning as a condenser is given moisture from the adsorbent of the first adsorption heat exchanger (101), and the humidity rises.
  • the adsorbent of the first adsorption heat exchanger (101) is regenerated.
  • the air that has passed through the first adsorption heat exchanger (101) and the first adsorption block (301) is exhausted to the outdoor space as exhaust air (EA).
  • FIG. 8 ⁇ Structure of dehumidifier>
  • a center figure is a top view of a dehumidification apparatus (10)
  • an upper figure is a rear view of a dehumidification apparatus (10)
  • a lower figure is a front view of a dehumidification apparatus (10).
  • the dehumidifier (10) includes a casing (41) that houses the components of the refrigerant circuit (100).
  • the casing (41) is formed in a substantially flat and relatively low rectangular parallelepiped shape, and has a front panel (42), a rear panel (43), a left side panel (44), and a right side panel (45). ing.
  • the longitudinal direction of the casing (41) is the left-right direction.
  • the casing (41) has an adsorption side suction port (51), a regeneration side suction port (52), an air supply port (53), and an exhaust port (54).
  • the suction side suction port (51) is provided at a position on the right side of the back panel (43), and the reproduction side suction port (52) is provided at a position on the left side of the back panel (43).
  • the air supply port (53) is provided on the left side of the front panel (42), and the exhaust port (54) is provided on the right side of the front panel (42).
  • a first partition plate (46), a second partition plate (47), and a central partition plate (48) are provided in the internal space of the casing (41). These partition plates (46, 47, 48) are installed upright on the bottom plate of the casing (41) and partition the internal space of the casing (41) from the bottom plate of the casing (41) to the top plate. Yes.
  • the first and second partition plates (46, 47) are arranged at a predetermined interval in the left-right direction of the casing (41) in a posture parallel to the left side panel (44) and the right side panel (45). Yes.
  • the first partition plate (46) is disposed closer to the left side panel (44), and the second partition plate (47) is disposed closer to the right side panel (45).
  • the space on the left side of the first partition plate (46) becomes the left space (S31), the space between the first partition plate (46) and the second partition plate (47) becomes the central space (S32), and the second space
  • the space on the right side of the partition plate (47) is the right space (S33).
  • the arrangement of the central partition plate (48) will be described later.
  • the left space (S31) is partitioned into a left side panel (44) side portion and a first partition (46) side portion.
  • the space on the left side of the casing (41) in the left space (S31) is partitioned into two front and rear spaces, the front space forms the supply fan chamber (S25), and the back space is the regeneration side It constitutes the suction chamber (S28).
  • the space on the first partition (46) side in the left space (S31) is partitioned into two upper and lower spaces, and the upper space constitutes the second suction side internal passage (S23), and the lower space. Respectively constitutes the first regeneration-side internal passage (S22).
  • the air supply fan chamber (S25) communicates with the indoor space (S1) via a duct (corresponding to the second air supply passage portion (P12) in FIG. 7) connected to the air supply port (53).
  • An air supply fan (61) is housed in the air supply fan chamber (S25).
  • the air outlet of the air supply fan (61) is connected to the air supply port (53).
  • the compressor fan (103) and the four-way switching valve (105) (not shown) of the refrigerant circuit (100) are accommodated in the air supply fan chamber (S25).
  • the regeneration side suction chamber (S28) communicates with the indoor space (S1) via a duct (corresponding to the first regeneration passage portion (P21) in FIG. 7) connected to the regeneration side suction port (52). Yes.
  • the second adsorption side internal passage (S23) is separated from the regeneration side suction chamber (S28) by a partition plate extending in the front-rear direction, and communicates with the air supply fan chamber (S25).
  • the first regeneration side internal passage (S22) communicates with the regeneration side suction chamber (S28).
  • the right space (S33) is divided into a right side portion of the casing (41) and a second partition plate (47) side portion.
  • the front space constitutes the exhaust fan chamber (S26).
  • the inner space is partitioned vertically, the lower space constitutes the suction side suction chamber (S27) partitioned from the exhaust fan chamber (S26), and the upper space is the exhaust fan chamber (S26).
  • the space on the second partition (47) side in the right space (S33) is partitioned into two upper and lower spaces, and the upper space constitutes the second reproduction-side internal passage (S24), and the lower space Constitutes the first suction side internal passage (S21).
  • the exhaust fan chamber (S26) communicates with the outdoor space via a duct (corresponding to the second regeneration passage portion (P22) in FIG. 7) connected to the exhaust port (54).
  • An exhaust fan (62) is housed in the exhaust fan chamber (S26).
  • the outlet of the exhaust fan (62) is connected to the exhaust outlet (54).
  • the suction side suction chamber (S27) communicates with the outdoor space via a duct (corresponding to the first air supply passage portion (P11) in FIG. 7) connected to the suction side suction port (51).
  • the second regeneration side internal passage (S24) communicates with the exhaust fan chamber (S26).
  • the first suction side internal passage (S21) communicates with the suction side suction chamber (S27).
  • the central space (S32) is divided forward and backward by a central partition plate (48), and the space behind the central partition plate (48) constitutes the first heat exchange chamber (S11), and the central partition plate (48 ) In front of the second heat exchange chamber (S12).
  • a first adsorption heat exchanger (101) is accommodated in the first heat exchange chamber (S11), and a second adsorption heat exchanger (102) is accommodated in the second heat exchange chamber (S12).
  • the second heat exchange chamber (S12) accommodates an expansion valve (104) (not shown) of the refrigerant circuit (100).
  • Each of the first and second adsorption heat exchangers (101, 102) is formed into a rectangular thick plate shape or flat rectangular parallelepiped shape as a whole, and two main surfaces (wide side surfaces) facing each other are surfaces through which air passes. It has become.
  • the 1st adsorption heat exchanger (101) stood up in the 1st heat exchange room (S11) with the posture where the two principal surfaces became parallel to the 1st and 2nd partition plates (46, 47). It is installed in a state.
  • the second adsorptive heat exchanger (102) has a configuration in which the two main surfaces thereof are parallel to the first and second partition plates (46, 47) and in the second heat exchange chamber (S12). It is installed in a standing state.
  • Each of the first and second adsorption blocks (301, 302) is formed in a rectangular thick plate shape or flat rectangular parallelepiped shape as a whole, and two main surfaces (wide side surfaces) facing each other serve as surfaces through which air passes. ing.
  • each of the first and second adsorption blocks (301, 302) is a honeycomb-like structure having a large number of holes penetrating from one main surface to the other main surface.
  • the first adsorption block (301) stands up in the first heat exchange chamber (S11) with its two main surfaces parallel to the first and second partition plates (46, 47). is set up.
  • the second adsorption block (302) stands up in the second heat exchange chamber (S12) with its two main surfaces parallel to the first and second partition plates (46, 47). Installed.
  • the first adsorption block (301) is disposed between the first adsorption heat exchanger (101) and the first partition plate (46) in the first heat exchange chamber (S11), and the second The adsorption block (302) is disposed between the second adsorption heat exchanger (102) and the first partition plate (46) in the second heat exchange chamber (S12).
  • the first adsorption block (301) is spaced apart from the first adsorption heat exchanger (101) in the left-right direction, and the second adsorption block (302) is arranged in the second adsorption heat exchanger (101) in the left-right direction. 102) and spaced apart.
  • the first partition plate (46) is provided with first to fourth dampers (D1 to D4), and the second partition plate (47) is provided with fifth to eighth dampers (D5 to D8). Yes.
  • Each of the first to eighth dampers (D1 to D8) is configured to be switchable between an open state and a closed state in response to control by the controller (20).
  • These first to eighth dampers (D1 to D8) constitute a switching mechanism (200).
  • the first damper (D1) is attached to the front side of the central partition plate (48) in the upper portion of the first partition plate (46) (the portion facing the second suction side internal passage (S23)).
  • the damper (D2) is attached to the back side of the central partition plate (48) in the upper part of the first partition plate (46).
  • the third damper (D3) is attached to the front side of the central partition plate (48) in the lower portion of the first partition plate (46) (the portion facing the first regeneration-side internal passage (S22)).
  • the 4 damper (D4) is attached to the back side of the central partition plate (48) in the lower portion of the first partition plate (46).
  • the first damper (D1) When the first damper (D1) is opened, the second adsorption side internal passage (S23) and the second heat exchange chamber (S12) communicate with each other.
  • the second damper (D2) When the second damper (D2) is opened, the second adsorption side internal passage (S23) and the first heat exchange chamber (S11) communicate with each other.
  • the third damper (D3) When the third damper (D3) is opened, the first regeneration side internal passage (S22) and the second heat exchange chamber (S12) communicate with each other.
  • the fourth damper (D4) When the fourth damper (D4) is opened, the first regeneration side internal passage (S22) and the first heat exchange chamber (S11) communicate with each other.
  • the fifth damper (D5) is attached to the front side of the central partition plate (48) in the upper portion of the second partition plate (47) (the portion facing the second regeneration-side internal passage (S24)).
  • the damper (D6) is attached to the back side of the central partition plate (48) in the upper part of the second partition plate (47).
  • the seventh damper (D7) is attached to the front side of the central partition plate (48) in the lower portion of the second partition plate (47) (the portion facing the first suction side internal passage (S21)).
  • the 8 damper (D8) is attached to the back side of the central partition plate (48) in the lower portion of the second partition plate (47).
  • the first adsorption heat exchanger (101) serves as an evaporator
  • the second adsorption heat exchanger (102) serves as a condenser.
  • the second, third, fifth, and eighth dampers (D2, D3, D5, and D8) are opened, and the first, fourth, sixth, and seventh dampers (D1, D4) are opened. , D6, D7) are closed.
  • connection state of the first and second heat exchange chambers (S11, S12) is set to the first passage state (the state indicated by the solid line in FIG. 7), and the first heat exchange chamber (S11) is set to the air supply passage. (P1) and the second heat exchange chamber (S12) is incorporated into the regeneration passage (P2).
  • OA outdoor air
  • the dehumidified air that has passed through the first adsorption heat exchanger (101) and the first adsorption block (301) passes through the second damper (D2) and flows into the second adsorption side internal passage (S23).
  • the air passes through the air fan chamber (S25) and the air supply port (53) and is supplied to the indoor space (S1) as supply air (SA).
  • RA room air
  • the first adsorption heat exchanger (101) serves as a condenser
  • the second adsorption heat exchanger (102) serves as an evaporator.
  • the first, fourth, sixth and seventh dampers (D1, D4, D6, D7) are opened
  • the second, third, fifth and eighth dampers (D2, D3) are opened.
  • D5, D8) are closed.
  • connection state of the first and second heat exchange chambers (S11, S12) is set to the second passage state (the state indicated by the broken line in FIG. 7), and the first heat exchange chamber (S11) is set to the regeneration passage ( P2) and the second heat exchange chamber (S12) is incorporated into the air supply passage (P1).
  • OA outdoor air
  • the air that has been dehumidified after passing through the second adsorption heat exchanger (102) and the second adsorption block (302) passes through the first damper (D1) and flows into the second adsorption side internal passage (S23).
  • the air passes through the air fan chamber (S25) and the air supply port (53) and is supplied to the indoor space (S1) as supply air (SA).
  • the air in this example, room air (RA) supplied to the first regeneration side internal passage (S22) via the regeneration side suction port (52) and the regeneration side suction chamber (S28) D4) is supplied to the first heat exchange chamber (S11).
  • RA room air
  • the first adsorption block (301) is located at a position where the air dehumidified by the first adsorption heat exchanger (101) passes.
  • the air dehumidified and cooled by the first adsorption heat exchanger (101) can be supplied to the first adsorption block (301).
  • moisture content to adsorption agent can be accelerated
  • the air dehumidified and cooled by the second adsorption heat exchanger (102) is transferred to the second adsorption block. Since it can be supplied to (302), the adsorption of moisture to the adsorbent can be promoted in the second adsorption block (302). That is, in each of the first and second heat exchange chambers (S11, S12), when the adsorption heat exchanger (101, 102) is an evaporator, the adsorption is performed at a position downstream of the adsorption heat exchanger (101, 102).
  • the air dehumidified and cooled by the adsorption heat exchanger (101,102) can be supplied to the adsorption block (301,302), so that the moisture to the adsorbent of the adsorption block (301,302) can be supplied. Adsorption can be promoted.
  • the amount of air dehumidified in the first and second heat exchange chambers (S11, S12) can be increased, and the adsorption of moisture to the adsorbent can be promoted in the adsorption block (301, 302). Therefore, the dehumidifying capacity of the dehumidifying device (10) can be improved.
  • the increase in power consumption of the dehumidifying device (10) is suppressed. can do.
  • the adsorption block (301, 302) is adsorbed when the adsorption heat exchanger (101, 102) is an evaporator.
  • the heater (21) is placed in the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as a condenser among the first and second heat exchange chambers (S1, S12).
  • the first adsorption block (301) is the first adsorption heat exchanger (S11) in the first heat exchange chamber (S11). 101), the air that has passed through the first adsorption heat exchanger (101) is supplied to the first adsorption block (301). In this case, the air that passes through the first adsorption heat exchanger (101) and is supplied to the first adsorption block (301) is not only heated but also humidified by the first adsorption heat exchanger (101). It will be. The same applies to the second adsorption block (302).
  • the first adsorption block (301) is the first adsorption heat exchanger (S11) in the first heat exchange chamber (S11). 101), the air heated by the heater (21) is supplied to the first adsorption block (301). In this case, the air that passes through the heater (21) and is supplied to the first adsorption block (301) is heated by the heater (21) but is not humidified. Therefore, the regeneration of the adsorbent in the first adsorption block (301) can be promoted more than in the first embodiment, and the adsorption capacity in the first adsorption block (301) can be further improved. The same applies to the second adsorption block (302).
  • the first adsorption block (301) at a distance from the first adsorption heat exchanger (101), it is possible to suppress temperature distribution deviation and air drift in the first adsorption block (301). .
  • the temperature distribution and air drift can be suppressed in the first and second adsorption blocks (301, 302), the decrease in adsorption capacity and regeneration capacity in the first and second adsorption blocks (301, 302) is suppressed. can do.
  • the dehumidification system (1) includes a pretreatment dehumidifier (30) in addition to the dehumidifier (10), controller (20), and heater (21) shown in FIG. It may be.
  • the humidity control space (S0) includes an indoor space (S1) and a chamber (S2) provided in the indoor space (S1).
  • the dehumidification system (1) is provided with a pretreatment passage (P3) and a posttreatment passage (P4).
  • the air (in this example, outdoor air (OA)) dehumidified by the pretreatment dehumidifier (30) is supplied to the indoor space (S1) as supply air (SA0)
  • Air dehumidified by the dehumidifier (10) (in this example, room air (RA)) is supplied to the chamber (S2) as supply air (SA).
  • the controller (20) controls the dehumidifier (10) and the pretreatment dehumidifier (30) based on the detection values of the various sensors.
  • the pretreatment passage (P3) is configured to take outdoor air (OA) from the outdoor space and supply supply air (SA0) to the indoor space (S1).
  • the post-processing passage (P4) is configured to take air from the outflow end of the regeneration passage (P2) and discharge the exhaust air (EA) to the outdoor space.
  • the supply passage (P1) is configured to take in indoor air (RA) from the indoor space (S1) and supply supply air (SA) to the chamber (S2).
  • the inflow end of the first supply passage portion (P11) is connected to the indoor space (S1)
  • the outflow end of the second supply passage portion (P12) is connected to the chamber (S2).
  • the regeneration passage (P2) is configured to take indoor air (RA) from the indoor space (S1) and discharge processed air to the post-treatment passage (P4).
  • the inflow end of the first regeneration passage portion (P21) is connected to the intermediate portion of the first supply air passage portion (P11), and the outflow end of the second regeneration passage portion (P22) is the first rear passage. It is connected to the inflow end of the processing passage (P41).
  • the pretreatment dehumidifier (30) has the same configuration as the dehumidifier (10).
  • the structure of the pretreatment dehumidifier (30) is the same as the structure of the dehumidifier (10) shown in FIG.
  • the refrigerant circuit (100) of the pretreatment dehumidifying device (30) responds to the control by the controller (20) in response to the first adsorption heat exchanger (101).
  • the air is dehumidified, and the first adsorption heat exchanger (101) serves as a condenser to alternately perform the second refrigeration cycle operation for regenerating the adsorbent.
  • the switching mechanism (200) of the pretreatment dehumidifier (30) is responsive to the control by the controller (20) to the first and second heat exchange chambers (S11, S12) of the pretreatment dehumidifier (30).
  • the connection state between the pre-processing passage (P3) and the post-processing passage (P4) includes a third passage state (state shown by a solid line in FIG. 10) and a fourth passage state (state shown by a broken line in FIG. 10). It is configured to be configurable.
  • the switching mechanism (200) of the pretreatment dehumidifier (30) is connected to the first and second heat exchange chambers (S11, S12) when the four-way switching valve (105) is in the first connection state. Is set to the third passage state, and when the four-way switching valve (105) is in the second connection state, the connection state of the first and second heat exchange chambers (S11, S12) is set to the third passage state. That is, the switching mechanism (200) of the pretreatment dehumidifier (30) is the same as the switching mechanism (200) of the dehumidifier (10) in the first and second heat exchange chambers (S11, S12).
  • the air that has passed through the heat exchange chambers (S11, S12) in which the adsorption heat exchangers (101, 102) are installed is supplied to the humidity control space (S0), and the adsorption heat exchanger (condenser) Air for regenerating the adsorbent in the heat exchange chambers (S12, S11) provided with 102, 101) (in this example, the first and second heat exchange chambers (S11, S12) of the dehumidifier (10) are condensed).
  • the air flow is switched so that the air passing through the heat exchange chambers (S11, S12) provided with the adsorption heat exchangers (101, 102) serving as a container flows.
  • the connection state of the first and second heat exchange chambers (S11, S12) is the third passage state (that is, the first heat exchange chamber (S11). ) Is incorporated as part of the pretreatment passage (P3)), the flow direction of the air passing through the first adsorption heat exchanger (101) is the first and second heat exchange chambers (S11, S12).
  • the connection state is the fourth passage state (that is, when the first heat exchange chamber (S11) is incorporated as a part of the post-treatment passage (P4))
  • the first adsorption heat exchanger (101) is installed. It is the direction opposite to the flow direction of the passing air.
  • the switching mechanism (200) of the pretreatment dehumidifier (30) passes through each of the first and second adsorption heat exchangers (101, 102), similarly to the switching mechanism (200) of the dehumidifier (10).
  • the air flow direction is opposite between when the adsorption heat exchanger (101,102) is an evaporator and when the adsorption heat exchanger (101,102) is a condenser. Switch the flow.
  • the pretreatment dehumidifying device (30) of the third modification of the first embodiment performs the third and fourth dehumidifying operations at predetermined time intervals ( For example, it is repeated alternately at intervals of 10 minutes.
  • the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the first connection state (the state shown by the solid line in FIG. 10).
  • the refrigerant circuit (100) performs a first refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as an evaporator and the second adsorption heat exchanger (102) serves as a condenser.
  • the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the third passage state (the state shown by the solid line in FIG. 10).
  • ⁇ 4th dehumidifying action In the fourth dehumidifying operation, the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the second connection state (the state indicated by the broken line in FIG. 10). .
  • the refrigerant circuit (100) performs a second refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as a condenser and the second adsorption heat exchanger (102) serves as an evaporator. Further, the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the fourth passage state (the state indicated by the broken line in FIG. 10).
  • the air to be supplied to the indoor space (S1) (in this example, the outdoor air (OA)) is dehumidified by the pretreatment dehumidifier (30) and supplied to the indoor space (S1).
  • the indoor air (RA) supplied from the indoor space (S1) is dehumidified by the dehumidifier (10) and supplied to the chamber (S2) as the supply air (SA).
  • the dew point temperature of the air can be made lower than the dew point temperature of the air in the indoor space (S1).
  • the dehumidification system (1) can be operated more than when the entire indoor space (S1) is set to a low dew point. The power consumption required can be reduced.
  • FIG. 11 shows a configuration example of the dehumidification system (1) according to the third embodiment.
  • This dehumidification system (1) includes the pretreatment dehumidifier (30) shown in FIG. 10 instead of the pretreatment dehumidifier (30) shown in FIG.
  • Other configurations are the same as those in FIG. Even when configured in this manner, the same effects as those of Modification 3 (FIG. 6) of Embodiment 1 and Modification (FIG. 10) of Embodiment 2 can be obtained.
  • FIG. 12 shows a configuration example of the dehumidification system (1) according to the fourth embodiment.
  • the dehumidifying system (1) includes a heater (21), an adsorption rotor (70), and an auxiliary cooler (80) in addition to the dehumidifying device (10) and the controller (20) shown in FIG. .
  • the dehumidification system (1) is provided with a rotor air supply passage (P71), a rotor regeneration passage (P72), a purge passage (P73), and a cooling air passage (P80).
  • Air to be supplied to the humidity control space (S0) (in this example, air to be supplied to the indoor space (S1)) flows through the rotor air supply passage (P71).
  • the rotor air supply passage (P71) is configured to take in air from the outflow end of the air supply passage (P1) and supply the supply air (SA) to the indoor space (S1).
  • the inflow end of the rotor air supply passage (P71) is connected to the outflow end of the air supply passage (P1), and the outflow end is connected to the indoor space (S1).
  • Air for regenerating the adsorbent flows through the rotor regeneration passage (P72).
  • the rotor regeneration passage (P72) is configured to take air from the outflow end of the purge passage (P73) and supply regeneration air (air for regenerating the adsorbent) to the regeneration passage (P2). ing.
  • the rotor regeneration passage (P72) has an inflow end connected to the outflow end of the purge passage (P73), and an outflow end connected to the inflow end of the regeneration passage (P2).
  • ⁇ Purge passage> In the purge passage (P72), air to be supplied to the rotor regeneration passage (P72) (in this example, air supplied from the air supply passage (P1)) flows.
  • the purge passage (P73) is configured to take in air from the outflow end of the supply passage (P1) and supply the regeneration air to the rotor regeneration passage (P72).
  • the purge passage (P73) has an inflow end connected to the outflow end of the air supply passage (P1), and an outflow end connected to the inflow end of the rotor regeneration passage (P72).
  • the cooled and dehumidified air flows through the cooling air passage (P80).
  • the cooling air passage (P80) takes in the indoor air (RA) from the indoor space (S1) and passes the air into the intermediate portion of the air supply passage (P1) (specifically, the adsorption heat acting as an evaporator). It is configured to supply to the heat exchange chamber (S11, S12) in which the exchanger (101, 102) is provided.
  • the cooling air passage (P80) has an inflow end connected to the indoor space (S1) and an outflow end connected to a midway portion of the air supply passage (P1).
  • the heater (21) is provided in the rotor regeneration passage (P72) and heats air for regenerating the adsorbent (in this example, air supplied from the purge passage (P73) to the rotor regeneration passage (P72)). Is configured to do.
  • the heating temperature in the heater (21) is set to a temperature (for example, 60 ° C.) lower than the upper limit value of the condensation temperature of the adsorption heat exchanger (101, 102).
  • the adsorption rotor (70) is configured by carrying an adsorbent on the surface of a disk-shaped porous base material, and includes a rotor supply passage (P71), a rotor regeneration passage (P72), a purge passage (P73), It is arranged across.
  • the adsorption rotor (70) is driven by a drive mechanism (not shown), and rotates about the axis between the rotor supply passage (P71), the rotor regeneration passage (P72), and the purge passage (P73). It is configured as follows.
  • the adsorption rotor (70) includes an adsorption portion (71) disposed in the rotor air supply passage (P71), a regeneration portion (72) disposed in the rotor regeneration passage (P72), and a purge passage ( P73) and a purge section (73).
  • the adsorbent carried on the adsorption rotor (70) sequentially moves through the adsorption unit (71), the regeneration unit (72), and the purge unit (73) as the adsorption rotor (70) rotates.
  • the portion located in the adsorption portion (71) moves to the regeneration portion (72), the portion located in the regeneration portion (72) moves to the purge portion (73), and the purge portion ( Rotate so that the part located at 73) moves to the suction part (71).
  • the adsorbing part (71) is an adsorbing air that flows through the rotor air supply passage (P71) (in this example, the first and second heat exchange chambers (S11, S12) of the dehumidifying device (10) are evaporators).
  • the air that has passed through the heat exchange chamber (S11, S12) where the heat exchanger (101, 102) is provided and the air that has passed through the cooling air passage (P80) are brought into contact with the adsorbent to dehumidify the air. It is a part to do.
  • the air that has been dehumidified after passing through the adsorption section (71) is supplied to the indoor space (S1) as supply air (SA).
  • the regenerator (72) is arranged at a position downstream of the heater (21) in the rotor regeneration passage (P72) and flows through the rotor regeneration passage (P72) (in this example, passes through the heater (21)). This is a part for regenerating the adsorbent by bringing it into contact with the adsorbent.
  • the air that has passed through the regeneration unit (72) is supplied to the regeneration passage (P2).
  • the purge unit (73) supplies the regeneration unit (72) using the exhaust heat of the regeneration unit (72) (specifically, exhaust heat not used for regeneration of the adsorbent in the regeneration unit (72)). It is a part for preheating the air to be used. More specifically, in the purge section (73), the air flowing through the purge passage (P73) comes into contact with the adsorbent and is dehumidified. Further, the portion located in the regeneration unit (72) (that is, the portion heated by the air that has passed through the heater (21)) moves to the purge unit (73) as the adsorption rotor (70) rotates.
  • the air flowing through the purge passage (P73) is preheated by being given heat from the purge section (73) (that is, exhaust heat of the regeneration section (72)).
  • the portion located in the purge section (73) is cooled by applying heat to the air passing through the purge passage (P73), and then moved to the adsorption section (71) as the adsorption rotor (70) rotates. To do.
  • the auxiliary cooler (80) is provided in the cooling air passage (P80), and cools the air flowing through the cooling air passage (P80) (in this example, room air (RA)).
  • the auxiliary cooler (80) may be configured by a heat exchanger (specifically, a fin-and-tube heat exchanger) that functions as an evaporator of a refrigerant circuit (not shown).
  • the air cooled in the cooling air passage (P80) is the air flowing through the air supply passage (P1) (in this example, the evaporator of the first and second heat exchange chambers (S11, S12) of the dehumidifying device (10)). And the air that has passed through the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102).
  • the air that has passed through the air supply passage (P1) passes through the rotor air supply passage (P71) and is supplied to the indoor space (S1). That is, it passes through the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator among the first and second heat exchange chambers (S11, S12) of the dehumidifier (10).
  • the air that has passed through the suction rotor (70) of the suction rotor (70) is supplied to the indoor space (S1).
  • the air that has passed through the rotor regeneration passage (P72) passes through the regeneration passage (P2) and is discharged to the outdoor space.
  • the switching mechanism (200) of the dehumidifier (10) includes a heat exchange chamber provided with an adsorption heat exchanger (102, 101) serving as a condenser among the first and second heat exchange chambers (S11, S12).
  • the air flow is switched so that the air that has passed through the heater (21) and the regenerating unit (72) of the adsorption rotor (70) in turn flows.
  • the air to be supplied to the humidity control space (S0) (in this example, the air to be supplied to the indoor space (S1)) is supplied by the adsorption heat exchanger (101, 102) serving as an evaporator. After being dehumidified in the provided heat exchange chambers (S11, S12), it is further dehumidified in the adsorption part (71) of the adsorption rotor (70).
  • the dehumidification capability of the dehumidification system (1) can be improved by adding the adsorption rotor (70).
  • the air heated by the heater (21) passes through the regeneration unit (72) of the adsorption rotor (70), and then is provided with an adsorption heat exchanger (102, 101) serving as a condenser. Pass through (S12, S11). That is, the air that has passed through the regeneration unit (72) of the adsorption rotor (70) can be used for regeneration of the adsorbent of the adsorption heat exchanger (102, 101) and the adsorption block (302, 301). Thereby, the air heated by the heater (21) can be used effectively.
  • the adsorption heat that is the evaporator using the air cooled in the cooling air passage (P80) can be reduced. That is, it is possible to reduce the temperature of the air that has increased in temperature due to the residual heat remaining in the adsorption block (101, 102) during regeneration or the adsorption heat in the adsorption block (101, 102).
  • a part of the air supplied from the supply passage (P1) passes through the purge passage (P73), the rotor regeneration passage (P72), and the regeneration passage (P2) in this order, so that the adsorption heat acting as an evaporator Part of the air (that is, the air dehumidified in the dehumidifier (10)) that has passed through the heat exchange chambers (S11, S12) in which the exchangers (101, 102) are provided, is adsorbed and condensed in the adsorption rotor (70). It can be used for the regeneration of the adsorbent of the adsorption heat exchanger (102, 101) serving as a vessel. Thereby, regeneration of adsorbent can be promoted.
  • the first adsorption block (301) is spaced from the first adsorption heat exchanger (101), and the second adsorption block (302) is spaced from the second adsorption heat exchanger (102).
  • the first adsorption block (301) may be arranged in contact with the first adsorption heat exchanger (101), and the second adsorption block (302) may be disposed.
  • Heat conduction with the adsorption block (302) can be promoted.
  • the first heat exchange chamber (S11) is incorporated in the air supply passage (P1)
  • the first adsorption block (301) is removed by the heat absorption action of the refrigerant flowing through the first adsorption heat exchanger (101).
  • the first adsorption block (101) can be cooled by the heat radiation action of the refrigerant flowing through the first adsorption heat exchanger (101).
  • 301) can be heated.
  • the first and second adsorption blocks (301, 302) it is possible to promote the adsorption of moisture to the adsorbent and the regeneration of the adsorbent.
  • one dehumidifying unit may be configured by connecting a plurality of dehumidifying devices (10) in parallel with each other.
  • the dehumidifiers (10) shown in FIG. 2 (or FIG. 7) are stacked in a plurality of stages and opened in each dehumidifier (10) (specifically, suction side suction port (51), regeneration side suction)
  • One dehumidifying unit may be configured by commonly connecting the mouth (52), the air inlet (53), and the air outlet (54) for each type.
  • the dehumidifier (10) is dehumidified by increasing the size of the first and second adsorption heat exchangers (101,102) without adding the first and second adsorption blocks (301,302) to the dehumidifier (10). It is possible to improve ability. That is, by increasing the size of the adsorption heat exchanger, the heat absorption effect of the refrigerant can be increased in the adsorption heat exchanger functioning as an evaporator. Thereby, while the temperature of the air in an adsorption heat exchanger can be reduced, the temperature rise of the air by the adsorption heat of adsorption agent can be controlled.
  • the adsorption of moisture from the air to the adsorbent can be promoted by the endothermic action of the refrigerant.
  • the air temperature and the amount of moisture in the air decrease from the upstream side toward the downstream side. That is, inside the adsorption heat exchanger, air dehumidified and cooled on the upstream side is supplied to the downstream side. Therefore, on the downstream side in the adsorption heat exchanger, even if the temperature of the air decreases due to the endothermic action of the refrigerant and the amount of saturated water vapor in the air decreases, the amount of moisture in the air decreases. It is difficult to promote the adsorption of moisture to the adsorbent. Further, the amount of heat of adsorption in the adsorbent decreases as the amount of moisture in the air decreases. Therefore, on the downstream side of the adsorption heat exchanger, the adsorbent is excessively cooled by the endothermic action of the refrigerant.
  • the adsorption block at the position downstream of the adsorption heat exchanger functioning as an evaporator (the position where the air dehumidified and cooled by the adsorption heat exchanger passes), the adsorption heat exchanger Since the contact area between the air and the adsorbent can be increased on the downstream side, the dehumidifying ability of the dehumidifying device (10) can be effectively improved as compared with the case of increasing the size of the adsorption heat exchanger.
  • the adsorbent regeneration operation release of moisture from the adsorbent into the air
  • the adsorbent adsorption operation adsorption of moisture from the air into the adsorbent.
  • the air volume of the air passing through the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator among the first and second heat exchange chambers (S11, S12) is:
  • the amount of air passing through the heat exchange chamber (S12, S11) provided with the adsorption heat exchanger (102, 101) serving as a condenser may be larger or the same.
  • the temperature of the air supplied to the regeneration passage (P2) (that is, the air supplied to the heat exchange chamber (S12, S11) provided with the adsorption heat exchanger (102, 101) serving as a condenser) is Higher than the temperature of the air supplied to the supply passage (P1) (that is, the air supplied to the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator)
  • a predetermined temperature difference specifically, a temperature difference at which the adsorbent can be regenerated
  • the above dehumidifying apparatus is useful as a dehumidifying apparatus for dehumidifying a humidity control space such as a dry clean room.

Abstract

First and second adsorption heat exchangers (101, 102) are respectively provided in first and second heat exchange chambers (S11, S12) and are each switched so as to serve as an evaporator and a condenser. A first adsorption block (301) is provided within the first heat exchanger chamber (S11) at a position downstream of the first adsorption heat exchanger (101) when the first adsorption heat exchanger (101) has been switched so as to serve as the evaporator, and the second adsorption block (302) is provided within the second heat exchanger chamber (S12) at a position downstream of the second adsorption heat exchanger (102) when the second adsorption heat exchanger (102) has been switched so as to serve as the evaporator. As a result of the above configuration, a dehumidification device can have high dehumidification performance achieved while an increase in electric power consumption is minimized.

Description

除湿装置および除湿システムDehumidifying device and dehumidifying system
 この発明は、空気を除湿して調湿空間に供給する除湿装置および除湿システムに関し、特に、吸着剤を担持した吸着熱交換器を有する除湿装置に関する。 The present invention relates to a dehumidifying apparatus and a dehumidifying system for dehumidifying air and supplying it to a humidity control space, and more particularly to a dehumidifying apparatus having an adsorption heat exchanger carrying an adsorbent.
 従来より、空気を除湿して調湿空間(例えば、室内空間)に供給する除湿装置が知られている。例えば、特許文献1には、2つの吸着熱交換器を有する冷媒回路を備え、吸着熱交換器において空気の湿度調整を行う調湿装置が記載されている。この調湿装置は、第1吸着熱交換器が凝縮器となり第2吸着熱交換器が蒸発器となる動作と、第1吸着熱交換器が蒸発器となり第2吸着熱交換器が凝縮器となる動作とを交互に繰り返し行う。具体的には、この調湿装置は、蒸発器として機能する吸着熱交換器において除湿された空気を室内に供給するとともに凝縮器として機能する吸着熱交換器において加湿された空気を室外に排出する除湿運転を行う。 Conventionally, a dehumidifying device that dehumidifies air and supplies it to a humidity control space (for example, indoor space) is known. For example, Patent Document 1 describes a humidity control device that includes a refrigerant circuit having two adsorption heat exchangers and adjusts the humidity of air in the adsorption heat exchanger. In this humidity control apparatus, the first adsorption heat exchanger serves as a condenser and the second adsorption heat exchanger serves as an evaporator, and the first adsorption heat exchanger serves as an evaporator and the second adsorption heat exchanger serves as a condenser. This operation is repeated alternately. Specifically, this humidity control apparatus supplies the air dehumidified in the adsorption heat exchanger functioning as an evaporator to the room and discharges the air humidified in the adsorption heat exchanger functioning as a condenser to the outside. Perform dehumidifying operation.
特開2006-349294号公報JP 2006-349294 A
 ところで、特許文献1のような除湿装置(調湿装置)では、冷媒回路の圧縮機の回転数を増加させることによって除湿能力を向上させることが考えられる。しかしながら、冷媒回路の圧縮機の回転数を増加させると、除湿装置の消費電力が増大してしまう。 By the way, in the dehumidifying device (humidity adjusting device) as in Patent Document 1, it is conceivable to improve the dehumidifying capability by increasing the rotation speed of the compressor of the refrigerant circuit. However, when the rotation speed of the compressor in the refrigerant circuit is increased, the power consumption of the dehumidifier increases.
 そこで、この発明は、消費電力の増大を抑制しつつ除湿能力を向上させることが可能な除湿装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a dehumidifying device capable of improving the dehumidifying capability while suppressing an increase in power consumption.
 第1の発明は、吸着剤が担持された第1および第2吸着熱交換器(101,102)を有し、該第1吸着熱交換器(101)が蒸発器となって空気を除湿し該第2吸着熱交換器(102)が凝縮器となって吸着剤を再生させる第1動作と、該第1吸着熱交換器(101)が凝縮器となって吸着剤を再生させ該第2吸着熱交換器(102)が蒸発器となって空気を除湿する第2動作とを交互に行う冷媒回路(100)と、上記第1および第2吸着熱交換器(101,102)がそれぞれ設けられる第1および第2熱交換室(S11,S12)と、上記第1および第2熱交換室(S11,S12)のうち、蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気が調湿空間(S0)に供給され、凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)に吸着剤を再生するための空気が流通するように、空気の流れを切り換える切換機構(200)と、吸着剤が担持されて空気を吸着剤と接触させるように構成され、上記第1熱交換室(S11)において上記第1吸着熱交換器(101)が蒸発器となっている場合に該第1吸着熱交換器(101)の下流側となる位置に設けられる第1吸着ブロック(301)と、吸着剤が担持されて空気を吸着剤と接触させるように構成され、上記第2熱交換室(S12)において上記第2吸着熱交換器(102)が蒸発器となっている場合に該第2吸着熱交換器(102)の下流側となる位置に設けられる第2吸着ブロック(302)とを備えていることを特徴とする除湿装置である。 The first invention has first and second adsorption heat exchangers (101, 102) carrying an adsorbent, and the first adsorption heat exchanger (101) serves as an evaporator to dehumidify the air. The first adsorption heat exchanger (102) serves as a condenser to regenerate the adsorbent, and the first adsorption heat exchanger (101) serves as a condenser to regenerate the adsorbent and the second heat of adsorption. A refrigerant circuit (100) that alternately performs a second operation of dehumidifying air by using the exchanger (102) as an evaporator, and a first and a second adsorption heat exchanger (101, 102) provided with the first and second adsorption heat exchangers (101, 102), respectively. Of the second heat exchange chamber (S11, S12) and the first and second heat exchange chambers (S11, S12), a heat exchange chamber provided with an adsorption heat exchanger (101, 102) serving as an evaporator ( The air that has passed through S11, S12) is supplied to the humidity control space (S0) and adsorbed in the heat exchange chamber (S12, S11) where the adsorption heat exchanger (102, 101), which is a condenser, is installed. A switching mechanism (200) for switching the air flow so that air for regenerating the agent flows, and an adsorbent supported to bring the air into contact with the adsorbent, the first heat exchange chamber ( A first adsorption block (301) provided at a position downstream of the first adsorption heat exchanger (101) when the first adsorption heat exchanger (101) is an evaporator in S11); When the adsorbent is supported and the air is brought into contact with the adsorbent, the second adsorption heat exchanger (102) is an evaporator in the second heat exchange chamber (S12). A dehumidifying device comprising a second adsorption block (302) provided at a position downstream of the adsorption heat exchanger (102).
 上記第1の発明では、蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)に、調湿空間(S0)に供給するための空気を流通させることにより、その空気中の水分を吸着熱交換器(101,102)および吸着ブロック(301,302)の吸着剤に吸着させてその空気を除湿することができる。また、凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)に、吸着剤を再生するための空気を流通させることにより、その空気中に吸着熱交換器(102,101)および吸着ブロック(302,301)の吸着剤の中の水分を放出させて吸着熱交換器(102,101)および吸着ブロック(302,301)の吸着剤を再生させることができる。このように、第1および第2熱交換室(S11,S12)に第1および第2吸着ブロック(301,302)をそれぞれ追加することにより、第1および第2熱交換室(S11,S12)における空気の除湿量を増加させることができる。 In the first invention, air to be supplied to the humidity control space (S0) is circulated in the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator. Thus, moisture in the air can be adsorbed on the adsorbents of the adsorption heat exchanger (101, 102) and the adsorption block (301, 302) to dehumidify the air. Adsorption heat exchange is performed in the air by circulating air to regenerate the adsorbent in the heat exchange chamber (S12, S11) where the adsorption heat exchanger (102, 101), which is a condenser, is provided. It is possible to regenerate the adsorbents of the adsorption heat exchanger (102, 101) and the adsorption block (302, 301) by releasing the moisture in the adsorbent of the vessel (102, 101) and the adsorption block (302, 301). Thus, the air in the first and second heat exchange chambers (S11, S12) is obtained by adding the first and second adsorption blocks (301, 302) to the first and second heat exchange chambers (S11, S12), respectively. The amount of dehumidification can be increased.
 また、上記第1の発明では、第1および第2熱交換室(S11,S12)の各々において、吸着熱交換器(101,102)が蒸発器となっている場合に吸着熱交換器(101,102)の下流側となる位置に吸着ブロック(301,302)を配置することにより、吸着熱交換器(101,102)によって除湿および冷却された空気を吸着ブロック(301,302)に供給することができる。これにより、吸着ブロック(301,302)の吸着剤への水分の吸着を促進させることができる。 In the first aspect of the invention, in each of the first and second heat exchange chambers (S11, S12), when the adsorption heat exchanger (101, 102) is an evaporator, the adsorption heat exchanger (101, 102) By disposing the adsorption block (301, 302) at the downstream position, the air dehumidified and cooled by the adsorption heat exchanger (101, 102) can be supplied to the adsorption block (301, 302). Thereby, adsorption | suction of the water | moisture content to the adsorption agent of an adsorption | suction block (301,302) can be accelerated | stimulated.
 第2の発明は、上記第1の発明において、上記切換機構(200)が、上記第1および第2吸着熱交換器(101,102)の各々を通過する空気の流通方向が、該吸着熱交換器(101,102)が蒸発器となっている場合と該吸着熱交換器(101,102)が凝縮器となっている場合とで逆方向となるように、空気の流れを切り換えることを特徴とする除湿装置である。 According to a second aspect of the present invention, in the first aspect, the switching mechanism (200) is configured such that the flow direction of air passing through each of the first and second adsorption heat exchangers (101, 102) is the adsorption heat exchanger. A dehumidifier characterized by switching the air flow so that the opposite direction is obtained when the (101,102) is an evaporator and when the adsorption heat exchanger (101,102) is a condenser. is there.
 上記第2の発明では、第1および第2熱交換室(S11,S12)の各々において、吸着ブロック(301,302)は、吸着熱交換器(101,102)が蒸発器となっている場合には、吸着熱交換器(101,102)の下流側に位置し、吸着熱交換器(101,102)が凝縮器となっている場合には、吸着熱交換器(101,102)の上流側に位置する。すなわち、第1および第2熱交換室(S11,S12)の各々において、その熱交換室(S11,S12)に供給された空気は、吸着熱交換器(101,102)が蒸発器となっている場合には、吸着熱交換器(101,102)を通過した後に吸着ブロック(301,302)を通過し、吸着熱交換器(101,102)が凝縮器となっている場合には、吸着ブロック(301,302)を通過した後に吸着熱交換器(101,102)を通過する。 In the second invention, in each of the first and second heat exchange chambers (S11, S12), the adsorption block (301, 302) is adsorbed when the adsorption heat exchanger (101, 102) is an evaporator. When located on the downstream side of the heat exchanger (101, 102) and the adsorption heat exchanger (101, 102) is a condenser, it is located on the upstream side of the adsorption heat exchanger (101, 102). That is, in each of the first and second heat exchange chambers (S11, S12), the air supplied to the heat exchange chambers (S11, S12) is the case where the adsorption heat exchanger (101, 102) is an evaporator. After passing through the adsorption heat exchanger (101,102) and then through the adsorption block (301,302), and when the adsorption heat exchanger (101,102) is a condenser, after passing through the adsorption block (301,302) Passes through the adsorption heat exchanger (101, 102).
 第3の発明は、上記第1の発明において、上記切換機構(200)が、上記第1および第2吸着熱交換器(101,102)の各々を通過する空気の流通方向が、該吸着熱交換器(101,102)が蒸発器となっている場合と該吸着熱交換器(101,102)が凝縮器となっている場合とで同方向となるように、空気の流れを切り換えることを特徴とする除湿装置である。 According to a third invention, in the first invention, the switching mechanism (200) is such that the flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) is the adsorption heat exchanger. A dehumidifier characterized by switching the air flow so that the direction is the same when the (101, 102) is an evaporator and when the adsorption heat exchanger (101, 102) is a condenser. is there.
 上記第3の発明では、第1および第2熱交換室(S11,S12)の各々において、吸着ブロック(301,302)は、吸着熱交換器(101,102)が蒸発器となっている場合および吸着熱交換器(101,102)が凝縮器となっている場合のどちらの場合にも、吸着熱交換器(101,102)の下流側に位置する。したがって、第1および第2熱交換室(S11,S12)の各々において、吸着熱交換器(101,102)が蒸発器となっている場合に、吸着熱交換器(101,102)によって除湿および冷却された空気を吸着ブロック(301,302)に供給することができ、吸着熱交換器(101,102)が凝縮器となっている場合に、吸着熱交換器(101,102)によって加熱された空気を吸着ブロック(301,302)に供給することができる。 In the third aspect of the invention, in each of the first and second heat exchange chambers (S11, S12), the adsorption block (301, 302) includes the case where the adsorption heat exchanger (101, 102) is an evaporator and the adsorption heat exchange. In either case where the condenser (101, 102) is a condenser, it is located downstream of the adsorption heat exchanger (101, 102). Therefore, when the adsorption heat exchanger (101, 102) is an evaporator in each of the first and second heat exchange chambers (S11, S12), the air dehumidified and cooled by the adsorption heat exchanger (101, 102) Can be supplied to the adsorption block (301,302), and when the adsorption heat exchanger (101,102) is a condenser, the air heated by the adsorption heat exchanger (101,102) is supplied to the adsorption block (301,302) can do.
 第4の発明は、上記第1~第3の発明のいずれか1つにおいて、上記第1および第2吸着ブロック(301,302)が、それぞれ、上記第1および第2吸着熱交換器(101,102)と間隔をおいて配置されていることを特徴とする除湿装置である。 According to a fourth invention, in any one of the first to third inventions, the first and second adsorption blocks (301, 302) are respectively connected to the first and second adsorption heat exchangers (101, 102). It is a dehumidifier characterized by being arranged at intervals.
 上記第4の発明では、第1および第2熱交換室(S11,S12)の各々において、吸着熱交換器(101,102)と間隔をおいて吸着ブロック(301,302)を配置することにより、吸着ブロック(301,302)における温度分布の偏りや空気偏流を抑制することができる。 In the fourth aspect of the present invention, the adsorption block (301, 302) is disposed in the first and second heat exchange chambers (S11, S12) at a distance from the adsorption heat exchanger (101, 102). 301, 302) can suppress temperature distribution deviation and air drift.
 第5の発明は、上記第1~第3の発明のいずれか1つにおいて、上記第1および第2吸着ブロック(301,302)が、それぞれ、上記第1および第2吸着熱交換器(101,102)と接触するように配置されていることを特徴とする除湿装置である。 According to a fifth invention, in any one of the first to third inventions, the first and second adsorption blocks (301, 302) are respectively connected to the first and second adsorption heat exchangers (101, 102). The dehumidifying device is arranged so as to be in contact with each other.
 上記第5の発明では、第1および第2熱交換室(S11,S12)の各々において、吸着熱交換器(101,102)と接触するように吸着ブロック(301,302)を配置することにより、吸着熱交換器(101,102)と吸着ブロック(301,302)との間における熱伝導を促進させることができる。すなわち、吸着熱交換器(101,102)が蒸発器となっている場合には、吸着熱交換器(101,102)を流れる冷媒の吸熱作用によって吸着ブロック(301,302)を冷却することができ、吸着熱交換器(101,102)が凝縮器となっている場合には、吸着熱交換器(101,102)を流れる冷媒の放熱作用によって吸着ブロック(301,302)を加熱することができる。 In the fifth aspect of the present invention, the adsorption heat exchange is performed by arranging the adsorption block (301, 302) in contact with the adsorption heat exchanger (101, 102) in each of the first and second heat exchange chambers (S11, S12). Heat conduction between the vessel (101, 102) and the adsorption block (301, 302) can be promoted. That is, when the adsorption heat exchanger (101, 102) is an evaporator, the adsorption block (301, 302) can be cooled by the endothermic action of the refrigerant flowing through the adsorption heat exchanger (101, 102). When (101,102) is a condenser, the adsorption block (301,302) can be heated by the heat radiation action of the refrigerant flowing through the adsorption heat exchanger (101,102).
 第6の発明は、上記第2の発明の除湿装置(10)と、吸着剤を再生するための空気を加熱する加熱器(21)とを備え、上記切換機構(200)が、上記第1および第2熱交換室(S11,S12)のうち凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)に上記加熱器(21)を通過した空気が流通するように、空気の流れを切り換えることを特徴とする除湿システムである。 A sixth invention includes the dehumidifying device (10) of the second invention and a heater (21) for heating air for regenerating the adsorbent, wherein the switching mechanism (200) is the first device. In the second heat exchange chamber (S11, S12), the air that has passed through the heater (21) enters the heat exchange chamber (S12, S11) in which the adsorption heat exchanger (102, 101) serving as a condenser is provided. It is a dehumidification system characterized by switching the flow of air so that it circulates.
 上記第6の発明では、第1および第2熱交換室(S11,S12)の各々において、その熱交換室(S11,S12)に供給された空気は、吸着熱交換器(101,102)が蒸発器となっている場合には、吸着熱交換器(101,102)を通過した後に吸着ブロック(301,302)を通過し、吸着熱交換器(101,102)が凝縮器となっている場合には、吸着ブロック(301,302)を通過した後に吸着熱交換器(101,102)を通過する。したがって、凝縮器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)に、加熱器(21)を通過した空気を流通させることにより、熱交換室(S11,S12)において凝縮器となっている吸着熱交換器(101,102)の上流側に位置している吸着ブロック(301,302)に、加熱器(21)によって加熱された空気を供給することができる。 In the sixth aspect of the invention, in each of the first and second heat exchange chambers (S11, S12), the air supplied to the heat exchange chamber (S11, S12) is the evaporator of the adsorption heat exchanger (101, 102). Is passed through the adsorption heat exchanger (101,102) and then through the adsorption block (301,302), and when the adsorption heat exchanger (101,102) is a condenser, the adsorption block (301,302) ) And the adsorption heat exchanger (101, 102). Therefore, by circulating the air that has passed through the heater (21) through the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as a condenser, the heat exchange chamber (S11, S12) is circulated. In S12), the air heated by the heater (21) can be supplied to the adsorption block (301, 302) located upstream of the adsorption heat exchanger (101, 102) which is the condenser.
 第7の発明は、上記第6の発明において、吸着剤が担持され、上記第1および第2熱交換室(S11,S12)のうち蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気を吸着剤と接触させて該空気を除湿する吸着部(71)と、上記加熱器(21)を通過した空気を吸着剤と接触させて吸着剤を再生させる再生部(72)とを有する吸着ロータ(70)をさらに備え、上記第1および第2熱交換室(S11,S12)のうち蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気が、上記吸着ロータ(70)の吸着部(71)を通過して上記調湿空間(S0)に供給され、上記切換機構(200)が、上記第1および第2熱交換室(S11,S12)のうち凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)に上記加熱器(21)と上記吸着ロータ(70)の再生部(72)とを順に通過した空気が流通するように、空気の流れを切り換えることを特徴とする除湿システムである。 According to a seventh invention, in the sixth invention, there is provided an adsorption heat exchanger (101, 102) which carries an adsorbent and serves as an evaporator of the first and second heat exchange chambers (S11, S12). The adsorbing part (71) for dehumidifying the air that has passed through the heat exchange chambers (S11, S12) with the adsorbent, and the air that has passed through the heater (21) in contact with the adsorbent An adsorption rotor (70) having a regeneration unit (72) for regenerating the adsorbent is further provided, and the adsorption heat exchanger (101, 102) serving as an evaporator in the first and second heat exchange chambers (S11, S12). The air that has passed through the heat exchange chambers (S11, S12) provided with a) passes through the adsorption portion (71) of the adsorption rotor (70) and is supplied to the humidity control space (S0), and the switching mechanism ( 200) is a heat exchange provided with an adsorption heat exchanger (102, 101) which is a condenser in the first and second heat exchange chambers (S11, S12). A dehumidification system that switches the flow of air so that the air that has passed through the heater (21) and the regeneration section (72) of the adsorption rotor (70) flows in sequence to the chambers (S12, S11) It is.
 上記第7の発明では、調湿空間(S0)に供給するための空気は、蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)において除湿された後に、吸着ロータ(70)の吸着部(71)においてさらに除湿される。一方、加熱器(21)によって加熱された空気は、吸着ロータ(70)の再生部(72)を通過した後に、凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)を通過する。すなわち、吸着ロータ(70)の再生部(72)を通過した空気を、吸着熱交換器(102,101)および吸着ブロック(302,301)の吸着剤の再生に利用することができる。 In the seventh invention, the air to be supplied to the humidity control space (S0) is dehumidified in the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator. Later, it is further dehumidified in the adsorption part (71) of the adsorption rotor (70). On the other hand, the air heated by the heater (21) passes through the regeneration section (72) of the adsorption rotor (70), and then is provided with an adsorption heat exchanger (102, 101) serving as a condenser. Pass through (S12, S11). That is, the air that has passed through the regeneration unit (72) of the adsorption rotor (70) can be used for regeneration of the adsorbent of the adsorption heat exchanger (102, 101) and the adsorption block (302, 301).
 第1および第2の発明によれば、第1および第2熱交換室(S11,S12)における空気の除湿量を増加させることができ、さらに、吸着ブロック(301,302)の吸着剤への水分の吸着を促進させることができるので、除湿装置(10)の除湿能力を向上させることができる。また、除湿装置(10)の除湿能力を向上させるために冷媒回路(100)の圧縮機(103)の回転数を増加させなくてもよいので、除湿装置(10)の消費電力の増大を抑制することができる。 According to the first and second inventions, it is possible to increase the amount of air dehumidified in the first and second heat exchange chambers (S11, S12), and further, Since adsorption | suction can be accelerated | stimulated, the dehumidification capability of a dehumidification apparatus (10) can be improved. Moreover, since it is not necessary to increase the rotation speed of the compressor (103) of the refrigerant circuit (100) in order to improve the dehumidifying capacity of the dehumidifying device (10), the increase in power consumption of the dehumidifying device (10) is suppressed. can do.
 第3の発明によれば、吸着熱交換器(101,102)が凝縮器となっている場合に、吸着熱交換器(101,102)によって加熱された空気を吸着ブロック(301,302)に供給することができるので、吸着ブロック(301,302)の吸着剤の再生を促進させることができる。 According to the third invention, when the adsorption heat exchanger (101, 102) is a condenser, the air heated by the adsorption heat exchanger (101, 102) can be supplied to the adsorption block (301, 302). The regeneration of the adsorbent of the adsorption block (301, 302) can be promoted.
 第4の発明によれば、吸着ブロック(301,302)における温度分布の偏りや空気偏流を抑制することができるので、吸着ブロック(301,302)における吸着能力および再生能力の低下を抑制することができる。 According to the fourth aspect of the invention, since the temperature distribution bias and air drift in the adsorption block (301, 302) can be suppressed, the decrease in adsorption capacity and regeneration capacity in the adsorption block (301, 302) can be suppressed.
 第5の発明によれば、吸着熱交換器(101,102)と吸着ブロック(301,302)との間における熱伝導を促進させることができるので、吸着ブロック(301,302)における吸着剤への水分の吸着および吸着剤の再生を促進させることができる。 According to the fifth invention, heat conduction between the adsorption heat exchanger (101,102) and the adsorption block (301,302) can be promoted, so that moisture is adsorbed and adsorbed on the adsorbent in the adsorption block (301,302). The regeneration of the agent can be promoted.
 第6の発明によれば、熱交換室(S11,S12)において凝縮器となっている吸着熱交換器(101,102)の上流側に位置している吸着ブロック(301,302)に、加熱器(21)によって加熱された空気を供給することができるので、吸着ブロック(301,302)の吸着剤の再生を促進させることができる。 According to the sixth invention, the adsorption block (301, 302) located upstream of the adsorption heat exchanger (101, 102) serving as a condenser in the heat exchange chamber (S11, S12) is provided with a heater (21). Therefore, the regeneration of the adsorbent of the adsorption block (301, 302) can be promoted.
 第7の発明によれば、吸着ロータ(70)を追加することにより、除湿システム(1)の除湿能力を向上させることができる。また、吸着ロータ(70)の再生部(72)を通過した空気を、吸着熱交換器(102,101)および吸着ブロック(302,301)の吸着剤の再生に利用することができるので、加熱器(21)によって加熱された空気を有効に利用することができる。 According to the seventh invention, the dehumidifying capacity of the dehumidifying system (1) can be improved by adding the adsorption rotor (70). In addition, since the air that has passed through the regeneration unit (72) of the adsorption rotor (70) can be used for regeneration of the adsorbent of the adsorption heat exchanger (102, 101) and the adsorption block (302, 301), the heater (21) The air heated by can be used effectively.
実施形態1の除湿システムの構成例について説明するための配管系統図。The piping system figure for demonstrating the structural example of the dehumidification system of Embodiment 1. FIG. 実施形態1の除湿装置の構造および第1除湿動作における空気の流れについて説明するための概略図。Schematic for demonstrating the structure of the dehumidification apparatus of Embodiment 1, and the flow of the air in 1st dehumidification operation | movement. 実施形態1の除湿装置の構造および第2除湿動作における空気の流れについて説明するための概略図。Schematic for demonstrating the structure of the dehumidification apparatus of Embodiment 1, and the flow of the air in 2nd dehumidification operation | movement. 実施形態1の除湿システムの変形例1について説明するための配管系統図。The piping system figure for demonstrating the modification 1 of the dehumidification system of Embodiment 1. FIG. 実施形態1の除湿システムの変形例2について説明するための配管系統図。The piping system figure for demonstrating the modification 2 of the dehumidification system of Embodiment 1. FIG. 実施形態1の除湿システムの変形例3について説明するための配管系統図。The piping system figure for demonstrating the modification 3 of the dehumidification system of Embodiment 1. FIG. 実施形態2の除湿システムの構成例について説明するための配管系統図。The piping system diagram for demonstrating the structural example of the dehumidification system of Embodiment 2. FIG. 実施形態2の除湿装置の構造および第1除湿動作における空気の流れについて説明するための概略図。Schematic for demonstrating the structure of the dehumidification apparatus of Embodiment 2, and the flow of the air in 1st dehumidification operation | movement. 実施形態2の除湿装置の構造および第2除湿動作における空気の流れについて説明するための概略図。Schematic for demonstrating the structure of the dehumidification apparatus of Embodiment 2, and the flow of the air in 2nd dehumidification operation | movement. 実施形態2の除湿システムの変形例について説明するための配管系統図。The piping system diagram for demonstrating the modification of the dehumidification system of Embodiment 2. FIG. 実施形態3の除湿システムの構成例について説明するための配管系統図。The piping system figure for demonstrating the structural example of the dehumidification system of Embodiment 3. FIG. 実施形態4の除湿システムの構成例について説明するための配管系統図。The piping system diagram for demonstrating the structural example of the dehumidification system of Embodiment 4. FIG.
 以下、この発明の実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施形態1)
 図1は、実施形態1による除湿システム(1)の構成例を示している。この除湿システム(1)は、空気(この例では、室外空気(OA))を除湿して調湿空間(S0)に供給するものである。この例では、調湿空間(S0)は、室内空間(S1)によって構成されている。室内空間(S1)は、露点温度が低い空気(例えば、露点温度が-30℃~-50℃程度の空気)の供給を要求されている空間であり、例えば、リチウム電池の製造ラインに設けられるドライクリーンルームである。
(Embodiment 1)
FIG. 1 shows a configuration example of a dehumidification system (1) according to the first embodiment. This dehumidification system (1) dehumidifies air (in this example, outdoor air (OA)) and supplies it to the humidity control space (S0). In this example, the humidity control space (S0) is configured by an indoor space (S1). The indoor space (S1) is a space where supply of air having a low dew point temperature (for example, air having a dew point temperature of about −30 ° C. to −50 ° C.) is required, and is provided, for example, in a lithium battery production line It is a dry clean room.
 除湿システム(1)は、除湿装置(10)と、コントローラ(20)とを備えている。また、除湿装置(10)には、給気通路(P1)と再生通路(P2)が設けられている。除湿装置(10)は、第1および第2熱交換室(S11,S12)と、冷媒回路(100)と、切換機構(200)と、第1および第2吸着ブロック(301,302)とを備えている。 The dehumidification system (1) includes a dehumidifier (10) and a controller (20). The dehumidifier (10) is provided with an air supply passage (P1) and a regeneration passage (P2). The dehumidifier (10) includes first and second heat exchange chambers (S11, S12), a refrigerant circuit (100), a switching mechanism (200), and first and second adsorption blocks (301, 302). Yes.
  〈給気通路〉
 給気通路(P1)には、調湿空間(S0)に供給するための空気(この例では、室内空間(S1)に供給するための空気)が流れる。この例では、給気通路(P1)は、室外空間から室外空気(OA)を取り込んで供給空気(RA)を室内空間(S1)に供給するように構成されている。具体的には、給気通路(P1)は、流入端が室外空間に接続される第1給気通路部(P11)と、流出端が室内空間(S1)に接続される第2給気通路部(P12)とを有している。また、この例では、給気通路(P1)の第1給気通路部(P1)には冷却器(11)が設けられ、冷却器(11)の近傍にはドレンパン(12)が設けられている。
<Air supply passage>
Air to be supplied to the humidity control space (S0) (in this example, air to be supplied to the indoor space (S1)) flows through the air supply passage (P1). In this example, the air supply passage (P1) is configured to take outdoor air (OA) from the outdoor space and supply supply air (RA) to the indoor space (S1). Specifically, the air supply passage (P1) includes a first air supply passage portion (P11) whose inflow end is connected to the outdoor space, and a second air supply passage whose outflow end is connected to the indoor space (S1). Part (P12). In this example, a cooler (11) is provided in the first air supply passage (P1) of the air supply passage (P1), and a drain pan (12) is provided in the vicinity of the cooler (11). Yes.
  〈再生通路〉
 再生通路(P2)には、吸着剤を再生するための空気が流れる。この例では、再生通路(P2)は、室内空間(S1)から室内空気(RA)を取り込んで排出空気(EA)を室外空間に排出するように構成されている。具体的には、再生通路(P2)は、流入端が室内空間(S1)に接続される第1再生通路部(P21)と、流出端が室外空間に接続される第2再生通路部(P22)とを有している。なお、この例では、室内空間(S1)の空気の一部は、再生通路(P2)を経由せずに排出空気(EA)として室外空間に排出される。
<Regeneration passage>
Air for regenerating the adsorbent flows through the regeneration passage (P2). In this example, the regeneration passage (P2) is configured to take in indoor air (RA) from the indoor space (S1) and discharge exhaust air (EA) to the outdoor space. Specifically, the regeneration passage (P2) includes a first regeneration passage portion (P21) whose inflow end is connected to the indoor space (S1) and a second regeneration passage portion (P22) whose outflow end is connected to the outdoor space. ). In this example, part of the air in the indoor space (S1) is discharged to the outdoor space as exhaust air (EA) without passing through the regeneration passage (P2).
  〈熱交換室〉
 第1および第2熱交換室(S11,S12)は、一方の熱交換室を給気通路(P1)の一部として給気通路(P1)に組み込むとともに他方の熱交換室を再生通路(P2)の一部として再生通路(P2)に組み込むことができるように構成されている。具体的には、第1および第2熱交換室(S11,S12)の各々は、第1給気通路部(P11)の流出端と第2給気通路部(P12)の流入端との間に接続されることによって給気通路(P1)に組み込まれて空気(すなわち、調湿空間(S0)に供給するための空気)が流通し、第1再生通路部(P21)の流出端と第2再生通路部(P22)の流入端との間に接続されることによって再生通路(P2)に組み込まれて空気(すなわち、吸着剤を再生するための空気)が流通する。なお、以下の説明では、第1および第2熱交換室(S11,S12)の総称を単に「熱交換室(S11,S12)」と表記する。
<Heat exchange room>
The first and second heat exchange chambers (S11, S12) incorporate one heat exchange chamber into the supply passage (P1) as a part of the supply passage (P1) and the other heat exchange chamber as a regeneration passage (P2). ) Can be incorporated into the regeneration passage (P2) as a part of. Specifically, each of the first and second heat exchange chambers (S11, S12) is between the outflow end of the first supply passage portion (P11) and the inflow end of the second supply passage portion (P12). Is connected to the air supply passage (P1) and air (that is, air to be supplied to the humidity control space (S0)) circulates, and the outflow end of the first regeneration passage portion (P21) and the first 2 The air (that is, air for regenerating the adsorbent) flows through the regeneration passage (P2) by being connected to the inflow end of the regeneration passage portion (P22). In the following description, the generic name of the first and second heat exchange chambers (S11, S12) is simply referred to as “heat exchange chamber (S11, S12)”.
  〈冷却器,ドレンパン〉
 冷却器(11)は、室外空気(OA)を冷却して除湿する。例えば、冷却器(11)は、冷媒回路(図示を省略)の蒸発器として機能する熱交換器(具体的には、フィンアンドチューブ式の熱交換器)によって構成されていてもよい。ドレンパン(12)は、冷却器(11)において凝縮された水を回収する。例えば、ドレンパン(12)は、冷却器(11)において凝縮された水を受け止めることができるように、上面が開口する容器によって構成されて冷却器(11)の下方に配置されている。この例では、冷却器(11)は、給気通路(P1)の第1給気通路部(P11)に設けられている。
<Cooler, drain pan>
The cooler (11) cools and dehumidifies outdoor air (OA). For example, the cooler (11) may be configured by a heat exchanger (specifically, a fin-and-tube heat exchanger) that functions as an evaporator of a refrigerant circuit (not shown). The drain pan (12) collects the water condensed in the cooler (11). For example, the drain pan (12) is configured by a container having an open upper surface and disposed below the cooler (11) so that water condensed in the cooler (11) can be received. In this example, the cooler (11) is provided in the first air supply passage portion (P11) of the air supply passage (P1).
  〈冷媒回路〉
 冷媒回路(100)は、冷媒を循環させて冷凍サイクル動作を実行するものであり、第1および第2吸着熱交換器(101,102)と、圧縮機(103)と、膨張弁(104)と、四方切換弁(105)とを備えている。
<Refrigerant circuit>
The refrigerant circuit (100) circulates refrigerant to execute a refrigeration cycle operation. The first and second adsorption heat exchangers (101, 102), the compressor (103), the expansion valve (104), And a four-way switching valve (105).
   《吸着熱交換器》
 第1および第2吸着熱交換器(101,102)の各々は、熱交換器(例えば、クロスフィン型のフィンアンドチューブ式の熱交換器)の表面に吸着剤を担持させることによって構成されている。また、第1および第2吸着熱交換器(101,102)は、第1および第2熱交換室(S11,S12)にそれぞれ設けられている。なお、吸着剤として、ゼオライト,シリカゲル,活性炭,親水性の官能基を有する有機高分子材料を用いてもよいし、水分を吸着する機能だけではなく水分を吸収する機能も有する材料(所謂、収着剤)を用いてもよい。なお、以下の説明では、第1および第2吸着熱交換器(101,102)の総称を単に「吸着熱交換器(101,102)」と表記する。
《Adsorption heat exchanger》
Each of the first and second adsorption heat exchangers (101, 102) is configured by supporting an adsorbent on the surface of a heat exchanger (for example, a cross fin type fin-and-tube heat exchanger). The first and second adsorption heat exchangers (101, 102) are provided in the first and second heat exchange chambers (S11, S12), respectively. As the adsorbent, zeolite, silica gel, activated carbon, an organic polymer material having a hydrophilic functional group may be used, or a material having not only a function of adsorbing moisture but also a function of absorbing moisture (so-called “concentration”). Adhesive) may be used. In the following description, the generic name of the first and second adsorption heat exchangers (101, 102) is simply referred to as “adsorption heat exchanger (101, 102)”.
   《圧縮機》
 圧縮機(103)は、冷媒を圧縮して吐出する。また、圧縮機(103)は、コントローラ(20)の制御によって回転数(運転周波数)を変更可能に構成されている。例えば、圧縮機(103)は、インバータ回路(図示を省略)により回転数を調節可能な可変容量式の圧縮機(ロータリー式,スイング式,スクロール式などの圧縮機)によって構成されている。
《Compressor》
The compressor (103) compresses and discharges the refrigerant. Moreover, the compressor (103) is comprised so that a rotation speed (operation frequency) can be changed by control of a controller (20). For example, the compressor (103) is configured by a variable capacity compressor (rotary, swing, scroll, etc. compressor) whose rotation speed can be adjusted by an inverter circuit (not shown).
   《膨張弁》
 膨張弁(104)は、冷媒の圧力を調整する。例えば、膨張弁(104)は、コントローラ(20)による制御に応答して開度を変更可能な電子膨張弁によって構成されている。
《Expansion valve》
The expansion valve (104) adjusts the pressure of the refrigerant. For example, the expansion valve (104) is configured by an electronic expansion valve that can change the opening degree in response to control by the controller (20).
   《四方切換弁》
 四方切換弁(105)は、第1~第4ポートを有し、第1ポートは、圧縮機(103)の吐出側に接続され、第2ポートは、圧縮機(103)の吸入側に接続され、第3ポートは、第2吸着熱交換器(102)の端部に接続され、第4ポートは、第1吸着熱交換器(101)の端部に接続されている。四方切換弁(105)は、コントローラ(20)による制御に応答して、第1接続状態(図1の実線で示された状態)と、第2接続状態(図1の破線で示された状態)とに設定可能に構成されている。
<4-way switching valve>
The four-way switching valve (105) has first to fourth ports, the first port is connected to the discharge side of the compressor (103), and the second port is connected to the suction side of the compressor (103). The third port is connected to the end of the second adsorption heat exchanger (102), and the fourth port is connected to the end of the first adsorption heat exchanger (101). In response to control by the controller (20), the four-way switching valve (105) is in a first connection state (a state indicated by a solid line in FIG. 1) and a second connection state (a state indicated by a broken line in FIG. 1). ) And can be set.
   《冷媒回路による冷凍サイクル動作》
 四方切換弁(105)が第1接続状態になっている場合、冷媒回路(100)は、第1吸着熱交換器(101)が蒸発器となって空気を除湿し第2吸着熱交換器(102)が凝縮器となって空気を加湿する(すなわち、吸着剤を再生させる)第1冷凍サイクル動作(第1動作)を実行する。一方、四方切換弁(105)が第2接続状態になっている場合、冷媒回路(100)は、第2吸着熱交換器(102)が蒸発器となって空気を除湿し第1吸着熱交換器(101)が凝縮器となって空気を加湿する(すなわち、吸着剤を再生させる)第2冷凍サイクル動作(第2動作)を実行する。このように、冷媒回路(100)は、コントローラ(20)による制御に応答して、第1および第2冷凍サイクル動作を実行可能に構成されている。具体的には、冷媒回路(100)は、第1および第2冷凍サイクル動作を交互に行うように構成されている。
<Refrigeration cycle operation by refrigerant circuit>
When the four-way switching valve (105) is in the first connection state, the refrigerant circuit (100) uses the first adsorption heat exchanger (101) as an evaporator to dehumidify the air and to remove the second adsorption heat exchanger ( 102) becomes a condenser and performs a first refrigeration cycle operation (first operation) that humidifies air (that is, regenerates the adsorbent). On the other hand, when the four-way switching valve (105) is in the second connection state, the refrigerant circuit (100) serves as the first adsorption heat exchanger (102) for dehumidifying the air by using the evaporator as the second adsorption heat exchanger (102). The second refrigeration cycle operation (second operation) is performed in which the vessel (101) becomes a condenser to humidify the air (that is, regenerate the adsorbent). Thus, the refrigerant circuit (100) is configured to be able to execute the first and second refrigeration cycle operations in response to the control by the controller (20). Specifically, the refrigerant circuit (100) is configured to alternately perform the first and second refrigeration cycle operations.
    -第1冷凍サイクル動作(第1動作)-
 四方切換弁(105)が第1接続状態になると、第1ポートと第3ポートとが連通するとともに第2ポートと第4ポートとが連通する。これにより、圧縮機(103)によって圧縮された冷媒は、四方切換弁(105)を通過して第2吸着熱交換器(102)に流れ込む。第2吸着熱交換器(102)では、冷媒によって吸着剤が加熱され、吸着剤中の水分が空気へ放出される再生動作が行われる。第2吸着熱交換器(102)において放熱して凝縮した冷媒は、膨張弁(104)によって減圧された後、第1吸着熱交換器(101)に流れ込む。第1吸着熱交換器(101)では、空気中の水分が吸着剤に吸着される吸着動作が行われ、その際に生じる吸着熱が冷媒に付与される。第1吸着熱交換器(101)において吸熱して蒸発した冷媒は、圧縮機(103)に吸入されて圧縮される。
-First refrigeration cycle operation (first operation)-
When the four-way switching valve (105) is in the first connection state, the first port and the third port communicate with each other, and the second port and the fourth port communicate with each other. Thus, the refrigerant compressed by the compressor (103) passes through the four-way switching valve (105) and flows into the second adsorption heat exchanger (102). In the second adsorption heat exchanger (102), a regeneration operation is performed in which the adsorbent is heated by the refrigerant and moisture in the adsorbent is released to the air. The refrigerant that dissipates heat and condenses in the second adsorption heat exchanger (102) is decompressed by the expansion valve (104), and then flows into the first adsorption heat exchanger (101). In the first adsorption heat exchanger (101), an adsorption operation in which moisture in the air is adsorbed by the adsorbent is performed, and the adsorption heat generated at that time is imparted to the refrigerant. The refrigerant that has absorbed heat and evaporated in the first adsorption heat exchanger (101) is sucked into the compressor (103) and compressed.
    -第2冷凍サイクル動作(第2動作)-
 四方切換弁(105)が第2接続状態になると、第1ポートと第4ポートとが連通するとともに第2ポートと第3ポートとが連通する。これにより、圧縮機(103)によって圧縮された冷媒は、四方切換弁(105)を通過して第1吸着熱交換器(101)に流れ込む。第1吸着熱交換器(101)では、冷媒によって吸着剤が加熱され、吸着剤中の水分が空気へ放出される再生動作が行われる。第1吸着熱交換器(101)において放熱して凝縮した冷媒は、膨張弁(104)によって減圧された後、第2吸着熱交換器(102)に流れ込む。第2吸着熱交換器(102)では、空気中の水分が吸着剤に吸着される吸着動作が行われ、その際に生じる吸着熱が冷媒に付与される。第2吸着熱交換器(102)において吸熱して蒸発した冷媒は、圧縮機(103)に吸入されて圧縮される。
-Second refrigeration cycle operation (second operation)-
When the four-way switching valve (105) is in the second connection state, the first port communicates with the fourth port, and the second port communicates with the third port. Thus, the refrigerant compressed by the compressor (103) passes through the four-way switching valve (105) and flows into the first adsorption heat exchanger (101). In the first adsorption heat exchanger (101), the adsorbent is heated by the refrigerant, and a regeneration operation is performed in which moisture in the adsorbent is released to the air. The refrigerant radiated and condensed in the first adsorption heat exchanger (101) is decompressed by the expansion valve (104) and then flows into the second adsorption heat exchanger (102). In the second adsorption heat exchanger (102), an adsorption operation in which moisture in the air is adsorbed by the adsorbent is performed, and adsorption heat generated at that time is imparted to the refrigerant. The refrigerant that has absorbed heat and evaporated in the second adsorption heat exchanger (102) is sucked into the compressor (103) and compressed.
  〈切換機構〉
 切換機構(200)は、コントローラ(20)による制御に応答して、第1および第2熱交換室(S11,S12)と給気通路(P1)および再生通路(P2)との接続状態を、第1通路状態(図1の実線で示された状態)と第2通路状態(図1の破線で示された状態)とに設定可能に構成されている。
<Switching mechanism>
In response to control by the controller (20), the switching mechanism (200) changes the connection state between the first and second heat exchange chambers (S11, S12), the supply passage (P1), and the regeneration passage (P2), The first passage state (state indicated by the solid line in FIG. 1) and the second passage state (state indicated by the broken line in FIG. 1) can be set.
   《第1通路状態》
 第1および第2熱交換室(S11,S12)の接続状態が第1通路状態になると、第1熱交換室(S11)は、第1および第2給気通路部(P11,P12)の間に接続されて給気通路(P1)に組み込まれ、第2熱交換室(S12)は、第1および第2再生通路部(P21,P22)の間に接続されて再生通路(P2)に組み込まれる。
<< First passage state >>
When the connection state of the first and second heat exchange chambers (S11, S12) becomes the first passage state, the first heat exchange chamber (S11) is located between the first and second air supply passage portions (P11, P12). Is connected to the intake passage (P1) and the second heat exchange chamber (S12) is connected between the first and second regeneration passage portions (P21, P22) and incorporated into the regeneration passage (P2). It is.
   《第2通路状態》
 第1および第2熱交換室(S11,S12)の接続状態が第2通路状態になると、第1熱交換室(S11)は、第1および第2再生通路部(P21,P22)の間に接続されて再生通路(P2)に組み込まれ、第2熱交換室(S12)は、第1および第2給気通路部(P11,P12)の間に接続されて給気通路(P1)に組み込まれる。
<< 2nd passage state >>
When the connection state of the first and second heat exchange chambers (S11, S12) becomes the second passage state, the first heat exchange chamber (S11) is placed between the first and second regeneration passage portions (P21, P22). Connected and incorporated into the regeneration passage (P2), the second heat exchange chamber (S12) is connected between the first and second air supply passage portions (P11, P12) and incorporated into the air supply passage (P1) It is.
   《熱交換室の接続切換動作》
 また、切換機構(200)は、四方切換弁(105)が第1接続状態である場合に、第1および第2熱交換室(S11,S12)の接続状態を第1通路状態に設定し、四方切換弁(105)が第2接続状態である場合に、第1および第2熱交換室(S11,S12)の接続状態を第2通路状態に設定する。このように、切換機構(200)は、第1および第2熱交換室(S11,S12)のうち蒸発器となっている吸着熱交換器が設けられた熱交換室が給気通路(P1)の一部として組み込まれ、凝縮器となっている吸着熱交換器が設けられた熱交換室が再生通路(P2)の一部として組み込まれるように、冷媒回路(100)の冷凍サイクル動作の切り換えと連動して第1および第2熱交換室(S11,S12)と給気通路(P1)および再生通路(P2)との接続状態を切換可能に構成されている。すなわち、切換機構(200)は、第1および第2熱交換室(S11,S12)のうち蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気が調湿空間(S0)に供給され、凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)に吸着剤を再生するための空気が流通するように、空気の流れを切り換える。
<Connection switching operation in heat exchange chamber>
The switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the first passage state when the four-way switching valve (105) is in the first connection state, When the four-way switching valve (105) is in the second connection state, the connection state of the first and second heat exchange chambers (S11, S12) is set to the second passage state. As described above, the switching mechanism (200) is configured such that the heat exchange chamber provided with the adsorption heat exchanger serving as an evaporator of the first and second heat exchange chambers (S11, S12) is provided in the supply passage (P1). Switching of the refrigeration cycle operation of the refrigerant circuit (100) so that the heat exchange chamber with the adsorption heat exchanger that is built in as a part of the condenser is installed as part of the regeneration passage (P2) The connection state between the first and second heat exchange chambers (S11, S12), the supply passage (P1), and the regeneration passage (P2) can be switched in conjunction with the operation. That is, the switching mechanism (200) has the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator among the first and second heat exchange chambers (S11, S12). Passed air is supplied to the humidity control space (S0), and air for regenerating the adsorbent flows in the heat exchange chamber (S12, S11) where the adsorption heat exchanger (102, 101), which is a condenser, is installed. The air flow is switched.
   《吸着熱交換器を通過する空気の流通方向》
 なお、この例では、第1および第2熱交換室(S11,S12)の接続状態が第1通路状態である場合(すなわち、第1熱交換室(S11)が給気通路(P1)の一部として組み込まれている場合)に第1吸着熱交換器(101)を通過する空気の流通方向は、第1および第2熱交換室(S11,S12)の接続状態が第2通路状態である場合(すなわち、第1熱交換室(S11)が再生通路(P2)の一部として組み込まれている場合)に第1吸着熱交換器(101)を通過する空気の流通方向と同じ方向となっている(所謂、並行流となっている)。第2吸着熱交換器(102)を通過する空気の流通方向についても同様である。このように、第1および第2吸着熱交換器(101,102)の各々を通過する空気の流通方向は、吸着熱交換器が蒸発器から凝縮器に(または、凝縮器から蒸発器に)切り換わっても変化しない。すなわち、切換機構(200)は、第1および第2吸着熱交換器(101,102)の各々を通過する空気の流通方向が、その吸着熱交換器(101,102)が蒸発器となっている場合とその吸着熱交換器(101,102)が凝縮器となっている場合とで同方向となるように、空気の流れを切り換える。
《Flow direction of air passing through adsorption heat exchanger》
In this example, when the connection state of the first and second heat exchange chambers (S11, S12) is the first passage state (that is, the first heat exchange chamber (S11) is a part of the air supply passage (P1). In the flow direction of the air passing through the first adsorption heat exchanger (101) in the case of being incorporated as a part), the connection state of the first and second heat exchange chambers (S11, S12) is the second passage state. In this case (that is, when the first heat exchange chamber (S11) is incorporated as part of the regeneration passage (P2)), the flow direction is the same as the flow direction of the air passing through the first adsorption heat exchanger (101). (So-called parallel flow). The same applies to the flow direction of the air passing through the second adsorption heat exchanger (102). Thus, the flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) is switched from the evaporator to the condenser (or from the condenser to the evaporator). It doesn't change. That is, the switching mechanism (200) has a case where the flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) is the same as when the adsorption heat exchanger (101, 102) is an evaporator. The air flow is switched so that the adsorption heat exchanger (101, 102) is in the same direction as the condenser.
  〈吸着ブロック〉
 第1および第2吸着ブロック(301,302)の各々は、吸着剤が担持されて空気を吸着剤と接触させるように構成されている。例えば、第1および第2吸着ブロック(301,302)の各々は、構造体(具体的には、ハニカム構造を有する構造体)の表面に吸着剤を担持させることによって構成されている。また、第1および第2吸着ブロック(301,302)は、第1および第2熱交換室(S11,S12)にそれぞれ設けられる。なお、以下の説明では、第1および第2吸着ブロック(301,302)の総称を単に「吸着ブロック(301,302)」と表記する。
<Suction block>
Each of the first and second adsorption blocks (301, 302) is configured to carry an adsorbent and bring air into contact with the adsorbent. For example, each of the first and second adsorption blocks (301, 302) is configured by supporting an adsorbent on the surface of a structure (specifically, a structure having a honeycomb structure). The first and second adsorption blocks (301, 302) are provided in the first and second heat exchange chambers (S11, S12), respectively. In the following description, the generic name of the first and second adsorption blocks (301, 302) is simply referred to as “adsorption block (301, 302)”.
 第1吸着ブロック(301)は、第1熱交換室(S11)において、第1吸着熱交換器(101)が蒸発器となっている場合に第1吸着熱交換器(101)の下流側(風下側)となる位置(すなわち、第1熱交換室(S11)が給気通路(P1)の一部として組み込まれている場合に第1吸着熱交換器(101)によって除湿された空気が通過する位置)に配置されている。換言すると、第1吸着ブロック(301)は、第1熱交換室(S11)において、第1および第2熱交換室(S11,S12)の接続状態が第1通路状態(図1の実線で示した状態)である場合に第1吸着熱交換器(101)の下流側となる位置に配置されている。 The first adsorption block (301) is located downstream of the first adsorption heat exchanger (101) when the first adsorption heat exchanger (101) is an evaporator in the first heat exchange chamber (S11) ( Air dehumidified by the first adsorption heat exchanger (101) passes when the position becomes the leeward side (that is, when the first heat exchange chamber (S11) is incorporated as a part of the air supply passage (P1)) Position). In other words, in the first adsorption block (301), in the first heat exchange chamber (S11), the connection state of the first and second heat exchange chambers (S11, S12) is the first passage state (shown by the solid line in FIG. 1). In this case, it is disposed at a position downstream of the first adsorption heat exchanger (101).
 これと同様に、第2吸着ブロック(302)は、第2熱交換室(S12)において、第2吸着熱交換器(102)が蒸発器となっている場合に第2吸着熱交換器(102)の下流側(風下側)となる位置(すなわち、第2熱交換室(S12)が給気通路(P1)の一部として組み込まれている場合に第2吸着熱交換器(102)によって除湿された空気が通過する位置)に配置されている。換言すると、第2吸着ブロック(302)は、第2熱交換室(S12)において、第1および第2熱交換室(S11,S12)の接続状態が第2通路状態(図1の破線で示した状態)である場合に第2吸着熱交換器(102)の下流側となる位置に配置されている。 Similarly, when the second adsorption heat exchanger (102) is an evaporator in the second heat exchange chamber (S12), the second adsorption block (302) has the second adsorption heat exchanger (102). ) On the downstream side (leeward side) (that is, when the second heat exchange chamber (S12) is incorporated as a part of the air supply passage (P1), the second adsorption heat exchanger (102) removes the moisture. At a position where the generated air passes). In other words, in the second adsorption block (302), in the second heat exchange chamber (S12), the connection state of the first and second heat exchange chambers (S11, S12) is the second passage state (indicated by the broken line in FIG. 1). The second adsorption heat exchanger (102) is disposed at a position downstream of the second adsorption heat exchanger (102).
 なお、この例では、第1および第2吸着熱交換器(101,102)の各々を通過する空気の流通方向は、その吸着熱交換器(101,102)が蒸発器となっている場合とその吸着熱交換器(101,102)が凝縮器となっている場合とで同方向となっている。したがって、第1および第2熱交換室(S11,S12)の接続状態が第1通路状態(図1の実線で示した状態)である場合に第1吸着熱交換器(101)の下流側となる位置は、第1および第2熱交換室(S11,S12)の接続状態が第2通路状態(図1の破線で示した状態)である場合に第1吸着熱交換器(101)の下流側となる位置と同じ位置である。これと同様に、第1および第2熱交換室(S11,S12)の接続状態が第2通路状態(図1の破線で示した状態)である場合に第2吸着熱交換器(102)の下流側となる位置は、第1および第2熱交換室(S11,S12)の接続状態が第1通路状態(図1の実線で示した状態)である場合に第2吸着熱交換器(102)の下流側となる位置と同じ位置である。すなわち、第1および第2熱交換室(S11,S12)の各々では、吸着ブロック(301,302)は,吸着熱交換器(101,102)が蒸発器となっている場合および吸着熱交換器(101,102)が凝縮器となっている場合のどちらの場合にも、吸着熱交換器(101,102)の下流側に位置する。 In this example, the flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) depends on whether the adsorption heat exchanger (101, 102) is an evaporator or the adsorption heat exchange. The direction is the same as when the condenser (101, 102) is a condenser. Therefore, when the connection state of the first and second heat exchange chambers (S11, S12) is the first passage state (the state indicated by the solid line in FIG. 1), the downstream side of the first adsorption heat exchanger (101) Is located downstream of the first adsorption heat exchanger (101) when the connection state of the first and second heat exchange chambers (S11, S12) is the second passage state (shown by the broken line in FIG. 1). It is the same position as the side position. Similarly, when the connection state of the first and second heat exchange chambers (S11, S12) is the second passage state (the state indicated by the broken line in FIG. 1), the second adsorption heat exchanger (102) The position on the downstream side is the second adsorption heat exchanger (102 when the connection state of the first and second heat exchange chambers (S11, S12) is the first passage state (the state shown by the solid line in FIG. 1). It is the same position as the downstream position. That is, in each of the first and second heat exchange chambers (S11, S12), the adsorption block (301, 302) includes an adsorption heat exchanger (101, 102) as an evaporator and an adsorption heat exchanger (101, 102). In either case of a condenser, it is located downstream of the adsorption heat exchanger (101, 102).
  〈コントローラ〉
 コントローラ(20)は、各種センサ(例えば、温度センサや湿度センサなど)の検出値に基づいて、除湿装置(10)を制御する。例えば、コントローラ(20)は、CPUやメモリによって構成されている。
<controller>
The controller (20) controls the dehumidifier (10) based on detection values of various sensors (for example, a temperature sensor, a humidity sensor, etc.). For example, the controller (20) is constituted by a CPU and a memory.
  〈除湿装置による除湿運転〉
 次に、図1を参照して、実施形態1の除湿装置(10)の除湿運転について説明する。この除湿装置(10)は、第1および第2除湿動作を所定の時間間隔(例えば、10分間隔)で交互に繰り返す。
<Dehumidifying operation with dehumidifier>
Next, the dehumidifying operation of the dehumidifying device (10) of Embodiment 1 will be described with reference to FIG. The dehumidifier (10) repeats the first and second dehumidifying operations alternately at a predetermined time interval (for example, every 10 minutes).
   《第1除湿動作》
 第1除湿動作では、圧縮機(103)が駆動され、膨張弁(104)の開度が調節され、四方切換弁(105)が第1接続状態(図1の実線で示した状態)となる。これにより、冷媒回路(100)は、第1吸着熱交換器(101)が蒸発器となり第2吸着熱交換器(102)が凝縮器となる第1冷凍サイクル動作を行う。また、切換機構(200)は、第1および第2熱交換室(S11,S12)の接続状態を第1通路状態(図1の実線で示した状態)に設定する。
<< First dehumidifying operation >>
In the first dehumidifying operation, the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the first connection state (the state shown by the solid line in FIG. 1). . Thus, the refrigerant circuit (100) performs a first refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as an evaporator and the second adsorption heat exchanger (102) serves as a condenser. Further, the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the first passage state (the state indicated by the solid line in FIG. 1).
    -給気通路における空気の流れ-
 給気通路(P1)に取り込まれた空気(この例では、室外空気(OA))は、冷却器(11)によって冷却除湿された後に、第1熱交換室(S11)に供給される。第1熱交換室(S11)に供給された空気は、蒸発器として機能している第1吸着熱交換器(101)を通過する。このとき、第1吸着熱交換器(101)を通過する空気の中の水分が第1吸着熱交換器(101)の吸着剤に吸着する。また、その吸着の際に生じた吸着熱が第1吸着熱交換器(101)を流れる冷媒に吸熱される。このように、蒸発器として機能している第1吸着熱交換器(101)を通過する空気は、第1吸着熱交換器(101)の吸着剤に水分を奪われて湿度が低下するとともに、第1吸着熱交換器(101)を流れる冷媒の吸熱作用により冷却されて温度も低下する。次に、第1吸着熱交換器(101)によって除湿および冷却された空気は、第1吸着ブロック(301)を通過する。このとき、この空気中の水分が第1吸着ブロック(301)の吸着剤に吸着する。これにより、第1吸着熱交換器(101)によって除湿された空気は、第1吸着ブロック(301)によってさらに除湿される。第1吸着熱交換器(101)および第1吸着ブロック(301)を通過して除湿された空気は、供給空気(SA)として室内空間(S1)に供給される。
-Air flow in the air supply passage-
The air taken into the supply passage (P1) (in this example, outdoor air (OA)) is cooled and dehumidified by the cooler (11), and then supplied to the first heat exchange chamber (S11). The air supplied to the first heat exchange chamber (S11) passes through the first adsorption heat exchanger (101) functioning as an evaporator. At this time, moisture in the air passing through the first adsorption heat exchanger (101) is adsorbed by the adsorbent of the first adsorption heat exchanger (101). Further, the heat of adsorption generated during the adsorption is absorbed by the refrigerant flowing through the first adsorption heat exchanger (101). Thus, while the air passing through the first adsorption heat exchanger (101) functioning as an evaporator is deprived of moisture by the adsorbent of the first adsorption heat exchanger (101), the humidity decreases, It is cooled by the endothermic action of the refrigerant flowing through the first adsorption heat exchanger (101), and the temperature also decreases. Next, the air dehumidified and cooled by the first adsorption heat exchanger (101) passes through the first adsorption block (301). At this time, moisture in the air is adsorbed on the adsorbent of the first adsorption block (301). Thereby, the air dehumidified by the first adsorption heat exchanger (101) is further dehumidified by the first adsorption block (301). The air dehumidified after passing through the first adsorption heat exchanger (101) and the first adsorption block (301) is supplied to the indoor space (S1) as supply air (SA).
    -再生通路における空気の流れ-
 再生通路(P2)に取り込まれた空気(この例では、室内空気(RA))は、第2熱交換室(S12)に供給される。第2熱交換室(S12)に供給された空気は、凝縮器として機能している第2吸着熱交換器(102)を通過する。このとき、第2吸着熱交換器(102)を通過する空気が第2吸着熱交換器(102)を流れる冷媒によって加熱される。また、第2吸着熱交換器(102)の吸着剤中の水分が第2吸着熱交換器(102)を通過する空気の中に放出される。これにより、第2吸着熱交換器(102)の吸着剤が再生される。このように、凝縮器として機能している第2吸着熱交換器(102)を通過する空気は、第2吸着熱交換器(102)の吸着剤から水分を付与されて湿度が上昇するとともに、第2吸着熱交換器(102)を流れる冷媒の放熱作用により加熱されて温度も上昇する。次に、第2吸着熱交換器(102)によって加湿および加熱された空気は、第2吸着ブロック(302)を通過する。このとき、第2吸着ブロック(302)の吸着剤の水分が第2吸着ブロック(302)を通過する空気に放出される。これにより、第2吸着ブロック(302)の吸着剤が再生される。第2吸着熱交換器(102)および第2吸着ブロック(302)を通過した空気は、排出空気(EA)として室外空間に排出される。
-Air flow in the regeneration passage-
Air (in this example, room air (RA)) taken into the regeneration passage (P2) is supplied to the second heat exchange chamber (S12). The air supplied to the second heat exchange chamber (S12) passes through the second adsorption heat exchanger (102) functioning as a condenser. At this time, the air passing through the second adsorption heat exchanger (102) is heated by the refrigerant flowing through the second adsorption heat exchanger (102). In addition, moisture in the adsorbent of the second adsorption heat exchanger (102) is released into the air passing through the second adsorption heat exchanger (102). Thereby, the adsorbent of the second adsorption heat exchanger (102) is regenerated. Thus, while the air passing through the second adsorption heat exchanger (102) functioning as a condenser is given moisture from the adsorbent of the second adsorption heat exchanger (102), the humidity rises, It is heated by the heat radiation action of the refrigerant flowing through the second adsorption heat exchanger (102), and the temperature also rises. Next, the air humidified and heated by the second adsorption heat exchanger (102) passes through the second adsorption block (302). At this time, the moisture of the adsorbent of the second adsorption block (302) is released to the air passing through the second adsorption block (302). Thereby, the adsorbent of the second adsorption block (302) is regenerated. The air that has passed through the second adsorption heat exchanger (102) and the second adsorption block (302) is exhausted to the outdoor space as exhaust air (EA).
   《第2除湿動作》
 第2除湿動作では、圧縮機(103)が駆動され、膨張弁(104)の開度が調節され、四方切換弁(105)が第2接続状態(図1の破線で示した状態)となる。これにより、冷媒回路(100)は、第1吸着熱交換器(101)が凝縮器となり第2吸着熱交換器(102)が蒸発器となる第2冷凍サイクル動作を行う。また、切換機構(200)は、第1および第2熱交換室(S11,S12)の接続状態を第2通路状態(図1の破線で示した状態)に設定する。
<Second dehumidifying operation>
In the second dehumidifying operation, the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the second connection state (the state indicated by the broken line in FIG. 1). . Thereby, the refrigerant circuit (100) performs a second refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as a condenser and the second adsorption heat exchanger (102) serves as an evaporator. Further, the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the second passage state (the state indicated by the broken line in FIG. 1).
    -給気通路における空気の流れ-
 給気通路(P1)に取り込まれた空気(この例では、室外空気(OA))は、冷却器(11)によって冷却除湿された後に、第2熱交換室(S12)に供給される。第2熱交換室(S12)に供給された空気は、蒸発器として機能している第2吸着熱交換器(102)を通過する。このとき、蒸発器として機能している第2吸着熱交換器(102)を通過する空気は、第2吸着熱交換器(102)の吸着剤に水分を奪われて湿度が低下するとともに、第2吸着熱交換器(102)を流れる冷媒の吸熱作用により冷却されて温度も低下する。次に、第2吸着熱交換器(102)によって除湿および冷却された空気は、第2吸着ブロック(302)を通過する。このとき、この空気中の水分が第2吸着ブロック(302)の吸着剤に吸着する。これにより、第2吸着熱交換器(102)によって除湿された空気は、第2吸着ブロック(302)によってさらに除湿される。第2吸着熱交換器(102)および第2吸着ブロック(302)を通過して除湿された空気は、供給空気(SA)として室内空間(S1)に供給される。
-Air flow in the air supply passage-
The air taken into the supply passage (P1) (in this example, outdoor air (OA)) is cooled and dehumidified by the cooler (11), and then supplied to the second heat exchange chamber (S12). The air supplied to the second heat exchange chamber (S12) passes through the second adsorption heat exchanger (102) functioning as an evaporator. At this time, the air passing through the second adsorption heat exchanger (102) functioning as an evaporator is deprived of moisture by the adsorbent of the second adsorption heat exchanger (102), and the humidity decreases. The refrigerant is cooled by the endothermic action of the refrigerant flowing through the two-adsorption heat exchanger (102), and the temperature also decreases. Next, the air dehumidified and cooled by the second adsorption heat exchanger (102) passes through the second adsorption block (302). At this time, moisture in the air is adsorbed to the adsorbent of the second adsorption block (302). Thereby, the air dehumidified by the second adsorption heat exchanger (102) is further dehumidified by the second adsorption block (302). The air dehumidified after passing through the second adsorption heat exchanger (102) and the second adsorption block (302) is supplied to the indoor space (S1) as supply air (SA).
    -再生通路における空気の流れ-
 再生通路(P2)に取り込まれた空気(この例では、室内空気(RA))は、第1熱交換室(S11)に供給される。第1熱交換室(S11)に供給された空気は、凝縮器として機能している第1吸着熱交換器(101)を通過する。このとき、凝縮器として機能している第1吸着熱交換器(101)を通過する空気は、第1吸着熱交換器(101)の吸着剤から水分を付与されて湿度が上昇するとともに、第1吸着熱交換器(101)を流れる冷媒の放熱作用により加熱されて温度も上昇する。これにより、第1吸着熱交換器(101)の吸着剤が再生される。次に、第1吸着熱交換器(101)によって加湿および加熱された空気は、第1吸着ブロック(301)を通過する。このとき、第1吸着ブロック(301)の吸着剤の水分が第1吸着ブロック(301)を通過する空気に放出される。これにより、第1吸着ブロック(301)の吸着剤が再生される。第1吸着熱交換器(101)および第1吸着ブロック(301)を通過した空気は、排出空気(EA)として室外空間に排出される。
-Air flow in the regeneration passage-
Air (in this example, room air (RA)) taken into the regeneration passage (P2) is supplied to the first heat exchange chamber (S11). The air supplied to the first heat exchange chamber (S11) passes through the first adsorption heat exchanger (101) functioning as a condenser. At this time, the air passing through the first adsorption heat exchanger (101) functioning as a condenser is given moisture from the adsorbent of the first adsorption heat exchanger (101), and the humidity rises. The temperature rises due to heating by the heat radiation action of the refrigerant flowing through the one adsorption heat exchanger (101). Thereby, the adsorbent of the first adsorption heat exchanger (101) is regenerated. Next, the air humidified and heated by the first adsorption heat exchanger (101) passes through the first adsorption block (301). At this time, the moisture of the adsorbent of the first adsorption block (301) is released to the air passing through the first adsorption block (301). Thereby, the adsorbent of the first adsorption block (301) is regenerated. The air that has passed through the first adsorption heat exchanger (101) and the first adsorption block (301) is exhausted to the outdoor space as exhaust air (EA).
  〈除湿装置の構造〉
 次に、図2を参照して、実施形態1による除湿装置(10)の構造について説明する。なお、以下の説明において用いる「上」「下」「左」「右」「前」「後」「奥」は、除湿装置(10)を前面側から見た場合の方向を示している。また、図2において、中央図は、除湿装置(10)の平面図であり、右図は、除湿装置(10)の右側面図であり、左図は、除湿装置(10)の左側面図である。
<Structure of dehumidifier>
Next, the structure of the dehumidifier (10) according to Embodiment 1 will be described with reference to FIG. Note that “upper”, “lower”, “left”, “right”, “front”, “rear”, and “back” used in the following description indicate directions when the dehumidifier (10) is viewed from the front side. In FIG. 2, the central view is a plan view of the dehumidifying device (10), the right view is a right side view of the dehumidifying device (10), and the left view is a left side view of the dehumidifying device (10). It is.
 除湿装置(10)は、冷媒回路(100)の構成部品を収容するケーシング(41)を備えている。ケーシング(41)は、やや扁平で高さが比較的低い直方体状に形成され、前面パネル(42)と背面パネル(43)と左側面パネル(44)と右側面パネル(45)とを有している。この例では、ケーシング(41)の長手方向が前後方向となっている。 The dehumidifier (10) includes a casing (41) that houses the components of the refrigerant circuit (100). The casing (41) is formed in a substantially flat and relatively low rectangular parallelepiped shape, and has a front panel (42), a rear panel (43), a left side panel (44), and a right side panel (45). ing. In this example, the longitudinal direction of the casing (41) is the front-rear direction.
 ケーシング(41)には、吸着側吸込口(51)と、再生側吸込口(52)と、給気口(53)と、排気口(54)とが形成されている。吸着側吸込口(51)は、背面パネル(43)の上側部分に設けられ、再生側吸込口(52)は、背面パネル(43)の下側部分に設けられている。給気口(53)は、右側面パネル(45)において前面パネル(42)側の端部付近に設けられ、排気口(54)は、左側面パネル(44)において前面パネル(42)側の端部付近に設けられている。 The casing (41) has an adsorption side suction port (51), a regeneration side suction port (52), an air supply port (53), and an exhaust port (54). The suction side suction port (51) is provided in the upper part of the back panel (43), and the regeneration side suction port (52) is provided in the lower part of the back panel (43). The air supply port (53) is provided near the end of the right side panel (45) on the front panel (42) side, and the exhaust port (54) is provided on the left side panel (44) on the front panel (42) side. It is provided near the end.
 また、ケーシング(41)の内部空間には、第1仕切板(46)と第2仕切板(47)と中央仕切板(48)とが設けられている。これらの仕切板(46,47,48)は、ケーシング(41)の底板に起立した状態で設置され、ケーシング(41)の内部空間をケーシング(41)の底板から天板に亘って区画している。第1および第2仕切板(46,47)は、前面パネル(42)および背面パネル(43)と平行な姿勢で、ケーシング(41)の前後方向に所定の間隔をおいて配置されている。第1仕切板(46)は、背面パネル(43)寄りに配置され、第2仕切板(47)は、前面パネル(42)寄りに配置されている。中央仕切板(48)の配置については、後述する。 In the internal space of the casing (41), a first partition plate (46), a second partition plate (47), and a central partition plate (48) are provided. These partition plates (46, 47, 48) are installed upright on the bottom plate of the casing (41) and partition the internal space of the casing (41) from the bottom plate of the casing (41) to the top plate. Yes. The first and second partition plates (46, 47) are arranged at a predetermined interval in the front-rear direction of the casing (41) in a posture parallel to the front panel (42) and the rear panel (43). The first partition plate (46) is disposed closer to the rear panel (43), and the second partition plate (47) is disposed closer to the front panel (42). The arrangement of the central partition plate (48) will be described later.
 ケーシング(41)内において、第1仕切板(46)と背面パネル(43)の間の空間は、上下2つの空間に仕切られており、下側の空間が第1吸着側内部通路(S21)を構成し、上側の空間が第1再生側内部通路(S22)を構成している。第1吸着側内部通路(S21)は、吸着側吸込口(51)に接続されるダクト(図1の第1給気通路部(P11)に対応)を介して室外空間と連通している。第1再生側内部通路(S22)は、再生側吸込口(52)に接続されるダクト(図1の第1再生通路部(P21)に対応)を介して室内空間(S1)と連通している。また、第1吸着側内部通路(S21)には、吸着側フィルタ(63)が設置され、第1再生側内部通路(S22)には、再生側フィルタ(64)が設置されている。 In the casing (41), the space between the first partition plate (46) and the back panel (43) is partitioned into two upper and lower spaces, and the lower space is the first adsorption side internal passage (S21). The upper space constitutes the first reproduction side internal passage (S22). The first adsorption side internal passage (S21) communicates with the outdoor space via a duct (corresponding to the first air supply passage portion (P11) in FIG. 1) connected to the adsorption side suction port (51). The first regeneration side internal passage (S22) communicates with the indoor space (S1) via a duct (corresponding to the first regeneration passage portion (P21) in FIG. 1) connected to the regeneration side suction port (52). Yes. An adsorption side filter (63) is installed in the first adsorption side internal passage (S21), and a regeneration side filter (64) is installed in the first regeneration side internal passage (S22).
 ケーシング(41)内において、第1仕切板(46)と第2仕切板(47)との間の空間は、中央仕切板(48)によって左右に区画されており、中央仕切板(48)の左側の空間が第1熱交換室(S11)を構成し、中央仕切板(48)の右側の空間が第2熱交換室(S12)を構成している。第1熱交換室(S11)には、第1吸着熱交換器(101)が収容され、第2熱交換室(S12)には、第2吸着熱交換器(102)が収容されている。また、第2熱交換室(S12)には、冷媒回路(100)の膨張弁(104)(図示を省略)が収容されている。 In the casing (41), the space between the first partition plate (46) and the second partition plate (47) is partitioned on the left and right by the center partition plate (48). The space on the left side constitutes the first heat exchange chamber (S11), and the space on the right side of the central partition plate (48) constitutes the second heat exchange chamber (S12). A first adsorption heat exchanger (101) is accommodated in the first heat exchange chamber (S11), and a second adsorption heat exchanger (102) is accommodated in the second heat exchange chamber (S12). The second heat exchange chamber (S12) accommodates an expansion valve (104) (not shown) of the refrigerant circuit (100).
 第1および第2吸着熱交換器(101,102)の各々は、全体として長方形の厚板状あるいは扁平な直方体状に形成され、互いに対向する2つの主面(幅広の側面)が空気を通過させる面となっている。そして、第1吸着熱交換器(101)は、その2つの主面が第1および第2仕切板(46,47)と平行になる姿勢で、第1熱交換室(S11)内に起立した状態で設置されている。これと同様に、第2吸着熱交換器(102)は、その2つの主面が第1および第2仕切板(46,47)と平行になる姿勢で、第2熱交換室(S12)内に起立した状態で設置されている。 Each of the first and second adsorption heat exchangers (101, 102) is formed into a rectangular thick plate shape or flat rectangular parallelepiped shape as a whole, and two main surfaces (wide side surfaces) facing each other are surfaces through which air passes. It has become. And the 1st adsorption heat exchanger (101) stood up in the 1st heat exchange room (S11) with the posture where the two principal surfaces became parallel to the 1st and 2nd partition plates (46, 47). It is installed in a state. Similarly, the second adsorptive heat exchanger (102) has a configuration in which the two main surfaces thereof are parallel to the first and second partition plates (46, 47) and in the second heat exchange chamber (S12). It is installed in a standing state.
 第1および第2吸着ブロック(301,302)の各々は、全体として長方形の厚板状あるいは扁平な直方体状に形成され、互いに対向する2つの主面(幅広の側面)が空気を通過させる面となっている。例えば、第1および第2吸着ブロック(301,302)の各々は、その一方の主面から他方の主面まで貫通する多数の孔を有するハニカム状の構造体である。また、第1吸着ブロック(301)は、その2つの主面が第1および第2仕切板(46,47)と平行になる姿勢で、第1熱交換室(S11)内に起立した状態で設置されている。これと同様に、第2吸着ブロック(302)は、その2つの主面が第1および第2仕切板(46,47)と平行になる姿勢で、第2熱交換室(S12)内に起立した状態で設置されている。 Each of the first and second adsorption blocks (301, 302) is formed in a rectangular thick plate shape or flat rectangular parallelepiped shape as a whole, and two main surfaces (wide side surfaces) facing each other serve as surfaces through which air passes. ing. For example, each of the first and second adsorption blocks (301, 302) is a honeycomb-like structure having a large number of holes penetrating from one main surface to the other main surface. The first adsorption block (301) stands up in the first heat exchange chamber (S11) with its two main surfaces parallel to the first and second partition plates (46, 47). is set up. Similarly, the second adsorption block (302) stands up in the second heat exchange chamber (S12) with its two main surfaces parallel to the first and second partition plates (46, 47). Installed.
 また、この例では、第1吸着ブロック(301)は、第1熱交換室(S11)において第1吸着熱交換器(101)と第2仕切板(47)との間に配置され、第2吸着ブロック(302)は、第2熱交換室(S12)において第2吸着熱交換器(102)と第2仕切板(47)との間に配置されている。なお、第1吸着ブロック(301)は、前後方向において第1吸着熱交換器(101)と間隔をおいて配置され、第2吸着ブロック(302)は、前後方向において第2吸着熱交換器(102)と間隔をおいて配置されている。 In this example, the first adsorption block (301) is disposed between the first adsorption heat exchanger (101) and the second partition plate (47) in the first heat exchange chamber (S11), and the second The adsorption block (302) is disposed between the second adsorption heat exchanger (102) and the second partition plate (47) in the second heat exchange chamber (S12). The first adsorption block (301) is spaced apart from the first adsorption heat exchanger (101) in the front-rear direction, and the second adsorption block (302) is arranged in the second adsorption heat exchanger (101) in the front-rear direction. 102) and spaced apart.
 また、ケーシング(41)内において、第2仕切板(47)の前面に沿った空間は、上下に仕切られており、この上下に仕切られた空間のうち、上側の部分が第2吸着側内部通路(S23)を構成し、下側の部分が第2再生側内部通路(S24)を構成している。 Further, in the casing (41), the space along the front surface of the second partition plate (47) is vertically partitioned, and the upper part of the vertically partitioned space is the second suction side interior. The passage (S23) is configured, and the lower part configures the second regeneration side internal passage (S24).
 第1仕切板(46)には、第1~第4ダンパ(D1~D4)が設けられ、第2仕切板(47)には、第5~第8ダンパ(D5~D8)が設けられている。第1~第8ダンパ(D1~D8)の各々は、コントローラ(20)による制御に応答して開状態と閉状態とを切換可能に構成されている。これらの第1~第8ダンパ(D1~D8)は、切換機構(200)を構成している。 The first partition plate (46) is provided with first to fourth dampers (D1 to D4), and the second partition plate (47) is provided with fifth to eighth dampers (D5 to D8). Yes. Each of the first to eighth dampers (D1 to D8) is configured to be switchable between an open state and a closed state in response to control by the controller (20). These first to eighth dampers (D1 to D8) constitute a switching mechanism (200).
 第1ダンパ(D1)は、第1仕切板(46)の上側部分(第1再生側内部通路(S22)に面する部分)において中央仕切板(48)よりも右側に取り付けられ、第2ダンパ(D2)は、第1仕切板(46)の上側部分において中央仕切板(48)よりも左側に取り付けられる。第3ダンパ(D3)は、第1仕切板(46)の下側部分(第1吸着側内部通路(S21)に面する部分)において中央仕切板(48)よりも右側に取り付けられ、第4ダンパ(D4)は、第1仕切板(46)の下側部分において中央仕切板(48)よりも左側に取り付けられる。 The first damper (D1) is attached to the right side of the central partition plate (48) in the upper portion of the first partition plate (46) (the portion facing the first regeneration side internal passage (S22)), and the second damper (D2) is attached to the left side of the central partition plate (48) in the upper part of the first partition plate (46). The third damper (D3) is attached to the right side of the central partition plate (48) in the lower portion of the first partition plate (46) (the portion facing the first suction side internal passage (S21)). The damper (D4) is attached to the left side of the central partition plate (48) in the lower portion of the first partition plate (46).
 第5ダンパ(D5)は、第2仕切板(47)の上側部分(第2吸着側内部通路(S23)に面する部分)において中央仕切板(48)よりも右側に取り付けられ、第6ダンパ(D6)は、第2仕切板(47)の上側部分において中央仕切板(48)よりも左側に取り付けられる。第7ダンパ(D7)は、第2仕切板(47)の下側部分(第2再生側内部通路(S24)に面する部分)において中央仕切板(48)よりも右側に取り付けられ、第8ダンパ(D8)は、第2仕切板(47)の下側部分において中央仕切板(48)よりも左側に取り付けられる。 The fifth damper (D5) is attached to the right side of the central partition plate (48) in the upper portion of the second partition plate (47) (the portion facing the second suction side internal passage (S23)). (D6) is attached to the left side of the central partition plate (48) in the upper part of the second partition plate (47). The seventh damper (D7) is attached to the right side of the central partition plate (48) in the lower portion of the second partition plate (47) (the portion facing the second regeneration side internal passage (S24)), The damper (D8) is attached to the left side of the central partition plate (48) in the lower portion of the second partition plate (47).
 ケーシング(41)内において、第2吸着側内部通路(S23)および第2再生側内部通路(S24)と前面パネル(42)との間の空間は、仕切板(49)によって左右に仕切られており、仕切板(49)の右側の空間が給気ファン室(S25)を構成し、仕切板(49)の左側の空間が排気ファン室(S26)を構成している。給気ファン室(S25)は、給気口(53)に接続されるダクト(図1の第2給気通路部(P12)に対応)を介して室内空間(S1)と連通している。排気ファン室(S26)は、排気口(54)に接続されるダクト(図1の第2再生通路部(P22)に対応)を介して室外空間と連通している。また、給気ファン室(S25)には、給気ファン(61)が収容され、排気ファン室(S26)には、排気ファン(62)が収容されている。給気ファン(61)は、その吹出口が給気口(53)に接続され、第2仕切板(47)側から吸い込んだ空気を給気口(53)へ吹き出す。排気ファン(62)は、その吹出口が排気口(54)に接続され、第2仕切板(47)側から吸い込んだ空気を排気口(54)へ吹き出す。例えば、給気ファン(61)および排気ファン(62)の各々は、遠心型の多翼ファン(所謂、シロッコファン)によって構成されている。また、給気ファン室(S25)には、冷媒回路(100)の圧縮機(103)および四方切換弁(105)(図示を省略)が収容されている。 In the casing (41), the space between the second adsorption side internal passage (S23) and the second regeneration side internal passage (S24) and the front panel (42) is partitioned left and right by the partition plate (49). The space on the right side of the partition plate (49) constitutes an air supply fan chamber (S25), and the space on the left side of the partition plate (49) constitutes an exhaust fan chamber (S26). The air supply fan chamber (S25) communicates with the indoor space (S1) through a duct (corresponding to the second air supply passage portion (P12) in FIG. 1) connected to the air supply port (53). The exhaust fan chamber (S26) communicates with the outdoor space via a duct (corresponding to the second regeneration passage portion (P22) in FIG. 1) connected to the exhaust port (54). The supply fan chamber (S25) accommodates the supply fan (61), and the exhaust fan chamber (S26) accommodates the exhaust fan (62). The air supply fan (61) has an air outlet connected to the air supply port (53), and blows air sucked in from the second partition (47) side to the air supply port (53). The exhaust fan (62) has an outlet connected to the exhaust outlet (54), and blows out air sucked from the second partition (47) side to the exhaust outlet (54). For example, each of the air supply fan (61) and the exhaust fan (62) is constituted by a centrifugal multiblade fan (so-called sirocco fan). Further, the compressor fan (103) and the four-way switching valve (105) (not shown) of the refrigerant circuit (100) are accommodated in the air supply fan chamber (S25).
   《第1除湿動作における空気の流れ》
 次に、図2を参照して、実施形態1の除湿装置(10)による第1除湿動作における空気の流れについて説明する。第1除湿動作では、第1吸着熱交換器(101)が蒸発器となり、第2吸着熱交換器(102)が凝縮器となる。また、図2のように、第1,第4,第6,第7ダンパ(D1,D4,D6,D7)が開状態となり、第2,第3,第5,第8ダンパ(D2,D3,D5,D8)が閉状態となる。これにより、第1および第2熱交換室(S11,S12)の接続状態が第1通路状態(図1の実線で示した状態)に設定され、第1熱交換室(S11)が給気通路(P1)に組み込まれ、第2熱交換室(S12)が再生通路(P2)に組み込まれる。
<< Air flow in the first dehumidifying action >>
Next, an air flow in the first dehumidifying operation by the dehumidifying device (10) of the first embodiment will be described with reference to FIG. In the first dehumidifying operation, the first adsorption heat exchanger (101) serves as an evaporator, and the second adsorption heat exchanger (102) serves as a condenser. As shown in FIG. 2, the first, fourth, sixth and seventh dampers (D1, D4, D6, D7) are opened, and the second, third, fifth and eighth dampers (D2, D3) are opened. , D5, D8) are closed. Thereby, the connection state of the first and second heat exchange chambers (S11, S12) is set to the first passage state (the state shown by the solid line in FIG. 1), and the first heat exchange chamber (S11) is set to the air supply passage. (P1) and the second heat exchange chamber (S12) is incorporated into the regeneration passage (P2).
    -給気通路における空気の流れ-
 吸着側吸込口(51)を経由して第1吸着側内部通路(S21)に供給された空気(この例では、室外空気(OA))は、吸着側フィルタ(63)を通過した後に、第4ダンパ(D4)を通過して第1熱交換室(S11)に供給される。
-Air flow in the air supply passage-
The air (in this example, outdoor air (OA)) supplied to the first adsorption side internal passage (S21) via the adsorption side suction port (51) passes through the adsorption side filter (63), It passes through 4 dampers (D4) and is supplied to the first heat exchange chamber (S11).
 第1熱交換室(S11)に供給された空気は、第1吸着熱交換器(101)と第1吸着ブロック(301)とを順に通過する際に、第1吸着熱交換器(101)および第1吸着ブロック(301)の吸着剤に水分を奪われて除湿される。 When the air supplied to the first heat exchange chamber (S11) passes through the first adsorption heat exchanger (101) and the first adsorption block (301) in order, the first adsorption heat exchanger (101) and Moisture is taken away by the adsorbent of the first adsorption block (301) and dehumidified.
 第1吸着熱交換器(101)および第1吸着ブロック(301)を通過して除湿された空気は、第6ダンパ(D6)を通過して第2吸着側内部通路(S23)に流れ込み、給気ファン室(S25)および給気口(53)を通過して供給空気(SA)として室内空間(S1)に供給される。 The dehumidified air that has passed through the first adsorption heat exchanger (101) and the first adsorption block (301) passes through the sixth damper (D6) and flows into the second adsorption side internal passage (S23). The air passes through the air fan chamber (S25) and the air supply port (53) and is supplied to the indoor space (S1) as supply air (SA).
    -再生通路における空気の流れ-
 再生側吸込口(52)を経由して第1再生側内部通路(S22)に供給された空気(この例では、室内空気(RA))は、再生側フィルタ(64)を通過した後に、第1ダンパ(D1)を通過して第2熱交換室(S12)に供給される。
-Air flow in the regeneration passage-
The air (in this example, room air (RA)) supplied to the first regeneration-side internal passage (S22) via the regeneration-side suction port (52) passes through the regeneration-side filter (64). It passes through one damper (D1) and is supplied to the second heat exchange chamber (S12).
 第2熱交換室(S12)に供給された空気は、第2吸着熱交換器(102)と第2吸着ブロック(302)とを順に通過する際に、第2吸着熱交換器(102)および第2吸着ブロック(302)の吸着剤から水分を付与される。これにより、第2吸着熱交換器(102)および第2吸着ブロック(302)の吸着剤が再生される。 When the air supplied to the second heat exchange chamber (S12) sequentially passes through the second adsorption heat exchanger (102) and the second adsorption block (302), the second adsorption heat exchanger (102) and Water is applied from the adsorbent of the second adsorption block (302). Thereby, the adsorbent of the second adsorption heat exchanger (102) and the second adsorption block (302) is regenerated.
 第2吸着熱交換器(102)および第2吸着ブロック(302)を通過した空気は、第7ダンパ(D7)を通過して第2再生側内部通路(S24)に流れ込み、排気ファン室(S26)および排気口(54)を通過して室外空間に排出される。 The air that has passed through the second adsorption heat exchanger (102) and the second adsorption block (302) passes through the seventh damper (D7) and flows into the second regeneration side internal passage (S24), and the exhaust fan chamber (S26 ) And the exhaust port (54) to be discharged into the outdoor space.
   《第2除湿動作における空気の流れ》
 次に、図3を参照して、実施形態1の除湿装置(10)による第2除湿動作における空気の流れについて説明する。第2除湿動作では、第1吸着熱交換器(101)が凝縮器となり、第2吸着熱交換器(102)が蒸発器となる。また、図3のように、第2,第3,第5,第8ダンパ(D2,D3,D5,D8)が開状態となり、第1,第4,第6,第7ダンパ(D1,D4,D6,D7)が閉状態となる。これにより、第1および第2熱交換室(S11,S12)の接続状態が第2通路状態(図1の破線で示した状態)に設定され、第1熱交換室(S11)が再生通路(P2)に組み込まれ、第2熱交換室(S12)が給気通路(P1)に組み込まれる。
<< Air flow in the second dehumidifying action >>
Next, an air flow in the second dehumidifying operation by the dehumidifying device (10) of the first embodiment will be described with reference to FIG. In the second dehumidifying operation, the first adsorption heat exchanger (101) serves as a condenser, and the second adsorption heat exchanger (102) serves as an evaporator. As shown in FIG. 3, the second, third, fifth, and eighth dampers (D2, D3, D5, and D8) are opened, and the first, fourth, sixth, and seventh dampers (D1, D4) are opened. , D6, D7) are closed. Thereby, the connection state of the first and second heat exchange chambers (S11, S12) is set to the second passage state (the state indicated by the broken line in FIG. 1), and the first heat exchange chamber (S11) is set to the regeneration passage ( P2) and the second heat exchange chamber (S12) is incorporated into the air supply passage (P1).
    -給気通路における空気の流れ-
 吸着側吸込口(51)を経由して第1吸着側内部通路(S21)に供給された空気(この例では、室外空気(OA))は、吸着側フィルタ(63)を通過した後に、第3ダンパ(D3)を通過して第2熱交換室(S12)に供給される。
-Air flow in the air supply passage-
The air (in this example, outdoor air (OA)) supplied to the first adsorption side internal passage (S21) via the adsorption side suction port (51) passes through the adsorption side filter (63), It passes through 3 dampers (D3) and is supplied to the second heat exchange chamber (S12).
 第2熱交換室(S12)に供給された空気は、第2吸着熱交換器(102)と第2吸着ブロック(302)とを順に通過する際に、第2吸着熱交換器(102)および第2吸着ブロック(302)の吸着剤に水分を奪われて除湿される。 When the air supplied to the second heat exchange chamber (S12) sequentially passes through the second adsorption heat exchanger (102) and the second adsorption block (302), the second adsorption heat exchanger (102) and Moisture is taken away by the adsorbent of the second adsorption block (302) and dehumidified.
 第2吸着熱交換器(102)および第2吸着ブロック(302)を通過して除湿された空気は、第5ダンパ(D5)を通過して第2吸着側内部通路(S23)に流れ込み、給気ファン室(S25)および給気口(53)を通過して供給空気(SA)として室内空間(S1)に供給される。 The dehumidified air that has passed through the second adsorption heat exchanger (102) and the second adsorption block (302) passes through the fifth damper (D5) and flows into the second adsorption side internal passage (S23). The air passes through the air fan chamber (S25) and the air supply port (53) and is supplied to the indoor space (S1) as supply air (SA).
    -再生通路における空気の流れ-
 再生側吸込口(52)を経由して第1再生側内部通路(S22)に供給された空気(この例では、室内空気(RA))は、再生側フィルタ(64)を通過した後に、第2ダンパ(D2)を通過して第1熱交換室(S11)に供給される。
-Air flow in the regeneration passage-
The air (in this example, room air (RA)) supplied to the first regeneration-side internal passage (S22) via the regeneration-side suction port (52) passes through the regeneration-side filter (64). It passes through 2 dampers (D2) and is supplied to the first heat exchange chamber (S11).
 第1熱交換室(S11)に供給された空気は、第1吸着熱交換器(101)と第1吸着ブロック(301)とを順に通過する際に、第1吸着熱交換器(101)および第1吸着ブロック(301)の吸着剤から水分を付与される。これにより、第1吸着熱交換器(101)および第1吸着ブロック(301)の吸着剤が再生される。 When the air supplied to the first heat exchange chamber (S11) passes through the first adsorption heat exchanger (101) and the first adsorption block (301) in order, the first adsorption heat exchanger (101) and Water is applied from the adsorbent of the first adsorption block (301). Thereby, the adsorbent of the first adsorption heat exchanger (101) and the first adsorption block (301) is regenerated.
 第1吸着熱交換器(101)および第1吸着ブロック(301)を通過した空気は、第8ダンパ(D8)を通過して第2再生側内部通路(S24)に流れ込み、排気ファン室(S26)および排気口(54)を通過して室外空間に排出される。 The air that has passed through the first adsorption heat exchanger (101) and the first adsorption block (301) passes through the eighth damper (D8) and flows into the second regeneration side internal passage (S24), and the exhaust fan chamber (S26 ) And the exhaust port (54) to be discharged into the outdoor space.
  〈実施形態1による効果〉
 実施形態1の除湿装置(10)では、第1および第2熱交換室(S11,S12)に第1および第2吸着ブロック(301,302)を追加することにより、第1および第2熱交換室(S11,S12)における空気の除湿量を増加させることができる。
<Effects of Embodiment 1>
In the dehumidifying device (10) of the first embodiment, the first and second heat exchange chambers (301, 302) are added to the first and second heat exchange chambers (S11, S12). The amount of dehumidified air in S11 and S12) can be increased.
 また、第1熱交換室(S11)が給気通路(P1)に組み込まれている場合に第1吸着熱交換器(101)によって除湿された空気が通過する位置に第1吸着ブロック(301)を配置することにより、第1吸着熱交換器(101)によって除湿および冷却された空気を、第1吸着ブロック(301)に供給することができる。これにより、第1吸着ブロック(301)において吸着剤への水分の吸着を促進させることができる。これと同様に、第2熱交換室(S12)が給気通路(P1)に組み込まれている場合に、第2吸着熱交換器(102)によって除湿および冷却された空気を、第2吸着ブロック(302)に供給することができるので、第2吸着ブロック(302)において吸着剤への水分の吸着を促進させることができる。すなわち、第1および第2熱交換室(S11,S12)の各々において、吸着熱交換器(101,102)が蒸発器となっている場合に吸着熱交換器(101,102)の下流側となる位置に吸着ブロック(301,302)を配置することにより、吸着熱交換器(101,102)によって除湿および冷却された空気を吸着ブロック(301,302)に供給することができるので、吸着ブロック(301,302)の吸着剤への水分の吸着を促進させることができる。 In addition, when the first heat exchange chamber (S11) is incorporated in the air supply passage (P1), the first adsorption block (301) is located at a position where the air dehumidified by the first adsorption heat exchanger (101) passes. The air dehumidified and cooled by the first adsorption heat exchanger (101) can be supplied to the first adsorption block (301). Thereby, adsorption | suction of the water | moisture content to adsorption agent can be accelerated | stimulated in a 1st adsorption | suction block (301). Similarly, when the second heat exchange chamber (S12) is incorporated in the air supply passage (P1), the air dehumidified and cooled by the second adsorption heat exchanger (102) is transferred to the second adsorption block. Since it can be supplied to (302), the adsorption of moisture to the adsorbent can be promoted in the second adsorption block (302). That is, in each of the first and second heat exchange chambers (S11, S12), when the adsorption heat exchanger (101, 102) is an evaporator, the adsorption is performed at a position downstream of the adsorption heat exchanger (101, 102). By disposing the block (301,302), the air dehumidified and cooled by the adsorption heat exchanger (101,102) can be supplied to the adsorption block (301,302), so that the moisture to the adsorbent of the adsorption block (301,302) can be supplied. Adsorption can be promoted.
 以上のように、第1および第2熱交換室(S11,S12)における空気の除湿量を増加させることができ、さらに、吸着ブロック(301,302)の吸着剤への水分の吸着を促進させることができるので、除湿装置(10)の除湿能力を向上させることができる。 As described above, the amount of air dehumidified in the first and second heat exchange chambers (S11, S12) can be increased, and further, the adsorption of moisture to the adsorbent of the adsorption block (301, 302) can be promoted. Therefore, the dehumidifying capacity of the dehumidifying device (10) can be improved.
 また、除湿装置(10)の除湿能力を向上させるために冷媒回路(100)の圧縮機(103)の回転数を増加させなくてもよいので、除湿装置(10)の消費電力の増大を抑制することができる。 Moreover, since it is not necessary to increase the rotation speed of the compressor (103) of the refrigerant circuit (100) in order to improve the dehumidifying capacity of the dehumidifying device (10), the increase in power consumption of the dehumidifying device (10) is suppressed. can do.
 また、実施形態1では、第1および第2熱交換室(S11,S12)の各々において、吸着ブロック(301,302)は、吸着熱交換器(101,102)が蒸発器となっている場合および吸着熱交換器(101,102)が凝縮器となっている場合のどちらの場合にも、吸着熱交換器(101,102)の下流側に位置している。したがって、第1熱交換室(S11)では、第1吸着熱交換器(101)が凝縮器となっている場合(すなわち、第1熱交換室(S11)が再生通路(P2)に組み込まれている場合)に、第1吸着熱交換器(101)によって加熱された空気を第1吸着ブロック(301)に供給することができる。これにより、第1吸着ブロック(301)の吸着剤の再生を促進させることができる。これと同様に、第2熱交換室(S12)では、第2吸着熱交換器(102)が凝縮器となっている場合(すなわち、第2熱交換室(S12)が再生通路(P2)に組み込まれている場合)に、第2吸着熱交換器(102)によって加熱された空気を第2吸着ブロック(302)に供給することができる。これにより、第2吸着ブロック(302)の吸着剤の再生を促進させることができる。このように、吸着ブロック(301,302)の吸着剤の再生を促進させることができるので、除湿装置(10)の除湿能力をさらに向上させることができる。 Further, in the first embodiment, in each of the first and second heat exchange chambers (S11, S12), the adsorption block (301, 302) includes the case where the adsorption heat exchanger (101, 102) is an evaporator and the adsorption heat exchange. In either case where the condenser (101, 102) is a condenser, it is located downstream of the adsorption heat exchanger (101, 102). Therefore, in the first heat exchange chamber (S11), when the first adsorption heat exchanger (101) is a condenser (that is, the first heat exchange chamber (S11) is incorporated in the regeneration passage (P2)). The air heated by the first adsorption heat exchanger (101) can be supplied to the first adsorption block (301). Thereby, regeneration of the adsorbent of the first adsorption block (301) can be promoted. Similarly, in the second heat exchange chamber (S12), when the second adsorption heat exchanger (102) is a condenser (that is, the second heat exchange chamber (S12) is connected to the regeneration passage (P2). When installed, air heated by the second adsorption heat exchanger (102) can be supplied to the second adsorption block (302). Thereby, regeneration of the adsorbent of the second adsorption block (302) can be promoted. Thus, since regeneration of the adsorbent of the adsorption block (301, 302) can be promoted, the dehumidifying ability of the dehumidifying device (10) can be further improved.
 また、第1吸着熱交換器(101)と間隔をおいて第1吸着ブロック(301)を配置することにより、第1吸着ブロック(301)における温度分布の偏りや空気偏流を抑制することができる。第2吸着ブロック(302)についても同様である。このように、第1および第2吸着ブロック(301,302)において温度分布の偏りや空気偏流を抑制することができるので、第1および第2吸着ブロック(301,302)における吸着能力および再生能力の低下を抑制することができる。 Further, by disposing the first adsorption block (301) at a distance from the first adsorption heat exchanger (101), it is possible to suppress temperature distribution deviation and air drift in the first adsorption block (301). . The same applies to the second adsorption block (302). As described above, since the temperature distribution and air drift can be suppressed in the first and second adsorption blocks (301, 302), the decrease in adsorption capacity and regeneration capacity in the first and second adsorption blocks (301, 302) is suppressed. can do.
 (実施形態1の変形例1)
 なお、図4のように、再生通路(P2)は、室外空気(OA)を取り込んで排出空気(EA)を室外空間に排出するように構成されていてもよい。この例では、第1再生通路部(P21)の流入端は、第1給気通路部(P11)の中間部(具体的には、冷却器(11)の下流側)に接続されている。その他の構成は、図1に示した構成と同様である。
(Modification 1 of Embodiment 1)
As shown in FIG. 4, the regeneration passage (P2) may be configured to take in outdoor air (OA) and discharge exhaust air (EA) to the outdoor space. In this example, the inflow end of the first regeneration passage portion (P21) is connected to an intermediate portion of the first air supply passage portion (P11) (specifically, downstream of the cooler (11)). Other configurations are the same as those shown in FIG.
 図4に示した除湿システム(1)では、室内空間(S1)から除湿装置(10)へ向けて室内空気(RA)が戻らないようになっている。そのため、室内空間(S1)が化学物質などによって汚染された場合であっても、室内空気(RA)よりも清浄な室外空気(OA)を除湿装置(10)によって除湿して室内空間(S1)に供給することができるので、室内空間(S1)の清浄度を維持することができる。 In the dehumidification system (1) shown in FIG. 4, the indoor air (RA) does not return from the indoor space (S1) toward the dehumidifier (10). Therefore, even if the indoor space (S1) is contaminated with chemical substances, etc., the indoor air (S1) is dehumidified by the dehumidifier (10) with the outdoor air (OA) that is cleaner than the indoor air (RA). Therefore, the cleanliness of the indoor space (S1) can be maintained.
 (実施形態1の変形例2)
 また、図5のように、給気通路(P1)は、室内空気(RA)を取り込んで供給空気(SA)を室内空間(S1)に供給するように構成されていてもよい。また、再生通路(P2)は、室外空気(OA)を取り込んで排出空気(EA)を室外空間に排出するように構成されていてもよい。この例では、第1給気通路部(P11)の流入端は、室内空間(S1)に接続され、第1再生通路部(P21)の流入端は、室外空間に接続されている。また、冷却器(11)は、第1再生通路部(P21)に設けられている。その他の構成は、図1に示した構成と同様である。
(Modification 2 of Embodiment 1)
Further, as shown in FIG. 5, the air supply passage (P1) may be configured to take in indoor air (RA) and supply supply air (SA) to the indoor space (S1). The regeneration passage (P2) may be configured to take in outdoor air (OA) and discharge exhaust air (EA) to the outdoor space. In this example, the inflow end of the first supply passage portion (P11) is connected to the indoor space (S1), and the inflow end of the first regeneration passage portion (P21) is connected to the outdoor space. The cooler (11) is provided in the first regeneration passage portion (P21). Other configurations are the same as those shown in FIG.
 図5に示した除湿システム(1)では、低露点の室内空気(RA)を除湿装置(10)によってさらに除湿して室内空間(S1)に供給するようになっているので、室内空間(S1)をより低露点にすることができる。 In the dehumidification system (1) shown in FIG. 5, the indoor air (RA) with a low dew point is further dehumidified by the dehumidifier (10) and supplied to the indoor space (S1). ) Can be set to a lower dew point.
 (実施形態1の変形例3)
 また、図6のように、除湿システム(1)は、図1に示した除湿装置(10)およびコントローラ(20)に加えて、前処理用除湿装置(30)を備えていてもよい。この例では、調湿空間(S0)は、室内空間(S1)と、室内空間(S1)に設けられたチャンバ(S2)とによって構成されている。室内空間(S1)は、露点温度が低い空気(例えば、露点温度が-30℃程度の空気)の供給が要求されている空間であり、チャンバ(S2)は、室内空間(S1)よりも露点温度が低い空気(例えば、露点温度が-50℃程度の空気)の供給が要求されている空間である。また、この例では、除湿システム(1)には、前処理通路(P3)および後処理通路(P4)が設けられている。そして、この除湿システム(1)では、前処理用除湿装置(30)によって除湿された空気(この例では、室外空気(OA))が供給空気(SA0)として室内空間(S1)に供給され、除湿装置(10)によって除湿された空気(この例では、室内空気(RA))が供給空気(SA)としてチャンバ(S2)に供給される。コントローラ(20)は、各種センサの検出値に基づいて、除湿装置(10)および前処理用除湿装置(30)を制御する。
(Modification 3 of Embodiment 1)
As shown in FIG. 6, the dehumidification system (1) may include a pretreatment dehumidifier (30) in addition to the dehumidifier (10) and the controller (20) shown in FIG. In this example, the humidity control space (S0) includes an indoor space (S1) and a chamber (S2) provided in the indoor space (S1). The indoor space (S1) is a space where supply of air having a low dew point temperature (for example, air having a dew point temperature of about −30 ° C.) is required, and the chamber (S2) has a dew point higher than that of the indoor space (S1). This space is required to be supplied with low-temperature air (for example, air with a dew point temperature of about −50 ° C.). In this example, the dehumidification system (1) is provided with a pretreatment passage (P3) and a posttreatment passage (P4). And in this dehumidification system (1), the air (in this example, outdoor air (OA)) dehumidified by the pretreatment dehumidifier (30) is supplied to the indoor space (S1) as supply air (SA0), Air dehumidified by the dehumidifier (10) (in this example, room air (RA)) is supplied to the chamber (S2) as supply air (SA). The controller (20) controls the dehumidifier (10) and the pretreatment dehumidifier (30) based on the detection values of the various sensors.
  〈前処理通路〉
 前処理通路(P3)には、調湿空間(S0)に供給するための空気(この例では、室内空間(S1)に供給するための空気)が流れる。この例では、前処理通路(P3)は、室外空間から室外空気(OA)を取り込んで供給空気(SA0)を室内空間(S1)に供給するように構成されている。具体的には、前処理通路(P3)は、流入端が室外空間に接続される第1前処理通路部(P31)と、流出端が室内空間(S1)に接続される第2前処理通路部(P32)とを有している。また、この例では、冷却器(11)は、第1前処理通路部(P31)に設けられている。
<Pretreatment passage>
Air to be supplied to the humidity control space (S0) (in this example, air to be supplied to the indoor space (S1)) flows through the pretreatment passage (P3). In this example, the pretreatment passage (P3) is configured to take outdoor air (OA) from the outdoor space and supply supply air (SA0) to the indoor space (S1). Specifically, the pretreatment passage (P3) includes a first pretreatment passage portion (P31) whose inflow end is connected to the outdoor space and a second pretreatment passage whose outflow end is connected to the indoor space (S1). Part (P32). In this example, the cooler (11) is provided in the first pretreatment passage portion (P31).
  〈後処理通路〉
 後処理通路(P4)には、吸着剤を再生するための空気(この例では、再生通路(P2)から供給される空気)が流れる。この例では、後処理通路(P4)は、再生通路(P2)の流出端から空気を取り込んで排出空気(EA)を室外空間に排出するように構成されている。具体的には、後処理通路(P4)は、流入端が再生通路(P2)の流出端に接続される第1後処理通路部(P41)と、流出端が室外空間に接続される第2後処理通路部(P42)とを有している。なお、この例では、チャンバ(S2)内の空気の一部は、室内空間(S1)を経由せずに排出空気(EA)として室外空間に排出され、室内空間(S1)内の空気の一部は、再生通路(P2)および後処理通路(P4)を経由せずに排出空気(EA)として室外空間に排出される。
<Post-processing passage>
In the post-processing passage (P4), air for regenerating the adsorbent (in this example, air supplied from the regeneration passage (P2)) flows. In this example, the post-processing passage (P4) is configured to take in air from the outflow end of the regeneration passage (P2) and discharge the exhaust air (EA) to the outdoor space. Specifically, the post-processing passage (P4) includes a first post-processing passage portion (P41) whose inflow end is connected to the outflow end of the regeneration passage (P2) and a second outflow end connected to the outdoor space. And a post-processing passage portion (P42). In this example, part of the air in the chamber (S2) is discharged to the outdoor space as exhaust air (EA) without passing through the indoor space (S1), and is a part of the air in the indoor space (S1). The section is discharged into the outdoor space as exhaust air (EA) without passing through the regeneration path (P2) and the post-processing path (P4).
  〈給気通路,再生通路〉
 この例では、給気通路(P1)は、室内空間(S1)から室内空気(RA)を取り込んで供給空気(SA)をチャンバ(S2)に供給するように構成されている。具体的には、第1給気通路部(P11)の流入端は、室内空間(S1)に接続され、第2給気通路部(P12)の流出端は、チャンバ(S2)に接続されている。また、再生通路(P2)は、室内空間(S1)から室内空気(RA)を取り込んで再生空気(吸着剤を再生するための空気)を後処理通路(P4)に排出するように構成されている。具体的には、第1再生通路部(P21)の流入端は、第1給気通路部(P11)の中間部に接続され、第2再生通路部(P22)の流出端は、第1後処理通路部(P41)の流入端に接続されている。
<Air supply passage, regeneration passage>
In this example, the supply passage (P1) is configured to take in indoor air (RA) from the indoor space (S1) and supply supply air (SA) to the chamber (S2). Specifically, the inflow end of the first supply passage portion (P11) is connected to the indoor space (S1), and the outflow end of the second supply passage portion (P12) is connected to the chamber (S2). Yes. The regeneration passage (P2) is configured to take in indoor air (RA) from the indoor space (S1) and discharge the regeneration air (air for regenerating the adsorbent) to the post-treatment passage (P4). Yes. Specifically, the inflow end of the first regeneration passage portion (P21) is connected to the intermediate portion of the first supply air passage portion (P11), and the outflow end of the second regeneration passage portion (P22) is the first rear passage. It is connected to the inflow end of the processing passage (P41).
  〈前処理用除湿装置〉
 前処理用除湿装置(30)は、除湿装置(10)と同様の構成を有している。なお、前処理用除湿装置(30)の構造は、図2に示した除湿装置(10)の構造と同様である。
<Dehumidifier for pretreatment>
The pretreatment dehumidifier (30) has the same configuration as the dehumidifier (10). The structure of the pretreatment dehumidifier (30) is the same as the structure of the dehumidifier (10) shown in FIG.
  〈前処理用除湿装置の冷媒回路〉
 前処理用除湿装置(30)の冷媒回路(100)は、除湿装置(10)の冷媒回路(100)と同様に、コントローラ(20)による制御に応答して、第1吸着熱交換器(101)が蒸発器となって空気を除湿し第2吸着熱交換器(102)が凝縮器となって吸着剤を再生させる第1冷凍サイクル動作と、第2吸着熱交換器(102)が蒸発器となって空気を除湿し第1吸着熱交換器(101)が凝縮器となって吸着剤を再生させる第2冷凍サイクル動作とを交互に行うように構成されている。
<Refrigerant circuit of pretreatment dehumidifier>
Similarly to the refrigerant circuit (100) of the dehumidifying device (10), the refrigerant circuit (100) of the pretreatment dehumidifying device (30) responds to the control by the controller (20) in response to the first adsorption heat exchanger (101). ) Acts as an evaporator to dehumidify air and the second adsorption heat exchanger (102) serves as a condenser to regenerate the adsorbent, and the second adsorption heat exchanger (102) serves as an evaporator. Thus, the air is dehumidified, and the first adsorption heat exchanger (101) serves as a condenser to alternately perform the second refrigeration cycle operation for regenerating the adsorbent.
  〈前処理用除湿装置の切換機構〉
 前処理用除湿装置(30)の切換機構(200)は、コントローラ(20)による制御に応答して、前処理用除湿装置(30)の第1および第2熱交換室(S11,S12)と前処理通路(P3)および後処理通路(P4)との接続状態を、第3通路状態(図6の実線で示された状態)と第4通路状態(図6の破線で示された状態)とに設定可能に構成されている。
<Switching mechanism of pretreatment dehumidifier>
The switching mechanism (200) of the pretreatment dehumidifier (30) is responsive to the control by the controller (20) to the first and second heat exchange chambers (S11, S12) of the pretreatment dehumidifier (30). The connection state between the pre-processing passage (P3) and the post-processing passage (P4) includes a third passage state (state shown by a solid line in FIG. 6) and a fourth passage state (state shown by a broken line in FIG. 6). It is configured to be configurable.
   《第3通路状態》
 前処理用除湿装置(30)の第1および第2熱交換室(S11,S12)の接続状態が第3通路状態になると、第1熱交換室(S11)は、第1および第2前処理通路部(P31,P32)の間に接続されて前処理通路(P3)に組み込まれ、第2熱交換室(S12)は、第1および第2後処理通路部(P41,P42)の間に接続されて後処理通路(P4)に組み込まれる。
<< 3rd passage state >>
When the connection state of the first and second heat exchange chambers (S11, S12) of the pretreatment dehumidifier (30) becomes the third passage state, the first heat exchange chamber (S11) Connected between the passage parts (P31, P32) and incorporated in the pretreatment passage (P3), the second heat exchange chamber (S12) is located between the first and second post-treatment passage parts (P41, P42). Connected and incorporated into the post-processing passage (P4).
   《第4通路状態》
 前処理用除湿装置(30)の第1および第2熱交換室(S11,S12)の接続状態が第4通路状態になると、第1熱交換室(S11)は、第1および第2後処理通路部(P41,P42)の間に接続されて後処理通路(P4)に組み込まれ、第2熱交換室(S12)は、第1および第2前処理通路部(P31,P32)の間に接続されて前処理通路(P3)に組み込まれる。
<< 4th passage state >>
When the connection state of the first and second heat exchange chambers (S11, S12) of the pretreatment dehumidifier (30) becomes the fourth passage state, the first heat exchange chamber (S11) Connected between the passage parts (P41, P42) and incorporated in the post-processing passage (P4), the second heat exchange chamber (S12) is located between the first and second pretreatment passage parts (P31, P32). Connected and integrated into the pretreatment passage (P3).
   《熱交換室の接続切換動作》
 また、前処理用除湿装置(30)の切換機構(200)は、四方切換弁(105)が第1接続状態である場合に、第1および第2熱交換室(S11,S12)の接続状態を第3通路状態に設定し、四方切換弁(105)が第2接続状態である場合に、第1および第2熱交換室(S11,S12)の接続状態を第3通路状態に設定する。すなわち、前処理用除湿装置(30)の切換機構(200)は、除湿装置(10)の切換機構(200)と同様に、第1および第2熱交換室(S11,S12)のうち、蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気が調湿空間(S0)(この例では、室内空間(S1))に供給され、凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)に吸着剤を再生するための空気(この例では、除湿装置(10)の第1および第2熱交換室(S11,S12)のうち凝縮器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気)が流通するように、空気の流れを切り換える。
<Connection switching operation in heat exchange chamber>
The switching mechanism (200) of the pretreatment dehumidifier (30) is connected to the first and second heat exchange chambers (S11, S12) when the four-way switching valve (105) is in the first connection state. Is set to the third passage state, and when the four-way switching valve (105) is in the second connection state, the connection state of the first and second heat exchange chambers (S11, S12) is set to the third passage state. That is, the switching mechanism (200) of the pretreatment dehumidifier (30) is the same as the switching mechanism (200) of the dehumidifier (10) in the first and second heat exchange chambers (S11, S12). The air that has passed through the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as a chamber is supplied to the humidity control space (S0) (in this example, the indoor space (S1)), Air for regenerating the adsorbent in the heat exchange chamber (S12, S11) provided with the adsorption heat exchanger (102, 101) serving as a condenser (in this example, the first and second dehumidifiers (10)) The flow of air is circulated so that the air passing through the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) that is the condenser in the heat exchange chamber (S11, S12) is circulated. Switch.
   《吸着熱交換器を通過する空気の流通方向》
 なお、この例では、前処理用除湿装置(30)において、第1および第2熱交換室(S11,S12)の接続状態が第3通路状態である場合(すなわち、第1熱交換室(S11)が前処理通路(P3)の一部として組み込まれている場合)に第1吸着熱交換器(101)を通過する空気の流通方向は、第1および第2熱交換室(S11,S12)の接続状態が第4通路状態である場合(すなわち、第1熱交換室(S11)が後処理通路(P4)の一部として組み込まれている場合)に第1吸着熱交換器(101)を通過する空気の流通方向と同じ方向となっている。第2吸着熱交換器(102)を通過する空気の流通方向についても同様である。すなわち、前処理用除湿装置(30)の切換機構(200)は、除湿装置(10)の切換機構(200)と同様に、第1および第2吸着熱交換器(101,102)の各々を通過する空気の流通方向が、その吸着熱交換器(101,102)が蒸発器となっている場合とその吸着熱交換器(101,102)が凝縮器となっている場合とで同方向となるように、空気の流れを切り換える。
《Flow direction of air passing through adsorption heat exchanger》
In this example, in the pretreatment dehumidifier (30), the connection state of the first and second heat exchange chambers (S11, S12) is the third passage state (that is, the first heat exchange chamber (S11). ) Is incorporated as part of the pretreatment passage (P3)), the flow direction of the air passing through the first adsorption heat exchanger (101) is the first and second heat exchange chambers (S11, S12). When the connection state is the fourth passage state (that is, when the first heat exchange chamber (S11) is incorporated as a part of the post-treatment passage (P4)), the first adsorption heat exchanger (101) is installed. It is the same direction as the flow direction of the passing air. The same applies to the flow direction of the air passing through the second adsorption heat exchanger (102). That is, the switching mechanism (200) of the pretreatment dehumidifier (30) passes through each of the first and second adsorption heat exchangers (101, 102), similarly to the switching mechanism (200) of the dehumidifier (10). The air flow direction is the same when the adsorption heat exchanger (101,102) is an evaporator and when the adsorption heat exchanger (101,102) is a condenser. Switch the flow.
  〈前処理用除湿装置による除湿運転〉
 次に、図6を参照して、前処理用除湿装置(30)による除湿運転について説明する。この前処理用除湿装置(30)は、第3および第4除湿動作を所定の時間間隔(例えば、10分間隔)で交互に繰り返す。
<Dehumidifying operation with pretreatment dehumidifier>
Next, the dehumidifying operation by the pretreatment dehumidifying device (30) will be described with reference to FIG. The pretreatment dehumidifier (30) repeats the third and fourth dehumidifying operations alternately at predetermined time intervals (for example, every 10 minutes).
   《第3除湿動作》
 第3除湿動作では、圧縮機(103)が駆動され、膨張弁(104)の開度が調節され、四方切換弁(105)が第1接続状態(図6の実線で示した状態)となる。これにより、冷媒回路(100)は、第1吸着熱交換器(101)が蒸発器となり第2吸着熱交換器(102)が凝縮器となる第1冷凍サイクル動作を行う。また、切換機構(200)は、第1および第2熱交換室(S11,S12)の接続状態を第3通路状態(図6の実線で示した状態)に設定する。
<< Third dehumidifying action >>
In the third dehumidifying operation, the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the first connection state (the state shown by the solid line in FIG. 6). . Thus, the refrigerant circuit (100) performs a first refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as an evaporator and the second adsorption heat exchanger (102) serves as a condenser. Further, the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the third passage state (the state indicated by the solid line in FIG. 6).
 前処理通路(P3)に取り込まれた空気(この例では、室外空気(OA))は、冷却器(11)によって冷却除湿された後に、第1熱交換室(S11)に供給される。第1熱交換室(S11)に供給された空気は、第1吸着熱交換器(101)と第1吸着ブロック(301)とを順に通過する際に、第1吸着熱交換器(101)および第1吸着ブロック(301)の吸着剤に水分を奪われて除湿される。第1熱交換室(S11)において除湿された空気は、供給空気(SA0)として室内空間(S1)に供給される。 The air taken into the pretreatment passage (P3) (in this example, outdoor air (OA)) is cooled and dehumidified by the cooler (11) and then supplied to the first heat exchange chamber (S11). When the air supplied to the first heat exchange chamber (S11) passes through the first adsorption heat exchanger (101) and the first adsorption block (301) in order, the first adsorption heat exchanger (101) and Moisture is taken away by the adsorbent of the first adsorption block (301) and dehumidified. The air dehumidified in the first heat exchange chamber (S11) is supplied to the indoor space (S1) as supply air (SA0).
 後処理通路(P4)に取り込まれた空気(この例では、再生通路(P2)から供給された空気)は、第2熱交換室(S12)に供給される。第2熱交換室(S12)に供給された空気は、第2吸着熱交換器(102)と第2吸着ブロック(302)とを順に通過する際に、第2吸着熱交換器(102)および第2吸着ブロック(302)の吸着剤から水分を付与される。これにより、第2吸着熱交換器(102)および第2吸着ブロック(302)の吸着剤が再生される。第2熱交換室(S12)を通過した空気は、排出空気(EA)として室外空間に排出される。 The air taken into the post-processing passage (P4) (in this example, air supplied from the regeneration passage (P2)) is supplied to the second heat exchange chamber (S12). When the air supplied to the second heat exchange chamber (S12) sequentially passes through the second adsorption heat exchanger (102) and the second adsorption block (302), the second adsorption heat exchanger (102) and Water is applied from the adsorbent of the second adsorption block (302). Thereby, the adsorbent of the second adsorption heat exchanger (102) and the second adsorption block (302) is regenerated. The air that has passed through the second heat exchange chamber (S12) is exhausted to the outdoor space as exhaust air (EA).
   《第4除湿動作》
 第4除湿動作では、圧縮機(103)が駆動され、膨張弁(104)の開度が調節され、四方切換弁(105)が第2接続状態(図6の破線で示した状態)となる。これにより、冷媒回路(100)は、第1吸着熱交換器(101)が凝縮器となり第2吸着熱交換器(102)が蒸発器となる第2冷凍サイクル動作を行う。また、切換機構(200)は、第1および第2熱交換室(S11,S12)の接続状態を第4通路状態(図6の破線で示した状態)に設定する。
<< 4th dehumidifying action >>
In the fourth dehumidifying operation, the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the second connection state (the state indicated by the broken line in FIG. 6). . Thereby, the refrigerant circuit (100) performs a second refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as a condenser and the second adsorption heat exchanger (102) serves as an evaporator. Further, the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the fourth passage state (the state indicated by the broken line in FIG. 6).
 前処理通路(P3)に取り込まれた空気(この例では、室外空気(OA))は、冷却器(11)によって冷却除湿された後に、第2熱交換室(S12)に供給される。第2熱交換室(S12)に供給された空気は、第2吸着熱交換器(102)と第2吸着ブロック(302)とを順に通過する際に、第2吸着熱交換器(102)および第2吸着ブロック(302)の吸着剤に水分を奪われて除湿される。第2熱交換室(S12)において除湿された空気は、供給空気(SA0)として室内空間(S1)に供給される。 The air taken into the pretreatment passage (P3) (in this example, outdoor air (OA)) is cooled and dehumidified by the cooler (11) and then supplied to the second heat exchange chamber (S12). When the air supplied to the second heat exchange chamber (S12) sequentially passes through the second adsorption heat exchanger (102) and the second adsorption block (302), the second adsorption heat exchanger (102) and Moisture is taken away by the adsorbent of the second adsorption block (302) and dehumidified. The air dehumidified in the second heat exchange chamber (S12) is supplied to the indoor space (S1) as supply air (SA0).
 後処理通路(P4)に取り込まれた空気(この例では、再生通路(P2)から供給された空気)は、第1熱交換室(S11)に供給される。第1熱交換室(S11)に供給された空気は、第1吸着熱交換器(101)と第1吸着ブロック(301)とを順に通過する際に、第1吸着熱交換器(101)および第1吸着ブロック(301)の吸着剤から水分を付与される。これにより、第1吸着熱交換器(101)および第1吸着ブロック(301)の吸着剤が再生される。第1熱交換室(S11)を通過した空気は、排出空気(EA)として室外空間に排出される。 The air taken into the post-processing passage (P4) (in this example, air supplied from the regeneration passage (P2)) is supplied to the first heat exchange chamber (S11). When the air supplied to the first heat exchange chamber (S11) passes through the first adsorption heat exchanger (101) and the first adsorption block (301) in order, the first adsorption heat exchanger (101) and Water is applied from the adsorbent of the first adsorption block (301). Thereby, the adsorbent of the first adsorption heat exchanger (101) and the first adsorption block (301) is regenerated. The air that has passed through the first heat exchange chamber (S11) is exhausted to the outdoor space as exhaust air (EA).
  〈実施形態1の変形例3による効果〉
 以上のように、室内空間(S1)に供給するための空気(この例では、室外空気(OA))を前処理用除湿装置(30)によって除湿して供給空気(SA0)として室内空間(S1)に供給し、室内空間(S1)から供給された室内空気(RA)を除湿装置(10)によって除湿して供給空気(SA)としてチャンバ(S2)に供給することにより、チャンバ(S2)内の空気の露点温度を室内空間(S1)内の空気の露点温度よりも低くすることができる。このように、チャンバ(S2)に低露点の供給空気(SA)を集中的に供給することにより、室内空間(S1)全体を低露点にする場合よりも、除湿システム(1)の運転動作に要する消費電力を低減することができる。
<Effects of Modification 3 of Embodiment 1>
As described above, the air to be supplied to the indoor space (S1) (in this example, the outdoor air (OA)) is dehumidified by the pretreatment dehumidifier (30) and supplied to the indoor space (S1). In the chamber (S2), the indoor air (RA) supplied from the indoor space (S1) is dehumidified by the dehumidifier (10) and supplied to the chamber (S2) as the supply air (SA). The dew point temperature of the air can be made lower than the dew point temperature of the air in the indoor space (S1). In this way, by supplying supply air (SA) with a low dew point to the chamber (S2) in a concentrated manner, the dehumidification system (1) can be operated more than when the entire indoor space (S1) is set to a low dew point. The power consumption required can be reduced.
 (実施形態2)
 図7は、実施形態2による除湿システム(1)の構成例を示している。この除湿システム(1)は、除湿装置(10)とコントローラ(20)と加熱器(21)とを備えている。なお、実施形態2の除湿装置(10)の構造は、実施形態1の除湿装置(10)の構造(図2)と異なっている。具体的には、第1および第2吸着熱交換器(101,102)を通過する空気の流通方向と、第1および第2吸着ブロック(301,302)の配置が、実施形態1と異なっている。その他の構成は、実施形態1と同様である。
(Embodiment 2)
FIG. 7 shows a configuration example of the dehumidification system (1) according to the second embodiment. The dehumidifying system (1) includes a dehumidifying device (10), a controller (20), and a heater (21). In addition, the structure of the dehumidification apparatus (10) of Embodiment 2 differs from the structure (FIG. 2) of the dehumidification apparatus (10) of Embodiment 1. FIG. Specifically, the flow direction of the air passing through the first and second adsorption heat exchangers (101, 102) and the arrangement of the first and second adsorption blocks (301, 302) are different from those in the first embodiment. Other configurations are the same as those of the first embodiment.
  〈加熱器〉
 加熱器(21)は、再生通路(P2)に設けられ、第1および第2熱交換室(S11,S12)のうち凝縮器となっている吸着熱交換器が設けられた熱交換室の上流側(風上側)に配置されている。すなわち、加熱器(21)は、吸着剤を再生するための空気を加熱するように構成されている。この例では、加熱器(21)は、第1再生通路部(P21)に配置されている。例えば、加熱器(21)は、第1再生通路部(P21)を流れる空気と第2再生通路部(P22)を流れる空気との間で熱交換を行う顕熱熱交換器によって構成されていてもよいし、冷媒回路(図示を省略)の凝縮器として機能する熱交換器(具体的には、フィンアンドチューブ式の熱交換器)などによって構成されていてもよい。
<Heater>
The heater (21) is provided in the regeneration passage (P2) and is upstream of the heat exchange chamber in which the adsorption heat exchanger serving as a condenser is provided among the first and second heat exchange chambers (S11, S12). It is arranged on the side (windward side). That is, the heater (21) is configured to heat air for regenerating the adsorbent. In this example, the heater (21) is disposed in the first regeneration passage portion (P21). For example, the heater (21) is constituted by a sensible heat exchanger that exchanges heat between the air flowing through the first regeneration passage (P21) and the air flowing through the second regeneration passage (P22). Alternatively, a heat exchanger (specifically, a fin-and-tube heat exchanger) that functions as a condenser of a refrigerant circuit (not shown) may be used.
  〈冷媒回路〉
 冷媒回路(100)は、実施形態1と同様に、コントローラ(20)による制御に応答して、第1吸着熱交換器(101)が蒸発器となって空気を除湿し第2吸着熱交換器(102)が凝縮器となって吸着剤を再生させる第1冷凍サイクル動作と、第2吸着熱交換器(102)が蒸発器となって空気を除湿し第1吸着熱交換器(101)が凝縮器となって吸着剤を再生させる第2冷凍サイクル動作とを交互に行うように構成されている。
<Refrigerant circuit>
As in the first embodiment, the refrigerant circuit (100) responds to the control by the controller (20), and the first adsorption heat exchanger (101) serves as an evaporator to dehumidify the air and the second adsorption heat exchanger. The first refrigeration cycle operation in which (102) serves as a condenser to regenerate the adsorbent, and the second adsorption heat exchanger (102) serves as an evaporator to dehumidify the air and the first adsorption heat exchanger (101) The second refrigeration cycle operation for regenerating the adsorbent as a condenser is performed alternately.
  〈切換機構〉
 切換機構(200)は、コントローラ(20)による制御に応答して、第1および第2熱交換室(S11,S12)の接続状態を、第1通路状態(図7の実線で示した状態)と第2通路状態(図7の破線で示した状態)とに設定可能に構成されている。また、切換機構(200)は、四方切換弁(105)が第1接続状態(図7の実線で示した状態)である場合に、第1および第2熱交換室(S11,S12)の接続状態を第1通路状態に設定し、四方切換弁(105)が第2接続状態である場合(図7の破線で示した状態)に、第1および第2熱交換室(S11,S12)の接続状態を第2通路状態に設定する。すなわち、切換機構(200)は、第1および第2熱交換室(S11,S12)のうち、蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気が調湿空間(S0)に供給され、凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)に吸着剤を再生するための空気(この例では、加熱器(21)を通過した空気)が流通するように、空気の流れを切り換える。
<Switching mechanism>
In response to the control by the controller (20), the switching mechanism (200) changes the connection state of the first and second heat exchange chambers (S11, S12) to the first passage state (state shown by the solid line in FIG. 7). And a second passage state (state shown by a broken line in FIG. 7). Further, the switching mechanism (200) connects the first and second heat exchange chambers (S11, S12) when the four-way switching valve (105) is in the first connection state (the state shown by the solid line in FIG. 7). When the state is set to the first passage state and the four-way switching valve (105) is in the second connection state (the state indicated by the broken line in FIG. 7), the first and second heat exchange chambers (S11, S12) The connection state is set to the second passage state. That is, the switching mechanism (200) includes a heat exchange chamber (S11, S12) provided with an adsorption heat exchanger (101, 102) serving as an evaporator among the first and second heat exchange chambers (S11, S12). The air passing through the air is supplied to the humidity control space (S0), and the air for regenerating the adsorbent in the heat exchange chamber (S12, S11) provided with the adsorption heat exchanger (102, 101) serving as a condenser ( In this example, the air flow is switched so that the air passing through the heater (21) flows.
 なお、この例では、第1および第2熱交換室(S11,S12)の接続状態が第1通路状態である場合(すなわち、第1熱交換室(S11)が給気通路(P1)の一部として組み込まれている場合)に第1吸着熱交換器(101)を通過する空気の流通方向は、第1および第2熱交換室(S11,S12)の接続状態が第2通路状態である場合(すなわち、第1熱交換室(S11)が再生通路(P2)の一部として組み込まれている場合)に第1吸着熱交換器(101)を通過する空気の流通方向の逆方向となっている(所謂、対向流となっている)。第2吸着熱交換器(102)を通過する空気の流通方向についても同様である。このように、第1および第2吸着熱交換器(101,102)の各々を通過する空気の流通方向は、吸着熱交換器が蒸発器から凝縮器に(または、凝縮器から蒸発器に)切り換わると反転する。すなわち、切換機構(200)は、第1および第2吸着熱交換器(101,102)の各々を通過する空気の流通方向が、その吸着熱交換器(101,102)が蒸発器となっている場合とその吸着熱交換器(101,102)が凝縮器となっている場合とで逆方向となるように、空気の流れを切り換える。 In this example, when the connection state of the first and second heat exchange chambers (S11, S12) is the first passage state (that is, the first heat exchange chamber (S11) is a part of the air supply passage (P1). In the flow direction of the air passing through the first adsorption heat exchanger (101) in the case of being incorporated as a part), the connection state of the first and second heat exchange chambers (S11, S12) is the second passage state. In this case (that is, when the first heat exchange chamber (S11) is incorporated as part of the regeneration passage (P2)), the flow direction of the air passing through the first adsorption heat exchanger (101) is opposite. (So-called counter flow). The same applies to the flow direction of the air passing through the second adsorption heat exchanger (102). In this way, the flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) switches the adsorption heat exchanger from the evaporator to the condenser (or from the condenser to the evaporator). And reverse. That is, the switching mechanism (200) has a case where the flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) is the same as when the adsorption heat exchanger (101, 102) is an evaporator. The air flow is switched so that the adsorption heat exchanger (101, 102) is in the opposite direction to the case where it is a condenser.
  〈吸着ブロック〉
 第1吸着ブロック(301)は、第1熱交換室(S11)において、第1吸着熱交換器(101)が蒸発器となっている場合に第1吸着熱交換器(101)の下流側(風下側)となる位置(すなわち、第1熱交換室(S11)が給気通路(P1)の一部として組み込まれている場合に第1吸着熱交換器(101)によって除湿された空気が通過する位置)に配置されている。
<Suction block>
The first adsorption block (301) is located downstream of the first adsorption heat exchanger (101) when the first adsorption heat exchanger (101) is an evaporator in the first heat exchange chamber (S11) ( Air dehumidified by the first adsorption heat exchanger (101) passes when the position becomes the leeward side (that is, when the first heat exchange chamber (S11) is incorporated as a part of the air supply passage (P1)) Position).
 第2吸着ブロック(302)は、第2熱交換室(S12)において、第2吸着熱交換器(102)が蒸発器となっている場合に第2吸着熱交換器(102)の下流側(風下側)となる位置(すなわち、第2熱交換室(S12)が給気通路(P1)の一部として組み込まれている場合に第2吸着熱交換器(102)によって除湿された空気が通過する位置)に配置されている。 The second adsorption block (302) is located downstream of the second adsorption heat exchanger (102) when the second adsorption heat exchanger (102) is an evaporator in the second heat exchange chamber (S12). Air dehumidified by the second adsorption heat exchanger (102) passes when the position becomes the leeward side (that is, when the second heat exchange chamber (S12) is incorporated as a part of the air supply passage (P1)) Position).
 なお、この例では、第1および第2吸着熱交換器(101,102)の各々を通過する空気の流通方向は、その吸着熱交換器(101,102)が蒸発器となっている場合とその吸着熱交換器(101,102)が凝縮器となっている場合とで逆方向となっている。したがって、第1および第2熱交換室(S11,S12)の接続状態が第1通路状態(図7の実線で示した状態)である場合に第1吸着熱交換器(101)の下流側となる位置は、第1および第2熱交換室(S11,S12)の接続状態が第2通路状態(図7の破線で示した状態)である場合に第1吸着熱交換器(101)の上流側となる位置(この例では、加熱器(21)と第1吸着熱交換器(101)との間となる位置)と同じ位置である。これと同様に、第1および第2熱交換室(S11,S12)の接続状態が第2通路状態(図7の破線で示した状態)である場合に第2吸着熱交換器(102)の下流側となる位置は、第1および第2熱交換室(S11,S12)の接続状態が第1通路状態(図1の実線で示した状態)である場合に第2吸着熱交換器(102)の上流側となる位置(この例では、加熱器(21)と第2吸着熱交換器(102)との間となる位置)と同じ位置である。すなわち、第1および第2熱交換室(S11,S12)の各々では、吸着ブロック(301,302)は、吸着熱交換器(101,102)が蒸発器となっている場合には、吸着熱交換器(101,102)の下流側に位置し、吸着熱交換器(101,102)が凝縮器となっている場合には、吸着熱交換器(101,102)の上流側に位置する。 In this example, the flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) depends on whether the adsorption heat exchanger (101, 102) is an evaporator or the adsorption heat exchange. The direction is opposite to the case where the condenser (101, 102) is a condenser. Therefore, when the connection state of the first and second heat exchange chambers (S11, S12) is the first passage state (the state indicated by the solid line in FIG. 7), the downstream side of the first adsorption heat exchanger (101) Is located upstream of the first adsorption heat exchanger (101) when the connection state of the first and second heat exchange chambers (S11, S12) is the second passage state (the state indicated by the broken line in FIG. 7). This is the same position as the position (in this example, the position between the heater (21) and the first adsorption heat exchanger (101)). Similarly, when the connection state of the first and second heat exchange chambers (S11, S12) is the second passage state (the state indicated by the broken line in FIG. 7), the second adsorption heat exchanger (102) The position on the downstream side is the second adsorption heat exchanger (102 when the connection state of the first and second heat exchange chambers (S11, S12) is the first passage state (the state shown by the solid line in FIG. 1). ) On the upstream side (in this example, the position between the heater (21) and the second adsorption heat exchanger (102)). That is, in each of the first and second heat exchange chambers (S11, S12), the adsorption block (301, 302) has an adsorption heat exchanger (101, 102) when the adsorption heat exchanger (101, 102) is an evaporator. When the adsorption heat exchanger (101, 102) is a condenser, it is located upstream of the adsorption heat exchanger (101, 102).
  〈除湿装置による除湿運転〉
 次に、図7を参照して、実施形態2の除湿装置(10)の除湿運転について説明する。実施形態1の除湿装置(10)と同様に、実施形態2の除湿装置(10)は、第1および第2除湿動作を所定の時間間隔(例えば、10分間隔)で交互に繰り返す。
<Dehumidifying operation with dehumidifier>
Next, the dehumidifying operation of the dehumidifying device (10) of the second embodiment will be described with reference to FIG. Similar to the dehumidifying device (10) of the first embodiment, the dehumidifying device (10) of the second embodiment alternately repeats the first and second dehumidifying operations at predetermined time intervals (for example, every 10 minutes).
   《第1除湿動作》
 第1除湿動作では、圧縮機(103)が駆動され、膨張弁(104)の開度が調節され、四方切換弁(105)が第1接続状態(図7の実線で示した状態)となる。これにより、冷媒回路(100)は、第1吸着熱交換器(101)が蒸発器となり第2吸着熱交換器(102)が凝縮器となる第1冷凍サイクル動作を行う。また、切換機構(200)は、第1および第2熱交換室(S11,S12)の接続状態を第1通路状態(図7の実線で示した状態)に設定する。
<< First dehumidifying operation >>
In the first dehumidifying operation, the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the first connection state (the state shown by the solid line in FIG. 7). . Thus, the refrigerant circuit (100) performs a first refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as an evaporator and the second adsorption heat exchanger (102) serves as a condenser. Further, the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the first passage state (the state indicated by the solid line in FIG. 7).
    -給気通路における空気の流れ-
 給気通路(P1)に取り込まれた空気(この例では、室外空気(OA))は、冷却器(11)によって冷却除湿された後に、第1熱交換室(S11)に供給される。第1熱交換室(S11)に供給された空気は、蒸発器として機能している第1吸着熱交換器(101)を通過する。このとき、蒸発器として機能している第1吸着熱交換器(101)を通過する空気は、第1吸着熱交換器(101)の吸着剤に水分を奪われて湿度が低下するとともに、第1吸着熱交換器(101)を流れる冷媒の吸熱作用により冷却されて温度も低下する。次に、第1吸着熱交換器(101)によって除湿および冷却された空気は、第1吸着ブロック(301)を通過する。このとき、この空気中の水分が第1吸着ブロック(301)の吸着剤に吸着する。これにより、第1吸着熱交換器(101)によって除湿された空気は、第1吸着ブロック(301)によってさらに除湿される。第1吸着熱交換器(101)および第1吸着ブロック(301)を通過して除湿された空気は、供給空気(SA)として室内空間(S1)に供給される。
-Air flow in the air supply passage-
The air taken into the supply passage (P1) (in this example, outdoor air (OA)) is cooled and dehumidified by the cooler (11), and then supplied to the first heat exchange chamber (S11). The air supplied to the first heat exchange chamber (S11) passes through the first adsorption heat exchanger (101) functioning as an evaporator. At this time, the air passing through the first adsorption heat exchanger (101) functioning as an evaporator is deprived of moisture by the adsorbent of the first adsorption heat exchanger (101), and the humidity decreases. It is cooled by the endothermic action of the refrigerant flowing through the one adsorption heat exchanger (101), and the temperature also decreases. Next, the air dehumidified and cooled by the first adsorption heat exchanger (101) passes through the first adsorption block (301). At this time, moisture in the air is adsorbed on the adsorbent of the first adsorption block (301). Thereby, the air dehumidified by the first adsorption heat exchanger (101) is further dehumidified by the first adsorption block (301). The air dehumidified after passing through the first adsorption heat exchanger (101) and the first adsorption block (301) is supplied to the indoor space (S1) as supply air (SA).
    -再生通路における空気の流れ-
 再生通路(P2)に取り込まれた空気(この例では、室内空気(RA))は、加熱器(21)によって加熱された後に、第2熱交換室(S12)に供給される。第2熱交換室(S12)に供給された空気は、第2吸着ブロック(302)を通過する。このとき、第2吸着ブロック(302)の吸着剤の水分が第2吸着ブロック(302)を通過する空気に放出される。これにより、第2吸着ブロック(302)の吸着剤が再生される。次に、第2吸着ブロック(302)によって加湿された空気は、凝縮器として機能している第2吸着熱交換器(102)を通過する。凝縮器として機能している第2吸着熱交換器(102)を通過する空気は、第2吸着熱交換器(102)の吸着剤から水分を付与されて湿度が上昇するとともに、第2吸着熱交換器(102)を流れる冷媒の放熱作用により加熱されて温度も上昇する。これにより、第2吸着熱交換器(102)の吸着剤が再生される。第2吸着熱交換器(102)および第2吸着ブロック(302)を通過した空気は、排出空気(EA)として室外空間に排出される。
-Air flow in the regeneration passage-
The air (in this example, room air (RA)) taken into the regeneration passage (P2) is heated by the heater (21) and then supplied to the second heat exchange chamber (S12). The air supplied to the second heat exchange chamber (S12) passes through the second adsorption block (302). At this time, the moisture of the adsorbent of the second adsorption block (302) is released to the air passing through the second adsorption block (302). Thereby, the adsorbent of the second adsorption block (302) is regenerated. Next, the air humidified by the second adsorption block (302) passes through the second adsorption heat exchanger (102) functioning as a condenser. The air passing through the second adsorption heat exchanger (102) functioning as a condenser is given moisture from the adsorbent of the second adsorption heat exchanger (102) to increase the humidity and the second adsorption heat. It is heated by the heat radiation action of the refrigerant flowing through the exchanger (102), and the temperature also rises. Thereby, the adsorbent of the second adsorption heat exchanger (102) is regenerated. The air that has passed through the second adsorption heat exchanger (102) and the second adsorption block (302) is exhausted to the outdoor space as exhaust air (EA).
   《第2除湿動作》
 第2除湿動作では、圧縮機(103)が駆動され、膨張弁(104)の開度が調節され、四方切換弁(105)が第2接続状態(図7の破線で示した状態)となる。これにより、冷媒回路(100)は、第1吸着熱交換器(101)が凝縮器となり第2吸着熱交換器(102)が蒸発器となる第2冷凍サイクル動作を行う。また、切換機構(200)は、第1および第2熱交換室(S11,S12)の接続状態を第2通路状態(図7の破線で示した状態)に設定する。
<Second dehumidifying operation>
In the second dehumidifying operation, the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the second connection state (the state indicated by the broken line in FIG. 7). . Thereby, the refrigerant circuit (100) performs a second refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as a condenser and the second adsorption heat exchanger (102) serves as an evaporator. Further, the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the second passage state (the state indicated by the broken line in FIG. 7).
    -給気通路における空気の流れ-
 給気通路(P1)に取り込まれた空気(この例では、室外空気(OA))は、冷却器(11)によって冷却除湿された後に、第2熱交換室(S12)に供給される。第2熱交換室(S12)に供給された空気は、蒸発器として機能している第2吸着熱交換器(102)を通過する。このとき、蒸発器として機能している第2吸着熱交換器(102)を通過する空気は、第2吸着熱交換器(102)の吸着剤に水分を奪われて湿度が低下するとともに、第2吸着熱交換器(102)を流れる冷媒の吸熱作用により冷却されて温度も低下する。次に、第2吸着熱交換器(102)によって除湿および冷却された空気は、第2吸着ブロック(302)を通過する。このとき、この空気中の水分が第2吸着ブロック(302)の吸着剤に吸着する。これにより、第2吸着熱交換器(102)によって除湿された空気は、第2吸着ブロック(302)によってさらに除湿される。第2吸着熱交換器(102)および第2吸着ブロック(302)を通過して除湿された空気は、供給空気(SA)として室内空間(S1)に供給される。
-Air flow in the air supply passage-
The air taken into the supply passage (P1) (in this example, outdoor air (OA)) is cooled and dehumidified by the cooler (11), and then supplied to the second heat exchange chamber (S12). The air supplied to the second heat exchange chamber (S12) passes through the second adsorption heat exchanger (102) functioning as an evaporator. At this time, the air passing through the second adsorption heat exchanger (102) functioning as an evaporator is deprived of moisture by the adsorbent of the second adsorption heat exchanger (102), and the humidity decreases. The refrigerant is cooled by the endothermic action of the refrigerant flowing through the two-adsorption heat exchanger (102), and the temperature also decreases. Next, the air dehumidified and cooled by the second adsorption heat exchanger (102) passes through the second adsorption block (302). At this time, moisture in the air is adsorbed to the adsorbent of the second adsorption block (302). Thereby, the air dehumidified by the second adsorption heat exchanger (102) is further dehumidified by the second adsorption block (302). The air dehumidified after passing through the second adsorption heat exchanger (102) and the second adsorption block (302) is supplied to the indoor space (S1) as supply air (SA).
    -再生通路における空気の流れ-
 再生通路(P2)に取り込まれた空気(この例では、室内空気(RA))は、加熱器(21)によって加熱された後に、第1熱交換室(S11)に供給される。第1熱交換室(S11)に供給された空気は、第1吸着ブロック(301)を通過する。このとき、第1吸着ブロック(301)の吸着剤の水分が第1吸着ブロック(301)を通過する空気に放出される。これにより、第1吸着ブロック(301)の吸着剤が再生される。次に、第1吸着ブロック(301)によって加湿された空気は、凝縮器として機能している第1吸着熱交換器(101)を通過する。このとき、凝縮器として機能している第1吸着熱交換器(101)を通過する空気は、第1吸着熱交換器(101)の吸着剤から水分を付与されて湿度が上昇するとともに、第1吸着熱交換器(101)を流れる冷媒の放熱作用により加熱されて温度も上昇する。これにより、第1吸着熱交換器(101)の吸着剤が再生される。第1吸着熱交換器(101)および第1吸着ブロック(301)を通過した空気は、排出空気(EA)として室外空間に排出される。
-Air flow in the regeneration passage-
The air taken into the regeneration passage (P2) (in this example, room air (RA)) is heated by the heater (21) and then supplied to the first heat exchange chamber (S11). The air supplied to the first heat exchange chamber (S11) passes through the first adsorption block (301). At this time, the moisture of the adsorbent of the first adsorption block (301) is released to the air passing through the first adsorption block (301). Thereby, the adsorbent of the first adsorption block (301) is regenerated. Next, the air humidified by the first adsorption block (301) passes through the first adsorption heat exchanger (101) functioning as a condenser. At this time, the air passing through the first adsorption heat exchanger (101) functioning as a condenser is given moisture from the adsorbent of the first adsorption heat exchanger (101), and the humidity rises. The temperature rises due to heating by the heat radiation action of the refrigerant flowing through the one adsorption heat exchanger (101). Thereby, the adsorbent of the first adsorption heat exchanger (101) is regenerated. The air that has passed through the first adsorption heat exchanger (101) and the first adsorption block (301) is exhausted to the outdoor space as exhaust air (EA).
  〈除湿装置の構造〉
 次に、図8を参照して、実施形態2による除湿装置(10)の構造について説明する。なお、以下の説明において用いる「上」「下」「左」「右」「前」「後」「奥」は、除湿装置(10)を前面側から見た場合の方向を示している。また、図8において、中央図は、除湿装置(10)の平面図であり、上図は、除湿装置(10)の背面図であり、下図は、除湿装置(10)の正面図である。
<Structure of dehumidifier>
Next, with reference to FIG. 8, the structure of the dehumidification apparatus (10) by Embodiment 2 is demonstrated. Note that “upper”, “lower”, “left”, “right”, “front”, “rear”, and “back” used in the following description indicate directions when the dehumidifier (10) is viewed from the front side. Moreover, in FIG. 8, a center figure is a top view of a dehumidification apparatus (10), an upper figure is a rear view of a dehumidification apparatus (10), and a lower figure is a front view of a dehumidification apparatus (10).
 除湿装置(10)は、冷媒回路(100)の構成部品を収容するケーシング(41)を備えている。ケーシング(41)は、やや扁平で高さが比較的低い直方体状に形成され、前面パネル(42)と背面パネル(43)と左側面パネル(44)と右側面パネル(45)とを有している。この例では、ケーシング(41)の長手方向が左右方向となっている。 The dehumidifier (10) includes a casing (41) that houses the components of the refrigerant circuit (100). The casing (41) is formed in a substantially flat and relatively low rectangular parallelepiped shape, and has a front panel (42), a rear panel (43), a left side panel (44), and a right side panel (45). ing. In this example, the longitudinal direction of the casing (41) is the left-right direction.
 ケーシング(41)には、吸着側吸込口(51)と、再生側吸込口(52)と、給気口(53)と、排気口(54)とが形成されている。吸着側吸込口(51)は、背面パネル(43)の右寄りの位置に設けられ、再生側吸込口(52)は、背面パネル(43)の左寄りの位置に設けられる。給気口(53)は、前面パネル(42)の左寄りの位置に設けられ、排気口(54)は、前面パネル(42)の右寄りの位置に設けられる。 The casing (41) has an adsorption side suction port (51), a regeneration side suction port (52), an air supply port (53), and an exhaust port (54). The suction side suction port (51) is provided at a position on the right side of the back panel (43), and the reproduction side suction port (52) is provided at a position on the left side of the back panel (43). The air supply port (53) is provided on the left side of the front panel (42), and the exhaust port (54) is provided on the right side of the front panel (42).
 また、ケーシング(41)の内部空間は、第1仕切板(46)と第2仕切板(47)と中央仕切板(48)とが設けられている。これらの仕切板(46,47,48)は、ケーシング(41)の底板に起立した状態で設置され、ケーシング(41)の内部空間をケーシング(41)の底板から天板に亘って区画している。第1および第2仕切板(46,47)は、左側面パネル(44)および右側面パネル(45)と平行な姿勢で、ケーシング(41)の左右方向に所定の間隔をおいて配置されている。第1仕切板(46)は、左側面パネル(44)寄りに配置され、第2仕切板(47)は、右側面パネル(45)寄りに配置されている。そして、第1仕切板(46)の左側の空間が左側空間(S31)となり、第1仕切板(46)と第2仕切板(47)の間の空間が中央空間(S32)となり、第2仕切板(47)の右側の空間が右側空間(S33)となっている。なお、中央仕切板(48)の配置については、後述する。 In the internal space of the casing (41), a first partition plate (46), a second partition plate (47), and a central partition plate (48) are provided. These partition plates (46, 47, 48) are installed upright on the bottom plate of the casing (41) and partition the internal space of the casing (41) from the bottom plate of the casing (41) to the top plate. Yes. The first and second partition plates (46, 47) are arranged at a predetermined interval in the left-right direction of the casing (41) in a posture parallel to the left side panel (44) and the right side panel (45). Yes. The first partition plate (46) is disposed closer to the left side panel (44), and the second partition plate (47) is disposed closer to the right side panel (45). The space on the left side of the first partition plate (46) becomes the left space (S31), the space between the first partition plate (46) and the second partition plate (47) becomes the central space (S32), and the second space The space on the right side of the partition plate (47) is the right space (S33). The arrangement of the central partition plate (48) will be described later.
 左側空間(S31)は、左側面パネル(44)側の部分と第1仕切板(46)側の部分とに区画されている。左側空間(S31)内におけるケーシング(41)の左面側の空間は、前後2つの空間に仕切られており、前側の空間が給気ファン室(S25)を構成し、奥側の空間が再生側吸込室(S28)を構成している。左側空間(S31)内における第1仕切板(46)側の空間は、上下2つの空間に仕切られており、上側の空間が第2吸着側内部通路(S23)を構成し、下側の空間が第1再生側内部通路(S22)をそれぞれ構成している。 The left space (S31) is partitioned into a left side panel (44) side portion and a first partition (46) side portion. The space on the left side of the casing (41) in the left space (S31) is partitioned into two front and rear spaces, the front space forms the supply fan chamber (S25), and the back space is the regeneration side It constitutes the suction chamber (S28). The space on the first partition (46) side in the left space (S31) is partitioned into two upper and lower spaces, and the upper space constitutes the second suction side internal passage (S23), and the lower space. Respectively constitutes the first regeneration-side internal passage (S22).
 給気ファン室(S25)は、給気口(53)に接続されるダクト(図7の第2給気通路部(P12)に対応)を介して室内空間(S1)と連通している。また、給気ファン室(S25)には、給気ファン(61)が収容されている。給気ファン(61)の吹出口は、給気口(53)に接続されている。また、給気ファン室(S25)には、冷媒回路(100)の圧縮機(103)および四方切換弁(105)(図示を省略)が収容されている。一方、再生側吸込室(S28)は、再生側吸込口(52)に接続されるダクト(図7の第1再生通路部(P21)に対応)を介して室内空間(S1)と連通している。 The air supply fan chamber (S25) communicates with the indoor space (S1) via a duct (corresponding to the second air supply passage portion (P12) in FIG. 7) connected to the air supply port (53). An air supply fan (61) is housed in the air supply fan chamber (S25). The air outlet of the air supply fan (61) is connected to the air supply port (53). Further, the compressor fan (103) and the four-way switching valve (105) (not shown) of the refrigerant circuit (100) are accommodated in the air supply fan chamber (S25). On the other hand, the regeneration side suction chamber (S28) communicates with the indoor space (S1) via a duct (corresponding to the first regeneration passage portion (P21) in FIG. 7) connected to the regeneration side suction port (52). Yes.
 第2吸着側内部通路(S23)は、再生側吸込室(S28)とは前後に延びる仕切板で仕切られる一方、給気ファン室(S25)と連通している。第1再生側内部通路(S22)は、再生側吸込室(S28)と連通している。 The second adsorption side internal passage (S23) is separated from the regeneration side suction chamber (S28) by a partition plate extending in the front-rear direction, and communicates with the air supply fan chamber (S25). The first regeneration side internal passage (S22) communicates with the regeneration side suction chamber (S28).
 右側空間(S33)は、ケーシング(41)の右面側の部分と第2仕切板(47)側の部分とに区画されている。右側空間(S33)内におけるケーシング(41)の右面側の空間は、前側の空間が排気ファン室(S26)を構成している。一方、奥側の空間は、上下に仕切られており、下側の空間が排気ファン室(S26)から仕切られた吸着側吸込室(S27)を構成し、上側の空間が排気ファン室(S26)と連通している。右側空間(S33)内における第2仕切板(47)側の空間は、上下2つの空間に仕切られており、上側の空間が第2再生側内部通路(S24)を構成し、下側の空間が第1吸着側内部通路(S21)を構成している。 The right space (S33) is divided into a right side portion of the casing (41) and a second partition plate (47) side portion. In the space on the right side of the casing (41) in the right space (S33), the front space constitutes the exhaust fan chamber (S26). On the other hand, the inner space is partitioned vertically, the lower space constitutes the suction side suction chamber (S27) partitioned from the exhaust fan chamber (S26), and the upper space is the exhaust fan chamber (S26). ). The space on the second partition (47) side in the right space (S33) is partitioned into two upper and lower spaces, and the upper space constitutes the second reproduction-side internal passage (S24), and the lower space Constitutes the first suction side internal passage (S21).
 排気ファン室(S26)は、排気口(54)に接続されるダクト(図7の第2再生通路部(P22)に対応)を介して室外空間と連通している。また、排気ファン室(S26)には、排気ファン(62)が収容されている。排気ファン(62)の吹出口は、排気口(54)に接続されている。吸着側吸込室(S27)は、吸着側吸込口(51)に接続されるダクト(図7の第1給気通路部(P11)に対応)を介して室外空間と連通している。 The exhaust fan chamber (S26) communicates with the outdoor space via a duct (corresponding to the second regeneration passage portion (P22) in FIG. 7) connected to the exhaust port (54). An exhaust fan (62) is housed in the exhaust fan chamber (S26). The outlet of the exhaust fan (62) is connected to the exhaust outlet (54). The suction side suction chamber (S27) communicates with the outdoor space via a duct (corresponding to the first air supply passage portion (P11) in FIG. 7) connected to the suction side suction port (51).
 第2再生側内部通路(S24)は、排気ファン室(S26)と連通している。第1吸着側内部通路(S21)は、吸着側吸込室(S27)と連通している。 The second regeneration side internal passage (S24) communicates with the exhaust fan chamber (S26). The first suction side internal passage (S21) communicates with the suction side suction chamber (S27).
 中央空間(S32)は、中央仕切板(48)によって前後に区画されており、中央仕切板(48)の後側の空間が第1熱交換室(S11)を構成し、中央仕切板(48)の前側の空間が第2熱交換室(S12)を構成している。第1熱交換室(S11)には、第1吸着熱交換器(101)が収容され、第2熱交換室(S12)には、第2吸着熱交換器(102)が収容されている。また、第2熱交換室(S12)には、冷媒回路(100)の膨張弁(104)(図示を省略)が収容されている。 The central space (S32) is divided forward and backward by a central partition plate (48), and the space behind the central partition plate (48) constitutes the first heat exchange chamber (S11), and the central partition plate (48 ) In front of the second heat exchange chamber (S12). A first adsorption heat exchanger (101) is accommodated in the first heat exchange chamber (S11), and a second adsorption heat exchanger (102) is accommodated in the second heat exchange chamber (S12). The second heat exchange chamber (S12) accommodates an expansion valve (104) (not shown) of the refrigerant circuit (100).
 第1および第2吸着熱交換器(101,102)の各々は、全体として長方形の厚板状あるいは扁平な直方体状に形成され、互いに対向する2つの主面(幅広の側面)が空気を通過させる面となっている。そして、第1吸着熱交換器(101)は、その2つの主面が第1および第2仕切板(46,47)と平行になる姿勢で、第1熱交換室(S11)内に起立した状態で設置されている。これと同様に、第2吸着熱交換器(102)は、その2つの主面が第1および第2仕切板(46,47)と平行になる姿勢で、第2熱交換室(S12)内に起立した状態で設置されている。 Each of the first and second adsorption heat exchangers (101, 102) is formed into a rectangular thick plate shape or flat rectangular parallelepiped shape as a whole, and two main surfaces (wide side surfaces) facing each other are surfaces through which air passes. It has become. And the 1st adsorption heat exchanger (101) stood up in the 1st heat exchange room (S11) with the posture where the two principal surfaces became parallel to the 1st and 2nd partition plates (46, 47). It is installed in a state. Similarly, the second adsorptive heat exchanger (102) has a configuration in which the two main surfaces thereof are parallel to the first and second partition plates (46, 47) and in the second heat exchange chamber (S12). It is installed in a standing state.
 第1および第2吸着ブロック(301,302)の各々は、全体として長方形の厚板状あるいは扁平な直方体状に形成され、互いに対向する2つの主面(幅広の側面)が空気を通過させる面となっている。例えば、第1および第2吸着ブロック(301,302)の各々は、その一方の主面から他方の主面まで貫通する多数の孔を有するハニカム状の構造体である。また、第1吸着ブロック(301)は、その2つの主面が第1および第2仕切板(46,47)と平行になる姿勢で、第1熱交換室(S11)内に起立した状態で設置されている。これと同様に、第2吸着ブロック(302)は、その2つの主面が第1および第2仕切板(46,47)と平行になる姿勢で、第2熱交換室(S12)内に起立した状態で設置されている。また、この例では、第1吸着ブロック(301)は、第1熱交換室(S11)において第1吸着熱交換器(101)と第1仕切板(46)との間に配置され、第2吸着ブロック(302)は、第2熱交換室(S12)において第2吸着熱交換器(102)と第1仕切板(46)との間に配置されている。なお、第1吸着ブロック(301)は、左右方向において第1吸着熱交換器(101)と間隔をおいて配置され、第2吸着ブロック(302)は、左右方向において第2吸着熱交換器(102)と間隔をおいて配置されている。 Each of the first and second adsorption blocks (301, 302) is formed in a rectangular thick plate shape or flat rectangular parallelepiped shape as a whole, and two main surfaces (wide side surfaces) facing each other serve as surfaces through which air passes. ing. For example, each of the first and second adsorption blocks (301, 302) is a honeycomb-like structure having a large number of holes penetrating from one main surface to the other main surface. The first adsorption block (301) stands up in the first heat exchange chamber (S11) with its two main surfaces parallel to the first and second partition plates (46, 47). is set up. Similarly, the second adsorption block (302) stands up in the second heat exchange chamber (S12) with its two main surfaces parallel to the first and second partition plates (46, 47). Installed. In this example, the first adsorption block (301) is disposed between the first adsorption heat exchanger (101) and the first partition plate (46) in the first heat exchange chamber (S11), and the second The adsorption block (302) is disposed between the second adsorption heat exchanger (102) and the first partition plate (46) in the second heat exchange chamber (S12). The first adsorption block (301) is spaced apart from the first adsorption heat exchanger (101) in the left-right direction, and the second adsorption block (302) is arranged in the second adsorption heat exchanger (101) in the left-right direction. 102) and spaced apart.
 第1仕切板(46)には、第1~第4ダンパ(D1~D4)が設けられ、第2仕切板(47)には、第5~第8ダンパ(D5~D8)が設けられている。第1~第8ダンパ(D1~D8)の各々は、コントローラ(20)による制御に応答して開状態と閉状態とを切換可能に構成されている。これらの第1~第8ダンパ(D1~D8)は、切換機構(200)を構成している。 The first partition plate (46) is provided with first to fourth dampers (D1 to D4), and the second partition plate (47) is provided with fifth to eighth dampers (D5 to D8). Yes. Each of the first to eighth dampers (D1 to D8) is configured to be switchable between an open state and a closed state in response to control by the controller (20). These first to eighth dampers (D1 to D8) constitute a switching mechanism (200).
 第1ダンパ(D1)は、第1仕切板(46)の上側部分(第2吸着側内部通路(S23)に面する部分)において中央仕切板(48)よりも正面側に取り付けられ、第2ダンパ(D2)は、第1仕切板(46)の上側部分において中央仕切板(48)よりも背面側に取り付けられる。第3ダンパ(D3)は、第1仕切板(46)の下側部分(第1再生側内部通路(S22)に面する部分)において中央仕切板(48)よりも正面側に取り付けられ、第4ダンパ(D4)は、第1仕切板(46)の下側部分において中央仕切板(48)よりも背面側に取り付けられる。 The first damper (D1) is attached to the front side of the central partition plate (48) in the upper portion of the first partition plate (46) (the portion facing the second suction side internal passage (S23)). The damper (D2) is attached to the back side of the central partition plate (48) in the upper part of the first partition plate (46). The third damper (D3) is attached to the front side of the central partition plate (48) in the lower portion of the first partition plate (46) (the portion facing the first regeneration-side internal passage (S22)). The 4 damper (D4) is attached to the back side of the central partition plate (48) in the lower portion of the first partition plate (46).
 第1ダンパ(D1)を開くと、第2吸着側内部通路(S23)と第2熱交換室(S12)が連通する。第2ダンパ(D2)を開くと、第2吸着側内部通路(S23)と第1熱交換室(S11)が連通する。第3ダンパ(D3)を開くと、第1再生側内部通路(S22)と第2熱交換室(S12)が連通する。第4ダンパ(D4)を開くと、第1再生側内部通路(S22)と第1熱交換室(S11)が連通する。 When the first damper (D1) is opened, the second adsorption side internal passage (S23) and the second heat exchange chamber (S12) communicate with each other. When the second damper (D2) is opened, the second adsorption side internal passage (S23) and the first heat exchange chamber (S11) communicate with each other. When the third damper (D3) is opened, the first regeneration side internal passage (S22) and the second heat exchange chamber (S12) communicate with each other. When the fourth damper (D4) is opened, the first regeneration side internal passage (S22) and the first heat exchange chamber (S11) communicate with each other.
 第5ダンパ(D5)は、第2仕切板(47)の上側部分(第2再生側内部通路(S24)に面する部分)において中央仕切板(48)よりも正面側に取り付けられ、第6ダンパ(D6)は、第2仕切板(47)の上側部分において中央仕切板(48)よりも背面側に取り付けられる。第7ダンパ(D7)は、第2仕切板(47)の下側部分(第1吸着側内部通路(S21)に面する部分)において中央仕切板(48)よりも正面側に取り付けられ、第8ダンパ(D8)は、第2仕切板(47)の下側部分において中央仕切板(48)よりも背面側に取り付けられる。 The fifth damper (D5) is attached to the front side of the central partition plate (48) in the upper portion of the second partition plate (47) (the portion facing the second regeneration-side internal passage (S24)). The damper (D6) is attached to the back side of the central partition plate (48) in the upper part of the second partition plate (47). The seventh damper (D7) is attached to the front side of the central partition plate (48) in the lower portion of the second partition plate (47) (the portion facing the first suction side internal passage (S21)). The 8 damper (D8) is attached to the back side of the central partition plate (48) in the lower portion of the second partition plate (47).
 第5ダンパ(D5)を開くと、第2再生側内部通路(S24)と第2熱交換室(S12)が連通する。第6ダンパ(D6)を開くと、第2再生側内部通路(S24)と第1熱交換室(S11)が連通する。第7ダンパ(D7)を開くと、第1吸着側内部通路(S21)と第2熱交換室(S12)が連通する。第8ダンパ(D8)を開くと、第1吸着側内部通路(S21)と第1熱交換室(S11)が連通する。 When the fifth damper (D5) is opened, the second regeneration side internal passage (S24) and the second heat exchange chamber (S12) communicate with each other. When the sixth damper (D6) is opened, the second regeneration side internal passage (S24) communicates with the first heat exchange chamber (S11). When the seventh damper (D7) is opened, the first adsorption side internal passage (S21) communicates with the second heat exchange chamber (S12). When the eighth damper (D8) is opened, the first adsorption side internal passage (S21) and the first heat exchange chamber (S11) communicate with each other.
   《第1除湿動作における空気の流れ》
 次に、図8を参照して、実施形態2の除湿装置(10)による第1除湿動作における空気の流れについて説明する。第1除湿動作では、第1吸着熱交換器(101)が蒸発器となり、第2吸着熱交換器(102)が凝縮器となる。また、図8のように、第2,第3,第5,第8ダンパ(D2,D3,D5,D8)が開状態となり、第1,第4,第6,第7ダンパ(D1,D4,D6,D7)が閉状態となる。これにより、第1および第2熱交換室(S11,S12)の接続状態が第1通路状態(図7の実線で示した状態)に設定され、第1熱交換室(S11)が給気通路(P1)に組み込まれ、第2熱交換室(S12)が再生通路(P2)に組み込まれる。
<< Air flow in the first dehumidifying action >>
Next, the flow of air in the first dehumidifying operation by the dehumidifying device (10) of Embodiment 2 will be described with reference to FIG. In the first dehumidifying operation, the first adsorption heat exchanger (101) serves as an evaporator, and the second adsorption heat exchanger (102) serves as a condenser. Further, as shown in FIG. 8, the second, third, fifth, and eighth dampers (D2, D3, D5, and D8) are opened, and the first, fourth, sixth, and seventh dampers (D1, D4) are opened. , D6, D7) are closed. Thereby, the connection state of the first and second heat exchange chambers (S11, S12) is set to the first passage state (the state indicated by the solid line in FIG. 7), and the first heat exchange chamber (S11) is set to the air supply passage. (P1) and the second heat exchange chamber (S12) is incorporated into the regeneration passage (P2).
    -給気通路における空気の流れ-
 吸着側吸込口(51)および吸着側吸込室(S27)を経由して第1吸着側内部通路(S21)に供給された空気(この例では、室外空気(OA))は、第8ダンパ(D8)を通過して第1熱交換室(S11)に供給される。
-Air flow in the air supply passage-
The air (in this example, outdoor air (OA)) supplied to the first suction side internal passage (S21) via the suction side suction port (51) and the suction side suction chamber (S27) is an eighth damper ( D8) is supplied to the first heat exchange chamber (S11).
 第1熱交換室(S11)に供給された空気は、第1吸着熱交換器(101)と第1吸着ブロック(301)とを順に通過する際に、第1吸着熱交換器(101)および第1吸着ブロック(301)の吸着剤に水分を奪われて除湿される。 When the air supplied to the first heat exchange chamber (S11) passes through the first adsorption heat exchanger (101) and the first adsorption block (301) in order, the first adsorption heat exchanger (101) and Moisture is taken away by the adsorbent of the first adsorption block (301) and dehumidified.
 第1吸着熱交換器(101)および第1吸着ブロック(301)を通過して除湿された空気は、第2ダンパ(D2)を通過して第2吸着側内部通路(S23)に流れ込み、給気ファン室(S25)および給気口(53)を通過して供給空気(SA)として室内空間(S1)に供給される。 The dehumidified air that has passed through the first adsorption heat exchanger (101) and the first adsorption block (301) passes through the second damper (D2) and flows into the second adsorption side internal passage (S23). The air passes through the air fan chamber (S25) and the air supply port (53) and is supplied to the indoor space (S1) as supply air (SA).
    -再生通路における空気の流れ-
 再生側吸込口(52)および再生側吸込室(S28)を経由して第1再生側内部通路(S22)に供給された空気(この例では、室内空気(RA))は、第3ダンパ(D3)を通過して第2熱交換室(S12)に供給される。
-Air flow in the regeneration passage-
The air (in this example, room air (RA)) supplied to the first regeneration side internal passage (S22) via the regeneration side suction port (52) and the regeneration side suction chamber (S28) is supplied to the third damper ( D3) is supplied to the second heat exchange chamber (S12).
 第2熱交換室(S12)に供給された空気は、第2吸着ブロック(302)と第2吸着熱交換器(102)とを順に通過する際に、第2吸着ブロック(302)および第2吸着熱交換器(102)の吸着剤から水分を付与される。これにより、第2吸着熱交換器(102)および第2吸着ブロック(302)の吸着剤が再生される。 When the air supplied to the second heat exchange chamber (S12) sequentially passes through the second adsorption block (302) and the second adsorption heat exchanger (102), the second adsorption block (302) and the second adsorption block (302). Moisture is given from the adsorbent of the adsorption heat exchanger (102). Thereby, the adsorbent of the second adsorption heat exchanger (102) and the second adsorption block (302) is regenerated.
 第2吸着ブロック(302)および第2吸着熱交換器(102)を通過した空気は、第5ダンパ(D5)を通過して第2再生側内部通路(S24)に流れ込み、排気ファン室(S26)および排気口(54)を通過して室外空間に排出される。 The air that has passed through the second adsorption block (302) and the second adsorption heat exchanger (102) passes through the fifth damper (D5) and flows into the second regeneration side internal passage (S24), and the exhaust fan chamber (S26 ) And the exhaust port (54) to be discharged into the outdoor space.
   《第2除湿動作における空気の流れ》
 次に、図9を参照して、実施形態2の除湿装置(10)による第2除湿動作における空気の流れについて説明する。第2除湿動作では、第1吸着熱交換器(101)が凝縮器となり、第2吸着熱交換器(102)が蒸発器となる。また、図8のように、第1,第4,第6,第7ダンパ(D1,D4,D6,D7)が開状態となり、第2,第3,第5,第8ダンパ(D2,D3,D5,D8)が閉状態となる。これにより、第1および第2熱交換室(S11,S12)の接続状態が第2通路状態(図7の破線で示した状態)に設定され、第1熱交換室(S11)が再生通路(P2)に組み込まれ、第2熱交換室(S12)が給気通路(P1)に組み込まれる。
<< Air flow in the second dehumidifying action >>
Next, the flow of air in the second dehumidifying operation by the dehumidifying device (10) of the second embodiment will be described with reference to FIG. In the second dehumidifying operation, the first adsorption heat exchanger (101) serves as a condenser, and the second adsorption heat exchanger (102) serves as an evaporator. Further, as shown in FIG. 8, the first, fourth, sixth and seventh dampers (D1, D4, D6, D7) are opened, and the second, third, fifth and eighth dampers (D2, D3) are opened. , D5, D8) are closed. Thereby, the connection state of the first and second heat exchange chambers (S11, S12) is set to the second passage state (the state indicated by the broken line in FIG. 7), and the first heat exchange chamber (S11) is set to the regeneration passage ( P2) and the second heat exchange chamber (S12) is incorporated into the air supply passage (P1).
    -給気通路における空気の流れ-
 吸着側吸込口(51)および吸着側吸込室(S27)を経由して第1吸着側内部通路(S21)に供給された空気(この例では、室外空気(OA))は、第7ダンパ(D7)を通過して第2熱交換室(S12)に供給される。
-Air flow in the air supply passage-
The air (in this example, outdoor air (OA)) supplied to the first suction side internal passage (S21) via the suction side suction port (51) and the suction side suction chamber (S27) D7) is supplied to the second heat exchange chamber (S12).
 第2熱交換室(S12)に供給された空気は、第2吸着熱交換器(102)と第2吸着ブロック(302)とを順に通過する際に、第2吸着熱交換器(102)および第2吸着ブロック(302)の吸着剤に水分を奪われて除湿される。 When the air supplied to the second heat exchange chamber (S12) sequentially passes through the second adsorption heat exchanger (102) and the second adsorption block (302), the second adsorption heat exchanger (102) and Moisture is taken away by the adsorbent of the second adsorption block (302) and dehumidified.
 第2吸着熱交換器(102)および第2吸着ブロック(302)を通過して除湿された空気は、第1ダンパ(D1)を通過して第2吸着側内部通路(S23)に流れ込み、給気ファン室(S25)および給気口(53)を通過して供給空気(SA)として室内空間(S1)に供給される。 The air that has been dehumidified after passing through the second adsorption heat exchanger (102) and the second adsorption block (302) passes through the first damper (D1) and flows into the second adsorption side internal passage (S23). The air passes through the air fan chamber (S25) and the air supply port (53) and is supplied to the indoor space (S1) as supply air (SA).
    -再生通路における空気の流れ-
 再生側吸込口(52)および再生側吸込室(S28)を経由して第1再生側内部通路(S22)に供給された空気(この例では、室内空気(RA))は、第4ダンパ(D4)を通過して第1熱交換室(S11)に供給される。
-Air flow in the regeneration passage-
The air (in this example, room air (RA)) supplied to the first regeneration side internal passage (S22) via the regeneration side suction port (52) and the regeneration side suction chamber (S28) D4) is supplied to the first heat exchange chamber (S11).
 第1熱交換室(S11)に供給された空気は、第1吸着ブロック(301)と第1吸着熱交換器(101)とを順に通過する際に、第1吸着ブロック(301)および第1吸着熱交換器(101)の吸着剤から水分を付与される。これにより、第1吸着熱交換器(101)および第1吸着ブロック(301)の吸着剤が再生される。 When the air supplied to the first heat exchange chamber (S11) passes through the first adsorption block (301) and the first adsorption heat exchanger (101) in order, the first adsorption block (301) and the first adsorption block (301) Moisture is given from the adsorbent of the adsorption heat exchanger (101). Thereby, the adsorbent of the first adsorption heat exchanger (101) and the first adsorption block (301) is regenerated.
 第1吸着ブロック(301)および第1吸着熱交換器(101)を通過した空気は、第6ダンパ(D6)を通過して第2再生側内部通路(S24)に流れ込み、排気ファン室(S26)および排気口(54)を通過して室外空間に排出される。 The air that has passed through the first adsorption block (301) and the first adsorption heat exchanger (101) passes through the sixth damper (D6) and flows into the second regeneration side internal passage (S24), and the exhaust fan chamber (S26 ) And the exhaust port (54) to be discharged into the outdoor space.
  〈実施形態2による効果〉
 実施形態2の除湿装置(10)では、第1および第2熱交換室(S11,S12)に第1および第2吸着ブロック(301,302)を追加することにより、第1および第2熱交換室(S11,S12)における空気の除湿量を増加させることができる。
<Effects of Embodiment 2>
In the dehumidifying apparatus (10) of Embodiment 2, the first and second heat exchange chambers (301, 302) are added to the first and second heat exchange chambers (S11, S12), thereby The amount of dehumidified air in S11 and S12) can be increased.
 また、第1熱交換室(S11)が給気通路(P1)に組み込まれている場合に第1吸着熱交換器(101)によって除湿された空気が通過する位置に第1吸着ブロック(301)を配置することにより、第1吸着熱交換器(101)によって除湿および冷却された空気を、第1吸着ブロック(301)に供給することができる。これにより、第1吸着ブロック(301)において吸着剤への水分の吸着を促進させることができる。これと同様に、第2熱交換室(S12)が給気通路(P1)に組み込まれている場合に、第2吸着熱交換器(102)によって除湿および冷却された空気を、第2吸着ブロック(302)に供給することができるので、第2吸着ブロック(302)において吸着剤への水分の吸着を促進させることができる。すなわち、第1および第2熱交換室(S11,S12)の各々において、吸着熱交換器(101,102)が蒸発器となっている場合に吸着熱交換器(101,102)の下流側となる位置に吸着ブロック(301,302)を配置することにより、吸着熱交換器(101,102)によって除湿および冷却された空気を吸着ブロック(301,302)に供給することができるので、吸着ブロック(301,302)の吸着剤への水分の吸着を促進させることができる。 In addition, when the first heat exchange chamber (S11) is incorporated in the air supply passage (P1), the first adsorption block (301) is located at a position where the air dehumidified by the first adsorption heat exchanger (101) passes. The air dehumidified and cooled by the first adsorption heat exchanger (101) can be supplied to the first adsorption block (301). Thereby, adsorption | suction of the water | moisture content to adsorption agent can be accelerated | stimulated in a 1st adsorption | suction block (301). Similarly, when the second heat exchange chamber (S12) is incorporated in the air supply passage (P1), the air dehumidified and cooled by the second adsorption heat exchanger (102) is transferred to the second adsorption block. Since it can be supplied to (302), the adsorption of moisture to the adsorbent can be promoted in the second adsorption block (302). That is, in each of the first and second heat exchange chambers (S11, S12), when the adsorption heat exchanger (101, 102) is an evaporator, the adsorption is performed at a position downstream of the adsorption heat exchanger (101, 102). By disposing the block (301,302), the air dehumidified and cooled by the adsorption heat exchanger (101,102) can be supplied to the adsorption block (301,302), so that the moisture to the adsorbent of the adsorption block (301,302) can be supplied. Adsorption can be promoted.
 以上のように、第1および第2熱交換室(S11,S12)における空気の除湿量を増加させることができ、さらに、吸着ブロック(301,302)において吸着剤への水分の吸着を促進させることができるので、除湿装置(10)の除湿能力を向上させることができる。 As described above, the amount of air dehumidified in the first and second heat exchange chambers (S11, S12) can be increased, and the adsorption of moisture to the adsorbent can be promoted in the adsorption block (301, 302). Therefore, the dehumidifying capacity of the dehumidifying device (10) can be improved.
 また、除湿装置(10)の除湿能力を向上させるために冷媒回路(100)の圧縮機(103)の回転数を増加させなくてもよいので、除湿装置(10)の消費電力の増大を抑制することができる。 Moreover, since it is not necessary to increase the rotation speed of the compressor (103) of the refrigerant circuit (100) in order to improve the dehumidifying capacity of the dehumidifying device (10), the increase in power consumption of the dehumidifying device (10) is suppressed. can do.
 また、実施形態2では、第1および第2熱交換室(S11,S12)の各々において、吸着ブロック(301,302)は、吸着熱交換器(101,102)が蒸発器となっている場合には、吸着熱交換器(101,102)の下流側に位置し、吸着熱交換器(101,102)が凝縮器となっている場合には、吸着熱交換器(101,102)の上流側に位置する。したがって、第1および第2熱交換室(S1,S12)のうち凝縮器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)に、加熱器(21)を通過した空気を流通させることにより、その熱交換室(S11,S12)において吸着熱交換器(101,102)の上流側に位置している吸着ブロック(301,302)に、加熱器(21)によって加熱された空気を供給することができる。これにより、吸着ブロック(301,302)の吸着剤の再生を促進させることができる。 In Embodiment 2, in each of the first and second heat exchange chambers (S11, S12), the adsorption block (301, 302) is adsorbed when the adsorption heat exchanger (101, 102) is an evaporator. When located on the downstream side of the heat exchanger (101, 102) and the adsorption heat exchanger (101, 102) is a condenser, it is located on the upstream side of the adsorption heat exchanger (101, 102). Therefore, the heater (21) is placed in the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as a condenser among the first and second heat exchange chambers (S1, S12). By circulating the air that passed through, it was heated by the heater (21) to the adsorption block (301,302) located upstream of the adsorption heat exchanger (101,102) in the heat exchange chamber (S11, S12) Air can be supplied. Thereby, regeneration of the adsorbent of the adsorption block (301, 302) can be promoted.
 なお、実施形態1では、第1吸着熱交換器(101)が凝縮器となっている場合、第1吸着ブロック(301)は、第1熱交換室(S11)において第1吸着熱交換器(101)の下流側に位置しているので、第1吸着熱交換器(101)を通過した空気が第1吸着ブロック(301)に供給される。この場合、第1吸着熱交換器(101)を通過して第1吸着ブロック(301)に供給される空気は、第1吸着熱交換器(101)によって加熱されるだけでなく加湿もされることになる。第2吸着ブロック(302)についても同様である。 In the first embodiment, when the first adsorption heat exchanger (101) is a condenser, the first adsorption block (301) is the first adsorption heat exchanger (S11) in the first heat exchange chamber (S11). 101), the air that has passed through the first adsorption heat exchanger (101) is supplied to the first adsorption block (301). In this case, the air that passes through the first adsorption heat exchanger (101) and is supplied to the first adsorption block (301) is not only heated but also humidified by the first adsorption heat exchanger (101). It will be. The same applies to the second adsorption block (302).
 一方、実施形態2では、第1吸着熱交換器(101)が凝縮器となっている場合、第1吸着ブロック(301)は、第1熱交換室(S11)において第1吸着熱交換器(101)の上流側に位置し、加熱器(21)によって加熱された空気が第1吸着ブロック(301)に供給される。この場合、加熱器(21)を通過して第1吸着ブロック(301)に供給される空気は、加熱器(21)によって加熱されるが加湿はされない。したがって、実施形態1よりも、第1吸着ブロック(301)の吸着剤の再生を促進させることができ、第1吸着ブロック(301)における吸着能力をより向上することができる。第2吸着ブロック(302)についても同様である。 On the other hand, in Embodiment 2, when the first adsorption heat exchanger (101) is a condenser, the first adsorption block (301) is the first adsorption heat exchanger (S11) in the first heat exchange chamber (S11). 101), the air heated by the heater (21) is supplied to the first adsorption block (301). In this case, the air that passes through the heater (21) and is supplied to the first adsorption block (301) is heated by the heater (21) but is not humidified. Therefore, the regeneration of the adsorbent in the first adsorption block (301) can be promoted more than in the first embodiment, and the adsorption capacity in the first adsorption block (301) can be further improved. The same applies to the second adsorption block (302).
 また、第1吸着熱交換器(101)と間隔をおいて第1吸着ブロック(301)を配置することにより、第1吸着ブロック(301)における温度分布の偏りや空気偏流を抑制することができる。第2吸着ブロック(302)についても同様である。このように、第1および第2吸着ブロック(301,302)において温度分布の偏りや空気偏流を抑制することができるので、第1および第2吸着ブロック(301,302)における吸着能力および再生能力の低下を抑制することができる。 Further, by disposing the first adsorption block (301) at a distance from the first adsorption heat exchanger (101), it is possible to suppress temperature distribution deviation and air drift in the first adsorption block (301). . The same applies to the second adsorption block (302). As described above, since the temperature distribution and air drift can be suppressed in the first and second adsorption blocks (301, 302), the decrease in adsorption capacity and regeneration capacity in the first and second adsorption blocks (301, 302) is suppressed. can do.
 (実施形態2の変形例)
 なお、図10のように、除湿システム(1)は、図7に示した除湿装置(10)とコントローラ(20)と加熱器(21)に加えて、前処理用除湿装置(30)を備えていてもよい。この例では、調湿空間(S0)は、室内空間(S1)と、室内空間(S1)に設けられたチャンバ(S2)とによって構成されている。また、除湿システム(1)には、前処理通路(P3)および後処理通路(P4)が設けられている。そして、この除湿システム(1)では、前処理用除湿装置(30)によって除湿された空気(この例では、室外空気(OA))が供給空気(SA0)として室内空間(S1)に供給され、除湿装置(10)によって除湿された空気(この例では、室内空気(RA))が供給空気(SA)としてチャンバ(S2)に供給される。コントローラ(20)は、各種センサの検出値に基づいて、除湿装置(10)および前処理用除湿装置(30)を制御する。
(Modification of Embodiment 2)
As shown in FIG. 10, the dehumidification system (1) includes a pretreatment dehumidifier (30) in addition to the dehumidifier (10), controller (20), and heater (21) shown in FIG. It may be. In this example, the humidity control space (S0) includes an indoor space (S1) and a chamber (S2) provided in the indoor space (S1). The dehumidification system (1) is provided with a pretreatment passage (P3) and a posttreatment passage (P4). And in this dehumidification system (1), the air (in this example, outdoor air (OA)) dehumidified by the pretreatment dehumidifier (30) is supplied to the indoor space (S1) as supply air (SA0), Air dehumidified by the dehumidifier (10) (in this example, room air (RA)) is supplied to the chamber (S2) as supply air (SA). The controller (20) controls the dehumidifier (10) and the pretreatment dehumidifier (30) based on the detection values of the various sensors.
  〈前処理通路,後処理通路〉
 前処理通路(P3)は、室外空間から室外空気(OA)を取り込んで供給空気(SA0)を室内空間(S1)に供給するように構成されている。後処理通路(P4)は、再生通路(P2)の流出端から空気を取り込んで排出空気(EA)を室外空間に排出するように構成されている。
<Pre-processing and post-processing passages>
The pretreatment passage (P3) is configured to take outdoor air (OA) from the outdoor space and supply supply air (SA0) to the indoor space (S1). The post-processing passage (P4) is configured to take air from the outflow end of the regeneration passage (P2) and discharge the exhaust air (EA) to the outdoor space.
  〈給気通路,再生通路〉
 この例では、給気通路(P1)は、室内空間(S1)から室内空気(RA)を取り込んで供給空気(SA)をチャンバ(S2)に供給するように構成されている。具体的には、第1給気通路部(P11)の流入端は、室内空間(S1)に接続され、第2給気通路部(P12)の流出端は、チャンバ(S2)に接続されている。また、再生通路(P2)は、室内空間(S1)から室内空気(RA)を取り込んで処理済みの空気を後処理通路(P4)に排出するように構成されている。具体的には、第1再生通路部(P21)の流入端は、第1給気通路部(P11)の中間部に接続され、第2再生通路部(P22)の流出端は、第1後処理通路部(P41)の流入端に接続されている。
<Air supply passage, regeneration passage>
In this example, the supply passage (P1) is configured to take in indoor air (RA) from the indoor space (S1) and supply supply air (SA) to the chamber (S2). Specifically, the inflow end of the first supply passage portion (P11) is connected to the indoor space (S1), and the outflow end of the second supply passage portion (P12) is connected to the chamber (S2). Yes. The regeneration passage (P2) is configured to take indoor air (RA) from the indoor space (S1) and discharge processed air to the post-treatment passage (P4). Specifically, the inflow end of the first regeneration passage portion (P21) is connected to the intermediate portion of the first supply air passage portion (P11), and the outflow end of the second regeneration passage portion (P22) is the first rear passage. It is connected to the inflow end of the processing passage (P41).
  〈前処理用除湿装置〉
 前処理用除湿装置(30)は、除湿装置(10)と同様の構成を有している。なお、前処理用除湿装置(30)の構造は、図8に示した除湿装置(10)の構造と同様である。
<Dehumidifier for pretreatment>
The pretreatment dehumidifier (30) has the same configuration as the dehumidifier (10). The structure of the pretreatment dehumidifier (30) is the same as the structure of the dehumidifier (10) shown in FIG.
  〈前処理用除湿装置の冷媒回路〉
 前処理用除湿装置(30)の冷媒回路(100)は、除湿装置(10)の冷媒回路(100)と同様に、コントローラ(20)による制御に応答して、第1吸着熱交換器(101)が蒸発器となって空気を除湿し第2吸着熱交換器(102)が凝縮器となって吸着剤を再生させる第1冷凍サイクル動作と、第2吸着熱交換器(102)が蒸発器となって空気を除湿し第1吸着熱交換器(101)が凝縮器となって吸着剤を再生させる第2冷凍サイクル動作とを交互に行うように構成されている。
<Refrigerant circuit of pretreatment dehumidifier>
Similarly to the refrigerant circuit (100) of the dehumidifying device (10), the refrigerant circuit (100) of the pretreatment dehumidifying device (30) responds to the control by the controller (20) in response to the first adsorption heat exchanger (101). ) Acts as an evaporator to dehumidify air and the second adsorption heat exchanger (102) serves as a condenser to regenerate the adsorbent, and the second adsorption heat exchanger (102) serves as an evaporator. Thus, the air is dehumidified, and the first adsorption heat exchanger (101) serves as a condenser to alternately perform the second refrigeration cycle operation for regenerating the adsorbent.
  〈前処理用除湿装置の切換機構〉
 前処理用除湿装置(30)の切換機構(200)は、コントローラ(20)による制御に応答して、前処理用除湿装置(30)の第1および第2熱交換室(S11,S12)と前処理通路(P3)および後処理通路(P4)との接続状態を、第3通路状態(図10の実線で示された状態)と第4通路状態(図10の破線で示された状態)とに設定可能に構成されている。
<Switching mechanism of pretreatment dehumidifier>
The switching mechanism (200) of the pretreatment dehumidifier (30) is responsive to the control by the controller (20) to the first and second heat exchange chambers (S11, S12) of the pretreatment dehumidifier (30). The connection state between the pre-processing passage (P3) and the post-processing passage (P4) includes a third passage state (state shown by a solid line in FIG. 10) and a fourth passage state (state shown by a broken line in FIG. 10). It is configured to be configurable.
   《第3通路状態》
 前処理用除湿装置(30)の第1および第2熱交換室(S11,S12)の接続状態が第3通路状態になると、第1熱交換室(S11)は、第1および第2前処理通路部(P31,P32)の間に接続されて前処理通路(P3)に組み込まれ、第2熱交換室(S12)は、第1および第2後処理通路部(P41,P42)の間に接続されて後処理通路(P4)に組み込まれる。
<< 3rd passage state >>
When the connection state of the first and second heat exchange chambers (S11, S12) of the pretreatment dehumidifier (30) becomes the third passage state, the first heat exchange chamber (S11) Connected between the passage parts (P31, P32) and incorporated in the pretreatment passage (P3), the second heat exchange chamber (S12) is located between the first and second post-treatment passage parts (P41, P42). Connected and incorporated into the post-processing passage (P4).
   《第4通路状態》
 前処理用除湿装置(30)の第1および第2熱交換室(S11,S12)の接続状態が第4通路状態になると、第1熱交換室(S11)は、第1および第2後処理通路部(P41,P42)の間に接続されて後処理通路(P4)に組み込まれ、第2熱交換室(S12)は、第1および第2前処理通路部(P31,P32)の間に接続されて前処理通路(P3)に組み込まれる。
<< 4th passage state >>
When the connection state of the first and second heat exchange chambers (S11, S12) of the pretreatment dehumidifier (30) becomes the fourth passage state, the first heat exchange chamber (S11) Connected between the passage parts (P41, P42) and incorporated in the post-processing passage (P4), the second heat exchange chamber (S12) is located between the first and second pretreatment passage parts (P31, P32). Connected and integrated into the pretreatment passage (P3).
   《熱交換室の接続切換動作》
 また、前処理用除湿装置(30)の切換機構(200)は、四方切換弁(105)が第1接続状態である場合に、第1および第2熱交換室(S11,S12)の接続状態を第3通路状態に設定し、四方切換弁(105)が第2接続状態である場合に、第1および第2熱交換室(S11,S12)の接続状態を第3通路状態に設定する。すなわち、前処理用除湿装置(30)の切換機構(200)は、除湿装置(10)の切換機構(200)と同様に、第1および第2熱交換室(S11,S12)のうち、蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気が調湿空間(S0)に供給され、凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)に吸着剤を再生するための空気(この例では、除湿装置(10)の第1および第2熱交換室(S11,S12)のうち凝縮器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気)が流通するように、空気の流れを切り換える。
<Connection switching operation in heat exchange chamber>
The switching mechanism (200) of the pretreatment dehumidifier (30) is connected to the first and second heat exchange chambers (S11, S12) when the four-way switching valve (105) is in the first connection state. Is set to the third passage state, and when the four-way switching valve (105) is in the second connection state, the connection state of the first and second heat exchange chambers (S11, S12) is set to the third passage state. That is, the switching mechanism (200) of the pretreatment dehumidifier (30) is the same as the switching mechanism (200) of the dehumidifier (10) in the first and second heat exchange chambers (S11, S12). The air that has passed through the heat exchange chambers (S11, S12) in which the adsorption heat exchangers (101, 102) are installed is supplied to the humidity control space (S0), and the adsorption heat exchanger (condenser) Air for regenerating the adsorbent in the heat exchange chambers (S12, S11) provided with 102, 101) (in this example, the first and second heat exchange chambers (S11, S12) of the dehumidifier (10) are condensed). The air flow is switched so that the air passing through the heat exchange chambers (S11, S12) provided with the adsorption heat exchangers (101, 102) serving as a container flows.
   《吸着熱交換器を通過する空気の流通方向》
 なお、この例では、前処理用除湿装置(30)において、第1および第2熱交換室(S11,S12)の接続状態が第3通路状態である場合(すなわち、第1熱交換室(S11)が前処理通路(P3)の一部として組み込まれている場合)に第1吸着熱交換器(101)を通過する空気の流通方向は、第1および第2熱交換室(S11,S12)の接続状態が第4通路状態である場合(すなわち、第1熱交換室(S11)が後処理通路(P4)の一部として組み込まれている場合)に第1吸着熱交換器(101)を通過する空気の流通方向の逆の方向となっている。第2吸着熱交換器(102)を通過する空気の流通方向についても同様である。すなわち、前処理用除湿装置(30)の切換機構(200)は、除湿装置(10)の切換機構(200)と同様に、第1および第2吸着熱交換器(101,102)の各々を通過する空気の流通方向が、その吸着熱交換器(101,102)が蒸発器となっている場合とその吸着熱交換器(101,102)が凝縮器となっている場合とで逆方向となるように、空気の流れを切り換える。
《Flow direction of air passing through adsorption heat exchanger》
In this example, in the pretreatment dehumidifier (30), the connection state of the first and second heat exchange chambers (S11, S12) is the third passage state (that is, the first heat exchange chamber (S11). ) Is incorporated as part of the pretreatment passage (P3)), the flow direction of the air passing through the first adsorption heat exchanger (101) is the first and second heat exchange chambers (S11, S12). When the connection state is the fourth passage state (that is, when the first heat exchange chamber (S11) is incorporated as a part of the post-treatment passage (P4)), the first adsorption heat exchanger (101) is installed. It is the direction opposite to the flow direction of the passing air. The same applies to the flow direction of the air passing through the second adsorption heat exchanger (102). That is, the switching mechanism (200) of the pretreatment dehumidifier (30) passes through each of the first and second adsorption heat exchangers (101, 102), similarly to the switching mechanism (200) of the dehumidifier (10). The air flow direction is opposite between when the adsorption heat exchanger (101,102) is an evaporator and when the adsorption heat exchanger (101,102) is a condenser. Switch the flow.
  〈前処理用除湿装置による除湿運転〉
 次に、図10を参照して、前処理用除湿装置(30)による除湿運転について説明する。実施形態1の変形例3の前処理用除湿装置(30)と同様に、実施形態2の変形例の前処理用除湿装置(30)は、第3および第4除湿動作を所定の時間間隔(例えば、10分間隔)で交互に繰り返す。
<Dehumidifying operation with pretreatment dehumidifier>
Next, the dehumidifying operation by the pretreatment dehumidifying device (30) will be described with reference to FIG. Similarly to the pretreatment dehumidifying device (30) of the third modification of the first embodiment, the pretreatment dehumidifying device (30) of the second modification of the second embodiment performs the third and fourth dehumidifying operations at predetermined time intervals ( For example, it is repeated alternately at intervals of 10 minutes.
   《第3除湿動作》
 第3除湿動作では、圧縮機(103)が駆動され、膨張弁(104)の開度が調節され、四方切換弁(105)が第1接続状態(図10の実線で示した状態)となる。これにより、冷媒回路(100)は、第1吸着熱交換器(101)が蒸発器となり第2吸着熱交換器(102)が凝縮器となる第1冷凍サイクル動作を行う。また、切換機構(200)は、第1および第2熱交換室(S11,S12)の接続状態を第3通路状態(図10の実線で示した状態)に設定する。
<< Third dehumidifying action >>
In the third dehumidifying operation, the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the first connection state (the state shown by the solid line in FIG. 10). . Thus, the refrigerant circuit (100) performs a first refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as an evaporator and the second adsorption heat exchanger (102) serves as a condenser. Further, the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the third passage state (the state shown by the solid line in FIG. 10).
   《第4除湿動作》
 第4除湿動作では、圧縮機(103)が駆動され、膨張弁(104)の開度が調節され、四方切換弁(105)が第2接続状態(図10の破線で示した状態)となる。これにより、冷媒回路(100)は、第1吸着熱交換器(101)が凝縮器となり第2吸着熱交換器(102)が蒸発器となる第2冷凍サイクル動作を行う。また、切換機構(200)は、第1および第2熱交換室(S11,S12)の接続状態を第4通路状態(図10の破線で示した状態)に設定する。
<< 4th dehumidifying action >>
In the fourth dehumidifying operation, the compressor (103) is driven, the opening degree of the expansion valve (104) is adjusted, and the four-way switching valve (105) is in the second connection state (the state indicated by the broken line in FIG. 10). . Thereby, the refrigerant circuit (100) performs a second refrigeration cycle operation in which the first adsorption heat exchanger (101) serves as a condenser and the second adsorption heat exchanger (102) serves as an evaporator. Further, the switching mechanism (200) sets the connection state of the first and second heat exchange chambers (S11, S12) to the fourth passage state (the state indicated by the broken line in FIG. 10).
  〈実施形態2の変形例による効果〉
 以上のように、室内空間(S1)に供給するための空気(この例では、室外空気(OA))を前処理用除湿装置(30)によって除湿して供給空気(SA0)として室内空間(S1)に供給し、室内空間(S1)から供給された室内空気(RA)を除湿装置(10)によって除湿して供給空気(SA)としてチャンバ(S2)に供給することにより、チャンバ(S2)内の空気の露点温度を室内空間(S1)内の空気の露点温度よりも低くすることができる。このように、チャンバ(S2)に低露点の供給空気(SA)を集中的に供給することにより、室内空間(S1)全体を低露点にする場合よりも、除湿システム(1)の運転動作に要する消費電力を低減することができる。
<Effects of Modification of Embodiment 2>
As described above, the air to be supplied to the indoor space (S1) (in this example, the outdoor air (OA)) is dehumidified by the pretreatment dehumidifier (30) and supplied to the indoor space (S1). In the chamber (S2), the indoor air (RA) supplied from the indoor space (S1) is dehumidified by the dehumidifier (10) and supplied to the chamber (S2) as the supply air (SA). The dew point temperature of the air can be made lower than the dew point temperature of the air in the indoor space (S1). In this way, by supplying supply air (SA) with a low dew point to the chamber (S2) in a concentrated manner, the dehumidification system (1) can be operated more than when the entire indoor space (S1) is set to a low dew point. The power consumption required can be reduced.
 (実施形態3)
 図11は、実施形態3による除湿システム(1)の構成例を示している。この除湿システム(1)は、図6に示した前処理用除湿装置(30)に代えて、図10に示した前処理用除湿装置(30)を備えている。その他の構成は、図6と同様である。このように構成した場合も、実施形態1の変形例3(図6)および実施形態2の変形例(図10)と同様の効果を得ることができる。
(Embodiment 3)
FIG. 11 shows a configuration example of the dehumidification system (1) according to the third embodiment. This dehumidification system (1) includes the pretreatment dehumidifier (30) shown in FIG. 10 instead of the pretreatment dehumidifier (30) shown in FIG. Other configurations are the same as those in FIG. Even when configured in this manner, the same effects as those of Modification 3 (FIG. 6) of Embodiment 1 and Modification (FIG. 10) of Embodiment 2 can be obtained.
 (実施形態4)
 図12は、実施形態4による除湿システム(1)の構成例を示している。この除湿システム(1)は、図1に示した除湿装置(10)およびコントローラ(20)に加えて、加熱器(21)と吸着ロータ(70)と補助冷却器(80)とを備えている。また、この除湿システム(1)には、ロータ給気通路(P71)と、ロータ再生通路(P72)と、パージ通路(P73)と、冷却空気通路(P80)とが設けられている。
(Embodiment 4)
FIG. 12 shows a configuration example of the dehumidification system (1) according to the fourth embodiment. The dehumidifying system (1) includes a heater (21), an adsorption rotor (70), and an auxiliary cooler (80) in addition to the dehumidifying device (10) and the controller (20) shown in FIG. . The dehumidification system (1) is provided with a rotor air supply passage (P71), a rotor regeneration passage (P72), a purge passage (P73), and a cooling air passage (P80).
  〈ロータ給気通路〉
 ロータ給気通路(P71)には、調湿空間(S0)に供給するための空気(この例では、室内空間(S1)に供給するための空気)が流れる。この例では、ロータ給気通路(P71)は、給気通路(P1)の流出端から空気を取り込んで供給空気(SA)を室内空間(S1)に供給するよう構成されている。具体的には、ロータ給気通路(P71)は、その流入端が給気通路(P1)の流出端に接続され、その流出端が室内空間(S1)に接続されている。
<Rotor air supply passage>
Air to be supplied to the humidity control space (S0) (in this example, air to be supplied to the indoor space (S1)) flows through the rotor air supply passage (P71). In this example, the rotor air supply passage (P71) is configured to take in air from the outflow end of the air supply passage (P1) and supply the supply air (SA) to the indoor space (S1). Specifically, the inflow end of the rotor air supply passage (P71) is connected to the outflow end of the air supply passage (P1), and the outflow end is connected to the indoor space (S1).
  〈ロータ再生通路〉
 ロータ再生通路(P72)には、吸着剤を再生するための空気(この例では、パージ通路(P73)から供給された空気)が流れる。この例では、ロータ再生通路(P72)は、パージ通路(P73)の流出端から空気を取り込んで再生空気(吸着剤を再生するための空気)を再生通路(P2)に供給するように構成されている。具体的には、ロータ再生通路(P72)は、その流入端がパージ通路(P73)の流出端に接続され、その流出端が再生通路(P2)の流入端に接続されている。
<Rotor regeneration passage>
Air for regenerating the adsorbent (in this example, air supplied from the purge passage (P73)) flows through the rotor regeneration passage (P72). In this example, the rotor regeneration passage (P72) is configured to take air from the outflow end of the purge passage (P73) and supply regeneration air (air for regenerating the adsorbent) to the regeneration passage (P2). ing. Specifically, the rotor regeneration passage (P72) has an inflow end connected to the outflow end of the purge passage (P73), and an outflow end connected to the inflow end of the regeneration passage (P2).
  〈パージ通路〉
 パージ通路(P72)には、ロータ再生通路(P72)に供給するための空気(この例では、給気通路(P1)から供給された空気)が流れる。この例では、パージ通路(P73)は、給気通路(P1)の流出端から空気を取り込んで再生空気をロータ再生通路(P72)に供給するように構成されている。具体的には、パージ通路(P73)は、その流入端が給気通路(P1)の流出端に接続され、その流出端がロータ再生通路(P72)の流入端に接続されている。
<Purge passage>
In the purge passage (P72), air to be supplied to the rotor regeneration passage (P72) (in this example, air supplied from the air supply passage (P1)) flows. In this example, the purge passage (P73) is configured to take in air from the outflow end of the supply passage (P1) and supply the regeneration air to the rotor regeneration passage (P72). Specifically, the purge passage (P73) has an inflow end connected to the outflow end of the air supply passage (P1), and an outflow end connected to the inflow end of the rotor regeneration passage (P72).
   〈冷却空気通路〉
 冷却空気通路(P80)には、冷却および除湿された空気が流れる。この例では、冷却空気通路(P80)は、室内空間(S1)から室内空気(RA)を取り込んでその空気を給気通路(P1)の中間部(詳しくは、蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気が通過する部分)に供給するように構成されている。具体的には、冷却空気通路(P80)は、その流入端が室内空間(S1)に接続され、その流出端が給気通路(P1)の中途部に接続されている。
<Cooling air passage>
The cooled and dehumidified air flows through the cooling air passage (P80). In this example, the cooling air passage (P80) takes in the indoor air (RA) from the indoor space (S1) and passes the air into the intermediate portion of the air supply passage (P1) (specifically, the adsorption heat acting as an evaporator). It is configured to supply to the heat exchange chamber (S11, S12) in which the exchanger (101, 102) is provided. Specifically, the cooling air passage (P80) has an inflow end connected to the indoor space (S1) and an outflow end connected to a midway portion of the air supply passage (P1).
  〈加熱器〉
 加熱器(21)は、ロータ再生通路(P72)に設けられ、吸着剤を再生するための空気(この例では、パージ通路(P73)からロータ再生通路(P72)に供給された空気)を加熱するように構成されている。なお、加熱器(21)における加熱温度は、吸着熱交換器(101,102)の凝縮温度の上限値よりも低い温度(例えば、60℃)に設定されている。
<Heater>
The heater (21) is provided in the rotor regeneration passage (P72) and heats air for regenerating the adsorbent (in this example, air supplied from the purge passage (P73) to the rotor regeneration passage (P72)). Is configured to do. In addition, the heating temperature in the heater (21) is set to a temperature (for example, 60 ° C.) lower than the upper limit value of the condensation temperature of the adsorption heat exchanger (101, 102).
  〈吸着ロータ〉
 吸着ロータ(70)は、円板状の多孔性の基材の表面に吸着剤を担持させることによって構成され、ロータ給気通路(P71)とロータ再生通路(P72)とパージ通路(P73)とに跨って配置されている。そして、吸着ロータ(70)は、駆動機構(図示省略)によって駆動されて、ロータ給気通路(P71)とロータ再生通路(P72)とパージ通路(P73)の間の軸心を中心として回転するように構成されている。具体的には、吸着ロータ(70)は、ロータ給気通路(P71)に配置される吸着部(71)と、ロータ再生通路(P72)に配置される再生部(72)と、パージ通路(P73)に配置されるパージ部(73)とを有している。そして、吸着ロータ(70)に担持された吸着剤は、吸着ロータ(70)の回転に伴って吸着部(71)と再生部(72)とパージ部(73)とを順に移動する。すなわち、吸着ロータ(70)は、吸着部(71)に位置する部分が再生部(72)へ移動し、再生部(72)に位置する部分がパージ部(73)へ移動し、パージ部(73)に位置する部分が吸着部(71)へ移動するように回転する。
<Suction rotor>
The adsorption rotor (70) is configured by carrying an adsorbent on the surface of a disk-shaped porous base material, and includes a rotor supply passage (P71), a rotor regeneration passage (P72), a purge passage (P73), It is arranged across. The adsorption rotor (70) is driven by a drive mechanism (not shown), and rotates about the axis between the rotor supply passage (P71), the rotor regeneration passage (P72), and the purge passage (P73). It is configured as follows. Specifically, the adsorption rotor (70) includes an adsorption portion (71) disposed in the rotor air supply passage (P71), a regeneration portion (72) disposed in the rotor regeneration passage (P72), and a purge passage ( P73) and a purge section (73). The adsorbent carried on the adsorption rotor (70) sequentially moves through the adsorption unit (71), the regeneration unit (72), and the purge unit (73) as the adsorption rotor (70) rotates. That is, in the adsorption rotor (70), the portion located in the adsorption portion (71) moves to the regeneration portion (72), the portion located in the regeneration portion (72) moves to the purge portion (73), and the purge portion ( Rotate so that the part located at 73) moves to the suction part (71).
   《吸着部》
 吸着部(71)は、ロータ給気通路(P71)を流れる空気(この例では、除湿装置(10)の第1および第2熱交換室(S11,S12)のうち蒸発器となっている吸着熱交換器(101,102)が設け得られた熱交換室(S11,S12)を通過した空気に冷却空気通路(P80)を通過した空気を混合した空気)を吸着剤と接触させてその空気を除湿するための部分である。吸着部(71)を通過して除湿された空気は、供給空気(SA)として室内空間(S1)に供給される。
《Suction part》
The adsorbing part (71) is an adsorbing air that flows through the rotor air supply passage (P71) (in this example, the first and second heat exchange chambers (S11, S12) of the dehumidifying device (10) are evaporators). The air that has passed through the heat exchange chamber (S11, S12) where the heat exchanger (101, 102) is provided and the air that has passed through the cooling air passage (P80) are brought into contact with the adsorbent to dehumidify the air. It is a part to do. The air that has been dehumidified after passing through the adsorption section (71) is supplied to the indoor space (S1) as supply air (SA).
   《再生部》
 再生部(72)は、ロータ再生通路(P72)において加熱器(21)の下流側となる位置に配置され、ロータ再生通路(P72)を流れる空気(この例では、加熱器(21)を通過した空気)と吸着剤と接触させて吸着剤を再生するための部分である。再生部(72)を通過した空気は、再生通路(P2)に供給される。
《Playback unit》
The regenerator (72) is arranged at a position downstream of the heater (21) in the rotor regeneration passage (P72) and flows through the rotor regeneration passage (P72) (in this example, passes through the heater (21)). This is a part for regenerating the adsorbent by bringing it into contact with the adsorbent. The air that has passed through the regeneration unit (72) is supplied to the regeneration passage (P2).
   《パージ部》
 パージ部(73)は、再生部(72)の排熱(具体的には、再生部(72)において吸着剤の再生に利用されなかった排熱)を利用して再生部(72)に供給される空気を予熱するための部分である。詳しく説明すると、パージ部(73)では、パージ通路(P73)を流れる空気が吸着剤と接触して除湿される。また、再生部(72)に位置する部分(すなわち、加熱器(21)を通過した空気によって加熱される部分)は、吸着ロータ(70)の回転に伴ってパージ部(73)へ移動する。したがって、パージ通路(P73)を流れる空気は、パージ部(73)から熱(すなわち、再生部(72)の排熱)を付与され予熱される。また、パージ部(73)に位置する部分は、パージ通路(P73)を通過する空気に熱を付与して冷却された後に、吸着ロータ(70)の回転に伴って吸着部(71)へ移動する。
《Purge unit》
The purge unit (73) supplies the regeneration unit (72) using the exhaust heat of the regeneration unit (72) (specifically, exhaust heat not used for regeneration of the adsorbent in the regeneration unit (72)). It is a part for preheating the air to be used. More specifically, in the purge section (73), the air flowing through the purge passage (P73) comes into contact with the adsorbent and is dehumidified. Further, the portion located in the regeneration unit (72) (that is, the portion heated by the air that has passed through the heater (21)) moves to the purge unit (73) as the adsorption rotor (70) rotates. Therefore, the air flowing through the purge passage (P73) is preheated by being given heat from the purge section (73) (that is, exhaust heat of the regeneration section (72)). The portion located in the purge section (73) is cooled by applying heat to the air passing through the purge passage (P73), and then moved to the adsorption section (71) as the adsorption rotor (70) rotates. To do.
  〈補助冷却器〉
 補助冷却器(80)は、冷却空気通路(P80)に設けられ、冷却空気通路(P80)を流れる空気(この例では、室内空気(RA))を冷却する。例えば、補助冷却器(80)は、冷媒回路(図示を省略)の蒸発器として機能する熱交換器(具体的には、フィンアンドチューブ式の熱交換器)によって構成されていてもよい。冷却空気通路(P80)において冷却された空気は、給気通路(P1)を流れる空気(この例では、除湿装置(10)の第1および第2熱交換室(S11,S12)のうち蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気)と合流する。
<Auxiliary cooler>
The auxiliary cooler (80) is provided in the cooling air passage (P80), and cools the air flowing through the cooling air passage (P80) (in this example, room air (RA)). For example, the auxiliary cooler (80) may be configured by a heat exchanger (specifically, a fin-and-tube heat exchanger) that functions as an evaporator of a refrigerant circuit (not shown). The air cooled in the cooling air passage (P80) is the air flowing through the air supply passage (P1) (in this example, the evaporator of the first and second heat exchange chambers (S11, S12) of the dehumidifying device (10)). And the air that has passed through the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102).
  〈除湿装置〉
 この例では、給気通路(P1)を通過した空気は、ロータ給気通路(P71)を通過して室内空間(S1)に供給される。すなわち、除湿装置(10)の第1および第2熱交換室(S11,S12)のうち蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気は、吸着ロータ(70)の吸着部(71)を通過して室内空間(S1)に供給される。
<Dehumidifier>
In this example, the air that has passed through the air supply passage (P1) passes through the rotor air supply passage (P71) and is supplied to the indoor space (S1). That is, it passes through the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator among the first and second heat exchange chambers (S11, S12) of the dehumidifier (10). The air that has passed through the suction rotor (70) of the suction rotor (70) is supplied to the indoor space (S1).
 また、この例では、ロータ再生通路(P72)を通過した空気は、再生通路(P2)を通過して室外空間に排出される。すなわち、除湿装置(10)の切換機構(200)は、第1および第2熱交換室(S11,S12)のうち凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)に、加熱器(21)と吸着ロータ(70)の再生部(72)とを順に通過した空気が流通するように、空気の流れを切り換える。 In this example, the air that has passed through the rotor regeneration passage (P72) passes through the regeneration passage (P2) and is discharged to the outdoor space. That is, the switching mechanism (200) of the dehumidifier (10) includes a heat exchange chamber provided with an adsorption heat exchanger (102, 101) serving as a condenser among the first and second heat exchange chambers (S11, S12). In (S12, S11), the air flow is switched so that the air that has passed through the heater (21) and the regenerating unit (72) of the adsorption rotor (70) in turn flows.
  〈実施形態4による効果〉
 以上のように、調湿空間(S0)に供給するための空気(この例では、室内空間(S1)に供給するための空気)は、蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)において除湿された後に、吸着ロータ(70)の吸着部(71)においてさらに除湿される。このように、吸着ロータ(70)を追加することにより、除湿システム(1)の除湿能力を向上させることができる。
<Effects of Embodiment 4>
As described above, the air to be supplied to the humidity control space (S0) (in this example, the air to be supplied to the indoor space (S1)) is supplied by the adsorption heat exchanger (101, 102) serving as an evaporator. After being dehumidified in the provided heat exchange chambers (S11, S12), it is further dehumidified in the adsorption part (71) of the adsorption rotor (70). Thus, the dehumidification capability of the dehumidification system (1) can be improved by adding the adsorption rotor (70).
 また、加熱器(21)によって加熱された空気は、吸着ロータ(70)の再生部(72)を通過した後に、凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)を通過する。すなわち、吸着ロータ(70)の再生部(72)を通過した空気を、吸着熱交換器(102,101)および吸着ブロック(302,301)の吸着剤の再生に利用することができる。これにより、加熱器(21)によって加熱された空気を有効に利用することができる。 In addition, the air heated by the heater (21) passes through the regeneration unit (72) of the adsorption rotor (70), and then is provided with an adsorption heat exchanger (102, 101) serving as a condenser. Pass through (S12, S11). That is, the air that has passed through the regeneration unit (72) of the adsorption rotor (70) can be used for regeneration of the adsorbent of the adsorption heat exchanger (102, 101) and the adsorption block (302, 301). Thereby, the air heated by the heater (21) can be used effectively.
 また、冷却空気通路(P80)を流れる空気を給気通路(P1)の中途部に供給することにより、冷却空気通路(P80)において冷却された空気を用いて、蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気の温度を低下させることができる。すなわち、吸着ブロック(101,102)に残った再生時の余熱や吸着ブロック(101,102)における吸着熱によって温度上昇した空気の温度を低下させることができる。 In addition, by supplying the air flowing through the cooling air passage (P80) to the middle of the air supply passage (P1), the adsorption heat that is the evaporator using the air cooled in the cooling air passage (P80) The temperature of the air that has passed through the heat exchange chambers (S11, S12) provided with the exchangers (101, 102) can be reduced. That is, it is possible to reduce the temperature of the air that has increased in temperature due to the residual heat remaining in the adsorption block (101, 102) during regeneration or the adsorption heat in the adsorption block (101, 102).
 また、給気通路(P1)から供給された空気の一部がパージ通路(P73)とロータ再生通路(P72)と再生通路(P2)とを順に通過するので、蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気(すなわち、除湿装置(10)において除湿された空気)の一部を、吸着ロータ(70)の吸着剤および凝縮器となっている吸着熱交換器(102,101)の吸着剤の再生に利用することができる。これにより、吸着剤の再生を促進させることができる。 Also, a part of the air supplied from the supply passage (P1) passes through the purge passage (P73), the rotor regeneration passage (P72), and the regeneration passage (P2) in this order, so that the adsorption heat acting as an evaporator Part of the air (that is, the air dehumidified in the dehumidifier (10)) that has passed through the heat exchange chambers (S11, S12) in which the exchangers (101, 102) are provided, is adsorbed and condensed in the adsorption rotor (70). It can be used for the regeneration of the adsorbent of the adsorption heat exchanger (102, 101) serving as a vessel. Thereby, regeneration of adsorbent can be promoted.
 (その他の実施形態)
 以上の説明において、第1吸着ブロック(301)が第1吸着熱交換器(101)と間隔をおいて配置され第2吸着ブロック(302)が第2吸着熱交換器(102)と間隔をおいて配置されている場合を例に挙げて説明したが、第1吸着ブロック(301)は、第1吸着熱交換器(101)と接触するように配置されてもよく、第2吸着ブロック(302)は、第2吸着熱交換器(102)と接触するように配置されてもよい。このように構成することにより、第1吸着熱交換器(101)と第1吸着ブロック(301)との間における熱伝導を促進させることができるとともに第2吸着熱交換器(102)と第2吸着ブロック(302)との間における熱伝導を促進させることができる。例えば、第1熱交換室(S11)が給気通路(P1)に組み込まれている場合には、第1吸着熱交換器(101)を流れる冷媒の吸熱作用によって第1吸着ブロック(301)を冷却することができ、第1熱交換室(S11)が再生通路(P2)に組み込まれている場合には、第1吸着熱交換器(101)を流れる冷媒の放熱作用によって第1吸着ブロック(301)を加熱することができる。これにより、第1および第2吸着ブロック(301,302)において吸着剤への水分の吸着および吸着剤の再生を促進させることができる。
(Other embodiments)
In the above description, the first adsorption block (301) is spaced from the first adsorption heat exchanger (101), and the second adsorption block (302) is spaced from the second adsorption heat exchanger (102). However, the first adsorption block (301) may be arranged in contact with the first adsorption heat exchanger (101), and the second adsorption block (302) may be disposed. ) May be placed in contact with the second adsorption heat exchanger (102). With this configuration, heat conduction between the first adsorption heat exchanger (101) and the first adsorption block (301) can be promoted, and the second adsorption heat exchanger (102) and the second adsorption heat exchanger (102) can be promoted. Heat conduction with the adsorption block (302) can be promoted. For example, when the first heat exchange chamber (S11) is incorporated in the air supply passage (P1), the first adsorption block (301) is removed by the heat absorption action of the refrigerant flowing through the first adsorption heat exchanger (101). When the first heat exchange chamber (S11) is incorporated in the regeneration passage (P2), the first adsorption block (101) can be cooled by the heat radiation action of the refrigerant flowing through the first adsorption heat exchanger (101). 301) can be heated. Thereby, in the first and second adsorption blocks (301, 302), it is possible to promote the adsorption of moisture to the adsorbent and the regeneration of the adsorbent.
 また、複数の除湿装置(10)を互いに並列に接続することによって1つの除湿ユニットを構成してもよい。例えば、図2(または、図7)に示した除湿装置(10)を上下に複数段積み重ねて各除湿装置(10)の開口(具体的には、吸着側吸込口(51),再生側吸込口(52),給気口(53),排気口(54))を種別毎に共通に接続することによって1つの除湿ユニットを構成してもよい。 Further, one dehumidifying unit may be configured by connecting a plurality of dehumidifying devices (10) in parallel with each other. For example, the dehumidifiers (10) shown in FIG. 2 (or FIG. 7) are stacked in a plurality of stages and opened in each dehumidifier (10) (specifically, suction side suction port (51), regeneration side suction) One dehumidifying unit may be configured by commonly connecting the mouth (52), the air inlet (53), and the air outlet (54) for each type.
 なお、除湿装置(10)に第1および第2吸着ブロック(301,302)を追加せずに、第1および第2吸着熱交換器(101,102)のサイズを大きくすることによって除湿装置(10)の除湿能力を向上させることが考えられる。すなわち、吸着熱交換器のサイズを大きくすることにより、蒸発器として機能している吸着熱交換器において冷媒の吸熱作用を高くすることができる。これにより、吸着熱交換器内の空気の温度を低下させることができるとともに、吸着剤の吸着熱による空気の温度上昇を抑制することができる。また、吸着熱交換器内において空気の温度が低くなるほど、空気の飽和水蒸気量が低くなって空気中の水分が吸着剤に吸着しやすくなる傾向にある。このように、冷媒の吸熱作用により、空気中から吸着剤への水分の吸着を促進させることができる。 The dehumidifier (10) is dehumidified by increasing the size of the first and second adsorption heat exchangers (101,102) without adding the first and second adsorption blocks (301,302) to the dehumidifier (10). It is possible to improve ability. That is, by increasing the size of the adsorption heat exchanger, the heat absorption effect of the refrigerant can be increased in the adsorption heat exchanger functioning as an evaporator. Thereby, while the temperature of the air in an adsorption heat exchanger can be reduced, the temperature rise of the air by the adsorption heat of adsorption agent can be controlled. Further, the lower the temperature of the air in the adsorption heat exchanger, the lower the saturated water vapor amount of the air, and the moisture in the air tends to be easily adsorbed by the adsorbent. Thus, the adsorption of moisture from the air to the adsorbent can be promoted by the endothermic action of the refrigerant.
 ところで、蒸発器として機能している吸着熱交換器の内部では、上流側から下流側へ向かうに連れて、空気の温度と空気中の水分量が少なくなっていく。すなわち、吸着熱交換器の内部では、上流側において除湿および冷却された空気が下流側に供給されることになる。そのため、吸着熱交換器内の下流側では、冷媒の吸熱作用によって空気の温度が低下して空気の飽和水蒸気量が低下したとしても、空気中の水分量が少なくなっているので、空気中から吸着剤への水分の吸着を促進させにくい。また、空気中の水分量が少なくなるほど、吸着剤における吸着熱の発生量が少なくなる。そのため、吸着熱交換器の下流側では、冷媒の吸熱作用によって吸着剤が過剰に冷却されることになる。 By the way, inside the adsorption heat exchanger functioning as an evaporator, the air temperature and the amount of moisture in the air decrease from the upstream side toward the downstream side. That is, inside the adsorption heat exchanger, air dehumidified and cooled on the upstream side is supplied to the downstream side. Therefore, on the downstream side in the adsorption heat exchanger, even if the temperature of the air decreases due to the endothermic action of the refrigerant and the amount of saturated water vapor in the air decreases, the amount of moisture in the air decreases. It is difficult to promote the adsorption of moisture to the adsorbent. Further, the amount of heat of adsorption in the adsorbent decreases as the amount of moisture in the air decreases. Therefore, on the downstream side of the adsorption heat exchanger, the adsorbent is excessively cooled by the endothermic action of the refrigerant.
 以上のように、吸着熱交換器のサイズを大きくしたとしても、吸着熱交換器内の上流側から下流側へ向かうに連れて、冷媒の吸熱作用による効果(吸着剤への水分の吸着を促進させる効果,吸着熱を取り除く効果)が薄れていくので、除湿装置(10)の除湿能力を効果的に向上させることが困難である。 As described above, even if the size of the adsorption heat exchanger is increased, the effect due to the endothermic action of the refrigerant (accelerating the adsorption of moisture to the adsorbent as it moves from the upstream side to the downstream side in the adsorption heat exchanger) Therefore, it is difficult to effectively improve the dehumidifying capacity of the dehumidifying device (10).
 また、空気中から吸着剤への水分の吸着を促進させる手段として、空気と吸着剤との接触面積を大きくすることが考えられる。すなわち、空気と吸着剤との接触面積が大きくなるほど、空気中の水分が吸着剤に吸着しやすくなる。特に、空気中の水分量が少なくなっている場合、冷媒の吸熱作用によって空気の温度を低下させる場合よりも、空気と吸着剤との接触面積を大きくする場合のほうが、空気中から吸着剤への水分の吸着を促進させることができる。また、吸着ブロックには冷媒配管などの部品を設けなくてもよいので、構造上、吸着ブロックは、吸着熱交換器よりも表面積(空気との接触面積)を大きくしやすい。したがって、蒸発器として機能している吸着熱交換器の下流側となる位置(吸着熱交換器によって除湿および冷却された空気が通過する位置)に吸着ブロックを配置することにより、吸着熱交換器の下流側において空気と吸着剤との接触面積を大きくすることができるので、吸着熱交換器のサイズを大きくする場合よりも、除湿装置(10)の除湿能力を効果的に向上させることができる。 Also, as a means for promoting the adsorption of moisture from the air to the adsorbent, it is conceivable to increase the contact area between air and the adsorbent. That is, the larger the contact area between air and the adsorbent, the easier it is for moisture in the air to be adsorbed on the adsorbent. In particular, when the amount of moisture in the air is low, the case where the contact area between the air and the adsorbent is increased from the air to the adsorbent than when the temperature of the air is lowered by the endothermic action of the refrigerant. Adsorption of moisture can be promoted. Moreover, since it is not necessary to provide components, such as refrigerant | coolant piping, in an adsorption | suction block, it is easy to enlarge a surface area (contact area with air) from an adsorption | suction heat exchanger on a structure. Therefore, by arranging the adsorption block at the position downstream of the adsorption heat exchanger functioning as an evaporator (the position where the air dehumidified and cooled by the adsorption heat exchanger passes), the adsorption heat exchanger Since the contact area between the air and the adsorbent can be increased on the downstream side, the dehumidifying ability of the dehumidifying device (10) can be effectively improved as compared with the case of increasing the size of the adsorption heat exchanger.
 なお、一般的に、吸着剤の再生動作(吸着剤から空気中への水分の放出)は、吸着剤の吸着動作(空気中から吸着剤への水分の吸着)よりも、反応速度が速くなっている。したがって、第1および第2熱交換室(S11,S12)のうち蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過する空気の風量は、凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)を通過する空気の風量よりも多くなっていてもよいし、同等となっていてもよい。 In general, the adsorbent regeneration operation (release of moisture from the adsorbent into the air) has a faster reaction rate than the adsorbent adsorption operation (adsorption of moisture from the air into the adsorbent). ing. Therefore, the air volume of the air passing through the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator among the first and second heat exchange chambers (S11, S12) is: The amount of air passing through the heat exchange chamber (S12, S11) provided with the adsorption heat exchanger (102, 101) serving as a condenser may be larger or the same.
 また、実施形態2(図7)および実施形態2の変形例(図10)では、再生通路(P2)に加熱器(21)が設けられている場合を例に挙げたが、除湿システム(1)は、加熱器(21)を備えていなくてもよい。例えば、再生通路(P2)に供給される空気(すなわち、凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)に供給される空気)の温度が、給気通路(P1)に供給される空気(すなわち、蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)に供給される空気)の温度よりも高く、これらの空気の温度差が所定の温度差(具体的には、吸着剤を再生させることができる温度差)よりも大きくなっている場合、加熱器(21)を省略してもよい。 Further, in the second embodiment (FIG. 7) and the modification of the second embodiment (FIG. 10), the case where the heater (21) is provided in the regeneration passage (P2) is taken as an example, but the dehumidification system (1 ) May not include the heater (21). For example, the temperature of the air supplied to the regeneration passage (P2) (that is, the air supplied to the heat exchange chamber (S12, S11) provided with the adsorption heat exchanger (102, 101) serving as a condenser) is Higher than the temperature of the air supplied to the supply passage (P1) (that is, the air supplied to the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator) When the temperature difference between these airs is larger than a predetermined temperature difference (specifically, a temperature difference at which the adsorbent can be regenerated), the heater (21) may be omitted.
 また、以上の実施形態を適宜組み合わせて実施してもよい。以上の実施形態は、本質的に好ましい例示であって、この発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Further, the above embodiments may be combined as appropriate. The above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
 以上説明したように、上述の除湿装置は、ドライクリーンルームなどの調湿空間を除湿する除湿装置として有用である。 As described above, the above dehumidifying apparatus is useful as a dehumidifying apparatus for dehumidifying a humidity control space such as a dry clean room.
1     除湿システム
10    除湿装置
100   冷媒回路
101   第1吸着熱交換器
102   第2吸着熱交換器
103   圧縮機
104   膨張弁
105   四方切換弁
200   切換機構
301   第1吸着ブロック
302   第2吸着ブロック
S0    調湿空間
S1    室内空間
S2    チャンバ
S11   第1熱交換室
S12   第2熱交換室
P1    給気通路
P2    再生通路
20    コントローラ
30    前処理用除湿装置
P3    前処理通路
P4    後処理通路
70    吸着ロータ
71    吸着部
72    再生部
73    パージ部
DESCRIPTION OF SYMBOLS 1 Dehumidification system 10 Dehumidifier 100 Refrigerant circuit 101 1st adsorption heat exchanger 102 2nd adsorption heat exchanger 103 Compressor 104 Expansion valve 105 Four-way switching valve 200 Switching mechanism 301 1st adsorption block 302 2nd adsorption block S0 Humidity control space S1 indoor space S2 chamber S11 first heat exchange chamber S12 second heat exchange chamber P1 supply passage P2 regeneration passage 20 controller 30 pretreatment dehumidifier P3 pretreatment passage P4 posttreatment passage 70 adsorption rotor 71 adsorption portion 72 reproduction portion 73 Purge part

Claims (7)

  1.  吸着剤が担持された第1および第2吸着熱交換器(101,102)を有し、該第1吸着熱交換器(101)が蒸発器となって空気を除湿し該第2吸着熱交換器(102)が凝縮器となって吸着剤を再生させる第1動作と、該第1吸着熱交換器(101)が凝縮器となって吸着剤を再生させ該第2吸着熱交換器(102)が蒸発器となって空気を除湿する第2動作とを交互に行う冷媒回路(100)と、
     上記第1および第2吸着熱交換器(101,102)がそれぞれ設けられる第1および第2熱交換室(S11,S12)と、
     上記第1および第2熱交換室(S11,S12)のうち、蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気が調湿空間(S0)に供給され、凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)に吸着剤を再生するための空気が流通するように、空気の流れを切り換える切換機構(200)と、
     吸着剤が担持されて空気を吸着剤と接触させるように構成され、上記第1熱交換室(S11)において上記第1吸着熱交換器(101)が蒸発器となっている場合に該第1吸着熱交換器(101)の下流側となる位置に設けられる第1吸着ブロック(301)と、
     吸着剤が担持されて空気を吸着剤と接触させるように構成され、上記第2熱交換室(S12)において上記第2吸着熱交換器(102)が蒸発器となっている場合に該第2吸着熱交換器(102)の下流側となる位置に設けられる第2吸着ブロック(302)とを備えている
    ことを特徴とする除湿装置。
    It has the 1st and 2nd adsorption heat exchanger (101,102) with which the adsorbent was carry | supported, this 1st adsorption heat exchanger (101) becomes an evaporator, dehumidifies air, and this 2nd adsorption heat exchanger ( 102) becomes a condenser to regenerate the adsorbent, and the first adsorption heat exchanger (101) becomes a condenser to regenerate the adsorbent and the second adsorption heat exchanger (102) A refrigerant circuit (100) that alternately performs a second operation of dehumidifying air as an evaporator;
    First and second heat exchange chambers (S11, S12) provided with the first and second adsorption heat exchangers (101, 102), respectively;
    Of the first and second heat exchange chambers (S11, S12), the air that has passed through the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator is the humidity control space. The flow of air so that the air for regenerating the adsorbent flows through the heat exchange chambers (S12, S11) provided with the adsorption heat exchanger (102, 101) that is supplied to (S0) and serves as a condenser. A switching mechanism (200) for switching between
    When the adsorbent is supported and air is brought into contact with the adsorbent, the first adsorption heat exchanger (101) is an evaporator in the first heat exchange chamber (S11). A first adsorption block (301) provided at a position downstream of the adsorption heat exchanger (101);
    When the adsorbent is supported and the air is brought into contact with the adsorbent, the second adsorption heat exchanger (102) is an evaporator in the second heat exchange chamber (S12). A dehumidifier comprising a second adsorption block (302) provided at a position downstream of the adsorption heat exchanger (102).
  2.  請求項1において、
     上記切換機構(200)は、上記第1および第2吸着熱交換器(101,102)の各々を通過する空気の流通方向が、該吸着熱交換器(101,102)が蒸発器となっている場合と該吸着熱交換器(101,102)が凝縮器となっている場合とで逆方向となるように、空気の流れを切り換える
    ことを特徴とする除湿装置。
    In claim 1,
    The switching mechanism (200) has a flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) when the adsorption heat exchanger (101, 102) is an evaporator and A dehumidifier characterized by switching the flow of air so that the adsorption heat exchanger (101, 102) is in the opposite direction to the case where it is a condenser.
  3.  請求項1において、
     上記切換機構(200)は、上記第1および第2吸着熱交換器(101,102)の各々を通過する空気の流通方向が、該吸着熱交換器(101,102)が蒸発器となっている場合と該吸着熱交換器(101,102)が凝縮器となっている場合とで同方向となるように、空気の流れを切り換える
    ことを特徴とする除湿装置。
    In claim 1,
    The switching mechanism (200) has a flow direction of the air passing through each of the first and second adsorption heat exchangers (101, 102) when the adsorption heat exchanger (101, 102) is an evaporator and A dehumidifier characterized by switching the flow of air so that the adsorption heat exchanger (101, 102) is in the same direction as when it is a condenser.
  4.  請求項1~3のいずれか1項において、
     上記第1および第2吸着ブロック(301,302)は、それぞれ、上記第1および第2吸着熱交換器(101,102)と間隔をおいて配置されている
    ことを特徴とする除湿装置。
    In any one of claims 1 to 3,
    The dehumidifying device characterized in that the first and second adsorption blocks (301, 302) are spaced apart from the first and second adsorption heat exchangers (101, 102), respectively.
  5.  請求項1~3のいずれか1項において、
     上記第1および第2吸着ブロック(301,302)は、それぞれ、上記第1および第2吸着熱交換器(101,102)と接触するように配置されている
    ことを特徴とする除湿装置。
    In any one of claims 1 to 3,
    The dehumidifying device, wherein the first and second adsorption blocks (301, 302) are disposed so as to contact the first and second adsorption heat exchangers (101, 102), respectively.
  6.  請求項2に記載の除湿装置(10)と、
     吸着剤を再生するための空気を加熱する加熱器(21)とを備え、
     上記切換機構(200)は、上記第1および第2熱交換室(S11,S12)のうち凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)に上記加熱器(21)を通過した空気が流通するように、空気の流れを切り換える
    ことを特徴とする除湿システム。
    A dehumidifying device (10) according to claim 2;
    A heater (21) for heating the air for regenerating the adsorbent,
    The switching mechanism (200) is provided in the heat exchange chamber (S12, S11) provided with the adsorption heat exchanger (102, 101) serving as a condenser in the first and second heat exchange chambers (S11, S12). A dehumidification system that switches the flow of air so that the air that has passed through the heater (21) flows.
  7.  請求項6において、
     吸着剤が担持され、上記第1および第2熱交換室(S11,S12)のうち蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気を吸着剤と接触させて該空気を除湿する吸着部(71)と、上記加熱器(21)を通過した空気を吸着剤と接触させて吸着剤を再生させる再生部(72)とを有する吸着ロータ(70)をさらに備え、
     上記第1および第2熱交換室(S11,S12)のうち蒸発器となっている吸着熱交換器(101,102)が設けられた熱交換室(S11,S12)を通過した空気は、上記吸着ロータ(70)の吸着部(71)を通過して上記調湿空間(S0)に供給され、
     上記切換機構(200)は、上記第1および第2熱交換室(S11,S12)のうち凝縮器となっている吸着熱交換器(102,101)が設けられた熱交換室(S12,S11)に上記加熱器(21)と上記吸着ロータ(70)の再生部(72)とを順に通過した空気が流通するように、空気の流れを切り換える
    ことを特徴とする除湿システム。
    In claim 6,
    The adsorbent was supported and passed through the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator among the first and second heat exchange chambers (S11, S12). An adsorbing part (71) for dehumidifying the air by bringing it into contact with the adsorbent, and a regenerating part (72) for regenerating the adsorbent by bringing the air that has passed through the heater (21) into contact with the adsorbent It further includes a suction rotor (70),
    Of the first and second heat exchange chambers (S11, S12), the air that has passed through the heat exchange chamber (S11, S12) provided with the adsorption heat exchanger (101, 102) serving as an evaporator is (70) passing through the adsorption part (71) and being supplied to the humidity control space (S0),
    The switching mechanism (200) is provided in the heat exchange chamber (S12, S11) provided with the adsorption heat exchanger (102, 101) serving as a condenser in the first and second heat exchange chambers (S11, S12). A dehumidification system, wherein the flow of air is switched so that the air that has passed through the heater (21) and the regenerating unit (72) of the adsorption rotor (70) flows in order.
PCT/JP2014/003387 2013-06-28 2014-06-24 Dehumidification device and dehumidification system WO2014208083A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480036707.6A CN105358915B (en) 2013-06-28 2014-06-24 Dehydrating unit and dehumidification system
KR1020167002316A KR101630143B1 (en) 2013-06-28 2014-06-24 Dehumidification device and dehumidification system
US14/897,098 US20160146479A1 (en) 2013-06-28 2014-06-24 Dehumidification device and dehumidification system
EP14818067.2A EP3015778A4 (en) 2013-06-28 2014-06-24 Dehumidification device and dehumidification system
BR112015032117A BR112015032117A2 (en) 2013-06-28 2014-06-24 dehumidification device, and dehumidification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013137166 2013-06-28
JP2013-137166 2013-06-28

Publications (1)

Publication Number Publication Date
WO2014208083A1 true WO2014208083A1 (en) 2014-12-31

Family

ID=52141442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003387 WO2014208083A1 (en) 2013-06-28 2014-06-24 Dehumidification device and dehumidification system

Country Status (7)

Country Link
US (1) US20160146479A1 (en)
EP (1) EP3015778A4 (en)
JP (1) JP5885781B2 (en)
KR (1) KR101630143B1 (en)
CN (1) CN105358915B (en)
BR (1) BR112015032117A2 (en)
WO (1) WO2014208083A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101667979B1 (en) * 2015-06-19 2016-10-21 한국생산기술연구원 Air conditioner with dehumidification and humidification function and method of dehumidified cooling and humidified heating using the same
US11859835B2 (en) * 2016-06-27 2024-01-02 Daikin Industries, Ltd. Humidity control apparatus with dual heat exchangers and bypass passage
KR101898592B1 (en) * 2016-11-07 2018-09-13 엘지전자 주식회사 Air conditioner apparatus
KR101973648B1 (en) * 2017-08-07 2019-04-29 엘지전자 주식회사 Control method for vantilation apparatus
BE1027506B1 (en) * 2019-08-16 2021-03-15 Atlas Copco Airpower Nv Dryer for compressed gas, compressor installation equipped with dryer and method for drying compressed gas
WO2021005771A1 (en) * 2019-07-10 2021-01-14 三菱電機株式会社 Air processor
CN112361639B (en) * 2019-07-26 2022-04-19 青岛海尔空调器有限总公司 Air conditioner
KR20220049527A (en) * 2019-08-16 2022-04-21 아틀라스 캅코 에어파워, 남로체 벤누트삽 A dryer for compressed gas, a compressor facility equipped with a dryer, and a method for drying compressed gas
CN110925902B (en) * 2019-11-22 2021-02-19 珠海格力电器股份有限公司 Low dew point composite dehumidifier
KR20210112155A (en) * 2020-03-04 2021-09-14 엘지전자 주식회사 Air conditioner
JP7361936B2 (en) 2020-08-19 2023-10-16 三菱電機株式会社 air treatment equipment
CN112327975B (en) * 2020-11-03 2022-06-17 张勇 Control method of efficient multistage drying system
US20220205654A1 (en) * 2020-12-28 2022-06-30 Guangdong Broan IAQ Systems Co., Ltd. Dehumidification system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398927A (en) * 1980-07-30 1983-08-16 Exxon Research And Engineering Co. Cyclic adsorption process
JPH07275642A (en) * 1994-04-06 1995-10-24 Matsushita Electric Ind Co Ltd Dehumidifier
US5826434A (en) * 1995-11-09 1998-10-27 Novelaire Technologies, L.L.C. High efficiency outdoor air conditioning system
JP2000146220A (en) * 1998-11-02 2000-05-26 Nissan Motor Co Ltd Air conditioning means and air conditioner
JP2006264490A (en) * 2005-03-23 2006-10-05 Mazda Motor Corp Air conditioner for vehicle
JP2006349294A (en) 2005-06-17 2006-12-28 Daikin Ind Ltd Humidity conditioner
JP2008247305A (en) * 2007-03-30 2008-10-16 Mitsubishi Chemicals Corp Vehicular dehumidification/humidification device
JP2010190495A (en) * 2009-02-18 2010-09-02 Daikin Ind Ltd Humidity conditioning device
JP2013092290A (en) * 2011-10-25 2013-05-16 Daikin Industries Ltd Dehumidification system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097825A (en) * 2001-07-18 2003-04-03 Daikin Ind Ltd Air conditioner
JP3695417B2 (en) * 2002-02-04 2005-09-14 ダイキン工業株式会社 Humidity control device
JP3624910B2 (en) * 2003-05-27 2005-03-02 ダイキン工業株式会社 Humidity control device
KR100837501B1 (en) * 2004-03-31 2008-06-12 다이킨 고교 가부시키가이샤 Heat exchanger
JP4360434B2 (en) * 2007-10-05 2009-11-11 ダイキン工業株式会社 Air conditioner
CN101815906B (en) * 2007-10-05 2015-06-10 大金工业株式会社 Humidity control device and ventilation device
US8764882B2 (en) * 2009-05-22 2014-07-01 Daikin Industries, Ltd. Fluid treatment method, fluid treatment apparatus, and fluid
JP5786646B2 (en) * 2011-10-27 2015-09-30 ダイキン工業株式会社 Humidity control device
JP5452565B2 (en) * 2011-10-27 2014-03-26 三菱電機株式会社 Dehumidifier
JP5906708B2 (en) * 2011-12-13 2016-04-20 ダイキン工業株式会社 Humidity control device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398927A (en) * 1980-07-30 1983-08-16 Exxon Research And Engineering Co. Cyclic adsorption process
JPH07275642A (en) * 1994-04-06 1995-10-24 Matsushita Electric Ind Co Ltd Dehumidifier
US5826434A (en) * 1995-11-09 1998-10-27 Novelaire Technologies, L.L.C. High efficiency outdoor air conditioning system
JP2000146220A (en) * 1998-11-02 2000-05-26 Nissan Motor Co Ltd Air conditioning means and air conditioner
JP2006264490A (en) * 2005-03-23 2006-10-05 Mazda Motor Corp Air conditioner for vehicle
JP2006349294A (en) 2005-06-17 2006-12-28 Daikin Ind Ltd Humidity conditioner
JP2008247305A (en) * 2007-03-30 2008-10-16 Mitsubishi Chemicals Corp Vehicular dehumidification/humidification device
JP2010190495A (en) * 2009-02-18 2010-09-02 Daikin Ind Ltd Humidity conditioning device
JP2013092290A (en) * 2011-10-25 2013-05-16 Daikin Industries Ltd Dehumidification system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3015778A4

Also Published As

Publication number Publication date
JP5885781B2 (en) 2016-03-15
CN105358915A (en) 2016-02-24
US20160146479A1 (en) 2016-05-26
CN105358915B (en) 2016-10-19
BR112015032117A2 (en) 2017-07-25
KR20160025012A (en) 2016-03-07
EP3015778A1 (en) 2016-05-04
KR101630143B1 (en) 2016-06-13
JP2015028415A (en) 2015-02-12
EP3015778A4 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP5885781B2 (en) Dehumidifying device and dehumidifying system
JP5695752B2 (en) Dehumidification system
JP7104339B2 (en) Air quality adjustment system
JP5521106B1 (en) Dehumidification system
JP5218135B2 (en) Humidity control device
JP2017044387A (en) Dehumidification system
JP2015068599A (en) Dehumidification system
JP6054734B2 (en) Dehumidification system
JP2015048982A (en) Dehumidification system for dry room
JP2016084982A (en) Dehumidifier
JP6051039B2 (en) Dehumidification system
JP5624185B1 (en) Dehumidification system
JP6009531B2 (en) Dehumidification system
JP2017044386A (en) Dehumidification system
JP2005140372A (en) Air conditioner
JP2015087070A (en) Dehumidification system
JP6050107B2 (en) Dehumidification system
JP2005164220A (en) Air conditioner
JP3712001B2 (en) Air conditioner and control method of air conditioner
JP2017138078A (en) Dehumidification system
JP6235942B2 (en) Dehumidification system
JP2016031208A (en) Dehumidification system
JP6085468B2 (en) Dehumidification system
JP2017227355A (en) Humidity controller
JP2015175566A (en) Dehumidification device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480036707.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818067

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14897098

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014818067

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015032117

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20167002316

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015032117

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151221