WO2014208356A1 - Optical film and light emitting device - Google Patents

Optical film and light emitting device Download PDF

Info

Publication number
WO2014208356A1
WO2014208356A1 PCT/JP2014/065688 JP2014065688W WO2014208356A1 WO 2014208356 A1 WO2014208356 A1 WO 2014208356A1 JP 2014065688 W JP2014065688 W JP 2014065688W WO 2014208356 A1 WO2014208356 A1 WO 2014208356A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor nanoparticles
semiconductor
optical film
resin
polysilazane
Prior art date
Application number
PCT/JP2014/065688
Other languages
French (fr)
Japanese (ja)
Inventor
宏司 高木
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015523976A priority Critical patent/JPWO2014208356A1/en
Publication of WO2014208356A1 publication Critical patent/WO2014208356A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to an optical film and a light emitting device.
  • the present invention relates to an optical film having durability capable of suppressing deterioration of semiconductor nanoparticles due to oxygen or the like over a long period of time and excellent in transparency, and a light emitting device including the optical film.
  • semiconductor nanoparticles have gained commercial interest due to their variable electronic properties.
  • Semiconductor nanoparticles are, for example, biomarkers, solar power generation, catalysis, bioimaging, light emitting diodes (hereinafter abbreviated as LEDs), general spatial illumination, and electroluminescent displays. It is expected to be used in various fields.
  • the amount of light incident on a liquid crystal display (hereinafter abbreviated as LCD) by irradiating the semiconductor nanoparticles with LED light to emit light.
  • LCD liquid crystal display
  • the conventional technique of covering the surface of the semiconductor nanoparticles with silica or glass, or the method of dispersing them in an inorganic matrix can obtain oxygen barrier performance, but the silica nanoparticles of the semiconductor nanoparticles are formed.
  • the dispersibility in the layer is lowered, the transparency is lowered, or the oxygen blocking performance is lowered due to the influence of the external environment, the brightness is deteriorated, etc. It was insufficient in terms of durability.
  • Patent Document 5 proposes a method of dispersing and holding semiconductor nanoparticles in a transparent resin layer.
  • the method proposed here is insufficient in terms of durability, for example, the luminance is deteriorated due to a decrease in oxygen barrier performance due to the influence of the external environment.
  • the present invention has been made in view of the above problems, and its solution is an optical film having durability that can prevent deterioration of semiconductor nanoparticles due to oxygen or the like over a long period of time and having excellent transparency. It is to provide a light emitting device including the optical film.
  • the present inventor contains, as a semiconductor nanoparticle layer, at least one compound selected from polysilazane and a modified polysilazane and semiconductor nanoparticles coated with a resin. It has been found that an optical film having excellent durability capable of preventing the deterioration of semiconductor nanoparticles due to oxygen or the like over a long period of time and further excellent in transparency can be obtained by constituting the present invention.
  • An optical film having a substrate and a semiconductor nanoparticle layer provided on the substrate, The optical film, wherein the semiconductor nanoparticle layer contains at least one selected from semiconductor nanoparticles coated with a resin, polysilazane and a polysilazane modified body that disperses and holds the semiconductor nanoparticles.
  • the semiconductor nanoparticle layer contains the polysilazane modified body, and the polysilazane modified body is formed by irradiating the polysilazane with vacuum ultraviolet rays, and at least one selected from silicon oxide, silicon nitride, and silicon oxynitride 2.
  • the semiconductor nanoparticle layer having two or more layers, wherein the two or more semiconductor nanoparticle layers contain semiconductor nanoparticles having different emission wavelengths, respectively.
  • the optical film as described in any one of the above.
  • a light emitting device comprising the optical film according to any one of items 1 to 6.
  • an optical film having excellent luminous efficiency and excellent durability capable of suppressing deterioration of semiconductor nanoparticles due to oxygen or the like over a long period of time and having excellent transparency and the optical film are provided.
  • the light emitting device can be provided.
  • the polysilazane and the polysilazane modified body which are constituent elements of the present invention, not only have an oxygen-blocking property but also an oxygen-absorbing performance, so that it is possible to effectively reduce oxygen in contact with semiconductor nanoparticles. As a result, it is speculated that sufficient durability (oxidation resistance) can be secured.
  • the polysilazane and the modified polysilazane can further improve the oxygen barrier property by light irradiation such as vacuum ultraviolet irradiation.
  • the semiconductor nanoparticles in the polysilazane or polysilazane modified body are contained. It is presumed that the optical film and the light-emitting device, which are greatly improved in dispersibility and excellent in transparency, luminous efficiency and durability, can be obtained.
  • the optical film of the present invention is an optical film having a base material and a semiconductor nanoparticle layer provided on the base material, wherein the semiconductor nanoparticle layer is coated with a resin, It is characterized by containing at least one compound selected from polysilazane and a modified polysilazane as a binder for dispersing and holding semiconductor nanoparticles (hereinafter also referred to as “quantum dots”).
  • Quantum dots semiconductor nanoparticles
  • the semiconductor nanoparticle layer contains the polysilazane modified product, and the polysilazane modified product applies a vacuum ultraviolet ray to the polysilazane from the viewpoint of more manifesting the intended effect of the present invention.
  • a compound containing at least one selected from silicon oxide, silicon nitride, and silicon oxynitride formed by irradiation is preferable from the viewpoint of obtaining higher-order oxygen barrier properties for semiconductor nanoparticles. .
  • the fact that the semiconductor nanoparticles have a core-shell structure can suppress the aggregation of the semiconductor nanoparticles, can further increase dispersibility, and can improve luminance efficiency. Good.
  • the resin is an ultraviolet curable resin from the viewpoint of easy manufacture of the optical film.
  • the resin is a water-soluble resin from the viewpoint that an optical film can be easily manufactured with simple manufacturing equipment.
  • two or more semiconductor nanoparticle layers are provided, and the two or more semiconductor nanoparticle layers each contain semiconductor nanoparticles having different emission wavelengths, so that various optical emissions can be obtained as an optical film. It is preferable from a viewpoint which can be obtained.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the optical film of the present invention comprises a base material, at least one compound selected from polysilazane and a modified polysilazane as a binder on the base material, and semiconductor nanoparticles whose particle surfaces are coated with a resin in the binder. It is characterized by having a semiconductor nanoparticle layer dispersed and contained.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the optical film of the present invention.
  • an optical film 11 of the present invention has a configuration in which a semiconductor nanoparticle layer 13 is laminated on a base material 12.
  • the semiconductor nanoparticle layer 13 according to the present invention has a configuration in which the semiconductor nanoparticles 15 whose surfaces are coated with the resin 16 are dispersed in the polysilazane or polysilazane modified body 14 as a binder.
  • the base material applicable to the optical film of the present invention is not particularly limited as long as it has optical transparency, such as glass and plastic.
  • Examples of the material preferably used as the base material having translucency include glass, quartz, and a resin film. Particularly preferred is a resin film from the viewpoint of imparting flexibility to the optical film.
  • the light transmittance of the substrate as used in the present invention means that the visible light transmittance is 60% or more, preferably 80% or more, more preferably 90% or more.
  • the thickness of the substrate is not particularly limited, but is generally in the range of 15 to 300 ⁇ m, preferably in the range of 15 to 200 ⁇ m, and more preferably in the range of 18 to 150 ⁇ m. .
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate (CAP), and cellulose acetate.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC cellulose triacetate
  • CAP cellulose acetate propionate
  • Cellulose esters such as phthalate and cellulose nitrate or derivatives thereof, polyethylene, polypropylene, cellophane, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, Polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cyclone resins such as Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Etc.
  • PES polyethersulfone
  • Polyetherimide polyetherketoneimide
  • polyamide fluororesin
  • nylon polymethylmethacrylate
  • cyclone resins such as Arton (trade
  • membrane which consists of an inorganic substance, an organic substance, or both may be formed in the surface of the said resin film.
  • a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 is 0.01 g.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 ml / (m 2 More preferably, it is a high gas barrier film having a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less.
  • any material that has a function of suppressing intrusion of semiconductor nanoparticles such as moisture and oxygen may be used.
  • silicon oxide, silicon dioxide, silicon nitride, oxynitride Silicon or the like can be used.
  • the method for forming the gas barrier film is not particularly limited.
  • a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is preferable.
  • the semiconductor nanoparticle layer according to the present invention comprises at least one compound selected from polysilazane and a modified polysilazane and semiconductor nanoparticles coated with a resin.
  • the optical film of the present invention is characterized by having at least one semiconductor nanoparticle layer according to the present invention, but the semiconductor nanoparticle layer may have a structure in which two or more layers are provided. . In the case of having two or more semiconductor nanoparticle layers, it is preferable that each semiconductor nanoparticle layer contains semiconductor nanoparticles having different emission wavelengths.
  • a coating solution for forming a semiconductor nanoparticle layer containing a semiconductor nanoparticle coated with a polysilazane modified material and a resin is applied on a substrate, followed by drying treatment.
  • the method of forming can be mentioned.
  • the coating method is not particularly limited, and a conventionally known wet coating method can be appropriately selected and applied.
  • Specific wet methods include, for example, spin coating methods, roller coating methods, flow coating methods, ink jet methods, spray coating methods, printing methods, dip coating methods, cast film forming methods, bar coating methods, gravure printing methods, and the like. Is mentioned.
  • any solvent can be used as long as it does not react with semiconductor nanoparticles, polysilazane, modified polysilazane, and the like. It can be used even if it exists.
  • a method for forming the semiconductor nanoparticle layer after applying a semiconductor nanoparticle layer forming coating solution containing semiconductor nanoparticles coated with polysilazane and resin on a substrate, a method described later, for example, Alternatively, a method of forming a semiconductor nanoparticle layer by performing a modification treatment in which a part or all of polysilazane is modified into a polysilazane modified body by irradiation with excimer light or the like can also be used.
  • the semiconductor nanoparticle layer preferably further contains a resin material, and more preferably contains an ultraviolet curable resin or a water-soluble resin. If the semiconductor nanoparticle layer contains an ultraviolet curable resin, that is, if the semiconductor nanoparticle layer forming coating solution contains an ultraviolet curable resin, apply the semiconductor nanoparticle layer forming coating solution.
  • the coating layer thus formed is subjected to ultraviolet irradiation treatment.
  • the ultraviolet irradiation treatment may also serve as a modification treatment for modifying the polysilazane described above. Details of the ultraviolet curable resin and the water-soluble resin will be described later.
  • the thickness of the semiconductor nanoparticle layer is not particularly limited, but is approximately in the range of 20 to 300 ⁇ m, preferably in the range of 50 to 200 ⁇ m, and more preferably in the range of 80 to 140 ⁇ m. is there.
  • One feature of the semiconductor nanoparticle layer constituting the optical film of the present invention is that it contains semiconductor nanoparticles whose surface is coated with a resin. That is, the semiconductor nanoparticles are contained in the coating solution for forming the semiconductor nanoparticle layer.
  • the semiconductor nanoparticle according to the present invention refers to a particle having a predetermined size, which is composed of a crystal of a semiconductor material and has a quantum confinement effect, and whose particle diameter is in the range of several nanometers to several tens of nanometers. In this case, the quantum dot effect shown below is obtained.
  • the particle diameter of the semiconductor nanoparticles according to the present invention is preferably in the range of 1 to 20 nm, more preferably in the range of 1 to 10 nm.
  • the energy level E of such semiconductor nanoparticles is generally expressed by the following formula (1) when the Planck constant is “h”, the effective mass of electrons is “m”, and the radius of the semiconductor nanoparticles is “R”. expressed.
  • the energy level E (hereinafter also referred to as a band gap) of the semiconductor nanoparticles increases in proportion to the radius “R ⁇ 2 ” of the semiconductor nanoparticles, so-called quantum dots.
  • the band gap value of the semiconductor nanoparticles can be controlled by controlling and defining the particle diameter of the semiconductor nanoparticles. That is, by controlling and defining the particle diameter of the semiconductor nanoparticles, it is possible to impart diversity not found in ordinary atoms. Therefore, it can be excited by light, or converted into light having a desired wavelength and emitted.
  • such a light-emitting semiconductor nanoparticle material is defined as “semiconductor nanoparticle” or quantum dot.
  • the average particle diameter of the semiconductor nanoparticles is in the range of several nanometers to several tens of nanometers, and is set to an average particle diameter corresponding to each target emission color.
  • the average particle size of the semiconductor nanoparticles is preferably set within a range of 3.0 to 20 nm.
  • the average particle size of the semiconductor nanoparticles is selected.
  • the diameter is preferably set in the range of 1.5 to 10 nm.
  • the average particle diameter of the semiconductor nanoparticles is preferably set in the range of 1.0 to 3.0 nm. .
  • a known method can be used. For example, a method of observing semiconductor nanoparticles using a transmission electron microscope (TEM) and obtaining the number average particle size of the particle size distribution therefrom, or a method of obtaining an average particle size using an atomic force microscope (AFM)
  • TEM transmission electron microscope
  • AFM atomic force microscope
  • a particle size measuring apparatus using a dynamic light scattering method for example, a method using a “Zeta Sizer Nano Series Zeta Sizer Nano ZS” manufactured by Malvern, Inc. can be used.
  • the average aspect ratio (major axis diameter / minor axis diameter) value is preferably in the range of 1.0 to 2.0, more preferably 1.0. Is within the range of 1.7.
  • the average aspect ratio (major axis diameter / minor axis diameter) of the semiconductor nanoparticles according to the present invention can be determined by measuring the major axis diameter and the minor axis diameter using, for example, an atomic force microscope (AFM). it can. The number of particles to be measured is 300 or more, and the average value is calculated.
  • the addition amount of the semiconductor nanoparticles is preferably in the range of 0.01 to 50% by mass, and in the range of 0.5 to 30% by mass, where 100% by mass of all the constituent materials of the semiconductor nanoparticle layer is taken. Is more preferable, and most preferably in the range of 2.0 to 25% by mass. If the addition amount is 0.01% by mass or more, sufficient luminance efficiency can be obtained, and if it is 50% by mass or less, an appropriate inter-particle distance of the semiconductor nanoparticles can be maintained, and the quantum size effect can be sufficiently obtained. Can be expressed.
  • Constituent material of semiconductor nanoparticles examples include a simple substance of Group 14 element of the periodic table such as carbon, silicon, germanium and tin, a simple substance of Group 15 element of the periodic table such as phosphorus (black phosphorus), and selenium. And simple substances of Group 16 elements of the periodic table such as tellurium.
  • compounds composed of a plurality of Group 14 elements of the periodic table such as silicon carbide (SiC), for example, tin (IV) (SnO 2 ), tin (II, IV) (Sn (II) Sn (IV) S 3 ), tin sulfide (IV) (SnS 2 ), tin sulfide (II) (SnS), tin selenide (II) (SnSe), tin telluride (II) (SnTe), lead sulfide (II) (PbS) , Lead selenide (II) (PbSe), lead telluride (II) (PbTe) periodic table group 14 element and periodic table group 16 element compound, boron nitride (BN), boron phosphide (BP ), Boron arsenide (BAs), aluminum nitride (AlN), aluminum phosphide (AlP), aluminum arsenide (A
  • Al 2 S 3 aluminum sulfide
  • Al 2 Se 3 aluminum selenide
  • Ga 2 S 3 gallium sulfide
  • Ga 2 Se 3 gallium selenide
  • Periods of gallium telluride (Ga 2 Te 3 ) indium oxide (In 2 O 3 ), indium sulfide (In 2 S 3 ), indium selenide (In 2 Se 3 ), indium telluride (In 2 Te 3 ), etc.
  • Compounds of Group 13 elements and Group 16 elements of the periodic table include compounds of thallium chloride (I) (TlCl), thallium bromide (I) ( LBR), include compounds of thallium iodide (I) (TlI) periodic table group 13 elements and the periodic table Group 17 element such.
  • Compounds of elements and group 17 elements of the periodic table compounds of group 10 elements of the periodic table and group 16 elements of the periodic table such as nickel oxide (II) (NiO), cobalt (II) oxide (CoO), cobalt sulfide (II) (CoS) periodic table group 9 element and periodic table group 16 element compound, triiron tetroxide (Fe 3 O 4 ), iron sulfide (II) (FeS) periodic table 8
  • a compound of a group element and a group 16 element of the periodic table, a compound of a group 7 element of the periodic table and a group 16 element of the periodic table such as manganese oxide (II) (MnO), molybdenum sulfide (IV) (MoS 2 ), Compounds of periodic table group 6 elements and periodic table group 16 elements such as tungsten oxide (IV) (WO 2 );
  • Compound of periodic table group 5 element and periodic table group 16 element such as vanadium oxide (II) (VO), van
  • a compound of a periodic table group 14 element and a periodic table group 16 element such as SnS 2 , SnS, SnSe, SnTe, PbS, PbSe, PbTe, GaN, GaP, GaAs, GaSb, InN, InP, III-V group compound semiconductors such as InAs and InSb, Ga 2 O 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , In 2 O 3 , In 2 S 3 , In 2 Se 3 , In 2 Te
  • II-VI compounds such as ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, HgSe, HgTe semiconductor, As 2 O 3, As 2 S 3, As 2 Se 3, As 2 Te 3, Sb 2 O 3, Sb 2 S 3, Sb 2 S 3, Sb
  • these substances do not contain highly toxic negative elements, they have excellent resistance to environmental pollution and safety to living organisms. In addition, a pure spectrum can be stably obtained in the visible light region, so that luminescence is achieved. It is advantageous for forming a device.
  • these materials CdSe, ZnSe, and CdS are particularly preferable in terms of light emission stability.
  • semiconductor nanoparticles of ZnO and ZnS are preferred from the viewpoints of luminous efficiency, high refractive index, safety and economy.
  • said material may be used by 1 type and may be used in combination of 2 or more type.
  • the semiconductor nanoparticles described above can be doped with a small amount of various elements as impurities as necessary. By adding such a doping substance, the light emission characteristics can be greatly improved.
  • the emission wavelength (band gap) as used in the present invention is the band gap (eV) in the semiconductor nanoparticles, and the energy difference between the valence band and the conduction band.
  • nm 1240 / band gap (eV).
  • the band gap (eV) of the semiconductor nanoparticles can be measured using a Tauc plot.
  • the Tauc plot which is one of the optical scientific measurement methods of the band gap (eV), will be described.
  • the maximum wavelength of the emission spectrum can be simply used as an index of the band gap.
  • the surface of the semiconductor nanoparticles is preferably coated with an inorganic coating layer or a coating composed of an organic ligand. That is, the surface of the semiconductor nanoparticle has a core-shell structure having a core region composed of a semiconductor nanoparticle material and a shell region composed of an inorganic coating layer or an organic ligand. preferable.
  • This core / shell structure is preferably formed of at least two kinds of compounds, and may form a gradient structure (gradient structure) with two or more kinds of compounds.
  • gradient structure gradient structure
  • aggregation of the semiconductor nanoparticles in the coating liquid can be effectively prevented, the dispersibility of the semiconductor nanoparticles can be improved, the luminance efficiency is improved, and the optical film of the present invention is used.
  • the light emitting device is continuously driven, the occurrence of color misregistration can be suppressed.
  • stable emission characteristics can be obtained due to the presence of the coating layer (shell region).
  • the surface of the semiconductor nanoparticles is coated with the coating layer (shell region), a surface modifier as described later can be reliably supported in the vicinity of the surface of the semiconductor nanoparticles.
  • the thickness of the coating layer (shell region) is not particularly limited, but is preferably in the range of 0.1 to 10 nm, and more preferably in the range of 0.1 to 5 nm.
  • a semiconductor nanoparticle can control the emission color by its average particle diameter, and if the thickness of the coating layer is within the above range, the thickness of the coating corresponds to the number of atoms.
  • the thickness is less than one semiconductor nanoparticle, the semiconductor nanoparticle can be filled with high density, and a sufficient amount of light emission can be obtained.
  • the presence of the coating can suppress non-luminous electron energy transfer due to defects existing on the particle surfaces of the core particles and electron traps on the dangling bonds, thereby suppressing a decrease in quantum efficiency.
  • the production method in a high vacuum environment includes a molecular beam epitaxy method, a CVD method, and the like.
  • a raw material aqueous solution is used, for example, an alkane such as n-heptane, n-octane, or isooctane.
  • a reverse micelle method in which a crystal is grown in a reverse micelle phase in a non-polar organic solvent such as aromatic hydrocarbon such as benzene, toluene, xylene, etc.
  • Examples include a hot soap method in which crystals are grown by injecting into a phase organic medium, and a solution reaction method involving crystal growth at a relatively low temperature using an acid-base reaction as a driving force, as in the hot soap method. Any method can be applied from these production methods, and among these, the liquid phase production method is preferable.
  • the organic surface modifier which exists on the surface is called an initial stage surface modifier.
  • the initial surface modifier in the hot soap method include trialkylphosphines, trialkylphosphine oxides, alkylamines, dialkyl sulfoxides, alkanephosphonic acid and the like. These initial surface modifiers are preferably exchanged for the following functional surface modifiers by an exchange reaction.
  • the initial surface modifier such as trioctyl phosphine oxide obtained by the hot soap method described above is subjected to an exchange reaction performed in a liquid phase containing a functional surface modifier, and the following (2) It can be exchanged for the functional surface modifier shown in FIG.
  • the semiconductor nanoparticle according to the present invention is characterized in that its surface is coated with a resin. Before coating with a resin, a surface modifier is applied to the semiconductor nanoparticle. It may be given.
  • the dispersion stability of the semiconductor nanoparticles in the coating solution for forming the semiconductor nanoparticle layer can be improved.
  • the surface of the semiconductor nanoparticles is attached to the surface of the semiconductor nanoparticles, so that the shape of the formed semiconductor nanoparticles becomes high in sphericity, and the particle size distribution of the semiconductor nanoparticles Can be kept narrow, and therefore can be made particularly excellent.
  • the functional surface modifier that can be applied in the present invention may be those directly attached to the surface of the semiconductor nanoparticles, or those attached via the shell, that is, the surface modifier is directly attached. May be a shell that is not in contact with the core of the semiconductor nanoparticles.
  • Polyoxyethylene alkyl ethers for example, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, etc.
  • Trialkylphosphines For example, tripropylphosphine, tributylphosphine, trihexylphosphine, trioctylphosphine, etc.
  • Polyoxyethylene alkylphenyl ethers for example, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, etc.
  • Tertiary amines for example, tri (n-hexyl) amine, tri (n-octyl) amine, tri (n-decyl) amine, etc.
  • Organophosphorus compounds for example, tripropylphosphine oxide, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphine oxide, tridecylphosphine oxide, etc.
  • Polyethylene glycol diesters for example, polyethylene glycol dilaurate, polyethylene glycol distearate, etc.
  • Organic nitrogen compounds For example, nitrogen-containing aromatic compounds of pyridine, lutidine, collidine, quinolines, etc.
  • Aminoalkanes for example, hexylamine, octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, etc.
  • Dialkyl sulfides for example, dibutyl sulfide
  • Dialkyl sulfoxides for example, dimethyl sulfoxide, dibutyl sulfoxide, etc.
  • Organic sulfur compounds For example, sulfur-containing aromatic compounds such as thiophene, etc. 12
  • Higher fatty acids For example, palmitic acid, stearic acid, oleic acid, etc.
  • the surface modifier is a substance that is coordinated and stabilized by the fine particles of the semiconductor nanoparticles in a high-temperature liquid phase.
  • polysilazane described later can also be used as a surface modifier.
  • the size (average particle diameter) of the semiconductor nanoparticles is preferably in the range of 1 to 20 nm.
  • the size of the semiconductor nanoparticles referred to in the present invention is composed of a core region composed of a semiconductor nanoparticle material, a shell region composed of an inert inorganic coating layer or an organic ligand, and a surface modifier. Represents the total size. If the surface modifier or shell is not included, the size does not include it.
  • the semiconductor nanoparticles according to the present invention are characterized in that their surfaces are coated with a resin, and it is preferable that the resin is a transparent resin. is there.
  • the semiconductor nanoparticles coated with the resin according to the present invention may be either in a state having the surface modifier on the surface or in a state having no surface modifier.
  • the transparent resin referred to in the present invention means a resin having optical transparency, and more specifically, the visible light transmittance is 60% or more, preferably 80% or more, more preferably 90%. That's it. Therefore, the transparent resin referred to in the present invention is a resin having the above transmittance in the visible light region, and the transparent resin covering the surface of the semiconductor nanoparticles according to the present invention is not limited as long as it satisfies the above conditions. In particular, an ultraviolet curable resin or a water-soluble resin is preferable.
  • UV curable resin In the present invention, it is one of preferred embodiments that the surface of the semiconductor nanoparticles is coated with an ultraviolet curable resin.
  • Examples of the ultraviolet curable resin applicable to the present invention include radical polymerization such as an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, and an ultraviolet curable polyol acrylate resin.
  • a cationic polymerizable resin such as a functional resin or an ultraviolet curable epoxy resin is preferably used.
  • an ultraviolet curable acrylate resin which is a radical polymerizable resin is preferable.
  • UV curable urethane acrylate resins are generally obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and further adding 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter referred to as methacrylate to the acrylate). It can be easily obtained by reacting an acrylate monomer having a hydroxy group such as 2-hydroxypropyl acrylate. For example, those described in JP-A-59-151110 can be used. Specifically, a mixture of 100 parts Unidic 17-806 (manufactured by DIC Corporation) and 1 part of Coronate L (manufactured by Nippon Polyurethane Corporation) is preferably used.
  • UV curable polyester acrylate resin examples include those that are easily formed when 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers are generally reacted with polyester polyol. No. 151112 can be used.
  • ultraviolet curable epoxy acrylate resin examples include an epoxy acrylate oligomer, a reactive diluent and a photopolymerization initiator added to the oligomer, and a reaction product. Those described in JP-A No. 1-105738 can be used.
  • UV curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate, etc. Can be mentioned.
  • polymethyl methacrylate and polylauryl methacrylate obtained by polymerizing methyl methacrylate or lauryl methacrylate using ultraviolet rays are also classified as ultraviolet curable resins according to the present invention.
  • the photopolymerization initiator used for forming these ultraviolet curable resins include benzoin and its derivatives, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof. Can do. You may use with a photosensitizer.
  • the photopolymerization initiator can also be used as a photosensitizer. Further, when an epoxy acrylate photopolymerization initiator is used, a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used.
  • the photopolymerization initiator or photosensitizer used in the ultraviolet curable resin composition is in the range of 0.1 to 15 parts by mass, preferably in the range of 1 to 10 parts by mass, per 100 parts by mass of the composition. is there.
  • the resin coverage when the resin is coated on the surface of the semiconductor nanoparticles according to the present invention is not particularly limited, but when the total mass of the semiconductor nanoparticles coated with the resin is 100% by mass
  • the ratio of the resin to be coated is preferably in the range of 5 to 50% by mass, more preferably in the range of 10 to 35% by mass, and still more preferably in the range of 15 to 30% by mass. is there.
  • an ultraviolet curable resin is added to the solution containing the semiconductor nanoparticles while the surface of the semiconductor nanoparticles is irradiated with ultraviolet rays.
  • a method of forming a resin on the surface of the semiconductor nanoparticle by coating the curable resin and then subjecting the semiconductor nanoparticle coated with the ultraviolet curable resin to UV curing by ultraviolet irradiation, or UV curing on the surface of the semiconductor nanoparticle.
  • UV curable resin is applied to the particle surface by a solution polymerization method in a solution in which semiconductor nanoparticles are present, or after applying a functional resin using a spray-type wet coating apparatus such as a spray coater.
  • a spray-type wet coating apparatus such as a spray coater.
  • the method include a method of preparing semiconductor nanoparticles coated with a resin by performing UV curing after coating.
  • the prepared semiconductor nanoparticles coated with the resin are, for example, focused ion beam (FB-) manufactured by Hitachi High-Technologies. 2000A), a cross section is processed, and a surface passing through the vicinity of the particle center is cut out. Next, by observing the exposed cut surface of the center line with an electron microscope, the presence or absence of the coating resin, the thickness of the coated resin layer, and the ratio of the coated resin to the entire particles can be determined.
  • FB- focused ion beam
  • a cross section is processed by a focused ion beam (FB-2000A) manufactured by Hitachi High-Technologies, and a surface passing near the particle center is cut out. Then, from the cut surface, it can also be obtained by performing elemental analysis using STEM-EDX (HD-2000) manufactured by Hitachi High-Technologies, and measuring the composition distribution of the resin component and the semiconductor nanoparticle component.
  • FB-2000A focused ion beam
  • HD-2000 STEM-EDX
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • the irradiation conditions vary depending on individual irradiation light source, the irradiation amount of ultraviolet rays is usually within the range of 5 ⁇ 500mJ / cm 2, preferably in the range of 5 ⁇ 150mJ / cm 2.
  • Water-soluble resin> In the present invention, it is also a preferred embodiment to use a water-soluble resin as the resin for coating the semiconductor nanoparticles.
  • the water-soluble resin applicable to the present invention is not particularly limited, but polyvinyl alcohol resins, gelatin, celluloses, thickening polysaccharides, and resins having reactive functional groups can be used. Of these, it is preferable to use a polyvinyl alcohol-based resin.
  • the water-soluble in the present invention means a compound in which 1% by mass or more, preferably 3% by mass or more dissolves in an aqueous medium.
  • polyvinyl alcohol resin examples include, in addition to normal polyvinyl alcohol (unmodified polyvinyl alcohol) obtained by hydrolysis of polyvinyl acetate, cation-modified polyvinyl alcohol having a terminal cation-modified, anion Anionic modified polyvinyl alcohol having a functional group, modified polyvinyl alcohol modified with acrylic, reactive polyvinyl alcohol (for example, “Gosefimer Z” manufactured by Nihon Gosei Co., Ltd.), vinyl acetate resin (for example, “Kuraray Co., Ltd.” "Exeval”) is also included.
  • These polyvinyl alcohol-based resins can be used in combination of two or more different polymerization degrees and different types of modification.
  • silanol-modified polyvinyl alcohol having a silanol group for example, “R-1130” manufactured by Kuraray Co., Ltd.
  • silanol-modified polyvinyl alcohol having a silanol group for example, “R-1130” manufactured
  • Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups as described in JP-A No. 61-10383.
  • Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979.
  • examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795.
  • the block copolymer of the vinyl compound and vinyl alcohol which have the described hydrophobic group is mentioned.
  • Polyvinyl alcohol can be used in combination of two or more different degrees of polymerization and different types of modification.
  • vinyl acetate resins examples include Exeval (trade name: manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • the polymerization degree of the polyvinyl alcohol-based resin is preferably in the range of 1500 to 7000, and more preferably in the range of 2000 to 5000.
  • a polymerization degree of 1500 or more is preferable because crack resistance of the coating film during formation of the refractive index layer is improved.
  • the degree of polymerization is 7000 or less, the coating liquid at the time of forming the refractive index layer is preferable.
  • the semiconductor nanoparticles are formed by immersing the semiconductor nanoparticles in a solution containing the water-soluble resin under vacuum for a certain period of time. Can do.
  • thermoplastic resins such as a polymethylmethacrylate resin (PMMA; Poly (methyl methacrylate)
  • PMMA polymethylmethacrylate resin
  • a thermosetting resin such as a thermosetting urethane resin, a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, or a silicone resin may be used.
  • the constituent semiconductor nanoparticle layer contains at least one compound selected from polysilazane and a modified polysilazane.
  • the polysilazane modified product is preferably a compound that is generated by subjecting polysilazane to a modification treatment and includes at least one selected from silicon oxide, silicon nitride, and silicon oxynitride.
  • the polysilazane may be dispersed together with the semiconductor nanoparticles in the coating solution for forming the semiconductor nanoparticle layer, or the semiconductor nanoparticles are coated with polysilazane in advance, and the particles are in the coating solution for forming the semiconductor nanoparticle layer. May be dispersed.
  • the term “covering” means covering the surface of the semiconductor nanoparticles, but the surface of the semiconductor nanoparticles may not cover all, but covers a part. It may be. Whether or not this condition is satisfied can be determined by analyzing the structure of the semiconductor nanoparticles coated with the resin by the above confirmation method.
  • the semiconductor nanoparticle layer is provided with durability capable of suppressing contact of the semiconductor nanoparticles with oxygen or the like over a long period of time. Furthermore, it can be set as a highly transparent layer.
  • Constituent material of polysilazane is a polymer having a silicon-nitrogen bond, and is composed of SiO 2 , Si 3 N 4 composed of Si—N, Si—H, NH, etc. Ceramic precursor inorganic polymer such as intermediate solid solution SiO x N y .
  • a polysilazane and a polysilazane derivative are compounds having a structure represented by the following general formula (I).
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group. .
  • PHPS Perhydropolysilazane
  • organopolysilazane in which part of the hydrogen part bonded to Si is substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to the base material is improved and the polysilazane which is hard and brittle It is possible to impart toughness to the ceramic film by the above, and there is an advantage that generation of cracks can be suppressed even when the (average) film thickness is increased.
  • These perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and can also be mixed and used.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), is a liquid or solid substance, and varies depending on the molecular weight. These are commercially available in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing liquid.
  • a silicon alkoxide-added polysilazane obtained by reacting the polysilazane represented by the general formula (I) with a silicon alkoxide (see, for example, JP-A No.
  • glycidol A glycidol-added polysilazane obtained by reacting see, for example, JP-A-6-122852
  • an alcohol-added polysilazane obtained by reacting an alcohol see, for example, JP-A-6-240208
  • a metal carboxylate Metal carboxylate-added polysilazane obtained by reaction for example, see JP-A-6-299118
  • acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex for example, JP-A-6-299 No. 306329 Irradiation
  • fine metal particles of the metal particles added polysilazane obtained by adding e.g., JP-see JP 7-196986
  • amines and metal catalysts can be added to the semiconductor nanoparticle layer in order to promote the conversion of polysilazane into a silicon oxide compound.
  • Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials.
  • Modification treatment is preferably performed on the polysilazane contained in the semiconductor nanoparticle layer, whereby a part or all of the polysilazane contained in the semiconductor nanoparticle layer is modified by polysilazane modification. Become a body.
  • the modification treatment is performed on the coating layer formed by coating the coating solution for forming a semiconductor nanoparticle layer.
  • the modification treatment may be performed in advance on the semiconductor nanoparticles coated with the polysilazane, or may be coated with the polysilazane. It may be performed on the coating layer formed by coating the semiconductor nanoparticles, or may be performed on both.
  • a known method based on the conversion reaction of polysilazane can be selected.
  • Production of a silicon oxide film or a silicon oxynitride film by a substitution reaction of a silazane compound requires a heat treatment at 450 ° C. or more, and is difficult to apply to a flexible substrate such as plastic.
  • a method such as plasma treatment, ozone treatment, or ultraviolet irradiation treatment that allows the conversion reaction to proceed at a low temperature.
  • ultraviolet irradiation ultraviolet irradiation
  • vacuum ultraviolet irradiation excimer irradiation
  • plasma irradiation vacuum ultraviolet irradiation
  • VUV vacuum ultraviolet irradiation
  • UV irradiation treatment treatment by ultraviolet irradiation is also preferred.
  • Ozone and active oxygen atoms generated by ultraviolet light have high oxidation ability, and modify polysilazane at low temperature to produce silicon oxide or silicon oxynitride with high density and insulation. Is possible.
  • any commonly used ultraviolet ray generator can be used.
  • ultraviolet rays generally refers to electromagnetic waves having a wavelength in the range of 10 to 400 nm, but in the case of ultraviolet irradiation treatment in order to distinguish from the vacuum ultraviolet ray (10 to 200 nm) treatment described later. Preferably uses ultraviolet rays in the range of 210 to 350 nm.
  • UV irradiation For UV irradiation, set the irradiation intensity and irradiation time as long as the substrate carrying the applied coating film is not damaged.
  • Examples of the ultraviolet ray generation method used for the modification include a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon arc lamp, a carbon arc lamp, and an excimer lamp (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO (Made by Co., Ltd.), UV light laser etc. are mentioned, It does not specifically limit.
  • a method of applying the ultraviolet rays from the generation source to the coating layer after reflecting the ultraviolet rays from the generation source is desirable in order to achieve uniform irradiation and improve efficiency. .
  • UV irradiation can be adapted to either batch processing or continuous processing, and can be appropriately selected depending on the shape of the substrate to be coated.
  • a more preferable modification treatment method is treatment by vacuum ultraviolet radiation.
  • the treatment by vacuum ultraviolet irradiation uses light energy in the range of 100 to 200 nm, preferably light energy having a wavelength in the range of 100 to 180 nm, which is larger than the interatomic bonding force in the silazane compound, and bonds the atoms.
  • This is a method of forming a silicon oxide film at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by the action of only photons called a photon process.
  • a rare gas excimer lamp is preferably used.
  • the detailed contents and specific conditions of the vacuum ultraviolet irradiation treatment are not particularly limited.
  • paragraphs [0079] to [0091] of JP 2011-031610 A The contents described therein or the contents described in paragraph numbers [0086] to [0098] of JP 2012-016854 A can be referred to.
  • the light-emitting device of the present invention includes an optical film containing the above-described semiconductor nanoparticles of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of a light-emitting device provided with an optical film containing the semiconductor nanoparticles of the present invention.
  • the light emitting device 1 includes a blue or ultraviolet light source 3 (also referred to as a primary light source) and an image display panel 2 disposed in an optical path from the light source 3.
  • the image display panel 2 includes an image display layer 7 such as a liquid crystal layer.
  • Components such as a substrate for supporting the image display layer 7, electrodes and drive circuits for driving the image display layer, and an alignment film for aligning the liquid crystal layer in the case of the liquid crystal image display layer are shown in FIG. It is omitted in 2.
  • the image display layer 7 is a pixelated image display layer.
  • individual regions (“pixels”) of the image display layer are used as other regions. And can be driven independently.
  • the light-emitting device 1 of the present invention is intended to provide a color display. Therefore, the image display panel 2 is provided with a color filter unit 6.
  • the image display panel 2 includes a red color filter 6R, a blue color filter 6B, and a green color filter 6G, as shown in the figure.
  • a plurality of filter set units 6 are provided. The individual color filters are aligned with the pixels or sub-pixels of each image display layer 7 and installed.
  • the light source 3 may include one or more light emitting diodes (LEDs), and is preferably a blue light source or an ultraviolet light source.
  • LEDs light emitting diodes
  • the light emitting device 1 has a light guide 5 as an optical system that enables the image display panel 2 to be illuminated substantially uniformly by light from the light source 3.
  • the optical system includes a light guide 5 having a light emission surface 5 a that has substantially the same extent as the image display panel 2.
  • the light from the light source 3 enters the light guide 8 along the light incident surface 5b, is reflected in the light guide 5 according to the principle of total internal reflection, and finally the light emission surface 5a of the light guide. Radiated from.
  • the light guide body having such a configuration is publicly known, and details of the light guide body 5 are omitted here.
  • the optical film 4 of the present invention is provided on the emission surface 5 a of the light guide 5.
  • the optical film 4 containing the semiconductor nanoparticles of the present invention emits light in a plurality of wavelength ranges different from each other and different from the emission wavelength range of the primary light source 3 when illuminated by light from the primary light source 3. It is preferably composed of two or more different materials.
  • the primary light source 3 preferably emits light outside the visible spectrum region (for example, light in the ultraviolet (UV) region) or blue light.
  • the color filter unit 6 shown in FIG. 2 includes a color filter having a narrow transmission band.
  • the narrow transmission band filter preferably has a full width at half maximum (FWHM) of 100 nm or less, and particularly preferably has a FWHM of 80 nm or less.
  • an optical film 4 may be provided inside the light guide 5 main body.
  • the semiconductor nanoparticles according to the present invention are disposed in a suitable transparent matrix, for example, in a resin that is molded to have a desired shape of the light guide 5 and then curved. It can be set as the optical film 4 comprised.
  • Example 1 ⁇ Synthesis of semiconductor nanoparticles> [Synthesis of Semiconductor Nanoparticle A: Core / Shell InP / ZnS Semiconductor Nanoparticle A] Indium myristate 0.1 mmol, stearic acid 0.1 mmol, trimethylsilylphosphine 0.1 mmol, dodecanethiol 0.1 mmol, and undecylenic acid zinc 0.1 mmol were placed in a three-necked flask together with octadecene 8 ml and refluxed under a nitrogen atmosphere. The mixture was heated at 0 ° C.
  • the semiconductor nanoparticle A having a core / shell structure is represented by InP / ZnS, where the core is InP and the shell is ZnS.
  • the semiconductor nanoparticle A was directly observed with a transmission electron microscope, and it was confirmed that the surface of the InP core part was an InP / ZnS semiconductor nanoparticle having a core / shell structure coated with a ZnS shell. Further, according to this observation, the InP / ZnS semiconductor nanoparticles A synthesized by this synthesis method have a core part particle diameter in the range of 2.1 to 3.8 nm and a core part particle size distribution of 6 to 40. %.
  • a JEM-2100 transmission electron microscope manufactured by JEOL Ltd. was used for the observation.
  • the optical properties of the InP / ZnS semiconductor nanoparticles A were measured using an octadecene solution containing the semiconductor nanoparticles A. It was confirmed that the emission peak wavelength was in the range of 430 to 720 nm, and the emission half width was in the range of 35 to 90 nm. The luminous efficiency reached a maximum of 70.9%.
  • a fluorescence spectrophotometer FluoroMax-4 manufactured by JOBIN YVON is used to measure the emission characteristics of InP / ZnS semiconductor nanoparticles A, and a spectrophotometer manufactured by Hitachi High-Technologies Corporation is used to measure the absorption spectrum. A total of U-4100 was used.
  • TOPO trioctylphosphine oxide
  • HDA 1-heptadecyl-octadecylamine
  • the synthesized semiconductor nanoparticle B is directly observed with a transmission electron microscope, whereby a CdSe / ZnS semiconductor nanoparticle having a core / shell structure in which the surface of the CdSe core is covered with a ZnS shell. I was able to confirm that. In addition, it was confirmed that the CdSe / ZnS semiconductor nanoparticles B had a core part particle size in the range of 2.0 to 4.0 nm and a core part particle size distribution in the range of 6 to 40%. As for the optical characteristics, it was confirmed that the emission peak wavelength was in the range of 410 to 700 nm and the emission half width was in the range of 35 to 90 nm. The luminous efficiency reached a maximum of 73.9%.
  • the synthesized core / shell structure InP / ZnS semiconductor nanoparticles A were dispersed in 0.5 ml of chloroform, and then filtered to remove insoluble matters.
  • the semiconductor nanoparticle A-chloroform dispersion was added to the microspheres dispersed in toluene prepared above, and shaken on a shaker plate at room temperature for 16 hours for thorough mixing.
  • the semiconductor nanoparticles A-microspheres were centrifuged and settled, and the supernatant liquid containing excess semiconductor nanoparticles A was drained.
  • the precipitate was washed twice with 2 ml of toluene, and the washed precipitate was resuspended in toluene (2 ml) and then transferred to a glass sample Bayer tube.
  • TMPTM which is a crosslinking agent was added to the liquid mixture of MMA and the semiconductor nanoparticle C, and the mixture of the monomer and the crosslinking agent was stirred with a whirl mixer.
  • the prepared slurry was transferred to a syringe, and then continuously stirred at 1200 rpm while being poured into 5 ml of 2% polyvinyl acetate (abbreviation: PVAc) deaerated from the syringe.
  • PVAc polyvinyl acetate
  • cyclohexane / CO-520 see below
  • the obtained particles were washed twice with 20 ml of cyclohexane and dried under vacuum to obtain a powder of InP / ZnS semiconductor nanoparticles K having a core / shell structure in which silica was coated on the particle surfaces.
  • CO-520 Igepal (registered trademark) CO-520 (nonionic surfactant), polyoxyethylene (5) nonylphenyl ether [4- (C 9 H 19 ) C 6 H 4 O (CH 2 CH 2 O) 4 CH 2 CH 2 OH]
  • Preparation of semiconductor nanoparticle L Preparation of Semiconductor Nanoparticle L with InP Structure Coated with UV-Curable Resin 1
  • semiconductor nanoparticles L 1 having an InP structure were prepared by the following method.
  • Dibutyl ester (100 ml) and myristic acid (10.0627 g) were placed in a three-necked flask and degassed at 70 ° C. under vacuum for 1 hour. Nitrogen gas was then introduced and the temperature was raised to 90 ° C. ZnS molecular cluster [Et 3 NH 4 ] [Zn 10 S 4 (SPh) 16 ] (4.77076 g) was added and the mixture was stirred for 45 minutes. Then, after raising the temperature to 100 ° C., In (MA) 3 (1 mol / L, 15 ml) was added dropwise (TMS) 3 P (1 mol / L, 15 ml). The temperature was raised to 140 ° C. while stirring the reaction mixture.
  • degassed dry methanol (about 200 ml) was added to separate the nanoparticles. After allowing the precipitate to settle, the methanol was removed via a cannula with the help of a filter rod. Degassed dry chloroform (about 10 ml) was added to wash the solids. The solid was dried under vacuum for 1 day. Thereby, 5.60 g of semiconductor nanoparticles L 1 having an InP structure were prepared.
  • the InP semiconductor nanoparticles L 1 prepared as described above were washed with dilute hydrofluoric acid (HF) acid.
  • Semiconductor nanoparticles L were dissolved in degassed anhydrous chloroform ( ⁇ 270 ml). A 50 ml portion was removed and placed in a plastic flask and flushed with nitrogen. Using a plastic syringe, 3 ml of 60 wt / wt% HF was added to water and added to degassed tetrahydrofuran (THF) (17 ml) to make an HF solution. HF was added dropwise to the semiconductor nanoparticles L over 5 hours. After the addition was complete, the solution was left stirring overnight. Excess HF was removed by drying the etched InP semiconductor nanoparticles L 1 through extraction with an aqueous calcium chloride solution.
  • HF degassed tetrahydrofuran
  • HDA 500 g was placed in a three-necked round bottom flask and heated to 120 ° C. for 1 hour or more under dynamic vacuum to dry and degas. The solution was then cooled to 60 ° C. To this was added 0.718 g of [HNEt 3 ] 4 [Cd 10 Se 4 (SPh) 16 ] (0.20 mmol). In total, 42 mmol, 22.0 ml of TOPSe, and 42 mmol (19.5 ml, 2.15 M) of Me 2 Cd ⁇ TOP were used. First, 4 mmol of TOPSe and 4 mmol of Me 2 Cd ⁇ TOP were added to the reaction solution at room temperature, and the temperature was raised to 110 ° C. and stirred for 2 hours.
  • the reaction solution was dark yellow, and the temperature was gradually raised at a rate of ⁇ 1 ° C./5 min while adding equimolar amounts of TOPSe and Me 2 Cd ⁇ TOP dropwise.
  • the reaction was stopped by cooling to 60 ° C. and then adding 300 ml of dry ethanol or acetone. This produced a deep red particle precipitate that was further separated by filtration.
  • the resulting CdSe particles were redissolved in toluene and then filtered through celite followed by recrystallization from warm ethanol to remove any excess HDA, selenium or cadmium present. This produced 10.10 g of CdSe semiconductor nanoparticles M 1 capped with HDA.
  • optical films 1 to 22 were produced by the following method.
  • coating of the coating liquid were performed in the environment which interrupted
  • the above-mentioned coating solution 1 for forming a semiconductor nanoparticle layer has a dry film thickness of 100 ⁇ m on a 125 ⁇ m-thick polyethylene terephthalate film (KDL86WA, abbreviated as PET: manufactured by Teijin DuPont Films, Ltd.) with easy adhesion processing on both sides. It apply
  • KDL86WA polyethylene terephthalate film
  • Excimer lamp light intensity 130 mW / cm 2 (172 nm)
  • Distance between sample and light source 1mm
  • Stage heating temperature 70 ° C
  • Oxygen concentration in the irradiation device 0.01%
  • Excimer lamp irradiation time 5 seconds.
  • Optical films 2 to 6 of the present invention were produced in the same manner as the production of the optical film 1 except that the semiconductor nanoparticles E were changed to the respective semiconductor nanoparticles shown in Table 1.
  • optical films 7 and 8 were prepared in the same manner as the optical film 1 except that the semiconductor nanoparticles E were changed to the semiconductor nanoparticles shown in Table 1 and no excimer irradiation was performed.
  • Optical films 9 to 11 of comparative examples were produced in the same manner as in the production of the optical film 1 except that the semiconductor nanoparticles E were changed to the respective semiconductor nanoparticles shown in Table 1.
  • the semiconductor nanoparticle layer forming coating solution 12 was applied to a 125 ⁇ m-thick polyethylene terephthalate film (KDL86WA, manufactured by Teijin DuPont Films, Ltd.) with easy adhesion on both sides so that the dry film thickness was 100 ⁇ m.
  • the film was dried at 3 ° C. for 3 minutes and cured under a curing condition: 0.5 J / cm 2 air using a high-pressure mercury lamp to produce an optical film 12 of a comparative example.
  • Optical films 13 to 16 of comparative examples were produced in the same manner as the production of the optical film 12 except that the semiconductor nanoparticles E were changed to the respective semiconductor nanoparticles shown in Table 1.
  • optical film 17 of the present invention was prepared in the same manner as the optical film 5 except that the substrate was changed to a polycarbonate film having a thickness of 100 ⁇ m (manufactured by Teijin Chemicals Ltd., Pure Ace WR-S5, abbreviated as PC). .
  • optical film 18 was produced in the same manner as the production of the optical film 5 except that the substrate was changed to a triacetyl cellulose film having a thickness of 100 ⁇ m (manufactured by Konica Minolta, abbreviation: TAC).
  • optical film 19 of the present invention was produced in the same manner as the production of the optical film 5 except that the base material was changed to a cycloolefin polymer film having a thickness of 100 ⁇ m (manufactured by Nippon Zeon Co., Ltd., abbreviation: COP).
  • the particle size was adjusted so that the semiconductor nanoparticles E emitted red and green light.
  • PHPS perhydropolysilazane
  • PHPS Aquamica NN120-10, manufactured by non-catalytic type, AZ Electronic Materials Co.
  • a 4.12mg of semiconductor nanoparticles E G green light is dispersed in toluene solvent, by adding further perhydropolysilazane (PHPS, Aquamica NN120-10, manufactured by non-catalytic type, AZ Electronic Materials Co.)
  • PHPS perhydropolysilazane
  • a coating solution G for forming a green semiconductor nanoparticle layer in which the mass content of the semiconductor nanoparticles was 1.0% was prepared.
  • the prepared red light emitting semiconductor nanoparticle layer forming coating solution R is applied to a 125 ⁇ m thick polyethylene terephthalate film (KDL86WA, manufactured by Teijin DuPont Films, Ltd.) with easy adhesion on both sides, and the dry film thickness is 100 ⁇ m.
  • the coating was carried out under the following conditions and dried at 60 ° C. for 3 minutes.
  • excimer irradiation was performed with the following excimer apparatus.
  • the green light emitting semiconductor nanoparticle layer forming coating solution G was applied on the red light emitting semiconductor nanoparticle layer R under the condition that the dry film thickness was 100 ⁇ m, and dried at 60 ° C. for 3 minutes.
  • excimer irradiation was performed with the following excimer apparatus to produce an optical film 20 of the present invention having a semiconductor nanoparticle layer having a two-layer structure of red light emission / green light emission.
  • optical film 21 was prepared in the same manner as the optical film 3 except that the semiconductor nanoparticles G were changed to the semiconductor nanoparticles L shown in Table 1.
  • optical film 22 was prepared in the same manner as the optical film 4 except that the semiconductor nanoparticles H were changed to the semiconductor nanoparticles M shown in Table 1.
  • PET Polyethylene terephthalate film
  • PC Polycarbonate film
  • TAC Triacetylcellulose film
  • COP Cycloolefin polymer film (Coating material for semiconductor nanoparticles)
  • PVA Polyvinyl alcohol (water-soluble resin)
  • PMMA Polymethylmethacrylate (acrylic resin)
  • PMMA Polylauryl methacrylate (acrylic resin) (Dispersion retention material)
  • PHPS Perhydropolysilazane
  • UV polymer UV curable resin (Modification after coating)
  • VUV Vacuum ultraviolet irradiation (excimer irradiation)
  • UV UV irradiation (high pressure mercury lamp)
  • the optical film is preferably less than 1.5% ( ⁇ to ⁇ ⁇ ) from the viewpoint of use in a light emitting device.
  • Relative luminous efficiency is 125 or more.
  • Each optical film produced was subjected to an accelerated deterioration treatment for 3000 hours in an environment of 85 ° C. and 85% RH, and then the light emission efficiency was measured by the same method as the evaluation of the light emission characteristics.
  • the ratio of the luminous efficiency after the accelerated deterioration process to the luminous efficiency was determined, and the durability was evaluated according to the following criteria.
  • The value of the luminous efficiency ratio before and after the accelerated deterioration treatment is 0.95 or more.
  • ⁇ ⁇ The value of the luminous efficiency ratio before and after the accelerated deterioration treatment is 0.90 or more and less than 0.95.
  • The ratio value of the luminous efficiency before and after the accelerated deterioration process is 0.80 or more and less than 0.90.
  • ⁇ ⁇ The ratio value of the luminous efficiency before and after the accelerated deterioration process is 0.50 or more, 0. Less than .80 ⁇ : The value of the ratio of the luminous efficiency before and after the accelerated deterioration treatment is less than 0.50.
  • Table 1 shows the evaluation results obtained as described above.
  • the optical film of the present invention is higher in transparency and superior in luminous efficiency and durability than the comparative example.
  • Example 2 ⁇ Production of light emitting device>
  • the optical films 1 to 22 produced in Example 1 were provided in the light emitting device shown in FIG. 2 to produce the light emitting devices 1 to 22.
  • each optical film 4 was pasted on the light emitting surface 5 a of the light guide 5.
  • the optical film of the present invention is excellent in luminous efficiency and has excellent durability capable of suppressing deterioration of semiconductor nanoparticles due to oxygen or the like over a long period of time, and high transparency. It can be suitably used as an optical film for various light emitting devices such as space illumination and electroluminescent displays.

Abstract

The objective of the present invention is to provide: an optical film which has excellent transparency and is provided with durability that enables suppression of deterioration of semiconductor nanoparticles for a long period of time, said deterioration being caused by oxygen or the like; and a light emitting device which is provided with this optical film. An optical film according to the present invention comprises a base and a semiconductor nanoparticle layer that is provided on the base. This optical film is characterized in that the semiconductor nanoparticle layer contains semiconductor nanoparticles, each of which is covered with a resin, and a polysilazane or modified polysilazane, in which the semiconductor nanoparticles are dispersed and held.

Description

光学フィルム及び発光デバイスOptical film and light emitting device
 本発明は、光学フィルム及び発光デバイスに関する。特に、酸素等による半導体ナノ粒子の劣化を長期にわたって抑制できる耐久性を備え、透明性に優れた光学フィルム及び当該光学フィルムを具備した発光デバイスに関する。 The present invention relates to an optical film and a light emitting device. In particular, the present invention relates to an optical film having durability capable of suppressing deterioration of semiconductor nanoparticles due to oxygen or the like over a long period of time and excellent in transparency, and a light emitting device including the optical film.
 近年、半導体ナノ粒子は、そのサイズ可変な電子特性から商業的関心が持たれている。半導体ナノ粒子は、例えば、生体標識、太陽光発電、触媒作用、生体撮像、発光ダイオード(Light Emitting Diode、以下、LEDと略記する。)、一般的な空間照明、及び電子発光ディスプレイ等、非常に多岐の分野での利用が期待されている。 In recent years, semiconductor nanoparticles have gained commercial interest due to their variable electronic properties. Semiconductor nanoparticles are, for example, biomarkers, solar power generation, catalysis, bioimaging, light emitting diodes (hereinafter abbreviated as LEDs), general spatial illumination, and electroluminescent displays. It is expected to be used in various fields.
 例えば、半導体ナノ粒子を利用した発光デバイスとしては、LED光を半導体ナノ粒子に照射して発光させることで、液晶表示装置(Liquid Crystal Display、以下、LCDと略記する。)に入射する光の光量を増大させ、当該LCDの輝度を向上させる技術が提案されている(例えば、特許文献1参照。)。 For example, as a light emitting device using semiconductor nanoparticles, the amount of light incident on a liquid crystal display (hereinafter abbreviated as LCD) by irradiating the semiconductor nanoparticles with LED light to emit light. Has been proposed (see, for example, Patent Document 1).
 ここで、半導体ナノ粒子は酸素に接触すると劣化することが知られており、半導体ナノ粒子が酸素に接触することを防止する手段が種々採用されている。そのような手段としては、例えば、半導体ナノ粒子をバリアー性フィルムや封止材で封止する方法が挙げられるが、このような方法では、酸素遮断性能は確保できるものの、窒素ガス雰囲気下で封止作業を行う必要がある等、製造設備が高価で、かつ高度なものになり、汎用性に劣る。 Here, it is known that semiconductor nanoparticles deteriorate when they come into contact with oxygen, and various means for preventing the semiconductor nanoparticles from coming into contact with oxygen have been adopted. As such means, for example, a method of sealing semiconductor nanoparticles with a barrier film or a sealing material can be mentioned. In such a method, although oxygen blocking performance can be secured, sealing is performed in a nitrogen gas atmosphere. Manufacturing facilities are expensive and sophisticated, such as the need for stopping work, and are inferior in versatility.
 これに対し、半導体ナノ粒子自体をシリカやガラスで被覆することによって、半導体ナノ粒子が酸素に接触することを防止する方法が提案されている(例えば、特許文献2及び特許文献3参照。)。 On the other hand, a method for preventing the semiconductor nanoparticles from coming into contact with oxygen by coating the semiconductor nanoparticles themselves with silica or glass has been proposed (see, for example, Patent Document 2 and Patent Document 3).
 また、半導体ナノ粒子を無機マトリックス中に分散して、半導体ナノ粒子層を形成する方法が提案されている(例えば、特許文献4参照。)。 In addition, a method of forming a semiconductor nanoparticle layer by dispersing semiconductor nanoparticles in an inorganic matrix has been proposed (for example, see Patent Document 4).
 しかしながら、上記従来の技術である半導体ナノ粒子表面をシリカやガラスで覆う方法、又は無機マトリックス中に分散する方法では、酸素遮断性能を得ることはできるが、半導体ナノ粒子のシリカ凝集体が形成されることにより粒径が大きくなることで、層中における分散性が低下し、透明性が低下すること、あるいは外部環境の影響による酸素遮断性能の低下に伴い、輝度が劣化する等、透明性及び耐久性の点で不十分であった。 However, the conventional technique of covering the surface of the semiconductor nanoparticles with silica or glass, or the method of dispersing them in an inorganic matrix can obtain oxygen barrier performance, but the silica nanoparticles of the semiconductor nanoparticles are formed. By increasing the particle size, the dispersibility in the layer is lowered, the transparency is lowered, or the oxygen blocking performance is lowered due to the influence of the external environment, the brightness is deteriorated, etc. It was insufficient in terms of durability.
 一方、特許文献5では、半導体ナノ粒子を透明樹脂層に分散保持させる方法が提案されている。しかしながら、ここで提案されている方法では、外部環境の影響により酸素遮断性能が低下することにより、輝度が劣化したりする等、耐久性の点で不十分であった。 On the other hand, Patent Document 5 proposes a method of dispersing and holding semiconductor nanoparticles in a transparent resin layer. However, the method proposed here is insufficient in terms of durability, for example, the luminance is deteriorated due to a decrease in oxygen barrier performance due to the influence of the external environment.
特開2011-202148号公報JP 2011-202148 A 国際公開第2007/034877号International Publication No. 2007/034877 特表2013-505347号公報Special table 2013-505347 gazette 特開2009-263621号公報JP 2009-263621 A 国際公開第2012/132239号International Publication No. 2012/132239
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、酸素等による半導体ナノ粒子の劣化を長期にわたって防止することができる耐久性を備え、かつ透明性に優れた光学フィルムと、当該光学フィルムを具備した発光デバイスを提供することである。 The present invention has been made in view of the above problems, and its solution is an optical film having durability that can prevent deterioration of semiconductor nanoparticles due to oxygen or the like over a long period of time and having excellent transparency. It is to provide a light emitting device including the optical film.
 本発明者は、上記課題に鑑み鋭意検討を進めた結果、半導体ナノ粒子層として、ポリシラザン及びポリシラザン改質体から選ばれる少なくとも一種の化合物と、樹脂で被覆された半導体ナノ粒子とを含有させて構成することにより、酸素等による半導体ナノ粒子の劣化を長期間にわたって防止することができる優れた耐久性を備え、更に透明性に優れた光学フィルムが得られることを見出し、本発明に至った。 As a result of intensive studies in view of the above problems, the present inventor contains, as a semiconductor nanoparticle layer, at least one compound selected from polysilazane and a modified polysilazane and semiconductor nanoparticles coated with a resin. It has been found that an optical film having excellent durability capable of preventing the deterioration of semiconductor nanoparticles due to oxygen or the like over a long period of time and further excellent in transparency can be obtained by constituting the present invention.
 すなわち、本発明の上記課題は、下記の手段により解決される。 That is, the above-mentioned problem of the present invention is solved by the following means.
 1.基材と、当該基材上に設けられた半導体ナノ粒子層とを有する光学フィルムであって、
 前記半導体ナノ粒子層が、樹脂で被覆された半導体ナノ粒子と、前記半導体ナノ粒子を分散保持するポリシラザン及びポリシラザン改質体から選ばれる少なくとも一種を含有することを特徴とする光学フィルム。
1. An optical film having a substrate and a semiconductor nanoparticle layer provided on the substrate,
The optical film, wherein the semiconductor nanoparticle layer contains at least one selected from semiconductor nanoparticles coated with a resin, polysilazane and a polysilazane modified body that disperses and holds the semiconductor nanoparticles.
 2.前記半導体ナノ粒子層は前記ポリシラザン改質体を含有し、当該ポリシラザン改質体が、前記ポリシラザンに真空紫外線を照射して形成される、酸化ケイ素、窒化ケイ素及び酸窒化ケイ素から選ばれる少なくとも一種を含む化合物であることを特徴とする第1項に記載の光学フィルム。 2. The semiconductor nanoparticle layer contains the polysilazane modified body, and the polysilazane modified body is formed by irradiating the polysilazane with vacuum ultraviolet rays, and at least one selected from silicon oxide, silicon nitride, and silicon oxynitride 2. The optical film according to item 1, which is a compound containing the optical film.
 3.前記半導体ナノ粒子が、コア・シェル構造を有することを特徴とする第1項又は第2項に記載の光学フィルム。 3. 3. The optical film according to item 1 or 2, wherein the semiconductor nanoparticles have a core-shell structure.
 4.前記樹脂が、紫外線硬化樹脂であることを特徴とする第1項から第3項までのいずれか一項に記載の光学フィルム。 4. The optical film according to any one of Items 1 to 3, wherein the resin is an ultraviolet curable resin.
 5.前記樹脂が、水溶性樹脂であることを特徴とする第1項から第3項までのいずれか一項に記載の光学フィルム。 5. The optical film according to any one of items 1 to 3, wherein the resin is a water-soluble resin.
 6.前記半導体ナノ粒子層を2層以上有し、2層以上の当該半導体ナノ粒子層が、それぞれ互いに異なる発光波長を有する半導体ナノ粒子を含有していることを特徴とする第1項から第5項までのいずれか一項に記載の光学フィルム。 6. The semiconductor nanoparticle layer having two or more layers, wherein the two or more semiconductor nanoparticle layers contain semiconductor nanoparticles having different emission wavelengths, respectively. The optical film as described in any one of the above.
 7.第1項から第6項までのいずれか一項に記載の光学フィルムを具備していることを特徴とする発光デバイス。 7. A light emitting device comprising the optical film according to any one of items 1 to 6.
 本発明の上記手段により、発光効率に優れ、かつ酸素等による半導体ナノ粒子の劣化を長期にわたって抑制することができる優れた耐久性を備え、かつ透明性に優れた光学フィルム及び当該光学フィルムを具備した発光デバイスを提供することができる。 By the above means of the present invention, an optical film having excellent luminous efficiency and excellent durability capable of suppressing deterioration of semiconductor nanoparticles due to oxygen or the like over a long period of time and having excellent transparency and the optical film are provided. The light emitting device can be provided.
 本発明で規定する構成において、本発明の構成要件であるポリシラザンやポリシラザン改質体は、酸素遮断性だけでなく、酸素吸収性能も有するため、半導体ナノ粒子に接触する酸素を効果的に低減でき、その結果、十分な耐久性(耐酸化性)が確保できているものと推察している。また、ポリシラザンやポリシラザン改質体は、真空紫外線照射等の光照射によって酸素遮断性を更に向上させることができる。 In the structure defined in the present invention, the polysilazane and the polysilazane modified body, which are constituent elements of the present invention, not only have an oxygen-blocking property but also an oxygen-absorbing performance, so that it is possible to effectively reduce oxygen in contact with semiconductor nanoparticles. As a result, it is speculated that sufficient durability (oxidation resistance) can be secured. In addition, the polysilazane and the modified polysilazane can further improve the oxygen barrier property by light irradiation such as vacuum ultraviolet irradiation.
 本発明においては、上記のような特性を備えたポリシラザン又はポリシラザン改質体中に、樹脂で被覆された半導体ナノ粒子を含有させることにより、当該半導体ナノ粒子のポリシラザン又はポリシラザン改質体中での分散性が飛躍的に向上し、透明性、発光効率及び耐久性に優れた光学フィルム及び発光デバイスを得ることができたものと推定している。 In the present invention, by incorporating semiconductor nanoparticles coated with a resin into the polysilazane or polysilazane modified body having the above properties, the semiconductor nanoparticles in the polysilazane or polysilazane modified body are contained. It is presumed that the optical film and the light-emitting device, which are greatly improved in dispersibility and excellent in transparency, luminous efficiency and durability, can be obtained.
本発明の光学フィルムの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the optical film of the present invention 本発明の半導体ナノ粒子を含有する光学フィルムを具備した発光デバイスの構成の一例を示す概略断面図Schematic sectional drawing which shows an example of a structure of the light-emitting device which comprised the optical film containing the semiconductor nanoparticle of this invention
 本発明の光学フィルムは、基材と、当該基材上に設けられた半導体ナノ粒子層とを有する光学フィルムであって、前記半導体ナノ粒子層が、樹脂で被覆された半導体ナノ粒子と、前記半導体ナノ粒子(以下、「量子ドット」ともいう。)を分散保持するためのバインダーとして、ポリシラザン及びポリシラザン改質体から選ばれる少なくとも一種の化合物を含有することを特徴とする。この特徴は、請求項1から請求項7に係る発明に共通する技術的特徴である。 The optical film of the present invention is an optical film having a base material and a semiconductor nanoparticle layer provided on the base material, wherein the semiconductor nanoparticle layer is coated with a resin, It is characterized by containing at least one compound selected from polysilazane and a modified polysilazane as a binder for dispersing and holding semiconductor nanoparticles (hereinafter also referred to as “quantum dots”). This feature is a technical feature common to the inventions according to claims 1 to 7.
 本発明の実施態様としては、本発明の目的とする効果をより発現できる観点から、前記半導体ナノ粒子層は前記ポリシラザン改質体を含有し、前記ポリシラザン改質体が、前記ポリシラザンに真空紫外線を照射して形成される、酸化ケイ素、窒化ケイ素及び酸窒化ケイ素から選ばれる少なくとも一種を含む化合物であることが、半導体ナノ粒子に対し、より高次の酸素遮断性を得ることができる観点から好ましい。 As an embodiment of the present invention, the semiconductor nanoparticle layer contains the polysilazane modified product, and the polysilazane modified product applies a vacuum ultraviolet ray to the polysilazane from the viewpoint of more manifesting the intended effect of the present invention. A compound containing at least one selected from silicon oxide, silicon nitride, and silicon oxynitride formed by irradiation is preferable from the viewpoint of obtaining higher-order oxygen barrier properties for semiconductor nanoparticles. .
 また、前記半導体ナノ粒子が、コア・シェル構造を有することが、半導体ナノ粒子の凝集を抑制して、より一層分散性を高めることができ、また、輝度効率を向上させることができる観点からこのましい。 In addition, the fact that the semiconductor nanoparticles have a core-shell structure can suppress the aggregation of the semiconductor nanoparticles, can further increase dispersibility, and can improve luminance efficiency. Good.
 また、前記樹脂が紫外線硬化樹脂であることが、光学フィルムの製造を容易にすることができる観点から好ましい。 In addition, it is preferable that the resin is an ultraviolet curable resin from the viewpoint of easy manufacture of the optical film.
 前記樹脂が、水溶性樹脂であることが、簡易な製造設備で光学フィルムを容易に製造することができる観点から好ましい。 It is preferable that the resin is a water-soluble resin from the viewpoint that an optical film can be easily manufactured with simple manufacturing equipment.
 また、前記半導体ナノ粒子層が2層以上設けられ、2層以上の当該半導体ナノ粒子層には、それぞれ互いに異なる発光波長を有する半導体ナノ粒子を含有することが、光学フィルムとして、多様の発光を得ることができる観点から好ましい。 Further, two or more semiconductor nanoparticle layers are provided, and the two or more semiconductor nanoparticle layers each contain semiconductor nanoparticles having different emission wavelengths, so that various optical emissions can be obtained as an optical film. It is preferable from a viewpoint which can be obtained.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、以下の説明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the following description, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《光学フィルムの構成》
 本発明の光学フィルムは、基材と、当該基材上に、バインダーとしてポリシラザン及びポリシラザン改質体から選ばれる少なくとも一種の化合物と、粒子表面が樹脂で被覆されている半導体ナノ粒子を当該バインダー中に分散して含有する半導体ナノ粒子層を有する構成であることを特徴としている。
<Structure of optical film>
The optical film of the present invention comprises a base material, at least one compound selected from polysilazane and a modified polysilazane as a binder on the base material, and semiconductor nanoparticles whose particle surfaces are coated with a resin in the binder. It is characterized by having a semiconductor nanoparticle layer dispersed and contained.
 図1は、本発明の光学フィルムの構成の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the optical film of the present invention.
 図1において、本発明の光学フィルム11は、基材12上に、半導体ナノ粒子層13を積層した構成である。本発明に係る半導体ナノ粒子層13は、バインダーであるポリシラザン又はポリシラザン改質体14中に、表面を樹脂16で被覆された半導体ナノ粒子15が分散された状態で存在している構成である。 1, an optical film 11 of the present invention has a configuration in which a semiconductor nanoparticle layer 13 is laminated on a base material 12. The semiconductor nanoparticle layer 13 according to the present invention has a configuration in which the semiconductor nanoparticles 15 whose surfaces are coated with the resin 16 are dispersed in the polysilazane or polysilazane modified body 14 as a binder.
 以下、本発明の光学フィルムを構成する各構成要素の詳細について説明する。 Hereinafter, details of each component constituting the optical film of the present invention will be described.
 《基材》
 本発明の光学フィルムに適用可能な基材は、光透過性を備えているものであれば、ガラス、プラスチック等、特に限定はなく用いることができる。透光性を備えた基材として好ましく用いられる材料は、例えば、ガラス、石英、樹脂フィルム等を挙げることができる。特に好ましくは、光学フィルムにフレキシブル性を付与することができる観点から、樹脂フィルムである。
"Base material"
The base material applicable to the optical film of the present invention is not particularly limited as long as it has optical transparency, such as glass and plastic. Examples of the material preferably used as the base material having translucency include glass, quartz, and a resin film. Particularly preferred is a resin film from the viewpoint of imparting flexibility to the optical film.
 本発明でいう基材の光透過性とは、可視光の透過率が60%以上であることであり、好ましくは80%以上、より好ましくは90%以上である。 The light transmittance of the substrate as used in the present invention means that the visible light transmittance is 60% or more, preferably 80% or more, more preferably 90% or more.
 基材の厚さとしては、特に制限されるものではないが、おおむね15~300μmの範囲内であり、好ましくは15~200μmの範囲内であり、さらに好ましくは、18~150μmの範囲内である。 The thickness of the substrate is not particularly limited, but is generally in the range of 15 to 300 μm, preferably in the range of 15 to 200 μm, and more preferably in the range of 18 to 150 μm. .
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル類、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリエチレン、ポリプロピレン、セロファン、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate (CAP), and cellulose acetate. Cellulose esters such as phthalate and cellulose nitrate or derivatives thereof, polyethylene, polypropylene, cellophane, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, Polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cyclone resins such as Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Etc.
 また、上記樹脂フィルムの表面には、無機物若しくは有機物、又はその両者からなるガスバリアー膜が形成されていても良い。そのようなガスバリアー膜としては、例えば、JIS K 7129-1992に準拠した方法で測定される、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のガスバリアー性膜であることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/(m・24h・atm)以下、水蒸気透過度が、1×10-5g/(m・24h)以下の高ガスバリアー性膜であることがより好ましい。 Moreover, the gas barrier film | membrane which consists of an inorganic substance, an organic substance, or both may be formed in the surface of the said resin film. As such a gas barrier film, for example, a water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method according to JIS K 7129-1992 is 0.01 g. / (M 2 · 24 h) or less is preferable, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 × 10 −3 ml / (m 2 More preferably, it is a high gas barrier film having a water vapor permeability of 1 × 10 −5 g / (m 2 · 24 h) or less.
 ガスバリアー膜を形成する材料としては、水分や酸素等の半導体ナノ粒子に劣化をもたらすものの浸入を抑制する機能を備えた材料であれば良く、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素、酸窒化ケイ素等を用いることができる。更に、ガスバリアー膜の脆弱性を改良する観点から、これら無機層と有機材料からなる有機層との積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数層積層させる構成が好ましい。 As a material for forming the gas barrier film, any material that has a function of suppressing intrusion of semiconductor nanoparticles such as moisture and oxygen may be used. For example, silicon oxide, silicon dioxide, silicon nitride, oxynitride Silicon or the like can be used. Furthermore, from the viewpoint of improving the brittleness of the gas barrier film, it is more preferable to have a laminated structure of these inorganic layers and organic layers made of organic materials. Although there is no restriction | limiting in particular about the lamination order of an inorganic layer and an organic layer, The structure which laminates | stacks two or more layers alternately is preferable.
 ガスバリアー膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが好ましい。 The method for forming the gas barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is preferable.
 《半導体ナノ粒子層》
 本発明に係る半導体ナノ粒子層は、ポリシラザン及びポリシラザン改質体から選ばれる少なくとも一種の化合物と、樹脂で被覆された半導体ナノ粒子とを含有して構成されている。本発明の光学フィルムでは、本発明に係る半導体ナノ粒子層を少なくとも1層有していることを特徴とするが、当該半導体ナノ粒子層は、2層以上設けられている構成であっても良い。2層以上の半導体ナノ粒子層を有する場合には、各々の半導体ナノ粒子層には、それぞれ異なる発光波長を有する半導体ナノ粒子が含有されていることが好ましい態様である。
《Semiconductor nanoparticle layer》
The semiconductor nanoparticle layer according to the present invention comprises at least one compound selected from polysilazane and a modified polysilazane and semiconductor nanoparticles coated with a resin. The optical film of the present invention is characterized by having at least one semiconductor nanoparticle layer according to the present invention, but the semiconductor nanoparticle layer may have a structure in which two or more layers are provided. . In the case of having two or more semiconductor nanoparticle layers, it is preferable that each semiconductor nanoparticle layer contains semiconductor nanoparticles having different emission wavelengths.
 半導体ナノ粒子層の形成方法の一つとしては、基材上に、ポリシラザン改質体及び樹脂で被覆された半導体ナノ粒子を含有する半導体ナノ粒子層形成用塗布液を塗布した後、乾燥処理することにより形成する方法を挙げることができる。 As one method for forming a semiconductor nanoparticle layer, a coating solution for forming a semiconductor nanoparticle layer containing a semiconductor nanoparticle coated with a polysilazane modified material and a resin is applied on a substrate, followed by drying treatment. The method of forming can be mentioned.
 塗布方法としては、特に制限はなく、従来公知の湿式塗布方式を適宜選択して適用することができる。具体的な湿式方法としては、例えば、スピンコート法、ローラーコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。 The coating method is not particularly limited, and a conventionally known wet coating method can be appropriately selected and applied. Specific wet methods include, for example, spin coating methods, roller coating methods, flow coating methods, ink jet methods, spray coating methods, printing methods, dip coating methods, cast film forming methods, bar coating methods, gravure printing methods, and the like. Is mentioned.
 また、半導体ナノ粒子層形成用塗布液を調製する際に用いることのできる溶媒としては、例えば、トルエン等、半導体ナノ粒子、ポリシラザン、ポリシラザン改質体等と反応しないものであればいずれの溶媒であっても使用することができる。 In addition, as a solvent that can be used when preparing a coating solution for forming a semiconductor nanoparticle layer, any solvent can be used as long as it does not react with semiconductor nanoparticles, polysilazane, modified polysilazane, and the like. It can be used even if it exists.
 また、半導体ナノ粒子層の他の形成方法としては、基材上に、ポリシラザン及び樹脂で被覆された半導体ナノ粒子を含有する半導体ナノ粒子層形成用塗布液を塗布した後、後述する方法、例えば、エキシマ光の照射等により、ポリシラザンの一部又は全部をポリシラザン改質体とする改質処理を行うことにより、半導体ナノ粒子層を形成する方法を用いることもできる。 In addition, as another method for forming the semiconductor nanoparticle layer, after applying a semiconductor nanoparticle layer forming coating solution containing semiconductor nanoparticles coated with polysilazane and resin on a substrate, a method described later, for example, Alternatively, a method of forming a semiconductor nanoparticle layer by performing a modification treatment in which a part or all of polysilazane is modified into a polysilazane modified body by irradiation with excimer light or the like can also be used.
 また、半導体ナノ粒子層には、更に樹脂材料が含有されていることが好ましく、特に、紫外線硬化性樹脂、あるいは水溶性樹脂が含有されていることがより好ましい。半導体ナノ粒子層に紫外線硬化性樹脂が含有されている場合、すなわち、半導体ナノ粒子層形成用塗布液に紫外線硬化性樹脂が含有されている場合には、半導体ナノ粒子層形成用塗布液を塗布して形成した塗布層に対し、紫外線照射処理を行う。なお、当該紫外線照射処理は、上記したポリシラザンを改質する改質処理を兼ねていても良い。紫外線硬化性樹脂及び水溶性樹脂の詳細については、後述する。 Further, the semiconductor nanoparticle layer preferably further contains a resin material, and more preferably contains an ultraviolet curable resin or a water-soluble resin. If the semiconductor nanoparticle layer contains an ultraviolet curable resin, that is, if the semiconductor nanoparticle layer forming coating solution contains an ultraviolet curable resin, apply the semiconductor nanoparticle layer forming coating solution. The coating layer thus formed is subjected to ultraviolet irradiation treatment. The ultraviolet irradiation treatment may also serve as a modification treatment for modifying the polysilazane described above. Details of the ultraviolet curable resin and the water-soluble resin will be described later.
 半導体ナノ粒子層の層厚としては、特に限定されるものではないが、おおよそ20~300μmの範囲内であり、好ましくは50~200μmの範囲内であり、さらに好ましくは80~140μmの範囲内である。 The thickness of the semiconductor nanoparticle layer is not particularly limited, but is approximately in the range of 20 to 300 μm, preferably in the range of 50 to 200 μm, and more preferably in the range of 80 to 140 μm. is there.
 《半導体ナノ粒子》
 本発明の光学フィルムを構成する半導体ナノ粒子層には、その表面が樹脂により被覆されている半導体ナノ粒子が含有されていることが特徴の一つである。すなわち、半導体ナノ粒子は、半導体ナノ粒子層形成用塗布液に含有されているものである。
<Semiconductor nanoparticles>
One feature of the semiconductor nanoparticle layer constituting the optical film of the present invention is that it contains semiconductor nanoparticles whose surface is coated with a resin. That is, the semiconductor nanoparticles are contained in the coating solution for forming the semiconductor nanoparticle layer.
 本発明に係る半導体ナノ粒子とは、半導体材料の結晶で構成され、量子閉じ込め効果を有する所定の大きさの粒子をいい、その粒子径が数nm~数十nmの範囲内にある微粒子であり、下記に示す量子ドット効果が得られるものをいう。 The semiconductor nanoparticle according to the present invention refers to a particle having a predetermined size, which is composed of a crystal of a semiconductor material and has a quantum confinement effect, and whose particle diameter is in the range of several nanometers to several tens of nanometers. In this case, the quantum dot effect shown below is obtained.
 本発明に係る半導体ナノ粒子の粒子径としては、具体的には1~20nmの範囲内であることが好ましく、更に好ましくは1~10nmの範囲内である。 Specifically, the particle diameter of the semiconductor nanoparticles according to the present invention is preferably in the range of 1 to 20 nm, more preferably in the range of 1 to 10 nm.
 このような半導体ナノ粒子のエネルギー準位Eは、一般に、プランク定数を「h」、電子の有効質量を「m」、半導体ナノ粒子の半径を「R」としたとき、下式(1)で表される。 The energy level E of such semiconductor nanoparticles is generally expressed by the following formula (1) when the Planck constant is “h”, the effective mass of electrons is “m”, and the radius of the semiconductor nanoparticles is “R”. expressed.
 式(1)
   E∝h/mR
 式(1)で示されるように、半導体ナノ粒子のエネルギー準位E(以下、バンドギャップともいう。)は、半導体ナノ粒子の半径「R-2」に比例して大きくなり、いわゆる、量子ドット効果が得られる。このように、半導体ナノ粒子の粒子径を制御及び規定することによって、半導体ナノ粒子のバンドギャップ値を制御することができる。すなわち、半導体ナノ粒子の粒子径を制御及び規定することにより、通常の原子にはない多様性を付与させることができる。そのため、光によって励起させたり、光を所望の波長の光に変換して出射させたりすることができる。本発明では、このような発光性の半導体ナノ粒子材料を、「半導体ナノ粒子」又は量子ドットと定義する。
Formula (1)
E∝h 2 / mR 2
As shown by the formula (1), the energy level E (hereinafter also referred to as a band gap) of the semiconductor nanoparticles increases in proportion to the radius “R −2 ” of the semiconductor nanoparticles, so-called quantum dots. An effect is obtained. In this way, the band gap value of the semiconductor nanoparticles can be controlled by controlling and defining the particle diameter of the semiconductor nanoparticles. That is, by controlling and defining the particle diameter of the semiconductor nanoparticles, it is possible to impart diversity not found in ordinary atoms. Therefore, it can be excited by light, or converted into light having a desired wavelength and emitted. In the present invention, such a light-emitting semiconductor nanoparticle material is defined as “semiconductor nanoparticle” or quantum dot.
 半導体ナノ粒子の平均粒子径は、上述したように、数nm~数十nmの範囲内であるが、それぞれ目的とする発光色に対応する平均粒子径に設定する。例えば、赤色発光を得たい場合には、半導体ナノ粒子の平均粒子径としては3.0~20nmの範囲内に設定することが好ましく、緑色発光を得たい場合には、半導体ナノ粒子の平均粒子径を1.5~10nmの範囲内に設定することが好ましく、青色発光を得たい場合には、半導体ナノ粒子の平均粒子径を1.0~3.0nmの範囲内に設定することが好ましい。 As described above, the average particle diameter of the semiconductor nanoparticles is in the range of several nanometers to several tens of nanometers, and is set to an average particle diameter corresponding to each target emission color. For example, when red light emission is desired, the average particle size of the semiconductor nanoparticles is preferably set within a range of 3.0 to 20 nm. When green light emission is desired, the average particle size of the semiconductor nanoparticles is selected. The diameter is preferably set in the range of 1.5 to 10 nm. When blue light emission is desired, the average particle diameter of the semiconductor nanoparticles is preferably set in the range of 1.0 to 3.0 nm. .
 本発明に係る半導体ナノ粒子の平均粒子径の測定方法としては、公知の方法を用いることができる。例えば、透過型電子顕微鏡(TEM)により半導体ナノ粒子の粒子観察を行い、そこから粒子径分布の数平均粒子径として求める方法や、原子間力顕微鏡(AFM)を用いて平均粒子径を求める方法、動的光散乱法による粒径測定装置、例えば、マルバーン社製、「ゼータサイザーナノシリーズ ゼータサイザーナノZS」を用いて測定する方法等を挙げることができる。その他にも、X線小角散乱法により得られたスペクトルから半導体ナノ粒子の粒子径分布シミュレーション計算を用いて粒子径分布を導出する方法などが挙げられるが、本発明においては、原子間力顕微鏡(AFM)を用いて平均粒子径を求める方法が好ましい。 As a method for measuring the average particle diameter of the semiconductor nanoparticles according to the present invention, a known method can be used. For example, a method of observing semiconductor nanoparticles using a transmission electron microscope (TEM) and obtaining the number average particle size of the particle size distribution therefrom, or a method of obtaining an average particle size using an atomic force microscope (AFM) In addition, a particle size measuring apparatus using a dynamic light scattering method, for example, a method using a “Zeta Sizer Nano Series Zeta Sizer Nano ZS” manufactured by Malvern, Inc. can be used. In addition, there is a method of deriving the particle size distribution from the spectrum obtained by the X-ray small angle scattering method using the particle size distribution simulation calculation of the semiconductor nanoparticles. In the present invention, an atomic force microscope ( A method of obtaining an average particle size using AFM) is preferred.
 また、本発明に係る半導体ナノ粒子においては、平均アスペクト比(長軸径/短軸径)の値が、1.0~2.0の範囲内であることが好ましく、より好ましくは1.0~1.7の範囲内である。本発明に係る半導体ナノ粒子に係る平均アスペクト比(長軸径/短軸径)は、例えば、原子間力顕微鏡(AFM)を用いて、長軸径及び短軸径を測定して求めることができる。なお、測定する粒子個数としては300個以上とし、その平均値を算出して求める。 In the semiconductor nanoparticles according to the present invention, the average aspect ratio (major axis diameter / minor axis diameter) value is preferably in the range of 1.0 to 2.0, more preferably 1.0. Is within the range of 1.7. The average aspect ratio (major axis diameter / minor axis diameter) of the semiconductor nanoparticles according to the present invention can be determined by measuring the major axis diameter and the minor axis diameter using, for example, an atomic force microscope (AFM). it can. The number of particles to be measured is 300 or more, and the average value is calculated.
 半導体ナノ粒子の添加量は、半導体ナノ粒子層の全構成物質を100質量部%としたとき、0.01~50質量%の範囲内であることが好ましく、0.5~30質量%の範囲内であることがより好ましく、2.0~25質量%の範囲内であることが最も好ましい。添加量が0.01質量%以上であれば、十分な輝度効率を得ることができ、50質量%以下であれば、適度な半導体ナノ粒子の粒子間距離を維持でき、量子サイズ効果を十分に発現させることができる。 The addition amount of the semiconductor nanoparticles is preferably in the range of 0.01 to 50% by mass, and in the range of 0.5 to 30% by mass, where 100% by mass of all the constituent materials of the semiconductor nanoparticle layer is taken. Is more preferable, and most preferably in the range of 2.0 to 25% by mass. If the addition amount is 0.01% by mass or more, sufficient luminance efficiency can be obtained, and if it is 50% by mass or less, an appropriate inter-particle distance of the semiconductor nanoparticles can be maintained, and the quantum size effect can be sufficiently obtained. Can be expressed.
 (1)半導体ナノ粒子の調製
 〈1.1:半導体ナノ粒子の構成材料〉
 本発明に係る半導体ナノ粒子の構成材料としては、例えば、炭素、ケイ素、ゲルマニウム、スズ等の周期表第14族元素の単体、リン(黒リン)等の周期表第15族元素の単体、セレン、テルル等の周期表第16族元素の単体が挙げられる。
(1) Preparation of semiconductor nanoparticles <1.1: Constituent material of semiconductor nanoparticles>
Examples of the constituent material of the semiconductor nanoparticle according to the present invention include a simple substance of Group 14 element of the periodic table such as carbon, silicon, germanium and tin, a simple substance of Group 15 element of the periodic table such as phosphorus (black phosphorus), and selenium. And simple substances of Group 16 elements of the periodic table such as tellurium.
 また、炭化ケイ素(SiC)等の複数の周期表第14族元素からなる化合物、例えば、酸化スズ(IV)(SnO)、硫化スズ(II、IV)(Sn(II)Sn(IV)S)、硫化スズ(IV)(SnS)、硫化スズ(II)(SnS)、セレン化スズ(II)(SnSe)、テルル化スズ(II)(SnTe)、硫化鉛(II)(PbS)、セレン化鉛(II)(PbSe)、テルル化鉛(II)(PbTe)等の周期表第14族元素と周期表第16族元素との化合物、窒化ホウ素(BN)、リン化ホウ素(BP)、ヒ化ホウ素(BAs)、窒化アルミニウム(AlN)、リン化アルミニウム(AlP)、ヒ化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、ヒ化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、ヒ化インジウム(InAs)、アンチモン化インジウム(InSb)等の周期表第13族元素と周期表第15族元素との化合物(あるいはIII-V族化合物半導体)、硫化アルミニウム(Al)、セレン化アルミニウム(AlSe)、硫化ガリウム(Ga)、セレン化ガリウム(GaSe)、テルル化ガリウム(GaTe)、酸化インジウム(In)、硫化インジウム(In)、セレン化インジウム(InSe)、テルル化インジウム(InTe)等の周期表第13族元素と周期表第16族元素との化合物、塩化タリウム(I)(TlCl)、臭化タリウム(I)(TlBr)、ヨウ化タリウム(I)(TlI)等の周期表第13族元素と周期表第17族元素との化合物等が挙げられる。 Further, compounds composed of a plurality of Group 14 elements of the periodic table such as silicon carbide (SiC), for example, tin (IV) (SnO 2 ), tin (II, IV) (Sn (II) Sn (IV) S 3 ), tin sulfide (IV) (SnS 2 ), tin sulfide (II) (SnS), tin selenide (II) (SnSe), tin telluride (II) (SnTe), lead sulfide (II) (PbS) , Lead selenide (II) (PbSe), lead telluride (II) (PbTe) periodic table group 14 element and periodic table group 16 element compound, boron nitride (BN), boron phosphide (BP ), Boron arsenide (BAs), aluminum nitride (AlN), aluminum phosphide (AlP), aluminum arsenide (AlAs), aluminum antimonide (AlSb), gallium nitride (GaN), gallium phosphide (GaP), arsenic Gallium phosphide (GaAs Periodic group 13 elements and periodic table group 15 elements such as gallium antimonide (GaSb), indium nitride (InN), indium phosphide (InP), indium arsenide (InAs), indium antimonide (InSb), etc. (Or III-V group compound semiconductor), aluminum sulfide (Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), gallium sulfide (Ga 2 S 3 ), gallium selenide (Ga 2 Se 3 ), Periods of gallium telluride (Ga 2 Te 3 ), indium oxide (In 2 O 3 ), indium sulfide (In 2 S 3 ), indium selenide (In 2 Se 3 ), indium telluride (In 2 Te 3 ), etc. Compounds of Group 13 elements and Group 16 elements of the periodic table, thallium chloride (I) (TlCl), thallium bromide (I) ( LBR), include compounds of thallium iodide (I) (TlI) periodic table group 13 elements and the periodic table Group 17 element such.
 更に、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)等の周期表第12族元素と周期表第16族元素との化合物(あるいはII-VI族化合物半導体)、硫化ヒ素(III)(As)、セレン化ヒ素(III)(AsSe)、テルル化ヒ素(III)(AsTe)、硫化アンチモン(III)(Sb)、セレン化アンチモン(III)(SbSe)、テルル化アンチモン(III)(SbTe)、硫化ビスマス(III)(Bi)、セレン化ビスマス(III)(BiSe)、テルル化ビスマス(III)(BiTe)等の周期表第15族元素と周期表第16族元素との化合物、酸化銅(I)(CuO)、セレン化銅(I)(CuSe)等の周期表第11族元素と周期表第16族元素との化合物が挙げられる。 Furthermore, zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), cadmium oxide (CdO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe) and other compounds of Group 12 elements and Group 16 elements (or II-VI compound semiconductors) Arsenic (III) sulfide (As 2 S 3 ), arsenic selenide (III) (As 2 Se 3 ), arsenic telluride (III) (As 2 Te 3 ), antimony sulfide (III) (Sb 2 S 3 ) selenide antimony (III) (Sb 2 Se 3 ), antimony telluride (III) (Sb 2 Te 3 ), bismuth sulfide (III) (Bi 2 S 3 ), bismuth selenide (III (Bi 2 Se 3), bismuth telluride (III) (Bi 2 Te 3 ) Periodic Table compounds of a Group 15 element and Periodic Table Group 16 element such as copper oxide (I) (Cu 2 O) , selenium Examples include compounds of Group 11 elements of the periodic table and Group 16 elements of the periodic table such as copper (I) chloride (Cu 2 Se).
 更に、塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、塩化銀(AgCl)、臭化銀(AgBr)等の周期表第11族元素と周期表第17族元素との化合物、酸化ニッケル(II)(NiO)等の周期表第10族元素と周期表第16族元素との化合物、酸化コバルト(II)(CoO)、硫化コバルト(II)(CoS)等の周期表第9族元素と周期表第16族元素との化合物、四酸化三鉄(Fe)、硫化鉄(II)(FeS)等の周期表第8族元素と周期表第16族元素との化合物、酸化マンガン(II)(MnO)等の周期表第7族元素と周期表第16族元素との化合物、硫化モリブデン(IV)(MoS)、酸化タングステン(IV)(WO)等の周期表第6族元素と周期表第16族元素との化合物、酸化バナジウム(II)(VO)、酸化バナジウム(IV)(VO)、酸化タンタル(V)(Ta)等の周期表第5族元素と周期表第16族元素との化合物、酸化チタン(TiO、Ti、Ti、Ti等)等の周期表第4族元素と周期表第16族元素との化合物、硫化マグネシウム(MgS)、セレン化マグネシウム(MgSe)等の周期表第2族元素と周期表第16族元素との化合物、酸化カドミウム(II)クロム(III)(CdCr)、セレン化カドミウム(II)クロム(III)(CdCrSe)、硫化銅(II)クロム(III)(CuCr)、セレン化水銀(II)クロム(III)(HgCrSe)等のカルコゲンスピネル類、バリウムチタネート(BaTiO)等が挙げられる。 Further, Group 11 of the periodic table of copper (I) chloride (CuCl), copper bromide (I) (CuBr), copper iodide (I) (CuI), silver chloride (AgCl), silver bromide (AgBr), etc. Compounds of elements and group 17 elements of the periodic table, compounds of group 10 elements of the periodic table and group 16 elements of the periodic table such as nickel oxide (II) (NiO), cobalt (II) oxide (CoO), cobalt sulfide (II) (CoS) periodic table group 9 element and periodic table group 16 element compound, triiron tetroxide (Fe 3 O 4 ), iron sulfide (II) (FeS) periodic table 8 A compound of a group element and a group 16 element of the periodic table, a compound of a group 7 element of the periodic table and a group 16 element of the periodic table such as manganese oxide (II) (MnO), molybdenum sulfide (IV) (MoS 2 ), Compounds of periodic table group 6 elements and periodic table group 16 elements such as tungsten oxide (IV) (WO 2 ); Compound of periodic table group 5 element and periodic table group 16 element such as vanadium oxide (II) (VO), vanadium oxide (IV) (VO 2 ), tantalum oxide (V) (Ta 2 O 5 ), oxidation Compounds of Group 4 elements of the periodic table and Group 16 elements of the periodic table such as titanium (TiO 2 , Ti 2 O 5 , Ti 2 O 3 , Ti 5 O 9, etc.), magnesium sulfide (MgS), magnesium selenide ( Compounds of Group 2 elements of the periodic table and elements of Group 16 of the periodic table, such as MgSe), cadmium (II) chromium (III) (CdCr 2 O 4 ), cadmium selenide (II) chromium (III) (CdCr 2 Se 4 ), chalcogen spinels such as copper (II) chromium (III) (CuCr 2 S 4 ), mercury selenide (III) (HgCr 2 Se 4 ), barium titanate (BaTiO 3 ), etc. Cited The
 本発明においては、SnS、SnS、SnSe、SnTe、PbS、PbSe、PbTe等の周期表第14族元素と周期表第16族元素との化合物、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb等のIII-V族化合物半導体、Ga、Ga、GaSe、GaTe、In、In、InSe、InTe等の周期表第13族元素と周期表第16族元素との化合物、ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、HgO、HgS、HgSe、HgTe等のII-VI族化合物半導体、As、As、AsSe、AsTe、Sb、Sb、SbSe、SbTe、Bi、Bi、BiSe、BiTe等の周期表第15族元素と周期表第16族元素との化合物、MgS、MgSe等の周期表第2族元素と周期表第16族元素との化合物が好ましく、中でも、Si、Ge、GaN、GaP、InN、InP、Ga、Ga、In、In、ZnO、ZnS、CdO、CdSがより好ましい。 In the present invention, a compound of a periodic table group 14 element and a periodic table group 16 element such as SnS 2 , SnS, SnSe, SnTe, PbS, PbSe, PbTe, GaN, GaP, GaAs, GaSb, InN, InP, III-V group compound semiconductors such as InAs and InSb, Ga 2 O 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , In 2 O 3 , In 2 S 3 , In 2 Se 3 , In 2 Te Compounds of Group 13 elements of the periodic table such as 3 and Group 16 elements of the Periodic Table, II-VI compounds such as ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, HgSe, HgTe semiconductor, As 2 O 3, As 2 S 3, As 2 Se 3, As 2 Te 3, Sb 2 O 3, Sb 2 S 3, Sb 2 Se 3, Sb 2 Te 3, i 2 O 3, Bi 2 S 3, Bi 2 Se 3, a compound of the Bi 2 Te 3 Periodic Table Group 15 element and Periodic Table Group 16 element such as, MgS, a Group 2 element such as MgSe Compounds with Group 16 elements of the periodic table are preferred, among which Si, Ge, GaN, GaP, InN, InP, Ga 2 O 3 , Ga 2 S 3 , In 2 O 3 , In 2 S 3 , ZnO, ZnS, CdO and CdS are more preferable.
 これらの物質は、毒性の高い陰性元素を含まないので、耐環境汚染性や生物への安全性に優れており、また、可視光領域で純粋なスペクトルを安定して得ることができるので、発光デバイスの形成に有利である。これらの材料のうちでも、特に、CdSe、ZnSe、CdSは、発光の安定性の点で好ましい。一方、発光効率、高屈折率、安全性、経済性の観点からは、ZnO、ZnSの半導体ナノ粒子が好ましい。また、上記の材料は、1種で用いるものであっても良いし、2種以上を組み合わせて用いても良い。 Since these substances do not contain highly toxic negative elements, they have excellent resistance to environmental pollution and safety to living organisms. In addition, a pure spectrum can be stably obtained in the visible light region, so that luminescence is achieved. It is advantageous for forming a device. Among these materials, CdSe, ZnSe, and CdS are particularly preferable in terms of light emission stability. On the other hand, semiconductor nanoparticles of ZnO and ZnS are preferred from the viewpoints of luminous efficiency, high refractive index, safety and economy. Moreover, said material may be used by 1 type and may be used in combination of 2 or more type.
 なお、上述した各半導体ナノ粒子には、必要に応じて微量の各種元素を不純物としてドープすることができる。このようなドープ物質を添加することにより、発光特性を大きく向上させることができる。 The semiconductor nanoparticles described above can be doped with a small amount of various elements as impurities as necessary. By adding such a doping substance, the light emission characteristics can be greatly improved.
 本発明でいう発光波長(バンドギャップ)とは、無機物である半導体ナノ粒子の場合は、価電子帯と伝導帯とのエネルギー差が、半導体ナノ粒子におけるバンドギャップ(eV)であり、発光波長(nm)=1240/バンドギャップ(eV)で表される。 In the case of semiconductor nanoparticles that are inorganic substances, the emission wavelength (band gap) as used in the present invention is the band gap (eV) in the semiconductor nanoparticles, and the energy difference between the valence band and the conduction band. nm) = 1240 / band gap (eV).
 半導体ナノ粒子のバンドギャップ(eV)は、Taucプロットを用いて測定することができる。 The band gap (eV) of the semiconductor nanoparticles can be measured using a Tauc plot.
 バンドギャップ(eV)の光科学的測定方法の一つであるTaucプロットについて説明する。 The Tauc plot, which is one of the optical scientific measurement methods of the band gap (eV), will be described.
 以下に、Taucプロットを用いたバンドギャップ(E)の測定原理を示す。 The measurement principle of the band gap (E 0 ) using Tauc plot is shown below.
 半導体材料の長波長側の光学吸収端近傍で、比較的吸収の大きい領域において、光吸収係数αと光エネルギーhν(ただし、hはプランク常数、νは振動数)、及びバンドキャップエネルギーEの間には、下式(A)で示す関係が成り立つと考えられている。ただし、Bは定数を表す。 In the vicinity of the optical absorption edge on the long wavelength side of the semiconductor material, in a relatively large absorption region, the light absorption coefficient α, the light energy hν (where h is the Planck constant, ν is the vibration frequency), and the band cap energy E 0 It is considered that the relationship represented by the following formula (A) is established between them. However, B represents a constant.
 式(A)
   αhν=B(hν-E
 したがって、吸収スペクトルを測定し、そこから(αhν)の0.5乗に対してhνをプロット、いわゆる、Taucプロットし、直線区間を外挿したα=0におけるhνの値が、求めようとする半導体ナノ粒子のバンドギャップエネルギーEとなる。
Formula (A)
αhν = B (hν−E 0 ) 2
Therefore, an absorption spectrum is measured, and hν is plotted with respect to (αhν) to the power of 0.5, so-called Tauc plot, and the value of hν at α = 0 obtained by extrapolating the straight section is sought. The band gap energy E 0 of the semiconductor nanoparticles is obtained.
 なお、半導体ナノ粒子の場合は、吸収と発光のスペクトルの差異(ストークスシフト)が小さく、また波形もシャープであるため、簡便には発光スペクトルの極大波長をバンドギャップの指標として用いることもできる。 In the case of semiconductor nanoparticles, since the difference between the absorption and emission spectra (Stokes shift) is small and the waveform is sharp, the maximum wavelength of the emission spectrum can be simply used as an index of the band gap.
 また、他の方法として、これら有機機能材料及び無機機能材料のエネルギー準位を見積もる方法としては、走査型トンネル分光法、紫外線光電子分光法、X線光電子分光法、オージェ電子分光法により求められるエネルギー準位から求める方法及び光学的にバンドギャップを見積もる方法が挙げられる。 As another method for estimating the energy levels of these organic functional materials and inorganic functional materials, energy required by scanning tunneling spectroscopy, ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy, and the like. There are a method of obtaining from a level and a method of optically estimating a band gap.
 半導体ナノ粒子の表面は、無機物の被覆層又は有機配位子で構成された被膜で被覆されたものであるのが好ましい。すなわち、半導体ナノ粒子の表面は、半導体ナノ粒子材料で構成されたコア領域と、無機物の被覆層又は有機配位子で構成されたシェル領域とを有するコア・シェル構造を有するものであるのが好ましい。 The surface of the semiconductor nanoparticles is preferably coated with an inorganic coating layer or a coating composed of an organic ligand. That is, the surface of the semiconductor nanoparticle has a core-shell structure having a core region composed of a semiconductor nanoparticle material and a shell region composed of an inorganic coating layer or an organic ligand. preferable.
 このコア・シェル構造は、少なくとも2種類の化合物で形成されていることが好ましく、2種類以上の化合物でグラジエント構造(傾斜構造)を形成していても良い。これにより、塗布液中における半導体ナノ粒子の凝集を効果的に防止することができ、半導体ナノ粒子の分散性を向上させることができるとともに、輝度効率が向上し、本発明の光学フィルムを用いた発光デバイスを連続駆動させた場合に、色ズレの発生を抑制することができる。また、被覆層(シェル領域)の存在により、安定した発光特性を得ることができる。 This core / shell structure is preferably formed of at least two kinds of compounds, and may form a gradient structure (gradient structure) with two or more kinds of compounds. Thereby, aggregation of the semiconductor nanoparticles in the coating liquid can be effectively prevented, the dispersibility of the semiconductor nanoparticles can be improved, the luminance efficiency is improved, and the optical film of the present invention is used. When the light emitting device is continuously driven, the occurrence of color misregistration can be suppressed. In addition, stable emission characteristics can be obtained due to the presence of the coating layer (shell region).
 また、半導体ナノ粒子の表面が被膜層(シェル領域)で被覆されていることにより、後述するような表面修飾剤を半導体ナノ粒子の表面近傍に確実に担持させることができる。 Further, since the surface of the semiconductor nanoparticles is coated with the coating layer (shell region), a surface modifier as described later can be reliably supported in the vicinity of the surface of the semiconductor nanoparticles.
 被膜層(シェル領域)の厚さは、特に限定されないが、0.1~10nmの範囲内であることが好ましく、0.1~5nmの範囲内であることがより好ましい。 The thickness of the coating layer (shell region) is not particularly limited, but is preferably in the range of 0.1 to 10 nm, and more preferably in the range of 0.1 to 5 nm.
 一般に、半導体ナノ粒子は、その平均粒子径により発光色を制御することができ、被膜層の厚さが上記範囲内の値であれば、被膜の厚さが原子数個分に相当する厚さから半導体ナノ粒子1個に満たない厚さであり、半導体ナノ粒子を高密度で充填することができ、十分な発光量が得られる。また、被膜の存在により、お互いのコア粒子の粒子表面に存在する欠陥、ダングリングボンドへの電子トラップによる非発光の電子エネルギーの転移を抑制でき、量子効率の低下を抑えることができる。 In general, a semiconductor nanoparticle can control the emission color by its average particle diameter, and if the thickness of the coating layer is within the above range, the thickness of the coating corresponds to the number of atoms. Thus, the thickness is less than one semiconductor nanoparticle, the semiconductor nanoparticle can be filled with high density, and a sufficient amount of light emission can be obtained. In addition, the presence of the coating can suppress non-luminous electron energy transfer due to defects existing on the particle surfaces of the core particles and electron traps on the dangling bonds, thereby suppressing a decrease in quantum efficiency.
 〈1.2:半導体ナノ粒子の製造方法〉
 半導体ナノ粒子の製造方法としては、従来行われている公知の任意の方法を用いることができる。また、また、Aldrich社、Crystalplex社、NN-ラボズ社等から市販品として購入することもできる。
<1.2: Manufacturing method of semiconductor nanoparticles>
As a method for producing semiconductor nanoparticles, any conventionally known method can be used. Moreover, it can also be purchased as a commercial product from Aldrich, Crystalplex, NN-Labs, etc.
 例えば、高真空環境下での製造方法としては、分子ビームエピタキシー法、CVD法等が挙げられ、液相製造方法としては、原料水溶液を、例えば、n-ヘプタン、n-オクタン、イソオクタン等のアルカン類、又はベンゼン、トルエン、キシレン等の芳香族炭化水素等の非極性有機溶媒中の逆ミセルとして存在させ、この逆ミセル相中にて結晶成長させる逆ミセル法、熱分解性原料を高温の液相有機媒体に注入して結晶成長させるホットソープ法、更に、ホットソープ法と同様に、酸塩基反応を駆動力として比較的低い温度で結晶成長を伴う溶液反応法等が挙げられる。これらの製造方法から任意の方法を適用することができるが、中でも、液相製造方法が好ましい。 For example, the production method in a high vacuum environment includes a molecular beam epitaxy method, a CVD method, and the like. As the liquid phase production method, a raw material aqueous solution is used, for example, an alkane such as n-heptane, n-octane, or isooctane. Or a reverse micelle method in which a crystal is grown in a reverse micelle phase in a non-polar organic solvent such as aromatic hydrocarbon such as benzene, toluene, xylene, etc. Examples include a hot soap method in which crystals are grown by injecting into a phase organic medium, and a solution reaction method involving crystal growth at a relatively low temperature using an acid-base reaction as a driving force, as in the hot soap method. Any method can be applied from these production methods, and among these, the liquid phase production method is preferable.
 なお、液相製造方法による半導体ナノ粒子の合成において、表面に存在する有機表面修飾剤を、初期表面修飾剤という。例えば、ホットソープ法における初期表面修飾剤の例としては、トリアルキルホスフィン類、トリアルキルホスフィンオキシド類、アルキルアミン類、ジアルキルスルホキシド類、アルカンホスホン酸等が挙げられる。これらの初期表面修飾剤は、交換反応により下記の機能性の表面修飾剤に交換することが好ましい。 In addition, in the synthesis | combination of the semiconductor nanoparticle by a liquid phase manufacturing method, the organic surface modifier which exists on the surface is called an initial stage surface modifier. For example, examples of the initial surface modifier in the hot soap method include trialkylphosphines, trialkylphosphine oxides, alkylamines, dialkyl sulfoxides, alkanephosphonic acid and the like. These initial surface modifiers are preferably exchanged for the following functional surface modifiers by an exchange reaction.
 具体的には、例えば、前述したホットソープ法により得られるトリオクチルホスフィンオキシド等の初期表面修飾剤は、機能性の表面修飾剤を含有する液相中で行う交換反応により、下記の(2)で示す機能性の表面修飾剤と交換することが可能である。 Specifically, for example, the initial surface modifier such as trioctyl phosphine oxide obtained by the hot soap method described above is subjected to an exchange reaction performed in a liquid phase containing a functional surface modifier, and the following (2) It can be exchanged for the functional surface modifier shown in FIG.
 (2)機能性の表面修飾剤
 本発明に係る半導体ナノ粒子においては、その表面が樹脂により被覆されていることを特徴とするが、樹脂で被覆する前に、半導体ナノ粒子に表面修飾剤を付与してもよい。
(2) Functional surface modifier The semiconductor nanoparticle according to the present invention is characterized in that its surface is coated with a resin. Before coating with a resin, a surface modifier is applied to the semiconductor nanoparticle. It may be given.
 半導体ナノ粒子の表面近傍に、表面修飾剤を付着させることにより、半導体ナノ粒子層形成用塗布液中における半導体ナノ粒子の分散安定性を優れたものとすることができる。また、半導体ナノ粒子の製造時において、半導体ナノ粒子表面に表面修飾剤を付着させることにより、形成される半導体ナノ粒子の形状が真球度の高いものとなり、また、半導体ナノ粒子の粒子径分布を狭く抑えられるため、特に優れたものとすることができる。 By attaching a surface modifier in the vicinity of the surface of the semiconductor nanoparticles, the dispersion stability of the semiconductor nanoparticles in the coating solution for forming the semiconductor nanoparticle layer can be improved. In addition, when the semiconductor nanoparticles are manufactured, the surface of the semiconductor nanoparticles is attached to the surface of the semiconductor nanoparticles, so that the shape of the formed semiconductor nanoparticles becomes high in sphericity, and the particle size distribution of the semiconductor nanoparticles Can be kept narrow, and therefore can be made particularly excellent.
 本発明で適用可能な機能性の表面修飾剤としては、半導体ナノ粒子の表面に直接付着したものであっても良いし、シェルを介して付着したもの、すなわち、表面修飾剤が直接付着するのはシェルで、半導体ナノ粒子のコア部には接触していないものであっても良い。 The functional surface modifier that can be applied in the present invention may be those directly attached to the surface of the semiconductor nanoparticles, or those attached via the shell, that is, the surface modifier is directly attached. May be a shell that is not in contact with the core of the semiconductor nanoparticles.
 機能性の表面修飾剤の具体例としては、
 1)ポリオキシエチレンアルキルエーテル類:例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等、
 2)トリアルキルホスフィン類:例えば、トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン等、
 3)ポリオキシエチレンアルキルフェニルエーテル類:例えば、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル等、
 4)第3級アミン類:例えば、トリ(n-ヘキシル)アミン、トリ(n-オクチル)アミン、トリ(n-デシル)アミン等、
 5)有機リン化合物:例えば、トリプロピルホスフィンオキシド、トリブチルホスフィンオキシド、トリヘキシルホスフィンオキシド、トリオクチルホスフィンオキシド、トリデシルホスフィンオキシド等、
 6)ポリエチレングリコールジエステル類:例えば、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等、
 7)有機窒素化合物:例えば、ピリジン、ルチジン、コリジン、キノリン類の含窒素芳香族化合物等、
 8)アミノアルカン類:例えば、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン等、
 9)ジアルキルスルフィド類:例えば、ジブチルスルフィド等、
 10)ジアルキルスルホキシド類:例えば、ジメチルスルホキシドやジブチルスルホキシド等、
 11)有機硫黄化合物:例えば、チオフェン等の含硫黄芳香族化合物等、
 12)高級脂肪酸:例えば、パルミチン酸、ステアリン酸、オレイン酸等、
 13)その他;アルコール類、ソルビタン脂肪酸エステル類、脂肪酸変性ポリエステル類、3級アミン変性ポリウレタン類、ポリエチレンイミン類等、
 が挙げられるが、半導体ナノ粒子が後述するような方法で調製されるものである場合、表面修飾剤としては、高温液相において半導体ナノ粒子の微粒子に配位して、安定化する物質であるのが好ましく、具体的には、上記2)トリアルキルホスフィン類、4)第3級アミン類、5)有機リン化合物、7)有機窒素化合物、8)アミノアルカン類、9)ジアルキルスルフィド類、10)ジアルキルスルホキシド類、11)有機硫黄化合物、12)高級脂肪酸、アルコール類が好ましい。このような表面修飾剤を用いることにより、塗布液中における半導体ナノ粒子の分散性を特に優れたものとすることができる。また、半導体ナノ粒子の製造時において形成される半導体ナノ粒子の形状をより真球度の高いものとし、半導体ナノ粒子の粒度分布をよりシャープなものとすることができる。
As specific examples of functional surface modifiers,
1) Polyoxyethylene alkyl ethers: for example, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, etc.
2) Trialkylphosphines: For example, tripropylphosphine, tributylphosphine, trihexylphosphine, trioctylphosphine, etc.
3) Polyoxyethylene alkylphenyl ethers: for example, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, etc.
4) Tertiary amines: for example, tri (n-hexyl) amine, tri (n-octyl) amine, tri (n-decyl) amine, etc.
5) Organophosphorus compounds: for example, tripropylphosphine oxide, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphine oxide, tridecylphosphine oxide, etc.
6) Polyethylene glycol diesters: for example, polyethylene glycol dilaurate, polyethylene glycol distearate, etc.
7) Organic nitrogen compounds: For example, nitrogen-containing aromatic compounds of pyridine, lutidine, collidine, quinolines, etc.
8) Aminoalkanes: for example, hexylamine, octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, etc.
9) Dialkyl sulfides: for example, dibutyl sulfide
10) Dialkyl sulfoxides: for example, dimethyl sulfoxide, dibutyl sulfoxide, etc.
11) Organic sulfur compounds: For example, sulfur-containing aromatic compounds such as thiophene, etc.
12) Higher fatty acids: For example, palmitic acid, stearic acid, oleic acid, etc.
13) Others: alcohols, sorbitan fatty acid esters, fatty acid-modified polyesters, tertiary amine-modified polyurethanes, polyethyleneimines, etc.
In the case where the semiconductor nanoparticles are prepared by the method described later, the surface modifier is a substance that is coordinated and stabilized by the fine particles of the semiconductor nanoparticles in a high-temperature liquid phase. Specifically, 2) Trialkylphosphines, 4) Tertiary amines, 5) Organophosphorus compounds, 7) Organonitrogen compounds, 8) Aminoalkanes, 9) Dialkyl sulfides, 10 ) Dialkyl sulfoxides, 11) organic sulfur compounds, 12) higher fatty acids and alcohols are preferred. By using such a surface modifier, the dispersibility of the semiconductor nanoparticles in the coating solution can be made particularly excellent. Moreover, the shape of the semiconductor nanoparticles formed during the production of the semiconductor nanoparticles can be made higher in sphericity, and the particle size distribution of the semiconductor nanoparticles can be made sharper.
 また、本発明においては、後述するポリシラザンを表面修飾剤として用いることもできる。 In the present invention, polysilazane described later can also be used as a surface modifier.
 本発明においては、半導体ナノ粒子のサイズ(平均粒子径)としては、1~20nmの範囲内であることが好ましい。本発明でいう半導体ナノ粒子のサイズとは、半導体ナノ粒子材料で構成されたコア領域と、不活性な無機物の被覆層又は有機配位子で構成されたシェル領域及び表面修飾剤で構成されるトータルのサイズを表す。表面修飾剤やシェルが含まれない場合は、それを含まないサイズを表す。 In the present invention, the size (average particle diameter) of the semiconductor nanoparticles is preferably in the range of 1 to 20 nm. The size of the semiconductor nanoparticles referred to in the present invention is composed of a core region composed of a semiconductor nanoparticle material, a shell region composed of an inert inorganic coating layer or an organic ligand, and a surface modifier. Represents the total size. If the surface modifier or shell is not included, the size does not include it.
 (3)半導体ナノ粒子の被覆に用いる樹脂成分
 本発明に係る半導体ナノ粒子においては、その表面が樹脂により被覆されていることを特徴とし、更には、樹脂が透明樹脂であることが好ましい態様である。本発明に係る樹脂で被覆する半導体ナノ粒子としては、その表面に前記表面修飾剤を有している状態でも、全く有していない状態のいずれであっても良い。
(3) Resin component used for coating of semiconductor nanoparticles The semiconductor nanoparticles according to the present invention are characterized in that their surfaces are coated with a resin, and it is preferable that the resin is a transparent resin. is there. The semiconductor nanoparticles coated with the resin according to the present invention may be either in a state having the surface modifier on the surface or in a state having no surface modifier.
 本発明でいう透明樹脂は、光透過性を有する樹脂を意味し、より具体的には、可視光の透過率が60%以上であることであり、好ましくは80%以上、より好ましくは90%以上である。従って、本発明でいう透明樹脂とは、可視光領域において上記透過率を有する樹脂であり、本発明に係る半導体ナノ粒子表面を被覆する透明樹脂としては、上記条件を満たすものであれば制限はないが、特に、紫外線硬化性樹脂、又は水溶性樹脂であることが好ましい。 The transparent resin referred to in the present invention means a resin having optical transparency, and more specifically, the visible light transmittance is 60% or more, preferably 80% or more, more preferably 90%. That's it. Therefore, the transparent resin referred to in the present invention is a resin having the above transmittance in the visible light region, and the transparent resin covering the surface of the semiconductor nanoparticles according to the present invention is not limited as long as it satisfies the above conditions. In particular, an ultraviolet curable resin or a water-soluble resin is preferable.
 以下、本発明に係る樹脂として好適な紫外線硬化性樹脂及び水溶性樹脂の詳細について説明する。 Hereinafter, details of the ultraviolet curable resin and the water-soluble resin suitable as the resin according to the present invention will be described.
 〈3.1:紫外線硬化性樹脂〉
 本発明において、半導体ナノ粒子表面が紫外線硬化性樹脂により被覆されていることが好ましい態様の一つである。
<3.1: UV curable resin>
In the present invention, it is one of preferred embodiments that the surface of the semiconductor nanoparticles is coated with an ultraviolet curable resin.
 本発明に適用可能な紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂等のラジカル重合性樹脂、又は紫外線硬化型エポキシ樹脂等のカチオン重合性樹脂が好ましく用いられる。中でもラジカル重合性樹脂である紫外線硬化型アクリレート系樹脂が好ましい。 Examples of the ultraviolet curable resin applicable to the present invention include radical polymerization such as an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, and an ultraviolet curable polyol acrylate resin. A cationic polymerizable resin such as a functional resin or an ultraviolet curable epoxy resin is preferably used. Among these, an ultraviolet curable acrylate resin which is a radical polymerizable resin is preferable.
 紫外線硬化型ウレタンアクリレート系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、又はプレポリマーを反応させて得られた生成物に、さらに2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下、アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等のヒドロキシ基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59-151110号公報に記載のものを用いることができる。具体的には、ユニディック17-806(DIC株式会社製)100部とコロネートL(日本ポリウレタン株式会社製)1部との混合物等が好ましく用いられる。 UV curable urethane acrylate resins are generally obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and further adding 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter referred to as methacrylate to the acrylate). It can be easily obtained by reacting an acrylate monomer having a hydroxy group such as 2-hydroxypropyl acrylate. For example, those described in JP-A-59-151110 can be used. Specifically, a mixture of 100 parts Unidic 17-806 (manufactured by DIC Corporation) and 1 part of Coronate L (manufactured by Nippon Polyurethane Corporation) is preferably used.
 紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2-ヒドロキシエチルアクリレート、2-ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることができ、例えば、特開昭59-151112号公報に記載のものを用いることができる。 Examples of the UV curable polyester acrylate resin include those that are easily formed when 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers are generally reacted with polyester polyol. No. 151112 can be used.
 紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光重合開始剤を添加し、反応させて生成するものを挙げることができ、例えば、特開平1-105738号公報に記載のものを用いることができる。 Specific examples of the ultraviolet curable epoxy acrylate resin include an epoxy acrylate oligomer, a reactive diluent and a photopolymerization initiator added to the oligomer, and a reaction product. Those described in JP-A No. 1-105738 can be used.
 紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。 Specific examples of UV curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate, etc. Can be mentioned.
 なお、本発明においては、メチルメタクリレート又はラウリルメタクリレートを、紫外線を用いて重合したポリメチルメタクリレート、ポリラウリルメタクリレートも、本発明に係る紫外線硬化型樹脂として分類する。 In the present invention, polymethyl methacrylate and polylauryl methacrylate obtained by polymerizing methyl methacrylate or lauryl methacrylate using ultraviolet rays are also classified as ultraviolet curable resins according to the present invention.
 これら紫外線硬化性樹脂の形成に用いる光重合開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。光増感剤と共に使用しても良い。上記光重合開始剤も光増感剤として使用できる。また、エポキシアクリレート系の光重合開始剤を使用する際、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の増感剤を用いることができる。紫外線硬化樹脂組成物に用いられる光重合開始剤また光増感剤は、該組成物100質量部あたり0.1~15質量部の範囲内であり、好ましくは1~10質量部の範囲内である。 Specific examples of the photopolymerization initiator used for forming these ultraviolet curable resins include benzoin and its derivatives, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and derivatives thereof. Can do. You may use with a photosensitizer. The photopolymerization initiator can also be used as a photosensitizer. Further, when an epoxy acrylate photopolymerization initiator is used, a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used. The photopolymerization initiator or photosensitizer used in the ultraviolet curable resin composition is in the range of 0.1 to 15 parts by mass, preferably in the range of 1 to 10 parts by mass, per 100 parts by mass of the composition. is there.
 本発明において、本発明に係る半導体ナノ粒子表面に樹脂を被覆させる際の樹脂の被覆率としては、特に制限はないが、樹脂で被覆された半導体ナノ粒子の全質量を100質量%としたとき、被覆する樹脂の比率としては、5~50質量%の範囲内であることが好ましく、より好ましくは10~35質量%の範囲内であり、さらに好ましくは、15~30質量%の範囲内である。 In the present invention, the resin coverage when the resin is coated on the surface of the semiconductor nanoparticles according to the present invention is not particularly limited, but when the total mass of the semiconductor nanoparticles coated with the resin is 100% by mass The ratio of the resin to be coated is preferably in the range of 5 to 50% by mass, more preferably in the range of 10 to 35% by mass, and still more preferably in the range of 15 to 30% by mass. is there.
 また、本発明に係る半導体ナノ粒子表面に、紫外線硬化性樹脂等の樹脂を被覆させる方法としては、半導体ナノ粒子を含有する溶液中に紫外線硬化性樹脂を添加しながら、半導体ナノ粒子表面に紫外線硬化性樹脂を被覆させ、次いで、紫外線硬化性樹脂を被覆した半導体ナノ粒子に紫外線照射によるUV硬化処理を施して、半導体ナノ粒子表面に樹脂を形成する方法、あるいは半導体ナノ粒子表面に、紫外線硬化性樹脂をスプレーコーター等の噴霧方式の湿式塗布装置を用いて付与した後、UV照射処理を施す方法、あるいは半導体ナノ粒子が存在する溶液中で、溶液重合法により粒子表面に紫外線硬化性樹脂を被覆させた後、UV硬化処理を施して樹脂で被覆した半導体ナノ粒子を調製する方法等を挙げることができる。 In addition, as a method for coating the surface of the semiconductor nanoparticles according to the present invention with a resin such as an ultraviolet curable resin, an ultraviolet curable resin is added to the solution containing the semiconductor nanoparticles while the surface of the semiconductor nanoparticles is irradiated with ultraviolet rays. A method of forming a resin on the surface of the semiconductor nanoparticle by coating the curable resin and then subjecting the semiconductor nanoparticle coated with the ultraviolet curable resin to UV curing by ultraviolet irradiation, or UV curing on the surface of the semiconductor nanoparticle. UV curable resin is applied to the particle surface by a solution polymerization method in a solution in which semiconductor nanoparticles are present, or after applying a functional resin using a spray-type wet coating apparatus such as a spray coater. Examples of the method include a method of preparing semiconductor nanoparticles coated with a resin by performing UV curing after coating.
 本発明において、本発明に係る半導体ナノ粒子表面に樹脂が被覆されているか否かの確認方法としては、調製した樹脂を被覆した半導体ナノ粒子を、例えば、日立ハイテクノロジーズ製 集束イオンビーム(FB-2000A)により断面加工を行い、粒子中心付近を通る面を切り出す。次いで、露出させた中心線切断面を電子顕微鏡により観察することにより、被覆樹脂の有無、被覆されている樹脂層の厚さ、粒子全体に対する被覆した樹脂の比率を求めることができる。 In the present invention, as a method for confirming whether or not the surface of the semiconductor nanoparticles according to the present invention is coated, the prepared semiconductor nanoparticles coated with the resin are, for example, focused ion beam (FB-) manufactured by Hitachi High-Technologies. 2000A), a cross section is processed, and a surface passing through the vicinity of the particle center is cut out. Next, by observing the exposed cut surface of the center line with an electron microscope, the presence or absence of the coating resin, the thickness of the coated resin layer, and the ratio of the coated resin to the entire particles can be determined.
 また、他の方法としては、同じく、日立ハイテクノロジーズ製 集束イオンビーム(FB-2000A)により断面加工を行い、粒子中心付近を通る面を切り出す。そして、切断面より、日立ハイテクノロジーズ製 STEM-EDX(HD-2000)を使用して元素分析を行い、樹脂成分と半導体ナノ粒子の成分との組成分布を測定することによっても求めることができる。 Also, as another method, similarly, a cross section is processed by a focused ion beam (FB-2000A) manufactured by Hitachi High-Technologies, and a surface passing near the particle center is cut out. Then, from the cut surface, it can also be obtained by performing elemental analysis using STEM-EDX (HD-2000) manufactured by Hitachi High-Technologies, and measuring the composition distribution of the resin component and the semiconductor nanoparticle component.
 UV硬化処理に適用する光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれの照射光源によって異なるが、紫外線の照射量は、通常5~500mJ/cmの範囲内であり、好ましくは5~150mJ/cmの範囲内である。 As a light source applied to the UV curing treatment, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. The irradiation conditions vary depending on individual irradiation light source, the irradiation amount of ultraviolet rays is usually within the range of 5 ~ 500mJ / cm 2, preferably in the range of 5 ~ 150mJ / cm 2.
 〈3.2:水溶性樹脂〉
 本発明においては、半導体ナノ粒子を被覆する樹脂として水溶性樹脂を用いることも好ましい態様である。
<3.2: Water-soluble resin>
In the present invention, it is also a preferred embodiment to use a water-soluble resin as the resin for coating the semiconductor nanoparticles.
 本発明に適用可能な水溶性樹脂としては、特に制限されないが、ポリビニルアルコール系樹脂、ゼラチン、セルロース類、増粘多糖類、及び反応性官能基を有する樹脂を用いることができる。これらのうち、ポリビニルアルコール系樹脂を用いることが好ましい。なお、本発明でいう水溶性とは、水媒体に対し、1質量%以上、好ましくは3質量%以上が溶解する化合物を意味する。 The water-soluble resin applicable to the present invention is not particularly limited, but polyvinyl alcohol resins, gelatin, celluloses, thickening polysaccharides, and resins having reactive functional groups can be used. Of these, it is preferable to use a polyvinyl alcohol-based resin. The water-soluble in the present invention means a compound in which 1% by mass or more, preferably 3% by mass or more dissolves in an aqueous medium.
 本発明で好ましく用いられるポリビニルアルコール系樹脂としては、例えば、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコール(未変性ポリビニルアルコール)の他に、末端をカチオン変性したカチオン変性ポリビニルアルコール、アニオン性基を有するアニオン変性ポリビニルアルコール、アクリル等で変性した変性ポリビニルアルコール、反応型ポリビニルアルコール(例えば、日本合成社製「ゴーセファイマーZ」)、酢酸ビニル系樹脂(例えば、(株)クラレ製「エクセバール」)も含まれる。これらのポリビニルアルコール系樹脂は、重合度や変性の種類などが異なる2種類以上を併用することもできる。また、シラノール基を有するシラノール変性ポリビニルアルコール(例えば、(株)クラレ製「R-1130」)等を併用することもできる。 Examples of the polyvinyl alcohol resin preferably used in the present invention include, in addition to normal polyvinyl alcohol (unmodified polyvinyl alcohol) obtained by hydrolysis of polyvinyl acetate, cation-modified polyvinyl alcohol having a terminal cation-modified, anion Anionic modified polyvinyl alcohol having a functional group, modified polyvinyl alcohol modified with acrylic, reactive polyvinyl alcohol (for example, “Gosefimer Z” manufactured by Nihon Gosei Co., Ltd.), vinyl acetate resin (for example, “Kuraray Co., Ltd.” "Exeval") is also included. These polyvinyl alcohol-based resins can be used in combination of two or more different polymerization degrees and different types of modification. Further, silanol-modified polyvinyl alcohol having a silanol group (for example, “R-1130” manufactured by Kuraray Co., Ltd.) can be used in combination.
 カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号公報に記載されているような、第一級~第三級アミノ基や第四級アンモニウム基を上記ポリビニルアルコールの主鎖又は側鎖中に有するポリビニルアルコールであり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups as described in JP-A No. 61-10383. Polyvinyl alcohol contained therein and obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 アニオン変性ポリビニルアルコールは、例えば、特開平1-206088号公報に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報及び同63-307979号公報に記載されているような、ビニルアルコールと水溶性基を有するビニル化合物との共重合体及び特開平7-285265号公報に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。 Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979. Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号公報に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体等が挙げられる。ポリビニルアルコールは、重合度や変性の種類などが異なる2種類以上を併用することもできる。 Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795. The block copolymer of the vinyl compound and vinyl alcohol which have the described hydrophobic group is mentioned. Polyvinyl alcohol can be used in combination of two or more different degrees of polymerization and different types of modification.
 また、酢酸ビニル系樹脂として、エクセバール(商品名:(株)クラレ製)やニチゴーGポリマー(商品名:日本合成化学工業(株)製)などが挙げられる。 Examples of vinyl acetate resins include Exeval (trade name: manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
 上記ポリビニアルアルコール系樹脂の重合度は、1500~7000の範囲内であることが好ましく、2000~5000の範囲内であることがより好ましい。重合度が1500以上であると、屈折率層の形成時における塗布膜のひび割れ耐性が良くなることから好ましい。一方、重合度が7000以下であると、屈折率層の形成時における塗布液が安定することから好ましい。 The polymerization degree of the polyvinyl alcohol-based resin is preferably in the range of 1500 to 7000, and more preferably in the range of 2000 to 5000. A polymerization degree of 1500 or more is preferable because crack resistance of the coating film during formation of the refractive index layer is improved. On the other hand, when the degree of polymerization is 7000 or less, the coating liquid at the time of forming the refractive index layer is preferable.
 本発明に係る半導体ナノ粒子表面に、水溶性樹脂等の樹脂を被覆させる方法としては、半導体ナノ粒子を、水溶性樹脂を含む溶液中に、真空下で一定時間浸漬させることにより、形成することができる。 As a method of coating the surface of the semiconductor nanoparticles according to the present invention with a resin such as a water-soluble resin, the semiconductor nanoparticles are formed by immersing the semiconductor nanoparticles in a solution containing the water-soluble resin under vacuum for a certain period of time. Can do.
 〈3.3:その他の樹脂〉
 なお、半導体ナノ粒子を被覆する樹脂としては、その他には、例えば、ポリメタクリル酸メチル樹脂(PMMA;Poly(methyl methacrylate))等の熱可塑性樹脂であっても良いし、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等の熱硬化性樹脂であっても良い。
<3.3: Other resins>
In addition, as resin which coat | covers a semiconductor nanoparticle, thermoplastic resins, such as a polymethylmethacrylate resin (PMMA; Poly (methyl methacrylate)), may be sufficient, for example, An acrylic polyol and an isocyanate prepolymer A thermosetting resin such as a thermosetting urethane resin, a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, or a silicone resin may be used.
 《ポリシラザン及びポリシラザン改質体》
 本発明の光学フィルムにおいては、構成する半導体ナノ粒子層が、ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物を含有していることを特徴とする。
<Polysilazane and modified polysilazane>
In the optical film of the present invention, the constituent semiconductor nanoparticle layer contains at least one compound selected from polysilazane and a modified polysilazane.
 ポリシラザン改質体は、ポリシラザンに対し改質処理を施すことによって生成され、酸化ケイ素、窒化ケイ素及び酸窒化ケイ素から選ばれる少なくとも一種を含む化合物であることが好ましい。 The polysilazane modified product is preferably a compound that is generated by subjecting polysilazane to a modification treatment and includes at least one selected from silicon oxide, silicon nitride, and silicon oxynitride.
 ここで、ポリシラザンは、半導体ナノ粒子層形成用塗布液中に半導体ナノ粒子とともに分散されていても良いし、あらかじめ半導体ナノ粒子をポリシラザンで被覆し、当該粒子が半導体ナノ粒子層形成用塗布液中に分散されていても良い。なお、本発明において、被覆とは、半導体ナノ粒子の表面を覆っていることをいうが、半導体ナノ粒子の表面のうち、全部を覆っているものでなくとも良く、一部を覆っているものであっても良い。この条件を満たしているか否かは、樹脂を被覆した半導体ナノ粒子の構造を前記の確認方法により分析することにより判定することができる。
 半導体ナノ粒子層中に、ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物が含有されていることにより、半導体ナノ粒子が酸素等に接触することを長期に亘って抑制できる耐久性を付与することができ、更に、透明性の高い層とすることができる。
Here, the polysilazane may be dispersed together with the semiconductor nanoparticles in the coating solution for forming the semiconductor nanoparticle layer, or the semiconductor nanoparticles are coated with polysilazane in advance, and the particles are in the coating solution for forming the semiconductor nanoparticle layer. May be dispersed. In the present invention, the term “covering” means covering the surface of the semiconductor nanoparticles, but the surface of the semiconductor nanoparticles may not cover all, but covers a part. It may be. Whether or not this condition is satisfied can be determined by analyzing the structure of the semiconductor nanoparticles coated with the resin by the above confirmation method.
By providing at least one compound of polysilazane and a modified polysilazane in the semiconductor nanoparticle layer, the semiconductor nanoparticle layer is provided with durability capable of suppressing contact of the semiconductor nanoparticles with oxygen or the like over a long period of time. Furthermore, it can be set as a highly transparent layer.
 (1)ポリシラザンの構成材料
 本発明でいう「ポリシラザン」とは、ケイ素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO、Si及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。ポリシラザン及びポリシラザン誘導体は、下記一般式(I)で表される構造を有する化合物である。
(1) Constituent material of polysilazane “Polysilazane” as used in the present invention is a polymer having a silicon-nitrogen bond, and is composed of SiO 2 , Si 3 N 4 composed of Si—N, Si—H, NH, etc. Ceramic precursor inorganic polymer such as intermediate solid solution SiO x N y . A polysilazane and a polysilazane derivative are compounds having a structure represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 基材の平面性を損なわないように塗布するためには、特開平8-112879号公報に記載されているように比較的低温でセラミック化してシリカに変性するものが良い。 In order to apply so as not to impair the flatness of the base material, it is preferable to use a ceramic material which is converted to silica at a relatively low temperature as described in JP-A-8-112879.
 一般式(I)中、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基又はアルコキシ基等を表す。 In general formula (I), R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group. .
 得られる層の緻密性の観点からは、R、R及びRの全てが水素原子であるパーヒドロポリシラザン(PHPS)が特に好ましい。 Perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred from the viewpoint of the denseness of the resulting layer.
 一方、そのSiと結合する水素部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択して良く、混合して使用することもできる。 On the other hand, organopolysilazane in which part of the hydrogen part bonded to Si is substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to the base material is improved and the polysilazane which is hard and brittle It is possible to impart toughness to the ceramic film by the above, and there is an advantage that generation of cracks can be suppressed even when the (average) film thickness is increased. These perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and can also be mixed and used.
 パーヒドロポリシラザンは直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、液体又は固体の物質であり、分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有液として使用することができる。 Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), is a liquid or solid substance, and varies depending on the molecular weight. These are commercially available in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing liquid.
 低温でセラミック化するポリシラザンの別の例としては、上記一般式(I)で示されるポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5-238827号公報参照)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6-122852号公報参照)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6-240208号公報参照)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6-299118号公報参照)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6-306329号公報参照)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7-196986号公報参照)等が挙げられる。 As another example of polysilazane which is ceramicized at a low temperature, a silicon alkoxide-added polysilazane obtained by reacting the polysilazane represented by the general formula (I) with a silicon alkoxide (see, for example, JP-A No. 5-23827), glycidol A glycidol-added polysilazane obtained by reacting (see, for example, JP-A-6-122852), an alcohol-added polysilazane obtained by reacting an alcohol (see, for example, JP-A-6-240208), and a metal carboxylate Metal carboxylate-added polysilazane obtained by reaction (for example, see JP-A-6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (for example, JP-A-6-299) No. 306329 Irradiation), fine metal particles of the metal particles added polysilazane obtained by adding (e.g., JP-see JP 7-196986), and the like.
 また、半導体ナノ粒子層には、ポリシラザンの酸化ケイ素化合物への転化を促進するために、アミン類や金属の触媒を添加することもできる。具体的には、AZエレクトロニックマテリアルズ(株)製のアクアミカ NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140等が挙げられる。 Also, amines and metal catalysts can be added to the semiconductor nanoparticle layer in order to promote the conversion of polysilazane into a silicon oxide compound. Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials.
 (2)改質処理
 改質処理は、半導体ナノ粒子層に含有されるポリシラザンに対して行われることが好ましく、これにより、半導体ナノ粒子層中に含有されるポリシラザンの一部又は全部がポリシラザン改質体となる。
(2) Modification treatment The modification treatment is preferably performed on the polysilazane contained in the semiconductor nanoparticle layer, whereby a part or all of the polysilazane contained in the semiconductor nanoparticle layer is modified by polysilazane modification. Become a body.
 ポリシラザンが半導体ナノ粒子層形成用塗布液中に半導体ナノ粒子とともに分散されている場合には、改質処理は、当該半導体ナノ粒子層形成用塗布液を塗布してなる塗布層に対して行われる。 When polysilazane is dispersed together with semiconductor nanoparticles in the coating solution for forming a semiconductor nanoparticle layer, the modification treatment is performed on the coating layer formed by coating the coating solution for forming a semiconductor nanoparticle layer. .
 また、あらかじめ半導体ナノ粒子をポリシラザンで被覆している場合には、改質処理は、当該ポリシラザンで被覆された半導体ナノ粒子に対してあらかじめ行われるものであっても良いし、当該ポリシラザンで被覆された半導体ナノ粒子を塗布してなる塗布層に対して行われるものであっても良いし、その両方で行われるものであっても良い。 Further, when the semiconductor nanoparticles are coated with polysilazane in advance, the modification treatment may be performed in advance on the semiconductor nanoparticles coated with the polysilazane, or may be coated with the polysilazane. It may be performed on the coating layer formed by coating the semiconductor nanoparticles, or may be performed on both.
 具体的には、改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができる。シラザン化合物の置換反応による酸化ケイ素膜又は酸窒化ケイ素膜の作製には、450℃以上の加熱処理が必要であり、プラスチック等のフレキシブル基板においては適用が難しい。プラスチック基板へ適用するためには、低温で転化反応を進行させることが可能なプラズマ処理やオゾン処理、紫外線照射処理等の方法を用いることが好ましい。 Specifically, for the modification treatment, a known method based on the conversion reaction of polysilazane can be selected. Production of a silicon oxide film or a silicon oxynitride film by a substitution reaction of a silazane compound requires a heat treatment at 450 ° C. or more, and is difficult to apply to a flexible substrate such as plastic. In order to apply to a plastic substrate, it is preferable to use a method such as plasma treatment, ozone treatment, or ultraviolet irradiation treatment that allows the conversion reaction to proceed at a low temperature.
 なお、ポリシラザンを含有する塗布層に対して改質処理を行う場合には、当該改質処理の前に、水分が除去されていることが好ましい。 In addition, when performing a modification process with respect to the coating layer containing polysilazane, it is preferable that the water | moisture content is removed before the said modification process.
 本発明において、改質処理としては、紫外線照射、真空紫外線照射(エキシマ照射)、プラズマ照射が望ましく、特にポリシラザンの改質効果の点で真空紫外線照射(VUVともいう。)が好ましい。 In the present invention, as the modification treatment, ultraviolet irradiation, vacuum ultraviolet irradiation (excimer irradiation), and plasma irradiation are desirable, and vacuum ultraviolet irradiation (also referred to as VUV) is particularly preferable from the viewpoint of the modification effect of polysilazane.
 (2-1)紫外線照射処理
 改質処理の方法としては、紫外線照射による処理も好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温でポリシラザンを改質し、高い緻密性と絶縁性を有する酸化ケイ素又は酸窒化ケイ素を作製することが可能である。
(2-1) Ultraviolet irradiation treatment As the modification treatment method, treatment by ultraviolet irradiation is also preferred. Ozone and active oxygen atoms generated by ultraviolet light (synonymous with ultraviolet light) have high oxidation ability, and modify polysilazane at low temperature to produce silicon oxide or silicon oxynitride with high density and insulation. Is possible.
 本発明では、常用されているいずれの紫外線発生装置も使用することが可能である。 In the present invention, any commonly used ultraviolet ray generator can be used.
 なお、本例において、「紫外線」とは、一般には、10~400nmの範囲内の波長を有する電磁波をいうが、後述する真空紫外線(10~200nm)処理と区別するため、紫外線照射処理の場合は、好ましくは210~350nmの範囲内の紫外線を用いる。 In this example, “ultraviolet rays” generally refers to electromagnetic waves having a wavelength in the range of 10 to 400 nm, but in the case of ultraviolet irradiation treatment in order to distinguish from the vacuum ultraviolet ray (10 to 200 nm) treatment described later. Preferably uses ultraviolet rays in the range of 210 to 350 nm.
 紫外線の照射は、照射される塗布膜を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定する。 For UV irradiation, set the irradiation intensity and irradiation time as long as the substrate carrying the applied coating film is not damaged.
 上記改質に用いる紫外線の発生方法としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機(株)製)、UV光レーザー等が挙げられ、特に限定されるものではない。また、発生させた紫外線を、塗布層に照射する際には、均一な照射を達成して効率を向上させるため、発生源からの紫外線を反射板で反射させてから塗布層に当てる方法が望ましい。 Examples of the ultraviolet ray generation method used for the modification include a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon arc lamp, a carbon arc lamp, and an excimer lamp (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO (Made by Co., Ltd.), UV light laser etc. are mentioned, It does not specifically limit. In addition, when irradiating the applied ultraviolet rays to the coating layer, a method of applying the ultraviolet rays from the generation source to the coating layer after reflecting the ultraviolet rays from the generation source is desirable in order to achieve uniform irradiation and improve efficiency. .
 紫外線照射は、バッチ処理でも、連続処理でも適合可能であり、被塗布基材の形状によって適宜選定することができる。 UV irradiation can be adapted to either batch processing or continuous processing, and can be appropriately selected depending on the shape of the substrate to be coated.
 (2-2)真空紫外線照射処理;エキシマ照射処理
 本発明において、更に好ましい改質処理方法として、真空紫外線照射による処理が挙げられる。真空紫外線照射による処理は、シラザン化合物内の原子間結合力より大きい100~200nmの範囲内の光エネルギーを用い、好ましくは100~180nmの範囲内の波長の光のエネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、酸化シリコーン膜の形成を行う方法である。
(2-2) Vacuum Ultraviolet Irradiation Treatment; Excimer Irradiation Treatment In the present invention, a more preferable modification treatment method is treatment by vacuum ultraviolet radiation. The treatment by vacuum ultraviolet irradiation uses light energy in the range of 100 to 200 nm, preferably light energy having a wavelength in the range of 100 to 180 nm, which is larger than the interatomic bonding force in the silazane compound, and bonds the atoms. This is a method of forming a silicon oxide film at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by the action of only photons called a photon process.
 これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。 As a vacuum ultraviolet light source necessary for this, a rare gas excimer lamp is preferably used.
 なお、真空紫外線照射処理(エキシマ照射処理)の詳細な内容及び具体的な条件としては、特に制限はないが、例えば、特開2011-031610号公報の段落番号〔0079〕~同〔0091〕に記載されている内容、あるいは特開2012-016854号公報の段落番号〔0086〕~同〔0098〕に記載されている内容を参照することができる。 The detailed contents and specific conditions of the vacuum ultraviolet irradiation treatment (excimer irradiation treatment) are not particularly limited. For example, paragraphs [0079] to [0091] of JP 2011-031610 A The contents described therein or the contents described in paragraph numbers [0086] to [0098] of JP 2012-016854 A can be referred to.
 《発光デバイス》
 本発明の発光デバイスでは、上記説明した本発明の半導体ナノ粒子を含有する光学フィルムを具備していることを特徴とする。
<Light emitting device>
The light-emitting device of the present invention includes an optical film containing the above-described semiconductor nanoparticles of the present invention.
 図2は、本発明の半導体ナノ粒子を含有する光学フィルムを具備した発光デバイスの構成の一例を示す概略断面図である。 FIG. 2 is a schematic cross-sectional view showing an example of the configuration of a light-emitting device provided with an optical film containing the semiconductor nanoparticles of the present invention.
 図2において、発光デバイス1は、青色又は紫外光の光源3(一次光源ともいう)と、該光源3からの光路中に配置された画像表示パネル2とを含んでいる。画像表示パネル2は、例えば、液晶層などのような画像表示層7を具備している。 2, the light emitting device 1 includes a blue or ultraviolet light source 3 (also referred to as a primary light source) and an image display panel 2 disposed in an optical path from the light source 3. The image display panel 2 includes an image display layer 7 such as a liquid crystal layer.
 画像表示層7を支持するための基板、画像表示層を駆動するための電極及び駆動回路、液晶画像表示層の場合に、液晶層を配向させるための配向膜などのような構成要素は、図2では省略している。 Components such as a substrate for supporting the image display layer 7, electrodes and drive circuits for driving the image display layer, and an alignment film for aligning the liquid crystal layer in the case of the liquid crystal image display layer are shown in FIG. It is omitted in 2.
 図2に示す発光デバイス1においては、画像表示層7は、画素化された画像表示層であり、該画像表示層7においては、画像表示層の個々の領域(「画素」)を他の領域と独立して駆動することができる。 In the light emitting device 1 shown in FIG. 2, the image display layer 7 is a pixelated image display layer. In the image display layer 7, individual regions (“pixels”) of the image display layer are used as other regions. And can be driven independently.
 本発明の発光デバイス1は、カラー表示を提供するように意図されており、それゆえ、画像表示パネル2にはカラーフィルターユニット6が設けられている。フルカラーの赤色、緑色、青色(RGB)ディスプレイの場合には、画像表示パネル2は、図中に示すように、赤色のカラーフィルター6R、青色のカラーフィルター6B及び緑色のカラーフィルター6Gから構成されるフィルターセットユニット6を複数個有している。個々のカラーフィルターは各々の画像表示層7の画素またはサブ画素のそれぞれに位置合わせされて設置している。 The light-emitting device 1 of the present invention is intended to provide a color display. Therefore, the image display panel 2 is provided with a color filter unit 6. In the case of a full-color red, green, and blue (RGB) display, the image display panel 2 includes a red color filter 6R, a blue color filter 6B, and a green color filter 6G, as shown in the figure. A plurality of filter set units 6 are provided. The individual color filters are aligned with the pixels or sub-pixels of each image display layer 7 and installed.
 発光デバイス1において、上記光源3としては、1つ以上の発光ダイオード(LED)を含む構成とすることができ、好ましくは青色発光又は紫外光の光源である。 In the light emitting device 1, the light source 3 may include one or more light emitting diodes (LEDs), and is preferably a blue light source or an ultraviolet light source.
 発光デバイス1は、画像表示パネル2が光源3からの光によって実質的に均一に照らすことを可能とする光学系として、導光体5を有している。図2において、上記光学系は、画像表示パネル2と実質的に同一の広がりを持つ光放出面5aを有する導光体5を含んでいる。光源3からの光は、光入射面5bに沿って導光体8に入射し、全内部反射の原理に従って導光体5内で反射され、最終的には上記導光体の光放出面5aから放射される。この様な構成からなる導光体は公知であり、ここでは導光体5の詳細については省略する。本発明の光学フィルム4は、導光体5の放出面5a上に設けられる。 The light emitting device 1 has a light guide 5 as an optical system that enables the image display panel 2 to be illuminated substantially uniformly by light from the light source 3. In FIG. 2, the optical system includes a light guide 5 having a light emission surface 5 a that has substantially the same extent as the image display panel 2. The light from the light source 3 enters the light guide 8 along the light incident surface 5b, is reflected in the light guide 5 according to the principle of total internal reflection, and finally the light emission surface 5a of the light guide. Radiated from. The light guide body having such a configuration is publicly known, and details of the light guide body 5 are omitted here. The optical film 4 of the present invention is provided on the emission surface 5 a of the light guide 5.
 本発明の半導体ナノ粒子を含有する光学フィルム4は、一次光源3からの光によって照らされたときに、互いに異なり、かつ一次光源3の放射の波長範囲と異なる複数の波長範囲の光を放射する2つ以上の異なる材料から構成されていることが好ましい。一次光源3としては、可視スペクトル領域外の光(例えば、紫外(UV)領域の光)あるいは青色光を放射することが好ましい。 The optical film 4 containing the semiconductor nanoparticles of the present invention emits light in a plurality of wavelength ranges different from each other and different from the emission wavelength range of the primary light source 3 when illuminated by light from the primary light source 3. It is preferably composed of two or more different materials. The primary light source 3 preferably emits light outside the visible spectrum region (for example, light in the ultraviolet (UV) region) or blue light.
 さらに、図2に示したカラーフィルターユニット6は、狭透過帯域を有するカラーフィルターを含んでいる。上記狭透過帯域フィルタは、好ましくは透過率の半値全幅(FWHM)が100nm以下であり、特に好ましくはFWHMが80nm以下である。 Furthermore, the color filter unit 6 shown in FIG. 2 includes a color filter having a narrow transmission band. The narrow transmission band filter preferably has a full width at half maximum (FWHM) of 100 nm or less, and particularly preferably has a FWHM of 80 nm or less.
 また、図2においては、本発明の半導体ナノ粒子を含有する光学フィルム4が、導光体5の放出面5a上に設けられる例について説明したが、本発明の発光デバイス1においては、光学フィルム4が導光体5本体の内部に設けられる構成であっても良い。例えば、本発明に係る半導体ナノ粒子を、適切な透明マトリックス中に、例えば、上記導光体5の所望の形状となるように成形された後に湾曲させられた樹脂などの中に、配置して構成した光学フィルム4とすることができる。 Moreover, in FIG. 2, although the optical film 4 containing the semiconductor nanoparticle of this invention demonstrated the example provided on the discharge | release surface 5a of the light guide 5, in the light-emitting device 1 of this invention, an optical film 4 may be provided inside the light guide 5 main body. For example, the semiconductor nanoparticles according to the present invention are disposed in a suitable transparent matrix, for example, in a resin that is molded to have a desired shape of the light guide 5 and then curved. It can be set as the optical film 4 comprised.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
 実施例1
 《半導体ナノ粒子の合成》
 〔半導体ナノ粒子Aの合成:コア・シェル構造のInP/ZnS半導体ナノ粒子A〕
 ミリスチン酸インジウム0.1mmol、ステアリン酸0.1mmol、トリメチルシリルホスフィン0.1mmol、ドデカンチオール0.1mmol、ウンデシレン酸亜鉛0.1mmolを、オクタデセン8mlとともに三口フラスコに入れ、窒素雰囲気下で還流を行いながら300℃で1時間加熱し、InP/ZnS(半導体ナノ粒子)を含むオクタデセン溶液を得た。その後、真空下で乾燥してInP/ZnS半導体ナノ粒子A粉末を得た。なお、本発明においては、コア・シェル構造を有する半導体ナノ粒子Aの表記方法としては、コアがInP、シェルがZnSであり、InP/ZnSと表記する。
Example 1
<Synthesis of semiconductor nanoparticles>
[Synthesis of Semiconductor Nanoparticle A: Core / Shell InP / ZnS Semiconductor Nanoparticle A]
Indium myristate 0.1 mmol, stearic acid 0.1 mmol, trimethylsilylphosphine 0.1 mmol, dodecanethiol 0.1 mmol, and undecylenic acid zinc 0.1 mmol were placed in a three-necked flask together with octadecene 8 ml and refluxed under a nitrogen atmosphere. The mixture was heated at 0 ° C. for 1 hour to obtain an octadecene solution containing InP / ZnS (semiconductor nanoparticles). Then, it dried under vacuum and obtained InP / ZnS semiconductor nanoparticle A powder. In the present invention, the semiconductor nanoparticle A having a core / shell structure is represented by InP / ZnS, where the core is InP and the shell is ZnS.
 半導体ナノ粒子Aを透過型電子顕微鏡により直接観察して、InPコア部の表面をZnSシェル被覆されたコア・シェル構造のInP/ZnS半導体ナノ粒子であることを確認することができた。また、当該観察により、本合成方法で合成したInP/ZnS半導体ナノ粒子Aは、コア部の粒子径が2.1~3.8nmの範囲内であり、コア部の粒子径分布が6~40%であることを確認した。ここで、当該観察には、日本電子株式会社製の透過型電子顕微鏡JEM-2100を用いた。 The semiconductor nanoparticle A was directly observed with a transmission electron microscope, and it was confirmed that the surface of the InP core part was an InP / ZnS semiconductor nanoparticle having a core / shell structure coated with a ZnS shell. Further, according to this observation, the InP / ZnS semiconductor nanoparticles A synthesized by this synthesis method have a core part particle diameter in the range of 2.1 to 3.8 nm and a core part particle size distribution of 6 to 40. %. Here, a JEM-2100 transmission electron microscope manufactured by JEOL Ltd. was used for the observation.
 また、上記半導体ナノ粒子Aを含むオクタデセン溶液を用いて、InP/ZnS半導体ナノ粒子Aの光学特性を測定した。発光ピーク波長は、430~720nmの範囲内であり、発光半値幅は、35~90nmの範囲内であることを確認した。発光効率は、最大で70.9%に達した。ここで、InP/ZnS半導体ナノ粒子Aの発光特性の測定には、JOBIN YVON社製の蛍光分光光度計FluoroMax-4を使用し、吸収スペクトル測定には、株式会社日立ハイテクノロジーズ社製の分光光度計U-4100を用いた。 Also, the optical properties of the InP / ZnS semiconductor nanoparticles A were measured using an octadecene solution containing the semiconductor nanoparticles A. It was confirmed that the emission peak wavelength was in the range of 430 to 720 nm, and the emission half width was in the range of 35 to 90 nm. The luminous efficiency reached a maximum of 70.9%. Here, a fluorescence spectrophotometer FluoroMax-4 manufactured by JOBIN YVON is used to measure the emission characteristics of InP / ZnS semiconductor nanoparticles A, and a spectrophotometer manufactured by Hitachi High-Technologies Corporation is used to measure the absorption spectrum. A total of U-4100 was used.
 〔半導体ナノ粒子Bの合成:コア・シェル構造のCdSe/ZnS半導体ナノ粒子B〕
 Se粉末0.7896gを、トリオクチルホスフィン(略称:TOP)7.4gへ添加し、混合物を150℃まで加熱し、窒素気流下で、TOP-Seストック溶液を調製した。別途、酸化カドミウム(CdO)0.450g及びステアリン酸8gをアルゴン雰囲気下、三口フラスコ中で150℃まで加熱した。CdOが溶解した後、このCdO溶液を室温まで冷却した。このCdO溶液に、トリオクチルホスフィンオキサイド(略称:TOPO)8g及び1-ヘプタデシル-オクタデシルアミン(略称:HDA)12gを添加し、混合物を再び150℃まで加熱し、ここで、TOP-Seストック溶液を素早く添加した。
[Synthesis of Semiconductor Nanoparticle B: CdSe / ZnS Semiconductor Nanoparticle B with Core / Shell Structure]
0.7896 g of Se powder was added to 7.4 g of trioctylphosphine (abbreviation: TOP), the mixture was heated to 150 ° C., and a TOP-Se stock solution was prepared under a nitrogen stream. Separately, 0.450 g of cadmium oxide (CdO) and 8 g of stearic acid were heated to 150 ° C. in a three-necked flask under an argon atmosphere. After CdO was dissolved, the CdO solution was cooled to room temperature. To this CdO solution, 8 g of trioctylphosphine oxide (abbreviation: TOPO) and 12 g of 1-heptadecyl-octadecylamine (abbreviation: HDA) were added, and the mixture was heated again to 150 ° C., where the TOP-Se stock solution was added. Added quickly.
 その後、チャンバーの温度を220℃まで加熱し、さらに一定の速度で120分かけて250℃まで上昇させた(0.25℃/分)。その後、温度を100℃まで下げ、酢酸亜鉛二水和物を添加撹拌して溶解させた後、ヘキサメチルジシリルチアンのトリオクチルホスフィン溶液を滴下し、数時間撹拌を続けて反応を終了させ、CdSe/ZnS(半導体ナノ粒子)を得た。その後、真空下で乾燥してCdSe/ZnS半導体ナノ粒子B粉末を得た。 Thereafter, the temperature of the chamber was heated to 220 ° C., and further increased to 250 ° C. over 120 minutes at a constant rate (0.25 ° C./min). Thereafter, the temperature was lowered to 100 ° C., zinc acetate dihydrate was added and dissolved by stirring, and then a trioctylphosphine solution of hexamethyldisilylthiane was dropped, and stirring was continued for several hours to complete the reaction. CdSe / ZnS (semiconductor nanoparticles) was obtained. Then, it dried under vacuum and obtained CdSe / ZnS semiconductor nanoparticle B powder.
 上記半導体ナノ粒子Aと同様に、上記合成した半導体ナノ粒子Bを透過型電子顕微鏡により直接観察することで、CdSeコア部の表面をZnSシェルが覆ったコア・シェル構造のCdSe/ZnS半導体ナノ粒子であることを確認することができた。また、CdSe/ZnS半導体ナノ粒子Bは、コア部の粒子径が2.0~4.0nmの範囲内で、コア部の粒子径分布が6~40%の範囲内であることを確認した。光学特性は、発光ピーク波長が、410~700nmの範囲内であり、発光半値幅は、35~90nmの範囲内であることを確認した。発光効率は、最大で73.9%に達した。 Similarly to the semiconductor nanoparticle A, the synthesized semiconductor nanoparticle B is directly observed with a transmission electron microscope, whereby a CdSe / ZnS semiconductor nanoparticle having a core / shell structure in which the surface of the CdSe core is covered with a ZnS shell. I was able to confirm that. In addition, it was confirmed that the CdSe / ZnS semiconductor nanoparticles B had a core part particle size in the range of 2.0 to 4.0 nm and a core part particle size distribution in the range of 6 to 40%. As for the optical characteristics, it was confirmed that the emission peak wavelength was in the range of 410 to 700 nm and the emission half width was in the range of 35 to 90 nm. The luminous efficiency reached a maximum of 73.9%.
 〔半導体ナノ粒子Cの合成:チオールコモノマーで表面修飾したコア・シェル構造のInP/ZnS半導体ナノ粒子C〕
 1.0%のジビニルベンゼン(略称:DVB)と1.0%のチオールコモノマーを有するポリスチレン微小球を、振とう及び超音波処理によってトルエン(1ml)中に懸濁させた。微小球を遠心分離(6000rpm、約1分)し、上澄みを排液した。トルエンによる洗浄を繰り返し、その後、微小球をトルエン(1ml)中に再懸濁させた。
[Synthesis of Semiconductor Nanoparticle C: Core / Shell InP / ZnS Semiconductor Nanoparticle C Surface-Modified with Thiol Comonomer]
Polystyrene microspheres having 1.0% divinylbenzene (abbreviation: DVB) and 1.0% thiol comonomer were suspended in toluene (1 ml) by shaking and sonication. The microspheres were centrifuged (6000 rpm, about 1 minute), and the supernatant was drained. Washing with toluene was repeated, after which the microspheres were resuspended in toluene (1 ml).
 次いで、前記合成したコア・シェル構造のInP/ZnS半導体ナノ粒子Aを、クロロホルム0.5mlに分散させた後、不溶物を除去するため、濾過した。半導体ナノ粒子A-クロロホルム分散液に、上記調製したトルエン中に分散した微小球に添加し、十分に混合するためにシェーカープレート上で、室温で16時間振とうした。 Next, the synthesized core / shell structure InP / ZnS semiconductor nanoparticles A were dispersed in 0.5 ml of chloroform, and then filtered to remove insoluble matters. The semiconductor nanoparticle A-chloroform dispersion was added to the microspheres dispersed in toluene prepared above, and shaken on a shaker plate at room temperature for 16 hours for thorough mixing.
 次いで、半導体ナノ粒子A-微小球を遠心分離して沈降させ、過剰な半導体ナノ粒子Aを含む上澄み液を排液した。沈殿物をトルエン2mlで、2回洗浄し、洗浄した沈殿物をトルエン(2ml)中に再懸濁させた後、ガラスサンプルバイエル管に移した。遠心管の内側にバイエル管を配置し、遠心分離し、過剰なトルエンを分離することによって、ガラスバイエル管の底部に沈降させた後分離して、チオールコモノマーで表面修飾したコア・シェル構造のInP/ZnS半導体ナノ粒子Cの粉末を得た。 Next, the semiconductor nanoparticles A-microspheres were centrifuged and settled, and the supernatant liquid containing excess semiconductor nanoparticles A was drained. The precipitate was washed twice with 2 ml of toluene, and the washed precipitate was resuspended in toluene (2 ml) and then transferred to a glass sample Bayer tube. A core-shell structure InP surface-modified with a thiol comonomer, placed on the inside of the centrifuge tube, centrifuged, and separated from excess toluene by sedimentation at the bottom of the glass Bayer tube and separation. / ZnS semiconductor nanoparticle C powder was obtained.
 〔半導体ナノ粒子Dの合成:チオールコモノマーで表面修飾したコア・シェル構造のCdSe/ZnS半導体ナノ粒子D〕
 上記InP/ZnS半導体ナノ粒子Cの合成において、コア・シェル構造のInP/ZnS半導体ナノ粒子Aの代わりに、前記コア・シェル構造のCdSe/ZnS半導体ナノ粒子Bを用いた以外は同様にして、チオールコモノマーで表面修飾したコア・シェル構造のCdSe/ZnS半導体ナノ粒子Dの粉末を得た。
[Synthesis of Semiconductor Nanoparticle D: Core-Shell Structured CdSe / ZnS Semiconductor Nanoparticle D Surface-Modified with Thiol Comonomer]
In the synthesis of the InP / ZnS semiconductor nanoparticles C, except that the core / shell structure CdSe / ZnS semiconductor nanoparticles B were used instead of the core / shell structure InP / ZnS semiconductor nanoparticles A, A powder of CdSe / ZnS semiconductor nanoparticles D having a core / shell structure surface-modified with a thiol comonomer was obtained.
 〔半導体ナノ粒子Eの合成:ポリビニルアルコールで被覆したコア・シェル構造のInP/ZnS半導体ナノ粒子E〕
 100℃で、エチレングリコールの5mlに、ポリ(ビニルアルコール)(87~89%の加水分解物、MW=85000~124000の範囲内)の0.05gを100℃で溶解して、ストック溶液を調製した。次いで、窒素ガス雰囲気下で、ポリ(ビニルアルコール)/エチレングリコールの上記ストック溶液に、前記コア・シェル構造のInP/ZnS半導体ナノ粒子A粉末を加えて混合し、一晩高真空下で保存して、粒子表面をポリビニルアルコールで被覆したコア・シェル構造のInP/ZnS半導体ナノ粒子Eの粉末を得た。
[Synthesis of Semiconductor Nanoparticle E: InP / ZnS Semiconductor Nanoparticle E with Core / Shell Structure Coated with Polyvinyl Alcohol]
Prepare a stock solution by dissolving 0.05 g of poly (vinyl alcohol) (87-89% hydrolyzate, MW = 85000-124000) at 100 ° C. in 5 ml of ethylene glycol at 100 ° C. did. Next, the core / shell structure InP / ZnS semiconductor nanoparticle A powder is added to the stock solution of poly (vinyl alcohol) / ethylene glycol and mixed in a nitrogen gas atmosphere, and stored overnight under high vacuum. Thus, a powder of InP / ZnS semiconductor nanoparticles E having a core / shell structure in which the particle surface was coated with polyvinyl alcohol was obtained.
 〔半導体ナノ粒子Fの合成:ポリビニルアルコールで被覆したコア・シェル構造のCdSe/ZnS半導体ナノ粒子F〕
 上記半導体ナノ粒子Eの合成において、コア・シェル構造のInP/ZnS半導体ナノ粒子Aの代わりに、前記コア・シェル構造のCdSe/ZnS半導体ナノ粒子Bを用いた以外は同様にして、粒子表面をポリビニルアルコールで被覆したコア・シェル構造のCdSe/ZnS半導体ナノ粒子Fの粉末を得た。
[Synthesis of Semiconductor Nanoparticle F: Core / Shell CdSe / ZnS Semiconductor Nanoparticle F Coated with Polyvinyl Alcohol]
In the synthesis of the semiconductor nanoparticles E, the surface of the particles was similarly obtained except that the core / shell structure CdSe / ZnS semiconductor nanoparticles B were used instead of the core / shell structure InP / ZnS semiconductor nanoparticles A. A powder of CdSe / ZnS semiconductor nanoparticles F having a core / shell structure coated with polyvinyl alcohol was obtained.
 〔半導体ナノ粒子Gの合成:紫外線硬化樹脂1で被覆したコア・シェル構造のInP/ZnS半導体ナノ粒子G〕
 前記チオールコモノマーで表面修飾して調製したコア・シェル構造のInP/ZnS半導体ナノ粒子C粉末の25mgを、脱気したメチルメタクリレート(略称:MMA)中に分散させた。光開始剤としてフェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシドを、架橋剤としてトリメチロールプロパントリメタクリレート(略称:TMPTM)を加え、溶液を脱気しながら溶解させた。その後、架橋剤であるTMPTMをMMA及び半導体ナノ粒子Cの混合液に加え、モノマーと架橋剤の混合物をワールミキサーで攪拌した。調製したスラリーを注射器に移し、その後、注射器より、このスラリーを脱気した5mlの2%ポリ酢酸ビニル(略称:PVAc)中に注入しながら、1200rpmで継続的に攪拌した。その後、懸濁液を、30分間かけて365nmのUV光に曝した。混合物を一晩撹拌し、次の朝、洗浄及び遠心分離によって分取した。洗浄は20mLのHOで2回、20mLのエタノールで2回行い、遠心分離は、洗浄の間に2分間2000rpmで行った。最後に分離物を真空下で乾燥させ、窒素ガスでパージした。このようにしてポリメチルメタクリレート(略称:PMMA)で被覆したコア・シェル構造のInP/ZnS半導体ナノ粒子Gの粉末を得た。
[Synthesis of Semiconductor Nanoparticle G: Core / Shell InP / ZnS Semiconductor Nanoparticle G Coated with UV-Curable Resin 1]
25 mg of InP / ZnS semiconductor nanoparticles C powder having a core / shell structure prepared by surface modification with the thiol comonomer was dispersed in degassed methyl methacrylate (abbreviation: MMA). Phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide as a photoinitiator and trimethylolpropane trimethacrylate (abbreviation: TMPTM) as a crosslinking agent were added, and the solution was dissolved while degassing. Then, TMPTM which is a crosslinking agent was added to the liquid mixture of MMA and the semiconductor nanoparticle C, and the mixture of the monomer and the crosslinking agent was stirred with a whirl mixer. The prepared slurry was transferred to a syringe, and then continuously stirred at 1200 rpm while being poured into 5 ml of 2% polyvinyl acetate (abbreviation: PVAc) deaerated from the syringe. The suspension was then exposed to 365 nm UV light for 30 minutes. The mixture was stirred overnight and separated the next morning by washing and centrifuging. Washing was performed twice with 20 mL H 2 O and twice with 20 mL ethanol, and centrifugation was performed at 2000 rpm for 2 minutes between washes. Finally the isolate was dried under vacuum and purged with nitrogen gas. In this manner, a powder of InP / ZnS semiconductor nanoparticles G having a core / shell structure coated with polymethyl methacrylate (abbreviation: PMMA) was obtained.
 〔半導体ナノ粒子Hの合成:紫外線硬化樹脂1で被覆したコア・シェル構造のCdSe/ZnS半導体ナノ粒子H〕
 上記半導体ナノ粒子Gの合成において、チオールコモノマーで表面修飾されたコア・シェル構造のInP/ZnS半導体ナノ粒子Cの代わりに、チオールコモノマーで表面修飾されたコア・シェル構造のCdSe/ZnS半導体ナノ粒子Dを用いた以外は同様にして、紫外線硬化樹脂(PMMA)で被覆されたコア・シェル構造のCdSe/ZnS半導体ナノ粒子Hの粉末を得た。
[Synthesis of Semiconductor Nanoparticle H: CdSe / ZnS Semiconductor Nanoparticle H with Core / Shell Structure Coated with UV Curing Resin 1]
In the synthesis of the semiconductor nanoparticles G, instead of the core / shell structure InP / ZnS semiconductor nanoparticles C surface-modified with thiol comonomer, the core / shell structure CdSe / ZnS semiconductor nanoparticles surface-modified with thiol comonomer A powder of CdSe / ZnS semiconductor nanoparticles H having a core / shell structure coated with an ultraviolet curable resin (PMMA) was obtained in the same manner except that D was used.
 〔半導体ナノ粒子Iの合成:紫外線硬化樹脂2で被覆されたコア・シェル構造のInP/ZnS半導体ナノ粒子I〕
 上記半導体ナノ粒子Gの合成において、メチルメタクリレート(MMA)の代わりに、ラウリルメタクリレート(LMA)を用いた以外は同様にして、紫外線硬化樹脂(PLMA)で被覆したコア・シェル構造のInP/ZnS半導体ナノ粒子Iの粉末を得た。
[Synthesis of Semiconductor Nanoparticle I: InP / ZnS Semiconductor Nanoparticle I with Core / Shell Structure Coated with UV-Curable Resin 2]
In the synthesis of the semiconductor nanoparticles G, an InP / ZnS semiconductor having a core / shell structure coated with an ultraviolet curable resin (PLMA) is used in the same manner except that lauryl methacrylate (LMA) is used instead of methyl methacrylate (MMA). Nanoparticle I powder was obtained.
 〔半導体ナノ粒子Jの合成:紫外線硬化樹脂2で被覆したコア・シェル構造のCdSe/ZnS半導体ナノ粒子J〕
 上記半導体ナノ粒子Hの合成において、メチルメタクリレート(MMA)の代わりに、ラウリルメタクリレート(LMA)を用いた以外は同様にして、紫外線硬化樹脂(PLま)で被覆したコア・シェル構造のCdSe/ZnS半導体ナノ粒子Jの粉末を得た。
[Synthesis of Semiconductor Nanoparticle J: Core-Shell Structure CdSe / ZnS Semiconductor Nanoparticle J Coated with UV-Curable Resin 2]
In the synthesis of the semiconductor nanoparticles H, a core / shell structure CdSe / ZnS coated with an ultraviolet curable resin (PL) is used in the same manner except that lauryl methacrylate (LMA) is used instead of methyl methacrylate (MMA). Semiconductor nanoparticle J powder was obtained.
 〔半導体ナノ粒子Kの合成:シリカで被覆したコア・シェル構造のInP/ZnS半導体ナノ粒子K〕
 前記調製したInP/ZnS半導体ナノ粒子Aの70mgに、0.1mlの3-(トリメトキシシリル)プロピルメタクリレート(略称:TMOPMA)と、0.5mlのオルトケイ酸トリエチル(略称:TEOS)を注入して、コア・シェル構造のInP/ZnS半導体ナノ粒子Aを分散し、分散液を調製した後、窒素雰囲気下で一晩のインキュベーションを行った。その後、この分散液を、50mlフラスコ中の10mlの逆マイクロエマルション(シクロヘキサン/CO-520(下記参照)=18ml/1.35g)に、600rpmの攪拌下で注入し、混合物を15分間撹拌した後、0.1mlの4%NHOHを添加し、粒子表面への被覆層の形成反応を開始させた。次の日に遠心分離して反応を停止させ、固相(粒子)を分離した。得られた粒子を、20mlのシクロヘキサンで2度洗浄した後、真空下で乾燥させて、粒子表面にシリカを被覆したコア・シェル構造のInP/ZnS半導体ナノ粒子Kの粉末を得た。
[Synthesis of Semiconductor Nanoparticle K: InP / ZnS Semiconductor Nanoparticle K with Core / Shell Structure Coated with Silica]
To 70 mg of the prepared InP / ZnS semiconductor nanoparticles A, 0.1 ml of 3- (trimethoxysilyl) propyl methacrylate (abbreviation: TMOPM) and 0.5 ml of triethyl orthosilicate (abbreviation: TEOS) were injected. InP / ZnS semiconductor nanoparticles A having a core / shell structure were dispersed and a dispersion was prepared, followed by overnight incubation in a nitrogen atmosphere. The dispersion was then poured into 10 ml inverse microemulsion (cyclohexane / CO-520 (see below) = 18 ml / 1.35 g) in a 50 ml flask under stirring at 600 rpm and the mixture was stirred for 15 minutes. Then, 0.1 ml of 4% NH 4 OH was added to initiate the formation reaction of the coating layer on the particle surface. The reaction was stopped by centrifugation on the next day, and the solid phase (particles) was separated. The obtained particles were washed twice with 20 ml of cyclohexane and dried under vacuum to obtain a powder of InP / ZnS semiconductor nanoparticles K having a core / shell structure in which silica was coated on the particle surfaces.
 CO-520:Igepal(登録商標) CO-520(ノニオン界面活性剤)、ポリオキシエチレン(5)ノニルフェニルエーテル〔4-(C19)CO(CHCHO)CHCHOH〕
 〔半導体ナノ粒子Lの調製:紫外線硬化樹脂1で被覆したInP構造を有する半導体ナノ粒子Lの調製〕
 (InP構造を有する半導体ナノ粒子Lの調製)
 特表2013-505347号公報の段落番号(0105)に記載の内容に従い、InP構造を有する半導体ナノ粒子Lを、下記の方法で調製した。
CO-520: Igepal (registered trademark) CO-520 (nonionic surfactant), polyoxyethylene (5) nonylphenyl ether [4- (C 9 H 19 ) C 6 H 4 O (CH 2 CH 2 O) 4 CH 2 CH 2 OH]
[Preparation of Semiconductor Nanoparticle L: Preparation of Semiconductor Nanoparticle L with InP Structure Coated with UV-Curable Resin 1]
(Preparation of semiconductor nanoparticles L 1 having an InP structure)
In accordance with the contents described in paragraph number (0105) of JP 2013-505347 A, semiconductor nanoparticles L 1 having an InP structure were prepared by the following method.
 ジブチルエステル(100ml)及びミリスチン酸(10.0627g)を3つ口フラスコに入れ、真空下で1時間、70℃で脱気した。次いで、窒素ガスを導入し、温度を90℃に上げた。ZnS分子クラスター[EtNH][Zn10(SPh)16](4.7076g)を加え、混合物を45分間撹拌した。それから、温度を100℃に上げた後に、In(MA)(1モル/L、15ml)に続いて(TMS)P(1モル/L、15ml)を滴下して加えた。反応混合物を撹拌しながら温度を140℃に上げた。140℃にて、In(MA)(1モル/L、35ml)(5分間撹拌したまま)及び(TMS)P(1モル/L、35ml)を更に滴下して加えた。その後、温度をゆっくりと180℃に上げ、In(MA)(1モル/L、55ml)に続いて(TMS)P(1モル/L、40ml)を更に滴下して加えた。上記のようにして前駆体を加えることによって、InPのナノ粒子が成長しながら、放射最大値が520nmから最大700nmにまで徐々に上がった。これによって、所望の放射最大値が得られたときに、反応を止めることができ、この温度で半時間撹拌したままにできる。この期間後、温度を160℃に下げ、反応混合物を(反応液の温度よりも20~40℃低い温度で)最大4日間アニールしたままにした。アニールを補助するために、この段階でUV灯も使用した。 Dibutyl ester (100 ml) and myristic acid (10.0627 g) were placed in a three-necked flask and degassed at 70 ° C. under vacuum for 1 hour. Nitrogen gas was then introduced and the temperature was raised to 90 ° C. ZnS molecular cluster [Et 3 NH 4 ] [Zn 10 S 4 (SPh) 16 ] (4.77076 g) was added and the mixture was stirred for 45 minutes. Then, after raising the temperature to 100 ° C., In (MA) 3 (1 mol / L, 15 ml) was added dropwise (TMS) 3 P (1 mol / L, 15 ml). The temperature was raised to 140 ° C. while stirring the reaction mixture. At 140 ° C., In (MA) 3 (1 mol / L, 35 ml) (with stirring for 5 minutes) and (TMS) 3 P (1 mol / L, 35 ml) were further added dropwise. Thereafter, the temperature was slowly raised to 180 ° C., and In (MA) 3 (1 mol / L, 55 ml) was added dropwise (TMS) 3 P (1 mol / L, 40 ml). By adding the precursor as described above, the maximum emission value gradually increased from 520 nm to a maximum of 700 nm as InP nanoparticles grew. This allows the reaction to be stopped when the desired emission maximum is obtained and can be left stirring at this temperature for half an hour. After this period, the temperature was lowered to 160 ° C. and the reaction mixture was allowed to anneal for up to 4 days (at a temperature 20-40 ° C. below the temperature of the reaction). A UV lamp was also used at this stage to assist the anneal.
 カニューレ技術を介して、脱気した乾燥メタノール(約200ml)を加えて、ナノ粒子を分離した。沈殿を静置した後、フィルタ棒の助けを借りて、カニューレを介してメタノールを除去した。固形物を洗浄するために、脱気した乾燥クロロホルム(約10ml)を加えた。固形物を1日真空下に置いて乾燥させた。これにより、5.60gのInP構造を有する半導体ナノ粒子Lを調製した。 Via the cannula technique, degassed dry methanol (about 200 ml) was added to separate the nanoparticles. After allowing the precipitate to settle, the methanol was removed via a cannula with the help of a filter rod. Degassed dry chloroform (about 10 ml) was added to wash the solids. The solid was dried under vacuum for 1 day. Thereby, 5.60 g of semiconductor nanoparticles L 1 having an InP structure were prepared.
 上記のように調製したInPの半導体ナノ粒子Lを、希フッ化水素(HF)酸で洗浄した。半導体ナノ粒子Lを、脱気した無水クロロホルム(~270ml)に溶解させた。部分的に50mlを取り除き、プラスチック製のフラスコに入れ、窒素でフラッシュした。プラスチックシリンジを用いて、3mlの60質量/質量%HFを水に加え、脱気したテトラヒドロフラン(THF)(17ml)に加えて、HF溶液を作った。HFを半導体ナノ粒子Lに5時間かけて滴下して加えた。付加完了後、溶液を一晩撹拌したままにした。塩化カルシウム水溶液を通して抽出し、エッチングされたInP半導体ナノ粒子Lを乾燥することで、過剰なHFを除去した。 The InP semiconductor nanoparticles L 1 prepared as described above were washed with dilute hydrofluoric acid (HF) acid. Semiconductor nanoparticles L were dissolved in degassed anhydrous chloroform (˜270 ml). A 50 ml portion was removed and placed in a plastic flask and flushed with nitrogen. Using a plastic syringe, 3 ml of 60 wt / wt% HF was added to water and added to degassed tetrahydrofuran (THF) (17 ml) to make an HF solution. HF was added dropwise to the semiconductor nanoparticles L over 5 hours. After the addition was complete, the solution was left stirring overnight. Excess HF was removed by drying the etched InP semiconductor nanoparticles L 1 through extraction with an aqueous calcium chloride solution.
 (チオールコモノマーで表面修飾したInP構造を有する半導体ナノ粒子Lの調製)
 上記InP/ZnS半導体ナノ粒子Cの合成において、コア・シェル構造のInP/ZnS半導体ナノ粒子Aの代わりに、前記InP構造を有する半導体ナノ粒子Lを用いた以外は同様にして、チオールコモノマーで表面修飾したInP構造を有する半導体ナノ粒子Lの粉末を得た。
(Preparation of semiconductor nanoparticles L 2 having an InP structure surface-modified with thiol comonomer)
In the synthesis of the InP / ZnS semiconductor nanoparticles C, a thiol comonomer was used in the same manner except that the semiconductor nanoparticles L 1 having the InP structure were used instead of the core / shell structure InP / ZnS semiconductor nanoparticles A. to obtain a powder of semiconductor nanoparticles L 2 having a surface modified InP structure.
 (紫外線硬化樹脂1で被覆したInP構造を有する半導体ナノ粒子Lの調製)
 上記半導体ナノ粒子Gの合成において、チオールコモノマーで表面修飾されたコア・シェル構造のInP/ZnS半導体ナノ粒子Cの代わりに、上記調製したチオールコモノマーで表面修飾したInP構造を有する半導体ナノ粒子Lを用いた以外は同様にして、紫外線硬化樹脂(PMMA)で被覆されたInP構造を有する半導体ナノ粒子Lの粉末を得た。
(Preparation of semiconductor nanoparticles L having InP structure coated with UV curable resin 1)
In the synthesis of the semiconductor nanoparticles G, instead of the core / shell structure InP / ZnS semiconductor nanoparticles C surface-modified with a thiol comonomer, the semiconductor nanoparticles L 2 having an InP structure surface-modified with the thiol comonomer prepared above. A semiconductor nanoparticle L powder having an InP structure coated with an ultraviolet curable resin (PMMA) was obtained in the same manner except that was used.
 〔半導体ナノ粒子Mの調製:紫外線硬化樹脂1で被覆したCdSe構造を有する半導体ナノ粒子Mの調製〕
 (CdSe構造を有する半導体ナノ粒子Mの調製)
 特表2013-505347号公報の段落番号(0103)に記載されている方法に従い、CdSe構造を有する半導体ナノ粒子Mを調製した。
[Preparation of Semiconductor Nanoparticle M: Preparation of Semiconductor Nanoparticle M with CdSe Structure Coated with Ultraviolet Curing Resin 1]
(Preparation of semiconductor nanoparticles M 1 having a CdSe structure)
In accordance with the method described in paragraph number (0103) of JP 2013-505347 A, semiconductor nanoparticles M 1 having a CdSe structure were prepared.
 HDA(500g)を3つ口丸底フラスコに入れ、動的真空下で1時間以上120°Cに加熱することで、乾燥及び脱気した。その後、溶液を60°Cに冷却した。これに0.718gの[HNEt[Cd10Se(SPh)16](0.20mmol)を加えた。総計で、42mmol、22.0mlのTOPSe、及び42mmol(19.5ml、2.15M)のMeCd・TOPを用いた。最初に、4mmolのTOPSe、及び4mmolのMeCd・TOPを室温で反応液に加え、温度を110°Cに上げ、2時間撹拌した。反応液は濃い黄色であり、等モル量のTOPSe及びMeCd・TOPを滴下して加えながら、温度を~1°C/5minの速度で徐々に上げた。PL放射最大値が~600nmに達すると、60°Cに冷却した後に300mlの乾燥エタノール又はアセトンを加えて、反応を止めた。これによって、深い赤色の粒子の沈殿が生成され、これを濾過によって更に分離した。生じたCdSe粒子を、トルエンに再溶解させた後に、セライトを通して濾過し、続いて暖かいエタノールから再沈殿させることで再結晶させて、存在するあらゆる余分なHDA、セレン又はカドミウムを除去した。これにより、HDAでキャッピングされた10.10gのCdSeの半導体ナノ粒子Mが生成された。 HDA (500 g) was placed in a three-necked round bottom flask and heated to 120 ° C. for 1 hour or more under dynamic vacuum to dry and degas. The solution was then cooled to 60 ° C. To this was added 0.718 g of [HNEt 3 ] 4 [Cd 10 Se 4 (SPh) 16 ] (0.20 mmol). In total, 42 mmol, 22.0 ml of TOPSe, and 42 mmol (19.5 ml, 2.15 M) of Me 2 Cd · TOP were used. First, 4 mmol of TOPSe and 4 mmol of Me 2 Cd · TOP were added to the reaction solution at room temperature, and the temperature was raised to 110 ° C. and stirred for 2 hours. The reaction solution was dark yellow, and the temperature was gradually raised at a rate of ˜1 ° C./5 min while adding equimolar amounts of TOPSe and Me 2 Cd · TOP dropwise. When the PL emission maximum reached ˜600 nm, the reaction was stopped by cooling to 60 ° C. and then adding 300 ml of dry ethanol or acetone. This produced a deep red particle precipitate that was further separated by filtration. The resulting CdSe particles were redissolved in toluene and then filtered through celite followed by recrystallization from warm ethanol to remove any excess HDA, selenium or cadmium present. This produced 10.10 g of CdSe semiconductor nanoparticles M 1 capped with HDA.
 (チオールコモノマーで表面修飾したCdSe構造を有する半導体ナノ粒子Mの調製)
 上記InP/ZnS半導体ナノ粒子Cの合成において、コア・シェル構造のInP/ZnS半導体ナノ粒子Aの代わりに、前記CdSe構造を有する半導体ナノ粒子Mを用いた以外は同様にして、チオールコモノマーで表面修飾したCdSe構造を有する半導体ナノ粒子Mの粉末を得た。
(Preparation of semiconductor nanoparticles M 2 having a surface modified CdSe structure thiol comonomers)
In the synthesis of the InP / ZnS semiconductor nanoparticles C, a thiol comonomer is used in the same manner except that the semiconductor nanoparticles M 1 having the CdSe structure are used instead of the core / shell structure InP / ZnS semiconductor nanoparticles A. to obtain a powder of semiconductor nanoparticles M 2 having a surface modified CdSe structure.
 (紫外線硬化樹脂1で被覆したCdSe構造を有する半導体ナノ粒子Mの調製)
 上記半導体ナノ粒子Gの合成において、チオールコモノマーで表面修飾されたコア・シェル構造のInP/ZnS半導体ナノ粒子Cの代わりに、チオールコモノマーで表面修飾したCdSe構造を有する半導体ナノ粒子Mを用いた以外は同様にして、紫外線硬化樹脂(PMMA)で被覆されたCdSe構造を有する半導体ナノ粒子Mの粉末を得た。
(Preparation of semiconductor nanoparticles M having CdSe structure coated with UV curable resin 1)
In the synthesis of the semiconductor nanoparticles G, instead of the core / shell structure InP / ZnS semiconductor nanoparticles C surface-modified with thiol comonomer, semiconductor nanoparticles M 2 having a CdSe structure surface-modified with thiol comonomer were used. In the same manner, a powder of semiconductor nanoparticles M having a CdSe structure coated with an ultraviolet curable resin (PMMA) was obtained.
 《光学フィルムの作製》
 以上のようにして調製した各半導体ナノ粒子C~Mを用いて、以下に示す方法で光学フィルム1~22を作製した。なお、塗布液の調製および塗布は、UV光を遮断した環境下で行った。
<< Production of optical film >>
Using the semiconductor nanoparticles C to M prepared as described above, optical films 1 to 22 were produced by the following method. In addition, preparation and application | coating of the coating liquid were performed in the environment which interrupted | blocked UV light.
 〔光学フィルム1の作製〕
 半導体ナノ粒子Eの調製において、それぞれ赤色と緑色に発光するように粒径を調整して調製した赤色発光の半導体ナノ粒子Eの0.75mg及び緑色発光の半導体ナノ粒子Eの4.12mgを、トルエン溶媒に分散させ、更にパーヒドロポリシラザン(略称:PHPS、アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)を添加し、半導体ナノ粒子E及びEの質量含有率が1.0%になる条件で半導体ナノ粒子層形成用塗布液1を調製した。
[Preparation of optical film 1]
In the preparation of semiconductor nanoparticles E, 4.12 mg of semiconductor nanoparticles E G of 0.75mg and green light-emitting semiconductor nanoparticles E R of the red were prepared by adjusting the particle size so as to emit red light and green light emitting It was dispersed in toluene solvent, further perhydropolysilazane: was added (abbreviation PHPS, Aquamica NN120-10, no catalyst type, AZ Electronic Materials Co., Ltd.), the mass content of the semiconductor nanoparticle E R and E G A coating solution 1 for forming a semiconductor nanoparticle layer was prepared under the condition that the rate was 1.0%.
 上記半導体ナノ粒子層形成用塗布液1を、両面に易接着加工が施された厚さ125μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、KDL86WA、略称:PET)に乾燥膜厚が100μmとなる条件で塗布し、60℃で3分間乾燥した。次いで、下記エキシマ装置によりエキシマ照射を行い、本発明の光学フィルム1を作製した。 The above-mentioned coating solution 1 for forming a semiconductor nanoparticle layer has a dry film thickness of 100 μm on a 125 μm-thick polyethylene terephthalate film (KDL86WA, abbreviated as PET: manufactured by Teijin DuPont Films, Ltd.) with easy adhesion processing on both sides. It apply | coated on conditions and dried for 3 minutes at 60 degreeC. Next, excimer irradiation was performed by the following excimer apparatus to produce the optical film 1 of the present invention.
 〈エキシマ照射装置〉
 装置:株式会社 エム・ディ・コム製エキシマ照射装置 MODEL:MECL-M-1-200
 照射波長:172nm
 ランプ封入ガス:Xe
 〈改質処理条件〉
 稼動ステージ上に固定した半導体ナノ粒子層形成用塗布液1を塗布したフィルムに対し、以下の条件で改質処理を行った。
<Excimer irradiation system>
Apparatus: Ex-dimer irradiation apparatus manufactured by M.D.Com Co., Ltd. MODEL: MECL-M-1-200
Irradiation wavelength: 172 nm
Lamp filled gas: Xe
<Reforming treatment conditions>
The film coated with the coating solution 1 for forming a semiconductor nanoparticle layer fixed on the operation stage was subjected to a modification treatment under the following conditions.
 エキシマランプ光強度:130mW/cm(172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:0.01%
 エキシマランプ照射時間:5秒。
Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 0.01%
Excimer lamp irradiation time: 5 seconds.
 〔光学フィルム2~6の作製〕
 半導体ナノ粒子Eを表1に記載の各半導体ナノ粒子に変更した以外は光学フィルム1の作製と同様にして、本発明の光学フィルム2~6を作製した。
[Preparation of optical films 2 to 6]
Optical films 2 to 6 of the present invention were produced in the same manner as the production of the optical film 1 except that the semiconductor nanoparticles E were changed to the respective semiconductor nanoparticles shown in Table 1.
 〔光学フィルム7及び8の作製〕
 半導体ナノ粒子Eを表1に記載の各半導体ナノ粒子に変更し、エキシマ照射を行わなかった以外は光学フィルム1の作製と同様にして、本発明の光学フィルム7及び8を作製した。
[Production of optical films 7 and 8]
The optical films 7 and 8 of the present invention were prepared in the same manner as the optical film 1 except that the semiconductor nanoparticles E were changed to the semiconductor nanoparticles shown in Table 1 and no excimer irradiation was performed.
 〔光学フィルム9~11の作製〕
 半導体ナノ粒子Eを表1に記載の各半導体ナノ粒子に変更した以外は光学フィルム1の作製と同様にして、比較例の光学フィルム9~11を作製した。
[Preparation of optical films 9 to 11]
Optical films 9 to 11 of comparative examples were produced in the same manner as in the production of the optical film 1 except that the semiconductor nanoparticles E were changed to the respective semiconductor nanoparticles shown in Table 1.
 〔光学フィルム12の作製〕
 半導体ナノ粒子Eを赤色と緑色に発光するように粒径を調整して調製した赤色発光の半導体ナノ粒子Eの0.75mg及び緑色発光の半導体ナノ粒子Eの4.12mgを、トルエン溶媒に分散させ、更にDIC(株)製のUV硬化型樹脂ユニディックV-4025に、光重合開始剤イルガキュア184(BASFジャパン製)を、固形分比(質量%)で樹脂/開始剤:95/5になるように調整したUV硬化樹脂溶液を加え、半導体ナノ粒子の質量含有率が1.0%になる半導体ナノ粒子層形成用塗布液12を作製した。
[Preparation of optical film 12]
The 4.12mg of 0.75mg and green light-emitting semiconductor nanoparticles E G of the semiconductor nanoparticles emitting red light prepared by adjusting the particle diameter E R to emit semiconductor nanoparticles E in red and green, toluene solvent Further, a photopolymerization initiator Irgacure 184 (manufactured by BASF Japan) is added to UV curing resin Unidic V-4025 manufactured by DIC Corporation in a solid content ratio (mass%) of resin / initiator: 95 / The UV curable resin solution adjusted to 5 was added to prepare a coating solution 12 for forming a semiconductor nanoparticle layer in which the mass content of the semiconductor nanoparticles was 1.0%.
 上記半導体ナノ粒子層形成用塗布液12を、両面に易接着加工された厚さ125μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、KDL86WA)に乾燥膜厚が100μmになるように塗布し、60℃で3分乾燥し、硬化条件;0.5J/cm空気下、高圧水銀ランプ使用で硬化を行い、比較例の光学フィルム12を作製した。 The semiconductor nanoparticle layer forming coating solution 12 was applied to a 125 μm-thick polyethylene terephthalate film (KDL86WA, manufactured by Teijin DuPont Films, Ltd.) with easy adhesion on both sides so that the dry film thickness was 100 μm. The film was dried at 3 ° C. for 3 minutes and cured under a curing condition: 0.5 J / cm 2 air using a high-pressure mercury lamp to produce an optical film 12 of a comparative example.
 〔光学フィルム13~16の作製〕
 半導体ナノ粒子Eを表1に記載の各半導体ナノ粒子に変更した以外は光学フィルム12の作製と同様にして、比較例の光学フィルム13~16を作製した。
[Preparation of optical films 13 to 16]
Optical films 13 to 16 of comparative examples were produced in the same manner as the production of the optical film 12 except that the semiconductor nanoparticles E were changed to the respective semiconductor nanoparticles shown in Table 1.
 〔光学フィルム17の作製〕
 基材を厚さ100μmのポリカーボネートフィルム(帝人化成株式会社製、ピュアエースWR-S5、略称:PC)に変更した以外は光学フィルム5の作製と同様にして、本発明の光学フィルム17を作製した。
[Preparation of optical film 17]
An optical film 17 of the present invention was prepared in the same manner as the optical film 5 except that the substrate was changed to a polycarbonate film having a thickness of 100 μm (manufactured by Teijin Chemicals Ltd., Pure Ace WR-S5, abbreviated as PC). .
 〔光学フィルム18の作製〕
 基材を厚さ100μmのトリアセチルセルロースフィルム(コニカミノルタ社製、略称:TAC)に変更した以外は光学フィルム5の作製と同様にして、本発明の光学フィルム18を作製した。
[Preparation of optical film 18]
The optical film 18 of the present invention was produced in the same manner as the production of the optical film 5 except that the substrate was changed to a triacetyl cellulose film having a thickness of 100 μm (manufactured by Konica Minolta, abbreviation: TAC).
 〔光学フィルム19の作製〕
 基材を厚さ100μmのシクロオレフィンポリマーフィルム(日本ゼオン社製、略称:COP)に変更した以外は光学フィルム5の作製と同様にして、本発明の光学フィルム19を作製した。
[Preparation of optical film 19]
An optical film 19 of the present invention was produced in the same manner as the production of the optical film 5 except that the base material was changed to a cycloolefin polymer film having a thickness of 100 μm (manufactured by Nippon Zeon Co., Ltd., abbreviation: COP).
 〔光学フィルム20の作製〕
 半導体ナノ粒子Eを赤色と緑色に発光するように粒径を調整した。赤色発光の半導体ナノ粒子Eの0.75mgをトルエン溶媒に分散させ、更にパーヒドロポリシラザン(PHPS、アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)を添加し、半導体ナノ粒子の質量含有率が1.0%である赤色の半導体ナノ粒子層形成用塗布液Rを調製した。
[Preparation of optical film 20]
The particle size was adjusted so that the semiconductor nanoparticles E emitted red and green light. The 0.75mg of semiconductor nanoparticles E R of the red light emitting dispersed in toluene solvent, by adding further perhydropolysilazane (PHPS, Aquamica NN120-10, manufactured by non-catalytic type, AZ Electronic Materials Co.), semiconductor nano A red semiconductor nanoparticle layer forming coating solution R having a particle mass content of 1.0% was prepared.
 次いで、緑色発光の半導体ナノ粒子Eの4.12mgをトルエン溶媒に分散させ、更にパーヒドロポリシラザン(PHPS、アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)を添加し、半導体ナノ粒子の質量含有率が1.0%になる緑色の半導体ナノ粒子層形成用塗布液Gを調製した。 Then, a 4.12mg of semiconductor nanoparticles E G green light is dispersed in toluene solvent, by adding further perhydropolysilazane (PHPS, Aquamica NN120-10, manufactured by non-catalytic type, AZ Electronic Materials Co.) A coating solution G for forming a green semiconductor nanoparticle layer in which the mass content of the semiconductor nanoparticles was 1.0% was prepared.
 次いで上記調製した赤色発光の半導体ナノ粒子層形成用塗布液Rを、両面に易接着加工された厚さ125μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、KDL86WA)に、乾燥膜厚が100μmになる条件で塗布し、60℃で3分乾燥した。次いで、下記エキシマ装置にてエキシマ照射を行った。 Next, the prepared red light emitting semiconductor nanoparticle layer forming coating solution R is applied to a 125 μm thick polyethylene terephthalate film (KDL86WA, manufactured by Teijin DuPont Films, Ltd.) with easy adhesion on both sides, and the dry film thickness is 100 μm. The coating was carried out under the following conditions and dried at 60 ° C. for 3 minutes. Next, excimer irradiation was performed with the following excimer apparatus.
 次いで、赤色発光の半導体ナノ粒子層Rの上に、乾燥膜厚が100μmになる条件で上記緑色発光の半導体ナノ粒子層形成用塗布液Gを塗布し、60℃で3分乾燥した。次いで、下記エキシマ装置にてエキシマ照射を行い、赤色発光/緑色発光の2層構成の半導体ナノ粒子層を有する本発明の光学フィルム20を作製した。 Next, the green light emitting semiconductor nanoparticle layer forming coating solution G was applied on the red light emitting semiconductor nanoparticle layer R under the condition that the dry film thickness was 100 μm, and dried at 60 ° C. for 3 minutes. Next, excimer irradiation was performed with the following excimer apparatus to produce an optical film 20 of the present invention having a semiconductor nanoparticle layer having a two-layer structure of red light emission / green light emission.
 〔光学フィルム21の作製〕
 半導体ナノ粒子Gを表1に記載の半導体ナノ粒子Lに変更した以外は光学フィルム3の作製と同様にして、光学フィルム21を作製した。
[Production of optical film 21]
An optical film 21 was prepared in the same manner as the optical film 3 except that the semiconductor nanoparticles G were changed to the semiconductor nanoparticles L shown in Table 1.
 〔光学フィルム22の作製〕
 半導体ナノ粒子Hを表1に記載の半導体ナノ粒子Mに変更した以外は光学フィルム4の作製と同様にして、光学フィルム22を作製した。
[Preparation of optical film 22]
An optical film 22 was prepared in the same manner as the optical film 4 except that the semiconductor nanoparticles H were changed to the semiconductor nanoparticles M shown in Table 1.
 なお、表1に記載した上記光学フィルム1~22の作製に用い、略称で記載した各構成材料の詳細は、以下の通りである。 The details of the constituent materials used in the production of the optical films 1 to 22 described in Table 1 and described in abbreviations are as follows.
 (材料)
 PET:ポリエチレンテレフタレートフィルム
 PC:ポリカーボネートフィルム
 TAC:トリアセチルセルロースフィルム
 COP:シクロオレフィンポリマーフィルム
 (半導体ナノ粒子の被覆材料)
 PVA:ポリビニルアルコール(水溶性樹脂)
 PMMA:ポリメチルメタクリレート(アクリル樹脂)
 PLMA:ポリラウリルメタクリレート(アクリル樹脂)
 (分散保持材料)
 PHPS:パーヒドロポリシラザン
 UVポリマー:紫外線硬化性樹脂
 (塗布後の改質処理)
 VUV:真空紫外線照射(エキシマ照射)
 UV:紫外線照射(高圧水銀ランプ)
 《光学フィルムの評価》
 上記のようにして作製した光学フィルム1~22について下記の評価を行った。
(material)
PET: Polyethylene terephthalate film PC: Polycarbonate film TAC: Triacetylcellulose film COP: Cycloolefin polymer film (Coating material for semiconductor nanoparticles)
PVA: Polyvinyl alcohol (water-soluble resin)
PMMA: Polymethylmethacrylate (acrylic resin)
PMMA: Polylauryl methacrylate (acrylic resin)
(Dispersion retention material)
PHPS: Perhydropolysilazane UV polymer: UV curable resin (Modification after coating)
VUV: Vacuum ultraviolet irradiation (excimer irradiation)
UV: UV irradiation (high pressure mercury lamp)
<< Evaluation of optical film >>
The following evaluations were performed on the optical films 1 to 22 produced as described above.
 〔透明性の評価:ヘイズの測定〕
 東京電色社製 ヘイズメーター NDH5000を用いて、上記作製した光学フィルム1~22のヘイズ値を測定し、下記基準に従って透明性を評価した。
[Evaluation of transparency: measurement of haze]
Using the haze meter NDH5000 manufactured by Tokyo Denshoku Co., Ltd., the haze values of the optical films 1 to 22 prepared above were measured, and the transparency was evaluated according to the following criteria.
 光学フィルムとしては、発光デバイスに用いる観点からは、1.5%未満(◎~○△)であることが好ましい。 The optical film is preferably less than 1.5% (◎ to ○ △) from the viewpoint of use in a light emitting device.
 ◎:ヘイズ値が、0.5%未満である
 ○:ヘイズ値が、0.5%以上、1.0%未満である
 ○△:ヘイズ値が、1.0%以上、1.5%未満である
 △:ヘイズ値が、1.5%以上、3.0%未満である
 ×:ヘイズ値が、3.0%以上である
 〔発光特性の評価〕
 光学フィルム1~22を405nmの青紫光で励起したときに、色温度が7000Kにおける白色発光の発光効率を測定した。測定には、大塚電子株式会社製の発光測定システムMCPD-7000を用いた。得られた各結果に対し、比較例である光学フィルム16の発光効率を100とした時の相対発光効率を求め、下記の基準に従って、発光特性を評価した。
A: Haze value is less than 0.5% B: Haze value is 0.5% or more and less than 1.0% B: Haze value is 1.0% or more and less than 1.5% Δ: The haze value is 1.5% or more and less than 3.0%. ×: The haze value is 3.0% or more. [Evaluation of Luminescence Characteristics]
When the optical films 1 to 22 were excited with 405 nm blue-violet light, the luminous efficiency of white light emission at a color temperature of 7000 K was measured. For the measurement, a light emission measurement system MCPD-7000 manufactured by Otsuka Electronics Co., Ltd. was used. For each of the obtained results, the relative luminous efficiency was obtained when the luminous efficiency of the optical film 16 as a comparative example was set to 100, and the luminous characteristics were evaluated according to the following criteria.
 ◎:相対発光効率が、125以上である
 ○:相対発光効率が、115以上、125未満である
 ○△:相対発光効率が、105以上、115未満である
 △:相対発光効率が、95以上、105未満である
 △×:相対発光効率が、85以上、95未満である
 ×:相対発光効率が、85未満である
 〔耐久性の評価〕
 上記作製した各光学フィルムを、85℃、85%RHの環境下で3000時間の加速劣化処理を施した後、上記発光特性の評価と同様の方法で発光効率を測定し、加速劣化処理前の発光効率に対する加速劣化処理後の発光効率の比(加速劣化処理後の発光効率/加速劣化処理前の発光効率)の値を求め、下記の基準に従って耐久性を評価した。
A: Relative luminous efficiency is 125 or more. O: Relative luminous efficiency is 115 or more and less than 125. O: Relative luminous efficiency is 105 or more and less than 115. Δ: Relative luminous efficiency is 95 or more. Δ: Less than 105 Δ: Relative luminous efficiency is 85 or more and less than 95 ×: Relative luminous efficiency is less than 85 [Durability Evaluation]
Each optical film produced was subjected to an accelerated deterioration treatment for 3000 hours in an environment of 85 ° C. and 85% RH, and then the light emission efficiency was measured by the same method as the evaluation of the light emission characteristics. The ratio of the luminous efficiency after the accelerated deterioration process to the luminous efficiency (the luminous efficiency after the accelerated deterioration process / the luminous efficiency before the accelerated deterioration process) was determined, and the durability was evaluated according to the following criteria.
 ○:加速劣化処理前後での発光効率の比の値が、0.95以上である
 ○△:加速劣化処理前後での発光効率の比の値が、0.90以上、0.95未満である
 △:加速劣化処理前後での発光効率の比の値が、0.80以上、0.90未満である
 △×:加速劣化処理前後での発光効率の比の値が、0.50以上、0.80未満である
 ×:加速劣化処理前後での発光効率の比の値が、0.50未満である
 以上により得られた評価結果を、表1に示す。
○: The value of the luminous efficiency ratio before and after the accelerated deterioration treatment is 0.95 or more. ○ Δ: The value of the luminous efficiency ratio before and after the accelerated deterioration treatment is 0.90 or more and less than 0.95. Δ: The ratio value of the luminous efficiency before and after the accelerated deterioration process is 0.80 or more and less than 0.90. Δ ×: The ratio value of the luminous efficiency before and after the accelerated deterioration process is 0.50 or more, 0. Less than .80 ×: The value of the ratio of the luminous efficiency before and after the accelerated deterioration treatment is less than 0.50. Table 1 shows the evaluation results obtained as described above.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表1に記載の結果より明らかなように、本発明の光学フィルムは、比較例に対し、透明性が高く、発光効率及び耐久性に優れていることが分かる。 As is clear from the results shown in Table 1, it can be seen that the optical film of the present invention is higher in transparency and superior in luminous efficiency and durability than the comparative example.
 実施例2
 《発光デバイスの作製》
 実施例1で作製した光学フィルム1~22を、図2に記載の発光デバイスに具備して、発光デバイス1~22を作製した。
Example 2
<Production of light emitting device>
The optical films 1 to 22 produced in Example 1 were provided in the light emitting device shown in FIG. 2 to produce the light emitting devices 1 to 22.
 具体的には、図2に示すように、導光体5の光放射面5aの上部に、各光学フィルム4を貼り付けた。 Specifically, as shown in FIG. 2, each optical film 4 was pasted on the light emitting surface 5 a of the light guide 5.
 《発光デバイスの評価》
 上記作製した各発光デバイスを、85℃、85%RHの環境下で、3000時間放置した後、発光効率を測定した結果、本発明の発光デバイスは、比較例に対し、発光初期に対する発光効率の変化率が小さく、耐久性に優れていることを確認することができた。
<Evaluation of light emitting device>
Each of the produced light-emitting devices was allowed to stand for 3000 hours in an environment of 85 ° C. and 85% RH, and the light emission efficiency was measured. It was confirmed that the rate of change was small and the durability was excellent.
 本発明の光学フィルムは、発光効率に優れ、かつ酸素等による半導体ナノ粒子の劣化を長期にわたって抑制することができる優れた耐久性と、高い透明性を備え、発光ダイオード(LED)、一般的な空間照明、及び電子発光ディスプレイ等の各種発光デバイス用の光学フィルムとして好適に利用できる。 The optical film of the present invention is excellent in luminous efficiency and has excellent durability capable of suppressing deterioration of semiconductor nanoparticles due to oxygen or the like over a long period of time, and high transparency. It can be suitably used as an optical film for various light emitting devices such as space illumination and electroluminescent displays.
 1 発光デバイス
 2 画像表示パネル
 3 光源(一次光源)
 4 光学フィルム
 5 導光体
 5a 光放出面
 5b 光入射面
 6 カラーフィルターユニット
 6B、6G、6R カラーフィルター
 7 画像表示層
DESCRIPTION OF SYMBOLS 1 Light emitting device 2 Image display panel 3 Light source (primary light source)
4 Optical film 5 Light guide 5a Light emission surface 5b Light incident surface 6 Color filter unit 6B, 6G, 6R Color filter 7 Image display layer

Claims (7)

  1.  基材と、当該基材上に設けられた半導体ナノ粒子層とを有する光学フィルムであって、
     前記半導体ナノ粒子層が、樹脂で被覆された半導体ナノ粒子と、前記半導体ナノ粒子を分散保持するポリシラザン及びポリシラザン改質体から選ばれる少なくとも一種を含有することを特徴とする光学フィルム。
    An optical film having a substrate and a semiconductor nanoparticle layer provided on the substrate,
    The optical film, wherein the semiconductor nanoparticle layer contains at least one selected from semiconductor nanoparticles coated with a resin, polysilazane and a polysilazane modified body that disperses and holds the semiconductor nanoparticles.
  2.  前記半導体ナノ粒子層は前記ポリシラザン改質体を含有し、当該ポリシラザン改質体が、前記ポリシラザンに真空紫外線を照射して形成される、酸化ケイ素、窒化ケイ素及び酸窒化ケイ素から選ばれる少なくとも一種を含む化合物であることを特徴とする請求項1に記載の光学フィルム。 The semiconductor nanoparticle layer contains the polysilazane modified body, and the polysilazane modified body is formed by irradiating the polysilazane with vacuum ultraviolet rays, and at least one selected from silicon oxide, silicon nitride, and silicon oxynitride The optical film according to claim 1, which is a compound containing the optical film.
  3.  前記半導体ナノ粒子が、コア・シェル構造を有することを特徴とする請求項1又は請求項2に記載の光学フィルム。 The optical film according to claim 1, wherein the semiconductor nanoparticles have a core-shell structure.
  4.  前記樹脂が、紫外線硬化樹脂であることを特徴とする請求項1から請求項3までのいずれか一項に記載の光学フィルム。 4. The optical film according to any one of claims 1 to 3, wherein the resin is an ultraviolet curable resin.
  5.  前記樹脂が、水溶性樹脂であることを特徴とする請求項1から請求項3までのいずれか一項に記載の光学フィルム。 4. The optical film according to any one of claims 1 to 3, wherein the resin is a water-soluble resin.
  6.  前記半導体ナノ粒子層を2層以上有し、2層以上の当該半導体ナノ粒子層が、それぞれ互いに異なる発光波長を有する半導体ナノ粒子を含有していることを特徴とする請求項1から請求項5までのいずれか一項に記載の光学フィルム。 6. The semiconductor nanoparticle layer comprising two or more semiconductor nanoparticle layers, wherein the two or more semiconductor nanoparticle layers contain semiconductor nanoparticles each having a different emission wavelength. The optical film as described in any one of the above.
  7.  請求項1から請求項6までのいずれか一項に記載の光学フィルムを具備していることを特徴とする発光デバイス。 A light-emitting device comprising the optical film according to any one of claims 1 to 6.
PCT/JP2014/065688 2013-06-25 2014-06-13 Optical film and light emitting device WO2014208356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015523976A JPWO2014208356A1 (en) 2013-06-25 2014-06-13 Optical film and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013132481 2013-06-25
JP2013-132481 2013-06-25

Publications (1)

Publication Number Publication Date
WO2014208356A1 true WO2014208356A1 (en) 2014-12-31

Family

ID=52141700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065688 WO2014208356A1 (en) 2013-06-25 2014-06-13 Optical film and light emitting device

Country Status (2)

Country Link
JP (1) JPWO2014208356A1 (en)
WO (1) WO2014208356A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167041A (en) * 2015-03-03 2016-09-15 大日本印刷株式会社 High color rendering liquid crystal display device and color filter
WO2017167779A1 (en) 2016-03-31 2017-10-05 Merck Patent Gmbh A color conversion sheet and an optical device
JP2017534894A (en) * 2014-08-14 2017-11-24 エルジー・ケム・リミテッド Luminous film (LIGHT-EMITTING FILM)
JP2018506625A (en) * 2015-12-23 2018-03-08 アファンタマ アクチェンゲゼルシャフト Light emitting parts
WO2018092705A1 (en) * 2016-11-16 2018-05-24 Nsマテリアルズ株式会社 Quantum dot-containing member, sheet member, backlight device and display device
JP2018101000A (en) * 2016-12-19 2018-06-28 富士フイルム株式会社 Wavelength conversion film and method for manufacturing wavelength conversion film
WO2018114761A1 (en) 2016-12-20 2018-06-28 Merck Patent Gmbh Optical medium and an optical device
JP2018106097A (en) * 2016-12-28 2018-07-05 大日本印刷株式会社 Optical wavelength conversion member, backlight device, and image display device
WO2018212268A1 (en) * 2017-05-17 2018-11-22 住友化学株式会社 Film, production method for composition, production method for cured product, and production method for film
JP2019502955A (en) * 2015-12-23 2019-01-31 アファンタマ アクチェンゲゼルシャフト Luminescent components
JP2019506510A (en) * 2016-02-12 2019-03-07 ナノコ テクノロジーズ リミテッド Quantum dot-containing polymer film with excellent stability
CN109661598A (en) * 2016-09-02 2019-04-19 富士胶片株式会社 Containing Fluoropher thin film and back light unit
WO2022036511A1 (en) * 2020-08-17 2022-02-24 深圳市汇顶科技股份有限公司 Infrared bandpass optical filter and sensor system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525377A (en) * 1993-04-21 1996-06-11 U.S. Philips Corporation Method of manufacturing encapsulated doped particles
JP2002525394A (en) * 1998-09-18 2002-08-13 マサチューセッツ インスティテュート オブ テクノロジー Water-soluble fluorescent semiconductor nanocrystals
JP2003261869A (en) * 2002-03-11 2003-09-19 Showa Denko Kk Luminous particles, manufacturing method therefor and use of the luminous particles
JP2011202148A (en) * 2010-03-03 2011-10-13 Sharp Corp Wavelength converting member, light emitting device and image display device, and process for producing wavelength converting member
WO2011155614A1 (en) * 2010-06-11 2011-12-15 旭硝子株式会社 Translucent laminate and solar cell module using same
WO2012026362A1 (en) * 2010-08-25 2012-03-01 コニカミノルタホールディングス株式会社 Method for manufacturing gas barrier film, and organic photoelectric conversion element
JP2013069728A (en) * 2011-09-20 2013-04-18 Konica Minolta Advanced Layers Inc Wavelength conversion film for solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525377A (en) * 1993-04-21 1996-06-11 U.S. Philips Corporation Method of manufacturing encapsulated doped particles
JP2002525394A (en) * 1998-09-18 2002-08-13 マサチューセッツ インスティテュート オブ テクノロジー Water-soluble fluorescent semiconductor nanocrystals
JP2003261869A (en) * 2002-03-11 2003-09-19 Showa Denko Kk Luminous particles, manufacturing method therefor and use of the luminous particles
JP2011202148A (en) * 2010-03-03 2011-10-13 Sharp Corp Wavelength converting member, light emitting device and image display device, and process for producing wavelength converting member
WO2011155614A1 (en) * 2010-06-11 2011-12-15 旭硝子株式会社 Translucent laminate and solar cell module using same
WO2012026362A1 (en) * 2010-08-25 2012-03-01 コニカミノルタホールディングス株式会社 Method for manufacturing gas barrier film, and organic photoelectric conversion element
JP2013069728A (en) * 2011-09-20 2013-04-18 Konica Minolta Advanced Layers Inc Wavelength conversion film for solar cell

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017534894A (en) * 2014-08-14 2017-11-24 エルジー・ケム・リミテッド Luminous film (LIGHT-EMITTING FILM)
JP2016167041A (en) * 2015-03-03 2016-09-15 大日本印刷株式会社 High color rendering liquid crystal display device and color filter
KR101917051B1 (en) 2015-12-23 2018-11-08 아반타마 아게 Luminescent component
JP2018506625A (en) * 2015-12-23 2018-03-08 アファンタマ アクチェンゲゼルシャフト Light emitting parts
JP2019502955A (en) * 2015-12-23 2019-01-31 アファンタマ アクチェンゲゼルシャフト Luminescent components
US10326058B2 (en) 2015-12-23 2019-06-18 Avantama Ag Luminescent component
US10941338B2 (en) 2016-02-12 2021-03-09 Nanoco Technologies Ltd. Highly stable quantum DOT-containing polymer films
JP2020169322A (en) * 2016-02-12 2020-10-15 ナノコ テクノロジーズ リミテッド Highly stable quantum dot-containing polymer films
JP2019506510A (en) * 2016-02-12 2019-03-07 ナノコ テクノロジーズ リミテッド Quantum dot-containing polymer film with excellent stability
WO2017167779A1 (en) 2016-03-31 2017-10-05 Merck Patent Gmbh A color conversion sheet and an optical device
CN109661598A (en) * 2016-09-02 2019-04-19 富士胶片株式会社 Containing Fluoropher thin film and back light unit
WO2018092705A1 (en) * 2016-11-16 2018-05-24 Nsマテリアルズ株式会社 Quantum dot-containing member, sheet member, backlight device and display device
JP2020181196A (en) * 2016-11-16 2020-11-05 Nsマテリアルズ株式会社 Quantum dot-containing member, sheet member, backlight device, and display device
CN110268287A (en) * 2016-11-16 2019-09-20 Ns材料株式会社 Component, sheet member, back lighting device and display device containing quantum dot
JPWO2018092705A1 (en) * 2016-11-16 2019-10-17 Nsマテリアルズ株式会社 Quantum dot-containing member, sheet member, backlight device, and display device
JP2018101000A (en) * 2016-12-19 2018-06-28 富士フイルム株式会社 Wavelength conversion film and method for manufacturing wavelength conversion film
WO2018116882A1 (en) * 2016-12-19 2018-06-28 富士フイルム株式会社 Wavelength conversion film and method for producing wavelength conversion film
WO2018114761A1 (en) 2016-12-20 2018-06-28 Merck Patent Gmbh Optical medium and an optical device
JP2018106097A (en) * 2016-12-28 2018-07-05 大日本印刷株式会社 Optical wavelength conversion member, backlight device, and image display device
WO2018212268A1 (en) * 2017-05-17 2018-11-22 住友化学株式会社 Film, production method for composition, production method for cured product, and production method for film
CN110621745A (en) * 2017-05-17 2019-12-27 住友化学株式会社 Thin film, method for producing composition, method for producing cured product, and method for producing thin film
CN110621745B (en) * 2017-05-17 2022-03-29 住友化学株式会社 Thin film, method for producing composition, method for producing cured product, and method for producing thin film
WO2022036511A1 (en) * 2020-08-17 2022-02-24 深圳市汇顶科技股份有限公司 Infrared bandpass optical filter and sensor system

Also Published As

Publication number Publication date
JPWO2014208356A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
WO2014208356A1 (en) Optical film and light emitting device
JP6314981B2 (en) Optical material, optical film and light emitting device
US11824146B2 (en) Quantum dot encapsulation techniques
US10985296B2 (en) Quantum dot based color conversion layer in display devices
CN113840895B (en) Quaternary nanostructure based on bright silver
TWI565651B (en) Optical materials, optical films and light-emitting devices
US10329479B2 (en) Surface-modified nanoparticles
JP2016172829A (en) Coated semiconductor nanoparticle and method for producing the same
KR20160132903A (en) Composite nanoparticles including a thiol-substituted silicone
WO2014208478A1 (en) Light-emitting material, method for producing same, optical film, and light-emitting device
JP6652053B2 (en) Semiconductor nanoparticle assembly and method of manufacturing the same
JP2015127362A (en) Light emission body particle, method of producing light emission body particle, and optical film and optical device using light emission body particle
JP2015153887A (en) Optical film, manufacturing method of the same, and light-emitting device having the optical film
CN113710773A (en) Method for improving quantum yield of indium phosphide quantum dots
Chang et al. Synthesis of SiO2-coated CdSe/ZnS quantum dots using various dispersants in the photoresist for color-conversion micro-LED displays
CN113330095A (en) Thin shell quantum dots for enhanced blue light absorption
JP2015151456A (en) Light-emitting particle, production method of light-emitting particle, optical member, method for manufacturing optical member, and optical device
JP2016114846A (en) Transparent substrate sheet and method for displaying projection type image using the same
JP2020008713A (en) Wavelength conversion film, and color filter and liquid crystal display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14816874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523976

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14816874

Country of ref document: EP

Kind code of ref document: A1