WO2015001691A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2015001691A1
WO2015001691A1 PCT/JP2014/001808 JP2014001808W WO2015001691A1 WO 2015001691 A1 WO2015001691 A1 WO 2015001691A1 JP 2014001808 W JP2014001808 W JP 2014001808W WO 2015001691 A1 WO2015001691 A1 WO 2015001691A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
light emitting
cathode
anode
Prior art date
Application number
PCT/JP2014/001808
Other languages
French (fr)
Japanese (ja)
Inventor
松本 敏男
Original Assignee
エイソンテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイソンテクノロジー株式会社 filed Critical エイソンテクノロジー株式会社
Priority to JP2015525007A priority Critical patent/JPWO2015001691A1/en
Publication of WO2015001691A1 publication Critical patent/WO2015001691A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Definitions

  • the present invention relates to an organic electroluminescent element (hereinafter sometimes abbreviated as “organic EL element”) used for a planar light source and a display element.
  • organic EL element organic electroluminescent element
  • an organic EL element having a light emitting layer made of an organic compound between an anode and a cathode, which are opposed to each other has attracted attention as a means for realizing a large-area display element driven at a low voltage.
  • Tang et al. Of Eastman Kodak Company has adopted a structure in which organic compounds having different carrier transport properties are stacked, and holes and electrons are injected in a balanced manner from the anode and the cathode, respectively, in order to increase the efficiency of the device.
  • the structure of the organic EL element has been developed on the basis of the structure shown by Tang et al. As described above. Recently, for example, as shown in Patent Document 7 and Patent Document 8, a structure sandwiched between electrodes. An organic EL element having a structure in which a plurality of light emitting units are stacked so that can be connected in series has been developed. This technology has been attracting attention as a technology that enables the organic EL device to dramatically extend its life, achieve high brightness required for light sources and illumination, and emit light uniformly over a large area. This is because the structure of the organic EL element of Tang et al. Which requires a large current despite the low voltage cannot satisfy these requirements.
  • an organic EL element having a series type (tandem type) structure, and ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) is provided in the connection layer portion of each unit.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • a plurality of light emitting units can be connected in series by using a charge generation layer with low conductivity instead of the transparent electrode material as described above (Patent Document 8).
  • Patent Document 8 In this organic EL element, only the region where the cathode and the anode intersect as in the conventional organic EL element emits light, and the sputtering process, which is essential for forming the transparent electrode, is no longer necessary.
  • Non-Patent Document 1 It is recognized as the most useful among the structures of organic EL elements, and has been widely known as a multiphoton organic EL element.
  • the reason for being referred to as multiphoton is that if the number of light emitting units is set to a predetermined number or more, the number of photons exceeding the number of electrons passing through the organic EL element can be generated (Non-Patent Document 1).
  • this multi-photon organic EL element has a problem that it requires several times the manufacturing process time as compared with the conventional organic EL element.
  • the series organic EL element is suitable for emitting light over a large area with uniform intensity. This is because, compared with a conventional organic EL element, the voltage V required to obtain the same brightness can be increased by multiplying by the number of units, while the current I is decreased by dividing by the number of units. As a result, the element resistance (ratio of voltage to current: VI -1 ) increases by approximately the square of the number of units, the voltage drop due to the surface resistance of the external electrode can be reduced, and a substantially uniform potential in the surface can be obtained. This is because it can be realized.
  • this potential uniformity (in other words, luminance uniformity) increases as the number of units increases.
  • luminance uniformity increases as the number of units increases.
  • Example 1 of Patent Document 8 there is an example in which a mixed layer of an electron transport material, bathocuproine and metal cesium (Cs), and a laminated structure of V 2 O 5 (vanadium pentoxide) is used as a charge generation layer.
  • metal aluminum (Al) is not used, but it is clear from comparison of the characteristic graphs (FIGS. 21 to 32 and FIGS. 42 to 44) that the metal aluminum is used. Compared with the charge generation layer device using (Al), there was an undesired increase in driving voltage.
  • metal aluminum (Al) needs to be installed in a place separated from the manufacturing chamber for forming a layer made of an organic substance such as a light emitting layer and a hole transport layer in an actual manufacturing process. Therefore, when it is necessary to repeatedly manufacture substantially the same process many times, such as a multi-photon organic EL element having a plurality of light emitting units, a plurality of vapor deposition chambers are installed and what is between them. There is a need to go back and forth, and the process of forming the charge generation layer and the layer in contact therewith becomes complicated, raising the problem of increasing the product price.
  • the present invention aims to make it possible to produce a laminate of a large number of units efficiently and at a low cost by using metal aluminum (Al) having a deposition temperature exceeding 1200 ° C.
  • the present invention provides an organic electroluminescent device in which an intermediate layer (charge generation layer) having a new structure and made only of an organic material is used without being used. According to the present invention, by introducing the intermediate layer (charge generation layer) of this new structure, it is possible to efficiently produce a laminate of a large number of units at low cost while avoiding an undesirable increase in driving voltage.
  • the present inventor does not use metal aluminum (Al), but is C60 of the organic fullerene compound, and an electron donating organic substance having an electron donating function for C60.
  • the present invention The anode, A cathode, A plurality of light emitting units including a light emitting layer located between the anode and the cathode; An intermediate layer located between the plurality of light emitting units; Have The intermediate layer is composed of a mixed layer of a fullerene compound and an electron-donating organic substance having a function of donating electrons to the fullerene compound; A stack type (multi-photon type) organic electroluminescent element characterized by the above is provided.
  • the fullerene compound is preferably C60, and the electron-donating organic substance is AOB (acidine orange base). Although preferable, it is not limited to these.
  • the intermediate layer has a two-layer structure adjacent to each other,
  • the anode side of the two-layer structure is composed of a mixed layer of C60 and AOB (acidine orange base),
  • the cathode side of the two-layer structure has the general formula:
  • Ar 1 , Ar 2 and Ar 3 each independently represents an aromatic hydrocarbon group which may have a substituent
  • Ar 1 , Ar 2 and Ar 3 are preferably used.
  • the present invention more preferably, The anode, A cathode, A plurality of light emitting units including a light emitting layer located between the anode and the cathode; An intermediate layer located between the plurality of light emitting units; Have The intermediate layer is composed of a mixed layer of a fullerene compound and an electron-donating organic substance having a function of donating electrons to the fullerene compound; Adjacent to the cathode side of the mixed layer, the following general formula:
  • Ar 1 , Ar 2 and Ar 3 each independently represents an aromatic hydrocarbon group which may have a substituent
  • a layer formed of an arylamine compound represented by Having A stack type (multi-photon type) organic electroluminescent device characterized by the above is provided.
  • the role of the intermediate layer is to inject the same amount of electrons into adjacent light-emitting units into the anode side unit from the intermediate layer and holes into the cathode side unit. is there.
  • each light emitting unit is equivalently connected in series, and an operation expected as a stack type element can be obtained.
  • the light emission efficiency is lowered when there is a substantial voltage rise. Therefore, the above-described electron and hole injection are required to have no energy barrier with potential consumption.
  • the stack type can be formed without causing an undesirable voltage rise without using metal aluminum (Al) having a deposition temperature exceeding 1200 ° C., which is essential for the structure of a conventional stack type organic EL device. Since the organic EL element can be produced, the product cost can be reduced while maintaining the performance.
  • Al metal aluminum
  • FIG. 3 is a schematic cross-sectional view showing a laminated structure of an organic EL element produced in Example 1.
  • FIG. 3 is a schematic cross-sectional view showing a laminated structure of an organic EL element produced in Example 2.
  • FIG. 6 is a schematic cross-sectional view showing a laminated structure of an organic EL element produced in Comparative Example 1.
  • FIG. 3 is a graph plotting voltage (V) -luminance (cd / m 2 ) characteristics of an organic EL element implemented in the present invention.
  • the organic EL element of the present embodiment includes an anode, a cathode, a plurality of light emitting units including a light emitting layer, which are positioned between the anode and the cathode, and an intermediate layer positioned between the plurality of light emitting units.
  • the intermediate layer has a two-layer structure adjacent to each other, and the two-layer structure is composed of a mixed layer of C60 and AOB (acidine orange base) from the anode side, and the cathode side has the following general formula:
  • AOB acidine orange base
  • the organic EL element 1 of the present embodiment includes n light emitting units (n is an integer of 2 or more), for example, an anode 2 formed in order on a glass substrate 1 and
  • the first light emitting unit 3-1, the first intermediate layer 4-1, the second light emitting unit 3-2, the second intermediate layer 4-2, and the (n-1) th intermediate layer It has a structure including 4- (n ⁇ 1), an nth light emitting unit 3-n, and a cathode 14.
  • a layered structure of an nth intermediate layer 4-n and a hole injection layer which will be described later, may be added as a layer in contact with the cathode to function as a buffer layer that reduces damage during cathode film formation. Good.
  • Each light emitting unit can adopt various structures as in the case of conventionally known organic EL elements.
  • the configuration of the light emitting unit is not limited to this, but in the structure shown in FIG. 2 (that is, in a portion sandwiched between the anode 2 and the cathode 5 of a normal organic EL element), hole injection is performed.
  • a typical example is a light-emitting unit comprising a layer 6, a hole transport layer 7, a light-emitting layer 8, and an electron transport (injection) layer 9.
  • the hole transporting compound used for the hole injection layer and the hole transport layer of the light emitting unit has the following general formula:
  • Ar 1 , Ar 2 and Ar 3 each independently represents an aromatic hydrocarbon group which may have a substituent) are preferable.
  • Examples of such arylamine compounds are not particularly limited, but include JP-A-6-25659, JP-A-6-203963, JP-A-6-215874, JP-A-7-145116, Japanese Unexamined Patent Publication No. 7-2224012, Japanese Unexamined Patent Publication No. 157473, Japanese Unexamined Patent Publication No. 8-48656, Japanese Unexamined Patent Publication No. 7-126226, Japanese Unexamined Patent Publication No. 7-188130, Japanese Unexamined Patent Publication No. 8-40995, Japanese Unexamined Patent Publication No. 8- The arylamine compounds disclosed in Japanese Patent No. 40996, Japanese Patent Application Laid-Open No. 8-40997, Japanese Patent Application Laid-Open No.
  • the arylamine compound and the electron-accepting compound (Lewis acid compound) are preferably used as a mixture, and the electron-accepting compound (Lewis acid compound) is not particularly limited.
  • the molar ratio of the Lewis acid compound is preferably 0.01 or more with respect to the arylamine compound.
  • the “light emitting layer” may be a conventional light emitting layer used in a conventional organic EL device, and the light emitting material constituting the light emitting layer is not particularly limited, and various known fluorescent materials or phosphorescent materials are known. Any can be used. For example, the following formula:
  • the “electron transport (injection) layer” may be formed using an electron transport material constituting the electron transport layer of the conventional organic EL device, and is not particularly limited.
  • an electron transport material constituting the electron transport layer of the conventional organic EL device
  • KLET02 manufactured by Chemipro Kasei Co., Ltd. Etc.
  • the physical properties of the electron transporting organic compound manufactured by Chemipro Kasei Co., Ltd. are as follows (from Chemipro Kasei Co., Ltd. HP. Http://www.chemipro.co.jp/Yuki#EL/Products) .html).
  • an electron donating compound (Lewis base compound) is often used by mixing with the electron transporting substance.
  • the electron donating compound As the electron donating compound (Lewis base compound), As disclosed in Kaihei 10-270171 and JP-A-2001-102175, it is preferably made of one or more metals selected from alkali metals, alkaline earth metals, and rare earth metals.
  • the molar ratio of the electron donating compound in the electron injection layer is preferably 0.1 to 10 with respect to the organic compound.
  • the material constituting the “cathode” generally a metal having a small work function, an alloy containing them, a metal oxide, or the like is used.
  • simple metals such as alkaline metals such as Li and Cs, alkaline earth metals such as Mg and Ca, rare earth metals such as Eu, or alloys of these metals with Al, Ag, In, etc. Is mentioned.
  • the value of the work function or the like is limited if the cathode is a conductive material.
  • an electrode material having a high work function such as an ITO (indium tin oxide) transparent electrode, can be used as the cathode.
  • the material constituting the “anode” is not particularly limited, and for example, a transparent conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide) can be used.
  • a transparent conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide) can be used.
  • the anode is An organic EL element having a structure in which light is extracted not from the substrate side but from the film formation surface side can be formed by using a metal and forming the cathode as a transparent electrode.
  • a light emitting element having a layer structure corresponding to the light emitting unit shown in FIG. 2 was produced on a glass substrate (see FIG. 3).
  • the details of each layer were as follows. 1) Anode ITO (Indium Tin Oxide), 110 nm 2) Hole injection layer 4,4′-bis [N- (2-naphthyl) -N-phenyl-amino] biphenyl (hereinafter abbreviated as NPB), which is an arylamine compound, and molybdenum trioxide, which is a Lewis acid compound ( MoO 3 ) co-deposited layer (hereinafter referred to as NPB: MoO 3 ), 10 nm (the mixing ratio is 1: 1 by weight) 3) Hole transport layer NPB, 50nm 4) Light-emitting layer Tris (8-quinolinolato) aluminum complex (hereinafter abbreviated as Alq3), 30 nm 5) Electron injection layer Co
  • Example 1 As the organic EL element of Example 1, the light emitting element having the layer structure shown in FIG. 4 was produced on a glass substrate. The details of each layer were as follows. 1) Anode ITO (Indium Tin Oxide), 110 nm 2) Hole injection layer NPB: MoO, 10 nm (equivalent to Reference Example 1) 3) Hole transport layer NPB, 50 nm (equivalent to Reference Example 1) 4) Light emitting layer Alq3, 30 nm (equivalent to Reference Example 1) 5) Electron injection layer Cs: KLET02, 20 nm 6) Intermediate layer 1 A mixed layer of C60, which is a fullerene compound, and AOB (acidic orange base) having an electron donating property to C60 (hereinafter referred to as C60: AOB), 2 nm (Note that the mixing ratio of AOB is 5 with respect to C60. Weight percent) 7) Intermediate layer 2 An arylamine compound, the following formula:
  • the organic EL element of Example 1 has no voltage loss (voltage increase) in the intermediate layer portion and exhibits the same characteristics as those of Reference Example 1, the following structure is obtained.
  • an organic EL element having properties equivalent to those of the multiphoton organic EL element can be obtained.
  • Example 2 As the organic EL element of Example 2, a light emitting element having the layer structure shown in FIG. 5 was produced on a glass substrate. The details of each layer were as follows. 1) Anode ITO (Indium Tin Oxide), 110 nm 2) Hole injection layer NPB: MoO, 10 nm (equivalent to Reference Example 1) 3) Hole transport layer NPB, 50 nm (equivalent to Reference Example 1) 4) Light emitting layer Alq3, 30 nm (equivalent to Reference Example 1) 5) Electron injection layer Cs: KLET02, 20 nm (equivalent to Reference Example 1) 6) Intermediate layer (equivalent to Example 1) C60: AOB, 2 nm (The mixing ratio of AOB is 5% by weight with respect to C60) 7) Hole injection layer (equivalent to Example 1) NPB: MoO, 20nm 8) Cathode Al, 80 nm
  • a light emitting element having the layer structure shown in FIG. 6 was produced on a glass substrate.
  • the details of each layer were as follows. 1) Anode ITO (Indium Tin Oxide), 110 nm 2) Hole injection layer NPB: MoO, 10 nm (equivalent to Reference Example 1) 3) Hole transport layer NPB, 50 nm (equivalent to Reference Example 1) 4) Light emitting layer Alq3, 30 nm (equivalent to Reference Example 1) 5) Electron injection layer Cs: KLET02, 20 nm (equivalent to Reference Example 1) 6) Hole injection layer (equivalent to Example 1) NPB: MoO, 20nm 7) Cathode Al, 80 nm
  • FIG. 7 is a graph in which voltage (V) ⁇ luminance L (cd / m 2 ) of each light-emitting element manufactured in Reference Example 1, Example 1, Example 2, and Comparative Example 1 is plotted.
  • the light emitting devices of Examples 1 and 2 have a lower driving voltage than the light emitting device of the comparative example without the intermediate layer of the present invention, and are substantially the same as the light emitting device of the reference example. It was found to have properties. Further, comparing the characteristics of the light emitting devices of Example 1 and Example 2, the light emitting device of Example 1 having a two-layer structure having an arylamine layer in the intermediate layer can be driven at a lower voltage. It was shown that.
  • the organic EL device of the present invention as described above can be used in a wide range of product fields that require light generation, such as various light sources and image display devices that are required to have low energy consumption.
  • Electron transport (injection) layer 60, 61 ... hole injection layer, 70, 71 ... hole transport layer, 80, 81 ... light emitting layer, 90, 91 ... electron transport (injection) layer, 101: Intermediate layer 1, 102: Intermediate layer 2

Abstract

With the aim of making possible efficient production at low cost of a laminate having a multitude of units, there is provided an organic electroluminescent element into which are introduced intermediate layers (charge generating layers) of novel structure composed of organic material only, without the use of the metal aluminum (Al), which has a vapor deposition temperature in excess of 1,200°C. The present invention pertains to an organic electroluminescent element of stack type (multi-photon type), characterized by having an anode, a cathode, a plurality of light-emitting units situated between the anode and the cathode, and including a light-emitting layer, and intermediate layers situated between the plurality of light-emitting units, the intermediate layers being constituted by mixed layers of a fullerene compound, and an electron-donating organic material having the function of donating electrons to the fullerene compound.

Description

有機エレクトロルミネッセント素子Organic electroluminescent device
 本発明は、平面光源や表示素子に利用される有機エレクトロルミネッセント素子(以下、「有機EL素子」と略記することがある。)に関する。 The present invention relates to an organic electroluminescent element (hereinafter sometimes abbreviated as “organic EL element”) used for a planar light source and a display element.
 対向する陽極と陰極との間に、有機化合物からなる発光層を有する有機EL素子は、近年、低電圧駆動の大面積表示素子を実現するものとして注目されている。イーストマンコダック社のTangらは、素子の高効率化のため、キャリア輸送性の異なる有機化合物を積層し、ホール及び電子がそれぞれ陽極及び陰極よりバランスよく注入される構造を採用し、しかも陰極と陽極に挟まれた有機層の層厚を200nm以下とすることで、10V以下の印加電圧で1000cd/m2と外部量子効率1%の実用化に十分な高輝度及び高効率を得ることに成功した。 In recent years, an organic EL element having a light emitting layer made of an organic compound between an anode and a cathode, which are opposed to each other, has attracted attention as a means for realizing a large-area display element driven at a low voltage. Tang et al. Of Eastman Kodak Company has adopted a structure in which organic compounds having different carrier transport properties are stacked, and holes and electrons are injected in a balanced manner from the anode and the cathode, respectively, in order to increase the efficiency of the device. By making the thickness of the organic layer sandwiched between the anodes 200 nm or less, we succeeded in obtaining high luminance and high efficiency sufficient for practical application of 1000 cd / m 2 and an external quantum efficiency of 1% at an applied voltage of 10 V or less. did.
 例えば特許文献1~特許文献6によれば、陰極と陽極に挟まれた有機層全体の膜厚を1μm以下とすることで、より低い印加電圧によって発光できるデバイスを提供できるとされており、好ましくは前記膜厚を100~500nmの範囲とすれば、25V以下の印加電圧で発光を得るに有用な電場(E=Vcm-1)が得られるとされている。 For example, according to Patent Documents 1 to 6, it is said that a device capable of emitting light with a lower applied voltage can be provided by setting the film thickness of the entire organic layer sandwiched between the cathode and the anode to 1 μm or less. If the film thickness is in the range of 100 to 500 nm, an electric field (E = Vcm −1 ) useful for obtaining light emission with an applied voltage of 25 V or less is obtained.
 有機EL素子の構造は、上記のようなTangらが示した構造を基礎として発展してきたが、最近では、例えば特許文献7及び特許文献8に示されているように、電極に挟まれた構造を一つの単位(発光ユニット)とし、この発光ユニットを直列に接続し得るように複数積層した構造を有する有機EL素子が開発されている。この技術は、有機EL素子の、飛躍的な長寿命化、光源や照明に要求される高輝度の実現、及び大面積の均一発光、を可能とする技術として注目されている。低電圧であるにもかかわらず大電流を必要とするTangらの有機EL素子の構造では、これらの要求を満たすことができなかったからである。 The structure of the organic EL element has been developed on the basis of the structure shown by Tang et al. As described above. Recently, for example, as shown in Patent Document 7 and Patent Document 8, a structure sandwiched between electrodes. An organic EL element having a structure in which a plurality of light emitting units are stacked so that can be connected in series has been developed. This technology has been attracting attention as a technology that enables the organic EL device to dramatically extend its life, achieve high brightness required for light sources and illumination, and emit light uniformly over a large area. This is because the structure of the organic EL element of Tang et al. Which requires a large current despite the low voltage cannot satisfy these requirements.
 これに対し、本願の発明者は、直列型(タンデム型)構造を有する有機EL素子を考案及び実現し、各ユニットの接続層部分には、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)のような透明電極材料ではなく、導電性の低い電荷発生層を使用することにより複数の発光ユニットの直列接続を可能とした(特許文献8)。この有機EL素子では、従来型有機EL素子と同様に陰極と陽極の交差した領域のみが発光し、さらに透明電極の成膜に必須であったスパッタリング工程も不要となるため、現在では、直列型の有機EL素子の構造のなかでも最も有用と認識され、マルチフォトン有機EL素子と呼称されて広く知られるに至っている。マルチフォトンと呼称される理由は、発光ユニットの数を所定以上とすれば、有機EL素子を通過する電子数を上回る光子数を発生させることができるからである(非特許文献1)。 In contrast, the inventor of the present application has devised and realized an organic EL element having a series type (tandem type) structure, and ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) is provided in the connection layer portion of each unit. A plurality of light emitting units can be connected in series by using a charge generation layer with low conductivity instead of the transparent electrode material as described above (Patent Document 8). In this organic EL element, only the region where the cathode and the anode intersect as in the conventional organic EL element emits light, and the sputtering process, which is essential for forming the transparent electrode, is no longer necessary. It is recognized as the most useful among the structures of organic EL elements, and has been widely known as a multiphoton organic EL element. The reason for being referred to as multiphoton is that if the number of light emitting units is set to a predetermined number or more, the number of photons exceeding the number of electrons passing through the organic EL element can be generated (Non-Patent Document 1).
 しかしながら、このマルチフォトン有機EL素子は、従来型有機EL素子に比べて、数倍の製造工程時間が必要になるという問題があった。 However, this multi-photon organic EL element has a problem that it requires several times the manufacturing process time as compared with the conventional organic EL element.
 前述のように、直列型有機EL素子は、大面積を均一の強度で発光させるのに適している。なぜなら、従来型有機EL素子と比べた場合、同輝度を得るために必要な電圧Vをほぼユニット数を乗じた分大きくすることができ、逆に電流Iはほぼユニット数で除した分だけ小さくできるため、結果、素子抵抗(電圧と電流の比:VI-1)がユニット数の略二乗分だけ上昇して、外部電極の面抵抗による電圧降下が低減でき、面内における略均一な電位を実現できるからである。 As described above, the series organic EL element is suitable for emitting light over a large area with uniform intensity. This is because, compared with a conventional organic EL element, the voltage V required to obtain the same brightness can be increased by multiplying by the number of units, while the current I is decreased by dividing by the number of units. As a result, the element resistance (ratio of voltage to current: VI -1 ) increases by approximately the square of the number of units, the voltage drop due to the surface resistance of the external electrode can be reduced, and a substantially uniform potential in the surface can be obtained. This is because it can be realized.
 この電位の均一性(換言すると輝度の均一性)は、ユニット数を増やせば増やすほど向上することは言うまでもない。本発明者のこれまでの知見によれば、照明に必要な5000cdm-2以上の輝度が必要な場合、例えば対角15インチ以上の発光面積となると、少なくとも15ユニット程度は必要と考えられる。これほどの多数のユニットの積層体を効率よく低コストで生産するのはほぼ不可能である。 Needless to say, this potential uniformity (in other words, luminance uniformity) increases as the number of units increases. According to the present inventor's previous knowledge, when a luminance of 5000 cdm −2 or more necessary for illumination is required, for example, when the emission area is 15 inches or more diagonal, at least about 15 units are considered necessary. It is almost impossible to produce such a large number of unit laminates efficiently and at low cost.
 このような多数のユニットの積層体を効率よく低コストで生産するのが不可能な理由としては、本発明者らが、特許文献8における実施例6に記載しているように、ホール電荷と電子電荷を生成するために設けられる電荷発生層の作製に、蒸着温度が1200℃を超える金属アルミニウム(Al)が必須であった点が挙げられる。 The reason why it is impossible to produce such a multi-unit laminate efficiently and at low cost is that the present inventors have described the hole charge and the hole charge as described in Example 6 of Patent Document 8. The point that metal aluminum (Al) whose vapor deposition temperature exceeds 1200 degreeC was essential for preparation of the charge generation layer provided in order to produce | generate an electronic charge is mentioned.
 また、特許文献8の実施例1には、電子輸送材料であるバソクプロインと金属セシウム(Cs)の混合層とV25(5酸化バナジウム)の積層構造を電荷発生層として用いている例が記載されており、この構造の場合には金属アルミニウム(Al)は使用されないが、記載されている特性グラフ(図21~図32と図42~図44)を比較すると明らかなように、金属アルミニウム(Al)を使用した電荷発生層の素子と比較して望ましくない駆動電圧の上昇の問題があった。 In Example 1 of Patent Document 8, there is an example in which a mixed layer of an electron transport material, bathocuproine and metal cesium (Cs), and a laminated structure of V 2 O 5 (vanadium pentoxide) is used as a charge generation layer. In the case of this structure, metal aluminum (Al) is not used, but it is clear from comparison of the characteristic graphs (FIGS. 21 to 32 and FIGS. 42 to 44) that the metal aluminum is used. Compared with the charge generation layer device using (Al), there was an undesired increase in driving voltage.
 金属アルミニウム(Al)の成膜は、実際の製造プロセスにおいて、発光層や正孔輸送層等の有機物からなる層の形成のための製造チャンバーとは隔離した場所に設置する必要がある。したがって、複数の発光ユニットを有するマルチフォトン有機EL素子のように、略同一の工程を何度も繰り返して製造しなければならない場合には、複数の蒸着チャンバーを設置して、かつ、その間を何度も行き来する必要が生じ、電荷発生層、及びそれに接する層を形成する工程が煩雑になり、製品価格を押し上げてしまうという問題がある。 The film formation of metal aluminum (Al) needs to be installed in a place separated from the manufacturing chamber for forming a layer made of an organic substance such as a light emitting layer and a hole transport layer in an actual manufacturing process. Therefore, when it is necessary to repeatedly manufacture substantially the same process many times, such as a multi-photon organic EL element having a plurality of light emitting units, a plurality of vapor deposition chambers are installed and what is between them. There is a need to go back and forth, and the process of forming the charge generation layer and the layer in contact therewith becomes complicated, raising the problem of increasing the product price.
特開昭59-194393号公報JP 59-194393 A 特開昭63-264692号公報JP-A 63-264692 特開平02-15595号公報Japanese Patent Laid-Open No. 02-15595 米国特許第4,539,507号明細書US Pat. No. 4,539,507 米国特許第4,769,292号明細書U.S. Pat. No. 4,769,292 米国特許第4,885,211号明細書US Pat. No. 4,885,211 特開平11-329748号公報Japanese Patent Laid-Open No. 11-329748 特許第3933591号明細書Japanese Patent No. 3933591
 以上のような従来技術の問題点に鑑み、本発明は、多数のユニットの積層体を効率よく低コストで生産可能とすることを目的として、蒸着温度が1200℃を超える金属アルミニウム(Al)を使用せずに、有機物のみからなる、新しい構造の中間層(電荷発生層)を導入した有機エレクトロルミネッセント素子を提供するものである。本発明によれば、この新しい構造の中間層(電荷発生層)の導入により、望ましくない駆動電圧の上昇を回避しつつ、多数のユニットの積層体を効率よく低コストで生産可能となる。 In view of the problems of the prior art as described above, the present invention aims to make it possible to produce a laminate of a large number of units efficiently and at a low cost by using metal aluminum (Al) having a deposition temperature exceeding 1200 ° C. The present invention provides an organic electroluminescent device in which an intermediate layer (charge generation layer) having a new structure and made only of an organic material is used without being used. According to the present invention, by introducing the intermediate layer (charge generation layer) of this new structure, it is possible to efficiently produce a laminate of a large number of units at low cost while avoiding an undesirable increase in driving voltage.
 上記のように、本発明者は、金属アルミニウム(Al)を使用せずに、有機物であるフラーレン化合物のC60と、C60に対する電子供与機能を有する電子供与性有機物である、下記式:
Figure JPOXMLDOC01-appb-C000001
As described above, the present inventor does not use metal aluminum (Al), but is C60 of the organic fullerene compound, and an electron donating organic substance having an electron donating function for C60.
Figure JPOXMLDOC01-appb-C000001
で示されるAOB(acridine orange base)と、を混合した層を含む中間層(電荷発生層)を新規に導入することにより、望ましくない駆動電圧の上昇を回避することに成功し、本発明を完成するに至った。 By successfully introducing an intermediate layer (charge generation layer) including a mixed layer of AOB (acidine orange) base indicated by the following, an undesired increase in driving voltage was successfully achieved and the present invention was completed. It came to do.
 即ち、本発明は、
 陽極と、
 陰極と、
 前記陽極と前記陰極との間に位置する、発光層を含む複数の発光ユニットと、
 前記複数の発光ユニットの間に位置する中間層と、
を有し、
 前記中間層が、フラーレン化合物と、該フラーレン化合物に対して電子を供与する機能を有する電子供与性有機物と、の混合層で構成されていること、
を特徴とするスタック型(マルチフォトン型)の有機エレクトロルミネッセント素子
を提供する。
That is, the present invention
The anode,
A cathode,
A plurality of light emitting units including a light emitting layer located between the anode and the cathode;
An intermediate layer located between the plurality of light emitting units;
Have
The intermediate layer is composed of a mixed layer of a fullerene compound and an electron-donating organic substance having a function of donating electrons to the fullerene compound;
A stack type (multi-photon type) organic electroluminescent element characterized by the above is provided.
 上記のような構成を有する本発明の有機エレクトロルミネッセント素子においては、特に、前記フラーレン化合物が、C60であることが好ましく、前記電子供与性有機物が、AOB(acridine orange base)であることが好ましいが、これらに限定されるものではない。 In the organic electroluminescent device of the present invention having the above-described configuration, in particular, the fullerene compound is preferably C60, and the electron-donating organic substance is AOB (acidine orange base). Although preferable, it is not limited to these.
 また、上記のような構成を有する本発明の有機エレクトロルミネッセント素子においては、
 前記中間層が互いに隣接する2層構造からなり、
 前記2層構造のうちの陽極側がC60とAOB(acridine orange base)の混合層で構成されており、
 前記2層構造のうちの陰極側が一般式:
Figure JPOXMLDOC01-appb-C000002
In the organic electroluminescent element of the present invention having the above-described configuration,
The intermediate layer has a two-layer structure adjacent to each other,
The anode side of the two-layer structure is composed of a mixed layer of C60 and AOB (acidine orange base),
The cathode side of the two-layer structure has the general formula:
Figure JPOXMLDOC01-appb-C000002
(式中、Ar1、Ar2及びAr3は、それぞれ独立して置換基を有してよい芳香族炭化水素基を表わす。)で表されるアリールアミン化合物で構成されていること、が好ましい。 (In the formula, Ar 1 , Ar 2 and Ar 3 each independently represents an aromatic hydrocarbon group which may have a substituent) are preferably used. .
 即ち、本発明は、更に好ましくは、
 陽極と、
 陰極と、
 前記陽極と前記陰極との間に位置する、発光層を含む複数の発光ユニットと、
 前記複数の発光ユニットの間に位置する中間層と、
を有し、
 前記中間層が、フラーレン化合物と、該フラーレン化合物に対して電子を供与する機能を有する電子供与性有機物と、の混合層で構成されており、
 前記混合層の陰極側に隣接して、下記一般式:
Figure JPOXMLDOC01-appb-C000003
That is, the present invention more preferably,
The anode,
A cathode,
A plurality of light emitting units including a light emitting layer located between the anode and the cathode;
An intermediate layer located between the plurality of light emitting units;
Have
The intermediate layer is composed of a mixed layer of a fullerene compound and an electron-donating organic substance having a function of donating electrons to the fullerene compound;
Adjacent to the cathode side of the mixed layer, the following general formula:
Figure JPOXMLDOC01-appb-C000003
(式中、Ar1、Ar2及びAr3は、それぞれ独立して置換基を有してよい芳香族炭化水素基を表わす。)で表されるアリールアミン化合物からなる層が形成されてなる構成を有すること、
を特徴とするスタック型(マルチフォトン型)有機エレクトロルミネッセント素子を提供する。
(Wherein Ar 1 , Ar 2 and Ar 3 each independently represents an aromatic hydrocarbon group which may have a substituent), a layer formed of an arylamine compound represented by Having
A stack type (multi-photon type) organic electroluminescent device characterized by the above is provided.
 ここで、上記中間層の役割は、隣接する発光ユニットに対し、中間層より陽極側のユニットに対しては電子を、陰極側のユニットに対してはホールを、それぞれ同量ずつ注入することにある。この注入のバランスが保たれることで、各発光ユニットは等価的に直列接続となり、スタック型素子として期待される動作が得られることとなる。 Here, the role of the intermediate layer is to inject the same amount of electrons into adjacent light-emitting units into the anode side unit from the intermediate layer and holes into the cathode side unit. is there. By maintaining the balance of the injection, each light emitting unit is equivalently connected in series, and an operation expected as a stack type element can be obtained.
 また、この中間層による直列接続によって、実質的な電圧上昇があると発光効率が低下するため、前記、電子、ホールの注入には、電位消費をともなうエネルギー障壁が存在しない性質が求められる。 Further, due to the series connection by the intermediate layer, the light emission efficiency is lowered when there is a substantial voltage rise. Therefore, the above-described electron and hole injection are required to have no energy barrier with potential consumption.
 本発明によれば、従来のスタック型有機EL素子の構造に必須であった、蒸着温度が1200℃を超える金属アルミニウム(Al)を使用せずとも、望ましくない電圧上昇を起こすことなく、スタック型有機EL素子を生産することが可能となるので、性能を維持したまま、製品コストの低減が可能となる。 According to the present invention, the stack type can be formed without causing an undesirable voltage rise without using metal aluminum (Al) having a deposition temperature exceeding 1200 ° C., which is essential for the structure of a conventional stack type organic EL device. Since the organic EL element can be produced, the product cost can be reduced while maintaining the performance.
本発明の有機EL素子の典型的な構成を示す概略断面図である。It is a schematic sectional drawing which shows the typical structure of the organic EL element of this invention. 本発明の有機EL素子の発光ユニット部分の典型的な構成を示す概略断面図である。It is a schematic sectional drawing which shows the typical structure of the light emission unit part of the organic EL element of this invention. 基準例(参考例)1で作製した有機EL素子の積層構造を示す、概略断面図である。It is a schematic sectional drawing which shows the laminated structure of the organic EL element produced by the reference example (reference example) 1. FIG. 実施例1で作製した有機EL素子の積層構造を示す、概略断面図である。3 is a schematic cross-sectional view showing a laminated structure of an organic EL element produced in Example 1. FIG. 実施例2で作製した有機EL素子の積層構造を示す、概略断面図である。3 is a schematic cross-sectional view showing a laminated structure of an organic EL element produced in Example 2. FIG. 比較例1で作製した有機EL素子の積層構造を示す、概略断面図である。6 is a schematic cross-sectional view showing a laminated structure of an organic EL element produced in Comparative Example 1. FIG. 本発明で実施した有機EL素子の電圧(V)-輝度(cd/m2)特性をプロットしたグラフである。3 is a graph plotting voltage (V) -luminance (cd / m 2 ) characteristics of an organic EL element implemented in the present invention.
 以下において、本発明の有機EL素子の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では重複する説明は省略することがある。 Hereinafter, representative embodiments of the organic EL device of the present invention will be described in detail, but the present invention is not limited to these. In the following description, overlapping description may be omitted.
 本実施形の有機EL素子は、陽極と、陰極と、前記陽極と前記陰極との間に位置する、発光層を含む複数の発光ユニットと、前記複数の発光ユニットの間に位置する中間層とから構成され、前記中間層が互いに隣接する2層構造からなり、該2層構造は、陽極側から、C60とAOB(acridine orange base)の混合層で構成され、陰極側が下記一般式:
Figure JPOXMLDOC01-appb-C000004
The organic EL element of the present embodiment includes an anode, a cathode, a plurality of light emitting units including a light emitting layer, which are positioned between the anode and the cathode, and an intermediate layer positioned between the plurality of light emitting units. The intermediate layer has a two-layer structure adjacent to each other, and the two-layer structure is composed of a mixed layer of C60 and AOB (acidine orange base) from the anode side, and the cathode side has the following general formula:
Figure JPOXMLDOC01-appb-C000004
(式中、Ar1、Ar2及びAr3は、それぞれ独立して置換基を有してよい芳香族炭化水素基を表わす。)で表されるアリールアミン化合物で構成されている。なお、AOB(acridine orange base)の構造式は、下記式:
Figure JPOXMLDOC01-appb-C000005
で表される。
(Wherein, Ar 1 , Ar 2 and Ar 3 each independently represents an aromatic hydrocarbon group which may have a substituent). The structural formula of AOB (acidine orange base) is the following formula:
Figure JPOXMLDOC01-appb-C000005
It is represented by
 図1に示すように、本実施形態の有機EL素子1は、n個の発光ユニットを含み(nは2以上の整数である。)、例えばガラス基板1上に順に形成された、陽極2と、第1の発光ユニット3-1と、第1の中間層4-1と、第2の発光ユニット3-2と、第2の中間層4-2と、第(n-1)の中間層4-(n-1)と、第nの発光ユニット3-nと、陰極14と、を含む構造を有している。 As shown in FIG. 1, the organic EL element 1 of the present embodiment includes n light emitting units (n is an integer of 2 or more), for example, an anode 2 formed in order on a glass substrate 1 and The first light emitting unit 3-1, the first intermediate layer 4-1, the second light emitting unit 3-2, the second intermediate layer 4-2, and the (n-1) th intermediate layer It has a structure including 4- (n−1), an nth light emitting unit 3-n, and a cathode 14.
 更に、場合により、陰極に接する層として、第nの中間層4-nと、後述するホール注入層の積層構造を付加して、陰極成膜時のダメージを低減するバッファー層として機能させてもよい。 Further, in some cases, a layered structure of an nth intermediate layer 4-n and a hole injection layer, which will be described later, may be added as a layer in contact with the cathode to function as a buffer layer that reduces damage during cathode film formation. Good.
 各発光ユニットは、従来公知の有機EL素子と同様に、種々の構造を採ることができる。例えば、発光ユニットの構成は、これに限定されるものではないが、図2に示した構造において(即ち、通常の有機EL素子の陽極2と陰極5とに挟まれた部分で)、ホール注入層6と、ホール輸送層7と、発光層8と、電子輸送(注入)層9と、からなる発光ユニット等が典型的である。 Each light emitting unit can adopt various structures as in the case of conventionally known organic EL elements. For example, the configuration of the light emitting unit is not limited to this, but in the structure shown in FIG. 2 (that is, in a portion sandwiched between the anode 2 and the cathode 5 of a normal organic EL element), hole injection is performed. A typical example is a light-emitting unit comprising a layer 6, a hole transport layer 7, a light-emitting layer 8, and an electron transport (injection) layer 9.
 発光ユニットのホール注入層やホール輸送層に使用される、ホール輸送性化合物は、下記一般式:
Figure JPOXMLDOC01-appb-C000006
The hole transporting compound used for the hole injection layer and the hole transport layer of the light emitting unit has the following general formula:
Figure JPOXMLDOC01-appb-C000006
(式中、Ar1、Ar2及びAr3は、それぞれ独立して置換基を有してよい芳香族炭化水素基を表わす。)で記載されるアリールアミン化合物であるのが好ましい。 (In the formula, Ar 1 , Ar 2 and Ar 3 each independently represents an aromatic hydrocarbon group which may have a substituent) are preferable.
 このようなアリールアミン化合物の例としては、特に限定はないが、特開平6-25659号公報、特開平6-203963号公報、特開平6-215874号公報、特開平7-145116号公報、特開平7-224012号公報、特開平-157473号公報、特開平8-48656号公報、特開平7-126226号公報、特開平7 -188130号公報、特開平8-40995号公報、特開平8-40996号公報、特開平8-40997号公報、特開平7-126225号公報、特開平7-101911号公報、特開平7-97355号公報に開示されているアリールアミン化合物類が好ましく、例えば、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル、N,N ’-ジフェニル-N,N ’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパンN,N,N’,N’-テトラ-p-トリル-4,4’- ジアミノビフェニル、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N’-ジフェニル-N,N ’-ジ(4-メトキシフェニル)-4,4’-ジアミノビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノジフェニルエーテル、4,4’-ビス(ジフェニルアミノ)クオードリフェニル、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4’-N,N-ジフェニルアミノスチルベンゼンN-フェニルカルバゾール、1,1-ビス(4-ジ-p-トリアミノフェニル)-シクロヘキサン1,1-ビス(4-ジ-p-トリアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)-フェニルメタン、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4’-[4(ジ-p-トリルアミノ)スチリル]スチルベン、N,N,N’,N’-テトラフェニル-4,4’-ジアミノ-ビフェニルN-フェニルカルバゾール、4,4’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ビフェニル、4,4’’-ビス[N-(1-ナフル)-N-フェニル-アミノ]p-ターフェニル、4,4’-ビス[N-(3-アセナフテニル)-N-フェニル-アミノ]ビフェニル、1,5-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ナフタレン、4,4’-ビス[N -(9-アントリル)-N-フェニル-アミノ]ビフェニル、4,4’’-ビス[N -(1-アントリル)-N-フェニル-アミノ]p-ターフェニル、4,4’-ビス[N-(2-フェナントリル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[ N-(8-フルオランテニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(2-ピレニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(2-ペリレニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(1-コロネニル)-N-フェニル-アミノ]ビフェニル、2,6-ビス(ジ-p-トリルアミノ) ナフタレン、2,6-ビス[ジ-(1-ナフチル)アミノ]ナフタレン、2,6-ビス[N-(1-ナフチル)-N-(2-ナフチル)アミノ]ナフタレン、4、4 ’’ -ビス[N ,N-ジ(2-ナフチル)アミノ]ターフェニル、4.4 ’-ビス{N-フェニル-N-[4-(1-ナフチル)フェニル]アミノ}ビフェニル、4,4 ’-ビス[ N-フェニル-N-(2-ピレニル)-アミノ]ビフェニル、2,6-ビス[ N , N-ジ(2-ナフチル)アミノ]フルオレン、4, 4’’-ビス(N,N-ジ-p-トリルアミノ)ターフェニル、ビス(N-1-ナフチル)(N-2-ナフチル)アミン、等が挙げられる。 Examples of such arylamine compounds are not particularly limited, but include JP-A-6-25659, JP-A-6-203963, JP-A-6-215874, JP-A-7-145116, Japanese Unexamined Patent Publication No. 7-2224012, Japanese Unexamined Patent Publication No. 157473, Japanese Unexamined Patent Publication No. 8-48656, Japanese Unexamined Patent Publication No. 7-126226, Japanese Unexamined Patent Publication No. 7-188130, Japanese Unexamined Patent Publication No. 8-40995, Japanese Unexamined Patent Publication No. 8- The arylamine compounds disclosed in Japanese Patent No. 40996, Japanese Patent Application Laid-Open No. 8-40997, Japanese Patent Application Laid-Open No. 7-126225, Japanese Patent Application Laid-Open No. 7-101911, and Japanese Patent Application Laid-Open No. 7-97355 are preferable. , N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N ′ ′-diphenyl-N, N ′ ′-di (3-methyl Ruphenyl) -4,4′-diaminobiphenyl, 2,2-bis (4-di-p-tolylaminophenyl) propane N, N, N ′, N′-tetra-p-tolyl-4,4′- diamino Biphenyl, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N′-diphenyl-N, N ′ ′-di (4-methoxyphenyl) -4,4′-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) quadriphenyl, 4-N, N-diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy -4'-N, N-diphenylaminostilbenzene N-phenylcarbazole, 1,1-bis (4-di-p-triaminophenyl) -cyclohexane 1,1- (4-di-p-triaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) -phenylmethane, N, N, N-tri (p-tolyl) amine, 4- (Di-p-tolylamino) -4 ′-[4 (di-p-tolylamino) styryl] stilbene, N, N, N ′, N′-tetraphenyl-4,4′-diamino-biphenyl N-phenylcarbazole, 4,4′-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl, 4,4 ″ -bis [N- (1-nafur) -N-phenyl-amino] p-terphenyl, 4,4′-bis [N- (3-acenaphthenyl) -N-phenyl-amino] biphenyl, 1,5-bis [N- (1-naphthyl) -N-phenyl-amino] naphthalene, 4,4′- Screw [N- (9-anthryl) -N-phenyl-amino] biphenyl, 4,4 ″ -bis [N-(1-anthryl) -N-phenyl-amino] p-terphenyl, 4,4′-bis [N— (2-phenanthryl) -N-phenyl-amino] biphenyl, 4,4′-bis [N- (8-fluoranthenyl) -N-phenyl-amino] biphenyl, 4,4′-bis [N- (2 -Pyrenyl) -N-phenyl-amino] biphenyl, 4,4'-bis [N- (2-perylenyl) -N-phenyl-amino] biphenyl, 4,4'-bis [N- (1-colonenyl)- N-phenyl-amino] biphenyl, 2,6-bis (di-p-tolylamino) naphthalene, 2,6-bis [di- (1-naphthyl) amino] naphthalene, 2,6-bis [N- (1- Naphthyl) -N- (2- Phthyl) amino] naphthalene, 4,4 '' -bis [N, N-di (2-naphthyl) amino] terphenyl, 4.4 '-bis {N-phenyl-N- [4- (1-naphthyl)] Phenyl] amino} biphenyl, 4,4 '-bis [N-phenyl-N- (2-pyrenyl) -amino] biphenyl, 2,6-bis [N, N-di (2-naphthyl) amino] fluorene, 4 , 4 ″ -bis (N, N-di-p-tolylamino) terphenyl, bis (N-1-naphthyl) (N-2-naphthyl) amine, and the like.
 ホール注入層には、前記アリールアミン化合物と電子受容性化合物(Lewis酸化合物)が混合して用いるのが好ましく、電子受容性化合物(Lewis酸化合物)としては、特に制限はないが、例えば、塩化第2鉄、臭化第2鉄、ヨウ化第2鉄、塩化アルミニウム、臭化アルミニウム、ヨウ化アルミニウム、塩化ガリウム、臭化ガリウム、ヨウ化ガリウム、塩化インジウム、臭化インジウム、ヨウ化インジウム、5塩化アンチモン、5フッ化砒素、3フッ化硼素等、酸化バナジウム、酸化モリブデン、酸化レニウム、酸化タングステン、等の無機化合物やDDQ(ジシアノ-ジクロロキノン)、TNF(トリニトロフルオレノン) 、TCNQ(テトラシアノキノジメタン)、(テトラフルオロ-テトラシアノキノジメタン) 等の有機化合物を使用することができる。 In the hole injection layer, the arylamine compound and the electron-accepting compound (Lewis acid compound) are preferably used as a mixture, and the electron-accepting compound (Lewis acid compound) is not particularly limited. Ferric bromide, ferric bromide, ferric iodide, aluminum chloride, aluminum bromide, aluminum iodide, gallium chloride, gallium bromide, gallium iodide, indium chloride, indium bromide, indium iodide, 5 Inorganic compounds such as antimony chloride, arsenic chloride, boron trifluoride, vanadium oxide, molybdenum oxide, rhenium oxide, tungsten oxide, DDQ (dicyano-dichloroquinone), TNF (trinitrofluorenone), TCNQ (tetracyano) Organic such as (quinodimethane), (tetrafluoro-tetracyanoquinodimethane) Compounds can be used.
 また、Lewis酸化合物のモル比率は、アリールアミン化合物に対して0.01以上であるのが好ましい。このような構成のホール注入層により、中間層で発生したホールがエネルギー障壁無く、各発光ユニットへ注入される。 The molar ratio of the Lewis acid compound is preferably 0.01 or more with respect to the arylamine compound. With the hole injection layer having such a configuration, holes generated in the intermediate layer are injected into each light emitting unit without an energy barrier.
 「発光層」としては、従来の有機EL素子に用いられる従来の発光層であればよく、発光層を構成する発光材料についても、特に制限はなく、各種の蛍光材料又は燐光材料等の公知の任意のものを使用することができる。例えば、下記式:
Figure JPOXMLDOC01-appb-C000007
The “light emitting layer” may be a conventional light emitting layer used in a conventional organic EL device, and the light emitting material constituting the light emitting layer is not particularly limited, and various known fluorescent materials or phosphorescent materials are known. Any can be used. For example, the following formula:
Figure JPOXMLDOC01-appb-C000007
で表わされるトリス(8-キノリノラト)アルミニウム錯体(Alq3)等が挙げられる。 And tris (8-quinolinolato) aluminum complex (Alq3) and the like.
 「電子輸送(注入)層」は、従来の有機EL素子の電子輸送層を構成する電子輸送性物質を用いて形成すればよく、特に制限はないが、例えば、ケミプロ化成(株)製のKLET02等をいることができる。なお、ケミプロ化成(株)製の電子輸送性有機化合物の物性値は以下のとおりである(ケミプロ化成(株)のHPより。http://www.chemipro.co.jp/Yuki#EL/Products.html)。
Figure JPOXMLDOC01-appb-T000001
The “electron transport (injection) layer” may be formed using an electron transport material constituting the electron transport layer of the conventional organic EL device, and is not particularly limited. For example, KLET02 manufactured by Chemipro Kasei Co., Ltd. Etc. The physical properties of the electron transporting organic compound manufactured by Chemipro Kasei Co., Ltd. are as follows (from Chemipro Kasei Co., Ltd. HP. Http://www.chemipro.co.jp/Yuki#EL/Products) .html).
Figure JPOXMLDOC01-appb-T000001
 「電子輸送(注入)層」には、前記電子輸送性物質と混合して、電子供与性化合物(Lewis塩基化合物)が用いられることが多く、電子供与性化合物(Lewis塩基化合物)としては、特開平10-270171 号公報や特開2001-102175号公報に開示されているように、アルカリ金属、アルカリ土類金属、及び希土類金属のうちから選択された1種以上の金属からなるのが好ましい。
また、上記の電子注入層中の電子供与性化合物のモル比率は、有機化合物に対して0.1~10であるのが好ましい。このような構成の電子注入層により、中間層で発生した電子がエネルギー障壁無く、各発光ユニットへ注入される。
In the “electron transport (injection) layer”, an electron donating compound (Lewis base compound) is often used by mixing with the electron transporting substance. As the electron donating compound (Lewis base compound), As disclosed in Kaihei 10-270171 and JP-A-2001-102175, it is preferably made of one or more metals selected from alkali metals, alkaline earth metals, and rare earth metals.
The molar ratio of the electron donating compound in the electron injection layer is preferably 0.1 to 10 with respect to the organic compound. With the electron injection layer having such a configuration, electrons generated in the intermediate layer are injected into each light emitting unit without an energy barrier.
 「陰極」を構成する材料としては、一般的には仕事関数の小さい金属、またそれらを含む合金、金属酸化物等が用いられる。具体的には、Li、Cs等のアルカリ金属、Mg、Ca等のアルカリ土類金属、Eu等の希土類金属等からなる金属単体、もしくは、これらの金属とAl、Ag、In等との合金等が挙げられる。 As the material constituting the “cathode”, generally a metal having a small work function, an alloy containing them, a metal oxide, or the like is used. Specifically, simple metals such as alkaline metals such as Li and Cs, alkaline earth metals such as Mg and Ca, rare earth metals such as Eu, or alloys of these metals with Al, Ag, In, etc. Is mentioned.
 また、下記の実施例のように、陰極に接する層が、本発明の中間層とホール注入層の積層構造を採る場合は、陰極は導電性材料であれば、その仕事関数等の値は制限にならず、ITO(インジウム・すず酸化物)透明電極のような、高仕事函数の電極材料を陰極として使用することも可能である。 In addition, when the layer in contact with the cathode has a laminated structure of the intermediate layer and the hole injection layer of the present invention as in the following examples, the value of the work function or the like is limited if the cathode is a conductive material. In addition, an electrode material having a high work function, such as an ITO (indium tin oxide) transparent electrode, can be used as the cathode.
 「陽極」を構成する材料としては、特に制限はなく、例えば、ITO(インジウム・すず酸化物)、IZO(インジウム・亜鉛酸化物)等の透明導電材料を使用することができる。 The material constituting the “anode” is not particularly limited, and for example, a transparent conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide) can be used.
 したがって、陰極及び陽極の両方を透明として(有機膜も中間層も同様に透明であるから)透明な発光素子を作ることもできるし、一般的な有機EL素子の場合とは逆に、陽極は金属で構成し、陰極を透明電極とすることで、基板側にではなく成膜面側から光をとり出す構造の有機EL素子を形成することも可能である。また、各層の形成順序に関しては、必ずしも陽極の形成(成膜)から始める必要はなく、陰極から形成を始めてもよい。 Therefore, it is possible to make a transparent light emitting element by making both the cathode and the anode transparent (because both the organic film and the intermediate layer are also transparent). In contrast to the case of a general organic EL element, the anode is An organic EL element having a structure in which light is extracted not from the substrate side but from the film formation surface side can be formed by using a metal and forming the cathode as a transparent electrode. In addition, regarding the order of forming each layer, it is not always necessary to start from the formation (film formation) of the anode, and the formation may be started from the cathode.
 以上、本発明の有機EL素子の典型的な積層構造の実施形態について説明したが、本発明は、本発明の技術的思想の範囲内で種々の設計変更が可能であり、これら設計変更した発明も当然に本発明に含まれる。以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 As mentioned above, although the embodiment of the typical laminated structure of the organic EL element of the present invention has been described, the present invention can be modified in various ways within the scope of the technical idea of the present invention, and these design modified inventions Of course, this is also included in the present invention. Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[製造装置及び条件等]
 有機化合物層、金属層及び中間層の形成には、(株)エイコー製の真空蒸着機を使用した。各層の厚さは、触針式表面形状測定器(DEKTAK3030)を用いて測定し、得られた有機EL素子の特性評価には、ケースレーインスツルメンツ(株)製のソースメータ2400及びトプコン(株)製の輝度計BM-7を使用した。また、基板上の陽極電極と有機膜上の陰極電極間に直流電圧を0.1V/2秒又は0.5V/2秒の割合でステップ状に印加して、電圧上昇1秒後の輝度及び電流値を測定した。
[Manufacturing equipment and conditions]
For the formation of the organic compound layer, the metal layer, and the intermediate layer, a vacuum deposition machine manufactured by Eiko Co., Ltd. was used. The thickness of each layer is measured using a stylus type surface shape measuring device (DEKTAK3030), and for the characteristic evaluation of the obtained organic EL element, source meter 2400 manufactured by Keithley Instruments Co., Ltd. and Topcon Co., Ltd. Luminometer BM-7. Further, a direct current voltage is applied in a stepwise manner at a rate of 0.1 V / 2 seconds or 0.5 V / 2 seconds between the anode electrode on the substrate and the cathode electrode on the organic film, so that the luminance and The current value was measured.
≪基準例1≫
 基準例1の有機EL素子として、図2に示す発光ユニットに相当する層構造の発光素子をガラス基板上に作製した(図3を参照)。各層の詳細は以下のとおりとした。
1)陽極
 ITO(Indium Tin Oxide)、110nm
2)ホール注入層
 アリールアミン化合物である4,4’-ビス[N-(2-ナフチル)-N-フェニル-アミノ]ビフェニル(以下、NPBと略す)と、Lewis酸化合物である3酸化モリブデン(MoO3)の共蒸着層(以下、NPB:MoO3と表記す)、10nm(なお、混合比率は、重量比で1:1)
3)ホール輸送層
 NPB、50nm
4)発光層
 トリス(8-キノリノラト)アルミニウム錯体  (以下、Alq3と略す)、30nm
5)電子注入層
 Lewis塩基化合物であるセシウム(以下、Csと表記)と電子輸送材料であるKLET02の共蒸着層(以下、Cs:KLET02と表記)、40nm
6)陰極
  アルミニウム(以下、Alと表記)、80nm
≪Reference Example 1≫
As the organic EL element of Reference Example 1, a light emitting element having a layer structure corresponding to the light emitting unit shown in FIG. 2 was produced on a glass substrate (see FIG. 3). The details of each layer were as follows.
1) Anode ITO (Indium Tin Oxide), 110 nm
2) Hole injection layer 4,4′-bis [N- (2-naphthyl) -N-phenyl-amino] biphenyl (hereinafter abbreviated as NPB), which is an arylamine compound, and molybdenum trioxide, which is a Lewis acid compound ( MoO 3 ) co-deposited layer (hereinafter referred to as NPB: MoO 3 ), 10 nm (the mixing ratio is 1: 1 by weight)
3) Hole transport layer NPB, 50nm
4) Light-emitting layer Tris (8-quinolinolato) aluminum complex (hereinafter abbreviated as Alq3), 30 nm
5) Electron injection layer Co-deposited layer of cesium (hereinafter referred to as Cs) as a Lewis base compound and KLET02 as an electron transport material (hereinafter referred to as Cs: KLET02), 40 nm
6) Cathode Aluminum (hereinafter referred to as Al), 80 nm
≪実施例1≫
 実施例1の有機EL素子として、図4に示した層構造の発光素子をガラス基板上に作製した。各層の詳細は以下のとおりとした。
1)陽極
 ITO(Indium Tin Oxide)、110nm
2)ホール注入層
 NPB:MoO、10nm(基準例1と同等)
3)ホール輸送層
 NPB、50nm(基準例1と同等)
4)発光層
 Alq3、30nm(基準例1と同等)
5)電子注入層
 Cs:KLET02、20nm
6)中間層1
 フラーレン化合物であるC60と、C60に対して電子供与性を有するAOB(acridine orange base)の混合層(以下、C60:AOBと表記)、2nm(なお、AOBの混合比率は、C60に対して5重量%である)
7)中間層2
 アリールアミン化合物である、下記式:
Figure JPOXMLDOC01-appb-C000008
Example 1
As the organic EL element of Example 1, the light emitting element having the layer structure shown in FIG. 4 was produced on a glass substrate. The details of each layer were as follows.
1) Anode ITO (Indium Tin Oxide), 110 nm
2) Hole injection layer NPB: MoO, 10 nm (equivalent to Reference Example 1)
3) Hole transport layer NPB, 50 nm (equivalent to Reference Example 1)
4) Light emitting layer Alq3, 30 nm (equivalent to Reference Example 1)
5) Electron injection layer Cs: KLET02, 20 nm
6) Intermediate layer 1
A mixed layer of C60, which is a fullerene compound, and AOB (acidic orange base) having an electron donating property to C60 (hereinafter referred to as C60: AOB), 2 nm (Note that the mixing ratio of AOB is 5 with respect to C60. Weight percent)
7) Intermediate layer 2
An arylamine compound, the following formula:
Figure JPOXMLDOC01-appb-C000008
で表される、4,4‘,4“-Tris(3-methyl-phenylphenylamino)tri-phenylamine(以下、MTDATAと表記)、2nm
8)ホール注入層
 NPB:MoO、20nm
9)陰極
 Al、80nm
4,4 ', 4 "-Tris (3-methyl-phenylphenylamino) tri-phenylamine (hereinafter referred to as MTDATA), 2 nm
8) Hole injection layer NPB: MoO, 20 nm
9) Cathode Al, 80nm
 なお、この実施例1の有機EL素子が、中間層部分で電圧のロス(電圧上昇)が無く、基準例1と同等の特性を示すことが実証されれば、下記の構造のように、上記有機EL素子の発光ユニット構造を、本発明の中間層を使用して繰り返すことで、前記マルチフォトン有機EL素子と同等の性質を有する有機EL素子を得ることができることになる。
a)陽極
b)発光ユニット  ホール注入層
          ホール輸送層
          発光層
          電子注入層
c)中間層     中間層1
          中間層2
d)発光ユニット  ホール注入層
          ホール輸送層
          発光層
          電子注入層
e)上記b)~上記d)の繰返し
f)陰極
If it is demonstrated that the organic EL element of Example 1 has no voltage loss (voltage increase) in the intermediate layer portion and exhibits the same characteristics as those of Reference Example 1, the following structure is obtained. By repeating the light emitting unit structure of the organic EL element using the intermediate layer of the present invention, an organic EL element having properties equivalent to those of the multiphoton organic EL element can be obtained.
a) Anode b) Light emitting unit Hole injection layer Hole transport layer Light emitting layer Electron injection layer c) Intermediate layer Intermediate layer 1
Middle layer 2
d) Light emitting unit Hole injection layer Hole transport layer Light emitting layer Electron injection layer e) Repeat b) to d) above f) Cathode
 したがって、本実施例においては、陽極及び陰極にそれぞれ隣接する層が同じホール注入層の構成を有する有機EL素子を作製した。 Therefore, in this example, an organic EL element having the same hole injection layer configuration in the layers adjacent to the anode and the cathode was produced.
≪実施例2≫
 実施例2の有機EL素子として、図5に示した層構造の発光素子をガラス基板上に作製した。各層の詳細は以下のとおりとした。
1)陽極
 ITO(Indium Tin Oxide)、110nm
2)ホール注入層
 NPB:MoO、10nm(基準例1と同等)
3)ホール輸送層
 NPB、50nm(基準例1と同等)
4)発光層
 Alq3、30nm(基準例1と同等)
5)電子注入層
 Cs:KLET02、20nm(基準例1と同等)
6)中間層(実施例1と同等)
 C60:AOB、2nm(なお、AOBの混合比率は、C60に対して5重量%)
7)ホール注入層(実施例1と同等)
 NPB:MoO、20nm
8)陰極
 Al、80nm
<< Example 2 >>
As the organic EL element of Example 2, a light emitting element having the layer structure shown in FIG. 5 was produced on a glass substrate. The details of each layer were as follows.
1) Anode ITO (Indium Tin Oxide), 110 nm
2) Hole injection layer NPB: MoO, 10 nm (equivalent to Reference Example 1)
3) Hole transport layer NPB, 50 nm (equivalent to Reference Example 1)
4) Light emitting layer Alq3, 30 nm (equivalent to Reference Example 1)
5) Electron injection layer Cs: KLET02, 20 nm (equivalent to Reference Example 1)
6) Intermediate layer (equivalent to Example 1)
C60: AOB, 2 nm (The mixing ratio of AOB is 5% by weight with respect to C60)
7) Hole injection layer (equivalent to Example 1)
NPB: MoO, 20nm
8) Cathode Al, 80 nm
≪比較例1≫
 比較例1の有機EL素子として、図6に示した層構造の発光素子をガラス基板上に作製した。各層の詳細は以下のとおりとした。
1)陽極
 ITO(Indium Tin Oxide)、110nm
2)ホール注入層
 NPB:MoO、10nm(基準例1と同等)
3)ホール輸送層
 NPB、50nm(基準例1と同等)
4)発光層
 Alq3、30nm(基準例1と同等)
5)電子注入層
 Cs:KLET02、20nm(基準例1と同等)
6)ホール注入層(実施例1と同等)
 NPB:MoO、20nm
7)陰極
 Al、80nm
≪Comparative example 1≫
As the organic EL element of Comparative Example 1, a light emitting element having the layer structure shown in FIG. 6 was produced on a glass substrate. The details of each layer were as follows.
1) Anode ITO (Indium Tin Oxide), 110 nm
2) Hole injection layer NPB: MoO, 10 nm (equivalent to Reference Example 1)
3) Hole transport layer NPB, 50 nm (equivalent to Reference Example 1)
4) Light emitting layer Alq3, 30 nm (equivalent to Reference Example 1)
5) Electron injection layer Cs: KLET02, 20 nm (equivalent to Reference Example 1)
6) Hole injection layer (equivalent to Example 1)
NPB: MoO, 20nm
7) Cathode Al, 80 nm
[評価]
 基準例1、実施例1、実施例2、比較例1で作製した各発光素子の電圧(V)-輝度L(cd/m2)をプロットしたグラフ図7に示した。この図7に示されたとおり、実施例1、実施例2の発光素子は、本発明の中間層の無い比較例の発光素子と比べ、駆動電圧が低く、基準例の発光素子と略同等の特性を有することが分かった。また、更に、実施例1、実施例2の発光素子の特性を比べると、中間層にアリールアミンの層を有する2層型構造の実施例1の発光素子の方が、より低電圧で駆動出来ることが示された。
[Evaluation]
FIG. 7 is a graph in which voltage (V) −luminance L (cd / m 2 ) of each light-emitting element manufactured in Reference Example 1, Example 1, Example 2, and Comparative Example 1 is plotted. As shown in FIG. 7, the light emitting devices of Examples 1 and 2 have a lower driving voltage than the light emitting device of the comparative example without the intermediate layer of the present invention, and are substantially the same as the light emitting device of the reference example. It was found to have properties. Further, comparing the characteristics of the light emitting devices of Example 1 and Example 2, the light emitting device of Example 1 having a two-layer structure having an arylamine layer in the intermediate layer can be driven at a lower voltage. It was shown that.
 上記のような本発明の有機EL素子は、低エネルギー消費であることが要求される各種光源及び画像表示装置等、光発生を必要とする広範囲の製品分野で使用可能である。 The organic EL device of the present invention as described above can be used in a wide range of product fields that require light generation, such as various light sources and image display devices that are required to have low energy consumption.
1・・・基板、
2・・・陽極、
3・・・発光ユニット、
4・・・中間層、
5・・・陰極、
6・・・ホール注入層、
7・・・ホール輸送層、
8・・・発光層、
9・・・電子輸送(注入)層、
60、61・・・ホール注入層、
70、71・・・ホール輸送層、
80、81・・・発光層、
90、91・・・電子輸送(注入)層、
101・・・中間層1、
102・・・中間層2。
1 ... substrate
2 ... Anode,
3 ... light emitting unit,
4 ... intermediate layer,
5 ... cathode,
6 ... hole injection layer,
7 ... Hole transport layer,
8 ... light emitting layer,
9: Electron transport (injection) layer,
60, 61 ... hole injection layer,
70, 71 ... hole transport layer,
80, 81 ... light emitting layer,
90, 91 ... electron transport (injection) layer,
101: Intermediate layer 1,
102: Intermediate layer 2

Claims (4)

  1.  陽極と、
     陰極と、
     前記陽極と前記陰極との間に位置する、発光層を含む複数の発光ユニットと、
     前記複数の発光ユニットの間に位置する中間層と、
    を有し、
     前記中間層が、フラーレン化合物と、該フラーレン化合物に対して電子を供与する機能を有する電子供与性有機物と、の混合層で構成されていること、
    を特徴とする有機エレクトロルミネッセント素子。
    The anode,
    A cathode,
    A plurality of light emitting units including a light emitting layer located between the anode and the cathode;
    An intermediate layer located between the plurality of light emitting units;
    Have
    The intermediate layer is composed of a mixed layer of a fullerene compound and an electron-donating organic substance having a function of donating electrons to the fullerene compound;
    An organic electroluminescent device characterized by the above.
  2.  前記フラーレン化合物がC60であること、を特徴とする請求項1に記載の有機エレクトロルミネッセント素子。 The organic electroluminescent device according to claim 1, wherein the fullerene compound is C60.
  3.  前記電子供与性有機物がAOB(acridine orange base)であること、を特徴とする請求項1に記載の有機エレクトロルミネッセント素子。 2. The organic electroluminescent device according to claim 1, wherein the electron-donating organic substance is AOB (acidine orange base).
  4.  前記中間層が互いに隣接する2層構造からなり、
     前記2層構造のうちの陽極側がC60とAOB(acridine orange base)の混合層で構成されており、
     前記2層構造のうちの陰極側が一般式:
    Figure JPOXMLDOC01-appb-C000009
    (式中、Ar1、Ar2及びAr3は、それぞれ独立して置換基を有してよい芳香族炭化水素基を表わす。)で表されるアリールアミン化合物で構成されていること、
    を特徴とする請求項1に記載の有機エレクトロルミネッセント素子。
    The intermediate layer has a two-layer structure adjacent to each other,
    The anode side of the two-layer structure is composed of a mixed layer of C60 and AOB (acidine orange base),
    The cathode side of the two-layer structure has the general formula:
    Figure JPOXMLDOC01-appb-C000009
    (Wherein, Ar 1 , Ar 2 and Ar 3 each independently represents an aromatic hydrocarbon group which may have a substituent),
    The organic electroluminescent element according to claim 1.
PCT/JP2014/001808 2013-07-05 2014-03-27 Organic electroluminescent element WO2015001691A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015525007A JPWO2015001691A1 (en) 2013-07-05 2014-03-27 Organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013141578 2013-07-05
JP2013-141578 2013-07-05

Publications (1)

Publication Number Publication Date
WO2015001691A1 true WO2015001691A1 (en) 2015-01-08

Family

ID=52143298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001808 WO2015001691A1 (en) 2013-07-05 2014-03-27 Organic electroluminescent element

Country Status (2)

Country Link
JP (1) JPWO2015001691A1 (en)
WO (1) WO2015001691A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204811A (en) * 2018-05-21 2019-11-28 パイオニア株式会社 Light-emitting device and method of manufacturing light-emitting device
CN111384274A (en) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
WO2021045020A1 (en) * 2019-09-06 2021-03-11 日本放送協会 Charge generation layer and method for producing same, organic electroluminescence element, display device, lighting device, and organic thin film solar cell

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135600A (en) * 2003-10-28 2005-05-26 Idemitsu Kosan Co Ltd Organic electroluminescent element
JP2005525696A (en) * 2002-02-20 2005-08-25 ノヴァレッド・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Doped organic semiconductor material and method for producing the same
US20070145355A1 (en) * 2005-12-22 2007-06-28 Ansgar Werner Doped organic semiconductor material
WO2011046166A1 (en) * 2009-10-14 2011-04-21 コニカミノルタホールディングス株式会社 Organic electroluminescent element and lighting device using same
JP2011086442A (en) * 2009-10-14 2011-04-28 Konica Minolta Holdings Inc Organic electroluminescent element and lighting system
US20110186864A1 (en) * 2006-01-11 2011-08-04 Novaled Ag Electroluminescent light-emitting device comprising an arrangement of organic layers, and method for its production
US20110220200A1 (en) * 2010-03-15 2011-09-15 Novaled Ag Organic Photoactive Device
JP2011527809A (en) * 2008-06-09 2011-11-04 三星電子株式会社 Improved CNT / topcoat process
US20120119191A1 (en) * 2010-11-16 2012-05-17 Novaled Ag Chemical Compound for Organic Electronic Device and Organic Electronic Device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525696A (en) * 2002-02-20 2005-08-25 ノヴァレッド・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Doped organic semiconductor material and method for producing the same
JP2005135600A (en) * 2003-10-28 2005-05-26 Idemitsu Kosan Co Ltd Organic electroluminescent element
US20070145355A1 (en) * 2005-12-22 2007-06-28 Ansgar Werner Doped organic semiconductor material
US20110186864A1 (en) * 2006-01-11 2011-08-04 Novaled Ag Electroluminescent light-emitting device comprising an arrangement of organic layers, and method for its production
JP2011527809A (en) * 2008-06-09 2011-11-04 三星電子株式会社 Improved CNT / topcoat process
WO2011046166A1 (en) * 2009-10-14 2011-04-21 コニカミノルタホールディングス株式会社 Organic electroluminescent element and lighting device using same
JP2011086442A (en) * 2009-10-14 2011-04-28 Konica Minolta Holdings Inc Organic electroluminescent element and lighting system
US20110220200A1 (en) * 2010-03-15 2011-09-15 Novaled Ag Organic Photoactive Device
US20120119191A1 (en) * 2010-11-16 2012-05-17 Novaled Ag Chemical Compound for Organic Electronic Device and Organic Electronic Device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204811A (en) * 2018-05-21 2019-11-28 パイオニア株式会社 Light-emitting device and method of manufacturing light-emitting device
CN111384274A (en) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
WO2021045020A1 (en) * 2019-09-06 2021-03-11 日本放送協会 Charge generation layer and method for producing same, organic electroluminescence element, display device, lighting device, and organic thin film solar cell
JPWO2021045020A1 (en) * 2019-09-06 2021-03-11
TWI755844B (en) * 2019-09-06 2022-02-21 日本放送協會 Charge generating layer and method for producing the same, organic electroluminescence device, display device, lighting system, and organic thin film solar cell
JP7140924B2 (en) 2019-09-06 2022-09-21 日本放送協会 CHARGE GENERATING LAYER AND MANUFACTURING METHOD THEREOF, ORGANIC ELECTROLUMINESCENCE DEVICE, DISPLAY DEVICE, LIGHTING DEVICE, AND ORGANIC THIN-FILM SOLAR CELL

Also Published As

Publication number Publication date
JPWO2015001691A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP3933591B2 (en) Organic electroluminescent device
JP4939284B2 (en) Organic electroluminescent device
JP4476594B2 (en) Organic electroluminescent device
KR100880881B1 (en) Organic devices, organic electroluminescent devices and organic solar cells
JP4915650B2 (en) Organic electroluminescence device
JP5216104B2 (en) Organic electroluminescence device
WO2011010696A1 (en) Organic electroluminescent element
JP5486440B2 (en) Organic EL elements, display devices, lighting equipment
JP2008124268A (en) Organic electroluminescence element
JP2005135600A (en) Organic electroluminescent element
JPWO2004091262A1 (en) Organic electroluminescence device and organic electroluminescence display
JP2020505768A (en) Organic EL device
WO2015001691A1 (en) Organic electroluminescent element
TWI224943B (en) Organic electroluminescence device and fabricating method thereof
JP4915651B2 (en) Organic electroluminescence device
WO2011148801A1 (en) Organic el element
JP4915652B2 (en) Organic electroluminescence device
WO2015192591A1 (en) Organic electroluminescence device and organic electroluminescence display apparatus
JP2006210747A (en) Organic electroluminescent element
US20110186823A1 (en) System for Displaying Images
Jiang et al. High stability and low driving voltage green organic light emitting diode with molybdenum oxide as buffer layer
WO2013129042A1 (en) Organic el element
KR102238901B1 (en) Organic light emitting device
JP4926229B2 (en) Organic electroluminescent device
Bai et al. A blue organic light emitting diodes with graded junction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015525007

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14819861

Country of ref document: EP

Kind code of ref document: A1