WO2015002071A1 - Photosensitive resin composition - Google Patents

Photosensitive resin composition Download PDF

Info

Publication number
WO2015002071A1
WO2015002071A1 PCT/JP2014/067067 JP2014067067W WO2015002071A1 WO 2015002071 A1 WO2015002071 A1 WO 2015002071A1 JP 2014067067 W JP2014067067 W JP 2014067067W WO 2015002071 A1 WO2015002071 A1 WO 2015002071A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
mass
composition according
epoxy resin
Prior art date
Application number
PCT/JP2014/067067
Other languages
French (fr)
Japanese (ja)
Inventor
正応 依田
中村 茂雄
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to KR1020167003029A priority Critical patent/KR102228718B1/en
Priority to JP2015525178A priority patent/JPWO2015002071A1/en
Priority to CN201480036156.3A priority patent/CN105308506B/en
Publication of WO2015002071A1 publication Critical patent/WO2015002071A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0514Photodevelopable thick film, e.g. conductive or insulating paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks

Definitions

  • the present invention relates to a photosensitive resin composition.
  • it is related with the photosensitive resin composition suitable for using for the interlayer insulation layer of a multilayer printed wiring board.
  • Patent Document 1 discloses a photosensitive resin composition for MEMS comprising a specific photocationic polymerization initiator and a specific epoxy resin, but its use is limited to MEMS use. Insulation reliability is insufficient, so that sufficient performance as a build-up layer of a multilayer printed wiring board could not be exhibited.
  • Patent Document 2 discloses a photosensitive resin composition for a protective film of a printed wiring board for a semiconductor package. However, the insulation reliability is not sufficient, and its use is limited to a protective film, which is also a multilayer. A sufficient performance as a build-up layer of a printed wiring board could not be exhibited.
  • an object of the present invention is to provide a resin composition that has photosensitivity, excellent insulation reliability, and suitable physical properties for a build-up layer (interlayer insulating layer) of a multilayer printed wiring board.
  • the inventors include (A) an epoxy resin, (B) one or more curing agents selected from the group consisting of an active ester curing agent, a cyanate ester curing agent and a benzoxazine curing agent, and (C) (meta). It has been found that the above problems can be solved by using a photosensitive resin composition containing a compound having an acrylate structure, and the present invention has been completed.
  • the present invention includes the following contents.
  • the photosensitive resin composition containing this.
  • Composition Composition.
  • the photosensitive resin composition of the present invention can provide a buildup layer with excellent dielectric properties and low power consumption, and can provide a buildup layer with excellent water resistance and heat resistance. it can.
  • the photosensitive resin composition of the present invention comprises (A) an epoxy resin, (B) an active ester curing agent, one or more curing agents selected from the group consisting of a cyanate ester curing agent and a benzoxazine curing agent, and (C ) A compound having a (meth) acrylate structure.
  • a component is an epoxy resin.
  • epoxy resin For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol epoxy Resin, naphthol novolac epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, glycidylamine type epoxy resin, glycidyl ester type epoxy resin, cresol Novolac type epoxy resin, biphenyl type epoxy resin, linear aliphatic epoxy resin, epoxy resin having butadiene structure, alicyclic epoxy resin, heterocyclic type Examples include epoxy resins, spiro ring-containing epoxy resins, cyclohexanedimethanol type epoxy resins, naphthylene ether type epoxy resins, and trimethylol type epoxy resins.
  • An epoxy resin may be used individually by 1 type,
  • the epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule.
  • the nonvolatile component of the epoxy resin is 100% by mass, at least 50% by mass or more is preferably an epoxy resin having two or more epoxy groups in one molecule.
  • liquid epoxy resin an epoxy resin that is liquid at a temperature of 20 ° C.
  • solid epoxy resin an epoxy resin that is a solid at a temperature of 20 ° C.
  • liquid epoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, or naphthalene type epoxy resin are preferable, and bisphenol A type epoxy resin, bisphenol F type epoxy resin, or naphthalene type epoxy resin are preferable. More preferred. Specific examples of the liquid epoxy resin include “HP4032”, “HP4032D”, “EXA4032SS”, “HP4032SS” (naphthalene type epoxy resin) manufactured by DIC Corporation, and “jER828EL” (bisphenol A) manufactured by Mitsubishi Chemical Corporation.
  • Type epoxy resin "jER807” (bisphenol F type epoxy resin), “jER152” (phenol novolac type epoxy resin), “ZX1059” (bisphenol A type epoxy resin and bisphenol F type epoxy) manufactured by Nippon Steel Chemical Co., Ltd. Resin mixture).
  • the liquid epoxy resin “HP4032SS” (naphthalene type epoxy resin) and “ZX1059” (mixed product of bisphenol A type epoxy resin and bisphenol F type epoxy resin) are particularly preferable.
  • a liquid epoxy resin may be used individually by 1 type, or may use 2 or more types together.
  • solid epoxy resins examples include tetrafunctional naphthalene type epoxy resins, cresol novolac type epoxy resins, dicyclopentadiene type epoxy resins, trisphenol epoxy resins, naphthol novolac epoxy resins, biphenyl type epoxy resins, and naphthylene ether type epoxy resins.
  • a tetrafunctional naphthalene type epoxy resin, a biphenyl type epoxy resin, or a naphthylene ether type epoxy resin is more preferable, and a biphenyl type epoxy resin is more preferable.
  • solid epoxy resin examples include “HP-4700”, “HP-4710” (tetrafunctional naphthalene type epoxy resin), “N-690” (cresol novolac type epoxy resin) manufactured by DIC Corporation, “ N-695 ”(cresol novolac type epoxy resin),“ HP7200 ”,“ HP7200H ”,“ HP7200K-65I ”(dicyclopentadiene type epoxy resin),“ EXA7311 ”,“ EXA7311-G3 ”,“ HP6000 ”(naphthylene) Ether type epoxy resin), “EPPN-502H” (trisphenol epoxy resin), “NC7000L” (naphthol novolak epoxy resin), “NC3000H”, “NC3000”, “NC3000L”, “NC3100” manufactured by Nippon Kayaku Co., Ltd.
  • YX4000HK (bixylenol type epoxy resin), “NC3000L” (biphenyl type epoxy resin) manufactured by Nippon Kayaku Co., Ltd., and “HP7200H” (dicyclopentadiene type epoxy resin) manufactured by DIC Corporation are preferable.
  • a solid epoxy resin may be used individually by 1 type, or may use 2 or more types together.
  • the quantitative ratio thereof is in the range of 1: 0.1 to 1: 4 by mass ratio. preferable.
  • the amount ratio of the liquid epoxy resin and the solid epoxy resin in such a range, i) suitable adhesiveness is obtained when used in the form of an adhesive film, and ii) when used in the form of an adhesive film. Sufficient flexibility is obtained, handling properties are improved, and iii) an insulating layer having sufficient breaking strength can be obtained.
  • the quantitative ratio of liquid epoxy resin to solid epoxy resin is 1: 0.3 to 1: 3.5 in terms of mass ratio.
  • the range of 1: 0.6 to 1: 3 is more preferable, and the range of 1: 0.8 to 1: 2.5 is particularly preferable.
  • the content of the epoxy resin is preferably 3% by mass to 50% by mass, more preferably 5% by mass to 45% by mass, and more preferably 7% by mass to 35% by mass, assuming that the nonvolatile component in the photosensitive resin composition is 100% by mass. % By mass is more preferable, and 8% by mass to 20% by mass is particularly preferable.
  • the epoxy equivalent of the epoxy resin is preferably 50 to 3000, more preferably 80 to 2000, and still more preferably 110 to 1000. By being in this range, the cured product has a sufficient cross-linking density, resulting in an insulating layer having excellent heat resistance.
  • the epoxy equivalent can be measured according to JIS K7236, and is the mass of a resin containing 1 equivalent of an epoxy group.
  • the component (B) is one or more curing agents selected from the group consisting of an active ester curing agent, a cyanate ester curing agent, and a benzoxazine curing agent.
  • the active ester curing agent used in the photosensitive resin composition of the present invention can improve heat resistance, dielectric properties, and water resistance when cured, and is particularly excellent in dielectric properties and water resistance.
  • curing agent The compound which has two or more active ester groups in 1 molecule is preferable.
  • the active ester curing agent there are generally compounds having two or more ester groups with high reaction activity in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. Preferably used.
  • the active ester curing agent is obtained from a reaction product obtained by condensation reaction of a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound.
  • An active ester compound is preferred, an active ester compound obtained from a carboxylic acid compound and a hydroxy compound is more preferred, and an active ester compound obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is still more preferred.
  • An aromatic compound having two or more active ester groups in one molecule obtained from a reaction product obtained by reacting a carboxylic acid compound with an aromatic compound having a phenolic hydroxyl group is even more preferable.
  • the active ester curing agent is an aromatic compound obtained from a reaction product obtained by reacting a compound having at least two or more carboxylic acids in one molecule with an aromatic compound having a phenolic hydroxyl group, and Particularly preferred are aromatic compounds having two or more active ester groups in one molecule of the aromatic compound.
  • the active ester compound may be linear or hyperbranched.
  • the compatibility with the resin composition can be increased, and if it is a compound having an aromatic ring, it is heat resistant. Sexuality can be increased.
  • the active ester curing agent may be used alone or in combination of two or more.
  • carboxylic acid compounds examples include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, and terephthalic acid are preferred, and isophthalic acid and terephthalic acid are more preferred from the viewpoint of improving heat resistance when cured.
  • the thiocarboxylic acid compound examples include thioacetic acid and thiobenzoic acid.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o -Cresol, m-cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetra Hydroxybenzophenone, Phloroglucin, Benzenetriol, Dicyclopentadiene type diphenol compound (Polycyclopentadiene type diphenol compound), Pheno For example, arnovolac.
  • phenol novolak dicyclopentadiene type diphenol compound (polycyclopentadiene type diphenol compound), phenol novolak are more preferable, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2, -Dihydroxynaphthalene, dicyclopentadiene type diphenol compound (polycyclopentadiene type diphenol compound), and phenol novolac are more preferable.
  • Dicyclopentadiene-type diphenol compounds are particularly preferred, and dicyclopentadiene-type diphenol compounds (polycyclopentadiene-type diphenol compounds) are particularly preferred.
  • Specific examples of the thiol compound include benzenedithiol and triazinedithiol.
  • the active ester curing agent containing a dicyclopentadiene type diphenol condensation structure includes a compound represented by the following formula (1).
  • two Rs are each independently a phenyl group or a naphthyl group.
  • k represents 0 or 1;
  • n is 0.05 to 2.5 on the average of the repeating units.
  • R is preferably a naphthyl group.
  • k is preferably 0.
  • N is preferably 0.25 to 1.5.
  • an active ester compound disclosed in Japanese Patent Application Laid-Open No. 2004-277460 may be used, or a commercially available active ester curing agent may be used.
  • commercially available active ester curing agents include, specifically, an active ester curing agent containing a dicyclopentadiene type diphenol condensation structure, an active ester curing agent containing a naphthalene structure, and an activity containing an acetylated product of phenol novolac.
  • ester hardeners Preferred are ester hardeners, active ester hardeners containing phenol novolac benzoylates, especially active ester hardeners containing naphthalene structures, dicyclopentadiene diphenol compounds (polycyclopentadiene diphenol compounds).
  • An active ester curing agent is more preferred.
  • the active ester curing agent containing a dicyclopentadiene type diphenol compound (polycyclopentadiene type diphenol compound) structure include EXB9451, EXB9460, EXB9460S, and HPC8000-65T (manufactured by DIC Corporation).
  • Examples of the active ester curing agent containing a naphthalene structure include EXB9416-70BK (manufactured by DIC Corporation).
  • Examples of the active ester curing agent containing an acetylated product of phenol novolak include DC808 (Mitsubishi Chemical Corporation).
  • Examples of the active ester curing agent containing a benzoylated product of phenol novolak include YLH1026 (manufactured by Mitsubishi Chemical Corporation).
  • HPC8000-65T an active ester curing agent containing a dicyclopentadiene-type diphenol compound (polycyclopentadiene-type diphenol compound) structure
  • DIC Corporation is preferable.
  • the cyanate ester curing agent used in the photosensitive resin composition of the present invention can improve heat resistance, dielectric properties, and water resistance when cured, and is particularly excellent in heat resistance.
  • the cyanate ester-based curing agent is not particularly limited.
  • novolak type phenol novolac type, alkylphenol novolak type, etc.
  • dicyclopentadiene type cyanate ester-based curing agent bisphenol type (bisphenol A type) , Bisphenol F type, bisphenol S type, etc.) cyanate ester-based curing agents, and prepolymers in which these are partially triazines.
  • the weight average molecular weight of the cyanate ester curing agent is not particularly limited, but is preferably 500 to 4500, more preferably 600 to 3000.
  • Specific examples of the cyanate ester curing agent include, for example, bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate)), and 4,4′-methylenebis (2,6-dimethylphenyl cyanate).
  • Resin phenol novolac, Resole novolac, polyfunctional cyanate resin derived from dicyclopentadiene structure-containing phenol resin, these cyanate resins and partially triazine of prepolymer. These may be used alone or in combination of two or more.
  • cyanate ester resins include phenol novolac type polyfunctional cyanate ester resin (Lonza Japan Co., Ltd., PT30S), and a prepolymer in which a part or all of bisphenol A dicyanate is triazine and becomes a trimer ( Lonza Japan Co., Ltd., BA230S75), dicyclopentadiene structure-containing cyanate ester resin (Lonza Japan Co., Ltd., DT-4000, DT-7000) and the like.
  • phenol novolac type polyfunctional cyanate ester resin Lionza Japan Co., Ltd., PT30S
  • a prepolymer in which a part or all of bisphenol A dicyanate is triazine and becomes a trimer Lonza Japan Co., Ltd., BA230S75
  • dicyclopentadiene structure-containing cyanate ester resin Lionza Japan Co., Ltd., DT-4000, DT-7000
  • PT30S phenol novolak type polyfunctional cyanate ester resin
  • BA230S75 prepolymer in which a part or all of bisphenol A dicyanate is triazine-modified into a trimer manufactured by Lonza Japan Co., Ltd. are preferable. .
  • the benzoxazine curing agent used in the photosensitive resin composition of the present invention can improve heat resistance, dielectric properties, and water resistance when used as a cured product.
  • the benzoxazine curing agent is not particularly limited, but specific examples include Fa type benzoxazine, Pd type benzoxazine (manufactured by Shikoku Kasei Co., Ltd.), and HFB2006M (manufactured by Showa Polymer Co., Ltd.).
  • Pd-type benzoxazine (manufactured by Shikoku Kasei Co., Ltd.) is preferable.
  • the active ester curing agent, the cyanate ester curing agent, and the benzoxazine curing agent may be used singly or in combination of two or more.
  • an active ester curing agent is preferable because the dielectric loss tangent and water absorption can be reduced.
  • the content of the component (B) is preferably 1 to 30% by mass, more preferably 3 to 25% by mass, based on 100% by mass of the nonvolatile component of the photosensitive resin composition, and 5 to 20% by mass. % Is more preferable.
  • the component (C) is a compound having a (meth) acrylate structure.
  • Examples of the compound having a (meth) acrylate structure include, but are not limited to, hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxybutyl acrylate, ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol.
  • Mono- or diacrylates of glycols such as N, N-dimethylacrylamide, acrylamides such as N-methylolacrylamide, aminoalkyl acrylates such as N, N-dimethylaminoethyl acrylate, trimethylolpropane, pentaerythritol, dipenta Polyhydric alcohols such as erythritol or their adducts of ethylene oxide, propylene oxide or ⁇ -caprolactone Polyhydric acrylates, phenols such as phenoxy acrylate, phenoxyethyl acrylate, acrylates such as ethylene oxide or propylene oxide adducts thereof, epoxy acrylates derived from glycidyl ether such as trimethylolpropane triglycidyl ether, melamine acrylates And / or methacrylates corresponding to the above acrylates.
  • glycols such as N, N-dimethylacrylamide, acrylamides such as N-
  • polyvalent acrylates or polyvalent methacrylates are preferable.
  • the trivalent acrylates or methacrylates include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and trimethylolpropane.
  • EO-added tri (meth) acrylate glycerin PO-added tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, tetrafurfuryl alcohol oligo (meth) acrylate, ethyl carbitol oligo (meth) acrylate, 1,4-butanediol Oligo (meth) acrylate, 1,6-hexanediol oligo (meth) acrylate, trimethylolpropane oligo (meth) acrylate, pentaerythritol oligo (meth) acrylate Rate, tetramethylol methane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, N, N, N ′, N′-tetrakis ( ⁇ -hydroxyethyl) ethyldiamine (meth)
  • tri (2- (meth) acryloyloxyethyl) phosphate tri (2- (meth) acryloyloxypropyl) phosphate, tri (3- (meth) acryloyloxypropyl) Phosphate, tri (3- (meth) acryloyl-2-hydroxyloxypropyl) phosphate, di (3- (meth) acryloyl-2-hydroxyloxypropyl) (2- (meth) acryloyloxyethyl) phosphate, (3- ( Meta) Acu Mention may be made of phosphoric acid triester (meth) acrylates such as liloyl-2-hydroxyloxypropyl) di (2- (meth) acryloyloxyethyl) phosphate.
  • a component has an epoxy group from the point which improves the crosslinking
  • Particularly preferred are “acrylate compounds having a cresol novolac structure and an epoxy group” synthesized according to Synthesis Example 1, and “methacrylate compounds having a bixylenol structure, a biscresol fluorene structure and an epoxy group” synthesized according to Synthesis Example 2. These (meth) acrylate compounds may be used alone or in combination of two or more.
  • Component (C) preferably contains a polymer having a (meth) acrylate structure having a weight average molecular weight of 500 to 100,000, more preferably 700 to 70,000, still more preferably 1,000 to 50,000, from the viewpoint of improving resolution. And particularly preferably from 1500 to 35000.
  • the weight average molecular weight in this invention is measured by the gel permeation chromatography (GPC) method (polystyrene conversion).
  • GPC gel permeation chromatography
  • the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K manufactured by Showa Denko KK as a column.
  • -804L can be measured using chloroform or the like as a mobile phase at a column temperature of 40 ° C. and calculated using a standard polystyrene calibration curve.
  • the insulation reliability of the photosensitive resin composition of the present invention is preferred. It can have a carboxyl group to the extent that it does not inhibit the sex.
  • the acid value of the component (C) is preferably 20 mgKOH / g or less, more preferably 10 mgKOH / g or less, further preferably 5 mgKOH / g or less, still more preferably 3 mgKOH / g or less, and particularly preferably 1 mgKOH / g or less.
  • the content of the component (C) is preferably 1 to 25% by mass, more preferably 5 to 15% by mass when the nonvolatile component of the photosensitive resin composition is 100% by mass.
  • the following components can be further blended into the photosensitive resin composition of the present invention.
  • the resin composition of the present invention by further containing (D) a photopolymerization initiator, the resin composition can be efficiently photocured to obtain a cured product.
  • the photopolymerization initiator is not particularly limited.
  • 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone 2- (dimethylamino) -2-[(4 -Methylphenyl) methyl]-[4- (4-morpholinyl) phenyl] -1-butanone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, benzophenone, methylbenzophenone O-benzoylbenzoic acid, benzoyl ethyl ether, 2,2-diethoxyacetophenone, 2,4-diethylthioxanthone, diphenyl- (2,4,6-trimethylbenzoyl) phosphine oxide, ethyl- (2,4,6- Trimethylbenzoyl) phenylphosphinate, 4,4′-bis (diethylamino) benzophenone, 1- Hydroxy-cyclohexyl-phenyl
  • acylphosphine oxide photopolymerization initiators such as bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF Japan Ltd., IC819), 1,2-octanedione, 1- [4 Oxime ester photopolymerization initiators such as-(phenylthio)-, 2- (O-benzoyloxime)] (manufactured by BASF Japan Ltd., OXE-01) are preferred because of their high sensitivity. Any one photopolymerization initiator may be used alone, or two or more photopolymerization initiators may be used in combination.
  • the blending amount of the photopolymerization initiator is when the nonvolatile component in the photosensitive resin composition is 100% by mass from the viewpoint of sufficiently curing the photosensitive resin composition and improving the insulation reliability.
  • the content is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and still more preferably 0.3% by mass or more.
  • the blending amount of the photopolymerization initiator is 2% by mass when the nonvolatile component in the photosensitive resin composition is 100% by mass from the viewpoint of preventing a decrease in dimensional stability due to excessive sensitivity.
  • the content is preferably set to 1% by mass or less, more preferably 1% by mass or less, and further preferably 0.5% by mass or less.
  • the thermal expansion coefficient of the photosensitive resin composition of the present invention can be lowered by further containing (E) an inorganic filler.
  • an inorganic filler for example, silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, titanium Barium acid, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate, etc., among these, amorphous silica, fused silica, hollow silica, crystalline silica, Silica such as synthetic silica is particularly suitable.
  • silica As the silica, spherical silica is preferable. You may use these 1 type or in combination of 2 or more types. Examples of preferable spherical fused silica that is commercially available include “SOC2” and “SOC1” manufactured by Admatechs Corporation.
  • the average particle diameter of the inorganic filler is preferably 1 ⁇ m or less, more preferably 0.8 ⁇ m or less, and more preferably 0.6 ⁇ m or less from the viewpoint of improvement in insulation reliability and improvement in photocurability. More preferably, it is 0.4 ⁇ m or less.
  • the average particle diameter of the (E) inorganic filler is preferably 0.01 ⁇ m or more, and more preferably 0.05 ⁇ m or more.
  • Inorganic fillers include silane coupling agents (epoxysilane coupling agents, aminosilane coupling agents, mercaptosilane coupling agents, etc.) and titanate coupling agents to improve moisture resistance and dispersibility. Those that have been surface treated with a surface treating agent such as a silazane compound are preferred. You may use these 1 type or in combination of 2 or more types.
  • epoxysilane coupling agent examples include glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidylbutyltrimethoxysilane, (3,4-epoxycyclohexyl)
  • aminosilane coupling agents include aminopropylmethoxysilane, aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and N-2 (aminoethyl) amino.
  • Examples of the mercaptosilane coupling agent include mercaptopropyltrimethoxysilane and mercaptopropyltriethoxysilane. You may use these 1 type or in combination of 2 or more types.
  • Examples of commercially available coupling agents include “KBM403” (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., and “KBM803” (3-mercaptopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBE903 (3-aminopropyltriethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM573 N-phenyl-3-aminopropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., and the like.
  • titanate coupling agents include butyl titanate dimer, titanium octylene glycolate, diisopropoxy titanium bis (triethanolaminate), dihydroxy titanium bis lactate, dihydroxy bis (ammonium lactate) titanium, bis (dioctyl pyrophosphate) ethylene Titanate, bis (dioctylpyrophosphate) oxyacetate titanate, tri-n-butoxytitanium monostearate, tetra-n-butyl titanate, tetra (2-ethylhexyl) titanate, tetraisopropylbis (dioctylphosphite) titanate, tetraoctylbis (Ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) Sphite titanate, isopropyl trioctanoyl titanate, isopropyl trioc
  • silazane compound examples include hexamethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, octamethyltrisilazane, hexa (t-butyl) disilazane, hexabutyldisilazane, hexa Octyldisilazane, 1,3-diethyltetramethyldisilazane, 1,3-di-n-octyltetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, 1,3-dimethyltetraphenyldisilazane, 1, 3-diethyltetramethyldisilazane, 1,1,3,3-tetraphenyl-1,3-dimethyldisilazane, 1,3-dipropyltetramethyldisilazane, hexamethylcyclotrisilazane
  • an inorganic filler surface-treated with a silazane compound from the viewpoint of improving the dispersibility of the photosensitive resin composition. And after surface-treating with a silazane compound, the further dispersibility improvement can be aimed at by surface-treating with a silane coupling agent.
  • the amount of the silazane compound used for the surface treatment is preferably 0.001% by mass to 0.3% by mass, and 0.005% by mass to 0.2% by mass with respect to 100% by mass of the inorganic filler. It is more preferable.
  • Examples of the spherical fused silica surface-treated with hexamethyldisilazane include “SC2050” manufactured by Admatechs Co., Ltd.
  • the amount of the silane coupling agent used for the surface treatment is preferably 0.1% by mass to 6% by mass, and preferably 0.2% by mass to 4% by mass with respect to 100% by mass of the inorganic filler. Is more preferable, and 0.3 to 3% by mass is still more preferable.
  • the average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on the Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter.
  • an inorganic filler dispersed in water by ultrasonic waves can be preferably used.
  • LA-500, LA-750 manufactured by Horiba, Ltd. or the like can be used as a laser diffraction / scattering particle size distribution measuring apparatus.
  • blending an inorganic filler is 100 mass% of non-volatile components in the photosensitive resin composition from a viewpoint of reducing the linear thermal expansion coefficient of hardened
  • the content in the case of blending the (E) inorganic filler is 100% by mass of the non-volatile component in the photosensitive resin composition from the viewpoint of preventing deterioration of alkali developability and improving photocurability. In this case, it is preferably 85% by mass or less, more preferably 75% by mass or less, and further preferably 65% by mass or less.
  • ⁇ (F) Curing accelerator> In the photosensitive resin composition of this invention, the heat resistance of a hardened
  • (F) hardening accelerator Although it does not specifically limit as a hardening accelerator, for example, an amine hardening accelerator, a guanidine hardening accelerator, an imidazole hardening accelerator, a phosphonium hardening accelerator, a metal hardening accelerator etc. are mentioned. These may be used alone or in combination of two or more.
  • the amine curing accelerator is not particularly limited, and examples thereof include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylamino). And amine compounds such as methyl) phenol and 1,8-diazabicyclo (5.4.0) -undecene. You may use these 1 type or in combination of 2 or more types.
  • the guanidine-based curing accelerator is not particularly limited, and examples thereof include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, Dimethylguanidine, diphenylguanidine, trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-tria Zabicyclo [4.4.0] dec-5-ene, 1-methyl biguanide, 1-ethyl biguanide, 1-n-butyl biguanide, 1-n-octadecyl biguanide, 1,1-dimethyl biguanide, 1,1- Diethyl biguanide, 1-cyclohexyl biguanide, 1-allyl biguanide 1-phenyl biguanide, 1- (o-
  • the imidazole curing accelerator is not particularly limited.
  • the phosphonium curing accelerator is not particularly limited.
  • the photosensitive resin composition of the present invention it is preferable to use an amine-based curing accelerator or an imidazole-based curing accelerator as the curing accelerator (excluding the metal-based curing accelerator), among which 4-dimethylaminopyridine, It is particularly preferred to use 2-phenyl-4-methylimidazole.
  • the content of the curing accelerator (excluding the metal-based curing accelerator) is preferably in the range of 0.005% by mass to 1% by mass when the nonvolatile component in the photosensitive resin composition is 100% by mass. The range of 0.01% by mass to 0.08% by mass is more preferable. If it is less than 0.005% by mass, curing tends to be slow and a long curing time is required, and if it exceeds 1% by mass, the storage stability of the resin composition tends to decrease.
  • the metal curing accelerator is not particularly limited, and examples thereof include an organometallic complex or an organometallic salt of a metal such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate. These may be used alone or in combination of two or more.
  • an organic cobalt complex is preferably used as the metal curing accelerator, and cobalt (III) acetylacetonate is particularly preferably used.
  • the content of the metal-based curing accelerator is preferably such that the metal content based on the metal-based curing catalyst is in the range of 25 ppm to 500 ppm when the total solid content of the photosensitive resin composition is 100% by mass. More preferably, it is in the range of ⁇ 200 ppm.
  • the photosensitive resin composition of the present invention can further reduce the stress of the cured product by containing an organic filler (G), and can prevent the occurrence of cracks when the cured product is formed.
  • organic filler (G) include rubber particles, polyamide fine particles, and silicone particles. In the present invention, it is preferable to use rubber particles.
  • the rubber particles may be any rubber particles as long as they are fine particles of a resin that has been chemically cross-linked to a resin exhibiting rubber elasticity and is insoluble and infusible in an organic solvent.
  • Specific examples of the rubber particles include XER-91 (manufactured by Nippon Synthetic Rubber Co., Ltd.), Staphyloid AC3355, AC3816, AC3816N, AC3832, AC4030, AC3364, IM101 (manufactured by Gantz Chemical Co., Ltd.).
  • EXL2655, EXL2602 (manufactured by Kureha Chemical Industry Co., Ltd.) and the like can be mentioned, and AC3816N (manufactured by Ganz Kasei Co., Ltd.) is preferable.
  • the polyamide fine particles may be any polyamide fine particles as long as they are fine particles of 50 ⁇ m or less of a resin having an amide bond, and examples thereof include aliphatic polyamides such as nylon, aromatic polyamides such as Kevlar, and polyamideimide. Specific examples of the polyamide fine particles include VESTOSINT 2070 (manufactured by Daicel Huls Co., Ltd.) and SP500 (manufactured by Toray Industries, Inc.).
  • the average particle diameter of the organic filler is preferably in the range of 0.005 ⁇ m to 1 ⁇ m, and more preferably in the range of 0.2 ⁇ m to 0.6 ⁇ m.
  • the average particle diameter of the organic filler can be measured using a dynamic light scattering method.
  • the average particle size of the organic filler is determined by, for example, dispersing the organic filler uniformly in an appropriate organic solvent using ultrasonic waves or the like, and using a concentrated particle size analyzer (FPAR-1000; manufactured by Otsuka Electronics Co., Ltd.). It can be measured by creating a particle size distribution of the organic filler on a mass basis and setting its median diameter as the average particle size.
  • blending an organic filler is 0.1 mass when the solid content of the photosensitive resin composition shall be 100 mass% from a viewpoint of an improvement of heat resistance and a laser workability. % To 6% by mass is preferable, and 0.5% to 4% by mass is more preferable.
  • the photosensitive resin composition of the present invention comprises (H) photosensitizer, N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethylamine Tertiary amines such as triethanolamine may be added, and photosensitizers such as pyrarizones, anthracenes, coumarins, xanthones, thioxanthones may be added.
  • thioxanthones are preferably used as photosensitizers, and 2,4-diethylthioxanthone is more preferably used. Any one of these photosensitizers may be used alone, or two or more thereof may be used in combination.
  • the photosensitive resin composition of the present invention can adjust the varnish viscosity by further containing (I) an organic solvent.
  • organic solvent include ketones such as ethyl methyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene, methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, and propylene glycol.
  • Glycol ethers such as monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether, esters such as ethyl acetate, butyl acetate, butyl cellosolve acetate, carbitol acetate, octane, decane, etc.
  • Examples include petroleum hydrocarbons such as aliphatic hydrocarbons, petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha. Among them, solvent naphtha and methyl ethyl Tonnes is preferred. These are used singly or in combination of two or more. Content in the case of using an organic solvent can be suitably adjusted from a viewpoint of the applicability
  • additives examples include fine particles such as melamine and organic bentonite, coloring agents such as phthalocyanine blue, phthalocyanine green, iodine green, diazo yellow, crystal violet, titanium oxide, carbon black and naphthalene black, hydroquinone Polymerization inhibitors such as phenothiazine, methyl hydroquinone, hydroquinone monomethyl ether, catechol and pyrogallol, thickeners such as benton and montmorillonite, silicone, fluorine and vinyl resin defoamers, brominated epoxy compounds, acid-modified bromine Add various additives such as flame retardants such as fluorinated epoxy compounds, antimony compounds, phosphorus compounds, aromatic condensed phosphate esters, halogen-containing condensed phosphate esters, thermosetting resins such as phenolic curing agents, etc. Can.
  • coloring agents such as phthalocyanine blue, phthalocyanine green, iodine green, diazo yellow, crystal violet, titanium oxide,
  • the photosensitive resin composition of the present invention is appropriately mixed with the above (A) to (C) (and optionally (D) to (J)), and if necessary, a three-roll, ball mill, bead mill, It can be produced as a resin varnish by kneading or stirring with a kneading means such as a sand mill or a stirring means such as a super mixer or a planetary mixer.
  • the use of the photosensitive resin composition of the present invention is not particularly limited, but a photosensitive film, a photosensitive film with a support, an insulating resin sheet such as a prepreg, a circuit board (for laminated board use, multilayer printed wiring board use, etc.), It can be used in a wide range of applications where a resin composition is required, such as solder resist, underfill material, die bonding material, semiconductor sealing material, hole filling resin, and component filling resin. Especially, it is suitable as a resin composition for insulating layers of a multilayer printed wiring board (multilayer printed wiring board using a cured product of a photosensitive resin composition as an insulating layer), particularly an interlayer insulating layer resin composition (photosensitive resin). A multilayer printed wiring board having a cured product of the composition as an interlayer insulating layer) and a resin composition for plating formation (a multilayer printed wiring board in which plating is formed on the cured product of the photosensitive resin composition). Can do.
  • the photosensitive resin composition of this invention can apply
  • the photosensitive film previously formed on the support body can also be laminated
  • the photosensitive film of the present invention can be laminated on various supporting substrates. Examples of the support substrate mainly include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate.
  • the photosensitive resin composition of the present invention can be suitably used in the form of a photosensitive film with a support in which a resin composition layer is formed on a support. That is, the photosensitive film with a support has a layer of the photosensitive resin composition formed on the support.
  • the support include a polyethylene terephthalate film, a polyethylene naphthalate film, a polypropylene film, a polyethylene film, a polyvinyl alcohol film, and a triacetyl acetate film, and a polyethylene terephthalate film is particularly preferable.
  • supports include, for example, product names “Alphan MA-410” and “E-200C” manufactured by Oji Paper Co., Ltd., polypropylene films manufactured by Shin-Etsu Film Co., Ltd., and product names “PS” manufactured by Teijin Limited. Polyethylene terephthalate film such as PS series such as “-25” can be mentioned, but it is not limited thereto.
  • these supports are preferably coated with a release agent such as a silicone coating agent on the surface.
  • the thickness of the support is preferably in the range of 5 ⁇ m to 50 ⁇ m, and more preferably in the range of 10 ⁇ m to 25 ⁇ m.
  • the support tends to be broken when the support is peeled off before development.
  • the thickness exceeds 50 ⁇ m, the support is exposed from above. The resolution tends to decrease.
  • a low fisheye support is preferred.
  • the fish eye means that a material is melted, kneaded, extruded, biaxially stretched, a film is produced by a casting method, etc., and foreign materials, undissolved materials, oxidized deterioration products, etc. of the material are taken into the film. It is a thing.
  • the support is preferably excellent in transparency.
  • the support preferably has a turbidity (haze standardized by JIS-K6714) as an index of transparency of 0.1 to 5.
  • the resin composition layer may be protected with a protective film.
  • the protective film By protecting the resin composition layer side of the photosensitive film with a support with a protective film, it is possible to prevent adhesion or scratches of dust or the like on the surface of the resin composition layer.
  • a film made of the same material as that of the support can be used.
  • the thickness of the protective film is not particularly limited, but is preferably in the range of 1 ⁇ m to 40 ⁇ m, more preferably in the range of 5 ⁇ m to 30 ⁇ m, and still more preferably in the range of 10 ⁇ m to 30 ⁇ m. If the thickness is less than 1 ⁇ m, the handleability of the protective film tends to be reduced, and if it exceeds 40 ⁇ m, the cost tends to be inferior.
  • the protective film preferably has a smaller adhesive force between the resin composition layer and the protective film than the adhesive force between the resin composition layer and the support.
  • the photosensitive film with a support of the present invention is prepared by, for example, preparing a resin varnish obtained by dissolving the photosensitive resin composition of the present invention in an organic solvent according to a method known to those skilled in the art, and applying this resin varnish on the support. And it can manufacture by drying an organic solvent by heating or hot air spraying, etc., and forming a resin composition layer. Specifically, first, after completely removing bubbles in the photosensitive resin composition by a vacuum defoaming method or the like, the photosensitive resin composition is applied onto a support, and a solvent is removed by a hot air furnace or a far infrared furnace.
  • the photosensitive film with a support can be produced by removing and drying, and then laminating a protective film on the resin composition layer obtained as necessary.
  • the specific drying conditions vary depending on the curability of the resin composition and the amount of the organic solvent in the resin varnish. However, in the case of a resin varnish containing 30% by mass to 60% by mass of the organic solvent, the drying condition is 3 ° C. It can be dried for 13 to 13 minutes.
  • the amount of the remaining organic solvent in the resin composition layer is preferably 5% by mass or less with respect to the total amount of the resin composition layer from the viewpoint of preventing diffusion of the organic solvent in the subsequent step. More preferably. Those skilled in the art can appropriately set suitable drying conditions by simple experiments.
  • the thickness of the resin composition layer is preferably in the range of 5 ⁇ m to 500 ⁇ m from the viewpoint of improving the handleability and preventing the sensitivity and resolution inside the resin composition layer from being lowered.
  • the range of 15 ⁇ m to 150 ⁇ m is more preferable, the range of 20 ⁇ m to 100 ⁇ m is still more preferable, and the range of 20 ⁇ m to 60 ⁇ m is even more preferable.
  • a coating method of the photosensitive resin composition for example, gravure coating method, micro gravure coating method, reverse coating method, kiss reverse coating method, die coating method, slot die method, lip coating method, comma coating method, blade coating method, Examples thereof include a roll coating method, a knife coating method, a curtain coating method, a chamber gravure coating method, a slot orifice method, a spray coating method, and a dip coating method.
  • the photosensitive resin composition may be applied in several times, may be applied once, or may be applied by combining a plurality of different methods.
  • the die coating method is preferable because it is excellent in uniform coatability. Further, in order to avoid contamination by foreign matters, it is preferable to carry out the coating process in an environment with little foreign matter generation such as a clean room.
  • a photosensitive resin composition is directly applied on a circuit board in a resin varnish state, and an organic solvent is dried to form a photosensitive film on the circuit board.
  • the circuit board include a glass epoxy board, a metal board, a polyester board, a polyimide board, a BT resin board, a thermosetting polyphenylene ether board, and the like.
  • the circuit board refers to a board on which a conductor layer (circuit) patterned on one or both sides of the board is formed.
  • a substrate having a conductor layer (circuit) in which one or both surfaces of the outermost layer of the multilayer printed wiring board are patterned is also here. It is included in the circuit board.
  • the surface of the conductor layer may be previously roughened by blackening, copper etching, or the like.
  • full-screen printing by screen printing is generally used, but any other means may be used as long as it can be uniformly applied.
  • spray coating method hot melt coating method, bar coating method, applicator method, blade coating method, knife coating method, air knife coating method, curtain flow coating method, roll coating method, gravure coating method, offset printing method, dip coating method , Brushing and other normal application methods can be used.
  • drying is performed in a hot air furnace or a far infrared furnace as necessary. The drying conditions are preferably 80 to 120 ° C. for 3 to 13 minutes. In this way, a photosensitive film is formed on the circuit board.
  • the resin composition layer side is laminated on the single side
  • the laminating process when the photosensitive film with a support has a protective film, the protective film is removed, and then the photosensitive film and the circuit board are preheated as necessary, and the resin composition layer is pressed. And crimping to the circuit board while heating.
  • a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is suitably used.
  • the conditions for the laminating step are not particularly limited.
  • the pressure bonding temperature (laminating temperature) is preferably 70 ° C. to 140 ° C.
  • the pressure bonding pressure is preferably 1 kgf / cm 2 to 11 kgf / cm 2 (9. 8 ⁇ 10 4 N / m 2 to 107.9 ⁇ 10 4 N / m 2 )
  • the pressure bonding time is preferably 5 seconds to 300 seconds
  • the air pressure is 20 mmHg (26.7 hPa) or less.
  • the laminating step may be a batch type or a continuous type using a roll.
  • the vacuum laminating method can be performed using a commercially available vacuum laminator.
  • vacuum laminators include, for example, a vacuum applicator manufactured by Nichigo-Morton Co., Ltd., a vacuum pressurizing laminator manufactured by Meiki Seisakusho Co., Ltd., a roll dry coater manufactured by Hitachi Industries, Ltd., and Hitachi AIC Co., Ltd. ) Made vacuum laminator and the like. In this way, a photosensitive film is formed on the circuit board.
  • a predetermined part of the resin composition layer is then irradiated with actinic rays through a mask pattern, and a resin composition layer of an irradiated part
  • An exposure process for photocuring is performed.
  • the actinic rays include ultraviolet rays, visible rays, electron beams, and X-rays, and ultraviolet rays are particularly preferable.
  • the irradiation amount of ultraviolet rays is about 10 mJ / cm 2 to 1000 mJ / cm 2 .
  • the exposure method includes a contact exposure method in which a mask pattern is brought into close contact with a printed wiring board, and a non-contact exposure method in which exposure is carried out using parallel light rays without being brought into close contact, either of which may be used.
  • a contact exposure method in which a mask pattern is brought into close contact with a printed wiring board
  • a non-contact exposure method in which exposure is carried out using parallel light rays without being brought into close contact, either of which may be used.
  • you may expose from a support body and may expose after a support body peels.
  • a safe and stable developer having good operability such as an alkaline aqueous solution, an aqueous developer, an organic solvent, etc. is used. Is preferred. Further, as a developing method, a known method such as spraying, rocking dipping, brushing, scraping or the like is appropriately employed.
  • organic solvent used as the developer examples include acetone, ethyl acetate, alkoxyethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol. Monobutyl ether.
  • the concentration of such an organic solvent is preferably 2% by mass to 90% by mass with respect to the total amount of the developer. Moreover, the temperature of such an organic solvent can be adjusted according to developability. Furthermore, such organic solvents can be used alone or in combination of two or more. Examples of the organic solvent developer used alone include 1,1,1-trichloroethane, N-methylpyrrolidone, N, N-dimethylformamide, cyclohexanone, methyl isobutyl ketone, ⁇ -butyrolactone, propylene glycol 1-monomethyl ether 2 -Acetate (PGMEA), among which PGMEA is preferred in the present invention.
  • PGMEA propylene glycol 1-monomethyl ether 2 -Acetate
  • development methods include a dip method, a battle method, a spray method, a high-pressure spray method, brushing, and slapping, and the high-pressure spray method is suitable for improving the resolution.
  • the spray pressure when the spray method is employed is preferably 0.05 MPa to 0.3 MPa.
  • a post-bake step is performed to form an insulating layer (cured product).
  • the post-bake process include an ultraviolet irradiation process using a high-pressure mercury lamp and a heating process using a clean oven. Case of ultraviolet irradiation can adjust its dose optionally, the irradiation can be carried out, for example 0.05J / cm 2 ⁇ 10J / cm 2 of about dose.
  • the heating conditions may be appropriately selected according to the type and content of the resin component in the resin composition, but are preferably 150 ° C. to 220 ° C. for 20 minutes to 180 minutes, more preferably 160 ° C. It is selected in the range of 30 minutes to 120 minutes at 200 ° C.
  • a conductor layer is formed on the insulating layer by dry plating or wet plating.
  • a known method such as a vapor deposition method, a sputtering method, or an ion plating method can be used.
  • a metal film can be formed on the insulating layer by placing the support in a vacuum vessel and evaporating the metal by heating.
  • the sputtering method for example, the support is placed in a vacuum vessel, an inert gas such as argon is introduced, a direct current voltage is applied, the ionized inert gas is made to collide with the target metal, and the struck metal is used.
  • a metal film can be formed on the insulating layer.
  • the surface of the formed insulating layer is subjected to a swelling treatment with a swelling solution, a roughening treatment with an oxidizing agent, and a neutralization treatment with a neutralizing solution in this order to form an uneven anchor.
  • the swelling treatment with the swelling liquid is performed by immersing the insulating layer in the swelling liquid at 50 to 80 ° C. for 5 to 20 minutes.
  • the swelling liquid include an alkaline solution, and examples of the alkaline solution include a sodium hydroxide solution and a potassium hydroxide solution.
  • Examples of commercially available swelling liquids include Swelling Dip Securigans P (Swelling Dip Securiganth P), Swelling Dip Securigans SBU (Swelling Dip Securiganth SBU) manufactured by Atotech Japan Co., Ltd. be able to.
  • the roughening treatment with an oxidizing agent is performed by immersing the insulating layer in an oxidizing agent solution at 60 to 80 ° C. for 10 to 30 minutes.
  • Examples of the oxidizing agent include alkaline permanganate solution in which potassium permanganate and sodium permanganate are dissolved in an aqueous solution of sodium hydroxide, dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like. it can.
  • the concentration of permanganate in the alkaline permanganate solution is preferably 5% by weight to 10% by weight.
  • examples of commercially available oxidizing agents include alkaline permanganate solutions such as Concentrate Compact CP and Dosing Solution Securigans P manufactured by Atotech Japan Co., Ltd.
  • the neutralization treatment with the neutralizing solution is performed by immersing in a neutralizing solution at 30 to 50 ° C. for 3 to 10 minutes.
  • an acidic aqueous solution is preferable, and as a commercially available product, Reduction Solution / Secligant P manufactured by Atotech Japan Co., Ltd. may be mentioned.
  • a conductor layer is formed by combining electroless plating and electrolytic plating.
  • a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating.
  • a subsequent pattern formation method for example, a subtractive method or a semi-additive method known to those skilled in the art can be used.
  • a semiconductor device can be manufactured by using the multilayer printed wiring board of the present invention.
  • a semiconductor device can be manufactured by mounting a semiconductor chip in a conductive portion of the multilayer printed wiring board of the present invention.
  • the “conduction location” is a “location where an electrical signal is transmitted in a multilayer printed wiring board”, and the location may be a surface or an embedded location.
  • the semiconductor chip is not particularly limited as long as it is an electric circuit element made of a semiconductor.
  • the semiconductor chip mounting method for manufacturing the semiconductor device of the present invention is not particularly limited as long as the semiconductor chip functions effectively, but specifically, a wire bonding mounting method, a flip chip mounting method, and no bumps.
  • Examples include a mounting method using a build-up layer (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
  • the photosensitive resin composition of the present invention can provide a resin composition having excellent physical properties and suitable for a buildup layer of a multilayer printed wiring board while having photosensitivity. Further, it is possible to provide a cured product which is excellent in dielectric properties, water resistance and heat resistance and suitable for development with an organic solvent. Hereinafter, these characteristics will be described in detail.
  • the dielectric loss tangent of the cured product of the photosensitive resin composition of the present invention can be measured by ⁇ Measurement of dielectric characteristics> described later. Specifically, the dielectric loss tangent can be measured by a cavity resonance perturbation method at a frequency of 5.8 GHz and a measurement temperature of 23 ° C. From the viewpoints of preventing heat generation at high frequencies, reducing signal delay and signal noise, the dielectric loss tangent is preferably 0.05 or less, more preferably 0.04 or less, and further preferably 0.03 or less. Preferably, it is 0.02 or less, and further preferably 0.013 or less. On the other hand, the lower limit value of the dielectric loss tangent is not particularly limited, but is 0.005 or more.
  • the water resistance (water absorption) of the cured product of the photosensitive resin composition of the present invention can be measured by a measurement method described in ⁇ Measurement of water resistance> described later.
  • the water absorption is preferably 3% or less, more preferably 2% or less, and more preferably 1% or less from the viewpoint of preventing generation of voids during printed wiring board production and improving insulation reliability. More preferably, it is still more preferably 0.8% or less.
  • the lower limit of the water absorption rate is not particularly limited, but is 0.01% or more, 0.1% or more, 0.2% or more, and the like.
  • the heat resistance of the cured product of the photosensitive resin composition of the present invention can be measured by a measurement method described in ⁇ Evaluation of heat resistance> described later.
  • a glass transition point in terms of preventing deterioration of the cured product when a thermal history is given to the cured product.
  • the glass transition point is preferably 110 ° C. or higher.
  • the upper limit of the glass transition point is not particularly limited, but is preferably 300 ° C. or lower.
  • a thermal expansion coefficient may be employed as a heat resistance index.
  • the coefficient of thermal expansion is preferably 10 to 30 ppm / ° C.
  • Part means part by mass.
  • the pressure bonding conditions were 20 seconds after evacuation, and a pressure bonding temperature of 80 ° C., a pressure bonding pressure of 0.2 MPa, and a pressure time of 20 seconds.
  • the laminate is allowed to stand at room temperature for 1 hour or longer, and a 100 mJ / cm 2 ultraviolet ray is used on the support of the laminate using a pattern forming apparatus so that a round hole having a diameter of 80 mm can be formed using a round hole pattern. The exposure was performed. After standing at room temperature for 30 minutes, the support was peeled off from the laminate.
  • the entire surface of the resin composition layer on the laminated plate was developed by being immersed in PGMEA (propylene glycol 1-monomethyl ether 2-acetate) at 30 ° C.
  • PGMEA propylene glycol 1-monomethyl ether 2-acetate
  • a 1 mass% sodium carbonate aqueous solution at 30 ° C. was applied as a developing solution over the entire surface of the resin composition layer on the laminated plate at a spray pressure of 0.15 MPa for a minimum developing time (minimum for developing an unexposed portion). Spray development for 1.5 times the time. After spray development, ultraviolet irradiation of 1 J / cm 2 was performed, followed by heat treatment at 190 ° C. for 60 minutes, and an insulating layer having an opening with a diameter of 80 mm was formed on the laminate.
  • the pressure bonding conditions were 20 seconds after evacuation, and a pressure bonding temperature of 80 ° C., a pressure bonding pressure of 0.2 MPa, and a pressure time of 20 seconds.
  • the laminate was allowed to stand at room temperature for 1 hour or longer, and exposed to ultraviolet light of 100 mJ / cm 2 from the support of the laminate.
  • the cured product for evaluation was cut into a length of 80 mm and a width of 2 mm, and used as an evaluation sample 1.
  • the dielectric loss tangent of this evaluation sample 1 was measured at a measurement frequency of 5.8 GHz and a measurement temperature of 23 ° C. by a cavity resonance perturbation method using an HP 8362B apparatus manufactured by Agilent Technologies (AGILENT TECHNOLOGIES). Measurement was performed on two evaluation samples 1, and an average value was calculated.
  • thermomechanical analysis was performed by a tensile load method using a thermomechanical analyzer TMA-SS6100 (manufactured by Seiko Instruments Inc.). After the evaluation sample 3 was mounted on the apparatus, the measurement was continuously performed twice under the measurement conditions of a load of 1 G and a heating rate of 5 ° C./min. The glass transition temperature (° C.) was calculated from the point at which the slope of the dimensional change signal in the second measurement changed. As the thermal expansion coefficient, an average linear thermal expansion coefficient (ppm / ° C.) from 25 ° C. to 150 ° C. in the second measurement was calculated.
  • ⁇ Synthesis Example 2 Synthesis of methacrylate compound having bixylenol structure, biscresol fluorene structure and epoxy group>
  • a reaction vessel 190 g of bixylenol type epoxy resin (Mitsubishi Chemical Corporation YX4000, epoxy equivalent 185), 14 g of bisphenolacetophenone (phenolic hydroxyl group equivalent 145), biscresol fluorene (manufactured by JFE Chemical Co., Ltd., phenolic hydroxyl group equivalent) 190) 170 g and cyclohexanone 150 g were added and dissolved by stirring.
  • bixylenol type epoxy resin Mitsubishi Chemical Corporation YX4000, epoxy equivalent 185
  • bisphenolacetophenone phenolic hydroxyl group equivalent 145
  • biscresol fluorene manufactured by JFE Chemical Co., Ltd., phenolic hydroxyl group equivalent

Abstract

Provided is a photosensitive resin composition which exhibits excellent insulation reliability and has physical properties suitable for a buildup layer (interlayer insulating layer) of a multilayer printed wiring board, while having photosensitivity. This photosensitive resin composition contains (A) an epoxy resin, (B) one or more curing agents that are selected from the group consisting of active ester curing agents, cyanate ester curing agents and benzoxazine curing agents, and (C) a compound having a (meth)acrylate structure.

Description

感光性樹脂組成物Photosensitive resin composition
 本発明は、感光性樹脂組成物に関する。より詳細には、多層プリント配線板の層間絶縁層に用いるのに適した感光性樹脂組成物に関する。 The present invention relates to a photosensitive resin composition. In more detail, it is related with the photosensitive resin composition suitable for using for the interlayer insulation layer of a multilayer printed wiring board.
 従来の感光性樹脂組成物は、アルカリ現像タイプが主流であり、現像を可能にするために酸無水物基やカルボキシル基含有のアクリレートを使用していた。しかしながら、酸無水物基やカルボキシル基は、熱劣化しやすいことから当該アクリレートを用いた硬化物では十分な物性が得られず、酸無水物基やカルボキシル基がある場合には、高い絶縁信頼性を有する絶縁層の形成には限界があった。 Conventional photosensitive resin compositions are mainly in the alkali development type, and acrylates containing acid anhydride groups or carboxyl groups have been used to enable development. However, since acid anhydride groups and carboxyl groups are prone to thermal degradation, sufficient physical properties cannot be obtained with cured products using the acrylate, and when there are acid anhydride groups or carboxyl groups, high insulation reliability is obtained. There was a limit in forming an insulating layer having
 そこで、例えば、特許文献1では、特定の光カチオン重合開始剤と特定のエポキシ樹脂を含有してなるMEMS用感光性樹脂組成物が開示されているが、その用途はMEMS用途に限られており、絶縁信頼性は不十分であることから、特に多層プリント配線板のビルドアップ層としての十分な性能を発揮することはできなかった。また、特許文献2では、半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物が開示されているが、絶縁信頼性が十分ではなく、その用途は保護膜に限られており、やはり多層プリント配線板のビルドアップ層としての十分な性能を発揮することはできなかった。 Thus, for example, Patent Document 1 discloses a photosensitive resin composition for MEMS comprising a specific photocationic polymerization initiator and a specific epoxy resin, but its use is limited to MEMS use. Insulation reliability is insufficient, so that sufficient performance as a build-up layer of a multilayer printed wiring board could not be exhibited. Further, Patent Document 2 discloses a photosensitive resin composition for a protective film of a printed wiring board for a semiconductor package. However, the insulation reliability is not sufficient, and its use is limited to a protective film, which is also a multilayer. A sufficient performance as a build-up layer of a printed wiring board could not be exhibited.
特開2009-263544号公報JP 2009-263544 A 国際公開第2010/026927号International Publication No. 2010/026927
 したがって、本発明の課題は、感光性を有しながら、絶縁信頼性に優れ、多層プリント配線板のビルドアップ層(層間絶縁層)に好適な物性を有する樹脂組成物を提供することにある。 Therefore, an object of the present invention is to provide a resin composition that has photosensitivity, excellent insulation reliability, and suitable physical properties for a build-up layer (interlayer insulating layer) of a multilayer printed wiring board.
 本発明者らは、(A)エポキシ樹脂、(B)活性エステル硬化剤、シアネートエステル硬化剤及びベンゾオキサジン硬化剤からなる群から選択される1種以上の硬化剤、並びに(C)(メタ)アクリレート構造を有する化合物、を含有する感光性樹脂組成物を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。 The inventors include (A) an epoxy resin, (B) one or more curing agents selected from the group consisting of an active ester curing agent, a cyanate ester curing agent and a benzoxazine curing agent, and (C) (meta). It has been found that the above problems can be solved by using a photosensitive resin composition containing a compound having an acrylate structure, and the present invention has been completed.
 すなわち、本発明は、以下の内容を含む。
〔1〕 (A)エポキシ樹脂、
 (B)活性エステル硬化剤、シアネートエステル硬化剤及びベンゾオキサジン硬化剤からなる群から選択される1種以上の硬化剤、並びに
 (C)(メタ)アクリレート構造を有する化合物、
を含有する、感光性樹脂組成物。
〔2〕 (A)エポキシ樹脂として、温度20℃で液状のエポキシ樹脂と温度20℃で固形状のエポキシ樹脂とを併用して含む、〔1〕記載の感光性樹脂組成物。
〔3〕 感光性樹脂組成物の不揮発成分を100質量%とした場合、(A)成分の含有量が3~50質量%である、〔1〕又は〔2〕記載の感光性樹脂組成物。
〔4〕 感光性樹脂組成物の不揮発成分を100質量%とした場合、(B)成分の含有量が1~30質量%である、〔1〕~〔3〕のいずれか記載の感光性樹脂組成物。
〔5〕 (C)成分が、重量平均分子量500~100000の(メタ)アクリレート構造を有するポリマーを含む、〔1〕~〔4〕のいずれか記載の感光性樹脂組成物。
〔6〕 (C)成分がエポキシ基を有する、〔1〕~〔5〕のいずれか記載の感光性樹脂組成物。
〔7〕 (C)成分の酸価が20mgKOH/g以下である、〔1〕~〔6〕のいずれか記載の感光性樹脂組成物。
〔8〕 感光性樹脂組成物の不揮発成分を100質量%とした場合、(C)成分の含有量が1~25質量%である、〔1〕~〔7〕のいずれか記載の感光性樹脂組成物。
〔9〕 更に(D)光重合開始剤を含有する、〔1〕~〔8〕のいずれか記載の感光性樹脂組成物。
〔10〕 更に(E)無機充填材を含有する、〔1〕~〔9〕のいずれか記載の感光性樹脂組成物。
〔11〕 感光性樹脂組成物の不揮発成分を100質量%とした場合、(E)無機充填材の含有量が10~85質量%である、〔10〕記載の感光性樹脂組成物。
〔12〕 感光性樹脂組成物の不揮発成分を100質量%とした場合、(E)無機充填材の含有量が50~85質量%である、〔10〕記載の感光性樹脂組成物。
〔13〕 多層プリント配線板の層間絶縁層用である、〔1〕~〔12〕のいずれか記載の感光性樹脂組成物。
〔14〕 感光性樹脂組成物の硬化物の誘電正接が、0.005~0.05である、〔1〕~〔13〕のいずれか記載の感光性樹脂組成物。
〔15〕 感光性樹脂組成物の硬化物の吸水率が、0.01~3%である、〔1〕~〔14〕のいずれか記載の感光性樹脂組成物。
〔16〕 〔1〕~〔15〕のいずれか記載の感光性樹脂組成物を含有する支持体付き感光性フィルム。
〔17〕 〔1〕~〔15〕のいずれか記載の感光性樹脂組成物の硬化物を有する多層プリント配線板。
〔18〕 〔17〕記載の多層プリント配線板を用いることを特徴とする半導体装置。
That is, the present invention includes the following contents.
[1] (A) epoxy resin,
(B) one or more curing agents selected from the group consisting of an active ester curing agent, a cyanate ester curing agent and a benzoxazine curing agent, and (C) a compound having a (meth) acrylate structure,
The photosensitive resin composition containing this.
[2] The photosensitive resin composition according to [1], wherein (A) the epoxy resin contains a combination of a liquid epoxy resin at a temperature of 20 ° C. and a solid epoxy resin at a temperature of 20 ° C.
[3] The photosensitive resin composition according to [1] or [2], wherein the content of the component (A) is 3 to 50% by mass when the nonvolatile component of the photosensitive resin composition is 100% by mass.
[4] The photosensitive resin according to any one of [1] to [3], wherein the content of the component (B) is 1 to 30% by mass when the nonvolatile component of the photosensitive resin composition is 100% by mass. Composition.
[5] The photosensitive resin composition according to any one of [1] to [4], wherein the component (C) includes a polymer having a (meth) acrylate structure having a weight average molecular weight of 500 to 100,000.
[6] The photosensitive resin composition according to any one of [1] to [5], wherein the component (C) has an epoxy group.
[7] The photosensitive resin composition according to any one of [1] to [6], wherein the acid value of the component (C) is 20 mg KOH / g or less.
[8] The photosensitive resin according to any one of [1] to [7], wherein the content of the component (C) is 1 to 25% by mass when the nonvolatile component of the photosensitive resin composition is 100% by mass. Composition.
[9] The photosensitive resin composition according to any one of [1] to [8], further comprising (D) a photopolymerization initiator.
[10] The photosensitive resin composition according to any one of [1] to [9], further comprising (E) an inorganic filler.
[11] The photosensitive resin composition according to [10], wherein the content of the inorganic filler (E) is 10 to 85% by mass when the nonvolatile component of the photosensitive resin composition is 100% by mass.
[12] The photosensitive resin composition according to [10], wherein the content of the inorganic filler (E) is 50 to 85% by mass when the nonvolatile component of the photosensitive resin composition is 100% by mass.
[13] The photosensitive resin composition according to any one of [1] to [12], which is used for an interlayer insulating layer of a multilayer printed wiring board.
[14] The photosensitive resin composition according to any one of [1] to [13], wherein the dielectric loss tangent of the cured product of the photosensitive resin composition is 0.005 to 0.05.
[15] The photosensitive resin composition according to any one of [1] to [14], wherein the cured product of the photosensitive resin composition has a water absorption of 0.01 to 3%.
[16] A photosensitive film with a support, containing the photosensitive resin composition according to any one of [1] to [15].
[17] A multilayer printed wiring board having a cured product of the photosensitive resin composition according to any one of [1] to [15].
[18] A semiconductor device using the multilayer printed wiring board according to [17].
 本発明によれば、感光性を有しながら、絶縁信頼性に優れ、多層プリント配線板のビルドアップ層に好適な物性を有する樹脂組成物を提供することができる。更には、本発明の感光性樹脂組成物は、誘電特性に優れ、消費電力が抑えられたビルドアップ層を提供することができ、耐水性や耐熱性に優れたビルドアップ層を提供することができる。 According to the present invention, it is possible to provide a resin composition that has photosensitivity, excellent insulation reliability, and suitable physical properties for a build-up layer of a multilayer printed wiring board. Furthermore, the photosensitive resin composition of the present invention can provide a buildup layer with excellent dielectric properties and low power consumption, and can provide a buildup layer with excellent water resistance and heat resistance. it can.
 以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail on the basis of preferred embodiments thereof.
[感光性樹脂組成物]
 本発明の感光性樹脂組成物は、(A)エポキシ樹脂、(B)活性エステル硬化剤、シアネートエステル硬化剤及びベンゾオキサジン硬化剤からなる群から選択される1種以上の硬化剤、並びに(C)(メタ)アクリレート構造を有する化合物、を含有することを特徴とする。
[Photosensitive resin composition]
The photosensitive resin composition of the present invention comprises (A) an epoxy resin, (B) an active ester curing agent, one or more curing agents selected from the group consisting of a cyanate ester curing agent and a benzoxazine curing agent, and (C ) A compound having a (meth) acrylate structure.
 以下、本発明の樹脂組成物に含まれる、(A)乃至(C)成分について説明する。 Hereinafter, the components (A) to (C) contained in the resin composition of the present invention will be described.
<(A)成分>
 (A)成分は、エポキシ樹脂である。
<(A) component>
(A) A component is an epoxy resin.
 エポキシ樹脂としては、特に限定されるものではないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノールエポキシ樹脂、ナフトールノボラックエポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂及びトリメチロール型エポキシ樹脂等が挙げられる。エポキシ樹脂は1種単独で用いてもよく、又は2種以上を併用してもよい。 Although it does not specifically limit as an epoxy resin, For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol epoxy Resin, naphthol novolac epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, glycidylamine type epoxy resin, glycidyl ester type epoxy resin, cresol Novolac type epoxy resin, biphenyl type epoxy resin, linear aliphatic epoxy resin, epoxy resin having butadiene structure, alicyclic epoxy resin, heterocyclic type Examples include epoxy resins, spiro ring-containing epoxy resins, cyclohexanedimethanol type epoxy resins, naphthylene ether type epoxy resins, and trimethylol type epoxy resins. An epoxy resin may be used individually by 1 type, or may use 2 or more types together.
 エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。エポキシ樹脂の不揮発成分を100質量%とした場合に、少なくとも50質量%以上は1分子中に2個以上のエポキシ基を有するエポキシ樹脂であるのが好ましい。 The epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule. When the nonvolatile component of the epoxy resin is 100% by mass, at least 50% by mass or more is preferably an epoxy resin having two or more epoxy groups in one molecule.
 また、温度20℃で液状のエポキシ樹脂(以下、「液状エポキシ樹脂」という。)と、温度20℃で固形状のエポキシ樹脂(以下、「固形状エポキシ樹脂」という。)とを含むことが好ましい。エポキシ樹脂として、液状エポキシ樹脂と固形状エポキシ樹脂とを併用することで、優れた可撓性を有する樹脂組成物が得られる。また、樹脂組成物を硬化して形成される絶縁層の破断強度も向上する。 Further, it preferably contains an epoxy resin that is liquid at a temperature of 20 ° C. (hereinafter referred to as “liquid epoxy resin”) and an epoxy resin that is a solid at a temperature of 20 ° C. (hereinafter referred to as “solid epoxy resin”). . By using a liquid epoxy resin and a solid epoxy resin in combination as an epoxy resin, a resin composition having excellent flexibility can be obtained. Moreover, the breaking strength of the insulating layer formed by curing the resin composition is also improved.
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、又はナフタレン型エポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、又はナフタレン型エポキシ樹脂がより好ましい。液状エポキシ樹脂の具体例としては、DIC(株)製の「HP4032」、「HP4032D」、「EXA4032SS」、「HP4032SS」(ナフタレン型エポキシ樹脂)、三菱化学(株)製の「jER828EL」(ビスフェノールA型エポキシ樹脂)、「jER807」(ビスフェノールF型エポキシ樹脂)、「jER152」(フェノールノボラック型エポキシ樹脂)、新日鐵化学(株)製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品)等が挙げられる。液状エポキシ樹脂としては、「HP4032SS」(ナフタレン型エポキシ樹脂)、「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品)が特に好ましい。液状エポキシ樹脂は、1種単独で用いてもよく、又は2種以上を併用してもよい。 As the liquid epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, or naphthalene type epoxy resin are preferable, and bisphenol A type epoxy resin, bisphenol F type epoxy resin, or naphthalene type epoxy resin are preferable. More preferred. Specific examples of the liquid epoxy resin include “HP4032”, “HP4032D”, “EXA4032SS”, “HP4032SS” (naphthalene type epoxy resin) manufactured by DIC Corporation, and “jER828EL” (bisphenol A) manufactured by Mitsubishi Chemical Corporation. Type epoxy resin), "jER807" (bisphenol F type epoxy resin), "jER152" (phenol novolac type epoxy resin), "ZX1059" (bisphenol A type epoxy resin and bisphenol F type epoxy) manufactured by Nippon Steel Chemical Co., Ltd. Resin mixture). As the liquid epoxy resin, “HP4032SS” (naphthalene type epoxy resin) and “ZX1059” (mixed product of bisphenol A type epoxy resin and bisphenol F type epoxy resin) are particularly preferable. A liquid epoxy resin may be used individually by 1 type, or may use 2 or more types together.
 固形状エポキシ樹脂としては、4官能ナフタレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノールエポキシ樹脂、ナフトールノボラックエポキシ樹脂、ビフェニル型エポキシ樹脂、又はナフチレンエーテル型エポキシ樹脂が好ましく、4官能ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、又はナフチレンエーテル型エポキシ樹脂がより好ましく、ビフェニル型エポキシ樹脂がさらに好ましい。固形状エポキシ樹脂の具体例としては、DIC(株)製の「HP-4700」、「HP-4710」(4官能ナフタレン型エポキシ樹脂)、「N-690」(クレゾールノボラック型エポキシ樹脂)、「N-695」(クレゾールノボラック型エポキシ樹脂)、「HP7200」、「HP7200H」、「HP7200K-65I」(ジシクロペンタジエン型エポキシ樹脂)、「EXA7311」、「EXA7311-G3」、「HP6000」(ナフチレンエーテル型エポキシ樹脂)、日本化薬(株)製の「EPPN-502H」(トリスフェノールエポキシ樹脂)、「NC7000L」(ナフトールノボラックエポキシ樹脂)、「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(ビフェニル型エポキシ樹脂)、新日鐵化学(株)製の「ESN475」(ナフトールノボラック型エポキシ樹脂)、「ESN485」(ナフトールノボラック型エポキシ樹脂)、三菱化学(株)製の「YX4000H」、「YL6121」(ビフェニル型エポキシ樹脂)、「YX4000HK」(ビキシレノール型エポキシ樹脂)等が挙げられる。特に、日本化薬(株)製の「YX4000HK」(ビキシレノール型エポキシ樹脂)、「NC3000L」(ビフェニル型エポキシ樹脂)、DIC(株)製の「HP7200H」(ジシクロペンタジエン型エポキシ樹脂)が好ましい。固形状エポキシ樹脂は、1種単独で用いてもよく、又は2種以上を併用してもよい。 Examples of solid epoxy resins include tetrafunctional naphthalene type epoxy resins, cresol novolac type epoxy resins, dicyclopentadiene type epoxy resins, trisphenol epoxy resins, naphthol novolac epoxy resins, biphenyl type epoxy resins, and naphthylene ether type epoxy resins. A tetrafunctional naphthalene type epoxy resin, a biphenyl type epoxy resin, or a naphthylene ether type epoxy resin is more preferable, and a biphenyl type epoxy resin is more preferable. Specific examples of the solid epoxy resin include “HP-4700”, “HP-4710” (tetrafunctional naphthalene type epoxy resin), “N-690” (cresol novolac type epoxy resin) manufactured by DIC Corporation, “ N-695 ”(cresol novolac type epoxy resin),“ HP7200 ”,“ HP7200H ”,“ HP7200K-65I ”(dicyclopentadiene type epoxy resin),“ EXA7311 ”,“ EXA7311-G3 ”,“ HP6000 ”(naphthylene) Ether type epoxy resin), “EPPN-502H” (trisphenol epoxy resin), “NC7000L” (naphthol novolak epoxy resin), “NC3000H”, “NC3000”, “NC3000L”, “NC3100” manufactured by Nippon Kayaku Co., Ltd. (Biphenyl type epoxy tree ), “ESN475” (naphthol novolac type epoxy resin) manufactured by Nippon Steel Chemical Co., Ltd., “ESN485” (naphthol novolak type epoxy resin), “YX4000H”, “YL6121” (biphenyl type) manufactured by Mitsubishi Chemical Corporation Epoxy resin), “YX4000HK” (bixylenol type epoxy resin) and the like. In particular, “YX4000HK” (bixylenol type epoxy resin), “NC3000L” (biphenyl type epoxy resin) manufactured by Nippon Kayaku Co., Ltd., and “HP7200H” (dicyclopentadiene type epoxy resin) manufactured by DIC Corporation are preferable. . A solid epoxy resin may be used individually by 1 type, or may use 2 or more types together.
 エポキシ樹脂として、液状エポキシ樹脂と固形状エポキシ樹脂とを併用する場合、それらの量比(液状エポキシ樹脂:固形状エポキシ樹脂)は、質量比で、1:0.1~1:4の範囲が好ましい。液状エポキシ樹脂と固形状エポキシ樹脂との量比をかかる範囲とすることにより、i)接着フィルムの形態で使用する場合に適度な粘着性がもたらされる、ii)接着フィルムの形態で使用する場合に十分な可撓性が得られ、取り扱い性が向上する、並びにiii)十分な破断強度を有する絶縁層を得ることができるなどの効果が得られる。上記i)~iii)の効果の観点から、液状エポキシ樹脂と固形状エポキシ樹脂の量比(液状エポキシ樹脂:固形状エポキシ樹脂)は、質量比で、1:0.3~1:3.5の範囲がより好ましく、1:0.6~1:3の範囲がさらに好ましく、1:0.8~1:2.5の範囲が特に好ましい。
 エポキシ樹脂の含有量は、感光性樹脂組成物中の不揮発成分を100質量%とした場合、3質量%~50質量%が好ましく、5質量%~45質量%がより好ましく、7質量%~35質量%が更に好ましく、8質量%~20質量%が特に好ましい。
When a liquid epoxy resin and a solid epoxy resin are used in combination as the epoxy resin, the quantitative ratio thereof (liquid epoxy resin: solid epoxy resin) is in the range of 1: 0.1 to 1: 4 by mass ratio. preferable. By setting the amount ratio of the liquid epoxy resin and the solid epoxy resin in such a range, i) suitable adhesiveness is obtained when used in the form of an adhesive film, and ii) when used in the form of an adhesive film. Sufficient flexibility is obtained, handling properties are improved, and iii) an insulating layer having sufficient breaking strength can be obtained. From the viewpoint of the effects i) to iii) above, the quantitative ratio of liquid epoxy resin to solid epoxy resin (liquid epoxy resin: solid epoxy resin) is 1: 0.3 to 1: 3.5 in terms of mass ratio. Is more preferable, the range of 1: 0.6 to 1: 3 is more preferable, and the range of 1: 0.8 to 1: 2.5 is particularly preferable.
The content of the epoxy resin is preferably 3% by mass to 50% by mass, more preferably 5% by mass to 45% by mass, and more preferably 7% by mass to 35% by mass, assuming that the nonvolatile component in the photosensitive resin composition is 100% by mass. % By mass is more preferable, and 8% by mass to 20% by mass is particularly preferable.
 エポキシ樹脂のエポキシ当量は、好ましくは50~3000、より好ましくは80~2000、さらに好ましくは110~1000である。この範囲となることで、硬化物の架橋密度が十分となり耐熱性に優れた絶縁層をもたらす。なお、エポキシ当量は、JIS K7236に従って測定することができ、1当量のエポキシ基を含む樹脂の質量である。 The epoxy equivalent of the epoxy resin is preferably 50 to 3000, more preferably 80 to 2000, and still more preferably 110 to 1000. By being in this range, the cured product has a sufficient cross-linking density, resulting in an insulating layer having excellent heat resistance. The epoxy equivalent can be measured according to JIS K7236, and is the mass of a resin containing 1 equivalent of an epoxy group.
<(B)成分>
 (B)成分は、活性エステル硬化剤、シアネートエステル硬化剤及びベンゾオキサジン硬化剤からなる群から選択される1種以上の硬化剤である。
<(B) component>
The component (B) is one or more curing agents selected from the group consisting of an active ester curing agent, a cyanate ester curing agent, and a benzoxazine curing agent.
 -活性エステル硬化剤-
 本発明の感光性樹脂組成物において使用される活性エステル硬化剤は、硬化物としたときの耐熱性、誘電特性、耐水性を向上させることができ、特に誘電特性、耐水性に優れる。活性エステル硬化剤としては、特に制限はないが、1分子中に2個以上の活性エステル基を有する化合物が好ましい。活性エステル硬化剤としては、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。
-Active ester curing agent-
The active ester curing agent used in the photosensitive resin composition of the present invention can improve heat resistance, dielectric properties, and water resistance when cured, and is particularly excellent in dielectric properties and water resistance. Although there is no restriction | limiting in particular as an active ester hardening | curing agent, The compound which has two or more active ester groups in 1 molecule is preferable. As the active ester curing agent, there are generally compounds having two or more ester groups with high reaction activity in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. Preferably used.
 硬化物としたときの耐熱性の向上の観点から、活性エステル硬化剤としては、カルボン酸化合物及び/又はチオカルボン酸化合物と、ヒドロキシ化合物及び/又はチオール化合物とを縮合反応させた反応物から得られる活性エステル化合物が好ましく、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル化合物がより好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル化合物が更に好ましい。そして、カルボン酸化合物とフェノール性水酸基を有する芳香族化合物とを反応させた反応物から得られる1分子中に2個以上の活性エステル基を有する芳香族化合物が更に一層好ましい。そして、活性エステル硬化剤は、少なくとも2個以上のカルボン酸を1分子中に有する化合物と、フェノール性水酸基を有する芳香族化合物とを反応させた反応物から得られる芳香族化合物であり、かつ該芳香族化合物の1分子中に2個以上の活性エステル基を有する芳香族化合物が殊更好ましい。また、活性エステル化合物は、直鎖状または多分岐状であってもよい。また、少なくとも2個以上のカルボン酸を1分子中に有する化合物が脂肪族鎖を含む化合物であれば樹脂組成物との相溶性を高くすることができ、芳香族環を有する化合物であれば耐熱性を高くすることができる。活性エステル硬化剤は1種又は2種以上を併用してもよい。 From the viewpoint of improving the heat resistance when a cured product is obtained, the active ester curing agent is obtained from a reaction product obtained by condensation reaction of a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound. An active ester compound is preferred, an active ester compound obtained from a carboxylic acid compound and a hydroxy compound is more preferred, and an active ester compound obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is still more preferred. An aromatic compound having two or more active ester groups in one molecule obtained from a reaction product obtained by reacting a carboxylic acid compound with an aromatic compound having a phenolic hydroxyl group is even more preferable. The active ester curing agent is an aromatic compound obtained from a reaction product obtained by reacting a compound having at least two or more carboxylic acids in one molecule with an aromatic compound having a phenolic hydroxyl group, and Particularly preferred are aromatic compounds having two or more active ester groups in one molecule of the aromatic compound. The active ester compound may be linear or hyperbranched. In addition, if the compound having at least two carboxylic acids in one molecule is a compound containing an aliphatic chain, the compatibility with the resin composition can be increased, and if it is a compound having an aromatic ring, it is heat resistant. Sexuality can be increased. The active ester curing agent may be used alone or in combination of two or more.
 用いられ得るカルボン酸化合物としては、例えば、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。なかでも硬化物としたときの耐熱性の向上の観点からコハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸が好ましく、イソフタル酸、テレフタル酸がより好ましい。チオカルボン酸化合物としては、例えば、チオ酢酸、チオ安息香酸等が挙げられる。 Examples of carboxylic acid compounds that can be used include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid. Of these, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, and terephthalic acid are preferred, and isophthalic acid and terephthalic acid are more preferred from the viewpoint of improving heat resistance when cured. Examples of the thiocarboxylic acid compound include thioacetic acid and thiobenzoic acid.
 フェノール化合物又はナフトール化合物の例としては、具体的には、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型のジフェノール化合物(ポリシクロペンタジエン型のジフェノール化合物)、フェノールノボラック等が挙げられる。 Specific examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o -Cresol, m-cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetra Hydroxybenzophenone, Phloroglucin, Benzenetriol, Dicyclopentadiene type diphenol compound (Polycyclopentadiene type diphenol compound), Pheno For example, arnovolac.
 なかでも、硬化物としたときの耐熱性の向上、溶解性の向上の観点から、ビスフェノールA、ビスフェノールF、ビスフェノールS、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型のジフェノール化合物(ポリシクロペンタジエン型のジフェノール化合物)、フェノールノボラックが好ましく、カテコール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型のジフェノール化合物(ポリシクロペンタジエン型のジフェノール化合物)、フェノールノボラックがより好ましく、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、ジシクロペンタジエン型のジフェノール化合物(ポリシクロペンタジエン型のジフェノール化合物)、フェノールノボラックが更に好ましく、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジシクロペンタジエン型のジフェノール化合物(ポリシクロペンタジエン型のジフェノール化合物)、フェノールノボラックが更に一層好ましく、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジシクロペンタジエン型のジフェノール化合物(ポリシクロペンタジエン型のジフェノール化合物)が殊更好ましく、ジシクロペンタジエン型のジフェノール化合物(ポリシクロペンタジエン型のジフェノール化合物)が特に好ましい。チオール化合物の例としては、具体的には、ベンゼンジチオール、トリアジンジチオール等が挙げられる。 Among them, from the viewpoint of improving heat resistance and solubility when cured, bisphenol A, bisphenol F, bisphenol S, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, catechol, α- Naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol, dicyclopentadiene type diphenol Compounds (polycyclopentadiene type diphenol compounds) and phenol novolacs are preferred, and catechol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2 , 6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol, dicyclopentadiene type diphenol compound (polycyclopentadiene type diphenol compound), and phenol novolac are more preferable. -Dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, dicyclopentadiene type diphenol compound (polycyclopentadiene type diphenol compound), phenol novolak Are more preferable, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2, -Dihydroxynaphthalene, dicyclopentadiene type diphenol compound (polycyclopentadiene type diphenol compound), and phenol novolac are more preferable. 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene Dicyclopentadiene-type diphenol compounds (polycyclopentadiene-type diphenol compounds) are particularly preferred, and dicyclopentadiene-type diphenol compounds (polycyclopentadiene-type diphenol compounds) are particularly preferred. Specific examples of the thiol compound include benzenedithiol and triazinedithiol.
 ジシクロペンタジエン型ジフェノール縮合構造を含む活性エステル硬化剤としては、より具体的には下式(1)で表される化合物が挙げられる。 More specifically, the active ester curing agent containing a dicyclopentadiene type diphenol condensation structure includes a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、2個あるRは、互いに独立にフェニル基又はナフチル基である。kは0又は1を表す。nは繰り返し単位の平均で0.05~2.5である。 In the formula (1), two Rs are each independently a phenyl group or a naphthyl group. k represents 0 or 1; n is 0.05 to 2.5 on the average of the repeating units.
 誘電正接を低下させ、耐熱性を向上させるという観点から、Rはナフチル基であることが好ましい。kは0であることが好ましい。また、nは0.25~1.5であることが好ましい。 From the viewpoint of reducing the dielectric loss tangent and improving the heat resistance, R is preferably a naphthyl group. k is preferably 0. N is preferably 0.25 to 1.5.
 活性エステル硬化剤としては、日本国特開2004-277460号公報に開示されている活性エステル化合物を用いてもよく、また市販の活性エステル硬化剤を用いることもできる。市販されている活性エステル硬化剤の例としては、具体的には、ジシクロペンタジエン型ジフェノール縮合構造を含む活性エステル硬化剤、ナフタレン構造を含む活性エステル硬化剤、フェノールノボラックのアセチル化物を含む活性エステル硬化剤、フェノールノボラックのベンゾイル化物を含む活性エステル硬化剤が好ましく、なかでもナフタレン構造を含む活性エステル硬化剤、ジシクロペンタジエン型のジフェノール化合物(ポリシクロペンタジエン型のジフェノール化合物)構造を含む活性エステル硬化剤がより好ましい。ジシクロペンタジエン型のジフェノール化合物(ポリシクロペンタジエン型のジフェノール化合物)構造を含む活性エステル硬化剤としては、例えば、EXB9451、EXB9460、EXB9460S、HPC8000-65T(DIC(株)製)が挙げられ、ナフタレン構造を含む活性エステル硬化剤としては、例えば、EXB9416-70BK(DIC(株)製)が挙げられ、フェノールノボラックのアセチル化物を含む活性エステル硬化剤としては、例えば、DC808(三菱化学(株)製)が挙げられ、フェノールノボラックのベンゾイル化物を含む活性エステル硬化剤としては、例えば、YLH1026(三菱化学(株)製)が挙げられる。特に、DIC(株)製のHPC8000-65T(ジシクロペンタジエン型のジフェノール化合物(ポリシクロペンタジエン型のジフェノール化合物)構造を含む活性エステル硬化剤)が好ましい。 As the active ester curing agent, an active ester compound disclosed in Japanese Patent Application Laid-Open No. 2004-277460 may be used, or a commercially available active ester curing agent may be used. Examples of commercially available active ester curing agents include, specifically, an active ester curing agent containing a dicyclopentadiene type diphenol condensation structure, an active ester curing agent containing a naphthalene structure, and an activity containing an acetylated product of phenol novolac. Preferred are ester hardeners, active ester hardeners containing phenol novolac benzoylates, especially active ester hardeners containing naphthalene structures, dicyclopentadiene diphenol compounds (polycyclopentadiene diphenol compounds). An active ester curing agent is more preferred. Examples of the active ester curing agent containing a dicyclopentadiene type diphenol compound (polycyclopentadiene type diphenol compound) structure include EXB9451, EXB9460, EXB9460S, and HPC8000-65T (manufactured by DIC Corporation). Examples of the active ester curing agent containing a naphthalene structure include EXB9416-70BK (manufactured by DIC Corporation). Examples of the active ester curing agent containing an acetylated product of phenol novolak include DC808 (Mitsubishi Chemical Corporation). Examples of the active ester curing agent containing a benzoylated product of phenol novolak include YLH1026 (manufactured by Mitsubishi Chemical Corporation). In particular, HPC8000-65T (an active ester curing agent containing a dicyclopentadiene-type diphenol compound (polycyclopentadiene-type diphenol compound) structure) manufactured by DIC Corporation is preferable.
 -シアネートエステル硬化剤-
 本発明の感光性樹脂組成物において使用されるシアネートエステル硬化剤は、硬化物としたときの耐熱性、誘電特性、耐水性を向上させることができ、特に耐熱性に優れる。シアネートエステル系硬化剤としては、特に制限はないが、例えば、ノボラック型(フェノールノボラック型、アルキルフェノールノボラック型など)シアネートエステル系硬化剤、ジシクロペンタジエン型シアネートエステル系硬化剤、ビスフェノール型(ビスフェノールA型、ビスフェノールF型、ビスフェノールS型など)シアネートエステル系硬化剤、及びこれらが一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の重量平均分子量は、特に限定されるものではないが、500~4500が好ましく、600~3000がより好ましい。シアネートエステル系硬化剤の具体例としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート))、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、ビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック、クレゾールノボラック、ジシクロペンタジエン構造含有フェノール樹脂等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。市販されているシアネートエステル樹脂としては、フェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン(株)製、PT30S)、ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー(ロンザジャパン(株)製、BA230S75)、ジシクロペンタジエン構造含有シアネートエステル樹脂(ロンザジャパン(株)製、DT-4000、DT-7000)等が挙げられる。特に、ロンザジャパン(株)製の「PT30S」(フェノールノボラック型多官能シアネートエステル樹脂)、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)が好ましい。
-Cyanate ester curing agent-
The cyanate ester curing agent used in the photosensitive resin composition of the present invention can improve heat resistance, dielectric properties, and water resistance when cured, and is particularly excellent in heat resistance. The cyanate ester-based curing agent is not particularly limited. For example, novolak type (phenol novolac type, alkylphenol novolak type, etc.) cyanate ester-based curing agent, dicyclopentadiene type cyanate ester-based curing agent, bisphenol type (bisphenol A type) , Bisphenol F type, bisphenol S type, etc.) cyanate ester-based curing agents, and prepolymers in which these are partially triazines. The weight average molecular weight of the cyanate ester curing agent is not particularly limited, but is preferably 500 to 4500, more preferably 600 to 3000. Specific examples of the cyanate ester curing agent include, for example, bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate)), and 4,4′-methylenebis (2,6-dimethylphenyl cyanate). 4,4′-ethylidenediphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3 , 5-dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, bis (4-cyanatephenyl) ether, etc. Resin, phenol novolac, Resole novolac, polyfunctional cyanate resin derived from dicyclopentadiene structure-containing phenol resin, these cyanate resins and partially triazine of prepolymer. These may be used alone or in combination of two or more. Commercially available cyanate ester resins include phenol novolac type polyfunctional cyanate ester resin (Lonza Japan Co., Ltd., PT30S), and a prepolymer in which a part or all of bisphenol A dicyanate is triazine and becomes a trimer ( Lonza Japan Co., Ltd., BA230S75), dicyclopentadiene structure-containing cyanate ester resin (Lonza Japan Co., Ltd., DT-4000, DT-7000) and the like. In particular, “PT30S” (phenol novolak type polyfunctional cyanate ester resin) and “BA230S75” (prepolymer in which a part or all of bisphenol A dicyanate is triazine-modified into a trimer) manufactured by Lonza Japan Co., Ltd. are preferable. .
 -ベンゾオキサジン硬化剤-
 本発明の感光性樹脂組成物において使用されるベンゾオキサジン硬化剤は、硬化物としたときの耐熱性、誘電特性、耐水性を向上させることができる。ベンゾオキサジン硬化剤としては、特に制限はないが、具体例としては、F-a型ベンゾオキサジン、P-d型ベンゾオキサジン(四国化成(株)製)、HFB2006M(昭和高分子(株)製)などが挙げられ、特にP-d型ベンゾオキサジン(四国化成(株)製)が好ましい。
-Benzoxazine curing agent-
The benzoxazine curing agent used in the photosensitive resin composition of the present invention can improve heat resistance, dielectric properties, and water resistance when used as a cured product. The benzoxazine curing agent is not particularly limited, but specific examples include Fa type benzoxazine, Pd type benzoxazine (manufactured by Shikoku Kasei Co., Ltd.), and HFB2006M (manufactured by Showa Polymer Co., Ltd.). In particular, Pd-type benzoxazine (manufactured by Shikoku Kasei Co., Ltd.) is preferable.
 (B)成分である、上記活性エステル硬化剤、上記シアネートエステル硬化剤、上記ベンゾオキサジン硬化剤は、1種を単独で使用しても、2種以上を併用してもよい。特に、誘電正接や吸水率を低下させることが出来る点から、活性エステル硬化剤が好ましい。
 (B)成分の含有量は、感光性樹脂組成物の不揮発成分を100質量%とした場合、1~30質量%含むことが好ましく、3~25質量%含むことがより好ましく、5~20質量%含むことが更に好ましい。
As the component (B), the active ester curing agent, the cyanate ester curing agent, and the benzoxazine curing agent may be used singly or in combination of two or more. In particular, an active ester curing agent is preferable because the dielectric loss tangent and water absorption can be reduced.
The content of the component (B) is preferably 1 to 30% by mass, more preferably 3 to 25% by mass, based on 100% by mass of the nonvolatile component of the photosensitive resin composition, and 5 to 20% by mass. % Is more preferable.
<(C)成分>
 (C)成分は、(メタ)アクリレート構造を有する化合物である。
<(C) component>
The component (C) is a compound having a (meth) acrylate structure.
 (メタ)アクリレート構造を有する化合物としては、これらに限定されないが、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシブチルアクリレートなどのヒドロキシアルキルアクリレート類、エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール、プロピレングリコールなどのグリコールのモノまたはジアクリレート類、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミドなどのアクリルアミド類、N,N-ジメチルアミノエチルアクリレートなどのアミノアルキルアクリレート類、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールなどの多価アルコール又はこれらのエチレンオキサイド、プロピレンオキサイド若しくはε-カプロラクトンの付加物の多価アクリレート類、フェノキシアクリレート、フェノキシエチルアクリレート等フェノール類、あるいはそのエチレンオキサイドあるいはプロピレンオキサイド付加物などのアクリレート類、トリメチロールプロパントリグリシジルエーテルなどのグリシジルエーテルから誘導されるエポキシアクリレート類、メラミンアクリレート類、及び/又は上記のアクリレートに対応するメタクリレート類などが挙げられる。これらのなかでも、多価アクリレート類または多価メタクリレート類が好ましく、例えば、3価のアクリレート類またはメタクリレート類としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、グリセリンPO付加トリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、テトラフルフリルアルコールオリゴ(メタ)アクリレート、エチルカルビトールオリゴ(メタ)アクリレート、1,4-ブタンジオールオリゴ(メタ)アクリレート、1,6-ヘキサンジオールオリゴ(メタ)アクリレート、トリメチロールプロパンオリゴ(メタ)アクリレート、ペンタエリスリトールオリゴ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、N,N,N’,N’-テトラキス(β-ヒドロキシエチル)エチルジアミンの(メタ)アクリル酸エステルなどが挙げられ、3価以上のアクリレート類またはメタクリレート類としては、トリ(2-(メタ)アクリロイルオキシエチル)ホスフェート、トリ(2-(メタ)アクリロイルオキシプロピル)ホスフェート、トリ(3-(メタ)アクリロイルオキシプロピル)ホスフェート、トリ(3-(メタ)アクリロイル-2-ヒドロキシルオキシプロピル)ホスフェート、ジ(3-(メタ)アクリロイル-2-ヒドロキシルオキシプロピル)(2-(メタ)アクリロイルオキシエチル)ホスフェート、(3-(メタ)アクリロイル-2-ヒドロキシルオキシプロピル)ジ(2-(メタ)アクリロイルオキシエチル)ホスフェート等のリン酸トリエステル(メタ)アクリレートを挙げることができる。(C)成分は、硬化物の架橋性を向上させ、耐水性や耐熱性を向上させる点から、エポキシ基を有することが好ましい。特に、合成例1に従い合成した「クレゾールノボラック構造及びエポキシ基を有するアクリレート化合物」、合成例2に従い合成した「ビキシレノール構造、ビスクレゾールフルオレン構造及びエポキシ基を有するメタクリレート化合物」が特に好ましい。これら(メタ)アクリレート化合物はいずれか1種を単独で使用しても2種以上を併用してもよい。 Examples of the compound having a (meth) acrylate structure include, but are not limited to, hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxybutyl acrylate, ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol. Mono- or diacrylates of glycols such as N, N-dimethylacrylamide, acrylamides such as N-methylolacrylamide, aminoalkyl acrylates such as N, N-dimethylaminoethyl acrylate, trimethylolpropane, pentaerythritol, dipenta Polyhydric alcohols such as erythritol or their adducts of ethylene oxide, propylene oxide or ε-caprolactone Polyhydric acrylates, phenols such as phenoxy acrylate, phenoxyethyl acrylate, acrylates such as ethylene oxide or propylene oxide adducts thereof, epoxy acrylates derived from glycidyl ether such as trimethylolpropane triglycidyl ether, melamine acrylates And / or methacrylates corresponding to the above acrylates. Among these, polyvalent acrylates or polyvalent methacrylates are preferable. Examples of the trivalent acrylates or methacrylates include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and trimethylolpropane. EO-added tri (meth) acrylate, glycerin PO-added tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, tetrafurfuryl alcohol oligo (meth) acrylate, ethyl carbitol oligo (meth) acrylate, 1,4-butanediol Oligo (meth) acrylate, 1,6-hexanediol oligo (meth) acrylate, trimethylolpropane oligo (meth) acrylate, pentaerythritol oligo (meth) acrylate Rate, tetramethylol methane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, N, N, N ′, N′-tetrakis (β-hydroxyethyl) ethyldiamine (meth) acrylate, and the like. As trivalent or higher acrylates or methacrylates, tri (2- (meth) acryloyloxyethyl) phosphate, tri (2- (meth) acryloyloxypropyl) phosphate, tri (3- (meth) acryloyloxypropyl) Phosphate, tri (3- (meth) acryloyl-2-hydroxyloxypropyl) phosphate, di (3- (meth) acryloyl-2-hydroxyloxypropyl) (2- (meth) acryloyloxyethyl) phosphate, (3- ( Meta) Acu Mention may be made of phosphoric acid triester (meth) acrylates such as liloyl-2-hydroxyloxypropyl) di (2- (meth) acryloyloxyethyl) phosphate. (C) It is preferable that a component has an epoxy group from the point which improves the crosslinking | crosslinked property of hardened | cured material and improves water resistance and heat resistance. Particularly preferred are “acrylate compounds having a cresol novolac structure and an epoxy group” synthesized according to Synthesis Example 1, and “methacrylate compounds having a bixylenol structure, a biscresol fluorene structure and an epoxy group” synthesized according to Synthesis Example 2. These (meth) acrylate compounds may be used alone or in combination of two or more.
 (C)成分は、解像性向上の点から、重量平均分子量が500~100000の(メタ)アクリレート構造を有するポリマーを含むことが好ましく、より好ましくは700~70000、更に好ましくは1000~50000であり、特に好ましくは1500~35000である。 Component (C) preferably contains a polymer having a (meth) acrylate structure having a weight average molecular weight of 500 to 100,000, more preferably 700 to 70,000, still more preferably 1,000 to 50,000, from the viewpoint of improving resolution. And particularly preferably from 1500 to 35000.
 なお、本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレンン換算)で測定される。GPC法による重量平均分子量は、具体的には、測定装置として(株)島津製作所製LC-9A/RID-6Aを、カラムとして昭和電工(株)社製Shodex K-800P/K-804L/K-804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。 In addition, the weight average molecular weight in this invention is measured by the gel permeation chromatography (GPC) method (polystyrene conversion). Specifically, the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K manufactured by Showa Denko KK as a column. -804L can be measured using chloroform or the like as a mobile phase at a column temperature of 40 ° C. and calculated using a standard polystyrene calibration curve.
 本発明の感光性樹脂組成物では、絶縁信頼性を高めるために、(C)成分として、カルボキシル基を有さない化合物を使用することが好ましいが、本発明の感光性樹脂組成物の絶縁信頼性を阻害しない程度にカルボキシル基を有することができる。例えば、(C)成分の酸価は20mgKOH/g以下が好ましく、10mgKOH/g以下がより好ましく、5mgKOH/g以下がさらに好ましく、3mgKOH/g以下が更に一層好ましく、1mgKOH/g以下が特に好ましい。 In the photosensitive resin composition of the present invention, in order to increase the insulation reliability, it is preferable to use a compound having no carboxyl group as the component (C). However, the insulation reliability of the photosensitive resin composition of the present invention is preferred. It can have a carboxyl group to the extent that it does not inhibit the sex. For example, the acid value of the component (C) is preferably 20 mgKOH / g or less, more preferably 10 mgKOH / g or less, further preferably 5 mgKOH / g or less, still more preferably 3 mgKOH / g or less, and particularly preferably 1 mgKOH / g or less.
 (C)成分の含有量は、感光性樹脂組成物の不揮発成分を100質量%とした場合、1~25質量%含むことが好ましく、5~15質量%含むことがより好ましい。 The content of the component (C) is preferably 1 to 25% by mass, more preferably 5 to 15% by mass when the nonvolatile component of the photosensitive resin composition is 100% by mass.
 本発明の感光性樹脂組成物には、さらに以下の成分を配合することができる。 The following components can be further blended into the photosensitive resin composition of the present invention.
<(D)光重合開始剤>
 本発明の感光性樹脂組成物においては、さらに(D)光重合開始剤を含有させることにより、樹脂組成物を効率的に光硬化させて硬化物とすることができる。(D)光重合開始剤は、特に制限されないが、例えば、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-[4-(4-モルホリニル)フェニル]-1-ブタノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、ベンゾフェノン、メチルベンゾフェノン、o-ベンゾイル安息香酸、ベンゾイルエチルエーテル、2,2-ジエトキシアセトフェノン、2,4-ジエチルチオキサントン、ジフェニル-(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、エチル-(2,4,6-トリメチルベンゾイル)フェニルホスフィネート、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、1-ヒドロキシ-シクロヘキシル-フェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン等のアルキルフェノン系光重合開始剤や、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のアシルフォスフィンオキサイド系光重合開始剤や、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]等のオキシムエステル系光重合開始剤や、スルホニウム塩系光重合開始剤等が挙げられる。特に、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(BASFジャパン(株)製、IC819)等のアシルフォスフィンオキサイド系光重合開始剤、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)](BASFジャパン(株)製、OXE-01)等のオキシムエステル系光重合開始剤が高感度であり好ましい。光重合開始剤はいずれか1種を単独で使用しても2種以上を併用してもよい。
<(D) Photopolymerization initiator>
In the photosensitive resin composition of the present invention, by further containing (D) a photopolymerization initiator, the resin composition can be efficiently photocured to obtain a cured product. (D) The photopolymerization initiator is not particularly limited. For example, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2- (dimethylamino) -2-[(4 -Methylphenyl) methyl]-[4- (4-morpholinyl) phenyl] -1-butanone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, benzophenone, methylbenzophenone O-benzoylbenzoic acid, benzoyl ethyl ether, 2,2-diethoxyacetophenone, 2,4-diethylthioxanthone, diphenyl- (2,4,6-trimethylbenzoyl) phosphine oxide, ethyl- (2,4,6- Trimethylbenzoyl) phenylphosphinate, 4,4′-bis (diethylamino) benzophenone, 1- Hydroxy-cyclohexyl-phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane Alkylphenone photopolymerization initiators such as -1-one, acylphosphine oxide photopolymerization initiators such as bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 1,2-octanedione, Examples thereof include oxime ester photopolymerization initiators such as 1- [4- (phenylthio)-, 2- (O-benzoyloxime)] and sulfonium salt photopolymerization initiators. In particular, acylphosphine oxide photopolymerization initiators such as bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF Japan Ltd., IC819), 1,2-octanedione, 1- [4 Oxime ester photopolymerization initiators such as-(phenylthio)-, 2- (O-benzoyloxime)] (manufactured by BASF Japan Ltd., OXE-01) are preferred because of their high sensitivity. Any one photopolymerization initiator may be used alone, or two or more photopolymerization initiators may be used in combination.
 (D)光重合開始剤の配合量は、感光性樹脂組成物を十分に光硬化させ、絶縁信頼性を向上させるという観点から、感光性樹脂組成物中の不揮発成分を100質量%とした場合、その含有量を0.1質量%以上とすることが好ましく、0.2質量%以上とすることがより好ましく、0.3質量%以上とすることが更に好ましい。一方、光重合開始剤の配合量は、感度過多による寸法安定性の低下を防止するという観点から、感光性樹脂組成物中の不揮発成分を100質量%とした場合、その含有量を2質量%以下とすることが好ましく、1質量%以下とすることがより好ましく、0.5質量%以下とすることが更に好ましい。 (D) The blending amount of the photopolymerization initiator is when the nonvolatile component in the photosensitive resin composition is 100% by mass from the viewpoint of sufficiently curing the photosensitive resin composition and improving the insulation reliability. The content is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and still more preferably 0.3% by mass or more. On the other hand, the blending amount of the photopolymerization initiator is 2% by mass when the nonvolatile component in the photosensitive resin composition is 100% by mass from the viewpoint of preventing a decrease in dimensional stability due to excessive sensitivity. The content is preferably set to 1% by mass or less, more preferably 1% by mass or less, and further preferably 0.5% by mass or less.
<(E)無機充填材>
 本発明の感光性樹脂組成物は、更に(E)無機充填材を含有させることにより、熱膨張率を低下させることができる。(E)無機充填材としては、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられ、これらの中でも無定形シリカ、溶融シリカ、中空シリカ、結晶シリカ、合成シリカ等のシリカが特に好適である。シリカとしては球状のシリカが好ましい。これらは1種または2種以上組み合わせて使用してもよい。市販されている好ましい球状溶融シリカとしては、例えば、(株)アドマテックス製「SOC2」、「SOC1」が挙げられる。
<(E) Inorganic filler>
The thermal expansion coefficient of the photosensitive resin composition of the present invention can be lowered by further containing (E) an inorganic filler. (E) As an inorganic filler, for example, silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, titanium Barium acid, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate, etc., among these, amorphous silica, fused silica, hollow silica, crystalline silica, Silica such as synthetic silica is particularly suitable. As the silica, spherical silica is preferable. You may use these 1 type or in combination of 2 or more types. Examples of preferable spherical fused silica that is commercially available include “SOC2” and “SOC1” manufactured by Admatechs Corporation.
 (E)無機充填材の平均粒径は、絶縁信頼性の向上、光硬化性の向上という点から1μm以下であることが好ましく、0.8μm以下であることがより好ましく、0.6μm以下であることが更に好ましく、0.4μm以下であることが更に一層好ましい。他方で、無機充填材の凝集を防止するという点から、(E)無機充填材の平均粒径は、0.01μm以上であることが好ましく、0.05μm以上であることがより好ましい。なお、無機充填材としては、耐湿性、分散性を向上させるため、シランカップリング剤(エポキシシラン系カップリング剤、アミノシラン系カップリング剤、メルカプトシラン系カップリング剤等)、チタネート系カップリング剤、シラザン化合物等の表面処理剤で表面処理してあるものが好ましい。これらは1種または2種以上組み合わせて使用してもよい。 (E) The average particle diameter of the inorganic filler is preferably 1 μm or less, more preferably 0.8 μm or less, and more preferably 0.6 μm or less from the viewpoint of improvement in insulation reliability and improvement in photocurability. More preferably, it is 0.4 μm or less. On the other hand, from the viewpoint of preventing aggregation of the inorganic filler, the average particle diameter of the (E) inorganic filler is preferably 0.01 μm or more, and more preferably 0.05 μm or more. Inorganic fillers include silane coupling agents (epoxysilane coupling agents, aminosilane coupling agents, mercaptosilane coupling agents, etc.) and titanate coupling agents to improve moisture resistance and dispersibility. Those that have been surface treated with a surface treating agent such as a silazane compound are preferred. You may use these 1 type or in combination of 2 or more types.
 エポキシシラン系カップリング剤としては、例えば、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルメチルジエトキシシラン、グリシジルブチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられ、アミノシラン系カップリング剤としては、例えば、アミノプロピルメトキシシラン、アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)アミノプロピルトリメトキシシラン等が挙げられ、メルカプトシラン系カップリング剤としては、例えば、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。市販のカップリング剤としては、例えば、信越化学工業(株)製「KBM403」(3-グリシドキシプロピルトリメトキシシラン)、信越化学工業(株)製「KBM803」(3-メルカプトプロピルトリメトキシシラン)、信越化学工業(株)製「KBE903」(3-アミノプロピルトリエトキシシラン)、信越化学工業(株)製「KBM573」(N-フェニル-3-アミノプロピルトリメトキシシラン)等が挙げられる。 Examples of the epoxysilane coupling agent include glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidylbutyltrimethoxysilane, (3,4-epoxycyclohexyl) Examples of aminosilane coupling agents include aminopropylmethoxysilane, aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and N-2 (aminoethyl) amino. Examples of the mercaptosilane coupling agent include mercaptopropyltrimethoxysilane and mercaptopropyltriethoxysilane. You may use these 1 type or in combination of 2 or more types. Examples of commercially available coupling agents include “KBM403” (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., and “KBM803” (3-mercaptopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. ), “KBE903” (3-aminopropyltriethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., “KBM573” (N-phenyl-3-aminopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., and the like.
 チタネート系カップリング剤としては、例えば、ブチルチタネートダイマー、チタンオクチレングリコレート、ジイソプロポキシチタンビス(トリエタノールアミネート)、ジヒドロキシチタンビスラクテート、ジヒドロキシビス(アンモニウムラクテート)チタニウム、ビス(ジオクチルパイロホスフェート)エチレンチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、トリ-n-ブトキシチタンモノステアレート、テトラ-n-ブチルチタネート、テトラ(2-エチルヘキシル)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミドエチル・アミノエチル)チタネート等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 Examples of titanate coupling agents include butyl titanate dimer, titanium octylene glycolate, diisopropoxy titanium bis (triethanolaminate), dihydroxy titanium bis lactate, dihydroxy bis (ammonium lactate) titanium, bis (dioctyl pyrophosphate) ethylene Titanate, bis (dioctylpyrophosphate) oxyacetate titanate, tri-n-butoxytitanium monostearate, tetra-n-butyl titanate, tetra (2-ethylhexyl) titanate, tetraisopropylbis (dioctylphosphite) titanate, tetraoctylbis (Ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) Sphite titanate, isopropyl trioctanoyl titanate, isopropyl tricumyl phenyl titanate, isopropyl triisostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tridodecylbenzenesulfonyl titanate Isopropyltris (dioctylpyrophosphate) titanate, isopropyltri (N-amidoethyl / aminoethyl) titanate, and the like. You may use these 1 type or in combination of 2 or more types.
 シラザン化合物としては、例えば、ヘキサメチルジシラザン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、オクタメチルトリシラザン、ヘキサ(t-ブチル)ジシラザン、ヘキサブチルジシラザン、ヘキサオクチルジシラザン、1,3-ジエチルテトラメチルジシラザン、1,3-ジ-n-オクチルテトラメチルジシラザン、1,3-ジフェニルテトラメチルジシラザン、1,3-ジメチルテトラフェニルジシラザン、1,3-ジエチルテトラメチルジシラザン、1,1,3,3-テトラフェニル-1,3-ジメチルジシラザン、1,3-ジプロピルテトラメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘキサフェニルジシラザン、ジメチルアミノトリメチルシラザン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5-ヘキサメチルシクロトリシラザン等を挙げることができ、特にヘキサメチルジシラザンが好ましい。これらは1種または2種以上組み合わせて使用してもよい。 Examples of the silazane compound include hexamethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, octamethyltrisilazane, hexa (t-butyl) disilazane, hexabutyldisilazane, hexa Octyldisilazane, 1,3-diethyltetramethyldisilazane, 1,3-di-n-octyltetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, 1,3-dimethyltetraphenyldisilazane, 1, 3-diethyltetramethyldisilazane, 1,1,3,3-tetraphenyl-1,3-dimethyldisilazane, 1,3-dipropyltetramethyldisilazane, hexamethylcyclotrisilazane, hexaphenyldisilazane, dimethyl Aminotrimethylsilazane, trisilazane, cyclotrisilazane, 1 1,3,3,5,5- hexamethylcyclotrisilazane, etc. can be mentioned, particularly preferably hexamethyldisilazane. You may use these 1 type or in combination of 2 or more types.
 (E)無機充填材は、感光性樹脂組成物の分散性の向上の観点から、シラザン化合物で表面処理した無機充填材を用いることが好ましい。そしてシラザン化合物で表面処理した後に、シランカップリング剤で表面処理することで、更なる分散性の向上を図ることができる。表面処理に用いられるシラザン化合物の量は、無機充填材100質量%に対して0.001質量%~0.3質量%であることが好ましく、0.005質量%~0.2質量%であることがより好ましい。ヘキサメチルジシラザンで表面処理した球状溶融シリカとしては、例えば、(株)アドマテックス製「SC2050」が挙げられる。また表面処理に用いられるシランカップリング剤の量は、無機充填材100質量%に対して0.1質量%~6質量%であることが好ましく、0.2質量%~4質量%であることがより好ましく、0.3質量%~3質量%であることが更に好ましい。 (E) It is preferable to use an inorganic filler surface-treated with a silazane compound from the viewpoint of improving the dispersibility of the photosensitive resin composition. And after surface-treating with a silazane compound, the further dispersibility improvement can be aimed at by surface-treating with a silane coupling agent. The amount of the silazane compound used for the surface treatment is preferably 0.001% by mass to 0.3% by mass, and 0.005% by mass to 0.2% by mass with respect to 100% by mass of the inorganic filler. It is more preferable. Examples of the spherical fused silica surface-treated with hexamethyldisilazane include “SC2050” manufactured by Admatechs Co., Ltd. The amount of the silane coupling agent used for the surface treatment is preferably 0.1% by mass to 6% by mass, and preferably 0.2% by mass to 4% by mass with respect to 100% by mass of the inorganic filler. Is more preferable, and 0.3 to 3% by mass is still more preferable.
 (E)無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折散乱式粒度分布測定装置としては、(株)堀場製作所製LA-500、LA-750等を使用することができる。 (E) The average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on the Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction / scattering particle size distribution measuring apparatus, LA-500, LA-750 manufactured by Horiba, Ltd. or the like can be used.
 (E)無機充填材を配合する場合の含有量は、硬化物の線熱膨張率を低下させ、硬化物の歪みを防止するという観点から、感光性樹脂組成物中の不揮発成分を100質量%とした場合、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上が更に好ましく、40質量%以上が更により好ましく、耐熱性を向上させる点から50質量%以上が特に好ましい。他方で、(E)無機充填材を配合する場合の含有量は、アルカリ現像性の低下の防止、光硬化性の向上という観点から、感光性樹脂組成物中の不揮発成分を100質量%とした場合、85質量%以下であることが好ましく、75質量%以下であることがより好ましく、65質量%以下であることが更に好ましい。 (E) Content in the case of mix | blending an inorganic filler is 100 mass% of non-volatile components in the photosensitive resin composition from a viewpoint of reducing the linear thermal expansion coefficient of hardened | cured material and preventing distortion of hardened | cured material. Is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, still more preferably 40% by mass or more, and particularly preferably 50% by mass or more from the viewpoint of improving heat resistance. . On the other hand, the content in the case of blending the (E) inorganic filler is 100% by mass of the non-volatile component in the photosensitive resin composition from the viewpoint of preventing deterioration of alkali developability and improving photocurability. In this case, it is preferably 85% by mass or less, more preferably 75% by mass or less, and further preferably 65% by mass or less.
<(F)硬化促進剤>
 本発明の感光性樹脂組成物においては、更に(F)硬化促進剤を含有させることにより、硬化物の耐熱性、接着性、耐薬品性等を向上させることができる。
 (F)硬化促進剤としては、特に限定されないが、例えば、アミン系硬化促進剤、グアニジン系硬化促進剤、イミダゾール系硬化促進剤、ホスホニウム系硬化促進剤、金属系硬化促進剤等が挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。
<(F) Curing accelerator>
In the photosensitive resin composition of this invention, the heat resistance of a hardened | cured material, adhesiveness, chemical-resistance, etc. can be improved by containing (F) hardening accelerator further.
(F) Although it does not specifically limit as a hardening accelerator, For example, an amine hardening accelerator, a guanidine hardening accelerator, an imidazole hardening accelerator, a phosphonium hardening accelerator, a metal hardening accelerator etc. are mentioned. These may be used alone or in combination of two or more.
 アミン系硬化促進剤としては、特に限定されるものではないが、例えば、トリエチルアミン、トリブチルアミンなどのトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5.4.0)-ウンデセンなどのアミン化合物などが挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 The amine curing accelerator is not particularly limited, and examples thereof include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylamino). And amine compounds such as methyl) phenol and 1,8-diazabicyclo (5.4.0) -undecene. You may use these 1 type or in combination of 2 or more types.
 グアニジン系硬化促進剤としては、特に限定されるものではないが、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 The guanidine-based curing accelerator is not particularly limited, and examples thereof include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, Dimethylguanidine, diphenylguanidine, trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-tria Zabicyclo [4.4.0] dec-5-ene, 1-methyl biguanide, 1-ethyl biguanide, 1-n-butyl biguanide, 1-n-octadecyl biguanide, 1,1-dimethyl biguanide, 1,1- Diethyl biguanide, 1-cyclohexyl biguanide, 1-allyl biguanide 1-phenyl biguanide, 1- (o-tolyl) biguanide, and the like. You may use these 1 type or in combination of 2 or more types.
 イミダゾール系硬化促進剤としては、特に限定されるものではないが、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 The imidazole curing accelerator is not particularly limited. For example, 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methyl Imidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1')] -Ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2' -Methylimidazolyl- (1 ')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5 -Hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium Ride, 2-methyl-imidazoline, adduct of 2-phenyl-imidazo imidazole compounds such as phosphorus and imidazole compound and an epoxy resin. You may use these 1 type or in combination of 2 or more types.
 ホスホニウム系硬化促進剤としては、特に限定されるものではないが、例えば、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 The phosphonium curing accelerator is not particularly limited. For example, triphenylphosphine, phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, ( 4-methylphenyl) triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate and the like. You may use these 1 type or in combination of 2 or more types.
 本発明の感光性樹脂組成物において、硬化促進剤(金属系硬化促進剤を除く)としては、アミン系硬化促進剤、イミダゾール系硬化促進剤を用いるのが好ましく、中でも、4-ジメチルアミノピリジン、2-フェニル-4-メチルイミダゾールを用いるのが特に好ましい。硬化促進剤(金属系硬化促進剤を除く)の含有量は、感光性樹脂組成物中の不揮発成分を100質量%とした場合、0.005質量%~1質量%の範囲であることが好ましく、0.01質量%~0.08質量%の範囲であることがより好ましい。0.005質量%未満であると、硬化が遅くなり硬化時間が長く必要となる傾向にあり、1質量%を超えると樹脂組成物の保存安定性が低下する傾向となる。 In the photosensitive resin composition of the present invention, it is preferable to use an amine-based curing accelerator or an imidazole-based curing accelerator as the curing accelerator (excluding the metal-based curing accelerator), among which 4-dimethylaminopyridine, It is particularly preferred to use 2-phenyl-4-methylimidazole. The content of the curing accelerator (excluding the metal-based curing accelerator) is preferably in the range of 0.005% by mass to 1% by mass when the nonvolatile component in the photosensitive resin composition is 100% by mass. The range of 0.01% by mass to 0.08% by mass is more preferable. If it is less than 0.005% by mass, curing tends to be slow and a long curing time is required, and if it exceeds 1% by mass, the storage stability of the resin composition tends to decrease.
 金属系硬化促進剤としては、特に限定されるものではないが、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体などが挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛などが挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。 The metal curing accelerator is not particularly limited, and examples thereof include an organometallic complex or an organometallic salt of a metal such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of the organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate. Examples of the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate. These may be used alone or in combination of two or more.
 本発明の感光性樹脂組成物において、金属系硬化促進剤としては、有機コバルト錯体を用いることが好ましく、特に、コバルト(III)アセチルアセトナートを用いるのが好ましい。金属系硬化促進剤の含有量は、感光性樹脂組成物の固形分全体を100質量%とした場合、金属系硬化触媒に基づく金属の含有量が25ppm~500ppmの範囲であることが好ましく、30ppm~200ppmの範囲であることがより好ましい。 In the photosensitive resin composition of the present invention, an organic cobalt complex is preferably used as the metal curing accelerator, and cobalt (III) acetylacetonate is particularly preferably used. The content of the metal-based curing accelerator is preferably such that the metal content based on the metal-based curing catalyst is in the range of 25 ppm to 500 ppm when the total solid content of the photosensitive resin composition is 100% by mass. More preferably, it is in the range of ˜200 ppm.
<(G)有機充填材>
 本発明の感光性樹脂組成物は、更に(G)有機充填材を含有させることにより、硬化物の応力を緩和させることができ、硬化物としたときにクラックの発生を防止することができる。(G)有機充填材としては、例えば、ゴム粒子、ポリアミド微粒子、シリコーン粒子などが挙げられ、本発明においては、ゴム粒子を用いることが好ましい。
<(G) Organic filler>
The photosensitive resin composition of the present invention can further reduce the stress of the cured product by containing an organic filler (G), and can prevent the occurrence of cracks when the cured product is formed. Examples of the organic filler (G) include rubber particles, polyamide fine particles, and silicone particles. In the present invention, it is preferable to use rubber particles.
 ゴム粒子としては、ゴム弾性を示す樹脂に化学的架橋処理を施し、有機溶剤に不溶かつ不融とした樹脂の微粒子体であるものならばどのようなゴム粒子でもよく、例えば、アクリロニトリルブタジエンゴム粒子、ブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。ゴム粒子としては、具体的には、XER-91(日本合成ゴム(株)社製)、スタフィロイドAC3355、AC3816、AC3816N、AC3832、AC4030、AC3364、IM101(以上、ガンツ化成(株)社製)パラロイドEXL2655、EXL2602(以上、呉羽化学工業(株)社製)などが挙げられ、AC3816N(ガンツ化成(株)社製)が好ましい。 The rubber particles may be any rubber particles as long as they are fine particles of a resin that has been chemically cross-linked to a resin exhibiting rubber elasticity and is insoluble and infusible in an organic solvent. For example, acrylonitrile butadiene rubber particles Butadiene rubber particles, acrylic rubber particles, and the like. Specific examples of the rubber particles include XER-91 (manufactured by Nippon Synthetic Rubber Co., Ltd.), Staphyloid AC3355, AC3816, AC3816N, AC3832, AC4030, AC3364, IM101 (manufactured by Gantz Chemical Co., Ltd.). Paraloid EXL2655, EXL2602 (manufactured by Kureha Chemical Industry Co., Ltd.) and the like can be mentioned, and AC3816N (manufactured by Ganz Kasei Co., Ltd.) is preferable.
 ポリアミド微粒子としては、アミド結合を有する樹脂の50μm以下の微粒子であればどのようなポリアミド微粒子でもよく、例えば、ナイロン等の脂肪族ポリアミド、ケブラー等の芳香族ポリアミド、ポリアミドイミドなどが挙げられる。ポリアミド微粒子としては、具体的には、VESTOSINT 2070(ダイセルヒュルス(株)社製)や、SP500(東レ(株)社製)などが挙げられる。 The polyamide fine particles may be any polyamide fine particles as long as they are fine particles of 50 μm or less of a resin having an amide bond, and examples thereof include aliphatic polyamides such as nylon, aromatic polyamides such as Kevlar, and polyamideimide. Specific examples of the polyamide fine particles include VESTOSINT 2070 (manufactured by Daicel Huls Co., Ltd.) and SP500 (manufactured by Toray Industries, Inc.).
 (G)有機充填材の平均粒径は、0.005μm~1μmの範囲であることが好ましく、0.2μm~0.6μmの範囲であることがより好ましい。(G)有機充填材の平均粒径は、動的光散乱法を用いて測定することができる。(G)有機充填材の平均粒径は、例えば、適当な有機溶剤に有機充填材を超音波などにより均一に分散させ、濃厚系粒径アナライザー(FPAR-1000;大塚電子(株)製)を用いて、有機充填材の粒度分布を質量基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。 (G) The average particle diameter of the organic filler is preferably in the range of 0.005 μm to 1 μm, and more preferably in the range of 0.2 μm to 0.6 μm. (G) The average particle diameter of the organic filler can be measured using a dynamic light scattering method. (G) The average particle size of the organic filler is determined by, for example, dispersing the organic filler uniformly in an appropriate organic solvent using ultrasonic waves or the like, and using a concentrated particle size analyzer (FPAR-1000; manufactured by Otsuka Electronics Co., Ltd.). It can be measured by creating a particle size distribution of the organic filler on a mass basis and setting its median diameter as the average particle size.
 (G)有機充填材を配合する場合の含有量は、耐熱性の向上、レーザー加工性の向上という観点から、感光性樹脂組成物の固形分全体を100質量%とした場合、0.1質量%~6質量%が好ましく、0.5質量%~4質量%がより好ましい。 (G) Content in the case of mix | blending an organic filler is 0.1 mass when the solid content of the photosensitive resin composition shall be 100 mass% from a viewpoint of an improvement of heat resistance and a laser workability. % To 6% by mass is preferable, and 0.5% to 4% by mass is more preferable.
<(H)光増感剤>
 本発明の感光性樹脂組成物は、(H)光増感剤として、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミン等の三級アミン類を加えてもよいし、ピラリゾン類、アントラセン類、クマリン類、キサントン類、チオキサントン類などのような光増感剤を加えてもよい。本発明においては、光増感剤として、チオキサントン類を使用するのが好ましく、2,4-ジエチルチオキサントンを使用するのがさらに好ましい。光増感剤はいずれか1種を単独で使用しても2種以上を併用してもよい。
<(H) Photosensitizer>
The photosensitive resin composition of the present invention comprises (H) photosensitizer, N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethylamine Tertiary amines such as triethanolamine may be added, and photosensitizers such as pyrarizones, anthracenes, coumarins, xanthones, thioxanthones may be added. In the present invention, thioxanthones are preferably used as photosensitizers, and 2,4-diethylthioxanthone is more preferably used. Any one of these photosensitizers may be used alone, or two or more thereof may be used in combination.
<(I)有機溶剤>
 本発明の感光性樹脂組成物は、更に(I)有機溶剤を含有させることによりワニス粘度を調整できる。(I)有機溶剤としては、例えば、エチルメチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、ブチルセロソルブアセテート、カルビトールアセテート等のエステル類、オクタン、デカンなどの脂肪族炭化水素類、石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤等が挙げられるが、中でも、ソルベントナフサ、メチルエチルケトンが好ましい。これらは1種を単独で又は2種以上を組み合わせて用いられる。有機溶剤を用いる場合の含有量は、感光性樹脂組成物の塗布性の観点から適宜調整することができる。
<(I) Organic solvent>
The photosensitive resin composition of the present invention can adjust the varnish viscosity by further containing (I) an organic solvent. (I) Examples of the organic solvent include ketones such as ethyl methyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene, methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, and propylene glycol. Glycol ethers such as monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether, esters such as ethyl acetate, butyl acetate, butyl cellosolve acetate, carbitol acetate, octane, decane, etc. Examples include petroleum hydrocarbons such as aliphatic hydrocarbons, petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha. Among them, solvent naphtha and methyl ethyl Tonnes is preferred. These are used singly or in combination of two or more. Content in the case of using an organic solvent can be suitably adjusted from a viewpoint of the applicability | paintability of the photosensitive resin composition.
<(J)その他の添加剤>
 (J)その他の添加剤としては、例えば、メラミン、有機ベントナイト等の微粒子、フタロシアニンブルー、フタロシアニングリーン、アイオディン・グリーン、ジアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラック等の着色剤、ハイドロキノン、フェノチアジン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール等の重合禁止剤、ベントン、モンモリロナイト等の増粘剤、シリコーン系、フッ素系、ビニル樹脂系の消泡剤、臭素化エポキシ化合物、酸変性臭素化エポキシ化合物、アンチモン化合物、リン系化合物、芳香族縮合リン酸エステル、含ハロゲン縮合リン酸エステル等の難燃剤、フェノール系硬化剤等の熱硬化樹脂、等の各種添加剤を添加することができる。
<(J) Other additives>
(J) Examples of other additives include fine particles such as melamine and organic bentonite, coloring agents such as phthalocyanine blue, phthalocyanine green, iodine green, diazo yellow, crystal violet, titanium oxide, carbon black and naphthalene black, hydroquinone Polymerization inhibitors such as phenothiazine, methyl hydroquinone, hydroquinone monomethyl ether, catechol and pyrogallol, thickeners such as benton and montmorillonite, silicone, fluorine and vinyl resin defoamers, brominated epoxy compounds, acid-modified bromine Add various additives such as flame retardants such as fluorinated epoxy compounds, antimony compounds, phosphorus compounds, aromatic condensed phosphate esters, halogen-containing condensed phosphate esters, thermosetting resins such as phenolic curing agents, etc. Can.
 本発明の感光性樹脂組成物は、上記(A)~(C)(及び任意で(D)~(J)も)を適宜混合し、また、必要に応じて三本ロール、ボールミル、ビーズミル、サンドミル等の混練手段、あるいはスーパーミキサー、プラネタリーミキサー等の撹拌手段により混練または撹拌することにより、樹脂ワニスとして製造することができる。 The photosensitive resin composition of the present invention is appropriately mixed with the above (A) to (C) (and optionally (D) to (J)), and if necessary, a three-roll, ball mill, bead mill, It can be produced as a resin varnish by kneading or stirring with a kneading means such as a sand mill or a stirring means such as a super mixer or a planetary mixer.
 本発明の感光性樹脂組成物の用途は、特に限定されないが、感光性フィルム、支持体付き感光性フィルム、プリプレグ等の絶縁樹脂シート、回路基板(積層板用途、多層プリント配線板用途等)、ソルダーレジスト、アンダ-フィル材、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂等、樹脂組成物が必要とされる用途の広範囲に使用できる。なかでも、多層プリント配線板の絶縁層用樹脂組成物(感光性樹脂組成物の硬化物を絶縁層とした多層プリント配線板)として好適であり、特に層間絶縁層用樹脂組成物(感光性樹脂組成物の硬化物を層間絶縁層とした多層プリント配線板)、メッキ形成用樹脂組成物(感光性樹脂組成物の硬化物上にメッキが形成された多層プリント配線板)として好適に使用することができる。 The use of the photosensitive resin composition of the present invention is not particularly limited, but a photosensitive film, a photosensitive film with a support, an insulating resin sheet such as a prepreg, a circuit board (for laminated board use, multilayer printed wiring board use, etc.), It can be used in a wide range of applications where a resin composition is required, such as solder resist, underfill material, die bonding material, semiconductor sealing material, hole filling resin, and component filling resin. Especially, it is suitable as a resin composition for insulating layers of a multilayer printed wiring board (multilayer printed wiring board using a cured product of a photosensitive resin composition as an insulating layer), particularly an interlayer insulating layer resin composition (photosensitive resin). A multilayer printed wiring board having a cured product of the composition as an interlayer insulating layer) and a resin composition for plating formation (a multilayer printed wiring board in which plating is formed on the cured product of the photosensitive resin composition). Can do.
<感光性フィルム>
 本発明の感光性樹脂組成物は、樹脂ワニス状態で支持基板上に塗布し、有機溶剤を乾燥させることで樹脂組成物層を形成して、感光性フィルムとすることができる。また、予め支持体上に形成された感光性フィルムを支持基板に積層して用いることもできる。本発明の感光性フィルムは様々な支持基板に積層させることができる。支持基板としては主に、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の基板が挙げられる。
<Photosensitive film>
The photosensitive resin composition of this invention can apply | coat on a support substrate in a resin varnish state, can form a resin composition layer by drying an organic solvent, and can be used as a photosensitive film. Moreover, the photosensitive film previously formed on the support body can also be laminated | stacked and used for a support substrate. The photosensitive film of the present invention can be laminated on various supporting substrates. Examples of the support substrate mainly include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate.
<支持体付き感光性フィルム>
 本発明の感光性樹脂組成物は、樹脂組成物層が支持体上に層形成された支持体付き感光性フィルムの形態で好適に使用することができる。つまり、支持体付き感光性フィルムは感光性樹脂組成物の層が支持体上に形成されている。支持体としては、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリプロピレンフィルム、ポリエチレンフィルム、ポリビニルアルコールフィルム、トリアセチルアセテートフィルム等が挙げられ、特にポリエチレンテレフタレートフィルムが好ましい。
 市販の支持体としては、例えば、王子製紙株式会社製の製品名「アルファンMA-410」、「E-200C」、信越フィルム株式会社製等のポリプロピレンフィルム、帝人株式会社製の製品名「PS-25」等のPSシリーズなどのポリエチレンテレフタレートフィルム等が挙げられるが、これらに限られたものではない。これらの支持体は、樹脂組成物層の除去を容易にするため、シリコーンコート剤のような剥離剤を表面に塗布してあるのがよい。支持体の厚さは、5μm~50μmの範囲であることが好ましく、10μm~25μmの範囲であることがより好ましい。この厚さが5μm未満では、現像前に行う支持体剥離の際に支持体(支持フィルム)が破れやすくなる傾向があり、他方で、厚さが50μmを超えると、支持体上から露光する際の解像度が低下する傾向がある。また、低フィッシュアイの支持体が好ましい。ここでフィッシュアイとは、材料を熱溶融し、混練、押し出し、2軸延伸、キャスティング法等によりフィルムを製造する際に、材料の異物、未溶解物、酸化劣化物等がフィルム中に取り込まれたものである。
<Photosensitive film with support>
The photosensitive resin composition of the present invention can be suitably used in the form of a photosensitive film with a support in which a resin composition layer is formed on a support. That is, the photosensitive film with a support has a layer of the photosensitive resin composition formed on the support. Examples of the support include a polyethylene terephthalate film, a polyethylene naphthalate film, a polypropylene film, a polyethylene film, a polyvinyl alcohol film, and a triacetyl acetate film, and a polyethylene terephthalate film is particularly preferable.
Commercially available supports include, for example, product names “Alphan MA-410” and “E-200C” manufactured by Oji Paper Co., Ltd., polypropylene films manufactured by Shin-Etsu Film Co., Ltd., and product names “PS” manufactured by Teijin Limited. Polyethylene terephthalate film such as PS series such as “-25” can be mentioned, but it is not limited thereto. In order to facilitate the removal of the resin composition layer, these supports are preferably coated with a release agent such as a silicone coating agent on the surface. The thickness of the support is preferably in the range of 5 μm to 50 μm, and more preferably in the range of 10 μm to 25 μm. If the thickness is less than 5 μm, the support (support film) tends to be broken when the support is peeled off before development. On the other hand, if the thickness exceeds 50 μm, the support is exposed from above. The resolution tends to decrease. Also, a low fisheye support is preferred. Here, the fish eye means that a material is melted, kneaded, extruded, biaxially stretched, a film is produced by a casting method, etc., and foreign materials, undissolved materials, oxidized deterioration products, etc. of the material are taken into the film. It is a thing.
 また、紫外線等の活性エネルギー線による露光時の光の散乱を低減するため、支持体は透明性に優れるものが好ましい。支持体は、具体的には、透明性の指標となる濁度(JIS-K6714で規格化されているヘーズ)が0.1~5であるものが好ましい。さらに樹脂組成物層は保護フィルムで保護されていてもよい。 Further, in order to reduce scattering of light during exposure by active energy rays such as ultraviolet rays, the support is preferably excellent in transparency. Specifically, the support preferably has a turbidity (haze standardized by JIS-K6714) as an index of transparency of 0.1 to 5. Furthermore, the resin composition layer may be protected with a protective film.
 支持体付き感光性フィルムの樹脂組成物層側を保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。保護フィルムとしては上記の支持体と同様の材料により構成されたフィルムを用いることができる。保護フィルムの厚さは特に限定されないが、1μm~40μmの範囲であることが好ましく、5μm~30μmの範囲であることがより好ましく、10μm~30μmの範囲であることが更に好ましい。この厚さが1μm未満では、保護フィルムの取り扱い性が低下する傾向があり、40μmを超えると廉価性に劣る傾向がある。なお、保護フィルムは、樹脂組成物層と支持体との接着力に対して、樹脂組成物層と保護フィルムとの接着力の方が小さいものが好ましい。 By protecting the resin composition layer side of the photosensitive film with a support with a protective film, it is possible to prevent adhesion or scratches of dust or the like on the surface of the resin composition layer. As the protective film, a film made of the same material as that of the support can be used. The thickness of the protective film is not particularly limited, but is preferably in the range of 1 μm to 40 μm, more preferably in the range of 5 μm to 30 μm, and still more preferably in the range of 10 μm to 30 μm. If the thickness is less than 1 μm, the handleability of the protective film tends to be reduced, and if it exceeds 40 μm, the cost tends to be inferior. The protective film preferably has a smaller adhesive force between the resin composition layer and the protective film than the adhesive force between the resin composition layer and the support.
 本発明の支持体付き感光性フィルムは、当業者に公知の方法に従って、例えば、本発明の感光性樹脂組成物を有機溶剤に溶解した樹脂ワニスを調製し、支持体上にこの樹脂ワニスを塗布し、加熱又は熱風吹きつけ等により有機溶剤を乾燥させて樹脂組成物層を形成することにより製造することができる。具体的には、まず、真空脱泡法等で感光性樹脂組成物中の泡を完全に除去した後、感光性樹脂組成物を支持体上に塗布し、熱風炉あるいは遠赤外線炉により溶剤を除去し、乾燥せしめ、ついで必要に応じて得られた樹脂組成物層上に保護フィルムを積層することにより支持体付き感光性フィルムを製造することができる。具体的な乾燥条件は、樹脂組成物の硬化性や樹脂ワニス中の有機溶剤量によっても異なるが、30質量%~60質量%の有機溶剤を含む樹脂ワニスにおいては、80℃~120℃で3分間~13分間で乾燥させることができる。樹脂組成物層中の残存有機溶剤量は、後の工程での有機溶剤の拡散を防止する点から、樹脂組成物層の総量に対して5質量%以下とすることが好ましく、2質量%以下とすることがより好ましい。当業者は、簡単な実験により適宜、好適な乾燥条件を設定することができる。樹脂組成物層の厚さは、取り扱い性を向上させ、かつ樹脂組成物層内部の感度及び解像度が低下するのを防止するという観点から、5μm~500μmの範囲とすることが好ましく、10μm~200μmの範囲とするのがより好ましく、15μm~150μmの範囲とするのが更に好ましく、20μm~100μmの範囲とするのが更に一層好ましく、20μm~60μmの範囲とするのが殊更好ましい。 The photosensitive film with a support of the present invention is prepared by, for example, preparing a resin varnish obtained by dissolving the photosensitive resin composition of the present invention in an organic solvent according to a method known to those skilled in the art, and applying this resin varnish on the support. And it can manufacture by drying an organic solvent by heating or hot air spraying, etc., and forming a resin composition layer. Specifically, first, after completely removing bubbles in the photosensitive resin composition by a vacuum defoaming method or the like, the photosensitive resin composition is applied onto a support, and a solvent is removed by a hot air furnace or a far infrared furnace. The photosensitive film with a support can be produced by removing and drying, and then laminating a protective film on the resin composition layer obtained as necessary. The specific drying conditions vary depending on the curability of the resin composition and the amount of the organic solvent in the resin varnish. However, in the case of a resin varnish containing 30% by mass to 60% by mass of the organic solvent, the drying condition is 3 ° C. It can be dried for 13 to 13 minutes. The amount of the remaining organic solvent in the resin composition layer is preferably 5% by mass or less with respect to the total amount of the resin composition layer from the viewpoint of preventing diffusion of the organic solvent in the subsequent step. More preferably. Those skilled in the art can appropriately set suitable drying conditions by simple experiments. The thickness of the resin composition layer is preferably in the range of 5 μm to 500 μm from the viewpoint of improving the handleability and preventing the sensitivity and resolution inside the resin composition layer from being lowered. The range of 15 μm to 150 μm is more preferable, the range of 20 μm to 100 μm is still more preferable, and the range of 20 μm to 60 μm is even more preferable.
 感光性樹脂組成物の塗布方式としては、例えば、グラビアコート方式、マイクログラビアコート方式、リバースコート方式、キスリバースコート方式、ダイコート方式、スロットダイ方式、リップコート方式、コンマコート方式、ブレードコート方式、ロールコート方式、ナイフコート方式、カーテンコート方式、チャンバーグラビアコート方式、スロットオリフィス方式、スプレーコート方式、ディップコート方式等が挙げられる。
 感光性樹脂組成物は、数回に分けて塗布してもよいし、1回で塗布してもよく、また異なる方式を複数組み合わせて塗布してもよい。中でも、均一塗工性に優れる、ダイコート方式が好ましい。また、異物混入等をさけるために、クリーンルーム等の異物発生の少ない環境で塗布工程を実施することが好ましい。
As a coating method of the photosensitive resin composition, for example, gravure coating method, micro gravure coating method, reverse coating method, kiss reverse coating method, die coating method, slot die method, lip coating method, comma coating method, blade coating method, Examples thereof include a roll coating method, a knife coating method, a curtain coating method, a chamber gravure coating method, a slot orifice method, a spray coating method, and a dip coating method.
The photosensitive resin composition may be applied in several times, may be applied once, or may be applied by combining a plurality of different methods. Among these, the die coating method is preferable because it is excellent in uniform coatability. Further, in order to avoid contamination by foreign matters, it is preferable to carry out the coating process in an environment with little foreign matter generation such as a clean room.
<多層プリント配線板>
 次に、感光性樹脂組成物を用いて多層プリント配線板を製造する際の例を記載する。
 本発明の感光性樹脂組成物を用いて層間絶縁層を製造すると、(1)ビア開口が一括で行える、(2)ビア位置精度がレーザー開口よりも優れたものが得られるなどのメリットが得られる。
<Multilayer printed wiring board>
Next, the example at the time of manufacturing a multilayer printed wiring board using the photosensitive resin composition is described.
When an interlayer insulating layer is produced using the photosensitive resin composition of the present invention, there are merits such that (1) via openings can be performed at once, and (2) via position accuracy is superior to laser openings. It is done.
 (塗布及び乾燥工程)
 感光性樹脂組成物を樹脂ワニス状態で直接的に回路基板上に塗布し、有機溶剤を乾燥させることにより、回路基板上に感光性フィルムを形成する。回路基板としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。なお、ここで回路基板とは、上記のような基板の片面又は両面にパターン加工された導体層(回路)が形成された基板をいう。また導体層と絶縁層とを交互に積層してなる多層プリント配線板において、該多層プリント配線板の最外層の片面又は両面がパターン加工された導体層(回路)となっている基板も、ここでいう回路基板に含まれる。なお導体層表面には、黒化処理、銅エッチング等により予め粗化処理が施されていてもよい。
(Coating and drying process)
A photosensitive resin composition is directly applied on a circuit board in a resin varnish state, and an organic solvent is dried to form a photosensitive film on the circuit board. Examples of the circuit board include a glass epoxy board, a metal board, a polyester board, a polyimide board, a BT resin board, a thermosetting polyphenylene ether board, and the like. Here, the circuit board refers to a board on which a conductor layer (circuit) patterned on one or both sides of the board is formed. Further, in a multilayer printed wiring board in which conductor layers and insulating layers are alternately laminated, a substrate having a conductor layer (circuit) in which one or both surfaces of the outermost layer of the multilayer printed wiring board are patterned is also here. It is included in the circuit board. The surface of the conductor layer may be previously roughened by blackening, copper etching, or the like.
 塗布方式としては、スクリーン印刷法による全面印刷が一般に多く用いられているが、その他にも均一に塗布できる塗布方式であればどのような手段を用いてもよい。例えば、スプレーコート方式、ホットメルトコート方式、バーコート方式、アプリケーター方式、ブレードコート方式、ナイフコート方式、エアナイフコート方式、カーテンフローコート方式、ロールコート方式、グラビアコート方式、オフセット印刷方式、ディップコート方式、刷毛塗り、その他通常の塗布方式はすべて使用できる。塗布後、必要に応じて熱風炉あるいは遠赤外線炉等で乾燥を行う。乾燥条件は、80℃~120℃で3分間~13分間とすることが好ましい。このようにして、回路基板上に感光性フィルムが形成される。 As the coating method, full-screen printing by screen printing is generally used, but any other means may be used as long as it can be uniformly applied. For example, spray coating method, hot melt coating method, bar coating method, applicator method, blade coating method, knife coating method, air knife coating method, curtain flow coating method, roll coating method, gravure coating method, offset printing method, dip coating method , Brushing and other normal application methods can be used. After coating, drying is performed in a hot air furnace or a far infrared furnace as necessary. The drying conditions are preferably 80 to 120 ° C. for 3 to 13 minutes. In this way, a photosensitive film is formed on the circuit board.
 (ラミネート工程)
 また、支持体付き感光性フィルムを用いる場合には、樹脂組成物層側を、真空ラミネーターを用いて回路基板の片面又は両面にラミネートする。ラミネート工程において、支持体付き感光性フィルムが保護フィルムを有している場合には該保護フィルムを除去した後、必要に応じて感光性フィルム及び回路基板をプレヒートし、樹脂組成物層を加圧及び加熱しながら回路基板に圧着する。本発明の感光性フィルムにおいては、真空ラミネート法により減圧下で回路基板にラミネートする方法が好適に用いられる。
(Lamination process)
Moreover, when using the photosensitive film with a support body, the resin composition layer side is laminated on the single side | surface or both surfaces of a circuit board using a vacuum laminator. In the laminating process, when the photosensitive film with a support has a protective film, the protective film is removed, and then the photosensitive film and the circuit board are preheated as necessary, and the resin composition layer is pressed. And crimping to the circuit board while heating. In the photosensitive film of the present invention, a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is suitably used.
 ラミネート工程の条件は、特に限定されるものではないが、例えば、圧着温度(ラミネート温度)を好ましくは70℃~140℃とし、圧着圧力を好ましくは1kgf/cm~11kgf/cm(9.8×10N/m~107.9×10N/m)、圧着時間を好ましくは5秒間~300秒間とし、空気圧を20mmHg(26.7hPa)以下とする減圧下でラミネートするのが好ましい。また、ラミネート工程は、バッチ式であってもロールを用いる連続式であってもよい。真空ラミネート法は、市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、例えば、ニチゴー・モートン(株)製バキュームアップリケーター、(株)名機製作所製真空加圧式ラミネーター、(株)日立インダストリイズ製ロール式ドライコータ、日立エーアイーシー(株)製真空ラミネーター等を挙げることができる。このようにして、回路基板上に感光性フィルムが形成される。 The conditions for the laminating step are not particularly limited. For example, the pressure bonding temperature (laminating temperature) is preferably 70 ° C. to 140 ° C., and the pressure bonding pressure is preferably 1 kgf / cm 2 to 11 kgf / cm 2 (9. 8 × 10 4 N / m 2 to 107.9 × 10 4 N / m 2 ), the pressure bonding time is preferably 5 seconds to 300 seconds, and the air pressure is 20 mmHg (26.7 hPa) or less. Is preferred. The laminating step may be a batch type or a continuous type using a roll. The vacuum laminating method can be performed using a commercially available vacuum laminator. Commercially available vacuum laminators include, for example, a vacuum applicator manufactured by Nichigo-Morton Co., Ltd., a vacuum pressurizing laminator manufactured by Meiki Seisakusho Co., Ltd., a roll dry coater manufactured by Hitachi Industries, Ltd., and Hitachi AIC Co., Ltd. ) Made vacuum laminator and the like. In this way, a photosensitive film is formed on the circuit board.
 (露光工程)
 塗布及び乾燥工程、あるいはラミネート工程により、回路基板上に感光性フィルムが設けられた後、次いで、マスクパターンを通して、樹脂組成物層の所定部分に活性光線を照射し、照射部の樹脂組成物層を光硬化させる露光工程を行う。活性光線としては、例えば、紫外線、可視光線、電子線、X線等が挙げられ、特に紫外線が好ましい。紫外線の照射量はおおむね10mJ/cm~1000mJ/cmである。露光方法にはマスクパターンをプリント配線板に密着させて行う接触露光法と、密着させずに平行光線を使用して露光する非接触露光法とがあるが、どちらを用いてもかまわない。また、樹脂組成物層上に支持体が存在している場合は、支持体上から露光してもよいし、支持体を剥離後に露光してもよい。
(Exposure process)
After a photosensitive film is provided on a circuit board by a coating and drying process or a laminating process, a predetermined part of the resin composition layer is then irradiated with actinic rays through a mask pattern, and a resin composition layer of an irradiated part An exposure process for photocuring is performed. Examples of the actinic rays include ultraviolet rays, visible rays, electron beams, and X-rays, and ultraviolet rays are particularly preferable. The irradiation amount of ultraviolet rays is about 10 mJ / cm 2 to 1000 mJ / cm 2 . The exposure method includes a contact exposure method in which a mask pattern is brought into close contact with a printed wiring board, and a non-contact exposure method in which exposure is carried out using parallel light rays without being brought into close contact, either of which may be used. Moreover, when the support body exists on a resin composition layer, you may expose from a support body and may expose after a support body peels.
 (現像工程)
 露光工程後、樹脂組成物層上に支持体が存在している場合にはその支持体を除去した後、ウエット現像又はドライ現像で、光硬化されていない部分(未露光部)を除去して現像することにより、パターンを形成することができる。
(Development process)
After the exposure step, if a support is present on the resin composition layer, the support is removed, and then the portion that has not been photocured (unexposed portion) is removed by wet development or dry development. By developing, a pattern can be formed.
 上記ウエット現像の場合、現像液としては、アルカリ性水溶液、水系現像液、有機溶剤等の安全かつ安定であり操作性が良好な現像液が用いられ、本発明においては、なかでも有機溶剤による現像工程が好ましい。また、現像方法としては、スプレー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法が適宜採用される。 In the case of the above wet development, as the developer, a safe and stable developer having good operability such as an alkaline aqueous solution, an aqueous developer, an organic solvent, etc. is used. Is preferred. Further, as a developing method, a known method such as spraying, rocking dipping, brushing, scraping or the like is appropriately employed.
 現像液として使用される有機溶剤は、例えば、アセトン、酢酸エチル、炭素原子数1~4のアルコキシ基を有するアルコキシエタノール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテルである。 Examples of the organic solvent used as the developer include acetone, ethyl acetate, alkoxyethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol. Monobutyl ether.
 このような有機溶剤の濃度は、現像液全量に対して2質量%~90質量%であることが好ましい。また、このような有機溶剤の温度は、現像性にあわせて調節することができる。さらに、このような有機溶剤は単独で又は2種類以上を組み合わせて用いることができる。単独で用いる有機溶剤系現像液としては、例えば、1,1,1-トリクロロエタン、N-メチルピロリドン、N,N-ジメチルホルムアミド、シクロヘキサノン、メチルイソブチルケトン、γ-ブチロラクトン、プロピレングリコール1-モノメチルエーテル2-アセテート(PGMEA)が挙げられ、本発明では、中でもPGMEAが好ましい。 The concentration of such an organic solvent is preferably 2% by mass to 90% by mass with respect to the total amount of the developer. Moreover, the temperature of such an organic solvent can be adjusted according to developability. Furthermore, such organic solvents can be used alone or in combination of two or more. Examples of the organic solvent developer used alone include 1,1,1-trichloroethane, N-methylpyrrolidone, N, N-dimethylformamide, cyclohexanone, methyl isobutyl ketone, γ-butyrolactone, propylene glycol 1-monomethyl ether 2 -Acetate (PGMEA), among which PGMEA is preferred in the present invention.
 本発明のパターン形成においては、必要に応じて、上記した2種類以上の現像方法を併用して用いてもよい。現像の方式には、ディップ方式、バトル方式、スプレー方式、高圧スプレー方式、ブラッシング、スラッピング等があり、高圧スプレー方式が解像度向上のためには好適である。スプレー方式を採用する場合のスプレー圧としては、0.05MPa~0.3MPaが好ましい。 In the pattern formation of the present invention, if necessary, two or more kinds of development methods described above may be used in combination. Development methods include a dip method, a battle method, a spray method, a high-pressure spray method, brushing, and slapping, and the high-pressure spray method is suitable for improving the resolution. The spray pressure when the spray method is employed is preferably 0.05 MPa to 0.3 MPa.
 (ポストベーク工程)
 上記現像工程終了後、ポストベーク工程を行い、絶縁層(硬化物)を形成する。ポストベーク工程としては、高圧水銀ランプによる紫外線照射工程やクリーンオーブンを用いた加熱工程等が挙げられる。紫外線を照射させる場合は必要に応じてその照射量を調整することができ、例えば0.05J/cm~10J/cm程度の照射量で照射を行うことができる。また加熱の条件は、樹脂組成物中の樹脂成分の種類、含有量などに応じて適宜選択すればよいが、好ましくは150℃~220℃で20分間~180分間の範囲、より好ましくは160℃~200℃で30分間~120分間の範囲で選択される。
(Post bake process)
After the development step, a post-bake step is performed to form an insulating layer (cured product). Examples of the post-bake process include an ultraviolet irradiation process using a high-pressure mercury lamp and a heating process using a clean oven. Case of ultraviolet irradiation can adjust its dose optionally, the irradiation can be carried out, for example 0.05J / cm 2 ~ 10J / cm 2 of about dose. The heating conditions may be appropriately selected according to the type and content of the resin component in the resin composition, but are preferably 150 ° C. to 220 ° C. for 20 minutes to 180 minutes, more preferably 160 ° C. It is selected in the range of 30 minutes to 120 minutes at 200 ° C.
 (メッキ工程)
 次に、乾式メッキ又は湿式メッキにより絶縁層上に導体層を形成する。乾式メッキとしては、蒸着法、スパッタリング法、イオンプレーティング法等の公知の方法を使用することができる。蒸着法(真空蒸着法)は、例えば、支持体を真空容器内に入れ、金属を加熱蒸発させることにより絶縁層上に金属膜形成を行うことができる。スパッタリング法も、例えば、支持体を真空容器内に入れ、アルゴン等の不活性ガスを導入し、直流電圧を印加して、イオン化した不活性ガスをターゲット金属に衝突させ、叩き出された金属により絶縁層上に金属膜形成を行うことができる。
(Plating process)
Next, a conductor layer is formed on the insulating layer by dry plating or wet plating. As the dry plating, a known method such as a vapor deposition method, a sputtering method, or an ion plating method can be used. In the vapor deposition method (vacuum vapor deposition method), for example, a metal film can be formed on the insulating layer by placing the support in a vacuum vessel and evaporating the metal by heating. In the sputtering method, for example, the support is placed in a vacuum vessel, an inert gas such as argon is introduced, a direct current voltage is applied, the ionized inert gas is made to collide with the target metal, and the struck metal is used. A metal film can be formed on the insulating layer.
 湿式メッキの場合は、形成された絶縁層の表面に対して、膨潤液による膨潤処理、酸化剤による粗化処理及び中和液による中和処理をこの順に行うことによって凸凹のアンカーを形成する。膨潤液による膨潤処理は、絶縁層を50℃~80℃で5分間~20分間膨潤液に浸漬させることで行われる。膨潤液としてはアルカリ溶液が挙げられ、該アルカリ溶液としては、水酸化ナトリウム溶液、水酸化カリウム溶液等が挙げられる。市販されている膨潤液としては、例えば、アトテックジャパン(株)製のスウェリング・ディップ・セキュリガンスP(Swelling Dip Securiganth P)、スウェリング・ディップ・セキュリガンスSBU(Swelling Dip Securiganth SBU)等を挙げることができる。酸化剤による粗化処理は、絶縁層を60℃~80℃で10分間~30分間酸化剤溶液に浸漬させることで行われる。酸化剤としては、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウムや過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等を挙げることができる。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は5重量%~10重量%とするのが好ましい。市販されている酸化剤としては、例えば、アトテックジャパン(株)製のコンセントレート・コンパクト CP、ドージングソリューション セキュリガンスP等のアルカリ性過マンガン酸溶液が挙げられる。中和液による中和処理は、30℃~50℃で3分間~10分間中和液に浸漬させることで行われる。中和液としては、酸性の水溶液が好ましく、市販品としては、アトテックジャパン(株)製のリダクションソリューシン・セキュリガントPが挙げられる。 In the case of wet plating, the surface of the formed insulating layer is subjected to a swelling treatment with a swelling solution, a roughening treatment with an oxidizing agent, and a neutralization treatment with a neutralizing solution in this order to form an uneven anchor. The swelling treatment with the swelling liquid is performed by immersing the insulating layer in the swelling liquid at 50 to 80 ° C. for 5 to 20 minutes. Examples of the swelling liquid include an alkaline solution, and examples of the alkaline solution include a sodium hydroxide solution and a potassium hydroxide solution. Examples of commercially available swelling liquids include Swelling Dip Securigans P (Swelling Dip Securiganth P), Swelling Dip Securigans SBU (Swelling Dip Securiganth SBU) manufactured by Atotech Japan Co., Ltd. be able to. The roughening treatment with an oxidizing agent is performed by immersing the insulating layer in an oxidizing agent solution at 60 to 80 ° C. for 10 to 30 minutes. Examples of the oxidizing agent include alkaline permanganate solution in which potassium permanganate and sodium permanganate are dissolved in an aqueous solution of sodium hydroxide, dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like. it can. The concentration of permanganate in the alkaline permanganate solution is preferably 5% by weight to 10% by weight. Examples of commercially available oxidizing agents include alkaline permanganate solutions such as Concentrate Compact CP and Dosing Solution Securigans P manufactured by Atotech Japan Co., Ltd. The neutralization treatment with the neutralizing solution is performed by immersing in a neutralizing solution at 30 to 50 ° C. for 3 to 10 minutes. As the neutralizing solution, an acidic aqueous solution is preferable, and as a commercially available product, Reduction Solution / Secligant P manufactured by Atotech Japan Co., Ltd. may be mentioned.
 次いで、無電解メッキと電解メッキとを組み合わせて導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。その後のパターン形成の方法として、例えば、当業者に公知のサブトラクティブ法、セミアディティブ法などを用いることができる。 Next, a conductor layer is formed by combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. As a subsequent pattern formation method, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used.
<半導体装置>
 本発明の多層プリント配線板を用いることで半導体装置を製造することができる。本発明の多層プリント配線板の導通箇所に、半導体チップを実装することにより半導体装置を製造することができる。「導通箇所」とは、「多層プリント配線板における電気信号を伝える箇所」であって、その場所は表面であっても、埋め込まれた箇所であってもいずれでも構わない。また、半導体チップは半導体を材料とする電気回路素子であれば特に限定されない。
<Semiconductor device>
A semiconductor device can be manufactured by using the multilayer printed wiring board of the present invention. A semiconductor device can be manufactured by mounting a semiconductor chip in a conductive portion of the multilayer printed wiring board of the present invention. The “conduction location” is a “location where an electrical signal is transmitted in a multilayer printed wiring board”, and the location may be a surface or an embedded location. The semiconductor chip is not particularly limited as long as it is an electric circuit element made of a semiconductor.
 本発明の半導体装置を製造する際の半導体チップの実装方法は、半導体チップが有効に機能しさえすれば、特に限定されないが、具体的には、ワイヤボンディング実装方法、フリップチップ実装方法、バンプなしビルドアップ層(BBUL)による実装方法、異方性導電フィルム(ACF)による実装方法、非導電性フィルム(NCF)による実装方法、などが挙げられる。 The semiconductor chip mounting method for manufacturing the semiconductor device of the present invention is not particularly limited as long as the semiconductor chip functions effectively, but specifically, a wire bonding mounting method, a flip chip mounting method, and no bumps. Examples include a mounting method using a build-up layer (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
 本発明の感光性樹脂組成物は、感光性を有しながら、絶縁信頼性に優れ、多層プリント配線板のビルドアップ層に好適な物性を有する樹脂組成物を提供することができる。さらに誘電特性、耐水性、耐熱性に優れ、有機溶剤での現像に適した硬化物を提供することができる。以下、これらの特性について詳述する。 The photosensitive resin composition of the present invention can provide a resin composition having excellent physical properties and suitable for a buildup layer of a multilayer printed wiring board while having photosensitivity. Further, it is possible to provide a cured product which is excellent in dielectric properties, water resistance and heat resistance and suitable for development with an organic solvent. Hereinafter, these characteristics will be described in detail.
 本発明の感光性樹脂組成物の硬化物の誘電正接は、後述の<誘電特性の測定>により測定することができる。誘電正接は、具体的には、空洞共振摂動法により周波数を5.8GHzとし、測定温度を23℃として測定することができる。高周波での発熱防止、信号遅延および信号ノイズの低減という観点から、誘電正接は0.05以下であることが好ましく、0.04以下であることがより好ましく、0.03以下であることが更に好ましく、0.02以下であることが更に一層好ましく、0.013以下であることが殊更好ましい。他方で、誘電正接の下限値は特に制限は無いが、0.005以上などとなる。 The dielectric loss tangent of the cured product of the photosensitive resin composition of the present invention can be measured by <Measurement of dielectric characteristics> described later. Specifically, the dielectric loss tangent can be measured by a cavity resonance perturbation method at a frequency of 5.8 GHz and a measurement temperature of 23 ° C. From the viewpoints of preventing heat generation at high frequencies, reducing signal delay and signal noise, the dielectric loss tangent is preferably 0.05 or less, more preferably 0.04 or less, and further preferably 0.03 or less. Preferably, it is 0.02 or less, and further preferably 0.013 or less. On the other hand, the lower limit value of the dielectric loss tangent is not particularly limited, but is 0.005 or more.
 本発明の感光性樹脂組成物の硬化物の耐水性(吸水率)は、後述の<耐水性の測定>で説明する測定方法により測定することができる。吸水率は、プリント配線板作製時のボイドの発生防止、絶縁信頼性の向上という観点から、3%以下であることが好ましく、2%以下であることがより好ましく、1%以下であることが更に好ましく、0.8%以下であることが更に一層好ましい。一方、吸水率の下限値は特に制限は無いが、0.01%以上、0.1%以上、0.2%以上などとなる。 The water resistance (water absorption) of the cured product of the photosensitive resin composition of the present invention can be measured by a measurement method described in <Measurement of water resistance> described later. The water absorption is preferably 3% or less, more preferably 2% or less, and more preferably 1% or less from the viewpoint of preventing generation of voids during printed wiring board production and improving insulation reliability. More preferably, it is still more preferably 0.8% or less. On the other hand, the lower limit of the water absorption rate is not particularly limited, but is 0.01% or more, 0.1% or more, 0.2% or more, and the like.
 本発明の感光性樹脂組成物の硬化物の耐熱性は、後述の<耐熱性の評価>で説明する測定方法により測定することができる。耐熱性の指標としては、硬化物に熱履歴を与えた際の硬化物の劣化を防止するという点で、ガラス転移点を採用するのがよい。ガラス転移点は110℃以上であることが好ましい。ガラス転移点の上限値は特に制限されないが、300℃以下であることが好ましい。また、プリント配線板の歪み防止という点で、耐熱性の指標として、熱膨張係数を採用してもよい。熱膨張係数は、10~30ppm/℃が好ましい。 The heat resistance of the cured product of the photosensitive resin composition of the present invention can be measured by a measurement method described in <Evaluation of heat resistance> described later. As an index of heat resistance, it is preferable to employ a glass transition point in terms of preventing deterioration of the cured product when a thermal history is given to the cured product. The glass transition point is preferably 110 ° C. or higher. The upper limit of the glass transition point is not particularly limited, but is preferably 300 ° C. or lower. Further, in terms of preventing distortion of the printed wiring board, a thermal expansion coefficient may be employed as a heat resistance index. The coefficient of thermal expansion is preferably 10 to 30 ppm / ° C.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、「部」は質量部を意味する。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. “Part” means part by mass.
<評価用積層体の調整>
 18mm厚の銅層で回路が形成されているガラスエポキシ基板の銅層上をCZ8100(有機酸を含む表面処理剤、メック(株)製)処理にて粗化を施した。次に実施例、比較例で得られた支持体付き感光性フィルムの樹脂組成物層が銅回路表面と接するようにし、真空ラミネーター(ニチゴーモートン株式会社製、VP160)を用いて積層させ、前記ガラスエポキシ基板と、前記樹脂組成物層と、前記支持体とがこの順に積層された積層体を調製した。圧着条件は、真空引き20秒間後に、圧着温度80℃、圧着圧力0.2MPa、加圧時間20秒で行った。該積層体を室温1時間以上静置し、該積層体の支持体上から、丸穴パターンを用い、直径80mmの丸穴が形成できるよう、パターン形成装置を用いて、100mJ/cmの紫外線で露光を行った。室温にて30分間静置した後、前記積層体から支持体を剥がし取った。実施例では、該積層板上の樹脂組成物層の全面に現像液として30℃のPGMEA(プロピレングリコール1-モノメチルエーテル2-アセテート)に浸漬し現像し、その後、現像液を拭き取り、1J/cmの紫外線照射を行い、さらに190℃、60分間で加熱処理し、直径80mmの開口部を有する絶縁層を該積層体上に形成した。これを評価用積層体とした。
<Adjustment of evaluation laminate>
The copper layer of the glass epoxy substrate on which the circuit was formed with an 18 mm thick copper layer was roughened by CZ8100 (a surface treatment agent containing an organic acid, manufactured by MEC Co., Ltd.). Next, the resin composition layer of the photosensitive film with a support obtained in Examples and Comparative Examples is brought into contact with the surface of the copper circuit and laminated using a vacuum laminator (manufactured by Nichigo Morton, VP160), and the glass A laminate in which an epoxy substrate, the resin composition layer, and the support were laminated in this order was prepared. The pressure bonding conditions were 20 seconds after evacuation, and a pressure bonding temperature of 80 ° C., a pressure bonding pressure of 0.2 MPa, and a pressure time of 20 seconds. The laminate is allowed to stand at room temperature for 1 hour or longer, and a 100 mJ / cm 2 ultraviolet ray is used on the support of the laminate using a pattern forming apparatus so that a round hole having a diameter of 80 mm can be formed using a round hole pattern. The exposure was performed. After standing at room temperature for 30 minutes, the support was peeled off from the laminate. In the examples, the entire surface of the resin composition layer on the laminated plate was developed by being immersed in PGMEA (propylene glycol 1-monomethyl ether 2-acetate) at 30 ° C. as a developer, and then the developer was wiped off. 2 was irradiated with ultraviolet rays and further heat-treated at 190 ° C. for 60 minutes to form an insulating layer having an opening with a diameter of 80 mm on the laminate. This was made into the laminated body for evaluation.
 一方、比較例では、該積層板上の樹脂組成物層の全面に現像液として30℃の1質量%炭酸ナトリウム水溶液をスプレー圧0.15MPaにて最小現像時間(未露光部が現像される最小時間)の1.5倍の時間でスプレー現像した。スプレー現像後、1J/cmの紫外線照射を行い、さらに190℃、60分間で加熱処理し、直径80mmの開口部を有する絶縁層を該積層体上に形成した。 On the other hand, in the comparative example, a 1 mass% sodium carbonate aqueous solution at 30 ° C. was applied as a developing solution over the entire surface of the resin composition layer on the laminated plate at a spray pressure of 0.15 MPa for a minimum developing time (minimum for developing an unexposed portion). Spray development for 1.5 times the time. After spray development, ultraviolet irradiation of 1 J / cm 2 was performed, followed by heat treatment at 190 ° C. for 60 minutes, and an insulating layer having an opening with a diameter of 80 mm was formed on the laminate.
<評価用硬化物の調整>
 実施例、比較例で得られた支持体付き感光性フィルムの樹脂組成物層に100mJ/cmの紫外線で露光を行い光硬化させた。その後、樹脂組成物層の全面に1J/cmの紫外線照射を行い、さらに190℃、90分間で加熱処理し、絶縁層形成した。その後、支持体を剥がし取って、評価用硬化物とした。
<Adjustment of cured product for evaluation>
The resin composition layer of the photosensitive film with a support obtained in Examples and Comparative Examples was exposed to 100 mJ / cm 2 of ultraviolet light and photocured. Thereafter, the entire surface of the resin composition layer was irradiated with ultraviolet rays of 1 J / cm 2 and further heat-treated at 190 ° C. for 90 minutes to form an insulating layer. Thereafter, the support was peeled off to obtain a cured product for evaluation.
<測定方法・評価方法>
 まずは各種測定方法・評価方法について説明する。
<Measurement method / Evaluation method>
First, various measurement methods and evaluation methods will be described.
<感光性の評価>
(解像性)
 解像性の評価として、評価用積層体の丸穴のレジスト形状をSEMで観察(倍率1000倍)し、下記基準で評価した。
○:丸穴形状が良好で、捲くれや剥がれがない。
×:丸穴形状が現像により広がってしまい、捲くれや剥がれがある。
<Evaluation of photosensitivity>
(Resolution)
As evaluation of resolution, the resist shape of the round hole of the evaluation laminate was observed with an SEM (magnification 1000 times) and evaluated according to the following criteria.
○: The shape of the round hole is good and there is no blistering or peeling.
X: The shape of the round hole spreads by development, and there are wrinkles and peeling.
(現像性)
 現像性の評価として、評価用積層体の丸穴の底部の残渣をSEMにて観察(倍率1000倍)し、丸穴底部の残渣の有無を下記基準で評価した。
○:直径80mmの丸穴の基板上に現像残渣はなく、現像残渣除去性に優れている。
×:直径80mmの丸穴の基板上に現像残渣があり、現像残渣除去性が劣る。
(Developability)
As evaluation of developability, the residue at the bottom of the round hole of the evaluation laminate was observed with a SEM (magnification 1000 times), and the presence or absence of the residue at the bottom of the round hole was evaluated according to the following criteria.
○: There is no development residue on the substrate having a round hole with a diameter of 80 mm, and the development residue removability is excellent.
X: There is a development residue on a substrate having a round hole with a diameter of 80 mm, and the development residue removability is poor.
<絶縁信頼性の評価>
 櫛歯型電極(ライン/スペース=15ミクロン/15ミクロン)が形成されたイミドフィルムに、実施例、比較例で得られた支持体付き感光性フィルムの樹脂組成物層が銅回路表面と接するようにし、真空ラミネーター(ニチゴーモートン株式会社製、VP160)を用いて積層させた。圧着条件は、真空引き20秒間後に、圧着温度80℃、圧着圧力0.2MPa、加圧時間20秒で行った。該積層体を室温1時間以上静置し、該積層体の支持体上から、100mJ/cmの紫外線で露光を行った。室温にて30分間静置した後、前記積層体から支持体を剥がし取った。その後、1J/cmの紫外線照射を行い、さらに190℃、60分間で加熱処理し、これを評価用積層体とした。この評価用積層体を、130℃、湿度85%の雰囲気下の高温高湿槽に入れ、電圧3.3Vを荷電し、100時間、槽内にてHAST試験を行った。100時間経過後の評価用積層体の絶縁抵抗値を下記の判断基準に従い評価した。
○:10Ω以上
×:10Ω以下
<Evaluation of insulation reliability>
The resin composition layer of the photosensitive film with a support obtained in the examples and comparative examples is in contact with the copper circuit surface on the imide film on which the comb-shaped electrode (line / space = 15 microns / 15 microns) is formed. And laminated using a vacuum laminator (VP160 manufactured by Nichigo Morton Co., Ltd.). The pressure bonding conditions were 20 seconds after evacuation, and a pressure bonding temperature of 80 ° C., a pressure bonding pressure of 0.2 MPa, and a pressure time of 20 seconds. The laminate was allowed to stand at room temperature for 1 hour or longer, and exposed to ultraviolet light of 100 mJ / cm 2 from the support of the laminate. After standing at room temperature for 30 minutes, the support was peeled off from the laminate. Then, 1 J / cm < 2 > ultraviolet irradiation was performed, and also it heat-processed at 190 degreeC for 60 minutes, and let this be the laminated body for evaluation. This evaluation laminate was placed in a high-temperature and high-humidity tank under an atmosphere of 130 ° C. and 85% humidity, charged with a voltage of 3.3 V, and a HAST test was performed in the tank for 100 hours. The insulation resistance value of the evaluation laminate after 100 hours was evaluated according to the following criteria.
○: 10 8 Ω or more ×: 10 8 Ω or less
<誘電特性の測定>
(誘電正接)
 評価用硬化物を長さ80mm、幅2mmに切り出し評価サンプル1とした。この評価サンプル1についてアジレントテクノロジーズ(AGILENT TECHNOLOGIES)社製HP8362B装置を用い空洞共振摂動法により測定周波数5.8GHz、測定温度23℃にて誘電正接を測定した。2本の評価サンプル1について測定を行い、平均値を算出した。
<Measurement of dielectric properties>
(Dielectric loss tangent)
The cured product for evaluation was cut into a length of 80 mm and a width of 2 mm, and used as an evaluation sample 1. The dielectric loss tangent of this evaluation sample 1 was measured at a measurement frequency of 5.8 GHz and a measurement temperature of 23 ° C. by a cavity resonance perturbation method using an HP 8362B apparatus manufactured by Agilent Technologies (AGILENT TECHNOLOGIES). Measurement was performed on two evaluation samples 1, and an average value was calculated.
<耐水性の測定>
(吸水率)
 評価用硬化物を5cm四方に切り出して評価サンプル2とした。続いて、評価サンプル2の質量を測定し、質量測定後の評価サンプルを沸騰状態の純水に入れ、評価サンプル2が全てつかるようにした状態で1時間放置した。その後、評価サンプル2を取り出し、表面の水分を十分ふき取り、吸水後の質量を0.1mgまで量り、次式により耐水性WA(%)を求めた。4つの評価サンプル2について測定を行い、平均値を算出した。
<Measurement of water resistance>
(Water absorption)
A cured product for evaluation was cut out in 5 cm squares to obtain Evaluation Sample 2. Subsequently, the mass of the evaluation sample 2 was measured, and the evaluation sample after the mass measurement was placed in boiling pure water and left for 1 hour in a state where the evaluation sample 2 was completely used. Then, the evaluation sample 2 was taken out, the surface water | moisture content was wiped off enough, the mass after water absorption was measured to 0.1 mg, and water resistance WA (%) was calculated | required by following Formula. Measurement was performed on four evaluation samples 2, and an average value was calculated.
WA=((W1-W0)/W0)×100
   W0:吸水前の評価サンプルの質量(g)
   W1:吸水後の評価サンプルの質量(g)
WA = ((W1-W0) / W0) × 100
W0: Mass (g) of the evaluation sample before water absorption
W1: Mass of evaluation sample after water absorption (g)
<耐熱性の評価>
(ガラス転移温度)
 評価用硬化物を、幅5mm、長さ15mmの試験片に切断し、評価サンプル3とした。続いて、熱機械分析装置TMA-SS6100(セイコーインスツルメンツ(株)製)を使用して、引張加重法で熱機械分析を行った。評価サンプル3を前記装置に装着後、荷重1G、昇温速度5℃/分の測定条件にて連続して2回測定した。ガラス転移温度は、2回目の測定における寸法変化シグナルの傾きが変化する点からガラス転移点温度(℃)を算出した。熱膨張係数は、2回目の測定における25℃から150℃までの平均線熱膨張係数(ppm/℃)を算出した。
<Evaluation of heat resistance>
(Glass-transition temperature)
The evaluation cured product was cut into a test piece having a width of 5 mm and a length of 15 mm to obtain an evaluation sample 3. Subsequently, thermomechanical analysis was performed by a tensile load method using a thermomechanical analyzer TMA-SS6100 (manufactured by Seiko Instruments Inc.). After the evaluation sample 3 was mounted on the apparatus, the measurement was continuously performed twice under the measurement conditions of a load of 1 G and a heating rate of 5 ° C./min. The glass transition temperature (° C.) was calculated from the point at which the slope of the dimensional change signal in the second measurement changed. As the thermal expansion coefficient, an average linear thermal expansion coefficient (ppm / ° C.) from 25 ° C. to 150 ° C. in the second measurement was calculated.
<合成例1:クレゾールノボラック構造及びエポキシ基を有するアクリレート化合物の合成>
 ジエチレングリコールモノエチルエーテルアセテート700gにクレゾールノボラック型エポキシ樹脂〔DIC(株)製、EPICLON N-660、エポキシ当量205〕2050g(当量:10.0)、アクリル酸360g(当量:5.0)、およびハイドロキノン1.5gを仕込み、90℃に加熱攪拌し、均一溶解した。次いで、トリフェニルホスフィン5.9gを仕込み、120℃に昇温して12時間反応を行った。得られた反応液を溶剤で希釈して、アクリレート化合物(製造物A)を得た。
 ・ エポキシ当量:427
 ・ 酸価:0.49mgKOH/g
 ・ 重量平均分子量:2000
 ・ 固形分65質量%のジエチレングリコールモノエチルエーテルアセテート溶液
<Synthesis Example 1: Synthesis of acrylate compound having cresol novolac structure and epoxy group>
700 g of diethylene glycol monoethyl ether acetate, 2050 g (equivalent: 10.0) of cresol novolac-type epoxy resin [manufactured by DIC Corporation, EPICLON N-660, epoxy equivalent 205], 360 g of acrylic acid (equivalent: 5.0), and hydroquinone 1.5 g was charged and stirred at 90 ° C. to dissolve uniformly. Next, 5.9 g of triphenylphosphine was charged, the temperature was raised to 120 ° C., and the reaction was performed for 12 hours. The obtained reaction liquid was diluted with a solvent to obtain an acrylate compound (Product A).
Epoxy equivalent: 427
Acid value: 0.49 mg KOH / g
-Weight average molecular weight: 2000
-Diethylene glycol monoethyl ether acetate solution with a solid content of 65% by mass
<合成例2:ビキシレノール構造、ビスクレゾールフルオレン構造及びエポキシ基を有するメタクリレート化合物の合成>
 反応容器に、ビキシレノール型エポキシ樹脂(三菱化学(株)製YX4000、エポキシ当量185)190g、ビスフェノールアセトフェノン(フェノール性水酸基当量145)14g、ビスクレゾールフルオレン(JFEケミカル(株)製、フェノール性水酸基当量190)170g、シクロヘキサノン150gを入れ、攪拌して溶解させた。次いで、テトラメチルアンモニウムアンモニウムクロライド溶液0.5gを滴下し、窒素雰囲気下、180℃5時間にて反応させた。次に温度を60℃まで下げ、滴下ロートを通じてイソシアナートエチルメタクリレート(昭和電工株式会社製、商品名カレンズMOI、メタクリル当量155)100部とジブチル錫ジラウレート0.04部の混合液を滴下し、滴下終了後反応系を70℃で4時間保持することにより、イソシアナート基を消失させ、メタクリレート化合物を得た。反応終了後、濾布を用いて濾過して、溶剤により希釈することでメタクリレート化合物(製造物B)を得た。
 ・ エポキシ当量:6400
 ・ 酸価:0.73mgKOH/g
 ・ 重量平均分子量:29000
 ・ 固形分25質量%のMEKとシクロヘキサノンの1:1溶液
<Synthesis Example 2: Synthesis of methacrylate compound having bixylenol structure, biscresol fluorene structure and epoxy group>
In a reaction vessel, 190 g of bixylenol type epoxy resin (Mitsubishi Chemical Corporation YX4000, epoxy equivalent 185), 14 g of bisphenolacetophenone (phenolic hydroxyl group equivalent 145), biscresol fluorene (manufactured by JFE Chemical Co., Ltd., phenolic hydroxyl group equivalent) 190) 170 g and cyclohexanone 150 g were added and dissolved by stirring. Next, 0.5 g of a tetramethylammonium ammonium chloride solution was added dropwise and reacted at 180 ° C. for 5 hours in a nitrogen atmosphere. Next, the temperature was lowered to 60 ° C., and a mixture of 100 parts of isocyanate ethyl methacrylate (made by Showa Denko KK, trade name Karenz MOI, methacrylic equivalent 155) and 0.04 part of dibutyltin dilaurate was dropped through the dropping funnel. After completion, the reaction system was kept at 70 ° C. for 4 hours to eliminate the isocyanate group and obtain a methacrylate compound. After completion of the reaction, the product was filtered using a filter cloth and diluted with a solvent to obtain a methacrylate compound (Product B).
Epoxy equivalent: 6400
Acid value: 0.73 mg KOH / g
-Weight average molecular weight: 29000
A 1: 1 solution of MEK and cyclohexanone with a solid content of 25% by mass
<実施例1~3、比較例1>
 表1に示す配合割合で各成分を配合し、3本ロールを用いて混錬し、樹脂ワニスを調製した。次に、かかる樹脂ワニスを16mm厚のポリエチレンテレフタレートフィルム(R310-16B、三菱樹脂株式会社製、商品名)上にダイコーターにて均一に塗布、乾燥し、樹脂組成物層が20mmの支持体付き感光性フィルムを得た。乾燥は熱風対流式乾燥機を用いて75~120℃(平均100℃)で4.5分間乾燥させた。これらの測定結果及び評価結果を表1に示す。
<Examples 1 to 3, Comparative Example 1>
Each component was blended at a blending ratio shown in Table 1, and kneaded using three rolls to prepare a resin varnish. Next, the resin varnish is uniformly coated on a 16 mm thick polyethylene terephthalate film (R310-16B, trade name, manufactured by Mitsubishi Plastics Co., Ltd.) with a die coater and dried, and the resin composition layer has a 20 mm support. A photosensitive film was obtained. Drying was performed at 75 to 120 ° C. (average 100 ° C.) for 4.5 minutes using a hot air convection dryer. These measurement results and evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 使用した材料を以下に示す。
(A)成分 エポキシ樹脂
・HP-7200H(DIC(株)製):ジシクロペンタジエン型エポキシ樹脂、エポキシ当量280、不揮発分65%のソルベントナフサ溶液
・HP4032SS(DIC(株)製):液状ナフタレン型エポキシ樹脂、エポキシ当量144
・ZX1059(新日鐵化学(株)製):ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の1:1混合品、エポキシ当量169
・YX4000HK(三菱化学(株)製):結晶性2官能エポキシ樹脂、エポキシ当量185
・NC3000L(日本化薬(株)製):ビフェニル型エポキシ樹脂、エポキシ当量269
(B)成分 活性エステル、シアネートエステル、ベンゾオキサジン
・HPC8000-65T(DIC(株)製):ジシクロペンタジエン型のジフェノール化合物(ポリシクロペンタジエン型のジフェノール化合物)型活性エステル硬化剤、固形分65%のトルエン溶液
・BA230S75(ロンザジャパン(株)製):ビスフェノールAジシアネートのプレポリマー、シアネート当量約232、不揮発分75質量%のMEK溶液
・PT30S(ロンザジャパン(株)製):フェノールノボラック型多官能シアネートエステル樹脂シアネート当量約133、不揮発分85質量%のMEK溶液
・P-d型ベンゾオキサジン(四国化成(株)製):ベンゾオキサジンモノマー 当量217、不揮発分60質量%のMEK溶液
(C)成分 (メタ)アクリレート含有化合物
・製造物A 合成例1に従い合成
・製造物B 合成例2に従い合成
・DPHA(日本化薬(株)製):ジペンタエリスリトールヘキサアクリレート、酸価0.5mgKOH/g
・ZFR-1533H(日本化薬(株)製):ビスフェノールF型エポキシアクリレート、固形分68%のジエチレングリコールモノエチルエーテルアセテート溶液、酸無水物変性あり、酸価70mgKOH/g、重量平均分子量:14000
(D)成分 光重合開始剤
・IC819(BASFジャパン(株)製):ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド
・OXE-01(BASFジャパン(株)製):1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]
(E)成分 シリカ
・SOC2((株)アドマテックス製):フェニルアミノシラン系カップリング剤(信越化学工業(株)製、「KBM573」)で表面処理された球状溶融シリカ、平均粒径0.5mm
・SOC1((株)アドマテックス製):フェニルアミノシラン系カップリング剤(信越化学工業(株)製、「KBM573」)で表面処理された球状溶融シリカ、平均粒径0.24mm)
(F)成分 硬化促進剤
・DMAP(和光純薬(株)製):4-ジメチルアミノピリジン、不揮発分2質量%のMEK溶液
・Co(III)(東京化成(株)製):コバルト(III)アセチルアセトナート、不揮発分1質量%のMEK溶液
・2P4MZ(四国化成(株)製):2-フェニル-4-メチルイミダゾール、不揮発分5質量%のDMF溶液
(G)成分 ゴム粒子
・AC3816N(ガンツ化成(株)製):コアシェル型ゴム粒子
(H)成分 光増感剤
・DETX-S(日本化薬(株)製):2,4-ジエチルチオキサントン
(I)成分 溶剤
・IP150(ソルベントナフサ)
・MEK(メチルエチルケトン)
The materials used are shown below.
Component (A) Epoxy resin / HP-7200H (manufactured by DIC Corporation): Dicyclopentadiene type epoxy resin, epoxy equivalent 280, non-volatile content 65% solvent naphtha solution / HP4032SS (DIC Corporation): liquid naphthalene type Epoxy resin, epoxy equivalent 144
ZX1059 (manufactured by Nippon Steel Chemical Co., Ltd.): 1: 1 mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin, epoxy equivalent 169
YX4000HK (manufactured by Mitsubishi Chemical Corporation): crystalline bifunctional epoxy resin, epoxy equivalent 185
NC3000L (Nippon Kayaku Co., Ltd.): biphenyl type epoxy resin, epoxy equivalent 269
(B) Component Active ester, cyanate ester, benzoxazine / HPC8000-65T (manufactured by DIC Corporation): dicyclopentadiene type diphenol compound (polycyclopentadiene type diphenol compound) type active ester curing agent, solid content 65% toluene solution / BA230S75 (Lonza Japan Co., Ltd.): bisphenol A dicyanate prepolymer, cyanate equivalent of about 232, non-volatile content 75% by mass MEK solution PT30S (Lonza Japan Co., Ltd.): phenol novolac type MEK solution of polyfunctional cyanate ester resin cyanate equivalent of about 133, non-volatile content of 85% by mass, Pd-type benzoxazine (manufactured by Shikoku Kasei Co., Ltd.): benzoxazine monomer equivalent of 217, MEK solution of non-volatile content of 60% by mass (C ) Ingredients (Meta) Relate containing compound, product A Synthesis Example 1 Synthesis, according to the synthetic-product B Synthesis Example 2 according DPHA (manufactured by Nippon Kayaku Co.): dipentaerythritol hexaacrylate, acid value 0.5 mgKOH / g
ZFR-1533H (manufactured by Nippon Kayaku Co., Ltd.): bisphenol F type epoxy acrylate, diethylene glycol monoethyl ether acetate solution with a solid content of 68%, with acid anhydride modification, acid value 70 mgKOH / g, weight average molecular weight: 14000
Component (D) Photopolymerization initiator IC819 (manufactured by BASF Japan Ltd.): bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide OXE-01 (manufactured by BASF Japan Ltd.): 1, 2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)]
Component (E) Silica / SOC2 (manufactured by Admatechs): Spherical fused silica surface-treated with a phenylaminosilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., “KBM573”), average particle size 0.5 mm
SOC1 (manufactured by Admatechs Co., Ltd.): spherical fused silica surface-treated with a phenylaminosilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., “KBM573”), average particle diameter 0.24 mm)
Component (F) Curing accelerator / DMAP (manufactured by Wako Pure Chemical Industries, Ltd.): 4-dimethylaminopyridine, MEK solution having a nonvolatile content of 2% by mass, Co (III) (manufactured by Tokyo Chemical Industry Co., Ltd.): Cobalt (III ) Acetylacetonate, MEK solution with nonvolatile content of 1% by mass, 2P4MZ (manufactured by Shikoku Chemicals Co., Ltd.): 2-phenyl-4-methylimidazole, DMF solution with nonvolatile content of 5% by mass (G) Component Rubber particles AC3816N ( Gantz Kasei Co., Ltd.): Core-shell type rubber particle (H) component Photosensitizer / DETX-S (Nippon Kayaku Co., Ltd.): 2,4-diethylthioxanthone (I) component Solvent / IP150 (solvent naphtha) )
・ MEK (methyl ethyl ketone)
 表1の結果から、本発明の感光性樹脂組成物を用いた実施例では、感光性(解像性及び現像性)を有しながら、絶縁信頼性に優れた感光性樹脂組成物を提供できることがわかった。さらに、誘電特性や耐水性にも優れている。一方、比較例1では、感光性(解像性及び現像性)を有するものの、(B)成分を配合しておらず、酸無水物変性型エポキシアクリレート樹脂を用いているため、絶縁性が悪く、誘電特性や耐水性にも劣っており、層間絶縁用樹脂組成物としては使用できるものではなかった。 From the results of Table 1, in Examples using the photosensitive resin composition of the present invention, it is possible to provide a photosensitive resin composition excellent in insulation reliability while having photosensitivity (resolution and developability). I understood. Furthermore, it has excellent dielectric properties and water resistance. On the other hand, in Comparative Example 1, although having photosensitivity (resolution and developability), the component (B) is not blended, and the acid anhydride-modified epoxy acrylate resin is used, so the insulation is poor. In addition, the dielectric properties and water resistance were inferior, and the resin composition for interlayer insulation was not usable.

Claims (18)

  1.  (A)エポキシ樹脂、
     (B)活性エステル硬化剤、シアネートエステル硬化剤及びベンゾオキサジン硬化剤からなる群から選択される1種以上の硬化剤、並びに
     (C)(メタ)アクリレート構造を有する化合物、
    を含有する、感光性樹脂組成物。
    (A) epoxy resin,
    (B) one or more curing agents selected from the group consisting of an active ester curing agent, a cyanate ester curing agent and a benzoxazine curing agent, and (C) a compound having a (meth) acrylate structure,
    The photosensitive resin composition containing this.
  2.  (A)エポキシ樹脂として、温度20℃で液状のエポキシ樹脂と温度20℃で固形状のエポキシ樹脂とを併用して含む、請求項1記載の感光性樹脂組成物。 (A) The photosensitive resin composition of Claim 1 which contains together and uses a liquid epoxy resin at a temperature of 20 degreeC, and a solid epoxy resin at a temperature of 20 degreeC as an epoxy resin.
  3.  感光性樹脂組成物の不揮発成分を100質量%とした場合、(A)成分の含有量が3~50質量%である、請求項1又は2記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1 or 2, wherein the content of the component (A) is 3 to 50 mass% when the nonvolatile component of the photosensitive resin composition is 100 mass%.
  4.  感光性樹脂組成物の不揮発成分を100質量%とした場合、(B)成分の含有量が1~30質量%である、請求項1~3のいずれか1項記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 3, wherein the content of the component (B) is 1 to 30 mass% when the nonvolatile component of the photosensitive resin composition is 100 mass%.
  5.  (C)成分が、重量平均分子量500~100000の(メタ)アクリレート構造を有するポリマーを含む、請求項1~4のいずれか1項記載の感光性樹脂組成物。 5. The photosensitive resin composition according to claim 1, wherein the component (C) comprises a polymer having a (meth) acrylate structure having a weight average molecular weight of 500 to 100,000.
  6.  (C)成分がエポキシ基を有する、請求項1~5のいずれか1項記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 5, wherein the component (C) has an epoxy group.
  7.  (C)成分の酸価が20mgKOH/g以下である、請求項1~6のいずれか1項記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 6, wherein the acid value of the component (C) is 20 mgKOH / g or less.
  8.  感光性樹脂組成物の不揮発成分を100質量%とした場合、(C)成分の含有量が1~25質量%である、請求項1~7のいずれか1項記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 7, wherein the content of the component (C) is 1 to 25 mass% when the nonvolatile component of the photosensitive resin composition is 100 mass%.
  9.  更に(D)光重合開始剤を含有する、請求項1~8のいずれか1項記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 8, further comprising (D) a photopolymerization initiator.
  10.  更に(E)無機充填材を含有する、請求項1~9のいずれか1項記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 9, further comprising (E) an inorganic filler.
  11.  感光性樹脂組成物の不揮発成分を100質量%とした場合、(E)無機充填材の含有量が10~85質量%である、請求項10記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 10, wherein the content of the inorganic filler (E) is 10 to 85 mass% when the nonvolatile component of the photosensitive resin composition is 100 mass%.
  12.  感光性樹脂組成物の不揮発成分を100質量%とした場合、(E)無機充填材の含有量が50~85質量%である、請求項10記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 10, wherein the content of the inorganic filler (E) is 50 to 85 mass% when the nonvolatile component of the photosensitive resin composition is 100 mass%.
  13.  多層プリント配線板の層間絶縁層用である、請求項1~12のいずれか1項記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 12, which is used for an interlayer insulating layer of a multilayer printed wiring board.
  14.  感光性樹脂組成物の硬化物の誘電正接が、0.005~0.05である、請求項1~13のいずれか1項記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 13, wherein a dielectric loss tangent of a cured product of the photosensitive resin composition is 0.005 to 0.05.
  15.  感光性樹脂組成物の硬化物の吸水率が、0.01~3%である、請求項1~14のいずれか1項記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 14, wherein the water absorption of the cured product of the photosensitive resin composition is 0.01 to 3%.
  16.  請求項1~15のいずれか1項記載の感光性樹脂組成物を含有する支持体付き感光性フィルム。 A photosensitive film with a support, comprising the photosensitive resin composition according to any one of claims 1 to 15.
  17.  請求項1~15のいずれか1項記載の感光性樹脂組成物の硬化物を有する多層プリント配線板。 A multilayer printed wiring board having a cured product of the photosensitive resin composition according to any one of claims 1 to 15.
  18.  請求項17記載の多層プリント配線板を用いることを特徴とする半導体装置。 A semiconductor device using the multilayer printed wiring board according to claim 17.
PCT/JP2014/067067 2013-07-04 2014-06-26 Photosensitive resin composition WO2015002071A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167003029A KR102228718B1 (en) 2013-07-04 2014-06-26 Photosensitive resin composition
JP2015525178A JPWO2015002071A1 (en) 2013-07-04 2014-06-26 Photosensitive resin composition
CN201480036156.3A CN105308506B (en) 2013-07-04 2014-06-26 Photosensitive resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-141033 2013-07-04
JP2013141033 2013-07-04

Publications (1)

Publication Number Publication Date
WO2015002071A1 true WO2015002071A1 (en) 2015-01-08

Family

ID=52143649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067067 WO2015002071A1 (en) 2013-07-04 2014-06-26 Photosensitive resin composition

Country Status (5)

Country Link
JP (4) JPWO2015002071A1 (en)
KR (1) KR102228718B1 (en)
CN (2) CN112147844A (en)
TW (1) TWI687479B (en)
WO (1) WO2015002071A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015106141A (en) * 2013-12-03 2015-06-08 日立化成株式会社 Photosensitive resin composition and photosensitive element
JP2016146394A (en) * 2015-02-06 2016-08-12 太陽インキ製造株式会社 Curable resin composition, dry film, and printed wiring board and method for manufacturing the same
WO2017044381A1 (en) * 2015-09-09 2017-03-16 Carbon3D, Inc. Epoxy dual cure resins for additive manufacturing
US9676963B2 (en) 2014-06-23 2017-06-13 Carbon, Inc. Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
JP2017201350A (en) * 2016-05-02 2017-11-09 日立化成株式会社 Photosensitive conductive film, method for forming conductive pattern, and method for producing conductive pattern substrate
US10316213B1 (en) 2017-05-01 2019-06-11 Formlabs, Inc. Dual-cure resins and related methods
JP2019158949A (en) * 2018-03-08 2019-09-19 住友ベークライト株式会社 Photosensitive resin composition and electronic device
WO2019189220A1 (en) * 2018-03-30 2019-10-03 太陽インキ製造株式会社 Dry film, cured product, and printed wiring board
JP2019183070A (en) * 2018-04-16 2019-10-24 味の素株式会社 Resin composition
JP2019183071A (en) * 2018-04-16 2019-10-24 味の素株式会社 Resin composition
JP2019206624A (en) * 2018-05-28 2019-12-05 味の素株式会社 Resin composition
JP2019218483A (en) * 2018-06-20 2019-12-26 三菱ケミカル株式会社 Tow prepreg, laminate, and fiber reinforced composite material
JP2020023678A (en) * 2018-07-27 2020-02-13 日本化薬株式会社 Electronic component sealant
WO2020040092A1 (en) * 2018-08-20 2020-02-27 Jsr株式会社 Method for forming pattern, and radiation-sensitive composition
CN110955115A (en) * 2018-09-27 2020-04-03 味之素株式会社 Resin composition, photosensitive film with support, printed wiring board, and semiconductor device
KR20200070275A (en) * 2017-10-27 2020-06-17 제이엑스티지 에네루기 가부시키가이샤 Cured resin composition, cured product of composition, method for manufacturing composition and cured product, and semiconductor device
JP2020105523A (en) * 2020-02-21 2020-07-09 味の素株式会社 Resin composition
WO2020218457A1 (en) * 2019-04-26 2020-10-29 Jxtgエネルギー株式会社 Curable-resin composition, cured product of curable-resin composition, production method for curable-resin composition and cured product of curable-resin composition, and semiconductor device
JP2021028699A (en) * 2019-08-09 2021-02-25 味の素株式会社 Photosensitive resin composition, cured product of photosensitive resin composition, resin sheet, printed wiring board, and semiconductor device
JP2021107535A (en) * 2019-12-27 2021-07-29 キヤノン株式会社 Photocurable composition
WO2022181431A1 (en) * 2021-02-26 2022-09-01 富士フイルム株式会社 Photosensitive composition, transfer film, pattern formation method, production method for circuit wiring, and production method for touch panel
WO2024024881A1 (en) * 2022-07-29 2024-02-01 株式会社スリーボンド Epoxy resin composition

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7046477B2 (en) * 2016-07-01 2022-04-04 味の素株式会社 Resin composition
JP6776749B2 (en) * 2016-09-12 2020-10-28 味の素株式会社 Resin composition
CN108024453B (en) * 2016-10-31 2020-10-23 宏启胜精密电子(秦皇岛)有限公司 Hollow circuit board and manufacturing method thereof
CN108117634B (en) * 2016-11-30 2019-08-27 广东生益科技股份有限公司 A kind of compositions of thermosetting resin
TWI808064B (en) * 2016-11-30 2023-07-11 美商Icl-Ip美國股份有限公司 Active ester curing agent compound for thermosetting resins, flame retardant composition comprising same, and articles made therefrom
JP6354884B1 (en) * 2017-03-13 2018-07-11 横浜ゴム株式会社 Cyanate ester resin composition and prepreg
JP6950536B2 (en) * 2018-01-09 2021-10-13 味の素株式会社 Resin composition
CN110564099B (en) * 2018-06-05 2021-09-14 汕头市夸克智能科技有限公司 Circuit board substrate 3D printing resin and preparation method thereof
WO2021029021A1 (en) * 2019-08-14 2021-02-18 昭和電工マテリアルズ株式会社 Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board, semiconductor package, and production method for multilayer printed wiring board
TWI776557B (en) * 2021-06-21 2022-09-01 昱鐳光電科技股份有限公司 Active polyester, curable resin composition and cured resin
WO2023021900A1 (en) * 2021-08-20 2023-02-23 東洋紡株式会社 Active ester compound
WO2023238732A1 (en) * 2022-06-06 2023-12-14 太陽ホールディングス株式会社 Layered structure, cured product of resin layer in said layered structure, and electronic component having said cured product

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141321A (en) * 1980-04-08 1981-11-05 Mitsubishi Gas Chem Co Inc Photosetting resin composition
JPH10142797A (en) * 1996-11-11 1998-05-29 Mitsubishi Gas Chem Co Inc Heat-resistant selectively photohardenable and heat-hardonable coating
JP2001330951A (en) * 2000-05-22 2001-11-30 San Nopco Ltd Photosensitive resin composition and its cured body
JP2002357896A (en) * 2001-06-01 2002-12-13 Mitsubishi Gas Chem Co Inc Resist resin composition
JP2004189976A (en) * 2002-12-13 2004-07-08 Mitsubishi Gas Chem Co Inc Photosensitive resin composition and cured product of the same
JP2006028498A (en) * 2004-06-18 2006-02-02 Sanyo Chem Ind Ltd Curable composition
JP2006343384A (en) * 2005-06-07 2006-12-21 Sumitomo Bakelite Co Ltd Photosensitive resin composition and solder resist
JP2007003807A (en) * 2005-06-23 2007-01-11 Sumitomo Bakelite Co Ltd Photosensitive resin composition and solder resist using the composition
JP2009010057A (en) * 2007-06-27 2009-01-15 Toray Ind Inc Electron device mounting method
WO2010026927A1 (en) * 2008-09-04 2010-03-11 日立化成工業株式会社 Photosensitive resin composition for protective film of printed wiring board for semiconductor package
JP2011089038A (en) * 2009-10-22 2011-05-06 Ajinomoto Co Inc Resin composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244150A (en) 2004-01-28 2005-09-08 Ajinomoto Co Inc Resin composition, adhesive film using it, and multi-layer printed wiring board
JP4587865B2 (en) * 2004-04-22 2010-11-24 昭和電工株式会社 Photosensitive resin composition, cured product thereof, and method for producing printed wiring board using them
JP5072101B2 (en) 2008-04-25 2012-11-14 日本化薬株式会社 Photosensitive resin composition for MEMS and cured product thereof
JP2010026927A (en) 2008-07-23 2010-02-04 Sony Corp Device, method, and program for creating display screen
JP5412936B2 (en) * 2009-04-23 2014-02-12 味の素株式会社 Method for manufacturing printed wiring board
JP5515394B2 (en) * 2009-04-30 2014-06-11 株式会社ピーアイ技術研究所 Photosensitive modified polyimide resin composition and use thereof
JP5633381B2 (en) * 2011-01-17 2014-12-03 Jsr株式会社 Radiation sensitive resin composition, cured film and method for forming cured film
JP2012211943A (en) * 2011-03-30 2012-11-01 Fujifilm Corp Photosensitive composition, and photosensitive film, permanent pattern, method for forming permanent pattern, and printed circuit board

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141321A (en) * 1980-04-08 1981-11-05 Mitsubishi Gas Chem Co Inc Photosetting resin composition
JPH10142797A (en) * 1996-11-11 1998-05-29 Mitsubishi Gas Chem Co Inc Heat-resistant selectively photohardenable and heat-hardonable coating
JP2001330951A (en) * 2000-05-22 2001-11-30 San Nopco Ltd Photosensitive resin composition and its cured body
JP2002357896A (en) * 2001-06-01 2002-12-13 Mitsubishi Gas Chem Co Inc Resist resin composition
JP2004189976A (en) * 2002-12-13 2004-07-08 Mitsubishi Gas Chem Co Inc Photosensitive resin composition and cured product of the same
JP2006028498A (en) * 2004-06-18 2006-02-02 Sanyo Chem Ind Ltd Curable composition
JP2006343384A (en) * 2005-06-07 2006-12-21 Sumitomo Bakelite Co Ltd Photosensitive resin composition and solder resist
JP2007003807A (en) * 2005-06-23 2007-01-11 Sumitomo Bakelite Co Ltd Photosensitive resin composition and solder resist using the composition
JP2009010057A (en) * 2007-06-27 2009-01-15 Toray Ind Inc Electron device mounting method
WO2010026927A1 (en) * 2008-09-04 2010-03-11 日立化成工業株式会社 Photosensitive resin composition for protective film of printed wiring board for semiconductor package
JP2011089038A (en) * 2009-10-22 2011-05-06 Ajinomoto Co Inc Resin composition

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015106141A (en) * 2013-12-03 2015-06-08 日立化成株式会社 Photosensitive resin composition and photosensitive element
US10155882B2 (en) 2014-06-23 2018-12-18 Carbon, Inc. Methods of producing EPOXY three-dimensional objects from materials having multiple mechanisms of hardening
US10240066B2 (en) 2014-06-23 2019-03-26 Carbon, Inc. Methods of producing polyurea three-dimensional objects from materials having multiple mechanisms of hardening
US9676963B2 (en) 2014-06-23 2017-06-13 Carbon, Inc. Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
US11358342B2 (en) 2014-06-23 2022-06-14 Carbon, Inc. Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
US9982164B2 (en) 2014-06-23 2018-05-29 Carbon, Inc. Polyurea resins having multiple mechanisms of hardening for use in producing three-dimensional objects
US10647880B2 (en) 2014-06-23 2020-05-12 Carbon, Inc. Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening
US10899868B2 (en) 2014-06-23 2021-01-26 Carbon, Inc. Methods for producing footwear with materials having multiple mechanisms of hardening
US11312084B2 (en) 2014-06-23 2022-04-26 Carbon, Inc. Methods for producing helmet inserts with materials having multiple mechanisms of hardening
US10647879B2 (en) 2014-06-23 2020-05-12 Carbon, Inc. Methods for producing a dental mold, dental implant or dental aligner from materials having multiple mechanisms of hardening
US10968307B2 (en) 2014-06-23 2021-04-06 Carbon, Inc. Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
US11850803B2 (en) 2014-06-23 2023-12-26 Carbon, Inc. Methods for producing three-dimensional objects with apparatus having feed channels
US11299579B2 (en) 2014-06-23 2022-04-12 Carbon, Inc. Water cure methods for producing three-dimensional objects from materials having multiple mechanisms of hardening
US11707893B2 (en) 2014-06-23 2023-07-25 Carbon, Inc. Methods for producing three-dimensional objects with apparatus having feed channels
US11440266B2 (en) 2014-06-23 2022-09-13 Carbon, Inc. Methods of producing epoxy three-dimensional objects from materials having multiple mechanisms of hardening
JP2016146394A (en) * 2015-02-06 2016-08-12 太陽インキ製造株式会社 Curable resin composition, dry film, and printed wiring board and method for manufacturing the same
US11814472B2 (en) 2015-09-09 2023-11-14 Carbon, Inc. Epoxy dual cure resins for additive manufacturing
US10975193B2 (en) 2015-09-09 2021-04-13 Carbon, Inc. Epoxy dual cure resins for additive manufacturing
CN108291011B (en) * 2015-09-09 2021-03-02 卡本有限公司 Epoxy dual cure resin for additive manufacturing
JP2018528107A (en) * 2015-09-09 2018-09-27 カーボン,インコーポレイテッド Epoxy double-cured resin for additive manufacturing
CN108291011A (en) * 2015-09-09 2018-07-17 卡本有限公司 Epoxy dual cure resin for increasing material manufacturing
WO2017044381A1 (en) * 2015-09-09 2017-03-16 Carbon3D, Inc. Epoxy dual cure resins for additive manufacturing
JP2017201350A (en) * 2016-05-02 2017-11-09 日立化成株式会社 Photosensitive conductive film, method for forming conductive pattern, and method for producing conductive pattern substrate
US10793745B2 (en) 2017-05-01 2020-10-06 Formlabs, Inc. Dual-cure resins and related methods
US10316213B1 (en) 2017-05-01 2019-06-11 Formlabs, Inc. Dual-cure resins and related methods
KR20200070275A (en) * 2017-10-27 2020-06-17 제이엑스티지 에네루기 가부시키가이샤 Cured resin composition, cured product of composition, method for manufacturing composition and cured product, and semiconductor device
KR102427036B1 (en) 2017-10-27 2022-08-01 에네오스 가부시키가이샤 A composition for a cured resin, a cured product of the composition, a method for manufacturing the composition and the cured product, and a semiconductor device
US11897998B2 (en) 2017-10-27 2024-02-13 Eneos Corporation Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
JP2019158949A (en) * 2018-03-08 2019-09-19 住友ベークライト株式会社 Photosensitive resin composition and electronic device
JP2019179223A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Dry film, cured product and printed wiring board
WO2019189220A1 (en) * 2018-03-30 2019-10-03 太陽インキ製造株式会社 Dry film, cured product, and printed wiring board
JP2019183071A (en) * 2018-04-16 2019-10-24 味の素株式会社 Resin composition
JP7287418B2 (en) 2018-04-16 2023-06-06 味の素株式会社 resin composition
JP2021185228A (en) * 2018-04-16 2021-12-09 味の素株式会社 Resin composition
JP2019183070A (en) * 2018-04-16 2019-10-24 味の素株式会社 Resin composition
JP2019206624A (en) * 2018-05-28 2019-12-05 味の素株式会社 Resin composition
JP2019218483A (en) * 2018-06-20 2019-12-26 三菱ケミカル株式会社 Tow prepreg, laminate, and fiber reinforced composite material
JP7266484B2 (en) 2018-07-27 2023-04-28 日本化薬株式会社 Sealant for electronic parts
JP2020023678A (en) * 2018-07-27 2020-02-13 日本化薬株式会社 Electronic component sealant
WO2020040092A1 (en) * 2018-08-20 2020-02-27 Jsr株式会社 Method for forming pattern, and radiation-sensitive composition
CN110955115A (en) * 2018-09-27 2020-04-03 味之素株式会社 Resin composition, photosensitive film with support, printed wiring board, and semiconductor device
WO2020218457A1 (en) * 2019-04-26 2020-10-29 Jxtgエネルギー株式会社 Curable-resin composition, cured product of curable-resin composition, production method for curable-resin composition and cured product of curable-resin composition, and semiconductor device
JP7363182B2 (en) 2019-08-09 2023-10-18 味の素株式会社 Photosensitive resin compositions, cured products of photosensitive resin compositions, resin sheets, printed wiring boards, and semiconductor devices
JP2021028699A (en) * 2019-08-09 2021-02-25 味の素株式会社 Photosensitive resin composition, cured product of photosensitive resin composition, resin sheet, printed wiring board, and semiconductor device
JP2021107535A (en) * 2019-12-27 2021-07-29 キヤノン株式会社 Photocurable composition
JP7237915B2 (en) 2019-12-27 2023-03-13 キヤノン株式会社 Photocurable composition
JP7067576B2 (en) 2020-02-21 2022-05-16 味の素株式会社 Resin composition
JP2020105523A (en) * 2020-02-21 2020-07-09 味の素株式会社 Resin composition
WO2022181431A1 (en) * 2021-02-26 2022-09-01 富士フイルム株式会社 Photosensitive composition, transfer film, pattern formation method, production method for circuit wiring, and production method for touch panel
WO2024024881A1 (en) * 2022-07-29 2024-02-01 株式会社スリーボンド Epoxy resin composition

Also Published As

Publication number Publication date
CN105308506A (en) 2016-02-03
JPWO2015002071A1 (en) 2017-02-23
JP6711425B2 (en) 2020-06-17
JP7334820B2 (en) 2023-08-29
JP2022107613A (en) 2022-07-22
KR20160030231A (en) 2016-03-16
KR102228718B1 (en) 2021-03-18
CN105308506B (en) 2020-10-27
JP2019056940A (en) 2019-04-11
TWI687479B (en) 2020-03-11
TW201516087A (en) 2015-05-01
JP7099491B2 (en) 2022-07-12
JP2020154325A (en) 2020-09-24
CN112147844A (en) 2020-12-29

Similar Documents

Publication Publication Date Title
JP7334820B2 (en) Photosensitive resin composition, photosensitive film with support, multilayer printed wiring board, and semiconductor device
JP6094271B2 (en) Photosensitive resin composition
JP6372108B2 (en) Wiring board and manufacturing method thereof
JP7345429B2 (en) Photosensitive resin composition, photosensitive film, multilayer printed wiring board, semiconductor device, and method for producing multilayer printed wiring board
US8912279B2 (en) Resin composition
WO2013061688A1 (en) Resin composition
JP2023118726A (en) Photosensitive resin composition
JP2023059897A (en) photosensitive film
JP6658648B2 (en) Photosensitive resin composition
JP7306343B2 (en) Photosensitive resin composition
JP7363182B2 (en) Photosensitive resin compositions, cured products of photosensitive resin compositions, resin sheets, printed wiring boards, and semiconductor devices
JP7281263B2 (en) Resin composition, photosensitive film, photosensitive film with support, printed wiring board and semiconductor device
JP6606823B2 (en) Interlayer insulation resin composition, photosensitive film with support, printed wiring board, semiconductor device, and printed wiring board manufacturing method
JP7322988B2 (en) Resin composition, photosensitive film, photosensitive film with support, printed wiring board and semiconductor device
JP6677203B2 (en) Photosensitive resin composition, photosensitive film, photosensitive film with support, printed wiring board, and semiconductor device
JP2022118633A (en) Photosensitive resin composition
JP2022119819A (en) Photosensitive resin composition
JP5234231B1 (en) Resin composition
TW202302342A (en) Resin sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480036156.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015525178

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167003029

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14819309

Country of ref document: EP

Kind code of ref document: A1