WO2015020328A1 - Corrugated filter and method for manufacturing same - Google Patents

Corrugated filter and method for manufacturing same Download PDF

Info

Publication number
WO2015020328A1
WO2015020328A1 PCT/KR2014/006697 KR2014006697W WO2015020328A1 WO 2015020328 A1 WO2015020328 A1 WO 2015020328A1 KR 2014006697 W KR2014006697 W KR 2014006697W WO 2015020328 A1 WO2015020328 A1 WO 2015020328A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofibers
pleated filter
integrated
filter
present
Prior art date
Application number
PCT/KR2014/006697
Other languages
French (fr)
Korean (ko)
Inventor
황준식
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Publication of WO2015020328A1 publication Critical patent/WO2015020328A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/76Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres otherwise than in a plane, e.g. in a tubular way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0004Organic membrane manufacture by agglomeration of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0004Organic membrane manufacture by agglomeration of particles
    • B01D67/00043Organic membrane manufacture by agglomeration of particles by agglomeration of nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0631Electro-spun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/069Special geometry of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/39Electrospinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/08Patterned membranes

Definitions

  • the present invention can increase the filtration area with the pleats of various morphology (morphology), do not need seam sealing (sea sealing), can solve the leakage problem, can be produced by the process automation pleated filter and its manufacture It is about a method.
  • the separator is a material having a selectivity existing between two different materials, and means a material that selectively passes or excludes a certain material. There is no restriction on the structure or material of the membrane, and the state or principle of movement of the material through the membrane, and the material is generally separated if the two materials are isolated from each other and the selective movement of the material through the membrane between them. It can be called
  • classification by separation operation is classified into liquid separation, gas-liquid separation, and gas separation as a classification method according to the state of the target substance to be separated.
  • Liquid separation is classified into micro filtration, ultra filtration, nano filtration, reverse osmosis, etc., depending on the size of the filtration object.
  • the gas separation can be separated in detail according to the type of gas to be separated.
  • the membrane for separating oxygen gas it is classified into oxygen enrichment, and in case of the membrane for separating nitrogen, nitrogen enrichment, hydrogen separation, and dehumidification membrane.
  • the types of membranes are classified into flat membranes, hollow fiber membranes, and tubular membranes, and they are also plate-type, spiral wound, cartridge-type, flat-film cell type, and deposit according to the filter module type. It is classified into a mold, a tube, and the like.
  • Classification by material includes inorganic membrane and organic membrane using polymer. Recently, the inorganic membrane is expanding its use based on the advantages of heat resistance, durability, etc., but most of the commercialized products are occupied by the polymer membrane.
  • filtration means separating two or more kinds of components from a fluid, and means separating undissolved particles, that is, solids.
  • the filtration mechanism can be described as sieving, adsorption, dissolution, and diffusion mechanisms, and most of them are completely dependent on sieving mechanisms except for some separation membranes such as gas separation membranes and reverse osmosis membranes.
  • any material having pores can be used as a filter media
  • representative filter media include nonwovens, fabrics, meshes, and porous membranes.
  • Nonwoven fabrics, fabrics, meshes, etc. are difficult to make pores of less than 1um, so they are limited to the particle filtration area and are used as pretreatment filter concepts.
  • Porous membranes on the other hand, can produce precise and small pores, requiring a wide range of filtration zones such as micro filtration, ultra filtration, nano filtration, reverse osmosis and the highest precision. It is used for the process.
  • Nonwovens, meshes, and fabrics are made of fibers of several micro to hundreds of micro-thick, making it difficult to produce micropores of less than one micro.
  • the web is formed by a random arrangement of fibers, so that it is virtually impossible to make uniform pores.
  • Melt-blown is a non-woven fabric consisting of the finest fibers with a fineness in the range of 1 ⁇ 5um.
  • the pore size before thermal calendering is 6 microns or more and the pore size after calendering is about 3 microns.
  • the average pore size deviation is more than ⁇ 15% from the reference point, and the pores are quite large. As a result, it is difficult to prevent the outflow of pollutants through relatively large pores, so the filter efficiency is low. Therefore, the filter media are used as a pretreatment concept in an inexact filtration process or a microfiltration process.
  • the porous membrane is prepared by a method such as solvent phase transition (NIPS), thermal induction phase transition (TIPS), stretching process, track etching method, sol-gel method, etc.
  • solvent phase transition NIPS
  • TIPS thermal induction phase transition
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PS polysulfone
  • PS polyethersulfone
  • PES polypropylene
  • PE polyethylene
  • NC nitrocellulose
  • the conventional porous membrane can make precise and small size pores, closed pores and blind pores are inevitably generated in the manufacturing process, so the amount of filtration flow is low, the operating pressure is high, and the filtration life is long. Due to the short problem, high operating cost and frequent filter replacement are pointed out as problems.
  • Korean Patent Publication No. 10-0714219 one end is grounded and melt-spun with a melt spinning machine on a rotating rod of conductive material to form a microfiber layer composed of microfiber yarns, and a constant dielectric constant capable of electrospinning on the microfiber layer
  • a technique for producing a composite fiber filter by laminating a nanofiber layer consisting of nanofiber yarns by electrospinning a polymer resin solution having an electrospinner with an electrospinner is provided, to impart high efficiency and high functionality to the filter, and the microfiber yarn and nano
  • the silver nano component of the fiber layer has the advantage of having an antimicrobial function by intrinsic to the nanofiber yarn, but the composite fiber filter of Korea Patent Publication No. 10-0714219 has a cylindrical shape has a limitation in increasing the filtration area in a limited area, high life And the disadvantage of not implementing a high efficiency filter have.
  • the present inventors continue to study the next-generation filter that can increase the lifespan and increase the efficiency to derive the structural characteristics and method characteristics of the pleated filter that can maximize the filter area at the same size By doing so, the present invention is more economical, usable and competitive.
  • the present invention has been made in view of the problems of the prior art, and an object thereof is to provide a pleated filter capable of maximizing the filtration area within a limited space of the filter and increasing the filtration flow rate and the filtration life.
  • Another object of the present invention is to produce a filter by electrospinning the nanofibers, to provide a pleated filter that can have a very fine pore size to improve the filtration characteristics.
  • Still another object of the present invention is to provide a pleated filter that can produce a filter free from contamination by improving the handleability, which is a disadvantage of the nanofiber, by making the filter directly without making the nanofiber into a sheet form.
  • Another object of the present invention is to provide a pleated filter that can implement a filter having a variety of morphology (morphology).
  • Still another object of the present invention is to provide a pleated filter which can solve the leakage problem since no seam sealing is required and can be manufactured by process automation.
  • an embodiment of the present invention is a cylindrical shape made of nanofibers, which are electrospun and integrated, and has a through hole formed therein, and wrinkles on the sidewall of the through hole and an outer circumferential surface of the cylinder.
  • a pleated filter formed therein.
  • the integrated nanofibers may be composed of a plurality of nanofiber layers having different diameters of the nanofibers.
  • the ion exchange resin particle is disperse
  • the ion exchange resin particles may be dispersed outside the integrated nanofibers.
  • the ion exchange resin may be a porous organic polymer having ion exchange ability or PSDVB (Polystyrene Divinylbenzene) which is a copolymer of polystyrene and divinylbenzene.
  • the integrated nanofibers may be formed by electrospinning the nanofibers in a forming tube, and wrinkles are formed on an outer circumferential surface of the forming tube, and the wrinkles formed on the sidewall of the through hole have a wrinkle shape of the forming tube. It may be transferred to the side wall of the through hole.
  • the pore size made by the integrated nanofibers may be set in the range of 0.2um-1um.
  • the pleated filter may have an asymmetric structure in which the size of the input terminal through which the treatment water is input is larger than the size of the output terminal through which the treatment water is output.
  • an electrospinning apparatus including a first radiation nozzle connected to a high voltage generator, an electrode rod spaced from the radiation nozzle and grounded, and a molded tube into which the electrode rod is inserted and formed on the outer circumferential surface thereof.
  • a spinning solution in which a polymer material and a solvent are mixed is spun into a forming tube through the first spinning nozzle, formed of integrated nanofibers, and having a cylindrical shape having a through hole formed therein, the side wall of the through hole and the It provides a pleat filter manufacturing method comprising the step of forming a pleat filter having pleats formed on the outer circumferential surface of the cylinder.
  • the first spinning nozzle electrospins the nanofibers while linearly reciprocating in the longitudinal direction of the forming pipe, and the electrode and the forming pipe may be rotated when the nanofibers are electrospun from the first spinning nozzle.
  • the electrospinning device may further include a second spray nozzle disposed to be spaced apart from the first radiation nozzle at a predetermined angle, and spraying beads containing ion exchange resin particles, the outer side of the integrated nanofiber.
  • the ion exchange resin particles may be formed by being dispersed.
  • the filter of the pleated structure by implementing the filter of the pleated structure, it is possible to increase the filtration flow rate and filtration life, it is possible to provide a technology for manufacturing a high value-added filter products.
  • the filter by manufacturing the filter by electrospinning to the forming tube, it is possible to provide a technology capable of lowering the manufacturing cost and process automation.
  • the integrated nanofibers form a nanofiber web layer, and form fine pores of a very complicated structure by fibers of 100-1000 nm class, and the fine particles contained in the fluid are inertial, gravity, It filters by sieve mechanisms such as interception effect and diffusion effect.
  • FIG. 1A and 1B are conceptual cross-sectional views and perspective views for explaining a pleated filter according to an embodiment of the present invention
  • FIGS. 2A to 2D are some conceptual views illustrating a groove shape formed on a sidewall of a through hole of a pleated filter according to an embodiment of the present invention
  • FIG. 3 is a view for explaining a schematic configuration of an electrospinning apparatus for manufacturing a pleated filter according to an embodiment of the present invention
  • FIG. 4 is a conceptual view illustrating a state in which spinning nozzles are disposed according to an embodiment of the present invention
  • FIG. 5 is a conceptual view illustrating a state in which a spinning nozzle and a spray nozzle are disposed according to an embodiment of the present invention
  • FIG. 6 is a cross-sectional view taken along line AA ′ of FIG. 3;
  • Figure 7 is a photograph taken a state in which the nanofibers are integrated in the forming tube according to an embodiment of the present invention.
  • FIGS. 8A and 8B are views for explaining the structure of a pleated filter according to an embodiment of the present invention.
  • the filtration area can be increased, the filtration flow rate And filtration life can be increased, resulting in a high value filter.
  • FIGS. 1A and 1B are conceptual cross-sectional views and perspective views illustrating a pleated filter according to an embodiment of the present invention
  • FIGS. 2A to 2D are grooves formed in a sidewall of a through hole of a pleated filter according to an embodiment of the present invention. Some conceptual views are shown for explaining the form.
  • the pleated filter 100 is formed of a nanofiber 110 that is electrospun and integrated, and has a cylindrical shape in which a through hole 120 is formed therein.
  • the wrinkles are formed on the side wall of the through hole 120 and the outer circumferential surface of the cylinder.
  • the cylinder has a shape whose length is longer than the diameter.
  • a plurality of grooves 111 may be formed on the sidewalls of the through holes 120, and a plurality of grooves 111 may form wrinkles on the sidewalls of the through holes 120.
  • the plurality of grooves 111 may be a straight pattern, a curved pattern, a mixed pattern of straight and curved patterns, a polygonal pattern, a grid pattern, a dot pattern, a rhombus pattern, a parallelogram pattern, a mesh pattern, and a stripe.
  • the pattern, the cross pattern, the radial pattern, the circular pattern, and a plurality of patterns among the patterns may be formed in at least one pattern shape.
  • the pleats formed on the outer circumferential surface of the cylinder may be formed in a shape similar to the pleats formed on the side wall of the through hole 120.
  • the convex protruding shape 112 corresponding to the plurality of grooves 111 formed on the sidewall of the through hole 120 is formed on the outer circumferential surface of the cylinder.
  • the groove shape formed in the sidewall of the through hole of the pleated filter according to the embodiment of the present invention is a V groove 111a (Fig. 2a), a polygonal groove 111b (Fig. 2b), a circular groove. 111c (FIG. 2C) or the like, and may be a plurality of grooves spaced apart from each other or a plurality of grooves 111d (FIG. 2D) continuously connected to each other.
  • Such a pleated filter according to an embodiment of the present invention can maximize the filtration area in a limited space by the pleats formed on the inner circumferential surface and the outer circumferential surface, can increase the filtration flow rate, and improve the filtration life is excellent
  • the fiber diameter of the nanofibers can be made small to 200 nm level.
  • sub-micron pore size can be realized.
  • the pleated filter of the present invention preferably has a pore size of 0.2um-1um made of integrated nanofibers.
  • the size of the input terminal of the filter to which the treated water is input may be formed to be relatively larger than the size of the output terminal to which the treated water is output, thereby implementing a pleated filter.
  • the pleated filter has an asymmetric structure having different left and right sizes.
  • the filter applied to the present invention can be washed with water, can minimize the residual solvent after the filter is manufactured, it is possible to produce products suitable for the bio, pharmaceutical, medical field.
  • FIG. 3 is a view for explaining a schematic configuration of an electrospinning apparatus for manufacturing a pleated filter according to an embodiment of the present invention
  • Figure 4 illustrates a state in which the spinning nozzles are arranged in accordance with an embodiment of the present invention
  • 5 is a conceptual view illustrating a state in which a spinning nozzle and a spray nozzle are disposed according to an embodiment of the present invention
  • FIG. 6 is a cross-sectional view taken along line AA ′ of FIG.
  • FIG. 7 is a photograph of a state in which nanofibers are stacked in a forming tube according to an embodiment of the present invention.
  • the pleated filter according to the present invention is formed by integrating the electrospun nanofibers in the forming tube 260.
  • the forming tube 260 is formed with a through hole penetrated from one side to the other side, the electrode rod 250 grounded in the through hole is inserted.
  • An electrospinning apparatus for manufacturing a pleated filter according to an embodiment of the present invention is located at a lower portion spaced apart from the radiation nozzle 200a to which the high voltage generator is connected, and the radiation nozzle 200a, and the grounded electrode 250 is inserted. Molded tube 260 is included.
  • the spinning nozzle 200a is connected to a storage unit (not shown) in which a spinning solution in which a polymer material and a solvent are mixed is stored, and receives a spinning solution from the storage unit.
  • the spinning nozzle 200a spins nanofibers while linearly reciprocating in the longitudinal direction of the forming tube 260.
  • the movement of the spinning nozzle 200a may be controlled to radiate the nanofibers by integrating the nanofibers in one region of the forming tube 260 to a predetermined thickness and then moving to the neighboring regions. That is, the spinning nozzle 200a stops the movement of each of the detailed moving regions, spins the nanofibers, and then moves to another detailed moving region.
  • the spinning nozzle 200a electrospins the nanofibers while moving in a linear reciprocation along the forming tube 260 from one side of the forming tube 260 to the other side of the forming tube 260 and rotates during the electrospinning. ),
  • the forming tube 260 is also rotated so that the nanofibers are approximately uniformly integrated on the outer circumferential surface of the forming tube 260.
  • '200b' represents a spinning nozzle located on the other side of the forming tube 260.
  • the nanofibers can be integrated on the outer circumferential surface of the forming tube 260 using the electrospinning device.
  • the outer circumferential surface of the forming tube 260 is formed with wrinkles, and the nanofibers 110 integrated along the corrugation shape are separated from the forming tube 260 and become a cylindrical body having a through hole formed from one side to the other side.
  • the wrinkles of the forming tube 260 are transferred to form the wrinkles transferred to the side wall of the through hole and the outer circumferential surface of the cylinder.
  • the pleats of the forming tube 260 performs the same function as the sacrificial mold pattern, so that a pattern having a shape opposite to the sacrificial mold pattern is formed on the sidewall of the through hole of the pleated filter.
  • a flat filter media is made, rolled with one end of the flat filter media inward, and then the other end of the flat filter media is seam sealed to the outside of the rolled filter to form a cylindrical filter.
  • the filter made of nanofibers integrated on the outer side of the forming tube does not need to perform conventional ventilating, and thus, a high-fidelity filter without leakage problems may be manufactured.
  • the manufacturing cost is increased by performing a number of complex processes, such as a roll winding process and a sealing process, but in the present invention, in the forming pipe
  • the process of electrospinning has the advantage of lowering the manufacturing cost and allowing for process automation. As a result, it is possible to minimize contamination and to produce a product having excellent uniformity and economy.
  • the forming tube 260 is positioned outside the electrode 250, and the forming tubes 260 and the spinning nozzles 211 and 212 radiating the nanofibers 205 are spaced at predetermined intervals.
  • the radiation nozzles 211 and 212 may be designed in plural, and in this case, the plurality of radiation nozzles 211 and 212 may be spaced apart by a predetermined angle ⁇ 1. That is, the plurality of spinning nozzles 211 and 212 linearly reciprocate in the longitudinal direction of the forming tube 260, so that the movements do not overlap each other.
  • the electrospinning apparatus may further include an injection nozzle 220 disposed to be spaced apart from the radiation nozzle 213 at a predetermined angle ⁇ 2 and for injecting beads containing ion exchange resin particles.
  • the ion exchange resin particles may be dispersed and positioned outside the nanofibers 205 radiated from the spinning nozzle 213.
  • the pleated filter of the present invention may have a water treatment filter function by the fine pore structure of the integrated nanofibers and a chemical filter function to filter specific ions of the chemical substance by the ion exchange resin particles.
  • the ion exchange resin particles may be defined as having functional groups having ion exchange ability on the inner surface thereof, and may include a cation exchange resin, an anion exchange resin, a positive positive exchange resin, and the like, depending on the ions to be exchanged.
  • PSDVB Polystyrene Divinylbenzene
  • PSDVB Polystyrene Divinylbenzene
  • the nanofibers 110 integrated on the outer circumferential surface of the forming tube 260 may be manufactured.
  • the integrated nanofibers 110 have a wrinkle shape.
  • '261' is a through hole through which the electrode can be inserted into the forming tube 260.
  • FIGS. 8A and 8B are views for explaining the structure of a pleated filter according to an embodiment of the present invention.
  • the pleated filter consists of integrated nanofibers.
  • the nanofibers may be composed of a plurality of nanofiber layers having different diameters
  • FIG. 8A is for explaining a pleated filter having a structure in which the first nanofiber layer 110a and the second nanofiber layer 110b are stacked.
  • the nanofibers of the first nanofiber layer 110a and the second nanofiber layer 110b have different diameters.
  • the pleated filter may be implemented in a structure in which the ion exchange resin particles 119 are dispersed in the interface region between the first nanofibrous layer 110a and the second nanofiber layer 110b. That is, ion-exchange resin particle is disperse
  • the integrated nanofibers according to the present invention form a nanofiber web layer, and form fine pores of a very complicated structure by fibers of 100-1000 nm class, and inertial effects of fine particles contained in the fluid. Filtering is performed by sieve mechanisms such as the gravitational effect, the gravity effect, the interception effect, and the diffusion effect.
  • the present invention provides a pleated filter capable of maximizing the filtration area within the limited space of the filter and increasing the filtration flow rate and filtration life.

Abstract

The present invention relates to a corrugated filter and a method for manufacturing same, and can provide the corrugated filter which comprises nanofibers produced and integrated by electrospinning, and has the form of a cylindrical body provided with a through-hole on the inside, wherein the side wall of the through-hole and the outer circumferential surface of the cylindrical body are corrugated.

Description

주름 필터 및 그 제조 방법Pleated filter and its manufacturing method
본 발명은 다양한 모폴로지(morphology)의 주름을 가지고 여과면적을 증가시킬 수 있으며, 심실링(seam sealing)이 필요없어, 누설 문제를 해결할 수 있으며, 공정 자동화에 의해 제조할 수 있는 주름 필터 및 그 제조 방법에 관한 것이다.The present invention can increase the filtration area with the pleats of various morphology (morphology), do not need seam sealing (sea sealing), can solve the leakage problem, can be produced by the process automation pleated filter and its manufacture It is about a method.
최근 산업의 고도화로 고순도, 고품질의 제품이 요구됨에 따라 분리막(membrane) 기술이 매우 중요한 분야로 인식되고 있다. 특히 환경분야에서는 맑은 물에 대한 욕구와 물 부족에 대한 인식이 증가함에 따라 이를 해결하기 위한 방안의 하나로 분리막을 이용한 기술이 크게 주목을 받고 있다. 분리막을 이용한 정수, 하수, 폐수, 담수화 등의 공정은 이미 보급이 급격히 확산되고 있다. 또한, 분리막 자체에 대한 기술개발에서 벗어나 이를 응용제품에 활용하고 있으며 응용에 따른 분리막 성능 향상에 대한 제고와 함께 주변기술로의 개발확대가 이루어지고 있다. Recently, as the industrial advancement demands high purity and high quality products, membrane technology is recognized as a very important field. In particular, in the field of environment, the technology using a separator has attracted much attention as a way to solve this problem as the need for clear water and awareness of water shortage increase. The process of water purification, sewage, wastewater, desalination, etc. using a separator has already spread rapidly. In addition, the development of the separation membrane itself is used to apply to the application, and the improvement of the performance of the separation membrane according to the application and expansion of development to the peripheral technology is being made.
분리막이란 서로 다른 두 물질 사이에 존재하는 선택능을 가진 물질로서, 어떤 물질을 선택적으로 통과시키거나 배제시키는 역할을 하는 소재를 의미한다. 분리막의 구조나 재료, 그리고 분리막을 통과하는 물질의 상태나 이동원리 등의 제한은 없으며, 단지 두 물질 사이를 서로 격리시키고, 그 사이의 막을 통해 물질의 선택적 이동이 일어난다면 그 소재를 일반적으로 분리막이라 부를 수 있다. The separator is a material having a selectivity existing between two different materials, and means a material that selectively passes or excludes a certain material. There is no restriction on the structure or material of the membrane, and the state or principle of movement of the material through the membrane, and the material is generally separated if the two materials are isolated from each other and the selective movement of the material through the membrane between them. It can be called
분리막의 종류는 매우 다양하며 여러 가지 기준으로 분류되어 진다.The types of membranes are very diverse and classified according to various criteria.
먼저 분리조작에 의한 분류는 분리하려는 대상물질의 상태에 따른 분류법으로서 액체분리, 기액분리, 기체분리 등으로 분류된다. 그리고 액체분리는 여과대상물의 크기에 따라 정밀여과(micro filtration), 한외여과(Ultra filtration), 나노여과(nano filtration), 역삼투(reverse osmosis)등으로 분류된다. 기체분리는 분리하려는 기체의 종류에 따라 세부적으로 분리할 수 있는데, 산소기체를 분리하기 위한 막일 경우에는 산소부화, 질소를 분리하기 위한 막일 경우에는 질소부화, 수소분리, 제습막 등으로 분류된다. First, classification by separation operation is classified into liquid separation, gas-liquid separation, and gas separation as a classification method according to the state of the target substance to be separated. Liquid separation is classified into micro filtration, ultra filtration, nano filtration, reverse osmosis, etc., depending on the size of the filtration object. The gas separation can be separated in detail according to the type of gas to be separated. In case of the membrane for separating oxygen gas, it is classified into oxygen enrichment, and in case of the membrane for separating nitrogen, nitrogen enrichment, hydrogen separation, and dehumidification membrane.
막의 형상에 의한 분류는 평막(flat membrane), 중공사막(hollow fiber membrane), 관형막(tubular membrane)으로 분류되며, 또한 이들은 필터모듈형태에 따라 플레이트형, 나권형, 카트리지형, 평막셀형, 침적형, 튜브형 등으로 분류된다. The types of membranes are classified into flat membranes, hollow fiber membranes, and tubular membranes, and they are also plate-type, spiral wound, cartridge-type, flat-film cell type, and deposit according to the filter module type. It is classified into a mold, a tube, and the like.
재료에 의한 분류는 무기막과 고분자를 이요한 유기막이 있다. 최근에는 무기막이 내열성, 내구성 등의 장점을 바탕으로 그 용도를 확대하고 있으나, 현재 제품화된 대부분은 고분자 분리막이 차지하고 있다. Classification by material includes inorganic membrane and organic membrane using polymer. Recently, the inorganic membrane is expanding its use based on the advantages of heat resistance, durability, etc., but most of the commercialized products are occupied by the polymer membrane.
일반적으로, 여과(filtration)란 유체로부터 2종류 이상의 성분을 분리하는 것을 의미하는 것으로써, 용해되지 않은 입자, 즉 고체를 분리하는 것을 의미한다. 고체의 분리에 있어서 여과메카니즘은 체거름, 흡착, 용해, 확산 메카니즘으로 설명할 수 있으며 기체분리막, 역삼투막 등 일부의 분리막을 제외하면 대부분은 전적으로 체거름 메카니즘에 의존한다고 할 수 있다. Generally, filtration means separating two or more kinds of components from a fluid, and means separating undissolved particles, that is, solids. In the separation of solids, the filtration mechanism can be described as sieving, adsorption, dissolution, and diffusion mechanisms, and most of them are completely dependent on sieving mechanisms except for some separation membranes such as gas separation membranes and reverse osmosis membranes.
따라서 기공을 가지고 있는 소재라면 어떠한 것이든 필터미디어로써 사용이 가능한데, 대표적인 필터미디어로는 부직포(nonwovens), 직물(fabric), 메쉬(mesh), 다공성멤브레인(porous membrane)등이 있다.Therefore, any material having pores can be used as a filter media, and representative filter media include nonwovens, fabrics, meshes, and porous membranes.
부직포, 직물, 메쉬등은 1um이하의 기공을 만들기 어려워 입자여과(particle filtration) 영역대에 국한하여 전처리 필터 개념으로 사용이 된다. 반면 다공성 멤브레인은 정밀하고 작은 기공을 만들 수 있어 정밀여과(micro filtration), 한외여과(ultra filtration), 나노여과(nano filtration), 역삼투여과(reverse osmosis) 등의 광범위한 여과 영역대와 최고의 정밀도를 요구하는 공정에 사용되고 있다.Nonwoven fabrics, fabrics, meshes, etc. are difficult to make pores of less than 1um, so they are limited to the particle filtration area and are used as pretreatment filter concepts. Porous membranes, on the other hand, can produce precise and small pores, requiring a wide range of filtration zones such as micro filtration, ultra filtration, nano filtration, reverse osmosis and the highest precision. It is used for the process.
부직포, 메쉬, 직물은 수마이크로에서 수백마이크로 굵기의 섬유로 이루어져 있어 1마이크로 이하의 미세기공을 만들기 어렵다. 특히 부직포의 경우 섬유의 무작위 배열에 의해 웹이 형성됨으로 균일한 기공을 만드는 것이 사실상 불가능하다. 멜트블로운(melt-blown)의 경우 1~5um 범위의 섬경을 가지는 가장 미세한 섬유로 이루어진 부직포라고 할 수 있는데, 열카렌딩 전의 기공크기는 6마이크로 이상이며 카렌딩 후의 기공크기는 약 3마이크로에 불과하며 평균기공크기의 편차가 기준점을 중심으로 ±15% 이상 발생하며 상당히 큰 기공들이 공존하는 구조를 가진다. 이러한 결과 상대적으로 큰 기공을 통한 오염물질의 유출을 막기 어려워 필터효율이 낮을 수 밖에 없다. 따라서 상기의 필터미디어들은 정밀하지 못한 여과공정이나 정밀여과공정에 있어서 전처리 개념으로 사용되고 있다. Nonwovens, meshes, and fabrics are made of fibers of several micro to hundreds of micro-thick, making it difficult to produce micropores of less than one micro. In particular, in the case of nonwoven fabrics, the web is formed by a random arrangement of fibers, so that it is virtually impossible to make uniform pores. Melt-blown is a non-woven fabric consisting of the finest fibers with a fineness in the range of 1 ~ 5um. The pore size before thermal calendering is 6 microns or more and the pore size after calendering is about 3 microns. The average pore size deviation is more than ± 15% from the reference point, and the pores are quite large. As a result, it is difficult to prevent the outflow of pollutants through relatively large pores, so the filter efficiency is low. Therefore, the filter media are used as a pretreatment concept in an inexact filtration process or a microfiltration process.
한편, 다공성 멤브레인은 용매상전이법(NIPS), 열유도상전이법(TIPS), 연신법(stretching process), 조사에칭법(track etching), 졸겔법(sol-gel) 등의 방법으로 제조되는데, 재질은 대부분 유기고분자로써, 폴리테트라플루오르에틸렌(PTFE), 폴리비닐라이덴플루오르(PVDF), 나일론(nylon6, nylon66), 폴리술폰(PS), 폴리에테르술폰(PES), 폴리프로필렌(PP), 폴리에틸렌(PE), 니트로셀룰로오스(NC)등이 대표적으로 사용되고 있다. 이러한 종래의 다공성멤브레인은 정밀하고 작은 크기의 기공을 만들 수 있는 반면, 닫힌기공(closed pore), 막힌기공(blinded pore)이 제조공정상 불가피하게 발생할 수밖에 없어 여과유량이 적고 운전압력이 많이 걸리며 여과수명이 짧은 문제점을 가지고 있어 높은 운전비용 및 잦은 필터교체가 문제점으로 지적되고 있다. On the other hand, the porous membrane is prepared by a method such as solvent phase transition (NIPS), thermal induction phase transition (TIPS), stretching process, track etching method, sol-gel method, etc. Are mostly organic polymers such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), nylon (nylon6, nylon66), polysulfone (PS), polyethersulfone (PES), polypropylene (PP), polyethylene ( PE), nitrocellulose (NC), etc. are typically used. While the conventional porous membrane can make precise and small size pores, closed pores and blind pores are inevitably generated in the manufacturing process, so the amount of filtration flow is low, the operating pressure is high, and the filtration life is long. Due to the short problem, high operating cost and frequent filter replacement are pointed out as problems.
한국 등록특허공보 제10-0714219호에는 일단이 접지되며 회전구동되는 도전성재질 성형봉 상에 용융방사기로 용융방사하여 마이크로 섬유사로 구성된 마이크로 섬유층을 형성하고, 상기 마이크로 섬유층상에 전기방사 가능한 일정 유전상수를 갖는 고분자수지 용액을 전기방사기로 전기방사하여 나노 섬유사로 구성된 나노 섬유층을 적층 형성하여 복합섬유필터를 제조하는 기술이 개시되어 있어, 필터에 고효율 및 고기능을 부여시키고, 마이크로 섬유층의 마이크로 섬유사와 나노섬유층의 나노 섬유사에 은나노 성분이 내재되도록 하여 항균성 기능을 갖는 장점이 있으나, 한국 등록특허공보 제10-0714219호의 복합섬유필터는 원통형 형상으로 제한된 면적에서 여과 면적을 증가시키는데 한계가 있어, 고수명 및 고효율의 필터를 구현하지 못하는 단점이 있다.In Korean Patent Publication No. 10-0714219, one end is grounded and melt-spun with a melt spinning machine on a rotating rod of conductive material to form a microfiber layer composed of microfiber yarns, and a constant dielectric constant capable of electrospinning on the microfiber layer A technique for producing a composite fiber filter by laminating a nanofiber layer consisting of nanofiber yarns by electrospinning a polymer resin solution having an electrospinner with an electrospinner is provided, to impart high efficiency and high functionality to the filter, and the microfiber yarn and nano The silver nano component of the fiber layer has the advantage of having an antimicrobial function by intrinsic to the nanofiber yarn, but the composite fiber filter of Korea Patent Publication No. 10-0714219 has a cylindrical shape has a limitation in increasing the filtration area in a limited area, high life And the disadvantage of not implementing a high efficiency filter have.
따라서, 본 발명자들은 수명을 증가시키고, 효율을 높일 수 있는 차세대 필터에 대한 연구를 지속적으로 진행하여 동일한 크기에서 필터 면적을 극대화시킬 수 있는 주름형 필터의 구조적인 특징 및 방법적인 특징을 도출하여 발명함으로써, 보다 경제적이고, 활용 가능하고 경쟁력있는 본 발명을 완성하였다.Therefore, the present inventors continue to study the next-generation filter that can increase the lifespan and increase the efficiency to derive the structural characteristics and method characteristics of the pleated filter that can maximize the filter area at the same size By doing so, the present invention is more economical, usable and competitive.
본 발명은 종래기술의 문제점을 감안하여 안출된 것으로, 그 목적은 필터의 제한된 공간내에서 여과 면적을 극대화시킬 수 있고, 여과 유량과 여과 수명을 증가시킬 수 있는 주름 필터를 제공하는 데 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the prior art, and an object thereof is to provide a pleated filter capable of maximizing the filtration area within a limited space of the filter and increasing the filtration flow rate and the filtration life.
본 발명의 다른 목적은 나노 섬유를 전기 방사하여 필터를 제조하여, 극미세 기공 크기를 갖게 하여 여과 특성을 향상시킬 수 있는 주름 필터를 제공하는 데 있다.Another object of the present invention is to produce a filter by electrospinning the nanofibers, to provide a pleated filter that can have a very fine pore size to improve the filtration characteristics.
본 발명의 또 다른 목적은 나노 섬유를 시트형태로 만들지 않고 직접 필터를 제조함으로써, 나노 섬유의 단점인 취급성을 개선하고 오염이 없는 필터를 제조할 수 있는 주름 필터를 제공하는 데 있다.Still another object of the present invention is to provide a pleated filter that can produce a filter free from contamination by improving the handleability, which is a disadvantage of the nanofiber, by making the filter directly without making the nanofiber into a sheet form.
본 발명의 또 다른 목적은 다양한 모폴로지(morphology)를 갖는 필터를 구현할 수 있는 주름 필터를 제공하는 데 있다.Another object of the present invention is to provide a pleated filter that can implement a filter having a variety of morphology (morphology).
본 발명의 또 다른 목적은 심실링(seam sealing)이 필요없어, 누설 문제를 해결할 수 있으며, 공정 자동화에 의해 제조할 수 있는 주름 필터를 제공하는 데 있다.Still another object of the present invention is to provide a pleated filter which can solve the leakage problem since no seam sealing is required and can be manufactured by process automation.
상술된 목적을 달성하기 위한, 본 발명의 일 실시예는, 전기방사되어 집적된 나노 섬유로 이루어지고, 내부에 관통홀이 형성되어 있는 통체 형상이고, 상기 관통홀의 측벽과 상기 통체의 외주면에 주름이 형성되어 있는 주름 필터를 제공한다.In order to achieve the above object, an embodiment of the present invention is a cylindrical shape made of nanofibers, which are electrospun and integrated, and has a through hole formed therein, and wrinkles on the sidewall of the through hole and an outer circumferential surface of the cylinder. Provided is a pleated filter formed therein.
상기 집적된 나노 섬유는, 나노 섬유의 직경이 다른 다수의 나노 섬유층으로 이루어질 수 있다.The integrated nanofibers may be composed of a plurality of nanofiber layers having different diameters of the nanofibers.
이 경우, 상기 다수의 나노 섬유층 사이에 이온 교환 수지 입자가 분산되어 있는 것이 바람직하다. 또한, 이온 교환 수지 입자는 상기 집적된 나노 섬유의 외측에 분산될 수 있다. 상기 이온 교환 수지는 이온 교환능이 있는 다공질의 유기 중합체 또는 폴리스티렌(Polystyrene)과 디비닐벤젠(Divinylbenzene)의 공중합체인 PSDVB(Polystyrene Divinylbenzene)일 수 있다.In this case, it is preferable that the ion exchange resin particle is disperse | distributed among the said many nanofiber layers. In addition, the ion exchange resin particles may be dispersed outside the integrated nanofibers. The ion exchange resin may be a porous organic polymer having ion exchange ability or PSDVB (Polystyrene Divinylbenzene) which is a copolymer of polystyrene and divinylbenzene.
상기 집적된 나노 섬유는, 성형관에 상기 나노 섬유가 전기방사되어 형성될 수 있으며, 상기 성형관의 외주면에는 주름이 형성되어 있고, 상기 관통홀의 측벽에 형성된 주름은, 상기 성형관의 주름 형상이 상기 관통홀의 측벽에 전사되어 형성될 수 있다.The integrated nanofibers may be formed by electrospinning the nanofibers in a forming tube, and wrinkles are formed on an outer circumferential surface of the forming tube, and the wrinkles formed on the sidewall of the through hole have a wrinkle shape of the forming tube. It may be transferred to the side wall of the through hole.
이 경우, 상기 집적된 나노 섬유에 의해 만들어진 기공 크기는 0.2um - 1um범위로 설정될 수 있다.In this case, the pore size made by the integrated nanofibers may be set in the range of 0.2um-1um.
또한, 상기 주름 필터는 상기 처리수가 입력되는 입력단의 크기가, 상기 처리수가 출력되는 출력단의 크기보다 큰 비대칭 구조를 가질 수 있다.In addition, the pleated filter may have an asymmetric structure in which the size of the input terminal through which the treatment water is input is larger than the size of the output terminal through which the treatment water is output.
또한, 본 발명의 일 실시예는, 고전압 발생기가 연결된 제1방사노즐, 상기 방사노즐로부터 이격되어 위치되고 접지된 전극봉, 및 상기 전극봉이 삽입되고 외주면에 주름이 형성된 성형관을 포함하는 전기방사장치를 준비하는 단계; 및 고분자 물질과 용매가 혼합된 방사용액을 상기 제1방사노즐을 통하여 성형관에 방사하여, 집적된 나노 섬유로 이루어지고, 내부에 관통홀이 형성되어 있는 통체 형상이고, 상기 관통홀의 측벽과 상기 통체의 외주면에 주름이 형성되어 있는 주름 필터를 형성하는 단계를 포함하는 주름 필터의 제조 방법을 제공한다.In addition, an embodiment of the present invention, an electrospinning apparatus including a first radiation nozzle connected to a high voltage generator, an electrode rod spaced from the radiation nozzle and grounded, and a molded tube into which the electrode rod is inserted and formed on the outer circumferential surface thereof. Preparing a; And a spinning solution in which a polymer material and a solvent are mixed is spun into a forming tube through the first spinning nozzle, formed of integrated nanofibers, and having a cylindrical shape having a through hole formed therein, the side wall of the through hole and the It provides a pleat filter manufacturing method comprising the step of forming a pleat filter having pleats formed on the outer circumferential surface of the cylinder.
이 경우, 상기 제1방사노즐은 성형관의 길이 방향으로 직선 왕복 이동하면서 나노 섬유를 전기방사하며, 상기 전극봉과 성형관은 제1방사노즐로부터 나노섬유가 전기방사될 때 회전이 이루어질 수 있다.In this case, the first spinning nozzle electrospins the nanofibers while linearly reciprocating in the longitudinal direction of the forming pipe, and the electrode and the forming pipe may be rotated when the nanofibers are electrospun from the first spinning nozzle.
또한, 상기 전기방사장치는 상기 제1방사노즐과 소정의 각도로 이격 배치되어 있고, 이온 교환 수지 입자가 내포된 비드를 분사하는 제2분사노즐을 더 포함하며, 상기 집적된 나노 섬유의 외측에 이온 교환 수지 입자가 분산되어 형성될 수 있다.The electrospinning device may further include a second spray nozzle disposed to be spaced apart from the first radiation nozzle at a predetermined angle, and spraying beads containing ion exchange resin particles, the outer side of the integrated nanofiber. The ion exchange resin particles may be formed by being dispersed.
상기한 바와 같이, 본 발명에서는 내주면과 외주면에 주름을 형성하여, 제한된 공간내에서 여과 면적을 극대화시킬 수 있는 기술을 제공할 수 있다.As described above, in the present invention, by forming a wrinkle on the inner peripheral surface and the outer peripheral surface, it is possible to provide a technology that can maximize the filtration area in a limited space.
본 발명에서는 주름 구조의 필터를 구현하여, 여과 유량과 여과 수명을 증가시킬 수 있어, 고부가가치의 필터 제품을 제조할 수 있는 기술을 제공할 수 있다.In the present invention, by implementing the filter of the pleated structure, it is possible to increase the filtration flow rate and filtration life, it is possible to provide a technology for manufacturing a high value-added filter products.
본 발명에서는 나노 섬유를 전기 방사하여 주름형 필터를 구현하여, 서브 마이크론(sub-micron)의 기공 사이즈를 구현할 수 있는 기술을 제공할 수 있다.In the present invention, by implementing the pleated filter by electrospinning the nanofibers, it is possible to provide a technology that can implement the pore size of the sub-micron (sub-micron).
본 발명에서는 나노 섬유의 섬경 조절이 용이한 전기 방사 방법으로, 다양한 모폴로지(morphology)를 갖는 필터를 구현할 수 있는 기술을 제공할 수 있다.In the present invention, it is possible to provide a technique capable of implementing a filter having various morphologies by an electrospinning method for easily controlling the scintillation of nanofibers.
본 발명에서는 성형관의 외측에 집적된 나노 섬유로 이루어진 필터를 구현함으로써, 심실링(seam sealing)이 필요없어, 누설 문제를 해결할 수 있는 기술을 제공할 수 있다.In the present invention, by implementing a filter made of nanofibers integrated on the outside of the forming tube, there is no need for seam sealing (sea sealing), it is possible to provide a technique that can solve the leakage problem.
본 발명에서는 성형관에 전기 방사하여 필터를 제조함으로써, 제조 비용을 낮출 수 있고 공정 자동화가 가능한 기술을 제공할 수 있다.In the present invention, by manufacturing the filter by electrospinning to the forming tube, it is possible to provide a technology capable of lowering the manufacturing cost and process automation.
본 발명에서는 성형관을 이용하여 주름 필터를 제조함으로써, 나노 섬유의 취급성 문제를 극복할 수 있는 기술을 제공할 수 있다.In the present invention, by manufacturing a pleated filter using a molded tube, it is possible to provide a technology that can overcome the handling problems of nanofibers.
상기 집적된 나노 섬유는 나노섬유 웹층을 형성하며, 100~1000nm 급의 섬유에 의해 매우 복잡한 구조의 미세 기공을 이루고 있으며 유체에 포함된 미립자들을 관성효과(inertial effect), 중력효과(gravity effect), 거름효과(interception effect), 확산효과(diffusion effect) 등의 체거름메카니즘(sieve mechanism)에 의해 필터링 역할을 한다.The integrated nanofibers form a nanofiber web layer, and form fine pores of a very complicated structure by fibers of 100-1000 nm class, and the fine particles contained in the fluid are inertial, gravity, It filters by sieve mechanisms such as interception effect and diffusion effect.
도 1a와 도 1b는 본 발명의 일실시예에 따른 주름 필터를 설명하기 위한 개념적인 단면도 및 사시도, 1A and 1B are conceptual cross-sectional views and perspective views for explaining a pleated filter according to an embodiment of the present invention;
도 2a 내지 도 2d는 본 발명의 일실시예에 따른 주름 필터의 관통홀 측벽에 형성된 홈 형태를 설명하기 위한 도시한 개념적인 일부 도면, 2A to 2D are some conceptual views illustrating a groove shape formed on a sidewall of a through hole of a pleated filter according to an embodiment of the present invention;
도 3은 본 발명의 일실시예에 따른 주름 필터를 제조하기 위한 전기 방사 장치의 개략적인 구성을 설명하기 위한 도면, 3 is a view for explaining a schematic configuration of an electrospinning apparatus for manufacturing a pleated filter according to an embodiment of the present invention,
도 4는 본 발명의 일실시예에 따라 방사 노즐들을 배치한 상태를 설명하기 위한 개념적인 도면, 4 is a conceptual view illustrating a state in which spinning nozzles are disposed according to an embodiment of the present invention;
도 5는 본 발명의 일실시예에 따라 방사 노즐과 분사 노즐을 배치한 상태를 설명하기 위한 개념적인 도면, 5 is a conceptual view illustrating a state in which a spinning nozzle and a spray nozzle are disposed according to an embodiment of the present invention;
도 6은 도 3의 A-A'선 단면도, 6 is a cross-sectional view taken along line AA ′ of FIG. 3;
도 7은 본 발명의 일실시예에 따라 성형관에 나노 섬유가 집적된 상태를 촬영한 사진, Figure 7 is a photograph taken a state in which the nanofibers are integrated in the forming tube according to an embodiment of the present invention,
도 8a와 도 8b는 본 발명의 일실시예에 따라 주름 필터의 구조를 설명하기 위한 도면이다. 8A and 8B are views for explaining the structure of a pleated filter according to an embodiment of the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
따라서, 본 명세서에 여재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments shown in the specification and the configuration shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, which can be replaced at the time of the present application It should be understood that there may be various equivalents and variations.
이하, 도면을 참조하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
이하의 설명에서는 본 발명에 따른 주름 필터의 실시예로, 성형관에 나노 섬유를 전기 방사하여 통체 구조의 내주면과 외주면에 주름을 갖는 필터 구조를 형성함으로써, 여과 면적을 증가시킬 수 있고, 여과 유량과 여과 수명을 증가시킬 수 있어, 고부가가치의 필터를 구현할 수 있다. In the following description, as an embodiment of the pleated filter according to the present invention, by forming the filter structure having a pleat on the inner and outer peripheral surfaces of the tubular structure by electrospinning the nanofiber in the forming tube, the filtration area can be increased, the filtration flow rate And filtration life can be increased, resulting in a high value filter.
도 1a와 도 1b는 본 발명의 일실시예에 따른 주름 필터를 설명하기 위한 개념적인 단면도 및 사시도이고, 도 2a 내지 도 2d는 본 발명의 일실시예에 따른 주름 필터의 관통홀 측벽에 형성된 홈 형태를 설명하기 위한 도시한 개념적인 일부 도면이다. 1A and 1B are conceptual cross-sectional views and perspective views illustrating a pleated filter according to an embodiment of the present invention, and FIGS. 2A to 2D are grooves formed in a sidewall of a through hole of a pleated filter according to an embodiment of the present invention. Some conceptual views are shown for explaining the form.
도 1a 및 도 1b를 참고하면, 본 발명의 일실시예에 따른 주름 필터(100)는 전기방사되어 집적된 나노 섬유(110)로 이루어지고, 내부에 관통홀(120)이 형성되어 있는 통체 형상이고, 관통홀(120)의 측벽과 통체의 외주면에 주름이 형성되어 있다.1A and 1B, the pleated filter 100 according to the exemplary embodiment of the present invention is formed of a nanofiber 110 that is electrospun and integrated, and has a cylindrical shape in which a through hole 120 is formed therein. The wrinkles are formed on the side wall of the through hole 120 and the outer circumferential surface of the cylinder.
통체는 길이가 직경보다 긴 형상이다. 그리고, 본 발명에서는 관통홀(120)의 측벽에 다수의 홈(111)이 형성되어 있을 수 있고, 이 다수의 홈(111)에 의해 관통홀(120)의 측벽에는 주름 형상이 만들어질 수 있다. 이때, 다수의 홈(111)은 직선형 패턴, 곡선형 패턴, 직선 및 곡선형 패턴이 혼합된 패턴, 다각형 패턴, 격자형 패턴, 도트형 패턴, 마름모형 패턴, 평행사변형 패턴, 메쉬형 패턴, 스트라이프형 패턴, 십자형 패턴, 방사형 패턴, 원형 패턴, 상기 패턴들 중 복수개의 패턴이 혼합된 패턴 중 적어도 한 패턴 형상으로 형성될 수 있다.The cylinder has a shape whose length is longer than the diameter. In the present invention, a plurality of grooves 111 may be formed on the sidewalls of the through holes 120, and a plurality of grooves 111 may form wrinkles on the sidewalls of the through holes 120. . In this case, the plurality of grooves 111 may be a straight pattern, a curved pattern, a mixed pattern of straight and curved patterns, a polygonal pattern, a grid pattern, a dot pattern, a rhombus pattern, a parallelogram pattern, a mesh pattern, and a stripe. The pattern, the cross pattern, the radial pattern, the circular pattern, and a plurality of patterns among the patterns may be formed in at least one pattern shape.
본 발명에서는, 통체의 외주면에 형성된 주름은 관통홀(120)의 측벽에 형성된 주름에 대응하여 닮은 형상으로 형성될 수 있다. 이경우, 관통홀(120)의 측벽에 형성된 다수의 홈(111)에 대응된 볼록한 돌출 형상(112)이 통체의 외주면에 형성된다.In the present invention, the pleats formed on the outer circumferential surface of the cylinder may be formed in a shape similar to the pleats formed on the side wall of the through hole 120. In this case, the convex protruding shape 112 corresponding to the plurality of grooves 111 formed on the sidewall of the through hole 120 is formed on the outer circumferential surface of the cylinder.
도 2a 내지 도 2d를 참고하면, 본 발명의 일실시예에 따른 주름 필터의 관통홀 측벽에 형성된 홈 형태는 V홈(111a)(도 2a), 다각형홈(111b)(도 2b), 원형홈(111c)(도 2c) 등이 될 수 있고, 상호 이격된 다수의 홈 또는 연속적으로 이어진 다수의 홈(111d)(도 2d)이 될 수 있다.2A to 2D, the groove shape formed in the sidewall of the through hole of the pleated filter according to the embodiment of the present invention is a V groove 111a (Fig. 2a), a polygonal groove 111b (Fig. 2b), a circular groove. 111c (FIG. 2C) or the like, and may be a plurality of grooves spaced apart from each other or a plurality of grooves 111d (FIG. 2D) continuously connected to each other.
이와 같은 본 발명의 일실시예에 따른 주름 필터는 내주면과 외주면에 형성된 주름으로 제한된 공간내에서 여과 면적을 최대화할 수 있으며, 여과 유량을 증가시킬 수 있고, 여과 수명을 향상시킬 수 있는 탁월한 성능을 가질 수 있다.Such a pleated filter according to an embodiment of the present invention can maximize the filtration area in a limited space by the pleats formed on the inner circumferential surface and the outer circumferential surface, can increase the filtration flow rate, and improve the filtration life is excellent Can have
또한, 기존의 섬유형 필터의 경우, 1um 이하의 기공을 만들기 어려웠으나, 본 발명에서는 전기 방사에 의해 집적된 나노 섬유로 주름형 필터를 제작함으로써, 나노 섬유의 섬경이 200nm 수준까지 작게 형성할 수 있어, 서브 마이크론(sub-micron)의 기공 사이즈를 구현할 수 있다.In addition, in the case of the conventional fibrous filter, it was difficult to make pores of 1 μm or less, but in the present invention, by forming a pleated filter with nanofibers integrated by electrospinning, the fiber diameter of the nanofibers can be made small to 200 nm level. Thus, sub-micron pore size can be realized.
즉, 본 발명에서의 주름 필터는 집적된 나노 섬유에 의해 만들어진 기공 크기는 0.2um - 1um인 것이 바람직하다.In other words, the pleated filter of the present invention preferably has a pore size of 0.2um-1um made of integrated nanofibers.
아울러, 본 발명에서는 전기 방사에 의해 나노 섬유의 섬경 조절이 자유로워, 주름 필터의 형상을 비대칭 구조로 형성할 수 있는 등, 주름 필터의 다양한 모폴로지(morphology) 구현이 가능하다. 예컨대, 처리수가 입력되는 필터의 입력단의 크기를, 처리수가 출력되는 출력단의 크기보다 상대적으로 크게 형성하여 주름 필터를 구현할 수 있고, 이때, 주름 필터는 좌우 크기가 다른 비대칭 구조를 갖는다.In addition, in the present invention, it is possible to freely control the diameter of the nanofibers by electrospinning, to form a pleated filter in an asymmetrical structure, and to realize various morphologies of the pleated filter. For example, the size of the input terminal of the filter to which the treated water is input may be formed to be relatively larger than the size of the output terminal to which the treated water is output, thereby implementing a pleated filter. In this case, the pleated filter has an asymmetric structure having different left and right sizes.
게다가, 본 발명에 적용된 필터는 수세 공정 운용이 가능하여, 필터가 제조된 후 잔류 용제를 최소화시킬 수 있고, 바이오, 제약, 의학분야에 적합한 제품의 생산이 가능하다.In addition, the filter applied to the present invention can be washed with water, can minimize the residual solvent after the filter is manufactured, it is possible to produce products suitable for the bio, pharmaceutical, medical field.
도 3은 본 발명의 일실시예에 따른 주름 필터를 제조하기 위한 전기 방사 장치의 개략적인 구성을 설명하기 위한 도면이고, 도 4는 본 발명의 일실시예에 따라 방사 노즐들을 배치한 상태를 설명하기 위한 개념적인 도면이고, 도 5는 본 발명의 일실시예에 따라 방사 노즐과 분사 노즐을 배치한 상태를 설명하기 위한 개념적인 도면이며, 도 6은 도 3의 A-A'선 단면도이고, 도 7은 본 발명의 일실시예에 따라 성형관에 나노 섬유가 적층된 상태를 촬영한 사진이다.3 is a view for explaining a schematic configuration of an electrospinning apparatus for manufacturing a pleated filter according to an embodiment of the present invention, Figure 4 illustrates a state in which the spinning nozzles are arranged in accordance with an embodiment of the present invention 5 is a conceptual view illustrating a state in which a spinning nozzle and a spray nozzle are disposed according to an embodiment of the present invention, and FIG. 6 is a cross-sectional view taken along line AA ′ of FIG. FIG. 7 is a photograph of a state in which nanofibers are stacked in a forming tube according to an embodiment of the present invention. FIG.
도 3을 참고하면, 본 발명에 따른 주름 필터는 성형관(260)에 전기방사된 나노 섬유가 집적되어 형성된다. 이때, 성형관(260)은 일측면에서 타측면까지 관통된 관통홀이 형성되어 있고, 이 관통홀에 접지된 전극봉(250)이 삽입된다.Referring to FIG. 3, the pleated filter according to the present invention is formed by integrating the electrospun nanofibers in the forming tube 260. At this time, the forming tube 260 is formed with a through hole penetrated from one side to the other side, the electrode rod 250 grounded in the through hole is inserted.
본 발명의 일실시예에 따른 주름 필터를 제조하기 위한 전기방사장치는 고전압 발생기가 연결된 방사노즐(200a)과, 방사노즐(200a)로부터 이격된 하부에 위치되고, 접지된 전극봉(250)이 삽입된 성형관(260)을 포함한다. 방사노즐(200a)은 고분자 물질과 용매가 혼합된 방사용액이 저장되어 있는 저장부(미도시)와 연결되어, 저장부로부터 방사용액을 공급받는다. 방사노즐(200a)은 성형관(260)의 길이 방향으로 직선 왕복운동을 하면서 나노 섬유를 방사한다. 이때, 방사노즐(200a)의 이동은 성형관(260)의 일 영역에 나노 섬유를 소정 두께로 집적시킨 후, 이웃 영역으로 이동하여 나노 섬유를 방사하도록 제어할 수도 있다. 즉, 방사노즐(200a)은 세부 이동 영역마다 이동을 멈추고 나노 섬유를 방사한 후, 다른 세부 이동 영역으로 이동하는 것이다. 방사노즐(200a)은 성형관(260)의 일측에서 성형관(260)의 타측까지 성형관(260)을 따라 직선 왕복으로 이동하면서 나노 섬유를 전기방사하고, 전기방사되는 동안 회전되는 전극봉(250)에 의해 성형관(260)도 회전되어 성형관(260)의 외주면에는 나노 섬유가 대략적으로 균일하게 집적된다. '200b'는 성형관(260) 타측에 위치된 방사노즐을 나타낸 것이다. An electrospinning apparatus for manufacturing a pleated filter according to an embodiment of the present invention is located at a lower portion spaced apart from the radiation nozzle 200a to which the high voltage generator is connected, and the radiation nozzle 200a, and the grounded electrode 250 is inserted. Molded tube 260 is included. The spinning nozzle 200a is connected to a storage unit (not shown) in which a spinning solution in which a polymer material and a solvent are mixed is stored, and receives a spinning solution from the storage unit. The spinning nozzle 200a spins nanofibers while linearly reciprocating in the longitudinal direction of the forming tube 260. At this time, the movement of the spinning nozzle 200a may be controlled to radiate the nanofibers by integrating the nanofibers in one region of the forming tube 260 to a predetermined thickness and then moving to the neighboring regions. That is, the spinning nozzle 200a stops the movement of each of the detailed moving regions, spins the nanofibers, and then moves to another detailed moving region. The spinning nozzle 200a electrospins the nanofibers while moving in a linear reciprocation along the forming tube 260 from one side of the forming tube 260 to the other side of the forming tube 260 and rotates during the electrospinning. ), The forming tube 260 is also rotated so that the nanofibers are approximately uniformly integrated on the outer circumferential surface of the forming tube 260. '200b' represents a spinning nozzle located on the other side of the forming tube 260.
이와 같이, 전기방사장치를 이용하여, 성형관(260)의 외주면에 나노 섬유를 집적할 수 있게 된다. 이때, 성형관(260)의 외주면에는 주름이 형성되어 있고, 이 주름 형상을 따라 집적된 나노 섬유(110)는 성형관(260)에서 이탈되면, 일측에서 타측으로 관통홀이 형성된 통체가 되고, 성형관(260)의 주름이 전사되어 관통홀의 측벽과 통체의 외주면에 전사된 주름이 형성된다.In this way, the nanofibers can be integrated on the outer circumferential surface of the forming tube 260 using the electrospinning device. At this time, the outer circumferential surface of the forming tube 260 is formed with wrinkles, and the nanofibers 110 integrated along the corrugation shape are separated from the forming tube 260 and become a cylindrical body having a through hole formed from one side to the other side. The wrinkles of the forming tube 260 are transferred to form the wrinkles transferred to the side wall of the through hole and the outer circumferential surface of the cylinder.
즉, 성형관(260)의 주름은 희생 몰드(sacrificial mold) 패턴과 동일한 기능을 수행하여, 이 희생 몰드 패턴과 반대 형상의 패턴이 주름 필터의 관통홀 측벽에 형성되는 것이다.That is, the pleats of the forming tube 260 performs the same function as the sacrificial mold pattern, so that a pattern having a shape opposite to the sacrificial mold pattern is formed on the sidewall of the through hole of the pleated filter.
한편, 기존에는 평판형 필터 여재를 만들고, 평판형 필터 여재의 일단을 내측으로 하여 롤형상으로 말은 후, 평판형 필터 여재의 타단을 말아진 필터 외측에 심실링(seam sealing)하여 원통형 필터를 제작하였으나, 본 발명에서는 성형관의 외측에 집적된 나노 섬유로 이루어진 필터는 기존의 심실링을 수행할 필요가 없어, 누설 문제가 없는 완성도 높은 필터를 제조할 수 있는 것이다.Meanwhile, conventionally, a flat filter media is made, rolled with one end of the flat filter media inward, and then the other end of the flat filter media is seam sealed to the outside of the rolled filter to form a cylindrical filter. However, in the present invention, the filter made of nanofibers integrated on the outer side of the forming tube does not need to perform conventional ventilating, and thus, a high-fidelity filter without leakage problems may be manufactured.
또한, 기존의 원통형 필터의 경우, 평판형 필터 여재를 제조한 후, 롤형상으로 감는 공정과 실링하는 공정 등 복잡한 다수의 공정을 수행하여 제조 비용이 증가되는 원인이 되었으나, 본 발명에서는 성형관에 전기 방사하는 공정으로 제조 비용을 낮출 수 있고 공정 자동화가 가능한 장점이 있다. 결국, 오염을 최소화시킬 수 있고 균일성과 경제성이 뛰어난 제품을 제조할 수 있다. In addition, in the case of the conventional cylindrical filter, after manufacturing the flat filter medium, the manufacturing cost is increased by performing a number of complex processes, such as a roll winding process and a sealing process, but in the present invention, in the forming pipe The process of electrospinning has the advantage of lowering the manufacturing cost and allowing for process automation. As a result, it is possible to minimize contamination and to produce a product having excellent uniformity and economy.
더불어, 본 발명에서는 성형관을 이용하여 주름 필터를 제조함으로써, 나노 섬유의 취급성 문제를 극복할 수 있는 것이다.In addition, in the present invention, by producing a pleated filter using a molded tube, it is possible to overcome the handling problems of nanofibers.
도 4를 참고하면, 전극봉(250) 외부에 성형관(260)이 위치되고, 성형관(260)과 나노 섬유(205)를 방사하는 방사노즐(211,212)은 소정 간격으로 이격되어 있다. 방사노즐(211,212)은 다수로 설계할 수 있고, 이때, 다수의 방사노즐(211,212)은 소정의 각도(θ1)로 이격시켜 배치할 수 있다. 즉, 다수의 방사노즐(211,212)은 성형관(260)의 길이 방향으로 직선 왕복 이동하므로, 서로 이동이 중첩되지 않도록 하기 위함이다.Referring to FIG. 4, the forming tube 260 is positioned outside the electrode 250, and the forming tubes 260 and the spinning nozzles 211 and 212 radiating the nanofibers 205 are spaced at predetermined intervals. The radiation nozzles 211 and 212 may be designed in plural, and in this case, the plurality of radiation nozzles 211 and 212 may be spaced apart by a predetermined angle θ1. That is, the plurality of spinning nozzles 211 and 212 linearly reciprocate in the longitudinal direction of the forming tube 260, so that the movements do not overlap each other.
또한, 도 5와 같이, 방사노즐(213)과 소정의 각도(θ2)로 이격 배치되어 있고, 이온 교환 수지 입자가 내포된 비드를 분사하는 분사노즐(220)이 전기방사장치에는 더 포함될 수 있다. 이경우, 방사노즐(213)에서 방사된 나노 섬유(205) 외측에 이온 교환 수지 입자를 분산시켜 위치시킬 수 있다. In addition, as shown in FIG. 5, the electrospinning apparatus may further include an injection nozzle 220 disposed to be spaced apart from the radiation nozzle 213 at a predetermined angle θ2 and for injecting beads containing ion exchange resin particles. . In this case, the ion exchange resin particles may be dispersed and positioned outside the nanofibers 205 radiated from the spinning nozzle 213.
그러므로, 본 발명의 주름 필터는 집적된 나노 섬유의 미세 기공 구조에 의한 수처리 필터 기능 및 이온 교환 수지 입자에 의한 화학적 물질의 특정 이온을 필터링하는 케미컬 필터 기능을 구비할 수 있다. 이온 교환 수지 입자는 내부 표면에 이온 교환능이 있는 관능기를 가지고 있는 것으로 정의할 수 있으며, 교환하는 이온에 따라 양이온 교환 수지, 음이온 교환 수지, 양음 양성의 교환 수지 등을 포함할 수 있다. 특히, 이온 교환능이 있는 다공질의 유기 중합체 또는 폴리스티렌(Polystyrene)과 디비닐벤젠(Divinylbenzene)의 공중합체인 PSDVB(Polystyrene Divinylbenzene)를 이온 교환 수지 입자로 적용할 수 있다.Therefore, the pleated filter of the present invention may have a water treatment filter function by the fine pore structure of the integrated nanofibers and a chemical filter function to filter specific ions of the chemical substance by the ion exchange resin particles. The ion exchange resin particles may be defined as having functional groups having ion exchange ability on the inner surface thereof, and may include a cation exchange resin, an anion exchange resin, a positive positive exchange resin, and the like, depending on the ions to be exchanged. In particular, PSDVB (Polystyrene Divinylbenzene), which is a porous organic polymer having ion exchange ability or a copolymer of polystyrene and divinylbenzene, may be used as ion exchange resin particles.
이와 같은 전기방사장치에서 도 6과 같은, 성형관(260)의 외주면에 집적된 나노 섬유(110)를 제조할 수 있는 것이다. 또한, 도 7의 사진과 같이, 집적된 나노 섬유(110)는 주름 형상을 갖게 된다. 참고로, '261'은 성형관(260)에 전극봉이 삽입될 수 있는 관통홀이다.In such an electrospinning apparatus, as shown in FIG. 6, the nanofibers 110 integrated on the outer circumferential surface of the forming tube 260 may be manufactured. In addition, as shown in the photo of FIG. 7, the integrated nanofibers 110 have a wrinkle shape. For reference, '261' is a through hole through which the electrode can be inserted into the forming tube 260.
도 8a와 도 8b는 본 발명의 일실시예에 따라 주름 필터의 구조를 설명하기 위한 도면이다. 8A and 8B are views for explaining the structure of a pleated filter according to an embodiment of the present invention.
본 발명의 일실시예에 따라 주름 필터는 집적된 나노 섬유로 이루어져 있다. 여기서, 나노 섬유의 직경이 다른 다수의 나노 섬유층으로 구성될 수 있으며, 도 8a은 제1나노 섬유층(110a)과 제2나노 섬유층(110b)이 적층된 구조로 이루어진 주름 필터를 설명하기 위한 것이고, 제1나노 섬유층(110a)과 제2나노 섬유층(110b)의 나노 섬유는 직경이 다르다. 이때, 도 8b와 같이, 제1나노 섬유층(110a)과 제2나노 섬유층(110b)의 계면 영역에 이온 교환 수지 입자(119)가 분산된 구조로 주름 필터를 구현할 수 있다. 즉, 집적된 나노 섬유의 외측에 이온 교환 수지 입자가 분산되어 있는 것이다.According to one embodiment of the invention, the pleated filter consists of integrated nanofibers. Here, the nanofibers may be composed of a plurality of nanofiber layers having different diameters, and FIG. 8A is for explaining a pleated filter having a structure in which the first nanofiber layer 110a and the second nanofiber layer 110b are stacked. The nanofibers of the first nanofiber layer 110a and the second nanofiber layer 110b have different diameters. In this case, as illustrated in FIG. 8B, the pleated filter may be implemented in a structure in which the ion exchange resin particles 119 are dispersed in the interface region between the first nanofibrous layer 110a and the second nanofiber layer 110b. That is, ion-exchange resin particle is disperse | distributed to the outer side of the integrated nanofiber.
상기한 바와 같이, 본 발명에 따른 집적된 나노 섬유는 나노섬유 웹층을 형성하며, 100~1000nm 급의 섬유에 의해 매우 복잡한 구조의 미세 기공을 이루고 있으며 유체에 포함된 미립자들을 관성효과(inertial effect), 중력효과(gravity effect), 거름효과(interception effect), 확산효과(diffusion effect) 등의 체거름메카니즘(sieve mechanism)에 의해 필터링 역할을 한다.As described above, the integrated nanofibers according to the present invention form a nanofiber web layer, and form fine pores of a very complicated structure by fibers of 100-1000 nm class, and inertial effects of fine particles contained in the fluid. Filtering is performed by sieve mechanisms such as the gravitational effect, the gravity effect, the interception effect, and the diffusion effect.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments, and the present invention is not limited to the spirit of the present invention. Various changes and modifications will be possible by those who have the same.
본 발명은 필터의 제한된 공간내에서 여과 면적을 극대화시킬 수 있고, 여과 유량과 여과 수명을 증가시킬 수 있는 주름 필터를 제공한다.The present invention provides a pleated filter capable of maximizing the filtration area within the limited space of the filter and increasing the filtration flow rate and filtration life.

Claims (15)

  1. 전기방사되어 집적된 나노 섬유로 이루어지고, 내부에 관통홀이 형성되어 있는 통체 형상이고, 상기 관통홀의 측벽과 상기 통체의 외주면에 주름이 형성되어 있는 주름 필터.A pleated filter comprising nanofibers electrospun and integrated, and having a cylindrical shape having a through hole formed therein, and having a pleat formed on the sidewall of the through hole and an outer circumferential surface of the cylinder.
  2. 제1항에 있어서, 상기 집적된 나노 섬유는, 나노 섬유의 직경이 다른 다수의 나노 섬유층으로 이루어진 주름 필터.The pleated filter of claim 1, wherein the integrated nanofibers comprise a plurality of nanofiber layers having different diameters of the nanofibers.
  3. 제2항에 있어서, 상기 다수의 나노 섬유층 사이에 이온 교환 수지 입자가 분산되어 있는 주름 필터.The pleated filter according to claim 2, wherein ion exchange resin particles are dispersed between the plurality of nanofiber layers.
  4. 제1항에 있어서, 상기 집적된 나노 섬유의 외측에 이온 교환 수지 입자가 분산되어 있는 주름 필터.The pleated filter according to claim 1, wherein ion exchange resin particles are dispersed outside of the integrated nanofibers.
  5. 제4항에 있어서, 상기 이온 교환 수지는 이온 교환능이 있는 다공질의 유기 중합체 또는 폴리스티렌(Polystyrene)과 디비닐벤젠(Divinylbenzene)의 공중합체인 PSDVB(Polystyrene Divinylbenzene)인 주름 필터.The pleated filter according to claim 4, wherein the ion exchange resin is a polystyrene divinylbenzene (PSVB) which is a porous organic polymer having ion exchange capacity or a copolymer of polystyrene and divinylbenzene.
  6. 제1항에 있어서, 상기 집적된 나노 섬유는, 성형관에 상기 나노 섬유가 전기방사되어 형성되어진 주름 필터.The pleated filter of claim 1, wherein the integrated nanofibers are formed by electrospinning the nanofibers in a forming tube.
  7. 제1항에 있어서, 상기 성형관의 외주면에는 주름이 형성되어 있고, According to claim 1, wherein the outer circumferential surface of the molded pipe is formed with wrinkles,
    상기 관통홀의 측벽에 형성된 주름은, 상기 성형관의 주름 형상이 상기 관통홀의 측벽에 전사되어 형성된 주름 필터.The pleated filter formed on the side wall of the through hole, the pleated shape of the forming pipe is transferred to the side wall of the through hole formed pleated filter.
  8. 제1항에 있어서, 상기 집적된 나노 섬유에 의해 만들어진 기공 크기는 0.2um - 1um인 주름 필터.The pleated filter of claim 1, wherein the pore size made by the integrated nanofibers is 0.2um-1um.
  9. 제1항에 있어서, 상기 주름 필터는 상기 처리수가 입력되는 입력단의 크기가, 상기 처리수가 출력되는 출력단의 크기보다 큰 비대칭 구조를 갖는 주름 필터.The pleated filter of claim 1, wherein the pleated filter has an asymmetrical structure in which the size of the input terminal through which the treated water is input is larger than the size of the output terminal through which the treated water is output.
  10. 고전압 발생기가 연결된 제1방사노즐, 상기 방사노즐로부터 이격되어 위치되고 접지된 전극봉, 및 상기 전극봉이 삽입되고 외주면에 주름이 형성된 성형관을 포함하는 전기방사장치를 준비하는 단계; 및Preparing an electrospinning device including a first radiation nozzle connected to a high voltage generator, an electrode rod spaced from the radiation nozzle, and grounded, and a molded tube into which the electrode rod is inserted and a corrugation is formed on an outer circumferential surface thereof; And
    고분자 물질과 용매가 혼합된 방사용액을 상기 제1방사노즐을 통하여 성형관에 방사하여, 집적된 나노 섬유로 이루어지고, 내부에 관통홀이 형성되어 있는 통체 형상이고, 상기 관통홀의 측벽과 상기 통체의 외주면에 주름이 형성되어 있는 주름 필터를 형성하는 단계를 포함하는 주름 필터의 제조 방법.A spinning solution in which a polymer material and a solvent are mixed is radiated to a forming tube through the first spinning nozzle, and is made of integrated nanofibers and has a cylindrical shape having a through hole formed therein, and the sidewall of the through hole and the cylinder Method for producing a pleated filter comprising the step of forming a pleated filter is formed on the outer circumferential surface of the.
  11. 제10항에 있어서, 상기 제1방사노즐은 성형관의 길이 방향으로 직선 왕복 이동하면서 나노 섬유를 전기방사하며, 상기 전극봉과 성형관은 제1방사노즐로부터 나노섬유가 전기방사될 때 회전이 이루어지는 주름 필터의 제조방법.The method of claim 10, wherein the first radiation nozzle is electrospinning the nanofibers while linearly reciprocating in the longitudinal direction of the forming tube, the electrode and the forming tube is rotated when the nanofibers are electrospun from the first radiation nozzle Method for producing a pleated filter.
  12. 제10항에 있어서, 상기 전기방사장치는 상기 제1방사노즐과 소정의 각도로 이격 배치되어 있고, 이온 교환 수지 입자가 내포된 비드를 분사하는 제2분사노즐을 더 포함하며, The method of claim 10, wherein the electrospinning device is spaced apart from the first radiation nozzle at a predetermined angle, and further comprises a second spray nozzle for injecting beads containing the ion-exchange resin particles,
    상기 집적된 나노 섬유의 외측에 이온 교환 수지 입자가 분산되어 있는 주름 필터의 제조방법.A method of manufacturing a pleated filter in which ion exchange resin particles are dispersed outside of the integrated nanofibers.
  13. 제10항에 있어서, 상기 집적된 나노 섬유에 의해 만들어진 기공 크기는 0.2um - 1um인 주름 필터의 제조방법.The method of claim 10, wherein the pore size made by the integrated nanofibers is 0.2um-1um.
  14. 제10항에 있어서, 상기 주름 필터는 상기 처리수가 입력되는 입력단의 크기가, 상기 처리수가 출력되는 출력단의 크기보다 큰 비대칭 구조를 갖는 주름 필터의 제조방법.The method of claim 10, wherein the pleated filter has an asymmetrical structure in which the size of the input terminal through which the treated water is input is larger than the size of the output terminal through which the treated water is output.
  15. 제10항에 있어서, 상기 집적된 나노 섬유는, 나노 섬유의 직경이 다른 다수의 나노 섬유층으로 이루어진 주름 필터의 제조방법.The method of claim 10, wherein the integrated nanofibers comprise a plurality of nanofiber layers having different diameters of the nanofibers.
PCT/KR2014/006697 2013-08-06 2014-07-23 Corrugated filter and method for manufacturing same WO2015020328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130093195A KR101601175B1 (en) 2013-08-06 2013-08-06 Wrinkle Filter and Manufacturing Method thereof
KR10-2013-0093195 2013-08-06

Publications (1)

Publication Number Publication Date
WO2015020328A1 true WO2015020328A1 (en) 2015-02-12

Family

ID=52461608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006697 WO2015020328A1 (en) 2013-08-06 2014-07-23 Corrugated filter and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101601175B1 (en)
WO (1) WO2015020328A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112226828A (en) * 2020-09-29 2021-01-15 中国科学院合肥物质科学研究院 Method for preparing oriented nano-fibers by using folded substrate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048901B (en) * 2016-06-12 2018-04-17 东华大学 The compound window screening of three dimensional tortuous nanofiber and its electrospinning process
CN105887333B (en) * 2016-06-12 2017-11-17 东华大学 Three dimensional tortuous nano fibrous membrane and its electrospinning process
KR101994776B1 (en) * 2017-08-22 2019-09-30 주식회사 대창 Fillter including nanofiber, appartus and method manufacturing the same
KR101897517B1 (en) * 2017-11-20 2018-09-12 전북대학교산학협력단 Wrinkled nano fiber met and manufacturing method thereof
KR102533163B1 (en) * 2022-05-03 2023-05-15 최승혁 Water filter and manufacturing device thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990012000U (en) * 1998-12-31 1999-03-25 최중후니 Pleated bag filter and dust collecting structure using same
US6171684B1 (en) * 1995-11-17 2001-01-09 Donaldson Company, Inc. Filter material construction and method
US20060137318A1 (en) * 2004-12-28 2006-06-29 Lim Hyun S Filtration media for filtering particulate material from gas streams
KR100714219B1 (en) * 2006-05-22 2007-05-02 이봉대 Composite fibrous filter using nan0-materials, and manufacturing method and apparatus thereof
KR20130009793A (en) * 2010-02-26 2013-01-23 클라코르 인코포레이션 Fine fiber liquid particulate filter media

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4232131B2 (en) * 1999-04-27 2009-03-04 文男 前川 A process for producing a filtration adsorbent containing a particulate ion exchange resin and a filter, and a method for using the same.
CN102958579A (en) * 2010-06-30 2013-03-06 阿莫绿色技术有限公司 Filter media for a liquid filter using an electrospun nanofiber web, method for manufacturing same, and liquid filter using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171684B1 (en) * 1995-11-17 2001-01-09 Donaldson Company, Inc. Filter material construction and method
KR19990012000U (en) * 1998-12-31 1999-03-25 최중후니 Pleated bag filter and dust collecting structure using same
US20060137318A1 (en) * 2004-12-28 2006-06-29 Lim Hyun S Filtration media for filtering particulate material from gas streams
KR100714219B1 (en) * 2006-05-22 2007-05-02 이봉대 Composite fibrous filter using nan0-materials, and manufacturing method and apparatus thereof
KR20130009793A (en) * 2010-02-26 2013-01-23 클라코르 인코포레이션 Fine fiber liquid particulate filter media

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112226828A (en) * 2020-09-29 2021-01-15 中国科学院合肥物质科学研究院 Method for preparing oriented nano-fibers by using folded substrate
CN112226828B (en) * 2020-09-29 2022-03-15 中国科学院合肥物质科学研究院 Method for preparing oriented nano-fibers by using folded substrate

Also Published As

Publication number Publication date
KR101601175B1 (en) 2016-03-08
KR20150017204A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
WO2015020328A1 (en) Corrugated filter and method for manufacturing same
US10682599B2 (en) Filter medium for liquid filter and method for manufacturing same
US11084266B2 (en) Filter medium, manufacturing method therefor, and filter equipment using same
KR101821049B1 (en) Quasi-aligned 1D Polymer Nanofibers Grid structure Cross-Laminated, Pore distribution and Pore size controlled 3D Polymer Nanofibers Membrane and Manufacturing Method thereof
CN103459006B (en) Composite structure containing nanofiber
WO2016195288A1 (en) Adsorptive membrane
JP5062630B2 (en) Composite fiber body, method for producing the same, filter, and fluid filtration method
US10751662B2 (en) Gas filter
CN111214962B (en) Folded graphene oxide/nanofiber composite membrane and preparation method and application thereof
KR101628899B1 (en) Liquid Treating Chemical Filter Using Sulfonated Nano-Fiber Web and Method of Manufacturing the Same
US20190001247A1 (en) Cartridge filter using nanofiber composite fiber yarn and method for manufacturing same
CN110548417B (en) High polymer material, super-hydrophobic porous membrane, coating, preparation method and application
US10682613B2 (en) Adsorptive liquid filter
KR101628898B1 (en) Liquid Treating Chemical Filter Using Nano-Fiber Web Having Ion Exchange Resin Particle and Method of Manufacturing the Same
KR20120077266A (en) Filtering membrane and preparation method thereof
WO2014126443A1 (en) Filter medium, manufacturing method therefor, and filter equipment using same
KR20140137194A (en) Liquid Chemical Filter Using Nano-Fiber Web by Electrospinning and Method of Manufacturing the Same
WO2021206318A1 (en) Fiber membrane using biodegradable polymer, and manufacturing method therefor
WO2014089458A1 (en) Apparatus and method using an electric field for creating uniform nanofiber patterns on nonconductive materials to enhance filtration and for embedment of fibers into materials for other applications
WO2015020337A1 (en) Filter medium for liquid filter and method for manufacturing same
KR101601174B1 (en) Roll Type Liquid Treating Chemical Filter and Method of Manufacturing the Same
Rosman et al. Electrospun nanofiber-coated membrane: A review
US10188973B2 (en) Apparatus and method using an electric field for creating uniform nanofiber patterns on nonconductive materials to enhance filtration and for embedment of fibers into materials for other applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14833726

Country of ref document: EP

Kind code of ref document: A1