WO2015067474A2 - Electrochemical cell and method for the production thereof - Google Patents

Electrochemical cell and method for the production thereof Download PDF

Info

Publication number
WO2015067474A2
WO2015067474A2 PCT/EP2014/072701 EP2014072701W WO2015067474A2 WO 2015067474 A2 WO2015067474 A2 WO 2015067474A2 EP 2014072701 W EP2014072701 W EP 2014072701W WO 2015067474 A2 WO2015067474 A2 WO 2015067474A2
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
fibers
protective layer
electrochemical cell
ion
Prior art date
Application number
PCT/EP2014/072701
Other languages
German (de)
French (fr)
Other versions
WO2015067474A3 (en
Inventor
Thomas Wöhrle
Felix Eberle
Bernd Schumann
Calin Iulius WURM
Vikram Anil GODBOLE
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201480061234.5A priority Critical patent/CN105765759B/en
Publication of WO2015067474A2 publication Critical patent/WO2015067474A2/en
Publication of WO2015067474A3 publication Critical patent/WO2015067474A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an electrochemical cell and a method for their production and their use according to the preamble of the independent claims.
  • lithium-ion batteries will be used in stationary applications (such as in wind turbines), in mobile applications (such as in hybrid and electric vehicles) and in the consumer sector (for example, in laptops and mobile phones)
  • Battery systems are used whose operating principle is not based on an intercalation of metallic substances in the electrode material, but on the use of metallic anodes such.
  • Lithium anodes wherein as the counter electrode, for example, an oxygen electrode is provided.
  • the operation of this type of battery systems is based on a chemical transformation of the anode material and shows very high energy densities or high specific energies at the cellular level.
  • oxygen electrode when the lithium anode is connected to a discharging process of the battery cell, the reduction of molecular oxygen and the formation of lithium peroxides occur.
  • lithium-air cells thus comprise at least one oxygen-based positive electrode and at least one metallic lithium-based or lithium-silicon alloy negative electrode in which lithium is incorporated into a silicon lattice Processes associated with a crystalline structural change of the electrode.
  • Such Lithium-air cell can be found, for example, in US 5,510,209 A or in the publication by Jake Christensen et al., Journal of The Electrochemical Society, 159 (2) R1-R30 (2012).
  • this type of battery cells for example, also have an anode of a lithium alloy, for example in the form of an indium or aluminum alloy.
  • the abovementioned oxygen cathode may, for example, have a porous structure of carbon or gold with pores in the nanometer range, which may be the substances produced during a discharge of the battery cell, for example
  • a gas distributor flow field
  • a lithium-ion-conducting separator which acts electrically insulating.
  • This separator is designed to be free of pores to prevent gases and liquid media, which could damage metallic lithium, for example, from the anode.
  • Separator material is, inter alia, sintered gas-tight ceramic layers, u. a. for example in the form of grenades.
  • sintered gas-tight ceramic layers u. a. for example in the form of grenades.
  • Such systems can be found, for example, in DE 10 2004 010 892 B3 or DE 10 2007 030 604 A1.
  • a dense, thin-laid ceramic lithium ion conductive layer protects the metallic lithium lithium anode from harmful gases such as nitrogen, carbon dioxide or water vapor, as well as liquid solvents that may be part of an electrolyte in the battery cell. These can be irreversible with metallic lithium of the anode which may undesirably cause lithium dendrites to possibly cause internal short circuits.
  • volume surges of the metallic lithium anode occur and greatly burden the mechanical integrity of the thin ceramic layer.
  • the resulting mechanical stress leads to enormous pressure on the ceramic protective layer, which can lead to embrittlement or mechanical breakage.
  • there may be a replacement of the layered ceramic by unequal pressurization and their lack of elasticity.
  • DE 10 2010 054 610 A1 discloses an electrochemical cell whose negative electrode is coated with a protective layer, which in turn has fibers made of a lithium-ion-conducting material.
  • the present invention relates to an electrochemical cell, a process for their preparation and their use with the characterizing features of the independent claims.
  • an electrochemical cell which has a lithium-containing anode and a cathode, wherein the lithium-containing anode is provided with a protective layer.
  • This protective layer comprises fibers of a non-lithium-ion-conducting material, wherein the fibers are in contact with a lithium-ion-conducting material of the protective layer.
  • the protective layer contains in addition to fibers of a non-lithium-ion conducting material, a lithium-ion conductive material.
  • SiBNC fibers carbon fibers, glass fibers, fibers made of a non-lithium ion-conducting ceramic material or as plastic fibers, for example, made of a polyimide or paramid.
  • the advantage of using these fibers is that they are chemically inert and mechanically stable, and even with the addition of smaller amounts of fibers, there are above-average effects with regard to the mechanical strength and elasticity of the protective layer.
  • the lithium-ion conducting material contained in the protective layer comprises a ceramic garnet having the composition LiLaZr0 2 , a perovskite having the composition Li 0 , 57 La 0 , 3 TiO 3 or a sulfide-based ceramic lithium-ion conductor, in particular based on Lii 0 GeP 2 Si2 contains.
  • the advantage of these lithium-ion conducting materials is that they are long-term stable and chemically inert, so that together with the fibers contained in the protective layer, a significant improvement in the life of the electrochemical cell and a significantly improved cycle stability is achieved.
  • the surface of the lithium-containing anode of the electrochemical cell is first provided with fibers such that a porous matrix is formed. Subsequently, a lithium-ion conducting material is introduced into this porous matrix.
  • the protective layer for the lithium-containing anode of the electrochemical cell is first generated separately. For this purpose, in a first step, a porous matrix of fibers of a non-lithium-ion-conducting material on the surface of
  • Ion-conducting material equipped. This loading can be done for example by sputtering, laser evaporation of the lithium-ion conducting material or by an aerosol coating.
  • the electrochemical cell of the invention can be advantageously in
  • lithium-ion or lithium-air batteries for example in mobile or stationary applications.
  • Figure 1 shows the schematic cross section of an inventive
  • FIG. 1 shows a battery cell 10 according to one embodiment of the
  • the battery cell 10 includes a housing 12 in which the electrochemical components of the battery cells 10 are housed. These include in particular a preferably lithium-containing battery cells 10 are housed. These include in particular a preferably lithium-containing battery cells 10 are housed. These include in particular a preferably lithium-containing battery cells 10 are housed. These include in particular a preferably lithium-containing battery cells 10 are housed. These include in particular a preferably lithium-containing battery cells 10 are housed. These include in particular a preferably lithium-containing
  • Anode 14 and a cathode 16 If the battery cell 10, for example, designed as a lithium-air cell, then the anode 14 comprises metallic lithium, for example in the form of elemental lithium or in the form of a lithium alloy.
  • the cathode 16 may in this case, for example, as air or
  • Oxygen electrode performs his.
  • the anode 14 for example, a protective layer 18 on.
  • the anode 14 is preferably covered with the protective layer 18 substantially over its full area, at least on its large area facing the cathode 16.
  • the protective layer 18 comprises fibers 20 which increase the mechanical stability of the protective layer 18 with respect to its elasticity and mechanical properties
  • fibers 20 preferably fibers of a non-lithium-ion conducting material are provided, such as SiBNC fibers or fibers of another, non-lithium-ion-conducting ceramic material.
  • carbon fibers are also suitable as well as plastic fibers, for example of polyimide or an aramid.
  • the fibers 20 preferably form a porous matrix within the protective layer 18;
  • the fibers 20 can be present, for example, in woven form or else in a three-dimensionally disordered form.
  • at least one lithium-ion conductive material 22 is introduced, which influences the overall conductivity of the protective layer 18 with regard to the conduction of lithium ions. So the conductivity is the
  • Protective layer for lithium ions preferably at least 10 "6 S / cm.
  • the layer thickness of the protective layer 18 is, for example, 0.1 to 1000 ⁇ .
  • the protective layer 18 itself comprises fibers with a total weight fraction of 0.1 to 50 percent by weight based on the total weight of the protective layer 18.
  • Protective layer 18 is introduced from fibers 20, ceramic lithium-ion conductors such as corresponding perovskites, for example Li 0) 57 La 0 , 3 are suitable Ti0 3 and ceramic lithium-ion conductors of the sulfide class such as.
  • LiioGeP 2 Si 2 LiioGeP 2 Si 2 .
  • a ceramic garnet of the composition LiLaZr0 2 is suitable as a ceramic lithium-ion conductor, for example.
  • the lithium-ion conductive material 22 ensures sufficient conductivity of the protective layer 18 for lithium ions.
  • the lithium-ion conductive material 22 can be introduced, for example, by sputtering, or by an aerosol coating into the porous matrix of the fibers 20.
  • the porous matrix of fibers 20 on the surface of the anode 14 can first be produced in a first step.
  • the generated porous matrix of fibers 20 is equipped with the lithium-ion-conducting material 22.
  • porous matrix of fibers 20 it is also possible first separately to produce the porous matrix of fibers 20, to equip them with the lithium-ion conducting material 22 and to apply this pre-fabricated protective layer 18 in a final step on a large area of the anode 14.
  • the electrochemical cell 10 may additionally include a non-illustrated
  • the protective layer 18 additionally assumes the function of a separator within the electrochemical cell 10.
  • the electrochemical cell A is a
  • the electrochemical cell B is an electrochemical cell with a protective layer according to the prior art, as listed, for example, in US Pat. No. 6,402,795 or US Pat. No. 6,723,140.
  • the electrochemical cell C is an electrochemical cell 10 according to the invention containing a protective layer 18 in contact with its anode 14.
  • the number of cycles is here the number of cycles comprising a charge and a discharge process, which can be completed until the electrochemical cell has only a residual electrical capacity of 80% of the nominal capacity. It is a C / 20 cyclization, i. H. one cycle of discharge lasts 20 hours, with the discharge current selected accordingly.
  • the electrochemical cell according to the invention can be advantageously, for example, as a battery cell in mobile applications such as e-bikes, in electric vehicles or in hybrid vehicles and in stationary applications, for example, energy storage for regenerative
  • the above-described electrochemical cell is not limited to the embodiment as a lithium-air cell but may, for example, be designed as a lithium-ion cell of today's generation.

Abstract

Described is an electrochemical cell (10) comprising a lithium-containing anode (14) and a cathode (16). The lithium-containing anode (14) has a protective layer (18) comprising fibers (20) which are made of a material not conducting lithium ions and which are in contact with a material (22) of the protective layer (18) that conducts lithium ions.

Description

Beschreibung Titel  Description title
Elektrochemische Zelle und Verfahren zu deren Herstellung  Electrochemical cell and process for its preparation
Die Erfindung bezieht sich auf eine elektrochemische Zelle und ein Verfahren zu deren Herstellung sowie deren Verwendung gemäß dem Oberbegriff der unabhängigen Patentansprüche. The invention relates to an electrochemical cell and a method for their production and their use according to the preamble of the independent claims.
Stand der Technik State of the art
Zukünftig werden sowohl bei stationären Anwendungen (beispielsweise bei Windkraftanlagen), in mobilen Anwendungen (wie beispielsweise in Hybrid- und Elektrofahrzeugen) als auch im Consumer- Bereich (beispielsweise in Laptops und Mobiltelefonen) neben sogenannten Lithium- Ionen- Batterien auch In the future, not only so-called lithium-ion batteries will be used in stationary applications (such as in wind turbines), in mobile applications (such as in hybrid and electric vehicles) and in the consumer sector (for example, in laptops and mobile phones)
Batteriesysteme zum Einsatz kommen, deren Wirkprinzip nicht auf einer Interkalation von metallischen Substanzen im Elektrodenmaterial beruht, sondern auf der Verwendung metallischer Anoden wie z.B. Lithium-Anoden, wobei als Gegenelektrode beispielsweise eine Sauerstoffelektrode vorgesehen ist. Die Funktionsweise dieser Art von Batteriesystemen beruht auf einer chemischen Umwandlung des Anodenmaterials und zeigt sehr hohe Energiedichten bzw. hohe spezifische Energien auf Zellebene. In Bezug auf die bereits erwähnte Sauerstoffelektrode kommt es bei Zusammenschaltung mit einer Lithium-Anode bei einem Entladevorgang der Batteriezelle zur Reduktion von molekularem Sauerstoff und zur Bildung von Lithium-Peroxiden. Battery systems are used whose operating principle is not based on an intercalation of metallic substances in the electrode material, but on the use of metallic anodes such. Lithium anodes, wherein as the counter electrode, for example, an oxygen electrode is provided. The operation of this type of battery systems is based on a chemical transformation of the anode material and shows very high energy densities or high specific energies at the cellular level. With regard to the above-mentioned oxygen electrode, when the lithium anode is connected to a discharging process of the battery cell, the reduction of molecular oxygen and the formation of lithium peroxides occur.
Diese sogenannten Lithium-Luft-Zellen umfassen somit mindestens eine positive Elektrode auf Sauerstoffbasis und mindestens eine negative Elektrode auf Basis von metallischem Lithium oder einer Lithium-Silizium-Legierung, bei der Lithium in einen Silizium-Gitter ein- bzw. ausgelagert wird, wobei diese Vorgänge mit einer kristallinen Strukturveränderung der Elektrode einhergehen. Eine derartige Lithium-Luft-Zelle ist beispielsweise der US 5,510,209 A bzw. der Publikation von Jake Christensen et al., Journal of The Electrochemical Society, 159 (2) R1-R30 (2012) zu entnehmen. These so-called lithium-air cells thus comprise at least one oxygen-based positive electrode and at least one metallic lithium-based or lithium-silicon alloy negative electrode in which lithium is incorporated into a silicon lattice Processes associated with a crystalline structural change of the electrode. Such Lithium-air cell can be found, for example, in US 5,510,209 A or in the publication by Jake Christensen et al., Journal of The Electrochemical Society, 159 (2) R1-R30 (2012).
Darüber hinaus kann diese Art von Batteriezellen beispielsweise auch eine Anode aus einer Lithium-Legierung, beispielsweise in Form einer Indium- oder Aluminium-Legierung aufweisen. In addition, this type of battery cells, for example, also have an anode of a lithium alloy, for example in the form of an indium or aluminum alloy.
Die bereits erwähnte Sauerstoffkathode kann beispielsweise eine poröse Struktur aus Kohlenstoff oder Gold mit Poren im Nanometerbereich aufweisen, die die bei einer Entladung der Batteriezelle entstehenden Stoffe wie beispielsweise The abovementioned oxygen cathode may, for example, have a porous structure of carbon or gold with pores in the nanometer range, which may be the substances produced during a discharge of the battery cell, for example
Lithiumperoxid aufnimmt. Weiterhin umfasst diese Art von Batteriezellen einen Gasverteiler (Flow-Field), der geometrisch mit Kanälen oder Bohrungen ausgebildet ist und der die für die elektrochemische Reaktion nötigen Gase oder dabei entstehende Gase zu- bzw. abführt. Lithium peroxide absorbs. Furthermore, this type of battery cell comprises a gas distributor (flow field), which is geometrically formed with channels or bores and which supplies or removes the gases or gases which are required for the electrochemical reaction.
Zwischen den Elektroden derartiger Batteriezellen ist ein Lithium-Ionen leitender Separator vorgesehen, der elektrisch isolierend wirkt. Dieser Separator ist porenfrei ausgeführt, um Gase und flüssige Medien, die beispielsweise metallisches Lithium schädigen könnten, von der Anode abzuhalten. Als Between the electrodes of such battery cells, a lithium-ion-conducting separator is provided, which acts electrically insulating. This separator is designed to be free of pores to prevent gases and liquid media, which could damage metallic lithium, for example, from the anode. When
Separatormaterial bieten sich unter anderem gesinterte gasdichte keramische Schichten an, u. a. beispielsweise in Form von Granaten. Derartige Systeme sind beispielsweise der DE 10 2004 010 892 B3 oder der DE 10 2007 030 604 AI zu entnehmen. Separator material is, inter alia, sintered gas-tight ceramic layers, u. a. for example in the form of grenades. Such systems can be found, for example, in DE 10 2004 010 892 B3 or DE 10 2007 030 604 A1.
Weiterhin sind Lithium-Luft-Zellen mit kleiner Stromdichte, die ein wenig reversibles Ladungsverhalten zeigen, mit einer ionenleitenden Separator- Membran auf keramischer Basis bekannt. Beispiele hierfür sind der US Furthermore, lithium-air cells with a low current density, which show a little reversible charge behavior, with an ion-conducting separator ceramic-based membrane known. Examples are the US
6,402,795 und der US 5,723,140 zu entnehmen. In diesen Fällen schützt eine dichte, dünn ausgelegte keramische Lithium-Ionen leitende Schicht die metallisches Lithium aufweisende Lithium-Anode vor schädlichen Gasen wie beispielsweise Stickstoff, Kohlendioxid oder Wasserdampf, sowie auch vor flüssigen Lösungsmitteln, die Bestandteil eines Elektrolyten in der Batteriezelle sein können. Diese können irreversibel mit metallischem Lithium der Anode reagieren, wodurch unerwünschterweise Lithium-Dendriten entstehen können, die möglicherweise innere Kurzschlüsse verursachen. No. 6,402,795 and US Pat. No. 5,723,140. In these cases, a dense, thin-laid ceramic lithium ion conductive layer protects the metallic lithium lithium anode from harmful gases such as nitrogen, carbon dioxide or water vapor, as well as liquid solvents that may be part of an electrolyte in the battery cell. These can be irreversible with metallic lithium of the anode which may undesirably cause lithium dendrites to possibly cause internal short circuits.
Diese dünnen, keramischen, Lithium-Ionen leitenden Schutzschichten sind dabei nur wenige Mikrometer dick. These thin, ceramic, lithium-ion-conducting protective layers are only a few micrometers thick.
Während eines Lade- bzw. eines Entladungsvorgangs einer entsprechenden Lithium-Luft-Zelle treten Volumenschübe der metallischen Lithium-Anode auf und belasten die mechanische Integrität der dünnen Keramikschicht stark. Der dabei auftretende mechanische Stress führt zu enormem Druck auf die keramische Schutzschicht, was zu einer Versprödung oder einem mechanischen Bruch führen kann. Weiterhin kann es zu einer Ablösung der Schichtkeramik durch eine ungleiche Druckbeaufschlagung und deren fehlende Elastizität kommen. During a charging or discharging operation of a corresponding lithium-air cell, volume surges of the metallic lithium anode occur and greatly burden the mechanical integrity of the thin ceramic layer. The resulting mechanical stress leads to enormous pressure on the ceramic protective layer, which can lead to embrittlement or mechanical breakage. Furthermore, there may be a replacement of the layered ceramic by unequal pressurization and their lack of elasticity.
Weiterhin ist aus der DE 10 2010 054 610 AI eine elektrochemische Zelle bekannt, deren negative Elektrode mit einer Schutzschicht beschichtet ist, die ihrerseits Fasern aus einem Lithium-Ionen leitenden Material aufweist. Furthermore, DE 10 2010 054 610 A1 discloses an electrochemical cell whose negative electrode is coated with a protective layer, which in turn has fibers made of a lithium-ion-conducting material.
Offenbarung der Erfindung Disclosure of the invention
Demgegenüber bezieht sich die vorliegende Erfindung auf eine elektrochemische Zelle, auf ein Verfahren zu deren Herstellung und deren Verwendung mit den kennzeichnenden Merkmalen der unabhängigen Patentansprüche. In contrast, the present invention relates to an electrochemical cell, a process for their preparation and their use with the characterizing features of the independent claims.
Vorteile der Erfindung Advantages of the invention
Erfindungsgemäß ist eine elektrochemische Zelle vorgesehen, die eine lithiumhaltige Anode sowie eine Kathode aufweist, wobei die lithiumhaltige Anode mit einer Schutzschicht versehen ist. Diese Schutzschicht weist Fasern aus einem nicht Lithium- Ionen leitenden Material auf, wobei die Fasern in Kontakt mit einem Lithium-Ionen leitenden Material der Schutzschicht stehen. Der Vorteil dieser Vorgehensweise besteht darin, dass die die lithiumhaltige Anode bedeckende keramische Schutzschicht einerseits mechanisch stabiler und andererseits auch flexibler ausgeführt werden kann. According to the invention, an electrochemical cell is provided, which has a lithium-containing anode and a cathode, wherein the lithium-containing anode is provided with a protective layer. This protective layer comprises fibers of a non-lithium-ion-conducting material, wherein the fibers are in contact with a lithium-ion-conducting material of the protective layer. The advantage of this approach is that the lithium-containing anode covering ceramic protective layer on the one hand mechanically stable and on the other hand can be made more flexible.
Um gleichzeitig eine ausreichende Leitfähigkeit von Lithium-Ionen zu At the same time sufficient conductivity of lithium ions to
gewährleisten, enthält die Schutzschicht zusätzlich neben Fasern aus einem nicht Lithium-Ionen leitenden Material ein Lithium-Ionen leitendes Material. ensure the protective layer contains in addition to fibers of a non-lithium-ion conducting material, a lithium-ion conductive material.
Weitere vorteilhafte Ausführungsformen der vorliegenden Erfindung sind Further advantageous embodiments of the present invention are
Gegenstand der Unteransprüche. Subject of the dependent claims.
So sind vorteilhafter Weise in der Schutzschicht enthaltene Fasern So are advantageously contained in the protective layer fibers
beispielsweise als SiBNC- Fasern, Carbonfasern, Glasfasern, Fasern aus einem nicht Lithium- Ionen leitenden keramischen Material oder als Kunststofffasern beispielsweise aus einem Polyimid oder Paramid ausgeführt. Der Vorteil in der Verwendung diese Fasern besteht darin, dass diese chemisch inert sowie mechanisch stabil sind und es bereits bei Zusatz kleinerer Mengen an Fasern zu überdurchschnittlichen Effekten hinsichtlich der mechanischen Festigkeit und Elastizität der Schutzschicht kommt. For example, as SiBNC fibers, carbon fibers, glass fibers, fibers made of a non-lithium ion-conducting ceramic material or as plastic fibers, for example, made of a polyimide or paramid. The advantage of using these fibers is that they are chemically inert and mechanically stable, and even with the addition of smaller amounts of fibers, there are above-average effects with regard to the mechanical strength and elasticity of the protective layer.
Weiterhin ist von Vorteil, wenn das in der Schutzschicht enthaltene Lithium-Ionen leitende Material ein keramisches Granat der Zusammensetzung LiLaZr02, einen Perowskit der Zusammensetzung Li0,57 La0,3 TiO3 oder einen keramischen Lithium-Ionen-Leiter auf Sulfidbasis, insbesondere auf Basis von Lii0GeP2Si2 enthält. Der Vorteil dieser genannten Lithium-Ionen leitenden Materialien besteht darin, dass diese langzeitstabil und chemisch inert sind, sodass zusammen mit den in der Schutzschicht enthaltenden Fasern eine deutliche Verbesserung der Lebensdauer der elektrochemischen Zelle sowie eine deutlich verbesserte Zyklenfestigkeit erreicht wird. It is furthermore advantageous if the lithium-ion conducting material contained in the protective layer comprises a ceramic garnet having the composition LiLaZr0 2 , a perovskite having the composition Li 0 , 57 La 0 , 3 TiO 3 or a sulfide-based ceramic lithium-ion conductor, in particular based on Lii 0 GeP 2 Si2 contains. The advantage of these lithium-ion conducting materials is that they are long-term stable and chemically inert, so that together with the fibers contained in the protective layer, a significant improvement in the life of the electrochemical cell and a significantly improved cycle stability is achieved.
Gemäß einer besonders vorteilhaften Ausführungsform der vorliegenden Erfindung wird bei der Herstellung der elektrochemischen Zelle zunächst die Oberfläche der lithiumhaltigen Anode der elektrochemischen Zelle mit Fasern derart versehen, dass sich eine poröse Matrix bildet. Nachfolgend wird in diese poröse Matrix ein Lithium- Ionen leitendes Material eingebracht. Gemäß einer weiteren besonders vorteilhaften Ausführungsform wird zunächst die Schutzschicht für die lithiumhaltigen Anode der elektrochemischen Zelle separat erzeugt. Dazu wird in einem ersten Schritt eine poröse Matrix aus Fasern eines nicht Lithium-Ionen leitenden Materials auf der Oberfläche der According to a particularly advantageous embodiment of the present invention, in the manufacture of the electrochemical cell, the surface of the lithium-containing anode of the electrochemical cell is first provided with fibers such that a porous matrix is formed. Subsequently, a lithium-ion conducting material is introduced into this porous matrix. According to a further particularly advantageous embodiment, the protective layer for the lithium-containing anode of the electrochemical cell is first generated separately. For this purpose, in a first step, a porous matrix of fibers of a non-lithium-ion-conducting material on the surface of
lithiumhaltigen Anode gebildet und diese Matrix nachfolgend mit einem Lithium-formed lithium-containing anode and this matrix subsequently with a lithium
Ionen leitenden Material bestückt. Dieses Bestücken kann beispielsweise durch Sputtern, Laserverdampfen des Lithium-Ionen leitenden Materials oder durch eine Aerosolbeschichtung erfolgen. Die erfindungsgemäße elektrochemische Zelle lässt sich in vorteilhafter Weise inIon-conducting material equipped. This loading can be done for example by sputtering, laser evaporation of the lithium-ion conducting material or by an aerosol coating. The electrochemical cell of the invention can be advantageously in
Lithium-Ionen- oder Lithium- Luft- Batterien verwenden, beispielsweise in mobilen oder stationären Anwendungen. Use lithium-ion or lithium-air batteries, for example in mobile or stationary applications.
Kurze Beschreibung der Figuren Brief description of the figures
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in nachfolgenden Beschreibung näher erläutert. Es zeigt: Embodiments of the invention are illustrated in the drawings and explained in more detail in the following description. It shows:
Figur 1 den schematischen Querschnitt einer erfindungsgemäßen Figure 1 shows the schematic cross section of an inventive
elektrochemischen Zelle gemäß einer Ausführungsform der vorliegenden Erfindung.  electrochemical cell according to an embodiment of the present invention.
Detaillierte Beschreibung der Ausführungsbeispiele Detailed description of the embodiments
In Figur 1 ist eine Batteriezelle 10 gemäß einer Ausführungsform der 1 shows a battery cell 10 according to one embodiment of the
vorliegenden Erfindung schematisch dargestellt. Die Batteriezelle 10 umfasst ein Gehäuse 12, in dem die elektrochemischen Komponenten der Batteriezellen 10 untergebracht sind. Dazu gehören insbesondere eine vorzugsweise lithiumhaltigepresent invention schematically illustrated. The battery cell 10 includes a housing 12 in which the electrochemical components of the battery cells 10 are housed. These include in particular a preferably lithium-containing
Anode 14 und eine Kathode 16. Ist die Batteriezelle 10 beispielsweise als Lithium-Luft-Zelle ausgeführt, so umfasst die Anode 14 metallisches Lithium, beispielsweise in Form von elementarem Lithium oder in Form einer Lithium- Legierung. Die Kathode 16 kann in diesem Fall beispielsweise als Luft- oder Anode 14 and a cathode 16. If the battery cell 10, for example, designed as a lithium-air cell, then the anode 14 comprises metallic lithium, for example in the form of elemental lithium or in the form of a lithium alloy. The cathode 16 may in this case, for example, as air or
Sauerstoffelektrode ausführt sein. Oxygen electrode performs his.
Um die Anode 14 beispielsweise vor dem Zutritt mit elementarem Lithium reagierender Umgebungsbestandteile wie insbesondere Wasserdampf oderTo the anode 14, for example, prior to access with elemental lithium-reacting environmental constituents such as water vapor or
Sauerstoff zu schützen, weist die Anode 14 bspw. eine Schutzschicht 18 auf. Vorzugsweise ist die Anode 14 dabei im Wesentlichen vollflächig zumindest auf ihrer der Kathode 16 zugewandten Großfläche mit der Schutzschicht 18 bedeckt. To protect oxygen, the anode 14, for example, a protective layer 18 on. In this case, the anode 14 is preferably covered with the protective layer 18 substantially over its full area, at least on its large area facing the cathode 16.
Die Schutzschicht 18 umfasst Fasern 20, die die mechanische Stabilität der Schutzschicht 18 hinsichtlich deren Elastizität und mechanischer The protective layer 18 comprises fibers 20 which increase the mechanical stability of the protective layer 18 with respect to its elasticity and mechanical properties
Widerstandsfähigkeit wesentlich beeinflussen. Als Fasern 20 sind vorzugsweise Fasern aus einem nicht Lithium-Ionen leitendes Material vorgesehen, wie beispielsweise SiBNC- Fasern oder Fasern aus einem anderen, nicht Lithium- Ionen leitenden keramischen Material. Darüber hinaus sind auch Carbonfasern geeignet sowie Kunststofffasern, beispielsweise aus Polyimid oder einem Aramid. Significantly affect resilience. As fibers 20 preferably fibers of a non-lithium-ion conducting material are provided, such as SiBNC fibers or fibers of another, non-lithium-ion-conducting ceramic material. In addition, carbon fibers are also suitable as well as plastic fibers, for example of polyimide or an aramid.
Die Fasern 20 bilden innerhalb der Schutzschicht 18 vorzugsweise eine poröse Matrix; dazu können die Fasern 20 beispielsweise in gewobener Form vorliegen oder auch in einer dreidimensional-ungeordneten Form. In der durch die Fasern 20 gebildeten porösen Matrix ist mindestens ein Lithium- Ionen leitendes Material 22 eingebracht, das die Gesamtleitfähigkeit der Schutzschicht 18 hinsichtlich der Leitung von Lithium- Ionen beeinflusst. So beträgt die Leitfähigkeit der The fibers 20 preferably form a porous matrix within the protective layer 18; For this purpose, the fibers 20 can be present, for example, in woven form or else in a three-dimensionally disordered form. In the porous matrix formed by the fibers 20, at least one lithium-ion conductive material 22 is introduced, which influences the overall conductivity of the protective layer 18 with regard to the conduction of lithium ions. So the conductivity is the
Schutzschicht für Lithium-Ionen vorzugsweise mindestens 10"6S/cm. Protective layer for lithium ions preferably at least 10 "6 S / cm.
Die Schichtdicke der Schutzschicht 18 beträgt beispielsweise 0,1 bis 1000 μηη. Die Schutzschicht 18 selbst umfasst Fasern mit einem Gesamtgewichtsanteil von 0,1 bis 50 Gewichtsprozent bezogen auf das Gesamtgewicht der Schutzschicht 18. The layer thickness of the protective layer 18 is, for example, 0.1 to 1000 μηη. The protective layer 18 itself comprises fibers with a total weight fraction of 0.1 to 50 percent by weight based on the total weight of the protective layer 18.
Als Lithium-Ionen leitendes Material 22, das in die poröse Matrix der As a lithium-ion conductive material 22, in the porous matrix of the
Schutzschicht 18 aus Fasern 20 eingebracht wird, eignen sich keramische Lithium-Ionen Leiter wie entsprechende Perowskite, beispielsweise Li0)57 La0,3 Ti03 sowie keramische Lithium-Ionen-Leiter der Sulfidklasse wie bspw. Protective layer 18 is introduced from fibers 20, ceramic lithium-ion conductors such as corresponding perovskites, for example Li 0) 57 La 0 , 3 are suitable Ti0 3 and ceramic lithium-ion conductors of the sulfide class such as.
LiioGeP2Si2. LiioGeP 2 Si 2 .
Weiterhin eignet sich als keramische Lithium-Ionen-Leiter beispielsweise ein keramisches Granat der Zusammensetzung LiLaZr02. Furthermore, a ceramic garnet of the composition LiLaZr0 2 is suitable as a ceramic lithium-ion conductor, for example.
Das Lithium-Ionen leitende Material 22 stellt eine ausreichende Leitfähigkeit der Schutzschicht 18 für Lithium-Ionen sicher. Das Lithium-Ionen leitende Material 22 kann beispielsweise durch Sputtern, oder durch eine Aerosolbeschichtung in die poröse Matrix der Fasern 20 eingebracht werden. The lithium-ion conductive material 22 ensures sufficient conductivity of the protective layer 18 for lithium ions. The lithium-ion conductive material 22 can be introduced, for example, by sputtering, or by an aerosol coating into the porous matrix of the fibers 20.
Zur Erzeugung der Schutzschicht 18 kann zunächst in einem ersten Schritt die poröse Matrix aus Fasern 20 auf der Oberfläche der Anode 14 erzeugt werden. In einem zweiten Schritt wird die erzeugte poröse Matrix aus Fasern 20 mit dem Lithium-Ionen leitenden Material 22 bestückt. To produce the protective layer 18, the porous matrix of fibers 20 on the surface of the anode 14 can first be produced in a first step. In a second step, the generated porous matrix of fibers 20 is equipped with the lithium-ion-conducting material 22.
Alternativ dazu besteht auch die Möglichkeit, zunächst separat die poröse Matrix aus Fasern 20 zu erzeugen, diese mit dem Lithium-Ionen leitenden Material 22 zu bestücken und diese so vorkonfektionierte Schutzschicht 18 in einem abschließenden Schritt auf eine Großfläche der Anode 14 aufzubringen. Alternatively, it is also possible first separately to produce the porous matrix of fibers 20, to equip them with the lithium-ion conducting material 22 and to apply this pre-fabricated protective layer 18 in a final step on a large area of the anode 14.
Die Elektrochemische Zelle 10 kann zusätzlich einen nicht dargestellten The electrochemical cell 10 may additionally include a non-illustrated
Separator umfassen, der zwischen der Anode 14 und der Kathode 16 positioniert ist; aufgrund der Existenz der Schutzschicht 18 auf einer Großfläche der Anode 14 kann jedoch auch auf einen solchen Separator verzichtet werden. In diesem Fall übernimmt die Schutzschicht 18 zusätzlich die Funktion eines Separators innerhalb der elektrochemischen Zelle 10. Separator positioned between the anode 14 and the cathode 16; However, due to the existence of the protective layer 18 on a large area of the anode 14, it is also possible to dispense with such a separator. In this case, the protective layer 18 additionally assumes the function of a separator within the electrochemical cell 10.
In der nachfolgend aufgeführten Tabelle 1 sind Messergebnisse hinsichtlich der Langzeitbeständigkeit von elektrochemischen Zellen aufgeführt. Table 1 below lists measurement results for the long-term stability of electrochemical cells.
Dabei handelt es sich bei der elektrochemischen Zelle A um eine In this case, the electrochemical cell A is a
elektrochemische Zelle ohne jede Schutzschicht im Bereich der Anode der elektrochemischen Zelle. Bei der elektrochemischen Zelle B handelt es sich um eine elektrochemische Zelle mit einer Schutzschicht gemäß Stand der Technik wie sie beispielsweise in der US 6,402,795 oder der US 6,723,140 aufgeführt ist. Bei der elektrochemischen Zelle C handelt es sich um eine erfindungsgemäße elektrochemische Zelle 10 enthaltend eine Schutzschicht 18 in Kontakt mit deren Anode 14. electrochemical cell without any protective layer around the anode of the electrochemical cell. The electrochemical cell B is an electrochemical cell with a protective layer according to the prior art, as listed, for example, in US Pat. No. 6,402,795 or US Pat. No. 6,723,140. The electrochemical cell C is an electrochemical cell 10 according to the invention containing a protective layer 18 in contact with its anode 14.
Als Anzahl der Zyklen wird hier die Anzahl der Zyklen umfassend einen Lade- und eine Entladevorgang bezeichnet, die vollzogen werden können bis die elektrochemische Zelle lediglich eine elektrische Restkapazität von 80%der Nominalkapazität aufweist. Es handelt sich um eine C/20 Zyklisierung, d. h. ein Entladevorgang des Zyklus dauert 20 Stunden, wobei der Entladestrom entsprechend gewählt wird. The number of cycles is here the number of cycles comprising a charge and a discharge process, which can be completed until the electrochemical cell has only a residual electrical capacity of 80% of the nominal capacity. It is a C / 20 cyclization, i. H. one cycle of discharge lasts 20 hours, with the discharge current selected accordingly.
Figure imgf000010_0001
Figure imgf000010_0001
Die erfindungsgemäße elektrochemische Zelle lässt sich in vorteilhafter Weise bspw. als Batteriezelle in mobilen Anwendungen wie beispielsweise in E-Bikes, in Elektrofahrzeugen oder in Hybridfahrzeugen sowie auch in stationären Anwendungen beispielsweise für Energiespeicher für regenerative The electrochemical cell according to the invention can be advantageously, for example, as a battery cell in mobile applications such as e-bikes, in electric vehicles or in hybrid vehicles and in stationary applications, for example, energy storage for regenerative
Stromerzeugungsanlagen als auch in Consumer-Produkten wie beispielsweise Laptops einsetzen. Die vorbeschriebene elektrochemische Zelle ist nicht auf die Ausführungsform als Lithium-Luft-Zelle beschränkt sondern kann bspw. auch als Lithium-Ionen- Zelle heutiger Generation ausgeführt sein. Use power generation plants as well as in consumer products such as laptops. The above-described electrochemical cell is not limited to the embodiment as a lithium-air cell but may, for example, be designed as a lithium-ion cell of today's generation.

Claims

Ansprüche claims
1. Elektrochemische Zelle mit einer lithiumhaltigen Anode (14) und einer 1. Electrochemical cell with a lithium-containing anode (14) and a
Kathode (16), wobei die lithiumhaltige Anode (14) eine Schutzschicht (18) aufweist, dadurch gekennzeichnet, dass die Schutzschicht (18) Fasern (20) aus einem nicht Lithium-Ionen leitenden Material umfasst, die in Kontakt mit einem Lithium-Ionen leitenden Material (22) der Schutzschicht (18) stehen.  Cathode (16), wherein the lithium-containing anode (14) comprises a protective layer (18), characterized in that the protective layer (18) comprises fibers (20) of a non-lithium-ion conducting material which is in contact with a lithium ion conductive material (22) of the protective layer (18) are.
2. Elektrochemische Zelle nach Anspruch 1, dadurch gekennzeichnet, dass die Fasern (20) SiBNC-Fasern, Carbonfasern, Glasfasern, Fasern aus einer nicht Lithium-Ionen leitenden Keramik oder Kunststofffasern, insbesondere aus Polyimid oder Aramid, sind. 2. An electrochemical cell according to claim 1, characterized in that the fibers (20) SiBNC fibers, carbon fibers, glass fibers, fibers of a non-lithium ion conducting ceramic or plastic fibers, in particular of polyimide or aramid, are.
3. Elektrochemische Zelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schutzschicht (18) 0,1 bis 50 Gewichtsprozent an Fasern (20) enthält. 3. Electrochemical cell according to one of the preceding claims, characterized in that the protective layer (18) contains 0.1 to 50 weight percent of fibers (20).
4. Elektrochemische Zelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schutzschicht (18) als Lithium- Ionen leitendes Material (22) einen keramischen Granat mit der Zusammensetzung LiLaZr02, einen Perowskit der Zusammensetzung Li0,57 La0,3 Ti03 oder einen 4. An electrochemical cell according to any one of the preceding claims, characterized in that the protective layer (18) as lithium-ion conducting material (22) a ceramic garnet with the composition LiLaZr0 2 , a perovskite composition Li 0 , 57 La 0 , 3 Ti0 3 or one
keramischen Lithium-Ionen-Leiter auf Sulfidbasis, insbesondere Lii0GeP2Si2, enthält. ceramic sulfide-based lithium-ion conductor, in particular Lii 0 GeP 2 Si 2 contains.
5. Elektrochemische Zelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Lithium-Ionen leitende Material der Schutzschicht (18) eine elektrische Leitfähigkeit von mehr als 10"6S/cm aufweist. 5. Electrochemical cell according to one of the preceding claims, characterized in that the lithium-ion conducting material of the protective layer (18) has an electrical conductivity of more than 10 "6 S / cm.
6. Elektrochemische Zelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anode (14) metallisches Lithium oder eine 6. An electrochemical cell according to any one of the preceding claims, characterized in that the anode (14) metallic lithium or a
Lithiumlegierung enthält.  Contains lithium alloy.
7. Verfahren zur Herstellung einer elektrochemischen Zelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Ausbildung einer Schutzschicht (18) einer lithiumhaltigen Anode (14) der 7. A method for producing an electrochemical cell according to any one of the preceding claims, characterized in that for forming a protective layer (18) of a lithium-containing anode (14) of
elektrochemischen Zelle (10) Fasern (20) eines nicht Lithium-Ionen leitenden Materials bereit gestellt werden und diese in Kontakt mit einem Lithium-Ionen leitenden Material (22) gebracht werden.  electrochemical cell (10) are provided fibers (20) of a non-lithium-ion conductive material and these are brought into contact with a lithium-ion conducting material (22).
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass zunächst Fasern (20) eines nicht Lithium-Ionen leitenden Material auf eine Oberfläche der lithiumhaltigen Anode (14) der elektrochemischen Zelle (10) aufgebracht werden und in einem zweiten Schritt zur Ausbildung der Schutzschicht (18) die Fasern (20) eines nicht Lithium-Ionen leitenden Materials mit einem Lithium-Ionen leitenden Material (22) versehen werden. 8. The method according to claim 7, characterized in that first fibers (20) of a non-lithium-ion conducting material are applied to a surface of the lithium-containing anode (14) of the electrochemical cell (10) and in a second step for forming the protective layer ( 18) the fibers (20) of a non-lithium-ion-conducting material are provided with a lithium-ion-conducting material (22).
9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass zunächst aus Fasern (20) eines nicht Lithium-Ionen leitenden Materials eine poröse Matrix ausgebildet wird, nachfolgend diese poröse Matrix mit einem Lithium-Ionen leitenden Material (22) bestückt wird und abschließend die so erzeugte Schutzschicht (18) auf die Oberfläche der Anode (14) aufgebracht wird. 9. The method according to claim 7, characterized in that first of fibers (20) of a non-lithium-ion conducting material, a porous matrix is formed, subsequently this porous matrix with a lithium-ion conducting material (22) is fitted and finally the so generated protective layer (18) is applied to the surface of the anode (14).
10. Verwendung einer elektrochemischen Zelle nach einem der Ansprüche 1 bis 6 in Lithium-Ionen- oder Lithium-Luft-Zellen. 10. Use of an electrochemical cell according to any one of claims 1 to 6 in lithium-ion or lithium-air cells.
PCT/EP2014/072701 2013-11-08 2014-10-23 Electrochemical cell and method for the production thereof WO2015067474A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480061234.5A CN105765759B (en) 2013-11-08 2014-10-23 Electrochemical cell and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013222784.1 2013-11-08
DE201310222784 DE102013222784A1 (en) 2013-11-08 2013-11-08 Electrochemical cell and process for its preparation

Publications (2)

Publication Number Publication Date
WO2015067474A2 true WO2015067474A2 (en) 2015-05-14
WO2015067474A3 WO2015067474A3 (en) 2015-07-02

Family

ID=51799080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/072701 WO2015067474A2 (en) 2013-11-08 2014-10-23 Electrochemical cell and method for the production thereof

Country Status (3)

Country Link
CN (1) CN105765759B (en)
DE (1) DE102013222784A1 (en)
WO (1) WO2015067474A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101926917B1 (en) 2016-08-17 2018-12-07 현대자동차주식회사 Anode for lithium air battery and preparation method thereof
KR102328253B1 (en) * 2016-09-30 2021-11-18 주식회사 엘지에너지솔루션 Anode with buffer layer made by conductive textile, lithium secondary battery containing the same
US10177427B2 (en) * 2017-02-10 2019-01-08 General Electric Company Electrochemical cell for use in high temperature metal-air battery
US10826145B2 (en) 2017-02-10 2020-11-03 General Electric Company Electrochemical cell for use in high temperature metal-air battery
CN107293690B (en) * 2017-06-12 2019-12-13 中航锂电(洛阳)有限公司 Lithium ion battery positive electrode composite pole piece, preparation method thereof and lithium ion battery
CN111788718A (en) * 2018-03-05 2020-10-16 罗伯特·博世有限公司 Ion deposition bias to inhibit dendrite formation and growth in metal-ion battery cells
CN110911685B (en) * 2019-11-28 2021-09-14 宁德新能源科技有限公司 Composition for negative electrode, and protective film, negative electrode and device comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510209A (en) 1995-01-05 1996-04-23 Eic Laboratories, Inc. Solid polymer electrolyte-based oxygen batteries
US5723140A (en) 1996-01-30 1998-03-03 Pearsall; Charles W. Method for treating pressure ulcers
US6402795B1 (en) 1998-02-18 2002-06-11 Polyplus Battery Company, Inc. Plating metal negative electrodes under protective coatings
DE102004010892B3 (en) 2004-03-06 2005-11-24 Christian-Albrechts-Universität Zu Kiel Chemically stable solid Li ion conductor of garnet-like crystal structure and high Li ion conductivity useful for batteries, accumulators, supercaps, fuel cells, sensors, windows displays
DE102007030604A1 (en) 2007-07-02 2009-01-08 Weppner, Werner, Prof. Dr. Ion conductor with garnet structure
DE102010054610A1 (en) 2010-12-15 2012-06-21 Li-Tec Battery Gmbh Electrochemical cell

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4280339B2 (en) * 1998-10-16 2009-06-17 パナソニック株式会社 Solid electrolyte molded body, electrode molded body, and electrochemical element
US6365300B1 (en) * 1998-12-03 2002-04-02 Sumitomo Electric Industries, Ltd. Lithium secondary battery
KR100467705B1 (en) * 2002-11-02 2005-01-24 삼성에스디아이 주식회사 Seperator having inorganic protective film and lithium battery using the same
US8323817B2 (en) * 2008-09-12 2012-12-04 Ceramatec, Inc. Alkali metal seawater battery
JP5163439B2 (en) * 2008-11-19 2013-03-13 Tdk株式会社 FIBER-CONTAINING POLYMER FILM AND METHOD FOR PRODUCING SAME, ELECTROCHEMICAL DEVICE AND METHOD FOR PRODUCING SAME
JP5234118B2 (en) * 2009-07-17 2013-07-10 トヨタ自動車株式会社 Solid electrolyte, solid electrolyte sheet, and method for producing solid electrolyte
DE102009045240A1 (en) * 2009-10-01 2011-04-07 Robert Bosch Gmbh Method for producing a ceramic electrode separator device
US20110269007A1 (en) * 2010-04-30 2011-11-03 Polyplus Battery Company High rate seawater activated lithium battery cells bi-polar protected electrodes and multi-cell stacks
CN102959776B (en) * 2010-09-29 2016-02-24 松下知识产权经营株式会社 Lithium primary battery and manufacture method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510209A (en) 1995-01-05 1996-04-23 Eic Laboratories, Inc. Solid polymer electrolyte-based oxygen batteries
US5723140A (en) 1996-01-30 1998-03-03 Pearsall; Charles W. Method for treating pressure ulcers
US6402795B1 (en) 1998-02-18 2002-06-11 Polyplus Battery Company, Inc. Plating metal negative electrodes under protective coatings
US6723140B2 (en) 1998-02-18 2004-04-20 May-Ying Chu Plating metal negative electrodes under protective coatings
DE102004010892B3 (en) 2004-03-06 2005-11-24 Christian-Albrechts-Universität Zu Kiel Chemically stable solid Li ion conductor of garnet-like crystal structure and high Li ion conductivity useful for batteries, accumulators, supercaps, fuel cells, sensors, windows displays
DE102007030604A1 (en) 2007-07-02 2009-01-08 Weppner, Werner, Prof. Dr. Ion conductor with garnet structure
DE102010054610A1 (en) 2010-12-15 2012-06-21 Li-Tec Battery Gmbh Electrochemical cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAKE CHRISTENSEN ET AL., JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 159, no. 2, 2012, pages R1 - R30

Also Published As

Publication number Publication date
CN105765759A (en) 2016-07-13
WO2015067474A3 (en) 2015-07-02
CN105765759B (en) 2019-04-19
DE102013222784A1 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2015067474A2 (en) Electrochemical cell and method for the production thereof
EP2586083B1 (en) Cathode for lithium ion rechargeable batteries
EP1665447B1 (en) Electrochemical battery cell
DE102012203139A1 (en) Solid cell
EP1923934A1 (en) Rechargeable electrochemical battery
WO2015165701A2 (en) Galvanic element and method for the production thereof
EP3050143B1 (en) Method for producing electrochemical cells of a solid-state battery
WO2013135353A1 (en) Graphene-containing separator for lithium-ion batteries
DE102016125168A1 (en) Rechargeable electrochemical cell with ceramic separator layer and indicator electrode
CN111244533A (en) Solid electrolyte and electricity storage device provided with same
WO2016202536A1 (en) Na-doped and nb-, w- and/or mo-doped he-ncm
WO2013152897A1 (en) Lithium-sulphur cell
WO2015173179A1 (en) Lithium-air battery
DE102012209313A1 (en) Lithium-air cell useful e.g. in lithium-air battery, comprises negative electrode comprising intercalation material, positive electrode comprising oxygen, and separator comprising lithium ion conductive inorganic and solid-state electrolyte
WO2016008648A1 (en) Separator comprising force-locked particles
DE102016216549A1 (en) Solid-state cell with adhesion-promoting layer
DE102016008918B4 (en) Electrode, electrochemical energy store with an electrode and method for producing an electrode
EP3582304A1 (en) Active material body for a battery
EP3893309B1 (en) Solid electrolyte material for electrochemical secondary cell
WO2006018288A1 (en) Galvanic element
DE102022111512A1 (en) Method for producing a separator for a lithium-ion battery
DE102015219473A1 (en) Electrode material, battery cell containing this and method for their preparation
DE102014213686A1 (en) Electrode for a galvanic cell
DE102022204655A1 (en) Method for producing a separator for a lithium-ion battery
DE102013216297A1 (en) Lithium cell with titanate separator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14789810

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14789810

Country of ref document: EP

Kind code of ref document: A2