WO2015076466A1 - Large area substrate nanoparticle coating apparatus - Google Patents

Large area substrate nanoparticle coating apparatus Download PDF

Info

Publication number
WO2015076466A1
WO2015076466A1 PCT/KR2014/003152 KR2014003152W WO2015076466A1 WO 2015076466 A1 WO2015076466 A1 WO 2015076466A1 KR 2014003152 W KR2014003152 W KR 2014003152W WO 2015076466 A1 WO2015076466 A1 WO 2015076466A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
substrate
nanoparticle
nanoparticle coating
blade
Prior art date
Application number
PCT/KR2014/003152
Other languages
French (fr)
Korean (ko)
Inventor
임현의
지승묵
최상규
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2015076466A1 publication Critical patent/WO2015076466A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • B05C1/04Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length
    • B05C1/08Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/04Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface

Definitions

  • the present invention relates to a substrate coating apparatus, and more particularly to a large-area substrate nanoparticle coating apparatus for high-speed coating of nanoparticles in a single layer on the surface of a large-area substrate.
  • the substrate coater device has been disclosed in Korean Patent Laid-Open Publication No. 10-2011-0073996 "Chemical liquid supply method and chemical liquid supply mechanism of a substrate coater device".
  • 1 is a schematic diagram schematically showing the configuration of a conventional substrate coater device 10. As shown, the conventional substrate coater apparatus 10 is provided with a coating blade 13 on the stay 13 on which the substrate S to be processed is loaded.
  • the substrate coater device 10 is a method in which the coating blade 13 moves when the nozzle 15 supplies the coating liquid A to the surface of the substrate S to be coated, and a thin coating is applied to the surface of the substrate S. .
  • the total coating time is delayed when the coating blade 13 is coated after discontinuously supplying the coating liquid A to the surface of the substrate S.
  • the coating blade 13 pressurizes the coating liquid (A) to coat the surface of the substrate (S), there is a problem that the coating liquid is difficult to uniformly form a coating layer on the surface of the substrate (S). Moreover, there is a problem that it is difficult to maintain uniformity as the size of the substrate increases.
  • An object of the present invention is to solve the above problems, to provide a large-area substrate nanoparticle coating apparatus capable of completing the coating of a large-area substrate at high speed by continuously supplying the nanoparticle coating liquid to the coating means.
  • Another object of the invention is a nose . It is to provide a large-area substrate nanoparticle coating apparatus capable of forming a uniform nanoparticle coating layer on the surface of the substrate by forming a meniscus between the putting blade and the substrate.
  • Still another object of the present invention is to provide a large-area substrate nanoparticle coating apparatus capable of further shortening the coating time by introducing a plurality of supply nozzles according to the size of the substrate to be processed.
  • Still another object of the present invention is to provide a large-area substrate nanoparticle coating apparatus that can selectively use a coating blade and a coating barr in consideration of the type of substrate to be processed and the type of nanoparticle coating liquid.
  • the object of the present invention can be achieved by a large area substrate nanoparticle coating apparatus.
  • the large-area substrate nanoparticle coating apparatus of the present invention includes: a stay on which an substrate to be processed is adsorbed and supported linearly; A coating blade vertically spaced apart from the substrate to be processed at a predetermined interval; And a supply nozzle for supplying the nanoparticle coating liquid to the surface of the coating blade, wherein the nanoparticle coating liquid supplied from the supply nozzle is spaced from the substrate to be processed to form a meniscus by a capillary phenomenon, and convect ive.
  • Nanoparticle coating is done by assembly. That is, the nano-coating layer is formed by applying nanoparticles to the surface of the substrate to be processed as the stay moves.
  • the coating blade the coating blade body; It is formed to extend to the lower region of the coating blade body and the inclined portion formed to decrease the width of one side toward the bottom, the supply nozzle is disposed in contact with the inclined portion to supply the nanoparticle coating liquid directly to the surface of the inclined portion do.
  • the coating blade is formed to have a width that is opposed to the width of the substrate to be processed, if the meniscus is formed along the width direction of the coating blade, the stay length of the substrate to be processed Is moved along the direction.
  • the coating liquid tank in which the nano-coating solution is stored; And a supply pipe for supplying the nanoparticle coating liquid of the coating liquid tank to the supply nozzle.
  • the plurality of supply nozzles are formed at regular intervals in the width direction of the coating blade.
  • the apparatus may further include a plurality of supply pipes respectively supplying the nanoparticle coating liquid to the plurality of supply nozzles, wherein the plurality of supply pipes are formed to have the same length and are injected from the plurality of supply nozzles. It is provided so that it may become the same.
  • the coating blade is spaced apart from, and optionally used with the coating blade further comprises a coating bar for coating the nanoparticle coating liquid on the substrate to be processed.
  • the height of the substrate to be treated of the coating blade A first height adjusting part for adjusting; It further comprises a second height adjustment unit for adjusting the height of the substrate to be processed of the coating bar.
  • a driving unit for driving the first height adjustment unit; And a control unit controlling an operation of the driving unit so that a meniscus is formed between the substrate to be processed and the coating blade.
  • the nanoparticle coating liquid is directly supplied to the surface of the coating blade or the coating barrier and a meniscus is formed between the substrate to be treated to form a nanoparticle coating layer.
  • a uniform nanoparticle coating worm may be formed over the entire area.
  • the coating process of the substrate to be processed can be completed at a high speed.
  • the coating blade and the coating bar roller may be selected to exhibit higher quality coating efficiency.
  • FIG. 1 is a schematic diagram schematically showing the configuration of a conventional substrate coater apparatus.
  • Figure 2 is a schematic diagram showing the configuration of a large-area substrate nanoparticle coating apparatus according to an embodiment of the present invention.
  • FIG. 3 is a perspective view showing an example of a large-area substrate nanoparticle coating apparatus according to an embodiment of the present invention.
  • FIG. 4 is an exemplary view showing a process of using a coating blade of a large-area substrate nanoparticle coating apparatus according to an embodiment of the present invention.
  • FIG 5 is an exemplary view showing a nanoparticle coating solution supply process of a large-area substrate nanoparticle coating apparatus according to an embodiment of the present invention.
  • FIG. 6 is an exemplary diagram illustrating a process of forming a nanoparticle coating layer of a large-area substrate nanoparticle coating apparatus according to an embodiment of the present invention.
  • FIG. 7 is a large-area substrate nanoparticle coating apparatus according to an embodiment of the present invention Exemplary diagrams illustrating the use of the coating roller.
  • FIG. 8 is an exemplary view illustrating a process of forming a nanoparticle coating layer through a coating roller of a large-area substrate nanoparticle coating apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram schematically showing the configuration of a large-area substrate nanoparticle coating apparatus according to another embodiment of the present invention.
  • FIG. 10 is a schematic view showing the configuration of a large-area substrate nanoparticle coating apparatus according to another embodiment of the present invention.
  • FIG. 11 is an electron micrograph of a glass substrate coated with polystyrene nanoparticles having a diameter of 150 nm according to another embodiment of the present invention.
  • FIG. 12 is a view for explaining the meniscus phenomenon in the large-area substrate nanoparticle coating apparatus according to the present invention.
  • Figure 2 is a schematic diagram showing the configuration of a large-area substrate nanoparticle coating apparatus 100 according to the present invention
  • Figure 3 shows an actual application of another large-area substrate nanoparticle coating apparatus 100 to the present invention One perspective view.
  • the nanoparticle coating process includes nanoparticle type and diameter, concentration of nanoparticle coating solution, solvent type, compound added to nanoparticle coating solution, spacing between blade or roller and substrate, wettability of blade and substrate, blade thickness, There are process variables such as size (wire diameter), injection speed and amount of nanoparticle coating liquid, and speed of nanocoating. It is possible to obtain a single layer or a multilayer coating layer.
  • the nanoparticle coating apparatus 100 by applying a nanoparticle coating solution (A) containing nanoparticles on the surface of the substrate (S) to be treated, the nanoparticles are arranged in a single worm The nanoparticle coating layer (MC) is formed.
  • the substrate S to be processed may have a large area of at least 370 ⁇ ⁇ 470 ⁇ , which is at least a second generation of display.
  • a substrate to be processed smaller than the above-described standard may be used.
  • Nanoparticle coating liquid (A) may be formed in various forms depending on the purpose of coating the substrate (S). That is, gold nanoparticles, silica nanoparticles, polymer nanoparticles, and / or metal nanoparticles may be used according to the purpose of improving conductivity, improving waterproof performance, controlling light reflection, and biosensor.
  • the large-area substrate nanoparticle coating apparatus 100 includes a stay 110 on which a substrate S to be processed is loaded, a coating blade portion 120 disposed on an upper surface of the stay 110, and a coating blade portion.
  • a coating bar roller part 130 disposed horizontally spaced apart from the 120, a coating liquid supply part 150 supplying the nanoparticle coating liquid A to the coating blade part 120 and the coating bar roller part 130, and coating
  • the painter 130, the coating blade 120, a support frame 140 for supporting the coating liquid supply 150, and a stay transfer unit 115 capable of transferring the stay 110 are included.
  • the stay 110 fixes the position of the substrate S to be processed during the coating process.
  • the stay 110 proceeds larger than the area of the substrate S to be processed.
  • the plate surface of the stay 110 is provided with a plurality of suction holes 111 for fixing the substrate (S) to be processed.
  • the suction hole 111 transfers the vacuum pressure formed by the vacuum forming unit 113 to the substrate S to adsorb the substrate S to the surface of the stay 110. Thereby, the position of the substrate S to be processed can be fixed stably.
  • the vacuum pressure forming unit 113 may form or release a vacuum pressure under the control of the controller 160 to restrain the substrate S on the surface of the stay 110 or release the restriction state.
  • the stay 110 is provided to be movable in the longitudinal direction of the substrate (S) to be processed.
  • the stay 110 is moved by the stay transfer unit 115.
  • the stay conveying unit 115 allows the substrate S to be relatively moved with respect to the coating blade unit 120.
  • MC nanoparticle coating layer
  • the controller 160 may control operations of the vacuum pressure forming unit 113 and the stay transfer unit 115. In addition, the controller 160 may control operations of the first height adjusting unit 125 and the second height adjusting unit 133.
  • the control unit 160 controls the stay transfer unit 115 to move the stay 110 after the meniscus M is formed between the substrate S and the coating blade 120.
  • the stay transfer unit 115 may be implemented in the LM guide manner, or may be variously implemented by a combination of a conveying belt and a conveying pulley or a combination of a gear and a conveying shaft.
  • 4 is a diagram illustrating a configuration when the coating blade unit 120 is used for nanoparticle coating of the substrate S to be processed, and FIG. 5 illustrates that the nanoparticle coating layer MC is formed by the coating blade unit 120.
  • 6 is a view illustrating a process of forming, and FIG. 6 illustrates a process in which the nanoparticle coating liquid A is supplied to the spaced space between the inclined portion 123 and the substrate S to be coated. It is an illustration.
  • the coating blade unit 120 forms a nanoparticle coating layer MC on the surface of the substrate S.
  • the coating blade unit 120 includes a coating blade body 121 disposed in a vertical direction with respect to the substrate S to be processed, and an inclined portion 123 extending downward from the coating blade body 121.
  • the coated blade body 121 is formed to have a width that is wider than the width L of the substrate S to be processed (see FIG. 6).
  • the coating blade body 121 is coupled to the support frame 140 at both ends as shown in FIG. At this time, the coating blade body 121 is provided so that the vertical height is variable by the first height adjustment unit (125).
  • the inclined portion 123 extends to the lower portion of the coating blade body 121.
  • the inclined portion 123 is formed such that the width of the side cross-section becomes narrower toward the bottom. Accordingly, the side surface of the inclined portion 123 forms an inclined surface.
  • the supply nozzle 153 is disposed on the inclined surface so that the nanoparticle coating liquid A moves along the inclined surface and is supplied between the distance d between the bottom surface 124 of the inclined portion 123 and the substrate S. Be sure to The nanoparticle coating liquid (A) thus supplied is constricted with each other at a separation distance (d) as shown in an enlarged view of FIG. 5 to form a meniscus (M) of a predetermined shape. Referring to FIG.
  • a meniscus M is formed between the substrate S and the bottom surface 124.
  • the coating blade body 121 is formed on the support frame 140 so that the angle can be adjusted during coating to have an appropriate inclination angle in consideration of the type and supply speed of the nanoparticle coating liquid (A), the shape of the meniscus (M), and the like. It is attached and can also control the coverage of the coating layer.
  • the coating blade portion 120 and the coating bar portion 130 may be selectively used for nanoparticle coating of the substrate S to be processed.
  • the coating efficiency is selected to be used.
  • the coating blade unit 120 When the coating blade unit 120 is used for nanoparticle coating, as shown in FIG. 4, the coating blade unit 120 is positioned at a height close to the substrate S, and the coating bar roller unit 130 is disposed on the substrate to be processed. It is arranged spaced apart from a certain height (h2) from S). On the other hand, when the coating bar roller portion 130 is used for nanoparticle coating, as shown in FIG. 7, the coating bar roller portion 130 is positioned at a height close to the substrate S and the coating blade portion 120 is fixed. Height (h2) spaced apart.
  • the large-area substrate nanoparticle coating apparatus 100 is capable of adjusting the height of the coating blade unit 120-the height from the substrate S to be processed U height adjusting unit 125, the coating bar portion And a second height adjustment part 133 capable of adjusting the height of the 130 -the height from the substrate S to be processed.
  • Those who belong to the technical field to which the present invention belongs is any one of the coating blade portion 120 or the coating bar portion 130 using the first height adjusting portion 125 and the second height adjusting portion 133.
  • One may be selectively used, and the meniscus M may be formed using the first height adjusting part 125.
  • the first height adjustment unit 125 is provided with a height adjustment gauge and a height display unit 125a, for example, as shown in FIG. Therefore, those skilled in the art can visually check the height of the coating blade body 121 that is digitally displayed on the height display unit 125a, and precisely adjust the height.
  • the crab 1 height adjusting unit 125 may be used to control the space between the substrate S and the coating blade body 121 according to the component of the nanoparticle coating liquid A and the type of substrate S. It may be.
  • the nanoparticle coating liquid A is supplied between the space to be processed between the substrate S and the coating blade body 121, and a meniscus M is formed. At this time, Since the separation space becomes an important factor in the formation of the meniscus M, those skilled in the art finely control the separation space.
  • the coating barler part 130 forms a nanoparticle coating layer on the substrate S to be processed.
  • the coating bar portion 130 is optionally used with the coating blade portion 120.
  • the coating bar roller unit 130 coats the nanoparticle coating liquid (A) on the substrate S to be processed.
  • the type and size (wire diameter) of the coating roller portion 130 may be designed in consideration of the shape of the meniscus M formed on the spaced space d from the substrate S.
  • the coating bar roller part 130 may be adjusted in height from the substrate S to be processed by the second height adjusting part 133.
  • the second height adjusting unit 133 may be configured to be the same as or similar to the first height adjusting unit 125.
  • the support frame 140 supports the coating blade unit 120, the coating bar roller unit 130, and the coating liquid supply unit 150.
  • the support frame 140 is disposed horizontally on the upper surface of the coating blade portion 120 and the coating bar roller portion 130 as shown in FIG.
  • the support frame 140 may cover the top surfaces of the coating blade unit 120 and the coating barler unit 130 to block foreign substances from entering the nanoparticle coating liquid A and the coating area during the nanoparticle coating process.
  • Both ends of the support frame 140 are provided with a pair of vertical frames 141 formed vertically.
  • the support shaft 135 and the nozzle support frame 157 of the coating bar roller unit 130 are coupled to the pair of vertical frames 141.
  • the coating liquid supply unit 150 supplies the nanoparticle coating liquid to the coating blade unit 120 or the coating bar roller unit 130.
  • the coating liquid supply unit 150 includes a coating liquid tank 151 for storing the nanoparticle coating liquid A, a supply nozzle 153 for directly supplying the coating liquid to the coating blade unit 120 or the coating bar roller unit 130, and the coating liquid.
  • a supply pipe 155 connecting the tank 151 and the supply nozzle 153, a nozzle support frame 157 fixed to the support frame 140, and a supply nozzle 153 fixed to the nozzle support frame 157. Fixing jig 154.
  • the coating liquid tank 151 stores the nanoparticle coating liquid (A).
  • the coating liquid tank 151 supplies the nanoparticle coating liquid A to the supply nozzle 153 at a constant pressure.
  • the supply nozzle 153 supplies the nanoparticle coating liquid A supplied through the supply pipe 155 to the coating blade unit 120 or the coating bar roller unit 130.
  • the supply nozzle 153 is arranged such that the end 153a is in contact with the inclined portion 123 of the coating blade portion 120.
  • the nanoparticle coating liquid (A) is directly sprayed on the inclined surface of the inclined portion 123.
  • the nozzle support frame 157 is horizontally installed between the vertical frames 141 as shown in FIG.
  • the fixing jig 154 is fixed on the nozzle support frame 157 so that the position of the supply nozzle 153 is stably fixed. If the position of the supply nozzle 153 is shifted, disturbance of the nanoparticle coating liquid (A) may occur during the coating process.
  • the fixing jig 154 firmly fixes the position of the supply nozzle 153.
  • one side of the supply pipe 155 or the supply nozzle 153 is provided with an on / off valve (not shown) for opening and closing the supply nozzle 153.
  • On-off valve (not shown) is driven by the control of the controller 160.
  • the substrate S is mounted on the upper surface of the stay 110.
  • the vacuum pressure forming unit 113 is driven to form a vacuum pressure on the top surface of the stay 110.
  • the substrate S to be processed is attracted to the stay 110 and the position thereof is fixed.
  • the coating blade unit 120 is used to coat the substrate S. As shown in FIG. 4, the height of the coating blade 120 is adjusted to be close to the substrate S, and the height of the coating bar portion 130 is adjusted to be spaced apart from the substrate S. FIG. 4
  • the supply nozzle 153 is fixed on the nozzle support frame 157.
  • the on-off valve (not shown) is opened, the nanoparticle coating liquid A is supplied from the coating liquid tank 151 to the supply nozzle 153.
  • the nanoparticle coating liquid A is supplied to the inclined surface of the inclined portion 123 through the end portion 153a.
  • the nanoparticle coating liquid A moved along the inclined surface of the inclined portion 123 is introduced into the separation distance between the substrate S and the bottom surface 124 of the inclined portion 123.
  • a meniscus M of a predetermined shape is formed.
  • the meniscus M gradually spreads to the left and right along the width direction of the substrate S to be processed.
  • the stay transfer unit 115 is driven.
  • the stay 110 is moved in the advancing direction.
  • the nanoparticles forming the meniscus M are spread out in one layer on the surface of the substrate S to be expanded as shown in FIG. 5, thereby forming the nanoparticle coating worm MC .
  • a coating process may be formed at a high speed.
  • the coating speed may vary depending on the type of nanoparticle coating liquid (A) and the type of substrate (S) to be processed, but may be shifted by 1 cm to 3 cm per second. Thus, large area substrates can also complete the coating process quickly.
  • the nanoparticle coating layer MC is formed by the meniscus M in which the nanoparticle coating liquid A is formed at the interface between the substrate S of the feature and the inclined portion 123. Therefore, the nanoparticles may be uniformly arranged in one layer so that the nanoparticle coating layer MC may be uniformly formed over the entire area.
  • Figure 7 is an exemplary view showing a process of forming a nanoparticle coating layer (MC) using the coating bar roller portion 130.
  • the height of the coating bar roller 130 is adjusted to be close to the substrate S, and the height of the coating blade 120 is spaced apart from the substrate S.
  • the supply nozzle 153 is disposed close to the coating bar roller 130, and the end of the supply nozzle 153 is disposed in contact with the surface of the coating bar roller 131.
  • the on-off valve (not shown) is opened, the nanoparticle coating liquid A is supplied from the supply nozzle 153.
  • the nanoparticle coating liquid A is supplied at a separation distance between the coating bar roller 131 and the substrate S to be processed, and a meniscus M is formed.
  • the nanoparticle coating layer MC is formed on the surface of the substrate S.
  • the nanoparticle coating layer MC is formed on the surface of the substrate S to be uniformly arranged in one layer.
  • the large-area substrate nanoparticle coating apparatus supplies the nanoparticle coating liquid directly to the surface of the coating blade or the coating barrier and forms a meniscus between the substrate to be treated to form the nanoparticle coating layer. This allows a uniform nanoparticle coating layer to be formed over the entire area.
  • nanoparticle coating liquid is continuously supplied, The coating process can be completed.
  • the coating blade and the coating bar roller may be selected to exhibit higher quality coating efficiency.
  • Figure 9 is a schematic diagram schematically showing the configuration of a large-area substrate nanoparticle coating apparatus 100a according to another embodiment of the present invention.
  • one supply nozzle 153 has a nanoparticle coating liquid A as the coating blade portion 120 or the coating bar portion 130.
  • the coating proceeded by spraying. As a result, it may take a long time for the meniscus M to be formed with the entire width of the substrate S to be processed, centering on one supply nozzle 153.
  • the large-area substrate nanoparticle coating apparatus 100a arranges the plurality of supply nozzles 153, 153a and 153b at regular intervals to improve this point. Then, the nanoparticle coating liquid A is simultaneously supplied from the plurality of supply nozzles 153, 153a and 153b.
  • the nanoparticle coating liquid A supplied from the giant 11 supply nozzle 153 forms the meniscus M by the first width wl
  • the second supply nozzle 153a is the second width w2.
  • the meniscus M is formed as much as the third supply nozzle 153a forms the meniscus M by the third width w3. Therefore, the time for forming the meniscus M of the nanoparticle coating liquid A is reduced by 1/3 compared to when using one supply nozzle 153 with the entire width of the substrate S to be processed.
  • the nanoparticle coating time can be implemented at a higher speed.
  • a plurality of supply pipes (155) should be used.
  • the nanoparticle coating liquid A injected from the plurality of supply nozzles 153, 153a and 153b should be injected at the same pressure.
  • the lengths of the plurality of supply pipes 155 are maintained to be the same, and the nanoparticle coating liquid A is dispersed and supplied at the same pressure to each supply pipe 155 in the coating liquid tank 151.
  • the large-area substrate nanoparticle coating apparatus includes a stay 210 on which a substrate S to be processed is loaded, a coating blade portion 220 disposed on an upper surface of the stay 210, and a coating blade.
  • Height-The first height adjustment unit 225 which can adjust the height ⁇ from the substrate S, and the height ⁇ of the coating roller portion 230, the second ⁇ , which can adjust the height ⁇ from the substrate S.
  • 2nd driving part 226 which drives the height adjusting part 233, the crab 1 height adjusting part 225, and a 2nd height set A first driving unit 232, and controller 260 for driving the portion 233.
  • the large-area substrate nanoparticle coating apparatus of FIG. 2 Compared with the embodiment of FIG. 2, the large-area substrate nanoparticle coating apparatus of FIG.
  • the driving unit 232 is further included, and the driving unit controls each of these driving units.
  • the controller 260 may control operations of the second driving unit 226 for driving the crab first height adjusting unit 225 and the first driving unit 232 for operating the second height adjusting unit 233.
  • the control unit 260 is to form a separation space according to the component of the nanoparticle coating liquid (A) and the type of substrate (S) to form the meniscus (M), the first height of the adjusting portion 225 You can control the operation.
  • the control unit 260 controls the operations of the vacuum pressure forming unit 213 and the stay transfer unit 215,
  • the stay transfer unit 215 controls to move the stay 210.
  • Components not described above in the large-area substrate nanoparticle coating apparatus of FIG. 10 operate the same or similar to those with similar reference numerals in the large-area substrate nanoparticle coating apparatus of FIG. Will be omitted.
  • FIG. 11 shows an electron micrograph of a glass substrate coated with polystyrene nanoparticles having a diameter of 150 nm according to another embodiment of the present invention.
  • Diameter 150 The nanoparticle coating solution was prepared by preparing the nanoparticle polystyrene nanoparticles at a concentration of 5% in ethane, and maintaining the spacing between the blade and the substrate at 300um and the coating speed at 10 ⁇ / s.
  • the relatively uniform nanoparticle coating layer thus obtained was used as a mask to protect the glass in the plasma, and the glass having the nanopillar obtained after the nanoetching process on the surface showed excellent antireflection effect and the transmittance was increased to 96%.
  • Embodiment of the large-area substrate nanoparticle coating apparatus of the present invention described above is merely exemplary, and those skilled in the art to which the present invention pertains various modifications and equivalent other embodiments are possible. You will be well aware of this. Therefore, it will be understood that the present invention is not limited to the forms mentioned in the above detailed description. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims. It is also to be understood that the present invention includes all modifications, equivalents and substitutions within the spirit and scope of the invention as defined by the appended claims.

Abstract

The present invention relates to a large area substrate nanoparticle coating apparatus, comprising: a stay which is provided to be linearly movable and has an upper surface on which a substrate to be treated is supported by suction; a coating blade vertically disposed to be separated from the substrate to be treated at a certain distance; and a supply nozzle for supplying nanoparticle coating liquid to the surface of the coating blade. If the nanoparticle coating liquid supplied from the supply nozzle forms a meniscus due to a capillary phenomenon in a space separated from the substrate to be treated, nanoparticles are applied in a single layer on the surface of the substrate to be treated while the stay moves, and then a nanoparticle coating layer is formed.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
대면적기판 나노입자 코팅장치 【기술분야】  Large Area Substrate Nano Particle Coating Equipment 【Technical Field】
본 발명은 기판 코팅장치에 관한 것으로서, 보다 자세히는 대면적기판의 표면에 나노입자를 단일층으로 고속 코팅하는 대면적기판 나노입자 코팅장치에 관한 것이다. 【배경기술】  The present invention relates to a substrate coating apparatus, and more particularly to a large-area substrate nanoparticle coating apparatus for high-speed coating of nanoparticles in a single layer on the surface of a large-area substrate. Background Art
최근 표면의 기능성을 높이기 위하여 나노입자를 많이 사용하고 있다. 나노입자를 이용한 바이오센서, 태양전지, 광소자 등의 개발과 다충의 균일한 나노입자층을 이용하여 다양한 구조색을 구현하는 예가 2001년 Nature지에 Y. A. Vlasov등에 발표된 예가 있다. (Y. A. Vlasov et al . Nature 414, 289 (2001)) 이러한 기능을 좋은 효율로 발현하기 위하여 표면에 나노입자를 규칙적으로 균일하게 코팅하는 것은 매우 중요한 기술로 스핀코팅, Lagumuir-Blodgett , dip-coating, floating transfer 등의 습식방법과 레이저빔을 이용하는 optical tweezer방법, 전기장을 이용하는 electrophoret ic assembly방법, 건식방법을 이용하는 epitaxy growth 방법들이 있다. 하지만 이러한 방법들은 연구개발을 위한 목적으로 사용되어 발표되었으며 지금까지 넓은 면적으로 나노입자를 균일하게 코팅한 예는 Nano letters지에 발표된 바코팅을 사용한 경우 (Y. Cui et al. Nano letters 10, 2989 (2010))가 유일하며 이때 코팅된 면적은 30cm2으로 보고되어지고 있는데 이는 상업적으로 활용되기에는 여전히 작은 면적이다. 따라서, 아직까지 디스플레이 1세대 이상의 면적에서 빠른 속도로 나노입자를 단일층 또는 원하는 다층으로 코팅하는 기술은 해결해야할 문제들이 많다. Recently, many nanoparticles have been used to increase the functionality of the surface. An example of the development of biosensors, solar cells, optical devices using nanoparticles, and the implementation of various structural colors using multiple layers of uniform nanoparticles has been published in YA Vlasov et al. In 2001. (YA Vlasov et al. Nature 414, 289 (2001)) Regularly and uniformly coating nanoparticles on the surface to express these functions with good efficiency is a very important technique, spin coating, Lagumuir-Blodgett, dip-coating, There are wet methods such as floating transfer, optical tweezer method using laser beam, electrophoretic assembly method using electric field, and epitaxy growth method using dry method. However, these methods have been published for research and development purposes. So far, examples of uniform coating of nanoparticles with a large area have been described using bar coating published in Nano letters (Y. Cui et al. Nano letters 10, 2989). (2010)), where the coated area is reported to be 30 cm 2 , which is still small for commercial use. Therefore, there are still many problems to be solved to coat nanoparticles in a single layer or a desired multilayer at a high speed in an area of the first generation or more of displays.
LCD 등 플랫 패널 디스플레이를 제조하는 공정에서는 유리 등으로 제작된 피처리 기판의 표면에 레지스트액 등의 약액을 도포하는 코팅공정이 수반된다. 기판 코터 장치는 공개특허 제 10-2011-0073996호 "기판 코터 장치의 약액 공급 방법 및 약액 공급 기구' '에 개시된 바 있다. 도 1은 종래 기판 코터 장치 ( 10)의 구성을 개략적으로 도시한 개략도이다. 도시된 바와 같이 종래 기판 코터 장치 (10)는 피처리기판 (S)이 적재되는 스테이 (13) 상에 코팅블레이드 (13)가 구비된다. 기판 코터 장치 (10)는 피처리기판 (S) 표면에 노즐 (15)이 코팅액 (A)을 공급하면 코팅블레이드 ( 13)가 이동하며 피처리기판 (S) 표면에 얇게 도포하여 코팅하는 방식이다. In the process of manufacturing flat panel displays, such as LCD, the coating process of apply | coating chemical liquids, such as a resist liquid, to the surface of the to-be-processed substrate made from glass etc. is accompanied. The substrate coater device has been disclosed in Korean Patent Laid-Open Publication No. 10-2011-0073996 "Chemical liquid supply method and chemical liquid supply mechanism of a substrate coater device". 1 is a schematic diagram schematically showing the configuration of a conventional substrate coater device 10. As shown, the conventional substrate coater apparatus 10 is provided with a coating blade 13 on the stay 13 on which the substrate S to be processed is loaded. The substrate coater device 10 is a method in which the coating blade 13 moves when the nozzle 15 supplies the coating liquid A to the surface of the substrate S to be coated, and a thin coating is applied to the surface of the substrate S. .
그런데, 최근 피처리기판의 크기가 대형화되면서 피처리기판 (S) 표면에 코팅액 (A)을 비연속적으로 공급한 후 코팅블레이드 (13)가 코팅할 경우 전체 코팅 시간이 지연되는 문제가 있었다.  However, in recent years, as the size of the substrate to be processed increases in size, the total coating time is delayed when the coating blade 13 is coated after discontinuously supplying the coating liquid A to the surface of the substrate S.
또한, 코팅블레이드 (13)가 코팅액 (A)을 가압하여 피처리기판 (S) 표면에 코팅을 할 경우, 코팅액이 균일하게 피처리기판 (S) 표면에 코팅층을 형성하기 어려운 문제가 있다. 더구나, 기판의 크기가 대형화될수록 균일도를 유지하기가 어려운 문제가 있다.  In addition, when the coating blade 13 pressurizes the coating liquid (A) to coat the surface of the substrate (S), there is a problem that the coating liquid is difficult to uniformly form a coating layer on the surface of the substrate (S). Moreover, there is a problem that it is difficult to maintain uniformity as the size of the substrate increases.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명의 목적은 상술한 문제를 해결하기 위한 것으로, 나노입자코팅액을 코팅수단에 연속적으로 공급하여 고속으로 대면적기판의 코팅을 완료할 수 있는 대면적기판 나노입자 코팅장치를 제공하는 것이다.  An object of the present invention is to solve the above problems, to provide a large-area substrate nanoparticle coating apparatus capable of completing the coating of a large-area substrate at high speed by continuously supplying the nanoparticle coating liquid to the coating means.
본 발명의 다른 목적은 코.팅블레이드와 기판 사이의 메니스커스를 형성하여 기판 표면에 균일한 나노입자 코팅층을 형성할 수 있는 대면적 기판 나노입자 코팅장치를 제공하는 것이다. Another object of the invention is a nose . It is to provide a large-area substrate nanoparticle coating apparatus capable of forming a uniform nanoparticle coating layer on the surface of the substrate by forming a meniscus between the putting blade and the substrate.
본 발명의 또 다른 목적은 피처리 기판의 크기에 따라 복수개의 공급노즐을 도입하여 코팅시간을 더욱 단축시킬 수 있는 대면적 기판 나노입자 코팅장치를 제공하는 것이다.  Still another object of the present invention is to provide a large-area substrate nanoparticle coating apparatus capable of further shortening the coating time by introducing a plurality of supply nozzles according to the size of the substrate to be processed.
본 발명의 또 다른 목적은 피처리 기판의 종류와, 나노입자코팅액의 종류 등을 고려하여 코팅블레이드와 코팅바를러를 선택적으로 사용할 수 있는 대면적 기판 나노입자 코팅장치를 제공하는 것이다.  Still another object of the present invention is to provide a large-area substrate nanoparticle coating apparatus that can selectively use a coating blade and a coating barr in consideration of the type of substrate to be processed and the type of nanoparticle coating liquid.
본 발명의 상기 목적과 여러 가지 장점은 이 기술분야에 숙련된 사람들에 의해 본 발명의 바람직한 실시예로부터 더욱 명확하게 될 것이다. 【기술적 해결방법】 The above objects and various advantages of the present invention will become more apparent from the preferred embodiments of the present invention by those skilled in the art. Technical Solution
본 발명의 목적은 대면적기판 나노입자 코팅장치에 의해 달성될 수 있다. 본 발명의 대면적기판 나노입자 코팅장치는, 상면에 피처리기판이 흡착지지되며 직선이동가능하게 구비되는 스테이와; 상기 피처리기판과 일정간격 이격되게 수직 배치되는 코팅블레이드와; 상기 코팅블레이드의 표면으로 나노입자코팅액을 공급하는 공급노즐을 포함하며, 상기 피처리기판과의 이격 공간으로 상기 공급노즐로부터 공급된 나노입자코팅액이 모세관현상에 의해 메니스커스를 형성하고, convect ive assembly에 의해 나노입자코팅이 이루어진다. 즉, 상기 스테이가 이동됨에 상기 피처리기판 표면에 나노입자가 도포됨으로써 나노코팅층이 형성된다.  The object of the present invention can be achieved by a large area substrate nanoparticle coating apparatus. The large-area substrate nanoparticle coating apparatus of the present invention includes: a stay on which an substrate to be processed is adsorbed and supported linearly; A coating blade vertically spaced apart from the substrate to be processed at a predetermined interval; And a supply nozzle for supplying the nanoparticle coating liquid to the surface of the coating blade, wherein the nanoparticle coating liquid supplied from the supply nozzle is spaced from the substrate to be processed to form a meniscus by a capillary phenomenon, and convect ive. Nanoparticle coating is done by assembly. That is, the nano-coating layer is formed by applying nanoparticles to the surface of the substrate to be processed as the stay moves.
일 실시예에 따르면, 상기 코팅블레이드는, 코팅블레이드본체와; 상기 코팅블레이드본체의 하부영역으로 연장형성되며 일측면의 폭이 아래로 갈수록 줄어들게 형성된 경사부를 포함하며, 상기 공급노즐은 상기 경사부에 접촉되게 배치되어 상기 나노입자코팅액을 상기 경사부의 표면으로 직접 공급한다.  According to one embodiment, the coating blade, the coating blade body; It is formed to extend to the lower region of the coating blade body and the inclined portion formed to decrease the width of one side toward the bottom, the supply nozzle is disposed in contact with the inclined portion to supply the nanoparticle coating liquid directly to the surface of the inclined portion do.
일 실시예에 따르면, 상기 코팅블레이드는 상기 피처리기판의 폭과 대웅되는 폭을 갖도록 형성되고, 상기 메니스커스가 상기 코팅블레이드의 폭 방향을 따라 형성되면, 상기 스테이가 상기 피처리기판의 길이방향을 따라 이동된다.  According to one embodiment, the coating blade is formed to have a width that is opposed to the width of the substrate to be processed, if the meniscus is formed along the width direction of the coating blade, the stay length of the substrate to be processed Is moved along the direction.
일 실시예에 따르면, 나노코팅액이 저장되는 코팅액탱크와; 상기 코팅액탱크의 나노입자코팅액을 상기 공급노즐로 공급하는 공급관을 포함한다. 일 실시예에 따르면, 상기 공급노즐은 상기 코팅블레이드의 폭방향으로 일정간격으로 복수개가 형성된다.  According to one embodiment, the coating liquid tank in which the nano-coating solution is stored; And a supply pipe for supplying the nanoparticle coating liquid of the coating liquid tank to the supply nozzle. According to one embodiment, the plurality of supply nozzles are formed at regular intervals in the width direction of the coating blade.
일 실시예에 따르면, 상기 복수개의 공급노즐로 나노입자코팅액을 각각 공급하는 복수개의 공급관을 더 포함하며,상기 복수개의 공급관은 동일한 길이로 형성되며 상기 복수개의 공급노즐로부터 분사되는 나노입자코팅액 분사압력이 동일해지도록 구비된다.  According to an embodiment, the apparatus may further include a plurality of supply pipes respectively supplying the nanoparticle coating liquid to the plurality of supply nozzles, wherein the plurality of supply pipes are formed to have the same length and are injected from the plurality of supply nozzles. It is provided so that it may become the same.
일 실시예에 따르면, 상기 코팅블레이드와 이격되게 배치되고, 상기 코팅블레이드와 선택적으로 사용되며 상기 피처리기판에 나노입자코팅액을 코팅하는 코팅바를러를 더 포함한다.  According to one embodiment, the coating blade is spaced apart from, and optionally used with the coating blade further comprises a coating bar for coating the nanoparticle coating liquid on the substrate to be processed.
일 '실시예에 따르면, 상기 코팅블레이드의 피처리기판에 대한 높이를 조절하는 제 1높이조절부와; 상기 코팅바를러의 피처리기판에 대한 높이를 조절하는 제 2높이조절부를 더 포함한다. According to one embodiment, the height of the substrate to be treated of the coating blade A first height adjusting part for adjusting; It further comprises a second height adjustment unit for adjusting the height of the substrate to be processed of the coating bar.
일 실시예에 따르면, 상기 제 1높이조절부를 구동하는 구동부; 및 상기 피처리기판과 상기 코팅블레이드간에 메니스커스가 형성되도록, 상기 구동부의 동작을 제어하는 제어부;를 더 포함한다.  According to one embodiment, a driving unit for driving the first height adjustment unit; And a control unit controlling an operation of the driving unit so that a meniscus is formed between the substrate to be processed and the coating blade.
【유리한 효과】 Advantageous Effects
본 발명에 따른 대면적기판 나노입자 코팅장치는 코팅블레이드 또는 코팅바를러의 표면에 직접 나노입자코팅액을 공급하고 피처리기판과의 사이에 메니스커스를 형성하여 나노입자코팅층을 형성한다. 이에 의해 전 면적에 걸쳐 균일한 나노입자코팅충이 형성될 수 있다.  In the large-area substrate nanoparticle coating apparatus according to the present invention, the nanoparticle coating liquid is directly supplied to the surface of the coating blade or the coating barrier and a meniscus is formed between the substrate to be treated to form a nanoparticle coating layer. As a result, a uniform nanoparticle coating worm may be formed over the entire area.
또한, 연속적으로 나노입자코팅액이 공급되므로 고속으로 피처리기판의 코팅과정이 완료될 수 있다.  In addition, since the nanoparticle coating liquid is continuously supplied, the coating process of the substrate to be processed can be completed at a high speed.
또한, 기판의 종류, 나노입자코팅액의 종류 등을 고려하여 코팅블레이드와 코팅바롤러 중 보다 고품질의 코팅효율을 나타내는 것을 선택하여 사용할 수 있다.  In addition, in consideration of the type of substrate, the type of nanoparticle coating liquid, etc., the coating blade and the coating bar roller may be selected to exhibit higher quality coating efficiency.
【도면의 간단한 설명】 ' [Brief Description of Drawings] '
도 1은 종래 기판 코터 장치의 구성을 개략적으로 도시한 개략도이다. 도 2는 본 발명의 일 실시예에 따른 대면적기판 나노입자 코팅장치의 구성을 개략적으로 도시한 개략도이다.  1 is a schematic diagram schematically showing the configuration of a conventional substrate coater apparatus. Figure 2 is a schematic diagram showing the configuration of a large-area substrate nanoparticle coating apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 대면적기판 나노입자 코팅장치의 일례를 도시한 사시도이다.  3 is a perspective view showing an example of a large-area substrate nanoparticle coating apparatus according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 대면적기판 나노입자 코팅장치의 코팅블레이드의 사용과정을 도시한 예시도이다.  4 is an exemplary view showing a process of using a coating blade of a large-area substrate nanoparticle coating apparatus according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 대면적기판 나노입자 코팅장치의 나노입자코팅액 공급과정을 도시한 예시도이다.  5 is an exemplary view showing a nanoparticle coating solution supply process of a large-area substrate nanoparticle coating apparatus according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 대면적기판 나노입자 코팅장치의 나노입자코팅층 형성과정을 도시한 예시도이다.  6 is an exemplary diagram illustrating a process of forming a nanoparticle coating layer of a large-area substrate nanoparticle coating apparatus according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 대면적기판 나노입자 코팅장치의 코팅바를러의 사용과정을 도시한 예시도이다. 7 is a large-area substrate nanoparticle coating apparatus according to an embodiment of the present invention Exemplary diagrams illustrating the use of the coating roller.
도 8은 본 발명의 일 실시예에 따른 대면적기판 나노입자 코팅장치의 코팅바를러를 통한 나노입자코팅층 형성과정을 도시한 예시도이다.  8 is an exemplary view illustrating a process of forming a nanoparticle coating layer through a coating roller of a large-area substrate nanoparticle coating apparatus according to an embodiment of the present invention.
도 9는 본 발명의 다른 실시예에 따른 대면적기판 나노입자 코팅장치의 구성을 개략적으로 도시한 개략도이다.  9 is a schematic diagram schematically showing the configuration of a large-area substrate nanoparticle coating apparatus according to another embodiment of the present invention.
도 10은 본 발명의 다른 실시예에 따른 따른 대면적기판 나노입자 코팅장치의 구성을 개략적으로 도시한 개략도이다.  10 is a schematic view showing the configuration of a large-area substrate nanoparticle coating apparatus according to another embodiment of the present invention.
도 11은 본 발명의 다른 실시예에 따른 유리기판에 150nm 직경의 폴리스티렌 나노입자가 코팅된 상태의 전자현미경 사진이다.  FIG. 11 is an electron micrograph of a glass substrate coated with polystyrene nanoparticles having a diameter of 150 nm according to another embodiment of the present invention.
도 12는 본 발명에 따른 대면적기판 나노입자 코팅장치에서의 메니스커스 현상을 설명하기 위한 도면이다.  12 is a view for explaining the meniscus phenomenon in the large-area substrate nanoparticle coating apparatus according to the present invention.
【발명의 실시를 위한 형태】 [Form for implementation of invention]
본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부 도면을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제'공되어지는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도면에서 동일한 부재는 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다. In order to fully understand the present invention, preferred embodiments of the present invention will be described with reference to the accompanying drawings. Embodiment of the present invention may be modified in various forms, the scope of the invention should not be construed as limited to the embodiments described in detail below. The present embodiment is that the "the ball to a person of ordinary skill in the art in order to more fully illustrate the present invention. Therefore, the shape of the elements in the drawings and the like may be exaggerated to emphasize a more clear description. It should be noted that the same members in each drawing are sometimes shown with the same reference numerals. Detailed descriptions of well-known functions and configurations that are determined to unnecessarily obscure the subject matter of the present invention are omitted.
도 2는 본 발명에 따른 대면적기판 나노입자 코팅장치 ( 100)의 구성을 개략적으로 도시한 개략도이고, 도 3은 본 발명에 다른 대면적기판 나노입자 코팅장치 ( 100)의 실제 적용예를 도시한 사시도이다.  Figure 2 is a schematic diagram showing the configuration of a large-area substrate nanoparticle coating apparatus 100 according to the present invention, Figure 3 shows an actual application of another large-area substrate nanoparticle coating apparatus 100 to the present invention One perspective view.
나노입자 코팅 공정에는 나노입자 종류 및 직경, 나노입자코팅액의 농도, 용매의 종류, 나노입자코팅액에 첨가되는 화합물, 블레이드 또는 바를러와 기판간의 간격, 블레이드와 기판의 젖음성, 블레이드 두께, 바를러의 크기 (와이어 직경), 나노입자코팅액의 주입속도 및 양, 나노코팅의 속도 등의 공정 변수들이 존재하며, 이러한 변수들을 변화시키면 입자가 고루 잘 코팅된 높은 coverage의 단일층, 또는 다층의 코팅층을 얻을 수 있다. The nanoparticle coating process includes nanoparticle type and diameter, concentration of nanoparticle coating solution, solvent type, compound added to nanoparticle coating solution, spacing between blade or roller and substrate, wettability of blade and substrate, blade thickness, There are process variables such as size (wire diameter), injection speed and amount of nanoparticle coating liquid, and speed of nanocoating. It is possible to obtain a single layer or a multilayer coating layer.
도시된 바와 같이 본 발명에 따른 대면적기판 나노입자 코팅장치 (100)는 피처리기판 (S)의 표면에 나노입자를 포함하는 나노입자코팅액 (A)을 도포하여 나노입자가 단일충으로 배열된 나노입자코팅층 (MC)을 형성한다.  As shown in the large-area substrate nanoparticle coating apparatus 100 according to the present invention by applying a nanoparticle coating solution (A) containing nanoparticles on the surface of the substrate (S) to be treated, the nanoparticles are arranged in a single worm The nanoparticle coating layer (MC) is formed.
여기서, 피처리기판 (S)은 적어도 디스플레이 2세대인 370醒 χ470瞧 이상의 대면적이 사용될 수 있다. 물론, 경우에 따라 상술한 규격보다 작은 피처리기판이 사용될 수도 있다. Here, the substrate S to be processed may have a large area of at least 370 醒χ 470 瞧, which is at least a second generation of display. Of course, in some cases, a substrate to be processed smaller than the above-described standard may be used.
나노입자코팅액 (A)은 피처리기판 (S)의 코팅목적에 따라 다양한 형태로 형성될 수 있다. 즉, 전도성을 향상, 방수성능 향상, 빛의 반사조절, 바이오센서 등의 목적에 따라 금나노입자, 실리카나노입자, 고분자나노입자, 및 /또는 금속나노입자 등이 사용될 수 있다.  Nanoparticle coating liquid (A) may be formed in various forms depending on the purpose of coating the substrate (S). That is, gold nanoparticles, silica nanoparticles, polymer nanoparticles, and / or metal nanoparticles may be used according to the purpose of improving conductivity, improving waterproof performance, controlling light reflection, and biosensor.
본 발명에 따른 대면적기판 나노입자 코팅장치 (100)는 피처리가판 (S)이 적재되는 스테이 (110)와, 스테이 (110)의 상면에 배치되는 코팅블레이드부 (120)와, 코팅블레이드부 (120)와 수평하게 이격 배치되는 코팅바롤러부 (130)와, 코팅블레이드부 (120)와 코팅바롤러부 (130)로 나노입자코팅액 (A)을 공급하는 코팅액공급부 (150)와, 코팅바를러부 (130)와, 코팅블레이드부 (120), 코팅액공급부 (150)를 지지하는 지지프레임 (140), 및 스테이 (110)를 이송시킬 수 있는 스테이 이송부 (115)를 포함한다.  The large-area substrate nanoparticle coating apparatus 100 according to the present invention includes a stay 110 on which a substrate S to be processed is loaded, a coating blade portion 120 disposed on an upper surface of the stay 110, and a coating blade portion. A coating bar roller part 130 disposed horizontally spaced apart from the 120, a coating liquid supply part 150 supplying the nanoparticle coating liquid A to the coating blade part 120 and the coating bar roller part 130, and coating The painter 130, the coating blade 120, a support frame 140 for supporting the coating liquid supply 150, and a stay transfer unit 115 capable of transferring the stay 110 are included.
스테이 (110)는 코팅과정이 진행되는 동안 피처리기판 (S)의 위치를 고정한다. 스테이 (110)는 피처리기판 (S)의 면적 보다 크게 진행된다. 스테이 (110)의 판면에는 피처리기판 (S)을 고정시키기 위한 복수개의 흡착공 (111)이 구비된다. 흡착공 (111)은 진공압형성부 (113)에 의해 형성되는 진공압을 피처리기판 (S)으로 이가하여 피처리기판 (S)을 스테이 (110) 표면에 흡착시킨다. 이에 의해 피처리기판 (S)의 위치가 안정적으로 고정될 수 있다. 진공압형성부 (113)는 제어부 (160)의 제어에 의해 진공압을 형성 또는 해제하여 피처리기판 (S)을 스테이 (110) 표면에 구속시키거나 구속상태를 해제할 수 있다.  The stay 110 fixes the position of the substrate S to be processed during the coating process. The stay 110 proceeds larger than the area of the substrate S to be processed. The plate surface of the stay 110 is provided with a plurality of suction holes 111 for fixing the substrate (S) to be processed. The suction hole 111 transfers the vacuum pressure formed by the vacuum forming unit 113 to the substrate S to adsorb the substrate S to the surface of the stay 110. Thereby, the position of the substrate S to be processed can be fixed stably. The vacuum pressure forming unit 113 may form or release a vacuum pressure under the control of the controller 160 to restrain the substrate S on the surface of the stay 110 or release the restriction state.
한편, 스테이 (110)는 피처리기판 (S)의 길이방향으로 이동가능하게 구비된다. 스테이 (110)는 스테이이송부 (115)에 의해 이동된다. 스테이이송부 (115)는 코팅블레이드부 (120)에 대해 피처리기판 (S)이 상대이동되게 하여 피처리기판 (S) 표면에 나노입자코팅층 (MC)이 형성되도록 한다. On the other hand, the stay 110 is provided to be movable in the longitudinal direction of the substrate (S) to be processed. The stay 110 is moved by the stay transfer unit 115. The stay conveying unit 115 allows the substrate S to be relatively moved with respect to the coating blade unit 120. To form a nanoparticle coating layer (MC) on the substrate (S) surface.
제어부 (160)는 진공압형성부 ( 113)와 스테이이송부 ( 115)의 동작을 제어할 수 있다. 또한, 제어부 (160)는 제 1높이조절부 ( 125)와 제 2높이조절부 (133)의 동작을 제어할 수 있다.  The controller 160 may control operations of the vacuum pressure forming unit 113 and the stay transfer unit 115. In addition, the controller 160 may control operations of the first height adjusting unit 125 and the second height adjusting unit 133.
제어부 (160)는 피처리기판 (S)과 코팅블레이드 ( 120) 사이에 메니스커스 (M)가 형성된 후에, 스테이이송부 ( 115)가 스테이 ( 110)를 이동하도록 제어한다.  The control unit 160 controls the stay transfer unit 115 to move the stay 110 after the meniscus M is formed between the substrate S and the coating blade 120.
스테이이송부 (115)는 LM 가이드 방식으로 구현되거나, 이송벨트 및 이송풀리의 조합 또는 기어와 이송축의 조합 등으로 다양하게 구현될 수 있다. 도 4는 피처리기판 (S)의 나노입자코팅에 코팅블레이드부 ( 120)가 사용될 때의 구성을 도시한 예시도이고, 도 5는 코팅블레이드부 (120)에 의해 나노입자코팅층 (MC)이 형성되는 과정을 도시한 예시도이고, 도 6은 코팅블레이드부 (120)의 경사부 (123)와 피처리기판 (S) 사이의 이격 공간에 나노입자코팅액 (A)이 공급되는 과정을 도시한 예시도이다.  The stay transfer unit 115 may be implemented in the LM guide manner, or may be variously implemented by a combination of a conveying belt and a conveying pulley or a combination of a gear and a conveying shaft. 4 is a diagram illustrating a configuration when the coating blade unit 120 is used for nanoparticle coating of the substrate S to be processed, and FIG. 5 illustrates that the nanoparticle coating layer MC is formed by the coating blade unit 120. 6 is a view illustrating a process of forming, and FIG. 6 illustrates a process in which the nanoparticle coating liquid A is supplied to the spaced space between the inclined portion 123 and the substrate S to be coated. It is an illustration.
코팅블레이드부 (120)는 피처리기판 (S)의 표면에 나노입자코팅층 (MC)을 형성한다. 코팅블레이드부 (120)는 피처리기판 (S)에 대해 수직방향으로 배치되는 코팅블레이드본체 (121)와, 코팅블레이드본체 (121)의 하부로 연장형성된 경사부 ( 123)를 포함한다. 코팅블레이드본체 (121)는 피처리기판 (S)의 폭 (L, 도 6 참조)에 대웅되는 폭을 갖도록 형성된다.  The coating blade unit 120 forms a nanoparticle coating layer MC on the surface of the substrate S. The coating blade unit 120 includes a coating blade body 121 disposed in a vertical direction with respect to the substrate S to be processed, and an inclined portion 123 extending downward from the coating blade body 121. The coated blade body 121 is formed to have a width that is wider than the width L of the substrate S to be processed (see FIG. 6).
코팅블레이드본체 (121)는 도 3에 도시된 바와 같이 양단이 지지프레임 ( 140)에 결합된다. 이 때, 코팅블레이드본체 (121)는 제 1높이조절부 (125)에 의해 상하 높이가 가변되게 구비된다.  The coating blade body 121 is coupled to the support frame 140 at both ends as shown in FIG. At this time, the coating blade body 121 is provided so that the vertical height is variable by the first height adjustment unit (125).
경사부 ( 123)는 코팅블레이드본체 ( 121)의 하부로 연장형성된다. 경사부 ( 123)는 측단면의 폭이 아래로 갈수록 좁아지게 형성된다. 이에 따라 경사부 (123)의 측면이 경사면올 형성하게 된다. 경사면 상에 공급노즐 (153)이 배치되어 나노입자코팅액 (Α)이 경사면을 따라 이동하며 경사부 (123)의 하단면 ( 124)과 피처리기판 (S)사이의 이격거리 (d)사이로 공급되도록 한다. 이렇게 공급된 나노입자코팅액 (A)이 도 5에 확대도시된 바와 같이 이격거리 (d)에서 서로 웅집되면서 일정형상의 메니스커스 (M)를 형성하게 된다. 도 12를 참조하면, 피처리기판 (S)과 하단면 (124) 사이에 메니스커스 (M)가 형성된 예를 알 수 있다. 코팅블레이드 본체 ( 121)은 나노입자코팅액 (A)의 종류와 공급속도, 메니스커스 (M)의 형상 등을 고려하여 적절한 경사각도를 가지도록 코팅 시 각도조절이 가능하게 지지프레임 ( 140)에 부착되어 있으며 이로 인해 코팅층의 coverage를 조절할 수도 있다. The inclined portion 123 extends to the lower portion of the coating blade body 121. The inclined portion 123 is formed such that the width of the side cross-section becomes narrower toward the bottom. Accordingly, the side surface of the inclined portion 123 forms an inclined surface. The supply nozzle 153 is disposed on the inclined surface so that the nanoparticle coating liquid A moves along the inclined surface and is supplied between the distance d between the bottom surface 124 of the inclined portion 123 and the substrate S. Be sure to The nanoparticle coating liquid (A) thus supplied is constricted with each other at a separation distance (d) as shown in an enlarged view of FIG. 5 to form a meniscus (M) of a predetermined shape. Referring to FIG. 12, it can be seen that a meniscus M is formed between the substrate S and the bottom surface 124. The coating blade body 121 is formed on the support frame 140 so that the angle can be adjusted during coating to have an appropriate inclination angle in consideration of the type and supply speed of the nanoparticle coating liquid (A), the shape of the meniscus (M), and the like. It is attached and can also control the coverage of the coating layer.
본 발명에 따른 대면적기판 나노입자 코팅장치 (100)는 피처리기판 (S)의 나노입자코팅을 위해 코팅블레이드부 (120)와 코팅바를러부 (130)가 선택적으로 사용될 수 있다. 피처리기판 (S)의 종류, 나노입자코팅액 (A)의 성분 등을 고려하여 코팅효율이 보다 나은 것으로 선택하여 사용된다.  In the large-area substrate nanoparticle coating apparatus 100 according to the present invention, the coating blade portion 120 and the coating bar portion 130 may be selectively used for nanoparticle coating of the substrate S to be processed. In consideration of the type of substrate (S) to be processed, the components of the nanoparticle coating liquid (A), and the like, the coating efficiency is selected to be used.
코팅블레이드부 ( 120)를 나노입자코팅에 사용할 때는 도 4에 도시된 바와 같이 코팅블레이드부 ( 120)가 피처리기판 (S)과 근접한 높이로 위치하고 코팅바롤러부 (130)는 피처리기판 (S)으로부터 일정높이 (h2) 이격되게 배치된다. 반면, 코팅바롤러부 ( 130)를 나노입자코팅에 사용할 때는 도 7에 도시된 바와 같이 코팅바를러부 ( 130)를 피처리기판 (S)과 근접한 높이로 위치시키고 코팅블레이드부 (120)를 일정높이 (h2) 이격되게 배치시킨다.  When the coating blade unit 120 is used for nanoparticle coating, as shown in FIG. 4, the coating blade unit 120 is positioned at a height close to the substrate S, and the coating bar roller unit 130 is disposed on the substrate to be processed. It is arranged spaced apart from a certain height (h2) from S). On the other hand, when the coating bar roller portion 130 is used for nanoparticle coating, as shown in FIG. 7, the coating bar roller portion 130 is positioned at a height close to the substrate S and the coating blade portion 120 is fixed. Height (h2) spaced apart.
이를 위해서, 대면적기판 나노입자 코팅장치 (100)는 코팅블레이드부 ( 120)의 높이 -피처리기판 (S)으로부터의 높이-를 조절할 수 있는 거 U높이조절부 ( 125)와, 코팅바를러부 (130)의 높이 -피처리기판 (S)으로부터의 높이-를 조절할 수 있는 제 2높이조절부 ( 133)를 더 포함한다.  To this end, the large-area substrate nanoparticle coating apparatus 100 is capable of adjusting the height of the coating blade unit 120-the height from the substrate S to be processed U height adjusting unit 125, the coating bar portion And a second height adjustment part 133 capable of adjusting the height of the 130 -the height from the substrate S to be processed.
본 발명이 속한 기술분야에 속한 자 ( '당업자' )는 게 1높이조절부 (125)와 제 2높이조절부 (133)를 이용하여 코팅블레이드부 (120) 또는 코팅바를러부 (130) 중 어느 하나를 선택적으로 사용할 수 있으며, 또한 제 1높이조절부 ( 125)를 사용하여 메니스커스 (M)가 형성되도록 할 수 있다.  Those who belong to the technical field to which the present invention belongs (the person skilled in the art) is any one of the coating blade portion 120 or the coating bar portion 130 using the first height adjusting portion 125 and the second height adjusting portion 133. One may be selectively used, and the meniscus M may be formed using the first height adjusting part 125.
제 1높이조절부 (125)는 예를 들면 도 3에 도시된 바와 같이 높이조절게이지와, 높이표시부 ( 125a)로 구비된다. 따라서 당업자는 높이표시부 ( 125a)에 디지털방식으로 표시되는 코팅블레이드본체 (121)의 높이를 육안으로 확인하며 정밀하게 높이를 조절할 수 있다.  The first height adjustment unit 125 is provided with a height adjustment gauge and a height display unit 125a, for example, as shown in FIG. Therefore, those skilled in the art can visually check the height of the coating blade body 121 that is digitally displayed on the height display unit 125a, and precisely adjust the height.
한편, 게 1높이조절부 (125)는 나노입자코팅액 (A)의 성분과 피처리기판 (S)의 종류에 따라 피처리기판 (S)과 코팅블레이드본체 (121)의 이격 공간 조절을 위해 사용될 수도 있다. 피처리기판 (S)과 코팅블레이드본체 (121) 간의 이격 공간 사이에 나노입자코팅액 (A)이 공급되고 메니스커스 (M)가 형성된다. 이 때, 메니스커스 (M)의 형성에 이격 공간이 중요한 팩트가 되므로 당업자는 이격 공간을 미세하게 조절한다. Meanwhile, the crab 1 height adjusting unit 125 may be used to control the space between the substrate S and the coating blade body 121 according to the component of the nanoparticle coating liquid A and the type of substrate S. It may be. The nanoparticle coating liquid A is supplied between the space to be processed between the substrate S and the coating blade body 121, and a meniscus M is formed. At this time, Since the separation space becomes an important factor in the formation of the meniscus M, those skilled in the art finely control the separation space.
코팅바를러부 (130)는 피처리기판 (S)에 나노입자코팅층을 형성한다. 코팅바를러부 (130)는 코팅블레이드부 ( 120)와 선택적으로 사용된다. 코팅바롤러부 ( 130)는 나노입자코팅액 (A)을 피처리기판 (S) 상에 코팅한다.  The coating barler part 130 forms a nanoparticle coating layer on the substrate S to be processed. The coating bar portion 130 is optionally used with the coating blade portion 120. The coating bar roller unit 130 coats the nanoparticle coating liquid (A) on the substrate S to be processed.
코팅바를러부 ( 130)의 종류와 크기 (와이어 직경 )은 피처리기판 (S)과의 이격 공간 (d) 상에 형성되는 메니스커스 (M)의 형상을 고려하여 설계될 수 있다. 코팅바롤러부 (130)는 제 2높이조절부 (133)에 의해 피처리기판 (S)으로부터의 높이가 조절될 수 있다. 제 2높이조절부 (133)는, 예를 들면, 제 1높이조절부 ( 125)와 동일 또는 유사하게 구성될 수 있다.  The type and size (wire diameter) of the coating roller portion 130 may be designed in consideration of the shape of the meniscus M formed on the spaced space d from the substrate S. The coating bar roller part 130 may be adjusted in height from the substrate S to be processed by the second height adjusting part 133. For example, the second height adjusting unit 133 may be configured to be the same as or similar to the first height adjusting unit 125.
지지프레임 (140)은 코팅블레이드부 (120)와, 코팅바를러부 ( 130) 및 코팅액공급부 ( 150)를 지지한다. 지지프레임 (140)은 도 3에 도시된 바와 같이 코팅블레이드부 ( 120)와, 코팅바롤러부 ( 130)의 상면에 수평하게 배치된다. 지지프레임 ( 140)이 코팅블레이드부 ( 120)와 코팅바를러부 (130)의 상면을 커버하여 나노입자코팅 과정 중에 나노입자코팅액 (A)과 코팅영역에 이물질 등이 유입되는 것을 차단할 수 있다.  The support frame 140 supports the coating blade unit 120, the coating bar roller unit 130, and the coating liquid supply unit 150. The support frame 140 is disposed horizontally on the upper surface of the coating blade portion 120 and the coating bar roller portion 130 as shown in FIG. The support frame 140 may cover the top surfaces of the coating blade unit 120 and the coating barler unit 130 to block foreign substances from entering the nanoparticle coating liquid A and the coating area during the nanoparticle coating process.
지지프레임 (140)의 양단부에는 수직하게 형성된 한 쌍의 수직프레임 ( 141)이 구비된다. 한 쌍의 수직프레임 (141)에 코팅바롤러부 ( 130)의 지지축 (135)과 노즐지지프레임 (157)이 결합된다.  Both ends of the support frame 140 are provided with a pair of vertical frames 141 formed vertically. The support shaft 135 and the nozzle support frame 157 of the coating bar roller unit 130 are coupled to the pair of vertical frames 141.
코팅액공급부 ( 150)는 코팅블레이드부 (120) 또는 코팅바를러부 (130)로 나노입자코팅액을 공급한다. 코팅액공급부 (150)는 나노입자코팅액 (A)이 저장되는 코팅액탱크 ( 151)와, 코팅블레이드부 ( 120) 또는 코팅바롤러부 (130)로 코팅액을 직접 공급하는 공급노즐 ( 153)과, 코팅액탱크 (151)와 공급노즐 ( 153)을 연결하는 공급관 ( 155)과, 지지프레임 ( 140)에 고정되는 노즐지지프레임 (157)과, 노즐지지프레임 (157)에 공급노즐 (153)을 고정시키는 고정지그 ( 154)를 포함한다. 코팅액탱크 ( 151)는 나노입자코팅액 (A)이 저장된다. 코팅액탱크 (151)는 일정한 압력으로 나노입자코팅액 (A)을 공급노즐 ( 153)로 공급한다.  The coating liquid supply unit 150 supplies the nanoparticle coating liquid to the coating blade unit 120 or the coating bar roller unit 130. The coating liquid supply unit 150 includes a coating liquid tank 151 for storing the nanoparticle coating liquid A, a supply nozzle 153 for directly supplying the coating liquid to the coating blade unit 120 or the coating bar roller unit 130, and the coating liquid. A supply pipe 155 connecting the tank 151 and the supply nozzle 153, a nozzle support frame 157 fixed to the support frame 140, and a supply nozzle 153 fixed to the nozzle support frame 157. Fixing jig 154. The coating liquid tank 151 stores the nanoparticle coating liquid (A). The coating liquid tank 151 supplies the nanoparticle coating liquid A to the supply nozzle 153 at a constant pressure.
공급노즐 (153)은 공급관 (155)을 통해 공급받은 나노입자코팅액 (A)을 코팅블레이드부 (120) 또는 코팅바롤러부 (130)로 공급한다. 공급노즐 ( 153)은 단부 ( 153a)가 코팅블레이드부 (120)의 경사부 (123)와 접촉되도록 배치되어 나노입자코팅액 (A)을 경사부 (123)의 경사면으로 직접 분사한다. The supply nozzle 153 supplies the nanoparticle coating liquid A supplied through the supply pipe 155 to the coating blade unit 120 or the coating bar roller unit 130. The supply nozzle 153 is arranged such that the end 153a is in contact with the inclined portion 123 of the coating blade portion 120. The nanoparticle coating liquid (A) is directly sprayed on the inclined surface of the inclined portion 123.
노즐지지프레임 (157)은 도 3에 도시된 바와 같이 수직프레임 (141) 사이에 수평하게 설치된다. 고정지그 (154)는 노즐지지프레임 (157) 상에 고정되어 공급노즐 (153)의 위치가 안정적으로 고정되도록 한다. 공급노즐 (153)의 위치가 이동될 경우 코팅과정 동안 나노입자코팅액 (A)의 교란이 발생될 수 있다. 이에 고정지그 (154)는 공급노즐 (153)의 위치를 견고하게 고정시킨다.  The nozzle support frame 157 is horizontally installed between the vertical frames 141 as shown in FIG. The fixing jig 154 is fixed on the nozzle support frame 157 so that the position of the supply nozzle 153 is stably fixed. If the position of the supply nozzle 153 is shifted, disturbance of the nanoparticle coating liquid (A) may occur during the coating process. The fixing jig 154 firmly fixes the position of the supply nozzle 153.
도면에 도시되지 않았으나 공급관 (155) 또는 공급노즐 (153)의 일측에는 공급노즐 (153)을 개폐하는 개폐밸브 (미도시)가 구비된다. 개폐밸브 (미도시)는 제어부 (160)의 제어에 의해 구동된다.  Although not shown in the drawing, one side of the supply pipe 155 or the supply nozzle 153 is provided with an on / off valve (not shown) for opening and closing the supply nozzle 153. On-off valve (not shown) is driven by the control of the controller 160.
이러한 구성을 갖는 본 발명에 따른 대면적기판 나노입자 코팅장치 (100)의 사용과정을 도 2 내지 도 8을 참조하여 설명한다.  The use process of the large-area substrate nanoparticle coating apparatus 100 according to the present invention having such a configuration will be described with reference to FIGS. 2 to 8.
도 2와 도 3에 도시된 바와 같이 스테이 (110)의 상면에 피처리기판 (S)의 안착시킨다. 진공압형성부 (113)를 구동시켜 스테이 (110) 상면에 진공압을 형성시킨다. 이에 의해 피처리기판 (S)이 스테이 (110)에 흡착되어 위치가 고정된다.  As shown in FIG. 2 and FIG. 3, the substrate S is mounted on the upper surface of the stay 110. The vacuum pressure forming unit 113 is driven to form a vacuum pressure on the top surface of the stay 110. As a result, the substrate S to be processed is attracted to the stay 110 and the position thereof is fixed.
피처리기판 (S)의 코팅에 코팅블레이드부 (120)가 사용되는 경우를 먼저 설명한다. 도 4에 도시된 바와 같이 코팅블레이드부 (120)의 높이를 피처리기판 (S)과 근접하게 조절하고, 코팅바를러부 (130)의 높이를 피처리기판 (S)과 이격되게 조절한다.  First, a case in which the coating blade unit 120 is used to coat the substrate S is described. As shown in FIG. 4, the height of the coating blade 120 is adjusted to be close to the substrate S, and the height of the coating bar portion 130 is adjusted to be spaced apart from the substrate S. FIG.
노즐지지프레임 (157) 상에 공급노즐 (153)을 고정시킨다. 개폐밸브 (미도시 )를 개방하면 코팅액탱크 (151)로부터 나노입자코팅액 (A)이 공급노즐 (153)로 공급된다. 단부 (153a)를 통해 나노입자코팅액 (A)이 경사부 (123)의 경사면으로 공급된다.  The supply nozzle 153 is fixed on the nozzle support frame 157. When the on-off valve (not shown) is opened, the nanoparticle coating liquid A is supplied from the coating liquid tank 151 to the supply nozzle 153. The nanoparticle coating liquid A is supplied to the inclined surface of the inclined portion 123 through the end portion 153a.
도 5에 도시된 바와 같이 경사부 (123)의 경사면을 따라 이동된 나노입자코팅액 (A)은 피처리기판 (S)과 경사부 (123)의 하단면 (124) 사이의 이격거리로 유입되고 일정 형상의 메니스커스 (M)가 형성된다. 메니스커스 (M)는 도 6에 도시된 바와 같이 피처리기판 (S)의 폭방향을 따라 좌우로 점차 확산되어 이동된다.  As shown in FIG. 5, the nanoparticle coating liquid A moved along the inclined surface of the inclined portion 123 is introduced into the separation distance between the substrate S and the bottom surface 124 of the inclined portion 123. A meniscus M of a predetermined shape is formed. As shown in FIG. 6, the meniscus M gradually spreads to the left and right along the width direction of the substrate S to be processed.
공급노즐 (153)을 중심으로 좌우로 점차 확산된 나노입자코팅액 (A)이 피처리기판 (S)의 전체 폭을 커버하도록 공급되면, 스테이이송부 (115)가 구동되어 스테이 ( 110)가 진행방향으로 이동된다. 이에 의해 메니스커스 (M)를 형성하는 나노입자가 도 5에 확대도시된 바와 같이 피처리기판 (S)의 표면에 한 층으로 펼쳐지면서 나노입자코팅충 (MC)을 형성하게 된다. When the nanoparticle coating liquid A gradually diffused from side to side around the supply nozzle 153 is supplied to cover the entire width of the substrate S, the stay transfer unit 115 is driven. The stay 110 is moved in the advancing direction. As a result, the nanoparticles forming the meniscus M are spread out in one layer on the surface of the substrate S to be expanded as shown in FIG. 5, thereby forming the nanoparticle coating worm MC .
이 때, 공급노즐 ( 153)이 연속하여 나노입자코팅액 (A)을 경사부 (123)로 공급하고 스테이이송부 (115)에 의해 스테이 (110)가 이동되므로 빠른 속도로 코팅과정이 형성될 수 있다. 코팅속도는 나노입자코팅액 (A)의 종류와 피처리기판 (S)의 종류에 따라 달라질 수 있으나 1초에 lcm~3cm만큼 이동될 수 있다. 따라서, 대면적기판도 빠르게 코팅과정을 완료할 수 있다.  At this time, since the supply nozzle 153 continuously supplies the nanoparticle coating liquid A to the inclined portion 123 and the stay 110 is moved by the stay transfer portion 115, a coating process may be formed at a high speed. . The coating speed may vary depending on the type of nanoparticle coating liquid (A) and the type of substrate (S) to be processed, but may be shifted by 1 cm to 3 cm per second. Thus, large area substrates can also complete the coating process quickly.
또한, 나노입자코팅액 (A)이 피처의기판 (S)과 경사부 (123) 사이의 계면에 형성되는 메니스커스 (M)에 의해 나노입자코팅층 (MC)이 형성된다. 따라서ᅳ 나노입자가 한 층으로 균일하게 배열되어 나노입자코팅층 (MC)이 전영역에 걸쳐 균일하게 형성될 수 있다.  Further, the nanoparticle coating layer MC is formed by the meniscus M in which the nanoparticle coating liquid A is formed at the interface between the substrate S of the feature and the inclined portion 123. Therefore, the nanoparticles may be uniformly arranged in one layer so that the nanoparticle coating layer MC may be uniformly formed over the entire area.
한편, 도 7은 코팅바롤러부 ( 130)를 이용해 나노입자코팅층 (MC)을 형성하는 과정을 도시한 예시도이다. 코팅바를러부 (130)를 피처리기판 (S)과 근접하게 높이를 조절하고, 코팅블레이드부 (120)를 피처리기판 (S)과 이격되게 높이를 조절한다.  On the other hand, Figure 7 is an exemplary view showing a process of forming a nanoparticle coating layer (MC) using the coating bar roller portion 130. The height of the coating bar roller 130 is adjusted to be close to the substrate S, and the height of the coating blade 120 is spaced apart from the substrate S.
그리고, 코팅바를러부 (130)와 근접하게 공급노즐 ( 153)을 배치하고, 공급노즐 (153)의 단부가 코팅바를러 (131)의 표면과 접촉되게 배치한다. 개폐밸브 (미도시)를 개방하면 공급노즐 ( 153)로부터 나노입자코팅액 (A)이 공급된다.  Then, the supply nozzle 153 is disposed close to the coating bar roller 130, and the end of the supply nozzle 153 is disposed in contact with the surface of the coating bar roller 131. When the on-off valve (not shown) is opened, the nanoparticle coating liquid A is supplied from the supply nozzle 153.
도 8에 도시된 바와 같이 코팅바롤러 ( 131)와 피처리기판 (S) 사이의 이격거리로 나노입자코팅액 (A)이 공급되고 메니스커스 (M)가 형성된다. 이 상태에서 스테이 ( 110)가 이동되면 피처리기판 (S) 표면에 나노입자코팅층 (MC)이 형성된다. 이 경우에도 상술한 바와 같이 피처리기판 (S) 표면에 나노입자가 한 층으로 균일하게 배열되는 나노입자코팅층 (MC)이 형성된다.  As shown in FIG. 8, the nanoparticle coating liquid A is supplied at a separation distance between the coating bar roller 131 and the substrate S to be processed, and a meniscus M is formed. When the stay 110 is moved in this state, the nanoparticle coating layer MC is formed on the surface of the substrate S. In this case, as described above, the nanoparticle coating layer MC is formed on the surface of the substrate S to be uniformly arranged in one layer.
이상에서 살펴본 바와 같이 본 발명에 따른 대면적기판 나노입자 코팅장치는 코팅블레이드 또는 코팅바를러의 표면에 직접 나노입자코팅액을 공급하고 피처리기판과의 사이에 메니스커스를 형성하여 나노입자코팅층을 형성한다ᅳ 이에 의해 전 면적에 걸쳐 균일한 나노입자코팅층이 형성될 수 있다. 또한, 연속적으로 나노입자코팅액이 공급되므로 고속으로 피처리기판의 코팅과정이 완료될 수 있다. As described above, the large-area substrate nanoparticle coating apparatus according to the present invention supplies the nanoparticle coating liquid directly to the surface of the coating blade or the coating barrier and forms a meniscus between the substrate to be treated to form the nanoparticle coating layer. This allows a uniform nanoparticle coating layer to be formed over the entire area. In addition, since nanoparticle coating liquid is continuously supplied, The coating process can be completed.
또한, 기판의 종류, 나노입자코팅액의 종류 등을 고려하여 코팅블레이드와 코팅바롤러 중 보다 고품질의 코팅효율을 나타내는 것을 선택하여 사용할 수 있다.  In addition, in consideration of the type of substrate, the type of nanoparticle coating liquid, etc., the coating blade and the coating bar roller may be selected to exhibit higher quality coating efficiency.
한편, 도 9는 본 발명의 다른 실시예에 따른 대면적기판 나노입자 코팅장치 (100a)의 구성을 개략적으로 도시한 개략도이다.  On the other hand, Figure 9 is a schematic diagram schematically showing the configuration of a large-area substrate nanoparticle coating apparatus 100a according to another embodiment of the present invention.
앞서 설명한 본 발명의 바람직한 실시예에 따른 대면적기판 나노입자 코팅장치 (100)는 한 개의 공급노즐 (153)이 나노입자코팅액 (A)을 코팅블레이드부 (120) 또는 코팅바를러부 (130)로 분사하여 코팅이 진행되었다. 이에 의해 한 개의 공급노즐 (153)을 중심으로 피처리기판 (S)의 전체 폭으로 메니스커스 (M)가 형성되는데까지 상당 시간이 소요될 수 있다.  In the large-area substrate nanoparticle coating apparatus 100 according to the preferred embodiment of the present invention described above, one supply nozzle 153 has a nanoparticle coating liquid A as the coating blade portion 120 or the coating bar portion 130. The coating proceeded by spraying. As a result, it may take a long time for the meniscus M to be formed with the entire width of the substrate S to be processed, centering on one supply nozzle 153.
본 발명의 다른 실시예에 따른 대면적기판 나노입자 코팅장치 (100a)는 이러한 점을 개선하기 위해 복수개의 공급노즐 (153,153a, 153b)을 일정간격으로 배치한다. 그리고, 복수개의 공급노즐 (153 ,153a ,153b)에서 동시에 나노입자코팅액 (A)을 공급한다ᅳ  The large-area substrate nanoparticle coating apparatus 100a according to another embodiment of the present invention arranges the plurality of supply nozzles 153, 153a and 153b at regular intervals to improve this point. Then, the nanoparticle coating liquid A is simultaneously supplied from the plurality of supply nozzles 153, 153a and 153b.
이에 의해 거 11공급노즐 (153)로부터 공급된 나노입자코팅액 (A)이 제 1폭 (wl)만큼 메니스커스 (M)를 형성하고, 제 2공급노즐 (153a)이 제 2폭 (w2)만큼 메니스커스 (M)를 형성하고 제 3공급노즐 (153a)이 제 3폭 (w3)만큼 메니스커스 (M)를 형성한다. 따라서, 한 개의 공급노즐(153)을 사용할 때와 비교할 때 피처리기판 (S)의 전체 폭으로 나노입자코팅액 (A)의 메니스커스 (M)를 형성하는 시간이 1/3로 줄어들게 된다. As a result, the nanoparticle coating liquid A supplied from the giant 11 supply nozzle 153 forms the meniscus M by the first width wl, and the second supply nozzle 153a is the second width w2. The meniscus M is formed as much as the third supply nozzle 153a forms the meniscus M by the third width w3. Therefore, the time for forming the meniscus M of the nanoparticle coating liquid A is reduced by 1/3 compared to when using one supply nozzle 153 with the entire width of the substrate S to be processed.
따라서, 나노입자코팅 시간을 보다 더 고속으로 구현할 수 있다.  Therefore, the nanoparticle coating time can be implemented at a higher speed.
여기서, 복수개의 공급노즐 (153, 153a, 153b)을 사용할 경우 복수개의 공급관 (155)이 사용되어야 한다. 이 때, 복수개의 공급노즐 (153 ,153a ,153b)로부터 분사되는 나노입자코팅액 (A)은 동일한 압력으로 분사되어야 한다. 이를 위해 복수개의 공급관 (155)의 길이를 동일하게 유지시키고 코팅액탱크 (151) 내부에서 각 공급관 (155)으로 나노입자코팅액 (A)이 동일한 압력으로 분산되어 공급되도록 한다.  Here, when using a plurality of supply nozzles (153, 153a, 153b), a plurality of supply pipes (155) should be used. At this time, the nanoparticle coating liquid A injected from the plurality of supply nozzles 153, 153a and 153b should be injected at the same pressure. To this end, the lengths of the plurality of supply pipes 155 are maintained to be the same, and the nanoparticle coating liquid A is dispersed and supplied at the same pressure to each supply pipe 155 in the coating liquid tank 151.
도 10은 본 발명의 다른 실시예에 따른 따른 대면적기판 나노입자 코팅장치의 구성을 개략적으로 도시한 개략도이다. 도 10을 참조하면, 본 대면적기판 나노입자 코팅장치는, 피처리기판 (S)이 적재되는 스테이 (210)와,스테이 (210)의 상면에 배치되는 코팅블레이드부 (220)와, 코팅블레이드부 (220)와 수평하게 이격 배치되는 코팅바를러부 (230)와, 코팅블레이드부 (220)와 코팅바를러부 (230)로 나노입자코팅액 (A)을 공급하는 코팅액공급부 (250)와, 코팅바를러부 (230)와, 코팅블레이드부 (220), 코팅액공급부 (250)를 지지하는 지지프레임 (240) , 및 스테이 (210)를 이송시킬 수 있는 스테이 이송부 (215), 코팅블레이드부 (220)의 높이 -피처리기판 (S)으로부터의 높이ᅳ를 조절할 수 있는 제 1높이조절부 (225), 코팅바를러부 (230)의 높이ᅳ피처리기판 (S)으로부터의 높이ᅳ를 조절할 수 있는 제 2높이조절부 (233), 게 1높이조절부 (225)를 구동시키는 제 2구동부 (226), 제 2높이조절부 (233)를 구동시키는 제 1구동부 (232) , 및 제어부 (260)를 포함한다. 10 is a schematic view showing the configuration of a large-area substrate nanoparticle coating apparatus according to another embodiment of the present invention. Referring to FIG. 10, the large-area substrate nanoparticle coating apparatus includes a stay 210 on which a substrate S to be processed is loaded, a coating blade portion 220 disposed on an upper surface of the stay 210, and a coating blade. The coating bar roller unit 230 and horizontally spaced apart from the unit 220, the coating blade supply unit 250 for supplying the nanoparticle coating liquid (A) to the coating blade unit 220 and the coating bar roller unit 230, and the coating bar Of the stayer portion 230, the coating blade portion 220, the support frame 240 supporting the coating liquid supplying portion 250, and the stay conveying portion 215 and the coating blade portion 220 capable of transferring the stay 210. Height-The first height adjustment unit 225, which can adjust the height 으로부터 from the substrate S, and the height 으로부터 of the coating roller portion 230, the second 수, which can adjust the height ᅳ from the substrate S. 2nd driving part 226 which drives the height adjusting part 233, the crab 1 height adjusting part 225, and a 2nd height set A first driving unit 232, and controller 260 for driving the portion 233.
도 2의 실시예와 비교하면, 도 10의 대면적기판 나노입자 코팅장치는 게 1높이조절부 (225)를 구동시키는 게 2구동부 (226) , 제 2높이조절부 (233)를 구동시키는 제 1구동부 (232)를 더 포함하고 있고, 이들 구동부들을 각각 제어부 (260)가 제어한다는 점에서 차이가 있다.  Compared with the embodiment of FIG. 2, the large-area substrate nanoparticle coating apparatus of FIG. The driving unit 232 is further included, and the driving unit controls each of these driving units.
제어부 (260)는 게 1높이조절부 (225)를 구동시키는 제 2구동부 (226)와, 제 2높이조절부 (233)를 동작시키는 제 1구동부 (232) 등의 동작을 제어할 수 있다. 또한, 제어부 (260)는 메니스커스 (M)가 형성되도록 나노입자코팅액 (A)의 성분과 피처리기판 (S)의 종류에 따라서 이격 공간이 형성되도록, 제 1높이조절부 (225)의 동작을 제어할 수 있다.  The controller 260 may control operations of the second driving unit 226 for driving the crab first height adjusting unit 225 and the first driving unit 232 for operating the second height adjusting unit 233. In addition, the control unit 260 is to form a separation space according to the component of the nanoparticle coating liquid (A) and the type of substrate (S) to form the meniscus (M), the first height of the adjusting portion 225 You can control the operation.
제어부 (260)는, 진공압형성부 (213)와 스테이이송부 (215)의 동작을 제어하며,  The control unit 260 controls the operations of the vacuum pressure forming unit 213 and the stay transfer unit 215,
여기서 피처리기판 (S)과 코팅블레이드 (220) 사이에 메니스커스 (M)가 형성된 후에, 스테이이송부 (215)가 스테이 (210)를 이동하도록 제어한다.  Here, after the meniscus M is formed between the substrate S and the coating blade 220, the stay transfer unit 215 controls to move the stay 210.
이상 도 10의 대면적기판 나노입자 코팅장치에서 설명하지 않은 구성요소들은, 도 2의 대면적기판 나노입자 코팅장치에서 유사한 도면번호가 부여된 구성요소들과 동일 또는 유사하게 동작하므로, 그 상세한 설명은 생략하기로 한다.  Components not described above in the large-area substrate nanoparticle coating apparatus of FIG. 10 operate the same or similar to those with similar reference numerals in the large-area substrate nanoparticle coating apparatus of FIG. Will be omitted.
도 11은 본 발명의 다른 실시예에 따른 유리기판에 150nm 직경의 폴리스티렌 나노입자가 코팅된 상태의 전자현미경 사진을 보여준다. 직경이 150 nm인 폴리스티렌 나노입자를 에탄을에 5%의 농도로 만들어 나노입자코팅액을 준비하였고, 블레이드와 기판과의 간격은 300um로 유지하며 코팅속도는 10議 /s로 하여 나노입자코팅을 시행하였다. 이렇게 얻어진 비교적 균일한 나노입자코팅층은 플라즈마내에서 유리를 보호하는 마스크로 사용되어, 나노식각공정 후 얻어진 나노필라를 표면에 가진 유리는 탁월한 반사방지효과를 보여 투과도가 96%까지 증가됨을 확인하였다. FIG. 11 shows an electron micrograph of a glass substrate coated with polystyrene nanoparticles having a diameter of 150 nm according to another embodiment of the present invention. Diameter 150 The nanoparticle coating solution was prepared by preparing the nanoparticle polystyrene nanoparticles at a concentration of 5% in ethane, and maintaining the spacing between the blade and the substrate at 300um and the coating speed at 10 議 / s. The relatively uniform nanoparticle coating layer thus obtained was used as a mask to protect the glass in the plasma, and the glass having the nanopillar obtained after the nanoetching process on the surface showed excellent antireflection effect and the transmittance was increased to 96%.
이상에서 설명된 본 발명의 대면적기판 나노입자 코팅장치의 실시예는 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있올 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.  Embodiment of the large-area substrate nanoparticle coating apparatus of the present invention described above is merely exemplary, and those skilled in the art to which the present invention pertains various modifications and equivalent other embodiments are possible. You will be well aware of this. Therefore, it will be understood that the present invention is not limited to the forms mentioned in the above detailed description. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims. It is also to be understood that the present invention includes all modifications, equivalents and substitutions within the spirit and scope of the invention as defined by the appended claims.
[부호의 설명] [Description of the code]
100 대면적기판 나노입자 코팅장치 110 스테이  100 large area substrate nano particle coating equipment 110 stays
111 흡착공 113 진공압형성부  111 Adsorption Hole 113 Vacuum Pressure Forming Part
115 스테이이송부 120 코팅블레이드부 115 Stay feed part 120 Coating blade part
121 코팅블레이드본체 123 경사부 121 Coating blade body 123 Inclined part
124 하단면 125 제 1높이조절부 124 Lower surface 125 First height adjustment part
130 코팅바를러부 131 코팅바를러 130 Coating Bar Roller 131 Coating Bar Roller
133 제 2높이조절부 135 지지축  133 Second Height Adjuster 135 Support Shaft
140 지지프레임 141 수직프레임  140 Support frame 141 Vertical frame
150 코팅액공급부 151 코팅액탱크  150 Coating Liquid Supply Unit 151 Coating Liquid Tank
153 고그  153 gog
ᄋ ᄇ丄!—즈 154 고정지그 즈 154!
155 공급관 157 노즐지지프레임155 Supply Line 157 Nozzle Support Frame
160 제어부 160 control unit

Claims

【청구의 범위】 【Scope of Claim】
【청구항 1】 【Claim 1】
상면에 피처리기판이 흡착지지되며 직선이동가능하게 구비되는 스테이; 상기 피처리기판과 이격되게 수직 배치되는 코팅블레이드; 및 A stay on which the substrate to be processed is adsorbed and supported on the upper surface and is capable of moving in a straight line; A coating blade disposed vertically and spaced apart from the substrate to be processed; and
상기 코팅블레이드의 표면으로 나노입자코팅액을 공급하는 공급노즐을 포함하며, It includes a supply nozzle that supplies nanoparticle coating liquid to the surface of the coating blade,
상기 피처리기판과 상기 코팅블레이드 사이의 이격 공간에 상기 공급노즐로부터 공급된 나노입자코팅액이 모세관현상에 의해 메니스커스를 형성하고, 상기 스테이가 이동됨에 따라서 상기 피처리기판 표면에 나노입자가 도포됨으로써 나노입자코팅층이 형성되는 것을 특징으로 하는 대면적기판 나노입자 코팅장치 . The nanoparticle coating liquid supplied from the supply nozzle in the space between the substrate to be processed and the coating blade forms a meniscus by capillary action, and as the stay moves, nanoparticles are applied to the surface of the substrate to be processed. A large-area substrate nanoparticle coating device characterized in that a nanoparticle coating layer is formed by forming a nanoparticle coating layer.
【청구항 2] [Claim 2]
제 1항에 있어서, In clause 1,
상기 코팅블레이드는, The coated blade,
코팅블레이드본체와; A coated blade body;
상기 코팅블레이드본체의 하부영역으로 연장 형성되며 일측면의 폭이 아래로 갈수록 줄어들게 형성된 경사부를 포함하며, It extends to the lower area of the coating blade body and includes an inclined portion whose width on one side decreases downward,
상기 공급노즐은 상기 경사부에 접촉되게 배치되어 상기 나노입자코팅액을 상기 경사부의 표면으로 직접 공급하는 것을 특징으로 하는 대면적기판 나노입자 코팅장치 . The supply nozzle is disposed in contact with the inclined portion to supply the nanoparticle coating liquid directly to the surface of the inclined portion.
【청구항 3] [Claim 3]
제 2항에 있어서, In paragraph 2,
상기 코팅블레이드는 상기 피처리기판의 폭과 대응되는 폭을 갖도록 형성되고, The coating blade is formed to have a width corresponding to the width of the substrate to be processed,
상기 메니스커스가 상기 코팅블레이드의 전체 폭을 따라 형성되면, 상기 스테이가 상기 피처리기판의 길이방향을 따라 이동되는 것을 특징으로 하는 대면적기판 나노입자 코팅장치 . When the meniscus is formed along the entire width of the coating blade, the stay is moved along the longitudinal direction of the substrate to be processed.
【청구항 4】 【Claim 4】
거 13항에 있어서, In paragraph 13,
나노입자코팅액이 저장되는 코팅액탱크와; a coating liquid tank in which the nanoparticle coating liquid is stored;
상기 코팅액탱크의 나노입자코팅액을 상기 공급노즐로 공급하는 공급관을 포함하는 것을 특징으로 하는 대면적기판 나노입자 코팅장치 . A large-area substrate nanoparticle coating device comprising a supply pipe that supplies the nanoparticle coating solution from the coating solution tank to the supply nozzle.
【청구항 5】 【Claim 5】
제 4항에 있어서, In clause 4,
상기 공급노즐은 상기 코팅블레이드의 폭방향으로 일정간격으로 복수개가 형성되는 것을 특징으로 하는 대면적기판 나노입자 코팅장치. A large-area substrate nanoparticle coating device, characterized in that a plurality of supply nozzles are formed at regular intervals in the width direction of the coating blade.
【청구항 6】 ' 【Claim 6】 '
제 5항에 있어서, In clause 5,
상기 복수개의 공급노즐로 나노입자코팅액을 각각 공급하는 복수개의 공급관을 더 포함하며, It further includes a plurality of supply pipes that respectively supply nanoparticle coating liquid to the plurality of supply nozzles,
상기 복수개의 공급관은 동일한 길이로 형성되며 상기 복수개의 공급노즐로부터 분사되는 나노입자코팅액 분사압력이 동일해지도록 구비되는 것을 특징으로 하는 대면적기판 나노입자 코팅장치. The plurality of supply pipes are formed with the same length and are provided so that the spray pressure of the nanoparticle coating liquid sprayed from the plurality of supply nozzles is the same.
【청구항 7】 【Claim 7】
거 U항 내지 제 6항 중 어느 한 항에 있어서, In any one of paragraphs U to 6,
상기 코팅블레이드와 이격되게 배치되고, 상기 코팅블레이드와 선택적으로 사용되며 상기 피처리기판에 나노입자코팅액을 코팅하는 코팅바를러를 더 포함하는 것을 특징으로 하는 대면적기판 나노입자 코팅장치 . A large-area substrate nanoparticle coating device that is disposed to be spaced apart from the coating blade, is used selectively with the coating blade, and further includes a coating coater that coats the substrate to be processed with a nanoparticle coating solution.
【청구항 8】 【Claim 8】
제 7항에 있어서, In clause 7,
상기 코팅블레이드의 피처리기판에 대한 높이를 조절하는 제 1높이조절부와; a first height adjustment unit that adjusts the height of the coating blade with respect to the substrate to be processed;
상기 코팅바롤러의 피처리기판에 대한 높이를 조절하는 게 2높이조절부를 더 포함하는 것을 특징으로 하는 대면적기판 나노입자 코팅장치 . Adjusting the height of the coating bar roller with respect to the substrate to be processed is performed using the 2 height adjustment unit. A large-area substrate nanoparticle coating device further comprising:
【청구항 9] [Claim 9]
제 8항에 있어서, According to clause 8,
상기 게 1높이조절부를 구동하는 구동부; 및 A driving unit that drives the crab 1 height adjustment unit; and
상기 피처리기판과 상기 코팅블레이드간에 메니스커스가 형성되도록, 상기 구동부의 동작을 제어하는 제어부;를 더 포함하는 것을 특징으로 하는 대면적기판 나노입자 코팅장치 . A large-area substrate nanoparticle coating device further comprising a control unit that controls the operation of the drive unit so that a meniscus is formed between the substrate to be processed and the coating blade.
PCT/KR2014/003152 2013-11-21 2014-04-11 Large area substrate nanoparticle coating apparatus WO2015076466A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130142142A KR20150058860A (en) 2013-11-21 2013-11-21 Nano particle coating apparatus for large area substrate
KR10-2013-0142142 2013-11-21

Publications (1)

Publication Number Publication Date
WO2015076466A1 true WO2015076466A1 (en) 2015-05-28

Family

ID=53179715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003152 WO2015076466A1 (en) 2013-11-21 2014-04-11 Large area substrate nanoparticle coating apparatus

Country Status (2)

Country Link
KR (1) KR20150058860A (en)
WO (1) WO2015076466A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105127056A (en) * 2015-10-28 2015-12-09 安捷利电子科技(苏州)有限公司 Small coating device
CN106914372A (en) * 2017-03-31 2017-07-04 广州盈光科技股份有限公司 A kind of nano metal coating processing unit (plant) and technique
CN111299090A (en) * 2018-12-11 2020-06-19 华南理工大学 Automatic uniform smearing device and application thereof in preparation of conductive film
CN113369078A (en) * 2021-06-01 2021-09-10 杭州固特建筑加固技术工程有限公司 Glue coating device for externally-bonded steel plate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017108492A1 (en) * 2015-12-22 2017-06-29 Agfa Healthcare Coating device for production of a radiography flat panel detector and method of production.
KR101682330B1 (en) * 2016-04-18 2016-12-12 서강대학교산학협력단 Fine Pattern Forming Device And Fine Pattern Forming Method Using The Same
KR101992337B1 (en) 2017-05-22 2019-06-25 조현일 Thin film coating apparatus for large area optical substrate
KR102371434B1 (en) 2019-12-30 2022-03-08 한국기계연구원 Coating head with multi coating modes and method for functional coating solution by using the coating head
CN111570196A (en) * 2020-05-20 2020-08-25 安徽阜南县向发工艺品有限公司 Wooden floor surface gluing device and working method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270079A (en) * 1992-12-18 1993-12-14 Specialty Coatings Systems, Inc. Methods of meniscus coating
JPH08155365A (en) * 1994-12-02 1996-06-18 Dainippon Screen Mfg Co Ltd Device for applying coating liquid on substrate
JPH1142458A (en) * 1997-07-28 1999-02-16 Dainippon Screen Mfg Co Ltd Coating application nozzle unit and coating applicator
KR20110115162A (en) * 2009-02-16 2011-10-20 오사카 유니버시티 Device for producing particle film and method for producing particle film
JP2013066873A (en) * 2011-09-26 2013-04-18 Toshiba Corp Coating apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270079A (en) * 1992-12-18 1993-12-14 Specialty Coatings Systems, Inc. Methods of meniscus coating
JPH08155365A (en) * 1994-12-02 1996-06-18 Dainippon Screen Mfg Co Ltd Device for applying coating liquid on substrate
JPH1142458A (en) * 1997-07-28 1999-02-16 Dainippon Screen Mfg Co Ltd Coating application nozzle unit and coating applicator
KR20110115162A (en) * 2009-02-16 2011-10-20 오사카 유니버시티 Device for producing particle film and method for producing particle film
JP2013066873A (en) * 2011-09-26 2013-04-18 Toshiba Corp Coating apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105127056A (en) * 2015-10-28 2015-12-09 安捷利电子科技(苏州)有限公司 Small coating device
CN106914372A (en) * 2017-03-31 2017-07-04 广州盈光科技股份有限公司 A kind of nano metal coating processing unit (plant) and technique
CN111299090A (en) * 2018-12-11 2020-06-19 华南理工大学 Automatic uniform smearing device and application thereof in preparation of conductive film
CN111299090B (en) * 2018-12-11 2021-09-21 华南理工大学 Automatic uniform smearing device and application thereof in preparation of conductive film
CN113369078A (en) * 2021-06-01 2021-09-10 杭州固特建筑加固技术工程有限公司 Glue coating device for externally-bonded steel plate

Also Published As

Publication number Publication date
KR20150058860A (en) 2015-05-29

Similar Documents

Publication Publication Date Title
WO2015076466A1 (en) Large area substrate nanoparticle coating apparatus
US9343339B2 (en) Coating method and coating apparatus
US20180310366A1 (en) A conductive paste and method of printing the same
KR20100119880A (en) Device and method for applying application liquid
KR20130082362A (en) Brush coating system for transparent ag nanowire electrodes
CA1145210A (en) Process for the continuous cladding of part of at least one surface of a metallic substrate, and means used in said process
CN106477548A (en) A kind of preparation method of carbon nano-tube film
CN102694061A (en) Pattern forming apparatus and pattern forming method
US8668960B1 (en) Flow coating apparatus and method of coating
CN112397252A (en) Method and system for manufacturing flexible transparent conductive film with embedded metal material
JP2013187236A (en) Slit nozzle for manufacturing solar cell, and chemical solution applying device
US8801423B2 (en) Pattern forming method and pattern forming apparatus
TW201002427A (en) Electrostatic coating apparatus
JP5309588B2 (en) Coating liquid coating apparatus and coating method
JP2010274241A (en) Thin film forming method and thin film forming system
US20150072075A1 (en) Film-forming apparatus and film-forming method
JP2008000718A (en) Liquid draining method for use in preparing thin film and apparatus for preparing thin film
KR20070080681A (en) Method to form nano-particle array by convective assembly and a convective assembly apparatus for the same
KR101323763B1 (en) Apparatus for manufacturing printed transparent conductive electrode film
KR101937333B1 (en) Apparatus and method for treating substrate
KR101511609B1 (en) The apparatus for coating the panel
Mundra et al. Automated setup for spray assisted layer-by-layer deposition
WO2011118517A1 (en) Method and device for producing liquid crystal elements
JP3267822B2 (en) Applicator for coating liquid on substrate
JP3182815U (en) Coating nozzle cleaning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863604

Country of ref document: EP

Kind code of ref document: A1