WO2015123552A1 - Sulfur composites and polymeric materials from elemental sulfur - Google Patents

Sulfur composites and polymeric materials from elemental sulfur Download PDF

Info

Publication number
WO2015123552A1
WO2015123552A1 PCT/US2015/015870 US2015015870W WO2015123552A1 WO 2015123552 A1 WO2015123552 A1 WO 2015123552A1 US 2015015870 W US2015015870 W US 2015015870W WO 2015123552 A1 WO2015123552 A1 WO 2015123552A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomers
sulfur
copolymer
level
monomer
Prior art date
Application number
PCT/US2015/015870
Other languages
French (fr)
Inventor
Dong-Chul Pyun
Richard S. Glass
M. Bonner Denton
Original Assignee
The Arizona Board Of Regents On Behalf Of The University Of Arizona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Arizona Board Of Regents On Behalf Of The University Of Arizona filed Critical The Arizona Board Of Regents On Behalf Of The University Of Arizona
Priority to EP15748519.4A priority Critical patent/EP3105280A4/en
Priority to KR1020167025616A priority patent/KR20160122838A/en
Priority to JP2016569566A priority patent/JP2017517603A/en
Publication of WO2015123552A1 publication Critical patent/WO2015123552A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/30Polysulfonamides; Polysulfonimides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/302Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0246Polyamines containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/0253Polyamines containing sulfur in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/205Copolymers of sulfur dioxide with unsaturated organic compounds
    • C08G75/22Copolymers of sulfur dioxide with unsaturated aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • FIG. 2 shows lab samples of an elemental sulfur powder, a molten liquid sulfur, and a polymerized sulfur.
  • FIG. 14 shows data from a cycling experiment (C/5) comparing sulfur copolymers and sulfur composite materials as cathodes for electrochemical ceils.
  • FIG. 33 shows typical materials for infrared thermal imaging lens.
  • the copolymer material is a thermoset. In some embodiments, the copolymer material is a thermoplastic. In some embodiments, the copolymer material is self-healing. In some embodiments, when one or more S-S bonds of the sulfur copolymer are broken, the S-S bonds are reconnected by thermal reforming.
  • each B includes the polymerizabie moiety and a 1 -8 atom long linker.
  • Each linker is selected from a group consisting of an alkylene linker and a mono, di- or tri(ethyiene glycol) linker.
  • each B includes an ethyienically unsaturated moiety, an epoxide moiety, a thiirane moiety, or one or more carboxylic anhydrides.

Abstract

Sulfur composites and polymeric materials having a high sulfur content and prepared from elemental sulfur as the primary chemical feedstock. The sulfur copolymers are prepared by the polymerization of elemental sulfur with one or more monomers of amines, thiols, sulfides, alkynylly unsaturated monomers, nitrones, aldehydes, ketones, thiiranes, ethyienicaily unsaturated monomers, or epoxides. The sulfur copolymers may be further dispersed with metal or ceramic composites or copoiymerized with elemental carbon, photoactive organic chromophores, or reactive and solubilising/biocompatib!e moieties. The sulfur composites and polymeric materials feature the ability self-healing through thermal reformation. Applications utilizing the sulfur composites and polymeric materials may include electrochemical cells, optics, H2S donors and antimicrobial materials.

Description

SULFUR COMPOSITES AND POLYMERIC MATERIALS FROM ELEMENTAL
SULFUR
GOVERNMENT SUPPORT
[0001] This invention was made with government support under Grant No. CHE1305773 awarded by NSF, The government has certain rights in the invention.
CROSS REFERENCE
[0002] This application claims priority to U.S. Provisional Patent Application No.
62/039,588, filed August 20, 2014, U.S. Provisional Patent Application No.
62/039,561 , filed August 20, 2014, U.S. Provisional Patent Application No.
62/017,750, filed June 26, 2014, and U.S. Provisional Patent Application No. 61/940,102, filed February 14, 2014, the specification(s) of which is/are incorporated herein in their entirety by reference.
FIELD OF THE INVENTION
[0003] The present invention relates to sulfur composites and polymeric materials having a high sulfur content, in particular, sulfur copolymers that are polymerized with epoxides or dispersed with metal or ceramic composites; electrochemical cells utilizing the sulfur composites and polymeric materials; photoactive sulfur copolymers; sulfur polymer nanoparticles as hydrogen sulfide (H2S) donors; and methods of repairing sulfur polymeric materials by self-healing.
BACKGROUND OF THE INVENTION
[0004] An incredible abundance of elemental sulfur, nearly 7-miilion tons is generated as a waste byproduct from hydrodesulfurization of crude petroleum feedstocks, which converts aikanethiols and other (organo) sulfur compounds into Ss as described in Chung and which is hereby incorporated herein by reference in its entirety. Before the invention of the inverse vulcanization process, there were only a limited number of synthetic methods available to utilize and modify elemental sulfur. Current industrial utilization of elemental sulfur is centered around sulfuric acid, agrochemicals, and vulcanization of rubber. For example, elemental sulfur is used primarily for sulfuric acid and ammonium phosphate fertilizers, where the rest of the excess sulfur is stored as megaton-sized, above ground sulfur towers. [0005] While sulfur feedstocks are plentiful, sulfur is difficult to process. In its original form, elemental sulfur consists of a cyclic molecule having the chemical formulation Ss. Elemental sulfur is a brittle, intractable, crystalline solid having poor solid state mechanical properties, poor solution processing characteristics, and there is a limited slate of synthetic methodologies developed for it. Hence, there is a need for the production of new materials that offers significant environmental and public health benefits to mitigate the storage of excess sulfur in powder, or brick form.
[0006] Elemental sulfur has been explored for use in lithium-sulfur electrochemical ceils. Sulfur can oxidize lithium when configured appropriately in an electrochemical ceil, and is known to be a very high energy-density cathode material. The poor electrical and electrochemical properties of pure elemental sulfur, such as low cycle stability and poor conductivity) have limited the development of this technology. For example, one key limitation of lithium-sulfur technology is the ability to retain high charge capacity for extended numbers of charge-discharge cycles ("cycle lifetimes"). Cells based on present lithium ion technology has low capacity (180 mAb/g) but can be cycled for 500-1000 cycles. Lithium-sulfur cells based on elemental sulfur have very high initial charge capacity (in excess of 1200 mAb/g, but their capacity drops to below 400 mAh/g within the first 100-500 cycles. Hence, the creation of novel copolymer materials from elemental sulfur feedstocks would be tremendously beneficial in improving sustainability and energy practices. In particular, improved battery technology and materials that can extend cycle lifetimes while retaining reasonable charge capacity will significantly impact the energy and transportation sectors and further mitigate US dependence on fossil fuels.
[0007] There have been several recent attempts to form sulfur into nanomaterials for use as cathodes in lithium-sulfur electrochemical ceils, such as impregnation into mesoporous carbon materials, encapsulation with graphenes, encapsulation into carbon spheres, and encapsulation into conjugated polymer spheres. While these examples demonstrate that the encapsulation of elemental sulfur with a conductive colloidal shell in a core/shell colloid can enhance electrochemical stability, these synthetic methods are challenging to implement to larger scale production required for industrial application. Hence, a new family of inexpensive, functional materials obtained by practical methods is desirable.
[0ΘΘ8] Polymeric materials and structures commonly experience physical damage or structure failure due to factors affecting their physical properties, such as environmental exposure or mechanical or thermal stress. According to Colquhoun, which is hereby incorporated herein by reference in its entirety, there is a growing interest in developing new polymers that have the ability to repair themselves in order to enhance and prolong the life of these polymers. However, these new polymers require external energy or agents for repair. Hence, there is a desire to develop polymeric materials capable of self-healing that also require little to no external intervention.
[0009] Elemental sulfur is inherently insulating and poorly photoactive. One key challenge is to understand the synthetic chemistry necessary for modification of sulfur to prepare photoactive materials, especially materials that act as photo- semiconductors. However, by utilizing the inverse vulcanization process to enable the synthesis of modified sulfur polymers, the waste sulfur can be transformed from an insulator into a photoelectrochemicaily active material.
[0010] Aside from using sulfur to form nanomaterials for use in a variety of applications, such as cathodes in lithium-sulfur electrochemical ceils, optics and weapon production, another particular field of interest is the use of sulfur polymer nanoparticles as hydrogen sulfide (H28) donors. According to Hasegawa, which is hereby incorporated herein by reference in its entirety, H2S has been recognized as a third gaseous transmitter produced endogenously from cysteine and other enzymes for signaling purposes. Nitric oxide (NO) and carbon monoxide (CO) are also examples of signaling gases. Although considered a toxic compound, H2S gas has beneficial effects on human organs and biological processes at low concentrations. Examples of these benefits include cardioprotection, inflammation regulation, cell protection during ischemia reperfusion and neuro-inflammation, and vasodilation, as described in Foster and which is hereby incorporated herein by reference in its entirety. Furthermore, unlike NO and CO, H2S gas does not emit reactive oxygen species that could affect certain ceil functions. Limited studies have been performed on H28 as a signaling gas and identifying potential H2S donors. Previous studies utilized salts such as NaHS Na2S, which have demonstrated uncontrolled release profiles (Hasegawa), Hence, there is a need to develop h½S donors capable of slowly and continuously releasing h½S gas.
[0011] Any feature or combination of features described herein are included within the scope of the present invention provided that the features included in any such combination are not mutually inconsistent as will be apparent from the context, this specification, and the knowledge of one of ordinary skill in the art. Additional advantages and aspects of the present invention are apparent in the following detailed description and claims.
SUMMARY OF THE INVENTION
[0012] The present invention features a sulfur polymer composition comprising sulfur monomers polymerized with one or more amine monomers, thiol monomers, sulfide monomers, alkynyliy unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, thiirane monomers, and ethylenically unsaturated monomers. The sulfur polymer composition may be further polymerized with one or more epoxide monomers, wherein the epoxide monomers may be varying epoxide compounds, resulting in novel thermosetting and thermoplastic polymers. The present invention also features a novel composite material produced from elemental sulfur and a metal or ceramic composite. Liquid sulfur is utilized to prepare the sulfur composite materials that are based on metal carbides, metal sulfides and other chalcogenides, along with metal nitrides to form enhanced electroactive cathode materials. This sulfur composite material may be further copolymerized with the sulfur polymer composition or with the modified sulfur polymer composition polymerized with the epoxide monomers(s). The present invention further features an improved electrochemical cell utilizing any of the above sulfur containing materials as a cathode for the electrochemical cell.
[0013] These novel sulfur containing polymeric compositions and composite materials have the ability to self-heal. Without wishing to limit the present invention to any particular theory or mechanism, it is believed that the self-healing property of these materials are due to their reversible S-S bonds, which allows for broken S-S bonds to be reconnected by methods such as heat processing, A substrate constructed from these materials may be reworkable or repairable.
[0014] The present invention also features the use of sulfur to make a new class of photoactive sulfur polymers. The polymers can be used as a new solar fuel in which photochemical processes generate useful chemicals for clean energy and commodity chemicals.
[0015] The present invention features hydrogen sulfide donating sulfur containing polymers and methods of preparing said polymers. The present invention also features methods of treating biological conditions and inhibiting microbial growth using H28 gas. In some embodiments, the present invention utilizes sulfur containing polymers prepared via a variety of synthetic processes, such as inverse vulcanization and other existing synthetic chemical methods to prepare molecules, polymers, nanomateriais, and nanocomposites that can deliver H2S under biological conditions.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016] FIG. 1 shows a reaction schematic of a sulfur ring (Sa) opening and polymerizing.
[0017] FIG. 2 shows lab samples of an elemental sulfur powder, a molten liquid sulfur, and a polymerized sulfur.
[0018] FIG. 3 shows a reaction schematic of a sulfur copolymer and a lab sample of a sulfur copolymer.
[0019] FIG. 4 shows non-limiting exemplary applications utilizing the sulfur copolymer.
[0020] FIG. 5 shows a reaction schematic of a sulfur copolymer and epoxide polymerization.
[0021] FIG. 6 shows a non-limiting sample of a sulfur copolymer and epoxide thermoset.
[0022] FIG. 7 shows non-limiting examples of S-S chains and bond dissociation energies (BDE) of the S-S chains.
[0023] FIG. 8 shows a self-healing sulfur copolymer sample.
[0024] FIG. 9 shows a non-limiting example of Young's Modulus for a pristine and a self-healed sulfur copolymers having 20 wt% dlisopropenylbenzene (DSB).
[0025] FIG. 10 shows a non-limiting example of a stress-strain curve for sulfur copolymers.
[0026] FIG. 1 1 shows non-limiting examples of sulfur/metal composite materials.
[0027] FIG. 12 shows a schematic view of charge and discharge cycles of an electrochemical ceil.
[0028] FIG. 13 shows data from a cycling experiment (C/10) comparing sulfur copolymers and elemental sulfur as cathodes for electrochemical ceils.
[0Θ29] FIG. 14 shows data from a cycling experiment (C/5) comparing sulfur copolymers and sulfur composite materials as cathodes for electrochemical ceils.
[0030] FIG. 15 shows data from a long-term cycling experiment for various C-rates of Li-S batteries utilizing sulfur copolymers.
[0031] FIG. 16a-16d shows various copolymers made from Ss and 1 ,3- phenylenediamine
[0032] FIG. 17 shows a reaction scheme and final copolymer product.
[0Θ33] FIG. 18 shows photochemical processes to generate chemicals for energy and commodity chemicals.
[0034] FIG. 19a-19c shows various copolymers from the reactions of 3,4,9,10-
Perylene-tetracarboxylic dianhydride and S& with other components.
[0035] FIG. 20a~20e shows various copolymers from the reactions of N,N'~dibutyi perylenecarboxydiimide and Ss with other components.
[0036] FIG. 21 a~21 b shows Raman data for copolymers.
[0Θ37] FIG. 22a- 22b shows thermograms from DSC data of copolymers.
[0038] FIG. 23a-23b shows thermograms from DSC data of copolymers.
[0039] FIG. 24 shows shear viscosity data for copolymers with increasing DIB.
[0040] FIG. 25 shows a sulfur and DIB percent conversion.
[0041] FIG. 28 provides NMR spectra of two suifur/thiirane copolymers and that of a copolymer not containing sulfur.
[0042] FIG. 27 shows various products prepared from a sulfur prepoiymer solution.
[0Θ43] FIG. 28 is a picture of a set of spin-coated films.
[0044] FIG. 29 is a cross-sectional micrograph of a po!y(S-r-DIB) copolymer layer (2.8 pm in thickness) formed on a polyimide layer (270 nm) on a glass substrate.
[0045] FIG. 30 shows a representation of H2S synthesis and signaling inside a biological cell (Hasegawa).
[0046] FIG. 31 shows a non-limiting example of a H2S donor polymer nanoparticle.
[0047] FIG. 32a-32b show a laboratory reaction set up. FIG. 32b also shows a lead sulfide (PbS) product.
[0048] FIG. 33 shows typical materials for infrared thermal imaging lens.
[0049] FIG. 34 shows a non-limiting example of infrared lens constructed from a sulfur copolymer of the present invention
[0050] FIG. 35 shows a graph of transparency for 80%-wt S8 and DIB.
[0051] FIG. 36a shows a graph of transparency for a sulfur copolymer and P MA.
[0052] FIG. 36b shows a graph of refractive indexes for various polymers and sulfur copolymers.
[0053] FIG. 37 shows mid-IR imaging with a sulfur copolymer lens.
[0054] FIG. 38 shows comparisons of pristine, damaged, and self-healed sulfur copolymer lenses for visible and mid-IR imaging.
DESCRIPTION OF PREFERRED EMBODIMENTS
[0055] As used herein, the term "amine monomer" is a monomer that is poiymerizabie through its amine groups. In one embodiment, aromatic amines and multi-functional amines may be used. Amine monomers include, but are not limited to, m-phenylenediamine, and p-phenyienediamine. The various types of phenylenediamines are inexpensive reagents due to their wide-spread use in the preparation of many conventional polymers, e.g., poiyurethanes, poiyamides. In the reaction of 1 ,3-phenylenediamine with S,s a surprising substitution of the aromatic ring with sulfur groups in the copo!ymerization. Furthermore, the resulting sulfur copolymer carried reactive amine moieties that were further reacted with comonomers, such as, isocyanates, acid chlorides, epoxides, carboxylic acids, esters, amides, alkyl haiides, or acry!ates to either modify the sulfur copolymer, or make new copo!ymeric materials, such as, poiyamides, poiyurethanes, poiyamides, and polyethers.
[0056] As used herein, the term "thiol monomer" is a monomer that is poiymerizabie through its thiol groups. Thiol monomers include, but are not limited to, 4,4'- thiobisbenzenethiol and the like. The term "sulfide monomers" are those that are poiymerizabie through its sulfide groups. [0057] As used herein, an aikynyily unsaturated monomer is a monomer that is poiymerizabie through its alkynyi unsaturation (i.e., its triple bond). The term "aikynyily unsaturated monomer" does not include compounds in which the alkynyi unsaturation is part of a long chain alky! moiety (e.g., unsaturated fatty acids, or carboxylic salts, or esters such as oleates, and unsaturated plant oils). In one embodiment, aromatic alkynes, both internal and terminal alkynes, multi-functional alkynes may be used. Examples of aikynyily unsaturated monomers include, but are not limited to, ethynyibenzene, 1 -phenylpropyne, 1 ,2-diphenyiethyne, 1 ,4- diethyny!benzene, 1 ,4-bis(phenylethynyl)benzene, and 1 ,4-diphenylbuta-1 ,3-diyne.
[0Θ58] As used herein, the term "nitrone monomer" is a monomer that is poiymerizabie through its nitrone groups, !n one embodiment, nitrones, dinitrones, and muiti-nitrones may be used. Examples include, but are not limited to, N- benzyiidene-2-methylpropan-2-amine oxide.
[0059] As used herein, the term "aldehyde monomer" is a monomer that is poiymerizabie through its aldehyde groups. In one embodiment, aldehydes, dialdehydes, and muiti- aldehydes may be used.
[0060] As used herein, the term "ketone monomer" is a monomer that is poiymerizabie through its ketone groups. In one embodiment, ketones, dikitones, and multi- ketones may be used.
[0061] As used herein, the term "epoxide monomer" is a monomer that is poiymerizabie through its epoxide group(s). Non-limiting examples of such monomers include, generally, mono- or polyoxiranyibenzenes, mono- or polyg!ycidyibenzenes, mono- or polyg!ycidyloxybenzenes, mono- or polyoxiranyl(hetero)aromatic compounds, mono-or po!yglycidyl(hetero)aromatic compounds, mono- or polyg!ycidy!oxy(hetero)aromatic compounds, dig!ycidy! bisphenol A ethers, mono- or po!yglycidy1(cyc!o)a!ky! ethers, mono- or polyepoxy(cycio)alkane compounds and oxirane-terminated oligomers. In one preferred embodiment, the epoxide monomers may be benzyl giycidyi ether and tris(4-hydroxypheny!)methane trigiycidy! ether. In certain embodiments, the epoxide monomers may include a (hetero)aromatic moiety such as, for example, a phenyl, a pyridine, a triazine, a pyrene, a naphthalene, or a polycyclic (hetero)aromatic ring system, bearing one or more epoxide groups. For example, in certain embodiments, the one or more epoxide monomers are selected from epoxy(hetero)aromatic compounds, such as styrene oxide and stilbene oxide and (hetero)aromatic g!ycidyi compounds, such as glycidyl phenyl ethers (e.g., resorcinoi diglycidyl ether, giycidyl 2-methy!phenyl ether), glycidy!benzenes (e.g., (2,3-epoxypropy!)benzene) and glycidyl heteroaromatic compounds (e.g., N-(2,3-epoxypropyi)phthaiimide). In certain desirable embodiments, an epoxide monomer will have a boiling point greater than 180 °C, greater than 200 °C, or even greater than 230 °C at the pressure at which polymerization is performed (e.g., at standard pressure, or at other pressures).
[0062] As used herein, the term "thiirane monomer" is a monomer that is polymerizab!e through its thirane group(s). Non-limiting examples of thiirane monomers include, generally, mono- or polythiirany!benzenes, mono- or polythiiranylmethylbenzenes, mono- or polythiiranyl(hetero)aromatic compounds, mono- or po!ythiiranylmethyl(hetero)aromatic compounds, dithiiranylmethyl bisphenol A ethers, mono- or po!ydithiiranyi (cyclo)alkyl ethers, mono- or po!yepl8ulfide(cyclo)aikane compounds, and thiirane-terminated oligomers. In some embodiments, thiirane monomers may include a (hetero)aromatic moiety such as, for example, a phenyl, a pyridine, a triazine, a pyrene, a naphthalene, or a poly cyclic (hetero)aromatic ring system, bearing one or more thiirane groups. In certain desirable embodiments, a thiirane monomer will have a boiling point greater than 180 °C, greater than 200 °C, or even greater than 230 °C at the pressure at which polymerization is performed (e.g., at standard pressure).
[0063] As used herein, an ethylenicaliy unsaturated monomer is a monomer that is polymerizabie through its ethylenic unsaturation (i.e., its double bond). The term
"ethylenicaliy unsaturated monomer does not include cyclopentadienyl species such as cyclopentadiene and dicyclopentadiene. The term "ethylenicaliy unsaturated monomer" does not include compounds in which the ethylenic unsaturation is part of a long chain alkyl moiety (e.g. unsaturated fatty acids such as oieates, and unsaturated plant oils). [0064] In certain embodiments, the one or more ethylenicaliy unsaturated monomers are selected from the group consisting of vinyl monomers, (meth)acryl monomers, unsaturated hydrocarbon monomers, and ethyienicaily-terminated oligomers. Examples of such monomers include, generally, mono- or polyvinylbenzenes, mono- or poiyisopropenyibenzenes, mono- or polyvinyl(hetero)aromatic compounds, mono- or po!yisopropenyl(hetero)aromatic compounds, alky!ene di(meth)acrylates, bisphenol A di(meth)acrylates, benzyl (meth)acrylates, phenyl(meth)acryiates, heteroaryl (meth)acrylates, terpenes (e.g., squaiene) and carotene. As molten sulfur is non-polar in character, in certain desirable embodiments the one or more ethylenicaliy unsaturated monomers are non-polar. For example, in certain embodiments, the one or more ethylenicaliy unsaturated monomers include a (hetero)aromatic moiety such as, for example, phenyl, pyridine, triazine, pyrene, naphthalene, or a polycyclic (hetero)aromatic ring system, bearing one or more vinylic, acrylic or methacrylic substituents. Examples of such monomers include benzyl (meth)acryiates, phenyl (meth)acrylates, divinyibenzenes (e.g., 1 ,3- divinylbenzene, 1 ,4-divinylbenzene), isopropenyibenzene, styrenics (e.g., styrene, 4-methy!styrene, 4-chiorostyrene, 2,6-dichlorostyrene, 4-vinylbenzyl chloride), diisopropenyibenzenes (e.g., 1 ,3-diisopropenylbenzene), vinylpyridines (e.g., 2- viny!pyridine, 4-viny!pyridine), 2,4,6~tris((4~vinylbenzyi)thio)~1 ,3,5~triazine and divinyipyridines (e.g., 2,S~divinylpyridine). In certain embodiments, the one or more ethylenicaliy unsaturated monomers (e.g., including an aromatic moiety) bears an amino (i.e., primary or secondary) group, a phosphine group or a thiol group. One example of such a monomer is vinyldiphenylphosphine. While not intending to be bound by theory, the inventors surmise that the amino or thiol group will undergo a ring-opening nucieophiiic attack on an Ss ring, thus incorporating a short sulfide chain that promotes solubility in molten sulfur. Of course, a person of skill in the art will identify other ethylenicaliy unsaturated monomers that can be used in forming the copolymers described herein. In certain desirable embodiments, an ethylenicaliy unsaturated monomer will have a boiling point greater than 180 °C, greater than 200 °C, or even greater than 230 °C at the pressure at which polymerization is performed (e.g., at standard pressure).
[0065] As used herein, an "elemental carbon materia!" is a material that is primarily formed as an a!lotrope of carbon, with a minor amount of chemical modification. For example, graphene, graphene oxide, graphite, carbon nanotubes, fullerenes, carbon black, carbon flakes and carbon fibers are examples of elemental carbon materials. Such materials can be made, for example, by first dispersing the elemental carbon material in molten sulfur, then copo!ymerizing the molten sulfur with one or more monomers (e.g., one or more polyfunctional monomers). As a general guideline for the person of skill in the art to use in formulating such materials, up to about 15 wt% elemental carbon material can be dispersed in sulfur at temperatures high enough that the sulfur is molten, but low enough that significant ring opening and polysuifide polymerization does not occur (e.g., at temperatures in the range of about 120 °C to about 180 °C). Higher loadings of elemental carbon materials in sulfur can be achieved by pre-dissoiution of the sulfur and dispersion of the elemental carbon material into a suitable solvent (e.g., carbon disulfide) followed by removal of the solvent under reduced pressure to yield a blended composite powder which can be melted and allowed to with the one or more monomers. To induce curing of the dispersed carbon, or other nanoinclusions with the sulfur matrix, direct heating of the dispersion above T = 160 °C, typically below 200 °C affords a polymerized nanocomposite.
[0066] As used herein, the term "self-healing" is defined as to enable a material to repair damage with minimum intervention2. In some embodiments, mechanisms and techniques to enable self-healing may include covalent bonding, supramolecu!ar chemistry, H-bonding, ionic interactions, π-π stacking, chemo-mechanicai repairs focusing on encapsulation, remote self-healing, or shape memory assisted polymers2. In one preferred embodiment, self-healing utilizes thermal reformation. As used herein, thermal reformation involves the use of heat to reform the bonds or cross-links of a polymeric material.
[0067] As used herein, the term "photoactive" is defined as having the ability for significant absorption of solar, visible or near-infrared radiation
[0068] As used herein, the term "biocompatible" and any of it analogues are defined as the ability of to be in contact with living tissues without producing any undesirable local or systemic effects, such as toxicity. As used herein, the term "soluble" and any of its analogues are defined as being capable of dissolving in another medium, such as a solid, a liquid, or gas.
[0Θ69] As defined herein, the terms "therapeutically effective amount" means the amount of a compound that, when administered to a mammal for treating a condition, is sufficient to effect such treatment for the condition. The "therapeuticaliy effective amount" will vary depending on the compound, the condition and its seventy and body factors such as age, weight, etc., of the mammal to be treated.
[0070] As used herein, the term "slow and continuous release" is defined as the ability to maintain a controlled presence of a chemical in the body without any sudden increases, decreases, or stops in the amount of the chemical that may cause toxicity or hinder the therapeutic effectiveness of the chemical in the body.
[0071] As defined herein, the terms "Treating" or "treatment" of a condition includes: (1 ) preventing the condition, i.e., causing the clinical symptoms of the condition not to develop in a mamma! that may be exposed to or predisposed to the condition but does not yet experience or display symptoms of the condition; (2) inhibiting the condition, i.e., arresting or reducing the development of the condition or its clinical symptoms; or (3) relieving the condition, i.e., causing regression of the condition or its clinical symptoms.
[0Θ72] As used herein, the terms "those defined above" and "those defined herein" when referring to a variable incorporates by reference the broad definition of the variable as well as any narrow and/or preferred, more preferred and most preferred definitions, if any.
[0073] Copolymer Material
[0074] The synthesis of copolymer materials via the copoiymerization of elemental sulfur with comonomers is taught. The copolymer material comprises comonomers of sulfur, ethylenically unsaturated monomers (e.g., vinylic, diviny!ic, muiti-viny!ic comonomers, substituted alkenes, and functional a!kenes), aikynylly unsaturated monomer (e.g., alkynes, dialkynes, and muiti-alkynes), amine monomers (e.g., amines, diamines, and multi-amines), thiol monomer (e.g., thiols, dithiols, muiti- functional thiols), nitrone and nifroso monomers (e.g., nifrones, dinitrones, and multi- nitrones), aldehyde monomers (e.g., aldehydes, dialdehydes, and multi-aldehydes), and ketone monomers.
[0075] New types of copolymers incorporated conjugated polymers with sulfur based materials and copolymers were prepared by the copolymenzation of elemental sulfur with vinyiic compounds carrying thiophene, or amine, or pyrrole side chain groups, where subsequent oxidative or electrochemical polymerization affords the new copolymer material. Vinyiic monomers, utilizing groups, such as, styrenics, incorporating thiophene groups, such as, 3,4-aikylenedioxythiophenes and 3,4- propy!enedioxythiophenes (ProDOT) are examples of these functional monomers.
[0Θ76] New conjugated materials are also demonstrated by the copolymenzation of elemental sulfur with amines e.g., phenylenediamines that can be oxidatively copoiymerized with aniline to prepare poiyaniline-suifur copolymer materiais.
[0077] A new material prepared by post-modification of the amine, thiol, or other functional groups may be incorporated into the sulfur copolymer described to either modify the chemical functionality of the copolymer, crosslink the copolymer, or form other new copolymers, such as, poiyethers via epoxide copolymerizations, polyurethanes and polyamides.
[0Θ78] In one embodiment, the copolymer material with sulfur is prepared via distinct synthesis and post-functionalization methods to introduce conjugated polymers, such as, poiythiophenes, poiyaniiines, or poiypyrro!es. Methods include, but are not limited to, the copolymenzation of a vinyiic comonomer carrying a pendant thiophene that forms the poiythiophene phase after an oxidative, or electrochemical polymerization. Other methods include copolymenzation of sulfur with diamines that carry free reactive amines that can copoiymerize with monomers, such as, aniline, and then oxidative or electrochemical polymerization to form the polyaniline phase.
[0Θ7 ] In some embodiments, the present invention features a polymeric composition comprising a sulfur copolymer. The sulfur copolymer comprises one or more sulfur monomers, at a level in the range of at least about 50 wt% of the sulfur copolymer, and one or more monomers selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynylly unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, thiirane monomers, epoxide monomers, and ethy!enically unsaturated monomers at a level in the range of about 0.1 wt% to about 50 wt% of the sulfur copolymer. Sn some embodiments, the ethyienicaliy unsaturated monomers are present as copolymers with at least one additional monomer. Non-limiting examples of other monomers are described in U.S. Provisional Patent Application No. 81/940,102, filed February 14, 2014,, which are incorporated herein by reference.
[0080] In some embodiments, the one or more monomers are one or more amine monomers. The amine monomer may be an m-phenylenediamine or p~ phenylenediamine. In some embodiments, the one or more monomers are one or more thiol monomers. The thiol monomer may be 4,4!-thiobis(benzenethiol). In some embodiments, the one or more monomers are a combination of one or more amine monomers and one or more thiol monomers. In other embodiments, the one or more monomers are one or more alkynylly unsaturated monomers. The alkynylly unsaturated monomer may be 1 -phenyipropyne.
[0081] In some embodiments, the sulfur copolymer of any polymeric composition, copolymer material, or composite material mentioned herein comprises one or more sulfur monomers at a level in the range of about 5 to about 99 wt% of the sulfur copolymer, and one or more monomers at a level in the range of about 1 wt% to about 95 wt% of the sulfur copolymer. In another embodiment, the sulfur copolymer comprises one or more sulfur monomers at a level in the range of about 50 to about 97.5 wt% of the sulfur copolymer, and one or more monomers at a level in the range of about 2.5 wt% to about 50 wt% of the sulfur copolymer, or one or more sulfur monomers at a level in the range of about 50 to about 95 wt% of the sulfur copolymer, and one or more monomers at a level in the range of about 5 wt% to about 50 wt% of the sulfur copolymer.
[0082] In some embodiments, the sulfur copolymer of any polymeric composition, copolymer material, or composite material mentioned herein comprises one or more sulfur monomers at a level of at least about 5 wt% of the sulfur copolymer. The sulfur copolymer may comprise one or more sulfur monomers at a level of at least about 10 wt%, or at least about 20 wt%, or at least about 30 wt%, or at least about 40 wt%, or at least about 50 wt%, or at least about 60 wt%, or at least about 70 wt%, or at least about 80 wt%, or at least about 90 wt% of the sulfur copolymer,
[0083] In some embodiments, the sulfur copolymer of any polymeric composition, copolymer material, or composite material mentioned herein comprises one or more sulfur monomers at a level in the range of about 5 to about 10 wt% of the sulfur copolymer. The sulfur copolymer may comprise one or more sulfur monomers at a level in the range of about 10 to 20 wt%, or in the range of about 20 to 30 wt%, or in the range of about 30 to 40 wt%, or in the range of about 40 to 50 wt%, or in the range of about 50 to 60 wt%, or in the range of about 60 to 70 wt%, or in the range of about 70 to 80 wt%, or in the range of about 80 to 90 wt%, or in the range of about 90 to 95 wt% of the sulfur copolymer.
[0084] In some embodiments, the sulfur copolymer of any polymeric composition, copolymer material, or composite material mentioned herein comprises one or more monomers at a level of at least 0.1 wt% of the sulfur copolymer. The sulfur copolymer may comprise one or more monomers at a level of at least about 0.5 wt%, or at least about 1 wt%, or at least about 5 wt%, or at least about 10 wt%, or at least about 20 wt%, or at least about 30 wt%, or at least about 40 wt%, or at least about 50 wt%, or at least about 60 wt%, or at least about 70 wt%, or at least about 80 wt%, or at least about 90 wt%, or at least about 95 wt% of the sulfur copolymer.
[0085] In some embodiments, the sulfur copolymer of any polymeric composition, copolymer material, or composite material mentioned herein comprises one or more monomers at a level in the range of about 0.1 wt% to 0.5 wt% of the sulfur copolymer. The sulfur copolymer may comprise one or more monomers at a level in the range of about 0.5 wt% to 1 wt%, or about 1 wt% to 5 wt%, or about 5 wt% to 15 wt%, or about 15 wt% to 25 wt%, or about 25 wt% to 35 wt%, or about 35 wt% to 45 wt%, or about 45 wt% to 55 wt%, or about 55 wt% to 65 wt%, or about 65 wt% to 75 wt%, or about 75 wt% to 85 wt%, or about 85 wt% to 95 wt% of the sulfur copolymer.
[0086] In some embodiments, the polymeric composition may be in the form of a polymeric composite comprising the sulfur copolymer and an elemental carbon materia! dispersed in the copolymer at a level in the range of up to about 50 wt% of the composition. In some embodiments, the polymeric composition may comprise the sulfur and comonomers at a level in the range of about 10 to 20 wt%, or in the range of about 20 to 30 wt%, or in the range of about 30 to 40 wt%, or in the range of about 40 to 50 wt%, or in the range of about 50 to 60 wt%, or in the range of about 60 to 70 wt%, or in the range of about 70 to 80 wt%, or in the range of about 80 to 90 wt%, or in the range of about 90 to 95 wt% of the polymeric composition. In some embodiments, the polymeric composition may comprise the elemental carbon material at a level in the range of about 10 to 20 wt%, or in the range of about 20 to 30 wt%, or in the range of about 30 to 40 wt%, or in the range of about 40 to 50 wt%, or in the range of about 50 to 60 wt%, or in the range of about 60 to 70 wt%, or in the range of about 70 to 80 wt%, or in the range of about 80 to 90 wt%, or in the range of about 90 to 95 wt% of the polymeric composition .
[0087] In some embodiments, the present invention features a method for making any of the aforementioned polymeric compositions. The method comprises heating a mixture comprising sulfur and one or more monomers at a temperature in the range of about 120°C to about 230°C.
[0088J In some embodiments, an article is made from any of the aforementioned polymeric compositions. The method of forming the article comprises heating a mixture comprising sulfur and one or more monomers at a temperature in the range of about 160 °C to about 230 °C to form a prepolymer, forming the prepolymer into the shape of the article, to yield a formed prepolymer shape, and heating the formed prepolymer shape to yield the article.
[0089] In another embodiment, a method of forming the article comprises admixing the polymeric composition in a nonpolar organic solvent, forming the admixed polymeric composition into the shape of the article, and removing the solvent from the polymeric composition to yield the article.
[0090] In some embodiments, the prepolymer is provided as a mixture with a solvent for forming. In other embodiments, the prepolymer is coated and cured as a thin film on a substrate. In sill! other embodiments, the prepolymer is shaped and cured using a moid.
[0091] In some embodiments, an oi!-in-water emulsion comprises the polymeric composition as the colloidal phase suspended in aqueous solution with, or without the presence of a surfactant.
[0092] In some embodiments, any of the polymeric composition can be modified by reacting an available reactive functional group on the polymeric composition with a second comonomer to form a new copolymer material. The technique of reacting may be oxidative coupling, polymerization, or copoiymerization.
[0093] In some embodiments, the reactive functional group is an amine or a thiol. The second comonomer may comprise an epoxide, isocyanate, acid chloride, carboxylic acid, ester, or aikyi ha!ide group. In some embodiments, when the reactive functional group is an amine, the new copolymer material is a poiyurethane or a poiyamide. Sn some embodiments, when the reactive functional group is an aniline or a phenyienediamine, and the new copolymer material contains oligo- or polyaniline segments. In some embodiments, the reactive functional group is a thiophene and the new copolymer material contains oligo- or polythiophene segments.
[0094] EXAMPLES
[0095] EXAMPLE 1. General procedure for the inverse vuicas zaison of sulfur with afkyrses
[0096] A 5 mL vial equipped with a magnetic stir bar was loaded with sulfur (800 mg, 3.125 mmol) and 1 -phenylpropyne (0.20 mL, 1.72 mmo!). The mixture was stirred at 175 CC for 7 min yielding a very viscous red transparent fluid. The reaction was quenched by cooling to -78 °C. The resulting po!y(sulfur-co-phenyipropyne) was then recovered from the vial yielding a reddish brown solid (949 mg, 98%).
[0Θ97] Monoaikyrse examples:
Figure imgf000019_0001
Experimentally Proven to Mix
and React with Molten Sulfur:
Figure imgf000019_0002
[0098] Dialkyne examples:
Figure imgf000019_0003
Experimentally Proven to Mix
and React with Molten Sulfur:
Figure imgf000019_0004
[0099] Multi-alkyne examples:
Scheme
Figure imgf000019_0005
Experimentally Proven to Mix
and React with Molten Suiftjr:
[00100] EXAMPLE 2. Genera! procedure for the high temperature preparation of poty{sulfur~random-{m~p enylersedIamine) fp©iyfS-r~m~PDA)) copolymers [00101] To a 24 mL glass via! equipped with a magnetic stir bar were added su!fur (Sa, masses detailed be!ow) and m-phenylenediamine (m-PDA, masses detailed below). The reaction was heated to about T = 185 °C in a thermostat oil bath and the resulting mixture was stirred at about T = 185 °C for 8-10 minutes, until bubbling ceased and vitrification of the reaction media occurred.
[00102] Preparation of pofy(S-r-m-PDA) with 50-wt% m-PDA: The
copoiymerization was carried out by following the general method written above with Sa (2.5 g, 9.75 mmol) and m-PDA (2.5 g, 23.13 mmoi) to afford a blood red solid.
[00103] Preparatio of po!y(S-r-ni-PDA) with 33.3-wt% m-PDA: The
copoiymerization was carried out by following the general method written above with Sa (2.5 g, 9.75 mmoi) and m-PDA (1.25 g, 1 1.56 mmoi) to afford a blood red solid.
[00104] Preparation of poty{S-r~m~PDA) with 28.57-wt% -ΡΏΑ The
copoiymerization was carried out by following the general method written above with Ss (2.5 g, 9.75 mmoi) and m-PDA (1.0 g, 9.25 mmoi) to afford a blood red solid.
[00105] Preparation of pofy(S-r-m-PDA) with 23.08-wt% m-PDA: The
copoiymerization was carried out by following the general method written above with Sa (2.5 g, 9.75 mmol) and m-PDA (0.75 g, 6.94 mmol) to afford a blood red solid.
[00106] Preparation of p©Hy{S-r-m-PDA) with 16.67-wt% m-PDA: The
copoiymerization was carried out by following the genera! method written above with Sa (2.5 g, 9.75 mmoi) and m-PDA (0. 5 g, 4.63 mmol) to afford a b!ood red solid.
[00107] Preparation of poty{S-r~m~PDA) with 9.09~wt% m-PDA: The
copoiymerization was carried out by following the general method written above with Ss (2.5 g, 9.75 mmoi) and m-PDA (0.25 g, 2.31 mmol) to afford a blood red solid.
[00108] As shown in FIGs. 16a-16d, the copolymer made from Ss and 1 ,3- phenylenediamine at T= 185°C, or 135°C is homogeneous red glasses, which exhibits characteristically different appearances than the starting materials (Ss is yellow crystalline powder and 1 ,3-phenylenediamine is a white powder). Furthermore, the product of the copoiymerization of Ss and with other isomers of phenylenediamines, such as 1 ,4-pheny!enediamine, afford a heterogeneous, chalklike material composed of yeilow and brown particulates.
[00109] EXAMPLE 3. Generai procedure for the high temperature preparation of po^y{su!fur-ranc om-{4,4'-t sobisber8 er!ethio^ (poiy(S-r-TBBT)) copolymers [00110] To a 24 mL glass vial equipped with a magnetic stir bar were added sulfur (Sa, masses detailed below) and 4,4'-thiobisbenzenethiol (TBBT, masses detailed below). The reaction was heated to T ~ 185 °C in a thermostat oil bath and the resulting mixture was stirred at T = 185 °C for 8-10 minutes, until bubbling ceased.
[00111] Preparation of po!y(S-r-TBBT) wsth 50-wt% TBBT: The copolymerization was carried out by following the general method written above with Se (0.50 g, 1 .95 mmoi) and TBBT (0.5 g, 2.00 mmol) to afford a yellow solid.
[00112] Preparation of pofy{S-r~p-PDA) with 33.3-wt% TBBT: The
copolymerization was carried out by foilowing the general method written above with Ss (0.68 g, 2.57 mmol) and TBBT (0.33 g, 1.32 mmol) to afford a yellow solid.
[00113] Preparation of po!yfS-f-p-PDA) with 28.57-wt% TBBT: The
copolymerization was carried out by following the general method written above with Se (0.714 g, 2.78 mmoi) and TBBT (0.286 g, 1.14 mmol) to afford a yellow solid.
[00114] Preparation of p©Hy{S-r-p-PDA) with 23.08-wt% TBBT: The
copolymerization was carried out by following the general method written above with Se (0.769 g, 3.00 mmol) and TBBT (0.231 g, 0.92 mmol) to afford a yellow solid.
[00115] Preparation of pofy{S-r~p-PDA) with 16.67-wt% TBBT: The
copolymerization was carried out by following the general method written above with S8 (0.833 g, 3.25 mmoi) and TBBT (0. 168 g, 0.663 mmol) to afford a yellow solid.
[00116] Preparation of pofy{S-r-p~PDA) with 9.09-wt% TBBT: The
copolymerization was carried out by following the general method written above with S8 (0.909 g, 3.54 mmoi) and TBBT (0.091 g, 0.363 mmol) to afford a yellow solid. [00117] EXAMPLE 4. Nitrorse capping of sulfur copolymers
Figure imgf000022_0001
[00118] To a 5 mL vial equipped with a magnetic stir bar was added elemental sulfur (500 mg). The vial was heated to 185 °C until the sulfur completely melted. 4- methylstyrene (0.5 mL) was then added and the mixture was stirred at 185 °C for 50 min. N-ferf~buty!-a-phenyInitrone (0.175 mg) was then added and the reaction was stirred for an additional 10 min at 165 °C. The polymer was isolated by precipitation into an excess of rapidly stirred methanol and recovered via centrifugation as a yellow powder.
[00119] Reaction of other nitrones include, 5,5-dimethy!-1-pyrro!ine-N-oxide, difunctional aromatic nitrones and other aliphatic nitrones was demonstrated to copoiymerize with sulfur
[00120] EXAMPLE 5. Conjugated polymers with aniline, diamines and sulfur [00121] Experimental: To a 50 mL 3-neck RBF equipped with a magnetic stir bar and a condenser were added the sulfur (4.25 g, 16.858 mmol), m-phenylenediamine (0.25 g, 2.312 mmol), D!B (0.5 g, 0.54 mL, 3.160 mmol), aniline (0.215 g, 0.21 1 mL, 2.312 mmol), and chiorobenzene (10 mL). The other two necks were fitted with septa and placed in a thermostat controlled oil bath held at T =125°C and once the reaction was homogenous it was run for 2 hours while stirring at 800 rpm. Into vial fitted with a rubber septum were added the sulfur monochloride (3.123 g, 1.85 mL, 23.125 mmol) and chiorobenzene (5 mL). After 2 hours the sulfur monochloride solution was injected into the stirring copolymer. The heat to the reaction was turned off and the reaction was run for an additional hour to homogenize and ensure complete reaction and removal of the HCl gas that is generated. After the reaction is complete the mixture was precipitated into stirring anhydrous ethanol. The precipitate was filtered and then washed with deionized (Dl) H^O (3x 25 mL), saturated sodium bicarbonate solution (3x 25 mL), DS H2O once again to remove any salt products (2x 25 mL), anhydrous ethanoi (2x 25 mL)and finally the sample was washed with a mixture of carbon disulfide and tetrahydrofuran (1 :1 by volume) until the washings were clear. The product was then dried and weighed. A reaction scheme and final product is shown in FIG. 17.
[00122] EXAMPLE 6. Conjugated polymers with su!fur and thiopherses
Figure imgf000023_0001
[00123] Preparatio of po!y(ProDOT-Sty-r-D!B-r-S) (ProDIBS)
[00124] To a 5 mL glass vial equipped with a magnetic stir bar was added elemental sulfur (500 mg, 1 .95 mmol) and ProDOT-Sty (400 mg, 1.21 mmoi). The mixture was heated to 180 °C with rapid stirring for 5 min to facilitate the oiigomerization of sulfur and ProDOT-Sty yielding a viscous orange liquid. 1 ,3-Diisopropenyl benzene (100 mg, 108 μ!_, 0.63 mmol) was then injected and the reaction was allowed to stir at 180 °C until vitrification occurred (~5 additional minutes). The sample was cooled to -78 °C in a dry ice/acetone bath and extracted by breaking the glass vial yielding a dark red glass in quantitative yield. The copolymer of poiy(ProDOT-Sty, 1 ,3- diisopropenyibenzene and sulfur is defined as poly(ProDIBS).
[00125] Oxidative polymerization of pendant ProDOT groups in ProDIBS
[00126] in Solution (Chomica!): To a 20 mL scintillation vial were added poly(ProDOT-Sty-r-DIB-r-S) (ProDIBS) (450 mg) and anhydrous CH2CI2 (5 mL). The mixture was mixed using a vortex mixer until a homogeneous reddish orange solution resulted. A 50 mL round bottom flask equipped with a magnetic stir bar was then loaded with phenyliodine bis(trifiuoroacetate) (PIFA) (5.86 g, 13.63 mmol) and evacuated/backfilled with Ar. Anhydrous CH2O2 (12 mL) was added and the mixture was allowed to stir until the solution was saturated (-10 min). Borontrifluoride diethyietherate (3.36 mL, 27.25 mmoi) was then slowly added to the PSFA/CH2CI2 mixture under Argon yielding a homogeneous yellow solution. The PSFA/BF3 "Et20 solution was cooled to 0 °C in an ice bath and the ProD!BS solution was added drop wise. After addition of the ProDIBS was complete the reaction was allowed to come to room temperature and stirred under Ar for 2 hours. The dark purple/black solution was then slowly added to a 10 fold excess of rapidly stirred MeOH. The resulting precipitate was recovered via vacuum filtration, washed with additional MeOH and dried in vacuo at room temperature, yielding the polymer as a dark green powder (408 mg yield).
[00127] On Electrode (Electrochemical): A thin film of ProDIBS (ca. 240 nm thickness) was deposited onto a freshly cleaned ITO coated glass substrate (2 cm x 2 cm) by spin-coating from a solution of po!y(ProDIBS) in volume mixed solvent system of toluene and CH2CI2 (1 : 1 vol-ratio) (25 mg/mL) with a two-step spin-coating protocol (step 1 : ramp at 400 rpm/s to 1500 rpm for a total of 15 s, step 2: ramp at 685 rpm/s from 1500 to 3500 rpm for an additional 15 s). The ProDIBS coated !TO was then placed in an electrochemical cell with a Pt counter electrode and 100 mM tetrabutyiammonium hexafluorophosphate (TBAFP) in MeCN. The polymer film was incubated in the TBAFP solution for 5 min to allow for swelling of the polymer with electrolyte. Oxidative polymerization of the ProDOT moieties was then carried out by stepping the potential to 1.1 V vs. Ag/Ag+.
[00128] Sulfur Copolymers with sulfur and sulfides
[00129] Non-limiting examples of sulfide monomers include 2,2'dipyridyldisulfides, functional 2,2!dipyridyldisulfides, 1 ,3-pheny!enedimethanedithiol, and other dithioi isomers (e.g., 1 ,4 and 1 ,2 dithiols, and functional dithiols).
[00130] Preparation of the sulfur copolymer
[00131] The S,s and the sulfide were mixed together is vessel equipped with a magnetic stir bar. The reaction was heated to a temperature between about T = 120 CC to 200 CC in a thermostat oil bath and the resulting mixture was stirred about for 8-10 minutes to afford a sulfur copolymer material.
[00132] Sulfur Copolymers with sulfur and aldehydes
[00133] Non-limiting examples of aldehyde monomers include 4-vinylbenzaldehyde and phthaialdehyde. [00134] Preparation of the sulfur copolymer
[00135] The Se and the aldehyde were mixed together is vessel equipped with a magnetic stir bar. The reaction was heated to a temperature between about T ~ 120 °C to 200 °C in a thermostat oil bath and the resulting mixture was stirred about for 6-10 minutes to afford a sulfur copolymer material.
[00136] Sulfur Copolymers with sulfur and ketones
[00137] Non-limiting examples of ketone monomers include 1-(4-vinylphenyl)ethan-1- one.
[00138] Preparation of the sulfur copolymer
[00139] The Ss and the ketone were mixed together is vessel equipped with a magnetic stir bar. The reaction was heated to a temperature between about T = 120 CC to 200 CC in a thermostat oil bath and the resulting mixture was stirred about for 6-10 minutes to afford a sulfur copolymer material.
[00140] Preparation of the sulfur copolymer
[00141] The Ss and the sulfide were mixed together is vessel equipped with a magnetic stir bar. The reaction was heated to a temperature between about T ~ 120 °C to 200 °C in a thermostat oil bath and the resulting mixture was stirred about for 6-10 minutes to afford a sulfur copolymer material.
[00142] Self-Healing
[00143] Another feature of the present invention is a copolymer material comprising a sulfur copolymer at a level in the range of about 5 wt% to about 95 wt% of the copolymer material, and one or more epoxide monomers at a level in the range of about 5 wt% to about 95 wt% of the copolymer material. In some embodiments, the sulfur copolymer comprises one or more sulfur monomers, at a level at least about 50 wt% of the sulfur copolymer, and one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, a!kynyily unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, thiirane monomers, and ethylenicaliy unsaturated monomers at a level in the range of about 0.1 wt% to about 50 wt% of the sulfur copolymer. In some embodiments, at least one epoxy functional group of the epoxide monomers is bonded to a functional group of the sulfur copolymer. Non-limiting examples of other monomers are described in U.S. Provisional Patent Application No. 82/039,561 , filed August 20, 2014, which are incorporated herein by reference.
[00144] In some embodiments, the one or more comonomers are one or more amine monomers. In some embodiments, the amine monomer is m-phenylenediamine or p- phenylenediamine. In some embodiments, the one or more comonomers are one or more thiol monomers. In some embodiments, the thiol monomer is 4,4'- thiobis(benzenethiol). In some embodiments, the one or more comonomers are a combination of one or more amine monomers and one or more thiol monomers. Sn some embodiments, the one or more comonomers are one or more alkynylly unsaturated monomers. In some embodiments, the alkynylly unsaturated monomer is 1-phenyipropyne. In some embodiments, the one or more comonomers are one or more thiirane monomers. In some embodiments, the thiirane monomer is propylene sulfide. In some embodiments, one or more of the epoxide monomers are benzyl g!ycidyl ether, tris(4-hydroxypheny!)methane trigiycidyl ether, or a combination thereof.
[00145] In some embodiments, the sulfur copolymer is at a level of at least about 5 wt%, or at least about 10 wt%, or at least about 20 wt%, or at least about 30 wt%, or at least about 40 wt%, or at least about 50 wt%, or at least about 80 wt%, or at least about 70 wt%, or at least about 80 wt%, or at least about 90 wt%, or at least about 95 wt% of the copolymer material. In some embodiments, the sulfur copolymer is at a level between about 5 and 10 wt%, or about 10 and 15 wt%, or about 15 and 20 wt%, or about 20 and 30 wt%, or about 30 and 40 wt%, or about 40 and 50 wt%, or about 50 and 80 wt%, or about 80 and 70 wt%, or about 70 and 80 wt%, or about 80 and 90 wt%, or about 90 and 95 wt% of the copolymer material.
[00146] In some embodiments, the epoxide monomer is at a level of at least about 1 wt% of the copolymer material. The epoxide monomer may be at a level of at least about 5 wt%, or at least about 10 wt%, or at least about 20 wt%, or at least about 30 wt%, or at least about 40 wt%, or at least about 50 wt%, or at least about 60 wt%, or at least about 70 wt%, or at least about 80 wt%, or at least about 90 wt%, or at least about 95 wt% of the copolymer material. In some embodiments, the epoxide monomer is at a level between about 1 and 5 wt%, or about 5 and 15 wt%, or about 15 and 25 wt%, or about 25 and 35 wt%, or about 35 and 45 wt%, or about 45 and 55 wt%, or about 55 and 65 wt%, or about 65 and 75 wt%, or about 75 and 85 wt%, or about 85 and 95 wt% of the copolymer material.
[00147] In some embodiments, the copolymer material is a thermoset. In some embodiments, the copolymer material is a thermoplastic. In some embodiments, the copolymer material is self-healing. In some embodiments, when one or more S-S bonds of the sulfur copolymer are broken, the S-S bonds are reconnected by thermal reforming.
[00148] In some embodiments, the present invention features a self-healing sulfur copolymer comprising one or more sulfur monomers, at a level at least about 50 wt% of the self-healing sulfur copolymer, and one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynyiiy unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenically unsaturated monomers at a level in the range of about 0.1 wt% to about 50 wt% of the self- healing sulfur copolymer. In some embodiments, when one or more S-S bonds of the sulfur copolymer are broken, the S~S bonds are reconnected by thermal reforming.
[00149] In some embodiments, the present invention features a self-healing and reworkabie epoxy resin comprising a sulfur copolymer at a level in the range of about 5 wt% to about 95 wt% of the epoxy resin, and one or more epoxide monomers at a level in the range of about 5 wt% to about 95 wt% of the epoxy resin. Sn some embodiments, sulfur copolymer at a level in the range of about 5 to 15 wt%, or about 15 to 25 wt%, or about 25 to 35 wt%, or about 35 to 45 wt%, or about 45 to 55 wt%, or about 55 to 65 wt%, or about 65 to 75 wt%, or about 75 to 85 wt%, or about 85 to 95 wt% of the epoxy resin. In some embodiments, the sulfur copolymer comprising one or more sulfur monomers, at a level at least about 50 wt%, or about 60 wt%, or about 70 wt%, or about 80 wt%, or about 90 wt% of the self-healing sulfur copolymer, and one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynyiiy unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thlirane monomers, and ethy!enically unsaturated monomers at a level In the range of about 0.1 wt% to 10 wt%, or about 10 wt% to 20 wt%, or about 20 wt% to 30 wt%, or about 30 wt% to 40 wt%, or about 40 wt% to 50 wt% of the self-healing sulfur copolymer. In some embodiments, at least one epoxy functional group of the epoxide monomers is bonded to a functional group of the sulfur copolymer. In some embodiments, when one or more S-S bonds of the sulfur copolymer are broken, the S-S bonds are reconnected by thermal reforming.
[00150] In some embodiments, the present invention features a method of repairing a polymeric substrate, said method comprising providing the polymeric substrate comprising a sulfur copolymer having one or more broken S-S bonds, and heat treating the polymeric substrate at a healing temperature for a period of time in order to reconnect the S-S bonds of the sulfur copolymer. In some embodiments, the sulfur copolymer comprises one or more sulfur monomers, at a level at least about 50 wt% of the self-healing sulfur copolymer, and one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynyliy unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethy!enically unsaturated monomers at a level in the range of about 0.1 wt% to about 50 wt% of the self-healing sulfur copolymer. In some embodiments, the polymeric substrate further comprises one or more epoxide monomers at a level in the range of about 5 wt% to about 95 wt% of the polymeric substrate, wherein at least one epoxy functional group of the epoxide monomers is bonded to a functional group of the sulfur copolymer.
[00151] In some embodiments, the healing temperature is between about 80°C and 100°C. In some embodiments, the healing temperature is between about 100°C and 150°C. In some embodiments, the healing temperature is at or near the melting point of the polymeric substrate. In some embodiments, the period of time is between about 4 and 15 hours. In some embodiments, the period of time is between about 8 and 12 hours.
[00152] Metal Composites [00153] In some embodiments, the present invention features a composite materia! comprising a sulfur at a level at least about 50 wt% of the composite material, and a metal or ceramic composite having a formula xRy and at a level between about 0.1 and about 50 wt% of the composite material. In some embodiments, M is selected from a group consisting of Ag, Al, As Au, B, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Eu, Fe, Ga, Gd, Ge, Hf, Hg, In, La, Li, g, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pd, Pr, Sb, Se, Si, Sn, Sr, Ta, Ti, Tl, V, VV, Y , Yb, Zn and Zr. In some embodiments, R is selected from a group consisting of C, N, and S. Sn some embodiments, x ranges between about 1 and about 30, or between about 1 and about 10, or between about 10 and about 20, or between about 20 and about 30. In some embodiments, y ranges between about 1 and about 5, or between about 5 and about 10, or between about 1 and about 10. In some embodiments, the metal or ceramic composite is dispersed in the suifur.
[00154] In some embodiments, the suifur is at a level at least about 20 wt% of the composite material. In other embodiments, the sulfur is at a level at least 30 wt%, or about 40 wt%, or about 50 wt%, or about 80 wt%, or about 70 wt%, or about 80 wt%, or about 90 wt% of the composite material. Sn some embodiments, the sulfur is at a level between about 30-40 wt%, or about 40-50 wt%, or about 50-60 wt%, or about 60-70 wt%, or about 70-80 wt%, or about 80-90 wt% of the composite material.
[00155] In some embodiments, the metal or ceramic composite is at a level at least about 10 wt% of the composite material. In other embodiments, the metal or ceramic composite is at a level at least about 20 wt%, or about 30 wt%, or about 40 wt%, or about 50 wt% of the composite material. In some embodiments, the metal or ceramic composite is at a level between about 0.1 -5 wt% of the composite material. In other embodiments, the metal or ceramic composite is at a level between about 5-10 wt%, or between about 10-20 wt%, or between about 20-30 wt%, or between about 30-40 wt%, or between about 40-50 wt%, or between about 50-60 wt% of the composite material.
[00156] In some embodiments, when R is C, M is selected from a group consisting of Al, B, Ca, Cr, Hf, Mo, Nb, Si, Ta, Ti, V, W, Y, and Zr. Sn some embodiments, when R is N, M is selected from a group consisting of Al, B, Ba, Bi, Ca, Cr, Cu, Eu, Fe, Ga, Gd, La, Li, Mg, Mn, Nb, Nd, Pr, Si, Sr, Ta, Ti, V, Zn or Zr. In some embodiments, when R is 8, M is selected from a group consisting of Ag, Al, As, Au, Ba, Bi, Cd, Ce, Co, Cu, Fe, Ga, Ge, Hg, In, Li, n, Mo, Na, Ni, P, Pb, Pd, Sb, Se, Sn, Sr, Ti, Tl, W, Yb, and Zn.
[00157] In some embodiments, the present invention features a composite material comprising a sulfur at a level at least about 50 wt% of the composite material, and a metal sulfur composite having a formula PxSy z and at a Ievel between about 0.1 and about 50 wt% of the composite material. In some embodiments, P is selected from a group consisting of Li and Na. In some embodiments, M is selected from a group consisting of Ag, Ai, As Au, B, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Eu, Fe, Ga, Gd, Ge, Hf, Hg, In, La, Li, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pd, Pr, Sb, Se, Si, Sn, Sr, Ta, Ti, Tl, V, W, Y , Yb, Zn and Zr. In some embodiments, x ranges between about 1 and about 10. In some embodiments, y ranges between about 1 and about 10. In some embodiments, z ranges between about 1 and about 30. In some embodiments, the metal sulfur composite is a uniform single phase. In some embodiments, the metal sulfur composite is dispersed in the sulfur.
[00158] In some embodiments, the sulfur is at a level at least about 40 wt%, or about 50 wt%, or about 80 wt%, or about 70 wt%, or about 80 wt%, or about 90 wt% of the composite material. In some embodiments, the sulfur is at a level between about 30- 40 wt%, or about 40-50 wt%, or about 50-60 wt%, or about 60-70 wt%, or about 70- 80 wt%, or about 80-90 wt% of the composite material.
[00159] In some embodiments, the metal sulfur composite is at a Ievel at least about 10 wt% of the composite material. In other embodiments, the metal sulfur composite is at a level at least about 20 wt%, or about 30 wt%, or about 40 wt%, or about 50 wt% of the composite material. In some embodiments, the metal sulfur composite is at a ievel between about 0.1-5 wt%, or about 5-10 wt%, or about 10-20 wt%, or about 20-30 wt%, or about 30-40 wt%, or about 40-50 wt%, or about 50-60 wt% of the composite material.
[00160] In some embodiments, the composite material is copolymerized with a sulfur copolymer. In some embodiments, the sulfur copolymer comprises one or more sulfur monomers, at a level in the range of at least about 40 wt%, or at least about 50 wt%, or at least about 80 wt%, or at least about 70 wt%, or at least about 80 wt%, or at least about 90 wt% of the sulfur copolymer, and one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynyily unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethy!enically unsaturated monomers at a level in the range of about 0.1 wt% to 5 wt%, or about 5 wt% to 15 wt%, or about 15 wt% to 25 wt%, or about 25 wt% to 35 wt%, or about 35 wt% to 45 wt%, or about 45 wt% to 55 wt% of the sulfur copolymer. In some embodiments, the polymeric material further comprises one or more epoxide monomers at a level in the range of about 5 wt% to 15 wt%, or about 15 wt% to 25 wt%, or about 25 wt% to 35 wt%, or about 35 wt% to 45 wt%, or about 45 wt% to 55 wt%, or about 55 wt% to 85 wt%, or about 85 wt% to 75 wt%, or about 75 wt% to 85 wt%, or about 85 wt% to 95 wt% of the polymeric material, wherein at least one epoxy functional group of the epoxide monomers is bonded to a functional group of the sulfur copolymer.
[00161] In some embodiments, the composite material is copolymerized with a polymeric material comprising a sulfur copoiymer and one or more epoxide monomers at a level in the range of about 5 wt% to about 95 wt% of the polymeric material. In some embodiments, the sulfur copolymer comprises one or more sulfur monomers, at a level in the range of at least about 50 wt% of the sulfur copolymer, and one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynyily unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenica!Iy unsaturated monomers at a level in the range of about 0.1 wt% to about 50 wt% of the sulfur copolymer. Sn some embodiments, at least one epoxy functional group of the epoxide monomers is bonded to a functional group of the sulfur copolymer.
[00162] In some embodiments, the composite material is self-healing. In some embodiments, when one or more S-S bonds of the sulfur copolymer are broken, the S-S bonds are reconnected by thermal reforming.
[00163] In some embodiments, the present invention features a method of producing a sulfur copolymer, said method comprising providing elemental sulfur, heating the elemental sulfur into a molten sulfur, and adding one or more comonomers to the molten sulfur, thereby forming the sulfur copolymer. In some embodiments, the elemental sulfur is heated to a temperature of about 120 to 230 °C. In some embodiments, the one or more comonomers are selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, aikynylly unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenicaliy unsaturated monomers. In some embodiments, the elemental sulfur is at a level of at least about 50 wt% of the sulfur copolymer. In some embodiments, the one or more comonomers are at a level of about 1 to 50 wt% of the sulfur copolymer.
[00164] In some embodiments, the present invention features a method of producing a copolymer material, said method comprising providing a sulfur copolymer, mixing the sulfur copolymer with one or more epoxide monomers, melting the sulfur copolymer and epoxide mixture, mixing the melted sulfur copolymer and epoxide mixture, and adding an alcohol to the to the melted sulfur copolymer and epoxide mixture, thereby forming the copolymer material. In some embodiments, the method of providing a sulfur copolymer comprises providing elemental sulfur, heating the elemental sulfur into a molten sulfur, and adding one or more comonomers to the molten sulfur, thereby forming the sulfur copolymer.
[00165] In some embodiments, the elemental sulfur is heated to a temperature of about 120 to 230 °C. In some embodiments, the sulfur copolymer and epoxide mixture is heated to a temperature of about 80 to 80 °C. In some embodiments, the one or more comonomers are selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, aikynylly unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenicaliy unsaturated monomers. In some embodiments, the sulfur copolymer is at a level in the range of about 5 wt% to about 95 wt% of the copolymer material. In some embodiments, the elemental sulfur is at a level of at least about 50 wt% of the sulfur copolymer. In some embodiments, the one or more comonomers are at a level of about 1 to 50 wt% of the sulfur copolymer, in some embodiments, the one or more epoxide monomers are at a level in the range of about 5 wt% to about 95 wt% of the copolymer material.
[00166] In some embodiments, the present invention features a method of producing a composite material, said method comprising providing elemental sulfur, mixing a metal or ceramic composite with the elemental sulfur to form a mixture, and heating the mixture until vitrification, thereby forming the composite material. In some embodiments, the mixture is heated to a temperature of about 160 to 200 °C. In some embodiments, the elemental sulfur is at a level of at least about 50 wt% of the composite material. In some embodiments, the metal or ceramic composite is at a level of about 1 to 50 wt% of the composite material.
[00167] In some embodiments, the metal or ceramic composite has a formula MxRy. In some embodiments, M is selected from a group consisting of Ag, AL As Au, B, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Eu, Fe, Ga, Gd, Ge, Hf, Hg, In, La, Li, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pd, Pr, Sb, Se, Si, Sn, Sr, Ta, Ti, Ti, V, W, Y , Yb, Zn and Zr. In some embodiments, R is selected from a group consisting of C, N, and S. In some embodiments, x ranges between about 1 and about 30. In some embodiments, y ranges between about 1 and about 10.
[00168] In some embodiments, the present invention features a sulfur epoxy resin comprising at least one branched or cross-linked sulfur chain, wherein at least one branch or cross-link of the sulfur chain comprises an ether bond, wherein the sulfur content ranges from about 5-15 wt%, or from about 15-25 wt%, or from about 25-35 wt%, or from about 35-45 wt%, or from about 45-55 wt%, or from about 55-85 wt%, or from about 65-75 wt%, or from about 75-85 wt%, or from about 85-95 wt%, or from about 5-95 wt% of the epoxy resin.
[00169] In some embodiments, the present invention features a sulfur epoxy resin comprising a portion comprising -RrS-(S)n-S-R2-, wherein n ranges from 0 to 6; and at least one cross-link of the epoxy resin comprising an ether bond, wherein the sulfur content ranges from about 5-15 wt%, or from about 15-25 wt%, or from about 25-35 wt%, or from about 35-45 wt%, or from about 45-55 wt%, or from about 55-65 wt%, or from about 65-75 wt%, or from about 75-85 wt%, or from about 85-95 wt%, or from about 5-95 wt% of the epoxy resin. [00170] In some embodiments, Ri may be any of the aforementioned amine monomers, thiol monomers, sulfide monomers, alkynyl!y unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenicaily unsaturated monomers bonded to the S moiety by the monomers appropriate reactive functional group. In some embodiments, F½ may be any of the aforementioned amine monomers, thiol monomers, sulfide monomers, alkyny!ly unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenicaily unsaturated monomers bonded to the S moiety via the monomer's appropriate reactive functional group.
[00171] In some embodiments, the sulfur chain comprises at least one branch or cross-link arm. In some embodiments, the branch or cross-link arm may be any of the aforementioned amine monomers, thiol monomers, sulfide monomers, alkynylly unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenicaily unsaturated monomers bonded to the S moiety of the sulfur chain via the monomer's appropriate reactive functional group.
[00172] In some embodiments, the present invention features a sulfur composite material comprising a plurality of metal or ceramic composite particles having a formula xRy dispersed in a polymeric sulfur, wherein a sulfur content of the sulfur composite material is at least 50 wt%,
[00173] In some embodiments, the present invention features a sulfur composite material comprising a plurality of metal or ceramic composite particles having a formula PxMyRz dispersed in a polymeric sulfur, wherein a sulfur content of the sulfur composite material is at least 50 wt%.
[00174] In some embodiments, the present invention features a copolymer materia! comprising one or more sulfur monomers at a level in the range of about 5 wt% to about 95 wt% of the copolymer material, one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynylly unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, tbiirane monomers, and ethy!enically unsaturated monomers at a level in the range of about 5 wt% to about 50 wt% of the copolymer material, and one or more epoxide monomers at a level in the range of about 5 wt% to about 95 wt% of the copolymer material. In some embodiments, at least one epoxy functional group of the epoxide monomers is bonded to a functional group of the comonomer, a sulfur moiety of the sulfur monomer, or a combination thereof.
[00175] High refractive index polymers for IR optical materials
[00176] As shown in FIGs. 33 and 34, the development of polymeric materials for infrared (IR) optical applications has not been achieved due to challenges in designing systems with sufficiently high refractive index (n) and transparency in the IR spectral regime. IR optical technology has numerous potential applications in the civil, medical, and military areas, where inorganic semiconductors (e.g., Ge, Si) and chalcogenide glasses have been widely used as materials for device components due to their high refractive index (n ~ 2.0 - 4.0) and low losses from 1 -10 μπι, Other examples of glass materials currently in use are SnSb, InGaAs, HgCdTe, ArSe, and ArS. While such materials are well suited for these applications, they are inherently more expensive, toxic, and difficult to process in comparison to organic polymeric materials.
[00177] As shown in FIG. 35, the sulfur copolymers that have been described herein are the first class of polymeric materials that exhibit high transparency in the shortwave and mid-IR regimes due to the presence of largely I R inactive S-S bonds. Furthermore, since these sulfur copolymers are readily melt, or solution processed, fabrication of free standing films, windows, or lenses can be easily conducted. Access to these kinds of high quality and inexpensive lenses are anticipated to open new opportunities in low cost IR optical devices and technologies including IR thermal imaging rifle scopes and home monitoring.
[00178] As shown in FIGs. 38a, b, the refractive index of poly(S-r-DIB) film is >22% higher than PM A, and the transparency of poly(S-r-DIB) film is 6x higher at 2900 nm. As shown in FIGs. 36-38, sulfur-rich copolymers were synthesized via inverse vulcanization to create novel copolymers with high refractive indices and optical transparency in the near to mid-infrared (1 .5 um and 3-5 m) regions. By directly varying the feed ratio of comonomers during inverse vulcanization, the content of S- S bonds in these materials was controlled, thereby enabling correlation of optica! properties with copolymer composition. All copolymer compositions possess a refractive index above n = 1.7 at 1550 nm. Furthermore, these sulfur copolymers were readily solution, or melt processed into thin films, or free standing lenses for IR imaging.
[00179] In other embodiments, an optical element comprising the polymeric composition is formed as a substantially optically transparent body having an optical transparency in the visible and infrared spectrum. The polymeric composition has a refractive index in the range of about 1.7 to about 2.2 and at least one wavelength in the range of about 300 nm to about 10 pm.
[00180] Electrochemical Cells
[00181] The use of a new electroactive cathode material for an Li-S battery, which can be a sulfur based material, or polymer that, upon discharge, generates soluble additive species in situ that co-deposit onto the cathode with lower sulfide discharge products. These additive species may be introduced into the electroactive material during the synthesis of the material, or added to the electrolyte or battery separator as a soluble species. These additive species are able to co-deposit with sulfide- containing discharge products via active electrochemical reactions, or passive non- electrochemical processes. Co-deposition of these additive species with sulfide discharge products onto the Li~S cathode p!asticizes the electrode against mechanical fracture during battery charge-discharge cycling. Piasticization enables retention of charge capacity and improve cycle lifetime beyond 100 cycles.
[00182] The electroactive material in this case is best embodied by a copolymer materia! comprising elemental sulfur and an organic comonomer. Upon discharge of this copolymer, soluble organosuifur species are formed which function to improve Li-S batteries as described above.
[00183] In some embodiments, the present invention features an electrochemical cell comprising an anode comprising metallic lithium, a cathode comprising the composite material of any of the aforementioned embodiments, and a non-aqueous electrolyte disposed between the cathode and the anode. In some embodiments, the electrochemical ceil has a capacity of between about 200 and about 1 ,400 mAh/g. The cathode may be flexible. The electrochemical cell may have a capacity in the range of about 200 to about 1400 mAh/g. In another embodiment, the electrochemical cell may have a capacity in the range of about 600 to about 1000 mAh/g.
[00184] In another embodiment, an electrochemical cell comprises an anode comprising metallic lithium, a cathode comprising a sulfur containing polymer which generates soluble additive species in situ upon discharge and the soluble additive species co-deposit with lower sulfide discharge products onto the cathode, and a non-aqueous electrolyte interposed between the cathode and the anode. In some embodiments, the lower sulfide discharge products are 11283, U2S2, or U2S.
[00185] In some embodiments, the electrolyte and/or a separator comprises a sulfur containing polymer according to any of the aforementioned polymeric compositions. The copolymer generates soluble organosulfur species upon discharge. The soluble additive species are co-deposited with the lower sulfide discharge products by an electrochemical reaction or a non-electrochemical reaction.
[00186] Any embodiment of the electrochemical ceils may be used in electric vehicle applications, portable consumer devices portable consumer devices (e.g., Personal electronics, cameras, electronic cigarettes, handheld game consoles, and flashlights), motorized wheelchairs, golf carts, electric bicycles, electric forklifts, tools, automobile starters, and uninterruptible power supplies.
[00187] EXAMPLES
[00188] Example 7, Referring now to FIG 5, The following is a non-limiting example of a procedure for the preparation of sulfur epoxy materials:
[00189] 1. To an 1 1 mL glass scintillation vial equipped with a ½ inch magnetic stir bar were added the poly(suifur-random-m-phenylenediamine) copolymer (about 50- wt% Ss) (about 0.5 g), benzyl glycidyi ether (about 0.634 mL, about 0.683 g, about 4.162mmoi), and the solid tris(4-hydroxyphenyl)methane triglycidyl ether (about 1.916 g, about 4.162 mmoi). [00190] 2. The vial was capped and placed in a thermostat controlled oven held at about T= 65 °C for about 30 minutes to allow the melting of the tris(4-hydroxyphenyl) methane triglycidyi ether and the dissolution of a large portion of the copolymer before magnetically mixing.
[00191] 3. After about 30 minutes, the vial is placed in a thermostat controlled oil bath held at about T = 70 °C. The mixture was stirred to homogenize prior to the injection of the 2-dimethyiaminoethanol (about 0.025 mL, about 0.0222 g, about 0.08445 mmol).
[00192] 4. The reaction was stirred and allowed to cure for about 3 hours before cooling and removing from the vial (yield: about 98.0%)
[00193] Example 8. Referring now to FIG. 1 1 , the following is a non-limiting example of a procedure for the preparation of a sulfur/metal sulfide composite material:
[00194] 1. To 5 mL vial equipped with a magnetic stir bar was added sulfur (about 1.00 g, about 3.87 mmol as Sa) and molybdenum sulfide (about 1.00 g, about 8.25 mmol as M02S).
[00195] 2. The mixture was heated at about 180 °C while stirring until vitrification.
[00196] 3. The vitreous product was then cooled in a dry ice/acetone bath for about 2 min and the product was recovered by breaking the vial yielding an opaque grey- black solid in quantitative yield.
[00197] Example 9. The following is a non-limiting example of a thermal reforming procedure of a self-healing polymer substrate:
[00198] 1. The polymeric substrate having a crack is placed in an oven.
[00199] 2. The polymeric substrate is heated at a temperature of about 100 °C for about 3 hours.
[00200] 3. The polymeric substrate is inspected to ensure that it is completely self- healed.
[00201] Photoactive sulfur polymers
[00202] Referring to FSG. 18, another aspect of the present invention relates to the use of sulfur to make a new class of photoactive sulfur polymers. The polymers can be used as a new solar fuel in which photochemical processes generate useful chemicals for clean energy and commodity chemicals. Without wishing to limit the present invention to a particular theory or mechanism, the chemical synthetic methodologies presented herein have the ability to change elemental sulfur into a polymeric material with photoactive properties that upon solar irradiation can photochemica!!y react with water to generate molecular hydrogen (H2), and oxidized sulfur species such as sulfates (SO4 2 ), sulfonates (RSO3 ) and organosulfoxides (f¾- S+-G"). This new sulfur-based polymer would contain (either by copolymerization, blending, dispersion or other forms of mixing) a fraction of photoactive compounds that can absorb light and produce reactive intermediates. These reactive intermediates promote the photoelectrochemicai degradation of the sulfur polymer in the presence of water into useful small molecules for clean energy (e.g. H2) and commodity chemicals such as sulfonates and sulfates that are important for fertilizers, sulfate salts, detergents.
[00203] In certain embodiments, a photoactive monomer is based on styrenic perylene diimides using established synthetic methods, such as those described in Wurther, which is hereby incorporated herein by reference in its entirety. It has been determined that these types of perylene diimides exhibit excellent solubility in liquid sulfur, which is a desirable feature in the inverse vulcanization process. Accordingly, in certain embodiments, the synthesis of peryiene-containing sulfur polymers can be achieved by simple dissolution of these photoactive monomers in liquid sulfur and heating the solution to T = 185 °C. For example, sulfur polymers with 1 -5% of the photoactive perylene units can be made. The copolymers can include a variety of other additional monomers such as 1 ,3-diisopropy!enebenzene (DIB). Non-limiting examples of other monomers are described in WO2013/023216 and U.S. Provisional Patent Application no. 61/940,102, which are incorporated herein by reference. A person of ordinary skill in the art can use such additional monomers, for example, to modulate the thermomechanical properties of the final sulfur polymer. Characterization of this copolymer can be performed using conventional spectroscopic and chromatographic methods such as NMR and SEC. To confirm photoactivity of the polymers, thin films can be cast onto transparent electrodes, such as !TO, to enable photoelectrochemicai degradation of the thin film upon visible excitation and monitoring the evolution of h½. The present invention thus, in certain aspects, allows for production of hydrogen for use as a fuel. [00204] In some embodiments, a polymeric composition comprises a sulfur copolymer, the sulfur copolymer comprising one or more sulfur monomers, at a level in the range of at least about 50 wt% of the copolymer, and one or more photoactive monomers at a level in the range of about 0.1 wt% to about 50 wt% of the copolymer. Each photoactive monomer can have the structure:
Figure imgf000040_0001
[00205] The "A" may be a ring system. The "A" may also be a photoactive chromophore. In some embodiments, the "A" may be selected from a group consisting of perylenes, pyrenes, couramins, cyanine dyes, fluoresceins, and derivatives thereof, po!ythiophenes, po!yanilines, Ti02, CdSe, CdS, CdSe~CdS, natural and synthetic dyes, aromatics, heterocycles, conjugated organic polymers, inorganic chromophores, nanocomposite chromophores, organic chromophores, photoactive agents, and semiconductor nanoparticies. In some embodiments, the "B" comprises a po!ymerizab!e moiety, wherein the polymerizable moiety is selected from a group consisting of a carboxy!ate moiety, an ethylenicaily unsaturated moiety, an epoxide moiety, a fhiirane moiety, an amine moiety, a thiol moiety, a sulfide moiety, an alkynylly unsaturated moiety, a nitrone moiety, an aldehyde moiety and a ketone moiety. In some embodiments, n is 1 , 2, 3, 4, 5, 8, 7 or 8.
[00206] In some embodiments, the sulfur copolymer further comprises one or more monomers selected from a group consisting of ethylenicaily unsaturated monomers, epoxide monomers, thiirane monomers, amine monomers, thiol monomers, sulfide monomers, alkynylly unsaturated monomers, nitrone monomers, aldehyde monomers and ketone monomers, at a level up to about 50 wt% of the sulfur copolymer. Such sulphur copolymers can be as generally described in WO2013/023216 and U.S. Provisional Patent Application no. 61/940,102, filed February 14, 2014, with the addition of one or more photoactive monomers as described herein. Accordingly, in certain embodiments, the sulfur copolymer is further described with respect to any embodiment or claim of WO2013/023216 and U.S. Provisional Patent Application no. 61/940102, each of which is hereby incorporated herein by reference for all purposes. Non-limiting examples of other monomers are described in U.S. Provisional Patent Application No. 62/017,750, filed June 28, 2014, which are incorporated herein by reference.
[00207] In some embodiments, each B includes the polymerizabie moiety and a 1 -8 atom long linker. Each linker is selected from a group consisting of an alkylene linker and a mono, di- or tri(ethyiene glycol) linker. Sn some embodiments, each B includes an ethyienically unsaturated moiety, an epoxide moiety, a thiirane moiety, or one or more carboxylic anhydrides.
[00208] In some embodiments, each photoactive monomer is a photosensitizer. Each photoactive monomer may be a peryiene diimide or a perylene bisimide. IN some embodiments, each photoactive monomer is a polycyclic organic chromophore. The photoactive monomer is capable of absorbing visible radiation, infrared radiation, and/or solar radiation. In some embodiments, the one or more photoactive monomers are present at a level of about 0.1 wt% to about 10 wt% of the sulfur copolymer, or 10 wt% to about 20 wt%, or 20 wt% to about 30 wt%, or 30 wt% to 40 wt%, or 40 wt% to about 50 wt%, or 1 wt% to about 5 wt%, or 5 wt% to about 15 wt%, or 15 wt% to 25 wt% of the polymeric composition.
[00209] In some embodiments, the one or more additional monomers are one or more ethyienically unsaturated monomers. In other embodiments, the one or more monomers are one or more epoxide monomers. In still other embodiments, the one or more monomers are a combination of one or more ethyienically unsaturated monomers and one or more epoxide monomers. In further embodiments, the one or more monomers are a combination of one or more thiirane monomers and one or more epoxide monomers.
[00210] In some embodiments, the sulfur copolymer comprises one or more sulfur monomers at a level in the range of about 50 to about 60 wt%, or about 80 to 70 wt%, or about 70 to 80 wt%, or about 80 to 90 wt%, or about 90 to 99.9 wt%, of the copolymer, and the other monomers at a total level in the range of about 0.01 to 1 wt%, or about 1 to 5 wt%, or about 5 to 10 wt%, or about 10 to 20 wt%, or about 20 to 30 wt%, or about 30 to 40 wt%, or about 40 to 50 wt% of the copolymer. In other embodiments, the sulfur copolymer comprises one or more sulfur monomers at a level in the range of about 50 to about 99 wt% of the copolymer, and the other monomers at a total level in the range of about 1 wt% to about 50 wt% of the copolymer. In still other embodiments, the sulfur copolymer comprises one or more sulfur monomers at a level in the range of about 50 to about 97.5 wt% of the copolymer, and the one or more monomers at a level in the range of about 2.5 wt% to about 50 wt% of the copolymer. In further embodiments, the sulfur copolymer comprises one or more sulfur monomers at a level in the range of about 50 to about 95 wt% of the copolymer, and the other monomers at a level in the range of about 5 wt% to about 50 wt% of the copolymer.
[00211] In some embodiments, the sulfur copolymer comprises one or more suifur monomers at a level of at least about 60 wt% of the copolymer. In other embodiments, the suifur copolymer comprises one or more sulfur monomers at a level in the range of about 70 to about 92 wt% of the copolymer. In still other embodiments, the sulfur copolymer comprises the other monomers at a level in the range of about 8 wt% to about 30 wt% of the copolymer.
[00212] Alternative embodiments of the suifur copolymers may include suifur copolymers further comprising one or more polyfunctional monomers (e.g., difunctional or Afunctional). The one or more polyfunctional monomers is selected from a group consisting of a polyvinyl monomer (e.g., divinyl, trivinyl), a polyisopropenyl monomer (e.g., diisoprenyi, triisoprenyi), a polyacryl monomer (e.g., diacryi, triacryl), a po!ymethacry! monomer (e.g., dimethacryl, trimethacry!), a polyunsaturated hydrocarbon monomer (e.g., diunsaturated, triunsaturated), a polyepoxide monomer (e.g., diepoxide, triepoxide), a polythiirane monomer (e.g., dithiirane, trithiirane), a poiyaikynyl monomer, a polydiene monomer, a polybutadiene monomer, a polyisoprene monomer, a poiynorbornene monomer, a polyamine monomer, a polythiol monomer, a polysuifide monomer, a polyalkynyiiy unsaturated monomers, a polynifrone monomers, a polyaldehyde monomers, a polyketone monomers, and a po!yethylenica!ly unsaturated monomers.
[00213] In some embodiments, the one or more polyfunctional monomers is selected from a group consisting of a divinyibenzene, a diisopropenylbenzene, an alkylene di(meth)acryiate, a bisphenoi A di(meth)acryiate, a terpene, a carotene, a divinyl (hetero)aromatic compound and a diisopropenyl (hetero)aromatic compound.
[00214] In other embodiments, the sulfur copolymer further comprises a nucieophilic viscosity modifier at a level up to about 10 wt% of the sulfur copolymer.
[00215] In one embodiment, the sulfur copolymer comprises one or more sulfur monomers, at a level of about 50 to about 98 wt% of the sulfur copolymer, one or more polyfunctional monomers, at a level of about 2 to about 50 wt% of the sulfur copolymer, and one or more monofunctionai monomers, at a level up to about 10 wt% of the sulfur copolymer. The monofunctionai and polyfunctional monomers can be photoactive monomers or additional monomers. The one or more sulfur monomers, the one or more polyfunctional monomers, and the one or more monofunctionai monomers are present at a level of at least about 70 wt% of the sulfur copolymer. Alternatively the one or more sulfur monomers, the one or more polyfunctional monomers and the optional one or more monofunctionai monomers are present at a level of at least about 85 wt% of the sulfur copolymer.
[00216] In some embodiments, the one or more polyfunctional monomers are at a level of about 2 to about 50 wt%, or about 2 to about 10 wt%, or about 10 to about 20 wt%, or about 20 to about 30 wt%, or about 30 to about 40 wt%, or about 40 to about 50 wt% of the sulfur copolymer. In some embodiments, the one or more monofunctionai monomers are at a level up to about 5 wt%, or about 10 wt%, or about 15 wt% of the sulfur copolymer.
[00217] In another embodiment, the sulfur copolymer comprises one or more sulfur monomers, at a level in the range of about 70 to about 92 wt% of the sulfur copolymer, one or more polyfunctional monomers selected from a group consisting of a divinylbenzene, a diisopropeny!benzene and an alkylene di(meth)acrylate, at a level in the range of about 8 to about 30 wt% of the sulfur copolymer, one or more monofunctionai monomers, at a level up to about 1.5 wt% of the sulfur copolymer, and triphenyiphosphine at a level up to about 20 wt% of the sulfur. The monofunctionai monomers and the poiyfunctionai monomers are photoactive monomers or additional monomers. [00218] In some embodiments, the polymeric composition is a photosentizabie material. The polymeric composition is in a photosensitized state. In some embodiments, the polymeric composition is photosensitizable by visible or near- infrared radiation. In other embodiments, the polymeric composition may also be photosensitizable by solar radiation.
[00219] The polymeric composition may be processable via solution or melt processing methods. In some embodiments, the polymeric composition is in the form of a thin film. In other embodiments, the polymeric composition is in the form of a three-dimensional solid having a smallest dimension at least 1 mm in size.
[00220] In some embodiments, the polymeric composition is contacted with an aqueous medium and irradiated with radiation that is at least partially absorbed by the one or more photoactive chromophores. The irradiation may form photoactive species. The irradiation may cause the formation of hydrogen from the aqueous medium. The irradiation may also the formation of oxidized sulfur species from the sulfur of the polymeric composition. In some embodiments, the oxidized sulfur species is one or more of sulfates, sulfonates, sulfites, sulfoxides and sulfones. In other embodiments, the irradiation causes the formation of a sulfur radical cation or polaron in the polymeric composition.
[00221] In some embodiments, the above-method done on the polymeric composition is performed at a temperature in the range of about 0 °C to about 100 °C, or about 5 °C to about 70 °C, or about 5 °C to about 55 °C, or about 25 °C to about 70 °C.
[00222] In some embodiments, the aqueous solution and the polymeric material are present in a weight ratio in the range of about 100:1 to about 1 :10, or about 100:1 to about 1 :10, or about 100: 1 to about 1 :1 , or about 100: 1 to about 5:1 .
[00223] In some embodiments, the radiation is solar radiation. In other embodiments, the radiation is visible radiation. In still other embodiments, the radiation is near- infrared radiation.
[00224] The following are non-limiting examples of materials that have been synthesized.
[00225] EXAMPLE 10
[00226] Preparation of 3,4,9,10~Peryterte~teiracarfooxy1ic dianhydride with Ss Experimental: A mixture of 3,4,9, 10-Perylene-tetracarboxylic dianhydride (1 mg) and Se (1.01 g) was heated at 170 °C and stirred for 30 min. After allowing to cool to room temperature, a red solid was afforded, as shown in FIG. 19a. (Yield: 97%)
[00227] Preparation of 3,4,9,1 Q-Perylerse-tetracarboxyllie diarshydride with Ss- 10%DIB
Experimental: A mixture of 3,4,9, 10-Perylene-tetracarboxy!ic dianhydride (1 mg) and S8 (1.01 g) was heated at 170 °C and stirred for 15 min. 0.1238 g of 1 ,3- diisopropenylbenzene was added and stirred for another 30 min. After allowing to cool to room temperature, a red solid was afforded, as shown in FIG. 19b. (Yield: >99%)
[00228] Preparation of 3,4,9,1 G-Perylene-tetracarboxylic diarshydride with Se- 10% styrene (ST)
Experimental: A mixture of 3,4,9, lO-Peryiene-tetracarboxyiic dianhydride (1 mg) and S8 (1.01 g) was heated at 170 °C and stirred for 15 min. 0.1249 g of styrene was added and stirred for another 30 min. After allowing to cool to room temperature, a light red solid was afforded, as shown in FIG. 19c. (Yield: 96%)
[00229] Example 11
[00230] Preparation of Ν,Ν'-dibutyl paryfersecarboxydiimide wih Ss
Experimental: A mixture of Ν,Ν'-dibutyl perylenecarboxydiimide (1 mg) and Ss (1.01 g) was heated at 170 °G and stirred for 30 min, as shown in FIG. 20a. The product was allowed to cool to room temperature, as shown in FIG. 20b. (Yield: >99%)
[00231] Preparatio of Ν,Ν'-dibuty! peryfersecarboxydsimide with Se and 1 ,3- dissopropersylbenzene (DIB)
Experimental: A mixture of Ν,Ν'-dibuty! perylenecarboxydiimide (1 mg) and Se (1.01 g) was heated at 170 °C and stirred for 30 min. 0.12 g of 1 ,3-diisopropenylbenzene was added and the mixture was stirred for another 30 min. After allowing to cool to room temperature, a red solid was afforded, as shown in FIG. 20c. (Yield: 98%) [00232] Preparation of Ν,Ν'-dlbutyl perylenecarboxydisrnlcle with S8~10% ST copolymer
Experimental: A mixture of Ν,Ν'-dibutyl peryienecarboxydiimide (1 mg) and Ss (1.01 g) was heated at 170 °C and stirred for 30 min. 0.11 g of 1 ,3-diisopropenyibenzene was added and the mixture was stirred for another 30 min. After allowing to cool to room temperature, a dark yellow, beige solid was afforded, as shown in FIG. 20d. (Yield: 96%)
[00233] 1 ,2-dichlorobar8 er¾e (DCB) or chloroberszerie (CB) solution of Ν,Ν'- dibutyl peryienecarboxydiimide with sulfur copolymer
[0Θ234] Referring now to FIG. 20e, the first vial from the left shows a mixture of 0.1 g of Sa-10%DIB copolymer dissolved in 10 mL of 1 ,2-dichlorobenzene. The second vial shows a mixture of 0.1 g of Ss-10%ST copolymer and 0.5 mg of Ν,Ν'-dibuty! peryienecarboxydiimide dissolved in 10 mL of chlorobenzene. The third vial shows a mixture of 0.1 g of S8-10%DIB copolymer and 0.5 mg of N,N!-dibutyl peryienecarboxydiimide dissolved in 10 mL of 1 ,2-dichiorobenzene.
[00235] Additional aspects of the polymers are described below. The polymers described below do not generally include a photoactive chromophore; the person of ordinary skill in the art can adapt any such polymers for use with photoactive chromophores as described herein.
[00236] The sulfur can be provided as elemental sulfur, for example, in powdered form. Under ambient conditions, elemental sulfur primarily exists in an eight- membered ring form (Sa) which melts at temperatures in the range of 120-124 °C and undergoes an equilibrium ring-opening polymerization (ROP) of the Ss monomer into a linear poiysuifane with diradical chain ends, above 159 °C, as shown in schematic view in FIG. 1.
[0Θ237] As the person of skill in the art will appreciate, while Sa is generally the most stable, most accessible and cheapest feedstock, many other allotropes of sulfur can be used (such as other cyclic allotropes, derivable by melt-thermal processing of Ss). Any sulfur species that yield diradical or anionic polymerizing species when heated as described herein can be used in practicing the present invention. [00238] Because both anionic and radical polymerization can occur in the polymerization reaction mixtures, any desirabie combination of amine monomers, thiol monomers, sulfide monomers, alkynyily unsaturated monomers, nitrone and/or nitroso monomers, aldehyde monomers, ketone monomers, thiirane monomers, ethylenicaily unsaturated monomers, and/or epoxide monomers can be used in the copolymers. As a non-limiting example, in certain embodiments, one or more monomers are one or more ethylenicaily unsaturated monomers.
[00239] Because both radical and anionic species can be generated during the same polymerization, it is possible to incorporate both amine monomers, thiol monomers, sulfide monomers, alkynyily unsaturated monomers, nitrone and/or nitroso monomers, aldehyde monomers, ketone monomers, thiirane monomers, ethylenicaily unsaturated monomers, and/or epoxide monomers into the same copolymer. As non-limiting examples, in one embodiment of the invention, the one or more monomers are a combination of one or more amine monomers and one or more thiol monomers. In other embodiments of the invention, the one or more monomers are a combination of one or more amine monomers, thiol monomers, sulfide monomers, alkynyily unsaturated monomers, nitrone and/or nitroso monomers, aldehyde monomers, ketone monomers, thiirane monomers, ethylenicaily unsaturated monomers, and/or epoxide monomers; and one or more amine monomers, thiol monomers, sulfide monomers, alkynyily unsaturated monomers, nitrone and/or nitroso monomers, aldehyde monomers, ketone monomers, thiirane monomers, ethylenicaily unsaturated monomers, and/or epoxide monomers.
[00240] In still other embodiments of the invention, the one or more monomers are a combination of one or more amine monomers, thiol monomers, sulfide monomers, alkynyily unsaturated monomers, nitrone and/or nitroso monomers, aldehyde monomers, ketone monomers, thiirane monomers, and ethylenicaily unsaturated, and/or epoxide monomers; and one or more amine monomers, thiol monomers, sulfide monomers, alkynyily unsaturated monomers, nitrone and/or nitroso monomers, aldehyde monomers, ketone monomers, thiirane monomers, ethylenicaily unsaturated monomers, and/or epoxide monomers; and one or more amine monomers, thiol monomers, sulfide monomers, alkynyily unsaturated monomers, nitrone and/or niiroso monomers, aldehyde monomers, ketone monomers, thiirane monomers, ethy!enical!y unsaturated monomers, and/or epoxide monomers.
[00241] The person of skill in the art will select monomers and relative ratios thereof in order to provide the desired properties to the polymer. In certain embodiments, the one or more monomers include one or more polyfunctional monomers, optionally in combination with one or more monofunctional monomers. A polyfunctional monomer is one that includes more than one (e.g., 2, or 3) polymerizabie amine, thiol, sulfide, alkynylly unsaturated, nitrone and/or nitroso, aldehyde, ketone, thiirane, ethyienically unsaturated, and/or epoxide moieties. Poiyfunctionai monomers can be used to cross-link sulfur chains to adjust the properties of the polymer, as would be understood by the person of skill in the art. The multiple polymerizabie groups of a polyfunctional monomer can be the same or different. For example, a polyfunctional monomer can be a polyvinyl monomer, a polyisopropenyl monomer, a poiyacryl monomer, a polymethacryl monomer, a polyunsaturated hydrocarbon monomer, a poiyepoxide monomer, a polythiirane monomer, a poiyalkynyi monomer, a poiydiene monomer, a polybutadiene monomer, a poiyisoprene monomer, a polynorbomene monomer, a polyamine monomer, a poiythiol monomer, a poiysulfide monomer, a polyalkynyliy unsaturated monomers, a polynitrone monomers, a poiyaldehyde monomers, a po!yketone monomers, and a poiyethylenicaliy unsaturated monomers In other embodiments, a poiyfunctionai monomer can be a poiyepoxide monomer or a polythiirane monomer.
[00242] Frechet-type benzyl ether dendrimers bearing styrenic terminal groups are miscibie with liquid sulfur and can be used as polyfunctional cross-linkers. In certain embodiments, the one or more polyfunctional monomers include one or more of a divinylbenzene, a diisopropenyibenzene, an aikylene di(meth)acry!ate, a bisphenoi A di(meth)acryiate, a terpene, a carotene, a divinyl (hetero)aromatic compound, and a diisopropenyl (hetero)aromatic compound. In other embodiments, a polyfunctional monomer can have one or more amine, thiol, sulfide, alkynylly unsaturated, nitrone and/or nitroso, aldehyde, ketone, thiirane, ethyienically unsaturated, and/or epoxide moieties moieties; and one or more amine, thiol, sulfide, alkynylly unsaturated, nitrone and/or nitroso, aldehyde, ketone, thiirane, ethyienically unsaturated, and/or epoxide moieties, wherein the first and second moieties are different. A non-limiting example is a divinyibenzene monoxide.
[00243] The polymeric materials can be made, for example, by polymerization of molten sulfur with the monomers. Thus, in one aspect, the invention provides a method for making a polymeric composition as described above. The method includes heating a mixture including sulfur and the one or more monomers together at a temperature sufficient to initiate polymerization (i.e., through free radical polymerization, through anionic polymerization, or through both, depending on the monomers used). For example, in one embodiment, the method includes heating a mixture including sulfur and the one or more monomers together at a temperature in the range of about 120 °C to about 230 °C, e.g., in the range of about 160 °C to about 230 °C. The person of skill in the art will select conditions that provide the desired level of polymerization, using, in part, information provided in the Examples, below. In one embodiment, the mixture comprising sulfur and one or more monomers is formed by first heating a mixture comprising sulfur to form a molten sulfur, then adding one or more monomers to the molten sulfur. In certain embodiments, the polymerization reaction is performed under ambient pressure. However, in other embodiments, the polymerization reaction can be performed at elevated pressure (e.g., in a bomb or an autoclave). Elevated pressures can be used to polymerize more volatile monomers, so that they do not vaporize under the elevated temperature reaction conditions.
[00244] In certain embodiments, it can be desirable to use a nucleophilic viscosity modifier in liquefying the sulfur, for example, before adding one or more of the monomers (e.g., before adding any poiyfunctionai monomer). For example, in certain embodiments, the sulfur is first heated with a viscosity modifier, then the viscosity-modified sulfur is heated with one or more monomers (e.g., with one or more poiyfunctionai monomers). The nucleophilic viscosity modifier can be, for example, a phosphorus nucieophile (e.g., a phosphine), a sulfur nucleophile (e.g., a thiol) or an amine nucieophile (e.g., a primary or secondary amine). When sulfur is heated in the absence of a nucleophilic viscosity modifier, the sulfur rings can open to form, e.g., diradicais, which can combine to form linear polysulfide chains which can provide a relatively high overall viscosity to the molten material. Nucleophilic viscosity modifiers can break these linear chains into shorter lengths, thereby making shorter polysulfides that lower the overall viscosity of the molten material, making the sulfur mixture easier to mix with and other species, and easier to stir for efficient processing. Some of the nucleophiiic viscosity modifier will react to be retained as a covalently bound part of the copolymer, and some will react to form separate molecular species, with the relative amounts depending on nucleophi!e identity and reaction conditions. For example, triphenylphosphine can react with Ss to form triphenylphosphonium-terminated linear sulfides (which can go on to form copolymer) together with triphenylphosphine sulfide (unbound). While some of the nucleophiiic viscosity modifier may end up as a separate molecular species from the polymer chain, as used herein, nucleophiiic viscosity modifiers are considered to be part of the copolymer. Non-limiting examples of nucleophiiic viscosity modifiers include triphenylphosphine, aniline, benzenethioi, and A ,A-dimethylaminopyridine. Nucleophiiic viscosity modifiers can be used, for example, in an amount up to about 10 wt%, or even up to about 5 wt% of the copolymer. When a nucleophiiic viscosity modifier is used, in certain embodiments it can be used in the range of about 5 wt% to about 15 wt% of the sulfur.
[00245] In certain embodiments, a monofunctional monomer can be used to reduce the viscosity of the sulfur, for example, before adding other of the monomers (e.g., before adding any polyfunctional monomer). For example, in certain embodiments, the sulfur is first heated with one or more monofunctional monomers, then the resulting mixture is heated with one or more other monomers (e.g., with one or more polyfunctional monomers). While not intending to be bound by theory, the inventors surmise that inclusion of monofunctional monomers into the polysulfide chains disrupts intermolecuiar associations of polysulfides and thus decreases the viscosity. The monofunctional monomer can be, for example, a mono(meth)acrylate such as benzyl methacry!ate, a mono(oxirane) such as a styrene oxide or a glycidyi phenyl ether, or a mono(thiirane) such as t-butyl thiirane or phenoxymethyithiirane. A monofunctional monomer can be used to modify the viscosity of the sulfur, for example, in an amount up to about 10 wt%, up to about 5 wt%, or even up to about 2 wt% of the copolymer. When a monofunctional monomer can be used to modify the viscosity of the sulfur, in certain embodiments it can be used in the range of about 0.5 wt% to about 5 wt%, or even about 0.5 wt% to about 3 wt% of the sulfur.
[00246] Of course, viscosity modification is not required, so in other embodiments the sulfur is heated together with the one or more monomers (and particularly with one or more polyfunctional monomers) without viscosity modification. In other embodiments, a solvent, e.g., a halobenzene such as 1 ,2,4-trichiorobenzene, a benzyl ether, or a phenyl ether, can be used to modify the viscosity of the materials for ease of handling. The solvent can be added, for example, to the sulfur before reaction with a monomer in order to reduce its viscosity, or to the polymerized material in order to aid in processing into a desired form factor.
[00247] The one or more thiirane monomers can include polyfunctional and/or monofunctionai monomers as described elsewhere herein. Non-limiting examples of monomers include propylene sulfide, t-butyl thiirane, phenoxymethyl thiirane, vinylthiirane, and 2-((al!yloxy)methyl)thiirane. For example, in one embodiment, the copolymer is a copolymer of sulfur and an alkylene sulfide such as propylene sulfide. Other characteristics of these copolymers can be as defined for other materials described herein. Such materials can be made into polymeric compositions, composites and devices as otherwise described herein. Advantageously, sulfur/thiirane copolymers of up to about 80 wt% sulfur can be soluble in a variety of solvents, such as N-methylpyrro!idinone, toluene, C82 and tetrahydrofuran.
[00248] Another aspect of the invention is a method for making a sulfur/thiirane copolymer as described above. The method includes allowing the thiirane monomer(s) to react with the sulfur - in the amounts appropriate to provide the desired copolymer composition as described above - with a thioester (-C(S)-S-) or trithiocarbonyi (-S-C(S)-S-) based RAFT polymerization agent in a solvent. Suitable RAFT polymerization agents include, for example, benzyl dithiobenzoate. The polymerization can be performed, for example, at a temperature in the range of about 20 °C to about 120 °C, for example, from about 20 °C to about 90 °C. The solvent can be selected by the person of skill in the art in view of the particular materials used; examples include N-methylpyrroIidinone and toluene. A catalyst, such as tetraphenylphosphonium chloride can optionally be used. The person of skill in the art can adapt known RAFT polymerization techniques for use in making the copolymers described herein. For example, chain transfer agents based on dithioesters, trithiocarbonyls, dithiocarbamates, and xanthates can generally be adapted by the person of skill in the art for use in making the copolymers described herein, as can -onium salts (e.g., those based on phosphonium haiides, imidazo!ium halides and ammonium ha!ides).
[00249] The polymers described herein can be partially cured to provide a more easily processable material, which can be processed into a desired form (e.g., into a desired shape, such as in the form of a free-standing shape or a device), then fully cured in a later operation. For example, one embodiment of the invention is a method of making an article formed from a polymeric composition as described herein. The method includes heating a mixture comprising sulfur and one or more monomers at a temperature in the range of about 180 °C to about 230 °C to form a prepo!ymer; forming the prepoiymer into the shape of the article, to yield a formed prepoiymer shape; and further heating the formed prepoiymer shape to yield the article. The prepoiymer can be formed, for example, by conversion of the one or more monomers at a level in the range of about 20 to about 50 mol%. For example, the heating of the sulfur and the one or more monomers to form the prepoiymer can be performed for a time in the range of about 20 seconds to about five minutes, for example, at a temperature in the range of about 175 °C to about 195 °C. In one embodiment, the heating is performed for less than about 2 minutes at about 185 °C. The person of skill in the art will determine the desired level of monomer conversion in the prepoiymer stage to yield a processable prepoiymer material, and will determine process conditions that can result in the desired level of monomer conversion.
[00250] In one embodiment, the prepoiymer can be provided as a mixture with a solvent for forming, e.g., via casting, molding or printing. The prepoiymers described herein can form miscibie mixtures or solutions with a variety of nonpolar high-boiling aromatic solvents, including, for example, haioarene solvents such as di~ and trichiorobenzene (e.g., 1 ,2,4-trichlorobenzene). The solvent can be added, for example, after the prepoiymer is prepared, to provide a softened or flowabie material suitable for a desired forming step (e.g., casting, molding, or spin-, dip- or spray- coating.) In some embodiments, the prepolymer/soivent mixture can be used at elevated temperatures (e.g., above about 100 °C, above about 120 °C or above about 140 °C) to improve flow at relatively low solvent levels (e.g., for use in casting or molding processes). In other embodiments, the prepolymer/soivent mixture can be used at a lower temperature, for example, at ambient temperatures (e.g., for use in spin-coating processes); unlike molten sulfur, the prepolymers described herein can remain soluble even after the solvent cools.
[00251] In one embodiment, the prepolymer is coated and cured as a film on a substrate. While Ss is typically intractable due to its crystailinity, the materials described herein can be formed as to be amenable to solution processing (e.g., in molten or solvent-admixed form) to fabricate thin film materials. Mixtures of molten prepolymer and solvent can be diluted to the concentration desired for a given spin- coating process.
[00252] When forming thin films of the materials described herein on substrates, it can often be desirable to use a polyimide primer layer. Thus, a solution of a polyamic precursor (e.g., polypyromeliitamic acid-4,4'-dianiline, or compounds with oxyaniline linkages), or similar copolymer derivatives can be deposited onto a substrate and cured (e.g., by heating at a temperature in the range of about 120 to about 200 °C) to form a thin polyimide layer (e.g., as thin as 2 nm), upon which the materials described herein can be formed. Moreover, in many embodiments, even fully cured polymers as described herein can be melt processed or suspended or dissolved in solvent and deposited on to substrates in a manner similar to those described for prepolymeric materials.
[00253] In certain embodiments, the prepolymer can be shaped and cured using a moid. For example, in one embodiment, the prepolymer (i.e., in molten or solvent- admixed form) can be deposited (e.g., by pouring) into a TEFLON or silicone (e.g., polydimethy!si!oxane (PDMS)) mold, then cured to form a desired shape. In another embodiment, a softened prepolymer material (e.g., swollen with solvent and/or softened by heat) can be imprinted by stamping with a mold bearing the desired inverse surface relief, then cured and allowed to cool. Moreover, in many embodiments, even fully cured polymers as described herein can be shaped with a moid in a manner similar to those described for prepolymeric materials. [00254] As described above, soluble copolymers can be made by the person of skill in the art, for example, using relatively higher fractions of organic comonomer(s). Such polymers can be solution processed to fabricate articles. For example, another aspect of the invention is a method of forming an article formed from a polymeric composition as described herein, the method comprising admixing the polymeric composition with a nonpolar organic solvent (e.g., to make a suspension or solution), forming the admixed polymeric composition into the shape of the article,] and removing the solvent from the polymeric composition to yield the article. The admixture with solvent can, for example, dissolve the copolymer. Various process steps can be performed at elevated temperatures, for example, to decrease viscosity of the admixed polymeric composition and to aid in evaporation of solvent.
[00255] For example, in one embodiment, a room temperature solution (e.g., in a dichlorobenzene or a trichlorobenzene) of a random copolymer (e.g., in prepo!ymeric form) prepared via the thermal free radical copolymerization of Ss and 1 ,3- diisopropenylbenzene (poly(S-r-DIB)) (72.5 wt% sulfur, 27.5 wt% DIB) is poured into a TEFLON or PDMS mold. A decrease in viscosity at elevated temperatures (e.g., > about 140 °C) can allow sufficient flow into even intricate mold shapes. Once the moid is filled, it can be placed in a vacuum oven at increased temperature (e.g., about 210 °C) under ambient pressure to cure and to drive off solvent. For thicker molded samples, vacuum can be pulled on the solution when it is in a low viscosity state in order to ensure the removal of bubbles. The mold is then removed from the oven and allowed to cool before removal from the mold.
[00256] As the polymeric materials described herein can be effectively thermoplastic in nature, the person of skill in the art will understand that other methods familiar in the thermoplastic industries, such as injection molding, compression molding, and melt casting, can be used in forming articles from the materials described herein.
[00257] Example 12. Viscosity modification of elemental sulfur
[00258] In one experiment, mixtures of sulfur (provided as Ss herein unless otherwise described, 800 mg) with various weight percents of triphenylphosphine (TPP) (2.5, 5, 7.5 and 10 wt% TPP with respect to sulfur) were prepared in 4 mL vials each equipped with a stir bar. The mixtures were heated at 185 °C and stirred at 550 rpm. Their viscosities were assessed qualitatively, and the mixtures containing 7.5 wt% and 10 wt% TPP had markedly lowered viscosities, and remained stirab!e.
[00259] In another experiment, powdered sulfur (0.700 g, 2.19 x 10"2 mol) and benzyl methacrylate (0.0105 g, 10.1 pL, 5.96 x 10"3 mol, 1.5 wt% with respect to total mass) were combined in a 4 mL vial equipped with a stir bar. The vial was sealed and heated at 185 °C while stirring at 550 rpm. The viscosity was assessed visually to be less than that of powdered sulfur alone treated under the same conditions.
[00260] Example 13, Copolymerization of viscosity-modified sulfur with dlvmylb&nzene
[00261] In a 4 mL vial equipped with a stir bar were combined powdered sulfur (0.360 g, 1 .13 x 10"2 mol) and TPP (0.40 g, 1.53 x 10 * mol). The vial was loosely capped and then heated at 185 °C with stirring at 550 rpm. The solids were allowed to melt and form a homogeneous liquid. The cap was then removed and divinylbenzene (commercial grade, mixture of 1 ,3- and 1 ,4- isomers) (0.198 g, 0.217 mL, 1 .52 x 10' mol) was injected. The cap was then quickly replaced and secured tightly, [try reading this out loud and see how many "ands"and verbs are used] The reaction mixture was allowed to stir until gelation prevented further stirring, then the vial was cooled to room temperature.
[00262] Example 14. Copolymerization of viscosity-modified sulfur with 1 ,3- diisopropenylbenzene
[00263] In a 4 mL vial equipped with a stir bar were combined powdered sulfur (0.380 g, 1 .13 x 10"2 mol) and TPP (0.40 g, 1.53 x 10"4 mol). The vial was loosely capped and heated at 185 "C with stirring at 550 rpm. The solids were allowed to melt and form a homogeneous liquid. The cap was then removed and 1 ,3- diisopropeny!benzene (D!B) (0.198 g, 0.217 mL, 1.25 x 10"J mol) was injected and the cap quickly replaced and secured tightly. The mixture was allowed to stir until gelation prevented further stirring, then the vial was cooled to room temperature.
[00264] Example 15. Copolymerization of viscosity-modified sulfur with 1 ,3- diisopropeny!berszerse and 1 ,10-decarsediol dimethacryfaie
[00265] In a 4 mL vial equipped with a stir bar were combined powdered sulfur (0.390 g, 1 .22 x 10"2 mol) and TPP (0.060 g, 2.29 x 10"4 mo!). The vial was loosely capped and heated at 185 C with stirring at 550 rpm. The solids were allowed to melt and form a homogeneous liquid. The cap was then removed and DIB (0.075 g, 81 .1 ML 2.86 x 10"4 mol) and 1 ,10-decanediol dimethacryiate (0.075 g, 2.42 x 1 Q~4 mol) were simultaneously injected and the cap quickly replaced and secured tightly. The mixture was allowed to stir until gelation prevented further stirring, then the vial was cooled to room temperature.
[00266] Example 16, Copofymerizatiori of sulfur with 1 ,3-diisopropersylbenzerse ar¾d benzyl methacrylate
[00267] To a 4 mL vial equipped with a stir bar was added powdered sulfur (0.54 g, 2.10 x 10"3 mol). The vial was heated at 185 °C until a clear orange-colored molten phase was formed. Benzyl methacrylate (0.063 g, 60.6 μί, 0.357 x 10~3 mol) was then directly added to the molten sulfur via syringe. The sulfur and benzyl methacrylate were allowed to homogenize, then DIB (0.297 g, 0.321 mL, 1 .88 x 10"3 mol) was directly added to the molten mixture via syringe. The resulting mixture was stirred at 185 °C until a deep cherry- red solution resulted and the entire reaction vitrified. Once vitrified the reaction was cooled to room temperature. The resulting copolymer had a sulfur level of 60%, a DIB level of 33% , and a benzyl methacrylate level of 7 wt%. Raman spectra and Differential scanning caiorimetry (DSC) thermograms of the resulting copolymer and of elemental sulfur are provided in FIGS. 21 a, b and 22a, , respectively. The Raman and DSC data indicate substantially complete copolymerization.
[00268] Example 17. DSC, kinetics, and thermal and r eofogscaf properties
[00269] Sulfur-DIB polymers of varying sulfur content were made by heating mixtures of sulfur and DIB at 185 °C. The resulting polymers were studied by DSC, along with sulfur; thermograms are provided in FSG. 23a. The sulfur melting endotherm was not present in any of the polymerized material. The 90 wt% sulfur material also did not have residual unreacted Se monomer, but due to the high sulfur content in the sulfur copolymer exhibited a weak endotherm corresponding to melting of semi- crystalline domains present in sulfur rich polymers. DSC data in the range of -60 °C to 40 °C are provided in FIG. 23b. The glass transition temperature increased with increasing DIB content. [00270] Shear viscosity data are provided in FIG. 24. Increasing D!B increased zero- shear viscosity until between 30 wt% and 50 wt%, where the zero-shear viscosity increased. While not intending to be bound by theory, the inventors surmise that hyperbranching results in lower viscosity around 50 wt% DIB. A 50:50 mixture of 88 and DIB was heated at 185 °C, and samples were obtained every two minutes, cooled quickly, and analyzed via Raman spectroscopy and DSC for sulfur conversion, and H NMR for DIB vinyl group conversion. Results are shown in FIG. 25, and demonstrate complete reaction within 8 minutes.
[00271] Example 18. Preparation of sulfur/propyferse sulfide copolymers
[0Θ272] Polymerizations of sulfur and propylene sulfide can be performed using a procedure similar to that described below. Polymerizations were carried out with benzyl dithiobenzoate (BDB) as an initiator in a degassed sealed Schienk flask. Propylene sulfide (0.88 mL, 1 1.232 x 10'3 mol), sulfur (0.7188 g, 2.808 x 10"3 mo!), BDB (34.2 mg, 0.1404 x 10"'5 mol), tetraphenylphosphonium chloride (10.53 mg, 0.02808 x 10"3 mol), and 10 mL toluene were placed in a Schienk flask to ensure exclusion of adventitious water, or oxygen, and degassed by three freeze-pump- thaw cycles, then the mixture was stirred at 80 °C for 8 h under argon. The polymer obtained was purified by precipitation from toluene into a large excess of methanol, and dried in vacuum to give a pale red oil polymer.
[00273] FIG. 26 provides NMR spectra of two sulfur/thiirane copolymers and that of a copolymer not containing sulfur. The resonances at 2.5-3.0 ppm shift with increased sulfur content. Similarly, size exclusion chromatography measurements demonstrated sulfur incorporation into the polypropylene backbone, with a broad range of apparent molecular weights (1 ,000-100,000 g/mol).
[00274] Example 19. Formation of su fur/DiB prepolymer solution
[00275] In a 20 mL vial equipped with a stir bar were added powdered sulfur (1 .2 g, 3.75 x 10"2 mol) and triphenylphosphine (0.140 g, 5.34 x 10~4 mol). The vial was loosely capped and heated at 185 °C with stirring at 550 rpm. The solids were allowed to melt and form a homogeneous liquid. The cap was then removed and DIB (0.680 g, 0.714 mL, 3.84 x 10"3 mol) was injected and the cap quickly replaced and secured tightly. Once the mixture began to darken to an amber color (after about 2-3 minutes) the cap was removed and 1 ,2,4-trichlorobenzene (TCB) (0.660 g, 0.714 mL) was injected. The vial was sealed and the mixture was stirred for 2-3 minutes until bright red in color, then cooled to room temperature to form a viscous prepolymer solution.
[00276] Example 20. Formation of polymer structures
[00277] Hot prepolymer solutions as described above in Example 19 were poured into Teflon molds of various geometries and cured at 200 °C to form free-standing elastomer structures, an example of which is shown in FIG. 27. Glassy thin films were prepared by drop casting the prepolymer solution as described above onto a glass slide and curing at 200 °C. An example is shown in FIG. 27. Microstructures were formed by pouring the prepolymer solution as described above into PDMS molds having pillared features (having micrometer periodicity) and curing at 200 °C. An example is shown in FIG. 27.
[00278] FIG. 28 is a picture of a set of spin-coated films. Film (a) was spun from 10x diluted poly(pyromeliitic dianhydride-co-4,4Loxodianiiine) amic acid solution in N- methyl pyrroiidinone (N P), and film (b) was spun from neat poiy(pyromeliitic dianhydride-co-4,4'-oxodiani!ine) amic acid solution. Film (c) is 17.5-wt% DIB poly(S-r-DiB) film spun onto film (a); and film (d) is 2Q-wt% DIB poiy(S-r-DIB) film spun onto film (b). Samples a) and b) were cured at 190 °C under vacuum for 2 hours. Samples c) and d) were cured at 180 °C under vacuum for 10 minutes and then at the same temperature without vacuum for an additional 10 minutes. FIG. 29 is a cross-sectional micrograph of a poly(S-r-DIB) copolymer layer (2.6 μηι in thickness) formed on a po!yirnide layer (270 nm) on a glass substrate.
[00279] H2S Donors
[0Θ280] In addition, the present invention features hydrogen sulfide donating sulfur containing polymers and methods of preparing said polymers. The present invention also features methods of treating biological conditions and inhibiting microbial growth using H2S gas. In some embodiments, the present invention utilizes sulfur containing polymers prepared via a variety of synthetic processes, such as inverse vulcanization and other existing synthetic chemical methods to prepare molecules, polymers, nanomaterials, and nanocomposites that can deliver H2S under biological conditions.
[00281] In some embodiments, the present invention features a hydrogen sulfide (H28) donating polymer conjugate comprising a sulfur copolymer and one or more carrier polymers, wherein the carrier polymer is bonded to the sulfur copolymer. In some embodiments, the sulfur copolymer comprises one or more sulfur monomers at a level between about 5 to 95 wt% of the sulfur copolymer, and one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynyiiy unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenically unsaturated monomers at a level between about 5 to 95 wt% sulfur copolymer. In some embodiments, at least one sulfur moiety of the sulfur monomer is bonded to at least one reactive functional group of the comonomers. Non-limiting examples of other monomers are described in U.S. Provisional Patent Application No. 62/039,588, filed August 20, 2014, which are incorporated herein by reference.
[00282] In some embodiments, the sulfur copolymer of the polymeric conjugate comprises one or more sulfur monomers at a level in the range of about 5 to about 10 wt% of the sulfur copolymer. The sulfur copolymer may comprise one or more sulfur monomers at a level in the range of about 10 to 20 wt%, or about 20 to 30 wt%, or about 30 to 40 wt%, or about 40 to 50 wt%, or about 50 to 60 wt%, or about 60 to 70 wt%, or about 70 to 80 wt%, or about 80 to 90 wt%, or about 90 to 95 wt% of the sulfur copolymer.
[00283] In some embodiments, the sulfur copolymer of the polymeric conjugate comprises one or more monomers at a level in the range of about 5 wt% to 15 wt% of the sulfur copolymer. The sulfur copolymer may comprise one or more monomers at a level in the range of about 15 wt% to 25 wt%, or about 25 wt% to 35 wt%, or about 35 wt% to 45 wt%, or about 45 wt% to 55 wt%, or about 55 wt% to 65 wt%, or about 65 wt% to 75 wt%, or about 75 wt% to 85 wt%, or about 85 wt% to 95 wt% of the sulfur copolymer.
[00284] In some embodiments, the carrier polymer is selected from a group consisting of: N-(2-hydroxyIpropy!)methacry!amide (HPMA) copolymer, a poly-L- glutamic acid, a poiy(etbyiene glycol) (PEG), Dextran, vinyls, alkyny!s, epoxides, thiiranes, amines, sulfides, ethers, norbornenes, amides, peptides, polyesters, polyamides, poiyethers, and sugars.
[00285] in some embodiments, the one or more comonomers are one or more amine monomers. In some embodiments, the amine monomer is m- phenylenediamine or p-phenylenediamine. In some embodiments, the one or more comonomers are one or more thiol monomers. In some embodiments, the thiol monomer is 4,4'-thiobis(benzenethiol). In some embodiments, the one or more comonomers are a combination of one or more amine monomers and one or more thiol monomers. In some embodiments, the one or more comonomers are one or more alkynyiiy unsaturated monomers. In some embodiments, the alkynylly unsaturated monomer is 1 -phenyipropyne. In some embodiments, the one or more comonomers are one or more thiirane monomers. In some embodiments, the thiirane monomer is propylene sulfide. In some embodiments, the one or more comonomers are one or more epoxide monomers. In some embodiments, the one or more of the epoxide monomers are benzyl glycidy! ether, tris(4- hydroxyphenyl)methane trig!ycidyi ether, or a combination thereof.
[00286] In some embodiments, the sulfur monomer is at a level of at least about 20 wt% of the sulfur copolymer. Sn some embodiments, the sulfur monomer is at a level of at least about 50 wt% of the sulfur copolymer. In some embodiments, the sulfur monomer is at a level between about 60 and 80 wt% of the sulfur copolymer. In some embodiments, the sulfur monomer is at a level between about 70 and 95 wt% of the sulfur copolymer.
[00287] In some embodiments, the present invention features a hydrogen sulfide (H28) donating sulfur copolymer comprising one or more sulfur monomers at a ievel between about 5 to 95 wt% of the sulfur copolymer and one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynylly unsaturated monomers, nifrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethyienically unsaturated monomers at a level between about 5 to 95 wt% of the sulfur copolymer. In some embodiments, at least one sulfur moiety of the sulfur monomer is bonded to at least one reactive functional group of the comonomers.
[00288] In some embodiments, the sulfur monomers form a sulfur containing core of the sulfur copolymer. In some embodiments, the comonomers extend outwardly from the sulfur containing core. In some embodiments, the sulfur copolymer is linear.
[00289] In some embodiments, the present invention features a hydrogen sulfide (H2S) donating sulfur copolymer comprising one or more sulfur monomers at a level of at a level between about 5 to 95 wt% of the sulfur copolymer and one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynyliy unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethy!enical!y unsaturated monomers at a level between about 5 to 95 wt% of the sulfur copolymer. In some embodiments, at least one sulfur moiety of the sulfur monomer is bonded to at least one reactive functional group of the comonomers. In some embodiments, the sulfur monomers form a sulfur containing core of the sulfur copolymer. In some embodiments, the comonomers extend outwardly from the sulfur containing core.
[00290] In some embodiments, the one or more comonomers are one or more amine monomers. In some embodiments, amine monomer is m-phenylenediamine or p~ phenylenediamine. In some embodiments, the one or more comonomers are one or more thiol monomers. In some embodiments, the thiol monomer is 4,4'- thiobis(benzenethiol). Sn some embodiments, the one or more comonomers are a combination of one or more amine monomers and one or more thiol monomers. In some embodiments, the one or more comonomers are one or more alkynyliy unsaturated monomers. Sn some embodiments, the alkynyliy unsaturated monomer is 1-phenyipropyne. In some embodiments, the one or more comonomers are one or more thiirane monomers. In some embodiments, the thiirane monomer is propylene sulfide. In some embodiments, the one or more comonomers are one or more epoxide monomers. Sn some embodiments, one or more of the epoxide monomers are benzyl giycidyi ether, tris(4-hydroxyphenyl)methane triglycidyi ether, or a combination thereof. [00291] In some embodiments, the sulfur monomer is at a level of at least about 20 wt% of the sulfur copolymer. In some embodiments, the sulfur monomer Is at a level of at least about 50 wt% of the sulfur copolymer. In some embodiments, the sulfur monomer is at a level between about 60 and 80 wt% of the sulfur copolymer. In some embodiments, the sulfur monomer is at a level between about 70 and 95 wt% of the sulfur copolymer.
[00292] In some embodiments, at least one functional group of the comonomers solubilizes the sulfur copolymer. In some embodiments, at least one functional group of the comonomers is biocompatible.
[00293] In some embodiments, the sulfur copolymer further comprises a one or more carrier polymers, wherein the carrier polymer is bonded to the sulfur copolymer. In some embodiments, the carrier moiety is selected from a group consisting of: an N- (2-hydroxyipropyi)methacryiamide (HPMA) copolymer, a poly-L-glutamic acid, a poly(ethylene glycol) (PEG), and Dextran, vinyls, alkynyls, epoxides, thiiranes, amines, sulfides, ethers, norbornenes, amides, peptides, polyesters, polyamides, poiyethers, and sugars.
[00294] In some embodiments, the present invention features a method of treating a biological condition in a mammal in need thereof. In some embodiments, the method comprises administering a therapeutically effective amount of a hydrogen sulfide (H2S) donating polymer conjugate according to any of the aforementioned polymer conjugates. In some embodiments, the polymer conjugate releases a slow and continuous amount of H2S gas, wherein the h½S triggers a biological response.
[00295] In some embodiments, the biological condition is inflammation. In some embodiments, the biological condition is heart disease. In some embodiments, the biological condition is inflammation. In some embodiments, the biological condition is hypertension. In some embodiments, the biological condition is ischemia reperfusion. In some embodiments, the polymer conjugate is administered dermally, orally, transmucosaliy, subcutaneously or intravenously. In some embodiments, the polymer conjugate is localized at or near an area affected by the biological condition. In some embodiments, the mammal is a human. [00296] In another embodiment, the present invention features a method of treating a biological condition in a mammal in need thereof. In some embodiments, the method comprises administering a therapeutically effective amount of a hydrogen sulfide (h½S) donating sulfur copolymer according to any of the aforementioned sulfur copolymer. In some embodiments, the sulfur copolymer releases a slow and continuous amount of H28 gas, wherein the H28 triggers a biological response, in some embodiments, modulation of the H2S release can be achieved by controlling the sulfur composition in the sulfur copolymer or polymer conjugate and the design and incorporation of the functional organic comonomers.
[0Θ297] In some embodiments, the biological condition is inflammation, in some embodiments, the biological condition is heart disease. In some embodiments, the biological condition is inflammation. In some embodiments, the biological condition is hypertension. In some embodiments, the biological condition is ischemia reperfusion. In some embodiments, the sulfur copolymer is administered dermaily, orally, transmucosaily, subcutaneousiy or intravenously. In some embodiments, the sulfur copolymer is localized at or near an area affected by the biological condition. In some embodiments, the mammal is a human.
[0Θ298] In some embodiments, the method further comprises administering an H2S catalyst, wherein the catalyst promotes the release of H2S gas. In some embodiments, the catalyst is cysteine or glutathione, or other thiol-containing compounds.
[00299] In some embodiments, the present invention features a method of producing an H28 donating polymer conjugate according to any of the aforementioned polymer conjugates. In some embodiments, the method comprises providing a sulfur copolymer and attaching a carrier polymer to the sulfur copolymer. In some embodiments, the step of providing a sulfur copolymer comprises providing elemental sulfur, heating the elemental sulfur into molten sulfur, and polymerizing one or more comonomers with the molten sulfur, thereby forming the sulfur copolymer. In some embodiments, a technique of polymerizing is selected from a group consisting of: free radical polymerization, controlled radical polymerization, ring-opening polymerization, ring-opening metathesis polymerization, step-growth polymerization, or chain-growth polymerization.
[00300] In some embodiments, the present invention features a method of producing an hbS donating sulfur copolymer according to any of the aforementioned sulfur copolymers. In some embodiments, the method comprises providing elemental sulfur, heating the elemental sulfur into a molten sulfur, and polymerizing one or more comonomers with the molten sulfur, thereby forming the sulfur copolymer. In some embodiments, a technique of polymerizing is selected from a group consisting of free radical polymerization, controlled radical polymerization, ring-opening polymerization, ring-opening metathesis polymerization, step-growth polymerization, or chain-growth polymerization. In some embodiments, the technique can be conducted in bulk liquid sulfur, organic solvents, water, or other solvent systems to prepare the branched copolymers containing a controllable amount of S-S bonds.
[00301] The following reaction scheme is a non-limiting example of ring-opening polymerization to form the sulfur copolymer:
Figure imgf000064_0001
[00302] In some embodiments, the present invention features an h½8 donating sulfur polymer conjugate comprising a sulfur copolymer linked to a carrier polymer, wherein the sulfur copolymer comprises at least one branched or cross-linked sulfur chain, wherein the sulfur content of the sulfur polymer conjugate ranges from about 5-95 wt%.
[00303] In other embodiments, the present invention features an H2S donating sulfur polymer conjugate comprising a sulfur copolymer linked to a carrier polymer, the sulfur copolymer having a portion comprising: -Ri-S-(S)n-S-R.2-, wherein n ranges from 0 to 8, wherein the sulfur content of the sulfur polymer conjugate ranges from about 5-95 wt%.
[00304] In some embodiments, the present invention features an h½8 donating sulfur copolymer comprising at least one branched or cross-linked sulfur chain, wherein the sulfur content of the sulfur copolymer ranges from about 5-95 wt%.
[0Θ305] In some embodiments, the present invention features an h½S donating sulfur copolymer having a portion comprising: -Ri-S-(S)n-S-R2-, wherein n ranges from 0 to 6, wherein the sulfur content of the sulfur copolymer ranges from about 5-95 wt%.
[00306] In some embodiments, R-. may be any of the aforementioned amine monomers, thiol monomers, sulfide monomers, alkynyliy unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenicaiiy unsaturated monomers bonded to the S moiety by the monomer's appropriate reactive functional group, in some embodiments, R2 may be any of the aforementioned amine monomers, thiol monomers, sulfide monomers, alkynyliy unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenicaiiy unsaturated monomers bonded to the S moiety via the monomer's appropriate reactive functional group.
[00307] In some embodiments, the sulfur chain comprises at least one branch or cross-link arm. In some embodiments, the branch or cross-link arm may be any of the aforementioned amine monomers, thiol monomers, sulfide monomers, alkynyliy unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenicaiiy unsaturated monomers bonded to the S moiety of the sulfur chain via the monomer's appropriate reactive functional group.
[00308] In some embodiments, the present invention features a method of inhibiting microbial growth, said method comprising impregnating a microbial film with an H2S donating sulfur copolymer according to any of the aforementioned sulfur copolymers. In some embodiments, the sulfur copolymer releases H2S gas thereby killing a microbe of the microbial film.
Figure imgf000066_0001
[00310] Experime tal: As shown in FIG. 32, the following is a non-limiting example of a procedure for H2S Evolution
[00311] 1. To a 25 mL Schlenk flask along with a magnetic stir bar was added a powder of poly(S-r-DIB-50%, 1 .0 g).
[00312] 2. Tygon tube was attached at the gas outlet of the Schlenk flask and a needle attached at the end of tygon tube was submerged into a 0.5 M aqueous solution of lead(li) acetate (15 mL) contained in 24 mL vial.
[00313] 3. The Schlenk flask and vial were sealed with rubber septum and then the needle was attached on top of the rubber septum used for sealing the vial.
[00314] 4. A positive argon flow was maintained and then benzyl mercaptan (10 mL,
85.2 mmol) was added.
[00315] 5. The resulting mixture was stirred at room temperature for overnight under positive argon flow.
[00316] 6. I~½S evolution was monitored by the formation of lead(H) sulfide in 0.5 M aqueous solution of !ead(l!) acetate.
[00317] 7. The 05. M aqueous solution was centrifuged at 10,000 rpm for 10 minutes, followed by drying under vacuum at 50 °C for overnight, and 1 1 mg of resulting lead(Il) sulfide was isolated from the 0.5 M aqueous solution of iead(H) acetate.
[00318] Non-limiting preferred embodiments [00319] In one preferred embodiment, "Embodiment 1 " as used herein, the copolymer material comprises a sulfur copolymer at a level in the range of about 5 wt% to about 95 wt% of the copolymer material. The sulfur copolymer comprises one or more sulfur monomers, at a level at least about 50 wt% of the sulfur copolymer, and one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, aikynylly unsaturated monomers, epoxide monomers, nitrone monomers, aldehyde monomers, ketone monomers, thiirane monomers, and ethylenicaliy unsaturated monomers at a level in the range of about 0.1 wt% to about 50 wt% of the sulfur copolymer.
[0Θ320] The copolymer material of Embodiment 1 may further comprise one or more epoxide monomers at a level in the range of about 5 wt% to about 95 wt% of the copolymer material. At least one epoxy functional group of the epoxide monomers is bonded to a functional group of the sulfur copolymer. When one or more S-S bonds of the sulfur copolymer are broken, the S-S bonds are reconnected by thermal reforming.
[00321] The sulfur copolymer of Embodiment 1 may further comprise an elemental carbon material dispersed in the sulfur copolymer at a level in the range of up to about 50 wt% of the sulfur copolymer.
[00322] The sulfur copolymer of Embodiment 1 may further comprise one or more photoactive monomers at a level in the range of about 0.1 wt% to about 50 wt% of the sulfur copolymer. Each photoactive monomer may have the structure:
Figure imgf000067_0001
[00323] The "A" of each photoactive monomer is a ring system. "A" may be a photoactive chromophore, and is selected from a group consisting of pery!enes, pyrenes, couramins, cyanine dyes, fluorescents, and derivatives thereof, polythiophenes, polyaniiines, Ti02, CdSe, CdS, CdSe-CdS, natural and synthetic dyes, aromatics, heterocyc!es, conjugated organic polymers, inorganic chromophores, nanocomposite chromophores, organic chromophores, photoactive agents, and semiconductor nanopartic!es. The "B" of each photoactive monomer comprises a polymerizabie moiety selected from a group consisting of a carboxylate moiety, an ethylenically unsaturated moiety, an epoxide moiety, a thiirane moiety, an amine moiety, a thiol moiety, a sulfide moiety, an aikynyliy unsaturated moiety, a nitrone moiety, an aldehyde moiety and a ketone moiety. The "n" of each photoactive monomer may be 1 , 2, 3, 4, 5, 6, 7 or 8. The photoactive monomer can absorb visible radiation, infrared radiation, or solar radiation. Each B can include the polymerizabie moiety and a 1 -6 atom long linker, wherein each linker is selected from a group consisting of an alkylene linker and a mono, di~ or tri(ethy!ene glycol) linker.
[00324] Photoactive species from the copolymer material of Embodiment 1 may be formed by a method comprising contacting the copolymer material with an aqueous medium, and irradiating the copolymer material in the aqueous medium with radiation that is at least partially absorbed by the one or more photoactive chromophores. The radiation is infrared, visible, or solar radiation. The irradiation causes the formation of hydrogen from the aqueous medium and a sulfur radical cation, poiaron, or oxidized sulfur species from a sulfur of the copolymer material. The oxidized sulfur species is one or more of sulfate, sulfonates, sulfite, sulfoxides and suifones.
[00325] The sulfur copolymer of Embodiment 1 may further comprise one or more polyfunctionai monomers selected from a group consisting of a polyvinyl monomer, a polyisopropenyl monomer, a polyacryi monomer, a polymethacryl monomer, a polyunsaturated hydrocarbon monomer, a poiyepoxide monomer, a poiythiirane monomer, a polyalkynyl monomer, a polydiene monomer, a poiybutadiene monomer, a polyisoprene monomer, a polynorbornene monomer, a polyamine monomer, a polythiol monomer, a poiysulfide monomer, a polyalkynyily unsaturated monomers, a polynitrone monomers, a polyaldehyde monomers, a polyketone monomers, and a poiyethylenicaiiy unsaturated monomers.
[00326] The copolymer material of Embodiment 1 may further comprise a nucleophilic viscosity modifier at a level up to about 10 wt% of the copolymer material. [00327] The copolymer material of Embodiment 1 may further comprise one or more carrier polymers bonded to the sulfur copolymer to form a hydrogen sulfide donating polymer conjugate. The carrier polymer may be selected from a group consisting of an N-(2-hydroxy!propy!)methacrylamide (HPMA) copolymer, a po!y-L-glutamic acid, a poiy(ethylene glycol) (PEG), Dextran, vinyls, alkynyis, epoxides, fhiiranes, amines, sulfides, ethers, norbornenes, amides, peptides, polyesters, polyamides, poiyethers, and sugars.
[00328] At least one sulfur moiety of the sulfur monomer is bonded to at least one reactive functional group of the comonomers. The sulfur monomers form a sulfur containing core of the sulfur copolymer with the comonomers extending outwardly from the sulfur containing core. At least one functional group of the comonomers soiubilizes the sulfur copolymer and at least one functional group of the comonomers is biocompatible.
[00329] The copolymer material of Embodiment 1 may be used to treat a biological condition in a mammal in need thereof. The method of treatment may comprise administering a therapeutically effective amount of the copolymer material according to Embodiment 1 or alternate embodiments of Embodiment 1. The sulfur copolymer may be administered dermaliy, orally, subcutaneous!y or intravenously. Without wishing to limit the present invention to a particular theory or mechanism, it is believed that the sulfur copolymer releases a slow and continuous amount of H28 gas that triggers a biological response. Biological conditions that are treated may be inflammation, heart disease, hypertension, and ischemia reperfusion.
[00330] An l- S catalyst may be further administered to promote the release of the slow and continuous amount of h½S gas. The catalyst may be a cysteine, a glutathione, or any other thioi-containing compounds. Alternatively, the release of the slow and continuous amount of h½S gas may be triggered by other chemical means, mechanical means, or photoirradiation.
[00331] The copolymer material of Embodiment 1 may be used for inhibiting microbial growth. The copolymer material of Embodiment 1 can be impregnated into a microbial film and the sulfur copolymer releases H28 gas thai kills the microbes iin the microbial film,
[0Θ332] The copolymer material of Embodiment 1 may be produced by providing elemental sulfur, heating the elemental sulfur into a molten sulfur, and polymerizing one or more comonomers of Embodiment 1 with the molten sulfur, thereby forming the sulfur copolymer. The technique of polymerizing may be free radical polymerization, controlled radical polymerization, ring-opening polymerization, ring- opening metathesis polymerization, step-growth polymerization, or chain-growth polymerization.
[00333] The copolymer material of Embodiment 1 may further comprise a second comonomer to form a terpoiymer material. The second comonomer is selected from a group consisting of one or more monomers of epoxides, isocyanates, acid chlorides, carboxylic acids, esters, and aikyi halides. The terpoiymer material may be produced by providing elemental sulfur, heating the elemental sulfur into a molten sulfur, polymerizing one or more comonomers of Embodiment 1 with the molten sulfur to form a sulfur copolymer, and reacting an available reactive functional group on the sulfur copolymer with one or more monomers of the second comonomer to form the terpoiymer material. The technique of reacting is selected from a group consisting of: oxidative coupling, polymerization, or copolymerization.
[00334] An article may be formed from the copolymer material of Embodiment 1 by heating the copolymer material at a temperature in the range of about 160 °C to about 230 °C, forming the copolymer material into a shape of the article, and heating the formed copolymer material to yield the article. Alternatively, the article may be formed from the copolymer material of Embodiment 1 by admixing the copolymer material in a solvent, forming the admixed copolymer material into a shape of the article, and removing the solvent from the copolymer material to yield the article.
[00335] in an oil-in-water emulsion, the copolymer material of Embodiment 1 may be as a colloidal phase suspended in the aqueous solution. A surfactant may or may not be present in the aqueous solution. [00336] The copolymer material of Embodiment 1 may be formed as an optical element of a substantially optically transparent body. The copolymer material has a refractive index in the range of about 1.7 to about 2.2 and at least one wavelength in the range of about 300 nm to about 10 μηι.
[00337] The copolymer material of Embodiment 1 may be used in an electrochemical cell. The electrochemical cell may comprise an anode comprising metallic lithium, a cathode comprising the copolymer material of Embodiment 1 , and a non-aqueous electrolyte interposed between the cathode and the anode. The copolymer generates soluble additive species in situ upon discharge, and the soluble additive species are co-deposited with lower sulfide discharge products onto the cathode by an electrochemical reaction or a non-electrochemical reaction.
[00338] The chemistry via the copoiymerization of the one or more monomers of amine monomers, thiol monomers, sulfide monomers, alkynylly unsaturated monomers, nitrone monomers, aldehyde monomers, and ketone monomers in liquid as used herein produce these advantageous sulfur copolymer compositions.
[00339] For example, the amine monomer, such as those on aromatic compounds, results in direct C-S bond formation and copoiymerization with sulfur concurrently.
[00340] For example, the thiol monomers from a wide range of comonomer precursors widely used in the preparation of condensation polymers can be dissolved and copoiymerization with liquid sulfur to afford high sulfur content copolymers. Unexpectedly, the thiol derived copolymer was solution processable despite the high content of sulfur and rigid aromatic moieties.
[00341] For example, the sulfide monomer can copo!ymerize with sulfur via either ionic, or free radical processes. Unexpectedly, the sulfide monomer was able to afford both low glass transition polymers, or higher glass transition polymers.
[00342] For example, the alkynylly unsaturated monomer is expected to react via known thiol-yne processes, however, unexpectedly, the alkynylly unsaturated monomer was able to afford poiythiophene and other heterocyles.
[00343] For example, the nitrone monomer is expected to react via free radical polymerizations with sulfur radicals. Unexpectedly, the nitrone monomer was designed to afford polymeric materials when copolymerized with elemental sulfur.
[0Θ344] Aldehyde based monomers are not expected to react with sulfur radicals, however, the formation of polymers was observed when the appropriate dh or multifunctional aldehydes are copolymerized with sulfur.
[00345] Ketone based monomers are not expected to react with sulfur radicals, however, the formation of polymers was observed when the appropriate dk or multifunctional ketones are copolymerized with sulfur.
[00346] As used herein, the term "about" refers to plus or minus 10% of the referenced number.
[00347] Various modifications of the invention, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. Each reference cited in the present application is incorporated herein by reference in its entirety.
[00348] Although there has been shown and described the preferred embodiment of the present invention, it will be readily apparent to those skilled in the art that modifications may be made thereto which do not exceed the scope of the appended claims. Therefore, the scope of the invention is only to be limited by the following claims. In some embodiments, the figures presented in this patent application are drawn to scale, including the angles, ratios of dimensions, etc. In some embodiments, the figures are representative only and the claims are not limited by the dimensions of the figures. In some embodiments, descriptions of the inventions described herein using the phrase "comprising" includes embodiments that could be described as "consisting of", and as such the written description requirement for claiming one or more embodiments of the present invention using the phrase "consisting of is met.
[00349] REFERENCES
[00350] 1. Chung, W.J. et aL, Angew. Chem. Int. Ed., 201 1 , 50, 1 1409-1 1412. [00351] 2. Coiquhoun, Howard M., "Materials that heal themselves", Nature Chemistry, June 2012, Vol. 4, 435-436.
[0Θ352] 3. Yang, Ying and Urban Marek W., "Self-healing polymeric materials", Chem. Soc. Rev., 2013, 42, 7446-7467.
[00353] 4. Hasegawa, Urara and van der Vlies, Andre J., "Design and Synthesis of Polymeric Hydrogen Sulfide Donors", Bioconjugate Chemistry, 2014, 25 (7), 1290- 1300.
[00354] 5. Foster, Jeffrey C, et ai., "S-Aroylthiooximes: A Facile Route to Hydrogen Sulfide Releasing Compounds with Structure-Dependent Release Kinetics", Organic Letters. 2014, 16, 1558-1561.
[00355] 6. Wurther, F. Chem. Commun. 2004, 1564-1579.

Claims

WHAT IS CLA!MED:
1. A copolymer material comprising a sulfur copolymer at a level in the range of about 5 wt% to about 95 wt% of the copolymer material, said sulfur copolymer comprising:
a) one or more sulfur monomers, at a level at least about 50 wt% of the sulfur copolymer; and one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynyl!y unsaturated monomers, epoxide monomers, nitrone monomers, aldehyde monomers, ketone monomers, thiirane monomers, and ethylenicaliy unsaturated monomers at a level in the range of about 0.1 wt% to about 50 wt% of the sulfur copolymer.
2. The copolymer material of claim 1 further comprising one or more epoxide monomers at a level in the range of about 5 wt% to about 95 wt% of the copolymer material, wherein at least one epoxy functional group of the epoxide monomers is bonded to a functional group of the sulfur copoiymer, wherein when one or more S-S bonds of the sulfur copolymer are broken, the S-S bonds are reconnected by thermal reforming.
3. The copoiymer material of claim 1 , wherein the sulfur copolymer further comprises an elemental carbon material dispersed in the sulfur copoiymer at a level in the range of up to about 50 wt% of the sulfur copoiymer.
4. The copolymer material of claim 1 , wherein the sulfur copoiymer further comprises one or more photoactive monomers at a level in the range of about 0.1 wt% to about 50 wt% of the sulfur copoiymer, each photoactive monomer having the structure:
Figure imgf000074_0001
wherein A is a ring system, wherein A is a photoactive chromophore; wherein A is selected from a group consisting of peryienes, pyrenes, couramins, cyanine dyes, f!uorescents, and derivatives thereof, polythiophenes, polyanilines, TiC½, CdSe, CdS, CdSe-CdS, natural and synthetic dyes, aromatics, heterocycies, conjugated organic polymers, inorganic chromophores, nanocomposite chromophores, organic chromophores, photoactive agents, and semiconductor nanoparticles; wherein B comprises a polymerizable moiety, wherein the po!ymerizab!e moiety is selected from a group consisting of a carboxylate moiety, an ethylenicaily unsaturated moiety, an epoxide moiety, a thiirane moiety, an amine moiety, a thiol moiety, a sulfide moiety, an a!kynyily unsaturated moiety, a nitrone moiety, an aldehyde moiety and a ketone moiety; wherein n is 1 , 2, 3, 4, 5, 6, 7 or 8; wherein A absorbs visible radiation, infrared radiation, or solar radiation; and wherein each B includes the polymerizable moiety and a 1 -6 atom long linker, wherein each linker is selected from a group consisting of an alkyiene linker and a mono, di- or tri(ethyiene glycol) linker.
5. A method of forming photoactive species from the copolymer material of claim 4, said method comprising:
a. contacting the copolymer material with an aqueous medium; and
b. irradiating the copolymer material in the aqueous medium with radiation that is at least partially absorbed by the one or more photoactive chromophores; wherein the irradiation causes the formation of hydrogen from the aqueous medium; wherein the irradiation causes the formation of a sulfur radical cation, polaron, or oxidized sulfur species from a sulfur of the copolymer material; wherein the oxidized sulfur species is one or more of sulfate, sulfonates, sulfite, sulfoxides and sulfones; and wherein the radiation is infrared, visible, or solar radiation.
6. The copolymer material of claim 1 , wherein the sulfur copolymer further comprises one or more polyfunctiona! monomers selected from a group consisting of a polyvinyl monomer, a polyisopropenyl monomer, a poiyacryl monomer, a po!ymethacryl monomer, a polyunsaturated hydrocarbon monomer, a polyepoxide monomer, a polythiirane monomer, a poiyalkynyl monomer, a poiydiene monomer, a poiybutadiene monomer, a poiyisoprene monomer, a poiynorbornene monomer, a polyamine monomer, a polythiol monomer, a polysuifide monomer, a polyalkynyiiy unsaturated monomers, a poiynitrone monomers, a polyaldehyde monomers, a poiyketone monomers, and a poiyethy!enica!iy unsaturated monomers.
7. The copolymer material of claim 1 further comprising a nucleophilic viscosity modifier at a level up to about 10 wt% of the copolymer material.
8. The copolymer material of claim 1 further comprising one or more carrier polymers, wherein the carrier polymer is bonded to the sulfur copolymer to form a hydrogen sulfide (H28) donating polymer conjugate; wherein the carrier polymer is selected from a group consisting of an N-(2- hydroxyipropyl)methacryiamide (HPMA) copolymer, a po!y-L-giutamic acid, a poiyiethylene glycol) (PEG), Dextran, vinyls, alkynyls, epoxides, thiiranes, amines, sulfides, ethers, norbornenes, amides, peptides, polyesters, polyamides, polyefhers, and sugars; wherein at least one sulfur moiety of the sulfur monomer is bonded to at least one reactive functional group of the comonomers, wherein the sulfur monomers form a sulfur containing core of the sulfur copolymer, wherein the comonomers extend outwardly from the sulfur containing core; and wherein at least one functional group of the comonomers solubiiizes the sulfur copolymer, wherein at least one functional group of the comonomers is biocompatible.
9. A method of treating a biological condition in a mammal in need thereof, said method comprising administering a therapeutically effective amount of the copolymer material according to claim 1 , wherein the sulfur copolymer releases a slow and continuous amount of H28 gas, wherein the h½S triggers a biological response; wherein the biological condition that is treated is selected from a group consisting of inflammation, heart disease, inflammation, hypertension, and ischemia reperfusion; wherein the sulfur copolymer is administered derrnaliy, orally, subcutaneousiy or intravenously.
10. The method of claim 9 further comprising administering an H2S catalyst, wherein the catalyst promotes the release of the slow and continuous amount of h½S gas, wherein the catalyst is cysteine, glutathione, or other thio!- containing compounds.
1 1. The method of claim 9, wherein the release of the slow and continuous amount of H28 gas is triggered by chemical means, mechanical means, or photoirradiation.
12. A method of inhibiting microbial growth, said method comprising impregnating a microbial film with the copolymer material according to claim 1 , wherein the sulfur copolymer releases H2S gas thereby killing a microbe of the microbial film.
13. A method of producing the copolymer material according to claim 1 , said method comprising;
a. providing elemental sulfur;
b. heating the elemental sulfur into a molten sulfur; and
c. polymerizing one or more comonomers according to claim 1 with the molten sulfur, thereby forming the sulfur copolymer; wherein a technique of polymerizing is selected from a group consisting of: free radical polymerization, controlled radical polymerization, ring-opening polymerization, ring-opening metathesis polymerization, step-growth polymerization, or chain-growth polymerization.
14. The copolymer material of claim 1 further comprising a second comonomer to form a terpolymer material, wherein the second comonomer is selected from a group consisting of one or more monomers of epoxides, isocyanates, acid chlorides, carboxylic acids, esters, and alkyl ha!ides.
15. A method of making a terpolymer material according to claim 14, said method comprising:
a. providing elemental sulfur;
h. heating the elemental sulfur into a molten sulfur;
c. polymerizing one or more comonomers according to claim 1 with the molten sulfur, thereby forming a sulfur copolymer; and
d. reacting an available reactive functional group on the sulfur copolymer with one or more monomers of the second comonomer to form the terpolymer material; wherein a technique of reacting is selected from a group consisting of: oxidative coupling, polymerization, or copolymerization; and wherein a technique of polymerizing is selected from a group consisting of: free radical polymerization, controlled radical polymerization, ring-opening polymerization, ring-opening metathesis polymerization, step-growth polymerization, or chain-growth polymerization.
16. A method of making an article formed from the copolymer material of claim 1 , said method comprising:
a. heating the copolymer material at a temperature in the range of about 160 °C to about 230 °C; b. forming the copolymer material into a shape of the article; and c. heating the formed copolymer material to yield the article.
17. A method of forming an article from the copolymer material of claim 1 , said method comprising admixing the copolymer material in a solvent, forming the admixed copolymer material into a shape of the article; and removing the solvent from the copolymer material to yield the article.
18. An oii-in-water emulsion comprising the copolymer material of claim 1 as a colloidal phase suspended in aqueous solution with or without the presence of a surfactant.
19. An optical element comprising the copolymer material of claim 1 formed as a substantially optically transparent body, wherein the copolymer material has a refractive index in the range of about 1.7 to about 2.2 and at least one wavelength in the range of about 300 nm to about 10 μηι,
20. An electrochemical cell comprising:
a. an anode comprising metallic lithium;
b. a cathode comprising the copolymer material of claim 1 ; and
c. a non-aqueous electrolyte interposed between the cathode and the anode; wherein the copolymer generates soluble additive species in situ upon discharge, wherein the soluble additive species are co-deposited with lower sulfide discharge products onto the cathode by an electrochemical reaction or a non-electrochemical reaction.
21. A polymeric composition comprising a sulfur copolymer, the sulfur copolymer comprising:
a. one or more sulfur monomers, at a level in the range of at least about 50 wt% of the sulfur copolymer; and
b. one or more monomers selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, aikynyily unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, thiirane monomers, epoxide monomers, and ethylenicaliy unsaturated monomers at a level in the range of about 0.1 wt% to about 50 wt% of the sulfur copolymer,
wherein the ethylenicaliy unsaturated monomers are present as copolymers with at least one additional monomer.
22. The polymeric composition according to claim 21 , wherein the one or more monomers are one or more amine monomers.
23. The polymeric composition according to claim 22, wherein the amine monomer is m-phenyienediamine or p-pheny!enediamine.
24. The polymeric composition according to claim 21 , wherein the one or more monomers are one or more thiol monomers.
25. The polymeric composition according to claim 24, wherein the thiol monomer is 4,4'-thiobis(benzenethiol).
26. The polymeric composition according to claim 21 , wherein the one or more monomers are a combination of one or more amine monomers and one or more thiol monomers.
27. The polymeric composition according to claim 21 , wherein the one or more monomers are one or more aikynylly unsaturated monomers.
28. The polymeric composition according to claim 27, wherein the aikynylly unsaturated monomer is 1 -pheny!propyne.
29. The polymeric composition according to any of claims 21-28, wherein the sulfur copolymer comprises one or more sulfur monomers at a level in the range of about 50 to about 99 wt% of the sulfur copolymer, and one or more monomers at a level in the range of about 1 wt% to about 50 wt% of the sulfur copolymer.
30. The polymeric composition according to any of claims 21-28, wherein the sulfur copolymer comprises one or more sulfur monomers at a level in the range of about 50 to about 97.5 wt% of the sulfur copolymer, and one or more monomers at a level in the range of about 2.5 wt% to about 50 wt% of the sulfur copolymer.
31. The polymeric composition according to any of claims 21-28, wherein the sulfur copolymer comprises one or more sulfur monomers at a level in the range of about 50 to about 95 wt% of the sulfur copolymer, and one or more monomers at a level in the range of about 5 wt% to about 50 wt% of the sulfur copolymer.
32. The polymeric composition according to any of claims 21-31 , wherein the sulfur copolymer comprises one or more sulfur monomers at a level of at least about 60 wt% of the sulfur copolymer.
33. The polymeric composition according to any of claims 21-31 , wherein the sulfur copolymer comprises one or more sulfur monomers at a level of at least about 70 wt% of the sulfur copolymer.
34. The polymeric composition according to any of claims 21-28, wherein the sulfur copolymer comprises one or more sulfur monomers at a level in the range of about 70 to about 95 wt% of the sulfur copolymer.
35. The polymeric composition according to claim 34, wherein the sulfur copolymer comprises one or more monomers at a level in the range of about 5 wt% to about 30 wt% of the sulfur copolymer.
36. The polymeric composition according to any of claims 21-35, in the form of a polymeric composite comprising the sulfur copolymer and an elemental carbon material dispersed in the copolymer at a level in the range of up to about 50 wt% of the composition.
37. The polymeric composition according to claim 36, wherein the polymeric composition includes the copolymer, comonomers at a level in the range of about 10 to about 45 wt% of the sulfur of the copolymer, and the elemental carbon material at a level up to about 40 wt% of the sulfur of the copolymer.
38. A method for making a polymeric composition according to any of claims 21- 37, the method comprising heating a mixture comprising sulfur and one or more monomers at a temperature in the range of about 120°C to about 230°C.
39. A method of making an article formed from the polymeric composition of any of claims 21-37, the method comprising:
a. heating a mixture comprising sulfur and one or more monomers at a temperature in the range of about 180 °C to about 230 °C to form a prepoiymer;
b. forming the prepoiymer into the shape of the article, to yield a formed prepoiymer shape; and
c. heating the formed prepoiymer shape to yield the article.
40. The method according to claim 39, wherein the prepoiymer is provided as a mixture with a solvent for forming.
41. The method according to claim 39 or claim 40, wherein the prepoiymer is coated and cured as a thin film on a substrate.
42. The method according to claim 39 or claim 40, wherein the prepoiymer is shaped and cured using a moid.
43. A method of forming an article formed from the polymeric composition of any one of claims 21-37, the method comprising admixing the polymeric composition in a nonpolar organic solvent, forming the admixed polymeric composition into the shape of the article; and removing the solvent from the polymeric composition to yield the article.
44. An oii-in-water emulsion comprising the polymeric composition according to any of claims 21-37 as the colloidal phase suspended in aqueous solution with, or without the presence of a surfactant.
45. An optical element comprising the polymeric composition of any of claims 21- 37 formed as a substantially optically transparent body having an optical transparency in the visible and infrared spectrum.
46. The optical element according to claim 45, wherein the polymeric composition has a refractive index in the range of about 1 .7 to about 2.2 at at least one wavelength in the range of about 300 nm to about 10 μηι.
47. An electrochemical cell comprising:
a. an anode comprising metallic lithium;
b. a cathode comprising the polymeric composition of any of claims 21-37; and
c. a non-aqueous electrolyte interposed between the cathode and the anode.
48. The electrochemicai cell according to claim 47, wherein the cathode is flexible.
49. The electrochemical cell according to claim 27 or claim 48, having a capacity in the range of about 200 to about 1400 mAh/g.
50. The electrochemical cell according to claim 27 or claim 48, having a capacity in the range of about 600 to about 1000 mAh/g.
51. An electrochemical cell comprising:
a. an anode comprising metallic lithium;
b. a cathode comprising a sulfur containing polymer which generates soluble additive species in situ upon discharge, and wherein the soluble additive species co-deposit with lower sulfide discharge products onto the cathode; and
c. a non-aqueous electrolyte interposed between the cathode and the anode.
52. The electrochemical eel! of claim 51 , wherein the electrolyte and/or a separator comprises a sulfur containing polymer.
53. The electrochemicai cell of claim 51 or 52, wherein the sulfur containing polymer is a copolymer of elemental sulfur and one or more of organic monomers.
54. The electrochemical cell of claim 53, wherein the sulfur containing polymer comprises comonomers and copolymers of sulfur, ethyienically unsaturated monomers, aikynylly unsaturated monomer, amine monomers, thiol monomer, nitrone monomers, aldehyde monomers, and ketone monomers.
55. The electrochemical ceil of any one of claims 51 -54, wherein the sulfur is at a level in the range of at least about 50 wt% of the copolymer.
56. The electrochemical cell of any one of claims 51 -55, wherein the copolymer generates soluble organosuifur species upon discharge.
57. The electrochemical ceil of any one of claims 51 -56, wherein the soluble additive species are co-deposited with the lower sulfide discharge products, by an electrochemical reaction or a non-electrochemical reaction.
58. A method of using the electrochemical cell of any one of claims 47-57 in electric vehicle applications.
59. A method of using the electrochemical cell of any one of claims 47-57 in portable consumer devices, motorized wheelchairs, golf carts, electric bicycles, electric forklifts, fools, automobile starters, and uninterruptible power supplies.
60. A method for modifying the polymeric composition of any of claims 41-57, the method comprising reacting an available reactive functional group on the polymeric composition with a second comonomer to form a new copolymer material.
61. The method of claim 60, wherein the reactive functional group is an amine or a thiol.
62. The method of claim 61 , wherein the second comonomer comprises an epoxide, isocyanafe, acid chloride, carboxylic acid, ester, or aikyi haiide group.
63. The method of claim 60, wherein the reactive functional group is an amine, and the new copolymer materia! is a polyurethane or a poiyamide.
64. The method of claim 80, wherein the reactive functional group is an aniline or a pheny!enediamine, and the new copolymer material contains oiigo- or poiyaniiine segments.
85. The method of claim 60, wherein the reactive functional group is a thiophene and the new copolymer material contains oiigo- or poiythiophene segments.
88. The method of claim 80-68, wherein reacting is oxidative coupling, polymerization, or copo!ymerization.
87. A copolymer material comprising: a) a sulfur copolymer at a level in the range of about 5 wt% to about 95 wt% of the copolymer material, said sulfur copolymer comprising: c) one or more sulfur monomers, at a level at least about 50 wt% of the sulfur copolymer; and d) one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynyily unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, thiirane monomers, and ethylenicaliy unsaturated monomers at a level in the range of about 0.1 wt% to about 50 wt% of the sulfur copolymer; and b) one or more epoxide monomers at a level in the range of about 5 wt% to about 95 wt% of the copolymer material; wherein at least one epoxy functional group of the epoxide monomers is bonded to a functional group of the sulfur copolymer.
68. The copolymer material according to claim 67, wherein the one or more comonomers are one or more amine monomers.
89. The copolymer material according to claim 68, wherein the amine monomer is m-phenylenediamine or p-phenylenediamine.
70. The copolymer material according to claim 67, wherein the one or more comonomers are one or more thiol monomers.
71. The copolymer material according to claim 70, wherein the thiol monomer is 414'-thiobis(benzenethiol).
72. The copolymer material according to claim 67, wherein the one or more comonomers are a combination of one or more amine monomers and one or more thiol monomers.
73. The copolymer material according to claim 67, wherein the one or more comonomers are one or more alkynylly unsaturated monomers.
74. The copolymer material according to claim 73, wherein the alkynylly unsaturated monomer is 1 -pbenylpropyne.
75. The copolymer material according to claim 67, wherein the one or more comonomers are one or more thiirane monomers.
76. The copolymer material according to claim 75, wherein the thiirane monomer is propylene sulfide.
77. The copolymer material according to any one of claims 67-76, wherein one or more of the epoxide monomers are benzyl glycidyl ether, tris(4- hydroxypheny!)methane trigiycidyi ether, or a combination thereof.
78. The copolymer material according to any one of claims 67-76, wherein the sulfur copolymer is at a level of at least about 60 wt% of the copolymer material.
79. The copolymer material according to any one of claims 67-76, wherein the sulfur copolymer is at a level of at least about 70 wt% of the copolymer material.
80. The copolymer material according to any one of claims 67-76, wherein the sulfur copolymer is at a level between about 80 and 80 wt% of the copolymer material.
81. The copolymer material according to any one of claims 87-76, wherein the sulfur copolymer is at a level between about 70 and 95 wt% of the copolymer material.
82. The copolymer material according to any one of claims 67-76, wherein the copolymer material is a thermoset.
83. The copolymer material according to any one of claims 67-76, wherein the copolymer material is a thermoplastic.
84. The copolymer material according to any one of claims 67-76, wherein the copolymer material is self-healing.
85. The copolymer material of claim 84, wherein when one or more S-S bonds of the sulfur copolymer are broken, the S~S bonds are reconnected by thermal reforming.
86. A self-healing sulfur copolymer comprising:
a) one or more sulfur monomers, at a level at least about 50 wt% of the self-healing sulfur copolymer; and b) one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynylly unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethy!enical!y unsaturated monomers at a level in the range of about 0.1 wt% to about 50 wt% of the self-healing sulfur copolymer; wherein when one or more S-S bonds of the sulfur copolymer are broken, the S-S bonds are reconnected by thermal reforming.
87. A self-healing and reworkabie epoxy resin comprising:
a) a self-healing sulfur copolymer at a level in the range of about 5 wt% to about 95 wt% of the epoxy resin, said sulfur copolymer comprising;
(i) one or more sulfur monomers, at a level at least about 50 wt% of the self-healing sulfur copolymer; and
(ii) one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynylly unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenically unsaturated monomers at a level in the range of about 0.1 wt% to about 50 wt% of the self-healing sulfur copolymer; and b) one or more epoxide monomers at a level in the range of about 5 wt% to about 95 wt% of the epoxy resin; wherein at least one epoxy functional group of the epoxide monomers is bonded to a functional group of the sulfur copolymer; wherein when one or more S-S bonds of the sulfur copolymer are broken, the S-S bonds are reconnected by thermal reforming. ethod of repairing a polymeric substrate, said method comprising:
a) providing the polymeric substrate comprising a self-healing sulfur copolymer, the sulfur copolymer comprising:
(i) one or more sulfur monomers, at a level at least about 50 wt% of the self-healing sulfur copolymer; and
(ii) one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynylly unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenically unsaturated monomers at a level in the range of about 0.1 wt% to about 50 wt% of the self-healing sulfur copolymer; and; wherein one or more S-S bonds of the sulfur copolymer are broken; and b) heat treating the polymeric substrate at a healing temperature for a period of time in order to reconnect the S-S bonds of the sulfur copolymer.
89. The method of claim 88, wherein the polymeric substrate further comprises one or more epoxide monomers at a level in the range of about 5 wt% to about 95 wt% of the polymeric substrate, wherein at least one epoxy functional group of the epoxide monomers is bonded to a functional group of the sulfur copolymer.
90. The method of claim 88, wherein the healing temperature is between about 80°C and 100°C.
91. The method of claim 88, wherein the healing temperature is between about 100°C and 150°C.
92. The method of claim 88, wherein the healing temperature is at or near the melting point of the polymeric substrate.
93. The method of claim 88, wherein the period of time is between about 4 and 15 hours.
94. The method of claim 88, wherein the period of time is between about 8 and 12 hours.
95. An electrochemical ceil comprising:
a) an anode comprising metallic lithium;
b) a cathode comprising the composite material of any one of claims 1 to 10 and 20; and
c) a non-aqueous electrolyte disposed between the cathode and the anode.
96. The electrochemical cell of claim 95, wherein the electrochemical ceil has a capacity of between about 200 and about 1 ,400 mAh/g.
97. The electrochemical cell of claim 95, wherein one or more of the epoxide monomers are benzyl glycidyi ether, tris(4-hydroxyphenyi)methane triglycidyl ether, or a combination thereof.
98. A composite material comprising:
a) a sulfur at a level at least about 50 wt% of the composite material; and b) a metal or ceramic composite having a formula xRy and at a level between about 0.1 and about 50 wt% of the composite material; wherein M is selected from a group consisting of Ag, Ai, As Au, B, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Eu, Fe, Ga, Gd, Ge, Hf, Hg, In, La, Li, Mg, n, Mo, Na, Nb, Nd, Ni, P, Pb, Pd, Pr, 8b, Se, Si, Sn, Sr, Ta, Ti, T!, V, W, Y , Yb, Zn and Zr; wherein R is selected from a group consisting of C, N, and S; wherein x ranges between about 1 and about 30, and wherein y ranges between about 1 and about 10.
99. The composite material of claim 98, wherein the metal or ceramic composite is dispersed in the sulfur.
100. The composite material of claim 98, wherein when R is C, M is selected from a group consisting of AI, B, Ca, Cr, Hf, Mo, Nb, Si, Ta, Ti, V, W, Y , and Zr.
101. The composite material of claim 98, wherein when R is N, M is selected from a group consisting of AI, B, Ba, Bi, Ca, Cr, Cu, Eu, Fe, Ga, Gd, La, Li, Mg, Mn, Nb, Nd, Pr, Si, Sr, Ta, Ti, V, Zn or Zr.
102. The composite material of claim 98, wherein when R is S, M is selected from a group consisting of Ag, AI, As, Au, Ba, Bi, Cd, Ce, Co, Cu, Fe, Ga, Ge, Hg, In, Li, Mn, Mo, Na, Ni, P, Pb, Pd, Sb, Se, Sn, Sr, Ti, Ti, W, Yb, and Zn.
103. A composite material comprising: a) a sulfur at a level at least about 50 wt% of the composite material; and b) a metal sulfur composite having a formula PxSyMz and at a level between about 0.1 and about 50 wt% of the composite material; wherein P is selected from a group consisting of Li and Na; wherein M is selected from a group consisting of Ag, AL As Au, B, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Eu, Fe, Ga, Gd, Ge, Hf, Hg, In, La, Li, Mg, Mn, Mo, Na, Nb, Nd, HI, P, Pb, Pd, Pr, Sb, Se, Si, Sn, Sr, Ta, Ti, Ti, V, W, Y , Yb, Zn and Zr; wherein x ranges between about 1 and about 10, y ranges between about 1 and about 10, and wherein z ranges between about 1 and about 30; and wherein the metal sulfur composite is a uniform single phase.
104. The composite materia! of claim 103, wherein the metal sulfur composite is dispersed in the sulfur.
105. The composite material according to any one of claims 98-104, wherein the composite material is copolymenzed with a sulfur copolymer, wherein the sulfur copolymer comprises one or more sulfur monomers, at a level in the range of at least about 50 wt% of the sulfur copolymer, and one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, aikynylly unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenically unsaturated monomers at a level in the range of about 0.1 wt% to about 50 wt% of the sulfur copolymer.
106. The composite material of claim 105, wherein the polymeric material further comprises one or more epoxide monomers at a level in the range of about 5 wt% to about 95 wt% of the polymeric material, wherein at least one epoxy functional group of the epoxide monomers is bonded to a functional group of the sulfur copolymer.
107. The composite material according to any one of claims 98-104, wherein the composite material is copolymerized with a polymeric material comprising:
(a) a sulfur copolymer, wherein the sulfur copolymer comprises:
(i) one or more sulfur monomers, at a level in the range of at least about 50 wt% of the sulfur copolymer; and
(ii) one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynyl!y unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethy!enicaily unsaturated monomers at a level in the range of about 0.1 wt% to about 50 wt% of the sulfur copolymer; and
(b) one or more epoxide monomers at a level in the range of about 5 wt% to about 95 wt% of the polymeric material, wherein at least one epoxy functional group of the epoxide monomers is bonded to a functional group of the sulfur copolymer.
108. The composite material according of claim 105, wherein the composite material is self-healing.
109. The composite material according of claim 107, wherein the composite material is self-healing.
1 10. The composite material of claim 105, wherein when one or more S-S bonds of the sulfur copolymer are broken, the S-S bonds are reconnected by thermal reforming.
1 1 1. The composite material of claim 107, wherein when one or more S-S bonds of the sulfur copolymer are broken, the S-S bonds are reconnected by thermal reforming.
An electrochemical cell comprising a) an anode comprising metallic lithium;
b) a cathode comprising the composite material of any one of claims 32 to 38; and
c) a non-aqueous electrolyte disposed between the cathode and the anode. 13. The electrochemical ceil of claim 1 12, wherein the electrochemical cell has a capacity of between about 200 and about 1 ,400 mAh/g. 14. An optical substrate comprising a polymeric composition according to any of claims 67-76, 86, 87, or 98-104. 15. The optical substrate of claim 1 14, wherein the optical substrate is substantially formed into an optically transparent substrate. 16. The optical substrate of claim 114, wherein the polymeric composition has a refractive index in the range of about 1 ,7 to about 2.2 at least one wavelength in the range of about 300 nm to about 10 μπτι. 17. A method of producing a sulfur copolymer, said method comprising: a) providing elemental sulfur; b) heating the elemental sulfur into a molten sulfur; and c) adding one or more comonomers to the molten sulfur, thereby forming the sulfur copolymer. 18. The method of claim 1 17, wherein the elemental sulfur is heated to a temperature of about 120 to 230 °C. 19. The method of claim 1 17, wherein the one or more comonomers are selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynyliy unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethyienicaily unsaturated monomers.
120. The method of claim 1 17, wherein the elemental sulfur is at a level of at least about 50 wt% of the sulfur copolymer.
121. The method of claim 117, wherein the one or more comonomers are at a level of about 1 to 50 wt% of the sulfur copolymer.
122. A method of producing a copolymer material, said method comprising: a) providing a sulfur copolymer, wherein the method comprises:
(i) providing elemental sulfur;
(ii) heating the elemental sulfur into a molten sulfur; and
(iii) adding one or more comonomers to the molten sulfur, thereby forming the sulfur copolymer; and b) mixing the sulfur copolymer with one or more epoxide monomers; and c) melting the sulfur copolymer and epoxide mixture; d) mixing the melted sulfur copolymer and epoxide mixture; and e) adding an alcohol to the to the melted sulfur copolymer and epoxide mixture, thereby forming the copolymer material.
123. The method of claim 122, wherein the elemental sulfur is heated to a temperature of about 120 to 230 °C.
124. The method of claim 122, wherein the sulfur copolymer and epoxide mixture is heated to a temperature of about 60 to 80 °C.
125. The method of claim 122, wherein the one or more comonomers are selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, aikynylly unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenicaily unsaturated monomers.
128. The method of claim 122, wherein the sulfur copolymer is at a level in the range of about 5 wt% to about 95 wt% of the copolymer material.
127. The method of claim 122, wherein the elemental sulfur is at a level of at least about 50 wt% of the sulfur copolymer.
128. The method of claim 122, wherein the one or more comonomers are at a level of about 1 to 50 wt% of the sulfur copolymer.
129. The method of claim 122, wherein the one or more epoxide monomers are at a level in the range of about 5 wt% to about 95 wt% of the copolymer material.
130. A method of producing a composite material, said method comprising: a) providing elemental sulfur; b) mixing a metal or ceramic composite with the elemental sulfur to form a mixture; and c) heating the mixture until vitrification, thereby forming the composite material.
131. The method of claim 130, wherein the mixture is heated to a temperature of about 160 to 200 °C.
132. The method of claim 130, wherein the elemental sulfur is at a level of at least about 50 wt% of the composite material.
133. The method of claim 130, wherein the metal or ceramic composite is at a level of about 1 to 50 wt% of the composite material.
134. The method of claim 130, wherein the metal or ceramic composite has a formula MxRy, wherein M is selected from a group consisting of Ag, Ai, As Au, B, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Eu, Fe, Ga, Gd, Ge, Hf, Hg, In, La, Li, Mg, n, Mo, Na, Nb, Nd, Ni, P, Pb, Pd, Pr, Sb, Se, Si, Sn, Sr, Ta, Ti, Tl, V, W, Y , Yb, Zn and Zr, wherein R is selected from a group consisting of C, N, and S, wherein x ranges between about 1 and about 30, and wherein y ranges between about 1 and about 10.
135. A sulfur epoxy resin comprising at least one branched or cross-linked sulfur chain, wherein at least one branch or cross-link of the sulfur chain comprises an ether bond, wherein the sulfur content of the epoxy resin ranges from about 5-95 wt%.
136. A sulfur epoxy resin comprising a portion comprising -Ri-S-(S)n-S-R2-, wherein n ranges from 0 to 8; and at least one cross-link of the epoxy resin comprising an ether bond, wherein the sulfur content of the epoxy resin ranges from about 5-95 wt%
137. A sulfur composite material comprising a plurality of metal or ceramic composite particles having a formula MxRy dispersed in a polymeric sulfur, wherein a sulfur content of the sulfur composite material is at least 50 wt%.
138. A sulfur composite material comprising a plurality of metal or ceramic composite particles having a formula PxMyRz dispersed in a polymeric sulfur, wherein a sulfur content of the sulfur composite material is at least 50 wt%.
139. A copolymer material comprising:
a) one or more sulfur monomers at a level in the range of about 5 wt% to about 95 wt% of the copolymer material; b) one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynyily unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, thiirane monomers, and ethylenicaily unsaturated monomers at a level in the range of about 5 wt% to about 50 wt% of the copolymer material; and c) one or more epoxide monomers at a level in the range of about 5 wt% to about 95 wt% of the copolymer material; wherein at least one epoxy functional group of the epoxide monomers is bonded to a functional group of the comonomer, a sulfur moiety of the sulfur monomer, or a combination thereof.
140. A polymeric composition comprising a sulfur copolymer, the sulfur copolymer comprising:
a. one or more sulfur monomers, at a level in the range of at least about 50 wt% of the copolymer; and
b. one or more photoactive monomers at a level in the range of about 0.1 wt% to about 50 wt% of the copolymer, each photoactive monomer having the structure:
Figure imgf000097_0001
wherein A is a ring system, wherein A is a photoactive chromophore; wherein A is selected from a group consisting of peryienes, pyrenes, couramins, cyanine dyes, fluoresceins, and derivatives thereof, poiythiophenes, polyanilines, Ti02, CdSe, CdS, CdSe-CdS, natural and synthetic dyes, aromatics, heterocycies, conjugated organic polymers, inorganic chromophores, nanocomposite chromophores, organic chromophores, photoactive agents, and semiconductor nanoparticles; wherein B comprises a polymerizable moiety, wherein the po!ymerizab!e moiety is selected from a group consisting of a carboxylate moiety, an ethylenica!!y unsaturated moiety, an epoxide moiety, a thiirane moiety, an amine moiety, a thiol moiety, a sulfide moiety, an alkynyily unsaturated moiety, a nitrone moiety, an aldehyde moiety and a ketone moiety; and wherein n is 1 , 2, 3, 4, 5, 6, 7 or 8.
141. The polymeric composition of claim 140, wherein the sulfur copolymer further comprises one or more monomers selected from a group consisting of ethylenica!ly unsaturated monomers, epoxide monomers, thiirane monomers, amine monomers, thiol monomers, sulfide monomers, alkynyily unsaturated monomers, niirone monomers, aldehyde monomers and ketone monomers, at a level up to about 50 wt% of the sulfur copolymer.
142. The polymeric composition according to claims 140, wherein n is 1 -4.
143. The polymeric composition according to claims 141 , wherein n is 1 -4.
144. The polymeric composition of any of claims 140-143, wherein each B includes the poiymerizabie moiety and a 1-8 atom long linker.
145. The polymeric composition of claim 144, wherein each linker is selected from a group consisting of an alkylene linker and a mono, di- or tri(ethylene glycol) linker.
146. The polymeric composition of any of claims 144, wherein each B includes an ethylenically unsaturated moiety, an epoxide moiety or a thiirane moiety.
147. The polymeric composition of any of claims 144-146, wherein each B includes one or more carboxyiic anhydrides.
148. A polymeric composition comprising a sulfur copolymer, said sulfur copolymer comprises:
a. one or more sulfur monomers, at a level in the range of at least about 50 wt% of the copolymer;
b. one or more additional monomers selected from a group consisting of ethylenically unsaturated monomers, epoxide monomers, thiirane monomers, amine monomers, thiol monomers, sulfide monomers, alkynyliy unsaturated monomers, nitrone monomers, aldehyde monomers and ketone monomers, at a level in the range of about 0.1 to about 50 wt% of the copolymer; and
c. one or more photoactive monomers, at a level in the range of about 0.1 wt% to about 50 wt% of the copolymer, each photoactive monomers having a structure
Figure imgf000099_0001
wherein A is a ring system, wherein A is a photoactive chromophore; wherein A is selected from a group consisting of peryienes, pyrenes, couramins, cyanine dyes, fluoresceins, and derivatives thereof, polythiophenes, polyanilines, ΤΊ02, CdSe, CdS, CdSe-CdS, natural and synthetic dyes, aromatics, heterocycles, conjugated organic polymers, inorganic chromophores, nanocomposite chromophores, organic chromophores, photoactive agents, and semiconductor nanoparticles; wherein B comprises a polymerizable moiety, wherein the po!ymerizab!e moiety is selected from a group consisting of a carboxylate moiety, an ethylenica!ly unsaturated moiety, an epoxide moiety, a thiirane moiety, an amine moiety, a thiol moiety, a sulfide moiety, an alkynyiiy unsaturated moiety, a nitrone moiety, an aldehyde moiety and a ketone moiety; and wherein n is 1 , 2, 3, 4, 5, 6, 7 or 8.
149. The polymeric composition according to any of claims 140-148, wherein each photoactive monomer is a photosensitizer,
150. The polymeric composition according to any of claims 140-148, wherein each photoactive monomer is a peryiene diimide.
151. The polymeric composition according to any of claims 140-148, wherein each photoactive monomer is a peryiene bisimide.
152. The polymeric composition according to any of claims 140-148, wherein each photoactive monomer is a polycyclic organic chromophore.
153. The polymeric composition according to any of claims 140-152, wherein the photoactive monomer absorbs visible radiation.
154. The polymeric composition according to any of ciaims 140-153, wherein the photoactive monomer absorbs infrared radiation.
155. The polymeric composition according to any of claims 140-154, wherein the photoactive monomer absorbs solar radiation.
156. The polymeric composition according to any of ciaims 140-154, wherein the one or more photoactive monomers are present at a level of about 0.1 wt% to about 40 wt% of the sulfur copoiymer.
157. The polymeric composition according to any of ciaims 140-156, wherein the one or more additional monomers are one or more ethylenically unsaturated monomers.
158. The polymeric composition according to any of claims 140-156, wherein the one or more monomers are one or more epoxide monomers.
159. The polymeric composition according to any of ciaims 140-156, wherein the one or more monomers are a combination of one or more ethylenically unsaturated monomers and one or more epoxide monomers.
160. The polymeric composition according to any of ciaims 140-156, wherein the one or more monomers are a combination of one or more thiirane monomers and one or more epoxide monomers.
161. The polymeric composition according to any of claims 140-160, wherein the sulfur copolymer comprises one or more sulfur monomers at a level in the range of about 50 to about 99.9 wt% of the copoiymer, and the other monomers at a total level in the range of about 0.1 wt% to about 50 wt% of the copoiymer.
162. The polymeric composition according to any of ciaims 140-160, wherein the sulfur copolymer comprises one or more sulfur monomers at a level in the range of about 50 to about 99 wt% of the copolymer, and the other monomers at a total level in the range of about 1 wt% to about 50 wt% of the copolymer.
163. The polymeric composition according to any of claims 140-180, wherein the sulfur copolymer comprises one or more sulfur monomers at a level in the range of about 50 to about 97.5 wt% of the copolymer, and the one or more monomers at a level in the range of about 2.5 wt% to about 50 wt% of the copolymer.
184. The polymeric composition according to any of claims 140-180, wherein the sulfur copolymer comprises one or more sulfur monomers at a level in the range of about 50 to about 95 wt% of the copolymer, and the other monomers at a level in the range of about 5 wt% to about 50 wt% of the copolymer.
165. The polymeric composition according to any of claims 140-160, wherein the sulfur copolymer comprises one or more sulfur monomers at a level of at least about 60 wt% of the copolymer.
188. The polymeric composition according to any of claims 140-180, wherein the sulfur copolymer comprises one or more sulfur monomers at a level in the range of about 70 to about 92 wt% of the copolymer.
167. The polymeric composition according to claim 166, wherein the sulfur copolymer comprises the other monomers at a level in the range of about 8 wt% to about 30 wt% of the copoiymer.
168. The polymeric composition of any of claims 140-187, wherein the sulfur copolymers further comprises one or more poiyfunctional monomers.
189. The polymeric composition of claim 168, wherein the one or more poiyfunctional monomers is selected from a group consisting of a polyvinyl monomer, a poiyisopropenyi monomer, a polyacryi monomer, a poiymethaery! monomer, a polyunsaturated hydrocarbon monomer, a polyepoxide monomer, a polythiirane monomer, a polyalkynyi monomer, a poiydiene monomer, a polybutadiene monomer, a poiyisoprene monomer, a polynorbornene monomer, a polyamine monomer, a polythioi monomer, a poiysuifide monomer, a poiyaikynyily unsaturated monomers, a polynitrone monomers, a po!yaldehyde monomers, a polykeione monomers, and a polyethylenica!ly unsaturated monomers.
170. The polymeric composition of claim 188, wherein the one or more polyfunctional monomers is selected from a group consisting of a divinylbenzene, a diisopropenyibenzene, an alkyiene di(meth)acryiate, a bisphenol A di(meth)acrylate, a terpene, a carotene, a divinyi (hetero)aromatic compound and a diisopropeny! (hetero)aromatic compound.
171. The polymeric composition according to any of claims 140-170, wherein the sulfur copolymer further comprises a nucleophilic viscosity- modifier at a level up to about 10 wt% of the copolymer.
172. The polymeric composition according to any of claims 140-171 , wherein the sulfur copolymer comprises:
a. one or more sulfur monomers, at a level of about 50 to about 98 wt% of the copolymer,
b. one or more polyfunctional monomers, at a level of about 2 to about 50 wt% of the copolymer; and
c. one or more monofunctional monomers, at a level up to about 10 wt% of the copolymer, wherein the one or more sulfur monomers, the one or more polyfunctional monomers and the one or more monofunctional monomers are present at a level of at least about 70 wt% of the polymeric composition, wherein the monofunctional monomers are photoactive monomers or additional monomers, and wherein the polyfunctional monomers can be photoactive monomers or additional monomers.
173. The polymeric composition according to claim 172, wherein the one or more sulfur monomers, the one or more polyfunctional monomers and the optional one or more monofunctional monomers are present at a level of at least about 85 wt% of the polymeric composition.
174. The polymeric composition according to any of claims 140-156, wherein the sulfur copolymer comprises:
a. one or more sulfur monomers, at a level in the range of about 70 to about 92 wt% of the sulfur copolymer; b. one or more poiyfunctional monomers selected from a group consisting of a divinylbenzene, a diisopropenylbenzene and an alkylene di(meth)acryiate, at a level in the range of about 8 to about 30 wt% of the sulfur copolymer; c. one or more monofunctional monomers, at a level up to about 1.5 wt% of the sulfur sulfur; and d. triphenyiphosphine at a level up to about 20 wt% of the sulfur monomer, wherein the monofunctional monomers are photoactive monomers or additional monomers, and wherein the poiyfunctional monomers are photoactive monomers or additional monomers.
175. The polymeric composition according to any of claims 140-174, wherein the polymeric composition is a photosentizable material.
176. The polymeric composition according to claim 175, wherein the polymeric composition is photosensitizable by visible or near-infrared radiation.
177. The polymeric composition according to claim 175, wherein the polymeric composition is photosensitizable by solar radiation.
178. The polymeric composition according to any of claims 140-177, wherein the polymeric composition is in a photosensitized state.
179. The polymeric composition according to any of claims 140-177, wherein the polyme ic composition is processable via solution or melt processing methods.
180. The polymeric composition according to any of claims 140-179, wherein the polymeric composition is in the form of a thin film.
181. The polymeric composition according to any of claims 140-179, wherein the polymeric composition is in the form of a three-dimensional solid having a smallest dimension at least 1 mm in size.
182. A method comprising contacting the polymeric composition according to any of claims 140-181 with an aqueous medium and irradiating the polymeric composition with radiation that is at least partially absorbed by the one or more photoactive chromophores.
183. The method according to claim 182, wherein the irradiation causes the formation of hydrogen from the aqueous medium.
184. The method according to claim 182 or claim 183, wherein the irradiation causes the formation of oxidized sulfur species from the sulfur of the polymeric composition.
185. The method according to claim 184, wherein the oxidized sulfur species is one or more of sulfate, sulfonates, sulfite, sulfoxides and sulfones.
186. The method according to claim 184, wherein the oxidized sulfur species is sulfoxide, sulfonate and/or sulfate.
187. The method according to any of claims 182-188, wherein the method is performed at a temperature in the range of 0 °C to about 100 °C.
188. The method according to any of claims 182-187, wherein the aqueous solution and the polymeric material are present in a weight ratio in the range of about 100:1 to about 1 :10.
189. The method according to any of claims 182-188, wherein the irradiation causes the formation of a sulfur radical cation or polaron in the polymeric composition.
190. The method according to any of claims 182-189, wherein the radiation is solar radiation.
191. The method according to any of claims 182-189, wherein the radiation is visible radiation.
192. The method according to any of claims 182-189, wherein the radiation is near-infrared radiation.
193. The method according to any of claims 182-192, wherein the irradiation forms photoactive species.
194. A hydrogen sulfide (H2S) donating polymer conjugate comprising:
a) a sulfur copolymer, said sulfur copolymer comprising:
(i) one or more sulfur monomers at a level between about 5 to 95 wt% of the sulfur copolymer; and
(ii) one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, aikyny!ly unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenicaily unsaturated monomers at a level between about 5 to 95 wt% sulfur copolymer; wherein at least one sulfur moiety of the sulfur monomer is bonded to at least one reactive functional group of the comonomers; and b) one or more carrier polymers, wherein the carrier polymer is bonded to the sulfur copolymer.
195. The h S donating polymer conjugate of claim 194, wherein the carrier polymer is selected from a group consisting of: N-(2- hydroxyipropyOmefbacryiamide (HPMA) copolymer, a poly-L-giutamic acid, a poiy(ethylene glycol) (PEG), Dextran, vinyls, alkyny!s, epoxides, thiiranes, amines, sulfides, ethers, norbornenes, amides, peptides, polyesters, polyamides, poiyethers, and sugars.
198. The H28 donating polymer conjugate of claim 194, wherein the one or more comonomers are one or more amine monomers.
197. The hbS donating polymer conjugate of claim 196, wherein the amine monomer is m-phenylenediamine or p-phenylenediamine.
198. The h 8 donating polymer conjugate of claim 194, wherein the one or more comonomers are one or more thiol monomers.
199. The H2S donating polymer conjugate of claim 198, wherein the thiol monomer is 4,4'-thiobis(benzenethioI).
200. The h½8 donating polymer conjugate of claim 194, wherein the one or more comonomers are a combination of one or more amine monomers and one or more thiol monomers.
201 . The H2S donating polymer conjugate of claim 194, wherein the one or more comonomers are one or more aikynyiiy unsaturated monomers.
202. The H2S donating poiymer conjugate of claim 201 , wherein the aikynyiiy unsaturated monomer is 1 -phenylpropyne.
203. The H28 donating polymer conjugate of claim 194, wherein the one or more comonomers are one or more thiirane monomers.
204. The H28 donating polymer conjugate of claim 203, wherein the thiirane monomer is propylene sulfide.
205. The hbS donating poiymer conjugate of claim 194, wherein the one or more comonomers are one or more epoxide monomers.
208. The H2S donating polymer conjugate of claim 205, wherein one or more of the epoxide monomers are benzyl glycidyl ether, tris(4- hydroxyphenyi)methane trigiycidy! ether, or a combination thereof.
207. The H2S donating polymer conjugate of claim 194, wherein the sulfur monomer is at a level of at least about 20 wt% of the sulfur copolymer.
208. The H28 donating polymer conjugate of claim 194, wherein the sulfur monomer is at a level of at least about 50 wt% of the sulfur copolymer.
209. The H2S donating polymer conjugate of claim 194, wherein the sulfur monomer is at a level between about 60 and 80 wt% of the suifur copolymer.
210. The H2S donating polymer conjugate of claim 194, wherein the suifur monomer is at a level between about 70 and 95 wt% of the suifur copolymer.
21 1. A hydrogen sulfide (H2S) donating sulfur copolymer comprising:
a. one or more sulfur monomers at a level between about 5 to 95 wt% of the sulfur copolymer; and b. one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynyily unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethyienically unsaturated monomers at a level between about 5 to 95 wt% of the suifur copolymer; wherein at least one sulfur moiety of the suifur monomer is bonded to at least one reactive functional group of the comonomers.
212. The H2S donating sulfur copolymer of claim 21 1 , wherein the suifur monomers form a suifur containing core of the sulfur copolymer.
213. The H2S donating suifur copolymer of claim 212, wherein the comonomers extend outwardly from the suifur containing core.
214. The H2S donating sulfur copolymer of claim 194, wherein the sulfur copolymer is linear.
215. A hydrogen sulfide (H2S) donating sulfur copolymer comprising:
a. one or more sulfur monomers at a level of at a level between about 5 to 95 wt% of the suifur copolymer; and b. one or more comonomers each selected from a group consisting of amine monomers, thiol monomers, sulfide monomers, alkynyily unsaturated monomers, nitrone monomers, aldehyde monomers, ketone monomers, epoxide monomers, thiirane monomers, and ethylenica!iy unsaturated monomers at a level between about 5 to 95 wt% of the sulfur copolymer; wherein at least one sulfur moiety of the sulfur monomer is bonded to at least one reactive functional group of the comonomers, wherein the sulfur monomers form a sulfur containing core of the sulfur copolymer, and wherein the comonomers extend outwardly from the sulfur containing core.
218. The h½S donating sulfur copolymer according to any of claims 21 1-215, wherein the one or more comonomers are one or more amine monomers.
217. The h½S donating sulfur copolymer of claim 216, wherein the amine monomer is m-phenylenediamine or p-phenylenediamine.
218. The H2S donating sulfur copolymer according to any of claims 21 1-215, wherein the one or more comonomers are one or more thiol monomers.
219. The H2S donating sulfur copolymer of claim 218, wherein the thiol monomer is 4,4'-thiobis(benzenethioI).
220. The h½8 donating sulfur copolymer according to any of claims 21 1- 215, wherein the one or more comonomers are a combination of one or more amine monomers and one or more thiol monomers.
221. The H2S donating sulfur copolymer according to any of claims 21 1- 215, wherein the one or more comonomers are one or more alkynyily unsaturated monomers.
222. The H2S donating sulfur copolymer of claim 221 , wherein the alkynyily unsaturated monomer is 1 -phenylpropyne.
223. The H2S donating sulfur copolymer according to any of claims 21 1- 215, wherein the one or more comonomers are one or more ihiirane monomers.
224. The H2S donating sulfur copolymer of claim 223, wherein the thiirane monomer is propylene sulfide.
225. The h S donating sulfur copolymer according to any of claims 21 1- 215, wherein the one or more comonomers are one or more epoxide monomers.
226. The H28 donating sulfur copolymer of claim 225, wherein one or more of the epoxide monomers are benzyl glycidyi ether, tris(4- hydroxyphenyi)methane trig!ycidyl ether, or a combination thereof.
227. The H2S donating sulfur copolymer according to any of claims 21 1 - 215, wherein the sulfur monomer is at a level of at least about 20 wt% of the sulfur copolymer.
228. The h S donating sulfur copolymer according to any of claims 21 1 - 215, wherein the sulfur monomer is at a level of at least about 50 wt% of the sulfur copolymer.
229. The H2S donating sulfur copolymer according to any of claims 21 1 - 215, wherein the sulfur monomer is at a level between about 60 and 80 wt% of the sulfur copolymer.
230. The h½8 donating sulfur copolymer according to any of claims 21 1 - 215, wherein the sulfur monomer is at a level between about 70 and 95 wt% of the sulfur copolymer.
231. The h S donating sulfur copolymer according to any of claims 21 1 - 215, wherein at least one functional group of the comonomers solubilizes the sulfur copolymer.
232. The H2S donating sulfur copolymer according to any of claims 21 1 - 215, wherein at least one functional group of the comonomers is biocompatible.
233. The H2S donating sulfur copolymer according to any of claims 21 1 - 215, wherein the sulfur copolymer further comprises a one or more carrier polymers, wherein the carrier polymer is bonded to the sulfur copolymer,
234. The H28 donating sulfur copolymer of claim 233, wherein the carrier moiety is selected from a group consisting of: N-(2- hydroxy!propy!)methacry!amide (HPMA) copolymer, a po!y-L-giutamic acid, a poly(ethylene glycol) (PEG), Dextran, vinyls, alkynyls, epoxides, thiiranes, amines, sulfides, ethers, norbornenes, amides, peptides, polyesters, poiyamides, poiyethers, and sugars.
235. A method of treating a biological condition in a mammal in need thereof, said method comprising administering a therapeutically effective amount of a hydrogen sulfide (H2S) donating polymer conjugate according to any of claims 1 -17, wherein the polymer conjugate releases a slow and continuous amount of H28 gas, wherein the H2S triggers a biological response.
238. The method of claim 235, wherein the biological condition is inflammation.
237. The method of claim 235, wherein the biological condition is heart disease.
238. The method of claim 235, wherein the biological condition is inflammation.
239. The method of claim 235, wherein the biological condition is hypertension.
240. The method of claim 235, wherein the biological condition is ischemia reperfusion.
241. The method of claim 235, wherein the polymer conjugate is administered derma!ly, orally, transmucosa!ly, subcutaneously or intravenously.
242. The method of claim 235, wherein the polymer conjugate is localized at or near an area affected by the biological condition.
243. The method of claim 235, wherein the mammal is a human.
244. A method of treating a biological condition in a mammal in need thereof, said method comprising administering a therapeutically effective amount of a hydrogen sulfide (H2S) donating sulfur copolymer according to any of claims 21 1-215, wherein the sulfur copolymer releases a slow and continuous amount of H2S gas, wherein the H2S triggers a biological response.
245. The method of claim 244, wherein the biological condition is inflammation.
246. The method of claim 244, wherein the biological condition is heart disease.
247. The method of claim 244, wherein the biological condition is inflammation.
248. The method of claim 244, wherein the biological condition is hypertension.
249. The method of claim 244, wherein the biological condition is ischemia reperfusion.
250. The method of claim 244, wherein the sulfur copolymer is administered derma!iy, orally, subcutaneously or intravenously.
251. The method of claim 244, wherein the sulfur copolymer is localized at or near an area affected by the biological condition.
252. The method of claim 244, wherein the mammal is a human.
10
253. The method of claims 235 or 244 further comprising administering an H2S catalyst, wherein the catalyst promotes the release of H2S gas.
254. The method of claim 253, wherein the catalyst is cysteine, glutathione, or a thiol-containing compound.
255. The method of claims 235 or 244, wherein the release of the slow and continuous amount of H2S gas is triggered by chemical means, mechinal means, or photoirradiation.
256. A method of producing an H28 donating polymer conjugate according to any of claims 194-210, said method comprising:
a) providing a sulfur copolymer; and b) attaching a carrier polymer to the sulfur copolymer.
257. The method of claim 256, wherein the step of providing a sulfur copolymer comprises:
a) providing elemental sulfur; b) heating the elemental sulfur into a molten sulfur; and c) polymerizing one or more comonomers with the molten sulfur, thereby forming the sulfur copolymer.
258. The method of claim 257, wherein a technique of polymerizing is selected from a group consisting of: free radical polymerization, controlled radical polymerization, ring-opening polymerization, ring-opening metathesis polymerization, step-growth polymerization, or chain-growth polymerization.
259. A method of producing an h½S donating sulfur copolymer according to any of claims 211 -215, said method comprising:
a) providing elemental sulfur; b) heating the elemental sulfur into a molten sulfur; and c) polymerizing one or more comonomers with the molten sulfur, thereby forming the sulfur copolymer.
260. The method of claim 257, wherein a technique of polymerizing is selected from a group consisting of: free radical polymerization, controlled radical polymerization, ring-opening polymerization, ring-opening metathesis polymerization, step-growth polymerization, or chain-growth polymerization.
261. An H2S donating sulfur polymer conjugate comprising a sulfur copolymer linked to a carrier polymer, wherein the sulfur copolymer comprises at least one branched or cross-linked sulfur chain, wherein the sulfur content of the sulfur polymer conjugate ranges from about 5-95 wt%.
262. An h½S donating sulfur polymer conjugate comprising a sulfur copolymer linked to a carrier polymer, the sulfur copolymer having a portion comprising: -Ri-S-(S)n-S-R2-, wherein n ranges from 0 to 6, wherein the sulfur content of the sulfur polymer conjugate ranges from about 5-95 wt%.
263. An H2S donating sulfur copolymer comprising at least one branched or cross-linked sulfur chain, wherein the sulfur content of the sulfur copolymer ranges from about 5-95 wt%
264. An H28 donating sulfur copolymer having a portion comprising:
-RrS-(S)n-S-R2-, wherein n ranges from 0 to 6, wherein the sulfur content of the sulfur copolymer ranges from about 5-95 wt%.
265. A method of inhibiting microbial growth, said method comprising impregnating a microbial film with an h½S donating sulfur copolymer according to any of claims 21 1-215 or 263-264, wherein the sulfur copolymer releases H28 gas thereby killing a microbe of the microbial film.
12
PCT/US2015/015870 2014-02-14 2015-02-13 Sulfur composites and polymeric materials from elemental sulfur WO2015123552A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15748519.4A EP3105280A4 (en) 2014-02-14 2015-02-13 Sulfur composites and polymeric materials from elemental sulfur
KR1020167025616A KR20160122838A (en) 2014-02-14 2015-02-13 Sulfur composites and polymeric materials from elemental sulfur
JP2016569566A JP2017517603A (en) 2014-02-14 2015-02-13 Sulfur composites and polymer materials derived from elemental sulfur

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201461940102P 2014-02-14 2014-02-14
US61/940,102 2014-02-14
US201462017750P 2014-06-26 2014-06-26
US62/017,750 2014-06-26
US201462039588P 2014-08-20 2014-08-20
US201462039561P 2014-08-20 2014-08-20
US62/039,588 2014-08-20
US62/039,561 2014-08-20

Publications (1)

Publication Number Publication Date
WO2015123552A1 true WO2015123552A1 (en) 2015-08-20

Family

ID=53800669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/015870 WO2015123552A1 (en) 2014-02-14 2015-02-13 Sulfur composites and polymeric materials from elemental sulfur

Country Status (4)

Country Link
EP (1) EP3105280A4 (en)
JP (1) JP2017517603A (en)
KR (1) KR20160122838A (en)
WO (1) WO2015123552A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108079975A (en) * 2015-12-18 2018-05-29 宁波高新区夏远科技有限公司 A kind of air purifier composite photo catalyst screen material
WO2018109150A1 (en) * 2016-12-16 2018-06-21 Universität Osnabrück Electrode material, method for producing electrodes, and said electrodes and electrochemical cells
CN110040718A (en) * 2019-04-03 2019-07-23 温州大学 A kind of preparation method of multi-walled carbon nanotube derived from 16 core molecule cluster of Thiacalixarene base
CN110582873A (en) * 2017-05-03 2019-12-17 雷普索尔有限公司 Chalcogenide polymer-carbon composites as battery active materials
CN110752371A (en) * 2019-10-31 2020-02-04 哈尔滨工业大学 Lithium-sulfur battery positive electrode active material with self-repairing function and preparation method thereof
CN110957495A (en) * 2019-12-19 2020-04-03 南昌大学 Preparation method of 3D carbon nanosphere oxygen reduction catalyst HFeSSC
US10833330B1 (en) 2011-08-11 2020-11-10 Arizona Board Of Regents On Behalf Of The University Of Arizona Sulfur composites and polymeric materials from elemental sulfur
US10894863B2 (en) 2014-02-14 2021-01-19 Arizona Board Of Regents On Behalf Of The University Of Arizona Cathode materials for Li—S batteries
US10920020B2 (en) 2011-08-11 2021-02-16 Arizona Board Of Regents On Behalf Of The University Of Arizona 3D-printing of ultra-high refractive index polymers
CN112424262A (en) * 2018-05-11 2021-02-26 艾尼股份公司 Elastomeric terpolymers having high sulfur content and method of making same
US11015023B2 (en) 2011-08-11 2021-05-25 Arizona Board Of Regents On Behalf Of The University Of Arizona Fire retardant compositions utilizing elemental sulfur
CN113174615A (en) * 2021-04-30 2021-07-27 中南大学 Cermet material for aluminum electrolysis inert anode and preparation method thereof
US11078333B2 (en) 2015-07-13 2021-08-03 Arizona Board Of Regents On Behalf Of The University Of Arizona Copolymerization of elemental sulfur to synthesize high sulfur content polymeric materials
WO2022023650A1 (en) 2020-07-30 2022-02-03 Saint-Gobain Glass France Vehicle glazing element with insert and associated device with thermal imaging camera
CN115819768A (en) * 2023-02-23 2023-03-21 广东工业大学 Reversible adhesive polysulfide and preparation method thereof
US11649548B2 (en) 2016-12-09 2023-05-16 Arizona Board Of Regents On Behalf Of The University Of Arizona Metallopolymers for catalytic generation of hydrogen
CN116162198A (en) * 2023-03-02 2023-05-26 浦诺菲新材料有限公司 Preparation method of self-repairing fluorine coating liquid and automobile paint protective film
US11674005B2 (en) 2017-06-15 2023-06-13 Arizona Board Of Regents On Behalf Of The University Of Arizona Chalcogenide Hybrid Inorganic/organic Polymer (CHIP) materials as improved crosslinking agents for vulcanization
US11795248B2 (en) 2011-08-11 2023-10-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Copolymerization of elemental sulfur and epoxy functional styrenics

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102114145B1 (en) * 2017-02-22 2020-05-22 (주)엘지하우시스 Sulfur containing polymer and method for preparing sulfur containing polymer
CN108872169B (en) * 2018-05-07 2021-02-05 广西大学 Method for quantitatively determining mixed component CdS/ZnS quantum dots in plant root epidermal tissue
CN112437785B (en) * 2018-07-19 2023-07-28 国际壳牌研究有限公司 Process for preparing sulfur-containing organosilane polymers
KR102244915B1 (en) * 2018-09-12 2021-04-26 주식회사 엘지화학 A sulfur-carbon complex, manufacturing method and lithium secondary battery comprising thereof
KR102094844B1 (en) * 2018-09-18 2020-04-23 인하대학교 산학협력단 Novel sulfur polymers and the use thereof
KR102013530B1 (en) * 2018-10-23 2019-08-23 재단법인 하이브리드 인터페이스기반 미래소재 연구단 Dye-Graphite anode material for Lithium Ion Battery and Manufacturing Mehtod Thereof
KR102306923B1 (en) * 2020-02-05 2021-09-29 한국화학연구원 Preparation of room temperature-reprocessable sulfur-containing polymer networks using ultrasonication
KR102595613B1 (en) * 2020-11-13 2023-10-30 한국화학연구원 Preparation method of Sulfur Containing Cross-linked Polymer using Catalytic Inverse Vulcanization and Sulfur Containing Cross-linked Polymer preparing thereby
KR102625325B1 (en) * 2021-08-11 2024-01-16 한국생산기술연구원 Self-healing epoxy adhesive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1203577A (en) * 1966-10-27 1970-08-26 Dunlop Co Ltd Improvements in or relating to the preparation of polymerized episulphides
US5362493A (en) * 1990-05-04 1994-11-08 Associated Universities, Inc. Preparation of redox polymer cathodes for thin film rechargeable batteries
US20010047403A1 (en) * 2000-05-24 2001-11-29 Masahiro Chiba Information transfer apparatus and method transferring to another terminal information transmitted from server to client, and machine-readable recording medium recorded with program realizing information transfer method
US20070253772A1 (en) * 2001-07-18 2007-11-01 Asahi Kasei Chemical Corporation Modified block copolymer
US20130064904A1 (en) * 2011-09-14 2013-03-14 Nuevas Alternativas Naturales, S.A.P.I. de C.V. Preparation and compositions of highly bioavailable zerovalent sulfur and uses thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779761A (en) * 1952-04-28 1957-01-29 Firestone Tire & Rubber Co Process for preparing amine polysulfides
US3892686A (en) * 1972-05-15 1975-07-01 Chevron Res Cellular products produced by foaming and cross-linking aromatic polysulfides
GB1516554A (en) * 1974-12-03 1978-07-05 Chevron Res Sulphur composition
US4238585A (en) * 1979-08-10 1980-12-09 Thiokol Corporation Aryl amine terminated polysulfide polymers, related compounds and processes for their preparation
US4346191A (en) * 1979-12-17 1982-08-24 Blount David H Process for the production of amine polysulfide silicate reaction products and their reaction products
JP3743691B2 (en) * 1997-03-25 2006-02-08 矢崎総業株式会社 Aniline polymer, electrode material, and secondary battery
US9416302B2 (en) * 2012-09-28 2016-08-16 3M Innovative Properties Company Polybenzoxazine composition
KR20160003641A (en) * 2013-04-30 2016-01-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Process for preparing poly(benzoxazines)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1203577A (en) * 1966-10-27 1970-08-26 Dunlop Co Ltd Improvements in or relating to the preparation of polymerized episulphides
US5362493A (en) * 1990-05-04 1994-11-08 Associated Universities, Inc. Preparation of redox polymer cathodes for thin film rechargeable batteries
US20010047403A1 (en) * 2000-05-24 2001-11-29 Masahiro Chiba Information transfer apparatus and method transferring to another terminal information transmitted from server to client, and machine-readable recording medium recorded with program realizing information transfer method
US20070253772A1 (en) * 2001-07-18 2007-11-01 Asahi Kasei Chemical Corporation Modified block copolymer
US20130064904A1 (en) * 2011-09-14 2013-03-14 Nuevas Alternativas Naturales, S.A.P.I. de C.V. Preparation and compositions of highly bioavailable zerovalent sulfur and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3105280A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11015023B2 (en) 2011-08-11 2021-05-25 Arizona Board Of Regents On Behalf Of The University Of Arizona Fire retardant compositions utilizing elemental sulfur
US11795248B2 (en) 2011-08-11 2023-10-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Copolymerization of elemental sulfur and epoxy functional styrenics
US10833330B1 (en) 2011-08-11 2020-11-10 Arizona Board Of Regents On Behalf Of The University Of Arizona Sulfur composites and polymeric materials from elemental sulfur
US10920020B2 (en) 2011-08-11 2021-02-16 Arizona Board Of Regents On Behalf Of The University Of Arizona 3D-printing of ultra-high refractive index polymers
US10894863B2 (en) 2014-02-14 2021-01-19 Arizona Board Of Regents On Behalf Of The University Of Arizona Cathode materials for Li—S batteries
US11078333B2 (en) 2015-07-13 2021-08-03 Arizona Board Of Regents On Behalf Of The University Of Arizona Copolymerization of elemental sulfur to synthesize high sulfur content polymeric materials
CN108079975A (en) * 2015-12-18 2018-05-29 宁波高新区夏远科技有限公司 A kind of air purifier composite photo catalyst screen material
CN108079975B (en) * 2015-12-18 2019-02-12 深圳市喀尔木环保材料有限公司 A kind of air purifier composite photo catalyst screen material
US11649548B2 (en) 2016-12-09 2023-05-16 Arizona Board Of Regents On Behalf Of The University Of Arizona Metallopolymers for catalytic generation of hydrogen
WO2018109150A1 (en) * 2016-12-16 2018-06-21 Universität Osnabrück Electrode material, method for producing electrodes, and said electrodes and electrochemical cells
CN110582873A (en) * 2017-05-03 2019-12-17 雷普索尔有限公司 Chalcogenide polymer-carbon composites as battery active materials
JP2020518536A (en) * 2017-05-03 2020-06-25 レプソル,エス.エー. Chalcogenide polymer-carbon composite as active material for batteries
US11674005B2 (en) 2017-06-15 2023-06-13 Arizona Board Of Regents On Behalf Of The University Of Arizona Chalcogenide Hybrid Inorganic/organic Polymer (CHIP) materials as improved crosslinking agents for vulcanization
CN112424262A (en) * 2018-05-11 2021-02-26 艾尼股份公司 Elastomeric terpolymers having high sulfur content and method of making same
CN110040718A (en) * 2019-04-03 2019-07-23 温州大学 A kind of preparation method of multi-walled carbon nanotube derived from 16 core molecule cluster of Thiacalixarene base
CN110752371B (en) * 2019-10-31 2022-06-03 哈尔滨工业大学 Lithium-sulfur battery positive electrode active material with self-repairing function
CN110752371A (en) * 2019-10-31 2020-02-04 哈尔滨工业大学 Lithium-sulfur battery positive electrode active material with self-repairing function and preparation method thereof
CN110957495A (en) * 2019-12-19 2020-04-03 南昌大学 Preparation method of 3D carbon nanosphere oxygen reduction catalyst HFeSSC
FR3112989A1 (en) 2020-07-30 2022-02-04 Saint-Gobain Glass France VEHICLE GLAZING WITH INSERT AND ASSOCIATED THERMAL CAMERA DEVICE
WO2022023650A1 (en) 2020-07-30 2022-02-03 Saint-Gobain Glass France Vehicle glazing element with insert and associated device with thermal imaging camera
CN113174615A (en) * 2021-04-30 2021-07-27 中南大学 Cermet material for aluminum electrolysis inert anode and preparation method thereof
CN113174615B (en) * 2021-04-30 2024-02-13 中南大学 Metal ceramic material for aluminum electrolysis inert anode and preparation method thereof
CN115819768A (en) * 2023-02-23 2023-03-21 广东工业大学 Reversible adhesive polysulfide and preparation method thereof
CN116162198A (en) * 2023-03-02 2023-05-26 浦诺菲新材料有限公司 Preparation method of self-repairing fluorine coating liquid and automobile paint protective film

Also Published As

Publication number Publication date
JP2017517603A (en) 2017-06-29
EP3105280A1 (en) 2016-12-21
EP3105280A4 (en) 2017-12-27
KR20160122838A (en) 2016-10-24

Similar Documents

Publication Publication Date Title
US10833330B1 (en) Sulfur composites and polymeric materials from elemental sulfur
WO2015123552A1 (en) Sulfur composites and polymeric materials from elemental sulfur
US11078333B2 (en) Copolymerization of elemental sulfur to synthesize high sulfur content polymeric materials
Mutlu et al. Sulfur chemistry in polymer and materials science
Griebel et al. Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense
Kiskan Adapting benzoxazine chemistry for unconventional applications
Hu et al. Poly (ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery
Zhang et al. Recent advances in the polymerization of elemental sulphur, inverse vulcanization and methods to obtain functional Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs)
Lim et al. Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials
Xie et al. Nitroxide radical polymers for emerging plastic energy storage and organic electronics: fundamentals, materials, and applications
Gomez et al. Poly (anthraquinonyl sulfides): high capacity redox polymers for energy storage
US9306218B2 (en) High sulfur content copolymers and composite materials and electrochemical cells and optical elements using them
Gao et al. Self-healable and reprocessable polysulfide sealants prepared from liquid polysulfide oligomer and epoxy resin
US20180100037A1 (en) Copolymerization of elemental sulfur and epoxy functional styrenics
Deng et al. A novel single-ion-conducting polymer electrolyte derived from CO2-based multifunctional polycarbonate
Welsh et al. Regiosymmetric dibutyl-substituted poly (3, 4-propylenedioxythiophene) s as highly electron-rich electroactive and luminescent polymers
Lee et al. Stabilized blue luminescent polyfluorenes: introducing polyhedral oligomeric silsesquioxane
Querner et al. Carbodithioate-containing oligo-and polythiophenes for nanocrystals' surface functionalization
Gowri et al. Synthesis of novel poly [(2, 5-dimethoxy-p-phenylene) vinylene] precursors having two eliminatable groups: An approach for the control of conjugation length
Cai et al. A stretchable and highly conductive sulfonic pendent single-ion polymer electrolyte derived from multifunctional tri-block polyether
Mallakpour et al. Ionic liquids as environmentally friendly solvents in macromolecules chemistry and technology, Part II
Cho et al. Synthesis of disulfide-containing aniline and copolymerization with aniline
Li et al. Healable Ionoelastomer Designed from Polymeric Ionic Liquid and Vitrimer Chemistry
Ramírez-Gómez et al. Physicochemical and Luminescent Properties of Copolymers Composed of Three Monomers: Polythiophenes Based on 3-Hexylthiophene and 3, 4-Ethylenedioxythiophene
US20210047472A1 (en) Dynamic covalent polymerizations with elemental sulfur and sulfur prepolymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569566

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015748519

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015748519

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167025616

Country of ref document: KR

Kind code of ref document: A