WO2015162322A1 - A dirt sensor and method for detecting the amount of dirt on a surface - Google Patents

A dirt sensor and method for detecting the amount of dirt on a surface Download PDF

Info

Publication number
WO2015162322A1
WO2015162322A1 PCT/ES2015/070308 ES2015070308W WO2015162322A1 WO 2015162322 A1 WO2015162322 A1 WO 2015162322A1 ES 2015070308 W ES2015070308 W ES 2015070308W WO 2015162322 A1 WO2015162322 A1 WO 2015162322A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
dirt
transparent surface
sensor
receiver
Prior art date
Application number
PCT/ES2015/070308
Other languages
Spanish (es)
French (fr)
Inventor
Roberto CALVO OSTIATEGUI
David CANTERO BURGOS
Original Assignee
Fundación Tekniker
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Tekniker filed Critical Fundación Tekniker
Publication of WO2015162322A1 publication Critical patent/WO2015162322A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • G01N2021/945Liquid or solid deposits of macroscopic size on surfaces, e.g. drops, films, or clustered contaminants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention pertains to the field of dirt or dust sensors, and more specifically, to the field of dirt sensors deposited on surfaces, whether flat, curved, rough or of other characteristics.
  • An application of the dirt sensor of the invention is the measurement of dirt in concentrating mirrors of solar thermal plants.
  • the captured solar radiation is concentrated on a receiver tube that carries a fluid capable of absorbing heat.
  • the fluid thus reaches high temperatures and transmits thermal energy to water vapor, which will be the source of steam to generate electricity.
  • the mirror is 100% used.
  • heliostats are designed to be practically flat. Possible defects that may occur are edge or corner defects, for example.
  • a key element in these plants is the reflective surfaces that concentrate the solar radiation, also called solar thermal concentrators.
  • One aspect to control in these reflective surfaces lies in the geometry, since for the surfaces to concentrate solar radiation in the area of interest, their shape must be adequate.
  • Another fundamental aspect is its cleaning, because any dust particle impairs the solar performance of the concentrator.
  • the international patent application WO2012 / 089485A1 describes a photovoltaic module that generates electrical energy from solar energy, in which the surface dirt can be detected.
  • the photovoltaic module consists of a solar panel and detection means that indicate the amount of dust and dirt accumulated on the solar panel. Detection occurs through a receptacle with a surface parallel to the solar cell, a light source outside the receptacle, a set of sensors inside the receptacle and a control unit to monitor the amount of light that reaches the sensors and generate a distorted signal when the amount of light is below a certain threshold.
  • the present invention provides a device and method capable of determining the amount of dust or dirt deposited on its sensitive surface.
  • a sensor to detect the amount of dirt on a surface.
  • the sensor comprises: a transparent surface that is exposed to dirt on its outer face; a light emitter configured to emit a beam of light in a certain frequency range towards the transparent surface whose dirt on its outer face is to be measured; a first light receiver configured to detect light in said particular frequency range; a second light receiver configured to detect light in said particular frequency range; means located between the light emitter and the transparent surface, these means being configured to pass a part of the light from the light emitter towards the transparent surface and to redirect the rest of the light coming from the light emitter to the second receiver of light; means of acquisition and processing.
  • the first light receiver is configured to receive, from said part of the light coming from the light emitter that reaches the transparent surface, the light diffused upon hitting the dirt on the outer face of the transparent surface.
  • the acquisition and processing means are configured to calculate, from the light detected by the second light receiver and the light detected by the first light receiver, a percentage measurement of the degree of dirt of the transparent surface.
  • the means located between the light emitter and the transparent surface are a beam splitter.
  • the light emitter is located in a plane that forms an angle of ⁇ degrees with the plane in which the transparent surface is located, where this angle ⁇ varies between 30 and 60 e .
  • the first light receiver comprises a matrix of photodiodes.
  • the means located between the light emitter and the transparent surface are located in a plane that forms an angle of ⁇ degrees with the plane in which the light emitter is located, where said angle ⁇ varies between 30 and 60 e .
  • the light emitter is configured to emit a light beam in the infrared light range and the first and second light receivers are configured to detect light in the infrared light range.
  • the acquisition and processing means comprise means for adjusting the measurement as a function of temperature.
  • the transparent surface is a crystal.
  • a light dimmer is arranged in front of the second receiver.
  • the use of the sensor described above is provided to detect the amount of dirt from a thermal energy concentrating mirror.
  • a method to detect the amount of dirt on a surface.
  • the procedure has the steps of: emitting a beam of light in a certain frequency range towards a transparent surface that is exposed to dirt on its outer face; to capture in a first light receiver the diffused light when it hits the dirt of the transparent surface; divert a part of the emitted light, before it reaches the transparent surface, to capture it in a second light receiver, to take said deflected light as a reference; calculate, from the light detected by the second light receiver and the light detected by the first light receiver, a percentage measure of the degree of dirtiness of the transparent surface.
  • Figure 1 illustrates the principle of operation of the sensor of the invention.
  • Figure 2A illustrates a scheme of the elements that form a device according to a possible embodiment of the invention.
  • Figure 2B shows a front exterior view of the device according to a possible embodiment of the invention.
  • Figure 2C shows a detail of the scheme of Figure 2A, in which it is observed how the angle of reflection of the light reflected by the beam splitter is equal to the angle of incidence of the incident beam in the beam splitter.
  • Figure 3 shows a block diagram of the acquisition and processing electronics according to a possible embodiment of the invention.
  • FIG. 4 shows in detail the processing block of the signals provided by the measurement and reference receivers.
  • Figure 1 illustrates the principle of operation of the sensor of the invention: when lighting with a light source 12 the dirt particles 1 1 deposited on a transparent surface 10, the light is diffused in different directions, increasing the amount of scattered light 13 in proportion to the amount of dust deposited on that surface.
  • the light is emitted towards the inner part of the surface 10 (for example, a crystal), so that the light diffused 13 by the dirt particles 1 1 deposited on the outer part of the surface 10, is projected (scattered) towards an optical transducer (for example, a set of photodetectors) 14.
  • the amount of light captured by these is proportional to the number of particles deposited 1 1.
  • the optical transducer controlled by a signal processing and processing unit (not illustrated), provides a measure corresponding to that amount.
  • the sensor of the invention manages to optimize a number of properties, namely: minimizing interference from light sources (natural or artificial); minimize dependence on measures with temperature; and maximize sensitivity.
  • FIG 2A illustrates a scheme of a device according to a possible embodiment of the invention. It is a dirt sensor 20 for detecting the amount of dirt (dust or other particles) of a transparent surface 21 that is exposed, by its outer face 21 e, to the dirt.
  • the transparent surface 21 is preferably a transparent crystal.
  • the transparent surface 21 is substantially flat, but it is not essential that it be so. On the contrary, the surface 21 can be curved, rough or of any other characteristic. Surface 21 acts as a dirt collector.
  • the device 20 can be placed next to a surface of interest, whether flat, curved, rough, etc.
  • the device 20 will indicate the amount of dust presumably deposited on that surface of interest, considering that it is next to the sensor (and therefore both will pick up a similar amount of dust or dirt). Therefore, the device 20 serves to indicate that in its sensitive area (outer face 21 e of the surface 21) it has captured a certain amount of dirt.
  • the dirt sensor 20 comprises a transparent surface 21 which is the sensitive area whose captured dirt is to be detected, emulating what happens on a surface whose dirt is to be controlled.
  • dust is deposited in the mirror, substantially to the same extent dust will be deposited on the transparent surface 21 of the sensor 20.
  • the dirt sensor 20 also comprises a light emitter 22, preferably infrared.
  • the light emitter 22 may emit at another frequency or frequencies other than the infrared spectral range, such as the visible spectrum or other frequencies of the non-visible spectrum.
  • This emitter 22 emits a beam of light towards the inner surface 21 i of the transparent surface 21 whose dirt is to be measured.
  • the emitter 22 is placed in a plane that forms an angle of ⁇ degrees with respect to the plane of the sample (transparent surface 21). That is to say, preferably the emitter 22 does not emit from a plane parallel to the flat surface 21.
  • the emitter 22 can emit its light beam substantially perpendicular to the transparent surface 21. In this case, the emitter 22 is placed in a plane substantially parallel to that of the transparent surface 21 (implementation not shown).
  • the sensor 20 also comprises a light receiver or photodetector 23 configured to capture the light in the same spectral range of the emitter 22. That is, if the emitter 22 emits an infrared beam of light, the receiver 23 is an infrared light receiver.
  • the light receiver 23 must be located in that place / position that allows to collect the maximum light diffused by the dust / dirt deposited on the outside of the transparent surface 21.
  • the light receiver 23 is placed in a plane substantially parallel to the sample (transparent surface 21), on the inner side 21 i thereof.
  • the receiver 23 can alternatively be placed in other positions, as long as it can from them substantially capture the amount of light diffused by the powder according to the sensitivity required for the particular sensor 21.
  • This receiver 23 is preferably formed by a set of photodiodes.
  • receiver 23 is implemented with a matrix of four photodiodes. The inventors have observed that these four photodetectors, whose effects add up, distributed over part of the area towards which the diffused light is directed, provide high sensitivity for the concrete geometry tested.
  • the sensor 20 also comprises a beam splitter 24 (in English, beam splitter), located between the emitter 22 and the transparent surface 21 whose dirt is to be measured. The beam splitter 24 must be placed in a position such that the beam of light emitted by the emitter 22 towards the surface 21 is in its path with the beam splitter 24.
  • the sensor 20 also comprises a reference receiver (photodetector) 25.
  • the sensor 20 may have a light dimmer 27 located in front of the reference receiver 25 and preferably substantially parallel thereto. The dimmer 27 is used if it is necessary to avoid saturating the reference photodetector 25.
  • the sensor 20 also has acquisition and processing means 26, to interpret and process the measurements, which are detailed in relation to Figures 3 and 4.
  • the emitter 22 projects the light it emits on the inner face 21 i (protected with respect to the external dirt) of the transparent surface 21 whose dirt is to be measured.
  • the light emitted by the emitter 22 is in its path with the beam splitter 24, which must therefore be arranged between the emitter 22 and the transparent surface 21, so that the beam of light emitted by the emitter 22 reaches the beam splitter 24.
  • the splitter 24 allows a percentage of the emitted power to pass to the flat surface, while redirecting (deflecting) the rest of the emitted power.
  • Figure 2C shows a detail of the scheme of Figure 2A, in which it is observed, as an expert knows, how the angle of incidence p-with respect to the perpendicular of the divider 24- of the incident beam from the emitter 22 is equal to angle of reflection p of the light reflected or deflected by the beam splitter 24.
  • This deflected power is captured by the reference photodetector 25. Therefore, the reference photodetector 25 can be placed in any position, provided it is capable of capturing the radiation deflected by the beam splitter 24. It is thus possible to obtain a sample of the light signal emitted by the emitter 22.
  • the amount (percentage) of light that passes through without diverting the beam splitter 24 towards the transparent surface 21 and the amount (percentage) of light that passes through the beam splitter 24 to the transparent surface 21 depends on the geometries of the beams and the specific elements used in the sensor.
  • the sensor 20 can be designed so that the percentage of light that passes through without deflecting the beam splitter 24 towards the transparent surface 21 is between 50% and 90%, while the percentage of light that deflects towards the reference photodetector 25 is between 50% and 10%.
  • the reference photodetector 25 thus provides a measure of the actual intensity of the light generated by the emitter 22.
  • the light (the percentage of light that has passed, without deviating, the beam splitter 24) received on the transparent surface 21 (on its inner face 21 i) crosses said surface 21. If there is dirt on its outer surface 21 e, the light, when it hits the dirt, diffuses in the direction of the inner face 21 i, until it reaches the array of photodetectors or measurement receiver 23. For this reason, the measurement receiver 23 must be placed in any position that allows it to capture diffused radiation when it hits With the dirt. In the ideal case that there was no dirt on the outer face 21 e, there would be no diffusion of the light and, therefore, all the light that reached the flat surface 21 would pass through it to the outside.
  • the inner face 21 i of the transparent surface would reflect a small part of the light towards the inside of the sensor, behaving like a mirror.
  • the amount of light reflected by this effect depends on the type of surface.
  • the sensor 20 of the invention eliminates this effect by means of a parameter that is obtained in the sensor calibration process.
  • the arrangement of the emitter 22, beam splitter 24, sample surface 21 and reference receiver 25 should be chosen such that a sufficient amount of power from the emitter 22 reaches the sample surface 21 (for example, between 50% and 90%), that a sufficient amount of power from the emitter 22 arrives, redirected by the beam splitter 24, to the reference receiver 25 (for example, between 50% and 10%) and that interference between the elements is minimized internal to the sensor 20.
  • the beam splitter 24 is preferably located in a plane that forms an angle of ⁇ degrees with respect to the plane in which the light emitter is located 22.
  • the angle ⁇ varies between 30 and 60 e .
  • a substantially flat transparent surface 21 has been chosen, but another type of surface could alternatively be chosen.
  • the transparent surface is, in this example, rectangular in shape, as seen in Figure 2B.
  • a substrate has been chosen which is used to manufacture parabolic concentrators, because a prominent application of the sensor of the invention is the detection of dirt in parabolic concentrators. The same substrate has been chosen to have the same level of adhesion.
  • the acquisition and processing means (acquisition and processing electronics) 26 first control the light emission (from the emitter 22) by means of a controlled sinusoidal current signal that is digitally generated by a software component (for example, but not limited to, executed at 4 kHz). As detailed in relation to Figures 3 and 4, the acquisition and processing electronics acquire the signals of the measurement photodetectors 23 and reference 25 and process them in a software component (which in an example, but not limitatively, it also runs at a frequency of 4kHz).
  • sensor 20 minimizes interference from light sources (natural or artificial); minimizes the dependence of the measurements with the temperature; and maximizes sensitivity.
  • the interference of the external light sources to the sensor is minimized as explained below:
  • the light source 22 is chosen within the spectrum so that its intensity exceeds the amount of light received from the sun in the same spectrum band.
  • an infrared light source is chosen.
  • the photodetectors 23 25 incorporate selective filters (infrared in the event that the emitter emits infrared light).
  • the light source 22 is modulated with a relatively high frequency (for example, between 80 and 150 Hz). In one example, a signal modulated at 135 Hz is chosen.
  • This frequency is chosen so that it is high enough to reject possible oscillating natural or artificial light sources, but avoiding in any case the 50Hz and 60Hz harmonics of the networks of feeding, and so that it is generated with a high resolution taking into account the sampling frequency of the generator. Since the light source 22 is modulated at a specific frequency, the part of that light diffused by the dirt also oscillates at that same frequency. For this reason, the detection means 23 comprise a selective bandpass filter that allows collecting only the diffused light caused by the emitter 22 and not by other light sources. The measure of diffused light is thus always provided to the light itself emitted by the emitter 22 of the sensor 20.
  • the sensor 20 comprises means and techniques to perform thermal compensation
  • the sensor 20 comprises means for performing thermal compensations in the infrared emitting and receiving devices, in which these thermal effects are especially relevant.
  • the infrared emitters have a high variation with the temperature of the relationship between the intensity of light emitted and the current applied (gain variation around 0.5% / e C or higher). This variation, in addition, is different between different units of the same series of devices with the same product reference.
  • photodetectors show variation of gain with the temperature, although to a lesser extent, and this is also different between different units of the same component.
  • photodetectors have a signal level or offset in the dark that varies with temperature. This "offset" is also different between different units of the same component.
  • the senor 20 minimizes the effect of the offset signal of the photodetectors 23 25 by the aforementioned modulation technique and by means of a demodulation and bandpass filtering that eliminates all contributions of continuous light reception in the signal received in all photodetectors 23 25.
  • the effect of the gain variation on the light emission source 22 is preferably minimized by a differential photodetection technique: the emitted light is continuously measured (on the emitter 22) and the received diffused light is weighted (on the receiver 23) with respect to the emitted light.
  • This technique also eliminates the common gain variation component of the two receivers (reference 25 and measurement 23), but does not eliminate the difference in gain between the different photodetector components.
  • the effect of the gain difference between the photodetectors is minimized by a temperature transducer and a compensation algorithm.
  • the sensitivity is preferably maximized thanks to the selection and control of a light source 22, preferably infrared, of high intensity and photodetection through a matrix of 4 photodetectors that add the current obtained in each of them and are also exposed to different areas of detection of diffused light, thus adding the collection of light energy in an area greater than a single photodetector.
  • Figure 3 shows a block diagram of a possible implementation of the acquisition and processing electronics 26.
  • a Calib_Gain parameter allows to adjust the measuring range of the sensor. This parameter is obtained through the calibration process.
  • Another Calib_Bias parameter allows to eliminate the diffusion effects of the emitted light generated by the internal walls of the sensor 20 itself and the reflection effect of the internal face 21 i of the surface 21.
  • a processing block 261 performs the demodulation of the two signals provided by the measurement photodiodes 23 (signal 2623) and reference 25 (signal 2625) and provides the weighted information equivalent to the measured / reference ratio out_261.
  • a block 262 converts the values from both by 1 and by 100 using the Calib_Gain parameter.
  • a block 263 allows the measurement to be modified as a function of temperature by means of an interpolation algorithm. It allows therefore to correct the difference in gain with the temperature between photodetectors and other thermal drifts, for which a subsystem 265 intervenes.
  • block 264 performs statistical calculations of the measurement in a given period of time (averaged measurement, maximum value, minimum value and standard deviation).
  • Figure 4 shows in detail a part of the processing block 261 of the signals provided by the measurement 23 and reference receivers 25.
  • the received signal 2623 2625 is treated by a zero-order sampler or sampler 261 1.
  • the resulting signal is treated by a bandpass filter 2612, preferably of order 8, and with cut-off frequency centered on a frequency that preferably varies between 80 and 150 Hz (for example, 135 Hz).
  • the signal thus obtained is rectified 2613 and subsequently treated by a low-pass filter 2614 preferably of the second order (for example 2 Hz cut-off frequency).
  • the result of this processing is the value of the amplitude of the measurement signals 2614m and reference 2614r.
  • the processing block 261 further comprises other elements intended for Detect if the measurement is incorrect. For simplicity, these additional blocks are not shown in the scheme of Figure 4.
  • the dirt sensor 20 provides a percentage measure of the degree of cleanliness (or dirt) of the exposed sample surface 21. This measure thus has a value of 0 when the dirt is maximum and a value of 100 when the dirt is minimal.
  • the terms maximum dirt- minimum dirt are established in the device calibration process, considering that the minimum dirt is reached after cleaning the surface 21 as much as possible, while for different dirt different patterns of dirt or diffusion of the surface can be considered. light.
  • the sensor 20 To detect the dirt of any surface, for example a concentrating mirror of a solar thermal power plant, the sensor 20 must be placed next to the surface of interest. Considering that, due to the proximity, the sample surface 21 of the sensor 20 will capture substantially the same amount of dirt as the surface of interest, the device 20 will indicate the amount of dust presumably deposited on that surface of interest.
  • the measurement process establishes an initial period of programmable stabilization after which the equipment measures cyclically or periodically.
  • the period between measurements is also programmable and is limited by the minimum acquisition and processing time of the measurement data. In a possible embodiment, this minimum period has been established in 10 seconds (optimized after experimental tests), while the result of the sensor measurement corresponds to the average of the measurements calculated in the stationary time.
  • the result of the sensor measurement corresponds to the average of the measurements calculated in the second half of the acquisition period, which is when the demodulated signals reach stability.
  • the calibration process requires two measurements that define the dynamic range of the sensor.
  • the first reference measurement is made that defines the maximum degree of cleanliness identified with the 100% value.
  • the second measure which is used as a reference for the minimum cleaning, the degree of dirt that is identified with the value 0% is deposited on the substrate.
  • the final result of the process It is a relative measurement of dirt with a range between 0 and 100 so that the maximum value corresponds to the maximum relative cleanliness and the minimum value to the minimum relative cleanliness.
  • a prototype has been developed that is powered by a voltage between 5 and 24V and has a MODBUS RTU interface via RS485 through which the measurement result can be accessed and allows the configuration of operating parameters remotely.
  • the sensor described here has special application in the measurement and control of dirt in concentrating mirrors of solar thermal plants.
  • the invention is not limited to the specific embodiments that have been described but also covers, for example, the variants that can be made by the average person skilled in the art (for example, in terms of the choice of materials, dimensions , components, configuration, etc.), within what follows from the claims.

Abstract

The invention relates to a sensor (20) for detecting the amount of dirt on a surface, said sensor comprising: a transparent surface (21) exposed to dirt; a light emitter (22) for emitting a beam towards the transparent surface; a first light receiver (23) and a second light receiver (25); means (24) disposed between the light emitter (22) and the transparent surface (21) and configured to allow part of the light from the emitter to pass towards the transparent surface (21) and to re-direct the rest of the light towards the second receiver (25); acquisition and processing means (26). The first light receiver (23) is configured to receive light diffused upon impact with dirt on the external face (21e) of the transparent surface (21). The acquisition and processing means (26) are configured to calculate a percentage measurement of the degree of dirt on said transparent surface (21).

Description

A DIRT SENSOR AND METHOD FOR DETECTING THE AMOUNT OF DIRT ON A SURFACE  A DIRT SENSOR AND METHOD FOR DETECTING THE AMOUNT OF DIRT ON A SURFACE
Campo de la invención Field of the Invention
La presente invención pertenece al campo de los sensores de suciedad o polvo, y más concretamente, al campo de los sensores de suciedad depositada sobre superficies, ya sean planas, curvas, rugosas o de otras características. Una aplicación del sensor de suciedad de la invención es la medición de suciedad en espejos concentradores de centrales solares térmicas. The present invention pertains to the field of dirt or dust sensors, and more specifically, to the field of dirt sensors deposited on surfaces, whether flat, curved, rough or of other characteristics. An application of the dirt sensor of the invention is the measurement of dirt in concentrating mirrors of solar thermal plants.
Antecedentes de la invención Background of the invention
Actualmente hay un gran interés en la fabricación de plantas solares de grandes dimensiones para generar energía. Una de las tecnologías más punteras es la basada en plantas de tecnología de torre. La técnica utiliza un conjunto de espejos o superficies reflexivas (llamados heliostatos) que siguen al sol y concentran la radiación solar en uno o varios receptores que se encuentran en la parte superior de una torre. Desde el receptor o receptores el calor es transferido a un fluido caloportador, por ejemplo agua, que será la fuente de vapor para a su vez producir electricidad. Esta tecnología es muy eficiente debido a las altas temperaturas a que se puede operar. También son de destacar las plantas de tecnología cilindroparabólica, basadas en un conjunto de espejos cilindroparabólicos (concentradores cilindroparabólicos, CCP) que se colocan sobre una estructura de forma que puedan seguir el movimiento del sol. La radiación solar captada es concentrada sobre un tubo receptor que lleva en su interior un fluido capaz de absorber el calor. El fluido alcanza así altas temperaturas y transmite la energía térmica al vapor de agua, que será la fuente de vapor para a su vez generar electricidad. Especialmente en el caso de superficies reflexivas destinadas a usarse en plantas solares para generar energía, interesa que el espejo se aproveche al 100%. En esta aplicación, los heliostatos se diseñan para que sean prácticamente planos. Posibles defectos que pueden presentarse son defectos de borde o en las esquinas, por ejemplo. There is currently a great interest in the manufacture of large solar plants to generate energy. One of the most advanced technologies is based on tower technology plants. The technique uses a set of mirrors or reflective surfaces (called heliostats) that follow the sun and concentrate solar radiation on one or more receivers that are located on top of a tower. From the receiver or receivers the heat is transferred to a heat transfer fluid, for example water, which will be the source of steam to in turn produce electricity. This technology is very efficient due to the high temperatures at which it can be operated. Also noteworthy are the parabolic trough technology plants, based on a set of parabolic trough mirrors (parabolic trough concentrators, CCP) that are placed on a structure so that they can follow the movement of the sun. The captured solar radiation is concentrated on a receiver tube that carries a fluid capable of absorbing heat. The fluid thus reaches high temperatures and transmits thermal energy to water vapor, which will be the source of steam to generate electricity. Especially in the case of reflective surfaces intended for use in solar plants to generate energy, it is interesting that the mirror is 100% used. In this application, heliostats are designed to be practically flat. Possible defects that may occur are edge or corner defects, for example.
Un elemento clave en estas plantas son las superficies reflexivas que concentran la radiación solar, también llamados concentradores solares térmicos. Un aspecto a controlar en estas superficies reflexivas reside en la geometría, ya que para que las superficies concentren la radiación solar en la zona de interés, su forma debe ser adecuada. Otro aspecto fundamental es su limpieza, pues cualquier partícula de polvo perjudica el rendimiento solar del concentrador. A key element in these plants is the reflective surfaces that concentrate the solar radiation, also called solar thermal concentrators. One aspect to control in these reflective surfaces lies in the geometry, since for the surfaces to concentrate solar radiation in the area of interest, their shape must be adequate. Another fundamental aspect is its cleaning, because any dust particle impairs the solar performance of the concentrator.
Para determinar la suciedad en espejos (en general, en las superficies reflexivas del tipo de las mencionadas en el párrafo anterior), son conocidos los equipos comerciales denominados reflectómetros, que permiten medir directamente la perdida de reflectividad de un espejo con gran precisión. Su principal problema es que son muy caros, interfieren parcialmente con la luz que se desea reflejar en el espejo, requieren un ajuste mecánico preciso respecto de la superficie y son susceptibles de que sus ópticas capten suciedad, lo cual desvirtúa la medida. La patente estadounidense US8323421 B2 describe un sistema de limpieza automático para paneles solares que comprende, entre otros elementos, un dispositivo de detección capaz de determinar si los paneles solares necesitan limpiarse. To determine the dirt in mirrors (in general, on reflective surfaces of the type mentioned in the previous paragraph), commercial equipment called reflectometers is known, which allow to measure directly the loss of reflectivity of a mirror with great precision. Their main problem is that they are very expensive, partially interfere with the light that you want to reflect in the mirror, require a precise mechanical adjustment with respect to the surface and are susceptible to their optics picking up dirt, which detracts from the measurement. US patent US8323421 B2 describes an automatic cleaning system for solar panels comprising, among other elements, a detection device capable of determining if the solar panels need to be cleaned.
La solicitud de patente internacional WO2012/089485A1 describe un módulo fotovoltaico que genera energía eléctrica a partir de la energía solar, en el que se puede detectar la suciedad de su superficie. El modulo fotovoltaico está formado por un panel solar y medios de detección que indican la cantidad de polvo y suciedad acumulada sobre el panel solar. La detección se produce mediante un receptáculo con una superficie paralela a la celda solar, una fuente de luz fuera del receptáculo, un conjunto de sensores en el interior del receptáculo y una unidad de control para monitorizar la cantidad de luz que llega a los sensores y generar una señal distorsionada cuando la cantidad de luz está por debajo de un determinado umbral. The international patent application WO2012 / 089485A1 describes a photovoltaic module that generates electrical energy from solar energy, in which the surface dirt can be detected. The photovoltaic module consists of a solar panel and detection means that indicate the amount of dust and dirt accumulated on the solar panel. Detection occurs through a receptacle with a surface parallel to the solar cell, a light source outside the receptacle, a set of sensors inside the receptacle and a control unit to monitor the amount of light that reaches the sensors and generate a distorted signal when the amount of light is below a certain threshold.
Descripción de la invención Description of the invention
La presente invención proporciona un dispositivo y un procedimiento capaces de determinar la cantidad de polvo o suciedad depositada sobre su superficie sensible. The present invention provides a device and method capable of determining the amount of dust or dirt deposited on its sensitive surface.
En un primer aspecto de la invención, se proporciona un sensor para detectar la cantidad de suciedad de una superficie. El sensor comprende: una superficie transparente que está expuesta a suciedad en su cara exterior; un emisor de luz configurado para emitir un haz de luz en un determinado rango frecuencial hacia la superficie transparente cuya suciedad en su cara exterior se va a medir; un primer receptor de luz configurado para detectar luz en dicho determinado rango frecuencial; un segundo receptor de luz configurado para detectar luz en dicho determinado rango frecuencial; medios situados entre el emisor de luz y la superficie transparente, estando estos medios configurados para dejar pasar una parte de la luz procedente del emisor de luz hacia la superficie transparente y para redireccionar el resto de luz procedente del emisor de luz hacia el segundo receptor de luz; medios de adquisición y procesamiento. El primer receptor de luz está configurado para recibir, de dicha parte de la luz procedente del emisor de luz que llega hasta la superficie transparente, la luz difundida al chocar contra la suciedad de la cara externa de la superficie transparente. Los medios de adquisición y procesamiento están configurados para calcular, a partir de la luz detectada por el segundo receptor de luz y de la luz detectada por el primer receptor de luz, una medida porcentual del grado de suciedad de la superficie transparente. In a first aspect of the invention, a sensor is provided to detect the amount of dirt on a surface. The sensor comprises: a transparent surface that is exposed to dirt on its outer face; a light emitter configured to emit a beam of light in a certain frequency range towards the transparent surface whose dirt on its outer face is to be measured; a first light receiver configured to detect light in said particular frequency range; a second light receiver configured to detect light in said particular frequency range; means located between the light emitter and the transparent surface, these means being configured to pass a part of the light from the light emitter towards the transparent surface and to redirect the rest of the light coming from the light emitter to the second receiver of light; means of acquisition and processing. The first light receiver is configured to receive, from said part of the light coming from the light emitter that reaches the transparent surface, the light diffused upon hitting the dirt on the outer face of the transparent surface. The acquisition and processing means are configured to calculate, from the light detected by the second light receiver and the light detected by the first light receiver, a percentage measurement of the degree of dirt of the transparent surface.
Preferentemente, los medios situados entre el emisor de luz y la superficie transparente son un divisor de haz. Preferably, the means located between the light emitter and the transparent surface are a beam splitter.
Preferentemente, el emisor de luz está situado en un plano que forma un ángulo de α grados con el plano en el que está situada la superficie transparente, donde este ángulo α varía entre 30 y 60e. Preferably, the light emitter is located in a plane that forms an angle of α degrees with the plane in which the transparent surface is located, where this angle α varies between 30 and 60 e .
Preferentemente el primer receptor de luz comprende una matriz de fotodiodos. Preferably the first light receiver comprises a matrix of photodiodes.
Preferentemente, los medios situados entre el emisor de luz y la superficie transparente están situados en un plano que forma un ángulo de β grados con el plano en el que está situado el emisor de luz, donde dicho ángulo β varía entre 30 y 60e. Preferably, the means located between the light emitter and the transparent surface are located in a plane that forms an angle of β degrees with the plane in which the light emitter is located, where said angle β varies between 30 and 60 e .
Preferentemente el emisor de luz está configurado para emitir un haz de luz en el rango de luz infrarroja y los primer y segundo receptores de luz están configurados para detectar luz en el rango de luz infrarroja. Preferentemente, los medios de adquisición y procesamiento comprenden medios para ajustar la medida en función de la temperatura. Preferentemente la superficie transparente es un cristal. Preferably the light emitter is configured to emit a light beam in the infrared light range and the first and second light receivers are configured to detect light in the infrared light range. Preferably, the acquisition and processing means comprise means for adjusting the measurement as a function of temperature. Preferably the transparent surface is a crystal.
En una posible realización, se dispone un atenuador de luz delante del segundo receptor. En otra posible realización, se proporciona el uso del sensor descrito anteriormente, para detectar la cantidad de suciedad de un espejo concentrador de energía térmica. In a possible embodiment, a light dimmer is arranged in front of the second receiver. In another possible embodiment, the use of the sensor described above is provided to detect the amount of dirt from a thermal energy concentrating mirror.
En otra posible realización, se proporciona un procedimiento para detectar la cantidad de suciedad de una superficie. El procedimiento tiene las etapas de: emitir un haz de luz en un determinado rango frecuencial hacia una superficie transparente que está expuesta a suciedad en su cara exterior; captar en un primer receptor de luz la luz difundida al chocar contra la suciedad de la superficie transparente; desviar una parte de la luz emitida, antes de que llegue a la superficie transparente, para captarla en un segundo receptor de luz, para tomar dicha luz desviada como referencia; calcular, a partir de la luz detectada por el segundo receptor de luz y de la luz detectada por el primer receptor de luz, una medida porcentual del grado de suciedad de la superficie transparente. In another possible embodiment, a method is provided to detect the amount of dirt on a surface. The procedure has the steps of: emitting a beam of light in a certain frequency range towards a transparent surface that is exposed to dirt on its outer face; to capture in a first light receiver the diffused light when it hits the dirt of the transparent surface; divert a part of the emitted light, before it reaches the transparent surface, to capture it in a second light receiver, to take said deflected light as a reference; calculate, from the light detected by the second light receiver and the light detected by the first light receiver, a percentage measure of the degree of dirtiness of the transparent surface.
Por último, se proporciona un programa informático que comprende instrucciones de código de programa de ordenador para realizar el método anterior. Finally, a computer program is provided that comprises computer program code instructions for performing the above method.
Ventajas y características adicionales de la invención serán evidentes a partir de la descripción en detalle que sigue y se señalarán en particular en las reivindicaciones adjuntas. Additional advantages and features of the invention will be apparent from the following detailed description and will be pointed out in particular in the appended claims.
Breve descripción de las figuras Brief description of the figures
Para complementar la descripción y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo de realización práctica de la misma, se acompaña como parte integrante de la descripción, un juego de figuras en el que con carácter ilustrativo y no limitativo, se ha representado lo siguiente: La figura 1 ilustra el principio de funcionamiento del sensor de la invención. To complement the description and in order to help a better understanding of the features of the invention, according to an example of practical embodiment It is accompanied as an integral part of the description, a set of figures in which the following has been represented by way of illustration and not limitation: Figure 1 illustrates the principle of operation of the sensor of the invention.
La figura 2A ilustra un esquema de los elementos que forman un dispositivo de acuerdo con una posible realización de la invención. La figura 2B muestra una vista exterior frontal del dispositivo de acuerdo con una posible realización de la invención. La figura 2C muestra un detalle del esquema de la figura 2A, en el que se observa cómo el ángulo de reflexión de la luz reflejada por el divisor de haz es igual al ángulo de incidencia del haz incidente en el divisor de haz.  Figure 2A illustrates a scheme of the elements that form a device according to a possible embodiment of the invention. Figure 2B shows a front exterior view of the device according to a possible embodiment of the invention. Figure 2C shows a detail of the scheme of Figure 2A, in which it is observed how the angle of reflection of the light reflected by the beam splitter is equal to the angle of incidence of the incident beam in the beam splitter.
La figura 3 muestra un diagrama de bloques de la electrónica de adquisición y procesamiento de acuerdo con una posible realización de la invención.  Figure 3 shows a block diagram of the acquisition and processing electronics according to a possible embodiment of the invention.
La figura 4 muestra en detalle el bloque de procesamiento de las señales proporcionadas por los receptores de medida y de referencia. Figure 4 shows in detail the processing block of the signals provided by the measurement and reference receivers.
Descripción de un modo de realización de la invención La figura 1 ilustra el principio de funcionamiento del sensor de la invención: al iluminar con una fuente de luz 12 las partículas de suciedad 1 1 depositadas sobre una superficie transparente 10, la luz es difundida en distintas direcciones, aumentándose la cantidad de luz dispersada 13 en proporción a la cantidad de polvo depositada en esa superficie. La luz se emite hacia la parte interna de la superficie 10 (por ejemplo, un cristal), de forma que la luz difundida 13 por las partículas de suciedad 1 1 depositadas en la parte externa de la superficie 10, es proyectada (dispersada) hacia un transductor óptico (por ejemplo, un conjunto de fotodetectores) 14. La cantidad de luz captada por estos es proporcional al número de partículas depositadas 1 1 . El transductor óptico, controlado por una unidad de procesamiento y tratamiento de señales (no ilustrada), proporciona una medida correspondiente a esa cantidad. DESCRIPTION OF AN EMBODIMENT OF THE INVENTION Figure 1 illustrates the principle of operation of the sensor of the invention: when lighting with a light source 12 the dirt particles 1 1 deposited on a transparent surface 10, the light is diffused in different directions, increasing the amount of scattered light 13 in proportion to the amount of dust deposited on that surface. The light is emitted towards the inner part of the surface 10 (for example, a crystal), so that the light diffused 13 by the dirt particles 1 1 deposited on the outer part of the surface 10, is projected (scattered) towards an optical transducer (for example, a set of photodetectors) 14. The amount of light captured by these is proportional to the number of particles deposited 1 1. The optical transducer, controlled by a signal processing and processing unit (not illustrated), provides a measure corresponding to that amount.
El sensor de la invención, basándose en el principio de funcionamiento anterior, consigue optimizar una serie de propiedades, a saber: minimizar la interferencia de fuentes de luz (naturales o artificiales); minimizar la dependencia de las medidas con la temperatura; y maximizar la sensibilidad. The sensor of the invention, based on the above operating principle, manages to optimize a number of properties, namely: minimizing interference from light sources (natural or artificial); minimize dependence on measures with temperature; and maximize sensitivity.
La figura 2A ilustra un esquema de un dispositivo de acuerdo con una posible realización de la invención. Se trata de un sensor de suciedad 20 para detectar la cantidad de suciedad (polvo u otras partículas) de una superficie transparente 21 que está expuesta, por su cara externa 21 e, a la suciedad. La superficie transparente 21 es preferentemente un cristal transparente. En el esquema de la figura 2, la superficie transparente 21 es sustancialmente plana, pero no es imprescindible que sea así. Por el contrario, la superficie 21 puede ser curva, rugosa o de cualquier otra característica. La superficie 21 actúa como captador de suciedad. En uso del dispositivo 20 como sensor de suciedad, el dispositivo se puede situar al lado de una superficie de interés, ya sea plana, curva, rugosa, etc. El dispositivo 20 indicará la cantidad de polvo presumiblemente depositada en esa superficie de interés, considerando que está al lado del sensor (y por tanto ambos captarán una cantidad similar de polvo o suciedad). Por tanto, el dispositivo 20 sirve para indicar que en su área sensible (cara exterior 21 e de la superficie 21 ) ha captado una determinada cantidad de suciedad. Figure 2A illustrates a scheme of a device according to a possible embodiment of the invention. It is a dirt sensor 20 for detecting the amount of dirt (dust or other particles) of a transparent surface 21 that is exposed, by its outer face 21 e, to the dirt. The transparent surface 21 is preferably a transparent crystal. In the scheme of Figure 2, the transparent surface 21 is substantially flat, but it is not essential that it be so. On the contrary, the surface 21 can be curved, rough or of any other characteristic. Surface 21 acts as a dirt collector. In use of the device 20 as a dirt sensor, the device can be placed next to a surface of interest, whether flat, curved, rough, etc. The device 20 will indicate the amount of dust presumably deposited on that surface of interest, considering that it is next to the sensor (and therefore both will pick up a similar amount of dust or dirt). Therefore, the device 20 serves to indicate that in its sensitive area (outer face 21 e of the surface 21) it has captured a certain amount of dirt.
Como muestra de forma general la figura 2A, el sensor de suciedad 20 comprende una superficie transparente 21 que es el área sensible cuya suciedad captada se va a detectar, emulando lo que ocurre en una superficie cuya suciedad se quiere controlar. Un posible ejemplo de superficie cuya suciedad se quiere emular, para lo que el dispositivo 20 se sitúa próxima a esa superficie, es un espejo concentrador de energía. Así, si en el espejo se deposita polvo, sustancialmente en la misma medida se depositará polvo en la superficie transparente 21 del sensor 20. Midiendo el polvo en la superficie 21 del sensor 20, se extrapola que aproximadamente la misma cantidad se habrá depositado en el espejo concentrador. As Figure 2A generally shows, the dirt sensor 20 comprises a transparent surface 21 which is the sensitive area whose captured dirt is to be detected, emulating what happens on a surface whose dirt is to be controlled. A possible example of a surface whose dirt is to be emulated, for which the device 20 is located close to that surface, is an energy concentrating mirror. Thus, if dust is deposited in the mirror, substantially to the same extent dust will be deposited on the transparent surface 21 of the sensor 20. By measuring the powder on the surface 21 of the sensor 20, it is extrapolated that approximately the same amount will have been deposited in the concentrating mirror
El sensor de suciedad 20 comprende también un emisor de luz 22, preferentemente infrarroja. Alternativamente, el emisor de luz 22 puede emitir en otra frecuencia o frecuencias diferentes del rango espectral del infrarrojo, tal como el espectro visible u otras frecuencias del espectro no visible. Este emisor 22 emite un haz de luz hacia la superficie interna 21 i de la superficie transparente 21 cuya suciedad se va a medir. Preferentemente, el emisor 22 se sitúa en un plano que forma un ángulo de α grados con respecto al plano de la muestra (superficie transparente 21 ). Es decir, preferentemente el emisor 22 no emite desde un plano paralelo a la superficie plana 21 .Preferentemente el ángulo α varía entre 30 y 60e. En la implementación del ejemplo, se ha elegido α = 45e. Alternativamente, el emisor 22 puede emitir su haz de luz de forma sustancialmente perpendicular a la superficie transparente 21 . En este caso, el emisor 22 se sitúa en un plano sustancialmente paralelo al de la superficie transparente 21 (implementación no ilustrada). The dirt sensor 20 also comprises a light emitter 22, preferably infrared. Alternatively, the light emitter 22 may emit at another frequency or frequencies other than the infrared spectral range, such as the visible spectrum or other frequencies of the non-visible spectrum. This emitter 22 emits a beam of light towards the inner surface 21 i of the transparent surface 21 whose dirt is to be measured. Preferably, the emitter 22 is placed in a plane that forms an angle of α degrees with respect to the plane of the sample (transparent surface 21). That is to say, preferably the emitter 22 does not emit from a plane parallel to the flat surface 21. Preferably the angle α varies between 30 and 60 e . In the implementation of the example, α = 45 e has been chosen. Alternatively, the emitter 22 can emit its light beam substantially perpendicular to the transparent surface 21. In this case, the emitter 22 is placed in a plane substantially parallel to that of the transparent surface 21 (implementation not shown).
El sensor 20 comprende también un receptor de luz o fotodetector 23 configurado para captar la luz en el mismo rango espectral del emisor 22. Es decir, si el emisor 22 emite un haz de luz infrarroja, el receptor 23 es un receptor de luz infrarroja. El receptor de luz 23 debe situarse en aquel lugar/posición que permita recoger la máxima luz difundida por el polvo / suciedad depositado sobre la parte exterior de la superficie transparente 21 . En una posible realización, ilustrada en la figura 2A, el receptor de luz 23 se sitúa en un plano sustancialmente paralelo a la muestra (superficie transparente 21 ), del lado interno 21 i de la misma. El receptor 23 puede situarse alternativamente en otras posiciones, siempre y cuando pueda desde ellas captar sustancialmente la cantidad de luz difundida por el polvo acorde con la sensibilidad que se requiera para el sensor concreto 21 . Este receptor 23 está formado preferentemente por un conjunto de fotodiodos. En una implementación concreta, el receptor 23 se implementa con una matriz de cuatro fotodiodos. Los inventores han observado que estos cuatro fotodetectores, cuyos efectos se suman, distribuidos sobre parte del área hacia la que se dirige la luz difundida, proporcionan elevada sensibilidad para la geometría concreta ensayada. El sensor 20 comprende también un divisor de haz 24 (en inglés, beam splitter), situado entre el emisor de 22 y la superficie transparente 21 cuya suciedad se va a medir. El divisor de haz 24 debe situarse en una posición tal que el haz de luz emitido por el emisor 22 hacia la superficie 21 se encuentre en su camino con el divisor de haz 24. The sensor 20 also comprises a light receiver or photodetector 23 configured to capture the light in the same spectral range of the emitter 22. That is, if the emitter 22 emits an infrared beam of light, the receiver 23 is an infrared light receiver. The light receiver 23 must be located in that place / position that allows to collect the maximum light diffused by the dust / dirt deposited on the outside of the transparent surface 21. In a possible embodiment, illustrated in Figure 2A, the light receiver 23 is placed in a plane substantially parallel to the sample (transparent surface 21), on the inner side 21 i thereof. The receiver 23 can alternatively be placed in other positions, as long as it can from them substantially capture the amount of light diffused by the powder according to the sensitivity required for the particular sensor 21. This receiver 23 is preferably formed by a set of photodiodes. In a specific implementation, receiver 23 is implemented with a matrix of four photodiodes. The inventors have observed that these four photodetectors, whose effects add up, distributed over part of the area towards which the diffused light is directed, provide high sensitivity for the concrete geometry tested. The sensor 20 also comprises a beam splitter 24 (in English, beam splitter), located between the emitter 22 and the transparent surface 21 whose dirt is to be measured. The beam splitter 24 must be placed in a position such that the beam of light emitted by the emitter 22 towards the surface 21 is in its path with the beam splitter 24.
El sensor 20 comprende también un receptor (fotodetector) de referencia 25. Opcionalmente el sensor 20 puede tener un atenuador de luz 27 situado por delante del receptor de referencia 25 y preferentemente sustancialmente paralelo al mismo. El atenuador 27 se utiliza si es necesario evitar saturar el fotodetector de referencia 25. El sensor 20 tiene también medios de adquisición y procesamiento 26, para interpretar y procesar las medidas, que se detallan en relación con las figuras 3 y 4. The sensor 20 also comprises a reference receiver (photodetector) 25. Optionally, the sensor 20 may have a light dimmer 27 located in front of the reference receiver 25 and preferably substantially parallel thereto. The dimmer 27 is used if it is necessary to avoid saturating the reference photodetector 25. The sensor 20 also has acquisition and processing means 26, to interpret and process the measurements, which are detailed in relation to Figures 3 and 4.
El funcionamiento del sensor 20 es el siguiente: el emisor 22 proyecta la luz que emite sobre la cara interna 21 i (protegida con respecto a la suciedad exterior) de la superficie transparente 21 cuya suciedad se va a medir. La luz emitida por el emisor 22 se encuentra en su camino con el divisor de haz 24, que debe por tanto estar dispuesto entre el emisor 22 y la superficie transparente 21 , de forma que el haz de luz emitido por el emisor 22 llegue hasta el divisor de haz 24. El divisor 24 deja pasar hacia la superficie plana un porcentaje de la potencia emitida, mientras que redirige (desvía) el resto de la potencia emitida. La figura 2C muestra un detalle del esquema de la figura 2A, en el que se observa, como un experto sabe, cómo el ángulo de incidencia p -con respecto a la perpendicular del divisor 24- del haz incidente procedente del emisor 22 es igual al ángulo de reflexión p de la luz reflejada o desviada por el divisor de haz 24. Esta potencia desviada es captada por el fotodetector de referencia 25. Por tanto, el fotodetector de referencia 25 puede situarse en cualquier posición, siempre y cuando sea capaz de captar la radiación desviada por el divisor de haz 24. Se consigue así obtener una muestra de la señal luminosa emitida por el emisor 22. La cantidad (porcentaje) de luz que atraviesa sin desviarse el divisor de haz 24 hacia la superficie transparente 21 y la cantidad (porcentaje) de luz que atraviesa sin desviarse el divisor de haz 24 hacia la superficie transparente 21 dependen de las geometrías de los haces y de los elementos concretos que se utilicen en el sensor. Por ejemplo, puede diseñarse el sensor 20 de forma que el porcentaje de luz que atraviesa sin desviarse el divisor de haz 24 hacia la superficie transparente 21 sea de entre el 50% y el 90%, mientras que el porcentaje de luz que se desvía hacia el fotodetector de referencia 25 sea de entre el 50% y el 10%. El fotodetector de referencia 25 proporciona de esta forma una medida de la intensidad real de la luz generada por el emisor 22. The operation of the sensor 20 is as follows: the emitter 22 projects the light it emits on the inner face 21 i (protected with respect to the external dirt) of the transparent surface 21 whose dirt is to be measured. The light emitted by the emitter 22 is in its path with the beam splitter 24, which must therefore be arranged between the emitter 22 and the transparent surface 21, so that the beam of light emitted by the emitter 22 reaches the beam splitter 24. The splitter 24 allows a percentage of the emitted power to pass to the flat surface, while redirecting (deflecting) the rest of the emitted power. Figure 2C shows a detail of the scheme of Figure 2A, in which it is observed, as an expert knows, how the angle of incidence p-with respect to the perpendicular of the divider 24- of the incident beam from the emitter 22 is equal to angle of reflection p of the light reflected or deflected by the beam splitter 24. This deflected power is captured by the reference photodetector 25. Therefore, the reference photodetector 25 can be placed in any position, provided it is capable of capturing the radiation deflected by the beam splitter 24. It is thus possible to obtain a sample of the light signal emitted by the emitter 22. The amount (percentage) of light that passes through without diverting the beam splitter 24 towards the transparent surface 21 and the amount (percentage) of light that passes through the beam splitter 24 to the transparent surface 21 depends on the geometries of the beams and the specific elements used in the sensor. For example, the sensor 20 can be designed so that the percentage of light that passes through without deflecting the beam splitter 24 towards the transparent surface 21 is between 50% and 90%, while the percentage of light that deflects towards the reference photodetector 25 is between 50% and 10%. The reference photodetector 25 thus provides a measure of the actual intensity of the light generated by the emitter 22.
La luz (el porcentaje de luz que ha dejado pasar, sin desviarse, el divisor de haz 24) recibida en la superficie transparente 21 (en su cara interna 21 i) atraviesa dicha superficie 21 . Si hay suciedad en su superficie externa 21 e, la luz, al chocar con la suciedad, se difunde en dirección a la cara interna 21 i, hasta alcanzar la matriz de fotodetectores o receptor de medida 23. Por esta razón, el receptor de medida 23 debe situarse en cualquier posición que le permita captar la radiación difundida al chocar con la suciedad. En el caso ideal de que no hubiese nada de suciedad en la cara externa 21 e, no habría difusión de la luz y, por tanto, toda la luz que llegase a la superficie plana 21 la atravesaría hacia el exterior. Sin embargo, en la práctica, aun suponiendo que la cara externa 21 e estuviese totalmente limpia, la cara interior 21 i de la superficie transparente reflejaría una pequeña parte de la luz hacia el interior del sensor, comportándose como un espejo. La cantidad de luz reflejada por este efecto depende del tipo de superficie. El sensor 20 de la invención elimina este efecto mediante un parámetro que se obtiene en el proceso de calibración del sensor. La disposición del emisor 22, divisor de haz 24, superficie de muestra 21 y receptor de referencia 25 debe elegirse de forma que una cantidad suficiente de potencia del emisor 22 llegue a la superficie de muestra 21 (por ejemplo, entre el 50% y el 90%), que una cantidad suficiente de potencia del emisor 22 llegue, redireccionada por el divisor de haz 24, al receptor de referencia 25 (por ejemplo, entre el 50% y el 10%) y que se minimicen las interferencias entre los elementos internos del sensor 20. En una realización preferente, el divisor de haz 24 está situado preferentemente en un plano que forma un ángulo de β grados con respecto al plano en el que está situado el emisor de luz 22. Preferentemente el ángulo β varía entre 30 y 60e. En la implementación del ejemplo, se ha elegido β = 45e. Teniendo en cuenta que, en la implementación del ejemplo, el receptor de referencia 25 está situado a 90e con respecto al haz principal emitido por el emisor 22, este β = 45e minimiza las interferencias entre los elementos del sensor. The light (the percentage of light that has passed, without deviating, the beam splitter 24) received on the transparent surface 21 (on its inner face 21 i) crosses said surface 21. If there is dirt on its outer surface 21 e, the light, when it hits the dirt, diffuses in the direction of the inner face 21 i, until it reaches the array of photodetectors or measurement receiver 23. For this reason, the measurement receiver 23 must be placed in any position that allows it to capture diffused radiation when it hits With the dirt. In the ideal case that there was no dirt on the outer face 21 e, there would be no diffusion of the light and, therefore, all the light that reached the flat surface 21 would pass through it to the outside. However, in practice, even assuming that the outer face 21 e was completely clean, the inner face 21 i of the transparent surface would reflect a small part of the light towards the inside of the sensor, behaving like a mirror. The amount of light reflected by this effect depends on the type of surface. The sensor 20 of the invention eliminates this effect by means of a parameter that is obtained in the sensor calibration process. The arrangement of the emitter 22, beam splitter 24, sample surface 21 and reference receiver 25 should be chosen such that a sufficient amount of power from the emitter 22 reaches the sample surface 21 (for example, between 50% and 90%), that a sufficient amount of power from the emitter 22 arrives, redirected by the beam splitter 24, to the reference receiver 25 (for example, between 50% and 10%) and that interference between the elements is minimized internal to the sensor 20. In a preferred embodiment, the beam splitter 24 is preferably located in a plane that forms an angle of β degrees with respect to the plane in which the light emitter is located 22. Preferably the angle β varies between 30 and 60 e . In the implementation of the example, β = 45 e has been chosen. Taking into account that, in the implementation of the example, the reference receiver 25 is located at 90 e with respect to the main beam emitted by the emitter 22, this β = 45 and minimizes interference between the sensor elements.
En la implementación del ejemplo, se ha elegido una superficie transparente 21 sustancialmente plana, pero podría alternativamente elegirse otro tipo de superficie. Además, la superficie transparente es, en este ejemplo, de forma rectangular, como se aprecia en la figura 2B. También en la implementación del ejemplo, como superficie transparente 21 se ha elegido un sustrato que se emplea para fabricar concentradores parabólicos, debido a que una aplicación destacada del sensor de la invención es la detección de suciedad en concentradores parabólicos. Se ha elegido el mismo sustrato para tener el mismo nivel de adherencia. In the implementation of the example, a substantially flat transparent surface 21 has been chosen, but another type of surface could alternatively be chosen. In addition, the transparent surface is, in this example, rectangular in shape, as seen in Figure 2B. Also in the implementation of the example, as a transparent surface 21 a substrate has been chosen which is used to manufacture parabolic concentrators, because a prominent application of the sensor of the invention is the detection of dirt in parabolic concentrators. The same substrate has been chosen to have the same level of adhesion.
Los medios de adquisición y procesamiento (electrónica de adquisición y procesamiento) 26 controlan en primer lugar la emisión de luz (del emisor 22) mediante una señal de corriente senoidal controlada que es generada digitalmente mediante un componente software (por ejemplo, pero de forma no limitativa, ejecutado a 4 kHz). Como se detalla en relación con las figuras 3 y 4, la electrónica de adquisición y procesamiento adquiere las señales de los fotodetectores de medida 23 y de referencia 25 y las procesa en un componente software (que en un ejemplo, pero de forma no limitativa, se ejecuta también a una frecuencia de 4kHz). The acquisition and processing means (acquisition and processing electronics) 26 first control the light emission (from the emitter 22) by means of a controlled sinusoidal current signal that is digitally generated by a software component (for example, but not limited to, executed at 4 kHz). As detailed in relation to Figures 3 and 4, the acquisition and processing electronics acquire the signals of the measurement photodetectors 23 and reference 25 and process them in a software component (which in an example, but not limitatively, it also runs at a frequency of 4kHz).
Como se ha indicado anteriormente, el sensor 20 minimiza la interferencia de fuentes de luz (naturales o artificiales); minimiza la dependencia de las medidas con la temperatura; y maximiza la sensibilidad. As indicated above, sensor 20 minimizes interference from light sources (natural or artificial); minimizes the dependence of the measurements with the temperature; and maximizes sensitivity.
La interferencia de las fuentes de luz externas al sensor (por ejemplo, del sol) se minimizan como se explica a continuación: En primer lugar, la fuente de luz 22 se escoge dentro del espectro de forma que su intensidad supere a la cantidad de luz recibida desde el sol en la misma banda del espectro. Preferentemente, se elige una fuente de luz infrarroja. En segundo lugar, los fotodetectores 23 25 incorporan filtros selectivos (infrarrojos en el caso de que el emisor emita luz infrarroja). Por último, la fuente de luz 22 se modula con una frecuencia relativamente elevada (por ejemplo, entre 80 y 150 Hz). En un ejemplo, se elige una señal modulada a 135 Hz. Esta frecuencia se escoge de forma que sea lo bastante alta para rechazar posibles fuentes de luz natural o artificial oscilantes, pero evitando en cualquier caso los armónicos de 50Hz y 60 Hz de las redes de alimentación, y de forma que se genere con una resolución alta teniendo en cuenta la frecuencia de muestreo del generador. Dado que la fuente de luz 22 es modulada a una frecuencia concreta, la parte de esa luz difundida por la suciedad oscila también a esa misma frecuencia. Por esta razón, los medios de detección 23 comprenden un filtro selectivo paso banda que permite recoger solo la luz difundida originada por el emisor 22 y no por otras fuentes de luz. La medida de luz difundida está así siempre proporcionada a la propia luz emitida por el emisor 22 del sensor 20. The interference of the external light sources to the sensor (for example, from the sun) is minimized as explained below: First, the light source 22 is chosen within the spectrum so that its intensity exceeds the amount of light received from the sun in the same spectrum band. Preferably, an infrared light source is chosen. Secondly, the photodetectors 23 25 incorporate selective filters (infrared in the event that the emitter emits infrared light). Finally, the light source 22 is modulated with a relatively high frequency (for example, between 80 and 150 Hz). In one example, a signal modulated at 135 Hz is chosen. This frequency is chosen so that it is high enough to reject possible oscillating natural or artificial light sources, but avoiding in any case the 50Hz and 60Hz harmonics of the networks of feeding, and so that it is generated with a high resolution taking into account the sampling frequency of the generator. Since the light source 22 is modulated at a specific frequency, the part of that light diffused by the dirt also oscillates at that same frequency. For this reason, the detection means 23 comprise a selective bandpass filter that allows collecting only the diffused light caused by the emitter 22 and not by other light sources. The measure of diffused light is thus always provided to the light itself emitted by the emitter 22 of the sensor 20.
Con respecto al efecto sobre las medidas de la variación de temperatura, ésta afecta al sensor 20 en múltiples aspectos, que incluyen tanto la propia electrónica como la estructura opto-mecánica del conjunto y los dispositivos emisores y receptores de infrarrojos. Por ello, el sensor 20 comprende medios y técnicas para realizar compensaciones térmicas. En particular, el sensor 20 comprende medios para realizar compensaciones térmicas en los dispositivos emisores y receptores de infrarrojos, en los que estos efectos térmicos son especialmente relevantes. Los emisores de infrarrojos presentan una elevada variación con la temperatura de la relación entre intensidad de luz emitida y la corriente aplicada (variación de ganancia en torno a 0.5% /eC o superiores). Esta variación, además, es diferente entre distintas unidades de una misma serie de dispositivos con la misma referencia de producto. También los fotodetectores presentan variación de ganancia con la temperatura, aunque en menor grado, y también este es diferente ente distintas unidades de un mismo componente. Además, los fotodetectores presentan un nivel de señal u offset en la oscuridad que varía con la temperatura. Este "offset" es también diferente entre diversas unidades del mismo componente. With respect to the effect on the measures of the temperature variation, this affects the sensor 20 in multiple aspects, which include both the electronics itself and the opto-mechanical structure of the assembly and the infrared emitting and receiving devices. Therefore, the sensor 20 comprises means and techniques to perform thermal compensation In particular, the sensor 20 comprises means for performing thermal compensations in the infrared emitting and receiving devices, in which these thermal effects are especially relevant. The infrared emitters have a high variation with the temperature of the relationship between the intensity of light emitted and the current applied (gain variation around 0.5% / e C or higher). This variation, in addition, is different between different units of the same series of devices with the same product reference. Also the photodetectors show variation of gain with the temperature, although to a lesser extent, and this is also different between different units of the same component. In addition, photodetectors have a signal level or offset in the dark that varies with temperature. This "offset" is also different between different units of the same component.
Preferentemente, el sensor 20 minimiza el efecto de la señal de offset de los fotodetectores 23 25 mediante la citada técnica de modulación y mediante una demodulación y filtrado paso banda que elimina todas las contribuciones de recepción de luz continua en la señal recibida en todos los fotodetectores 23 25. Preferably, the sensor 20 minimizes the effect of the offset signal of the photodetectors 23 25 by the aforementioned modulation technique and by means of a demodulation and bandpass filtering that eliminates all contributions of continuous light reception in the signal received in all photodetectors 23 25.
Además, el efecto de la variación de ganancia en la fuente de emisión de luz 22 se minimiza preferentemente mediante una técnica de fotodetección diferencial: se mide continuamente la luz emitida (en el emisor 22) y se pondera la luz difusa recibida (en el receptor 23) con respecto a la luz emitida. Esta técnica elimina también la componente de variación de ganancia común de los dos receptores (de referencia 25 y de medida 23), pero no elimina la diferencia de ganancia existente entre los distintos componentes fotodetectores. Preferentemente el efecto de la diferencia de ganancia entre los fotodetectores se minimiza mediante un transductor de temperatura y un algoritmo de compensación. In addition, the effect of the gain variation on the light emission source 22 is preferably minimized by a differential photodetection technique: the emitted light is continuously measured (on the emitter 22) and the received diffused light is weighted (on the receiver 23) with respect to the emitted light. This technique also eliminates the common gain variation component of the two receivers (reference 25 and measurement 23), but does not eliminate the difference in gain between the different photodetector components. Preferably, the effect of the gain difference between the photodetectors is minimized by a temperature transducer and a compensation algorithm.
Por último, la sensibilidad se maximiza preferentemente gracias a la selección y control de una fuente de luz 22, preferentemente infrarroja, de elevada intensidad y a la fotodetección mediante una matriz de 4 fotodetectores que adicionan la corriente obtenida en cada uno de ellos y además están expuestos a distintas áreas de detección de la luz difusa, sumando así la captación de energía lumínica en un área mayor que un único fotodetector. La figura 3 muestra un diagrama de bloques de una posible implementación de la electrónica de adquisición y procesamiento 26. Un parámetro Calib_Gain permite ajustar el rango de medida del sensor. Este parámetro se obtiene mediante el proceso de calibración. Otro parámetro Calib_Bias permite eliminar los efectos de difusión de la luz emitida generados por las propias paredes internas del sensor 20 y el efecto de reflexión de la cara interna 21 i de la superficie 21 . Este parámetro también se obtiene mediante el proceso de calibración. Un bloque de procesamiento 261 realiza la demodulación de las dos señales proporcionadas por los fotodiodos de medida 23 (señal 2623) y de referencia 25 (señal 2625) y proporciona la información ponderada equivalente a la relación medida/referencia out_261 . Un bloque 262 convierte los valores de tanto por 1 a tanto por 100 utilizando el parámetro Calib_Gain. Un bloque 263 permite modificar la medida en función de la temperatura mediante un algoritmo de interpolación. Permite por tanto corregir la diferencia de ganancia con la temperatura entre fotodetectores y otras derivas térmicas, para lo que interviene un subsistema 265. Finalmente, el bloque 264 realiza cálculos estadísticos de la medida en un determinado periodo de tiempo (medida promediada, valor máximo, valor mínimo y desviación típica). Finally, the sensitivity is preferably maximized thanks to the selection and control of a light source 22, preferably infrared, of high intensity and photodetection through a matrix of 4 photodetectors that add the current obtained in each of them and are also exposed to different areas of detection of diffused light, thus adding the collection of light energy in an area greater than a single photodetector. Figure 3 shows a block diagram of a possible implementation of the acquisition and processing electronics 26. A Calib_Gain parameter allows to adjust the measuring range of the sensor. This parameter is obtained through the calibration process. Another Calib_Bias parameter allows to eliminate the diffusion effects of the emitted light generated by the internal walls of the sensor 20 itself and the reflection effect of the internal face 21 i of the surface 21. This parameter is also obtained through the calibration process. A processing block 261 performs the demodulation of the two signals provided by the measurement photodiodes 23 (signal 2623) and reference 25 (signal 2625) and provides the weighted information equivalent to the measured / reference ratio out_261. A block 262 converts the values from both by 1 and by 100 using the Calib_Gain parameter. A block 263 allows the measurement to be modified as a function of temperature by means of an interpolation algorithm. It allows therefore to correct the difference in gain with the temperature between photodetectors and other thermal drifts, for which a subsystem 265 intervenes. Finally, block 264 performs statistical calculations of the measurement in a given period of time (averaged measurement, maximum value, minimum value and standard deviation).
La figura 4 muestra en detalle una parte del bloque de procesamiento 261 de las señales proporcionadas por los receptores de medida 23 y de referencia 25. Sobre las dos señales 2623 2625 (procedentes de los dos receptores 23 25) se realiza el mismo procesamiento: Primero se trata la señal recibida 2623 2625 mediante un retenedor o muestreador de orden cero 261 1 . La señal resultante se trata mediante un filtro paso banda 2612, preferentemente de orden 8, y con frecuencia de corte centrada en una frecuencia que preferentemente varía entre 80 y 150 Hz (por ejemplo, 135 Hz). La señal así obtenida es rectificada 2613 y posteriormente tratada por un filtro paso bajo 2614 preferentemente de segundo orden (por ejemplo de 2 Hz de frecuencia de corte). El resultado de este procesamiento es el valor de la amplitud de las señales de medida 2614m y referencia 2614r. Realizando la división 2615 entre ambas, se obtiene la relación medida/referencia out_261 que corresponde por lo tanto a una medida diferencial (en la que desaparecen las influencias térmicas indicadas anteriormente). El bloque de procesamiento 261 comprende además otros elementos destinados a detectar si la medida es incorrecta. Por simplicidad, estos bloques adicionales no se muestran en el esquema de la figura 4. Figure 4 shows in detail a part of the processing block 261 of the signals provided by the measurement 23 and reference receivers 25. On the two signals 2623 2625 (from the two receivers 23 25) the same processing is performed: First The received signal 2623 2625 is treated by a zero-order sampler or sampler 261 1. The resulting signal is treated by a bandpass filter 2612, preferably of order 8, and with cut-off frequency centered on a frequency that preferably varies between 80 and 150 Hz (for example, 135 Hz). The signal thus obtained is rectified 2613 and subsequently treated by a low-pass filter 2614 preferably of the second order (for example 2 Hz cut-off frequency). The result of this processing is the value of the amplitude of the measurement signals 2614m and reference 2614r. By dividing 2615 between the two, the measured / reference ratio out_261 is obtained, which therefore corresponds to a differential measurement (in which the thermal influences indicated above disappear). The processing block 261 further comprises other elements intended for Detect if the measurement is incorrect. For simplicity, these additional blocks are not shown in the scheme of Figure 4.
Como ha podido apreciarse, el sensor de suciedad 20 proporciona una medida porcentual del grado de limpieza (o suciedad) de la superficie de muestra 21 expuesta. Esta medida presenta así un valor de 0 cuando la suciedad es máxima y un valor de 100 cuando la suciedad es mínima. Los términos suciedad máxima- suciedad mínima se establecen en el proceso de calibración del dispositivo, considerando que la suciedad mínima se alcanza tras limpiar lo máximo posible la superficie 21 , mientras que para la suciedad máxima se pueden considerar distintos patrones de suciedad o difusión de la luz. Para detectar la suciedad de una superficie cualquiera, por ejemplo un espejo concentrador de central solar térmica, se debe colocar el sensor 20 al lado de la superficie de interés. Considerando que, debido a la proximidad, la superficie de muestra 21 del sensor 20 captará sustancialmente la misma cantidad de suciedad que la superficie de interés, el dispositivo 20 indicará la cantidad de polvo presumiblemente depositada en esa superficie de interés. As can be seen, the dirt sensor 20 provides a percentage measure of the degree of cleanliness (or dirt) of the exposed sample surface 21. This measure thus has a value of 0 when the dirt is maximum and a value of 100 when the dirt is minimal. The terms maximum dirt- minimum dirt are established in the device calibration process, considering that the minimum dirt is reached after cleaning the surface 21 as much as possible, while for different dirt different patterns of dirt or diffusion of the surface can be considered. light. To detect the dirt of any surface, for example a concentrating mirror of a solar thermal power plant, the sensor 20 must be placed next to the surface of interest. Considering that, due to the proximity, the sample surface 21 of the sensor 20 will capture substantially the same amount of dirt as the surface of interest, the device 20 will indicate the amount of dust presumably deposited on that surface of interest.
El proceso de medida establece un periodo inicial de estabilización programable a partir del cual el equipo realiza medidas de forma cíclica o periódica. El periodo entre medidas es también programable y está limitado por el tiempo mínimo de adquisición y procesamiento de los datos de medida. En una posible realización, se ha establecido este periodo mínimo en 10 segundos (optimizado tras pruebas experimentales), mientras que el resultado de la medida del sensor corresponde al promediado de las medidas calculadas en el tiempo estacionario. Preferentemente, el resultado de la medida del sensor corresponde al promediado de las medidas calculadas en la segunda mitad del periodo de adquisición, que es cuando las señales demoduladas alcanzan la estabilidad. The measurement process establishes an initial period of programmable stabilization after which the equipment measures cyclically or periodically. The period between measurements is also programmable and is limited by the minimum acquisition and processing time of the measurement data. In a possible embodiment, this minimum period has been established in 10 seconds (optimized after experimental tests), while the result of the sensor measurement corresponds to the average of the measurements calculated in the stationary time. Preferably, the result of the sensor measurement corresponds to the average of the measurements calculated in the second half of the acquisition period, which is when the demodulated signals reach stability.
Preferentemente, el proceso de calibración requiere realizar dos medidas que definen el rango dinámico del sensor. Con el sustrato (la superficie transparente 21 ) completamente limpio, se realiza la primera medida de referencia que define el máximo grado de limpieza identificado con el valor 100%. Para la segunda medida, que se emplea como referencia del mínimo de limpieza, se deposita sobre el sustrato el grado de suciedad que se identifica con el valor 0 %. El resultado final del proceso es una medida relativa de suciedad con un rango que va entre 0 y 100 de forma que el valor máximo corresponde con la máxima limpieza relativa y el valor mínimo con la mínima limpieza relativa. Para simplificar el acceso a las medidas y a la calibración se ha desarrollado una aplicación informática que permite la monitorización en tiempo real del proceso de medida y la modificación de los parámetros internos de configuración del dispositivo. La aplicación dispone además de mecanismos de soporte que simplifican el proceso de calibración. Preferably, the calibration process requires two measurements that define the dynamic range of the sensor. With the substrate (transparent surface 21) completely clean, the first reference measurement is made that defines the maximum degree of cleanliness identified with the 100% value. For the second measure, which is used as a reference for the minimum cleaning, the degree of dirt that is identified with the value 0% is deposited on the substrate. The final result of the process It is a relative measurement of dirt with a range between 0 and 100 so that the maximum value corresponds to the maximum relative cleanliness and the minimum value to the minimum relative cleanliness. To simplify access to measurements and calibration, a computer application has been developed that allows real-time monitoring of the measurement process and modification of the device's internal configuration parameters. The application also has support mechanisms that simplify the calibration process.
Se ha desarrollado un prototipo que se alimenta con un voltaje de entre 5 y 24V y cuenta con un interface MODBUS RTU vía RS485 a través del cual puede accederse al resultado de la medida y que permite la configuración de los parámetros de funcionamiento de forma remota. A prototype has been developed that is powered by a voltage between 5 and 24V and has a MODBUS RTU interface via RS485 through which the measurement result can be accessed and allows the configuration of operating parameters remotely.
El sensor aquí descrito tiene especial aplicación en la medición y control de suciedad en espejos concentradores de centrales solares térmicas. The sensor described here has special application in the measurement and control of dirt in concentrating mirrors of solar thermal plants.
En este texto, la palabra "comprende" y sus variantes (como "comprendiendo", etc.) no deben interpretarse de forma excluyente, es decir, no excluyen la posibilidad de que lo descrito incluya otros elementos, pasos etc. In this text, the word "comprises" and its variants (such as "understanding", etc.) should not be construed as excluding, that is, they do not exclude the possibility that what is described includes other elements, steps, etc.
Por otra parte, la invención no está limitada a las realizaciones concretas que se han descrito sino abarca también, por ejemplo, las variantes que pueden ser realizadas por el experto medio en la materia (por ejemplo, en cuanto a la elección de materiales, dimensiones, componentes, configuración, etc.), dentro de lo que se desprende de las reivindicaciones. On the other hand, the invention is not limited to the specific embodiments that have been described but also covers, for example, the variants that can be made by the average person skilled in the art (for example, in terms of the choice of materials, dimensions , components, configuration, etc.), within what follows from the claims.

Claims

REIVINDICACIONES
1 .- Un sensor (20) para detectar la cantidad de suciedad de una superficie, caracterizado por que comprende: una superficie transparente (21 ) que está expuesta a suciedad en su cara exterior (21 e); un emisor de luz (22) configurado para emitir un haz de luz en un determinado rango frecuencial hacia dicha superficie transparente (21 ) cuya suciedad en su cara exterior (21 e) se va a medir; un primer receptor de luz (23) configurado para detectar luz en dicho determinado rango frecuencial; un segundo receptor de luz (25) configurado para detectar luz en dicho determinado rango frecuencial; medios (24) situados entre dicho emisor de luz (22) y dicha superficie transparente (21 ), estando dichos medios (24) configurados para dejar pasar una parte de la luz procedente de dicho emisor de luz (22) hacia dicha superficie transparente (21 ) y para redireccionar el resto de luz procedente de dicho emisor de luz (22) hacia dicho segundo receptor de luz (25); medios de adquisición y procesamiento (26); estando dicho primer receptor de luz (23) configurado para recibir, de dicha parte de la luz procedente del emisor de luz (22) que llega hasta la superficie transparente (21 ), la luz difundida al chocar contra la suciedad de la cara externa (21 e) de dicha superficie transparente (21 ); y estando dichos medios de adquisición y procesamiento (26) configurados para calcular, a partir de la luz detectada por dicho segundo receptor de luz (25) y de la luz detectada por dicho primer receptor de luz (23), una medida porcentual del grado de suciedad de dicha superficie transparente (21 ). 1 .- A sensor (20) to detect the amount of dirt on a surface, characterized in that it comprises: a transparent surface (21) that is exposed to dirt on its outer face (21 e); a light emitter (22) configured to emit a beam of light in a certain frequency range towards said transparent surface (21) whose dirt on its outer face (21 e) is to be measured; a first light receiver (23) configured to detect light in said certain frequency range; a second light receiver (25) configured to detect light in said particular frequency range; means (24) located between said light emitter (22) and said transparent surface (21), said means (24) being configured to allow a portion of the light from said light emitter (22) to pass through said transparent surface ( 21) and to redirect the remaining light from said light emitter (22) to said second light receiver (25); means of acquisition and processing (26); said first light receiver (23) being configured to receive, from said part of the light coming from the light emitter (22) that reaches the transparent surface (21), the light diffused when hitting the dirt of the external face ( 21 e) of said transparent surface (21); and said acquisition and processing means (26) being configured to calculate, from the light detected by said second light receiver (25) and from the light detected by said first light receiver (23), a percentage measure of the degree of dirt from said transparent surface (21).
2. - El sensor (20) de la reivindicación 1 , donde dichos medios (24) situados entre dicho emisor de luz (22) y dicha superficie transparente (21 ) son un divisor de haz. 2. - The sensor (20) of claim 1, wherein said means (24) located between said light emitter (22) and said transparent surface (21) are a beam splitter.
3. -El sensor de cualquiera de las reivindicaciones 1 ó 2, donde dicho emisor de luz (22) está situado en un plano que forma un ángulo de α grados con el plano en el que está situada la superficie transparente (21 ), donde dicho ángulo α varía entre 30 y 60e. 3. The sensor of any of claims 1 or 2, wherein said light emitter (22) is located in a plane that forms an angle of α degrees with the plane in which the transparent surface (21) is located, where said angle α varies between 30 and 60 e .
4. -EI sensor de cualquiera de las reivindicaciones anteriores, donde dicho primer receptor de luz (23) comprende una matriz de fotodiodos. 4. The sensor of any of the preceding claims, wherein said first light receiver (23) comprises a photodiode array.
5. -EI sensor de cualquiera de las reivindicaciones anteriores, donde dichos medios (24) situados entre dicho emisor de luz (22) y dicha superficie transparente (21 ) están situados en un plano que forma un ángulo de β grados con el plano en el que está situado el emisor de luz (22), donde dicho ángulo β varía entre 30 y 60e. 5. The sensor of any of the preceding claims, wherein said means (24) located between said light emitter (22) and said transparent surface (21) are located in a plane that forms an angle of β degrees with the plane in which is located the light emitter (22), where said angle β varies between 30 and 60 e .
6. -EI sensor de cualquiera de las reivindicaciones anteriores, donde dicho emisor de luz (22) está configurado para emitir un haz de luz en el rango de luz infrarroja y dichos primer (23) y segundo (25) receptores de luz están configurados para detectar luz en el rango de luz infrarroja. 6. The sensor of any of the preceding claims, wherein said light emitter (22) is configured to emit a beam of light in the infrared light range and said first (23) and second (25) light receivers are configured to detect light in the infrared light range.
7. -EI sensor de cualquiera de las reivindicaciones anteriores, donde dichos medios de adquisición y procesamiento (26) comprenden medios para ajustar la medida en función de la temperatura. 7. The sensor of any of the preceding claims, wherein said acquisition and processing means (26) comprise means for adjusting the measurement as a function of temperature.
8.-EI sensor de cualquiera de las reivindicaciones anteriores, donde dicha superficie transparente (21 ) es un cristal. 8. The sensor of any of the preceding claims, wherein said transparent surface (21) is a crystal.
9. -El sensor de cualquiera de las reivindicaciones anteriores, que comprende además un atenuador de luz (27) dispuesto delante del segundo receptor (25). 9. The sensor of any of the preceding claims, further comprising a light dimmer (27) arranged in front of the second receiver (25).
10. - Uso del sensor de cualquiera de las reivindicaciones anteriores para detectar la cantidad de suciedad de un espejo concentrador de energía térmica. 10. - Use of the sensor of any of the preceding claims to detect the amount of dirt of a thermal energy concentrating mirror.
1 1 . -Un procedimiento para detectar la cantidad de suciedad de una superficie, caracterizado por las etapas de: eleven . -A procedure to detect the amount of dirt on a surface, characterized by the stages of:
- emitir un haz de luz en un determinado rango frecuencial hacia una superficie transparente (21 ) que está expuesta a suciedad en su cara exterior (21 e); - emitting a beam of light in a certain frequency range towards a transparent surface (21) that is exposed to dirt on its outer face (21 e);
- captar en un primer receptor de luz (23) la luz difundida al chocar contra la suciedad de dicha superficie transparente (21 ); - capturing in a first light receiver (23) the light diffused when hitting the dirt of said transparent surface (21);
- desviar una parte de la luz emitida, antes de que llegue a dicha superficie transparente (21 ), para captarla en un segundo receptor de luz (25), para tomar dicha luz desviada como referencia; - diverting a part of the emitted light, before it reaches said transparent surface (21), to capture it in a second light receiver (25), to take said deflected light as a reference;
-calcular, a partir de la luz detectada por dicho segundo receptor de luz (25) y de la luz detectada por dicho primer receptor de luz (23), una medida porcentual del grado de suciedad de dicha superficie transparente (21 ). - calculating, from the light detected by said second light receiver (25) and from the light detected by said first light receiver (23), a percentage measurement of the degree of dirtiness of said transparent surface (21).
12.- Programa informático que comprende instrucciones de código de programa de ordenador para realizar el método de la reivindicación 1 1 . 12. Computer program comprising computer program code instructions for performing the method of claim 1 1.
PCT/ES2015/070308 2014-04-24 2015-04-17 A dirt sensor and method for detecting the amount of dirt on a surface WO2015162322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201430605 2014-04-24
ES201430605A ES2549395B1 (en) 2014-04-24 2014-04-24 Dirt sensor and procedure to detect the amount of dirt on a surface

Publications (1)

Publication Number Publication Date
WO2015162322A1 true WO2015162322A1 (en) 2015-10-29

Family

ID=53267398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070308 WO2015162322A1 (en) 2014-04-24 2015-04-17 A dirt sensor and method for detecting the amount of dirt on a surface

Country Status (2)

Country Link
ES (1) ES2549395B1 (en)
WO (1) WO2015162322A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019857A1 (en) * 2016-07-26 2018-02-01 Demand Side Instruments Method and device for measuring insect density
US10053059B1 (en) 2017-10-04 2018-08-21 Ford Global Technologies, Llc Detection and identification of opaqueness of vehicle windows
US10144356B2 (en) 2017-03-24 2018-12-04 Ford Global Technologies, Llc Condensation detection for vehicle surfaces via light transmitters and receivers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871917A (en) * 1988-04-19 1989-10-03 Donnelly Corporation Vehicular moisture sensor and mounting apparatus therefor
US5343290A (en) * 1992-06-11 1994-08-30 International Business Machines Corporation Surface particle detection using heterodyne interferometer
WO2012089485A1 (en) 2010-12-30 2012-07-05 Arcelik Anonim Sirketi A photovoltaic module whereof surface dirt is detected
US8323421B2 (en) 2008-04-24 2012-12-04 Hon Hai Precision Industry Co., Ltd. Automatic cleaning system for solar panels and method thereof
DE102011082793A1 (en) * 2011-09-15 2013-03-21 Carl Zeiss Smt Gmbh Devices for determining a degree of soiling and / or for determining the layer thickness of a strip

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960996A (en) * 1989-01-18 1990-10-02 Hochstein Peter A Rain sensor with reference channel
JPH04138343A (en) * 1990-09-28 1992-05-12 Shimadzu Corp Fluorescence spectrophotometer
US6118383A (en) * 1993-05-07 2000-09-12 Hegyi; Dennis J. Multi-function light sensor for vehicle
DE19631059A1 (en) * 1996-08-01 1998-02-05 Teves Gmbh Alfred Optical sensor with self-monitoring of transparency of light aperture
DE102006039034A1 (en) * 2006-08-19 2008-02-21 Carl Zeiss Ag Sensor for detecting e.g. dirt, has light source producing light that is reached by scattering at objects on outer side of windscreen in photo-detector, where photo-detector allows spectral detection of signals with different wavelengths

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871917A (en) * 1988-04-19 1989-10-03 Donnelly Corporation Vehicular moisture sensor and mounting apparatus therefor
US5343290A (en) * 1992-06-11 1994-08-30 International Business Machines Corporation Surface particle detection using heterodyne interferometer
US8323421B2 (en) 2008-04-24 2012-12-04 Hon Hai Precision Industry Co., Ltd. Automatic cleaning system for solar panels and method thereof
WO2012089485A1 (en) 2010-12-30 2012-07-05 Arcelik Anonim Sirketi A photovoltaic module whereof surface dirt is detected
DE102011082793A1 (en) * 2011-09-15 2013-03-21 Carl Zeiss Smt Gmbh Devices for determining a degree of soiling and / or for determining the layer thickness of a strip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019857A1 (en) * 2016-07-26 2018-02-01 Demand Side Instruments Method and device for measuring insect density
FR3054662A1 (en) * 2016-07-26 2018-02-02 Demand Side Instruments METHOD AND DEVICE FOR MEASURING INSECT DENSITY
US10144356B2 (en) 2017-03-24 2018-12-04 Ford Global Technologies, Llc Condensation detection for vehicle surfaces via light transmitters and receivers
US10053059B1 (en) 2017-10-04 2018-08-21 Ford Global Technologies, Llc Detection and identification of opaqueness of vehicle windows

Also Published As

Publication number Publication date
ES2549395B1 (en) 2016-05-25
ES2549395A1 (en) 2015-10-27

Similar Documents

Publication Publication Date Title
US10312859B2 (en) Optical soiling measurement device for photovoltaic arrays
US11181485B2 (en) Method and device determining soiling of a shield
US8592738B1 (en) Alignment device for use with a solar tracking photovoltaic array
JP2009229458A5 (en)
CN101592601B (en) High-efficiency infrared gas sensor with small volume
WO2015162322A1 (en) A dirt sensor and method for detecting the amount of dirt on a surface
CN102175591A (en) Laser forward-scattering cloud droplet spectrum probing system
WO2015036631A1 (en) Spectrophotometer for the characterisation of receivers of solar collectors
US20220196469A1 (en) Pyranometer and method of detecting a soiling on a dome in a pyranometer
GB2267963A (en) Obscuration sensor
TWI746533B (en) Solar tracking device and method of positioning the same
KR101311788B1 (en) Measuring device for altitude angle and azimuth angle of sun and measuring method for altitude angle and azimuth angle thereof
JP2019518930A5 (en)
ES2389794B2 (en) SOLAR RADIATION SYSTEM AND METHOD OF MONITORING.
US11346772B2 (en) Gas concentration measurement apparatus and techniques
US20240056018A1 (en) System and method for maximizing power output in a solar plant and solar tracker thereof
WO2022003227A1 (en) Radiometry device and method for measuring solar irradiance
KR101576051B1 (en) Sunshine Duration Meter Device With Rotating Curved Mirror
Korevaar et al. Measuring the Sun the components of Solar Radiation, traceability of measurements, and PV panel soiling
KR101563509B1 (en) measuring device of sunlight quantity
Liu et al. Accurate Measurement of Optical Angle Sensing based on Polynomial Fitting Tool
ES2578985B1 (en) Temperature measurement equipment for parabolic trough solar collector tubes and temperature measurement method.
JPH0448239A (en) Light observation sensor
KR20110004724A (en) Solar tracking apparatus
FRUMKER et al. Object detection with plane with intensity distribution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15724737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15724737

Country of ref document: EP

Kind code of ref document: A1