WO2016024429A1 - Fine particle detection device - Google Patents

Fine particle detection device Download PDF

Info

Publication number
WO2016024429A1
WO2016024429A1 PCT/JP2015/065302 JP2015065302W WO2016024429A1 WO 2016024429 A1 WO2016024429 A1 WO 2016024429A1 JP 2015065302 W JP2015065302 W JP 2015065302W WO 2016024429 A1 WO2016024429 A1 WO 2016024429A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
specimen
objective lens
irradiation
detection
Prior art date
Application number
PCT/JP2015/065302
Other languages
French (fr)
Japanese (ja)
Inventor
優紀 田中
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016024429A1 publication Critical patent/WO2016024429A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a microparticle detection apparatus.
  • microparticle detection device As a microparticle detection device, light is irradiated to microparticles developed in a liquid or on a membrane or slide glass, and fluorescence or scattered light generated from the microparticles is detected, and particle counting or property inspection is performed.
  • the fine particles include inorganic particles, microorganisms, cells, erythrocytes in blood, leukocytes, platelets, vascular endothelial cells, fine cell fragments of the tissue, and the like.
  • the microparticles become a microparticle suspension when in the liquid.
  • the microparticle suspension is flowed to the capillary together with the sheath liquid. Then, the type of particle and the size of the particle are classified by irradiating a part of the capillary with laser light and detecting scattered light or fluorescence generated when the fine particle is irradiated with light. For example, by labeling particles with a fluorescent reagent that binds to specific particles, the number of fluorescent particles can be counted to count only the specific particles.
  • this flow cytometer By using this flow cytometer, it is possible to measure while suspending a suspension of microparticles at high speed, so that a large amount of specimens can be processed in a short time, and fluorescence emitted from microparticles, scattered light, etc. The intensity of can be measured quantitatively.
  • the flow cytometer requires a complicated mechanism such as a flow mechanism, which causes deterioration in maintainability and cost increase.
  • the flow cytometer As a method for detecting particles other than the flow cytometer, without using the flow mechanism, image a predetermined range in which microparticles are two-dimensionally distributed, and coefficient the number of microparticles from information of the captured image, Furthermore, there is a method for determining the type and size. In this method, since detection and analysis of particles are performed using a captured image, the flow cytometer is referred to as an image cytometer.
  • an imaging method in the image cytometer a method of imaging a two-dimensional region of a visual field range with a light source and the imaging device fixed using an imaging device composed of a microscope and a digital camera having a certain visual field range
  • a method in which scattered light or fluorescence is detected while scanning laser light two-dimensionally to image particles in a scan region is a method of imaging a two-dimensional region of a visual field range with a light source and the imaging device fixed using an imaging device composed of a microscope and a digital camera having a certain visual field range.
  • the laser beam is mounted while the laser beam is focused on the particle and irradiated, and the scattered light or fluorescence generated from the particle is detected.
  • the obtained optical head is scanned two-dimensionally to form an image.
  • laser light is condensed and irradiated on the particles, and the optical head is scanned two-dimensionally to form an image while detecting scattered light or fluorescence generated from the particles.
  • the laser spot diameter is equal to or smaller than the particle size. More than that. For this reason, the image obtained as a result of the two-dimensional scan is not an image in which each particle is resolved, and it is difficult to directly measure the size of the particle from the image.
  • the laser beam irradiation spot is larger than the particle size, the intensity of the scattered light generated from the particle varies depending on the particle size, so that the particle diameter can be determined from the intensity of the scattered light. The reason is that there is a correlation between the particle diameter and the scattered light intensity.
  • Patent Document 1 As a system for detecting light while scanning the optical head relative to the sample, there is a scanning laser microscope disclosed in Japanese Patent Application Laid-Open No. 2012-83621 (Patent Document 1).
  • a scanning unit for two-dimensionally scanning laser light on a specimen, an objective lens for condensing the laser light scanned by the scanning part on the specimen, and light from the specimen are detected.
  • a light detection unit based on the intensity of the light detected by the light detection unit and the scanning position information of the scanning unit by the enlarged partial image generation unit, the partial image generation unit includes a partial image of the adjacent sample without overlapping each other, and Then, an enlarged partial image larger than this image is generated with the same pixel resolution as the partial image.
  • the plurality of enlarged partial images generated by the enlarged partial image generating unit are accumulated by the enlarged partial image accumulating unit, and the plurality of enlarged partial images accumulated in the enlarged partial image accumulating unit by the image synthesizing unit. Are combined so as to partially overlap each other to generate an entire image of the specimen.
  • the conventional scanning laser microscope disclosed in Patent Document 1 has the following problems. That is, when detecting scattered light or fluorescence emitted from microparticles while scanning laser light two-dimensionally, the measurement time is correspondingly increased as the scanning area is increased. Therefore, in order to shorten the measurement time when detecting the same amount of specimen, it is effective to increase the sample amount (microparticle amount) per unit scanning area.
  • an object of the present invention is to provide a microparticle detection apparatus capable of detecting microparticles in a specimen at high speed and efficiently.
  • a microparticle detection apparatus includes: A sample chip having a sample injection part into which a sample containing fine particles is injected; A light source; An irradiation optical system for irradiating light emitted from the light source to the specimen in the specimen chip; A light detection optical system for detecting light emitted from the microparticles in the specimen by the light irradiation; A detection unit that detects the microparticles based on the intensity of light from the microparticles detected by the photodetection optical system;
  • the optical detection optical system includes an objective lens element that transmits light emitted from the light source toward the specimen, and collects light emitted from the microparticles in the specimen by irradiation with the light.
  • the objective lens element includes a beam light transmitting portion having a shape for transmitting the light from the light source and condensing the transmitted light toward the specimen,
  • the thickness of the sample chip in the sample injection portion in the light irradiation direction is D
  • the wavelength of the light irradiated from the light source is ⁇
  • the rate of decrease in the beam radius of the irradiated light due to the condensing in the beam light transmitting portion is R.
  • the relational expression D ⁇ ⁇ / R 2 It is characterized by meeting.
  • the surface of the beam light transmitting portion in the objective lens element has a curvature for condensing light by refraction
  • the thickness of the specimen chip in the specimen injection portion in the direction of light irradiation is D
  • the wavelength of the irradiation light from the light source is ⁇
  • the beam radius of the irradiation light transmitted through the beam light transmission section is r0
  • the beam light transmission section Where f is the focal length of the light after passing through the light, the relational expression D ⁇ ⁇ (f / r0) 2 It comes to satisfy.
  • the beam light transmitting portion in the objective lens element is a region along the optical axis, and has a shape such that the refraction angle of light after transmission is smaller than other regions excluding the beam light transmitting portion. And has a function of narrowing the irradiation light from the light source toward the specimen,
  • the other region of the objective lens element excluding the beam light transmission part has a shape such that the refraction angle of light from the fine particles after transmission increases from the beam light transmission part side toward the outer peripheral edge side. Thus, it has a function of condensing light emitted from the fine particles at a wide angle.
  • An aperture member provided between the objective lens element and the detection unit, and having a hole through which light from the microparticles transmitted through the objective lens element is transmitted;
  • the diameter of the hole in the aperture member is taken in from all the light from the microparticles distributed in the range of the thickness D in the specimen injection part, and from the microparticles existing in the range of the thickness D of the specimen injection part.
  • the variation rate of the light detection efficiency of the emitted light by the detection unit is set to be 10% or less.
  • the fluctuation rate of the light detection efficiency is within 10%, assuming that a state in which the point light sources having the same light intensity are distributed in the range of the thickness D, the detection intensity variation is 10%. It means less than%.
  • the thickness D in the light irradiation direction of the sample injection portion of the sample chip satisfies the relational expression “D ⁇ ⁇ / R 2 ”.
  • the focal depth d of the irradiation light in the objective lens element is set to be equal to or greater than the thickness D in the light irradiation direction in the specimen injection portion. Therefore, it is possible to uniformly irradiate the irradiation region onto the sample region having a thickness that is injected into the sample injection unit. In other words, even if microparticles exist at different positions in the thickness direction of the specimen region, the microparticles can be detected.
  • the focal depth d is equal to or greater than the thickness D of the specimen injection part.
  • the influence of the surface blur can be reduced by the amount of the focal depth d larger than the thickness D.
  • the specimen having the thickness D can be measured at a time, it becomes possible to detect fine particles in the specimen at high speed and efficiently, and to shorten the measurement time.
  • FIG. 3 is a diagram in which fine particles to be detected exist in the center of the specimen injection layer in FIG. 2.
  • FIG. 3 is a diagram in which particles to be detected are present on the specimen injection layer. It is a figure at the time of assuming that scattered light generate
  • FIG. 1 shows schematic structure of the microparticle detection apparatus different from FIG. 1 and FIG.
  • FIG. 1 shows schematic structure of the microparticle detection apparatus different from FIG. 1 and FIG. It is a figure which shows the scanning state of the sample by the optical module in FIG.
  • FIG. 1 is a figure which shows schematic structure of the microparticle detection apparatus of this Embodiment.
  • This microparticle detection apparatus includes a disk-shaped inspection chip into which a specimen is injected, a rotational drive system that rotates the inspection chip, a light detection optical system that detects scattered light and fluorescence, and the detection optical system in the radial direction.
  • a driving mechanism for driving and a detection unit that receives the signal from the light detection optical system and detects the microparticles are roughly configured.
  • 1 is a light source device
  • 2 is an objective lens
  • 3 to 5 are first to third detection devices.
  • the light source device 1, the objective lens 2, and the first to third detection devices 3 to 5 constitute an optical module 6 housed in a frame.
  • a circular disk-shaped inspection chip 7 is arranged above the optical module 6 so as to face the objective lens 2.
  • the inspection chip 7 for example, a suspension in which fine particles labeled with a fluorescent substance are distributed.
  • a transfer support such as a gel support or a membrane is injected as a specimen.
  • the light source device 1 of the optical module 6 is provided with a semiconductor laser 8 as a light source.
  • the filter 11 and the first aperture member 12 are arranged in this order.
  • the semiconductor laser 8, the collimator lens 9, the first band-pass filter 10, the first ND filter 11, and the first aperture member 12 are housed in one case, and the light source device 1 which is an example of the above-described irradiation optical system. It is composed.
  • a prism mirror 13 that reflects the light transmitted through the first aperture member 12 toward the objective lens 2 is disposed. Further, below the prism mirror 13 in FIG. 1 on the optical axis of the objective lens 2, a first dichroic mirror 14 that transmits fluorescence from the objective lens 2 and reflects scattered light in order from the prism mirror 13 side. Among the fluorescence transmitted through the first dichroic mirror 14, the second fluorescence that transmits the first fluorescence having the first wavelength and reflects the second fluorescence having the second wavelength shorter than the first wavelength is reflected. A dichroic mirror 15 is arranged.
  • the “scattered light” referred to in the present invention is light in which the light emitted from the semiconductor laser 8 is isotropically or anisotropically scattered from the irradiated portion of the specimen to the surroundings. It has the same wavelength as the incident light.
  • “fluorescence” means that the light emitted from the semiconductor laser 8 irradiates the sample to excite the fluorescent substance that labels the microparticles, and isotropically passes from the irradiated position of the sample to the surroundings.
  • the scattered fluorescence is light having a wavelength different from that of the outgoing light.
  • the objective lens 2 is stored in a lens holder (not shown), and is moved in the optical axis direction by a drive unit (not shown) such as a stepping motor, so that the focal position is adjusted. It can be changed.
  • a drive unit such as a stepping motor
  • the second dichroic mirror 15 on the optical axis of the objective lens 2 is condensed by the objective lens 2 and converted into parallel light in order from the second dichroic mirror 15 side in FIG.
  • the first fluorescence having the first wavelength that has passed through the second band-pass filter 16 and the second band-pass filter 16 for dimming light from the specimen is collected.
  • the 1st lens 17 and the 2nd aperture member 18 which cuts the 1st fluorescence stray light which passed the 1st lens 17 are arranged.
  • a detection element such as a photomultiplier tube (PMT) that detects the first fluorescence that has passed through the second aperture member 18 is provided below the second aperture member 18 on the optical axis of the objective lens 2.
  • PMT photomultiplier tube
  • One detector 19 is arranged.
  • the 2nd aperture member 18 and the 1st detector 19 are stored in one case, and constitute the 1st detection device 3 which is an example of the above-mentioned optical detection optical system.
  • a third bandpass filter 20, a second lens 21, a third aperture member 22, and a second detector 23 are arranged in this order from the second dichroic mirror 15 side on the left side of the second dichroic mirror 15 in FIG.
  • the third aperture member 22 and the second detector 23 are housed in one case and constitute a second detection device 4 that is an example of the light detection optical system.
  • the third band pass filter 20, the second lens 21, the third aperture member 22, and the second detector 23 are basically composed of the second band pass filter 16, the first lens 17, and the second aperture member 18.
  • the first detector 19 has the same configuration. However, it is different in that the processing for the second fluorescence of the second wavelength is performed.
  • a second ND filter 24, a third lens 25, a fourth aperture member 26, and a third detector 27 are arranged in this order from the first dichroic mirror 14 side on the right side of the first dichroic mirror 14 in FIG.
  • the fourth aperture member 26 and the third detector 27 are housed in one case and constitute the third detection device 5 which is an example of the light detection optical system.
  • the second ND filter 24, the third lens 25, the fourth aperture member 26, and the third detector 27 are basically composed of the second bandpass filter 16, the first lens 17, the second aperture member 18, and the first detection. It has the same configuration as the container 19. However, it is different in that processing is performed on scattered light from the specimen.
  • the light detection optical system includes the objective lens 2, the dichroic mirrors 14 and 15, the filters 16, 20, and 24, the lenses 17, 21, and 25, the aperture members 18, 22, and the like. 26 and the detectors 19, 23 and 27.
  • the inspection chip 7 is configured to be transparent and circular, and is placed on a transparent and circular table 29 fixed to the central shaft 28 and fixed to the central shaft 28.
  • the central shaft 28 can be rotated by a motor 30 as an example of the rotational drive system.
  • the optical module 6 can be moved by the drive mechanism in the radial direction of the disk formed by the inspection chip 7.
  • the drive mechanism of the optical module 6 is not particularly limited.
  • the frame body of the optical module 6 is configured to be movable by being guided by the guide rail disposed in the radial direction by a timing belt or the like reciprocated in the radial direction by a stepping motor or the like.
  • FIG. 2 shows a schematic configuration of the inspection chip 7.
  • 2A is an external perspective view
  • FIG. 2B is a cross-sectional view taken along the line A-A ′ in FIG.
  • the inspection chip 7 has a structure in which two transparent substrates 31 and 32 each provided with a center hole 33 for fixing are bonded to each other via a spacer 34 provided with a center hole 35 for fixing. Have.
  • the spacer 34 is formed with a circular groove 36 concentric with the center hole 35. Then, by closing both side surfaces of the spacer 34 with the two substrates 31 and 32, the circular groove 36 becomes a donut-shaped space and becomes a specimen injection layer into which the specimen is injected.
  • the specimen injection layer 36 has a thickness D corresponding to the thickness of the spacer 34.
  • the thickness D of the specimen injection layer 36 is preferably about several tens of micrometers.
  • a sample injection port 37 for injecting the sample into the sample injection layer 36 is formed in one substrate 31 (for example, located on the upper side in FIG. 2).
  • the sample injection port 37 is provided at a plurality of locations in the circumferential direction (4 locations in FIG. 2A) and a plurality of locations in the radial direction (2 locations in FIG. 2A) and sealed after the sample is injected. Is done.
  • test chip 7 into which the sample has been injected is placed on the table 29, and the optical module 6 is moved in the radial direction while being rotated by the motor 30 to detect fluorescence and scattered light from the microparticles in the sample. Is done.
  • microparticle detection apparatus operation and function of the microparticle detection apparatus will be described by taking as an example the case where the two types of fluorescence and the scattered light are detected simultaneously.
  • Laser light is emitted from the semiconductor laser 8 of the light source device 1.
  • the emitted laser light is collimated by the collimator lens 9 and passes through the first bandpass filter 10.
  • the first band pass filter 10 cuts light having an unnecessary wavelength.
  • the laser light passes through the first ND filter 11, a part of the irradiation light intensity is reduced, passes through the first aperture member 12 for shaping the incident light beam diameter, and is guided to the prism mirror 13.
  • the laser light is reflected by the prism mirror 13, passes through the objective lens 2 and the table 29, and is collected on the specimen injection layer 36 of the test chip 7.
  • the length of the prism mirror 13 in the longitudinal direction is short, the width in the direction perpendicular to the longitudinal direction is narrow, and the laser light from the semiconductor laser 8 is near the optical axis of the objective lens 2. It passes through only the (beam light transmission part). In this way, when the microscopic particles in the specimen injection layer 36 are irradiated with focused light, fluorescence and scattered light that is isotropically scattered from the portion irradiated with the focused light are generated.
  • the beam diameter of the laser beam transmitted through the first aperture member 12 is smaller than the aperture diameter of the objective lens 2. That is, the effective NA of the laser beam is made smaller than the NA (numerical aperture) of the objective lens 2. Therefore, the depth of focus of the laser light is increased, and the laser light can be uniformly irradiated onto the thick specimen region injected into the thick specimen injection layer 36. Thereby, even if microparticles exist at different positions in the thickness direction of the specimen region, the microparticles can be detected.
  • the depth of focus is generally defined as a distance to a position twice the root of the spot diameter at the focal position.
  • the spot diameter is generally the diameter at a position where the intensity is 1 / e 2 with respect to the light intensity at the center position of the spot.
  • the depth of focus is determined by the wavelength of irradiation light / (effective NA of irradiation light) 2 , and the value is not less than the thickness of the specimen injection layer 36 in the test chip 7 and not more than three times the thickness of the specimen injection layer 36. Is set. Therefore, it is possible to keep the spot diameter of the irradiation light at a constant size and to secure the necessary depth of focus.
  • the effective NA may be different between the tangential direction and the radial direction of the inspection chip 7.
  • the effective NA in the tangential direction may be larger than the effective NA in the radial direction.
  • the beam diameter in the radial direction is larger in the vicinity of the focal position than in the tangential direction.
  • the scattered light and fluorescence are combined. Called signal light).
  • the generated signal light is focused by the first to third lenses 17, 21, 25.
  • the first to third lenses 17, 21 and 25 may be the same lens as the objective lens 2 used when condensing the laser light. In that case, it is possible to reduce the size of the microparticle detection apparatus by using the same lens. Further, when the same lens as the objective lens 2 is used for detecting the scattered light, so-called back scattered light is detected from the light scattered by the fine particles, and the classification of the fine particle system by the scattered light is easy. become.
  • Scattered light of the signal light is reflected by the first dichroic mirror 14, attenuated by the second ND filter 24, converged by the third lens 25, and guided to the third detector 27.
  • a fourth aperture member 26 is disposed at the focal position of the third lens 25, and stray light is removed.
  • the aperture diameter of the fourth aperture member 26 allows light from a substance located within the focal depth of the laser light (irradiation light) to pass sufficiently, but can remove scattered light and stray light from other than the in-focus position.
  • the diameter is set to a certain diameter.
  • the fourth aperture member is formed by the optical system following the objective lens 2. At position 26, the light spreads. Therefore, it is cut without being able to efficiently pass through the fourth aperture member 26.
  • the method for determining the aperture diameter of the fourth aperture member 26 is as follows.
  • ⁇ Aperture diameter determination method A As shown in FIG. 3, when the detected microparticle 38 exists at the center of the specimen injection layer 36 in the thickness direction, the scattered light is collected by the objective lens 2 and the third lens 25, and the fourth aperture is obtained. The light intensity transmitted through the member 26 and detected by the third detector 27 is 100. (2) As shown in FIG. 4, when the detected particles 38 are present in the upper or lower part of the specimen injection layer 36 in the thickness direction, the scattered light is condensed by the objective lens 2 and the third lens 25, and the fourth The light intensity transmitted through the aperture member 26 and detected by the third detector 27 becomes 90 or more.
  • the fourth aperture member 26 By determining the aperture diameter so that the above A- (1) and A- (2) are established, even if microparticles exist at different positions in the thickness direction in the specimen injection layer 36, the fourth aperture member 26 The variation rate of the light intensity that is transmitted through and detected by the third detector 27 is within 10%, and the error of the minute particle diameter when detecting scattered light can be within 10%.
  • ⁇ Aperture diameter determination method B As shown in FIG. 3, when the detected microparticle 38 exists at the center of the specimen injection layer 36 in the thickness direction, the scattered light is collected by the objective lens 2 and the third lens 25, and the fourth aperture is obtained. The light intensity transmitted through the member 26 and detected by the third detector 27 is 100. (2) When it is assumed that scattered light is generated at a position twice or above the thickness direction in the specimen injection layer 36 in the thickness direction, the scattered light is collected by the objective lens 2 and the third lens 25, The light intensity transmitted through the fourth aperture member 26 and detected by the third detector 27 becomes 70 or more.
  • the inspection chip 7 is moved in the thickness direction due to surface blurring in the direction of the central axis 28 (that is, the light irradiation direction).
  • the fluctuation rate of the light intensity that is transmitted through the fourth aperture member 26 and detected by the third detector 27 is within 30%, and the error of the minute particle diameter at the time of detecting scattered light is also within 30%. it can.
  • ⁇ Aperture diameter determination method C As shown in FIG. 3, when the detected microparticle 38 exists at the center of the specimen injection layer 36 in the thickness direction, the scattered light is collected by the objective lens 2 and the third lens 25, and the fourth aperture is obtained. The light intensity transmitted through the member 26 and detected by the third detector 27 is 100. (2) As shown in FIG. 5, when it is assumed that scattered light is generated on the front surface or the back surface of the inspection chip 7, the scattered light is collected by the objective lens 2 and the third detection lens 25, and the fourth aperture member 26. And the light intensity detected by the third detector 27 becomes 0.01 or less.
  • the aperture diameter that satisfies all the conditions of the aperture diameter determination methods A, B, and C is most suitable as the aperture diameter of the fourth aperture member 26.
  • the reason is that unintended scattered light is assumed to be mixed due to foreign matters such as scratches and dust, and the setting of the aperture diameter when detecting scattered light is particularly important.
  • the second fluorescence having the shorter second wavelength is reflected by the second dichroic mirror 15 and transmitted through the third bandpass filter 20.
  • the light is converged by the second lens 21 and guided to the second detector 23.
  • a third aperture member 22 is disposed at the focal position of the second lens 21, and stray light is removed by the third aperture member 22.
  • the first fluorescence having the longer first wavelength transmitted through the second dichroic mirror 15 is transmitted through the second band-pass filter 16 and then converged by the first lens 17 to be the first detector. 19 leads.
  • a second aperture member 18 is disposed at the focal position of the first lens 17 and stray light is removed.
  • the aperture diameters of the second aperture member 18 and the third aperture member 22 are not necessarily the aperture diameter. It is not necessary to satisfy all the conditions of the diameter determination methods A, B, and C. It is sufficient that only the aperture diameter determining method A is satisfied.
  • the signal processing unit AD-converts the electrical signal, which is an analog signal, into a digital signal, and further processes the digital signal to process an information processing apparatus such as a personal computer 80 that is an example of the detection unit. Forwarded to
  • the information processing apparatus based on the processed digital signal, the type of minute particles that generate fluorescence or scattered light are quantitatively analyzed, and the analysis result is displayed. .
  • the laser light emitted from the semiconductor laser 8 is passed through the collimator lens 9 and the prism mirror 13 to the specimen injected into the specimen injection layer 36 of the test chip 7. Irradiate.
  • the table 29 on which the inspection chip 7 is placed is rotated by a motor 30, while the optical module 6 in which the light source device 1, the objective lens 2, and the first to third detection devices 3 to 5 are housed is moved in the radial direction. Move to.
  • the first to third detection devices 3 to 5 detect the fluorescence and scattered light that are isotropically scattered from the minute particles in the specimen irradiated with the focused laser beam. Detection is performed by means of the devices 19, 23, 27.
  • the specimen injection layer 36 of the test chip 7 is given a thickness D, and the optical system is optimized as follows.
  • the sample is irradiated with the laser beam with the objective lens 2 so as to be focused on the position of the sample.
  • the beam radius is set to be less than twice the route radius of the spot radius r” or “the thickness D into which the specimen is injected is set to a depth of focus d or less.
  • the thickness D is set to a depth of focus d or less.
  • R the beam radius reduction rate
  • the depth of focus d can be increased while the beam radius of the laser beam cannot be reduced.
  • “3D” which is the upper limit value of the focal depth d is the accuracy of the irradiation optical system and the light detection optical system, and the extension direction of the central axis 28 during scanning of the optical module 6 in the radial direction.
  • the first detector 19, the second detector 23, and the third detector 27 are set so that light can be detected with optimum accuracy.
  • the objective lens 2 is configured so that part of the objective lens 2 along the optical axis can transmit laser light. That is, in the present embodiment, the objective lens 2 has a function for transmitting laser light and guiding it to the specimen, and a function for condensing light from the microparticles.
  • the laser beam from the semiconductor laser 8 passes through only a very narrow region near the optical axis of the objective lens 2, and after passing through the objective lens 2, satisfies the condition of D ⁇ ⁇ / R 2 and is irradiated to the specimen. It has become so. Further, the entire region of the objective lens 2 guides the light emitted from the fine particles to the first to third detectors 19, 23, 27.
  • the shape of the objective lens 2 is set as follows.
  • the beam light transmitting portion that is a part of the vicinity of the optical axis of the objective lens 2 and transmits the laser light from the semiconductor laser 8 that is the light source has a gentle curvature and is a semiconductor.
  • the laser beam from the laser 8 (hereinafter simply referred to as a beam) has a function of focusing toward the inspection chip 7.
  • an effective F value that is a value obtained by dividing the focal length f by the effective aperture (2 ⁇ r0).
  • the beam light transmitting portion along the optical axis in the objective lens 2 squeezes the laser light loosely (however, if the aperture is too narrow, the focal length f becomes too small, so the reduction rate R is (Because the above condition “D ⁇ ⁇ / R 2 ” is not satisfied), the laser beam after passing through the objective lens 2 has a refraction angle smaller than that of the peripheral portion. Yes.
  • the refraction angles of the scattered light and the fluorescence after passing through the objective lens 2 are changed from the beam light transmitting part side to the outer peripheral side. It has a shape that gradually becomes larger toward.
  • the fluorescence and scattered light collected by the objective lens 2 are converged by the first to third lenses 17, 21, 25, and the second to fourth aperture members 18, 22, 26 are collected.
  • the aperture diameters of the aperture members 18, 22, and 26 are determined so that all the fluorescence and the scattered light from the fine particles distributed in the range of the thickness D in the specimen injection layer 36 can be taken in. In that case, even if microparticles exist at different positions in the thickness direction in the specimen injection layer 36, detection of light transmitted through the aperture members 18, 22, 26 and detected by the detectors 19, 23, 27.
  • the variation rate of efficiency is within 10%.
  • the fluctuation rate of the light detection efficiency is within 10%, assuming that the point light sources having the same light intensity are distributed in the range of the thickness D, the variation in the detection intensity is less than 10%. It means that.
  • the aperture member is designed to transmit only the target light and shield other light.
  • the light emitted from a specific depth in the optical axis direction is transmitted, and the light from other depths is designed to be shielded.
  • the range of the depth at the position where the fluorescence and the scattered light transmitted through the aperture members 18, 22, and 26 are emitted is smaller than the thickness D of the specimen injection layer 36
  • the distribution is in the range of the thickness D. It becomes impossible to detect all the fine particles. Therefore, in the present invention, not only the focal depth d of the laser beam is set to be larger than the thickness D of the specimen injection layer 36 as described above, but also the position where the light transmitted through each aperture member 18, 22, 26 is emitted.
  • the depth range is also set larger than the thickness D of the specimen injection layer 36.
  • microparticles exist at different positions in the thickness direction in the specimen injection layer 36, they pass through the aperture members 18, 22, and 26 and are detected by the detectors 19, 23, and 27.
  • the fluctuation rate of the light intensity can be made within 10%, and the error of the fine particle diameter when detecting fluorescence and scattered light can be made within 10%.
  • This embodiment relates to an irradiation optical system different from the irradiation optical system in the first embodiment, and has a configuration in which irradiation laser light is reflected by a dichroic mirror.
  • FIG. 6 is a diagram showing a schematic configuration in the microparticle detection apparatus of the present embodiment.
  • Reference numeral 41 denotes a light source device
  • 42 denotes an objective lens
  • 43 denotes a first detection device
  • 44 denotes a second detection device.
  • the light source device 41, the objective lens 42, the first detection device 43, and the second detection device 44 are housed in a frame to constitute an optical module 45.
  • a circular disk-shaped inspection chip 46 is disposed above the optical module 45 so as to face the objective lens 42.
  • the inspection chip 46 for example, a suspension in which fine particles labeled with a fluorescent substance are distributed.
  • a sample injection layer 47 is provided in which a transfer support such as a gel support or a membrane is sealed as a sample.
  • the light source device 41 of the optical module 45 is provided with a first semiconductor laser 48 as a light source.
  • a first collimator lens 49 On the optical axis of the first semiconductor laser 48, a first collimator lens 49, a spot size adjustment lens 50, and a first semiconductor laser 48 are provided.
  • the one aperture member 51 is arranged in this order.
  • a second semiconductor laser 52 that emits a laser beam having a second wavelength different from the first wavelength of the laser beam emitted from the first semiconductor laser 48 is disposed.
  • a second collimator lens 53 for collimating the laser beam from the second semiconductor laser 52 is disposed.
  • a first dichroic mirror that transmits the laser light having the first wavelength and reflects the laser light having the second wavelength is transmitted to the intersection between the optical axis of the first semiconductor laser 48 and the optical axis of the second semiconductor laser 52. 54 is arranged.
  • the first semiconductor laser 48, the first collimator lens 49, the spot size adjusting lens 50, the first aperture member 51, the second semiconductor laser 52, the second collimator lens 53, and the first dichroic mirror 54 are included in one case.
  • the light source device 41 that is an example of the irradiation optical system is configured.
  • a prism 55 is disposed on the optical axis of the first semiconductor laser 48 to reflect the light transmitted through the first dichroic mirror 54 toward the objective lens 42 side.
  • a second dichroic mirror 56 that reflects the light from the prism 55 so as to enter the objective lens 42 is disposed at the intersection of the light reflected by the prism 55 and the optical axis of the objective lens 42.
  • the second dichroic mirror 56 transmits the fluorescence from the microparticles in the specimen injection layer 47 and reflects the scattered light.
  • a plurality of light sources of the first semiconductor laser 48 and the second semiconductor laser 52 are mounted, but a plurality of light sources are not necessarily required.
  • 57 is a bandpass filter
  • 58 is a first lens
  • 59 is a second aperture member
  • 60 is a first detector, which detects fluorescence.
  • 61 is an ND filter
  • 62 is a second lens
  • 63 is a third aperture member
  • 64 is a second detector, which detects scattered light. That is, in the present embodiment, the optical detection optical system includes the objective lens 42, the second dichroic mirror 56, the filters 57 and 61, the lenses 58 and 62, the aperture members 59 and 63, and the detectors. 60, 64.
  • the inspection chip 46 is configured to be transparent and circular, and is accommodated in a circular dish-shaped holder 66 fixed to the central shaft 65 and fixed to the central shaft 65.
  • the central shaft 65 can be rotated by a spindle motor 67 as an example of the rotational drive system.
  • the optical module 45 is movable by the drive mechanism in the radial direction of the disk formed by the inspection chip 46.
  • Reference numeral 66a denotes an outer peripheral surface of the holder 66 provided with the encoder ring
  • 68 denotes a head on which a pair of light emitting elements and light receiving elements for detecting the encoder ring are mounted.
  • a semiconductor laser emitting a laser beam having a wavelength reflected by the second dichroic mirror 56 for example, a first semiconductor laser 48 to a first one.
  • a laser beam having a wavelength is emitted.
  • the laser light emitted from the first semiconductor laser 48 is converged by the first collimator lens 49, the spot size adjusting lens 50, and the first aperture member 51, and passes through the first dichroic mirror 54.
  • the light is reflected by the prism 55 and the second dichroic mirror 56, passes through the objective lens 42 and the inspection chip 46, and is collected on the specimen injection layer 47.
  • the length of the prism 55 in the longitudinal direction (horizontal direction) is short, the width in the direction orthogonal to the longitudinal direction is narrow, and the laser light from the first semiconductor laser 48 is near the optical axis of the objective lens 42. It passes through only the (laser light transmission part). In this way, when the microscopic particles in the specimen injection layer 47 are irradiated with focused light, scattered light isotropically scattered from the irradiated portion to the surroundings.
  • the scattered light is isotropically emitted from the portion of the specimen injection layer 47 irradiated with the focused light to the surroundings.
  • the component of the emitted scattered light that has passed through the inspection chip 46 and entered the objective lens 42 passes through the objective lens 42, is reflected by the second dichroic mirror 56, and is ND filter 61 and second lens 62. Then, it passes through the third aperture member 63 and is detected by the second detector 64.
  • the signal detected by the second detector 64 is subjected to processing such as AD conversion by a built-in AD converter or the like, and then sent to a personal computer (PC) 80 or the like as an example of the detection unit.
  • PC personal computer
  • the third aperture member 63 is arranged to cut spatial stray light. It also functions as a confocal aperture member, and removes unnecessary reflected light and stray light from other than the surface where the specimen injection layer 47 exists. For example, since the reflected light generated on the surface of the inspection chip 46 and the lens surface is deviated from the focal position of the objective lens 42, it becomes light spread at the position of the third aperture member 63 by the optical system following the objective lens 42. The third aperture member 63 cannot be efficiently transmitted.
  • the scattered light intensity at each measurement point is recorded in the internal memory of the PC 80 or the like.
  • the scattered light detection by the first wavelength laser beam from the first semiconductor laser 48 has been described.
  • the second wavelength laser beam from the second semiconductor laser 52 can also be detected by the first wavelength. Except for being reflected by the one dichroic mirror 54, it is exactly the same.
  • the fluorescence detection for detecting the fluorescence is exactly the same except that the fluorescence transmitted through the second dichroic mirror 56 is detected by the first detection device 43.
  • the fluorescence generated in the fine particles is not blocked by the prism 55 and its support (not shown), and the fluorescence can be detected with high sensitivity.
  • the focal depth d of the objective lens 42 is the wavelength ⁇ / (effective NA of the irradiation light) 2 , that is, the wavelength ⁇ / (beam radius reduction rate R) 2 of the irradiation light.
  • the value is set to be not less than the thickness D of the specimen injection layer 47 in the test chip 46 and not more than three times the thickness D of the specimen injection layer 47. In this way, the beam radius of the irradiation light is set to be equal to or less than twice the route of the spot radius r so as to ensure the necessary depth of focus d.
  • the depth range of the position where the light transmitted through each of the aperture members 59 and 63 is emitted is set larger than the thickness D of the specimen injection layer 47.
  • the shape of the objective lens 42 is a region along the optical axis, and the beam light transmitting portion has a shape in which the refraction angle of the light after transmission becomes smaller than other regions, and each semiconductor The irradiation light from the lasers 48 and 52 has a function of narrowing toward the specimen.
  • the other region excluding the beam light transmission part has a shape such that the refraction angle of the light from the fine particles after transmission increases from the beam light transmission part side toward the outer peripheral edge side, A function of condensing light emitted from a minute particle at a wide angle is provided.
  • the fluctuations in the light intensity that are transmitted through the aperture members 59 and 63 and detected by the detectors 60 and 64 are detected.
  • the rate can be within 10%, and the error of the fine particle diameter when detecting fluorescence and scattered light can be within 10%.
  • the microparticle detection method in the first embodiment and the second embodiment is two-dimensionally scanned in two directions orthogonal to each other on the inspection chip or the optical module.
  • the present invention relates to a fine particle detection apparatus applied to a two-dimensional scanning method.
  • FIG. 7 shows, as an example, a microparticle detection apparatus (PC80 is omitted) that scans in the X direction while moving the inspection chip in the Y direction.
  • PC80 microparticle detection apparatus
  • 71 is a light source device
  • 72 is an objective lens
  • 73 is a band pass filter
  • 74 is a detection device.
  • the light source device 71, the objective lens 72, the band pass filter 73, and the detection device 74, which are an example of the irradiation optical system, are housed in a frame and constitute the optical module 75.
  • a glass stage 76 is disposed above the optical module 75 so as to face the objective lens 72. On the glass stage 76, for example, a suspension, a gel support, or a membrane in which fine particles labeled with a fluorescent substance are distributed.
  • a test chip 77 in which a transfer support such as a sample is injected as a specimen is set.
  • the glass stage 76 has a rectangular shape, and scans in a two-dimensional direction of a first scanning direction in the long side direction and a second scanning direction in the short side direction orthogonal to the first scanning direction. It is configured.
  • the scanning method in that case is not particularly limited. In short, it is only necessary to include a first operation unit that reciprocates the glass stage 76 in the first scanning direction and a second operation unit that reciprocates in the second scanning direction.
  • the optical module 75 side may be scanned in a two-dimensional direction, or the optical module 75 may be reciprocated in the first scanning direction while moving the glass stage 76 in the second scanning direction.
  • the light source device 71 has the same function as the light source device 1 shown in FIG. 1 in the first embodiment or the light source device 41 shown in FIG. 6 in the second embodiment.
  • the light detection optical system has a configuration that functions in the same manner as the light detection optical system shown in FIG. 1 in the first embodiment or the light detection optical system shown in FIG. 6 in the second embodiment. ing.
  • the bandpass filter 73 is disposed in the rotary folder 79 and can be replaced with a filter having another wavelength according to the wavelength of the fluorescence.
  • the intensity of scattered light or fluorescence is obtained by relatively scanning the glass stage 76 on which the optical module 75 or the inspection chip 77 is placed in a two-dimensional direction.
  • the distribution image is read.
  • the microparticle detection apparatus scans the optical module 75 in the X direction that is the first scanning direction while moving the glass stage 76 in the Y direction that is the second scanning direction. In this way, a distribution image of the intensity of scattered light or fluorescence is generated.
  • the focal depth d of the objective lens 72 is the wavelength ⁇ / (effective NA of irradiation light) 2 , that is, the wavelength ⁇ / (beam radius reduction rate R) 2 of irradiation light.
  • the value is set to be not less than the thickness D of the specimen injection layer 78 in the test chip 77 and not more than three times the thickness D of the specimen injection layer 78. In this way, the beam radius of the irradiation light is set to be equal to or less than twice the route of the spot radius r, and the necessary depth of focus d is secured.
  • the depth range of the position where the light transmitted through the aperture member is emitted is set larger than the thickness D of the specimen injection layer 78.
  • the beam light transmitting portion which is a region along the optical axis of the objective lens 72, has such a shape that the refraction angle of the light after transmission is smaller than other regions, and a semiconductor laser ( A function of narrowing the irradiation light from the light source toward the specimen.
  • the other region excluding the beam light transmission part has a shape such that the refraction angle of the light from the fine particles after transmission increases from the beam light transmission part side toward the outer peripheral edge side, A function of condensing light emitted from a minute particle at a wide angle is provided.
  • the variation rate of the light intensity that is transmitted through the aperture member and detected by the detector is within 10%, and the fluorescence In addition, the error of the fine particle diameter when detecting scattered light can be made within 10%.
  • the microparticle detection apparatus of the present invention is Test chips 7, 46, 77 having specimen injection portions 36, 47, 78 into which specimens containing fine particles are injected;
  • the light detection optical system transmits light emitted from the light sources 8, 48, and 52 toward the specimen, and condenses light emitted from the microparticles in the specimen by irradiation with the light.
  • the objective lens elements 2, 42, 72 include a beam light transmitting portion having a shape for transmitting the light from the light sources 8, 48, 52 and condensing the transmitted light toward the specimen.
  • the thickness of the test chip 7, 46, 77 in the specimen injection part 36, 47, 78 in the light irradiation direction is D
  • the wavelength of the irradiation light from the light source 8, 48, 52 is ⁇
  • the beam light transmission part is
  • the reduction rate of the beam radius of the irradiation light by the above-mentioned condensing is R
  • the relational expression D ⁇ ⁇ / R 2 It is characterized by meeting.
  • the focal depth d of the irradiation light in the objective lens elements 2, 42, 72 is set to be equal to or greater than the thickness D in the light irradiation direction in the specimen injection portions 36, 47, 78.
  • the irradiation light can be uniformly irradiated onto the specimen region having a thickness that is injected into the specimen injection portions 36, 47, and 78. In other words, even if microparticles exist at different positions in the thickness direction of the specimen region, the microparticles can be detected.
  • the depth of focus d is the sample injection. Since the thickness is equal to or greater than the thickness D of the portions 36, 47, and 78, the influence of the surface blur can be reduced by the amount of the focal depth d larger than the thickness D.
  • the specimen having the thickness D can be measured at a time, it becomes possible to detect fine particles in the specimen at high speed and efficiently, and to shorten the measurement time.
  • the focal depth d of the irradiation light is desirably larger than the thickness D in the light irradiation direction.
  • the focal depth d represented by ⁇ / R 2 is set to be not more than three times the thickness D in the light irradiation direction in the specimen injection sections 36, 47, 78. Accordingly, considering the accuracy of the irradiation optical systems 1, 41, 71 and the light detection optical system and surface blurring in the light irradiation direction of the inspection chips 7, 46, 77, the light detection optical system is optimal. Light detection can be performed with high accuracy.
  • the surface of the beam light transmitting portion in the objective lens element 2, 42, 72 has a curvature for condensing light by refraction
  • the thickness of the test chip 7, 46, 77 in the specimen injection part 36, 47, 78 in the light irradiation direction is D
  • the wavelength of the light emitted from the light source 8, 48, 52 is ⁇
  • the beam light transmission part is The relation D ⁇ ⁇ (f / r0) 2 , where r0 is the beam radius of the irradiated light to be transmitted and f is the focal length of the light transmitted through the beam light transmitting portion. It comes to satisfy.
  • the surface of the beam light transmitting portion has a curvature for condensing light by refraction, and the thickness D of the specimen injection portions 36, 47, 78 is expressed by the relational expression “D ⁇ ⁇ ( f / r0) 2 "is satisfied. Therefore, it is desirable that the beam radius r0 of the irradiation light transmitted through the beam light transmitting portion is smaller within a range satisfying the relational expression “D ⁇ ⁇ / R 2 ”.
  • the beam light transmission part in the objective lens element 2, 42, 72 is an area along the optical axis so that the refraction angle of the light after transmission is smaller than other areas excluding the beam light transmission part. And has a function of narrowing the irradiation light from the light sources 8, 48, 52 toward the specimen, In other regions of the objective lens elements 2, 42 and 72 excluding the beam light transmission part, the refraction angle of the light from the fine particles after transmission increases from the beam light transmission part side toward the outer peripheral edge side. And has a function of condensing light emitted at a wide angle from the fine particles.
  • the surface of the beam transmitting portion having a curvature for condensing light by refraction and a small beam radius r0 of the transmitted irradiation light is used as the light in the objective lens elements 2, 42, 72.
  • a region along the axis is formed so that the refraction angle of light after transmission is smaller than that of other regions.
  • the other region (the region around the region along the optical axis) excluding the beam light transmission part is shaped so that the refraction angle of the light from the fine particles after transmission increases outward. Yes.
  • the single objective lens element 2, 42, 72 is focused on the light emitted from the light sources 8, 48, 52 toward the specimen, and the light emitted from the fine particles at a wide angle is condensed. It is possible to have a function to perform.
  • the diameters of the holes in the aperture members 18, 22, 26, 59, 63 are all taken in from the fine particles distributed in the range of the thickness D in the sample injection sections 36, 47, 78, and the sample injection section
  • the variation rate of the light detection efficiency of the light emitted from the fine particles existing in the range of the thickness D of 36, 47, 78 by the detection unit is set to 10% or less.
  • the aperture members 18, 22, 26, 59, 63 are provided between the objective lens elements 2, 42, 72 and the detection unit, and the aperture members 18, 22, 26, 59 are provided. , 63 with a diameter of the hole in the range of the thickness D of the specimen injection part 36, 47, 78, the variation rate of the light detection efficiency by the detection part of the light emitted from the fine particles is 10% or less. It is set as follows. Therefore, even if microparticles exist at different positions in the thickness direction in the specimen injection portions 36, 47, and 78, the variation rate of the light intensity transmitted through the holes of the aperture members 18, 22, 26, 59, and 63 is increased. It can be within 10%.

Abstract

A fine particle detection device of the present invention comprises a specimen chip (7) having a specimen injection part into which a specimen including fine particles is injected; a light source (8); an irradiation optical system (1) that irradiates the specimen with light from the light source (8); a photodetection optical system (2, 13 to 27) that detects light emitted from the fine particles due to the irradiation of light; and a detector that detects the fine particles on the basis of the strength of the light from the fine particles. The photodetection optical system (2, 13 to 27) has an objective lens element (2) that transmits light from the light source (8) toward the specimen while condensing light emitted from the fine particles. The objective lens element (2) has a beam light transmission part having a shape that condenses light from the light source (8) toward the specimen. When the thickness of the specimen injection part is D, the wavelength of irradiation light from the light source (8) is λ, and a rate of decrease in beam radius of irradiation light in the beam light transmission part is R, a relational expression D≤λ/R2 is satisfied.

Description

微小粒子検出装置Fine particle detector
 この発明は、微小粒子検出装置に関する。 The present invention relates to a microparticle detection apparatus.
 従来より、微小粒子検出装置として、液体中あるいはメンブレンやスライドガラス上に展開された微小粒子に光を照射し、上記微小粒子から発生する蛍光あるいは散乱光を検出して、粒子の計数あるいは性状検査を行うものがある。ここで、上記微小粒子としては、無機粒子、微生物、細胞、血液中の赤血球、白血球、血小板、血管内皮細胞、上記組織の微小細胞片等が含まれる。そして、上記微小粒子は、液体中にある場合には微小粒子懸濁液となる。 Conventionally, as a microparticle detection device, light is irradiated to microparticles developed in a liquid or on a membrane or slide glass, and fluorescence or scattered light generated from the microparticles is detected, and particle counting or property inspection is performed. There is something to do. Here, the fine particles include inorganic particles, microorganisms, cells, erythrocytes in blood, leukocytes, platelets, vascular endothelial cells, fine cell fragments of the tissue, and the like. The microparticles become a microparticle suspension when in the liquid.
 上記微小粒子の検出方法としては、幾つかの検出方式が知られている。 Several detection methods are known as methods for detecting the fine particles.
 フローサイトメーターにおいては、上記微小粒子の懸濁液を毛細管にシース液と共に流す。そして、上記毛細管の一部にレーザー光を照射し、上記微小粒子に光が当たった時に生ずる散乱光あるいは蛍光を検出することによって、粒子の種類や粒子の大きさを分類する。例えば、特定の粒子と結合する蛍光試薬で粒子を標識することによって、蛍光を発する粒子の数を計数して上記特定の粒子のみを計数することができる。 In the flow cytometer, the microparticle suspension is flowed to the capillary together with the sheath liquid. Then, the type of particle and the size of the particle are classified by irradiating a part of the capillary with laser light and detecting scattered light or fluorescence generated when the fine particle is irradiated with light. For example, by labeling particles with a fluorescent reagent that binds to specific particles, the number of fluorescent particles can be counted to count only the specific particles.
 このフローサイトメーターを用いることにより、微小粒子の懸濁液を高速にフローしながら測定することが可能であるので、大量の検体を短時間で処理し、微小粒子から発せられる蛍光や散乱光等の強度を定量的に計測することができる。 By using this flow cytometer, it is possible to measure while suspending a suspension of microparticles at high speed, so that a large amount of specimens can be processed in a short time, and fluorescence emitted from microparticles, scattered light, etc. The intensity of can be measured quantitatively.
 しかしながら、上記サブミクロンの粒子から発せられる散乱光の強度を定量的にまで測定可能なフローサイトメーターは、装置が大型であって高価なシステムとなっている。 However, a flow cytometer capable of quantitatively measuring the intensity of scattered light emitted from the sub-micron particles has a large apparatus and is an expensive system.
 また、一般的に、上記フローサイトメーターにおいては、フロー機構等の複雑な機構が必要であり、メンテナンス性の悪化やコスト上昇の原因となっている。 In general, the flow cytometer requires a complicated mechanism such as a flow mechanism, which causes deterioration in maintainability and cost increase.
 上記フローサイトメーター以外の粒子の検出方法として、上記フロー機構を用いずに、微小粒子が二次元的に分布する所定の範囲を撮像して、撮像画像の情報から微小粒子の数を係数し、さらには種類や大きさを判定する方法がある。この方法では、撮像画像を用いて粒子の検出や分析を行うことから、上記フローサイトメーターに対してイメージサイトメーターと呼ばれる。 As a method for detecting particles other than the flow cytometer, without using the flow mechanism, image a predetermined range in which microparticles are two-dimensionally distributed, and coefficient the number of microparticles from information of the captured image, Furthermore, there is a method for determining the type and size. In this method, since detection and analysis of particles are performed using a captured image, the flow cytometer is referred to as an image cytometer.
 上記イメージサイトメーターにおける画像化方法としては、ある程度の視野範囲を有する顕微鏡とデジタルカメラとから成る撮像装置を用いて、光源および上記撮像装置を固定した状態で視野範囲の二次元領域を撮像する方法と、レーザー光を二次元的にスキャンしながら散乱光または蛍光を検出して、スキャン領域の粒子を画像化する方法とがある。 As an imaging method in the image cytometer, a method of imaging a two-dimensional region of a visual field range with a light source and the imaging device fixed using an imaging device composed of a microscope and a digital camera having a certain visual field range In addition, there is a method in which scattered light or fluorescence is detected while scanning laser light two-dimensionally to image particles in a scan region.
 上記顕微鏡とデジタルカメラとによる撮像の場合には、1μm以上の粒子では高精度な画像測定が可能であるが、サブミクロンの粒子を測定する場合には、高倍率な対物レンズを有する顕微鏡と高感度な(つまり、低ノイズでダイナミックレンジの幅が広い)デジタルカメラとが必要になるので、非常に高価なシステムとなる。また、サブミクロン粒子の場合、光の波長と粒子のサイズとが同等になるので回折限界によって結像性能が低下し、粒子サイズの正確な判定が困難になる。 In the case of imaging with the above-mentioned microscope and digital camera, high-precision image measurement is possible with particles of 1 μm or more, but when measuring submicron particles, a microscope with a high-magnification objective lens and a high-power lens are used. A sensitive digital camera (that is, low noise and wide dynamic range) is required, which makes the system very expensive. In the case of submicron particles, the wavelength of light and the size of the particles are equivalent, so that the imaging performance is degraded due to the diffraction limit, making it difficult to accurately determine the particle size.
 さらに、上記顕微鏡として蛍光顕微鏡システムを用いれば、容易に粒子を検出することが可能である。ところが、同様に、サブミクロン粒子の場合に光の波長と粒子のサイズとが同等になるので、粒子サイズの正確な判定ができない。また、微小粒子を測定する場合には高倍率の対物レンズを使用しなければならず、必然的に視野が小さくなるので測定回数が増える。つまり、高倍率な顕微鏡では、測定時間が膨大になることと定量性とが問題になるのである。 Furthermore, if a fluorescence microscope system is used as the microscope, particles can be easily detected. However, similarly, in the case of submicron particles, the wavelength of light is equal to the size of the particles, and thus the particle size cannot be accurately determined. Also, when measuring fine particles, a high-magnification objective lens must be used, and the field of view is inevitably reduced, so the number of measurements increases. That is, in a high magnification microscope, the measurement time becomes enormous and the quantitativeness becomes a problem.
 一方、上記レーザー光をスキャンしながら散乱光または蛍光を検出するシステムにおいては、レーザー光を粒子に集光して照射し、粒子から発生する散乱光または蛍光を検出しながら、上記レーザー光を搭載した光学ヘッドを二次元的に走査して画像化する。この場合、レーザー光を粒子に集光して照射し、粒子から発生する散乱光または蛍光を検出しながら、上記光学ヘッドを二次元的に走査して画像化する。 On the other hand, in the system that detects scattered light or fluorescence while scanning the laser beam, the laser beam is mounted while the laser beam is focused on the particle and irradiated, and the scattered light or fluorescence generated from the particle is detected. The obtained optical head is scanned two-dimensionally to form an image. In this case, laser light is condensed and irradiated on the particles, and the optical head is scanned two-dimensionally to form an image while detecting scattered light or fluorescence generated from the particles.
 このように、上記光学ヘッドを上記サンプルに対して相対的にスキャンしながら光を検出するシステムにおいては、サブミクロンの粒子を検出する場合、レーザー光の照射スポット径は、粒子サイズと同等かそれ以上に大きくなる。そのために、二次元スキャンの結果得られる画像は、粒子の一つ一つが解像された画像になってはいないので、画像から直接粒子の大きさを計測することは困難である。ところが、上記レーザー光の照射スポットが粒子サイズよりも大きくても、粒子サイズによって粒子から生じる散乱光強度が異なるので、散乱光の強さから粒子径を判定することは可能である。その理由は、粒子径と散乱光強度とに相関があるためである。 Thus, in a system that detects light while scanning the optical head relative to the sample, when detecting submicron particles, the laser spot diameter is equal to or smaller than the particle size. More than that. For this reason, the image obtained as a result of the two-dimensional scan is not an image in which each particle is resolved, and it is difficult to directly measure the size of the particle from the image. However, even if the laser beam irradiation spot is larger than the particle size, the intensity of the scattered light generated from the particle varies depending on the particle size, so that the particle diameter can be determined from the intensity of the scattered light. The reason is that there is a correlation between the particle diameter and the scattered light intensity.
 その場合、散乱光を高感度に検出する検出器(低ノイズで広ダイナミックレンジな検出器)とレーザー光源とが必要になるが、高倍率な対物レンズを有する顕微鏡と高感度なデジタルカメラとを用いるシステムに比較して、安価なシステム構成が可能である。 In that case, a detector that detects scattered light with high sensitivity (a detector with low noise and a wide dynamic range) and a laser light source are required, but a microscope with a high-magnification objective lens and a high-sensitivity digital camera are required. Compared to the system to be used, an inexpensive system configuration is possible.
 上記光学ヘッドを上記サンプルに対して相対的にスキャンしながら光を検出するシステムとして、特開2012‐83621号公報(特許文献1)に開示された走査型レーザ顕微鏡がある。この走査型レーザ顕微鏡においては、標本上においてレーザー光を二次元走査する走査部と、この走査部によって走査されたレーザー光を上記標本に集光する対物レンズと、上記標本からの光を検出する光検出部とを有している。そして、拡大部分画像生成部によって、上記光検出部で検出された光の強度と上記走査部の走査位置情報とに基づいて、相互に重複せずに隣接する上記標本の部分画像を含み、且つ、この分画像よりも大きな拡大部分画像を、上記部分画像と同じ画素分解能で生成する。さらに、拡大部分画像蓄積部によって、上記拡大部分画像生成部で生成された複数の上記拡大部分画像を蓄積し、画像合成部によって、上記拡大部分画像蓄積部に蓄積された複数の上記拡大部分画像を互いに一部重複するように合成して、上記標本の全体画像を生成するようにしている。 As a system for detecting light while scanning the optical head relative to the sample, there is a scanning laser microscope disclosed in Japanese Patent Application Laid-Open No. 2012-83621 (Patent Document 1). In this scanning laser microscope, a scanning unit for two-dimensionally scanning laser light on a specimen, an objective lens for condensing the laser light scanned by the scanning part on the specimen, and light from the specimen are detected. And a light detection unit. Then, based on the intensity of the light detected by the light detection unit and the scanning position information of the scanning unit by the enlarged partial image generation unit, the partial image generation unit includes a partial image of the adjacent sample without overlapping each other, and Then, an enlarged partial image larger than this image is generated with the same pixel resolution as the partial image. Further, the plurality of enlarged partial images generated by the enlarged partial image generating unit are accumulated by the enlarged partial image accumulating unit, and the plurality of enlarged partial images accumulated in the enlarged partial image accumulating unit by the image synthesizing unit. Are combined so as to partially overlap each other to generate an entire image of the specimen.
 しかしながら、上記特許文献1に開示された従来の走査型レーザ顕微鏡においては、以下のような問題がある。すなわち、レーザー光を二次元的に走査しながら微小粒子から発せられる散乱光または蛍光を検出する場合には、走査面積が広くなるとそれに応じて測定時間が長くなる。そこで、同じ量の検体を検出する場合に測定時間を短くするためには、単位走査面積当たりのサンプル量(微小粒子量)を増やすことが有効である。 However, the conventional scanning laser microscope disclosed in Patent Document 1 has the following problems. That is, when detecting scattered light or fluorescence emitted from microparticles while scanning laser light two-dimensionally, the measurement time is correspondingly increased as the scanning area is increased. Therefore, in order to shorten the measurement time when detecting the same amount of specimen, it is effective to increase the sample amount (microparticle amount) per unit scanning area.
 しかしながら、上記従来の走査型レーザ顕微鏡においては、単位走査面積当たりのサンプル量を増やすことを実現するための考慮は何ら行われてはいない。したがって、上記従来の走査型レーザ顕微鏡を、微小粒子の検出に用いた場合には、走査面積が広くなると測定時間が長くなるという問題がある。 However, in the above-described conventional scanning laser microscope, no consideration has been made to increase the sample amount per unit scanning area. Therefore, when the conventional scanning laser microscope is used for detecting fine particles, there is a problem that the measurement time becomes longer as the scanning area becomes larger.
特開2012‐83621号公報JP 2012-83621 A
 そこで、この発明の課題は、検体中の微小粒子を高速に且つ効率よく検出可能な微小粒子検出装置を提供することにある。 Therefore, an object of the present invention is to provide a microparticle detection apparatus capable of detecting microparticles in a specimen at high speed and efficiently.
 上記課題を解決するため、この発明の微小粒子検出装置は、
 微小粒子を含む検体が注入される検体注入部を有する検体チップと、
 光源と、
 上記光源から出射された光を、上記検体チップにおける上記検体に対して照射する照射光学系と、
 上記光の照射によって上記検体中の上記微小粒子から発せられた光を検出する光検出光学系と、
 上記光検出光学系によって検出された上記微小粒子からの光の強度に基づいて、上記微小粒子を検出する検出部と
を備え、
 上記光検出光学系は、上記光源から出射された光を上記検体に向けて透過させる一方、上記光の照射によって上記検体中の上記微小粒子から発せられた光を集光する対物レンズ素子を含み、
 上記対物レンズ素子は、上記光源からの光を透過させると共に、透過後の光を上記検体に向かって集光させる形状を有するビーム光透過部を含んでおり、
 上記検体チップの上記検体注入部における光照射方向への厚みをD、上記光源からの照射光の波長をλ、上記ビーム光透過部における上記集光による照射光のビーム半径の減少率をRとした場合に、関係式
    D≦λ/R2
を満たすようになっている
ことを特徴としている。
In order to solve the above problems, a microparticle detection apparatus according to the present invention includes:
A sample chip having a sample injection part into which a sample containing fine particles is injected;
A light source;
An irradiation optical system for irradiating light emitted from the light source to the specimen in the specimen chip;
A light detection optical system for detecting light emitted from the microparticles in the specimen by the light irradiation;
A detection unit that detects the microparticles based on the intensity of light from the microparticles detected by the photodetection optical system;
The optical detection optical system includes an objective lens element that transmits light emitted from the light source toward the specimen, and collects light emitted from the microparticles in the specimen by irradiation with the light. ,
The objective lens element includes a beam light transmitting portion having a shape for transmitting the light from the light source and condensing the transmitted light toward the specimen,
The thickness of the sample chip in the sample injection portion in the light irradiation direction is D, the wavelength of the light irradiated from the light source is λ, and the rate of decrease in the beam radius of the irradiated light due to the condensing in the beam light transmitting portion is R. In this case, the relational expression D ≦ λ / R 2
It is characterized by meeting.
 また、一実施の形態の微小粒子検出装置では、
 下記の関係式
    D≦λ/R2≦3D
を満たすようになっている。
Moreover, in the microparticle detection apparatus of one embodiment,
The following relational expression D ≦ λ / R 2 ≦ 3D
It comes to satisfy.
 また、一実施の形態の微小粒子検出装置では、
 上記対物レンズ素子における上記ビーム光透過部の表面は、光を屈折によって集光させる曲率を有しており、
 上記検体チップの上記検体注入部における光照射方向への厚みをD、上記光源からの照射光の波長をλ、上記ビーム光透過部を透過する照射光のビーム半径をr0、上記ビーム光透過部を透過後の光の焦点距離をfとした場合に、関係式
    D≦λ(f/r0)2
を満たすようになっている。
Moreover, in the microparticle detection apparatus of one embodiment,
The surface of the beam light transmitting portion in the objective lens element has a curvature for condensing light by refraction,
The thickness of the specimen chip in the specimen injection portion in the direction of light irradiation is D, the wavelength of the irradiation light from the light source is λ, the beam radius of the irradiation light transmitted through the beam light transmission section is r0, and the beam light transmission section Where f is the focal length of the light after passing through the light, the relational expression D ≦ λ (f / r0) 2
It comes to satisfy.
 また、一実施の形態の微小粒子検出装置では、
 上記対物レンズ素子における上記ビーム光透過部は、光軸に沿った領域であって、透過後の光の屈折角が上記ビーム光透過部を除く他の領域よりも小さくなるような形状を有して、上記光源からの照射光を上記検体に向かって絞る機能を有しており、
 上記対物レンズ素子における上記ビーム光透過部を除く他の領域は、透過後の上記微小粒子からの光の屈折角が上記ビーム光透過部側から外周縁側に向かって大きくなるような形状を有して、上記微小粒子から広角に発せられた光を集光する機能を有している。
Moreover, in the microparticle detection apparatus of one embodiment,
The beam light transmitting portion in the objective lens element is a region along the optical axis, and has a shape such that the refraction angle of light after transmission is smaller than other regions excluding the beam light transmitting portion. And has a function of narrowing the irradiation light from the light source toward the specimen,
The other region of the objective lens element excluding the beam light transmission part has a shape such that the refraction angle of light from the fine particles after transmission increases from the beam light transmission part side toward the outer peripheral edge side. Thus, it has a function of condensing light emitted from the fine particles at a wide angle.
 また、一実施の形態の微小粒子検出装置では、
 上記対物レンズ素子と上記検出部との間に設けられると共に、上記対物レンズ素子を透過した上記微小粒子からの光を透過させる穴を有するアパーチャ部材を備え、
 上記アパーチャ部材における上記穴の径を、上記検体注入部における厚みDの範囲に分布する上記微小粒子からの光を全て取り込むと共に、上記検体注入部の厚みDの範囲内に存在する上記微小粒子から発せられる光の上記検出部による光検出効率の変動率が10%以下になるように設定している。
Moreover, in the microparticle detection apparatus of one embodiment,
An aperture member provided between the objective lens element and the detection unit, and having a hole through which light from the microparticles transmitted through the objective lens element is transmitted;
The diameter of the hole in the aperture member is taken in from all the light from the microparticles distributed in the range of the thickness D in the specimen injection part, and from the microparticles existing in the range of the thickness D of the specimen injection part. The variation rate of the light detection efficiency of the emitted light by the detection unit is set to be 10% or less.
 尚、ここで言う、光検出効率の変動率が10%以内とは、同程度の光強度の点光源が厚みDの範囲に分布している状態を想定した場合に、検出強度のバラツキが10%未満であることを意味している。 Here, the fluctuation rate of the light detection efficiency is within 10%, assuming that a state in which the point light sources having the same light intensity are distributed in the range of the thickness D, the detection intensity variation is 10%. It means less than%.
 以上より明らかなように、この発明の微小粒子検出装置は、上記検体チップの上記検体注入部における光照射方向への厚みDは、関係式「D≦λ/R2」を満たすようになっている。また、上記対物レンズ素子の上記ビーム光透過部における照射光のビーム半径の減少率Rは、概ねF値の逆数の2分の1と同義であって、R=1/(2F)=NAの関係にある。したがって、上記関係式「D≦λ/R2」は、次のように変形することができる。
    D≦λ/R2=λ/NA2
As is clear from the above, in the microparticle detection apparatus of the present invention, the thickness D in the light irradiation direction of the sample injection portion of the sample chip satisfies the relational expression “D ≦ λ / R 2 ”. Yes. Further, the reduction rate R of the beam radius of the irradiation light at the beam light transmitting portion of the objective lens element is substantially the same as one half of the reciprocal of the F value, and R = 1 / (2F) = NA. There is a relationship. Therefore, the relational expression “D ≦ λ / R 2 ” can be modified as follows.
D ≦ λ / R 2 = λ / NA 2
 そして、焦点深度d=λ/NA2を用いて上記関係式は、さらに次のように変形することができる。
    D≦λ/R2=d
Then, using the depth of focus d = λ / NA 2 , the above relational expression can be further modified as follows.
D ≦ λ / R 2 = d
 すなわち、この発明においては、上記対物レンズ素子における上記照射光の焦点深度dは、上記検体注入部における光照射方向への厚みD以上になるように設定されている。したがって、上記検体注入部に注入されて厚みを有する検体領域に対して、上記照射光を均一に照射することができる。換言すれば、上記検体領域の厚み方向で異なる位置に微小粒子が存在していても、上記微小粒子を検出することが可能になる。 That is, in the present invention, the focal depth d of the irradiation light in the objective lens element is set to be equal to or greater than the thickness D in the light irradiation direction in the specimen injection portion. Therefore, it is possible to uniformly irradiate the irradiation region onto the sample region having a thickness that is injected into the sample injection unit. In other words, even if microparticles exist at different positions in the thickness direction of the specimen region, the microparticles can be detected.
 さらに、上記検査チップを回転または一方向に走査した際に、上記検査チップが光照射方向に面ブレを起こした場合でも、上記焦点深度dが上記検体注入部の厚みD以上であるので、上記焦点深度dが上記厚みDより大きい分だけ上記面ブレの影響を低減することができる。 Further, when the test chip rotates or scans in one direction, even if the test chip causes surface blurring in the light irradiation direction, the focal depth d is equal to or greater than the thickness D of the specimen injection part. The influence of the surface blur can be reduced by the amount of the focal depth d larger than the thickness D.
 さらに、厚みDを有する上記検体を一度に測定可能になるので、上記検体中の微小粒子を高速に且つ効率よく検出することが可能になり、測定時間の短縮を図ることが可能になる。 Furthermore, since the specimen having the thickness D can be measured at a time, it becomes possible to detect fine particles in the specimen at high speed and efficiently, and to shorten the measurement time.
この発明の微小粒子検出装置における概略構成を示す図である。It is a figure which shows schematic structure in the microparticle detection apparatus of this invention. 図1における検査チップの概略構成を示す斜視図および断面図である。It is the perspective view and sectional drawing which show schematic structure of the test | inspection chip in FIG. 図2における検体注入層の中心に被検出微小粒子が存在する図である。FIG. 3 is a diagram in which fine particles to be detected exist in the center of the specimen injection layer in FIG. 2. 上記検体注入層の上部に被検出粒子が存在する図である。FIG. 3 is a diagram in which particles to be detected are present on the specimen injection layer. 上記検査チップの表面で散乱光が発生すると想定した場合の図である。It is a figure at the time of assuming that scattered light generate | occur | produces on the surface of the said test | inspection chip. 図1とは異なる微小粒子検出装置の概略構成を示す図である。It is a figure which shows schematic structure of the microparticle detection apparatus different from FIG. 図1および図6とは異なる微小粒子検出装置の概略構成を示す図である。It is a figure which shows schematic structure of the microparticle detection apparatus different from FIG. 1 and FIG. 図7における光学モジュールによる検体のスキャン状態を示す図である。It is a figure which shows the scanning state of the sample by the optical module in FIG.
 以下、この発明を図示の実施の形態により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
 ・第1実施の形態
 図1は、本実施の形態の微小粒子検出装置の概略構成を示す図である。この微小粒子検出装置は、検体が注入されたディスク状の検査チップと、検査チップを回転させる回転駆動系と、散乱光および蛍光を検出する光検出光学系と、上記検出光学系を半径方向に駆動させる駆動機構と、上記光検出光学系からの信号を受けて上記微小粒子を検出する検出部とから、概略構成されている。 
 図1において、1は光源装置、2は対物レンズ、3~5は第1~第3検出装置である。光源装置1と対物レンズ2と第1~第3検出装置3~5とは、枠体内に収納されて光学モジュール6を構成している。そして、光学モジュール6の上方には対物レンズ2に対向して円形のディスク状の検査チップ7が配置され、検査チップ7内には例えば蛍光物質によって標識された微小粒子が分布する懸濁液やゲル支持体やメンブレン等の転写支持体が検体として注入されている。
-1st Embodiment FIG. 1: is a figure which shows schematic structure of the microparticle detection apparatus of this Embodiment. This microparticle detection apparatus includes a disk-shaped inspection chip into which a specimen is injected, a rotational drive system that rotates the inspection chip, a light detection optical system that detects scattered light and fluorescence, and the detection optical system in the radial direction. A driving mechanism for driving and a detection unit that receives the signal from the light detection optical system and detects the microparticles are roughly configured.
In FIG. 1, 1 is a light source device, 2 is an objective lens, and 3 to 5 are first to third detection devices. The light source device 1, the objective lens 2, and the first to third detection devices 3 to 5 constitute an optical module 6 housed in a frame. A circular disk-shaped inspection chip 7 is arranged above the optical module 6 so as to face the objective lens 2. In the inspection chip 7, for example, a suspension in which fine particles labeled with a fluorescent substance are distributed. A transfer support such as a gel support or a membrane is injected as a specimen.
 上記光学モジュール6の光源装置1には、光源としての半導体レーザー8が設けられており、半導体レーザー8の光軸上には、コリメータレンズ9,第1バンドパスフィルタ10,第1ND(減光)フィルタ11および第1アパーチャ部材12をこの順で配置している。ここで、半導体レーザー8,コリメータレンズ9,第1バンドパスフィルタ10,第1NDフィルタ11および第1アパーチャ部材12は、一つのケース内に収納されて上記照射光学系の一例である光源装置1を構成している。 The light source device 1 of the optical module 6 is provided with a semiconductor laser 8 as a light source. On the optical axis of the semiconductor laser 8, a collimator lens 9, a first band pass filter 10, and a first ND (dimming). The filter 11 and the first aperture member 12 are arranged in this order. Here, the semiconductor laser 8, the collimator lens 9, the first band-pass filter 10, the first ND filter 11, and the first aperture member 12 are housed in one case, and the light source device 1 which is an example of the above-described irradiation optical system. It is composed.
 さらに、上記半導体レーザー8の光軸上には、第1アパーチャ部材12を透過した光を、対物レンズ2側に向かうように反射させるプリズムミラー13を配置している。また、対物レンズ2の光軸上におけるプリズムミラー13の図1中下方には、プリズムミラー13側から順に、対物レンズ2からの蛍光を透過する一方、散乱光を反射する第1ダイクロイックミラー14と、第1ダイクロイックミラー14を透過した蛍光のうち、第1波長を有する第1の蛍光を透過する一方、上記第1波長よりも波長が短い第2波長を有する第2の蛍光を反射する第2ダイクロイックミラー15とを配置している。 Further, on the optical axis of the semiconductor laser 8, a prism mirror 13 that reflects the light transmitted through the first aperture member 12 toward the objective lens 2 is disposed. Further, below the prism mirror 13 in FIG. 1 on the optical axis of the objective lens 2, a first dichroic mirror 14 that transmits fluorescence from the objective lens 2 and reflects scattered light in order from the prism mirror 13 side. Among the fluorescence transmitted through the first dichroic mirror 14, the second fluorescence that transmits the first fluorescence having the first wavelength and reflects the second fluorescence having the second wavelength shorter than the first wavelength is reflected. A dichroic mirror 15 is arranged.
 尚、この発明で言うところの「散乱光」とは、上記半導体レーザー8から出射された光が、上記検体の照射箇所から周囲に等方的あるいは異方的に散乱された光であり、出射光と同じ波長の光である。これに対し、「蛍光」とは、半導体レーザー8から出射された光が上記検体を照射して微小粒子を標識している蛍光物質を励起し、上記検体の照射箇所から周囲に等方的に散乱された蛍光であり、出射光とは異なる波長の光である。 The “scattered light” referred to in the present invention is light in which the light emitted from the semiconductor laser 8 is isotropically or anisotropically scattered from the irradiated portion of the specimen to the surroundings. It has the same wavelength as the incident light. On the other hand, “fluorescence” means that the light emitted from the semiconductor laser 8 irradiates the sample to excite the fluorescent substance that labels the microparticles, and isotropically passes from the irradiated position of the sample to the surroundings. The scattered fluorescence is light having a wavelength different from that of the outgoing light.
 ここで、詳述はしないが、上記対物レンズ2はレンズホルダ(図示せず)に格納されており、ステッピングモータ等の駆動部(図示せず)によって光軸方向に移動されて、焦点位置を変更可能になっている。 Here, although not described in detail, the objective lens 2 is stored in a lens holder (not shown), and is moved in the optical axis direction by a drive unit (not shown) such as a stepping motor, so that the focal position is adjusted. It can be changed.
 また、図1において、上記対物レンズ2の光軸上における第2ダイクロイックミラー15の図1中下方には、第2ダイクロイックミラー15側から順に、対物レンズ2によって集光されて平行光に変換された上記検体からの光(上記第1波長とは異なる波長の光)を減光する第2バンドパスフィルタ16、第2バンドパスフィルタ16を通過した第1波長の第1の蛍光を集光する第1レンズ17、および、第1レンズ17を通過した第1の蛍光の迷光をカットする第2アパーチャ部材18が配置されている。さらに、対物レンズ2の光軸上における第2アパーチャ部材18の上記下方には、第2アパーチャ部材18を通過した第1の蛍光を検出する光電子増倍管(PMT)等の検出素子を含む第1検出器19が配置されている。ここで、第2アパーチャ部材18と第1検出器19とは、一つのケース内に収納されて上記光検出光学系の一例である第1検出装置3を構成している。 Further, in FIG. 1, the second dichroic mirror 15 on the optical axis of the objective lens 2 is condensed by the objective lens 2 and converted into parallel light in order from the second dichroic mirror 15 side in FIG. In addition, the first fluorescence having the first wavelength that has passed through the second band-pass filter 16 and the second band-pass filter 16 for dimming light from the specimen (light having a wavelength different from the first wavelength) is collected. The 1st lens 17 and the 2nd aperture member 18 which cuts the 1st fluorescence stray light which passed the 1st lens 17 are arranged. Furthermore, a detection element such as a photomultiplier tube (PMT) that detects the first fluorescence that has passed through the second aperture member 18 is provided below the second aperture member 18 on the optical axis of the objective lens 2. One detector 19 is arranged. Here, the 2nd aperture member 18 and the 1st detector 19 are stored in one case, and constitute the 1st detection device 3 which is an example of the above-mentioned optical detection optical system.
 上記第2ダイクロイックミラー15の図1中左方には、第2ダイクロイックミラー15側から順に、第3バンドパスフィルタ20,第2レンズ21,第3アパーチャ部材22および第2検出器23が配置されており、第3アパーチャ部材22と第2検出器23とは、一つのケース内に収納されて上記光検出光学系の一例である第2検出装置4を構成している。尚、上記第3バンドパスフィルタ20,第2レンズ21,第3アパーチャ部材22および第2検出器23は、基本的には、第2バンドパスフィルタ16,第1レンズ17,第2アパーチャ部材18および第1検出器19と同じ構成を有している。但し、上記第2波長の第2の蛍光に対する処理を行う点において異なる。 A third bandpass filter 20, a second lens 21, a third aperture member 22, and a second detector 23 are arranged in this order from the second dichroic mirror 15 side on the left side of the second dichroic mirror 15 in FIG. The third aperture member 22 and the second detector 23 are housed in one case and constitute a second detection device 4 that is an example of the light detection optical system. The third band pass filter 20, the second lens 21, the third aperture member 22, and the second detector 23 are basically composed of the second band pass filter 16, the first lens 17, and the second aperture member 18. The first detector 19 has the same configuration. However, it is different in that the processing for the second fluorescence of the second wavelength is performed.
 また、上記第1ダイクロイックミラー14の図1中右方には、第1ダイクロイックミラー14側から順に、第2NDフィルタ24,第3レンズ25,第4アパーチャ部材26および第3検出器27が配置されており、第4アパーチャ部材26および第3検出器27は、一つのケース内に収納されて上記光検出光学系の一例である第3検出装置5を構成している。尚、第2NDフィルタ24,第3レンズ25,第4アパーチャ部材26および第3検出器27は、基本的には第2バンドパスフィルタ16,第1レンズ17,第2アパーチャ部材18および第1検出器19と同じ構成を有している。但し、上記検体からの散乱光に対する処理を行う点において異なる。 Further, a second ND filter 24, a third lens 25, a fourth aperture member 26, and a third detector 27 are arranged in this order from the first dichroic mirror 14 side on the right side of the first dichroic mirror 14 in FIG. The fourth aperture member 26 and the third detector 27 are housed in one case and constitute the third detection device 5 which is an example of the light detection optical system. The second ND filter 24, the third lens 25, the fourth aperture member 26, and the third detector 27 are basically composed of the second bandpass filter 16, the first lens 17, the second aperture member 18, and the first detection. It has the same configuration as the container 19. However, it is different in that processing is performed on scattered light from the specimen.
 すなわち、本実施の形態においては、上記光検出光学系を、対物レンズ2、各ダイクロイックミラー14,15、各フィルタ16,20,24、各レンズ17,21,25、各アパーチャ部材18,22,26、および、各検出器19,23,27で構成するのである。 That is, in the present embodiment, the light detection optical system includes the objective lens 2, the dichroic mirrors 14 and 15, the filters 16, 20, and 24, the lenses 17, 21, and 25, the aperture members 18, 22, and the like. 26 and the detectors 19, 23 and 27.
 上記検査チップ7は、透明に且つ円形に構成されており、中心軸28に固定された透明且つ円形なテーブル29に載置されて、中心軸28に対して固定されている。中心軸28は、上記回転駆動系の一例としてのモータ30で回転可能になっている。これに対し、光学モジュール6は、検査チップ7が成す円板の半径方向に、上記駆動機構によって移動可能になっている。尚、光学モジュール6の上記駆動機構については特に限定するものではない。例えば、光学モジュール6の枠体を、ステッピングモータ等で上記半径方向に往復動されるタイミングベルト等により、上記半径方向に配設されたガイドレールで案内されて、移行可能に構成する。 The inspection chip 7 is configured to be transparent and circular, and is placed on a transparent and circular table 29 fixed to the central shaft 28 and fixed to the central shaft 28. The central shaft 28 can be rotated by a motor 30 as an example of the rotational drive system. On the other hand, the optical module 6 can be moved by the drive mechanism in the radial direction of the disk formed by the inspection chip 7. The drive mechanism of the optical module 6 is not particularly limited. For example, the frame body of the optical module 6 is configured to be movable by being guided by the guide rail disposed in the radial direction by a timing belt or the like reciprocated in the radial direction by a stepping motor or the like.
 図2に、上記検査チップ7の概略構成を示す。但し、図2(a)は外観斜視図であり、図2(b)は図2(a)におけるA‐A’矢視断面図である。検査チップ7は、中心に固定用のセンターホール33が設けられた2枚の透明な基板31,32を、中心に固定用のセンターホール35が設けられたスペーサ34を介して貼り合わせた構造を有している。 FIG. 2 shows a schematic configuration of the inspection chip 7. 2A is an external perspective view, and FIG. 2B is a cross-sectional view taken along the line A-A ′ in FIG. The inspection chip 7 has a structure in which two transparent substrates 31 and 32 each provided with a center hole 33 for fixing are bonded to each other via a spacer 34 provided with a center hole 35 for fixing. Have.
 上記スペーサ34には、上記センターホール35と同心円状の円形溝36が形成されている。そして、スペーサ34の両側面を2枚の基板31,32で塞ぐことによって、円形溝36はドーナツ状の空間と成り、上記検体が注入される検体注入層となる。検体注入層36はスペーサ34の厚さに相当する厚みDを有している。尚、検体注入層36の厚みDとしては、数十マイクロメートル程度が望ましい。また、一方の(例えば、図2中上側に位置する)基板31には、検体注入層36に上記検体を注入するための検体注入口37が形成されている。この検体注入口37は、周方向に複数箇所(図2(a)では4箇所)、径方向に複数箇所(図2(a)では2箇所)設けられ、上記検体が注入された後に封止される。 The spacer 34 is formed with a circular groove 36 concentric with the center hole 35. Then, by closing both side surfaces of the spacer 34 with the two substrates 31 and 32, the circular groove 36 becomes a donut-shaped space and becomes a specimen injection layer into which the specimen is injected. The specimen injection layer 36 has a thickness D corresponding to the thickness of the spacer 34. The thickness D of the specimen injection layer 36 is preferably about several tens of micrometers. In addition, a sample injection port 37 for injecting the sample into the sample injection layer 36 is formed in one substrate 31 (for example, located on the upper side in FIG. 2). The sample injection port 37 is provided at a plurality of locations in the circumferential direction (4 locations in FIG. 2A) and a plurality of locations in the radial direction (2 locations in FIG. 2A) and sealed after the sample is injected. Is done.
 こうして上記検体が注入された検査チップ7をテーブル29に載置し、モータ30によって回転させながら、光学モジュール6を半径方向に移動させて、上記検体中の微小粒子からの蛍光および散乱光の検出が行われる。 The test chip 7 into which the sample has been injected is placed on the table 29, and the optical module 6 is moved in the radial direction while being rotated by the motor 30 to detect fluorescence and scattered light from the microparticles in the sample. Is done.
 以下、一例として、上記2種類の蛍光と上記散乱光とを同時に検出する場合を例に挙げて、本微小粒子検出装置の動作および機能について説明する。 Hereinafter, as an example, the operation and function of the microparticle detection apparatus will be described by taking as an example the case where the two types of fluorescence and the scattered light are detected simultaneously.
 上記光源装置1の半導体レーザー8からレーザー光を出射させる。出射されたレーザー光はコリメータレンズ9で平行光にされ、第1バンドパスフィルタ10を透過する。第1バンドパスフィルタ10では不要な波長の光がカットされる。次に、レーザー光は、第1NDフィルタ11を透過して照射光強度の一部が減光され、入射光ビーム径成形用の第1アパーチャ部材12を透過し、プリズムミラー13に導かれる。そして、レーザー光は、プリズムミラー13によって反射され、対物レンズ2およびテーブル29を通過して、検査チップ7の検体注入層36に集光される。 Laser light is emitted from the semiconductor laser 8 of the light source device 1. The emitted laser light is collimated by the collimator lens 9 and passes through the first bandpass filter 10. The first band pass filter 10 cuts light having an unnecessary wavelength. Next, the laser light passes through the first ND filter 11, a part of the irradiation light intensity is reduced, passes through the first aperture member 12 for shaping the incident light beam diameter, and is guided to the prism mirror 13. The laser light is reflected by the prism mirror 13, passes through the objective lens 2 and the table 29, and is collected on the specimen injection layer 36 of the test chip 7.
 その場合、上記プリズムミラー13の長手方向(水平方向)の長さは短く、上記長手方向に直交する方向の幅は狭くなっており、半導体レーザー8からのレーザー光は対物レンズ2の光軸付近(ビーム光透過部)のみを通過するようになっている。こうして、検体注入層36中の微小粒子に集束光が照射されると、上記集束光が照射された部分から周囲に等方的に散乱された蛍光および散乱光が生ずる。 In this case, the length of the prism mirror 13 in the longitudinal direction (horizontal direction) is short, the width in the direction perpendicular to the longitudinal direction is narrow, and the laser light from the semiconductor laser 8 is near the optical axis of the objective lens 2. It passes through only the (beam light transmission part). In this way, when the microscopic particles in the specimen injection layer 36 are irradiated with focused light, fluorescence and scattered light that is isotropically scattered from the portion irradiated with the focused light are generated.
 このとき、上記対物レンズ2の開口径に対して、第1アパーチャ部材12を透過したレーザー光のビーム径を小さくている。すなわち、対物レンズ2のNA(numerical aperture:開口数)に対して、上記レーザー光の実効NAを小さくしている。したがって、上記レーザー光の焦点深度が深くなり、厚みを有する検体注入層36に注入されて厚みのある検体領域に対して、上記レーザー光を均一に照射することができる。これにより、上記検体領域の厚み方向で異なる位置に微小粒子が存在していても、微小粒子を検出することができるのである。 At this time, the beam diameter of the laser beam transmitted through the first aperture member 12 is smaller than the aperture diameter of the objective lens 2. That is, the effective NA of the laser beam is made smaller than the NA (numerical aperture) of the objective lens 2. Therefore, the depth of focus of the laser light is increased, and the laser light can be uniformly irradiated onto the thick specimen region injected into the thick specimen injection layer 36. Thereby, even if microparticles exist at different positions in the thickness direction of the specimen region, the microparticles can be detected.
 また、上記検査チップ7を回転させた際に中心軸28の延在方向に面ブレが生じても、焦点深度が検体注入層36の厚みDより大きければ、その分だけ上記面ブレの影響を低減させることができる。さらに、厚みのある上記検体を一度に測定可能になるので、大量の検体を高速に測定および処理することが可能になり、測定時間を短縮することが可能になる。尚、上記焦点深度は、焦点位置でのスポット径のルート2倍の位置までの距離と定義するのが一般的である。また、スポット径は、スポットの中心位置での光強度に対して1/e2の強度となる位置での直径とするのが一般的である。 Even if surface blurring occurs in the extending direction of the central axis 28 when the test chip 7 is rotated, if the depth of focus is larger than the thickness D of the specimen injection layer 36, the effect of the surface blurring is correspondingly increased. Can be reduced. Furthermore, since the thick specimen can be measured at a time, a large amount of specimen can be measured and processed at high speed, and the measurement time can be shortened. The depth of focus is generally defined as a distance to a position twice the root of the spot diameter at the focal position. The spot diameter is generally the diameter at a position where the intensity is 1 / e 2 with respect to the light intensity at the center position of the spot.
 また、上記焦点深度を、照射光の波長/(照射光の実効NA)2で定め、その値を検査チップ7における検体注入層36の厚み以上に、且つ検体注入層36の厚みの3倍以下に設定している。したがって、照射光のスポット径を一定の大きさに収め、必要な焦点深度を確保することができる。 The depth of focus is determined by the wavelength of irradiation light / (effective NA of irradiation light) 2 , and the value is not less than the thickness of the specimen injection layer 36 in the test chip 7 and not more than three times the thickness of the specimen injection layer 36. Is set. Therefore, it is possible to keep the spot diameter of the irradiation light at a constant size and to secure the necessary depth of focus.
 尚、上記実効NAは、検査チップ7のタンジェンシャル方向とラジアル方向とで異なっていても良い。例えば、タンジェンシャル方向の実効NAが、ラジアル方向の実効NAよりも大きくても良い。その場合には、焦点位置近傍ではラジアル方向のビーム径がタンジェンシャル方向に比べて大きくなる。こうすることによって、ディスク状の検査チップ7を回転させた際に、回転非同期の偏心が生じた場合であっても、ラジアル方向へのビームの広がりの分だけ余裕があり、微小粒子を読み飛ばすことを防ぐことができる。また、タンジェンシャル方向とラジアル方向とで実効NAが同一である場合に比較して、タンジェンシャル方向の分解能を高めることができる。また、焦点位置近傍での単位面積当たりの照射光強度を高めることができる。 The effective NA may be different between the tangential direction and the radial direction of the inspection chip 7. For example, the effective NA in the tangential direction may be larger than the effective NA in the radial direction. In that case, the beam diameter in the radial direction is larger in the vicinity of the focal position than in the tangential direction. By doing this, even when the disk-shaped inspection chip 7 is rotated, even if eccentricity that is asynchronous with rotation occurs, there is a margin for the spread of the beam in the radial direction, and fine particles are skipped. Can be prevented. Further, the resolution in the tangential direction can be improved as compared with the case where the effective NA is the same in the tangential direction and the radial direction. Moreover, the irradiation light intensity per unit area in the vicinity of the focal position can be increased.
 上記対物レンズ2で集光されたレーザー光が、検査チップ7内の微小粒子に照射されると、微小粒子によって散乱された散乱光と蛍光とが発生する(以下、散乱光と蛍光とをまとめて信号光と言う)。発生した上記信号光を、第1~第3レンズ17,21,25で集束光にする。ここで、第1~第3レンズ17,21,25は、上記レーザー光を集光する際に用いた対物レンズ2と同一のレンズを用いてもよい。その場合には、同一のレンズを用いることによって、本微小粒子検出装置の小型化を図ることが可能になる。さらに、散乱光の検出において対物レンズ2と同一のレンズを用いた場合には、微小粒子で散乱された光のうち所謂後方散乱光を検出することとなり、散乱光による微小粒子系の分別が容易になる。 When the laser light focused by the objective lens 2 is irradiated onto the microparticles in the inspection chip 7, scattered light and fluorescence scattered by the microparticles are generated (hereinafter, the scattered light and fluorescence are combined). Called signal light). The generated signal light is focused by the first to third lenses 17, 21, 25. Here, the first to third lenses 17, 21 and 25 may be the same lens as the objective lens 2 used when condensing the laser light. In that case, it is possible to reduce the size of the microparticle detection apparatus by using the same lens. Further, when the same lens as the objective lens 2 is used for detecting the scattered light, so-called back scattered light is detected from the light scattered by the fine particles, and the classification of the fine particle system by the scattered light is easy. become.
 上記信号光のうちの散乱光は、第1ダイクロイックミラー14で反射され、第2NDフィルタ24で減光された後、第3レンズ25で収束されて第3検出器27に導かれる。第3レンズ25の焦点位置には第4アパーチャ部材26が配置されており、迷光が除去される。 Scattered light of the signal light is reflected by the first dichroic mirror 14, attenuated by the second ND filter 24, converged by the third lens 25, and guided to the third detector 27. A fourth aperture member 26 is disposed at the focal position of the third lens 25, and stray light is removed.
 上記第4アパーチャ部材26のアパーチャ径は、レーザ光(照射光)の焦点深度内に位置する物質からの光は十分に通過可能であるが、合焦位置以外からの散乱光や迷光を除去可能な径に、設定されている。例えば、検査チップ7における基板32の面やレンズ2,25の面で発生した反射光は対物レンズ2の焦点位置から大きくずれているので、対物レンズ2の後段に続く光学系によって第4アパーチャ部材26の位置では広がった光となる。そのため、効率よく第4アパーチャ部材26を透過することができずにカットされるのである。 The aperture diameter of the fourth aperture member 26 allows light from a substance located within the focal depth of the laser light (irradiation light) to pass sufficiently, but can remove scattered light and stray light from other than the in-focus position. The diameter is set to a certain diameter. For example, since the reflected light generated on the surface of the substrate 32 and the surfaces of the lenses 2 and 25 in the inspection chip 7 is greatly deviated from the focal position of the objective lens 2, the fourth aperture member is formed by the optical system following the objective lens 2. At position 26, the light spreads. Therefore, it is cut without being able to efficiently pass through the fourth aperture member 26.
 ここで、上記第4アパーチャ部材26のアパーチャ径の決定方法は、以下のとおりである。 Here, the method for determining the aperture diameter of the fourth aperture member 26 is as follows.
 ・アパーチャ径決定方法A
(1)図3に示すように、上記検体注入層36における厚み方向の中心に被検出微小粒子38が存在する場合、散乱光が対物レンズ2および第3レンズ25で集光され、第4アパーチャ部材26を透過して第3検出器27で検出される光強度を100とする。
(2)図4に示すように、上記検体注入層36における厚み方向の上部または下部に被検出粒子38が存在する場合、散乱光が対物レンズ2および第3レンズ25で集光され、第4アパーチャ部材26を透過して第3検出器27で検出される光強度が90以上になる。
・ Aperture diameter determination method A
(1) As shown in FIG. 3, when the detected microparticle 38 exists at the center of the specimen injection layer 36 in the thickness direction, the scattered light is collected by the objective lens 2 and the third lens 25, and the fourth aperture is obtained. The light intensity transmitted through the member 26 and detected by the third detector 27 is 100.
(2) As shown in FIG. 4, when the detected particles 38 are present in the upper or lower part of the specimen injection layer 36 in the thickness direction, the scattered light is condensed by the objective lens 2 and the third lens 25, and the fourth The light intensity transmitted through the aperture member 26 and detected by the third detector 27 becomes 90 or more.
 上記A‐(1)およびA‐(2)が成立するようにアパーチャ径を決定することによって、検体注入層36内において厚み方向の異なる位置に微小粒子が存在したとしても、第4アパーチャ部材26を透過して第3検出器27によって検出される光強度の変動率は10%以内であり、散乱光検出時における微小粒子径の誤差も10%以内にすることができる。 By determining the aperture diameter so that the above A- (1) and A- (2) are established, even if microparticles exist at different positions in the thickness direction in the specimen injection layer 36, the fourth aperture member 26 The variation rate of the light intensity that is transmitted through and detected by the third detector 27 is within 10%, and the error of the minute particle diameter when detecting scattered light can be within 10%.
 ・アパーチャ径決定方法B
(1)図3に示すように、上記検体注入層36における厚み方向の中心に被検出微小粒子38が存在する場合、散乱光が対物レンズ2および第3レンズ25で集光され、第4アパーチャ部材26を透過して第3検出器27で検出される光強度を100とする。
(2)上記検体注入層36における厚み方向の上部または下部であって厚みの2倍の位置で散乱光が発生すると想定した場合、散乱光が対物レンズ2および第3レンズ25で集光され、第4アパーチャ部材26を透過して第3検出器27で検出される光強度が70以上になる。
・ Aperture diameter determination method B
(1) As shown in FIG. 3, when the detected microparticle 38 exists at the center of the specimen injection layer 36 in the thickness direction, the scattered light is collected by the objective lens 2 and the third lens 25, and the fourth aperture is obtained. The light intensity transmitted through the member 26 and detected by the third detector 27 is 100.
(2) When it is assumed that scattered light is generated at a position twice or above the thickness direction in the specimen injection layer 36 in the thickness direction, the scattered light is collected by the objective lens 2 and the third lens 25, The light intensity transmitted through the fourth aperture member 26 and detected by the third detector 27 becomes 70 or more.
 上記B‐(1)およびB‐(2)が成立するようにアパーチャ径を決定することによって、中心軸28方向(つまり光照射方向)への面ブレによって検査チップ7が厚み方向に移動したとしても、第4アパーチャ部材26を透過して第3検出器27によって検出される光強度の変動率は30%以内であり、散乱光検出時における微小粒子径の誤差も30%以内にすることができる。 By determining the aperture diameter so that the above B- (1) and B- (2) are established, the inspection chip 7 is moved in the thickness direction due to surface blurring in the direction of the central axis 28 (that is, the light irradiation direction). However, the fluctuation rate of the light intensity that is transmitted through the fourth aperture member 26 and detected by the third detector 27 is within 30%, and the error of the minute particle diameter at the time of detecting scattered light is also within 30%. it can.
 ・アパーチャ径決定方法C
(1)図3に示すように、上記検体注入層36における厚み方向の中心に被検出微小粒子38が存在する場合、散乱光が対物レンズ2および第3レンズ25で集光され、第4アパーチャ部材26を透過して第3検出器27で検出される光強度を100とする。
(2)図5に示すように、上記検査チップ7の表面または裏面で散乱光が発生すると想定した場合、散乱光が対物レンズ2および第3検出レンズ25で集光され、第4アパーチャ部材26を透過して第3検出器27で検出される光強度が0.01以下になる。
・ Aperture diameter determination method C
(1) As shown in FIG. 3, when the detected microparticle 38 exists at the center of the specimen injection layer 36 in the thickness direction, the scattered light is collected by the objective lens 2 and the third lens 25, and the fourth aperture is obtained. The light intensity transmitted through the member 26 and detected by the third detector 27 is 100.
(2) As shown in FIG. 5, when it is assumed that scattered light is generated on the front surface or the back surface of the inspection chip 7, the scattered light is collected by the objective lens 2 and the third detection lens 25, and the fourth aperture member 26. And the light intensity detected by the third detector 27 becomes 0.01 or less.
 上記C‐(1)およびC‐(2)が成立するようにアパーチャ径を決定することにより、検査チップ7の表面やテーブル29の面に存在するキズやゴミに起因して散乱光が発生したとしても、第4アパーチャ部材26を透過して第3検出器27によって検出される光強度は0.01%以下であり、不要な面からの散乱光の影響も0.01%以下にすることができる。 By determining the aperture diameter so that the above C- (1) and C- (2) are established, scattered light is generated due to scratches and dust existing on the surface of the inspection chip 7 and the surface of the table 29. However, the light intensity transmitted through the fourth aperture member 26 and detected by the third detector 27 is 0.01% or less, and the influence of scattered light from an unnecessary surface is also 0.01% or less. Can do.
 上記アパーチャ径決定方法A,B,Cの条件を総て満たすアパーチャ径が、最も第4アパーチャ部材26のアパーチャ径として適している。その理由は、キズやホコリ等の異物に起因して意図しない散乱光が混入することが想定され、散乱光検出時におけるアパーチャ径の設定が特に重要だからである。 The aperture diameter that satisfies all the conditions of the aperture diameter determination methods A, B, and C is most suitable as the aperture diameter of the fourth aperture member 26. The reason is that unintended scattered light is assumed to be mixed due to foreign matters such as scratches and dust, and the setting of the aperture diameter when detecting scattered light is particularly important.
 上記第1ダイクロイックミラー14を透過した上記信号光のうち、波長がより短い上記第2波長を有する第2の蛍光は第2ダイクロイックミラー15で反射され、第3バンドパスフィルタ20を透過した後、第2レンズ21で収束されて第2検出器23に導かれる。第2レンズ21の焦点位置には第3アパーチャ部材22が配置されており、第3アパーチャ部材22によって迷光が除去される。 Of the signal light transmitted through the first dichroic mirror 14, the second fluorescence having the shorter second wavelength is reflected by the second dichroic mirror 15 and transmitted through the third bandpass filter 20. The light is converged by the second lens 21 and guided to the second detector 23. A third aperture member 22 is disposed at the focal position of the second lens 21, and stray light is removed by the third aperture member 22.
 上記第2ダイクロイックミラー15を透過した波長がより長い上記第1波長を有する第1の蛍光も同様に、第2バンドパスフィルタ16を透過した後に、第1レンズ17で収束されて第1検出器19に導かれる。第1レンズ17の焦点位置には第2アパーチャ部材18が配置されており、迷光が除去される。 Similarly, the first fluorescence having the longer first wavelength transmitted through the second dichroic mirror 15 is transmitted through the second band-pass filter 16 and then converged by the first lens 17 to be the first detector. 19 leads. A second aperture member 18 is disposed at the focal position of the first lens 17 and stray light is removed.
 上記第1検出器19および第2検出器23による蛍光検出の場合には、傷によって蛍光が生ずる可能性は低いので、第2アパーチャ部材18および第3アパーチャ部材22のアパーチャ径は、必ずしも上記アパーチャ径決定方法A,B,Cの条件を総て満たす必要はない。上記アパーチャ径決定方法Aのみを満たしていればよい。 In the case of fluorescence detection by the first detector 19 and the second detector 23, the possibility that fluorescence is generated due to scratches is low. Therefore, the aperture diameters of the second aperture member 18 and the third aperture member 22 are not necessarily the aperture diameter. It is not necessary to satisfy all the conditions of the diameter determination methods A, B, and C. It is sufficient that only the aperture diameter determining method A is satisfied.
 以上のようにして、上記第1の蛍光が第1検出器19に導かれ、上記第2の蛍光が第2検出器23に導かれ、上記散乱光が第3検出器27に導かれると、第1検出器19,第2検出器23および第3検出器27では、上記信号光に対して光電変換が行われ、得られた電気信号が信号処理部に導かれる。そして、上記信号処理部によって、アナログ信号である上記電気信号がAD変換されてデジタル信号に変換され、さらに上記デジタル信号が処理されて、上記検出部の一例であるパーソナルコンピュータ80等の情報処理装置に転送される。 As described above, when the first fluorescence is guided to the first detector 19, the second fluorescence is guided to the second detector 23, and the scattered light is guided to the third detector 27, In the first detector 19, the second detector 23, and the third detector 27, photoelectric conversion is performed on the signal light, and the obtained electric signal is guided to the signal processing unit. The signal processing unit AD-converts the electrical signal, which is an analog signal, into a digital signal, and further processes the digital signal to process an information processing apparatus such as a personal computer 80 that is an example of the detection unit. Forwarded to
 そうすると、上記情報処理装置においては、処理された上記デジタル信号に基づいて、どのような蛍光または散乱光を発生する微小粒子が存在したかを定量的に分析して、分析結果を表示するのである。 Then, in the information processing apparatus, based on the processed digital signal, the type of minute particles that generate fluorescence or scattered light are quantitatively analyzed, and the analysis result is displayed. .
 以上のごとく、本実施の形態においては、上記検査チップ7の検体注入層36に注入された上記検体に対して、半導体レーザー8から出射されたレーザー光をコリメータレンズ9およびプリズムミラー13を介して照射する。そして、上記検査チップ7が載置されたテーブル29をモータ30によって回転する一方、光源装置1と対物レンズ2と第1~第3検出装置3~5とが収納された光学モジュール6を半径方向に移動させる。こうして、集束されたレーザー光が照射された上記検体中の微小粒子から周囲に等方的に散乱された蛍光および散乱光を、第1~第3検出装置3~5の第1~第3検出器19,23,27によって検出する。 As described above, in the present embodiment, the laser light emitted from the semiconductor laser 8 is passed through the collimator lens 9 and the prism mirror 13 to the specimen injected into the specimen injection layer 36 of the test chip 7. Irradiate. The table 29 on which the inspection chip 7 is placed is rotated by a motor 30, while the optical module 6 in which the light source device 1, the objective lens 2, and the first to third detection devices 3 to 5 are housed is moved in the radial direction. Move to. Thus, the first to third detection devices 3 to 5 detect the fluorescence and scattered light that are isotropically scattered from the minute particles in the specimen irradiated with the focused laser beam. Detection is performed by means of the devices 19, 23, 27.
 このように、レーザー光を二次元的に走査しながら微小粒子から発せられる散乱光または蛍光を検出する場合には、走査面積が広くなって測定時間が長くなるので測定時間を短くする必要がある。それには、単位走査面積当たりの微小粒子量を増やすことが有効である。 Thus, when detecting scattered light or fluorescence emitted from a minute particle while scanning laser light two-dimensionally, it is necessary to shorten the measurement time because the scanning area becomes wider and the measurement time becomes longer. . For this purpose, it is effective to increase the amount of fine particles per unit scanning area.
 そして、そのために、上記検査チップ7の検体注入層36に厚みDを持たせると共に、それに合わせて光学系を以下のように最適化している。 For this purpose, the specimen injection layer 36 of the test chip 7 is given a thickness D, and the optical system is optimized as follows.
 先ず、微小粒子検出の精度を向上させるためには、照射光であるレーザーの径をできる限り絞った状態で、上記検体に照射することが望ましい。そこで、レーザー光を対物レンズ2で上記検体の位置に焦点が合うように絞って上記検体に照射する。レーザー光をレンズを用いて絞る場合には、回折の効果によってレーザー光の径を無限小にまで絞れない。レーザー光を絞る場合の径の最少値であるスポット半径rは、強度分布を持たない場合の円形フランフォーファ回折像を考慮した場合、r=0.61λ/NA(NA:開口数、λ:光の波長)で与えられることが一般的に知られている。したがって、ビーム半径を、上記検体が注入されている厚みDの範囲全体おいて、上記スポット半径rに近い値になる(例えば、ビーム半径がスポット半径rのルート2倍以下に納まる)ように設定することが望ましい。 First, in order to improve the accuracy of detection of fine particles, it is desirable to irradiate the specimen with the diameter of the laser that is the irradiation light as narrow as possible. Therefore, the sample is irradiated with the laser beam with the objective lens 2 so as to be focused on the position of the sample. When the laser beam is squeezed using a lens, the diameter of the laser beam cannot be reduced to infinity due to the diffraction effect. The spot radius r, which is the minimum value of the diameter when the laser beam is narrowed, is r = 0.61λ / NA (NA: numerical aperture, λ: when considering a circular franphopha diffraction image without an intensity distribution). It is generally known that it is given by (wavelength of light). Therefore, the beam radius is set to a value close to the spot radius r in the entire range of the thickness D into which the specimen is injected (for example, the beam radius is within twice the root of the spot radius r). It is desirable to do.
 ここで、ビーム半径がスポット半径rのルート2倍以下となるための条件は、焦点深度d=λ/NA2を用いて、D≦dで与えられる。また、対物レンズ2の集光によるレーザー光のビーム半径の減少率Rは、概ねF値の逆数の2分の1と同義であって、R=1/(2F)=NAの関係にある。したがって、上記条件は、以下のように変形できる。
       D≦d=λ/NA2=λ/R2
Here, the condition for the beam radius to be less than or equal to twice the route of the spot radius r is given by D ≦ d using the focal depth d = λ / NA 2 . Further, the reduction rate R of the beam radius of the laser light due to the focusing of the objective lens 2 is generally synonymous with half of the reciprocal of the F value, and has a relationship of R = 1 / (2F) = NA. Therefore, the above conditions can be modified as follows.
D ≦ d = λ / NA 2 = λ / R 2
 尚、上記特許文献1においては、上述のような「ビーム半径がスポット半径rのルート2倍以下に納まるように設定する」や「上記検体が注入されている厚みDを焦点深度d以下にする」という配慮に関する記載がない。したがって、上記特許文献1において上記条件を満たしていない場合には、検体注入部に厚みDを持たせたとしても、厚みD内でレーザー光のビーム径が大きい箇所と小さい箇所とができてしまう。特に、ビーム径が大きい箇所ではレーザー光の光密度が小さいことから、微小粒子から発せられる光の強度が微弱となり、上記厚みDの領域に在る微小粒子は検出感度が低下してしまう。 In Patent Document 1, as described above, “the beam radius is set to be less than twice the route radius of the spot radius r” or “the thickness D into which the specimen is injected is set to a depth of focus d or less. There is no description regarding consideration. Therefore, when the above-mentioned conditions are not satisfied in Patent Document 1, even if the specimen injection portion has a thickness D, a portion where the beam diameter of the laser beam is large and a portion within the thickness D are formed. . In particular, since the light density of the laser beam is small at a location where the beam diameter is large, the intensity of light emitted from the microparticles is weak, and the detection sensitivity of the microparticles in the region of the thickness D is lowered.
 そのため、上記厚みDの検体注入部内の全ての微小粒子の検出に有効に活用することができない。あるいは、上記厚みDの検体注入部内で微小粒子から発せられる光の強度に分布ができてしまうため、検出される微小粒子からの光の強度のばらつきが大きくなってしまうのである。 Therefore, it cannot be effectively used for detecting all the fine particles in the specimen injection part having the thickness D. Alternatively, since the distribution of the intensity of light emitted from the microparticles in the specimen injection portion having the thickness D is made, the variation in the intensity of the light from the microparticles to be detected becomes large.
 また、上記焦点深度d(=λ/R2)を、検体注入層36の厚みDの3倍以下に設定している。焦点深度d(=λ/R2)が大き過ぎると、以下のような問題が生ずる。 Further, the focal depth d (= λ / R 2 ) is set to 3 times or less the thickness D of the specimen injection layer 36. If the depth of focus d (= λ / R 2 ) is too large, the following problem occurs.
 すなわち、上記レーザー光のスポット半径rは、ビーム半径の減少率Rに比例する(上述のごとくr=0.61λ/NA=0.61λ/R(NA:開口数、λ:光の波長))。そのために、上記減少率Rが小さい(つまり、レーザー光の集光率が小さい)場合には、上記検体に照射されるレーザー光のビーム半径が大きくなってしまい、微小粒子の検出精度が低下してしまう。 That is, the spot radius r of the laser beam is proportional to the beam radius reduction rate R (as described above, r = 0.61λ / NA = 0.61λ / R (NA: numerical aperture, λ: wavelength of light)). . For this reason, when the decrease rate R is small (that is, the laser beam condensing rate is small), the beam radius of the laser beam irradiated onto the specimen is increased, and the detection accuracy of microparticles is decreased. End up.
 すなわち、上記減少率Rが小さいと、焦点深度dを大きくすることができる一方で、レーザー光のビーム半径を絞ることができないというトレードオフの関係にある。 That is, when the reduction rate R is small, the depth of focus d can be increased while the beam radius of the laser beam cannot be reduced.
 そこで、D≦λ/R2(=d)の関係を満たしつつ、ビーム半径は可能な限り小さくするため、上述のように、焦点深度d(=λ/R2)を、検体注入層36の厚みDの3倍以下に設定するのである。ここで、上記焦点深度dの上限値である「3D」は、上記照射光学系および上記光検出光学系の精度や、光学モジュール6の径方向へのスキャン時における中心軸28の延在方向のブレ等を考慮して、第1検出器19,第2検出器23および第3検出器27によって最適な精度で光を検出可能なように設定されている。 Therefore, in order to make the beam radius as small as possible while satisfying the relationship of D ≦ λ / R 2 (= d), the focal depth d (= λ / R 2 ) is set to It is set to 3 times or less of the thickness D. Here, “3D” which is the upper limit value of the focal depth d is the accuracy of the irradiation optical system and the light detection optical system, and the extension direction of the central axis 28 during scanning of the optical module 6 in the radial direction. In consideration of blur and the like, the first detector 19, the second detector 23, and the third detector 27 are set so that light can be detected with optimum accuracy.
 また、本実施の形態においては、上記微小粒子から発せられる光は広い角度の範囲で発せられるため、その光を効率的に第1~第3検出器19,23,27に導くため、開口の広い対物レンズ2を用いている。さらに、対物レンズ2は、光軸に沿った一部がレーザー光を透過できるようになっている。すなわち、本実施の形態においては、対物レンズ2は、レーザー光を透過させて上記検体に導くための機能と、上記微小粒子からの光を集光するための機能とを兼ね備えているのである。 In the present embodiment, since the light emitted from the microparticles is emitted in a wide angle range, the light is efficiently guided to the first to third detectors 19, 23, 27. A wide objective lens 2 is used. Furthermore, the objective lens 2 is configured so that part of the objective lens 2 along the optical axis can transmit laser light. That is, in the present embodiment, the objective lens 2 has a function for transmitting laser light and guiding it to the specimen, and a function for condensing light from the microparticles.
 そして、上記半導体レーザー8からのレーザー光は、対物レンズ2の光軸付近のごく狭い領域のみを透過し、対物レンズ2を透過後にD≦λ/R2の条件を満たして上記検体に照射されるようになっている。さらに、対物レンズ2全体の領域は、上記微小粒子から発せられた光を第1~第3検出器19,23,27に導くようになっている。 Then, the laser beam from the semiconductor laser 8 passes through only a very narrow region near the optical axis of the objective lens 2, and after passing through the objective lens 2, satisfies the condition of D ≦ λ / R 2 and is irradiated to the specimen. It has become so. Further, the entire region of the objective lens 2 guides the light emitted from the fine particles to the first to third detectors 19, 23, 27.
 本実施の形態においては、上述のこと実現するために、上記対物レンズ2の形状を以下のように設定している。 In the present embodiment, in order to realize the above, the shape of the objective lens 2 is set as follows.
 すなわち、上述したように、上記対物レンズ2の光軸近傍の一部であって、上記光源である半導体レーザー8からのレーザー光を透過するビーム光透過部は、緩やかな曲率を有して半導体レーザー8からのレーザービーム(以下、単にビームと言う)を検査チップ7に向かって絞る機能を有している。ここで、対物レンズ2に入射するビームの半径をr0、対物レンズ2透過後のビームの焦点距離をfとすると、焦点距離fを有効口径(2・r0)で割った値である実効F値を用いて、上記減少率Rの定義は、R=1/(2F)=1/2(f/(2・r0))=r0/fで与えられる。したがって、上述した「D≦λ/R2」の条件は、D≦λ/R2=λ(f/r0)2と変形することができる。尚、対物レンズ2の一部にしかレーザー光が入射しないので、r0の取り方をレンズ直径とする普通のF値ではなく、r0を入射するビームの直径とする実効的なF値となる。 That is, as described above, the beam light transmitting portion that is a part of the vicinity of the optical axis of the objective lens 2 and transmits the laser light from the semiconductor laser 8 that is the light source has a gentle curvature and is a semiconductor. The laser beam from the laser 8 (hereinafter simply referred to as a beam) has a function of focusing toward the inspection chip 7. Here, if the radius of the beam incident on the objective lens 2 is r0 and the focal length of the beam after passing through the objective lens 2 is f, an effective F value that is a value obtained by dividing the focal length f by the effective aperture (2 · r0). , The definition of the reduction rate R is given by R = 1 / (2F) = 1/2 (f / (2 · r0)) = r0 / f. Therefore, the condition of “D ≦ λ / R 2 ” described above can be modified as D ≦ λ / R 2 = λ (f / r 0) 2 . Since the laser beam is incident only on a part of the objective lens 2, it is not an ordinary F value having the lens diameter as r0, but an effective F value having r0 as the diameter of the incident beam.
 上記対物レンズ2における光軸近傍の上記ビーム光透過部と、その他の周辺部分とを含む対物レンズ2全体は、上記検体から広角に出射された散乱光および蛍光を第1~第3検出器19,23,27に向かって集光する検体光透過部となっている。そして、上記ビーム光透過部の領域から外側に向かって、徐々に透過後の散乱光および蛍光の屈折角が大きくなるような形状になっている。 The entire objective lens 2 including the beam light transmitting portion in the vicinity of the optical axis of the objective lens 2 and the other peripheral portions, the first to third detectors 19 emit scattered light and fluorescence emitted from the specimen at a wide angle. , 23 and 27, it is a specimen light transmitting portion that condenses toward the light. Then, the shape is such that the angle of refraction of scattered light and fluorescence after transmission gradually increases from the region of the beam light transmitting portion toward the outside.
 すなわち、本実施の形態において、上記対物レンズ2における光軸に沿った上記ビーム光透過部は、レーザー光を緩く絞る(但し、絞り過ぎると焦点距離fが小さくなり過ぎるため、上記減少率Rが大きくなり、上述した「D≦λ/R2」の条件を満たさなくなってしまう)ために、対物レンズ2を透過後のレーザー光の屈折角が上記周辺部分よりも小さくなるような形状になっている。一方において、それ以外の領域は、上記検体から広角に出射されたレーザー光を集光するために、対物レンズ2を透過後の散乱光および蛍光の屈折角が上記ビーム光透過部側から外周縁側に向かって徐々に大きくなるような形状になっているのである。 That is, in the present embodiment, the beam light transmitting portion along the optical axis in the objective lens 2 squeezes the laser light loosely (however, if the aperture is too narrow, the focal length f becomes too small, so the reduction rate R is (Because the above condition “D ≦ λ / R 2 ” is not satisfied), the laser beam after passing through the objective lens 2 has a refraction angle smaller than that of the peripheral portion. Yes. On the other hand, in the other regions, in order to collect the laser light emitted from the specimen at a wide angle, the refraction angles of the scattered light and the fluorescence after passing through the objective lens 2 are changed from the beam light transmitting part side to the outer peripheral side. It has a shape that gradually becomes larger toward.
 また、本実施の形態においては、上記対物レンズ2で集光された蛍光および散乱光は第1~第3レンズ17,21,25で収束され、第2~第4アパーチャ部材18,22,26を介して第1~第3検出器19,23,27に導かれる。その場合における各アパーチャ部材18,22,26のアパーチャ径の決定は、検体注入層36における厚みDの範囲に分布する微小粒子からの上記蛍光および上記散乱光を全て取り込めるように決定している。その場合、検体注入層36内において厚み方向の異なる位置に微小粒子が存在したとしても、各アパーチャ部材18,22,26を透過して各検出器19,23,27によって検出される光の検出効率の変動率は10%以内に在るようにしている。ここで言う、光検出効率の変動率が10%以内とは、同程度の光強度の点光源が厚みDの範囲に分布している状態を想定した場合に、検出強度のバラツキが10%未満であることを意味する。 In the present embodiment, the fluorescence and scattered light collected by the objective lens 2 are converged by the first to third lenses 17, 21, 25, and the second to fourth aperture members 18, 22, 26 are collected. To the first to third detectors 19, 23, 27. In this case, the aperture diameters of the aperture members 18, 22, and 26 are determined so that all the fluorescence and the scattered light from the fine particles distributed in the range of the thickness D in the specimen injection layer 36 can be taken in. In that case, even if microparticles exist at different positions in the thickness direction in the specimen injection layer 36, detection of light transmitted through the aperture members 18, 22, 26 and detected by the detectors 19, 23, 27. The variation rate of efficiency is within 10%. Here, the fluctuation rate of the light detection efficiency is within 10%, assuming that the point light sources having the same light intensity are distributed in the range of the thickness D, the variation in the detection intensity is less than 10%. It means that.
 通常、アパーチャ部材は、目的の光のみを透過し、それ以外の光を遮蔽するように設計される。例えば、光軸方向における特定の深さから発せられた光は透過し、それ以外の深さからの光は遮光するように設計される。ここで、各アパーチャ部材18,22,26を透過する上記蛍光および上記散乱光が発せられる位置における深さの範囲が検体注入層36の厚みDよりも小さい場合には、厚みDの範囲に分布する微小粒子の全てを検出することができなくなってしまう。そこで、この発明においては、上述のごとくレーザー光の焦点深度dを検体注入層36の厚みDよりも大きく設定するだけではなく、各アパーチャ部材18,22,26を透過する光が発せられる位置の深さ範囲をも検体注入層36の厚みDよりも大きく設定している。 Normally, the aperture member is designed to transmit only the target light and shield other light. For example, the light emitted from a specific depth in the optical axis direction is transmitted, and the light from other depths is designed to be shielded. Here, when the range of the depth at the position where the fluorescence and the scattered light transmitted through the aperture members 18, 22, and 26 are emitted is smaller than the thickness D of the specimen injection layer 36, the distribution is in the range of the thickness D. It becomes impossible to detect all the fine particles. Therefore, in the present invention, not only the focal depth d of the laser beam is set to be larger than the thickness D of the specimen injection layer 36 as described above, but also the position where the light transmitted through each aperture member 18, 22, 26 is emitted. The depth range is also set larger than the thickness D of the specimen injection layer 36.
 こうすることによって、上記検体注入層36内において厚み方向の異なる位置に微小粒子が存在したとしても、各アパーチャ部材18,22,26を透過して各検出器19,23,27によって検出される光強度の変動率を10%以内にし、蛍光および散乱光検出時における微小粒子径の誤差を10%以内にすることができるのである。 By doing so, even if microparticles exist at different positions in the thickness direction in the specimen injection layer 36, they pass through the aperture members 18, 22, and 26 and are detected by the detectors 19, 23, and 27. The fluctuation rate of the light intensity can be made within 10%, and the error of the fine particle diameter when detecting fluorescence and scattered light can be made within 10%.
 ・第2実施の形態
 本実施の形態は、上記第1実施の形態における上記照射光学系とは異なる照射光学系に関するものであり、照射レーザー光をダイクロイックミラーで反射させる構成を有している。
Second Embodiment This embodiment relates to an irradiation optical system different from the irradiation optical system in the first embodiment, and has a configuration in which irradiation laser light is reflected by a dichroic mirror.
 図6は、本実施の形態の微小粒子検出装置における概略構成を示す図である。41は光源装置、42は対物レンズ、43は第1検出装置、44は第2検出装置である。光源装置41と対物レンズ42と第1検出装置43と第2検出装置44とは、枠体内に収納されて光学モジュール45を構成している。そして、光学モジュール45の上方には対物レンズ42に対向して円形のディスク状の検査チップ46が配置され、検査チップ46内には例えば蛍光物質によって標識された微小粒子が分布する懸濁液やゲル支持体やメンブレン等の転写支持体が検体として封入される検体注入層47が設けられている。 FIG. 6 is a diagram showing a schematic configuration in the microparticle detection apparatus of the present embodiment. Reference numeral 41 denotes a light source device, 42 denotes an objective lens, 43 denotes a first detection device, and 44 denotes a second detection device. The light source device 41, the objective lens 42, the first detection device 43, and the second detection device 44 are housed in a frame to constitute an optical module 45. A circular disk-shaped inspection chip 46 is disposed above the optical module 45 so as to face the objective lens 42. In the inspection chip 46, for example, a suspension in which fine particles labeled with a fluorescent substance are distributed. A sample injection layer 47 is provided in which a transfer support such as a gel support or a membrane is sealed as a sample.
 上記光学モジュール45の光源装置41には、光源としての第1半導体レーザー48が設けられており、第1半導体レーザー48の光軸上には、第1コリメータレンズ49,スポットサイズ調整レンズ50および第1アパーチャ部材51を、この順で配置している。さらに、第1半導体レーザー48に加えて、第1半導体レーザー48から出射されるレーザー光の第1波長とは異なる、第2波長のレーザー光を出射する第2半導体レーザー52を配置している。さらに、第2半導体レーザー52からのレーザー光を平行光化する第2コリメータレンズ53を配置している。そして、第1半導体レーザー48の光軸と第2半導体レーザー52の光軸との交差位置には、第1波長のレーザー光を透過する一方、第2波長のレーザー光を反射する第1ダイクロイックミラー54を配置している。ここで、第1半導体レーザー48,第1コリメータレンズ49,スポットサイズ調整レンズ50,第1アパーチャ部材51,第2半導体レーザー52,第2コリメータレンズ53および第1ダイクロイックミラー54は、一つのケース内に収納されて上記照射光学系の一例である光源装置41を構成している。 The light source device 41 of the optical module 45 is provided with a first semiconductor laser 48 as a light source. On the optical axis of the first semiconductor laser 48, a first collimator lens 49, a spot size adjustment lens 50, and a first semiconductor laser 48 are provided. The one aperture member 51 is arranged in this order. Further, in addition to the first semiconductor laser 48, a second semiconductor laser 52 that emits a laser beam having a second wavelength different from the first wavelength of the laser beam emitted from the first semiconductor laser 48 is disposed. Further, a second collimator lens 53 for collimating the laser beam from the second semiconductor laser 52 is disposed. A first dichroic mirror that transmits the laser light having the first wavelength and reflects the laser light having the second wavelength is transmitted to the intersection between the optical axis of the first semiconductor laser 48 and the optical axis of the second semiconductor laser 52. 54 is arranged. Here, the first semiconductor laser 48, the first collimator lens 49, the spot size adjusting lens 50, the first aperture member 51, the second semiconductor laser 52, the second collimator lens 53, and the first dichroic mirror 54 are included in one case. The light source device 41 that is an example of the irradiation optical system is configured.
 さらに、上記第1半導体レーザー48の光軸上には、上記第1ダイクロイックミラー54を透過した光を、対物レンズ42側に向かうように反射させるプリズム55を配置している。また、プリズム55によって反射された光と対物レンズ42の光軸との交差位置には、プリズム55からの光を対物レンズ42に入射するように反射させる第2ダイクロイックミラー56を配置している。ここで、第2ダイクロイックミラー56は、検体注入層47内の微小粒子からの蛍光を透過する一方、散乱光を反射する。 Further, a prism 55 is disposed on the optical axis of the first semiconductor laser 48 to reflect the light transmitted through the first dichroic mirror 54 toward the objective lens 42 side. A second dichroic mirror 56 that reflects the light from the prism 55 so as to enter the objective lens 42 is disposed at the intersection of the light reflected by the prism 55 and the optical axis of the objective lens 42. Here, the second dichroic mirror 56 transmits the fluorescence from the microparticles in the specimen injection layer 47 and reflects the scattered light.
 上記構成においては、第1半導体レーザー48および第2半導体レーザー52の複数の光源を搭載しているが、必ずしも複数の光源が必要ではない。 In the above configuration, a plurality of light sources of the first semiconductor laser 48 and the second semiconductor laser 52 are mounted, but a plurality of light sources are not necessarily required.
 また、57はバンドパスフィルタ、58は第1レンズ、59は第2アパーチャ部材、60は第1検出器であり、蛍光の検出を行う。一方、61はNDフィルタ、62は第2レンズ、63は第3アパーチャ部材、64は第2検出器であり、散乱光の検出を行う。すなわち、本実施の形態においては、上記光検出光学系を、対物レンズ42、第2ダイクロイックミラー56、各フィルタ57,61、各レンズ58,62、各アパーチャ部材59,63、および、各検出器60,64で構成するのである。 Also, 57 is a bandpass filter, 58 is a first lens, 59 is a second aperture member, and 60 is a first detector, which detects fluorescence. On the other hand, 61 is an ND filter, 62 is a second lens, 63 is a third aperture member, and 64 is a second detector, which detects scattered light. That is, in the present embodiment, the optical detection optical system includes the objective lens 42, the second dichroic mirror 56, the filters 57 and 61, the lenses 58 and 62, the aperture members 59 and 63, and the detectors. 60, 64.
 上記検査チップ46は、透明に且つ円形に構成されており、中心軸65に固定された円形の皿状のホルダ66に収容されて、中心軸65に対して固定されている。上記中心軸65は、上記回転駆動系の一例としてのスピンドルモータ67で回転可能になっている。これに対し、光学モジュール45は、検査チップ46が成す円板の半径方向に、上記駆動機構によって移動可能になっている。尚、66aはエンコーダリングが設けられたホルダ66の外周面、68は上記エンコーダリングを検知するための一対の発光素子と受光素子とが搭載されたヘッドである。 The inspection chip 46 is configured to be transparent and circular, and is accommodated in a circular dish-shaped holder 66 fixed to the central shaft 65 and fixed to the central shaft 65. The central shaft 65 can be rotated by a spindle motor 67 as an example of the rotational drive system. On the other hand, the optical module 45 is movable by the drive mechanism in the radial direction of the disk formed by the inspection chip 46. Reference numeral 66a denotes an outer peripheral surface of the holder 66 provided with the encoder ring, and 68 denotes a head on which a pair of light emitting elements and light receiving elements for detecting the encoder ring are mounted.
 以下、一例として、上記散乱光を検出する散乱光検出の場合を例に挙げて説明する。 Hereinafter, as an example, the case of scattered light detection for detecting the scattered light will be described as an example.
 上記光源装置41における第1半導体レーザー48および第2半導体レーザー52のうちの、第2ダイクロイックミラー56で反射される波長のレーザー光を出射する方の半導体レーザー、例えば第1半導体レーザー48から第1波長のレーザー光を出射させる。 Of the first semiconductor laser 48 and the second semiconductor laser 52 in the light source device 41, a semiconductor laser emitting a laser beam having a wavelength reflected by the second dichroic mirror 56, for example, a first semiconductor laser 48 to a first one. A laser beam having a wavelength is emitted.
 上記第1半導体レーザー48から出射されたレーザー光は、第1コリメータレンズ49,スポットサイズ調整レンズ50および第1アパーチャ部材51で収束され、第1ダイクロイックミラー54を透過する。次いで、プリズム55および第2ダイクロイックミラー56によって反射され、対物レンズ42および検査チップ46を通過して、検体注入層47に集光される。その場合、プリズム55の長手方向(水平方向)の長さは短く、上記長手方向に直交する方向の幅は狭くなっており、第1半導体レーザー48からのレーザー光は対物レンズ42の光軸付近(レーザー光透過部)のみを通過するようになっている。こうして、検体注入層47中の微小粒子に集束光が照射されると、上記集束光が照射された部分から周囲に等方的に散乱された散乱光が生ずる。 The laser light emitted from the first semiconductor laser 48 is converged by the first collimator lens 49, the spot size adjusting lens 50, and the first aperture member 51, and passes through the first dichroic mirror 54. Next, the light is reflected by the prism 55 and the second dichroic mirror 56, passes through the objective lens 42 and the inspection chip 46, and is collected on the specimen injection layer 47. In this case, the length of the prism 55 in the longitudinal direction (horizontal direction) is short, the width in the direction orthogonal to the longitudinal direction is narrow, and the laser light from the first semiconductor laser 48 is near the optical axis of the objective lens 42. It passes through only the (laser light transmission part). In this way, when the microscopic particles in the specimen injection layer 47 are irradiated with focused light, scattered light isotropically scattered from the irradiated portion to the surroundings.
 上記散乱光は、上記検体注入層47における上記集束光が照射された部分から周囲に等方的に出射される。そして、出射された散乱光のうちの検査チップ46を透過して対物レンズ42に入射した成分が、対物レンズ42を通過し、第2ダイクロイックミラー56によって反射され、NDフィルタ61,第2レンズ62および第3アパーチャ部材63を通過して、第2検出器64によって検出される。そして、第2検出器64で検出された信号は、内蔵されるAD変換器等によってAD変換等の処理が施された後に、上記検出部の一例であるパーソナルコンピュータ(PC)80等へ送出される。こうして、検体注入層47上の各測定点での散乱光強度の分布が内部メモリ等に記録される。また、検出信号に基づいて粒子カウントを行った場合には、粒子カウントデータが上記内部メモリ等に記録される。 The scattered light is isotropically emitted from the portion of the specimen injection layer 47 irradiated with the focused light to the surroundings. The component of the emitted scattered light that has passed through the inspection chip 46 and entered the objective lens 42 passes through the objective lens 42, is reflected by the second dichroic mirror 56, and is ND filter 61 and second lens 62. Then, it passes through the third aperture member 63 and is detected by the second detector 64. The signal detected by the second detector 64 is subjected to processing such as AD conversion by a built-in AD converter or the like, and then sent to a personal computer (PC) 80 or the like as an example of the detection unit. The In this way, the distribution of scattered light intensity at each measurement point on the specimen injection layer 47 is recorded in the internal memory or the like. Further, when the particle count is performed based on the detection signal, the particle count data is recorded in the internal memory or the like.
 上記第3アパーチャ部材63は、空間的な迷光をカットするために配置されている。また、共焦点アパーチャ部材としても機能しており、検体注入層47が存在する面以外からの不必要な反射光や迷光を除去する。例えば、検査チップ46の面やレンズ面で発生した反射光は対物レンズ42の焦点位置からずれているので、対物レンズ42の後段に続く光学系によって第3アパーチャ部材63の位置で広がった光となり、効率よく第3アパーチャ部材63を透過することができない。 The third aperture member 63 is arranged to cut spatial stray light. It also functions as a confocal aperture member, and removes unnecessary reflected light and stray light from other than the surface where the specimen injection layer 47 exists. For example, since the reflected light generated on the surface of the inspection chip 46 and the lens surface is deviated from the focal position of the objective lens 42, it becomes light spread at the position of the third aperture member 63 by the optical system following the objective lens 42. The third aperture member 63 cannot be efficiently transmitted.
 こうして、上記検査チップ46を回転させながら上述のような検出を行うことにより、各測定点での散乱光強度が上記PC80の内部メモリ等に記録される。 Thus, by performing the detection as described above while rotating the inspection chip 46, the scattered light intensity at each measurement point is recorded in the internal memory of the PC 80 or the like.
 尚、上述の説明は、上記第1半導体レーザー48からの第1波長のレーザー光による散乱光検出の場合を説明したが、第2半導体レーザー52からの第2波長のレーザー光による場合も、第1ダイクロイックミラー54で反射される以外は、全く同様である。また、上記蛍光を検出する蛍光検出の場合も、第2ダイクロイックミラー56を透過した蛍光を第1検出装置43で検出する以外は、全く同様である。 In the above description, the scattered light detection by the first wavelength laser beam from the first semiconductor laser 48 has been described. However, the second wavelength laser beam from the second semiconductor laser 52 can also be detected by the first wavelength. Except for being reflected by the one dichroic mirror 54, it is exactly the same. The fluorescence detection for detecting the fluorescence is exactly the same except that the fluorescence transmitted through the second dichroic mirror 56 is detected by the first detection device 43.
 本実施の形態によれば、微小粒子で発生した蛍光がプリズム55およびその支持台(図示せず)で遮られることがなく、上記蛍光を高感度で検出することができるのである。 According to the present embodiment, the fluorescence generated in the fine particles is not blocked by the prism 55 and its support (not shown), and the fluorescence can be detected with high sensitivity.
 本実施の場合においても、上記対物レンズ42の焦点深度dを、照射光の波長λ/(照射光の実効NA)2で、つまり照射光の波長λ/(ビーム半径の減少率R)2で定め、その値を検査チップ46における検体注入層47の厚みD以上に、且つ検体注入層47の厚みDの3倍以下に設定している。こうして、照射光のビーム半径をスポット半径rのルート2倍以下に収めて、必要な焦点深度dを確保するようにしている。 Also in this embodiment, the focal depth d of the objective lens 42 is the wavelength λ / (effective NA of the irradiation light) 2 , that is, the wavelength λ / (beam radius reduction rate R) 2 of the irradiation light. The value is set to be not less than the thickness D of the specimen injection layer 47 in the test chip 46 and not more than three times the thickness D of the specimen injection layer 47. In this way, the beam radius of the irradiation light is set to be equal to or less than twice the route of the spot radius r so as to ensure the necessary depth of focus d.
 また、上記各アパーチャ部材59,63を透過する光が発せられる位置の深さ範囲を検体注入層47の厚みDよりも大きく設定している。 Further, the depth range of the position where the light transmitted through each of the aperture members 59 and 63 is emitted is set larger than the thickness D of the specimen injection layer 47.
 また、上記対物レンズ42の形状を、光軸に沿った領域である上記ビーム光透過部は、透過後の光の屈折角が他の領域よりも小さくなるような形状を有して、各半導体レーザー48,52からの照射光を上記検体に向かって絞る機能を有するようにしている。一方、上記ビーム光透過部を除く他の領域は、透過後の上記微小粒子からの光の屈折角が上記ビーム光透過部側から外周縁側に向かって大きくなるような形状を有して、上記微小粒子から広角に発せられた光を集光する機能を有するようにしている。 In addition, the shape of the objective lens 42 is a region along the optical axis, and the beam light transmitting portion has a shape in which the refraction angle of the light after transmission becomes smaller than other regions, and each semiconductor The irradiation light from the lasers 48 and 52 has a function of narrowing toward the specimen. On the other hand, the other region excluding the beam light transmission part has a shape such that the refraction angle of the light from the fine particles after transmission increases from the beam light transmission part side toward the outer peripheral edge side, A function of condensing light emitted from a minute particle at a wide angle is provided.
 こうすることによって、上記検体注入層47内において厚み方向の異なる位置に微小粒子が存在したとしても、各アパーチャ部材59,63を透過して各検出器60,64によって検出される光強度の変動率を10%以内にし、蛍光および散乱光検出時における微小粒子径の誤差を10%以内にすることができるのである。 By doing this, even if microparticles exist at different positions in the thickness direction in the specimen injection layer 47, the fluctuations in the light intensity that are transmitted through the aperture members 59 and 63 and detected by the detectors 60 and 64 are detected. The rate can be within 10%, and the error of the fine particle diameter when detecting fluorescence and scattered light can be within 10%.
 ・第3実施の形態
 本実施の形態は、上記第1実施の形態および上記第2実施の形態における微小粒子の検出方法を、検査チップまたは光学モジュールを互いに直交する二方向への二次元走査する二次元スキャン方式に適用した微小粒子検出装置に関する。
Third Embodiment In this embodiment, the microparticle detection method in the first embodiment and the second embodiment is two-dimensionally scanned in two directions orthogonal to each other on the inspection chip or the optical module. The present invention relates to a fine particle detection apparatus applied to a two-dimensional scanning method.
 図7は、一例として、上記検査チップを、Y方向に移動させながらX方向にスキャンする微小粒子検出装置(PC80は省略)を示す。 FIG. 7 shows, as an example, a microparticle detection apparatus (PC80 is omitted) that scans in the X direction while moving the inspection chip in the Y direction.
 図7において、71は光源装置であり、72は対物レンズであり、73はバンドパスフィルタであり、74は検出装置である。上記照射光学系の一例である光源装置71と対物レンズ72とバンドパスフィルタ73と検出装置74とは、枠体内に収納されて上記光学モジュール75を構成している。そして、光学モジュール75の上方には対物レンズ72に対向してガラスステージ76が配置され、ガラスステージ76上には例えば蛍光物質によって標識された微小粒子が分布する懸濁液やゲル支持体やメンブレン等の転写支持体が検体として注入された検査チップ77がセットされている。 7, 71 is a light source device, 72 is an objective lens, 73 is a band pass filter, and 74 is a detection device. The light source device 71, the objective lens 72, the band pass filter 73, and the detection device 74, which are an example of the irradiation optical system, are housed in a frame and constitute the optical module 75. A glass stage 76 is disposed above the optical module 75 so as to face the objective lens 72. On the glass stage 76, for example, a suspension, a gel support, or a membrane in which fine particles labeled with a fluorescent substance are distributed. A test chip 77 in which a transfer support such as a sample is injected as a specimen is set.
 ここで、上記ガラスステージ76は矩形を成しており、長辺方向の第1走査方向と、第1走査方向に直交する短辺方向の第2走査方向との、二次元方向に走査するように構成されている。その場合における走査方法については、特に限定するものではない。要は、ガラスステージ76を上記第1走査方向に往復動作をさせる第1動作部と、上記第2走査方向に往復動作をさせる第2動作部とを備えていれば良いのである。あるいは、光学モジュール75側を二次元方向に走査してもよいし、ガラスステージ76を上記第2走査方向に移動させながら光学モジュール75を上記第1走査方向に往復動作をさせてもよい。 Here, the glass stage 76 has a rectangular shape, and scans in a two-dimensional direction of a first scanning direction in the long side direction and a second scanning direction in the short side direction orthogonal to the first scanning direction. It is configured. The scanning method in that case is not particularly limited. In short, it is only necessary to include a first operation unit that reciprocates the glass stage 76 in the first scanning direction and a second operation unit that reciprocates in the second scanning direction. Alternatively, the optical module 75 side may be scanned in a two-dimensional direction, or the optical module 75 may be reciprocated in the first scanning direction while moving the glass stage 76 in the second scanning direction.
 上記光源装置71は、上記第1実施の形態において図1に示す光源装置1または上記第2実施の形態において図6に示す光源装置41と同様に機能する構成を有している。 The light source device 71 has the same function as the light source device 1 shown in FIG. 1 in the first embodiment or the light source device 41 shown in FIG. 6 in the second embodiment.
 また、光検出光学系として、上記第1実施の形態において図1に示す上記光検出光学系または上記第2実施の形態において図6に示す上記光検出光学系と同様に機能する構成を有している。尚、バンドパスフィルタ73は、回転フォルダ79に配置されて、蛍光の波長に応じて他の波長のフィルタと交換可能になっている。 In addition, the light detection optical system has a configuration that functions in the same manner as the light detection optical system shown in FIG. 1 in the first embodiment or the light detection optical system shown in FIG. 6 in the second embodiment. ing. The bandpass filter 73 is disposed in the rotary folder 79 and can be replaced with a filter having another wavelength according to the wavelength of the fluorescence.
 上述したように、本実施の形態の微小粒子検出装置においては、上記光学モジュール75または検査チップ77を載せたガラスステージ76を相対的に二次元方向に走査させることにより、散乱光または蛍光の強度の分布画像を読取る構成になっている。 As described above, in the microparticle detection apparatus according to the present embodiment, the intensity of scattered light or fluorescence is obtained by relatively scanning the glass stage 76 on which the optical module 75 or the inspection chip 77 is placed in a two-dimensional direction. The distribution image is read.
 例えば、図8に示すように、微小粒子検出装置は、上記第2走査方向であるY方向にガラスステージ76を移動させながら、上記第1走査方向であるX方向に光学モジュール75でスキャンする。こうして、散乱光または蛍光の強度の分布画像を生成する。 For example, as shown in FIG. 8, the microparticle detection apparatus scans the optical module 75 in the X direction that is the first scanning direction while moving the glass stage 76 in the Y direction that is the second scanning direction. In this way, a distribution image of the intensity of scattered light or fluorescence is generated.
 本実施の場合においても、上記対物レンズ72における焦点深度dを、照射光の波長λ/(照射光の実効NA)2で、つまり照射光の波長λ/(ビーム半径の減少率R)2で定め、その値を検査チップ77における検体注入層78の厚みD以上に、且つ検体注入層78の厚みDの3倍以下に設定している。こうして、照射光のビーム半径をスポット半径rのルート2倍以下に収め、必要な焦点深度dを確保するようにしている。 Also in this embodiment, the focal depth d of the objective lens 72 is the wavelength λ / (effective NA of irradiation light) 2 , that is, the wavelength λ / (beam radius reduction rate R) 2 of irradiation light. The value is set to be not less than the thickness D of the specimen injection layer 78 in the test chip 77 and not more than three times the thickness D of the specimen injection layer 78. In this way, the beam radius of the irradiation light is set to be equal to or less than twice the route of the spot radius r, and the necessary depth of focus d is secured.
 また、上記アパーチャ部材を透過する光が発せられる位置の深さ範囲を検体注入層78の厚みDよりも大きく設定している。 Further, the depth range of the position where the light transmitted through the aperture member is emitted is set larger than the thickness D of the specimen injection layer 78.
 また、上記対物レンズ72の形状を、光軸に沿った領域であるビーム光透過部は、透過後の光の屈折角が他の領域よりも小さくなるような形状を有して、半導体レーザー(光源)からの照射光を上記検体に向かって絞る機能を有するようにしている。一方、上記ビーム光透過部を除く他の領域は、透過後の上記微小粒子からの光の屈折角が上記ビーム光透過部側から外周縁側に向かって大きくなるような形状を有して、上記微小粒子から広角に発せられた光を集光する機能を有するようにしている。 The beam light transmitting portion, which is a region along the optical axis of the objective lens 72, has such a shape that the refraction angle of the light after transmission is smaller than other regions, and a semiconductor laser ( A function of narrowing the irradiation light from the light source toward the specimen. On the other hand, the other region excluding the beam light transmission part has a shape such that the refraction angle of the light from the fine particles after transmission increases from the beam light transmission part side toward the outer peripheral edge side, A function of condensing light emitted from a minute particle at a wide angle is provided.
 こうすることによって、上記検体注入層78内において厚み方向の異なる位置に微小粒子が存在したとしても、アパーチャ部材を透過して検出器によって検出される光強度の変動率を10%以内にし、蛍光および散乱光検出時における微小粒子径の誤差を10%以内にすることができるのである。 By doing so, even if microparticles exist at different positions in the thickness direction in the specimen injection layer 78, the variation rate of the light intensity that is transmitted through the aperture member and detected by the detector is within 10%, and the fluorescence In addition, the error of the fine particle diameter when detecting scattered light can be made within 10%.
 以上のごとく、この発明の微小粒子検出装置は、
 微小粒子を含む検体が注入される検体注入部36,47,78を有する検査チップ7,46,77と、
 光源8,48,52と、
 上記光源8,48,52から出射された光を、上記検査チップ7,46,77における上記検体に対して照射する照射光学系1,41,71と、
 上記光の照射によって上記検体中の上記微小粒子から発せられた光を検出する光検出光学系と、
 上記光検出光学系によって検出された上記微小粒子からの光の強度に基づいて、上記微小粒子を検出する検出部と
を備え、
 上記光検出光学系は、上記光源8,48,52から出射された光を上記検体に向けて透過させる一方、上記光の照射によって上記検体中の上記微小粒子から発せられた光を集光する対物レンズ素子2,42,72を含み、
 上記対物レンズ素子2,42,72は、上記光源8,48,52からの光を透過させると共に、透過後の光を上記検体に向かって集光させる形状を有するビーム光透過部を含んでおり、
 上記検査チップ7,46,77の上記検体注入部36,47,78における光照射方向への厚みをD、上記光源8,48,52からの照射光の波長をλ、上記ビーム光透過部における上記集光による照射光のビーム半径の減少率をRとした場合に、関係式
    D≦λ/R2
を満たすようになっている
ことを特徴としている。
As described above, the microparticle detection apparatus of the present invention is
Test chips 7, 46, 77 having specimen injection portions 36, 47, 78 into which specimens containing fine particles are injected;
Light sources 8, 48, 52;
Irradiation optical systems 1, 41, 71 for irradiating the specimens in the test chips 7, 46, 77 with the light emitted from the light sources 8, 48, 52;
A light detection optical system for detecting light emitted from the microparticles in the specimen by the light irradiation;
A detection unit that detects the microparticles based on the intensity of light from the microparticles detected by the photodetection optical system;
The light detection optical system transmits light emitted from the light sources 8, 48, and 52 toward the specimen, and condenses light emitted from the microparticles in the specimen by irradiation with the light. Including objective lens elements 2, 42, 72;
The objective lens elements 2, 42, 72 include a beam light transmitting portion having a shape for transmitting the light from the light sources 8, 48, 52 and condensing the transmitted light toward the specimen. ,
The thickness of the test chip 7, 46, 77 in the specimen injection part 36, 47, 78 in the light irradiation direction is D, the wavelength of the irradiation light from the light source 8, 48, 52 is λ, and the beam light transmission part is When the reduction rate of the beam radius of the irradiation light by the above-mentioned condensing is R, the relational expression D ≦ λ / R 2
It is characterized by meeting.
 上記構成によれば、上記検査チップ7,46,77の上記検体注入部36,47,78における光照射方向への厚みDは、関係式「D≦λ/R2」を満たすようになっている。また、上記対物レンズ素子2,42,72の上記ビーム光透過部における集光による照射光のビーム半径の減少率Rは、概ねF値の逆数の2分の1と同義であり、開口数NAを用いてR=1/(2F)=NAの関係にある。 According to the above configuration, the thickness D in the light irradiation direction of the specimen injection portions 36, 47, 78 of the test chips 7, 46, 77 satisfies the relational expression “D ≦ λ / R 2 ”. Yes. Further, the reduction rate R of the beam radius of the irradiation light due to the condensing at the beam light transmitting portion of the objective lens element 2, 42, 72 is substantially the same as one half of the reciprocal of the F value, and the numerical aperture NA. And R = 1 / (2F) = NA.
 したがって、上記関係式「D≦λ/R2」は、次のように変形することができる。
    D≦λ/R2=λ/NA2
Therefore, the relational expression “D ≦ λ / R 2 ” can be modified as follows.
D ≦ λ / R 2 = λ / NA 2
 そして、焦点深度d=λ/NA2を用いて上記関係式は、さらに次のように変形することができる。
    D≦λ/R2=d
Then, using the depth of focus d = λ / NA 2 , the above relational expression can be further modified as follows.
D ≦ λ / R 2 = d
 すなわち、この発明によれば、上記対物レンズ素子2,42,72における上記照射光の焦点深度dは、上記検体注入部36,47,78における光照射方向への厚みD以上になるように設定されている。したがって、上記検体注入部36,47,78に注入されて厚みを有する検体領域に対して、上記照射光を均一に照射することができる。換言すれば、上記検体領域の厚み方向で異なる位置に微小粒子が存在していても、上記微小粒子を検出することが可能になる。 That is, according to the present invention, the focal depth d of the irradiation light in the objective lens elements 2, 42, 72 is set to be equal to or greater than the thickness D in the light irradiation direction in the specimen injection portions 36, 47, 78. Has been. Therefore, the irradiation light can be uniformly irradiated onto the specimen region having a thickness that is injected into the specimen injection portions 36, 47, and 78. In other words, even if microparticles exist at different positions in the thickness direction of the specimen region, the microparticles can be detected.
 さらに、上記検査チップ7,46,77を回転または一方向に走査した際に、上記検査チップ7,46,77が光照射方向に面ブレを起こした場合でも、上記焦点深度dが上記検体注入部36,47,78の厚みD以上であるので、上記焦点深度dが上記厚みDより大きい分だけ上記面ブレの影響を低減することができる。 Further, when the test chips 7, 46, 77 are rotated or scanned in one direction, even if the test chips 7, 46, 77 cause surface blurring in the light irradiation direction, the depth of focus d is the sample injection. Since the thickness is equal to or greater than the thickness D of the portions 36, 47, and 78, the influence of the surface blur can be reduced by the amount of the focal depth d larger than the thickness D.
 さらに、厚みDを有する上記検体を一度に測定可能になるので、上記検体中の微小粒子を高速に且つ効率よく検出することが可能になり、測定時間の短縮を図ることが可能になる。 Furthermore, since the specimen having the thickness D can be measured at a time, it becomes possible to detect fine particles in the specimen at high speed and efficiently, and to shorten the measurement time.
 また、一実施の形態の微小粒子検出装置では、
 下記の関係式
    D≦λ/R2≦3D
を満たすようになっている。
Moreover, in the microparticle detection apparatus of one embodiment,
The following relational expression D ≦ λ / R 2 ≦ 3D
It comes to satisfy.
 上述のごとく、上記照射光の焦点深度dは光照射方向への厚みDよりも大きい方が望ましい。しかしながら、焦点深度d(=λ/R2)が大き過ぎると、上記ビーム光透過部による上記減少率Rが小さくなって照射光のビーム半径を絞ることができなくなってしまう。 As described above, the focal depth d of the irradiation light is desirably larger than the thickness D in the light irradiation direction. However, if the depth of focus d (= λ / R 2 ) is too large, the rate of decrease R by the beam light transmitting portion becomes small, and the beam radius of the irradiation light cannot be reduced.
 この実施の形態によれば、さらに加えて、λ/R2で表される焦点深度dを検体注入部36,47,78における光照射方向の厚みDの3倍以下に設定している。したがって、上記照射光学系1,41,71および上記光検出光学系の精度や、上記検査チップ7,46,77の光照射方向に面ブレ等を考慮して、上記光検出光学系によって最適な精度で光検出を行うことが可能になる。 According to this embodiment, in addition, the focal depth d represented by λ / R 2 is set to be not more than three times the thickness D in the light irradiation direction in the specimen injection sections 36, 47, 78. Accordingly, considering the accuracy of the irradiation optical systems 1, 41, 71 and the light detection optical system and surface blurring in the light irradiation direction of the inspection chips 7, 46, 77, the light detection optical system is optimal. Light detection can be performed with high accuracy.
 また、一実施の形態の微小粒子検出装置では、
 上記対物レンズ素子2,42,72における上記ビーム光透過部の表面は、光を屈折によって集光させる曲率を有しており、
 上記検査チップ7,46,77の上記検体注入部36,47,78における光照射方向への厚みをD、上記光源8,48,52からの照射光の波長をλ、上記ビーム光透過部を透過する照射光のビーム半径をr0、上記ビーム光透過部を透過後の光の焦点距離をfとした場合に、関係式
    D≦λ(f/r0)2
を満たすようになっている。
Moreover, in the microparticle detection apparatus of one embodiment,
The surface of the beam light transmitting portion in the objective lens element 2, 42, 72 has a curvature for condensing light by refraction,
The thickness of the test chip 7, 46, 77 in the specimen injection part 36, 47, 78 in the light irradiation direction is D, the wavelength of the light emitted from the light source 8, 48, 52 is λ, and the beam light transmission part is The relation D ≦ λ (f / r0) 2 , where r0 is the beam radius of the irradiated light to be transmitted and f is the focal length of the light transmitted through the beam light transmitting portion.
It comes to satisfy.
 この実施の形態によれば、上記ビーム光透過部の表面は光を屈折によって集光させる曲率を有しており、上記検体注入部36,47,78の厚みDは関係式「D≦λ(f/r0)2」を満たすようになっている。したがって、上記ビーム光透過部を透過する照射光のビーム半径r0は、上記関係式「D≦λ/R2」を満たす範囲内で、より小さい方が望ましい。 According to this embodiment, the surface of the beam light transmitting portion has a curvature for condensing light by refraction, and the thickness D of the specimen injection portions 36, 47, 78 is expressed by the relational expression “D ≦ λ ( f / r0) 2 "is satisfied. Therefore, it is desirable that the beam radius r0 of the irradiation light transmitted through the beam light transmitting portion is smaller within a range satisfying the relational expression “D ≦ λ / R 2 ”.
 また、一実施の形態の微小粒子検出装置では、
 上記対物レンズ素子2,42,72における上記ビーム光透過部は、光軸に沿った領域であって、透過後の光の屈折角が上記ビーム光透過部を除く他の領域よりも小さくなるような形状を有して、上記光源8,48,52からの照射光を上記検体に向かって絞る機能を有しており、
 上記対物レンズ素子2,42,72における上記ビーム光透過部を除く他の領域は、透過後の上記微小粒子からの光の屈折角が上記ビーム光透過部側から外周縁側に向かって大きくなるような形状を有して、上記微小粒子から広角に発せられた光を集光する機能を有している。
Moreover, in the microparticle detection apparatus of one embodiment,
The beam light transmission part in the objective lens element 2, 42, 72 is an area along the optical axis so that the refraction angle of the light after transmission is smaller than other areas excluding the beam light transmission part. And has a function of narrowing the irradiation light from the light sources 8, 48, 52 toward the specimen,
In other regions of the objective lens elements 2, 42 and 72 excluding the beam light transmission part, the refraction angle of the light from the fine particles after transmission increases from the beam light transmission part side toward the outer peripheral edge side. And has a function of condensing light emitted at a wide angle from the fine particles.
 この実施の形態によれば、表面が屈折により光を集光させる曲率を有すると共に、透過する照射光のビーム半径r0が小さい上記ビーム光透過部を、上記対物レンズ素子2,42,72における光軸に沿った領域とし、透過後の光の屈折角が他の領域よりも小さくなるような形状にしている。さらに、上記ビーム光透過部を除く他の領域(光軸に沿った領域の周囲の領域)を、透過後の上記微小粒子からの光の屈折角が外側に向かって大きくなるような形状にしている。 According to this embodiment, the surface of the beam transmitting portion having a curvature for condensing light by refraction and a small beam radius r0 of the transmitted irradiation light is used as the light in the objective lens elements 2, 42, 72. A region along the axis is formed so that the refraction angle of light after transmission is smaller than that of other regions. Further, the other region (the region around the region along the optical axis) excluding the beam light transmission part is shaped so that the refraction angle of the light from the fine particles after transmission increases outward. Yes.
 したがって、単一の上記対物レンズ素子2,42,72に、上記光源8,48,52からの照射光を上記検体に向かって絞る機能と、上記微小粒子から広角に発せられた光を集光する機能とを兼ね備えることが可能になる。 Therefore, the single objective lens element 2, 42, 72 is focused on the light emitted from the light sources 8, 48, 52 toward the specimen, and the light emitted from the fine particles at a wide angle is condensed. It is possible to have a function to perform.
 また、一実施の形態の微小粒子検出装置では、
 上記対物レンズ素子2,42,72と上記検出部との間に設けられると共に、上記対物レンズ素子2,42,72を透過した上記微小粒子からの光を透過させる穴を有するアパーチャ部材18,22,26,59,63を備え、
 上記アパーチャ部材18,22,26,59,63における穴の径を、上記検体注入部36,47,78における厚みDの範囲に分布する上記微小粒子からの光を全て取り込むと共に、上記検体注入部36,47,78の厚みDの範囲内に存在する上記微小粒子から発せられる光の上記検出部による光検出効率の変動率が10%以下になるように設定している。
Moreover, in the microparticle detection apparatus of one embodiment,
Aperture members 18, 22 provided between the objective lens elements 2, 42, 72 and the detection unit and having holes for transmitting light from the fine particles that have passed through the objective lens elements 2, 42, 72. 26, 59, 63,
The diameters of the holes in the aperture members 18, 22, 26, 59, 63 are all taken in from the fine particles distributed in the range of the thickness D in the sample injection sections 36, 47, 78, and the sample injection section The variation rate of the light detection efficiency of the light emitted from the fine particles existing in the range of the thickness D of 36, 47, 78 by the detection unit is set to 10% or less.
 この実施の形態によれば、上記対物レンズ素子2,42,72と上記検出部との間に上記アパーチャ部材18,22,26,59,63を設け、上記アパーチャ部材18,22,26,59,63の穴の径を、上記検体注入部36,47,78の厚みDの範囲内に存在する上記微小粒子から発せられる光の上記検出部による光検出効率の変動率が10%以下になるように設定している。したがって、上記検体注入部36,47,78内において厚み方向の異なる位置に微小粒子が存在したとしても、上記アパーチャ部材18,22,26,59,63の穴を透過する光強度の変動率を10%以内にすることができる。 According to this embodiment, the aperture members 18, 22, 26, 59, 63 are provided between the objective lens elements 2, 42, 72 and the detection unit, and the aperture members 18, 22, 26, 59 are provided. , 63 with a diameter of the hole in the range of the thickness D of the specimen injection part 36, 47, 78, the variation rate of the light detection efficiency by the detection part of the light emitted from the fine particles is 10% or less. It is set as follows. Therefore, even if microparticles exist at different positions in the thickness direction in the specimen injection portions 36, 47, and 78, the variation rate of the light intensity transmitted through the holes of the aperture members 18, 22, 26, 59, and 63 is increased. It can be within 10%.
 1,41,71…光源装置
 2,42,72…対物レンズ
 3~5,43,44,74…検出装置
 6,45,75…光学モジュール
 7,46,77…検査チップ
 8,48,52…半導体レーザー
 9,49,53…コリメータレンズ
10,16,20,57,73…バンドパスフィルタ
11,24,61…NDフィルタ
12,18,22,26,51,59,63…アパーチャ部材
13…プリズムミラー
14,15,54,56…ダイクロイックミラー
17,21,25,58,62…レンズ
19,23,27,60,64…検出器
28,65…中心軸
29…テーブル
30,67…モータ
31,32…基板
34…スペーサ
36,47,78…検体注入層
37…検体注入口
38…被検出微小粒子
50…スポットサイズ調整レンズ
55…プリズム
66…ホルダ
76…ガラスステージ
80…パーソナルコンピュータ(情報処理装置)
DESCRIPTION OF SYMBOLS 1,41,71 ... Light source device 2,42,72 ... Objective lens 3-5,43,44,74 ... Detection device 6,45,75 ... Optical module 7,46,77 ... Inspection chip 8,48,52 ... Semiconductor laser 9, 49, 53 ... Collimator lens 10, 16, 20, 57, 73 ... Band pass filter 11, 24, 61 ... ND filter 12, 18, 22, 26, 51, 59, 63 ... Aperture member 13 ... Prism Mirror 14, 15, 54, 56 ... Dichroic mirror 17, 21, 25, 58, 62 ... Lens 19, 23, 27, 60, 64 ... Detector 28, 65 ... Center shaft 29 ... Table 30, 67 ... Motor 31, 32 ... Substrate 34 ... Spacers 36, 47, 78 ... Sample injection layer 37 ... Sample injection port 38 ... Detected fine particles 50 ... Spot size adjustment lens 55 ... Prism 66 ... Holder 76 ... Glass stage 80 ... Personal computer (Information processing device)

Claims (5)

  1.  微小粒子を含む検体が注入される検体注入部(36,47,78)を有する検体チップ(7,46,77)と、
     光源(8,48,52)と、
     上記光源(8,48,52)から出射された光を、上記検体チップ(7,46,77)における上記検体に対して照射する照射光学系(1,41,71)と、
     上記光の照射によって上記検体中の上記微小粒子から発せられた光を検出する光検出光学系(3,4,5,43,44)と、
     上記光検出光学系(2,13~27,42,55~64,72,74)によって検出された上記微小粒子からの光の強度に基づいて、上記微小粒子を検出する検出部(80)と
    を備え、
     上記光検出光学系(2,13~27,42,55~64,72,74)は、上記光源(8,48,52)から出射された光を上記検体に向けて透過させる一方、上記光の照射によって上記検体中の上記微小粒子から発せられた光を集光する対物レンズ素子(2,42,72)を含み、
     上記対物レンズ素子(2,42,72)は、上記光源(8,48,52)からの光を透過させると共に、透過後の光を上記検体に向かって集光させる形状を有するビーム光透過部を含んでおり、
     上記検体チップ(7,46,77)の上記検体注入部(36,47,78)における光照射方向への厚みをD、上記光源からの照射光の波長をλ、上記ビーム光透過部における上記集光による照射光のビーム半径の減少率をRとした場合に、関係式
        D≦λ/R2
    を満たすようになっている
    ことを特徴とする微小粒子検出装置。
    A sample chip (7, 46, 77) having a sample injection part (36, 47, 78) into which a sample containing fine particles is injected;
    A light source (8, 48, 52);
    An irradiation optical system (1, 41, 71) for irradiating the specimen in the specimen chip (7, 46, 77) with the light emitted from the light source (8, 48, 52);
    A light detection optical system (3, 4, 5, 43, 44) for detecting light emitted from the microparticles in the specimen by the light irradiation;
    A detection unit (80) for detecting the microparticles based on the intensity of light from the microparticles detected by the photodetection optical system (2, 13 to 27, 42, 55 to 64, 72, 74); With
    The light detection optical system (2, 13 to 27, 42, 55 to 64, 72, 74) transmits the light emitted from the light source (8, 48, 52) toward the specimen, while the light. An objective lens element (2, 42, 72) for condensing light emitted from the microparticles in the specimen by irradiation of
    The objective lens element (2, 42, 72) transmits the light from the light source (8, 48, 52) and has a shape for condensing the transmitted light toward the specimen. Contains
    The thickness of the sample tip (7, 46, 77) in the sample injection part (36, 47, 78) in the light irradiation direction is D, the wavelength of the light emitted from the light source is λ, and the light beam transmission part is the above. When the reduction rate of the beam radius of the irradiated light due to condensing is R, the relational expression D ≦ λ / R 2
    A fine particle detection device characterized by satisfying the above.
  2.  請求項1に記載の微小粒子検出装置において、
     下記の関係式
        D≦λ/R2≦3D
    を満たすようになっている
    ことを特徴とする微小粒子検出装置。
    The fine particle detection apparatus according to claim 1,
    The following relational expression D ≦ λ / R 2 ≦ 3D
    A fine particle detection device characterized by satisfying the above.
  3.  請求項1または請求項2に記載の微小粒子検出装置において、
     上記対物レンズ素子(2,42,72)における上記ビーム光透過部の表面は、光を屈折によって集光させる曲率を有しており、
     上記検体チップ(7,46,77)の上記検体注入部(36,47,78)における光照射方向への厚みをD、上記光源(8,48,52)からの照射光の波長をλ、上記ビーム光透過部を透過する照射光のビーム半径をr0、上記ビーム光透過部を透過後の光の焦点距離をfとした場合に、関係式
        D≦λ(f/r0)2
    を満たすようになっている
    ことを特徴とする微小粒子検出装置。
    In the microparticle detection apparatus according to claim 1 or 2,
    The surface of the beam light transmitting portion in the objective lens element (2, 42, 72) has a curvature for condensing light by refraction,
    The thickness in the light irradiation direction of the sample injection portion (36, 47, 78) of the sample chip (7, 46, 77) is D, the wavelength of the irradiation light from the light source (8, 48, 52) is λ, The relational expression D ≦ λ (f / r0) 2 , where r0 is the beam radius of the irradiating light transmitted through the beam light transmitting portion and f is the focal length of the light after passing through the beam light transmitting portion.
    A fine particle detection device characterized by satisfying the above.
  4.  請求項3に記載の微小粒子検出装置において、
     上記対物レンズ素子(2,42,72)における上記ビーム光透過部は、光軸に沿った領域であって、透過後の光の屈折角が上記ビーム光透過部を除く他の領域よりも小さくなるような形状を有して、上記光源(8,48,52)からの照射光を上記検体に向かって絞る機能を有しており、
     上記対物レンズ素子(2,42,72)における上記ビーム光透過部を除く他の領域は、透過後の上記微小粒子からの光の屈折角が上記ビーム光透過部側から外周縁側に向かって大きくなるような形状を有して、上記微小粒子から広角に発せられた光を集光する機能を有している
    ことを特徴とする微小粒子検出装置。
    In the microparticle detection apparatus according to claim 3,
    The beam light transmission part in the objective lens element (2, 42, 72) is an area along the optical axis, and the refraction angle of the light after transmission is smaller than other areas excluding the beam light transmission part. And has a function of narrowing the irradiation light from the light source (8, 48, 52) toward the specimen,
    In the other area of the objective lens element (2, 42, 72) except for the beam light transmission part, the refraction angle of the light from the fine particles after transmission increases from the beam light transmission part side toward the outer peripheral edge side. A microparticle detection apparatus characterized by having a function of condensing light emitted from the microparticles at a wide angle.
  5.  請求項1から請求項4までの何れか一つに記載の微小粒子検出装置において、
     上記対物レンズ素子(2,42,72)と上記検出部(80)との間に設けられると共に、上記対物レンズ素子(2,42,72)を透過した上記微小粒子からの光を透過させる穴を有するアパーチャ部材(18,22,26,59,63)を備え、
     上記アパーチャ部材(18,22,26,59,63)における上記穴の径を、上記検体注入部(36,47,78)における厚みDの範囲に分布する上記微小粒子からの光を全て取り込むと共に、上記検体注入部の厚みDの範囲内に存在する上記微小粒子から発せられる光の上記検出部による光検出効率の変動率が10%以下になるように設定した
    ことを特徴とする微小粒子検出装置。
    In the microparticle detection apparatus according to any one of claims 1 to 4,
    A hole provided between the objective lens element (2, 42, 72) and the detection unit (80) and transmitting light from the microparticles that have passed through the objective lens element (2, 42, 72). An aperture member (18, 22, 26, 59, 63) having
    While taking in all the light from the said microparticle which distributes the diameter of the said hole in the said aperture member (18,22,26,59,63) in the range of the thickness D in the said specimen injection part (36,47,78). The fine particle detection is characterized in that the variation rate of the light detection efficiency by the detection part of the light emitted from the fine particles existing within the range of the thickness D of the specimen injection part is set to 10% or less. apparatus.
PCT/JP2015/065302 2014-08-11 2015-05-27 Fine particle detection device WO2016024429A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014163772A JP2016038360A (en) 2014-08-11 2014-08-11 Fine particle detection device
JP2014-163772 2014-08-11

Publications (1)

Publication Number Publication Date
WO2016024429A1 true WO2016024429A1 (en) 2016-02-18

Family

ID=55304061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065302 WO2016024429A1 (en) 2014-08-11 2015-05-27 Fine particle detection device

Country Status (2)

Country Link
JP (1) JP2016038360A (en)
WO (1) WO2016024429A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109211741A (en) * 2017-07-05 2019-01-15 大塚电子株式会社 Optical detecting device and method of optically measuring
CN113484322A (en) * 2021-07-13 2021-10-08 天津大学 Optical tweezers super-resolution imaging method and system capable of feeding back axial optical trap position in real time

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023079806A (en) * 2021-11-29 2023-06-08 株式会社東芝 Microparticle measurement method, microparticle measurement device, and microparticle measurement system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030850A1 (en) * 2001-08-08 2003-02-13 Heffelfinger David M. Photon efficient scanner
US20030036855A1 (en) * 1998-03-16 2003-02-20 Praelux Incorporated, A Corporation Of New Jersey Method and apparatus for screening chemical compounds
JP2005337982A (en) * 2004-05-28 2005-12-08 Nippon Sheet Glass Co Ltd Micro gas detection device and micro chemical system equipped with the same
JP2007003249A (en) * 2005-06-22 2007-01-11 Funai Electric Co Ltd Fluorescence detector
JP2011059095A (en) * 2009-08-12 2011-03-24 Sony Corp Light detection device
JP2012198236A (en) * 2005-07-15 2012-10-18 Olympus Corp Optical measuring device
JP2013521499A (en) * 2010-03-01 2013-06-10 クワンテリクス コーポレーション Ultrasensitive detection of molecules or particles using beads or other captures
WO2013146364A1 (en) * 2012-03-29 2013-10-03 三洋電機株式会社 Sample holding carrier, and fluorescence detection system and fluorescence detection device that use same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030036855A1 (en) * 1998-03-16 2003-02-20 Praelux Incorporated, A Corporation Of New Jersey Method and apparatus for screening chemical compounds
US20030030850A1 (en) * 2001-08-08 2003-02-13 Heffelfinger David M. Photon efficient scanner
JP2005337982A (en) * 2004-05-28 2005-12-08 Nippon Sheet Glass Co Ltd Micro gas detection device and micro chemical system equipped with the same
JP2007003249A (en) * 2005-06-22 2007-01-11 Funai Electric Co Ltd Fluorescence detector
JP2012198236A (en) * 2005-07-15 2012-10-18 Olympus Corp Optical measuring device
JP2011059095A (en) * 2009-08-12 2011-03-24 Sony Corp Light detection device
JP2013521499A (en) * 2010-03-01 2013-06-10 クワンテリクス コーポレーション Ultrasensitive detection of molecules or particles using beads or other captures
WO2013146364A1 (en) * 2012-03-29 2013-10-03 三洋電機株式会社 Sample holding carrier, and fluorescence detection system and fluorescence detection device that use same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109211741A (en) * 2017-07-05 2019-01-15 大塚电子株式会社 Optical detecting device and method of optically measuring
CN109211741B (en) * 2017-07-05 2022-06-17 大塚电子株式会社 Optical measurement device and optical measurement method
CN113484322A (en) * 2021-07-13 2021-10-08 天津大学 Optical tweezers super-resolution imaging method and system capable of feeding back axial optical trap position in real time

Also Published As

Publication number Publication date
JP2016038360A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP5381741B2 (en) Optical measuring apparatus and optical measuring method
US9134230B2 (en) Microbial detection apparatus and method
US8018592B2 (en) Optical system for a particle analyzer and particle analyzer using same
JP2004138614A (en) Imaging apparatus and method using large linear aperture
JP5879405B1 (en) Fine particle detector
JP2016024093A (en) Flow cytometer, particle analyzer, and flow cytometric method
JP5775693B2 (en) Optical illumination apparatus and method
JPH05340865A (en) Measuring instrument
JP5497088B2 (en) Optical unit, fluorescence detection apparatus, and fluorescence detection method
WO2016024429A1 (en) Fine particle detection device
JP2022172075A (en) Optical flow cytometer for epi-fluorescence measurement
JP5864009B1 (en) Fine particle detector
US9528924B2 (en) Photodetection device
WO2011019713A1 (en) Ultra dark field microscope
WO2020175189A1 (en) Cell observation system and cell observation method
US7545498B2 (en) System and method for removing auto-fluorescence through the use of multiple detection channels
JPS6244650A (en) Particle analyzing device
JP7170954B1 (en) Particle measurement sensor
JPS61294334A (en) Particle analyzer
JP2016099231A (en) Minute particle detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15832636

Country of ref document: EP

Kind code of ref document: A1