WO2016077902A1 - Improvement made to a block for production of fixed prosthesis restorations - Google Patents

Improvement made to a block for production of fixed prosthesis restorations Download PDF

Info

Publication number
WO2016077902A1
WO2016077902A1 PCT/BR2015/050220 BR2015050220W WO2016077902A1 WO 2016077902 A1 WO2016077902 A1 WO 2016077902A1 BR 2015050220 W BR2015050220 W BR 2015050220W WO 2016077902 A1 WO2016077902 A1 WO 2016077902A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
hole
porcelain
ceramic
resin
Prior art date
Application number
PCT/BR2015/050220
Other languages
French (fr)
Portuguese (pt)
Inventor
Dalton MATOS RODRIGUES
Original Assignee
Matos Rodrigues Dalton
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matos Rodrigues Dalton filed Critical Matos Rodrigues Dalton
Publication of WO2016077902A1 publication Critical patent/WO2016077902A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/02Protective casings, e.g. boxes for instruments; Bags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/10Supports for artificial teeth for transport or for comparison of the colour
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry

Definitions

  • This utility patent application refers to a "PERFORMANCE INTRODUCED IN BLOCK FOR PRODUCTION OF FIXED PROSTHESIS" that was developed to provide a through hole in the block for installation of the so-called prosthetic component, enabling coupling and subsequent cementation of the prosthetic component, facilitating the fixation of the restorative element in the fixed prosthesis, through the implant screw, this hole is arranged transversely to the block hitch pin in the CAD-CAM machine, besides recommending the drilling of blocks of the various types of materials used (aluminum oxide, zirconia, lithium disilicate ceramics, cobalt-chromium alloy, resin, feldspar porcelain, porcelain-based or resin-based or porcelain-based glass ceramics), for use in CAD software and obtaining of pillars or crowns.
  • the present invention provides time savings, laboratory work and materials.
  • CAD-CAM refers to the design of a prosthetic structure on a computer (Computer Aided Design) followed by its manufacture by a milling machine (Computer Aided Manufacturing). It is a technology widely used in many industries and due to its introduction in Dentistry, in the late 70's and early 80's of the last century, Bruce Althoffr, USA, Royce Duret, France, and Werner Mormann and Marco Brandestini, in Switzerland. The main objectives of this technology were then to automate a manual process to obtain high quality material, standardize manufacturing processes and reduce production costs. In 1977, Young, Altmaschiner29 presented the idea of using laser holography for intraoral mapping. In 1984 Duretl developed the "Duret System" for making single crowns.
  • CEREC CEramic REConstruction
  • CAD-CAM technology has been used in dentistry mainly in the production of fixed denture restorations such as crowns, bridges and veneers.
  • CAD-CAM systems which are based on three key components: scanning readiness, prosthetic restoration design (CAD) software, and prosthetic framework milling (CAM). ).
  • CAD-CAM systems There are currently two types of CAD-CAM systems depending on the availability of assigning CAD files: open CAD-CAM systems or closed CAD-CAM systems.
  • open CAD-CAM systems open CAD-CAM systems or closed CAD-CAM systems.
  • Closed CAD-CAM systems offer the entire production system.
  • the remaining dental structure cannot have sharp angles.
  • the structures are made of ceramic, and the presence of sharp angles would induce fracture lines of the material.
  • the machining system of the prosthetic part especially the shape of the drill tip and its thickness, cannot reproduce such angles.
  • the ideal finishing line in these systems is the wide bevel or rounded internal angle shoulder.
  • Dental preparation can be digitized outside the oral cavity, on the cast model (changed), or inside the oral cavity, by an intraoral scanning system.
  • intraoral scanning systems still do not allow sufficiently accurate images of spatial relationships, especially when multiple teeth are involved in prosthetic rehabilitation.
  • Tinschert et al. In the current state of CAD-CAM technology, extraoral methods are preferable. However, these methods have some disadvantages, such as the time taken and the fact that they require an impression of dental preparation, which also introduces error factors in this process.
  • the image is transferred to a computer-aided design program, whereby the operator can then virtually design the prosthetic structure.
  • a waxing can be performed, which is then scanned and handled by the software.
  • the finishing lines, spacing and thickness of the restoration to be machined are defined.
  • the materials used for milling the prosthetic structure are prefabricated blocks of the following materials: leucite-reinforced glass ceramics, glass-reinforced alumina, densely sintered alumina, Y-TZP Zirconia (Yttrium-tetragonal polycristal zirconia) with sintering (partial or total), titanium, precious alloys, non-precious alloys and strengthened acrylics.
  • leucite-reinforced glass ceramics glass-reinforced alumina, densely sintered alumina, Y-TZP Zirconia (Yttrium-tetragonal polycristal zirconia) with sintering (partial or total), titanium, precious alloys, non-precious alloys and strengthened acrylics.
  • zirconia is the toughest ceramic available for use in dentistry, which is why it was highlighted in this paper.
  • This material has the potential to allow the construction of bridges in high tension sectors, for example in the posterior areas of the mouth, as it reveals a very high fracture resistance, three to four times higher than the largest masticatory load.
  • Zirconia is an oxidized form of zirconium metal, as alumina refers to aluminum metal.
  • Yttrium oxide is an agent that is added to pure zirconia to provide stability at room temperature and to produce a multiphase material known as yttrium partially stabilized zirconia (Y-TZP).
  • zirconia has a property known as "transformation toughening”: under stress, the material undergoes dimensional change, with volumetric increase of 3 to 4%, generating compression stresses that inhibit the propagation of fracture lines so frequent in ceramics. For this reason, zirconia is known as "Intelligent Ceramics". It is a feature similar to the action of the dentin-junction on the natural tooth. On the other hand, it should also be noted that regarding biocompatibility and aesthetics, zirconia has a higher value compared to metalloceramic restorations. For use in CAD-CAM milling machines, zirconia comes in two forms:
  • Fully sintered zirconia (hard) - implies a long working time (2 to 4 hours for a unit) and heavy wear with drills. According to Luthardt et al., The wear of this zirconia with diamond drills can damage the material, compromising its strength and viability, which is why the author advises the more favorable use of partially sintered zirconia;
  • Partially sintered zirconia (soft zirconia) - allows for easier and faster processing. However, due to its partially sintered condition, it needs 6 to 8 hours in a special ceramic oven to complete sintering. Due to this process, there is a dimensional change that must be compensated during the initial virtual drawing of the structure.
  • the prefabricated blocks are then subjected to a subtractive milling process according to the number of axes (3 to 6 axes), depending on the system in question.
  • the polishing and the individualization of the structures with cosmetic ceramics are required.
  • the CEREC system was the first CAD-CAM system to achieve clinical and commercial success.
  • This system makes an optical reading without contact with the dental preparation.
  • the measurement method used is active triangulation, with a resolution of 25 ⁇ .
  • the generated 3D image is then transferred to a computer on which the The system CAD program allows the structure to be designed.
  • the finishing line is automatically detected and can also be modified manually and is subsequently executed on the same system milling machine (CAM).
  • CAM system milling machine
  • This unit features two diamond drills that cut the frame on four working axes and with a cutting reproducibility of approximately 30 ⁇ 17.
  • the fact that the ceramic block is secured on one side prevents the action of the drill in that area, which is subsequently milled manually.
  • the system allows the production of hoods, incrustations, partial crowns, facets and full crowns for fore and aft regions in a single session.
  • CEREC® currently stands for Chairside Economical Restorations Esthetic Ceramic5.
  • this is the only system that has a version for clinical use (CEREC Chairside®), which makes it very practical and less dependent on laboratory work and can also translate into some financial savings (Economical).
  • CEREC 3D® a version for clinical use
  • CEREC Chairside® Triluxe® ceramic blocks
  • the introduction of CEREC 3D® allows the clinician to capture multiple images more accurately and then create a virtual model, for example for a complete quadrant.
  • Tinschert et al. This technology of the CEREC system is not yet sufficiently accurate to permit its approval to construct fixed prostheses of various elements.
  • Triluxe® is a new three-color ceramic block model that replaces the old mono-chromatic blocks and is reflected in an improved aesthetic potential of the system.
  • CEREC InLab® is a laboratory system whereby the dental preparation plaster model is subjected to a laser scanning, and the computer infrastructure (CAD) was then designed and the ceramic block machined. Once the infrastructure is prepared and verified, the laboratory completes it with cosmetic ceramics.
  • the Procera / AllCeram® system has produced more than 5 million prosthetic units, thus proving to be one of the most successful CAD / CAM systems. Due to this technology, the plaster model is digitized by contact using a Procera® scanner (Piccolo® - for single crowns, veneers and abutments; Forte® - also for 2 to 4 element prostheses). The "digitizing tip" exerts a small pressure of 20 g on the model to ensure accurate contact.
  • the process takes approximately 30 seconds.
  • the scanned image (3D CAD) is then sent to a Procera® processing center (Sweden - Karlskoga and Sweden; U.S. - New Jersey) via a modem connection.
  • replicas of the wider plaster model are made to compensate for the ceramic contraction when sintering.
  • the hoods can then be produced in high purity alumina (0.4 mm thick in cases requiring accurate aesthetics or 0.6 mm in other indications) or zirconium (0.7 mm when higher material strength is required) .
  • the hood is back in the lab to place the ceramics.
  • the strength of the materials used reaches high values, which, in the case of alumina, are 687 MPa and zirconia 1,200 Mpa2.
  • Dental preparation also requires an appropriate technique, with the execution of guidelines cervical finish in broad chamfer, cervical-occlusal stump height of 3 mm and lower pontics there mm, when in alumina.
  • the Lava® system enables the fabrication of front and rear ceramic crowns and bridges.
  • the cervical finishing line of dental preparations may be a bevel or a shoulder with a rounded internal angle.
  • the various finishing lines of dental preparations and the edentulous ridge are digitized by an optical laser that transmits the images to a computer, where the system's assisted design program automatically determines the finishing lines and suggests the pontics. . Due to the shrinkage of the ceramic during sintering, as described in the Procera® system, the infrastructures are designed with a 20% increase in volume.
  • pre-sintered zirconia blocks are used for milling, noting that the system is capable of producing up to 21 hoods or bridge structures without any manual intervention.
  • the zirconia blocks used can be colored with seven shades of color prior to the final sintering, which can give high aesthetic levels.
  • the LAVA® system includes a special high temperature oven.
  • a system that includes a scanning machine, CAD software, a milling machine and a ceramic sintering oven.
  • the plaster (anti-glare) model is digitized by an optical reading through a CCD camera (1: 1 real dimension and 20 ⁇ precision), and the 3D image is created through 15 projection sequences.
  • the prosthetic restoration is then designed in CAD software and then milled using five-axis cutting movements in blocks of various types of materials: partially sintered zirconia - ZS-Blanks; fully sintered zirconia (ZH-Blanks), titanium (Grade 2 - T-Blanks) and leucite-reinforced glass ceramics.
  • the number of axes of the milling unit is one of the parameters that most influences the geometric detail of restorations. Larger number of spindles allow drills to assume more positions according to the block and thus produce greater detail. It should be noted that the way to support the block in CAM units will also influence the number of axes. For example, in the CEREC system, blocks are always held by a support element on one side of the block, which prevents drill action in that zone. The Everest® system introduced the concept of support using acrylic resin, thus allowing complete freedom of movement of the drills around the restoration.
  • the milling machine allows the fabrication of structures with a maximum dimension of 45 mm. Milling of the structures can take 2 to 4 hours for the crown for hard zirconia and about 20 minutes for soft zirconia, with subsequent 8-hour sintering.
  • CAD software has a tool for manufacturing custom ceramic abutments on a specific abutment.
  • the blocks have a hole for coupling to the prosthetic component of the implants.
  • the prosthetic component at its bottom has a connection according to the geometry of each specific implant mark.
  • FIXTURE IMPROVEMENT FOR PRODUCTION OF FIXED PROSTHESIS comprised of a single body formed by prefabricated blocks made of glass ceramic reinforced with leucite, glass-reinforced alumina, densely sintered alumina, Y-TZP Zirconia (Yttrium-tetragonal zirconia polycristal) with sintering (partial or total), titanium, precious alloys, non-precious alloys, strengthened acrylic, aluminum oxide, zirconia , lithium disilicate ceramics, cobalt-chrome alloy, resin, feldspar porcelain, porcelain-based or resin-based or porcelain-based glass ceramics, with clamping pin that is inserted into the base of the shaping machine (not shown), characterized said prefabricated blocks are provided with a through hole disposed transverse to the fixing pin, the through hole being formed from a locking hole provided with a keyway, followed immediately by a tapered
  • Figure 1 shows a perspective view of the block.
  • Figure 2 shows a side view of the block.
  • Figure 3 shows a cross-sectional view of the block alluding to the coupling hole of the prosthetic component.
  • Figure 4 shows a side view of the block alluding to the securing pin.
  • the "PERFORMANCE INCLUDED IN BLOCK FOR PRODUCTION OF FIXED PROSTHESIS” comprised of a single body (1) consisting of prefabricated blocks (2) made of leucite-reinforced glass ceramics, alumina reinforced glass, densely sintered alumina, Y-TZP Zirconia (Yttrium-tetragonal zirconia polycristal) with sintering (partial or total), titanium, precious alloys, non-precious alloys, strengthened acrylic, aluminum oxide, zirconia, lithium disilicate, cobalt-chromium alloy, resin, feldspar porcelain, porcelain-based or resin-based or porcelain-based glass ceramics, with clamping pin (3) that is inserted into the base of the shaping machine (not shown), characterized said prefabricated blocks (2) have a through hole (4) disposed transversely to the fixing pin (3), the through hole (4) being from a
  • the "PERFORMING BLOCK INTRODUCTION FOR FIXED PROSTHESIS RESTORATION” has enormous advantages, as the CADEC CAM type block drilling system for coupling and subsequent cementation of prosthetic component. It consists essentially of making holes for installation of the so-called prosthetic component. The hole is perfectly designed for a perfect fit between the hole and the component. The hole is made in the lower part for fitting the prosthetic component and continues a 2.6 mm hole through which a screw will pass. This system makes it possible to obtain screw-based restorations on implants performed by the CAD-CAM system.

Abstract

"Improvement made to a block for production of fixed prosthesis restorations", comprising a single body formed by prefabricated blocks made from leucite-reinforced glass ceramic, glass-reinforced alumina, densely sintered alumina, Y-TZP zirconia (yttria-tetragonal zirconia polycrystal) with (partial or total) sintering, titanium, precious alloys, non-precious alloys, reinforced-strength acrylics, aluminium oxide, zirconia, lithium disilicate ceramic, cobalt-chrome metallic alloy, resin, feldspathic porcelain, porcelain-based vitrious ceramic or a resin- or porcelain-based composite, provided with a fastening pin that is inserted in the base of the modelling machine (not shown), characterized in that said prefabricated blocks are provided with a through-hole arranged transversally to the fastening pin, the through-hole being formed on the basis of a restraining hole provided with a key channel, immediately followed by a conical hole located in a support wall that delineates a cylindrical hole, for coupling of a prosthetic component (not shown), arranged in the lower section of the restorer element.

Description

APERFEIÇOAMENTO INTRODUZIDO EM BLOCO PARA PRODUÇÃO DE RESTAURAÇÕES EM PRÓTESE FIXA  IMPROVEMENT IN BLOCK FOR PRODUCTION OF FIXED PROSTHESIS RESTORATIONS
Refere-se o presente pedido patente de modelo de utilidade a um "APERFEIÇOAMENTO INTRODUZIDO EM BLOCO PARA PRODUÇÃO DE RESTAURAÇÕES EM PRÓTESE FIXA" que foi desenvolvido de forma a promover um furo passante no bloco para instalação do componente protético denominado, possibilitando o acoplamento e posterior cimentação de componente protético, facilitando a fixação do elemento restaurador na prótese fixa, através do parafuso sobre implantes, dito furo é disposto de forma transversal ao pino de engate do bloco na máquina CAD-CAM, além de preconizar a perfuração de blocos, dos diversos tipos de materiais usados (óxide de alumínio, zirconia, cerâmica de dissilicato de lítio, liga metálica de cobalto- cromo, resina, porcelana feldspática, cerâmica vítrea baseada em porcelana ou compósito baseado em resina ou porcelana), para uso no software CAD e obtenção de pilares ou coroas. De maneira específica, o presente invento proporciona economia de tempo, trabalho laboratorial e materiais. This utility patent application refers to a "PERFORMANCE INTRODUCED IN BLOCK FOR PRODUCTION OF FIXED PROSTHESIS" that was developed to provide a through hole in the block for installation of the so-called prosthetic component, enabling coupling and subsequent cementation of the prosthetic component, facilitating the fixation of the restorative element in the fixed prosthesis, through the implant screw, this hole is arranged transversely to the block hitch pin in the CAD-CAM machine, besides recommending the drilling of blocks of the various types of materials used (aluminum oxide, zirconia, lithium disilicate ceramics, cobalt-chromium alloy, resin, feldspar porcelain, porcelain-based or resin-based or porcelain-based glass ceramics), for use in CAD software and obtaining of pillars or crowns. Specifically, the present invention provides time savings, laboratory work and materials.
Estado da Técnica  State of the Art
O termo CAD-CAM designa o desenho de uma estrutura protética num computador (Computer Aided Design) seguido da sua confecção por uma máquina de fresagem (Computer Aided Manufacturing). Trata-se de uma tecnologia muito utilizada em várias indústrias e que deve a sua introdução na Odontologia, ao final da década de 70 e início da década de 80 do século passado, a Bruce Altschuler, nos EUA, François Duret, na França, e Werner Mormann e Marco Brandestini, na Suíça. Os objetivos principais dessa tecnologia eram, então, a automatização de um processo manual de modo a obter material de elevada qualidade, padronizar processos de fabricação e reduzir os custos de produção. Em 1977, Young, Altschuler29 apresentaram a ideia de utilizar a holografia laser para fazer um mapeamento intra-oral. Em 1984, Duretl desenvolveu o "Sistema Duret" de confecção de coroas unitárias. De acordo com este autor, as principais vantagens dessa técnica eram diminuir a grande dependência manual na fabricação das restaurações protéticas e, ao mesmo tempo, diminuir os custos. Todavia, o aparelho de Duret era demasiado complexo e dispendioso. O primeiro sistema a ser utilizado e comercializado de forma viável foi o CEREC (CEramic REConstruction), desenvolvido por Morman e Brandestini, em 1980, na Universidade de Zurique, Suíça. CAD-CAM refers to the design of a prosthetic structure on a computer (Computer Aided Design) followed by its manufacture by a milling machine (Computer Aided Manufacturing). It is a technology widely used in many industries and due to its introduction in Dentistry, in the late 70's and early 80's of the last century, Bruce Altschuler, USA, François Duret, France, and Werner Mormann and Marco Brandestini, in Switzerland. The main objectives of this technology were then to automate a manual process to obtain high quality material, standardize manufacturing processes and reduce production costs. In 1977, Young, Altschuler29 presented the idea of using laser holography for intraoral mapping. In 1984 Duretl developed the "Duret System" for making single crowns. According to this author, the main advantages of this technique were to reduce the heavy manual dependence on the manufacture of prosthetic restorations and, at the same time, to reduce costs. However, Duret's device was too complex and expensive. The first system to be used and commercially viable was CEREC (CEramic REConstruction), developed by Morman and Brandestini in 1980 at the University of Zurich, Switzerland.
A tecnologia CAD-CAM tem sido utilizada na Odontologia principalmente na produção de restaurações de prótese fixa como, por exemplo, coroas, pontes e facetas. Várias empresas têm desenvolvido sistemas CAD- CAM de alta tecnologia, que se baseiam em três componentes fundamentais: sistema de leitura da preparação dentária (scanning), software de desenho da restauração protética (CAD) e sistema de fresagem da estrutura protética (CAM ou milling). Atualmente, há dois tipos de sistema CAD-CAM segundo a disponibilidade de ceder os arquivos CAD: sistemas CAD-CAM abertos ou CAD-CAM fechados. A vantagem de um sistema aberto é a possibilidade de poder escolher o sistema CAM mais adequado aos propósitos, pois é possível transmitir o arquivo CAD para outro computador. Os sistemas CAD-CAM fechados oferecem todo o sistema de produção.  CAD-CAM technology has been used in dentistry mainly in the production of fixed denture restorations such as crowns, bridges and veneers. Several companies have developed high-tech CAD-CAM systems, which are based on three key components: scanning readiness, prosthetic restoration design (CAD) software, and prosthetic framework milling (CAM). ). There are currently two types of CAD-CAM systems depending on the availability of assigning CAD files: open CAD-CAM systems or closed CAD-CAM systems. The advantage of an open system is that you can choose the CAM system that best suits your purpose because you can transmit the CAD file to another computer. Closed CAD-CAM systems offer the entire production system.
Esses sistemas podem ainda classificar- se segundo o local onde são utilizados: clínica ou laboratório. A grande maioria dos sistemas funciona em laboratório; no entanto, o sistema CEREC é o único que apresenta ambas as modalidades: Chairside, especialmente para a clínica, e inLab, essencialmente para o laboratório. Previamente à digitalização da estrutura, há algumas considerações a fazer relativas à preparação dental.  These systems can also be classified according to where they are used: clinic or laboratory. The vast majority of systems work in the laboratory; However, the CEREC system is the only one that has both modes: Chairside, especially for the clinic, and inLab, essentially for the laboratory. Prior to the digitalization of the structure, there are some considerations regarding dental preparation.
Além dos pressupostos habituais referentes à espessura do corte e ao material a utilizar, a estrutura dentária remanescente não pode ter ângulos vivos. As estruturas são executadas em cerâmica, e a presença de ângulos vivos induziria linhas de fratura do material. Além disso, o sistema de maquinação da peça protética, sobretudo a forma da ponta da broca e a sua espessura, não consegue reproduzir ângulos desse tipo. Normalmente, a linha de acabamento ideal nesses sistemas é o chanfro largo ou ombro com ângulo interno arredondado. Apart from the usual assumptions regarding the thickness of the cut and the material to be used, the remaining dental structure cannot have sharp angles. The structures are made of ceramic, and the presence of sharp angles would induce fracture lines of the material. Furthermore, the machining system of the prosthetic part, especially the shape of the drill tip and its thickness, cannot reproduce such angles. Typically, the ideal finishing line in these systems is the wide bevel or rounded internal angle shoulder.
A preparação dentária pode ser digitalizada fora da cavidade oral, sobre o modelo de gesso (troquei), ou dentro da cavidade oral, por um sistema de digitalização intra-oral. Embora sejam de aplicação mais prática e mais rápida, os sistemas de digitalização intra-oral ainda não permitem obter imagens suficientemente precisas das relações espaciais, especialmente quando estão envolvidos vários dentes na reabilitação protética. De acordo com Tinschert et al., no estado atual da tecnologia CAD-CAM, os métodos extra orais são preferíveis. Todavia, estes métodos apresentam algumas desvantagens, tais como o tempo dispendido e o fato de exigirem uma impressão da preparação dentária, o que também introduz fatores de erro nesse processo.  Dental preparation can be digitized outside the oral cavity, on the cast model (changed), or inside the oral cavity, by an intraoral scanning system. Although more practical and faster to apply, intraoral scanning systems still do not allow sufficiently accurate images of spatial relationships, especially when multiple teeth are involved in prosthetic rehabilitation. According to Tinschert et al., In the current state of CAD-CAM technology, extraoral methods are preferable. However, these methods have some disadvantages, such as the time taken and the fact that they require an impression of dental preparation, which also introduces error factors in this process.
Depois de efetuada a digitalização do preparo dental, a imagem é transferida para um programa de desenho assistido por computador, pelo qual o operador pode então desenhar de forma virtual a estrutura protética. Eventualmente, e se necessário, pode ser realizado um enceramento, que é posteriormente digitalizado e tratado pelo software. Nesta fase, define-se as linhas de acabamento, o espaçamento e a espessura da restauração a maquinar. Apesar da evolução dos programas de desenho das restaurações protéticas para uma concepção mais facilitada, sobretudo pela introdução do 3D e das bases de dados de estruturas protéticas, presume-se que o operador tenha alguns conhecimentos sobre informática.  After the dental preparation has been digitized, the image is transferred to a computer-aided design program, whereby the operator can then virtually design the prosthetic structure. Eventually, if necessary, a waxing can be performed, which is then scanned and handled by the software. In this phase, the finishing lines, spacing and thickness of the restoration to be machined are defined. Despite the evolution of prosthetic restoration design programs to a easier design, especially with the introduction of 3D and prosthetic structure databases, it is assumed that the operator has some computer skills.
Os materiais utilizados para a fresagem da estrutura protética são blocos pré-fabricados dos seguintes materiais: cerâmica de vidro reforçada com leucita, alumina reforçada com vidro, alumina densamente sinterizada, Y-TZP Zircônia (Yttrium-tetragonal zirconia polycristal) com sinterização (parcial ou total), titânio, ligas preciosas, ligas não-preciosas e acrílicos de resistência reforçada. Uma das grandes vantagens da utilização desses sistemas é a possibilidade de trabalhar com materiais muito resistentes, como a zircônia, que, quanto à fabricação manual, é bastante limitada. The materials used for milling the prosthetic structure are prefabricated blocks of the following materials: leucite-reinforced glass ceramics, glass-reinforced alumina, densely sintered alumina, Y-TZP Zirconia (Yttrium-tetragonal polycristal zirconia) with sintering (partial or total), titanium, precious alloys, non-precious alloys and strengthened acrylics. One of the great advantages of using these systems is the ability to work with very resistant materials such as zirconia, which, as far as manual manufacturing is concerned, is very limited.
Atualmente, a zircônia é a cerâmica mais resistente disponível para utilização em Odontologia, razão pela qual foi destacada neste trabalho.  Currently, zirconia is the toughest ceramic available for use in dentistry, which is why it was highlighted in this paper.
Esse material tem o potencial de permitir a construção de pontes em setores de altas tensões, por exemplo em zonas mais posteriores da boca, pois revela uma resistência à fratura muito alta, três a quatro vezes superior à maior carga mastigatória. Num artigo de revisão de 2004, Raigrodsky refere que foi demonstrada em estudos in vitro, uma resistência à flexão de 900 Mpa-1.200 Mpa (1 MPA = 1 n/mm2) em barras de Y-TZP; 1.800-2.000 N em próteses parciais fixas com diferentes conectores (cargas estáticas); e 1.457 N numa simulação de uma carga clínica cíclica de cinco anos sobre uma prótese parcial fixa de três elementos. Apesar de ainda não existirem estudos de longa duração, há trabalhos com um, dois e três anos de duração em que ainda não foi encontrada uma única falha das in- fraestruturas. Essa alta resistência da zircônia deriva da sua formulação, conhecida como Y-TZP Zircônia. A zircônia (Zr02) é uma forma oxidada do metal zircônio, tal como a alumina é referente ao metal alumínio. O óxido de ítrio é um agente que é adicionado à zircônia pura de modo a conferir estabilidade à temperatura ambiente e produzir um material multifásico conhecido como zircônia parcialmente estabilizado pelo ítrio (Y- TZP). Este material tem uma propriedade conhecida como "transformation toughening": sob tensão, o material sofre alteração dimensional, com aumento volumétrico de 3 a 4%, gerando tensões de compressão que inibem a propagação das linhas de fratura tão frequentes nas cerâmicas. Por essa razão, a zircônia é conhecida como "Cerâmica Inteligente". E uma característica semelhante à ação da junção amelo-dentinária no dente natural. Por outro lado, é de realçar também que referente, à biocompatibilidade e à estética, a zircônia apresenta uma maior valia, comparativamente às restaurações metalocerâmicas. Para a utilização nas máquinas de fresagem dos sistemas CAD- CAM, a zircônia apresenta-se em duas formas: This material has the potential to allow the construction of bridges in high tension sectors, for example in the posterior areas of the mouth, as it reveals a very high fracture resistance, three to four times higher than the largest masticatory load. In a 2004 review article, Raigrodsky reports that a flexural strength of 900 Mpa-1,200 Mpa (1 MPA = 1 n / mm2) in Y-TZP bars has been demonstrated in in vitro studies; 1,800-2,000 N in fixed partial dentures with different connectors (static loads); and 1,457 N in a simulation of a five-year cyclic load on a fixed three-element partial denture. Although there are no long-term studies yet, there are studies with one, two and three years of duration in which a single failure of the infrastructures has not yet been found. This high strength of zirconia derives from its formulation, known as Y-TZP Zirconia. Zirconia (Zr02) is an oxidized form of zirconium metal, as alumina refers to aluminum metal. Yttrium oxide is an agent that is added to pure zirconia to provide stability at room temperature and to produce a multiphase material known as yttrium partially stabilized zirconia (Y-TZP). This material has a property known as "transformation toughening": under stress, the material undergoes dimensional change, with volumetric increase of 3 to 4%, generating compression stresses that inhibit the propagation of fracture lines so frequent in ceramics. For this reason, zirconia is known as "Intelligent Ceramics". It is a feature similar to the action of the dentin-junction on the natural tooth. On the other hand, it should also be noted that regarding biocompatibility and aesthetics, zirconia has a higher value compared to metalloceramic restorations. For use in CAD-CAM milling machines, zirconia comes in two forms:
• Zircônia totalmente sinterizada (dura) - implica um tempo de trabalho demorado (2 a 4 horas para uma unidade) e um desgaste grande com brocas. De acordo com Luthardt et al., o desgaste dessa zircônia com brocas diamantadas pode danificar o material, com- prometendo a sua resistência e viabilidade, razão pela qual o autor aconselha a utilização mais favorável da zircônia parcialmente sinterizada;  • Fully sintered zirconia (hard) - implies a long working time (2 to 4 hours for a unit) and heavy wear with drills. According to Luthardt et al., The wear of this zirconia with diamond drills can damage the material, compromising its strength and viability, which is why the author advises the more favorable use of partially sintered zirconia;
• Zircônia parcialmente sinterizada (zircônia mole) - permite um processamento mais fácil e mais rápido. Todavia, devido à sua condição de parcialmente sinterizada, necessita de 6 a 8 horas em um forno especial de cerâmica para completar a sinterização. Devido a esse processo, verifica-se uma alteração dimensional que tem de ser compensada durante o desenho virtual inicial da estrutura.  • Partially sintered zirconia (soft zirconia) - allows for easier and faster processing. However, due to its partially sintered condition, it needs 6 to 8 hours in a special ceramic oven to complete sintering. Due to this process, there is a dimensional change that must be compensated during the initial virtual drawing of the structure.
Depois de selecionado o material, os blocos pré-fabricados são, então, submetidos a um processo subtrativo de fresagem segundo o número de eixos (3 a 6 eixos), dependendo do sistema em questão. Para terminar a estrutura, são requeridos, além da prova de inserção, o polimento e a individualização das estruturas com cerâmica cosmética.  Once the material has been selected, the prefabricated blocks are then subjected to a subtractive milling process according to the number of axes (3 to 6 axes), depending on the system in question. To finish the structure, besides the insertion test, the polishing and the individualization of the structures with cosmetic ceramics are required.
Desenvolvido na Universidade de Zurique, o sistema CEREC foi o primeiro sistema CAD-CAM a alcançar êxito clínico e comercial. Por esse sistema é efetuada uma leitura óptica sem contato com a preparação dentária. O método de medição utilizado é o da triângulação ativa, com uma resolução de 25 μπι. A imagem 3D gerada é então trans- ferida para um computador, no qual o programa CAD do sistema permite realizar o desenho da estrutura. A linha de acabamento é detectada automaticamente, podendo ser modificada também de forma manual, e é posteriormente executada na máquina de fresagem do mesmo sistema (CAM). Esta unidade apresenta duas brocas diamantadas que cortam a estrutura em quatro eixos de trabalho e com uma reprodutibilidade de corte de aproximadamente 30 μπι17. O fato de o bloco de cerâmica estar seguro num dos lados, impede a acção da broca nessa zona, que é posteriormente fresada manualmente. O sistema permite a produção de coifas, incrustrações, coroas parciais, facetas e coroas totais, para regiões ante- riores e posteriores, numa única sessão. Developed at the University of Zurich, the CEREC system was the first CAD-CAM system to achieve clinical and commercial success. This system makes an optical reading without contact with the dental preparation. The measurement method used is active triangulation, with a resolution of 25 μπι. The generated 3D image is then transferred to a computer on which the The system CAD program allows the structure to be designed. The finishing line is automatically detected and can also be modified manually and is subsequently executed on the same system milling machine (CAM). This unit features two diamond drills that cut the frame on four working axes and with a cutting reproducibility of approximately 30 μπι17. The fact that the ceramic block is secured on one side prevents the action of the drill in that area, which is subsequently milled manually. The system allows the production of hoods, incrustations, partial crowns, facets and full crowns for fore and aft regions in a single session.
De acordo com a informação transmitida pela marca, CEREC® significa atualmente Chairside Economical Restorations Esthetic Ceramic5. Na realidade, esse é o único sistema que apresenta uma versão para utilização na clínica (CEREC Chairside®), o que o torna muito prático e menos dependente do trabalho no laboratório, podendo traduzir-se também em certa economia financeira (Economical). O lançamento de novos produtos, como o CEREC 3D®, o CEREC Chairside® e os blocos de cerâmica Triluxe®, vieram compensar defeitos dos anteriores modelos do CEREC® e permitir a construção de restaurações mais estéticas em cerâmica. A introdução do CEREC 3D® permite ao clínico captar várias imagens com maior precisão e, então, criar um modelo virtual, por exemplo, para um quadrante completo. Todavia, de acordo com Tinschert et al., esta tecnologia do sistema CEREC ainda não possui uma precisão suficiente que permita a sua aprovação para construir próteses fixas de vários elementos.  According to the information provided by the brand, CEREC® currently stands for Chairside Economical Restorations Esthetic Ceramic5. In fact, this is the only system that has a version for clinical use (CEREC Chairside®), which makes it very practical and less dependent on laboratory work and can also translate into some financial savings (Economical). The launch of new products, such as CEREC 3D®, CEREC Chairside® and Triluxe® ceramic blocks, compensated for defects in previous CEREC® models and enabled the construction of more aesthetic ceramic restorations. The introduction of CEREC 3D® allows the clinician to capture multiple images more accurately and then create a virtual model, for example for a complete quadrant. However, according to Tinschert et al., This technology of the CEREC system is not yet sufficiently accurate to permit its approval to construct fixed prostheses of various elements.
O Triluxe® é um novo modelo de blocos de cerâmica (com três cores) que substitui os antigos blocos mono-cromáticos e que se reflete numa melhoria do potencial estético do sistema. O CEREC InLab® é um sistema de laboratório pelo qual o modelo de gesso da preparação dentária é submetido a uma digitalização laser, sendo depois desenhada a infra- estrutura no computador (CAD) e posteriormente executada a maquinação do bloco de cerâmica. Depois de preparada e verificada a infraestrutura, o laboratório completa-a com cerâmica cosmética. Procera® Triluxe® is a new three-color ceramic block model that replaces the old mono-chromatic blocks and is reflected in an improved aesthetic potential of the system. CEREC InLab® is a laboratory system whereby the dental preparation plaster model is subjected to a laser scanning, and the computer infrastructure (CAD) was then designed and the ceramic block machined. Once the infrastructure is prepared and verified, the laboratory completes it with cosmetic ceramics. Procera®
Até ao momento, o sistema Procera/ AllCeram® produziu mais de 5 milhões de unidades protéticas, revelando-se, as- sim, como um dos sistemas CAD/CAM de maior êxito. Por essa tecnologia, a digitalização do modelo de gesso é feita por contato, por meio de um scanner Procera® (Piccolo® - para coroas unitárias, facetas e pilares; Forte® - também para próteses de 2 a 4 elementos). A "ponta digitalizadora" exerce uma pressão pequena de 20 g sobre o modelo de modo a garantir um contato preciso.  To date, the Procera / AllCeram® system has produced more than 5 million prosthetic units, thus proving to be one of the most successful CAD / CAM systems. Due to this technology, the plaster model is digitized by contact using a Procera® scanner (Piccolo® - for single crowns, veneers and abutments; Forte® - also for 2 to 4 element prostheses). The "digitizing tip" exerts a small pressure of 20 g on the model to ensure accurate contact.
Apesar de serem efetuadas 50.000 leituras numa só preparação por esse procedimento, o processo demora aproximadamente 30 segundos. A imagem digitalizada (3D CAD) é então enviada para uma central de processamento Procera® (Suécia - Karlskoga e Estocolmo; E.U.A. - Nova Jérsei) por meio de uma ligação por modem. Nesta central, são efetuadas réplicas do modelo de gesso mais alargadas, de modo a compensar a contração da cerâmica quando da sua sinterização. Apesar da elevada dificuldade técnica deste último procedimento, uma adaptação marginal das coroas Procera com espaçamento entre 54 μπι e 64 μπι, está dentro dos parâmetros clinicamente aceitáveis. As coifas podem então ser produzidas em alumina de alta pureza (0,4 mm de espessura nos casos que exijam uma estética apurada ou 0,6 mm nas restantes indicações) ou em zircônio (0,7 mm quando necessária uma maior resistência do material). Em 48 horas, a coifa está de volta ao laboratório para se proceder à colocação da cerâmica.  Although 50,000 readings are taken in one preparation by this procedure, the process takes approximately 30 seconds. The scanned image (3D CAD) is then sent to a Procera® processing center (Sweden - Karlskoga and Stockholm; U.S. - New Jersey) via a modem connection. In this plant, replicas of the wider plaster model are made to compensate for the ceramic contraction when sintering. Despite the high technical difficulty of this last procedure, a marginal adaptation of the Procera crowns with spacing between 54 μπι and 64 μπι is within clinically acceptable parameters. The hoods can then be produced in high purity alumina (0.4 mm thick in cases requiring accurate aesthetics or 0.6 mm in other indications) or zirconium (0.7 mm when higher material strength is required) . Within 48 hours, the hood is back in the lab to place the ceramics.
A resistência dos materiais utilizados atinge valores altos, que no caso da alumina, são de 687 MPa e, da zircônia, de 1.200 Mpa2. A preparação dentária exige também uma técnica apropriada, com a execução de linhas de acabamento cervical em chanfro largo, altura cérvico-oclusal do coto de 3 mm e pônticos inferiores a l i mm, quando em alumina. The strength of the materials used reaches high values, which, in the case of alumina, are 687 MPa and zirconia 1,200 Mpa2. Dental preparation also requires an appropriate technique, with the execution of guidelines cervical finish in broad chamfer, cervical-occlusal stump height of 3 mm and lower pontics there mm, when in alumina.
O sistema Lava® possibilita a fabricação de coroas e pontes de cerâmica anteriores e posteriores. A linha de acabamento cervical das preparações dentárias pode ser um chanfro ou um ombro com ângulo interno arredondado. Nesse sistema, as várias linhas de acabamento das preparações dentárias e a crista edêntula são digitalizadas por um laser óptico que transmite as imagens para um computador, no qual o programa de desenho assistido do sistema deter- mina automaticamente as linhas de acabamento e sugere os pônticos. Devido à contração da cerâmica durante a sua sinterização, tal como descrito no sistema Procera®, as infra- estruturas são desenhadas com um aumento de 20% no seu volume.  The Lava® system enables the fabrication of front and rear ceramic crowns and bridges. The cervical finishing line of dental preparations may be a bevel or a shoulder with a rounded internal angle. In this system, the various finishing lines of dental preparations and the edentulous ridge are digitized by an optical laser that transmits the images to a computer, where the system's assisted design program automatically determines the finishing lines and suggests the pontics. . Due to the shrinkage of the ceramic during sintering, as described in the Procera® system, the infrastructures are designed with a 20% increase in volume.
Posteriormente, são utilizados blocos de zircônia pré-sinterizada na fresagem, observando-se que o sistema é capaz de produzir até 21 coifas ou estruturas de pontes sem qualquer intervenção manual. Os blocos de zircônia utiliza- dos podem ser coloridos com sete tons de cor previamente à sinterização final, o que pode conferir altos níveis estéticos. Para completar a sinterização, o sistema LAVA® inclui um forno especial de alta temperatura.  Subsequently, pre-sintered zirconia blocks are used for milling, noting that the system is capable of producing up to 21 hoods or bridge structures without any manual intervention. The zirconia blocks used can be colored with seven shades of color prior to the final sintering, which can give high aesthetic levels. To complete sintering, the LAVA® system includes a special high temperature oven.
E um sistema que inclui uma máquina de digitalização, um software CAD, uma máquina de fresagem e um forno para sinterizar a cerâmica. A digitalização do modelo de gesso (anti-reflexo) é feita por uma leitura óptica através de uma câmara CCD (dimensão real 1 : 1 e precisão de 20 μπι), sendo a imagem 3D criada através de 15 sequências de projeção. A restauração protética é então desenhada num software CAD, e posteriormente fresada segundo movimentos de corte de cinco eixos, em blocos de vários tipos de materiais: zircônia parcialmente sinterizada - ZS-Blanks; zircônia totalmente sinterizada - ZH-Blanks), titânio (Grau 2 - T-Blanks) e cerâmica de vidro reforçada com leucite. O número de eixos da unidade de fresagem é um dos parâmetros que mais influi na capacidade de detalhe geométrico das restaurações. Aparelhos com maior número de eixos permitem que as brocas possam assumir mais posições de acordo com o bloco e assim produzir maiores detalhes. Convém ressaltar que a forma de suportar o bloco nas unidades CAM vai, também ter influência no número de eixos. Por exemplo, no sistema CEREC, os blocos são sempre seguros por um elemento de suporte de um dos lados do bloco, o que impede a ação da broca nessa zona. O sistema Everest® introduziu o conceito de suporte através de resina acrílica, permitindo, desse modo, a total liberdade de movimentação das brocas em torno da restauração. And a system that includes a scanning machine, CAD software, a milling machine and a ceramic sintering oven. The plaster (anti-glare) model is digitized by an optical reading through a CCD camera (1: 1 real dimension and 20 μπι precision), and the 3D image is created through 15 projection sequences. The prosthetic restoration is then designed in CAD software and then milled using five-axis cutting movements in blocks of various types of materials: partially sintered zirconia - ZS-Blanks; fully sintered zirconia (ZH-Blanks), titanium (Grade 2 - T-Blanks) and leucite-reinforced glass ceramics. The number of axes of the milling unit is one of the parameters that most influences the geometric detail of restorations. Larger number of spindles allow drills to assume more positions according to the block and thus produce greater detail. It should be noted that the way to support the block in CAM units will also influence the number of axes. For example, in the CEREC system, blocks are always held by a support element on one side of the block, which prevents drill action in that zone. The Everest® system introduced the concept of support using acrylic resin, thus allowing complete freedom of movement of the drills around the restoration.
Embora isso seja uma vantagem em termos de capacidade geométrica, torna o sistema mais lento, pois exige uma intervenção manual no meio do processo de fresagem para nova colocação de resina acrílica de suporte. A máquina de fresagem permite a confecção de estruturas com dimensão máxima de 45 mm. A fresagem das estruturas pode demorar de 2 a 4 horas para a coroa no caso de zircônia dura e cerca de 20 minutos no caso da zircônia mole, com posterior sinterização de 8 horas.  Although this is an advantage in terms of geometrical capacity, it slows the system as it requires manual intervention in the middle of the milling process to reposition support acrylic resin. The milling machine allows the fabrication of structures with a maximum dimension of 45 mm. Milling of the structures can take 2 to 4 hours for the crown for hard zirconia and about 20 minutes for soft zirconia, with subsequent 8-hour sintering.
A Odontologia atual exige padrões de qualidade muito superiores aos verificados no século passado, sob dois níveis fundamentais: funcionalidade e estética. A implementação da tecnologia CAD-CAM, com seus diversos sistemas, ajudará a surtir esse efeito, não no sentido de uma "produção em série" (antes pelo contrário), mas sim num aperfeiçoamento na produção das restaurações, pela utilização do desenho e da confecção, assistidas por computador. O fato de serem tecnologias essencialmente informatizadas exige do clínico e do laboratório uma adaptação das dinâmicas de trabalho de forma a rentabilizar o investimento efetuado. Esses sistemas permitirão ainda trabalhar com materiais muito resistentes, como a zircônia, pois os estudos apresentados ao longo deste trabalho fornecem boas indicações, científicas e clínicas, no sentido da zircônia poder substituir completamente o metal nas infraestruturas protéticas. Contudo, deve haver alguma prudência no caso de próteses posteriores, uma vez que, embora haja estudos favoráveis, estes são muito recentes. Today's dentistry demands quality standards far superior to those found in the last century, under two fundamental levels: functionality and aesthetics. The implementation of CAD-CAM technology, with its various systems, will help to achieve this effect, not in the sense of "serial production" (rather the opposite), but in improving the production of restorations by using design and design. computer-aided clothing. The fact that they are essentially computerized technologies requires the clinician and laboratory to adapt their work dynamics in order to make the most of their investment. These systems will also allow to work with very resistant materials, such as zirconia, because the studies presented throughout this work provide good scientific and clinical indications that zirconia can completely replace metal in infrastructures. prosthetic However, there should be some caution in the case of posterior prostheses, as although there are favorable studies, they are very recent.
Alguns componentes protéticos (pilares), como os produzidos pelas empresas fabricantes, têm condição limitada para modificação e adaptação de acordo com cada caso clínico dos pacientes. Este processo não é viável industrialmente, a personalização do pilar é muita onerosa já que a sua produção respeita tolerâncias muito estreitas e precisão muito alta. O software CAD dispõe de ferramenta para a fabricação de pilares personalizados de cerâmica sobre um pilar específico. Os blocos apresentam um orifício para acoplagem ao componente protético do implantes. O componente protético em sua parte inferior apresenta uma conexão de acordo com a geometria de cada marca de implante específica.  Some prosthetic components (abutments), such as those produced by the manufacturing companies, have limited conditions for modification and adaptation according to each patient's clinical case. This process is not industrially viable, the customization of the abutment is very costly as its production respects very tight tolerances and very high accuracy. CAD software has a tool for manufacturing custom ceramic abutments on a specific abutment. The blocks have a hole for coupling to the prosthetic component of the implants. The prosthetic component at its bottom has a connection according to the geometry of each specific implant mark.
Visando aperfeiçoar o procedimento clinico na fixação de restaurações de próteses odontológicas, o inventor após estudos desenvolveu o "APERFEIÇOAMENTO INTRODUZIDO EM BLOCO PARA PRODUÇÃO DE RESTAURAÇÕES EM PRÓTESE FIXA" compreendido por um corpo único formado por blocos pré-fabricados confeccionados por cerâmica de vidro reforçada com leucita, alumina reforçada com vidro, alumina densamente sinterizada, Y-TZP Zircônia (Yttrium-tetragonal zirconia polycristal) com sinterização (parcial ou total), titânio, ligas preciosas, ligas não-preciosas, acrílicos de resistência reforçada, óxide de alumínio, zirconia, cerâmica de dissilicato de lítio, liga metálica de cobalto-cromo, resina, porcelana feldspática, cerâmica vítrea baseada em porcelana ou compósito baseado em resina ou porcelana, dotado de pino fixação que é inserido na base da máquina modeladora (não mostrada), caracterizado pelo dito blocos pré-fabricados ser dotado de furo passante disposto de forma transversal ao pino fixação, sendo o furo passante, formado a partir de furo travador dotado de canal de chaveta, seguido imediatamente por um furo cónico que finda- se em uma parede de encosto que projeta um furo cilíndrico, para acoplamento de um componente protético (não mostrado) dispostos na secção inferior do elemento restaurador. Aiming at perfecting the clinical procedure in the fixation of dental restorations, the inventor after studies developed the "FIXTURE IMPROVEMENT FOR PRODUCTION OF FIXED PROSTHESIS" comprised of a single body formed by prefabricated blocks made of glass ceramic reinforced with leucite, glass-reinforced alumina, densely sintered alumina, Y-TZP Zirconia (Yttrium-tetragonal zirconia polycristal) with sintering (partial or total), titanium, precious alloys, non-precious alloys, strengthened acrylic, aluminum oxide, zirconia , lithium disilicate ceramics, cobalt-chrome alloy, resin, feldspar porcelain, porcelain-based or resin-based or porcelain-based glass ceramics, with clamping pin that is inserted into the base of the shaping machine (not shown), characterized said prefabricated blocks are provided with a through hole disposed transverse to the fixing pin, the through hole being formed from a locking hole provided with a keyway, followed immediately by a tapered hole ending in a back wall projecting a cylindrical hole for coupling a prosthetic component (not shown) arranged in the lower section of the restorative element.
Para que se possa obter uma perfeita compreensão do que fora desenvolvido, são apensos desenhos ilustrativos aos quais fazem-se referências numéricas em conjunto com uma descrição pormenorizada que se segue, onde a:  To give a perfect understanding of what has been developed, illustrative drawings are attached to which numerical references are made together with the following detailed description where:
A Figura 1 mostra uma vista em perspectiva do bloco  Figure 1 shows a perspective view of the block.
A Figura 2 mostra uma vista lateral do bloco.  Figure 2 shows a side view of the block.
A Figura 3 mostra uma vista em corte do bloco aludindo a furação para acoplamento do componente protético.  Figure 3 shows a cross-sectional view of the block alluding to the coupling hole of the prosthetic component.
A Figura 4 mostra uma vista lateral do bloco aludindo o pino fixação. Como ilustram as figuras e em seus pormenores, o "APERFEIÇOAMENTO INTRODUZIDO EM BLOCO PARA PRODUÇÃO DE RESTAURAÇÕES EM PRÓTESE FIXA" compreendido por um corpo único (1) formado por blocos pré-fabricados (2) confeccionados por cerâmica de vidro reforçada com leucita, alumina reforçada com vidro, alumina densamente sinterizada, Y-TZP Zircônia (Yttrium-tetragonal zirconia polycristal) com sinterização (parcial ou total), titânio, ligas preciosas, ligas não-preciosas, acrílicos de resistência reforçada, óxide de alumínio, zirconia, cerâmica de dissilicato de lítio, liga metálica de cobalto-cromo, resina, porcelana feldspática, cerâmica vítrea baseada em porcelana ou compósito baseado em resina ou porcelana, dotado de pino fixação (3) que é inserido na base da máquina modeladora (não mostrada), caracterizado pelo dito blocos pré-fabricados (2) ser dotado de furo passante (4) disposto de forma transversal ao pino fixação (3), sendo o furo passante (4), formado a partir de furo travador (5) dotado de canal de chaveta (6), seguido imediatamente por um furo cónico (7) que finda-se em uma parede de encosto (8) que projeta um furo cilíndrico (9), para acoplamento de um componente protético (não mostrado) dispostos na secção inferior do elemento restaurador. Figure 4 shows a side view of the block alluding to the securing pin. As illustrated by the figures and in their details, the "PERFORMANCE INCLUDED IN BLOCK FOR PRODUCTION OF FIXED PROSTHESIS" comprised of a single body (1) consisting of prefabricated blocks (2) made of leucite-reinforced glass ceramics, alumina reinforced glass, densely sintered alumina, Y-TZP Zirconia (Yttrium-tetragonal zirconia polycristal) with sintering (partial or total), titanium, precious alloys, non-precious alloys, strengthened acrylic, aluminum oxide, zirconia, lithium disilicate, cobalt-chromium alloy, resin, feldspar porcelain, porcelain-based or resin-based or porcelain-based glass ceramics, with clamping pin (3) that is inserted into the base of the shaping machine (not shown), characterized said prefabricated blocks (2) have a through hole (4) disposed transversely to the fixing pin (3), the through hole (4) being from a locking hole (5) provided with a keyway (6), immediately followed by a tapered hole (7) that ends in a back wall (8) that projects a cylindrical hole (9) for coupling prosthetic component (not shown) arranged in the lower section of the Restorative element.
Com base no descrito e ilustrado, podemos perceber que a "APERFEIÇOAMENTO INTRODUZIDO EM BLOCO PARA PRODUÇÃO DE RESTAURAÇÕES EM PRÓTESE FIXA" traz enormes vantagens, pois o sistema de furação de blocos para máquinas CAD-CAM, tipo CEREC™, para acoplamento e posterior cimentação de componente protético. Consiste essencialmente na realização de orifícios para instalação do componente protético denominado. O orifício é projetado com perfeição para um encaixe perfeito entre o orifício e o componente. O Orifício é realizado na parte inferior para encaixe do componente protético e continua um furo de 2.6 mm, por onde passará um parafuso. Este sistema possibilita a obtenção de restaurações parafusadas sobre implantes, realizadas pelo sistema CAD-CAM.  Based on what is described and illustrated, it can be seen that the "PERFORMING BLOCK INTRODUCTION FOR FIXED PROSTHESIS RESTORATION" has enormous advantages, as the CADEC CAM type block drilling system for coupling and subsequent cementation of prosthetic component. It consists essentially of making holes for installation of the so-called prosthetic component. The hole is perfectly designed for a perfect fit between the hole and the component. The hole is made in the lower part for fitting the prosthetic component and continues a 2.6 mm hole through which a screw will pass. This system makes it possible to obtain screw-based restorations on implants performed by the CAD-CAM system.
Por atender a todos os requisitos que definem a patente de modelo de utilidade, pois combinou e modificou elementos conhecidos, dando-lhes aspecto geral inovador e passível de industrialização, sendo que modificações poderão ser feitas sem fugir ao espírito e escopo da presente patente, são as seguintes suas reivindicações.  Because they meet all the requirements that define the utility model patent, because it combined and modified known elements, giving them a general innovative and industrializable aspect, and modifications that can be made without departing from the spirit and scope of the present patent, they are the following your claims.

Claims

REIVINDICAÇÃO CLAIM
1- "APERFEIÇOAMENTO INTRODUZIDO EM BLOCO PARA PRODUÇÃO DE RESTAURAÇÕES EM PRÓTESE FIXA" " compreendido por um corpo único (1) formado por blocos pré-fabricados (2) confeccionados por cerâmica de vidro reforçada com leucita, alumina reforçada com vidro, alumina densamente sinterizada, Y-TZP Zircônia (Yttrium-tetragonal zirconia polycristal) com sinterização (parcial ou total), titânio, ligas preciosas, ligas não- preciosas, acrílicos de resistência reforçada, óxide de alumínio, zirconia, cerâmica de dissilicato de lítio, liga metálica de cobalto-cromo, resina, porcelana feldspática, cerâmica vítrea baseada em porcelana ou compósito baseado em resina ou porcelana, dotado de pino fixação (3) que é inserido na base da máquina modeladora (não mostrada), caracterizado pelo dito blocos pré- fabricados (2) ser dotado de furo passante (4) disposto de forma transversal ao pino fixação (3), sendo o furo passante (4), formado a partir de furo travador (5) dotado de canal de chaveta (6), seguido imediatamente por um furo cónico (7) que finda-se em uma parede de encosto (8) que projeta um furo cilíndrico (9), para acoplamento de um componente protético (não mostrado) dispostos na secção inferior do elemento restaurador.  1- "BLOCK-INPRODUCED IMPROVEMENT FOR PRODUCTION OF FIXED PROSTHESIS" "comprised of a single body (1) consisting of prefabricated blocks (2) made of leucite-reinforced glass ceramics, densely sintered alumina , Y-TZP Zirconia (Yttrium-tetragonal polycristal zirconia) with sintering (partial or total), titanium, precious alloys, non-precious alloys, strengthened acrylics, aluminum oxide, zirconia, lithium disilicate ceramics, chromium cobalt, resin, feldspar porcelain, porcelain-based glass ceramic or resin-based or porcelain-based composite, provided with a clamping pin (3) that is inserted into the base of the shaping machine (not shown), characterized by said prefabricated blocks ( 2) be provided with a through hole (4) disposed transversely to the fixing pin (3), the through hole (4) being formed from a locking hole (5) provided of keyway (6), followed immediately by a tapered bore (7) that ends in a back wall (8) that projects a cylindrical bore (9), for coupling a prosthetic component (not shown) disposed in the lower section of the restorative element.
PCT/BR2015/050220 2014-11-18 2015-11-18 Improvement made to a block for production of fixed prosthesis restorations WO2016077902A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR202014028680-8 2014-11-18
BR202014028680U BR202014028680U2 (en) 2014-11-18 2014-11-18 Improvement introduced in block for the production of restorations in fixed prosthesis

Publications (1)

Publication Number Publication Date
WO2016077902A1 true WO2016077902A1 (en) 2016-05-26

Family

ID=56012930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2015/050220 WO2016077902A1 (en) 2014-11-18 2015-11-18 Improvement made to a block for production of fixed prosthesis restorations

Country Status (2)

Country Link
BR (1) BR202014028680U2 (en)
WO (1) WO2016077902A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615678A (en) * 1984-03-06 1986-10-07 Moermann Werner H Blank from which a dental implant can be machined, and a method of making the blank
US6126445A (en) * 1993-12-23 2000-10-03 Adt Advanced Dental Technologies, Ltd. Implant abutment systems, devices and techniques
US20050008989A1 (en) * 2003-05-19 2005-01-13 Sirona Dental Systems Gmbh Blank-holding means and method of surveying same
US20060106484A1 (en) * 2003-01-02 2006-05-18 Gunter Saliger Method for automatically creating a dental superstructure for joining to an implant
US20060292527A1 (en) * 2003-07-07 2006-12-28 Franz Basler Blank for producing dental shaped parts and method for producing the shaped part
US20070050072A1 (en) * 2005-09-01 2007-03-01 Axel Schwotzer Blank for a dental prosthetic item containing machining information, machining device therefor, and machining method therefor
WO2007025997A1 (en) * 2005-09-01 2007-03-08 Sirona Dental Systems Gmbh Blank for a tooth replacement piece with information relevant to a machining machining device and method therefor
WO2009016223A2 (en) * 2007-07-31 2009-02-05 Sirona Dental Systems Gmbh Blank with encoding and method for manufacturing a dental moulded component
US20110229857A1 (en) * 2010-03-16 2011-09-22 Sirona Dental Systems Gmbh Blank with coding for the production of tooth-technical shaped parts and procedures for the identification of a blank

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615678A (en) * 1984-03-06 1986-10-07 Moermann Werner H Blank from which a dental implant can be machined, and a method of making the blank
US6126445A (en) * 1993-12-23 2000-10-03 Adt Advanced Dental Technologies, Ltd. Implant abutment systems, devices and techniques
US20060106484A1 (en) * 2003-01-02 2006-05-18 Gunter Saliger Method for automatically creating a dental superstructure for joining to an implant
US20050008989A1 (en) * 2003-05-19 2005-01-13 Sirona Dental Systems Gmbh Blank-holding means and method of surveying same
US20060292527A1 (en) * 2003-07-07 2006-12-28 Franz Basler Blank for producing dental shaped parts and method for producing the shaped part
US20070050072A1 (en) * 2005-09-01 2007-03-01 Axel Schwotzer Blank for a dental prosthetic item containing machining information, machining device therefor, and machining method therefor
WO2007025997A1 (en) * 2005-09-01 2007-03-08 Sirona Dental Systems Gmbh Blank for a tooth replacement piece with information relevant to a machining machining device and method therefor
WO2009016223A2 (en) * 2007-07-31 2009-02-05 Sirona Dental Systems Gmbh Blank with encoding and method for manufacturing a dental moulded component
US20100297580A1 (en) * 2007-07-31 2010-11-25 Sirona Dental Systems Gmbh Blank with encoding and method of manufacturing a molded dental component
US20110229857A1 (en) * 2010-03-16 2011-09-22 Sirona Dental Systems Gmbh Blank with coding for the production of tooth-technical shaped parts and procedures for the identification of a blank

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"inCoris ZI meso", SIRONA DENTAL CAD/CAM SYSTEM, 2012, Retrieved from the Internet <URL:http://manuals.sirona.com/en/digital-dentistry/cad-cam-materials/incoris-zi-meso.html> *

Also Published As

Publication number Publication date
BR202014028680U2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
Re et al. Comparison of marginal fit of Lava CAD/CAM crown-copings with two finish lines
Beuer et al. Load‐bearing capacity of all‐ceramic three‐unit fixed partial dentures with different computer‐aided design (CAD)/computer‐aided manufacturing (CAM) fabricated framework materials
Pompa et al. Comparison of conventional methods and laser-assisted rapid prototyping for manufacturing fixed dental prostheses: an in vitro study
Torsello et al. Evaluation of the marginal precision of one‐piece complete arch titanium frameworks fabricated using five different methods for implant‐supported restorations
Park et al. In vitro assessment of the marginal and internal fits of interim implant restorations fabricated with different methods
Mahmood et al. The influence of support properties and complexity on fracture strength and fracture mode of all-ceramic fixed dental prostheses
de França et al. Precision Fit of Screw-Retained Implant-Supported Fixed Dental Prostheses Fabricated by CAD/CAM, Copy-Milling, and Conventional Methods.
Anunmana et al. Gap comparison between single crown and three-unit bridge zirconia substructures
Prasad et al. Three-dimensional accuracy of CAD/CAM titanium and ceramic superstructures for implant abutments using spiral scan microtomography.
Özçelik et al. Marginal Adaptation of Provisional CAD/CAM Restorations Fabricated Using Various Simulated Digital Cement Space Settings.
Yucel et al. In vitro evaluation of the marginal fit of different all-ceramic crowns
Lops et al. Precision of the Connection Between Implant and Standard or Computer-Aided Design/Computer-Aided Manufacturing Abutments: A Novel Evaluation Method.
Daou et al. Zirconia ceramic: a versatile restorative material
El-Anwar et al. The effect of luting cement type and thickness on stress distribution in upper premolar implant restored with metal ceramic crowns
Mello et al. Evaluation of the accuracy and stress distribution of 3-unit implant supported prostheses obtained by different manufacturing methods
Sailer et al. Fixed restorations: a clinical guide to the selection of materials and fabrication technology
Drago et al. Treatment of an edentulous patient with CAD/CAM technology: a clinical report
Karl In vitro studies on CAD/CAM restorations fabricated with Procera technology: An overview.
Bodereau et al. Aesthetic All-ceramic Restorations. CAD-CAM System
Cavusoglu et al. Fatigue resistance of 2 different CAD/CAM glass-ceramic materials used for single-tooth implant crowns
BR102015009558A2 (en) CAD-CAM PILLAR SCANNING DEVICE FOR CERAMIC BLOCK OR FIXED PROSTHESIS RESTORATION
WO2016077902A1 (en) Improvement made to a block for production of fixed prosthesis restorations
WO2016077903A1 (en) Block for the production of restorations in a fixed prothesis
BR102022000556A2 (en) BLOCK AND PIN IN A SINGLE BODY FOR PRODUCING FIXED PROSTHESIS RESTORATIONS
Beldiman et al. Technological aspects in cad/cam fixed rehabilitation on implants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.10.217)

122 Ep: pct application non-entry in european phase

Ref document number: 15860880

Country of ref document: EP

Kind code of ref document: A1