WO2016084564A1 - Engine exhaust purification control method - Google Patents

Engine exhaust purification control method Download PDF

Info

Publication number
WO2016084564A1
WO2016084564A1 PCT/JP2015/081085 JP2015081085W WO2016084564A1 WO 2016084564 A1 WO2016084564 A1 WO 2016084564A1 JP 2015081085 W JP2015081085 W JP 2015081085W WO 2016084564 A1 WO2016084564 A1 WO 2016084564A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
engine
storage device
temperature
exhaust gas
Prior art date
Application number
PCT/JP2015/081085
Other languages
French (fr)
Japanese (ja)
Inventor
孝則 村崎
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2016084564A1 publication Critical patent/WO2016084564A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine exhaust purification control method by an exhaust purification system including an exhaust gas purification catalyst provided on an exhaust passage and a chemical heat storage device capable of warming up the catalyst.
  • the vehicle exhaust system is provided with various catalysts for purifying environmental pollutants such as HC, CO, NOx contained in the exhaust gas discharged from the engine.
  • These catalysts have an activation temperature, which is a temperature at which they are activated and have a high purification capacity.
  • an activation temperature which is a temperature at which they are activated and have a high purification capacity.
  • the temperature of the exhaust gas exhausted from the engine is low. Therefore, it takes a long time to heat the catalyst to the activation temperature only with the heat of the exhaust gas. For this reason, there is a possibility that environmental pollutants contained in the exhaust gas are not sufficiently purified at the initial stage when the engine is cold started.
  • Patent Document 1 discloses a chemical heat storage type catalyst that warms up a catalyst using heat generated by a chemical reaction between a heat storage material disposed on the outer periphery of a catalyst ceramic portion that supports a catalyst for purifying exhaust gas and a reaction medium. A warm-up device is disclosed.
  • An object of the present invention is to provide an engine exhaust gas purification control method capable of exhibiting a certain exhaust gas purification performance by engine control even when a chemical heat storage device cannot be operated.
  • an exhaust gas purifying catalyst provided on an exhaust passage through which exhaust gas discharged from an engine flows, and a chemical capable of warming up the catalyst are provided.
  • An exhaust purification control method for an engine by an exhaust purification system including a heat storage device is provided.
  • the control method includes a step of determining whether or not the catalyst needs to be warmed up and a step of determining whether or not the chemical heat storage device can be operated.
  • the chemical heat storage device is operated so as to warm up the catalyst.
  • the engine control is switched to exhaust priority control to reduce the emission of air pollutants in the exhaust gas to the outside air To do.
  • the catalyst can be warmed up by the chemical heat storage device as compared with the case where the catalyst is warmed up only by the heat from the exhaust gas.
  • the exhaust gas can be purified.
  • the chemical heat storage device is not ready for operation, that is, if it is determined that the chemical heat storage device cannot be operated, the engine is switched to exhaust priority control to warm up the catalyst and purify the exhaust gas. be able to. For this reason, even if the chemical heat storage device cannot be operated, a certain exhaust purification performance can be exhibited by engine control.
  • the schematic block diagram which shows an exhaust gas purification system. Sectional drawing of a reactor.
  • the flowchart which shows the control procedure after engine starting.
  • the flowchart which shows the control procedure at the time of driving
  • the flowchart which shows another example of the control procedure after engine starting.
  • an exhaust purification system mounted on a vehicle will be described.
  • an exhaust passage 12 is connected to the exhaust side of the engine 11.
  • the exhaust passage 12 is provided with various exhaust gas purification catalysts.
  • the oxidation catalyst 13 shown in FIG. 1 will be described as an example.
  • the engine 11 is a diesel engine.
  • the oxidation catalyst 13 is a catalyst for purifying exhaust gas, and oxidizes air pollutants such as HC, CO, PM, NOx contained in the exhaust gas discharged from the engine 11.
  • the oxidation catalyst 13 is carried on a catalyst carrying portion 12 a such as a ceramic honeycomb provided in the middle of the exhaust passage 12.
  • the exhaust gas that has passed through the oxidation catalyst 13 passes through various catalysts and filters such as an SCR catalyst and a DPF (not shown) on the exhaust passage 12 and is discharged out of the vehicle.
  • the oxidation catalyst 13 and each exhaust gas purification catalyst provided downstream of the oxidation catalyst 13 have an activation temperature that is a temperature at which they are activated and exhibit sufficient purification ability, that is, an optimum temperature region.
  • the lower limit of the activation temperature of the oxidation catalyst 13 is about 150 ° C.
  • the temperature of the exhaust gas immediately after being discharged from the engine 11 is relatively low, about 100 ° C. Therefore, in order to make the oxidation catalyst 13 exhibit high purification ability even when the engine 11 is cold started, it is necessary to quickly raise the temperature of the oxidation catalyst 13 to the activation temperature or higher, that is, to warm up the catalyst. Therefore, the exhaust purification system 10 has a chemical heat storage device 20 for warming up the oxidation catalyst 13.
  • the chemical heat storage device 20 uses a reversible chemical reaction to heat an object to be heated without external energy. Specifically, the chemical heat storage device 20 stores the heat of the exhaust gas in the chemical heat storage device 20 in a state of being separated into a heat storage material and a reaction medium. The chemical heat storage device 20 supplies the reaction medium to the heat storage material when necessary. And the chemical heat storage apparatus 20 heats a heating target object by making the thermal storage material and the reaction medium chemically react (chemical adsorption), and utilizing the reaction heat at the time of a chemical reaction. In this embodiment, the reaction medium is ammonia.
  • the chemical heat storage device 20 includes a heat storage material 23 and a reactor 21.
  • the reactor 21 is arranged at a position corresponding to the heating object in order to exchange heat with the heating object.
  • a high heat conduction honeycomb 22 is provided as an object to be heated inside an installation portion 12 b that is a part of the exhaust passage 12. That is, the reactor 21 is provided around the installation portion 12 b that constitutes the exhaust passage 12 in order to exchange heat with the high thermal conductivity honeycomb 22.
  • the high thermal conductive honeycomb 22 is thermally coupled to the installation portion 12b. That is, in the exhaust gas discharge direction X, the high thermal conductivity honeycomb 22 is provided upstream of the oxidation catalyst 13, and the reactor 21 is also provided upstream of the oxidation catalyst 13. Therefore, when the chemical heat storage device 20 is operated, the exhaust gas is heated by the reactor 21 before passing through the oxidation catalyst 13.
  • the high thermal conductivity honeycomb 22 disposed upstream of the oxidation catalyst 13 is heated by the reactor 21.
  • the exhaust gas passing through the high thermal conductive honeycomb 22 is warmed.
  • the exhaust gas purification oxidation catalyst 13 is indirectly warmed up by the warmed exhaust gas.
  • the oxidation catalyst 13 for purifying exhaust gas is an object to be heated, the reactor 21 is disposed around the oxidation catalyst 13, and the oxidation catalyst 13 for purifying exhaust gas is directly warmed up. May be.
  • a plurality of heat storage materials 23 that chemically react with ammonia as a reaction medium are provided inside the reactor 21.
  • the reactor 21 generates heat by chemically reacting ammonia and the heat storage material 23.
  • a metal chloride, a metal bromide, a metal iodide compound, or the like is used as the heat storage material.
  • MgCl 2 , CaCl 2 , NiCl 2 , ZnCl 2 , SrCl 2 are used.
  • CaO is used as the heat storage material
  • water may be used as the reaction medium. If a chemical reaction with the heat storage material is possible, the combination of the heat storage material and the reaction medium may be changed as appropriate.
  • the heat storage material 23 is arrange
  • the plurality of heat storage materials 23 are in contact with the outer peripheral surface of the installation portion 12b. Therefore, the heat generated from each heat storage material 23 is transmitted to the high thermal conductive honeycomb 22 through the installation portion 12b.
  • the reactor 21 has a heat insulating material 25 arranged on the outer peripheral side of the plurality of heat storage materials 23. As the heat insulating material 25, a hard heat insulating material may be used in order to suppress the heat storage material 23 from expanding in the radial direction.
  • the reactor 21 has a cylindrical casing 26 that covers the installation portion 12b of the exhaust passage 12 from the outer peripheral side.
  • the casing 26 has flange portions 26a at both axial ends thereof.
  • the flange part 26a protrudes from the cylindrical part of the casing 26 toward the installation part 12b.
  • the inner peripheral surface of the flange portion 26a is joined to the outer peripheral surface of the installation portion 12b.
  • the flange portion 26a covers both ends of the heat storage material 23 and the heat insulating material 25 in the axial direction.
  • the cylindrical portion of the casing 26 covers the outer peripheral surface of the heat insulating material 25. Therefore, the space defined by the casing 26 and the installation part 12b is sealed. The heat storage material 23 and the heat insulating material 25 are enclosed in the sealed space.
  • the chemical heat storage device 20 includes a reservoir 30 that stores a reaction medium that chemically reacts with the heat storage material 23.
  • the reservoir 30 contains activated carbon as an adsorbent that physically adsorbs ammonia as a reaction medium.
  • the ammonia is physically adsorbed on the activated carbon to store the ammonia, and the ammonia is separated from the activated carbon to release the ammonia.
  • the chemical heat storage device 20 includes a connecting pipe 40 for connecting the reactor 21 and the storage 30 so that ammonia can be circulated. Furthermore, the chemical heat storage device 20 includes an on-off valve 41 provided in the connection pipe 40.
  • the connection pipe 40 is a pipe line for moving ammonia between the reactor 21 and the reservoir 30. When the on-off valve 41 is opened, ammonia moves between the reactor 21 and the reservoir 30 via the connection pipe 40.
  • the on-off valve 41 is connected to the ECU 50 by a signal.
  • the exhaust purification system 10 includes an upstream temperature sensor 27 in the exhaust passage 12.
  • the upstream temperature sensor 27 is installed upstream of the chemical heat storage device 20 in the exhaust gas discharge direction X.
  • the upstream temperature sensor 27 detects the temperature of the exhaust gas before passing through the high thermal conductive honeycomb 22. That is, the upstream temperature sensor 27 detects the temperature of the exhaust gas immediately after being discharged from the engine 11.
  • the exhaust purification system 10 includes a downstream temperature sensor 28 in the exhaust passage 12.
  • the downstream temperature sensor 28 is installed downstream of the chemical heat storage device 20 and upstream of the oxidation catalyst 13 in the exhaust gas discharge direction X.
  • the downstream temperature sensor 28 detects the temperature of the exhaust gas that has passed through the high thermal conductivity honeycomb 22 and has not passed through the oxidation catalyst 13. Therefore, the upstream temperature sensor 27 and the downstream temperature sensor 28 detect the temperature of the exhaust gas upstream of the oxidation catalyst 13.
  • the upstream temperature sensor 27 and the downstream temperature sensor 28 are connected to the ECU 50 by signals.
  • the exhaust purification system 10 includes a pressure sensor 31 that detects the pressure of the reservoir 30.
  • the exhaust purification system also includes a temperature sensor 32 that detects the temperature of the reservoir 30.
  • the pressure sensor 31 and the temperature sensor 32 are connected to the ECU 50 by signals.
  • the temperature of the exhaust gas immediately after being discharged from the engine 11 is detected by the upstream temperature sensor 27.
  • the temperature of the exhaust gas immediately after being discharged from the engine 11 is lower than the activation temperature of the oxidation catalyst 13, the temperature of the exhaust gas is raised. Then, the oxidation catalyst 13 is warmed up by the exhaust gas after the temperature rise.
  • the on-off valve 41 is opened by the ECU 50.
  • the pressure of the reservoir 30 for storing ammonia is higher than the pressure of the reactor 21. For this reason, ammonia moves from the reservoir 30 to the reactor 21 by opening the on-off valve 41. That is, ammonia moves due to the pressure difference between the two containers.
  • Ammonia is supplied to the heat storage material 23 inside the reactor 21.
  • Each heat storage material 23 chemically reacts with the supplied ammonia (coordination bond), adsorbs ammonia, and generates heat.
  • the heat generated from each heat storage material 23 is transmitted to the high thermal conductive honeycomb 22 through the installation portion 12 b of the exhaust passage 12.
  • the heat transmitted to the high thermal conductivity honeycomb 22 is transmitted to the exhaust gas, and the temperature of the exhaust gas is increased.
  • the oxidation catalyst 13 is heated to the activation temperature by the exhaust gas after the temperature rise.
  • the ECU 50 opens the on-off valve 41. Then, the ammonia desorbed from the heat storage material 23 is returned from the reactor 21 via the connecting pipe 40 to the reservoir 30 and collected. In the reservoir 30, activated carbon physically adsorbs ammonia. Thereafter, when the ammonia recovery rate in the reservoir 30 becomes equal to or higher than a predetermined value, the ECU 50 closes the on-off valve 41.
  • the ECU 50 determines whether or not to operate the chemical heat storage device 20 as described above. Whether or not the chemical heat storage device 20 is operated is determined by whether or not the chemical heat storage device 20 is ready for operation. When the chemical heat storage device 20 is ready for operation and is ready for operation, the ECU 50 operates the chemical heat storage device 20. On the other hand, when the operation preparation is not complete and the operation is not possible, the ECU 50 does not operate the chemical heat storage device 20.
  • One requirement for determining whether or not the chemical heat storage device 20 is ready for operation, that is, whether or not the chemical heat storage device 20 is operating, is whether or not the chemical heat storage device 20 operates normally.
  • the ECU 50 determines whether or not the chemical heat storage device 20 operates normally based on the detection values of the upstream temperature sensor 27 and the downstream temperature sensor 28. That is, the ECU 50 stores whether or not the previous operation of the chemical heat storage device 20 was normal.
  • the ECU 50 determines whether or not the chemical heat storage device 20 operates normally based on the detection value of the pressure sensor 31 and the detection value of the temperature sensor 32 when the on-off valve 41 is open.
  • Another requirement for determining whether or not the chemical heat storage device 20 can be operated is whether or not a predetermined amount of ammonia has been recovered in the reservoir 30, that is, the amount of ammonia stored in the reservoir 30 is a desired exotherm. It is whether it is more than the quantity which can acquire a characteristic.
  • the chemical heat storage device 20 when the temperature of the exhaust gas is equal to or higher than the temperature at which ammonia is desorbed from the heat storage material 23, the heat of the exhaust gas is given to the heat storage material 23 via the high thermal conductive honeycomb 22 and the installation portion 12b. Then, ammonia is desorbed from the heat storage material 23. The desorbed ammonia moves from the reactor 21 to the reservoir 30 due to a pressure difference when the opening / closing valve 41 is controlled to open. The ammonia is physically adsorbed by the adsorbent in the reservoir 30 and is collected in the reservoir 30.
  • the ECU 50 estimates the ammonia recovery rate in the reservoir 30.
  • the ammonia recovery rate is estimated from the saturated vapor pressure of ammonia, the pressure and temperature of the reservoir 30, and the value of the ammonia adsorption characteristic specific to the adsorbent.
  • the ECU 50 determines whether or not the ammonia recovery in the reservoir 30 is sufficient based on the estimated ammonia recovery rate. That is, the ECU 50 determines whether or not a predetermined amount of ammonia is adsorbed by the adsorbent of the reservoir 30 based on the estimated ammonia recovery rate.
  • the predetermined amount of ammonia is an amount capable of obtaining desired exothermic characteristics when ammonia is supplied to the heat storage material 23 and undergoes a chemical reaction.
  • a recovery rate of 70% is set as a threshold value for determining that ammonia is sufficiently recovered in the reservoir 30.
  • the recovery threshold is not limited to 70%, and may be set as appropriate, such as 80% or 90%. If the estimated recovery rate is equal to or greater than the threshold, the ECU 50 determines that a predetermined amount of ammonia has been recovered in the reservoir 30. When the estimated recovery rate is less than the threshold value, the ECU 50 determines that ammonia recovery is insufficient.
  • the ECU 50 determines that the chemical heat storage device 20 is operable, and the chemical heat storage device The device 20 is started. That is, the ECU 50 controls the on-off valve 41 to open. On the other hand, if the chemical heat storage device 20 does not operate normally or ammonia is not sufficiently collected in the storage 30, the ECU 50 determines that the chemical heat storage device 20 is not operable and does not start the chemical heat storage device 20. .
  • the ECU 50 can take normal control and exhaust priority control as the control of the engine 11.
  • the exhaust priority control of the engine 11 includes, for example, control for increasing the temperature of the exhaust gas exhausted from the engine 11 in order to warm the oxidation catalyst 13 to the activation temperature or higher by the heat of the exhaust gas, or exhaust from the engine 11.
  • the normal control of the engine 11 includes control for giving priority to improvement in fuel consumption and control for giving priority to running (output).
  • step S10 the ECU 50 estimates the temperature of the oxidation catalyst 13 by measuring the temperature of the catalyst carrier 12a provided with the oxidation catalyst 13 or measuring the temperature of exhaust gas discharged from the engine 11. . Then, the ECU 50 determines whether or not the estimated temperature is a temperature at which the oxidation catalyst 13 can be activated.
  • the ECU 50 calculates the temperature of the oxidation catalyst 13 from the temperature of the exhaust gas measured by the upstream temperature sensor 27. That is, the ECU 50 calculates the estimated temperature of the oxidation catalyst 13 from the temperature of the exhaust gas upstream of the oxidation catalyst 13. In step S10, if the estimated temperature is lower than the activation temperature of the oxidation catalyst 13, the ECU 50 determines that the oxidation catalyst 13 needs to be warmed up (YES in step S10).
  • step S10 the ECU 50 determines whether the chemical heat storage device 20 is operational. Specifically, the ECU 50 first determines whether or not the chemical heat storage device 20 operates normally (step S11). In step S11, the ECU 50 reads a history before the engine 11 is started. Further, the ECU 50 determines whether or not the chemical heat storage device 20 is operating normally on the basis of the temperature detected by the upstream temperature sensor 27 and the temperature detected by the downstream temperature sensor 28 during the previous operation of the chemical heat storage device 20. Determine whether. Further, the ECU 50 determines whether or not the chemical heat storage device 20 is operating normally based on the pressure and temperature of the storage 30 with the on-off valve 41 open. When the engine 11 is started for the first time, the ECU 50 cannot read the history, and therefore determines YES in step S11.
  • step S11 the ECU 50 shifts the control flow to step S12, and whether or not another requirement is established regarding whether the chemical heat storage device 20 can be operated. Determine whether. That is, in step S12, the ECU 50 determines whether or not the ammonia recovery from the storage 30 is sufficient.
  • the ECU 50 estimates the recovery rate of ammonia in the reservoir 30 based on the pressure in the reservoir 30 detected by the pressure sensor 31 and the temperature in the reservoir 30 detected by the temperature sensor 32. If the estimated recovery rate is equal to or greater than the threshold, the ECU 50 determines that the ammonia recovery is sufficient (YES in step S12).
  • the case where it is determined that the recovery of ammonia is sufficient is a case where the storage amount of ammonia stored in the reservoir 30 is equal to or greater than the amount capable of obtaining desired exothermic characteristics in the reactor 21.
  • step S12 the ECU 50 determines that the chemical heat storage device 20 is operable, and starts the chemical heat storage device 20 while maintaining normal control of the engine 11.
  • the ECU 50 maintains normal control of the engine 11.
  • the chemical heat storage device 20 does not operate normally and the chemical heat storage device 20 is out of order, that is, when the chemical heat storage device 20 is not operable (NO in step S11)
  • the ECU 50 starts the engine 11 from normal control. Switch to exhaust priority control to reduce the emission of air pollutants to the outside air.
  • step S12 When it is determined that ammonia recovery is insufficient (NO in step S12), that is, when it is determined that the chemical heat storage device 20 is not operable, the ECU 50 changes the engine 11 from normal control to exhaust priority control. Switch to reduce the emission of air pollutants to the outside air.
  • the ECU 50 Switching from normal control to exhaust priority control, the temperature of exhaust gas is raised by engine control. As a result, the temperature of the exhaust gas immediately after discharge becomes higher than the temperature of the exhaust gas during normal control. Therefore, even if the temperature of the exhaust gas is not raised by the chemical heat storage device 20, the temperature of the exhaust gas rises, and the oxidation catalyst 13 is quickly raised to the activation temperature by the exhaust gas after the temperature rise. .
  • the ECU 50 maintains normal control of the engine 11. Then, the on-off valve 41 is opened and the chemical heat storage device 20 is started. As a result, the exhaust gas is heated by the chemical heat storage device 20, and the temperature of the exhaust gas rises. Then, the oxidation catalyst 13 is quickly heated to the activation temperature by the exhaust gas after the temperature increase.
  • the ECU 50 closes the on-off valve 41. Further, the ECU 50 switches the engine 11 to normal control.
  • step S21 the ECU 50 estimates the temperature of the oxidation catalyst 13 by measuring the temperature of the catalyst carrier 12a provided with the oxidation catalyst 13 or measuring the temperature of exhaust gas discharged from the engine 11. . Then, the ECU 50 determines whether or not the estimated temperature is a temperature at which the oxidation catalyst 13 can be activated. The ECU 50 calculates the temperature of the oxidation catalyst 13 from the temperature of the exhaust gas measured by the upstream temperature sensor 27.
  • the ECU 50 calculates the estimated temperature of the oxidation catalyst 13 from the temperature of the exhaust gas upstream of the oxidation catalyst 13. In step S21, if the estimated temperature is lower than the activation temperature of the oxidation catalyst 13, the ECU 50 determines that the oxidation catalyst 13 needs to be warmed up (YES in step S21).
  • the ECU 50 When the oxidation catalyst 13 needs to be warmed up, more specifically, when it is determined that the estimated temperature of the exhaust gas is lower than the activation temperature of the oxidation catalyst 13 (YES in step S21), the ECU 50 performs the control flow. Then, the process proceeds to a step of determining whether the chemical heat storage device 20 can be operated.
  • step S22 the ECU 50 reads a history. Further, the ECU 50 determines whether or not the chemical heat storage device 20 is operating normally on the basis of the temperature detected by the upstream temperature sensor 27 and the temperature detected by the downstream temperature sensor 28 during the previous operation of the chemical heat storage device 20. Determine whether. Further, the ECU 50 determines whether or not the chemical heat storage device 20 is operating normally based on the pressure and temperature of the storage 30 with the on-off valve 41 open.
  • step S22 If it is determined that the chemical heat storage device 20 is operating normally (YES in step S22), the ECU 50 shifts the control flow to step S23.
  • step S23 the ECU 50 determines whether or not the ammonia recovery from the reservoir 30 is sufficient.
  • the ECU 50 estimates the recovery rate of ammonia in the reservoir 30 based on the pressure in the reservoir 30 detected by the pressure sensor 31 and the temperature in the reservoir 30 detected by the temperature sensor 32. If the estimated recovery rate is equal to or greater than the threshold, the ECU 50 determines that ammonia recovery is sufficient (YES in step S23).
  • step S23 If it is determined that the ammonia recovery is sufficient (YES in step S23), that is, if it is determined that the chemical heat storage device 20 is operable, the ECU 50 maintains the normal control of the engine 11 while maintaining the normal control of the engine 11. 20 is started.
  • the ECU 50 maintains the engine 11 in normal control.
  • step S22 When the chemical heat storage device 20 does not operate normally and the chemical heat storage device 20 is out of order (NO in step S22), that is, when the chemical heat storage device 20 is not operable, the ECU 50 starts the engine 11 from the normal control. Switch to exhaust priority control to reduce the emission of air pollutants to the outside air.
  • the ECU 50 switches the engine 11 from the normal control to the exhaust priority control and returns to the outside air. Reduce emissions of air pollutants.
  • the ECU 50 switches the engine 11 to the exhaust priority control.
  • the oxidation catalyst 13 needs to be warmed up during traveling, the exhaust gas is heated only by engine control and the oxidation catalyst 13 is warmed up without relying on the chemical heat storage device 20.
  • the ECU 50 maintains the normal control of the engine 11 while maintaining the normal control of the engine 11. Start. As a result, the exhaust gas is heated by the chemical heat storage device 20, and the temperature of the exhaust gas rises. Then, the oxidation catalyst 13 is quickly heated to the activation temperature by the exhaust gas after the temperature increase. Further, when it is not necessary to warm up the oxidation catalyst 13 during traveling, that is, when the temperature of the exhaust gas is equal to or higher than the activation temperature, the ECU 50 performs normal control of the engine 10 without operating the chemical heat storage device 20. maintain.
  • the following effects can be obtained. (1) At the time of cold start of the engine 11, when the chemical heat storage device 20 cannot be operated, the engine 11 is switched to the exhaust priority control. Thereby, the exhaust gas can be quickly heated up to the activation temperature of the oxidation catalyst 13 by engine control. As a result, even if the chemical heat storage device 20 cannot operate, a certain exhaust purification performance can be exhibited by engine control.
  • the chemical heat storage device 20 When the temperature of the exhaust gas becomes lower than the activation temperature during traveling, the chemical heat storage device 20 is operated while maintaining the normal control of the engine 11. According to this configuration, the exhaust gas can be quickly heated by the heat generated by the chemical heat storage device 20, and the oxidation catalyst 13 can be quickly heated to the activation temperature by the exhaust gas after the temperature increase. it can. As a result, the exhaust gas can be purified by the oxidation catalyst 13 warmed up to the activation temperature while suppressing the deterioration of fuel consumption.
  • the engine 11 is controlled according to the state of the chemical heat storage device 20 to raise the temperature of the exhaust gas. According to this configuration, fuel consumption deterioration can be suppressed as compared with the case where the temperature of the exhaust gas is raised only by engine control.
  • the chemical heat storage device 20 is used as an auxiliary for raising the temperature, for example, external energy for auxiliary is not required as compared with the case where an electric heater (EHC) is used.
  • the above embodiment may be modified as follows.
  • a condition for starting the chemical heat storage device 20 may be added.
  • the starting condition of the chemical heat storage device 20 includes, for example, whether or not the temperature of the exhaust gas immediately after being discharged from the engine 11 is equal to or lower than a preset starting temperature.
  • the starting temperature is a temperature lower than the activation temperature of the oxidation catalyst 13 and is a temperature at which the temperature can be raised relatively quickly to the activation temperature of the oxidation catalyst 13. For this reason, if the temperature of the exhaust gas immediately after discharge is higher than the starting temperature, it is more efficient to raise the temperature of the exhaust gas by the chemical heat storage device 20.
  • the temperature of the exhaust gas immediately after discharge is lower than the starting temperature
  • the temperature of the exhaust gas is first raised by engine control rather than using the chemical heat storage device 20, and then the chemical heat storage device 20 is turned on when the temperature becomes equal to or higher than the starting temperature. It is more efficient to operate and raise the temperature of the oxidation catalyst 13 to the activation temperature.
  • step S12 the ECU 50 determines whether or not the start condition is satisfied after determining whether or not the ammonia recovery in the reservoir 30 is sufficient (step S13). .
  • step S13 when the temperature of the exhaust gas detected by the upstream temperature sensor 27 is equal to or higher than the starting temperature, the starting condition is satisfied (YES in step S13), and the ECU 50 performs chemical control while maintaining the normal control of the engine 11.
  • the heat storage device 20 is started. That is, the ECU 50 controls the on-off valve 41 to open.
  • step S13 if the temperature of the exhaust gas detected by the upstream temperature sensor 27 is lower than the start temperature, the start condition is not satisfied (NO in step S13), and the ECU 50 does not start the chemical heat storage device 20 and starts the engine 11 Switch to exhaust priority control.
  • the chemical heat storage device 20 can operate normally. However, when the temperature of the exhaust gas is less than the predetermined start temperature, the ECU 50 does not start the chemical heat storage device 20 and does not start the engine 11. Is switched to exhaust priority control. When the exhaust gas is heated to the starting temperature or higher by the exhaust priority control, the ECU 50 returns the engine 11 to the normal control, and thereafter warms the exhaust gas using the chemical heat storage device 20. By doing in this way, the oxidation catalyst 13 can be warmed up more efficiently, suppressing the deterioration of a fuel consumption.
  • step S13 when the temperature of the exhaust gas is lower than the starting temperature (NO in step S13), the ECU 50 switches the engine 11 to the exhaust priority control, but the chemical heat storage device 20 may be operated in accordance with this.
  • step S10 or step 21 when determining whether or not the oxidation catalyst 13 needs to be warmed up, the ECU 50 determines the oxidation catalyst from the temperature of the exhaust gas upstream of the oxidation catalyst 13 measured by the upstream temperature sensor 27. Although the estimated temperature of 13 was calculated, it is not restricted to this.
  • the ECU 50 may calculate the estimated temperature of the oxidation catalyst 13 from the temperature of the exhaust gas downstream of the oxidation catalyst 13. Further, the ECU 50 may calculate the estimated temperature of the oxidation catalyst 13 from the temperatures of both the upstream and downstream exhaust gases of the oxidation catalyst 13. Further, the temperature of the exhaust gas upstream of the oxidation catalyst 13 may be measured not by the upstream temperature sensor 27 but by the downstream temperature sensor 28, or by both the upstream temperature sensor 27 and the downstream temperature sensor 28. You may measure.
  • the engine 11 may be a gasoline engine.
  • two requirements were set: whether or not the chemical heat storage device 20 operates normally and whether or not ammonia is sufficiently recovered.
  • the ECU 50 may determine whether or not the chemical heat storage device 20 can be operated based only on whether or not the chemical heat storage device 20 operates normally. In this case, the ECU 50 does not have to determine whether or not ammonia is sufficiently recovered.
  • step of determining whether or not the chemical heat storage device 20 can be operated another requirement may be added to the two requirements of whether or not the chemical heat storage device 20 operates normally and whether or not ammonia is sufficiently recovered. .
  • the starting temperature of the chemical heat storage device 20 may be the activation temperature of the oxidation catalyst 13.
  • other indicators may be used instead of whether or not the exhaust gas is equal to or higher than the starting temperature. For example, it may be determined whether to start the chemical heat storage device 20 based on the temperature and flow rate of the exhaust gas.
  • the catalyst may be other than the oxidation catalyst 13 as long as it can purify air pollutants.

Abstract

An engine exhaust purification control method, provided with a step for determining whether or not warm-up of an oxidation catalyst is necessary, and a step for determining whether or not operation of a chemical heat storage device is possible. If it is determined that warm-up of the oxidation catalyst is necessary and it is determined that operation of the chemical heat storage device is possible, the chemical heat storage device is operated so as to warm up the oxidation catalyst. Alternatively, if it is determined that warm-up of the oxidation catalyst is necessary and it is determined that operation of the chemical heat storage device is not possible, control of the engine is switched to exhaust priority control and discharge of atmospheric pollutants in the exhaust gas to the outside air is reduced.

Description

エンジンの排気浄化制御方法Engine exhaust purification control method
 本発明は、排気通路上に設けられた排気ガス浄化用の触媒と、触媒を暖機可能な化学蓄熱装置とを含む排気浄化システムによるエンジンの排気浄化制御方法に関する。 The present invention relates to an engine exhaust purification control method by an exhaust purification system including an exhaust gas purification catalyst provided on an exhaust passage and a chemical heat storage device capable of warming up the catalyst.
 車両の排気系には、エンジンから排出された排気ガスに含まれるHC、CO、NOx等の環境汚染物質を浄化するために、種々の触媒が設けられている。それら触媒には、活性化して浄化能力が高くなる温度である活性温度が存在する。しかしながら、エンジンが暖まっていないエンジン冷間始動時は、エンジンから排出される排気ガスの温度が低いため、排気ガスの熱だけで触媒を活性温度にまで加熱するのに、長時間を要する。このため、エンジン冷間始動時の初期は、排気ガスに含まれる環境汚染物質が十分に浄化されない虞がある。 The vehicle exhaust system is provided with various catalysts for purifying environmental pollutants such as HC, CO, NOx contained in the exhaust gas discharged from the engine. These catalysts have an activation temperature, which is a temperature at which they are activated and have a high purification capacity. However, when the engine is cold and the engine is not warm, the temperature of the exhaust gas exhausted from the engine is low. Therefore, it takes a long time to heat the catalyst to the activation temperature only with the heat of the exhaust gas. For this reason, there is a possibility that environmental pollutants contained in the exhaust gas are not sufficiently purified at the initial stage when the engine is cold started.
 そこで、エンジン冷間始動時等の排気ガスの温度が低いとき、触媒を短時間で活性化するための装置が必要である。この種の装置としては、燃費悪化を抑制しつつ加熱対象物である触媒を短時間で暖機可能な化学蓄熱装置が知られている。化学蓄熱装置は、蓄熱材と反応媒体との化学反応による熱を利用する。特許文献1は、排気ガス浄化用の触媒を担持する触媒セラミック部の外周部に配置した蓄熱材と、反応媒体との化学反応による熱を利用して、触媒を暖機する化学蓄熱方式の触媒暖機装置を開示する。 Therefore, an apparatus for activating the catalyst in a short time is required when the temperature of the exhaust gas is low, such as when the engine is cold started. As this type of device, there is known a chemical heat storage device capable of warming up a catalyst as a heating target in a short time while suppressing deterioration in fuel consumption. The chemical heat storage device uses heat generated by a chemical reaction between the heat storage material and the reaction medium. Patent Document 1 discloses a chemical heat storage type catalyst that warms up a catalyst using heat generated by a chemical reaction between a heat storage material disposed on the outer periphery of a catalyst ceramic portion that supports a catalyst for purifying exhaust gas and a reaction medium. A warm-up device is disclosed.
 このような排気ガス浄化用の触媒と、触媒を暖機するための化学蓄熱装置とを有する排気浄化システムにおいては、化学蓄熱装置が稼働できない場合であっても、一定の排気浄化性能を発揮することが望まれている。 In an exhaust purification system having such an exhaust gas purification catalyst and a chemical heat storage device for warming up the catalyst, even if the chemical heat storage device cannot be operated, a certain exhaust purification performance is exhibited. It is hoped that.
特開昭59-208118号公報JP 59-208118 A
 本発明の目的は、化学蓄熱装置が稼働できない場合であっても、エンジン制御によって一定の排気浄化性能を発揮することができるエンジンの排気浄化制御方法を提供することにある。 An object of the present invention is to provide an engine exhaust gas purification control method capable of exhibiting a certain exhaust gas purification performance by engine control even when a chemical heat storage device cannot be operated.
 上記課題を解決するため、本願発明の第一の態様によれば、エンジンから排出された排気ガスが流通する排気通路上に設けられた排気ガス浄化用の触媒と、触媒を暖機可能な化学蓄熱装置とを含む排気浄化システムによるエンジンの排気浄化制御方法が提供される。その制御方法は、触媒の暖機が必要か否かを判定するステップと、化学蓄熱装置の稼働の可否を判定するステップとを備える。その制御方法によれば、触媒の暖機が必要と判定されかつ化学蓄熱装置が稼働可であると判定された場合、触媒を暖機するように化学蓄熱装置を動作させる。また、触媒の暖機が必要と判定されかつ化学蓄熱装置が稼働不可であると判定された場合、エンジンの制御を排気優先制御に切り替えて排気ガス中の大気汚染物質の外気への排出を低減する。 In order to solve the above problems, according to a first aspect of the present invention, an exhaust gas purifying catalyst provided on an exhaust passage through which exhaust gas discharged from an engine flows, and a chemical capable of warming up the catalyst are provided. An exhaust purification control method for an engine by an exhaust purification system including a heat storage device is provided. The control method includes a step of determining whether or not the catalyst needs to be warmed up and a step of determining whether or not the chemical heat storage device can be operated. According to the control method, when it is determined that the catalyst needs to be warmed up and it is determined that the chemical heat storage device is operable, the chemical heat storage device is operated so as to warm up the catalyst. Also, if it is determined that the catalyst needs to be warmed up and the chemical heat storage device is not operational, the engine control is switched to exhaust priority control to reduce the emission of air pollutants in the exhaust gas to the outside air To do.
 この構成によれば、例えば、排気ガスからの熱だけで触媒を暖機する場合と比べると、化学蓄熱装置により触媒を暖機することができるため、燃費の悪化を抑制しつつ、触媒を暖機して排気ガスを浄化することができる。一方、化学蓄熱装置の稼働準備が整っていない場合、即ち、化学蓄熱装置の稼働が不可であると判定された場合、エンジンを排気優先制御に切り替えて触媒を暖機し、排気ガスを浄化することができる。このため、化学蓄熱装置が稼働できない場合であっても、エンジン制御によって一定の排気浄化性能を発揮することができる。 According to this configuration, for example, the catalyst can be warmed up by the chemical heat storage device as compared with the case where the catalyst is warmed up only by the heat from the exhaust gas. The exhaust gas can be purified. On the other hand, if the chemical heat storage device is not ready for operation, that is, if it is determined that the chemical heat storage device cannot be operated, the engine is switched to exhaust priority control to warm up the catalyst and purify the exhaust gas. be able to. For this reason, even if the chemical heat storage device cannot be operated, a certain exhaust purification performance can be exhibited by engine control.
排気浄化システムを示す概略構成図。The schematic block diagram which shows an exhaust gas purification system. 反応器の断面図。Sectional drawing of a reactor. エンジン始動後の制御手順を示すフローチャート。The flowchart which shows the control procedure after engine starting. 走行時の制御手順を示すフローチャート。The flowchart which shows the control procedure at the time of driving | running | working. エンジン始動後の制御手順の別例を示すフローチャート。The flowchart which shows another example of the control procedure after engine starting.
 以下、車両におけるエンジンの排気浄化制御方法を具体化した一実施形態を図1~図4にしたがって説明する。まず、車両に搭載された排気浄化システムについて説明する。
 図1に示すように、エンジン11の排気側には、排気通路12が接続されている。排気通路12には、種々の排気ガス浄化用の触媒が設けられている。以下、図1に示す酸化触媒13を例に挙げて説明する。エンジン11は、ディーゼルエンジンである。酸化触媒13は、排気ガス浄化用の触媒であり、エンジン11から排出された排気ガス中に含まれるHC、CO、PM、NOx等の大気汚染物質を酸化する。酸化触媒13は、排気通路12の途中に設けられたセラミックハニカムなどの触媒担持部12aに担持されている。酸化触媒13を通過した排気ガスは、排気通路12上の図示しないSCR触媒やDPF等の種々の触媒やフィルタを経て、車両の外に排出される。
Hereinafter, an embodiment embodying an engine exhaust gas purification control method in a vehicle will be described with reference to FIGS. First, an exhaust purification system mounted on a vehicle will be described.
As shown in FIG. 1, an exhaust passage 12 is connected to the exhaust side of the engine 11. The exhaust passage 12 is provided with various exhaust gas purification catalysts. Hereinafter, the oxidation catalyst 13 shown in FIG. 1 will be described as an example. The engine 11 is a diesel engine. The oxidation catalyst 13 is a catalyst for purifying exhaust gas, and oxidizes air pollutants such as HC, CO, PM, NOx contained in the exhaust gas discharged from the engine 11. The oxidation catalyst 13 is carried on a catalyst carrying portion 12 a such as a ceramic honeycomb provided in the middle of the exhaust passage 12. The exhaust gas that has passed through the oxidation catalyst 13 passes through various catalysts and filters such as an SCR catalyst and a DPF (not shown) on the exhaust passage 12 and is discharged out of the vehicle.
 酸化触媒13、及び酸化触媒13の下流に設けられた各排気ガス浄化用の触媒には、活性化して十分な浄化能力を発揮する温度である活性温度、即ち、最適温度領域が存在する。例えば、酸化触媒13の活性温度の下限は、150℃程度である。しかし、エンジン11の冷間始動時は、エンジン11が十分に暖められていない。このため、エンジン11から排出された直後の排気ガスの温度は、比較的低く、100℃程度である。そこで、エンジン11の冷間始動時でも酸化触媒13に高い浄化能力を発揮させるため、酸化触媒13を迅速に活性温度以上にまで昇温させること、即ち、触媒の暖機が必要となる。そのため、排気浄化システム10は、酸化触媒13を暖機するための化学蓄熱装置20を有している。 The oxidation catalyst 13 and each exhaust gas purification catalyst provided downstream of the oxidation catalyst 13 have an activation temperature that is a temperature at which they are activated and exhibit sufficient purification ability, that is, an optimum temperature region. For example, the lower limit of the activation temperature of the oxidation catalyst 13 is about 150 ° C. However, when the engine 11 is cold started, the engine 11 is not sufficiently warmed. For this reason, the temperature of the exhaust gas immediately after being discharged from the engine 11 is relatively low, about 100 ° C. Therefore, in order to make the oxidation catalyst 13 exhibit high purification ability even when the engine 11 is cold started, it is necessary to quickly raise the temperature of the oxidation catalyst 13 to the activation temperature or higher, that is, to warm up the catalyst. Therefore, the exhaust purification system 10 has a chemical heat storage device 20 for warming up the oxidation catalyst 13.
 化学蓄熱装置20は、可逆的な化学反応を利用して、外部エネルギレスで加熱対象物を加熱する。具体的には、化学蓄熱装置20は、排気ガスの熱を、蓄熱材と反応媒体に分離した状態で、化学蓄熱装置20の内部に蓄えておく。化学蓄熱装置20は、その反応媒体を、必要なときに蓄熱材に供給する。そして、化学蓄熱装置20は、蓄熱材と反応媒体とを化学反応(化学吸着)させ、化学反応時の反応熱を利用することにより、加熱対象物を加熱する。この実施形態では、反応媒体はアンモニアである。 The chemical heat storage device 20 uses a reversible chemical reaction to heat an object to be heated without external energy. Specifically, the chemical heat storage device 20 stores the heat of the exhaust gas in the chemical heat storage device 20 in a state of being separated into a heat storage material and a reaction medium. The chemical heat storage device 20 supplies the reaction medium to the heat storage material when necessary. And the chemical heat storage apparatus 20 heats a heating target object by making the thermal storage material and the reaction medium chemically react (chemical adsorption), and utilizing the reaction heat at the time of a chemical reaction. In this embodiment, the reaction medium is ammonia.
 化学蓄熱装置20は、蓄熱材23と、反応器21とを備えている。反応器21は、加熱対象物と熱交換可能とするため、加熱対象物と対応する位置に配置されている。この実施形態では、加熱対象物として高熱伝導ハニカム22が、排気通路12の一部である設置部12bの内部に設けられている。即ち、反応器21は、高熱伝導ハニカム22と熱交換可能とするため、排気通路12を構成する設置部12bの周囲に設けられている。高熱伝導ハニカム22は、設置部12bと熱的に結合されている。即ち、排気ガスの排出方向Xにおいて、高熱伝導ハニカム22は酸化触媒13より上流に設けられており、反応器21も酸化触媒13より上流に設けられている。よって、化学蓄熱装置20を動作させた場合、排気ガスは、酸化触媒13を通過する前に、反応器21によって昇温される。 The chemical heat storage device 20 includes a heat storage material 23 and a reactor 21. The reactor 21 is arranged at a position corresponding to the heating object in order to exchange heat with the heating object. In this embodiment, a high heat conduction honeycomb 22 is provided as an object to be heated inside an installation portion 12 b that is a part of the exhaust passage 12. That is, the reactor 21 is provided around the installation portion 12 b that constitutes the exhaust passage 12 in order to exchange heat with the high thermal conductivity honeycomb 22. The high thermal conductive honeycomb 22 is thermally coupled to the installation portion 12b. That is, in the exhaust gas discharge direction X, the high thermal conductivity honeycomb 22 is provided upstream of the oxidation catalyst 13, and the reactor 21 is also provided upstream of the oxidation catalyst 13. Therefore, when the chemical heat storage device 20 is operated, the exhaust gas is heated by the reactor 21 before passing through the oxidation catalyst 13.
 この実施形態では、酸化触媒13の上流に配置した高熱伝導ハニカム22が、反応器21により加熱される。これにより、高熱伝導ハニカム22を通過する排気ガスが暖められる。そして、暖められた排気ガスによって、間接的に、排気ガス浄化用の酸化触媒13が暖機される。しかし、これに限られず、排気ガス浄化用の酸化触媒13を加熱対象物とし、酸化触媒13の周囲に反応器21を配置して、直接的に、排気ガス浄化用の酸化触媒13を暖機してもよい。 In this embodiment, the high thermal conductivity honeycomb 22 disposed upstream of the oxidation catalyst 13 is heated by the reactor 21. As a result, the exhaust gas passing through the high thermal conductive honeycomb 22 is warmed. Then, the exhaust gas purification oxidation catalyst 13 is indirectly warmed up by the warmed exhaust gas. However, the present invention is not limited to this. The oxidation catalyst 13 for purifying exhaust gas is an object to be heated, the reactor 21 is disposed around the oxidation catalyst 13, and the oxidation catalyst 13 for purifying exhaust gas is directly warmed up. May be.
 図2に示すように、反応器21の内部には、反応媒体としてのアンモニアと化学反応する複数の蓄熱材23が設けられている。反応器21は、アンモニアと蓄熱材23とを化学反応させて、熱を発生する。蓄熱材としては、塩化金属、臭化金属、ヨウ化金属化合物などが用いられ、例えば、MgCl、CaCl、NiCl、ZnCl、SrClが用いられる。蓄熱材としてCaOを用いた場合、反応媒体として水を用いてもよい。蓄熱材との化学反応が可能であれば、蓄熱材と反応媒体の組み合わせは、適宜変更してもよい。 As shown in FIG. 2, a plurality of heat storage materials 23 that chemically react with ammonia as a reaction medium are provided inside the reactor 21. The reactor 21 generates heat by chemically reacting ammonia and the heat storage material 23. As the heat storage material, a metal chloride, a metal bromide, a metal iodide compound, or the like is used. For example, MgCl 2 , CaCl 2 , NiCl 2 , ZnCl 2 , SrCl 2 are used. When CaO is used as the heat storage material, water may be used as the reaction medium. If a chemical reaction with the heat storage material is possible, the combination of the heat storage material and the reaction medium may be changed as appropriate.
 蓄熱材23は、設置部12bの外周面に配置されている。複数の蓄熱材23は、それぞれ設置部12bの外周面に接触している。したがって、各蓄熱材23から発生した熱は、設置部12bを介して高熱伝導ハニカム22に伝達される。反応器21は、複数の蓄熱材23の外周側に配置された断熱材25を有している。断熱材25としては、蓄熱材23が径方向に膨らむのを抑え込むため、硬質の断熱材を用いてもよい。 The heat storage material 23 is arrange | positioned at the outer peripheral surface of the installation part 12b. The plurality of heat storage materials 23 are in contact with the outer peripheral surface of the installation portion 12b. Therefore, the heat generated from each heat storage material 23 is transmitted to the high thermal conductive honeycomb 22 through the installation portion 12b. The reactor 21 has a heat insulating material 25 arranged on the outer peripheral side of the plurality of heat storage materials 23. As the heat insulating material 25, a hard heat insulating material may be used in order to suppress the heat storage material 23 from expanding in the radial direction.
 反応器21は、排気通路12の設置部12bを外周側から覆う筒状のケーシング26を有している。ケーシング26は、その軸方向両端にフランジ部26aを有している。フランジ部26aは、ケーシング26の筒状部分から設置部12bに向けて突出している。フランジ部26aの内周面は、設置部12bの外周面に接合されている。 The reactor 21 has a cylindrical casing 26 that covers the installation portion 12b of the exhaust passage 12 from the outer peripheral side. The casing 26 has flange portions 26a at both axial ends thereof. The flange part 26a protrudes from the cylindrical part of the casing 26 toward the installation part 12b. The inner peripheral surface of the flange portion 26a is joined to the outer peripheral surface of the installation portion 12b.
 フランジ部26aは、蓄熱材23及び断熱材25の軸方向両端のそれぞれを覆っている。ケーシング26の筒状部分は、断熱材25の外周面を覆っている。したがって、ケーシング26と設置部12bによって画定された空間は、密閉されている。その密閉空間には、蓄熱材23、及び断熱材25が封入されている。 The flange portion 26a covers both ends of the heat storage material 23 and the heat insulating material 25 in the axial direction. The cylindrical portion of the casing 26 covers the outer peripheral surface of the heat insulating material 25. Therefore, the space defined by the casing 26 and the installation part 12b is sealed. The heat storage material 23 and the heat insulating material 25 are enclosed in the sealed space.
 図1に示すように、化学蓄熱装置20は、蓄熱材23と化学反応する反応媒体を貯蔵する貯蔵器30を備えている。貯蔵器30には、反応媒体としてのアンモニアを物理吸着する吸着材としての活性炭が内蔵されている。貯蔵器30では、アンモニアを活性炭に物理吸着させてアンモニアを貯蔵すると共に、アンモニアを活性炭から分離させてアンモニアを放出する。 As shown in FIG. 1, the chemical heat storage device 20 includes a reservoir 30 that stores a reaction medium that chemically reacts with the heat storage material 23. The reservoir 30 contains activated carbon as an adsorbent that physically adsorbs ammonia as a reaction medium. In the reservoir 30, the ammonia is physically adsorbed on the activated carbon to store the ammonia, and the ammonia is separated from the activated carbon to release the ammonia.
 化学蓄熱装置20は、反応器21と貯蔵器30とを接続してアンモニアを流通可能にするための接続管40を備えている。さらに、化学蓄熱装置20は、接続管40に設けられた開閉弁41を備えている。接続管40は、反応器21と貯蔵器30との間でアンモニアを移動させるための管路である。開閉弁41が開くと、アンモニアは、接続管40を介して反応器21と貯蔵器30との間を移動する。開閉弁41は、ECU50に対して信号により接続されている。 The chemical heat storage device 20 includes a connecting pipe 40 for connecting the reactor 21 and the storage 30 so that ammonia can be circulated. Furthermore, the chemical heat storage device 20 includes an on-off valve 41 provided in the connection pipe 40. The connection pipe 40 is a pipe line for moving ammonia between the reactor 21 and the reservoir 30. When the on-off valve 41 is opened, ammonia moves between the reactor 21 and the reservoir 30 via the connection pipe 40. The on-off valve 41 is connected to the ECU 50 by a signal.
 排気浄化システム10は、排気通路12に上流側温度センサ27を備えている。上流側温度センサ27は、排気ガスの排出方向Xにおいて、化学蓄熱装置20より上流に設置されている。上流側温度センサ27は、高熱伝導ハニカム22を通過する前の排気ガスの温度を検出する。即ち、上流側温度センサ27は、エンジン11から排出された直後の排気ガスの温度を検出する。また、排気浄化システム10は、排気通路12に下流側温度センサ28を備えている。下流側温度センサ28は、排気ガスの排出方向Xにおいて、化学蓄熱装置20より下流でかつ酸化触媒13の上流側に設置されている。下流側温度センサ28は、高熱伝導ハニカム22を通過しかつ酸化触媒13を通過する前の排気ガスの温度を検出する。よって、上流側温度センサ27及び下流側温度センサ28は、酸化触媒13より上流側の排気ガスの温度を検出する。上流側温度センサ27及び下流側温度センサ28は、ECU50に対して信号により接続されている。 The exhaust purification system 10 includes an upstream temperature sensor 27 in the exhaust passage 12. The upstream temperature sensor 27 is installed upstream of the chemical heat storage device 20 in the exhaust gas discharge direction X. The upstream temperature sensor 27 detects the temperature of the exhaust gas before passing through the high thermal conductive honeycomb 22. That is, the upstream temperature sensor 27 detects the temperature of the exhaust gas immediately after being discharged from the engine 11. Further, the exhaust purification system 10 includes a downstream temperature sensor 28 in the exhaust passage 12. The downstream temperature sensor 28 is installed downstream of the chemical heat storage device 20 and upstream of the oxidation catalyst 13 in the exhaust gas discharge direction X. The downstream temperature sensor 28 detects the temperature of the exhaust gas that has passed through the high thermal conductivity honeycomb 22 and has not passed through the oxidation catalyst 13. Therefore, the upstream temperature sensor 27 and the downstream temperature sensor 28 detect the temperature of the exhaust gas upstream of the oxidation catalyst 13. The upstream temperature sensor 27 and the downstream temperature sensor 28 are connected to the ECU 50 by signals.
 また、排気浄化システム10は、貯蔵器30の圧力を検出する圧力センサ31を備えている。また、排気浄化システムは、貯蔵器30の温度を検出する温度センサ32を備えている。圧力センサ31及び温度センサ32は、ECU50に対して信号により接続されている。 Further, the exhaust purification system 10 includes a pressure sensor 31 that detects the pressure of the reservoir 30. The exhaust purification system also includes a temperature sensor 32 that detects the temperature of the reservoir 30. The pressure sensor 31 and the temperature sensor 32 are connected to the ECU 50 by signals.
 次に、排気浄化システム10における化学蓄熱装置20の動作を説明する。エンジン11の停止中は、ECU50によって開閉弁41は閉じられていると仮定する。したがって、車両停止中は、接続管40を介してアンモニアが反応器21に供給されない。 Next, the operation of the chemical heat storage device 20 in the exhaust purification system 10 will be described. It is assumed that the on-off valve 41 is closed by the ECU 50 while the engine 11 is stopped. Therefore, ammonia is not supplied to the reactor 21 through the connection pipe 40 while the vehicle is stopped.
 エンジン11の始動後、エンジン11から排出された直後の排気ガスの温度は、上流側温度センサ27によって検出される。エンジン11から排出された直後の排気ガスの温度が酸化触媒13の活性温度より低いときには、排気ガスを昇温させる。そして、昇温後の排気ガスによって、酸化触媒13が暖機される。 After the engine 11 is started, the temperature of the exhaust gas immediately after being discharged from the engine 11 is detected by the upstream temperature sensor 27. When the temperature of the exhaust gas immediately after being discharged from the engine 11 is lower than the activation temperature of the oxidation catalyst 13, the temperature of the exhaust gas is raised. Then, the oxidation catalyst 13 is warmed up by the exhaust gas after the temperature rise.
 まず、ECU50によって、開閉弁41が開く。初期状態では、アンモニアを貯蔵する貯蔵器30の圧力が、反応器21の圧力よりも高くなっている。このため、開閉弁41が開くことにより、アンモニアは、貯蔵器30から反応器21に移動する。つまり、アンモニアは、両容器の圧力差により移動する。 First, the on-off valve 41 is opened by the ECU 50. In the initial state, the pressure of the reservoir 30 for storing ammonia is higher than the pressure of the reactor 21. For this reason, ammonia moves from the reservoir 30 to the reactor 21 by opening the on-off valve 41. That is, ammonia moves due to the pressure difference between the two containers.
 アンモニアは、反応器21内部の蓄熱材23に供給される。各蓄熱材23は、供給されたアンモニアと化学反応(配位結合)して、アンモニアを吸着し、熱を発生する。各蓄熱材23から発生した熱は、排気通路12の設置部12bを介して高熱伝導ハニカム22に伝わる。その結果、高熱伝導ハニカム22に伝わった熱が排気ガスに伝わることで、排気ガスは昇温する。そして、昇温後の排気ガスにより、酸化触媒13が活性温度にまで加熱される。 Ammonia is supplied to the heat storage material 23 inside the reactor 21. Each heat storage material 23 chemically reacts with the supplied ammonia (coordination bond), adsorbs ammonia, and generates heat. The heat generated from each heat storage material 23 is transmitted to the high thermal conductive honeycomb 22 through the installation portion 12 b of the exhaust passage 12. As a result, the heat transmitted to the high thermal conductivity honeycomb 22 is transmitted to the exhaust gas, and the temperature of the exhaust gas is increased. The oxidation catalyst 13 is heated to the activation temperature by the exhaust gas after the temperature rise.
 一方、エンジン11が十分に暖められて、エンジン11から排出された排気ガスの温度が上昇すると、高温となった排気ガスの熱は、高熱伝導ハニカム22及び設置部12bを介して蓄熱材23に与えられる。すると、蓄熱材23からアンモニアが離脱して、反応器21の圧力が上昇する。上流側温度センサ27によって検出される排気ガスの温度が、蓄熱材23からアンモニアが脱離する温度以上になると、ECU50によって開閉弁41が開く。そして、蓄熱材23より脱離したアンモニアは、反応器21から接続管40を介して貯蔵器30に戻され、回収される。貯蔵器30では、活性炭がアンモニアを物理吸着する。その後、貯蔵器30でのアンモニアの回収率が所定値以上となると、ECU50によって開閉弁41が閉じられる。 On the other hand, when the temperature of the exhaust gas exhausted from the engine 11 rises when the engine 11 is sufficiently warmed, the heat of the exhaust gas that has become high temperature is transferred to the heat storage material 23 via the high thermal conductive honeycomb 22 and the installation portion 12b. Given. Then, ammonia desorbs from the heat storage material 23, and the pressure of the reactor 21 rises. When the temperature of the exhaust gas detected by the upstream temperature sensor 27 becomes equal to or higher than the temperature at which ammonia is desorbed from the heat storage material 23, the ECU 50 opens the on-off valve 41. Then, the ammonia desorbed from the heat storage material 23 is returned from the reactor 21 via the connecting pipe 40 to the reservoir 30 and collected. In the reservoir 30, activated carbon physically adsorbs ammonia. Thereafter, when the ammonia recovery rate in the reservoir 30 becomes equal to or higher than a predetermined value, the ECU 50 closes the on-off valve 41.
 ECU50は、化学蓄熱装置20を上記のように動作させるか否かを判定する。化学蓄熱装置20を動作させるか否は、化学蓄熱装置20の稼働準備が整っているか否かによって判定される。化学蓄熱装置20の稼働準備が整っており、稼働可である場合、ECU50は、化学蓄熱装置20を動作させる。一方、稼働準備が整っておらず、稼働不可である場合、ECU50は、化学蓄熱装置20を動作させない。 The ECU 50 determines whether or not to operate the chemical heat storage device 20 as described above. Whether or not the chemical heat storage device 20 is operated is determined by whether or not the chemical heat storage device 20 is ready for operation. When the chemical heat storage device 20 is ready for operation and is ready for operation, the ECU 50 operates the chemical heat storage device 20. On the other hand, when the operation preparation is not complete and the operation is not possible, the ECU 50 does not operate the chemical heat storage device 20.
 化学蓄熱装置20の稼働準備が整っているか否か、即ち、稼働の可否を判定する一つの要件は、化学蓄熱装置20が正常に動作するか否かである。上流側温度センサ27で検出された排気ガスの温度と、下流側温度センサ28で検出された排気ガスの温度と、圧力センサ31で検出された貯蔵器30の圧力や、温度センサ32で検出された貯蔵器30の温度などに基づき、ECU50は、化学蓄熱装置20が正常に動作するか否かを判定する。 One requirement for determining whether or not the chemical heat storage device 20 is ready for operation, that is, whether or not the chemical heat storage device 20 is operating, is whether or not the chemical heat storage device 20 operates normally. The exhaust gas temperature detected by the upstream temperature sensor 27, the exhaust gas temperature detected by the downstream temperature sensor 28, the pressure of the reservoir 30 detected by the pressure sensor 31, and the temperature sensor 32. Based on the temperature of the storage device 30 and the like, the ECU 50 determines whether or not the chemical heat storage device 20 operates normally.
 化学蓄熱装置20が正常に動作していれば、化学蓄熱装置20を通過する際に排気ガスは加熱される。このため、下流側温度センサ28により検出された排気ガスの温度は、上流側温度センサ27で検出された温度より高くなる。一方、化学蓄熱装置20が正常に動作していないと、化学蓄熱装置20を通過しても排気ガスが加熱されない。このため、下流側温度センサ28で検出された排気ガスの温度は、上流側温度センサ27で検出された温度と同じか、又は若干差を有する温度になる。したがって、ECU50は、上流側温度センサ27と下流側温度センサ28の検出値に基づき、化学蓄熱装置20が正常に動作するか否かを判定する。すなわち、ECU50には、前回の化学蓄熱装置20の動作が正常であったか否かが記憶されている。 If the chemical heat storage device 20 is operating normally, the exhaust gas is heated when passing through the chemical heat storage device 20. For this reason, the temperature of the exhaust gas detected by the downstream temperature sensor 28 is higher than the temperature detected by the upstream temperature sensor 27. On the other hand, if the chemical heat storage device 20 is not operating normally, the exhaust gas is not heated even if it passes through the chemical heat storage device 20. For this reason, the temperature of the exhaust gas detected by the downstream temperature sensor 28 is the same as or slightly different from the temperature detected by the upstream temperature sensor 27. Therefore, the ECU 50 determines whether or not the chemical heat storage device 20 operates normally based on the detection values of the upstream temperature sensor 27 and the downstream temperature sensor 28. That is, the ECU 50 stores whether or not the previous operation of the chemical heat storage device 20 was normal.
 また、化学蓄熱装置20において、ECU50によって開閉弁41が開いている場合、圧力センサ31で検出された貯蔵器30の圧力は変動し、温度センサ32で検出された貯蔵器30の温度は変動する。このため、開閉弁41が開いているのに圧力及び温度の検出値が変動しない場合は、開閉弁41の故障、接続管40の詰まり、貯蔵器30の異常、反応器21の異常等が考えられる。したがって、ECU50は、開閉弁41が開いているときの圧力センサ31の検出値、及び温度センサ32の検出値に基づき、化学蓄熱装置20が正常に動作するか否かを判定する。 Further, in the chemical heat storage device 20, when the on-off valve 41 is opened by the ECU 50, the pressure of the reservoir 30 detected by the pressure sensor 31 varies, and the temperature of the reservoir 30 detected by the temperature sensor 32 varies. . For this reason, when the detected values of pressure and temperature do not change even when the on-off valve 41 is open, a failure of the on-off valve 41, clogging of the connection pipe 40, abnormality of the reservoir 30, abnormality of the reactor 21, etc. are considered. It is done. Therefore, the ECU 50 determines whether or not the chemical heat storage device 20 operates normally based on the detection value of the pressure sensor 31 and the detection value of the temperature sensor 32 when the on-off valve 41 is open.
 化学蓄熱装置20の稼働の可否を判定するもう一つの要件は、貯蔵器30に所定量のアンモニアが回収されているか否か、即ち、貯蔵器30に貯蔵されたアンモニアの貯蔵量が所望の発熱特性を得ることができる量以上であるか否かである。化学蓄熱装置20において、排気ガスの温度が、蓄熱材23からアンモニアが脱離する温度以上になると、排気ガスの熱が高熱伝導ハニカム22や設置部12bを介して蓄熱材23に与えられた結果、蓄熱材23からアンモニアが脱離する。脱離したアンモニアは、開閉弁41が開制御されることで、圧力差により、反応器21から貯蔵器30に移動する。そして、アンモニアは、貯蔵器30内の吸着材に物理吸着されて、貯蔵器30に回収される。 Another requirement for determining whether or not the chemical heat storage device 20 can be operated is whether or not a predetermined amount of ammonia has been recovered in the reservoir 30, that is, the amount of ammonia stored in the reservoir 30 is a desired exotherm. It is whether it is more than the quantity which can acquire a characteristic. In the chemical heat storage device 20, when the temperature of the exhaust gas is equal to or higher than the temperature at which ammonia is desorbed from the heat storage material 23, the heat of the exhaust gas is given to the heat storage material 23 via the high thermal conductive honeycomb 22 and the installation portion 12b. Then, ammonia is desorbed from the heat storage material 23. The desorbed ammonia moves from the reactor 21 to the reservoir 30 due to a pressure difference when the opening / closing valve 41 is controlled to open. The ammonia is physically adsorbed by the adsorbent in the reservoir 30 and is collected in the reservoir 30.
 貯蔵器30内のアンモニア回収量が多くなると、貯蔵器30の圧力が上昇する。そして、圧力センサ31によって検出された圧力、及び温度センサ32によって検出された温度に基づき、ECU50は、貯蔵器30におけるアンモニアの回収率を推定する。アンモニアの回収率は、アンモニアの飽和蒸気圧と、貯蔵器30の圧力及び温度と、吸着材固有のアンモニア吸着特性の値とから推定される。 When the amount of ammonia recovered in the reservoir 30 increases, the pressure in the reservoir 30 increases. Then, based on the pressure detected by the pressure sensor 31 and the temperature detected by the temperature sensor 32, the ECU 50 estimates the ammonia recovery rate in the reservoir 30. The ammonia recovery rate is estimated from the saturated vapor pressure of ammonia, the pressure and temperature of the reservoir 30, and the value of the ammonia adsorption characteristic specific to the adsorbent.
 ECU50は、推定したアンモニアの回収率に基づき、貯蔵器30でのアンモニアの回収が十分か否かを判定する。すなわち、ECU50は、推定したアンモニアの回収率に基づき、所定量のアンモニアが貯蔵器30の吸着材に吸着されているか否かを判定する。所定量のアンモニアとは、アンモニアが蓄熱材23に供給されて化学反応した際、所望の発熱特性を得ることができる量のことである。 The ECU 50 determines whether or not the ammonia recovery in the reservoir 30 is sufficient based on the estimated ammonia recovery rate. That is, the ECU 50 determines whether or not a predetermined amount of ammonia is adsorbed by the adsorbent of the reservoir 30 based on the estimated ammonia recovery rate. The predetermined amount of ammonia is an amount capable of obtaining desired exothermic characteristics when ammonia is supplied to the heat storage material 23 and undergoes a chemical reaction.
 本実施形態では、貯蔵器30にアンモニアが十分に回収されていることを判定する閾値として、例えば回収率70%が設定されている。回収率の閾値は、70%に限定されず、80%や90%のように適宜設定してもよい。推定された回収率が閾値以上の場合、ECU50は、所定量のアンモニアが貯蔵器30に回収されたと判定する。推定された回収率が閾値未満の場合、ECU50は、アンモニアの回収が不十分であると判定する。 In the present embodiment, for example, a recovery rate of 70% is set as a threshold value for determining that ammonia is sufficiently recovered in the reservoir 30. The recovery threshold is not limited to 70%, and may be set as appropriate, such as 80% or 90%. If the estimated recovery rate is equal to or greater than the threshold, the ECU 50 determines that a predetermined amount of ammonia has been recovered in the reservoir 30. When the estimated recovery rate is less than the threshold value, the ECU 50 determines that ammonia recovery is insufficient.
 本実施形態では、化学蓄熱装置20が正常に動作可能であり、かつアンモニアが貯蔵器30に十分に回収されている場合、ECU50は、化学蓄熱装置20が稼働可であると判定し、化学蓄熱装置20を始動させる。すなわち、ECU50は、開閉弁41を開くように制御する。一方、化学蓄熱装置20が正常に動作しないか、アンモニアが貯蔵器30に十分に回収されていない場合、ECU50は、化学蓄熱装置20が稼働不可であると判定し、化学蓄熱装置20を始動させない。 In the present embodiment, when the chemical heat storage device 20 can operate normally and ammonia is sufficiently collected in the reservoir 30, the ECU 50 determines that the chemical heat storage device 20 is operable, and the chemical heat storage device The device 20 is started. That is, the ECU 50 controls the on-off valve 41 to open. On the other hand, if the chemical heat storage device 20 does not operate normally or ammonia is not sufficiently collected in the storage 30, the ECU 50 determines that the chemical heat storage device 20 is not operable and does not start the chemical heat storage device 20. .
 次に、ECU50によるエンジン11の制御について説明する。
 ECU50により、エンジン11の制御は、通常制御と、排気優先制御とを取り得る。エンジン11の排気優先制御には、例えば、酸化触媒13を排気ガスの熱で活性温度以上に暖機するためにエンジン11から排出される排気ガスの温度を上昇させる制御や、エンジン11から排出される排気ガス中の大気汚染物質の量を低減するエンジン制御などがある。エンジン11の通常制御には、燃費向上を優先させるための制御や、走り(出力)を優先させるための制御などがある。
Next, control of the engine 11 by the ECU 50 will be described.
The ECU 50 can take normal control and exhaust priority control as the control of the engine 11. The exhaust priority control of the engine 11 includes, for example, control for increasing the temperature of the exhaust gas exhausted from the engine 11 in order to warm the oxidation catalyst 13 to the activation temperature or higher by the heat of the exhaust gas, or exhaust from the engine 11. Engine control to reduce the amount of air pollutants in the exhaust gas. The normal control of the engine 11 includes control for giving priority to improvement in fuel consumption and control for giving priority to running (output).
 次に、エンジン11始動後におけるECU50の制御手順を図3のフローチャートに従って説明する。
 エンジン11の始動後、ECU50により、エンジン11の通常制御が行われる。エンジン11からは、排気ガスが排気通路12に排出される。ECU50は、まず、排気ガス浄化用の酸化触媒13の暖機が必要か否かを判定する(ステップS10)。ステップS10では、ECU50は、酸化触媒13が設けられた触媒担持部12aの温度を測定したり、エンジン11から排出される排気ガスの温度を測定したりして、酸化触媒13の温度を推定する。そして、ECU50は、その推定温度が酸化触媒13を活性化させることのできる温度であるか否かを判定する。ECU50は、上流側温度センサ27で測定された排気ガスの温度から、酸化触媒13の温度を算出する。即ち、ECU50は、酸化触媒13の上流側の排気ガスの温度から、酸化触媒13の推定温度を算出する。そして、ステップS10では、推定温度が酸化触媒13の活性温度より低い場合、ECU50は、酸化触媒13の暖機が必要と判定する(ステップS10でYES)。
Next, the control procedure of the ECU 50 after the engine 11 is started will be described with reference to the flowchart of FIG.
After the engine 11 is started, the ECU 50 performs normal control of the engine 11. Exhaust gas is discharged from the engine 11 into the exhaust passage 12. The ECU 50 first determines whether it is necessary to warm up the oxidation catalyst 13 for exhaust gas purification (step S10). In step S10, the ECU 50 estimates the temperature of the oxidation catalyst 13 by measuring the temperature of the catalyst carrier 12a provided with the oxidation catalyst 13 or measuring the temperature of exhaust gas discharged from the engine 11. . Then, the ECU 50 determines whether or not the estimated temperature is a temperature at which the oxidation catalyst 13 can be activated. The ECU 50 calculates the temperature of the oxidation catalyst 13 from the temperature of the exhaust gas measured by the upstream temperature sensor 27. That is, the ECU 50 calculates the estimated temperature of the oxidation catalyst 13 from the temperature of the exhaust gas upstream of the oxidation catalyst 13. In step S10, if the estimated temperature is lower than the activation temperature of the oxidation catalyst 13, the ECU 50 determines that the oxidation catalyst 13 needs to be warmed up (YES in step S10).
 ステップS10でYESと判定した場合、ECU50は、化学蓄熱装置20の稼働可否を判定する。具体的には、ECU50は、まず、化学蓄熱装置20が正常に動作するか否かを判定する(ステップS11)。ステップS11では、ECU50は、エンジン11始動前の履歴を読み込む。また、ECU50は、直前の化学蓄熱装置20動作時に上流側温度センサ27によって検出された温度と下流側温度センサ28によって検出された温度とに基づき、化学蓄熱装置20が正常に動作していたか否かを判定する。また、ECU50は、開閉弁41を開いた状態での貯蔵器30の圧力及び温度に基づき、化学蓄熱装置20が正常に動作していたか否かを判定する。エンジン11を初めて始動させた場合、ECU50は、履歴を読み込むことができないため、ステップS11においてYESと判定する。 If it is determined YES in step S10, the ECU 50 determines whether the chemical heat storage device 20 is operational. Specifically, the ECU 50 first determines whether or not the chemical heat storage device 20 operates normally (step S11). In step S11, the ECU 50 reads a history before the engine 11 is started. Further, the ECU 50 determines whether or not the chemical heat storage device 20 is operating normally on the basis of the temperature detected by the upstream temperature sensor 27 and the temperature detected by the downstream temperature sensor 28 during the previous operation of the chemical heat storage device 20. Determine whether. Further, the ECU 50 determines whether or not the chemical heat storage device 20 is operating normally based on the pressure and temperature of the storage 30 with the on-off valve 41 open. When the engine 11 is started for the first time, the ECU 50 cannot read the history, and therefore determines YES in step S11.
 化学蓄熱装置20が正常に動作すると判定した場合(ステップS11でYES)、ECU50は、制御フローをステップS12に移行させ、化学蓄熱装置20の稼働可否に関し、もう一つの要件が成立しているか否かを判定する。即ち、ステップS12では、ECU50は、貯蔵器30のアンモニアの回収が十分か否かを判定する。ECU50は、圧力センサ31によって検出された貯蔵器30内の圧力と、温度センサ32によって検出された貯蔵器30内の温度とに基づき、貯蔵器30におけるアンモニアの回収率を推定する。推定した回収率が閾値以上の場合、ECU50は、アンモニアの回収が十分であると判定する(ステップS12でYES)。アンモニアの回収が十分であると判定した場合とは、貯蔵器30に貯蔵されたアンモニアの貯蔵量が、反応器21で所望の発熱特性を得ることができる量以上の場合である。 If it is determined that the chemical heat storage device 20 operates normally (YES in step S11), the ECU 50 shifts the control flow to step S12, and whether or not another requirement is established regarding whether the chemical heat storage device 20 can be operated. Determine whether. That is, in step S12, the ECU 50 determines whether or not the ammonia recovery from the storage 30 is sufficient. The ECU 50 estimates the recovery rate of ammonia in the reservoir 30 based on the pressure in the reservoir 30 detected by the pressure sensor 31 and the temperature in the reservoir 30 detected by the temperature sensor 32. If the estimated recovery rate is equal to or greater than the threshold, the ECU 50 determines that the ammonia recovery is sufficient (YES in step S12). The case where it is determined that the recovery of ammonia is sufficient is a case where the storage amount of ammonia stored in the reservoir 30 is equal to or greater than the amount capable of obtaining desired exothermic characteristics in the reactor 21.
 アンモニアの回収が十分であると判定した場合(ステップS12でYES)、ECU50は、化学蓄熱装置20が稼働可であると判定し、エンジン11の通常制御を維持しつつ、化学蓄熱装置20を始動させる。 If it is determined that the ammonia recovery is sufficient (YES in step S12), the ECU 50 determines that the chemical heat storage device 20 is operable, and starts the chemical heat storage device 20 while maintaining normal control of the engine 11. Let
 酸化触媒13の暖機が不要である場合(ステップS10でNO)、ECU50は、エンジン11の通常制御を維持する。
 化学蓄熱装置20が正常に動作せず、化学蓄熱装置20が故障している場合、即ち、化学蓄熱装置20が稼働不可である場合(ステップS11でNO)、ECU50は、エンジン11を通常制御から排気優先制御に切り替え、外気への大気汚染物質の排出を低減する。
If the oxidation catalyst 13 does not need to be warmed up (NO in step S10), the ECU 50 maintains normal control of the engine 11.
When the chemical heat storage device 20 does not operate normally and the chemical heat storage device 20 is out of order, that is, when the chemical heat storage device 20 is not operable (NO in step S11), the ECU 50 starts the engine 11 from normal control. Switch to exhaust priority control to reduce the emission of air pollutants to the outside air.
 また、アンモニアの回収が不十分とである判定した場合(ステップS12でNO)、即ち、化学蓄熱装置20が稼働不可であると判定した場合、ECU50は、エンジン11を通常制御から排気優先制御に切り替え、外気への大気汚染物質の排出を低減する。 When it is determined that ammonia recovery is insufficient (NO in step S12), that is, when it is determined that the chemical heat storage device 20 is not operable, the ECU 50 changes the engine 11 from normal control to exhaust priority control. Switch to reduce the emission of air pollutants to the outside air.
 したがって、エンジン11始動後、化学蓄熱装置20が故障しているか又は貯蔵器30でのアンモニアの回収が不十分であるような、化学蓄熱装置20が稼働不可である場合、ECU50は、エンジン11を通常制御から排気優先制御に切り替え、エンジン制御によって排気ガスを昇温させる。その結果、排出直後の排気ガスの温度が、通常制御時の排気ガスの温度より高くなる。このため、化学蓄熱装置20による排気ガスの昇温が行われなくとも、排気ガスの温度が上昇すると共に、昇温後の排気ガスによって、酸化触媒13が活性温度にまで速やかに昇温される。 Therefore, after the engine 11 is started, if the chemical heat storage device 20 has failed or the chemical heat storage device 20 cannot be operated such that ammonia recovery in the reservoir 30 is insufficient, the ECU 50 Switching from normal control to exhaust priority control, the temperature of exhaust gas is raised by engine control. As a result, the temperature of the exhaust gas immediately after discharge becomes higher than the temperature of the exhaust gas during normal control. Therefore, even if the temperature of the exhaust gas is not raised by the chemical heat storage device 20, the temperature of the exhaust gas rises, and the oxidation catalyst 13 is quickly raised to the activation temperature by the exhaust gas after the temperature rise. .
 また、エンジン11始動後、化学蓄熱装置20が正常に動作しかつアンモニアの回収が十分であるような、化学蓄熱装置20が稼働可能である場合、ECU50は、エンジン11の通常制御を維持したまま、開閉弁41を開き、化学蓄熱装置20を始動させる。その結果、化学蓄熱装置20によって排気ガスが加熱され、排気ガスの温度が上昇する。そして、昇温後の排気ガスによって、酸化触媒13が活性温度にまで速やかに昇温される。 In addition, after the engine 11 is started, when the chemical heat storage device 20 is operable so that the chemical heat storage device 20 operates normally and ammonia is sufficiently recovered, the ECU 50 maintains normal control of the engine 11. Then, the on-off valve 41 is opened and the chemical heat storage device 20 is started. As a result, the exhaust gas is heated by the chemical heat storage device 20, and the temperature of the exhaust gas rises. Then, the oxidation catalyst 13 is quickly heated to the activation temperature by the exhaust gas after the temperature increase.
 その後、排気ガスの温度が酸化触媒13の活性温度以上にまで上昇し、酸化触媒13の暖機が完了すると、ECU50は、開閉弁41を閉じる。また、ECU50は、エンジン11を通常制御に切り替える。 Thereafter, when the temperature of the exhaust gas rises to the activation temperature of the oxidation catalyst 13 or more and the warming up of the oxidation catalyst 13 is completed, the ECU 50 closes the on-off valve 41. Further, the ECU 50 switches the engine 11 to normal control.
 次に、走行中におけるECU50の制御手順を図4のフローチャートに従って説明する。エンジン11は、ECU50により通常制御されていると仮定する。
 走行中、ECU50は、酸化触媒13の暖機が必要か否かを判定する(ステップS21)。ステップS21では、ECU50は、酸化触媒13が設けられた触媒担持部12aの温度を測定したり、エンジン11から排出される排気ガスの温度を測定したりして、酸化触媒13の温度を推定する。そして、ECU50は、その推定温度が酸化触媒13を活性化させることのできる温度であるか否かを判定する。ECU50は、上流側温度センサ27で測定された排気ガスの温度から、酸化触媒13の温度を算出する。即ち、ECU50は、酸化触媒13の上流側の排気ガスの温度から、酸化触媒13の推定温度を算出する。そして、ステップS21では、推定温度が酸化触媒13の活性温度より低い場合、ECU50は、酸化触媒13の暖機が必要であると判定する(ステップS21でYES)。
Next, the control procedure of the ECU 50 during traveling will be described with reference to the flowchart of FIG. It is assumed that the engine 11 is normally controlled by the ECU 50.
During traveling, the ECU 50 determines whether or not the oxidation catalyst 13 needs to be warmed up (step S21). In step S21, the ECU 50 estimates the temperature of the oxidation catalyst 13 by measuring the temperature of the catalyst carrier 12a provided with the oxidation catalyst 13 or measuring the temperature of exhaust gas discharged from the engine 11. . Then, the ECU 50 determines whether or not the estimated temperature is a temperature at which the oxidation catalyst 13 can be activated. The ECU 50 calculates the temperature of the oxidation catalyst 13 from the temperature of the exhaust gas measured by the upstream temperature sensor 27. That is, the ECU 50 calculates the estimated temperature of the oxidation catalyst 13 from the temperature of the exhaust gas upstream of the oxidation catalyst 13. In step S21, if the estimated temperature is lower than the activation temperature of the oxidation catalyst 13, the ECU 50 determines that the oxidation catalyst 13 needs to be warmed up (YES in step S21).
 酸化触媒13の暖機が必要である場合、より具体的には、排気ガスの推定温度が酸化触媒13の活性温度未満であると判定した場合(ステップS21でYES)、ECU50は、制御フローを、化学蓄熱装置20の稼働の可否を判定するステップに移行させる。 When the oxidation catalyst 13 needs to be warmed up, more specifically, when it is determined that the estimated temperature of the exhaust gas is lower than the activation temperature of the oxidation catalyst 13 (YES in step S21), the ECU 50 performs the control flow. Then, the process proceeds to a step of determining whether the chemical heat storage device 20 can be operated.
 まず、ステップS22では、ECU50は、履歴を読み込む。また、ECU50は、直前の化学蓄熱装置20動作時に上流側温度センサ27によって検出された温度と下流側温度センサ28によって検出された温度とに基づき、化学蓄熱装置20が正常に動作していたか否かを判定する。また、ECU50は、開閉弁41を開いた状態での貯蔵器30の圧力及び温度に基づき、化学蓄熱装置20が正常に動作していたか否かを判定する。 First, in step S22, the ECU 50 reads a history. Further, the ECU 50 determines whether or not the chemical heat storage device 20 is operating normally on the basis of the temperature detected by the upstream temperature sensor 27 and the temperature detected by the downstream temperature sensor 28 during the previous operation of the chemical heat storage device 20. Determine whether. Further, the ECU 50 determines whether or not the chemical heat storage device 20 is operating normally based on the pressure and temperature of the storage 30 with the on-off valve 41 open.
 化学蓄熱装置20が正常に動作していたと判定した場合(ステップS22でYES)、ECU50は、制御フローをステップS23に移行させる。ステップS23では、ECU50は、貯蔵器30のアンモニアの回収が十分か否かを判定する。ECU50は、圧力センサ31によって検出された貯蔵器30内の圧力と、温度センサ32によって検出された貯蔵器30内の温度とに基づき、貯蔵器30におけるアンモニアの回収率を推定する。推定した回収率が閾値以上の場合、ECU50は、アンモニアの回収が十分であると判定する(ステップS23でYES)。 If it is determined that the chemical heat storage device 20 is operating normally (YES in step S22), the ECU 50 shifts the control flow to step S23. In step S23, the ECU 50 determines whether or not the ammonia recovery from the reservoir 30 is sufficient. The ECU 50 estimates the recovery rate of ammonia in the reservoir 30 based on the pressure in the reservoir 30 detected by the pressure sensor 31 and the temperature in the reservoir 30 detected by the temperature sensor 32. If the estimated recovery rate is equal to or greater than the threshold, the ECU 50 determines that ammonia recovery is sufficient (YES in step S23).
 アンモニアの回収が十分であると判定した場合(ステップS23でYES)、即ち、化学蓄熱装置20が稼働可能であると判定した場合、ECU50は、エンジン11の通常制御を維持しつつ、化学蓄熱装置20を始動させる。 If it is determined that the ammonia recovery is sufficient (YES in step S23), that is, if it is determined that the chemical heat storage device 20 is operable, the ECU 50 maintains the normal control of the engine 11 while maintaining the normal control of the engine 11. 20 is started.
 酸化触媒13の暖機が不要である場合、即ち、排気ガスの温度が活性温度以上であると判定した場合(ステップS21でNO)、ECU50は、エンジン11を通常制御に維持する。 If it is not necessary to warm up the oxidation catalyst 13, that is, if it is determined that the temperature of the exhaust gas is equal to or higher than the activation temperature (NO in step S21), the ECU 50 maintains the engine 11 in normal control.
 化学蓄熱装置20が正常に動作せず、化学蓄熱装置20が故障している場合(ステップS22でNO)、即ち、化学蓄熱装置20が稼働不可である場合、ECU50は、エンジン11を通常制御から排気優先制御に切り替え、外気への大気汚染物質の排出を低減する。 When the chemical heat storage device 20 does not operate normally and the chemical heat storage device 20 is out of order (NO in step S22), that is, when the chemical heat storage device 20 is not operable, the ECU 50 starts the engine 11 from the normal control. Switch to exhaust priority control to reduce the emission of air pollutants to the outside air.
 アンモニアの回収が不十分であると判定した場合(ステップS23でNO)、即ち、化学蓄熱装置20が稼働不可である場合、ECU50は、エンジン11を通常制御から排気優先制御に切り替え、外気への大気汚染物質の排出を低減する。 When it is determined that the ammonia recovery is insufficient (NO in step S23), that is, when the chemical heat storage device 20 is not operable, the ECU 50 switches the engine 11 from the normal control to the exhaust priority control and returns to the outside air. Reduce emissions of air pollutants.
 したがって、走行中、酸化触媒13の温度が低下して酸化触媒13の暖機が必要になった場合、即ち、排気ガスの温度が活性温度より低い場合、化学蓄熱装置20が故障しているか又は貯蔵器30でのアンモニア回収が不十分であるような化学蓄熱装置20が稼働不可である場合には、ECU50は、エンジン11を排気優先制御に切り替える。このように、走行中、酸化触媒13の暖機が必要になった場合には、化学蓄熱装置20に頼らず、エンジン制御だけで排気ガスを昇温し、酸化触媒13を暖機させる。 Therefore, when the temperature of the oxidation catalyst 13 decreases during running and the oxidation catalyst 13 needs to be warmed up, that is, when the temperature of the exhaust gas is lower than the activation temperature, the chemical heat storage device 20 has failed or When the chemical heat storage device 20 in which the ammonia recovery in the storage 30 is insufficient cannot be operated, the ECU 50 switches the engine 11 to the exhaust priority control. Thus, when the oxidation catalyst 13 needs to be warmed up during traveling, the exhaust gas is heated only by engine control and the oxidation catalyst 13 is warmed up without relying on the chemical heat storage device 20.
 一方、走行中、酸化触媒13の暖機が必要になった場合であっても、化学蓄熱装置20が稼働可能である場合、ECU50は、エンジン11の通常制御を維持したまま、化学蓄熱装置20を始動させる。その結果、化学蓄熱装置20によって排気ガスが加熱され、排気ガスの温度が上昇する。そして、昇温後の排気ガスによって、酸化触媒13が活性温度にまで速やかに昇温される。また、走行中、酸化触媒13の暖機が不要である場合、即ち、排気ガスの温度が活性温度以上である場合、ECU50は、化学蓄熱装置20を動作させずに、エンジン10の通常制御を維持する。 On the other hand, when the chemical heat storage device 20 is operable even when the oxidation catalyst 13 needs to be warmed up during traveling, the ECU 50 maintains the normal control of the engine 11 while maintaining the normal control of the engine 11. Start. As a result, the exhaust gas is heated by the chemical heat storage device 20, and the temperature of the exhaust gas rises. Then, the oxidation catalyst 13 is quickly heated to the activation temperature by the exhaust gas after the temperature increase. Further, when it is not necessary to warm up the oxidation catalyst 13 during traveling, that is, when the temperature of the exhaust gas is equal to or higher than the activation temperature, the ECU 50 performs normal control of the engine 10 without operating the chemical heat storage device 20. maintain.
 上記実施形態によれば、以下のような効果を得ることができる。
 (1)エンジン11の冷間始動時、化学蓄熱装置20が稼働不可の場合は、エンジン11を排気優先制御に切り替える。これにより、エンジン制御によって、排気ガスを、酸化触媒13の活性温度にまで速やかに昇温させることができる。その結果、化学蓄熱装置20が稼働できない場合であっても、エンジン制御によって一定の排気浄化性能を発揮することができる。
According to the above embodiment, the following effects can be obtained.
(1) At the time of cold start of the engine 11, when the chemical heat storage device 20 cannot be operated, the engine 11 is switched to the exhaust priority control. Thereby, the exhaust gas can be quickly heated up to the activation temperature of the oxidation catalyst 13 by engine control. As a result, even if the chemical heat storage device 20 cannot operate, a certain exhaust purification performance can be exhibited by engine control.
 (2)エンジン11の冷間始動時のように排気ガスの温度が低い場合、化学蓄熱装置20を稼働できる場合は、エンジン11の通常制御を維持しつつ、化学蓄熱装置20を動作させる。この構成によれば、エンジン11の燃費向上を優先しつつ、化学蓄熱装置20によって発生した熱により、排気ガスを昇温させると共に、昇温後の排気ガスによって、酸化触媒13を、活性温度にまで速やかに昇温させることができる。その結果、排気ガスからの熱だけで酸化触媒13を暖機する場合と比べると、化学蓄熱装置20によって酸化触媒13が暖機されるため、燃費の悪化を抑制しつつ、活性温度にまで暖機された酸化触媒13によって排気ガスを浄化することができる。 (2) When the temperature of the exhaust gas is low as in the cold start of the engine 11 and the chemical heat storage device 20 can be operated, the chemical heat storage device 20 is operated while maintaining normal control of the engine 11. According to this configuration, while giving priority to improving the fuel consumption of the engine 11, the temperature of the exhaust gas is raised by the heat generated by the chemical heat storage device 20, and the oxidation catalyst 13 is brought to the activation temperature by the exhaust gas after the temperature rise. The temperature can be raised quickly. As a result, compared with the case where the oxidation catalyst 13 is warmed up only by heat from the exhaust gas, the oxidation catalyst 13 is warmed up by the chemical heat storage device 20, so that the warming to the activation temperature is suppressed while suppressing the deterioration of fuel consumption. Exhaust gas can be purified by the activated oxidation catalyst 13.
 (3)走行中、排気ガスの温度が活性温度より低くなると、エンジン11の通常制御を維持しつつ、化学蓄熱装置20を動作させる。この構成によれば、化学蓄熱装置20によって発生した熱により、排気ガスを速やかに昇温させると共に、昇温後の排気ガスによって、酸化触媒13を、活性温度にまで速やかに昇温させることができる。その結果、燃費の悪化を抑制しつつ、活性温度にまで暖機した酸化触媒13によって排気ガスを浄化することができる。 (3) When the temperature of the exhaust gas becomes lower than the activation temperature during traveling, the chemical heat storage device 20 is operated while maintaining the normal control of the engine 11. According to this configuration, the exhaust gas can be quickly heated by the heat generated by the chemical heat storage device 20, and the oxidation catalyst 13 can be quickly heated to the activation temperature by the exhaust gas after the temperature increase. it can. As a result, the exhaust gas can be purified by the oxidation catalyst 13 warmed up to the activation temperature while suppressing the deterioration of fuel consumption.
 (4)走行中、排気ガスの温度が活性温度以上であれば、化学蓄熱装置20を用いず、エンジン11の通常制御を維持する。この構成によれば、ECU50の制御負荷を減らすことができる。 (4) During driving, if the temperature of the exhaust gas is equal to or higher than the activation temperature, normal control of the engine 11 is maintained without using the chemical heat storage device 20. According to this configuration, the control load on the ECU 50 can be reduced.
 (5)排気ガスによって酸化触媒13を暖機するため、化学蓄熱装置20の状態に応じて、エンジン11を制御し、排気ガスを昇温させる。この構成によれば、エンジン制御だけで排気ガスを昇温させる場合と比べると、燃費悪化を抑制できる。また、昇温の補助として化学蓄熱装置20を採用したため、例えば、電気ヒータ(EHC)を採用する場合と比べて、補助のための外部エネルギも必要としない。 (5) In order to warm up the oxidation catalyst 13 with the exhaust gas, the engine 11 is controlled according to the state of the chemical heat storage device 20 to raise the temperature of the exhaust gas. According to this configuration, fuel consumption deterioration can be suppressed as compared with the case where the temperature of the exhaust gas is raised only by engine control. In addition, since the chemical heat storage device 20 is used as an auxiliary for raising the temperature, for example, external energy for auxiliary is not required as compared with the case where an electric heater (EHC) is used.
 上記実施形態は、以下のように変更してもよい。
 エンジン11始動後におけるECU50の制御手順において、化学蓄熱装置20を始動させるための条件を追加してもよい。
The above embodiment may be modified as follows.
In the control procedure of the ECU 50 after the engine 11 is started, a condition for starting the chemical heat storage device 20 may be added.
 化学蓄熱装置20の始動条件として、例えば、エンジン11から排出直後の排気ガスの温度が予め設定された始動温度以下であるか否かが挙げられる。始動温度は、酸化触媒13の活性温度より低い温度であり、酸化触媒13の活性温度にまで比較的早期に昇温可能な温度である。このため、排出直後の排気ガスの温度が始動温度より高ければ、化学蓄熱装置20によって排気ガスの温度を昇温させる方が、効率が良い。一方、排出直後の排気ガスの温度が始動温度より低い場合、化学蓄熱装置20を用いるよりも、まずはエンジン制御によって排気ガスの温度を上昇させ、その後、始動温度以上となったら化学蓄熱装置20を動作させて酸化触媒13を活性温度に昇温させる方が、効率が良い。 The starting condition of the chemical heat storage device 20 includes, for example, whether or not the temperature of the exhaust gas immediately after being discharged from the engine 11 is equal to or lower than a preset starting temperature. The starting temperature is a temperature lower than the activation temperature of the oxidation catalyst 13 and is a temperature at which the temperature can be raised relatively quickly to the activation temperature of the oxidation catalyst 13. For this reason, if the temperature of the exhaust gas immediately after discharge is higher than the starting temperature, it is more efficient to raise the temperature of the exhaust gas by the chemical heat storage device 20. On the other hand, when the temperature of the exhaust gas immediately after discharge is lower than the starting temperature, the temperature of the exhaust gas is first raised by engine control rather than using the chemical heat storage device 20, and then the chemical heat storage device 20 is turned on when the temperature becomes equal to or higher than the starting temperature. It is more efficient to operate and raise the temperature of the oxidation catalyst 13 to the activation temperature.
 図5に示す制御手順によれば、ステップS12において、ECU50は、貯蔵器30のアンモニアの回収が十分か否かを判定した後、始動条件が成立しているか否かを判定する(ステップS13)。ステップS13において、上流側温度センサ27によって検出された排気ガスの温度が始動温度以上である場合、始動条件が成立し(ステップS13でYES)、ECU50は、エンジン11を通常制御を維持したまま化学蓄熱装置20を始動させる。即ち、ECU50は、開閉弁41を開くように制御する。一方、上流側温度センサ27によって検出された排気ガスの温度が始動温度より低い場合、始動条件が成立せず(ステップS13でNO)、ECU50は、化学蓄熱装置20を始動させず、エンジン11を排気優先制御に切り替える。 According to the control procedure shown in FIG. 5, in step S12, the ECU 50 determines whether or not the start condition is satisfied after determining whether or not the ammonia recovery in the reservoir 30 is sufficient (step S13). . In step S13, when the temperature of the exhaust gas detected by the upstream temperature sensor 27 is equal to or higher than the starting temperature, the starting condition is satisfied (YES in step S13), and the ECU 50 performs chemical control while maintaining the normal control of the engine 11. The heat storage device 20 is started. That is, the ECU 50 controls the on-off valve 41 to open. On the other hand, if the temperature of the exhaust gas detected by the upstream temperature sensor 27 is lower than the start temperature, the start condition is not satisfied (NO in step S13), and the ECU 50 does not start the chemical heat storage device 20 and starts the engine 11 Switch to exhaust priority control.
 この場合、エンジン11の冷間始動時、化学蓄熱装置20は正常に動作できるが、排気ガスの温度が所定の始動温度に満たない場合、ECU50は、化学蓄熱装置20を始動させず、エンジン11を排気優先制御に切り替える。排気優先制御によって排気ガスが始動温度以上に昇温されたら、ECU50は、エンジン11を通常制御に戻し、その後は、化学蓄熱装置20を使用して排気ガスを暖機する。このようにすることで、燃費の悪化を抑制しつつ、より効率的に酸化触媒13を暖機することができる。 In this case, when the engine 11 is cold started, the chemical heat storage device 20 can operate normally. However, when the temperature of the exhaust gas is less than the predetermined start temperature, the ECU 50 does not start the chemical heat storage device 20 and does not start the engine 11. Is switched to exhaust priority control. When the exhaust gas is heated to the starting temperature or higher by the exhaust priority control, the ECU 50 returns the engine 11 to the normal control, and thereafter warms the exhaust gas using the chemical heat storage device 20. By doing in this way, the oxidation catalyst 13 can be warmed up more efficiently, suppressing the deterioration of a fuel consumption.
 ステップS13において、排気ガスの温度が始動温度未満である場合(ステップS13でNO)、ECU50は、エンジン11を排気優先制御に切り替えるが、これに合わせて化学蓄熱装置20を動作させてもよい。 In step S13, when the temperature of the exhaust gas is lower than the starting temperature (NO in step S13), the ECU 50 switches the engine 11 to the exhaust priority control, but the chemical heat storage device 20 may be operated in accordance with this.
 ステップS10やステップ21において、酸化触媒13の暖機が必要か否かを判定する際、ECU50は、上流側温度センサ27で測定された酸化触媒13の上流側の排気ガスの温度から、酸化触媒13の推定温度を算出したが、これに限らない。ECU50は、酸化触媒13の下流側の排気ガスの温度から、酸化触媒13の推定温度を算出してもよい。また、ECU50は、酸化触媒13の上流側及び下流側の排気ガスの双方の温度から、酸化触媒13の推定温度を算出してもよい。また、酸化触媒13の上流側の排気ガスの温度は、上流側温度センサ27ではなく、下流側温度センサ28により測定してもよいし、上流側温度センサ27及び下流側温度センサ28の両方により測定してもよい。 In step S10 or step 21, when determining whether or not the oxidation catalyst 13 needs to be warmed up, the ECU 50 determines the oxidation catalyst from the temperature of the exhaust gas upstream of the oxidation catalyst 13 measured by the upstream temperature sensor 27. Although the estimated temperature of 13 was calculated, it is not restricted to this. The ECU 50 may calculate the estimated temperature of the oxidation catalyst 13 from the temperature of the exhaust gas downstream of the oxidation catalyst 13. Further, the ECU 50 may calculate the estimated temperature of the oxidation catalyst 13 from the temperatures of both the upstream and downstream exhaust gases of the oxidation catalyst 13. Further, the temperature of the exhaust gas upstream of the oxidation catalyst 13 may be measured not by the upstream temperature sensor 27 but by the downstream temperature sensor 28, or by both the upstream temperature sensor 27 and the downstream temperature sensor 28. You may measure.
 エンジン11は、ガソリンエンジンであってもよい。
 化学蓄熱装置20の稼働の可否を判定するステップにおいて、化学蓄熱装置20が正常に動作するか否かと、アンモニアの回収が十分か否かの2つの要件を設定した。しかし、ECU50は、化学蓄熱装置20が正常に動作するか否かだけに基づいて、化学蓄熱装置20の稼働の可否を判定してもよい。この場合、ECU50は、アンモニアの回収が十分か否かを判定しなくてもよい。
The engine 11 may be a gasoline engine.
In the step of determining whether or not the chemical heat storage device 20 can be operated, two requirements were set: whether or not the chemical heat storage device 20 operates normally and whether or not ammonia is sufficiently recovered. However, the ECU 50 may determine whether or not the chemical heat storage device 20 can be operated based only on whether or not the chemical heat storage device 20 operates normally. In this case, the ECU 50 does not have to determine whether or not ammonia is sufficiently recovered.
 化学蓄熱装置20の稼働の可否を判定するステップにおいて、化学蓄熱装置20が正常に動作するか否かと、アンモニアの回収が十分か否かの2つの要件に更に、別の要件を加えてもよい。 In the step of determining whether or not the chemical heat storage device 20 can be operated, another requirement may be added to the two requirements of whether or not the chemical heat storage device 20 operates normally and whether or not ammonia is sufficiently recovered. .
 化学蓄熱装置20の始動温度は、酸化触媒13の活性温度であってもよい。
 化学蓄熱装置20の始動条件として、排気ガスが始動温度以上か否かではなく、他の指標を用いてもよい。例えば、排気ガスの温度と流量とに基づいて、化学蓄熱装置20を始動させるか否かを判定してもよい。
The starting temperature of the chemical heat storage device 20 may be the activation temperature of the oxidation catalyst 13.
As a starting condition of the chemical heat storage device 20, other indicators may be used instead of whether or not the exhaust gas is equal to or higher than the starting temperature. For example, it may be determined whether to start the chemical heat storage device 20 based on the temperature and flow rate of the exhaust gas.
 触媒は、大気汚染物質を浄化できるのであれば、酸化触媒13以外であってもよい。 The catalyst may be other than the oxidation catalyst 13 as long as it can purify air pollutants.

Claims (6)

  1. エンジンから排出された排気ガスが流通する排気通路上に設けられた排気ガス浄化用の触媒と、前記触媒を暖機可能な化学蓄熱装置とを含む排気浄化システムによるエンジンの排気浄化制御方法であって、
     前記触媒の暖機が必要か否かを判定するステップと、
     前記化学蓄熱装置の稼働の可否を判定するステップとを備え、
     前記触媒の暖機が必要と判定されかつ前記化学蓄熱装置が稼働可であると判定された場合、前記触媒を暖機するように前記化学蓄熱装置を動作させ、
     前記触媒の暖機が必要と判定されかつ前記化学蓄熱装置が稼働不可であると判定された場合、前記エンジンの制御を排気優先制御に切り替えて前記排気ガス中の大気汚染物質の外気への排出を低減する、エンジンの排気浄化制御方法。
    An engine exhaust purification control method using an exhaust purification system including an exhaust gas purification catalyst provided on an exhaust passage through which exhaust gas exhausted from an engine flows, and a chemical heat storage device capable of warming up the catalyst. And
    Determining whether the catalyst needs to be warmed up;
    And determining whether the chemical heat storage device can be operated.
    When it is determined that the catalyst needs to be warmed up and the chemical heat storage device is determined to be operable, the chemical heat storage device is operated to warm up the catalyst,
    When it is determined that the catalyst needs to be warmed up and the chemical heat storage device is not operable, the control of the engine is switched to exhaust priority control to discharge air pollutants in the exhaust gas to the outside air An exhaust purification control method for an engine that reduces the engine.
  2. 請求項1に記載のエンジンの排気浄化制御方法において、
     前記触媒の暖機が必要か否かを判定するステップでは、前記触媒の推定温度が前記触媒の活性温度より低い場合、前記触媒の暖機が必要と判定する、エンジンの排気浄化制御方法。
    The engine exhaust gas purification control method according to claim 1,
    An engine exhaust purification control method, wherein in the step of determining whether or not the catalyst needs to be warmed up, if the estimated temperature of the catalyst is lower than the activation temperature of the catalyst, it is determined that the catalyst needs to be warmed up.
  3. 請求項2に記載のエンジンの排気浄化制御方法において、
     前記触媒の上流側の前記排気ガスの温度及び前記触媒の下流側の前記排気ガスの温度の少なくとも一つから、前記触媒の推定温度を算出する、エンジンの排気浄化制御方法。
    The engine exhaust gas purification control method according to claim 2,
    An engine exhaust purification control method for calculating an estimated temperature of the catalyst from at least one of a temperature of the exhaust gas upstream of the catalyst and a temperature of the exhaust gas downstream of the catalyst.
  4. 請求項1~請求項3のうちいずれか一項に記載のエンジンの排気浄化制御方法において、
     前記排気優先制御は、前記触媒を前記排気ガスの熱で活性温度以上に暖機するために前記エンジンから排出される前記排気ガスの温度を上昇させるエンジン制御である、エンジンの排気浄化制御方法。
    The engine exhaust purification control method according to any one of claims 1 to 3,
    The exhaust purification control method for an engine, wherein the exhaust priority control is an engine control for increasing a temperature of the exhaust gas discharged from the engine in order to warm the catalyst to an activation temperature or higher by heat of the exhaust gas.
  5. 請求項1~請求項3のうちいずれか一項に記載のエンジンの排気浄化制御方法において、
     前記排気優先制御は、前記エンジンから排出される前記排気ガス中の前記大気汚染物質の量を低減するエンジン制御である、エンジンの排気浄化制御方法。
    The engine exhaust purification control method according to any one of claims 1 to 3,
    The engine exhaust purification control method, wherein the exhaust priority control is engine control for reducing an amount of the air pollutant in the exhaust gas discharged from the engine.
  6. 請求項1~請求項5のうちいずれか一項に記載のエンジンの排気浄化制御方法において、
     前記化学蓄熱装置は、蓄熱材を備えるとともに加熱対象物と熱交換可能に配置された反応器と、前記蓄熱材と化学反応する反応媒体を貯蔵する貯蔵器と、前記貯蔵器と前記反応器とを前記反応媒体を流通可能に接続する接続管とを有し、
     前記化学蓄熱装置の稼働の可否を判定するステップでは、前記化学蓄熱装置が正常に動作しかつ前記貯蔵器に貯蔵された前記反応媒体の貯蔵量が所望の発熱特性を得ることができる量以上である場合、前記化学蓄熱装置が稼働可であると判定する、エンジンの排気浄化制御方法。
    The engine exhaust purification control method according to any one of claims 1 to 5,
    The chemical heat storage device includes a heat storage material and a reactor disposed so as to be capable of exchanging heat with an object to be heated, a storage device that stores a reaction medium that chemically reacts with the heat storage material, the storage device, and the reactor. And a connecting pipe that circulates the reaction medium,
    In the step of determining whether or not the chemical heat storage device can be operated, the chemical heat storage device operates normally and the stored amount of the reaction medium stored in the reservoir is greater than or equal to an amount capable of obtaining desired exothermic characteristics. An engine exhaust purification control method for determining that the chemical heat storage device is operable if there is.
PCT/JP2015/081085 2014-11-27 2015-11-04 Engine exhaust purification control method WO2016084564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-240285 2014-11-27
JP2014240285A JP2016102433A (en) 2014-11-27 2014-11-27 Exhaust emission control method for engine

Publications (1)

Publication Number Publication Date
WO2016084564A1 true WO2016084564A1 (en) 2016-06-02

Family

ID=56074135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081085 WO2016084564A1 (en) 2014-11-27 2015-11-04 Engine exhaust purification control method

Country Status (2)

Country Link
JP (1) JP2016102433A (en)
WO (1) WO2016084564A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025729A (en) * 2015-07-17 2017-02-02 株式会社豊田中央研究所 Exhaust emission control device
JP6426658B2 (en) 2016-06-07 2018-11-21 トヨタ自動車株式会社 Heat storage and heat radiation system of vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036827A (en) * 1997-06-27 2000-03-14 Lynntech, Inc. Electrolyzer
JP2014051972A (en) * 2012-08-09 2014-03-20 Toyota Central R&D Labs Inc Catalytic reaction device and vehicle
JP2014134187A (en) * 2013-01-14 2014-07-24 Denso Corp Electric heating catalyst warming-up control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036827A (en) * 1997-06-27 2000-03-14 Lynntech, Inc. Electrolyzer
JP2014051972A (en) * 2012-08-09 2014-03-20 Toyota Central R&D Labs Inc Catalytic reaction device and vehicle
JP2014134187A (en) * 2013-01-14 2014-07-24 Denso Corp Electric heating catalyst warming-up control device

Also Published As

Publication number Publication date
JP2016102433A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP5348539B2 (en) Exhaust gas purification device for internal combustion engine
JP5954123B2 (en) Exhaust gas purification system
WO2016084564A1 (en) Engine exhaust purification control method
JP5141479B2 (en) Exhaust gas purification system and exhaust gas purification method
JP6107563B2 (en) Chemical heat storage device
JP2015121382A (en) Chemical heat storage device
JP6070402B2 (en) Chemical heat storage device
JP2015081519A (en) Exhaust gas purification system
WO2015174243A1 (en) Chemical heat storage device
WO2015194400A1 (en) Chemical thermal storage device
JP6015579B2 (en) Heat storage device
WO2016072331A1 (en) Chemical heat storage apparatus
WO2016163289A1 (en) Chemical heat-storage device
JP6131777B2 (en) Chemical heat storage device
JP6111905B2 (en) Chemical heat storage device
WO2016056488A1 (en) Chemical heat storage apparatus
JP2015218957A (en) Chemical heat storage device
JP3217130B2 (en) Engine exhaust purification device
WO2016163167A1 (en) Chemical heat-storage device
JP2014152997A (en) Chemical heat storage device
WO2015174291A1 (en) Chemical heat storage apparatus
WO2015178137A1 (en) Chemical heat storage device
WO2015182275A1 (en) Chemical heat storage device
JP2016148482A (en) Chemical heat storage device
JP2015052442A (en) Chemical heat storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863836

Country of ref document: EP

Kind code of ref document: A1