WO2016093580A1 - Ethylene/alpha-olefin copolymer having excellent processability - Google Patents

Ethylene/alpha-olefin copolymer having excellent processability Download PDF

Info

Publication number
WO2016093580A1
WO2016093580A1 PCT/KR2015/013328 KR2015013328W WO2016093580A1 WO 2016093580 A1 WO2016093580 A1 WO 2016093580A1 KR 2015013328 W KR2015013328 W KR 2015013328W WO 2016093580 A1 WO2016093580 A1 WO 2016093580A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
aryl
alpha
ethylene
alkenyl
Prior art date
Application number
PCT/KR2015/013328
Other languages
French (fr)
Korean (ko)
Inventor
김중수
선순호
권오주
최이영
이기수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150161159A external-priority patent/KR101747401B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to RU2016132145A priority Critical patent/RU2671499C1/en
Priority to US15/106,708 priority patent/US10155830B2/en
Priority to EP15866382.3A priority patent/EP3070108A4/en
Priority to JP2016547588A priority patent/JP6482564B2/en
Priority to CN201580005067.7A priority patent/CN105916896B/en
Publication of WO2016093580A1 publication Critical patent/WO2016093580A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers

Definitions

  • the present invention relates to an ethylene / alpha-olepin copolymer having excellent processability.
  • the olefin polymerization catalyst system may, be divided into Ziegler-Natta and metallocene catalyst systems, the high activity catalyst systems of these two has been developed according to its characteristics.
  • Ziegler-Natta catalysts have been widely applied to existing commercial processes since the invention in the 50s, but are characterized by a wide molecular weight distribution of polymers because they are multi-active catalysts with multiple active sites. Since the composition distribution of the comonomer is not uniform, there is a problem that there is a limit in securing the desired physical properties.
  • the metallocene catalyst is composed of a combination of a main catalyst composed mainly of transition metal compounds and a cocatalyst composed of organometallic compounds composed mainly of aluminum.
  • Such a catalyst is a homogeneous complex catalyst, which is a single active site catalyst (s ingle si). te catalyst), single .
  • the polymer has a narrow molecular weight distribution and a homogeneous composition distribution of the comonomer according to the active site characteristics, and the stereoregularity, copolymerization characteristics, molecular weight, crystallinity, etc. of the polymer can be obtained by changing the ligand structure of the catalyst and changing the polymerization conditions. It has the property to change.
  • 5,914,289 describes a method for controlling the molecular weight and molecular weight distribution of a polymer using a metallocene catalyst supported on each carrier, but the amount and time of solvent used in preparing the supported catalyst This takes a lot, The hassle of having to support each of the metallocene catalysts to be used on a carrier was followed.
  • Korean Patent Application No. 10-2003-0012308 discloses a method of controlling molecular weight distribution by supporting a double-nucleated metallocene catalyst and a mononuclear metallocene catalyst on a carrier together with an activator to polymerize by changing the combination of catalysts in the reactor. Is starting.
  • linear low density polyethylene is prepared by copolymerizing ethylene and alpha olepin at low pressure using a polymerization catalyst, and has a narrow molecular weight distribution, a short chain branch of a constant length, and a long chain branch.
  • the linear low density polyethylene film has the characteristics of general polyethylene, and has high breaking strength and elongation, and excellent tearing strength and fall stratification strength, so that the use of stretch film or overlap film, which is difficult to apply to the existing low density polyethylene or high density polyethylene, increases. Doing.
  • linear low-density polyethylene using 1-butene or 1-nuxene as comonomers is mostly produced in a single gas phase reactor or a single loop slurry reactor, and is more productive than a process using 1-octene comonomers.
  • 6,894,128 produce polyethylene having bimodal or polycrystalline molecular weight distribution with a metallocene catalyst using at least two kinds of metal compounds to form films, blow moldings, and pipes. It is reported that it can be applied to such applications.
  • these products have improved processability, but there is a problem in that the extrusion appearance is coarse and the physical properties are not stable even under relatively good extrusion conditions because the dispersion state by molecular weight in unit particles is not uniform.
  • there is a constant demand for producing a better product having a balance between physical properties and processability and in particular, a need for a polyethylene copolymer having excellent processability is further required.
  • the present invention is to provide an ethylene / alpha-olefin copolymer excellent in processability.
  • the present invention provides an ethylene / alpha-lephine copolymer satisfying the following conditions:
  • Density (g / otf) is from 0.930 to 0.950
  • MFR 5 (g / 10 min, 19 (measured by ASTM 1238 in C)) is 0.1 to
  • Melt flow rate ratio (MFR2i. 6 / MFR 5 , measured by ASTM 1238 at 19CTC) is 10 to 200
  • the d value is 250,000 to 400,000.
  • C 2 value is -0.7 to -0.5
  • Ci value is 1,500,000 to 2,500, 000
  • C 2 value is 3 to 10
  • C 3 value is 0.2 to 0.3 persons Ethylene / Alpha-olefin-Polymer
  • Fully elastic materials deform in proportion to the elastic shear force (el ast ic shear st ress), which is called Hook's law.
  • deformation occurs in proportion to the v i scous shear stress, which is called Newton's law.
  • the material of the fully elastic can be deformed again when the elastic energy is accumulated and the elastic shear force is removed, and the fully viscous material does not recover even if the viscous shear force is removed, since the energy is all lost to the deformation.
  • the viscosity of the material itself does not change.
  • polymers in the molten state have a property of between a material of full elasticity and a viscous liquid, which is called viscoelastic (vi scoelast ici ty).
  • viscoelastic vi scoelast ici ty
  • the deformation is not proportional to the shear force, and the viscosity varies according to the shear force, which is also called a non-Newtonian fluid.
  • This property is due to the complexity of the deformation due to shear forces due to the large molecular size and complex intermolecular structure of the polymer.
  • shear thinning is considered to be important among the characteristics of non-Newtonian fluids.
  • Shear fluidization phenomenon means that as the shear rate increases It means a phenomenon that the viscosity of the polymer is reduced, the molding method of the polymer is determined according to the shear fluidization characteristics.
  • Shear fluidization characteristics are considered important.
  • Equation 1 is a Power Law model, x means frequency, y means complex viscosity, and two variables, ⁇ and C 2, are required. ( ⁇ Is the consistency index, C 2 is the CV index, C 2 is the slope of the graph.
  • TA Orchestrator which is an ARES measurement program of TA Instruments, may be used. Accordingly, when the complex viscosity graph according to the frequency of the ethylene / alpha-olefin copolymer according to the present invention is fitted with p Lawer Law of Equation 1, C 2 value is -0.7 to -0.5, and Cross of Equation 2 is When fitting with a model, the value of C 3 is 0.2 to 0.3.
  • the d value of the above formula (2) is preferably a zero point viscosity
  • the C 2 value of Equation 2 has a value in the range of 3 to 10 as the material constant, preferably has a value in the range of 5 to 8.
  • the complex viscosity value is lower than that of the comparative example, respectively, which is a high shear of the ethylene / alpha-olefin copolymer according to the present invention. Low viscosity in speed means that the workability is remarkably excellent.
  • the ethylene / alpha-olefin copolymer is. Density (g / cii)
  • the ethylene / alpha-olefin copolymer has an increased average molecular weight (g / mol) of 10,000 to 40,000.
  • the weight average molecular weight is 100,000 or more, 120,000 or more, 140,000 or more, 160,000 or more, 180,000 or more, or 200,000 or more, 380,000 or less, 360,000 or less, 340,000 or less, 320,000 or less, 300,000 or less, 280,000 or less, 260,000 or less Or 240,000 or less.
  • the ethylene / alpha-olepin copolymer has a molecular weight distribution (Mw / Mn, PDI) of 5 to 30.
  • the molecular weight distribution is 7 or more, 9 or more, 11 or more, 13 or more, 15 or more, or 17 or more, 29 or less, 28 or less, 27 or less, 26 or less, 25 or less, 24 or less, 23 or less, Or 22 or less.
  • the alpha -olepin that can be used for the copolymerization of the above ethylene / alpha-olephine is -butene, 1-pentene, 1-nuxene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene , One- Any one or more selected from the group consisting of tetradecene, 1-nuxadecene, 1-octadecene, and 1-eicosene can be used.
  • the content of alpha-lephine may be about 0.5% to about 10% by weight, preferably about 1% to about 5% by weight, but is not limited thereto.
  • the ethylene / alpha-olefin copolymer as described above may be prepared using a metallocene catalyst.
  • the metallocene catalyst that can be used includes at least one first metallocene compound represented by Formula 1 below; And a mixture of one or more second metallocene compounds selected from compounds represented by the following Chemical Formulas 3 to 5.
  • A is hydrogen, halogen, alkyl, CHO, C 2 - 20 alkenyl, C 6 -20 aryl, C 7 - 20 alkylaryl, C 7 - 20 aryl-alkyl, d-20 alkoxy, C 2 - 20 alkoxyalkyl, C 20 heterocyclic cycloalkyl, or C 5 - 20 membered heteroaryl;
  • D is -0-, -S-, -N (R)-or -S RKR ')-, wherein R and R' are the same as or different from each other, and are each independently hydrogen, halogen, d- 20 alkyl, C 2 - 20 alkenyl, or C 6 - 20 aryl;
  • L is d-) straight or branched alkylene
  • B is carbon, silicon or germanium
  • Q is hydrogen, halogen, d-20 alkyl, C 2 - 20 alkenyl, C 6 - 20 aryl, and C 20 alkylaryl, or C 7 - 20 aryl-alkyl;
  • M is a Group 4 transition metal
  • X 1 and X 2 are the same or different and are each independently halogen, d-20 alkyl, C 2 - alkenyl 20 Al, C 6 - 20 aryl, nitro, amido, d-20 alkyl silyl, d-20-alkoxy Or C-20 sulfonate;
  • c 1 and c 2 are the same as or different from each other, and are each independently represented by one of the following Formulas 2a, 2b, or 2c, except that C 1 and C 2 are both Formula 2c;
  • Ri to R 17 and "to" are the same or different and are each independently hydrogen, halogen, (20 alkyl, C 2 - 20 alkenyl, d- 20 alkyl silyl, alkyl silyl, alkoxysilyl CHO, d- 20 alkoxy , C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7 -2o aryl-alkyl, wherein 0 to R 17 of the two or more adjacent to each other are connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring Can do it;
  • M 1 is a Group 4 transition metal
  • Cp 1 and Cp 2 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals One, they may be substituted with a hydrocarbon of 1 to 20 carbon atoms;
  • R a and R b are the same or different, each independently represent a hydrogen, an alkyl, an alkoxy, and C 2 of each other - 20 alkoxyalkyl, C 6 - 20 aryl, C 6 - 10 aryloxy, C 2 - 20 alkenyl, C 7-40 alkylaryl, C 7-40 arylalkyl, C 8 - 40 arylalkenyl, or C 2 - 10 alkynyl;
  • Z 1 is a halogen atom, an alkyl C 2 -io alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 6 - 20 aryl, optionally substituted d-20 alkylidene, substituted or unsubstituted amino, C 2 - 20 alkyl, an alkoxy, or a C 7 - 40 aryl-alkoxy;
  • n 1 or 0;
  • M 2 is a Group 4 transition metal
  • Cp 3 and Cp 4 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4 5 6 7-tetrahydro-1-indenyl and fluorenyl radicals, which are May be substituted with a hydrocarbon having 1 to 20 carbon atoms;
  • R c and R d are the same or different and each is independently hydrogen, alkyl, Cwo alkoxy, C 2 of each other - 20 alkoxyalkyl, C 6 - 20 aryl, C 6 - 10 aryloxy C 2 -20 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 8 - 40 arylalkenyl, or C 2 - 10 alkynyl;
  • Z 2 is a halogen atom, alkyl, C 2 - 10 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 6 - 20 aryl, alkyl substituted or unsubstituted alkylidene, substituted or unsubstituted amino, C 2 - 20 alkyl, an alkoxy, or C 7 - 40 aryl-alkoxy;
  • B 1 is one or more of a carbon, germanium, silicon, phosphorus or nitrogen atom containing radical which crosslinks the Cp3 ⁇ 4 c ring with the Cp 4 R d ring or crosslinks one Cp 4 R d ring with M 2 ; Combination;
  • n 1 or 0;
  • M 3 is a Group 4 transition metal
  • Cp 5 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4 5 6, 7-tetrahydro— 1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms, ;
  • R e is hydrogen, d- 20 alkyl, Cwo alkoxy, C 2 - 20 alkoxyalkyl, C 6 - 20 aryl, C 6 -
  • Z 3 is a halogen atom, alkyl, C 2 - 10 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 6 - 20 aryl, optionally substituted d-20 alkylidene, optionally substituted are amino, C 2 - 20 alkyl, an alkoxy, or C 7 - 40 aryl-alkoxy;
  • B 2 is at least one or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 5 R e ring and J;
  • the ( 20 alkyl) includes a linear or branched alkyl, specifically methyl, ethyl, propyl, isopropyl, ⁇ -butyl, tert- butyl, pentyl, nuclear chamber, heptyl, octyl, etc. but it not limited to the C 2 -.
  • alkenyl include, including alkenylene of straight or branched chain, and allyl specifically, ethenyl, propenyl, butenyl, pen, but the like ethenyl, whereby only not limited to a C 6 -.
  • 20 aryl include, includes monocyclic or condensed ring aryl ol and, but, and the like More specifically, phenyl, biphenyl, naphthyl, phenanthrenyl, fluorenyl, whereby only limited but not the C 5 -.
  • heteroaryl group include a monocyclic or condensed ring includes heteroaryl, carbazolyl, pyridyl, quinoline, isoquinoline, thiophenyl, furanyl, imidazole, oxazolyl, thiazolyl, bit Azine, tetrahydropyranyl, tetrahydrofuranyl, etc., but is not limited thereto .
  • alkoxy include methoxy, ethoxy, phenyloxy, cyclonuxyloxy, and the like.
  • Examples of the Group 4 transition metal include titanium, zirconium, hafnium, and the like, but are not limited thereto.
  • Formulas 2a, 2b, and 2c to R 17 and I to ' are each independently hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, phenyl, halogen, More preferably, trimethylsilyl, triethylsilyl, tripropylsilyl, tributylsilyl, triisopropylsilyl, trimethylsilylmethyl, mesooxy, or ethoxy are not limited thereto.
  • L of the general formula (1) is C 4 - 8 straight or branched chain alkylene of one to more preferred, but is not limited thereto only. Further, the alkylene group d-20 alkyl, C 2 - may be substituted or unsubstituted aryl as 20 - 20 alkenyl, or C 6.
  • A is hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, mesoxymethyl, tert-butoxymethyl, 1-ethoxyethyl, 1 ⁇ methyl— 1-meth Preferred is methoxyethyl, tetrahydropyranyl, or tetrahydrofuranyl, but is not limited thereto.
  • B of Formula 1 is preferably silicon, but is not limited thereto.
  • the crab 1 metallocene compound of Formula 1 may be a structure in which an indeno indol derivative and / or a fluorene derivative are crosslinked by a bridge, and may act as a Lewis base to the ligand structure.
  • an indeno indol derivative and / or a fluorene derivative are crosslinked by a bridge, and may act as a Lewis base to the ligand structure.
  • it is supported on the surface having the Lewis acid characteristic of the carrier and shows high polymerization activity even when supported.
  • it is highly active as it contains an electronically rich indeno indole group and / or fluorene group, and due to appropriate steric hindrance and the electronic effect of the ligand, the hydrogen reactivity is low and high activity is maintained even in the presence of hydrogen.
  • the beta-hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative grows is stabilized by hydrogen bonding, thereby inhibiting beta-hydrogen el iminat ion, and thus, an ultra high molecular weight olefin type
  • the polymer can be polymerized.
  • specific examples of the compound represented by Chemical Formula 2a may include a compound represented by one of the following structural formulas.
  • specific examples of the compound represented by Chemical Formula 2b include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
  • specific examples of the compound represented by Chemical Formula 2c may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
  • specific examples of the first metallocene compound represented by Chemical Formula 1 may include a compound represented by one of the following structural formulas, but is not limited thereto.
  • the Crab 1 metallocene compound of Chemical Formula 1 has excellent activity and may polymerize high molecular weight ethylene / alpha-lepin copolymer. In particular, even when used on a carrier, it shows high polymerization activity, and thus an ultra high molecular weight ethylene / alpha-lephine co-polymer can be prepared.
  • the first metallocene compound of formula 1 according to the present invention is low hydrogen It exhibits reactivity and still allows high polymerization of ultra high molecular weight ethylene / alpha-olefin copolymers. Therefore, an ethylene / alpha-olefin copolymer that satisfies high molecular weight characteristics can be produced without deterioration of activity even when used in combination with a catalyst having other characteristics, while containing an ethylene / alpha-olefin copolymer of a polymer.
  • Ethylene / alpha-olefin copolymers having a wide molecular weight distribution can be readily prepared.
  • the C1 metallocene compound of Chemical Formula 1 is prepared as a ligand compound by connecting an innoindol derivative and / or a fluorene derivative with a bridge compound, and then a metal precursor is added to perform metallization. Can be obtained.
  • the manufacturing method of the said 1st metallocene compound is concretely demonstrated to the Example mentioned later.
  • Examples of the compound represented by Formula 3 include one of the following structural formulas
  • the compound represented by Formula 5 may be, for example, a compound represented by the following structural formula, but is not limited thereto.
  • the metallocene catalyst used in the present invention may be at least one of the first metallocene compounds represented by Formula 1, and one of the metallocene compounds selected from the compounds represented by Formulas 3 to 5.
  • the above may be supported on the carrier together with the cocatalyst compound.
  • the supported metallocene catalyst may induce the formation of a long chain branch (LCB) in the ethylene / alpha—lepin copolymer prepared.
  • the cocatalyst supported on the carrier for activating the metallocene compound is an organometallic compound containing a Group 13 metal, and polymerizes the olefin under a general metallocene catalyst. If it can be used when it is not particularly limited.
  • the cocatalyst compound may include at least one of an aluminum-containing first cocatalyst of Formula 6, and a borate-based 2 cocatalyst of Formula 7 below.
  • R 18 in Formula 6 is each independently a halogen, a halogen substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, and k is an integer of 2 or more, [Formula 7]
  • T + is a + monovalent polyatomic ion
  • B is boron in +3 oxidation state
  • G is independently hydride, dialkylamido, halide, alkoxide, aryl oxide, hydrocarbyl, halocarbyl And. Selected from the group consisting of halo-substituted hydrocarbyl, wherein G has up to 20 carbons, but at up to one position G is a halide.
  • the first cocatalyst of Chemical Formula 6 may be an alkylaluminoxane compound having a repeating unit bonded in a linear, circular or reticulated form.
  • the promoter include methyl aluminoxane (MA0), ethyl aluminoxane, isobutyl aluminoxane or butyl aluminoxane.
  • the second cocatalyst of Formula 7 may be a borate-based compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt.
  • Such a second cocatalyst include trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate , Methyltetracyclooctadecylammonium tetraphenylborate , ⁇ , ⁇ -dimethylaninium tetraphenylborate, ⁇ , ⁇ -diethylaninynium tetraphenylborate, ⁇ , ⁇ -dimethyl (2, 4, 6-trimethylaninium Tetraphenylborate, trimethylammonium tetrakis (pentafluorophenyl) borate, methylditetradecylammonium tetrakis (
  • the mass ratio of the total transition metal to the carrier included in the first metallocene compound represented by the formula (1), or the C2 metallocene compound represented by the formulas (3) to (5) is 1 : May be from 1 to 1,000.
  • the carrier and the metallocene compound are included in the mass ratio, the optimum shape can be exhibited.
  • the mass ratio of the promoter compound to the carrier may be from 1: 1 to 1: 100.
  • the carrier may be a carrier containing a hydroxy group on the surface, preferably a dry semi-reactive hydroxy group and a siloxane group which have been dried to remove moisture on the surface.
  • the carrier which has is used.
  • silica, silica-alumina, silica-magnesia, etc., dried at a high temperature may be used, and these are usually oxides, carbonates, sulfates, such as Na 2 0, 2 C0 3 , BaS0 4 , and Mg (N0 3 ) 2 . And nitrate components.
  • the drying temperature of the carrier is preferably 200 to 80CTC, more preferably 300 to 600 ° C, and most preferably 300 to 400 ° C.
  • the amount of hydroxy groups on the surface of the carrier is preferably from 0.1 to 10 kPa / g, more preferably from 0.5 to 5 mmol / g.
  • the amount of hydroxy groups on the surface of the carrier can be controlled by the method and conditions for preparing the carrier or by drying conditions such as temperature, time, vacuum or spray drying.
  • the ethylene / alpha-olefin copolymer according to the present invention can be produced by polymerizing ethylene and alpha-lepin in the presence of the supported metallocene catalyst described above.
  • the polymerization reaction may be performed by copolymerizing ethylene and alpha-olefin using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor.
  • the polymerization temperature is about 25 to about 500 ° C, preferably about 25 to about . About 200 ° C., more preferably about 50 to about 15 CTC.
  • the polymerization pressure may be about 1 to about 100 Kgf / citf, preferably about 1 to about 50 Kgf / ciii 2 , more preferably about 5 to about 30 Kgf / cuf.
  • the supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonane, decane, isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, dichloromethane and chlorobenzene.
  • the solution may be dissolved or diluted in a hydrocarbon solvent substituted with the same chlorine atom.
  • the solvent used herein is preferably used by removing a small amount of water, air, or the like acting as a catalyst poison by treating a small amount of alkyl aluminum, and may be carried out by further using a promoter.
  • Ethylene / alpha-lepine copolymer according to the present invention is a combination of the catalyst of formula 3 to 5 to polymerize low-molecular-weight polymer chains, and the catalyst of formula 1 mainly to polymerize high-molecular weight polymer chain, ethylene and Prepared by copolymerizing alpha-olefin monomers.
  • the ethylene / alpha-olefin copolymer may exhibit, for example, a molecular weight distribution curve as shown in FIG. 1 and may exhibit excellent processability. Due to the above-described physical layer, the ethylene / alpha -olefin copolymer according to the present invention can be preferably applied to large diameter pipes or composite pipes.
  • the ethylene / alpha-olefin copolymer ⁇ according to the present invention is excellent in workability and can be applied to large diameter pipes or composite pipes.
  • Figure 2 shows the result of fitting the complex viscosity graph according to the frequency of the copolymer prepared in Example 2 of the present invention, Power Law and Cross Model.
  • Figure 3 shows the result of fitting the complex viscosity graph according to the frequency of the copolymer prepared in Examples and Comparative Examples of the cross model.
  • the solution was changed to violet color at room temperature overnight.
  • the reaction solution was filtered to remove LiCl.
  • the toluene of the filtrate was removed by vacuum drying, and the nucleic acid was added and sonicated for 1 hour.
  • the slurry was filtered to give 6 g (Mw 758.02, 7.92 mmol, yield 66 mol%) of a dark violet metallocene compound as a filtered solid. Two isomers were observed on 3 ⁇ 4-NMR.
  • 6-Chlorohexanol was used to prepare t_Butyl-0- (CH 2 ) 6 -Cl using the method presented in Tetrahedron Lett. 2951 (1988), whereupon NaCp was reacted to t- Buty ⁇ 0— (CH 2 ) 6 ⁇ C 5 3 ⁇ 4 (yield 60%, bp 80 VI 0.1 ⁇ Hg). Further, t-ButyK)-(C3 ⁇ 4) 6 -C 5 3 ⁇ 4 at -78t: was dissolved in THF, and normal butyllithium (n-BuLi) was slowly added, and the reaction mixture was heated to room temperature for 8 hours.
  • n-BuLi normal butyllithium
  • Catalyst Preparation Example 3 (20 g) was dissolved in toluene, charged into the reactor, and stirred at 200 rpm for 2 hours.
  • 70 g of the cocatalyst ani 1 inium tetrakis (pentaf luorophenyl) borate
  • the toluene slurry was transferred to a fil ter dryer and filtered. 3.0 kg of toluene was added and stirred for 10 minutes, and then stirring was stopped and filtered. 3.0 kg of nucleic acid was added to the reactor and stirred for 10 minutes, and then the stirring was stopped and filtered. Drying under reduced pressure at 50 ° C. for 4 hours to prepare a 500g-Si0 2 supported catalyst.
  • the olefin polymer was prepared by bimodal operation of two common supported metallocene catalysts prepared in Examples 1 and 2 using two hexane slurry slurry tank polymerizers. 1-butene was used as comonomer.
  • polymerization conditions using respective common supported metallocene catalysts are summarized in Table 1 below.
  • MFR 21 .6 / MFR 5 MFR 21 . 6 Melt index (MI ⁇ 21.6kg load) divided by MFR 5 (MI, 5kg lower).
  • Mn, Mw, ⁇ D, GPC curve Melt the sample in l, 2,4-Trichlorobenzene containing 0.0125% of BHT using PL-SP260 for 160 ° C for 10 hours, and use PL-GPC220. The number average molecular weight and the weight average molecular weight were measured at a measurement temperature of 160 ° C. The molecular weight distribution was expressed as the ratio of weight average molecular weight and number average molecular weight. -
  • FIG. 2 a graph of the complex viscosity according to the frequency of the copolymer prepared in Example 2 and a result of fitting this to the power law and the cross model are shown in FIG. 2.
  • FIG. 2 it was confirmed that the results of fitting the complex viscosity graph according to the frequency of the copolymer prepared in Example 2 and the result of fitting the power law and the cross model were very similar. It was confirmed that the model is suitable for quantitatively evaluating the flow characteristics of the copolymer according to the invention.
  • the copolymers prepared in Examples and Comparative Examples were fitted to Power Law and Cross Mode, and the values of the variables obtained are shown in Table 3 below.

Abstract

The present invention relates to an ethylene/alpha-olefin copolymer having excellent processability. The ethylene/alpha-olefin copolymer according to the present invention has excellent processability by having a low complex viscosity at a high shear velocity, thereby enabling the copolymer to be applied to a large-caliber pipe or a complex pipe and the like.

Description

【발명의 명칭]  [Name of invention]
가공성이 우수한 에틸렌 /알파-을레핀 공중합체  Ethylene / alpha-lephine copolymer with excellent processability
【관련 출원 (들 )과의 상호 인용】  [Cross Reference with Related Application (s)]
본 출원은 2014년 12월 8일자.한국 특허 출원 제 10-2014-0174985호, 및 2015년 11월 17일자 한국 특허 출원 제 10— 2015-0161159호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2014-0174985, dated December 8, 2014, and Korean Patent Application No. 10—2015-0161159, filed November 17, 2015. All content disclosed in the literature of the applications is included as part of this specification.
【기술분야】  Technical Field
본 발명은 가공성이 우수한 에틸렌 /알파-을레핀 공중합체에 관한 것이다.  The present invention relates to an ethylene / alpha-olepin copolymer having excellent processability.
【배경기술】  Background Art
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 ,수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 흔재하는 다활성점 촉매 (mul t i-s i te catalyst )이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다. ' 한편, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매 ( s ingle s i te catalyst )이며, 단일 . 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다. 미국 특허 제 5,914,289호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다. 대한민국특허 출원번호 제 10-2003-0012308호에는 담체에 이중핵 메탈로센 촉매와 단일핵 메탈로센 촉매를 활성화제와 함께 담지하여 반응기 내 촉매의 조합을 변화시키며 중합함으로써 분자량 분포를 제어하는 방안을 개시하고 있다. 그러나, 이러한 방법은 각각의 촉매의 특성을 동시에 구현하기에 한계가 있으며, 또한 완성된 촉매의 담체 성분에서 메탈로센 촉매 부분이 유리되어 반응기에 파울링 ( foul ing)을 유발하는 단점이 있다. 따라서, 상기한 단점들을 해결하기 위해서 간편하게 활성이 우수한 흔성 담지 쩨탈로센 촉매를 제조하여 원하는 물성의 을레핀계 중합체를 제조하는 방법에 대한 요구가 계속되고 있다. 한편, 선형 저밀도 폴리에틸렌은 중합촉매를 사용하여 저압에서 에틸렌과 알파 을레핀을 공중합하여 제조되어, 분자량 분포가 좁고 일정한 길이의 단쇄분지를 가지며, 장쇄분지가 없는 수지이다. 선형 저밀도 폴리에틸렌 필름은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인열강도, 낙추층격강도 등이 우수하여 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름, 오버랩 필름 등에의 사용이 증가하고 있다. 그런데, 1-부텐 또는 1-핵센을 공단량체로 사용하는 선형 저밀도 폴리에틸렌은 대부분 단일 기상반응기 또는 단일 루프 슬러리 반웅기에서 제조되며, 1-옥텐 공단량체를 사용하는 공정 대비 생산성은 높으나, 이러한 제품 역시 사용 촉매기술 및 공정기술의 한계로 물성이 1-옥텐 공단량체 사용시보다 크게 열세하고, 분자량 분포가 좁아 가공성이 불량한 문제가 있다. 이러한 문제의 개선을 위해 많은 노력이 진행되고 있으며, 미국 특허 제 4 , 935 , 474호에는 2종 또는 그 이상의 메탈로센 화합물이 사용되어 넓은 분자량 분포를 갖는 폴리에틸렌 제조법에 대해 보고되어 있다. 미국 특허 게 6 ,828 ,394호에는 공단량체 결합성이 좋은 것과 그렇지 않은 것을 흔합사용해 가공성이 우수하고 특히 필름용에 적합한 폴리에틸렌 제조방법에 대해 보고되어 있다. 또한, 미국 특허 제 6,841,631호, 미국 특허 제 6,894,128호에는 적어도 2종의 메탈 컴파운드가 사용된 메탈로센계 촉매로 이정 또는 다정 분자량분포를 갖는 폴리에틸렌을 제조하여, 필름, 블로우몰딩, 파이프 등의 용도에 적용이 가능하다고 보고되어 있다. 하지만 이러한 제품들은 가공성은 개선되었으나 단위 입자 내의 분자량별 분산상태가 균일하지 못해 비교적 양호한 압출조건에서도 압출외관이 거칠고 물성이 안정적이지 못한 문제가 있다. 이러한 배경에서 물성과 가공성 간의 균형이 이루어진 보다 우수한 제품의 제조가 끊임없이 요구되고 있으며, 특히 가공성이 우수한 폴리에틸렌 공중합체의 필요성이 더욱 요구된다. The olefin polymerization catalyst system may, be divided into Ziegler-Natta and metallocene catalyst systems, the high activity catalyst systems of these two has been developed according to its characteristics. Ziegler-Natta catalysts have been widely applied to existing commercial processes since the invention in the 50s, but are characterized by a wide molecular weight distribution of polymers because they are multi-active catalysts with multiple active sites. Since the composition distribution of the comonomer is not uniform, there is a problem that there is a limit in securing the desired physical properties. ' Meanwhile, the metallocene catalyst is composed of a combination of a main catalyst composed mainly of transition metal compounds and a cocatalyst composed of organometallic compounds composed mainly of aluminum. Such a catalyst is a homogeneous complex catalyst, which is a single active site catalyst (s ingle si). te catalyst), single . The polymer has a narrow molecular weight distribution and a homogeneous composition distribution of the comonomer according to the active site characteristics, and the stereoregularity, copolymerization characteristics, molecular weight, crystallinity, etc. of the polymer can be obtained by changing the ligand structure of the catalyst and changing the polymerization conditions. It has the property to change. U.S. Patent No. 5,914,289 describes a method for controlling the molecular weight and molecular weight distribution of a polymer using a metallocene catalyst supported on each carrier, but the amount and time of solvent used in preparing the supported catalyst This takes a lot, The hassle of having to support each of the metallocene catalysts to be used on a carrier was followed. Korean Patent Application No. 10-2003-0012308 discloses a method of controlling molecular weight distribution by supporting a double-nucleated metallocene catalyst and a mononuclear metallocene catalyst on a carrier together with an activator to polymerize by changing the combination of catalysts in the reactor. Is starting. However, this method is limited in realizing the characteristics of each catalyst at the same time, and also has the disadvantage that the metallocene catalyst portion is released from the carrier component of the finished catalyst causing fouling in the reactor. Therefore, in order to solve the above disadvantages, there is a continuous need for a method of preparing a common supported phthalocene catalyst having excellent activity and preparing a olefinic polymer of desired physical properties. On the other hand, linear low density polyethylene is prepared by copolymerizing ethylene and alpha olepin at low pressure using a polymerization catalyst, and has a narrow molecular weight distribution, a short chain branch of a constant length, and a long chain branch. The linear low density polyethylene film has the characteristics of general polyethylene, and has high breaking strength and elongation, and excellent tearing strength and fall stratification strength, so that the use of stretch film or overlap film, which is difficult to apply to the existing low density polyethylene or high density polyethylene, increases. Doing. By the way, linear low-density polyethylene using 1-butene or 1-nuxene as comonomers is mostly produced in a single gas phase reactor or a single loop slurry reactor, and is more productive than a process using 1-octene comonomers. Due to the limitation of the catalyst technology and the process technology used, there is a problem that the physical properties are inferior to that of using the 1-octene comonomer, and the processability is poor because the molecular weight distribution is narrow. Many efforts are being made to improve this problem, and US Patent No. 4, 935, 474 reports two or more metallocene compounds used for producing polyethylene having a wide molecular weight distribution. have. U.S. Patent No. 6,828,394 reports a method for producing polyethylene which has good comonomer binding properties and those which do not have good processability and is particularly suitable for films. In addition, US Pat. No. 6,841,631 and US Pat. No. 6,894,128 produce polyethylene having bimodal or polycrystalline molecular weight distribution with a metallocene catalyst using at least two kinds of metal compounds to form films, blow moldings, and pipes. It is reported that it can be applied to such applications. However, these products have improved processability, but there is a problem in that the extrusion appearance is coarse and the physical properties are not stable even under relatively good extrusion conditions because the dispersion state by molecular weight in unit particles is not uniform. Against this background, there is a constant demand for producing a better product having a balance between physical properties and processability, and in particular, a need for a polyethylene copolymer having excellent processability is further required.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
상기 종래기술의 문제점을 해결하기 위하여, 본 발명은 가공성이 우수한 에틸렌 /알파-을레핀 공중합체를 제공하고자 한다.  In order to solve the problems of the prior art, the present invention is to provide an ethylene / alpha-olefin copolymer excellent in processability.
【과제의 해결 수단】  [Measures of problem]
상기 과제를 해결하기 위하여, 본 발명은 하기의 조건을 만족하는 에틸렌 /알파-을레핀 공중합체를 제공한다:  In order to solve the above problems, the present invention provides an ethylene / alpha-lephine copolymer satisfying the following conditions:
밀도 (g/otf)가 0.930 내지 0.950이고,  Density (g / otf) is from 0.930 to 0.950,
MFR5(g/10 min, 19( C에서 ASTM 1238에 의하여 측정)가 0.1 내지MFR 5 (g / 10 min, 19 (measured by ASTM 1238 in C)) is 0.1 to
5이고, 5
용융 유동율비 (MFR2i.6/MFR5, 19CTC에서 ASTM 1238에 의하여 측정 )가 10 내지 200이고, Melt flow rate ratio (MFR2i. 6 / MFR 5 , measured by ASTM 1238 at 19CTC) is 10 to 200,
주파수 (frequency, co[rad/s])에 따른 복소 점도 (complex viscosity, H*[Pa.s]) 그래프를, 하기 수학식 1의 Power Law로 피팅했을때 d 값이 250,000 내지 400 ,000이고, C2 값이 -0.7 내지 -0.5이고, 하기 수학식 2의 Cross Model로 피팅했을때 Ci 값이 1,500,000 내지 2 ,500, 000이고, C2 값이 3 내지 10이고, C3 값이 0.2 내지 0.3인, 에틸렌 /알파-올레핀 -중합체 When the complex viscosity (H * [Pa.s]) graph according to the frequency (frequency, co [rad / s]) is fit to the power law of Equation 1 below, the d value is 250,000 to 400,000. , C 2 value is -0.7 to -0.5, Ci value is 1,500,000 to 2,500, 000, C 2 value is 3 to 10, C 3 value is 0.2 to 0.3 persons Ethylene / Alpha-olefin-Polymer
[수학식 1]  [Equation 1]
ᅳ ^ 2  ᅳ ^ 2
[수학식 2] [Equation 2]
C
Figure imgf000006_0001
C
Figure imgf000006_0001
완전한 탄성의 물질은 탄성 전단 웅력 (el ast i c shear st ress )에 비례하여 변형이 발생하며, 이를 후크의 법칙이라고 한다. 또한, 순수한 점섬의 액체의 경우 점성 전단 웅력 (vi scous shear stress)에 비례하여 변형이 발생하며, 이를 뉴튼 법칙이라고 한다. 완전한 탄성의 물질은 탄성 에너지가 축적되어 탄성 전단 웅력이 제거되면 변형이 다시 회복될 수 있고, 완전한 점성의 물질은 에너지가 변형으로 모두 소멸되기 때문에, 점성 전단 웅력이 제거되더라도 변형이 회복되지 않는다. 또한, 물질 자체의 점성이 변하지 않는다. 그러나, 고분자는 용융 상태에서 완전한 탄성의 물질과 점성의 액체의 중간 정도의 성질을 가지는데, 이를 점탄성 (vi scoelast i c i ty)이라고 한다. 즉, 고분자는 용융 상태에서 전단 웅력을 받으면 변형이 전단 웅력에 비례하지 않으며, 또한 전단 웅력에 따라 점성이 변하는 특성이 있으며, 이를 비뉴튼 유체라고도 한다. 이러한 특성은, 고분자가 거대한 분자 크기와 복잡한 분자간 구조를 가져 전단 웅력에 따른 변형의 복잡성에 기인한다. 특히, 고분자를 이용하여 성형품을 제조할 경우에 , 비뉴튼 유체가 가지는 특성 중에서도 전단 유동화 현상 (shear thinning)이 중요하게 고려된다. 전단 유동화 현상이란, 전단 속도 (shear rate)가 증가함에 따라 고분자의 점성이 감소하는 현상을 의미하는데, 이러한 전단 유동화 특성에 따라 고분자의 성형 방법이 결정된다. 특히, 본 발명과 같이 대구경 파이프나 복합관과 같이 큰 성형품이나 높은 속도의 고분자 압출이 필요한 성형품 제조시, 상당한 압력이 용융 고분자에 가해져야 하므로 전단 유동화 특성을 나타내지 않는다면 이러한 성형품의 제조가 어려운바, 전단 유동화 특성이 중요하게 고려된다. Fully elastic materials deform in proportion to the elastic shear force (el ast ic shear st ress), which is called Hook's law. In addition, in the case of pure viscous liquid, deformation occurs in proportion to the v i scous shear stress, which is called Newton's law. The material of the fully elastic can be deformed again when the elastic energy is accumulated and the elastic shear force is removed, and the fully viscous material does not recover even if the viscous shear force is removed, since the energy is all lost to the deformation. In addition, the viscosity of the material itself does not change. However, polymers in the molten state have a property of between a material of full elasticity and a viscous liquid, which is called viscoelastic (vi scoelast ici ty). In other words, when the polymer receives a shear force in the molten state, the deformation is not proportional to the shear force, and the viscosity varies according to the shear force, which is also called a non-Newtonian fluid. This property is due to the complexity of the deformation due to shear forces due to the large molecular size and complex intermolecular structure of the polymer. In particular, when manufacturing a molded article using a polymer, shear thinning is considered to be important among the characteristics of non-Newtonian fluids. Shear fluidization phenomenon means that as the shear rate increases It means a phenomenon that the viscosity of the polymer is reduced, the molding method of the polymer is determined according to the shear fluidization characteristics. In particular, when manufacturing large molded articles such as large diameter pipes or composite pipes or molded articles requiring high-speed polymer extrusion, such as the present invention, considerable pressure must be applied to the molten polymer, so that it is difficult to manufacture such molded articles unless they exhibit shear fluidization characteristics. Fluidization characteristics are considered important.
. 이에 본 발명에서는 주파수 (frequency, to[rad/s])에 따른 복소 점도 (complex viscosity, ri*[Pa.s]) 그래프를 통하여 전단 유동화 특성을 측정한다. 상기 수학식 1과 수학식 2는, 본 발명에 따른 에틸렌 /알파-올레핀 공중합체의'전단 유동화 특성을 정량적으로 평가하기 위한 모델이며, 또한 주파수에 따른 복소 점도 데이터를 적용하여 높은 주파수에서의 복소 점도를 예측하기 위한 것이다. 먼저 , 상기 수학식 1은 Power Law 모델로서, x는 주파수를, y는 복소 점도를 의미하며, 두 개의 변수인 ^과 C2가 요구된다. (^은 점조도 지수 (consistency index)라고 하며, C2는 CV index라고 하는테, C2 값은 그래프의 기울기를 의미한다. 낮은 주파수에서 복소 점도가 높을수록 물성이 좋고, 높은 주파수에서 복소 점도가 낮을수록 가공성이 좋으므로, C2 값이 작을수록, 즉 그래프의 음의 기울기가 클수록 바람직하다. 또한, 상기 수학식 2는 Cross Model로서, x는 주파수를, y는 복소 점도를 의미하며, 세 개의 변수인 d, C2 및 C3가 요구된다. (^은 영전단점도 (zero—shear viscosty) , C2는 . 물질 상수 (material constant) , C3는 유동지수 (flow behavior index)라고 하며, 특히 C3 값이 작을수록, 즉 그래프의 음의 기울기가 클수록 높은 주파수에서의 복소 점도가 낮아 전단 유동화 특성이 우수하다. 상기 주파수에 따른 복소 점도 그래프를 상기 수학식 1과 2로 피팅하는 방법으로, TA Instruments의 ARES 측정 프로그램인 TA Orchestrator를 사용할 수 있다. 이에 본 발명에 따른 에틸렌 /알파-올레핀 공중합체의 상기 주파수에 따른 복소 점도 그래프를 상기 수학식 1의 power Law로 피팅했을때 C2 값이 -0.7 내지 -0.5이고, 상기 수학식 2의 Cross Model로 피팅했을때 C3 값이 0.2 내지 0.3인 것을 특징으로 한다. 또한, 상기 수학식 2의 d 값은 영전단점도로서 바람직하게는. Accordingly, in the present invention, shear fluidization characteristics are measured through a graph of complex viscosity (ri * [Pa.s]) according to frequency (frequency, to [rad / s]). Equations 1 and 2 are models for quantitatively evaluating the 'shear fluidization characteristics of the ethylene / alpha-olefin copolymer according to the present invention, and apply complex viscosity data according to frequency to complex at high frequencies. To predict the viscosity. First, Equation 1 is a Power Law model, x means frequency, y means complex viscosity, and two variables, ^ and C 2, are required. (^ Is the consistency index, C 2 is the CV index, C 2 is the slope of the graph. The higher the complex viscosity at low frequencies, the better the physical properties, and the higher the complex viscosity. The lower the better the workability, the smaller the C 2 value, that is, the larger the negative slope of the graph, the above Equation 2 is Cross Model, x is frequency, y is complex viscosity, The two variables d, C 2 and C 3 are required (^ is the zero-shear viscosty, C 2 is the material constant and C 3 is the flow behavior index). In particular, the smaller the value of C 3 , that is, the larger the negative slope of the graph, the lower the complex viscosity at the high frequency, thereby providing excellent shear fluidization characteristics. As a method of fitting the complex viscosity graphs according to the frequencies by Equations 1 and 2, TA Orchestrator, which is an ARES measurement program of TA Instruments, may be used. Accordingly, when the complex viscosity graph according to the frequency of the ethylene / alpha-olefin copolymer according to the present invention is fitted with p Lawer Law of Equation 1, C 2 value is -0.7 to -0.5, and Cross of Equation 2 is When fitting with a model, the value of C 3 is 0.2 to 0.3. In addition, the d value of the above formula (2) is preferably a zero point viscosity
1,500,000 내지 2,500,000 범위의 값을 가진다. 2,500,000 초과의 경우, 영전단점도 값이 너무 높아 높은 주파수에서의 복소 점도 값이 높게 나타나고, 1,500,000 미만의 경우, 상기 수학식 2의 그래프의 음의 기울기가 낮게 나타나 역시 높은 주파수에서의 복소 점도 값이 높게 나타난다. 또한, 상기 수학식 2의 C2 값은 물질 상수로서 3 내지 10 범위의 값을 가지며, 바람직하게는 5 내지 8 범위의 값을 가진다. 또한, 상기 얻어진 d, C2 및 C3 값을 상기 수학식 2에 대입하여 높은 주파수, 즉 800 rad/s 및 1,200 rad/s에서의 복소 점도 값을 예측하여, 본 발명에 따른 에틸렌 /알파-을레핀 공중합체의 전단 유동화 특성을 예측할 수 있다. 구체적으로, 상기 수학식 2에서 X가 800일 때, y의 값이 3,000 내지It has a value ranging from 1,500,000 to 2,500,000. In the case of more than 2,500,000, the zero-point viscosity value is too high and the complex viscosity value is high at a high frequency, and if it is less than 1,500,000, the negative slope of the graph of Equation 2 is low, and the complex viscosity value is also high at a high frequency. Appears high. In addition, the C 2 value of Equation 2 has a value in the range of 3 to 10 as the material constant, preferably has a value in the range of 5 to 8. In addition, by substituting the obtained d, C 2 and C 3 value into the above equation (2) to predict the complex viscosity value at high frequencies, namely 800 rad / s and 1,200 rad / s, the ethylene / It is possible to predict the shear fluidization properties of the alpha-lepinin copolymer. Specifically, when X is 800 in Equation 2, the value of y is 3,000 to
5 ,000인 것을 특징으로 한다. 보다 바람직하게는, 상기 수학식 2에서 X가 800일 때, y의 값이 4,000 내지 4,900이며, 가장 바람직하게는 4,000 내지 4,500이다. 또한, 상기 수학식 2에서 X가 1,200일 때, y의 값이 3,000 내지 3 ,800인 것을 특징으로 한다. 보다 바람직하게는, 상기 수학식 2에서 X가 1,200일 때, y의 값이 3,000 내지 3,700이며, 가장 바람직하게는 3,000 내지 3,200이다. 본 발명의 일실시예에 따르면, 상기 수학식 2에서 X가 800 및 1,200일 때 각각 복소 점도 값이 비교예 대비하여 낮게 나타났으며, 이는 본 발명에 따른 에틸렌 /알파-올레핀 공중합체가 높은 전단 속도에서 점성이 낮아 가공성이 현저히 우수함을 의미한다. 바람직하게는, 상기 에틸렌 /알파-올레핀 공중합체는、. 밀도 (g/cii)가It is characterized in that 5,000. More preferably, when X is 800 in Equation 2, the value of y is 4,000 to 4,900, and most preferably 4,000 to 4,500. Further, when X is 1,200 in Equation 2, the value of y is 3,000 to It is characterized by being 3,800. More preferably, when X is 1,200 in Equation 2, the value of y is 3,000 to 3,700, and most preferably 3,000 to 3,200. According to one embodiment of the present invention, when X is 800 and 1,200 in Equation 2, the complex viscosity value is lower than that of the comparative example, respectively, which is a high shear of the ethylene / alpha-olefin copolymer according to the present invention. Low viscosity in speed means that the workability is remarkably excellent. Preferably, the ethylene / alpha-olefin copolymer is. Density (g / cii)
0.931 이상, 0.932 이상, 0.933 이상, 0.934 이상, 0.935 이상, 0.936 이상 0.937 이상, 0.938 이상, 0.939 이상, 0.940 이상, 0.941 이상, 또는 0.942 이상이고, 0.949 이하, 0.948 이하, 0.947 이하, 0.946 이하, 또는 0.945 이하이다. 또한 바람직하게는, 상기 에틸렌 /알파-올레핀 공중합체는, 증량 평균 분자량 (g/mol)이 10,000 내지 400, 000이다. 보다 바람직하게는, 상기 중량 평균 분자량이 100,000 이상, 120,000 이상, 140,000 이상, 160,000 이상, 180,000 이상, 또는 200,000 이상이고, 380,000 이하, 360,000 이하, 340,000 이하, 320,000 이하, 300,000 이하, 280,000 이하, 260,000 이하, 또는 240,000 이하이다. 또한 바람직하게는, 상기 에틸렌 /알파-을레핀 공중합체는, 분자량 분포 (Mw/Mn, PDI)가 5 내지 30이다. 보다 바람직하게는, 상기 분자량 분포가 7 이상, 9 이상, 11 이상, 13 이상, 15 이상, 또는 17 이상이고, 29 이하, 28 이하, 27 이하, 26 이하, 25 이하, 24 이하, 23 이하, 또는 22 이하이다. 상기 에틸렌 /알파—을레핀의 공중합에 사용할 수 있는 알파 -을레핀은, -부텐, 1-펜텐, 1-핵센, 4—메틸 -1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1- 테트라데센, 1-핵사데센, 1-옥타데센 및 1-에이코센으로 구성되는 군으로부터 선택되는 어느 하나 이상인 것을 사용할 수 있다. 상기 에틸렌 /알파-을레핀 공중합체에서, 알파—을레핀의 함량은 약 0.5 내지 약 10 중량 %, 바람직하게는 약 1 내지 약 5 중량 %일 수 있으나, 이에 한정되는 것은 아니다. 상기와 같은 에틸렌 /알파-올레핀 공중합체는 메탈로센 촉매를 이용하여 제조할 수 있다. 상기 사용할 수 있는 메탈로센 촉매는 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상; 및 하기 화학식 3 내지 5로 표시되는 화합물 중에서 선택되는 제 2 메탈로센 화합물 1종 이상의 흔합물일 수 있다. 0.931 or more, 0.932 or more, 0.933 or more, 0.934 or more, 0.935 or more, 0.936 or more 0.937 or more, 0.938 or more, 0.939 or more, 0.940 or more, 0.941 or more, or 0.942 or more, 0.949 or less, 0.948 or less, 0.947 or less, 0.946 or less, or 0.945 or less. Also preferably, the ethylene / alpha-olefin copolymer has an increased average molecular weight (g / mol) of 10,000 to 40,000. More preferably, the weight average molecular weight is 100,000 or more, 120,000 or more, 140,000 or more, 160,000 or more, 180,000 or more, or 200,000 or more, 380,000 or less, 360,000 or less, 340,000 or less, 320,000 or less, 300,000 or less, 280,000 or less, 260,000 or less Or 240,000 or less. Also preferably, the ethylene / alpha-olepin copolymer has a molecular weight distribution (Mw / Mn, PDI) of 5 to 30. More preferably, the molecular weight distribution is 7 or more, 9 or more, 11 or more, 13 or more, 15 or more, or 17 or more, 29 or less, 28 or less, 27 or less, 26 or less, 25 or less, 24 or less, 23 or less, Or 22 or less. The alpha -olepin that can be used for the copolymerization of the above ethylene / alpha-olephine is -butene, 1-pentene, 1-nuxene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene , One- Any one or more selected from the group consisting of tetradecene, 1-nuxadecene, 1-octadecene, and 1-eicosene can be used. In the ethylene / alpha-olepin copolymer, the content of alpha-lephine may be about 0.5% to about 10% by weight, preferably about 1% to about 5% by weight, but is not limited thereto. The ethylene / alpha-olefin copolymer as described above may be prepared using a metallocene catalyst. The metallocene catalyst that can be used includes at least one first metallocene compound represented by Formula 1 below; And a mixture of one or more second metallocene compounds selected from compounds represented by the following Chemical Formulas 3 to 5.
[화학식 1]
Figure imgf000010_0001
[Formula 1]
Figure imgf000010_0001
상기 화학식 1에서,  In Chemical Formula 1,
A는 수소, 할로겐, CHO 알킬, C2-20 알케닐 C6-20 아릴, C7-20 알킬아릴, C7-20 아릴알킬, d-20 알콕시, C2-20 알콕시알킬, C 20 헤테로시클로알킬, 또는 C5-20 헤테로아릴이고; A is hydrogen, halogen, alkyl, CHO, C 2 - 20 alkenyl, C 6 -20 aryl, C 7 - 20 alkylaryl, C 7 - 20 aryl-alkyl, d-20 alkoxy, C 2 - 20 alkoxyalkyl, C 20 heterocyclic cycloalkyl, or C 5 - 20 membered heteroaryl;
D는 -0-, -S- , -N(R)- 또는 -S RKR ' ) - 이고, 여기서 R 및 R '은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, d-20 알킬, C2-20 알케닐, 또는 C6-20 아릴이고; D is -0-, -S-, -N (R)-or -S RKR ')-, wherein R and R' are the same as or different from each other, and are each independently hydrogen, halogen, d- 20 alkyl, C 2 - 20 alkenyl, or C 6 - 20 aryl;
L은 d- ) 직쇄 또는 분지쇄 알킬렌이고;  L is d-) straight or branched alkylene;
B는 탄소, 실리콘 또는 게르마늄이고;  B is carbon, silicon or germanium;
Q는 수소, 할로겐, d-20 알킬, C220 알케닐, C6-20 아릴, C고 20 알킬아릴, 또는 C7-20 아릴알킬이고; Q is hydrogen, halogen, d-20 alkyl, C 2 - 20 alkenyl, C 6 - 20 aryl, and C 20 alkylaryl, or C 7 - 20 aryl-alkyl;
M은 4족 전이금속이며;  M is a Group 4 transition metal;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, d-20 알킬, C2-20 알케닐, C6-20 아릴, 니트로, 아미도, d-20 알킬실릴, d-20 알콕시, 또는 C -20 술폰네이트이고; c1 및 c2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a , 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1 및 C2가 모두 화학식 2c인 경우는 제외하며 ; X 1 and X 2 are the same or different and are each independently halogen, d-20 alkyl, C 2 - alkenyl 20 Al, C 6 - 20 aryl, nitro, amido, d-20 alkyl silyl, d-20-alkoxy Or C-20 sulfonate; c 1 and c 2 are the same as or different from each other, and are each independently represented by one of the following Formulas 2a, 2b, or 2c, except that C 1 and C 2 are both Formula 2c;
[화학식 2a] [Formula 2a]
Figure imgf000011_0001
Figure imgf000011_0001
[화학식 2c] [Formula 2c]
Figure imgf000012_0001
Figure imgf000012_0001
상기 화학식 2a, 2b 및 2c에서,  In Chemical Formulas 2a, 2b and 2c,
Ri 내지 R17 및 ' 내지 '는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, ( 20 알킬, C2-20 알케닐, d— 20 알킬실릴, 실릴알킬, CHO 알콕시실릴, d-20 알콕시, C6-20 아릴, C720 알킬아릴, 또는 C7-2o 아릴알킬이며, 상기 0 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고; Ri to R 17 and "to" are the same or different and are each independently hydrogen, halogen, (20 alkyl, C 2 - 20 alkenyl, d- 20 alkyl silyl, alkyl silyl, alkoxysilyl CHO, d- 20 alkoxy , C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7 -2o aryl-alkyl, wherein 0 to R 17 of the two or more adjacent to each other are connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring Can do it;
[화학식 3] [Formula 3]
Figure imgf000012_0002
Figure imgf000012_0002
상기 화학식 3에서,  In Chemical Formula 3,
M1은 4족 전이금속이고; M 1 is a Group 4 transition metal;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 1 and Cp 2 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals One, they may be substituted with a hydrocarbon of 1 to 20 carbon atoms;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 알킬, 에 알콕시 , C2-20 알콕시알킬, C6-20 아릴, C6-10 아릴옥시, C2-20 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C8-40 아릴알케닐, 또는 C2-10 알키닐이고; R a and R b are the same or different, each independently represent a hydrogen, an alkyl, an alkoxy, and C 2 of each other - 20 alkoxyalkyl, C 6 - 20 aryl, C 6 - 10 aryloxy, C 2 - 20 alkenyl, C 7-40 alkylaryl, C 7-40 arylalkyl, C 8 - 40 arylalkenyl, or C 2 - 10 alkynyl;
Z1은 할로겐 원자, 알킬 C2-io 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C6-20 아릴 , 치환되거나 치환되지 않은 d-20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2-20 알킬알콕시, 또는 C7-40 아릴알콕시이고; Z 1 is a halogen atom, an alkyl C 2 -io alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 6 - 20 aryl, optionally substituted d-20 alkylidene, substituted or unsubstituted amino, C 2 - 20 alkyl, an alkoxy, or a C 7 - 40 aryl-alkoxy;
n은 1 또는 0이고;  n is 1 or 0;
[화학식 4] 상기 화학식 4에서, [Formula 4] In Chemical Formula 4 ,
M2는 4족 전이 금속이고; M 2 is a Group 4 transition metal;
Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4 5 6 7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 3 and Cp 4 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4 5 6 7-tetrahydro-1-indenyl and fluorenyl radicals, which are May be substituted with a hydrocarbon having 1 to 20 carbon atoms;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 알킬, Cwo 알콕시 , C2-20 알콕시알킬, C6-20 아릴, C6-10 아릴옥시 C2-20 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C8-40 아릴알케닐, 또는 C2-10 알키닐이고; R c and R d are the same or different and each is independently hydrogen, alkyl, Cwo alkoxy, C 2 of each other - 20 alkoxyalkyl, C 6 - 20 aryl, C 6 - 10 aryloxy C 2 -20 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 8 - 40 arylalkenyl, or C 2 - 10 alkynyl;
Z2는 할로겐 원자, 알킬, C2-10 알케닐, C7-40 알킬아릴, C7-40 아릴알킬 , C620 아릴 , 치환되거나 치환되지 않은 알킬리덴, 치환되거나 치환되지 않은 아미노, C2-20 알킬알콕시 또는 C7-40 아릴알콕시이고; Z 2 is a halogen atom, alkyl, C 2 - 10 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 6 - 20 aryl, alkyl substituted or unsubstituted alkylidene, substituted or unsubstituted amino, C 2 - 20 alkyl, an alkoxy, or C 7 - 40 aryl-alkoxy;
B1은 Cp¾c 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들와 조합이고; B 1 is one or more of a carbon, germanium, silicon, phosphorus or nitrogen atom containing radical which crosslinks the Cp¾ c ring with the Cp 4 R d ring or crosslinks one Cp 4 R d ring with M 2 ; Combination;
m은 1 또는 0이고;  m is 1 or 0;
[화학식 5]  [Formula 5]
(Cp¾e)B2(J )M3Z3 2 (Cp¾ e ) B 2 (J) M 3 Z 3 2
상기 화학식 5에서,  In Chemical Formula 5,
M3은 4족 전이 금속이고; M 3 is a Group 4 transition metal;
Cp5는 시클로펜타디에닐, 인데닐, 4 5 6 , 7-테트라하이드로— 1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 5 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4 5 6, 7-tetrahydro— 1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms, ;
Re는 수소, d-20 알킬, Cwo 알콕시, C2-20 알콕시알킬, C6-20 아릴, C6-R e is hydrogen, d- 20 alkyl, Cwo alkoxy, C 2 - 20 alkoxyalkyl, C 6 - 20 aryl, C 6 -
10 아릴옥시, C2-20 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C8-40 아릴알케닐, 또는 C2-10 알키닐이고; 10 aryloxy, C 2 - 20 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 8 - 40 arylalkenyl, or C 2 - 10 alkynyl;
Z3은 할로겐 원자, 알킬, C2-10 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C6-20 아릴, 치환되거나 치환되지 않은 d-20 알킬리덴, 치환되거나 치환되지 않은 아미노 , C2-20 알킬알콕시 또는 C7-40 아릴알콕시이고; B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고; Z 3 is a halogen atom, alkyl, C 2 - 10 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 6 - 20 aryl, optionally substituted d-20 alkylidene, optionally substituted are amino, C 2 - 20 alkyl, an alkoxy, or C 7 - 40 aryl-alkoxy; B 2 is at least one or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 5 R e ring and J;
J는 Rf , 0, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 d-20의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다. 상기 화학식 1, 3, 4 및 5의 치환기들을 보다 구체적으로 설명하면 하기와 같다. 상기 ( 20 알킬로는, 직쇄 또는 분지쇄의 알킬을 포함하고, 구체적으로 메틸, 에틸, 프로필, 이소프로필, η-부틸, tert—부틸, 펜틸, 핵실, 헵틸, 옥틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 C2-20 알케닐로는, 직쇄 또는 분지쇄의 알케닐을 포함하고, 구체적으로 알릴, 에테닐, 프로페닐, 부테닐, 펜테닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 C6-20 아릴로는, 단환 또는 축합환의 아릴올 포함하고, 구체적으로 페닐, 비페닐, 나프틸, 페난트레닐, 플루오레닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 C5-20 헤테로아릴로는, 단환 또는 축합환의 헤테로아릴을 포함하고, 카바졸릴, 피리딜, 퀴놀린, 이소퀴놀린, 티오페닐, 퓨라닐, 이미다졸, 옥사졸릴, 티아졸릴, 트리아진, 테트라하이드로피라닐, 테트라하이드로퓨라닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 에 알콕시로는, 메톡시, 에록시, 페닐옥시, 시클로핵실옥시 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 4족 전이금속으로는 티타늄, 지르코늄, 하프늄 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 화학식 2a , 2b 및 2c의 내지 R17 및 I 내지 '는 각각 독립적으로 수소, 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert-부틸, 펜틸, 헥실, 헵틸, 옥틸, 페닐, 할로겐, 트리메틸실릴, 트리에틸실릴, 트리프로필실릴, 트리부틸실릴, 트리이소프로필실릴, 트리메틸실릴메틸, 메특시, 또는 에록시인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 상기 화학식 1의 L은 C4-8 직쇄 또는 분지쇄 알킬렌인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 알킬렌기는 d-20 알킬, C2-20 알케닐, 또는 C6-20 아릴로 치환 또는 비치환될 수 있다. 또한, 상기 화학식 1의 A는 수소, 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert-부틸, 메특시메틸, tert-부톡시메틸, 1-에록시에틸, 1ᅳ메틸— 1-메톡시에틸, 테트라하이드로피라닐, 또는 테트라하이드로퓨라닐인 것이 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 화학식 1의 B는 실리콘인 것이 바람직하나, 이에만 한정되는 것은 아니다. 상기 화학식 1의 게 1 메탈로센 화합물은 인데노 인돌 ( indeno indol e) 유도체 및 /또는 플루오렌 ( f luorene) 유도체가 브릿지에 의해 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 중합 활성올 나타낸다. 또한 전자적으로 풍부한 인데노 인돌기 및 /또는 플루오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반응성이 낮을 뿐 아니라 수소가 존재하는 상황에서도 높은 활성이 유지된다. 또한 인데노 인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 beta-hydrogen을 수소결합에 의해 안정화시켜 beta-hydrogen el iminat ion을 억제하여 초고분자량의 올레핀계 중합체를 중합할 수 있다. 본 발명의 일 실시예에 따르면, 상기 화학식 2a로 표시되는 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발 J is any one selected from the group consisting of R f , 0, PR f and S, wherein R f is d-20 alkyl, aryl, substituted alkyl or substituted aryl. Hereinafter, the substituents of Chemical Formulas 1, 3, 4, and 5 will be described in more detail. The ( 20 alkyl) includes a linear or branched alkyl, specifically methyl, ethyl, propyl, isopropyl, η-butyl, tert- butyl, pentyl, nuclear chamber, heptyl, octyl, etc. but it not limited to the C 2 -. 20 alkenyl include, including alkenylene of straight or branched chain, and allyl specifically, ethenyl, propenyl, butenyl, pen, but the like ethenyl, whereby only not limited to a C 6 -. 20 aryl include, includes monocyclic or condensed ring aryl ol and, but, and the like More specifically, phenyl, biphenyl, naphthyl, phenanthrenyl, fluorenyl, whereby only limited but not the C 5 -. 20 heteroaryl group include a monocyclic or condensed ring includes heteroaryl, carbazolyl, pyridyl, quinoline, isoquinoline, thiophenyl, furanyl, imidazole, oxazolyl, thiazolyl, bit Azine, tetrahydropyranyl, tetrahydrofuranyl, etc., but is not limited thereto .. Examples of the alkoxy include methoxy, ethoxy, phenyloxy, cyclonuxyloxy, and the like. Examples of the Group 4 transition metal include titanium, zirconium, hafnium, and the like, but are not limited thereto. In Formulas 2a, 2b, and 2c to R 17 and I to 'are each independently hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, phenyl, halogen, More preferably, trimethylsilyl, triethylsilyl, tripropylsilyl, tributylsilyl, triisopropylsilyl, trimethylsilylmethyl, mesooxy, or ethoxy are not limited thereto. L of the general formula (1) is C 4 - 8 straight or branched chain alkylene of one to more preferred, but is not limited thereto only. Further, the alkylene group d-20 alkyl, C 2 - may be substituted or unsubstituted aryl as 20 - 20 alkenyl, or C 6. In addition, in Formula 1, A is hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, mesoxymethyl, tert-butoxymethyl, 1-ethoxyethyl, 1 ᅳ methyl— 1-meth Preferred is methoxyethyl, tetrahydropyranyl, or tetrahydrofuranyl, but is not limited thereto. In addition, B of Formula 1 is preferably silicon, but is not limited thereto. The crab 1 metallocene compound of Formula 1 may be a structure in which an indeno indol derivative and / or a fluorene derivative are crosslinked by a bridge, and may act as a Lewis base to the ligand structure. By having a non-covalent electron pair, it is supported on the surface having the Lewis acid characteristic of the carrier and shows high polymerization activity even when supported. In addition, it is highly active as it contains an electronically rich indeno indole group and / or fluorene group, and due to appropriate steric hindrance and the electronic effect of the ligand, the hydrogen reactivity is low and high activity is maintained even in the presence of hydrogen. In addition, the beta-hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative grows is stabilized by hydrogen bonding, thereby inhibiting beta-hydrogen el iminat ion, and thus, an ultra high molecular weight olefin type The polymer can be polymerized. According to an embodiment of the present invention, specific examples of the compound represented by Chemical Formula 2a may include a compound represented by one of the following structural formulas.
Figure imgf000016_0001
본 발명의 일 실시예에 따르면, 상기 화학식 2b로 표시되는 화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure imgf000016_0001
According to one embodiment of the present invention, specific examples of the compound represented by Chemical Formula 2b include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
Figure imgf000017_0001
Figure imgf000017_0001
본 발명의 일 실시예에 따르면, 상기 화학식 2c로 표사되는 화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다. According to one embodiment of the present invention, specific examples of the compound represented by Chemical Formula 2c may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
Figure imgf000018_0001
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000018_0001
According to one embodiment of the present invention, specific examples of the first metallocene compound represented by Chemical Formula 1 may include a compound represented by one of the following structural formulas, but is not limited thereto.
Figure imgf000018_0002
LI
Figure imgf000018_0002
LI
Figure imgf000019_0001
ZCCTO/SlOZaM/X3d 08SC60/9T0Z OAV
Figure imgf000019_0001
ZCCTO / SlOZaM / X3d 08SC60 / 9T0Z OAV
Figure imgf000020_0001
상기 화학식 1의 게 1 메탈로센 화합물은 활성이 우수하고 고분자량의 에틸렌 /알파 -을레핀 공중합체를 중합할 수 있다. 특히, 담체에 담지하여 사용할 경우에도 높은 중합 활성을 나타내어, 초고분자량의 에틸렌 /알파- 을레핀 공증합체를 제조할 수 있다. 또한, 고분자량과 동시에 넓은 분자량 분포를 갖는 에틸렌 /알파一 올레핀 공중합체를 제조하기 위해 수소를 포함하여 중합 반응을 진행하는 경우에도, 본 발명예 따른 화학식 1의 제 1 메탈로센 화합물은 낮은 수소 반응성을 나타내어 여전히 높은 활성으로 초고분자량의 에틸렌 /알파-올레핀 공중합체의 중합이 가능하다. 따라서, 다른 특성을 갖는 촉매와 흔성으로 사용하는 경우에도 활성의 저하 없이 고분자량의 특성을 만족시키는 에틸렌 /알파-올레핀 공중합체를 제조할 수 있어, 고분자의 에틸렌 /알파- 올레핀 공중합체를 포함하면서 넓은 분자량 분포를 갖는 에틸렌 /알파- 올레핀 공중합체를 용이하게 제조할 수 있다. 상기 화학식 1의 게 1 메탈로센 화합물은 인테노인돌 유도체 및 /또는 플루오렌 유도체를 브릿지 화합물로 연결하여 리간드 화합물로 제조한 다음, 금속 전구체 화합물을 투입하여 메탈레이션 (metal l at ion)을 수행함으로써 수득될 수 있다. 상기 제 1 메탈로센 화합물의 제조방법은 후술하는 실시예에 구체화하여 설명한다. 상기 화학식 3으로 표시되는 화합물로는 예를 들어 하기 구조식들 중 하나로
Figure imgf000020_0001
The Crab 1 metallocene compound of Chemical Formula 1 has excellent activity and may polymerize high molecular weight ethylene / alpha-lepin copolymer. In particular, even when used on a carrier, it shows high polymerization activity, and thus an ultra high molecular weight ethylene / alpha-lephine co-polymer can be prepared. In addition, even when the polymerization reaction including hydrogen to produce an ethylene / alpha olefin copolymer having a high molecular weight and a wide molecular weight distribution at the same time, the first metallocene compound of formula 1 according to the present invention is low hydrogen It exhibits reactivity and still allows high polymerization of ultra high molecular weight ethylene / alpha-olefin copolymers. Therefore, an ethylene / alpha-olefin copolymer that satisfies high molecular weight characteristics can be produced without deterioration of activity even when used in combination with a catalyst having other characteristics, while containing an ethylene / alpha-olefin copolymer of a polymer. Ethylene / alpha-olefin copolymers having a wide molecular weight distribution can be readily prepared. The C1 metallocene compound of Chemical Formula 1 is prepared as a ligand compound by connecting an innoindol derivative and / or a fluorene derivative with a bridge compound, and then a metal precursor is added to perform metallization. Can be obtained. The manufacturing method of the said 1st metallocene compound is concretely demonstrated to the Example mentioned later. Examples of the compound represented by Formula 3 include one of the following structural formulas
Figure imgf000021_0001
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000022_0001
상기 화학식 4에서, m이 1인 경우는 Cp3Rc 고리와 Cp4Rd 고리 또는 Cp4Rd 고리와 M2가 B1에 의해 가교 결합된 브릿지 화합물 구조인 것을 의미하며, m이 0인 경우는 비가교 화합물 구조를 의미한다. 상기 화학식 4로 표시되는 화합물로는 예를 들어 하기 구조식들 중 하나로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다. In Formula 4, when m is 1, it means that a Cp 3 R c ring and a Cp 4 R d ring or a Cp 4 R d ring and M 2 is a bridge compound structure cross-linked by B 1 , and m is 0. In the case of, it means a non-crosslinked compound structure. The compound represented by Chemical Formula 4 may be, for example, a compound represented by one of the following structural formulas, but is not limited thereto.
Figure imgf000022_0002
Figure imgf000022_0002
Figure imgf000023_0001
또한, 화학식 5로 표시되는 화합물로는 예를 들어 하기 구조식으로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000023_0001
In addition, the compound represented by Formula 5 may be, for example, a compound represented by the following structural formula, but is not limited thereto.
Figure imgf000024_0001
Figure imgf000024_0001
본 발명에서 사용되는 메탈로센 촉매는 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 1종 이상, 및 상기 화학식 3 내지 화학식 5로 표시되는 화합물 중 선택되는 게 2 메탈로센 화합물의 1종 이상을 조촉매 화합물과 함께 담체에 담지한 것일 수 있다. 또한, 상기 담지 메탈로센 촉매는 제조되는 에틸렌 /알파—을레핀 공중합체에서 LCB(Long Chain Branch)의 생성을 유도할 수 있다. 본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다. 구체적으로, 상기 조촉매 화합물은 하기 화학식 6의 알루미늄 함유 제 1 조촉매, 및 하기 화학식 7의 보레이트계 계 2 조촉매 중 하나 이상을 포함할 수 있다. The metallocene catalyst used in the present invention may be at least one of the first metallocene compounds represented by Formula 1, and one of the metallocene compounds selected from the compounds represented by Formulas 3 to 5. The above may be supported on the carrier together with the cocatalyst compound. In addition, the supported metallocene catalyst may induce the formation of a long chain branch (LCB) in the ethylene / alpha—lepin copolymer prepared. In the supported metallocene catalyst according to the present invention, the cocatalyst supported on the carrier for activating the metallocene compound is an organometallic compound containing a Group 13 metal, and polymerizes the olefin under a general metallocene catalyst. If it can be used when it is not particularly limited. Specifically, the cocatalyst compound may include at least one of an aluminum-containing first cocatalyst of Formula 6, and a borate-based 2 cocatalyst of Formula 7 below.
[화학식 6] [Formula 6]
Figure imgf000025_0001
Figure imgf000025_0001
화학식 6에서ᅳ R18은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고ᅳ k는 ᅳ 2 이상의 정수이고, [화학식 7] R 18 in Formula 6 is each independently a halogen, a halogen substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, and k is an integer of 2 or more, [Formula 7]
T+[BG4]" T + [BG 4 ] "
화학식 7에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드, 디알킬아미도, 할라이드, 알콕사이드, 아릴옥사이드, 하이드로카빌, 할로카빌 및. 할로-치환된 하이드로카빌로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드이다. 이러한 제 1 및 제 2 조촉매의 사용에 의해, 최종 제조된 폴리에틸렌 공중합체의 분자량 분포가 보다 균일하게 되면서, 중합 활성이 향상될 수 있다. . 상기 화학식 6의 제 1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 제 1 조촉매의 구체적인 예로는, 메틸알루미녹산 (MA0) , 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다. 또한, 상기 화학식 7의 제 2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제 2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리 (n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, Ν,Ν- 디메틸아닐늄 테트라페닐보레이트, Ν,Ν-디에틸아닐늄 테트라페닐보레이트, Ν ,Ν-디메틸 (2, 4, 6-트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스 (펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스 (펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스 (펜타플루오로페닐)보레이트, In formula (7), T + is a + monovalent polyatomic ion, B is boron in +3 oxidation state, G is independently hydride, dialkylamido, halide, alkoxide, aryl oxide, hydrocarbyl, halocarbyl And. Selected from the group consisting of halo-substituted hydrocarbyl, wherein G has up to 20 carbons, but at up to one position G is a halide. By using such first and second cocatalysts, the molecular weight distribution of the finally produced polyethylene copolymer can be made more uniform, and the polymerization activity can be improved. . The first cocatalyst of Chemical Formula 6 may be an alkylaluminoxane compound having a repeating unit bonded in a linear, circular or reticulated form. Specific examples of the promoter include methyl aluminoxane (MA0), ethyl aluminoxane, isobutyl aluminoxane or butyl aluminoxane. In addition, the second cocatalyst of Formula 7 may be a borate-based compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt. Specific examples of such a second cocatalyst include trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate , Methyltetracyclooctadecylammonium tetraphenylborate , Ν, Ν-dimethylaninium tetraphenylborate, Ν, Ν-diethylaninynium tetraphenylborate, Ν, Ν-dimethyl (2, 4, 6-trimethylaninium Tetraphenylborate, trimethylammonium tetrakis (pentafluorophenyl) borate, methylditetradecylammonium tetrakis (pentaphenyl) borate, methyldioctadecylammonium tetrakis (pentafluorophenyl) borate, triethylammonium, tetra Keith (pentafluorophenyl) borate
트리프로필암모늄테트라키스 (펜타프루오로페닐)보레이트, 트리 (η- 부틸)암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리 (2급- 부틸)암모늄테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸아닐늄 테트라키스 (펜타플루오로페닐)보레이트, Ν ,Ν- 디에틸아닐늄테트라키스 (펜타플루오로페닐)보레이트, ^^디메틸(2,4, 6- 트리메틸아닐늄)테트라키스 (펜타플루오로페닐)보레이트, Tripropylammonium tetrakis (pentafluorophenyl) borate, tri (η-butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (secondary-butyl) ammonium tetrakis (pentafluorophenyl) borate, N , Ν-dimethylaninium tetrakis (pentafluorophenyl) borate , Ν, Ν-diethylaninium tetrakis (pentafluorophenyl) borate , ^^ dimethyl (2,4,6-trimethylaninynium) tetrakis (Pentafluorophenyl) borate ,
트리메틸암모늄테트라키스 (2, 3 , 4 , 6-테트라플루오로페닐)보레이트, Trimethylammonium tetrakis (2, 3, 4, 6-tetrafluorophenyl) borate,
트리에틸암모늄 테트라키스 (2, 3, 4, 6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스 (2ᅳ3, 4, 6-테트라플루오로페닐)보레이트, 트리 (ηᅳ부틸)암모늄 테트라키스 (2, 3, 4, 6ᅳ,테트라플루오로페닐 )보레이트, 디메틸 (t-부틸)암모늄 테트라키스 (2, 3 , 4 , 6-테트라플루오로페닐)보레이트, Ν ,Ν-디메틸아닐늄 테트라키스 (2,3,4, 6-테트라플루오로페닐)보레이트, Ν,Ν- 디에틸아닐늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 또는 Ν , Ν— 디메틸 -(2,4 , 6-트리메틸아닐늄)테트라키스-(2,3 , 4, 6- 테트라플루오로페닐)보레이트 둥의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스 (펜타폴루오로페닐)보레이트 또는 디사이클로핵실암모늄 테트라키스 (펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스 (펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스 (펜타플루오로페닐)보레이트 또는 트리 (2 , 6-디메틸페닐)포스포늄 테트라키스 (펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다. 본 발명에 따른 담지 메탈로센 촉매에 있어서, 화학식 1로 표시되는 제 1 메탈로센 화합물, 또는 화학식 3 내지 5로 표시되는 게 2 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1 , 000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다. 또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다. 본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반웅성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다. 예컨대, 고온에서 건조된 실리카, 실리카 -알루미나, 및 실리카- 마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na20 , 2C03 , BaS04 , 및 Mg(N03)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다. 상기 담체의 건조 온도는 200 내지 80CTC가 바람직하고, 300 내지 600 °C가 더욱 바람직하며, 300 내지 400 °C가 가장 바람직하다. 상기 담체의 건조 온도가 200°C 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반웅하게 되고, 800°C를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가 감소하기 때문에 바람직하지 않다. 상기 담체 표면의 하이드록시기 양은 0. 1 내지 10 隱 ol /g이 바람직하며, 0.5 내지 5 mmol /g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다. 상기 하이드록시기의 양이 0. 1 匪 ol /g 미만이면 조촉매와의 반응자리가 적고, 10 睡 ol /g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다ᅳ 한편, 본 발명에 따른 에틸렌 /알파—올레핀 공중합체는, 상술한 담지 메탈로센 촉매의 존재 하에서, 에틸렌 및 알파-을레핀을 중합시킴으로써 제조할 수 있다. 상기 중합 반응은 하나의 연속식 슬러리 중합 반웅기, 루프 슬러리 반웅기, 기상 반웅기 또는 용액 반응기를 이용하여 에틸렌 및 알파- 올레핀을 공중합하여 진행할 수 있다. 그리고, 상기 중합 온도는 약 25 내지 약 500°C , 바람직하게는 약 25 내지. 약 200°C , 보다 바람직하게는 약 50 내지 약 15CTC일 수 있다. 또한, 중합 압력은 약 1 내지 약 100 Kgf/citf , 바람직하게는 약 1 내지 약 50 Kgf/ciii2 , 보다 바람직하게는 약 5 내지 약 30 Kgf/cuf일 수 있다. 상기 담지 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 를루엔, 벤젠과 같은 방향족 탄화수소 용메, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다. 본 발명에 따른 에틸렌 /알파ᅳ을레핀 공중합체는 저분자량의 고분자 쇄를 주로 중합하는 화학식 3 내지 5의 촉매와, 고분자량의 고분자 쇄를 주로 중합하는 화학식 1의 촉매를 함께 사용하여, 에틸렌 및 알파-올레핀 단량체를 공중합하여 제조된다. 이러한 2종 이상의 촉매의 상호 작용으로 인하여, 전체적으로 저분자량 및 분자량 분포가 증가한다. 그 결과, 상기 에틸렌 /알파-올레핀 공중합체는, 예를 들어 , 도 1에 도시된 바와 같은 분자량 분포 곡선을 나타낼 수 있으며, 우수한 가공성을 나타낼 수 있다. 상기와 같은 물성 층족으로 인하여, 본 발명에 따른 에틸렌 /알파-올레핀 공중합체는 대구경 파이프 또는 복합관 등에 바람직하게 적용될 수 있다. Triethylammonium tetrakis (2, 3, 4, 6-tetrafluorophenyl) borate, tripropylammonium tetrakis (2 ᅳ 3, 4, 6-tetrafluorophenyl) borate, tri (η ᅳ butyl) ammonium tetra Keith (2, 3, 4, 6 ᅳ, tetrafluorophenyl) borate, dimethyl ( t -butyl) ammonium tetrakis (2, 3, 4, 6-tetrafluorophenyl) borate, Ν, Ν-dimethylaninynium Tetrakis (2,3,4,6-tetrafluorophenyl) borate, Ν, Ν-diethylaninynium tetrakis (2,3,4,6-tetrafluorophenyl) borate or Ν, Ν—dimethyl- (2,4,6-trimethylaninynium) tetrakis- (2,3,4,6- Borate compounds in the form of trisubstituted ammonium salts of tetrafluorophenyl) borate; Borates in the form of dialkylammonium salts, such as dioctadecylammonium tetrakis (pentafluorophenyl) borate, ditetradecylammonium tetrakis (pentafluorofluorophenyl) borate or dicyclonucleoammonium tetrakis (pentafluorophenyl) borate System compounds; Or triphenylphosphonium tetrakis (pentafluorophenyl) borate, methyldioctadecylphosphonium tetrakis (pentafluorophenyl) borate or tri (2,6-dimethylphenyl) phosphonium tetrakis (pentafluorophenyl) Borate compounds in the form of trisubstituted phosphonium salts, such as a borate, etc. are mentioned. In the supported metallocene catalyst according to the present invention, the mass ratio of the total transition metal to the carrier included in the first metallocene compound represented by the formula (1), or the C2 metallocene compound represented by the formulas (3) to (5) is 1 : May be from 1 to 1,000. When the carrier and the metallocene compound are included in the mass ratio, the optimum shape can be exhibited. In addition, the mass ratio of the promoter compound to the carrier may be from 1: 1 to 1: 100. In the supported metallocene catalyst according to the present invention, the carrier may be a carrier containing a hydroxy group on the surface, preferably a dry semi-reactive hydroxy group and a siloxane group which have been dried to remove moisture on the surface. The carrier which has is used. For example, silica, silica-alumina, silica-magnesia, etc., dried at a high temperature may be used, and these are usually oxides, carbonates, sulfates, such as Na 2 0, 2 C0 3 , BaS0 4 , and Mg (N0 3 ) 2 . And nitrate components. The drying temperature of the carrier is preferably 200 to 80CTC, more preferably 300 to 600 ° C, and most preferably 300 to 400 ° C. When the drying temperature of the carrier is less than 200 ° C, the moisture is too much and the surface of the carrier reacts with the promoter, and when it exceeds 800 ° C, pores on the surface of the carrier It is not preferable because the surface area is reduced as they are combined, and also a lot of hydroxyl groups are left on the surface and only siloxane groups are left to decrease the reaction site with the promoter. The amount of hydroxy groups on the surface of the carrier is preferably from 0.1 to 10 kPa / g, more preferably from 0.5 to 5 mmol / g. The amount of hydroxy groups on the surface of the carrier can be controlled by the method and conditions for preparing the carrier or by drying conditions such as temperature, time, vacuum or spray drying. If the amount of the hydroxy group is less than 0.1 dl ol / g, the reaction site with the promoter is small, and if it exceeds 10 dl ol / g, it may be due to moisture other than the hydroxy group present on the surface of the carrier particle. On the other hand, the ethylene / alpha-olefin copolymer according to the present invention can be produced by polymerizing ethylene and alpha-lepin in the presence of the supported metallocene catalyst described above. The polymerization reaction may be performed by copolymerizing ethylene and alpha-olefin using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor. And, the polymerization temperature is about 25 to about 500 ° C, preferably about 25 to about . About 200 ° C., more preferably about 50 to about 15 CTC. In addition, the polymerization pressure may be about 1 to about 100 Kgf / citf, preferably about 1 to about 50 Kgf / ciii 2 , more preferably about 5 to about 30 Kgf / cuf. The supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonane, decane, isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, dichloromethane and chlorobenzene. The solution may be dissolved or diluted in a hydrocarbon solvent substituted with the same chlorine atom. The solvent used herein is preferably used by removing a small amount of water, air, or the like acting as a catalyst poison by treating a small amount of alkyl aluminum, and may be carried out by further using a promoter. Ethylene / alpha-lepine copolymer according to the present invention is a combination of the catalyst of formula 3 to 5 to polymerize low-molecular-weight polymer chains, and the catalyst of formula 1 mainly to polymerize high-molecular weight polymer chain, ethylene and Prepared by copolymerizing alpha-olefin monomers. Due to the interaction of these two or more catalysts, the overall low molecular weight and molecular weight distribution increases. As a result, the ethylene / alpha-olefin copolymer may exhibit, for example, a molecular weight distribution curve as shown in FIG. 1 and may exhibit excellent processability. Due to the above-described physical layer, the ethylene / alpha -olefin copolymer according to the present invention can be preferably applied to large diameter pipes or composite pipes.
【발명의 효과】  【Effects of the Invention】
본 발명에 따른 에틸렌 /알파-올레핀 공중합 ^는 가공성이 우수하여, 대구경 파이프 또는 복합관 등에 적용할 수 있다.  The ethylene / alpha-olefin copolymer ^ according to the present invention is excellent in workability and can be applied to large diameter pipes or composite pipes.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은, 본 발명의 실시예 및 비교예에서 제조한 공중합체의 GPC 커브를 나타낸 것이다.  1 shows the GPC curves of the copolymers prepared in Examples and Comparative Examples of the present invention.
도 2는, 본 발명의 실시예 2에서 제조한 공중합체의 주파수에 따른 복소점도 그래프를, Power Law 및 Cross Model로 피팅한 결과를 나타낸 것이다.  Figure 2 shows the result of fitting the complex viscosity graph according to the frequency of the copolymer prepared in Example 2 of the present invention, Power Law and Cross Model.
도 3은 본 발명의 실시예 및 비교예에서 제조한 공중합체의 주파수에 따른 복소점도 그래프를 Cross Model로 피팅한 결과를 나타낸 것이다.  Figure 3 shows the result of fitting the complex viscosity graph according to the frequency of the copolymer prepared in Examples and Comparative Examples of the cross model.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다. Hereinafter, preferred embodiments of the present invention are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited thereto.
[제 1 메탈로센 화합물] [First Metallocene Compound]
Figure imgf000030_0001
Figure imgf000030_0001
1-1) 리간드 화합물의 제조  1-1) Preparation of Ligand Compound
Fluorene 2 g을 5 mL MTBE, hexane 100 mL에 녹여 2.5 M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적 7하여 상온에서 밤새 교반하였다. (6-(tert-butoxy)hexyl)dichloro(methyl)silane 3.6 g을 핵산 (hexane) .50 mL어) 녹여 dry ice/acetone bath하어)서 fluorene一 Li 슬러리를 30분 동안 transfer하여 상온에서 밤새 교반하였다. 이와 동시에 5 , 8-d i met hy 1 -5 , 10-d i hydr o i ndeno [ 1 , 2-b ] i ndo 1 e (12 mmol , 2.8 g) 또한 THF 60 mᄂ에 녹여 2.5 M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상은에서 밤새 교반하였다. fluorene과 (6-(tert一 butoxy)hexyl)dichloro(methyl)silane 과의 반웅 용액을 NMR 샘플링하여 반응 완료를 확인한 후 5,8-ditnethyl-5,10-dihydroindeno[l,2-b]inck)leᅳ Li solution을 dry ice/acetone bath하에서 transfer하였다. 상온에서 밤새 교반하였다. 반응 후 ether /water로 추출 (extract ion)하여 유기층의 잔류수분을 MgS04로 제거 후 리간드 화합물 (Mw 597.90, 12匪 ol)을 얻었으며 이성질체 (isomer) 두 개가 생성되었음을 -顺 R에서 확인할 수 있었다. 2 g of fluorene was dissolved in 5 mL MTBE and 100 mL of hexane, and 5.5 mL of 2.5 M n-BuLi hexane solution was added dropwise in a dry ice / acetone bath and stirred at room temperature overnight. (3.6 g of 6- (tert-butoxy) hexyl) dichloro (methyl) silane was dissolved in .50 mL of nucleic acid (hexane), and then dried in a dry ice / acetone bath) to transfer the slurry of fluorene 1 Li for 30 minutes and stirred at room temperature overnight. It was. At the same time 5, 8-di met hy 1 -5, 10-di hydr oi ndeno [1, 2-b] i ndo 1 e (12 mmol, 2.8 g) also dissolved in 60 m THF 2.5 M n-BuLi hexane 5.5 mL of solution was added dropwise in a dry ice / acetone bath and stirred overnight in silver. NMR sampling the reaction solution of fluorene with (6- (tert 一 butoxy) hexyl) dichloro (methyl) silane to confirm the reaction was completed, 5,8-ditnethyl-5,10-dihydroindeno [l, 2-b] inck) le ᅳ Li solution was transferred under dry ice / acetone bath. Stir overnight at room temperature. After the reaction was extracted with ether / water (extract ion) to remove the residual moisture of the organic layer with MgS0 4 and to obtain a ligand compound (Mw 597.90, 12 匪 ol) and two isomers were formed in-顺 R was confirmed. .
¾ 匪 R (500 MHz, de-benzene): -0.30 - -0.18 (3H, d) , 0.40 (2H, m), 0.65 ~ 1.45 (8H, m), 1.12 (9H, d), 2.36 ~ 2.40 (3H, d), 3.17 (2H, m), 3.41 ~ 3.43 (3H, d), 4.17 - 4.21 (1H, d), 4.34 ~ 4.38 (1H, d), 6.90 ~ 7.80 (15H, m) 1-2) 메탈로센 화합물의 제조 ¾ 匪 R (500 MHz, de-benzene): -0.30--0.18 (3H, d), 0.40 (2H, m), 0.65-1.45 (8H, m), 1.12 (9H, d), 2.36-2.40 ( 3H, d), 3.17 (2H, m), 3.41-3.43 (3H, d), 4.17-4.21 (1H, d), 4.34-4.38 (1H, d), 6.90-7.80 (15H, m) 1-2) Preparation of Metallocene Compound
상기 1-1에서 합성한 리간드 화합물 7.2 g (12隱 ol)을 diethylether 50 mL에 녹여 2.5 M n-BuL i hexane solution 11.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 진공 건조하여 갈색 (brown color)의 sticky oil을 얻었다. 를루엔에 녹여 슬러리를 얻었다. ZrCl4(THF)2를 준비하고 를루엔 50 mL를 넣어 슬러리로 준비학였다. ZrCl4(THF)2의 50 mL 를루엔 슬러리를 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반함에 따라 보라색 (violet color)으로 변화하였다. 반웅 용액을 필터하여 LiCl을 제거하였다. 여과액 (filtrate)의 를루엔을 진공 건조하여 제거한 후 핵산을 넣고 1시간 동안 sonication하였다. 슬러리를 필터하여 여과된 고체 (filtered sol id)인 짙은 보라색 (dark violet)의 메탈로센 화합물 6 g (Mw 758.02, 7.92 mmol, yield 66 mol%)을 얻었다. ¾-NMR 상에서 두 개의 isomer가 관찰되었다. 7.2 g (12 ′ ol) of the ligand compound synthesized in 1-1 was dissolved in 50 mL of diethylether, and 11.5 mL of 2.5 M n-BuL i hexane solution was added dropwise in a dry ice / acetone bath, followed by stirring at room temperature overnight. Drying in vacuo gave a brown colored sticky oil. It was dissolved in toluene to obtain a slurry. ZrCl 4 (THF) 2 was prepared, and 50 mL of toluene was added to prepare a slurry. 50 mL of ZrCl 4 (THF) 2 was transferred to a luene slurry in a dry ice / acetone bath. The solution was changed to violet color at room temperature overnight. The reaction solution was filtered to remove LiCl. The toluene of the filtrate was removed by vacuum drying, and the nucleic acid was added and sonicated for 1 hour. The slurry was filtered to give 6 g (Mw 758.02, 7.92 mmol, yield 66 mol%) of a dark violet metallocene compound as a filtered solid. Two isomers were observed on ¾-NMR.
¾ 赚 (500 MHz, CDCla): 1.19 (9H, d), 1.71 (3H, d), 1.50 ~ ¾ 赚 (500 MHz, CDCla): 1.19 (9H, d), 1.71 (3H, d), 1.50 to
1.70(4H, m), 1.79(2H, m) , 1.98 ~ 2.19(4H, m), 2.58(3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66 ~ 7.88 (15H, m) 조예 2 1.70 (4H, m), 1.79 (2H, m), 1.98-2.19 (4H, m), 2.58 (3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66-7.88 (15H, m) Art 2
Figure imgf000031_0001
Figure imgf000031_0001
2-1) 리간드 화합물의 제조  2-1) Preparation of Ligand Compound
250 mL flask에 5-methyl-5, l()-dihydroindeno[l ,2-b] indole 2.63 g(12 誦 ol)을 넣고 THF 50 mL에 녹인 후 2.5 M n-BuLi hexane solution 6 mL를 dr yice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 또 다른 250 tnL flask에 (6-(ter t-butoxy)hexyl )dichloro(methyl )si lane 1.62 g(6 画 ol)을 hexane 100 mL에 녹여 준비한 후 dry ice/acetone bath 하에서 5-methyl-5, 10-dihydroindeno[l,2-b] indole^ 1 ithiated solution에 천천히 적가하여 상온에서 밤새 교반하였다. 반응 후 ether/water로 추출하여 유기층의 잔류수분을 ¾¾504로 제거 후 진공 건조하여 리간드 화합물 3.82 g(6 mmol)을 얻었으며 이를 ¾-丽 R에서 확인하였다. Into a 250 mL flask, add 2.63 g (12 誦 ol) of 5-methyl-5, l ()-dihydroindeno [l, 2-b] indole, dissolve in 50 mL of THF, and dr yice 6 mL of 2.5 M n-BuLi hexane solution. It was added dropwise in the / acetone bath and stirred overnight at room temperature. In addition In another 250 tnL flask, 1.62 g (6 画 ol) of (6- (ter t-butoxy) hexyl) dichloro (methyl) si lane was dissolved in 100 mL of hexane and prepared under 5-methyl-5, 10 under a dry ice / acetone bath. -Dihydroindeno [l, 2-b] indole ^ 1 ithiated solution was slowly added dropwise and stirred overnight at room temperature. After the reaction was extracted with ether / water to remove the residual moisture of the organic layer to ¾¾50 4 and dried in vacuo to obtain 3.82 g (6 mmol) of the ligand compound was confirmed in ¾- 丽 R.
¾ NMR (500 MHz, CDC13): -0.33 (3H, ni), 0.86- 1.53 (10H, m), 1.16 (9H, d), 3.18 (2H, m), 4.07 (3H, d), 4.12 (3H, d), 4.17 (1H, d) , 4.25 (1H, d), 6.95~ 7.92 (16H, m) ¾ NMR (500 MHz, CDC1 3 ): -0.33 (3H, ni), 0.86- 1.53 (10H, m), 1.16 (9H, d), 3.18 (2H, m), 4.07 (3H, d), 4.12 ( 3H, d), 4.17 (1H, d), 4.25 (1H, d), 6.95-7.92 (16H, m)
2-2) 메탈로센 화합물의 제조 2-2) Preparation of Metallocene Compound
상기 2-1에서 합성한 리간드 화합물 3.82 g(6 醒 ol)을 toluene 100 mL와 MTBE 5 mL에 녹인 후 2.5M n-BuLi hexane solution 5.6 mL(14 隱 ol)를 dryice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 또 다른 flask에 ZrCl4(THF)2 2.26 g(6 mmol)을 준비하고 toluene 100 mL를 넣어 술러리로 준비하였다. ZrCl4(THF)2의 toluene slurry를 litiation된 리간드에 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반하였고 violet color로 변화하였다. 반응 용액을 필터하여 LiCl을 제거한 후 얻어진 여액을 진공 건조하여 hexane을 넣고 sonicat ion하였다. ' 슬러리를 필터하여 filtered solid인 dark violet의 메탈로센 화합물 3.40 g(yield 71.1 mol%)을 얻었다. 3.82 g (6 醒 ol) of the ligand compound synthesized in 2-1 above was dissolved in 100 mL of toluene and 5 mL of MTBE, and 5.6 mL (14 隱 ol) of 2.5M n-BuLi hexane solution was added dropwise in a dryice / acetone bath. Stir overnight at. In another flask, 2.26 g (6 mmol) of ZrCl 4 (THF) 2 was prepared, and 100 mL of toluene was added to prepare a sultry. Toluene slurry of ZrCl 4 (THF) 2 was transferred to litiated ligand in a dry ice / acetone bath. It stirred at room temperature overnight and it changed into violet color. The reaction solution was filtered to remove LiCl, and the filtrate was dried in vacuo to add hexane and sonicat ion. 'The slurry was filtered to obtain 3.40 g (yield 71.1 mol%) of a metallocene compound of dark violet as a filtered solid.
¾ 匪 R (500 MHz, CDC13): 1.74 (3H, d), 0.85~2.33(10H, m), 1.290H, d), 3.87 (3H, s), 3.92 (3H, s), 3.36(2H, m), 6.48- 8.10 (16H, m) ¾ 匪 R (500 MHz, CDC1 3 ): 1.74 (3H, d), 0.85-2.23 (10H, m), 1.290H, d), 3.87 (3H, s), 3.92 (3H, s), 3.36 (2H , m), 6.48-8.10 (16H, m)
[제 2 메탈로센 화합물] Second Metallocene Compound
제조예 3: [tBiHHCI^ Csiy^rC^의 제조  Preparation Example 3 Preparation of [tBiHHCI ^ Csiy ^ rC ^
6-클로로헥사놀 (6-chlorohexanol)을 사용하여 문헌 (Tetrahedron Lett. 2951 (1988))에 제시된 방법으로 t_Butyl-0-(CH2)6-Cl을 제조하고, 여기에 NaCp를 반웅시켜 t-Buty卜 0— (CH2)6ᅳ C5¾를 얻었다 (수율 60%, b.p. 80 V I 0.1 隱 Hg) . 또한, -78t:에서 t-ButyK)-(C¾)6-C5¾를 THF에 녹이고, 노르말 부틸리튬 (n-BuLi)을 천천히 가한 후, 실온으로 승온시킨 후, 8시간 반응시켰다. 그 용액을 다시 -78°C에서 ZrCl4(THF)2(1.70 g, 4.50 隱 ol)/THF(30 ml)의 서스펜견 (suspension) 용액에 기 합성된 리튬옆 (lithium salt) 용액을 천천히 가하고 실온에서 6시간 동안 더 반응시켰다. ^든 .휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 핵산 (hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 핵산을 가해 저온 (― 20°C)에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [tBu-0-(CH2)6-C5H4]2ZrCl2 화합물을 얻었다 (수율 92%): 6-Chlorohexanol was used to prepare t_Butyl-0- (CH 2 ) 6 -Cl using the method presented in Tetrahedron Lett. 2951 (1988), whereupon NaCp was reacted to t- Buty 卜 0— (CH 2 ) 6 ᅳ C 5 ¾ (yield 60%, bp 80 VI 0.1 隱 Hg). Further, t-ButyK)-(C¾) 6 -C 5 ¾ at -78t: was dissolved in THF, and normal butyllithium (n-BuLi) was slowly added, and the reaction mixture was heated to room temperature for 8 hours. The solution was slowly added to a lithium salt solution pre-synthesized in a suspension solution of ZrCl 4 (THF) 2 (1.70 g, 4.50 μl) / THF (30 ml) at -78 ° C. It was added and reacted further for 6 hours at room temperature. ^ Den . The volatiles were dried in vacuo and a hexane solvent was added to the resulting oily liquid material to filter out. The filtered solution was dried in vacuo and nucleic acid was added to induce precipitate at low temperature (-20 ° C.). The precipitate obtained was filtered off at low temperature to give [tBu-0- (CH 2 ) 6 -C 5 H 4 ] 2 ZrCl 2 compound as a white solid (yield 92%):
¾ NMR (300 MHz, CDC13): 6.28 (t, J = 2*.6 Hz, 2H) , 6.19 (t, J =¾ NMR (300 MHz, CDC1 3 ): 6.28 (t, J = 2 * .6 Hz, 2H), 6.19 (t, J =
2.6 Hz, 2H), 3.31 (t, 6.6 Hz, 2H), 2.62 (t, J = 8 Hz), 1.7 - 1.3 (m, 8H), 1.17 (s, 9H) 2.6 Hz, 2H), 3.31 (t, 6.6 Hz, 2H), 2.62 (t, J = 8 Hz), 1.7-1.3 (m, 8H), 1.17 (s, 9H)
13C NMR (CDCls): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00 13 C NMR (CDCls): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00
[흔성 담지 촉매] [Supported Catalyst]
실시예 1 및 2  Examples 1 and 2
20L sus 고압 반응기에 를루엔 용액 3.0 kg을 넣고 반응기 온도를 40°C로 유지하였다. 실리카 (Grace Davison, SP2212) 500 g을 반응기에 투입하고 실리카를 충분히 분산시킨 후, 10 wt 메틸알루미녹산 (MAO)/를루엔 용액 2.78 kg을 투입한 후 8( C로 온도를 을려 200 rpm으로 15시간 이상 교반하였다. 반응기 온도를 다시 40°C로 낮춘 후, 7.5 wt% 촉매 제조예 2/를루엔 용액 300 g을 반웅기에 투입하고 1시간 동안 200 rpm으로 교반하였다. 8.8 wt% 촉매 제조예 1/를루엔 용액 250 g을 반응기에 투입하고 1시간 동안 200 rpm으로 교반하였다. 촉매 제조예 3(20 g)을 를루엔에 녹여 반응기에 투입하고 2시간 동안 200 rpm으로 교반하였다. 조촉매 (ani 1 inium tetraki s (pentaf luorophenyl )borate) 70 g을 를루엔에 묽혀 반웅기에 투입하고 15시간 이상 200 rpm으로 교반하였다. 반웅기 온도를 상온으로 낮춘 후, 교반을 중지하고 30분 동안 sett l ing 사킨 후 반웅 용액을 decantat i on 하였다. 를루엔 슬러리를 f i l ter dryer로 이송하고 필터하였다. 를루엔 3.0 kg을 투입하고 10분 동안 교반한 후, 교반을 중지하고 여과하였다. 반응기에 핵산 3.0 kg을 투입하고 10분 동안 교반한 다음, 교반을 중지하고 여과하였다. 50°C에서 4시간 동안 감압 하에 건조하여 500g-Si02 담지 촉매를 제조하였다. 3.0 kg of toluene solution was added to a 20 L sus high pressure reactor, and the reactor temperature was maintained at 40 ° C. 500 g of silica (Grace Davison, SP2212) was added to the reactor, and after sufficient dispersion of silica, 2.78 kg of 10 wt methylaluminoxane (MAO) / luluene solution was added and the temperature was reduced to 8 (C at 15 rpm at 200 rpm). After further stirring, the reactor temperature was lowered to 40 ° C., and 300 g of 7.5 wt% catalyst Preparation Example 2 / luene solution was added to the reactor and stirred at 200 rpm for 1 hour. 250 g of a 1 / luene solution was added to a reactor and stirred at 200 rpm for 1 hour Catalyst Preparation Example 3 (20 g) was dissolved in toluene, charged into the reactor, and stirred at 200 rpm for 2 hours. 70 g of the cocatalyst (ani 1 inium tetrakis (pentaf luorophenyl) borate) was diluted in toluene and added to the reaction vessel, followed by stirring at 200 rpm for 15 hours or more. After the reaction temperature was lowered to room temperature, stirring was stopped and sett ling was applied for 30 minutes, and then the reaction solution was decantat i on. The toluene slurry was transferred to a fil ter dryer and filtered. 3.0 kg of toluene was added and stirred for 10 minutes, and then stirring was stopped and filtered. 3.0 kg of nucleic acid was added to the reactor and stirred for 10 minutes, and then the stirring was stopped and filtered. Drying under reduced pressure at 50 ° C. for 4 hours to prepare a 500g-Si0 2 supported catalyst.
[에틸렌 /1-부텐 공중합체] [Ethylene / 1-butene copolymer]
상기 실시예 1 및 2에서 제조한 각각의 흔성 담지 메탈로센 촉매를 hexane s lurry st i rred tank process 중합기를 이용하여, 반응기 2개로 bimodal 운전을 하여 올레핀 중합체를 제조하였다. 공단량체로는 1-부텐을 사용하였다. 상기 실시예 1 및 2에서 각각의 흔성 담지 메탈로센 촉매를 이용한 중합 조건을 하기 표 1에 정리하여 나타내었다.  The olefin polymer was prepared by bimodal operation of two common supported metallocene catalysts prepared in Examples 1 and 2 using two hexane slurry slurry tank polymerizers. 1-butene was used as comonomer. In Examples 1 and 2, polymerization conditions using respective common supported metallocene catalysts are summarized in Table 1 below.
【표 1】  Table 1
Figure imgf000034_0001
[비교예 1 내지 3]
Figure imgf000034_0001
[Comparative Examples 1 to 3]
상기 실시예 1 및 2에서 각각의 흔성 담지 메탈로센 촉매를 이용하여 제조한 중합체와 비교하기 위하여, 밀도가 유사한 하기의 공중합체를 비교예로 사용하였다.  In order to compare with the polymer prepared by using each of the common supported metallocene catalysts in Examples 1 and 2, the following copolymer having a similar density was used as a comparative example.
비교예 1: LyondellBasell사의 Hostalene 473 IB  Comparative Example 1: LyondellBasell's Hostalene 473 IB
비교예 2: Total사의 X T-70  Comparative Example 2: Total T-70
비교예 3: 대림산업의 XP9020 [공중합체의 물성 평가]  Comparative Example 3: XP9020 of Daelim Industrial [Evaluation of Physical Properties of Copolymer]
상기 실시예에서 제조된 공중합체 및 비교예의 공중합체를 하기의 방법으로 물성을 평가하였다.  Physical properties of the copolymer prepared in Example and the copolymer of Comparative Example were evaluated in the following manner.
1) 밀도: ASTM 1505 ' 1) Density: ASTM 1505 '
2) 용융지수 (MFR, 5 kg/21.6 kg): 측정 온도 19CTC, ASTM 1238 2) Melt Index (MFR, 5 kg / 21.6 kg): Measurement Temperature 19CTC, ASTM 1238
3) MFRR(MFR21.6/MFR5): MFR21.6 용융지수 (MIᅳ 21.6kg 하중)를 MFR5(MI , 5kg 하증)으로 나눈 비율이다. 3) MFRR (MFR 21 .6 / MFR 5 ): MFR 21 . 6 Melt index (MI ᅳ 21.6kg load) divided by MFR 5 (MI, 5kg lower).
4) Mn, Mw, 匿 D, GPC 커브: 샘플을 PL-SP260을 이용하여 BHT 0.0125% 포함된 l,2,4-Trichlorobenzene에서 160 °C, 10시간 동안 녹여 전처리하고, PL-GPC220을 이용하여 측정 온도 160°C에서 수 평균분자량, 중량 평균분자량을 측정하였다. 분자량 분포는 중량 평균분자량과 수 평균분자량의 비로 나타내었다. -4) Mn, Mw, 匿 D, GPC curve: Melt the sample in l, 2,4-Trichlorobenzene containing 0.0125% of BHT using PL-SP260 for 160 ° C for 10 hours, and use PL-GPC220. The number average molecular weight and the weight average molecular weight were measured at a measurement temperature of 160 ° C. The molecular weight distribution was expressed as the ratio of weight average molecular weight and number average molecular weight. -
5) 주파수에 따른 복소 점도 그래프, Power Law 및 Cross Model로 피팅:. TA instruments의 ARES (Advanced Rheometr ic Expansion System)으로 복소 점도를 측정하였다. 샘플은 190°C에서 직경 25:0 瞧의 parallel plates를 이용하여 gap이 2.0 隱가 되도록 하였다. 측정은 dynamic strain frequency sweep 모드로 strain은 5%, frequency는 0.05 rad/s에서 500 rad/s까지, 각 decade에 10 point 씩 총 41 point를 측정하였다. Power law 및 Cross Model 피팅은 측정 프로그램인 TA Orchestrator를 이용하여 피팅하였다. 먼저, 상기 결과 중 공중합체의 물성에 관한 결과를 하기 나타내었다. 또한, 각 공중합체의 GPC 커브를 도 1에 나타내었다. 5) Complex viscosity graph with frequency, fitting with Power Law and Cross Model :. Complex viscosity was measured by ARES (Advanced Rheometric Expansion System) of TA instruments. Samples were made to have a gap of 2.0 mm3 using parallel plates of 25: 0 mm diameter at 190 ° C. In the dynamic strain frequency sweep mode, 5% strain, 0.05 rad / s to 500 rad / s, and 10 points in each decade were measured. Power law and Cross Model fitting was performed using TA Orchestrator, a measurement program. First, the results regarding the physical properties of the copolymer are shown below. In addition, the GPC curve of each copolymer is shown in FIG.
【표 2】  Table 2
Figure imgf000036_0001
다음으로, 실시예 2에서 제조한 공층합체의 주파수에 따른 복소점도 그래프와, 이를 Power Law 및 Cross Model로 피팅한 결과를 도 2에 나타내었다. 도 2에 나타난 바와 같이, 실시예 2에서 제조한 공중합체의 주파수에 따른 복소점도 그래프와, 이를 Power Law 및 Cross Model로 피팅한 결과가 매우 유사함을 확인할 수 있었으며, Power Law 및 Cross Model 모두 본 발명에 따른 공중합체의 유동 특성을 정량적으로 평가하기에 적합한 모델임을 확인할 수 있었다. 이에 실시예 및 비교예에서 제조한 공중합체를 Power Law 및 Cross Mode l로 피팅하고 얻어진 각 변수 값을 하기 표 3에 나타내었다. 또한, 얻어진 변수 값에 근거하여 Cross Model에서 주파수가 800/s 및 1 , 200/s일 때의 복소 점도 (complex vi scosi ty) 값을 하기 표 3에 함께 나타내었다. [표 3】
Figure imgf000036_0002
214950 187270 205150 360090 337500
Figure imgf000036_0001
Next, a graph of the complex viscosity according to the frequency of the copolymer prepared in Example 2 and a result of fitting this to the power law and the cross model are shown in FIG. 2. As shown in FIG. 2, it was confirmed that the results of fitting the complex viscosity graph according to the frequency of the copolymer prepared in Example 2 and the result of fitting the power law and the cross model were very similar. It was confirmed that the model is suitable for quantitatively evaluating the flow characteristics of the copolymer according to the invention. The copolymers prepared in Examples and Comparative Examples were fitted to Power Law and Cross Mode, and the values of the variables obtained are shown in Table 3 below. In addition, based on the obtained variable values, the complex viscosity (complex vi scosi ty) values at the frequencies of 800 / s and 1, 200 / s in the Cross Model are also shown in Table 3 below. TABLE 3
Figure imgf000036_0002
214950 187 270 205 150 360090 337500
Power Law Power law
c2 -0.5111 -0.4978 -0.4446 -0.6141 -0.6277c 2 -0.5111 -0.4978 -0.4446 -0.6141 -0.6277
Ci 645230 590910 376790 1978500 1958600Ci 645 230 590 910 376790 1978 500 1958 600
Cross Model c2 1.81966 2.22020 0.33886 6.57477 7.09718 Cross Model c 2 1.81966 2.22020 0.33886 6.57477 7.09718
c3 0.33584 0.36301 0.25547 0.29941 0.28975c 3 0.33584 0.36301 0.25547 0.29941 0.28975
800 rad/ s 5075.7 4988.3 5727.0 4879.7 4222.2800 rad / s 5075.7 4988.3 5727.0 4879.7 4222.2
7 _고ᄋ 03 7 _ high 03
1200 rad/s 3884.6 3860.3 4251.5 3675.2 3160.6  1200 rad / s 3884.6 3860.3 4251.5 3675.2 3160.6
폴리에틸렌 공중합체가 대구경 파이프나 복합관에 적용되는 경우 강한 압력을 받기 때문에, 주파수가 높은 영역에서의 복소 점도가 낮을수록 가공성이 높은 것으로 평가할 수 있다. 따라서, Cross Model에서 주파수가 높은 영역인 800 rad/s 및 1, 200 rad/s일 때의 복소 점도 값이 낮을수록 실제 가공성이 우수한 것으로 예측할 수 있다. 이에 상기 표 3에 나타난 바와 같이, 800 rad/s 및 1,200 rad/s일 때 비교예 대비 실시예의 복소 점도 값이 낮음을 확인할 수 있었다. 따라서, 본 발명에 따른 폴리에틸렌 공증합체는 높은 전단 속도 ( shear rate)에서의 가공성이 우수하여, 대구경 파이프 또는 복합관 가공에 바람직하게 적용할 수 있다. When a polyethylene copolymer is applied to a large diameter pipe or a composite pipe, since it receives a strong pressure, it can be evaluated that workability is so high that a complex viscosity in the high frequency area is low. Therefore, it can be predicted that the lower the value of the complex viscosity at 800 rad / s and 1,200 rad / s, which are high frequencies in the cross model, the better the processability. Thus, as shown in Table 3, it was confirmed that the complex viscosity value of the Example is lower than the comparative example when 800 rad / s and 1,200 rad / s. Therefore, the polyethylene co-polymer according to the present invention is excellent in processability at high shear rate, and can be preferably applied to large diameter pipe or composite pipe processing.

Claims

【특허청구범위】 【청구항 1】 밀도 (g/cirf)가 0.930 내지 0.950이고, MFR5(g/10 min, 190°C에서 ASTM 1238에 의하여ᅳ 측정)가 0.1 내지5이고, 용융 유동율비 (MFR2L6/MF¾, 190°C에서 ASTM 1238에 의하여 측정 )가 10 내지 200이고, 주파수 (frequency, ω [rad/s] )6\} 따른 복소 점도 (complex viscosity, *[Pa.s]) 그래프를, 하기 수학식 1의 Power Law로 피팅했을때 d 값이 250,000 내지 400 ,000이고, C2 값이 -0.7 내지 -0.5이고, 하기 수학식 2의 Cross Model로 피팅했을때 d 값이 1,500,000 내지 2, 500, 000이고, C2 값이 3 내지 10이고, C3 값이 0.2 내지 0.3인, 에틸렌 /알파-을레핀 공중합체: [Patent Claims] [Claim 1] Density (g / cirf) is 0.930 to 0.950, MFR5 (g / 10 min, measured by ASTM 1238 at 190 ° C.) is 0.1 to 5, and melt flow rate ratio (MFR2L6). / MF¾, measured according to ASTM 1238 at 190 ° C.) and a graph of complex viscosity (* [Pa.s]) according to frequency (frequency, ω [rad / s]) 6 \}. The d value is 250,000 to 400,000 when fit with the power law of Equation 1 below, the C2 value is -0.7 to -0.5, and the d value is 1,500,000 to 2, 500 when fit with the cross model of Equation 2 , 000, C2 value of 3 to 10, C3 value of 0.2 to 0.3, ethylene / alpha-lephine copolymer:
[수학식 1]  [Equation 1]
¾ ^ Cl ¾ ^ C l
'' C Λ- '' C Λ-
[수학식 2]
Figure imgf000038_0001
[Equation 2]
Figure imgf000038_0001
I、 1尋 )  I 、 1 尋)
1 + ( c 2 ) 1 + (c 2 )
【청구항 2] [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 수학식 2에서 X가 800일 때, y의 값이 3,000 내지 5,000인 것을 특징으로 하는,  In the above Equation 2, when X is 800, the value of y is characterized in that 3,000 to 5,000,
에틸렌 /알파-올레핀 공중합체.  Ethylene / alpha-olefin copolymers.
【청구항 3】 [Claim 3]
제 2항에 있어서, y의 값이 4,000 내지 4 ,900인 것을 특징으로 하는, The method of claim 2, Characterized in that the value of y is 4,000 to 4,900,
에틸렌 /알파—을레핀 공중합체.  Ethylene / Alpha—Lepin Copolymer.
【청구항 4】 [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 수학식 2에서 X가 1,200일 때, y의 값이 3,000 내지 3,800인 것을 특징으로 하는,  When x is 1,200 in Equation 2, y is 3,000 to 3,800, characterized in that
에틸렌 /알파-을레핀 공중합체.  Ethylene / Alpha-Lepine Copolymer.
【청구항 5】 [Claim 5]
게 4항에 있어서,  According to claim 4,
y의 값이 3,000 내지 3,700인 것을 특징으로 하는,  Characterized in that the value of y is 3,000 to 3,700,
에틸렌 /알파-올레핀 공중합체 .  Ethylene / Alpha-olefin Copolymers.
[청구항 6】 [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 수학식 2의 C2 값이 5 내지 8인 것을 특징으로 하는, Characterized in that the C 2 value of the formula (2) is 5 to 8,
에틸렌 /알파-올레핀 공중합체.  Ethylene / alpha-olefin copolymers.
【청구항 7】 [Claim 7]
제 1항에 있어서, 상기 에틸렌 /알파ᅳ을레핀 공중합체는,  The method of claim 1, wherein the ethylene / alpha olefin copolymer is
중량 평균 분자량 (g/mol)이 10,000 내지 400,000이고,  The weight average molecular weight (g / mol) is 10,000 to 400,000,
분자량 분포 (Mw/Mn, PDI)가 5 내지 30인 것을 특징으로 하는, 에틸렌 /알파-을레핀 공중합체.  Ethylene / alpha-lephine copolymer, characterized in that the molecular weight distribution (Mw / Mn, PDI) is 5 to 30.
【청구항 8】 [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 알파-을레핀은 1-부텐, 1-펜텐, 1-핵센, 4—메틸 -1-펜텐, 1-옥핸 1ᅳ데센, 1-도데센, 1-테트라데센, 1-핵사데센, 1-옥타데센 및 1- 에이코센으로 구성되는 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는, The alpha-olephine is 1-butene, 1-pentene, 1-nuxene, 4-methyl-1-pentene, 1-oxane 1pydecene, 1-dodecene, 1-tetradecene, 1-nuxadecene, 1- At least one selected from the group consisting of octadecene and 1-eicosene Characteristic ,
에틸렌 /알파-올레핀 공중합체 .  Ethylene / Alpha-olefin Copolymers.
【청구항 9】 [Claim 9]
제 1항에 있어서,  The method of claim 1,
入기 에틸렌 /알파-을레핀 공중합체는 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상; 및 하기 화학식 3 내지 5로 표시되는 화합물 중에서 선택되는 제 2 메탈로센 화합물 1종 이상의 존재 하에, 에틸렌 및 알파 -올레 ¾을 중합시킴으로써 제조되는,  入 / ethylene / alpha-olepin copolymer is at least one first metallocene compound represented by the formula (1); And a second metallocene compound selected from compounds represented by the following Chemical Formulas 3 to 5, prepared by polymerizing ethylene and alpha-ole ¾,
에틸렌 /알파—을레핀 공중합체:  Ethylene / Alpha—Lepin Copolymer:
Figure imgf000040_0001
Figure imgf000040_0001
상기 화학식 1에서,  In Chemical Formula 1,
A는 수소, 할로겐, 알킬, C2-20 알케닐, C620 아릴, 알킬아릴, C7-20 아릴알킬 , d-20 알콕시 , C2-20 알콕시알킬, 해테로시클로알킬, 또는 C520 헤테로아릴이고; A is hydrogen, halogen, alkyl, C 2 - 20 alkenyl Al, C 6 - 20 aryl, alkyl aryl, C 7 - 20 aryl-alkyl, d-20 alkoxy, C 2 -20 alkoxyalkyl, by interrogating cycloalkyl, or C 520 heteroaryl;
D는 -으, -S -, -N(R)- 또는 -S i (RKR ' )- 이고, 여기서 R 및 R '은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, d— 20 알킬, C2-20 알케닐, 또는 C6-20 아릴이고; D is -E, -S-, -N (R)-or -S i (RKR ')-, wherein R and R' are the same as or different from each other, and are each independently hydrogen, halogen, d- 20 alkyl, C 2 - 20 alkenyl, or C 6 - 20 aryl;
L은 Cwo 직쇄 또는 분지쇄 알킬렌이고;  L is Cwo straight or branched alkylene;
B는 탄소, 실리콘 또는 게르마늄이고;  B is carbon, silicon or germanium;
Q는 수소, 할로겐, d-20 알킬, C2-20 알케닐, C6-20 아릴, C7-20 알킬아릴, 또는 C그 20 아릴알킬이고; Q is hydrogen, halogen, d- 20 alkyl, C 2 - 20 alkenyl, C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 20 The aryl alkyl;
M은 4족 전이금속이며;  M is a Group 4 transition metal;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, d-20 알킬, C220 알케닐, C6-20 아릴, 니트로, 아미도, 20 알킬실릴, d-20 알콕시, 또는 CHO 술폰네이트이고; X 1 and X 2 are the same or different and are each independently halogen, d-20 alkyl, C 2 - 20 alkenyl, C 6 - 20 aryl, nitro, amido, 20 alkylsilyl, d-20 alkyl, or CHO sulfonate;
C1 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a , 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1 및 C2가 모두 화학식 2c인 경우는 제외하며 ; C 1 and C 2 are the same as or different from each other, and each independently 2a, 2b, or 2c, except that C 1 and C 2 are all 2c;
[화학식 2a]
Figure imgf000041_0001
Figure imgf000041_0002
[Formula 2a]
Figure imgf000041_0001
Figure imgf000041_0002
Figure imgf000041_0003
상기 화학식 2a, 2b 및 2c에서,
Figure imgf000041_0003
In Chemical Formulas 2a, 2b and 2c,
Ri 내지 R17 및 IV 내지 '는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 알킬, C2-20 알케닐, d-20 알킬실릴, d-20 실릴알킬, CHO 알콕시실릴, 알콕시, C6-20 아릴, C그 20 알킬아릴, 또는 C7-20 아릴알킬이며, 상기 0 내지 7 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고; Ri to R 17 and IV to "are the same or different, each independently represent hydrogen, halogen, alkyl, and C 2 of each other - 20 alkenyl, d- 20 alkylsilyl, d-20 alkyl silyl group, alkoxysilyl group CHO, alkoxy, C 6 - 20 aryl, C 20, and the alkyl aryl, or C 7 -20 aryl-alkyl, wherein 0-7 of the two or more adjacent to each other are connected to each other may form a substituted or unsubstituted aliphatic or aromatic ring;
[화학식 3] 상기 화학식 3에서,  [Formula 3] In Formula 3,
M1은 4족 전이금속이고; M 1 is a Group 4 transition metal;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐 , 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 1 and Cp 2 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals One, they may be substituted with a hydrocarbon of 1 to 20 carbon atoms;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, Cuo 알킬, 에 알콕시, C2-20 알콕시알킬, C620 아릴, C6-10 아릴옥시, C2-20 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C8-40 아릴알케닐, 또는 C2-10 알키닐이고; R a and R b are the same or different and each is independently hydrogen, Cuo alkyl, alkoxy, C 2 - 20 alkoxyalkyl, C 6 - 20 aryl, C 6 - 10 aryloxy, C 2 - 20 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 8 - 40 arylalkenyl, or C 2 - 10 alkynyl;
Z1은 할로겐 원자, C -20 알킬, C2-10 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C6-20 아릴 , 치환되거나 치환되지 않은 알킬리덴, 치환되거나 치환되지 않은 아미노, C2-20 알킬알콕시, 또는 C교 40 아릴알콕시이고; Z 1 is a halogen atom, C - 20 alkyl, C 2 - 10 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 6 - 20 aryl, alkylidene, substituted or unsubstituted substituted or unsubstituted are amino, C 2 - 20 alkyl, alkoxy, aryl, or C T 40 alkoxy;
n은 1 또는 0이고;  n is 1 or 0;
[화학식 4] 상기 화학식 4에서,  [Formula 4] In Formula 4,
M2는 4족 전이 금속이고; M 2 is a Group 4 transition metal;
Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,그테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; RC 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, d-20 알킬 , 에 알콕시, C2-20 알콕시알킬, C6-20 아릴 , C6-10 아릴옥시 , C2 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C8-40 아릴알케닐, 또는 C2-10 알키닐이고; Cp 3 and Cp 4 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4, 5, 6, gtetrahydro-1-indenyl and fluorenyl radicals; They may be substituted with a hydrocarbon having 1 to 20 carbon atoms; R C and R d are the same or different from each other, each independently hydrogen, d-20 alkyl, an alkoxy, C 2 -20 alkoxyalkyl, C 6 - 20 aryl, C 6 - 10 aryloxy, C 2 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 8 - 40 arylalkenyl, or C 2 - 10 alkynyl;
Z2는 할로겐 원자, ( 20 알킬, C210 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C6-20 아릴, 치환되거나 치환되지 않은 C -20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2-20 알킬알콕시, 또는 C7-40 아릴알콕시이고; Z 2 is a halogen atom, (20 alkyl, C 2 - 10 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 6 - 20 aryl, optionally substituted C -20 alkylidene, substituted or unsubstituted amino, C 2 - 20 alkyl, an alkoxy, or a C 7 - 40 aryl-alkoxy;
B1은 Cp¾c 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고; . B 1 is one or more of a carbon germanium, silicon, phosphorus or nitrogen atom containing radical which crosslinks the Cp¾ c ring with the Cp 4 R d ring or crosslinks one Cp 4 R d ring with M 2 or Combination; .
m은 1 또는 0이고;  m is 1 or 0;
[화학식 5]  [Formula 5]
(Cp5Re)B2(J )M¾32 (Cp 5 R e ) B 2 (J) M¾ 3 2
상기 화학식 5에서,  In Chemical Formula 5,
M3은 4족 전이 금속이고; M 3 is a Group 4 transition metal;
Cp5는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 5 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms Can be;
Re는 수소, C 20 알킬, d-10 알콕시, C2-20 알콕시알킬, C6-20 아릴, C6- 10 아릴옥시, C2-20 알케닐, 에 알킬아릴, C7-40 아릴알킬, C8-40 아릴알케닐, 또는 C2-10 알키닐이고; R e is hydrogen, C 20 alkyl, d- 10 alkoxy, C 2 - 20 alkoxyalkyl, C 6 - 20 aryl, C 6 - 10 aryloxy, C 2 - 20 alkenyl, the alkyl, aryl, C 7 - 40 aryl alkyl, C 8 - 40 arylalkenyl, or C 2 - 10 alkynyl;
Z3은 할로겐 원자, 알킬, C2-10 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C6-20 아릴, 치환되거나 치환되지 않은 ( 20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2-20 알킬알콕시, 또는 C7-40 아릴알콕시이고; Z 3 is a halogen atom, alkyl, C 2 - 10 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 6 - 20 aryl, optionally substituted (20 alkylidene, substituted or unsubstituted amino, C 2 - 20 alkyl, an alkoxy, or a C 7 - 40 aryl-alkoxy;
B2는 Cp¾e 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고; B 2 is at least one or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp¾ e ring and J;
J는 NRf , 0, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 d-20의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다. J is any one selected from the group consisting of NR f , 0, PR f and S, wherein R f is alkyl, aryl, substituted alkyl or substituted aryl of d-20.
PCT/KR2015/013328 2014-12-08 2015-12-07 Ethylene/alpha-olefin copolymer having excellent processability WO2016093580A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2016132145A RU2671499C1 (en) 2014-12-08 2015-12-07 Ethylene/alpha-olefin copolymers, characterized by excellent processability
US15/106,708 US10155830B2 (en) 2014-12-08 2015-12-07 Ethylene/alpha-olefin copolymers having excellent processability
EP15866382.3A EP3070108A4 (en) 2014-12-08 2015-12-07 Ethylene/alpha-olefin copolymer having excellent processability
JP2016547588A JP6482564B2 (en) 2014-12-08 2015-12-07 Ethylene / alpha-olefin copolymer excellent in processability
CN201580005067.7A CN105916896B (en) 2014-12-08 2015-12-07 Ethylene/alpha olefin polymer with excellent workability

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140174985 2014-12-08
KR10-2014-0174985 2014-12-08
KR1020150161159A KR101747401B1 (en) 2014-12-08 2015-11-17 Ethylene/alpha-olefin copolymer having excellent processibility
KR10-2015-0161159 2015-11-17

Publications (1)

Publication Number Publication Date
WO2016093580A1 true WO2016093580A1 (en) 2016-06-16

Family

ID=56107697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013328 WO2016093580A1 (en) 2014-12-08 2015-12-07 Ethylene/alpha-olefin copolymer having excellent processability

Country Status (1)

Country Link
WO (1) WO2016093580A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
KR20030012308A (en) 2001-07-31 2003-02-12 주식회사 예스아이비 Batting-type lottery system and batting method
US6828394B2 (en) 2001-07-19 2004-12-07 Univation Technologies, Llc Mixed metallocene catalyst systems containing a poor comonomer incorporator and a good comonomer incorporator
US6841631B2 (en) 1999-10-22 2005-01-11 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
KR20050024287A (en) * 2002-05-31 2005-03-10 에퀴스타 케미칼즈, 엘피 High-temperature olefin polymerisation process in solution
US20090275711A1 (en) * 2008-04-30 2009-11-05 Winslow Linda N Olefin polymerization process
KR20120087706A (en) * 2011-01-28 2012-08-07 주식회사 엘지화학 Metallocene compounds and olefin based polymer prepared by using the same
KR20130046408A (en) * 2013-03-27 2013-05-07 주식회사 엘지화학 Polyolefin with multi-modal molecular weight distributions and pipe comprising the same
KR20130113322A (en) * 2010-07-06 2013-10-15 셰브론 필립스 케미컬 컴퍼니 엘피 Catalysts for producing broad molecular weight distribution polyolefins in the absence of added hydrogen
WO2015056975A1 (en) * 2013-10-18 2015-04-23 주식회사 엘지화학 Hybrid-supported metallocene catalyst

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
US6841631B2 (en) 1999-10-22 2005-01-11 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6894128B2 (en) 1999-10-22 2005-05-17 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6828394B2 (en) 2001-07-19 2004-12-07 Univation Technologies, Llc Mixed metallocene catalyst systems containing a poor comonomer incorporator and a good comonomer incorporator
KR20030012308A (en) 2001-07-31 2003-02-12 주식회사 예스아이비 Batting-type lottery system and batting method
KR20050024287A (en) * 2002-05-31 2005-03-10 에퀴스타 케미칼즈, 엘피 High-temperature olefin polymerisation process in solution
US20090275711A1 (en) * 2008-04-30 2009-11-05 Winslow Linda N Olefin polymerization process
KR20130113322A (en) * 2010-07-06 2013-10-15 셰브론 필립스 케미컬 컴퍼니 엘피 Catalysts for producing broad molecular weight distribution polyolefins in the absence of added hydrogen
KR20120087706A (en) * 2011-01-28 2012-08-07 주식회사 엘지화학 Metallocene compounds and olefin based polymer prepared by using the same
KR20130046408A (en) * 2013-03-27 2013-05-07 주식회사 엘지화학 Polyolefin with multi-modal molecular weight distributions and pipe comprising the same
WO2015056975A1 (en) * 2013-10-18 2015-04-23 주식회사 엘지화학 Hybrid-supported metallocene catalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3070108A4 *
TETRAHEDRON LETT., 1988, pages 2951

Similar Documents

Publication Publication Date Title
JP6470834B2 (en) Excellent processability ethylene / alpha-olefin copolymer
KR101617870B1 (en) Olefin based polymer having excellent processibility
JP6487924B2 (en) Ethylene / 1-hexene or ethylene / 1-butene copolymer excellent in processability and environmental stress crack resistance
KR101747401B1 (en) Ethylene/alpha-olefin copolymer having excellent processibility
US10669363B2 (en) Catalyst composition for synthesizing olefin copolymer and method for preparing olefin copolymer
KR102260362B1 (en) Olefin copolymer
JP2017518423A (en) Polyolefin with excellent environmental stress crack resistance
WO2016036204A1 (en) Olefin-based polymer with excellent processability
EP3225638B1 (en) Ethylene/ -olefin copolymer having excellent processability and surface characteristics
WO2016167547A1 (en) Ethylene/alpha-olefin copolymer having excellent environmental stress cracking resistance
WO2016167568A1 (en) Ethylene/α-olefin copolymer having excellent processability
WO2016163810A1 (en) High-density polyethylene copolymer for blow moulding
KR102211603B1 (en) Catalyst composition for polymerizing olefin copolymer and preparation method of olefin copolymer
WO2018131793A1 (en) Olefin polymer and method for preparing same
WO2016060445A1 (en) Ethylene/1-hexene or ethylene/1-butene copolymer having outstanding working properties and environmental stress cracking resistance
WO2015194813A1 (en) Polyolefin having excellent environmental stress crack resistance
WO2016093580A1 (en) Ethylene/alpha-olefin copolymer having excellent processability
RU2773517C2 (en) Polyethylene copolymer and its production method
WO2016167548A1 (en) Ethylene/α-olefin copolymer having excellent processability and surface characteristics
WO2016099118A1 (en) Olefin-based polymer having excellent processability

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015866382

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015866382

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016547588

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016132145

Country of ref document: RU

Kind code of ref document: A