WO2016110959A1 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
WO2016110959A1
WO2016110959A1 PCT/JP2015/050260 JP2015050260W WO2016110959A1 WO 2016110959 A1 WO2016110959 A1 WO 2016110959A1 JP 2015050260 W JP2015050260 W JP 2015050260W WO 2016110959 A1 WO2016110959 A1 WO 2016110959A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
control unit
dimming
signal
unit
Prior art date
Application number
PCT/JP2015/050260
Other languages
French (fr)
Japanese (ja)
Inventor
行生 飯ヶ浜
雄太 銅玄
正幸 笹川
Original Assignee
カラーリンク・ジャパン 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カラーリンク・ジャパン 株式会社 filed Critical カラーリンク・ジャパン 株式会社
Priority to JP2015527614A priority Critical patent/JP5947464B1/en
Priority to PCT/JP2015/050260 priority patent/WO2016110959A1/en
Publication of WO2016110959A1 publication Critical patent/WO2016110959A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses

Definitions

  • the present invention relates to an optical device.
  • Patent Document 1 JP-A-48-98844
  • Patent Document 2 JP-A-9-179075
  • the conventional optical device cannot realize appropriate light control in consideration of the color of incident light.
  • a conventional optical device it is not possible to provide appropriate dimming by distinguishing sunlight during the day, sunset light, and other environmental light.
  • the dimming unit capable of changing the transmittance, and receiving the light of the first wavelength and outputting the first signal corresponding to the light quantity, the second wavelength different from the first wavelength
  • An optical apparatus comprising: a first light receiving unit that receives light and outputs a second signal corresponding to the amount of light; and a control unit that controls the transmittance of the light control unit based on the first signal and the second signal.
  • FIG. 1 The light control part 16 controlled to the non-light control state is shown.
  • the light control part 16 controlled to the 1st light control state is shown.
  • the light control part 16 controlled to the 2nd light control state is shown.
  • An example of control of the light control part 16 based on the light quantity and the color by the main control part 54 is shown. It is a figure explaining the position and color of the sun. It is a graph which shows the relationship between the position of the sun, illuminance, and color.
  • the modification of the light control part 16 of a 1st light control state is shown. Another modification of the light control part 16 of a 1st light control state is shown. The modification of the light control part 16 of a 2nd light control state is shown. It is a figure which shows the relationship between the duty ratio of the voltage applied to the liquid-crystal member, and the time until stabilization of the transmittance
  • the modification which the optical apparatus 110 has a some light-receiving part is shown.
  • An example of control based on the light amount and color by the main control unit 54 is shown.
  • regions is shown.
  • the example of the 1st light control state of the light control part 16 in this modification is shown.
  • a modification in which the optical device 110 estimates the incident direction of light with a single light receiving unit will be described.
  • An example of the operation of a plurality of divided transparent areas is shown.
  • An example of control based on the light amount, color, and incident angle by the main control unit 54 is shown.
  • 9 shows a flowchart of a modification of processing by the optical device 110.
  • 9 shows a flowchart of a modification of processing by the optical device 110.
  • An example of a change from the non-dimming state to the first dimming state by the optical device 110 is shown.
  • the example of the change from the non-dimming state by the optical apparatus 110 to a 2nd dimming state is shown.
  • the example of the change from the 1st light control state by the optical apparatus 110 to a non-light control state is shown. It is a graph of the experimental result which measured the transmittance
  • FIG. 1 is an overall configuration diagram of the optical device 110.
  • an example of the optical device 110 is eyeglasses.
  • the optical device 110 may be a front portion of a helmet or a vehicle.
  • the top, bottom, left, and right front and rear directions of the optical device 110 when viewed from the user wearing the optical device 110 are the top, bottom, left and right front and rear directions of the optical device 110.
  • the optical device 110 includes a frame body 12, a power supply unit 14, a pair of left and right light control units 16, a proximity sensor 18, a first light receiving unit 20, and a control unit 22.
  • the frame 12 holds a power supply unit 14, a pair of light control units 16, a proximity sensor 18, a first light receiving unit 20, and a control unit 22.
  • the frame 12 has a pair of left and right arm portions 24, 24 and a frame main body portion 26.
  • the front end portions of the pair of arm portions 24 are respectively connected to the left and right end portions of the frame main body portion 26.
  • the rear end portion of the arm portion 24 is put on the user's ear.
  • the frame main body part 26 is disposed in front of the user's eyes together with the pair of light control parts 16.
  • the frame main body portion 26 supports the pair of light control portions 16.
  • the power supply unit 14 is controlled by the control unit 22 to apply a voltage to the pair of light control units 16, the proximity sensor 18, the first light receiving unit 20, and the control unit 22.
  • An example of the power supply unit 14 is a rechargeable secondary battery.
  • An example of the secondary battery is a lithium battery or a nickel battery.
  • the power supply unit 14 may be a primary battery.
  • the pair of light control sections 16 are held by the frame body section 26 and provided in front of the user's left eye and right eye.
  • the pair of dimming units 16 can change the transmittance of light incident from the outside according to the voltage output from the power supply unit 14 and adjusted and applied by the control unit 22.
  • the light control part 16 may have the 1st area
  • the light control unit 16 includes a first region 62 that includes the central portion of the light control unit 16 but does not include at least a part of the end, and a second region 64 that includes at least a part of the end of the light control unit 16. May be included.
  • the light control unit 16 includes a first region 62 including a center and a lower portion (including a lower end portion) and a second region 64 including an upper portion (including an upper end portion) as shown in FIG. Have.
  • the light control unit 16 includes a first region 62 corresponding to the central portion of the light control unit 16 where the user's line of sight concentrates, and a second region 64 surrounding the outer periphery of the first region 62. Also good. In such a case, the user's line of sight is likely to concentrate on the first area 62, but the user's line of sight is less likely to be concentrated on the second area 64.
  • the proximity sensor 18 is disposed on the rear surface of the central portion of the frame main body 26, that is, on the user side, and detects that the user has attached the optical device 110.
  • the proximity sensor 18 is connected to the control unit 22.
  • the proximity sensor 18 detects the presence / absence of an object behind the frame body 26 and outputs information about the presence / absence to the control unit 22. Therefore, when the optical device 110 is attached to the user, the proximity sensor 18 detects that the user is present behind the frame body 26 and sends a presence signal, which is an example of information regarding presence / absence, to the control unit 22. Output.
  • An example of the proximity sensor 18 is a light emitting element that outputs light such as infrared rays backward, and a light receiving element that receives light such as infrared rays output from the light emitting elements and converts the light into electrical signals. Therefore, the light output from the light emitting element is reflected by the user or the like wearing the optical device 110 and received by the light receiving element. In this case, the proximity sensor 18 detects the presence of the user and outputs a presence signal.
  • the first light receiving unit 20 is disposed on the front surface of the central portion of the frame main body 26, that is, on the incident side, and detects light incident on the optical device 110.
  • the first light receiving unit 20 is connected to the control unit 22.
  • the 1st light-receiving part 20 is provided toward the front.
  • the front includes not only a straight front where the inclination from the horizontal direction and the vertical direction is 0 °, but also a direction inclined in the horizontal direction and the vertical direction.
  • the first light receiving unit 20 detects the amount of light from the outside incident from the front, and outputs a signal indicating the detected amount of light to the control unit 22. Details of the first light receiving unit 20 will be described later.
  • the control unit 22 is provided at the center of the frame main body 26 and controls the operation of the optical device 110.
  • the control unit 22 may be connected to the light control unit 16 by a flexible wiring.
  • the control unit 22 governs overall control of the optical device 110. Details of the control unit 22 will be described later.
  • FIG. 2 is an exploded perspective view of the light control unit 16.
  • the front is outside. Accordingly, the light from the outside travels from the front or the direction inclined in the vertical direction to the rear as indicated by the arrow A1. Further, when the user wears the optical device 110, the user becomes a position behind the light control unit 16.
  • the light control unit 16 includes an incident side polarizing plate 30, an incident side substrate 32, an incident side transparent electrode 34, an incident side alignment film 36, a liquid crystal member 38, and an output side alignment film 40. And an output side transparent electrode 42, an output side substrate 44, and an output side polarizing plate 46.
  • the incident side polarizing plate 30 is disposed on the most incident side of the light control unit 16.
  • the incident side polarizing plate 30 covers the entire surface on the outgoing side of the incident side substrate 32.
  • the incident-side polarizing plate 30 has a transmission axis that is inclined counterclockwise from the horizontal direction when viewed from the emission side, as indicated by an arrow A2.
  • An example of the inclination angle of the transmission axis of the incident side polarizing plate 30 is 45 ° clockwise from the vertical direction when viewed from the output side.
  • the incident side polarizing plate 30 emits light incident from the outside, for example, non-polarized natural light as linearly polarized light having a polarization direction parallel to the transmission axis.
  • the incident side substrate 32 is disposed on the exit side of the incident side polarizing plate 30.
  • the incident side substrate 32 is made of an insulating material capable of transmitting light such as optically isotropic glass.
  • the incident side substrate 32 holds the incident side polarizing plate 30, the incident side transparent electrode 34, and the incident side alignment film 36.
  • the incident side transparent electrode 34 is formed over the entire surface on the exit side of the incident side substrate 32.
  • the incident-side transparent electrode 34 is made of a material such as ITO (Indium Tin Oxide) that has conductivity and can transmit light.
  • the incident-side transparent electrode 34 includes a divided electrode 162 corresponding to the first region 62 and a divided electrode 160 corresponding to the second region 64.
  • the incident-side alignment film 36 is formed over the entire surface on the exit side of the incident-side transparent electrode 34.
  • the incident-side alignment film 36 has a rubbing direction on the lower left side when viewed from the emission side, as indicated by an arrow A3.
  • An example of the rubbing direction of the incident-side alignment film 36 is a direction inclined by 45 ° from the horizontal direction to the lower left when viewed from the output side.
  • the rubbing direction of the incident side alignment film 36 is parallel to the transmission axis of the incident side polarizing plate 30.
  • the incident side alignment film 36 aligns the liquid crystal molecules of the liquid crystal member 38 along the rubbing direction.
  • the liquid crystal member 38 is provided on the emission side, that is, on the user side of the incident side alignment film 36 and the incident side polarizing plate 30.
  • An example of the material constituting the liquid crystal member 38 is positive nematic liquid crystal.
  • Linearly polarized light having a polarization direction parallel to the transmission axis of the incident side polarizing plate 30 is incident on the liquid crystal member 38.
  • the liquid crystal member 38 rotates the polarization direction of the incident linearly polarized light by 90 °.
  • the liquid crystal member 38 emits the incident linearly polarized light with its polarization direction rotated by less than 90 ° or without rotating.
  • the emission side alignment film 40 is provided over the entire emission side surface of the liquid crystal member 38.
  • the emission side alignment film 40 is provided on the user side with respect to the liquid crystal member 38. Accordingly, the liquid crystal member 38 is disposed between the incident side alignment film 36 and the emission side alignment film 40.
  • the exit-side alignment film 40 has an upper left rubbing direction as seen from the exit side, as indicated by an arrow A4. In other words, the rubbing direction of the exit-side alignment film 40 is the same left direction in the horizontal direction as the rubbing direction of the incident-side alignment film 36, and is a different upward direction in the vertical direction.
  • An example of the rubbing direction of the emitting side alignment film 40 is a direction inclined 45 ° from the horizontal direction to the upper left side when viewed from the emitting side.
  • the rubbing direction of the emission side alignment film 40 is orthogonal to the rubbing direction of the incident side alignment film 36.
  • the exit side alignment film 40 aligns the liquid crystal molecules of the liquid crystal member 38 along the rubbing direction. As a result, the liquid crystal member 38 is in a twisted nematic mode.
  • the exit-side transparent electrode 42 is provided over the entire exit-side surface of the exit-side alignment film 40.
  • the incident side transparent electrode 34 and the emission side transparent electrode 42 are provided to face each other. Accordingly, the liquid crystal member 38 is provided between the incident side transparent electrode 34 and the emission side transparent electrode 42.
  • the incident-side transparent electrode 34 and the emission-side transparent electrode 42 apply a voltage at substantially the same potential over the entire surface of the liquid crystal member 38.
  • the exit side transparent electrode 42 may be made of the same material as the entrance side transparent electrode. Instead of dividing the incident side transparent electrode 34, the emission side transparent electrode 42 may be divided to have a plurality of divided electrodes.
  • the exit side substrate 44 is disposed on the exit side of the exit side surface of the exit side transparent electrode 42.
  • the exit side substrate 44 may be made of the same material as the entrance side substrate 32.
  • the emission side substrate 44 holds the emission side alignment film 40, the emission side transparent electrode 42, and the emission side polarizing plate 46.
  • the incident side substrate 32 and the emission side substrate 44 seal the liquid crystal member 38.
  • the exit side polarizing plate 46 covers the entire exit side surface of the exit side substrate 44.
  • the exit side polarizing plate 46 is disposed on the most exit side of the light control unit 16.
  • the output side polarizing plate 46 has a transmission axis inclined clockwise from the horizontal direction when viewed from the output side, as indicated by an arrow A5.
  • An example of the inclination angle of the transmission axis of the output side polarizing plate 46 is 45 ° counterclockwise from the vertical direction when viewed from the output side. Therefore, the transmission axis of the exit side polarizing plate 46 is parallel to the rubbing direction of the exit side alignment film 40.
  • the output side polarizing plate 46 has a transmission axis orthogonal to the transmission axis of the incident side polarizing plate 30. Linearly polarized light modulated by the liquid crystal member 38 enters the output-side polarizing plate 46 and emits linearly polarized light having a polarization direction parallel to the transmission axis.
  • the light control unit 16 has such a configuration, so that non-polarized incident light is converted into linearly polarized light by the incident-side polarizing plate 30, and linearly polarized light is modulated by the liquid crystal member 38.
  • the light that has passed through the output side polarizing plate 46 is output as output light.
  • the liquid crystal member 38 rotates the incident linearly polarized light by 90 degrees in a state where no voltage is applied, and outputs linearly polarized light whose rotation angle gradually decreases as the voltage is gradually applied.
  • the incident linearly polarized light is output without being rotated.
  • the light control part 16 will be in a permeation
  • FIG. 3 is a block diagram of the control system of the optical device 110.
  • the control unit 22 includes a charging unit 50, a liquid crystal driving unit 52, a main control unit 54 that is an example of a voltage control unit, and a storage unit 56.
  • the charging unit 50 connects the power supply unit 14 and an external power supply.
  • the charging unit 50 controls the start and stop of charging of the power supply unit 14 based on an instruction from the control unit 22.
  • the charging unit 50 outputs information on the state of charge of the power supply unit 14 to the main control unit 54.
  • the liquid crystal driving unit 52 receives power from the power supply unit 14.
  • the liquid crystal driving unit 52 applies a voltage to the liquid crystal member 38 via the incident side transparent electrode 34 and the emission side transparent electrode 42.
  • the liquid crystal driving unit 52 includes an operational amplifier and an analog switch.
  • the main control unit 54 controls the optical device 110 via the charging unit 50, the liquid crystal driving unit 52, and the storage unit 56.
  • the main control unit 54 controls the voltage applied to the dimming unit 16 via the liquid crystal driving unit 52.
  • the main control unit 54 controls the voltage applied to the dimming unit 16 via the incident-side transparent electrode 34 and the emission-side transparent electrode 42 in a state where the presence signal is input from the proximity sensor 18.
  • the main control unit 54 does not apply a voltage to the dimming unit 16 and does not control the dimming of the dimming unit 16 when no presence signal is input from the proximity sensor 18.
  • the main control unit 54 turns on the optical device 110 when the presence signal is input, and turns off the optical device 110 when the presence signal is not input.
  • the main control unit 54 switches the power-on state and the off-state of the optical device 110 based on the state of charge of the power supply unit 14 acquired from the charging unit 50.
  • the main control unit 54 controls the voltage applied to the liquid crystal member 38 of the light control unit 16 based on the signal acquired from the first light receiving unit 20, thereby changing the light control state of the light control unit 16. Control. As a specific example, the main control unit 54 controls the voltage applied to the liquid crystal member 38 by periodically switching between a high voltage and a low voltage. An example of the high voltage is 3V, and an example of the low voltage is 0V. Note that the main control unit 54 alternately applies +3 V and ⁇ 3 V every cycle when a high voltage is applied. The main control unit 54 switches between a high voltage and a low voltage at a frequency between 600 Hz. Here, the main control unit 54 synchronizes the voltages applied to the left and right light control units 16.
  • the main control unit 54 controls the transmittance of the light control unit 16 according to the duty ratio of the high voltage.
  • the duty ratio of the high voltage here is a ratio of the time for applying the high voltage to one cycle, that is, the sum of the time for applying the low voltage and the time for applying the high voltage. In the following description, when the duty ratio is simply described, the duty ratio means a high voltage duty ratio.
  • the main control unit 54 controls the voltage so that the transmittance of the light control unit 16 does not become “0”, that is, does not completely block light. More preferably, the main control unit 54 controls the voltage so that the transmittance of the light control unit 16 is 8% or more.
  • the main control unit 54 switches the voltage applied to the dimming unit 16 according to the duty ratio of the voltage applied to the dimming unit 16 and switches the transmittance of the dimming unit 16. For example, the main controller 54 decreases the transmittance of the first region 62 / second region 64 by increasing the duty ratio of the voltage applied to the divided electrode 160 / divided electrode 162, thereby dividing the divided electrode 160 / divided electrode 162. The transmittance of the first region 62 / second region 64 is increased by lowering the duty ratio of the voltage applied to the first region 62.
  • FIG. 4 is a block diagram showing the first light receiving unit 20.
  • Each of the first light receiving units 20 receives light in a specific wavelength range and outputs a signal corresponding to the amount of received light.
  • the first light receiving unit 20 receives light having a first wavelength and outputs a first signal corresponding to the amount of light, receives light having a second wavelength different from the first wavelength, and second corresponding to the amount of light. Output a signal.
  • the first light receiving unit 20 may include one or a plurality of light receiving sensors.
  • the first light receiving unit 20 supplies the control unit 22 with the light amount and color information of the incident light by supplying the control unit 22 with a signal indicating the amount of light received from each of the plurality of light receiving sensors. It's okay.
  • the first light receiving unit 20 receives the light of the first wavelength and outputs the first signal according to the light amount, and the light of the second wavelength different from the first wavelength.
  • a second light receiving sensor 204 that receives the light and outputs a second signal corresponding to the amount of light; and a third light that receives light having a first wavelength and a third wavelength different from the second wavelength and outputs a third signal corresponding to the amount of light.
  • a light receiving sensor 206 is included.
  • the first light receiving unit 20 may be an RGB color sensor, and the first light receiving sensor 202 receives light in the vicinity of a red wavelength (for example, 620 nm) and outputs a first signal, and the second light receiving sensor. 204 receives light in the vicinity of a wavelength (for example, 540 nm) that becomes green and outputs a second signal, and the third light receiving sensor 206 receives light in the vicinity of a wavelength (for example, 460 nm) that becomes blue and receives a third signal. May be output.
  • the first light receiving unit 20 may include a first light receiving sensor that receives red light and a second light receiving sensor that receives all visible light.
  • the first light receiving unit 20 may be a photodiode with a color filter.
  • each light receiving sensor such as the first light receiving sensor 202 receives light of each color transmitted through each pixel of the color filter.
  • the first light receiving unit 20 may be a photodiode with a diffraction grating.
  • each light receiving sensor such as the first light receiving sensor 202 receives light of each color dispersed by the diffraction grating.
  • the first light receiving unit 20 may be a photodiode with a color changer.
  • the first light receiving unit 20 may have one light receiving sensor, and the color wheel is arranged in front of the light receiving sensor.
  • the light receiving sensor may receive light of different colors (wavelengths) in time division, and the light reception sensor may output the first signal, the second signal, and the like in time division.
  • Each light receiving sensor such as the first light receiving sensor 202 outputs an analog electric signal corresponding to the amount of received light of each color as the first signal and the second signal.
  • each light receiving sensor may convert an analog electric signal corresponding to the amount of received light of each color into a digital signal (such as an electric signal or an optical signal) and output it.
  • the main control unit 54 receives signals from the plurality of light receiving sensors of the first light receiving unit 20, calculates the amount and color of incident light, and switches the light control unit 16 between the plurality of light control states. For example, the main control unit 54 performs dimming based on the first signal, the second signal, and / or the third signal received from the first light receiving sensor 202, the second light receiving sensor 204, and / or the third light receiving sensor 206.
  • the transmittance of the unit 16 is controlled to switch the light control unit 16 to the non-light control state, the first light control state, or the second light control state.
  • FIG. 5 shows the dimming unit 16 controlled to the non-dimming state.
  • the main control unit 54 compares the calculated amount and color of incident light with the reference stored in the storage unit 56.
  • the main control unit 54 does not apply a voltage to the liquid crystal member 38 of the light control unit 16 when determining that the light amount and color of the incident light satisfy a predetermined standard.
  • the liquid crystal member 38 rotates the linearly polarized light incident in the entire region by 90 ° and emits it.
  • the light control unit 16 enters the non-light control state shown in FIG.
  • the state shown in FIG. 5 is a state where the transmittance of the light control unit 16 is the largest.
  • the optical device 110 is a normally white mode in which the transmittance is maximized when no voltage is applied.
  • the term “transmittance” may refer to, for example, the transmittance for light incident from the vertical direction on the surface of the light control unit 16.
  • the “transmittance” is a straight line that connects each region of the light control unit 16 from the position of the eye of the person using the optical device 110 that is spectacles (for example, the position of the user's eye assumed in design). May refer to the transmittance for light incident along the.
  • the transmittance of the first region of the light control unit 16 may be the transmittance of light along a line connecting the center of the first region and the human eye.
  • FIG. 6 shows the dimming unit 16 controlled to the first dimming state.
  • the main control unit 54 independently controls the transmittance of the first region 62 and the second region 64 of the light control unit 16 in the first light control state.
  • the main control unit 54 makes the transmittance of the second region 64 at the end lower than the first region 62 at the center of the light control unit 16 in the vertical direction.
  • the main control unit 54 determines that the light amount and color of the light received by the first light receiving unit 20 satisfy a predetermined standard, only the divided electrode 162 of the dimming unit 16 has a predetermined first.
  • a high voltage and a low voltage are periodically applied at a duty ratio of 1.
  • the second region 64 located at the upper end of the light control unit 16 emits a part or all of the incident linearly polarized light by rotating it less than 90 °.
  • the optical device 110 effectively dimmes strong light (for example, sunlight) from above the field of view in a first dimming state like a ridge.
  • the main control unit 54 does not apply a voltage to the divided electrodes 160, and the first region 62 of the light control unit 16 is in the normally white mode as in FIG.
  • the main control unit 54 may reduce the transmittance of the lower end and / or the left and right ends of the dimming unit 16 by providing the divided electrodes at the lower end and / or the left and right ends of the dimming unit 16.
  • FIG. 7 shows the dimming unit 16 controlled to the second dimming state.
  • the main control unit 54 controls the dimming unit 16 so that the difference in transmittance between the first region 62 at the center and the second region 64 at the end is smaller than in the first dimming state. Control.
  • the main control unit 54 controls the dimming unit 16 so that the difference in transmittance between the first region 62 and the second region 64 becomes zero in the second dimming state.
  • the main control unit 54 determines that the light amount and color of the light received by the first light receiving unit 20 satisfy a predetermined standard
  • the main control unit 54 applies the first electrode to the divided electrode 160 and the divided electrode 162 of the dimming unit 16.
  • a high voltage and a low voltage are periodically applied at a predetermined second duty ratio smaller than the duty ratio.
  • the light control part 16 rotates and emits a part or all of the incident linearly polarized light by less than 90 ° in the entire region.
  • the dimmer 16 is entirely translucent.
  • the optical device 110 effectively reduces light from the entire field of view (for example, sunlight reflected on a white wall) like a normal sunglasses.
  • the transmittance of the first region 62 and the second region 64 is lower than the transmittance of the light control unit 16 illustrated in FIG. 5 and higher than the transmittance of the second region 64 illustrated in FIG. 6. State.
  • FIG. 8 shows an example of control of the light control unit 16 based on the light amount and color by the main control unit 54.
  • the main control unit 54 Based on a table stored in advance in the storage unit 56, the main control unit 54 receives information on the light amount and color of light incident from the first light receiving unit 20, and determines whether the light amount and color meet predetermined criteria. And the dimming unit 16 may be switched between the non-dimming state, the first dimming state, and the second dimming state based on the determination result.
  • the main control unit 54 calculates the amount of light received by the first light receiving unit 20 from the average intensity of signals received from the plurality of light receiving sensors of the first light receiving unit 20, and based on the light amount. Then, it is determined whether or not the light received by the first light receiving unit 20 is brighter than a predetermined illuminance standard. As an example, the main control unit 54 determines whether the light received by the first light receiving unit 20 is brighter than the first threshold Th1, or the light received by the first light receiving unit 20 is greater than the second threshold Th2 that is smaller than the first threshold Th1. It is determined whether it is bright or the brightness of the light received by the first light receiving unit 20 is less than the second threshold Th2.
  • the main control unit 54 calculates color information of light received by the first light receiving unit 20 from ratios of signal intensities from the plurality of light receiving sensors of the first light receiving unit 20, and based on the color information. Then, it is determined whether the light received by the first light receiving unit 20 is red above a predetermined color reference. A specific determination method of the main control unit 54 will be described later.
  • the main control unit 54 determines that the light received by the first light receiving unit 20 is brighter than the first threshold Th1 ((a) and (d) in FIG. 8), and the first light receiving unit 20 When the received light is determined to be brighter than a first threshold Th2 smaller than the first threshold Th1 and brighter than a predetermined reference and red ((b) in FIG. 8), the dimmer 16 is controlled to the first dimming state. To do. Thereby, the main control unit 54 determines that the sunlight is directly incident on the user's eyes when the light received by the first light receiving unit 20 is very bright ((a) and (b)).
  • the glare of the user can be reduced by forming a bowl-shaped light-shielding region in the second region at the end of the light control unit 16 where sunlight is likely to pass. Further, the main control unit 54 determines that the sunset is incident when the light received by the first light receiving unit 20 is brighter and more red to some extent, and forms a similar light shielding region in the light control unit 16, The glare of the user can be reduced.
  • the main control unit 54 determines that the light received by the first light receiving unit 20 is brighter than the second threshold Th2, which is smaller than the first threshold Th1, but is not red above a predetermined reference ((e in FIG. 8) )).
  • the light control unit 16 is controlled to the second light control state. Accordingly, when the light received by the first light receiving unit 20 is brighter than a certain level and is not red (e), the main control unit 54 receives reflected sunlight (for example, light that is irregularly reflected by white walls). It can be determined that the light is incident on the optical device 110, and a thin light-shielding region can be formed in the entire light control unit 16, thereby reducing the glare of the user.
  • FIG. 9 is a diagram for explaining the position and color of the sun.
  • FIG. 10 is a graph showing the relationship among the sun position, illuminance, and color.
  • the position of the sun in a state where the sun is directly above the user is assumed to be Su1.
  • the positions where the sun gradually sinks to the west as time passes are assumed to be positions Su2 to Su5, respectively.
  • the sun is in the western day and is reddish compared to Su1 and Su2.
  • the sun is sinking below the horizon LH or the horizon LH, but the west direction is bright.
  • the first threshold value Th1 of the light amount is set so that the transmittance of the light control unit 16 is lowered from the position Su2 to the position Su3 where the direct sunlight is strong and the light amount is large.
  • the difference in the light amount between Su1 and Su3 is about 50 times, but in FIG. 10, the difference in the light amount at each sun position Su1 to Su5 is shown smaller than the actual for convenience of explanation.
  • the second threshold value Th2 and the color reference are set so that the transmittance of the light control unit 16 is lowered in the sunset Su4, which is not so strong but the incident angle is low and is easily disturbed by human eyes.
  • FIG. 11 shows a modification of the light control unit 16 in the first light control state.
  • the main control unit 54 may vary the transmittance of the first region 62 of the dimming unit 16 in the first dimming state. For example, when the light amount is larger than a predetermined reference, the main control unit 54 has a higher transmittance than the second region 64 in the first region 62 in the first dimming state as shown in FIG.
  • the semi-transmission state may have a lower transmittance than the non-dimming state, and the first region 62 may have the same transmission state as the non-dimming state as shown in FIG.
  • the main control unit 54 determines that it corresponds to the table (a), (b), or (d) of FIG. 8 based on the signals from the plurality of light receiving sensors, the main control unit 54 controls the first dimming unit 16. Control to the state.
  • the main control unit 54 places the first region 62 in a state where the transmittance is lower (for example, the semi-transmissive state in FIG. 11A) in order to further reduce glare.
  • the transmittance of the light control unit 16 may be controlled.
  • the main control unit 54 controls the first region 62 to be in a semi-transmissive state in the cases of FIGS.
  • the main control unit 54 receives light from the first light receiving unit 20 based on signals from a plurality of light receiving sensors (for example, the first signal, the second signal, the third signal, or a combination of two or more thereof).
  • a predetermined color reference for example, the first signal, the second signal, the third signal, or a combination of two or more thereof.
  • Th1 a predetermined illuminance reference
  • the transmittance of the dimming unit 16 may be controlled so that the first region 62 has a higher transmittance (for example, the transmitting state in FIG. 11B).
  • the optical device 110 has the first region 62 in the first dimming state. It is possible to allow the user to fully observe scenery other than the sun without reducing the transmittance.
  • FIG. 12 shows another modification of the light control unit 16 in the first light control state.
  • the main control unit 54 may change the transmittance of the second region 64 in addition to / instead of changing the transmittance of the first region 62 of the dimming unit 16 in the first dimming state. For example, when the light amount is larger than a predetermined reference, the main control unit 54 may set the second region 64 in the first dimming state to a low transmittance state as shown in FIG. If it is less than the reference, the second region 64 may not be in the transmissive state as shown in FIG.
  • the main control unit 54 is in a state where the second region 64 has a lower transmittance in the first dimming state when it corresponds to FIG. 8A and / or FIG. 8D (FIG. 12A).
  • the transmittance of the light control unit 16 may be controlled so that the second region 64 has a higher transmittance (FIG. 12B).
  • the optical device 110 can adjust the dimming action of the bowl-shaped light shielding region in the first dimming state according to the glare of the light source.
  • FIG. 13 shows a modification of the light control unit 16 in the second light control state.
  • the main control unit 54 may switch the transmittance of the dimming unit 16 to a plurality of levels in the second dimming state. For example, in the second dimming state, the main control unit 54 may control the transmittance of the dimming unit 16 to a plurality of subdivided levels according to the light amount.
  • the main control unit 54 determines that the light received by the first light receiving unit 20 corresponds to FIG. 8E based on the first signal, the second signal, and the like, the first threshold Th1> third.
  • a third threshold value Th1.1 that satisfies threshold value Th1.1> second threshold value Th2 is set, and it is determined whether the received light amount LA satisfies Th2 ⁇ LA ⁇ Th1.1 or Th1.1 ⁇ LA ⁇ Th1. To do.
  • the main control unit 54 determines that Th2 ⁇ LA ⁇ Th1.1 is satisfied, the transmittance of the light control unit 16 is set to a relatively high first level as illustrated in FIG.
  • the transmittance of the light control unit 16 is set to a relatively low second level as shown in FIG. Thereby, the main control part 54 can make the suitable dimming effect
  • the main control unit 54 controls the dimming unit 16 at a plurality of transmittance levels in the second dimming state
  • the main control unit 54 changes the transmittance of the dimming unit 16 from a certain level to another level.
  • the threshold value for returning the transmittance from another level to the original level again may be given more margin than the first threshold value used first.
  • the main control unit 54 sets the third threshold Th1.1 that satisfies the first threshold Th1> the third threshold Th1.1> the second threshold Th2.
  • the main control unit 54 determines that the light received by the first light receiving unit 20 has become brighter than the third threshold Th1.1
  • the main control unit 54 transmits the transmittance of the light control unit 16 from the first level to the first level. Switch to the second level where the rate is low.
  • the main control unit 54 has a fourth threshold value Th1.2 that is smaller than the third threshold value Th1.1 that satisfies the third threshold value Th1.1> the fourth threshold value Th1.2> the second threshold value Th2.
  • the transmittance of the light control unit 16 may be switched from the second level to the first level when it is determined that the light received by the first light receiving unit 20 has become darker than the fourth threshold Th1.2.
  • the main control unit 54 does not easily return the transmittance level to the original level even if the light amount returns to the original level after once switching the transmittance level of the dimming unit 16 in the second dimming state. This prevents a phenomenon in which the dimming state is switched one after another in the vicinity of the light amount threshold value. Therefore, the optical device 110 can improve the visibility of the user.
  • FIG. 14 is a diagram showing the relationship between the duty ratio of the voltage applied to the liquid crystal member 38 via the divided electrode 160 and the time until the transmittance is stabilized.
  • the example shown in FIG. 14 is a case where the liquid crystal member 38 is set to a super twist nematic mode.
  • the transmittance of the light control unit 16 becomes a substantially maximum value and is saturated when the voltage is switched from a high voltage to a low voltage.
  • the time required for the transmittance to stabilize after switching from the high voltage to the low voltage is about 7 ms. It is.
  • the time required for stabilization of the transmittance is the time from when the transmittance of the light control unit 16 is at the minimum value until the voltage is switched to the maximum value. Since one cycle of 60 Hz is 16.67 ms, the time during which a low voltage is applied during one cycle is 8.33 ms.
  • the transmittance of the light control unit 16 changes from the maximum value to the minimum value
  • the time required for the transmittance to stabilize after switching from the low voltage to the high voltage is about 300 ⁇ s. Therefore, the time until the transmittance increases and stabilizes is longer than the time until the transmittance decreases and stabilizes.
  • the transmittance changes from the maximum value to the minimum value the liquid crystal molecules of the liquid crystal member 38 change from the twisted state along the exit side from the incident side to the linearly arranged state.
  • the main control unit 54 needs a little processing time to process the signal after receiving the signal indicating the increase in the light amount from the first light receiving unit 20 and to output a signal for controlling the light control unit 16.
  • the main controller 54 detects the increase in the amount of light from the first light receiving unit 20 based on the first signal and / or the second signal, etc.
  • the state or the second dimming state is controlled to reduce the transmittance of the dimming unit 16. Details of the change time of the light control state of the light control unit 16 will be described later.
  • the optical device 110 can provide appropriate light control to the user before the time when a person feels uncomfortable with the dazzling light has elapsed.
  • the time required for the transmittance to stabilize after switching from the high voltage to the low voltage is about 5 ms. It is. However, in the twisted nematic mode, it takes 1 ms for the transmittance to start changing after switching from a high voltage to a low voltage. In the twisted nematic mode, when the transmittance of the light control unit 16 changes from the maximum value to the minimum value, the time required for the transmittance to stabilize after switching from the low voltage to the high voltage is about 300 ⁇ s. .
  • the main controller 54 applies a high voltage at 600 Hz, for example, as shown in the lower part of FIG.
  • the main control unit 54 determines the time required for stabilization when the transmittance of the dimmer 16 changes from the minimum value to the maximum value by switching the voltage, and the dimmer 16
  • the high voltage and the low voltage are switched in a cycle shorter than the sum of the time required for stabilization.
  • the main control unit 54 sets the high voltage at a cycle shorter than the time required for stabilization when the transmittance of the dimming unit 16 is changed from the minimum value to the maximum value by switching the voltage. Switching between low voltage.
  • a plurality of duty ratios exist in one cycle. As described above, the plurality of duty ratios are related to the transmittance of the light control unit 16. A specific example of this relationship will be described.
  • FIG. 15 is a graph showing the relationship between the duty ratio and the transmittance of the light control unit 16.
  • the lower graph of FIG. 15 shows the waveform of the voltage applied to the dimmer 16.
  • the period from each voltage waveform VL1 to voltage waveform VL5 is the same.
  • the high voltage values are the same and the low voltage values are the same.
  • the duty ratio of the high voltage gradually decreases.
  • the transmittance waveform WA1 to the transmittance waveform WA5 in the upper graph of FIG. 15 are graphs of the forward transmittance of the dimming unit 16 to which the voltage waveform VL5 is applied, respectively.
  • the transmittance of the light control unit 16 is shorter than the time until the liquid crystal member 38 stabilizes the period of the applied voltage, and therefore, a part of the transmittance between the maximum value and the minimum value. Amplitude in region.
  • the duty ratio of the high voltage is related to the transmittance. Specifically, as the duty ratio increases as in the voltage waveform VL1 or the like, the high voltage time becomes longer. Therefore, since the time during which the transmittance is high is shortened, the integrated transmittance obtained by integrating the transmittance with time is low. On the other hand, when the duty ratio is low as in the voltage waveform VL5, the low voltage time is lengthened.
  • the main control unit 54 gives one of the voltage waveforms VL1 to VL5 to the divided electrodes, or does not apply a voltage, so that the transmittance of each region of the light control unit 16 is increased. By switching, each light control state of the light control unit 16 is realized.
  • the main control unit 54 switches the high voltage and the low voltage at a cycle shorter than the time during which the liquid crystal member 38 is stabilized, and applies it to the light control unit 16.
  • the optical device 110 can amplify the transmittance of the light control unit 16 in a partial region between the maximum value and the minimum value.
  • the user sees the outside in a state where the light amount is amplified at a constant value, and thus the optical device 110 can reduce flicker.
  • the main control unit 54 switches between a high voltage and a low voltage at a cycle that is extremely shorter than the blinking cycle of a traffic light or the like.
  • the optical apparatus 110 can suppress that the time when light hardly reaches eyes of a user continues. As a result, the optical device 110 can further suppress flicker.
  • FIG. 16 is a flowchart of processing by the optical device 110.
  • the main control unit 54 determines whether or not the proximity sensor 18 has detected a user in S10.
  • the main control unit 54 cannot detect the user (S10: No)
  • the main control unit 54 is in a standby state until it is determined that the proximity sensor 18 has detected the user.
  • the main control unit 54 detects the user according to the user wearing the glasses-type optical device 110 or the like (S10: Yes)
  • the proximity sensor 18 sends a presence signal indicating that the user has been detected to the main control unit. To 54.
  • the main control unit 54 resets the detection time t for determining whether it is necessary to detect the light amount to “0”.
  • the main control unit 54 determines whether or not the detection time t is equal to or longer than the detection cycle P0 for detecting the light amount.
  • the main control unit 54 is in a standby state until the detection time t becomes equal to or longer than the detection cycle P0 (S14: No). If the main control unit 54 determines that the detection time t is equal to or greater than the detection cycle P0 (S14: Yes), the process proceeds to S16.
  • the main control unit 54 acquires information on the amount of light received from the plurality of light receiving sensors of the first light receiving unit 20.
  • the main control unit 54 determines whether or not the light amount detected by the first light receiving unit 20 is greater than or equal to the second threshold Th2 based on the acquired information regarding the light amount. For example, the main control unit 54 determines whether or not the average amount of light received by the plurality of light receiving sensors is equal to or greater than the second threshold Th2.
  • the main control unit 54 includes a first signal from the first light receiving sensor 202, a second signal from the second light receiving sensor 204, and a third signal from the third light receiving sensor 206 (or a part thereof, for example, It is determined whether the amount of light corresponding to the average value of the signal intensity of the first signal and the second signal is brighter than the second threshold Th2 that is smaller than the first threshold Th1 or less than the second threshold Th2.
  • the main control unit 54 may use the value of the light quantity indicated by the digital signals instead of the signal intensity of the signals from the plurality of light receiving sensors.
  • the process proceeds to S20, and if the light amount is determined to be greater than or equal to the second threshold Th2 (S18: Yes), the process proceeds to S22.
  • the main control unit 54 controls the light control unit 16 to the non-light control state, and advances the process to S30.
  • the main control unit 54 determines whether or not the amount of light detected by the first light receiving unit 20 is greater than or equal to the first threshold Th1, which is larger than the second threshold Th2, based on the acquired information on the amount of light. To do. For example, the main control unit 54 determines whether or not the average light amount received by the plurality of light receiving sensors is equal to or greater than the first threshold Th1. If the main control unit 54 determines that the light amount is less than the first threshold Th1 (S22: No), the process proceeds to S24. If the main control unit 54 determines that the light amount is greater than or equal to the first threshold Th1 (S22: Yes), the process proceeds to S26.
  • the main control unit 54 determines whether or not the red color of the light received by the first light receiving unit 20 is equal to or higher than a predetermined reference based on the acquired information regarding the light amount. For example, the main control unit 54 uses the intensity of the first signal from the first light receiving sensor 202 that receives red light, the intensity of the signal from the other light receiving sensor (for example, the intensity of one of the second signal and the third signal, Alternatively, a ratio to the sum of these intensities) is used as color information, and it is determined whether the ratio is equal to or greater than a predetermined value. That is, the main control unit 54 determines that the incident light is red when the ratio of the R signal in the RGB signals from the plurality of light receiving sensors is larger than a certain value.
  • the main control unit 54 changes the color of light received by the first light receiving unit 20 based on the intensity of signals from a plurality of light receiving sensors that are RGB color sensors, such as an xy chromaticity diagram.
  • the main control unit 54 advances the process to S26 if the light red is determined to be greater than or equal to a predetermined reference, and advances the process to S28 otherwise.
  • the main control unit 54 controls the dimming unit 16 to the first dimming state, and advances the process to S30.
  • the main control unit 54 may control the dimming unit 16 to the first dimming state by the method described with reference to FIGS. 6, 11, and 12.
  • the main control unit 54 controls the dimming unit 16 to the second dimming state, and advances the process to S30.
  • the main control unit 54 may control the dimming unit 16 to the second dimming state by the method described with reference to FIGS.
  • the main control unit 54 acquires a presence signal from the proximity sensor 18 and determines whether or not the proximity sensor 18 detects a user. For example, when the presence signal is detected from the proximity sensor 18, the main control unit 54 returns the process to S ⁇ b> 12 and ends the process when the presence signal is not detected from the proximity sensor 18.
  • the main control unit 54 controls the dimming state of the dimming unit 16 according to the light amount and color of the light received by the first light receiving unit 20.
  • the optical device 110 can provide a user with appropriate light control corresponding to different external light environments.
  • the main control unit 54 determines that there is a high possibility that sunlight is directly incident on the user's eyes when the amount of light is very large or when the amount of light is greater than a certain level and red light is incident.
  • the dimming unit 16 is set to the first dimming state. Accordingly, the optical device 110 can appropriately shield light from, for example, the sun during the daytime and the sun at dusk.
  • FIGS. 17, 18, 19 and 20 show modifications in which the optical device 110 has a plurality of light receiving portions.
  • the optical device 110 includes a first light receiving unit 20a, a second light receiving unit 20b, and a mask 280 as shown in FIG.
  • the optical device 110 may further include third and subsequent light receiving units.
  • the first light receiving unit 20a may be the same as the first light receiving unit 20 already described.
  • the second light receiving unit 20b receives light from a direction different from that of the first light receiving unit 20a, and outputs at least a fourth signal corresponding to the received light amount.
  • the second light receiving unit 20b may include a single light receiving sensor that receives the entire wavelength range of visible light, and may output a fourth signal corresponding to the amount of light received by the single light receiving sensor.
  • the second light receiving unit 20b outputs the fourth to sixth signals corresponding to the received light amounts of the three colors of RGB from the plurality of light receiving sensors, similarly to the first light receiving unit 20 described in FIG.
  • a color sensor may be used.
  • the first light receiving unit 20a may or may not be a color sensor.
  • the mask 280 has an opening 282 and is provided on the incident side of the first light receiving unit 20a and the second light receiving unit 20b.
  • the mask 280 may be disposed at the center of the front surface of the frame main body 26.
  • the mask 280 allows light in the horizontal direction out of the light from the outside to pass through the opening 282 and shields light other than in the horizontal direction.
  • the mask 280 is a frame-shaped member, for example.
  • the mask 280 may be realized by a liquid crystal element.
  • light incident from the horizontal direction (which may include a direction shifted upward from the horizontal direction by a predetermined angle) passes through the mask 280 and passes through the first light receiving unit 20 a and the second light receiving unit 20 a. It is incident on both of the light receiving portions 20b. Further, as shown in FIG. 19, a part of the light incident obliquely upward with respect to the horizontal is shielded by the mask 280, and a part of the light passes through the mask 280 and enters the second light receiving unit 20b. Thereby, in the state shown in FIG. 19, strong light is incident only on the second light receiving unit 20b.
  • the main control unit 54 estimates the angle of incident light based on the first signal, the second signal, the third signal, the fourth signal, and the like, and sets the amount, color, and angle of the incident light. Accordingly, the transmittance of the light control unit 16 is controlled.
  • FIG. 20 shows an example of control based on the light amount and color by the main control unit 54 of the present modification.
  • the main control unit 54 receives a signal indicating the amount of incident light from the first light receiving unit 20a and the second light receiving unit 20b, determines the amount, color, and angle of the incident light, and these amounts of light are determined in advance. It is determined whether or not the specified standard is satisfied, and the dimming unit 16 is switched between the non-dimming state, the first dimming state, and the second dimming state based on the determination result.
  • the main control unit 54 calculates the amount of light received by the first light receiving unit 20a from the average of the signal intensities received from one or more light receiving sensors of the first light receiving unit 20a, and the light amount Based on the above, it is determined whether or not the light received by the first light receiving unit 20a is brighter than a predetermined illuminance standard. As an example, the main control unit 54 determines whether the light received by the first light receiving unit 20a is brighter than the first threshold Th1, or the light received by the first light receiving unit 20a is equal to or higher than the second threshold Th2 smaller than the first threshold Th1. It is determined whether the light is bright or the brightness of the light received by the first light receiving unit 20a is less than the second threshold Th2.
  • the main control unit 54 calculates the light amount of the light received by the second light receiving unit 20b from the average of the signal intensities received from the one or more light receiving sensors of the second light receiving unit 20b, and sets the light amount. Based on this, it is determined whether or not the light received by the second light receiving unit 20b is brighter than a predetermined illuminance standard.
  • the main control unit 54 determines the light received by the first light receiving unit 20a and the like from the ratio of the signal intensity received from one or more light receiving sensors of the first light receiving unit 20a and / or the second light receiving unit 20b. Color information is calculated. For example, the main control unit 54 acquires the signal intensity of the light receiving sensor of the same color from the first light receiving unit 20a and the second light receiving unit 20b, and averages them to obtain the signal intensity for each RBG averaged between the light receiving units. And color information may be calculated from the averaged signal strength for each RBG.
  • the main control unit 54 may calculate a color information by receiving a signal related to the light amount from one of the signals received from the first light receiving unit 20a and the second light receiving unit 20b having a large received light amount. Thereby, for example, as shown in FIG. 19, even when light is incident from an oblique direction and light is incident on substantially only one of the first light receiving unit 20a and the second light receiving unit 20b, the color of the incident light is further increased. It can be calculated accurately. Based on the calculated color information, the main control unit 54 determines whether or not the light received by the first light receiving unit 20a and the like is red above a predetermined color reference.
  • the main control unit 54 determines that the light received by the first light receiving unit 20a is brighter than the first threshold Th1, and the light received by the second light receiving unit 20b is brighter than the first threshold Th1 (FIG. 20 ( a)), the light control unit 16 is controlled to the first light control state.
  • the main control unit 54 controls the dimming unit according to the fact that very strong light is incident in the horizontal direction (or the direction including the direction shifted upward from the horizontal direction by a predetermined angle). 16 can be set to the first dimming state. That is, in such a case, the main control unit 54 determines that the sunlight is directly incident on the user's eyes, and in the end region where the sunlight is likely to pass through the dimming unit 16. It is possible to reduce glare of the user by forming a bowl-shaped light shielding region.
  • the main control unit 54 determines that the light received by the first light receiving unit 20a is brighter than the first threshold Th1, and the brightness of the light received by the second light receiving unit 20b is less than the first threshold Th1 (FIG. 20). (D) and (g)), and the light received by the second light receiving unit 20b is brighter than the first threshold Th1, and the brightness of the light received by the first light receiving unit 20a is determined to be less than the first threshold Th1.
  • the light control unit 16 is controlled to the second light control state.
  • the main control part 54 can make the light control part 16 into a 2nd light control state according to the very strong light having entered from the diagonal direction with respect to the horizontal.
  • the main control unit determines the second when the light received by the first light receiving unit 20a is equal to or greater than the first threshold Th1 (FIGS. 20A, 20D, and 20G). Regardless of the amount of light received by the light receiving unit 20b, the light control unit 16 may be in the first light control state.
  • the main control unit 54 determines that the brightness of the light received by the first light receiving unit 20a is less than the first threshold Th1 and the second threshold Th2, and the brightness of the light received by the second light receiving unit 20b is the first threshold Th1.
  • the dimming unit 16 is controlled to the first dimming state or the second dimming state according to the color of the received light.
  • the main control unit 54 determines that the color of the received light is red above a predetermined reference, the main control unit 54 controls the dimming unit 16 to the first dimming state, and the color of the received light exceeds the predetermined reference.
  • the light control unit 16 is controlled to the second light control state.
  • the main control unit 54 determines that the sunset is incident when the light received by the first light receiving unit 20a and the like is brighter than a certain level and is red, so that the light adjusting unit 16 has a bowl-shaped light shielding region. This can reduce the glare of the user.
  • the main control unit 54 determines that slightly strong ambient light is incident, and the light control unit 16 is thinned.
  • the light-shielding area can be formed to reduce the glare of the user.
  • the main control unit 54 may place the dimming unit 16 in the non-dimming state, but instead, the second dimming state. It is good.
  • the optical device 110 includes a pair of light control units 16 each having a first region 62, a second region 64, and a third region 66 that can change the transmittance independently.
  • the dimming unit 16 is located at the lowermost end of the dimming unit 16 as illustrated, and includes a first region 62 including the central portion of the dimming unit 16, and a second region 64 located above the first region 62. And a third region 66 provided at the upper end of the light control unit 16 and above the second region 64.
  • FIG. 22 shows an example of the first dimming state of the dimming unit 16 in this modification.
  • the main control unit 54 may further control the dimming unit 16 to a plurality of different dimming states in the first dimming state according to the light amount, the color, and the like.
  • the main control unit 54 performs the semi-transmission state or the non-transmission state in which only the third region 66 is relatively low as shown in FIG.
  • the transmission state may be controlled.
  • the main control unit 54 places the third area 66 in addition to the second area 64 as shown in FIG. 22B under the condition that the amount of light is relatively small in the first dimming state.
  • the semi-transmission state may be controlled such that the transmittance is higher than that of the third region 66.
  • the optical device 110 estimates the incident direction of light with a single light receiving unit.
  • the optical device 110 includes a plurality of divided transmission regions 272a, 272b, and 272c on the front surface of the first light receiving unit 20.
  • the plurality of divided transmission regions 272a, 272b, and 272c may be disposed, for example, in the center of the front surface of the frame body 26, and the main control unit 54 can independently control the transmission / light shielding state. It may be an element.
  • the main control unit 54 may open at least one of the plurality of divided transmission regions 272a to 272c and close the remaining one, for example.
  • FIG. 24 shows an example of the operation of a plurality of divided transparent areas.
  • the main control unit 54 switches one of the plurality of divided transmission regions 272a to 272c that are in the open state in a time division manner. For example, as shown in FIG. 22, the main control unit 54 first opens only the divided transmission region 272a among the plurality of divided transmission regions 272a to 272c and closes the rest. Thereby, the 1st light-receiving part 20 receives only the light which injected from the big angle with respect to the horizontal direction. Next, the main control unit 54 opens only the divided transmission region 272b among the plurality of divided transmission regions 272a to 272c and closes the rest.
  • the 1st light-receiving part 20 receives the light which injected from the medium angle with respect to the horizontal direction.
  • the main control unit 54 opens only the divided transmission region 272c among the plurality of divided transmission regions 272a to 272c and closes the rest. Thereby, the 1st light-receiving part 20 receives the light which injected from the substantially horizontal direction.
  • the main control unit 54 receives a signal relating to the light amount from the first light receiving unit 20 while sequentially opening any one of the plurality of divided transmission regions 272a to 272c in this way.
  • the main control unit 54 specifies the light amount from the signal relating to the light amount, and specifies the divided transmission regions 272a to 272c in the open state when the largest light amount is detected. Thereby, the main controller 54 roughly estimates the incident angle of the incident light from the outside. For example, when the main control unit 54 determines that the amount of light when the divided transmission region 272a is open is the largest, the main control unit 54 identifies an angle (for example, 45 ° or more) that is greatly inclined upward from the front as the incident angle of light.
  • the main control unit 54 applies a voltage to the dimming unit 16 so as to switch the dimming state of the dimming unit 16 according to the light amount, color, and incident angle of the light received by the first light receiving unit 20.
  • FIG. 25 shows an example of control based on the amount of light, the color, and the incident angle by the main control unit 54 in this modification.
  • the main control unit 54 may execute the control of FIG. 25 in the optical device according to FIGS.
  • the main control unit 54 receives the signal of the amount of light incident from the first light receiving unit 20, identifies the amount of light, color, and incident angle of the incident light from the received signal, and whether these satisfy predetermined criteria
  • the dimming unit 16 is switched between the non-dimming state, the first dimming state, and the second dimming state based on the determination result.
  • the main control unit 54 determines whether or not the light received by the first light receiving unit 20 is brighter than a predetermined illuminance reference by a method similar to the method described in FIG. 8, and the received light is determined in advance. It is judged whether or not it is red above the specified color standard.
  • the main control unit 54 determines whether the incident angle of the light received by the first light receiving unit 20 is a low angle, a medium angle, or a high angle. For example, the main control unit 54 determines that the incident angle is a high angle when it determines that the amount of light when the divided transmission region 272a is open is the largest, and determines that the amount of light when the divided transmission region 272b is open is the maximum. Then, it is determined that the incident angle is a medium angle, and when it is determined that the amount of light when the divided transmission region 272c is open is the largest, the incident angle is determined to be a low angle.
  • the main control unit 54 determines that the light received by the first light receiving unit 20 is brighter than the first threshold Th1 at a low angle (FIG. 25A)
  • the main control unit 54 is set to the first dimming state. Control.
  • the main control part 54 can make the light control part 16 into a 1st light control state according to the very strong light having entered from the low angle direction near a horizontal direction.
  • the main control unit 54 may set the second region 64 and the third region 66 in the opaque state in FIGS. 21 and 22. That is, in such a case, the main control unit 54 determines that the sunlight is directly incident on the user's eyes, and the light control unit 16 has a high possibility that the sunlight will pass. It is possible to reduce the glare of the user as much as possible by forming a bowl-shaped light shielding region in the second region 64 as well as the three regions 66.
  • the main control unit 54 determines that the light received by the first light receiving unit 20 is brighter than the first threshold Th1 at a medium angle (FIG. 25 (d))
  • the main control unit 54 is set to the first dimming state. Control.
  • the main control part 54 can make the light control part 16 into a 1st light control state according to very strong light having entered from the medium angle direction comparatively close to a horizontal direction.
  • the main control unit 54 may set only the third region 66 in the opaque state in FIGS. 21 and 22. That is, in this case, unlike the case of FIG. 25A at a low angle, the second region 64 is set in a transmission state (or a semi-transmission state). Accordingly, it is possible to make the user visually recognize a landscape or the like at a medium angle or less while blocking bright light from a high angle as compared with the case of FIG.
  • the main control unit 54 determines that the light received by the first light receiving unit 20 is at a high angle and is brighter than the first threshold Th1 (FIG. 25 (g)), the main control unit 54 sets the second light control unit 16 to the second level. Control to dimming state. Thereby, the main control part 54 can make the light control part 16 into a 2nd light control state according to the strong light more than fixed being incident in the diagonal direction. That is, in such a case, the main control unit 54 determines that the sunlight does not directly enter the user's eyes but the environment is too bright, and forms a thin light-shielding region in the entire dimming unit 16, so that the user The glare can be reduced.
  • the main control unit 54 determines that the light received by the first light receiving unit 20 is at a low angle and brighter than the first threshold Th1 and the second threshold Th2 (FIG. 25 (b)), or When it is determined that the light received by the first light receiving unit 20 has a medium angle and is brighter than the first threshold Th1 and the second threshold Th2 (FIG. 25 (e)), dimming according to the color of the received light
  • the unit 16 is controlled to the first dimming state or the second dimming state.
  • the main control unit 54 determines that the color of the received light is red above a predetermined reference
  • the main control unit 54 controls the dimming unit 16 to the first dimming state, and the color of the received light exceeds the predetermined reference.
  • the light control unit 16 is controlled to the second light control state.
  • the main control unit 54 determines that the sunset is incident when the light received by the first light receiving unit 20 is brighter than a certain level and is red, and the main control unit 54 has a saddle shape in the second region 64 of the light control unit 16.
  • the main control unit 54 determines that slightly strong ambient light is incident, and the light control unit 16 is thinned.
  • the light-shielding area can be formed to reduce the glare of the user.
  • the main control unit 54 controls the dimming unit 16 in FIGS. 21 and 22 in the same manner as the control in FIG.
  • the second region 64 and the third region 66 may be impermeable.
  • the main control unit 54 performs the control of the dimming unit 16 in FIGS. 21 and 22 as in the control of FIG. Only the third region 66 may be in a non-transmissive state, and the second region 64 may be in a transmissive state (or a semi-transmissive state).
  • the main control unit 54 may place the dimming unit 16 in a non-dimming state. It is good also as a 2 light control state.
  • FIGS. 26 and 27 are flowcharts of modified examples of processing by the optical device 110.
  • the light control part 16 has the 1st area
  • the main control unit 54 determines whether or not the proximity sensor 18 has detected a user in S110 shown in FIG.
  • the main control unit 54 cannot detect the user (S110: No)
  • the main control unit 54 is in a standby state until it is determined that the proximity sensor 18 has detected the user.
  • the main control unit 54 detects the user in response to the user wearing the glasses-type optical device 110 (S110: Yes)
  • the proximity sensor 18 sends a presence signal indicating that the user has been detected to the main control unit. To 54.
  • the main control unit 54 resets the detection time t and the drive time t1 for determining whether or not it is necessary to detect the light amount to “0”.
  • the main control unit 54 determines whether or not the detection time t is equal to or longer than the detection cycle P0 for detecting the light amount.
  • the main control unit 54 is in a standby state until the detection time t becomes equal to or longer than the detection cycle P0 (S114: No). If the main control unit 54 determines that the detection time t is equal to or longer than the detection cycle P0 (S114: Yes), the process proceeds to S116.
  • the main control unit 54 acquires information regarding the amount of light received from the first light receiving unit 20 or the like.
  • the main control unit 54 calculates the light amount from the acquired information regarding the light amount, and calculates an averaged light amount AL that is a weighted moving average of the light amount based on the following equation. Note that the averaged light quantity may be obtained by a simple moving average or an exponential moving average. Further, the main control unit 54 acquires the color of the received light from the information regarding the amount of light from the first light receiving unit 20 and the incident angle of the received light as necessary.
  • the main control unit 54 determines the dimming state of the dimming unit 16 based on the averaged light amount and the like. For example, the main control unit 54 sets the averaged light amount AL as the light amount LA, and controls the light control state of the light control unit 16 based on the method described in FIG. 8, FIG. 20, or FIG. 25 and the processing in S18 to S28 in FIG. May be determined.
  • the main control unit 54 acquires the target transmittance TTr of the dimming unit 16 according to the determined dimming state according to the target transmittance table stored in the storage unit 56. For example, the main control unit 54 acquires the target transmittance TTr1-1 of the first region 62 and the target transmittance TTr1-2 of the second region 64 in response to the determination of the dimming state to the first dimming state. Then, the target transmittance TTr2 of the first region 62 and the second region 64 is acquired in response to the light control state being determined to be the second light control state.
  • the main control unit 54 may acquire the target transmittance further subdivided for each averaged light amount in each dimming state.
  • the main control unit 54 calculates a transmittance change amount ⁇ Tr per unit time for each region of the light control unit 16 based on the target transmittance TTr and the current transmittance PTr (S122). .
  • the transmittance change amount ⁇ Tr is calculated by the following equation. Note that q is a predetermined number. The larger q is, the smaller the transmittance change amount ⁇ Tr is, and the change in transmittance can be smoothed. Accordingly, the main control unit 54 calculates, for example, the transmittance change amount ⁇ Tr1 for the first region 62 and the transmittance change amount ⁇ Tr2 for the second region 64.
  • the main control unit 54 sets the detection time t to “0”.
  • the main control unit 54 determines whether or not the driving time t1 is equal to or longer than the driving cycle P1, which is the cycle for driving the dimming unit 16.
  • the main control unit 54 is in a standby state until the driving time t1 becomes equal to or longer than the driving cycle P1 (S126: No). If the main control unit 54 determines that the drive time t1 is equal to or greater than the drive cycle P1 (S126: Yes), the process proceeds to S128.
  • the driving cycle P1 may be shorter than the detection cycle P0.
  • the main control unit 54 determines whether the target transmittance TTr is equal to the current current transmittance PTr for each region of the light control unit 16, and determines whether or not the transmittance needs to be switched. When the target transmittance TTr is equal to the current current transmittance PTr in all the areas of the light control unit 16 (or the difference between the two is less than a predetermined threshold value), the main control unit 54 advances the process to S136. If not, the process proceeds to S130.
  • the main control unit 54 determines the current transmittance PTr and the transmittance change amount for a region in which the target transmittance TTr and the current current transmittance PTr are determined not to be equal among the plurality of regions of the dimming unit 16. The sum with ⁇ Tr is calculated.
  • the main control unit 54 determines that the transmittance is the current transmittance PTr and the transmittance change with respect to the area of the light control unit 16 in which the sum of the current transmittance PTr and the transmittance change amount ⁇ Tr is calculated.
  • the transmittance is switched by changing the duty ratio of the voltage so as to be the sum of the amount ⁇ Tr.
  • the main control unit 54 controls the dimming state for each area of the dimming unit 16.
  • the main control unit 54 sets the drive time t1 to “0”.
  • the main control unit 54 acquires a presence signal from the proximity sensor 18 and determines whether or not the proximity sensor 18 has detected a user. For example, the main control unit 54 returns the process to S114 when the presence signal is detected from the proximity sensor 18 (A in FIGS. 26 and 27), and performs the process when the presence signal is not detected from the proximity sensor 18. finish.
  • the main control unit 54 in the second dimming state, based on the change rate of the magnitude of the received light amount indicated by the first signal, the second signal, etc.
  • the change rate of the transmittance of the light control unit 16 may be controlled.
  • the main control unit 54 calculates ⁇ Tr in the process of S122 when the current light amount received from the first light receiving unit 20 or the like dissociates more than a predetermined reference with respect to the averaged light amount AL calculated in S116.
  • the value of q may be reduced by a predetermined value or a value corresponding to the degree of dissociation.
  • the optical device 110 changes the transmittance of the light control unit 16 in accordance with the speed of change of the external light. For example, when the light control unit 16 moves from the room to the outdoors, the light control unit 16 quickly Therefore, when the brightness changes slowly, the degree of shading is changed slowly so that natural dimming can be provided to the user.
  • the main control unit 54 changes the change speed between when the dimming unit 16 is changed from the non-dimming state to the first dimming state and when the dimming state is changed from the non-dimming state to the second dimming state. May be.
  • the main control unit 54 may complete the change from the non-dimming state to the first dimming state in a short time (for example, 0.2 seconds).
  • the main control unit 54 may complete the change from the non-dimming state to the second dimming state in a relatively long time (for example, 1.5 seconds).
  • the main control unit 54 switches the dimming unit to the second dimming state over a longer time than the time for switching to the first dimming state.
  • intense external light is directly incident on the eye and prompt light blocking is desired.
  • the intensity of the external light is kept at a certain level so that the light is quickly blocked. It is not cumbersome for the user to switch the dimming state more slowly than to perform.
  • dimming that is comfortable for the user can be provided according to the situation.
  • the main control unit 54 changes the dimming unit 16 from the non-dimming state to the first dimming state and from the first dimming state to the non-dimming state.
  • the rate of change may be different depending on the case.
  • the main control unit 54 changes the time (for example, 1.5 seconds) for changing from the first dimming state to the non-dimming state from the non-dimming state to the first dimming state. You may make it longer than the time (for example, 0.2 second) to make. In the scene to switch to the first dimming state, intense external light is directly incident on the eye and prompt light shielding is desired.
  • the main control unit 54 may similarly provide a difference in the change time when the dimming unit 16 is changed between the first dimming state and the second dimming state.
  • the optical device 110 may vary the measurement time / number of times of the light amount for transitioning to the dimming state.
  • the main control unit 54 sequentially acquires signals regarding the amount of light including the first signal and the second signal, and acquires the first signal and the second signal that are referred to for switching to the first dimming state.
  • the number of acquisitions of the first signal and the second signal referred to for switching to the second dimming state may be increased.
  • dimming is performed when the main control unit 54 determines that the dimming state should be changed to the first dimming state continuously for a first predetermined number of times (for example, twice) during the repetition.
  • the state is determined to be the first dimming state, and the process proceeds to S120, and the dimming state should be changed to the second dimming state continuously for a second number of times (for example, four times) greater than the first number of times. If it is determined that the dimming state is to be the second dimming state, the process may proceed to S120.
  • FIG. 31 is a graph of experimental results obtained by measuring the transmittance, the averaged light amount, and the change over time of the detected light amount.
  • the graph shown in FIG. 31 performs control of the dimming unit 16 (for example, switching between the non-dimming state and the first or second dimming state) in the processing according to FIGS. 26 and 27 under the following conditions. Is the result.
  • One scale on the horizontal axis shown in FIG. 31 is 1 ⁇ 2 of the cycle for calculating the averaged light quantity.
  • the unit time 200 ms for calculating the change in the amount of light is about the same as the blink of the human eye.
  • the transmittance of the light control unit 16 starts to change within 100 ms when the change in the amount of light starts, and after about 1 s, the transmittance is close to (current transmittance PTr + ⁇ Tr). To reach. Thereafter, the optical device 110 slowly changes the transmittance of the light control unit 16.
  • the optical device 110 can reduce the user's uncomfortable feeling by changing the transmittance change of the light control unit 16 more slowly than when changing the transmittance sharply with respect to the change in the light amount.
  • the optical device 110 can sufficiently function to remove glare from a sudden change in light quantity.
  • the spotlight is set to continue irradiation for 1 second after the measurement is started, 0.05 seconds after the spotlight starts to irradiate the light shielding lens (corresponding to the light control unit 16), 0.1 seconds later, 0. After 2 seconds, 0.3 seconds, and 0.5 seconds, the light from the spotlight to both eyes of the subject was set to be shielded.
  • the transmittance of the light shielding lens was set to 1% (corresponding to the first light control state). The subject's right eye was used for measurement and analysis, and a 15-minute break was set between each measurement.
  • Meditester VOG-L (manufactured by Panasonic Corporation) is used as a pupil response measuring instrument, and a clear image of the eyeball is taken with a 400,000-pixel infrared CCD camera, and the pupil reaction amount (miosis amount) of the subject before and after the start of irradiation was measured.
  • a light-shielding lens was installed in front of the pupil reaction measuring instrument.
  • Table 1 shows the experimental results.
  • the “pupil diameter before light response” in the table indicates the average pupil diameter of subjects before spotlight irradiation, and the “light response (minimum reduction) pupil diameter” indicates the minimum pupil diameter of subjects after spotlight irradiation.
  • “Pupil diameter response amount” indicates a difference between “a pupil diameter before light reaction” and “a light reaction (minimum reduction) pupil diameter”. As shown in the table, when the light shielding start time is 0.05 seconds and 0.1 seconds, the pupil diameter response amount is about 1.2 to 1.3 mm, and the change of the pupil is relatively small. Therefore, it is considered that the degree to which the subject feels glare is relatively small.
  • the light shielding start time is 0.2 seconds or more
  • the pupil diameter reaction amount increases to about 1.9 to 2.1 mm. Therefore, it is considered that the degree to which the subject feels glare has increased.
  • the glare of the spotlight was reduced at 0.05 seconds and 0.1 seconds compared to the case where the spotlight was 0.2 seconds or more. From the experimental results, the change from the non-dimming state to the first / second dimming state (particularly, the change to the first dimming state) by the dimming unit 16 is less than 0.2 seconds (for example, 0.05 to 0.00). It is shown that it is preferable to run in the range of 1 second.

Abstract

Conventional optical devices are unable to achieve proper dimming in which colors of incident light are taken into consideration. For example, the conventional optical devices cannot distinguish sunlight during the day, the glow of a sunset, and other ambient light from each other in order to provide proper dimming. Therefore, the present invention provides an optical device which achieves proper dimming in which the colors of a light source are taken into consideration. A first aspect of the present invention provides an optical device provided with: a dimming unit enabling transmissivity to be changed; a first light reception unit which receives light of a first wavelength to output a first signal according to the quantity of light and receives light of a second wavelength to output a second signal according to the quantity of light, the second wavelength being different from the first wavelength; and a control unit which controls the transmissivity of the dimming unit on the basis of the first and second signals.

Description

光学装置Optical device
 本発明は、光学装置に関する。 The present invention relates to an optical device.
 液晶等によって、透過率を変化させることができる調光眼鏡等の光学装置が知られている(例えば、特許文献1及び2参照)。
 [特許文献1] 特開昭48-98846号公報
 [特許文献2] 特開平9-179075号公報
Optical devices such as light-control glasses that can change the transmittance with liquid crystal or the like are known (see, for example, Patent Documents 1 and 2).
[Patent Document 1] JP-A-48-98844 [Patent Document 2] JP-A-9-179075
 しかしながら、従来の光学装置では、入射光の色を考慮して適切な調光を実現することができない。例えば、従来の光学装置では、日中の太陽光、夕日光、及びその他の環境光等を区別して適切な調光を提供することができない。 However, the conventional optical device cannot realize appropriate light control in consideration of the color of incident light. For example, in a conventional optical device, it is not possible to provide appropriate dimming by distinguishing sunlight during the day, sunset light, and other environmental light.
 本発明の第1の態様においては、透過率を変更可能な調光部と、第1波長の光を受光して光量に応じた第1信号を出力し、第1波長と異なる第2波長の光を受光して光量に応じた第2信号を出力する第1受光部と、第1信号及び第2信号に基づいて、調光部の透過率を制御する制御部と、を備える光学装置を提供する。 In the first aspect of the present invention, the dimming unit capable of changing the transmittance, and receiving the light of the first wavelength and outputting the first signal corresponding to the light quantity, the second wavelength different from the first wavelength An optical apparatus comprising: a first light receiving unit that receives light and outputs a second signal corresponding to the amount of light; and a control unit that controls the transmittance of the light control unit based on the first signal and the second signal. provide.
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
本実施形態の光学装置110の全体構成図である。It is a whole block diagram of the optical apparatus 110 of this embodiment. 本実施形態の調光部16の分解斜視図である。It is a disassembled perspective view of the light control part 16 of this embodiment. 本実施形態の光学装置110の制御系のブロック図である。It is a block diagram of the control system of the optical apparatus 110 of this embodiment. 第1受光部20を示すブロック図である。3 is a block diagram showing a first light receiving unit 20. FIG. 無調光状態に制御された調光部16を示す。The light control part 16 controlled to the non-light control state is shown. 第1調光状態に制御された調光部16を示す。The light control part 16 controlled to the 1st light control state is shown. 第2調光状態に制御された調光部16を示す。The light control part 16 controlled to the 2nd light control state is shown. 主制御部54による光量及び色に基づく調光部16の制御の一例を示す。An example of control of the light control part 16 based on the light quantity and the color by the main control part 54 is shown. 太陽の位置及び色を説明する図である。It is a figure explaining the position and color of the sun. 太陽の位置と照度と色との関係を示すグラフである。It is a graph which shows the relationship between the position of the sun, illuminance, and color. 第1調光状態の調光部16の変形例を示す。The modification of the light control part 16 of a 1st light control state is shown. 第1調光状態の調光部16の別の変形例を示す。Another modification of the light control part 16 of a 1st light control state is shown. 第2調光状態の調光部16の変形例を示す。The modification of the light control part 16 of a 2nd light control state is shown. 液晶部材38に印加される電圧のデューティ比と、透過率の安定化までの時間の関係を示す図である。It is a figure which shows the relationship between the duty ratio of the voltage applied to the liquid-crystal member, and the time until stabilization of the transmittance | permeability. デューティ比と、調光部16の透過率との関係を示すグラフである。6 is a graph showing the relationship between the duty ratio and the transmittance of the light control unit 16. 光学装置110による処理のフローチャートである。5 is a flowchart of processing by the optical device 110. 光学装置110が複数の受光部を有する変形例を示す。The modification which the optical apparatus 110 has a some light-receiving part is shown. 光学装置110が複数の受光部を有する変形例を示す。The modification which the optical apparatus 110 has a some light-receiving part is shown. 光学装置110が複数の受光部を有する変形例を示す。The modification which the optical apparatus 110 has a some light-receiving part is shown. 主制御部54による光量及び色に基づく制御の一例を示す。An example of control based on the light amount and color by the main control unit 54 is shown. 調光部16が3個の領域を有する光学装置110の変形例を示す。The modification of the optical apparatus 110 in which the light control part 16 has three area | regions is shown. 本変形例における調光部16の第1調光状態の例を示す。The example of the 1st light control state of the light control part 16 in this modification is shown. 光学装置110が単一の受光部で光の入射方向を推定する変形例を示す。A modification in which the optical device 110 estimates the incident direction of light with a single light receiving unit will be described. 複数の分割透過領域の動作の一例を示す。An example of the operation of a plurality of divided transparent areas is shown. 主制御部54による光量、色及び入射角に基づく制御の一例を示す。An example of control based on the light amount, color, and incident angle by the main control unit 54 is shown. 光学装置110による処理の変形例のフローチャートを示す。9 shows a flowchart of a modification of processing by the optical device 110. 光学装置110による処理の変形例のフローチャートを示す。9 shows a flowchart of a modification of processing by the optical device 110. 光学装置110による無調光状態から第1調光状態への変化の例を示す。An example of a change from the non-dimming state to the first dimming state by the optical device 110 is shown. 光学装置110による無調光状態から第2調光状態への変化の例を示す。The example of the change from the non-dimming state by the optical apparatus 110 to a 2nd dimming state is shown. 光学装置110による第1調光状態から無調光状態への変化の例を示す。The example of the change from the 1st light control state by the optical apparatus 110 to a non-light control state is shown. 透過率、平均化光量、検出された光量の時間変化を測定した実験結果のグラフである。It is a graph of the experimental result which measured the transmittance | permeability, the average light quantity, and the time change of the detected light quantity.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、光学装置110の全体構成図である。図1に示すように、光学装置110の一例は、眼鏡である。光学装置110は、ヘルメット又は車両等の前面部分であってもよい。図1に矢印で示すように、光学装置110を装着したユーザから見て上下左右前後を、光学装置110の上下左右前後方向とする。 FIG. 1 is an overall configuration diagram of the optical device 110. As shown in FIG. 1, an example of the optical device 110 is eyeglasses. The optical device 110 may be a front portion of a helmet or a vehicle. As shown by arrows in FIG. 1, the top, bottom, left, and right front and rear directions of the optical device 110 when viewed from the user wearing the optical device 110 are the top, bottom, left and right front and rear directions of the optical device 110.
 光学装置110は、枠体12と、電源部14と、左右一対の調光部16と、近接センサ18と、第1受光部20と、制御部22とを備える。 The optical device 110 includes a frame body 12, a power supply unit 14, a pair of left and right light control units 16, a proximity sensor 18, a first light receiving unit 20, and a control unit 22.
 枠体12は、電源部14と、一対の調光部16と、近接センサ18と、第1受光部20と、制御部22とを保持する。枠体12は、左右一対の腕部24、24と、枠本体部26とを有する。一対の腕部24の前端部は、それぞれ枠本体部26の左右の端部に連結されている。腕部24の後端部は、ユーザの耳にかけられる。これにより、枠本体部26が、一対の調光部16とともに、ユーザの目の前方に配置される。枠本体部26は、一対の調光部16を支持する。 The frame 12 holds a power supply unit 14, a pair of light control units 16, a proximity sensor 18, a first light receiving unit 20, and a control unit 22. The frame 12 has a pair of left and right arm portions 24, 24 and a frame main body portion 26. The front end portions of the pair of arm portions 24 are respectively connected to the left and right end portions of the frame main body portion 26. The rear end portion of the arm portion 24 is put on the user's ear. Thereby, the frame main body part 26 is disposed in front of the user's eyes together with the pair of light control parts 16. The frame main body portion 26 supports the pair of light control portions 16.
 電源部14は、制御部22によって制御されて、一対の調光部16と、近接センサ18と、第1受光部20と、制御部22とに電圧を印加する。電源部14の一例は、充電可能な二次電池である。二次電池の一例は、リチウム電池、ニッケル電池である。尚、電源部14は、一次電池であってもよい。 The power supply unit 14 is controlled by the control unit 22 to apply a voltage to the pair of light control units 16, the proximity sensor 18, the first light receiving unit 20, and the control unit 22. An example of the power supply unit 14 is a rechargeable secondary battery. An example of the secondary battery is a lithium battery or a nickel battery. The power supply unit 14 may be a primary battery.
 一対の調光部16は、枠本体部26に保持されて、ユーザの左目及び右目の前方に設けられる。一対の調光部16は、電源部14から出力されて制御部22によって調節されて印加される電圧によって、外部から入射する光の透過率を変化可能とする。調光部16は、それぞれが独立に透過率を変更可能な第1領域62と第2領域64とを有してよい。例えば、調光部16は、調光部16の中央部を含むが少なくとも一部の端部を含まない第1領域62と、調光部16の少なくとも一部の端部を含む第2領域64とを有してよい。 The pair of light control sections 16 are held by the frame body section 26 and provided in front of the user's left eye and right eye. The pair of dimming units 16 can change the transmittance of light incident from the outside according to the voltage output from the power supply unit 14 and adjusted and applied by the control unit 22. The light control part 16 may have the 1st area | region 62 and the 2nd area | region 64 which can each change the transmittance | permeability independently. For example, the light control unit 16 includes a first region 62 that includes the central portion of the light control unit 16 but does not include at least a part of the end, and a second region 64 that includes at least a part of the end of the light control unit 16. May be included.
 一例として、調光部16は、図1に示すように調光部16の中央及び下部(下端部を含む)を含む第1領域62と上部(上端部を含む)の第2領域64とを有する。これに代えて、調光部16は、ユーザの視線が集中する調光部16の中央部分に対応する第1領域62と、第1領域62の外周を囲む第2領域64とを有してもよい。このような場合、第1領域62にはユーザの視線が集中しやすいが、第2領域64にはユーザの視線が集中しにくい。 As an example, the light control unit 16 includes a first region 62 including a center and a lower portion (including a lower end portion) and a second region 64 including an upper portion (including an upper end portion) as shown in FIG. Have. Instead, the light control unit 16 includes a first region 62 corresponding to the central portion of the light control unit 16 where the user's line of sight concentrates, and a second region 64 surrounding the outer periphery of the first region 62. Also good. In such a case, the user's line of sight is likely to concentrate on the first area 62, but the user's line of sight is less likely to be concentrated on the second area 64.
 近接センサ18は、枠本体部26の中央部の後面、即ち、ユーザ側に配置され、ユーザが光学装置110を装着したことを検出する。近接センサ18は、制御部22と接続されている。近接センサ18は、枠本体部26の後方の物体の有無を検出して、有無に関する情報を制御部22に出力する。従って、近接センサ18は、光学装置110がユーザに装着されると、枠本体部26の後方にユーザが存在することを検出して、有無に関する情報の一例である存在信号を制御部22へと出力する。 The proximity sensor 18 is disposed on the rear surface of the central portion of the frame main body 26, that is, on the user side, and detects that the user has attached the optical device 110. The proximity sensor 18 is connected to the control unit 22. The proximity sensor 18 detects the presence / absence of an object behind the frame body 26 and outputs information about the presence / absence to the control unit 22. Therefore, when the optical device 110 is attached to the user, the proximity sensor 18 detects that the user is present behind the frame body 26 and sends a presence signal, which is an example of information regarding presence / absence, to the control unit 22. Output.
 近接センサ18の一例は、赤外線等の光を後方へと出力する発光素子と、発光素子から出力された赤外線等の光を受光して電気信号に変換する受光素子である。従って、発光素子から出力された光が、光学装置110を装着したユーザ等に反射されて、受光素子に受光される。この場合、近接センサ18は、ユーザの存在を検出して存在信号を出力する。 An example of the proximity sensor 18 is a light emitting element that outputs light such as infrared rays backward, and a light receiving element that receives light such as infrared rays output from the light emitting elements and converts the light into electrical signals. Therefore, the light output from the light emitting element is reflected by the user or the like wearing the optical device 110 and received by the light receiving element. In this case, the proximity sensor 18 detects the presence of the user and outputs a presence signal.
 第1受光部20は、枠本体部26の中央部の前面、即ち、入射側に配置され、光学装置110に入射する光を検出する。第1受光部20は、制御部22と接続されている。第1受光部20は、前方に向けて設けられている。尚、前方とは、水平方向及び鉛直方向からの傾斜が0°の真正面のみならず、水平方向及び鉛直方向に傾斜している方向も含む。第1受光部20は、前方から入射する外部からの光量を検出して、検出した光量を示す信号を制御部22に出力する。第1受光部20の詳細は、後述する。 The first light receiving unit 20 is disposed on the front surface of the central portion of the frame main body 26, that is, on the incident side, and detects light incident on the optical device 110. The first light receiving unit 20 is connected to the control unit 22. The 1st light-receiving part 20 is provided toward the front. In addition, the front includes not only a straight front where the inclination from the horizontal direction and the vertical direction is 0 °, but also a direction inclined in the horizontal direction and the vertical direction. The first light receiving unit 20 detects the amount of light from the outside incident from the front, and outputs a signal indicating the detected amount of light to the control unit 22. Details of the first light receiving unit 20 will be described later.
 制御部22は、枠本体部26の中央部に設けられ、光学装置110の動作を制御する。制御部22は、調光部16とフレキシブル配線によって接続されてよい。制御部22は、光学装置110の制御全般を司る。制御部22の詳細は、後述する。 The control unit 22 is provided at the center of the frame main body 26 and controls the operation of the optical device 110. The control unit 22 may be connected to the light control unit 16 by a flexible wiring. The control unit 22 governs overall control of the optical device 110. Details of the control unit 22 will be described later.
 図2は、調光部16の分解斜視図である。光学装置110は、ユーザに装着された状態では、前方が外部である。従って、外部からの光は、矢印A1に示すように、前方または前方から鉛直方向に傾斜した方向から後方へと進行する。また、ユーザは、光学装置110を装着すると、調光部16の後方の位置となる。 FIG. 2 is an exploded perspective view of the light control unit 16. When the optical device 110 is worn by the user, the front is outside. Accordingly, the light from the outside travels from the front or the direction inclined in the vertical direction to the rear as indicated by the arrow A1. Further, when the user wears the optical device 110, the user becomes a position behind the light control unit 16.
 図2に示すように、調光部16は、入射側偏光板30と、入射側基板32と、入射側透明電極34と、入射側配向膜36と、液晶部材38と、出射側配向膜40と、出射側透明電極42と、出射側基板44と、出射側偏光板46とを有する。 As shown in FIG. 2, the light control unit 16 includes an incident side polarizing plate 30, an incident side substrate 32, an incident side transparent electrode 34, an incident side alignment film 36, a liquid crystal member 38, and an output side alignment film 40. And an output side transparent electrode 42, an output side substrate 44, and an output side polarizing plate 46.
 入射側偏光板30は、調光部16の最も入射側に配置されている。入射側偏光板30は、入射側基板32の出射側の面の全面を覆う。入射側偏光板30は、矢印A2で示すように、出射側から見て、水平方向から左回りに傾斜させた透過軸を有する。入射側偏光板30の透過軸の傾斜角度の一例は、出射側から見て、鉛直方向から右回り45°である。入射側偏光板30は、外部から入射する光、例えば、無偏光の自然光を、透過軸と平行な偏光方向の直線偏光にして出射する。 The incident side polarizing plate 30 is disposed on the most incident side of the light control unit 16. The incident side polarizing plate 30 covers the entire surface on the outgoing side of the incident side substrate 32. The incident-side polarizing plate 30 has a transmission axis that is inclined counterclockwise from the horizontal direction when viewed from the emission side, as indicated by an arrow A2. An example of the inclination angle of the transmission axis of the incident side polarizing plate 30 is 45 ° clockwise from the vertical direction when viewed from the output side. The incident side polarizing plate 30 emits light incident from the outside, for example, non-polarized natural light as linearly polarized light having a polarization direction parallel to the transmission axis.
 入射側基板32は、入射側偏光板30の出射側に配置されている。入射側基板32は、光学的に等方なガラス等の光を透過可能な絶縁性の材料によって構成される。入射側基板32は、入射側偏光板30、入射側透明電極34、入射側配向膜36を保持する。 The incident side substrate 32 is disposed on the exit side of the incident side polarizing plate 30. The incident side substrate 32 is made of an insulating material capable of transmitting light such as optically isotropic glass. The incident side substrate 32 holds the incident side polarizing plate 30, the incident side transparent electrode 34, and the incident side alignment film 36.
 入射側透明電極34は、入射側基板32の出射側の面の全面にわたって形成されている。入射側透明電極34は、導電性を有し、光を透過可能なITO(Indium Tin Oxide)等の材料によって構成される。入射側透明電極34は、第1領域62に対応する分割電極162及び第2領域64に対応する分割電極160から構成される。 The incident side transparent electrode 34 is formed over the entire surface on the exit side of the incident side substrate 32. The incident-side transparent electrode 34 is made of a material such as ITO (Indium Tin Oxide) that has conductivity and can transmit light. The incident-side transparent electrode 34 includes a divided electrode 162 corresponding to the first region 62 and a divided electrode 160 corresponding to the second region 64.
 入射側配向膜36は、入射側透明電極34の出射側の面の全面にわたって形成されている。入射側配向膜36は、矢印A3に示すように、出射側から見て、左下方のラビング方向を有する。入射側配向膜36のラビング方向の一例は、出射側から見て、水平方向から左下方に45°傾斜した方向である。入射側配向膜36のラビング方向は、入射側偏光板30の透過軸と平行である。入射側配向膜36は、ラビング方向に沿って、液晶部材38の液晶分子を配向させる。 The incident-side alignment film 36 is formed over the entire surface on the exit side of the incident-side transparent electrode 34. The incident-side alignment film 36 has a rubbing direction on the lower left side when viewed from the emission side, as indicated by an arrow A3. An example of the rubbing direction of the incident-side alignment film 36 is a direction inclined by 45 ° from the horizontal direction to the lower left when viewed from the output side. The rubbing direction of the incident side alignment film 36 is parallel to the transmission axis of the incident side polarizing plate 30. The incident side alignment film 36 aligns the liquid crystal molecules of the liquid crystal member 38 along the rubbing direction.
 液晶部材38は、入射側配向膜36及び入射側偏光板30よりも出射側、即ち、ユーザ側に設けられている。液晶部材38を構成する材料の一例は、ポジ型ネマティック液晶である。液晶部材38には、入射側偏光板30の透過軸と平行な偏光方向の直線偏光が入射する。液晶部材38は、電圧が印加されていない状態では、入射する直線偏光の偏光方向を90°回転させる。一方、液晶部材38は、電圧が印加されると、入射する直線偏光の偏光方向を90°未満回転させて、または、回転させずに出射する。 The liquid crystal member 38 is provided on the emission side, that is, on the user side of the incident side alignment film 36 and the incident side polarizing plate 30. An example of the material constituting the liquid crystal member 38 is positive nematic liquid crystal. Linearly polarized light having a polarization direction parallel to the transmission axis of the incident side polarizing plate 30 is incident on the liquid crystal member 38. In a state where no voltage is applied, the liquid crystal member 38 rotates the polarization direction of the incident linearly polarized light by 90 °. On the other hand, when a voltage is applied, the liquid crystal member 38 emits the incident linearly polarized light with its polarization direction rotated by less than 90 ° or without rotating.
 出射側配向膜40は、液晶部材38の出射側の面の全面にわたって設けられている。換言すれば、出射側配向膜40は、液晶部材38よりもユーザ側に設けられている。従って、液晶部材38は、入射側配向膜36及び出射側配向膜40との間に配置される。出射側配向膜40は、矢印A4に示すように、出射側から見て、左上方のラビング方向を有する。換言すれば、出射側配向膜40のラビング方向は、入射側配向膜36のラビング方向と、水平方向では同じ左方向であって、鉛直方向では異なる上方向である。出射側配向膜40のラビング方向の一例は、出射側から見て、水平方向から左上方に45°傾斜した方向である。出射側配向膜40のラビング方向は、入射側配向膜36のラビング方向と直交する。出射側配向膜40は、ラビング方向に沿って、液晶部材38の液晶分子を配向させる。これにより、液晶部材38は、ツイストネマティックモードとなる。 The emission side alignment film 40 is provided over the entire emission side surface of the liquid crystal member 38. In other words, the emission side alignment film 40 is provided on the user side with respect to the liquid crystal member 38. Accordingly, the liquid crystal member 38 is disposed between the incident side alignment film 36 and the emission side alignment film 40. The exit-side alignment film 40 has an upper left rubbing direction as seen from the exit side, as indicated by an arrow A4. In other words, the rubbing direction of the exit-side alignment film 40 is the same left direction in the horizontal direction as the rubbing direction of the incident-side alignment film 36, and is a different upward direction in the vertical direction. An example of the rubbing direction of the emitting side alignment film 40 is a direction inclined 45 ° from the horizontal direction to the upper left side when viewed from the emitting side. The rubbing direction of the emission side alignment film 40 is orthogonal to the rubbing direction of the incident side alignment film 36. The exit side alignment film 40 aligns the liquid crystal molecules of the liquid crystal member 38 along the rubbing direction. As a result, the liquid crystal member 38 is in a twisted nematic mode.
 出射側透明電極42は、出射側配向膜40の出射側の面の全面にわたって設けられている。入射側透明電極34及び出射側透明電極42は、互いに対向して設けられている。従って、液晶部材38は、入射側透明電極34及び出射側透明電極42の間に設けられる。入射側透明電極34及び出射側透明電極42は、液晶部材38の全面にわたって、略等電位で電圧を印加する。出射側透明電極42は、入射側透明電極と同じ材料によって構成されてよい。入射側透明電極34が分割される代わりに、出射側透明電極42が分割されて、複数の分割電極を有してもよい。 The exit-side transparent electrode 42 is provided over the entire exit-side surface of the exit-side alignment film 40. The incident side transparent electrode 34 and the emission side transparent electrode 42 are provided to face each other. Accordingly, the liquid crystal member 38 is provided between the incident side transparent electrode 34 and the emission side transparent electrode 42. The incident-side transparent electrode 34 and the emission-side transparent electrode 42 apply a voltage at substantially the same potential over the entire surface of the liquid crystal member 38. The exit side transparent electrode 42 may be made of the same material as the entrance side transparent electrode. Instead of dividing the incident side transparent electrode 34, the emission side transparent electrode 42 may be divided to have a plurality of divided electrodes.
 出射側基板44は、出射側透明電極42の出射側の面の出射側に配置されている。出射側基板44は、入射側基板32と同じ材料によって構成されてよい。出射側基板44は、出射側配向膜40、出射側透明電極42、出射側偏光板46を保持する。入射側基板32及び出射側基板44は、液晶部材38を封止する。 The exit side substrate 44 is disposed on the exit side of the exit side surface of the exit side transparent electrode 42. The exit side substrate 44 may be made of the same material as the entrance side substrate 32. The emission side substrate 44 holds the emission side alignment film 40, the emission side transparent electrode 42, and the emission side polarizing plate 46. The incident side substrate 32 and the emission side substrate 44 seal the liquid crystal member 38.
 出射側偏光板46は、出射側基板44の出射側の面の全面を覆う。出射側偏光板46は、調光部16の最も出射側に配置されている。出射側偏光板46は、矢印A5で示すように、出射側から見て、水平方向から右回りに傾斜させた透過軸を有する。出射側偏光板46の透過軸の傾斜角度の一例は、出射側から見て、鉛直方向から左回り45°である。従って、出射側偏光板46の透過軸は、出射側配向膜40のラビング方向と平行である。また、出射側偏光板46は、入射側偏光板30の透過軸と直交する透過軸を有する。出射側偏光板46には、液晶部材38によって変調された直線偏光が入射し、透過軸と平行な偏光方向を有する直線偏光を出射する。 The exit side polarizing plate 46 covers the entire exit side surface of the exit side substrate 44. The exit side polarizing plate 46 is disposed on the most exit side of the light control unit 16. The output side polarizing plate 46 has a transmission axis inclined clockwise from the horizontal direction when viewed from the output side, as indicated by an arrow A5. An example of the inclination angle of the transmission axis of the output side polarizing plate 46 is 45 ° counterclockwise from the vertical direction when viewed from the output side. Therefore, the transmission axis of the exit side polarizing plate 46 is parallel to the rubbing direction of the exit side alignment film 40. Further, the output side polarizing plate 46 has a transmission axis orthogonal to the transmission axis of the incident side polarizing plate 30. Linearly polarized light modulated by the liquid crystal member 38 enters the output-side polarizing plate 46 and emits linearly polarized light having a polarization direction parallel to the transmission axis.
 調光部16は、このような構成を備えることにより、無偏光の入射光を入射側偏光板30で直線偏光に変換し、液晶部材38で直線偏光を変調させて、変調された光のうち出射側偏光板46を透過した光を出射光として出力する。例えば、液晶部材38は、電圧が印加されない状態で、入射した直線偏光を90度回転させて出力し、電圧が徐々に印加されるにつれて徐々に回転角度が減少した直線偏光を出力し、一定以上の電圧が印加された状態で入射した直線偏光を回転させずに出力する。これにより、調光部16は、電圧非印加時に透過状態となり、電圧の印加量応じて徐々に非透過状態に変化する。 The light control unit 16 has such a configuration, so that non-polarized incident light is converted into linearly polarized light by the incident-side polarizing plate 30, and linearly polarized light is modulated by the liquid crystal member 38. The light that has passed through the output side polarizing plate 46 is output as output light. For example, the liquid crystal member 38 rotates the incident linearly polarized light by 90 degrees in a state where no voltage is applied, and outputs linearly polarized light whose rotation angle gradually decreases as the voltage is gradually applied. The incident linearly polarized light is output without being rotated. Thereby, the light control part 16 will be in a permeation | transmission state at the time of a voltage non-application, and changes to a non-transmission state gradually according to the applied amount of a voltage.
 図3は、光学装置110の制御系のブロック図である。図3に示すように、制御部22は、充電部50と、液晶駆動部52と、電圧制御部の一例である主制御部54と、記憶部56とを備える。 FIG. 3 is a block diagram of the control system of the optical device 110. As illustrated in FIG. 3, the control unit 22 includes a charging unit 50, a liquid crystal driving unit 52, a main control unit 54 that is an example of a voltage control unit, and a storage unit 56.
 充電部50は、電源部14と、外部の電源とを接続する。充電部50は、制御部22からの指示に基づいて、電源部14の充電の開始及び停止を制御する。充電部50は、電源部14の充電状態の情報を主制御部54に出力する。 The charging unit 50 connects the power supply unit 14 and an external power supply. The charging unit 50 controls the start and stop of charging of the power supply unit 14 based on an instruction from the control unit 22. The charging unit 50 outputs information on the state of charge of the power supply unit 14 to the main control unit 54.
 液晶駆動部52は、電源部14から電力を受ける。液晶駆動部52は、入射側透明電極34及び出射側透明電極42を介して、液晶部材38に電圧を印加する。液晶駆動部52は、オペアンプ、アナログスイッチを有する。 The liquid crystal driving unit 52 receives power from the power supply unit 14. The liquid crystal driving unit 52 applies a voltage to the liquid crystal member 38 via the incident side transparent electrode 34 and the emission side transparent electrode 42. The liquid crystal driving unit 52 includes an operational amplifier and an analog switch.
 主制御部54の一例は、マイクロコンピュータである。主制御部54は、充電部50、液晶駆動部52、及び、記憶部56を介して、光学装置110を制御する。 An example of the main control unit 54 is a microcomputer. The main control unit 54 controls the optical device 110 via the charging unit 50, the liquid crystal driving unit 52, and the storage unit 56.
 主制御部54は、液晶駆動部52を介して、調光部16に印加する電圧を制御する。具体例として、主制御部54は、近接センサ18から存在信号が入力されている状態では、入射側透明電極34及び出射側透明電極42を介して、調光部16に印加される電圧を制御して調光部16の調光を制御する。主制御部54は、近接センサ18から存在信号が入力されていない状態では、調光部16に電圧を印加せず調光部16の調光を制御しない。換言すれば、主制御部54は、存在信号が入力されている状態では、光学装置110をオン状態にして、存在信号が入力されていない状態では、光学装置110をオフ状態にする。また、主制御部54は、充電部50から取得した電源部14の充電状態に基づいて、光学装置110の電源のオン状態・オフ状態を切り替える。 The main control unit 54 controls the voltage applied to the dimming unit 16 via the liquid crystal driving unit 52. As a specific example, the main control unit 54 controls the voltage applied to the dimming unit 16 via the incident-side transparent electrode 34 and the emission-side transparent electrode 42 in a state where the presence signal is input from the proximity sensor 18. Thus, the light control of the light control unit 16 is controlled. The main control unit 54 does not apply a voltage to the dimming unit 16 and does not control the dimming of the dimming unit 16 when no presence signal is input from the proximity sensor 18. In other words, the main control unit 54 turns on the optical device 110 when the presence signal is input, and turns off the optical device 110 when the presence signal is not input. Further, the main control unit 54 switches the power-on state and the off-state of the optical device 110 based on the state of charge of the power supply unit 14 acquired from the charging unit 50.
 主制御部54は、オン状態において、第1受光部20から取得した信号に基づいて、調光部16の液晶部材38に印加する電圧を制御することで、調光部16の調光状態を制御する。具体的な例としては、主制御部54は、液晶部材38に印加する電圧を、高電圧と低電圧とを周期的に切り替えることによって制御する。高電圧の一例は、3Vであって、低電圧の一例は、0Vである。尚、主制御部54は、高電圧を印加する場合、+3Vと-3Vとを一周期ごとに交互に印加する。主制御部54は、600Hzの間の周波数で高電圧と低電圧とを切り替える。ここで、主制御部54は、左右の調光部16に印加する電圧を同期させている。 In the ON state, the main control unit 54 controls the voltage applied to the liquid crystal member 38 of the light control unit 16 based on the signal acquired from the first light receiving unit 20, thereby changing the light control state of the light control unit 16. Control. As a specific example, the main control unit 54 controls the voltage applied to the liquid crystal member 38 by periodically switching between a high voltage and a low voltage. An example of the high voltage is 3V, and an example of the low voltage is 0V. Note that the main control unit 54 alternately applies +3 V and −3 V every cycle when a high voltage is applied. The main control unit 54 switches between a high voltage and a low voltage at a frequency between 600 Hz. Here, the main control unit 54 synchronizes the voltages applied to the left and right light control units 16.
 主制御部54は、高電圧のデューティ比によって、調光部16の透過率を制御する。ここでいう、高電圧のデューティ比は、1周期、即ち、低電圧を印加する時間と高電圧を印加する時間の和に対する高電圧を印加する時間の比である。尚、以下の説明において、単にデューティ比と記載した場合、当該デューティ比は、高電圧のデューティ比を意味する。尚、主制御部54は、調光部16の透過率が「0」とならないように、即ち、完全に遮光しないように電圧を制御する。より好ましくは、主制御部54は、調光部16の透過率が8%以上となるように電圧を制御する。 The main control unit 54 controls the transmittance of the light control unit 16 according to the duty ratio of the high voltage. The duty ratio of the high voltage here is a ratio of the time for applying the high voltage to one cycle, that is, the sum of the time for applying the low voltage and the time for applying the high voltage. In the following description, when the duty ratio is simply described, the duty ratio means a high voltage duty ratio. The main control unit 54 controls the voltage so that the transmittance of the light control unit 16 does not become “0”, that is, does not completely block light. More preferably, the main control unit 54 controls the voltage so that the transmittance of the light control unit 16 is 8% or more.
 更に、主制御部54は、調光部16に印加する電圧のデューティ比によって、調光部16に与える電圧を切り替え、調光部16の透過率を切り替える。例えば、主制御部54は、分割電極160/分割電極162に印加する電圧のデューティ比を高くすることにより第1領域62/第2領域64の透過率を低下させ、分割電極160/分割電極162に印加する電圧のデューティ比を低くすることにより第1領域62/第2領域64の透過率を上昇させる。 Furthermore, the main control unit 54 switches the voltage applied to the dimming unit 16 according to the duty ratio of the voltage applied to the dimming unit 16 and switches the transmittance of the dimming unit 16. For example, the main controller 54 decreases the transmittance of the first region 62 / second region 64 by increasing the duty ratio of the voltage applied to the divided electrode 160 / divided electrode 162, thereby dividing the divided electrode 160 / divided electrode 162. The transmittance of the first region 62 / second region 64 is increased by lowering the duty ratio of the voltage applied to the first region 62.
 図4は、第1受光部20を示すブロック図である。第1受光部20は、それぞれが特定の波長域の光を受光して受光光量に応じた信号を出力する。例えば、第1受光部20は、第1波長の光を受光して光量に応じた第1信号を出力し、前記第1波長と異なる第2波長の光を受光して光量に応じた第2信号を出力する。第1受光部20は、1又は複数の受光センサを有してよい。例えば、第1受光部20は、複数の受光センサのそれぞれから受光した光の光量を示す信号を制御部22に供給することにより、入射した光の光量及び色の情報を制御部22に供給してよい。例えば、第1受光部20は、図示するように、第1波長の光を受光して光量に応じた第1信号を出力する第1受光センサ202、第1波長と異なる第2波長の光を受光して光量に応じた第2信号を出力する第2受光センサ204、及び第1波長及び第2波長と異なる第3波長の光を受光して光量に応じた第3信号を出力する第3受光センサ206を有する。 FIG. 4 is a block diagram showing the first light receiving unit 20. Each of the first light receiving units 20 receives light in a specific wavelength range and outputs a signal corresponding to the amount of received light. For example, the first light receiving unit 20 receives light having a first wavelength and outputs a first signal corresponding to the amount of light, receives light having a second wavelength different from the first wavelength, and second corresponding to the amount of light. Output a signal. The first light receiving unit 20 may include one or a plurality of light receiving sensors. For example, the first light receiving unit 20 supplies the control unit 22 with the light amount and color information of the incident light by supplying the control unit 22 with a signal indicating the amount of light received from each of the plurality of light receiving sensors. It's okay. For example, as shown in the figure, the first light receiving unit 20 receives the light of the first wavelength and outputs the first signal according to the light amount, and the light of the second wavelength different from the first wavelength. A second light receiving sensor 204 that receives the light and outputs a second signal corresponding to the amount of light; and a third light that receives light having a first wavelength and a third wavelength different from the second wavelength and outputs a third signal corresponding to the amount of light. A light receiving sensor 206 is included.
 一例として、第1受光部20はRGBカラーセンサであってよく、第1受光センサ202は赤色となる波長(例えば、620nm)近傍の光を受光して第1信号を出力し、第2受光センサ204は緑色となる波長(例えば、540nm)近傍の光を受光して第2信号を出力し、第3受光センサ206は青色となる波長(例えば、460nm)近傍の光を受光して第3信号を出力してよい。別の一例として、第1受光部20は、赤色を受光する第1受光センサ、及び、可視光を全て受光する第2受光センサを備えてもよい。 As an example, the first light receiving unit 20 may be an RGB color sensor, and the first light receiving sensor 202 receives light in the vicinity of a red wavelength (for example, 620 nm) and outputs a first signal, and the second light receiving sensor. 204 receives light in the vicinity of a wavelength (for example, 540 nm) that becomes green and outputs a second signal, and the third light receiving sensor 206 receives light in the vicinity of a wavelength (for example, 460 nm) that becomes blue and receives a third signal. May be output. As another example, the first light receiving unit 20 may include a first light receiving sensor that receives red light and a second light receiving sensor that receives all visible light.
 具体的には、第1受光部20は、カラーフィルタ付きフォトダイオードであってよく、この場合、第1受光センサ202等の各受光センサは、カラーフィルタの各画素を透過した各色の光を受光する。また、第1受光部20は、回折格子付きフォトダイオードであってよく、この場合、第1受光センサ202等の各受光センサは、回折格子により分光された各色の光を受光する。これらに代えて、第1受光部20は、カラーチェンジャー付きフォトダイオードであってよく、この場合、第1受光部20は1個の受光センサを有してよく、受光センサの前でカラーホイールが回転することにより、受光センサに時分割で異なる色(波長)の光を入光させて、受光センサは時分割で第1信号及び第2信号等を出力してよい。第1受光センサ202等の各受光センサは、第1信号及び第2信号等として、受光した各色の光の光量に応じたアナログ電気信号を出力する。これに代えて、各受光センサは、受光した各色の光の光量に応じたアナログ電気信号をデジタル信号(電気信号又は光信号等)に変換して出力してよい。光量の一例は、照度[単位:ルクス(=lx)]であってよい。本実施形態の説明では、第1受光部20が複数の受光センサを有する場合を例に説明する。 Specifically, the first light receiving unit 20 may be a photodiode with a color filter. In this case, each light receiving sensor such as the first light receiving sensor 202 receives light of each color transmitted through each pixel of the color filter. To do. The first light receiving unit 20 may be a photodiode with a diffraction grating. In this case, each light receiving sensor such as the first light receiving sensor 202 receives light of each color dispersed by the diffraction grating. Alternatively, the first light receiving unit 20 may be a photodiode with a color changer. In this case, the first light receiving unit 20 may have one light receiving sensor, and the color wheel is arranged in front of the light receiving sensor. By rotating, the light receiving sensor may receive light of different colors (wavelengths) in time division, and the light reception sensor may output the first signal, the second signal, and the like in time division. Each light receiving sensor such as the first light receiving sensor 202 outputs an analog electric signal corresponding to the amount of received light of each color as the first signal and the second signal. Instead, each light receiving sensor may convert an analog electric signal corresponding to the amount of received light of each color into a digital signal (such as an electric signal or an optical signal) and output it. An example of the amount of light may be illuminance [unit: lux (= lx)]. In the description of the present embodiment, a case where the first light receiving unit 20 includes a plurality of light receiving sensors will be described as an example.
 図5、図6及び図7は、調光部16の複数の調光状態を説明する図である。主制御部54は、第1受光部20の複数の受光センサからの信号を受信して、入射光の光量及び色を算出して、調光部16を複数の調光状態の間で切り替える。例えば、主制御部54は、第1受光センサ202、第2受光センサ204、及び/又は第3受光センサ206から受信した第1信号、第2信号及び/又は第3信号に基づいて、調光部16の透過率を制御して、調光部16を無調光状態、第1調光状態又は第2調光状態に切り換える。 5, 6, and 7 are diagrams for explaining a plurality of dimming states of the dimming unit 16. The main control unit 54 receives signals from the plurality of light receiving sensors of the first light receiving unit 20, calculates the amount and color of incident light, and switches the light control unit 16 between the plurality of light control states. For example, the main control unit 54 performs dimming based on the first signal, the second signal, and / or the third signal received from the first light receiving sensor 202, the second light receiving sensor 204, and / or the third light receiving sensor 206. The transmittance of the unit 16 is controlled to switch the light control unit 16 to the non-light control state, the first light control state, or the second light control state.
 図5は、無調光状態に制御された調光部16を示す。例えば、主制御部54は、算出した入射光の光量及び色と、記憶部56に記憶されている基準とを比較する。主制御部54は、入射光の光量及び色が予め定められた基準を満たすと判定する場合、調光部16の液晶部材38へ電圧を印加しない。これにより、液晶部材38は、全領域で入射した直線偏光を90°回転させて出射する。この結果、調光部16は、図5に示す無調光状態となる。図5に示す状態は、調光部16の透過率が最も大きい状態である。換言すれば、光学装置110は、電圧が印加されていない状態で透過率が最も大きくなるノーマリーホワイトモードである。なお、本明細書で単に「透過率」という場合は、例えば、調光部16の表面に対して鉛直方向から入射する光に対する透過率を指すものであってよい。これに代えて、「透過率」は、眼鏡である光学装置110を使用する人の眼の位置(例えば、設計上想定されるユーザの眼の位置)から調光部16の各領域を結ぶ直線に沿って入射する光に対する透過率を指すものであってよい。例えば、調光部16の第1領域の透過率は、第1領域の中心と人の眼を結ぶ線に沿った光線の透過率であってよい。 FIG. 5 shows the dimming unit 16 controlled to the non-dimming state. For example, the main control unit 54 compares the calculated amount and color of incident light with the reference stored in the storage unit 56. The main control unit 54 does not apply a voltage to the liquid crystal member 38 of the light control unit 16 when determining that the light amount and color of the incident light satisfy a predetermined standard. As a result, the liquid crystal member 38 rotates the linearly polarized light incident in the entire region by 90 ° and emits it. As a result, the light control unit 16 enters the non-light control state shown in FIG. The state shown in FIG. 5 is a state where the transmittance of the light control unit 16 is the largest. In other words, the optical device 110 is a normally white mode in which the transmittance is maximized when no voltage is applied. In the present specification, the term “transmittance” may refer to, for example, the transmittance for light incident from the vertical direction on the surface of the light control unit 16. Instead, the “transmittance” is a straight line that connects each region of the light control unit 16 from the position of the eye of the person using the optical device 110 that is spectacles (for example, the position of the user's eye assumed in design). May refer to the transmittance for light incident along the. For example, the transmittance of the first region of the light control unit 16 may be the transmittance of light along a line connecting the center of the first region and the human eye.
 図6は、第1調光状態に制御された調光部16を示す。主制御部54は、第1調光状態において、調光部16の第1領域62及び第2領域64の透過率を独立に制御する。例えば、主制御部54は、上下方向において、調光部16の中央部の第1領域62よりも端部の第2領域64の透過率を低くする。一例として、主制御部54は、第1受光部20が受光した光の光量及び色が予め定められた基準を満たすと判定すると、調光部16の分割電極162のみに、予め定められた第1のデューティ比で高電圧と低電圧とを周期的に印加する。これにより、調光部16の上端部に位置する第2領域64は、入射した直線偏光の一部または全部を90°未満で回転させて出射する。この結果、調光部16は、図6に示すように、上部のみが不透過状態又は不透過状態に近い状態となる。これにより、光学装置110は、第1調光状態において、庇のように、視界の上方からの強力な光(例えば太陽光等)を効果的に減光する。 FIG. 6 shows the dimming unit 16 controlled to the first dimming state. The main control unit 54 independently controls the transmittance of the first region 62 and the second region 64 of the light control unit 16 in the first light control state. For example, the main control unit 54 makes the transmittance of the second region 64 at the end lower than the first region 62 at the center of the light control unit 16 in the vertical direction. As an example, when the main control unit 54 determines that the light amount and color of the light received by the first light receiving unit 20 satisfy a predetermined standard, only the divided electrode 162 of the dimming unit 16 has a predetermined first. A high voltage and a low voltage are periodically applied at a duty ratio of 1. As a result, the second region 64 located at the upper end of the light control unit 16 emits a part or all of the incident linearly polarized light by rotating it less than 90 °. As a result, as shown in FIG. 6, only the upper part of the light control unit 16 is in a non-transparent state or a non-transparent state. Thereby, the optical device 110 effectively dimmes strong light (for example, sunlight) from above the field of view in a first dimming state like a ridge.
 図6に示す第1調光状態では、少なくとも第2領域64の透過率が、図5に示す調光部16の透過率よりも低い状態である。一方で、主制御部54は、分割電極160には電圧を印加せず調光部16の第1領域62は、図5と同じノーマリーホワイトモードとなる。なお、分割電極を調光部16の下端及び/又は左右端に設けることにより、主制御部54は調光部16の下端及び/又は左右端の透過率を低下させてもよい。 In the first dimming state shown in FIG. 6, at least the transmittance of the second region 64 is lower than the transmittance of the dimming unit 16 shown in FIG. On the other hand, the main control unit 54 does not apply a voltage to the divided electrodes 160, and the first region 62 of the light control unit 16 is in the normally white mode as in FIG. The main control unit 54 may reduce the transmittance of the lower end and / or the left and right ends of the dimming unit 16 by providing the divided electrodes at the lower end and / or the left and right ends of the dimming unit 16.
 図7は、第2調光状態に制御された調光部16を示す。第2調光状態において、主制御部54は、第1調光状態よりも中央部の第1領域62と端部の第2領域64の透過率の差が小さくなるように調光部16を制御する。例えば、主制御部54は、第2調光状態において、第1領域62と第2領域64との透過率の差を0になるように調光部16を制御する。 FIG. 7 shows the dimming unit 16 controlled to the second dimming state. In the second dimming state, the main control unit 54 controls the dimming unit 16 so that the difference in transmittance between the first region 62 at the center and the second region 64 at the end is smaller than in the first dimming state. Control. For example, the main control unit 54 controls the dimming unit 16 so that the difference in transmittance between the first region 62 and the second region 64 becomes zero in the second dimming state.
 一例として、主制御部54は、第1受光部20が受光した光の光量及び色が予め定められた基準を満たすと判定すると、調光部16の分割電極160及び分割電極162に、第1のデューティ比よりも小さい予め定められた第2のデューティ比で高電圧と低電圧とを周期的に印加する。これにより、調光部16は、全領域において、入射した直線偏光の一部または全部を90°未満で回転させて出射する。この結果、調光部16は、図7に示すように、全体が半透過状態となる。これにより、光学装置110は、第2調光状態において、一般的なサングラスのように、視界全体からの光(例えば白い壁に反射した太陽光等)を効果的に減光する。図7に示す状態では、第1領域62及び第2領域64の透過率が、図5に示す調光部16の透過率よりも低く、図6に示す第2領域64の透過率よりも高い状態である。 As an example, when the main control unit 54 determines that the light amount and color of the light received by the first light receiving unit 20 satisfy a predetermined standard, the main control unit 54 applies the first electrode to the divided electrode 160 and the divided electrode 162 of the dimming unit 16. A high voltage and a low voltage are periodically applied at a predetermined second duty ratio smaller than the duty ratio. Thereby, the light control part 16 rotates and emits a part or all of the incident linearly polarized light by less than 90 ° in the entire region. As a result, as shown in FIG. 7, the dimmer 16 is entirely translucent. Thereby, in the second light control state, the optical device 110 effectively reduces light from the entire field of view (for example, sunlight reflected on a white wall) like a normal sunglasses. In the state illustrated in FIG. 7, the transmittance of the first region 62 and the second region 64 is lower than the transmittance of the light control unit 16 illustrated in FIG. 5 and higher than the transmittance of the second region 64 illustrated in FIG. 6. State.
 図8は、主制御部54による光量及び色に基づく調光部16の制御の一例を示す。主制御部54は、記憶部56に予め格納されたテーブルに基づいて、第1受光部20から入射した光の光量及び色の情報を受け取り、光量及び色が予め定められた基準を満たすか否かを判断し、判断結果に基づき調光部16を無調光状態と第1調光状態と第2調光状態とで切り換えてよい。 FIG. 8 shows an example of control of the light control unit 16 based on the light amount and color by the main control unit 54. Based on a table stored in advance in the storage unit 56, the main control unit 54 receives information on the light amount and color of light incident from the first light receiving unit 20, and determines whether the light amount and color meet predetermined criteria. And the dimming unit 16 may be switched between the non-dimming state, the first dimming state, and the second dimming state based on the determination result.
 例えば、まず、主制御部54は、第1受光部20の複数の受光センサから受信した信号の強度平均等から、第1受光部20が受光した光の光量を算出して、当該光量に基づいて第1受光部20が受光した光が予め定められた照度基準以上明るいか否かを判断する。一例として、主制御部54は、第1受光部20が受光した光が、第1閾値Th1以上明るいか、第1受光部20が受光した光が第1閾値Th1よりも小さい第2閾値Th2以上明るいか、又は第1受光部20が受光した光の明るさが第2閾値Th2未満かを判定する。 For example, first, the main control unit 54 calculates the amount of light received by the first light receiving unit 20 from the average intensity of signals received from the plurality of light receiving sensors of the first light receiving unit 20, and based on the light amount. Then, it is determined whether or not the light received by the first light receiving unit 20 is brighter than a predetermined illuminance standard. As an example, the main control unit 54 determines whether the light received by the first light receiving unit 20 is brighter than the first threshold Th1, or the light received by the first light receiving unit 20 is greater than the second threshold Th2 that is smaller than the first threshold Th1. It is determined whether it is bright or the brightness of the light received by the first light receiving unit 20 is less than the second threshold Th2.
 次に、主制御部54は、第1受光部20の複数の受光センサからの信号強度の比率等から、第1受光部20が受光した光の色情報を算出して、当該色情報に基づいて第1受光部20が受光した光が予め定められた色基準以上赤いか否かを判断する。主制御部54の具体的な判断手法は後述する。 Next, the main control unit 54 calculates color information of light received by the first light receiving unit 20 from ratios of signal intensities from the plurality of light receiving sensors of the first light receiving unit 20, and based on the color information. Then, it is determined whether the light received by the first light receiving unit 20 is red above a predetermined color reference. A specific determination method of the main control unit 54 will be described later.
 そして、主制御部54は、第1受光部20が受光した光が第1閾値Th1以上明るいと判断した場合(図8表の(a)及び(d))、及び、第1受光部20が受光した光が第1閾値Th1よりも小さい第2閾値Th2以上明るく予め定められた基準以上赤いと判断した場合(図8表の(b))に調光部16を第1調光状態に制御する。これにより、主制御部54は、第1受光部20に受光した光が非常に明るい場合((a)及び(b))に、太陽光が直接ユーザの眼に入射していると判断して、調光部16のうち太陽光が通過する可能性が高い端部の第2領域に庇状の遮光領域を形成して、ユーザのまぶしさを低減することができる。更に、主制御部54は、第1受光部20に受光した光がある程度以上明るく更に赤い場合に、夕日が入射していると判断し、調光部16に同様の遮光領域を形成して、ユーザのまぶしさを低減することができる。 The main control unit 54 determines that the light received by the first light receiving unit 20 is brighter than the first threshold Th1 ((a) and (d) in FIG. 8), and the first light receiving unit 20 When the received light is determined to be brighter than a first threshold Th2 smaller than the first threshold Th1 and brighter than a predetermined reference and red ((b) in FIG. 8), the dimmer 16 is controlled to the first dimming state. To do. Thereby, the main control unit 54 determines that the sunlight is directly incident on the user's eyes when the light received by the first light receiving unit 20 is very bright ((a) and (b)). The glare of the user can be reduced by forming a bowl-shaped light-shielding region in the second region at the end of the light control unit 16 where sunlight is likely to pass. Further, the main control unit 54 determines that the sunset is incident when the light received by the first light receiving unit 20 is brighter and more red to some extent, and forms a similar light shielding region in the light control unit 16, The glare of the user can be reduced.
 主制御部54は、第1受光部20が受光した光が第1閾値Th1よりも小さい第2閾値Th2以上明るいが、予め定められた基準以上赤くないと判断した場合(図8表の(e))に調光部16を第2調光状態に制御する。これにより、主制御部54は、第1受光部20に受光した光が一定以上明るくかつ赤くない場合(e)に、太陽光の反射光(例えば、太陽光が白い壁で乱反射した光)が光学装置110に入射していると判断して、調光部16全体に薄い遮光領域を形成して、ユーザのまぶしさを低減することができる。 When the main control unit 54 determines that the light received by the first light receiving unit 20 is brighter than the second threshold Th2, which is smaller than the first threshold Th1, but is not red above a predetermined reference ((e in FIG. 8) )), The light control unit 16 is controlled to the second light control state. Accordingly, when the light received by the first light receiving unit 20 is brighter than a certain level and is not red (e), the main control unit 54 receives reflected sunlight (for example, light that is irregularly reflected by white walls). It can be determined that the light is incident on the optical device 110, and a thin light-shielding region can be formed in the entire light control unit 16, thereby reducing the glare of the user.
 次に、光量閾値の設定方法の一例について説明する。図9は、太陽の位置と色とを説明する図である。図10は、太陽の位置と照度と色との関係を示すグラフである。 Next, an example of a method for setting the light amount threshold will be described. FIG. 9 is a diagram for explaining the position and color of the sun. FIG. 10 is a graph showing the relationship among the sun position, illuminance, and color.
 図9に示すように、太陽がユーザの真上にある状態の太陽の位置をSu1とする。時間の経過につれて、太陽が徐々に西に沈む位置をそれぞれ、位置Su2からSu5とする。位置Su3及びSu4では、太陽は西日の状態であり、Su1~Su2と比較して赤みを帯びる。位置Su5では、太陽は地平線LHまたは水平線LHの下に沈んでいるが、西の方向が明るい状態である。 As shown in FIG. 9, the position of the sun in a state where the sun is directly above the user is assumed to be Su1. The positions where the sun gradually sinks to the west as time passes are assumed to be positions Su2 to Su5, respectively. At the positions Su3 and Su4, the sun is in the western day and is reddish compared to Su1 and Su2. At the position Su5, the sun is sinking below the horizon LH or the horizon LH, but the west direction is bright.
 図10に示すように、これらの位置Su1から位置Su5において、第1受光部20が検出する光量は、太陽が位置Su1から位置Su3に移動する間は増加するとともに、太陽が位置Su3から位置Su5に移動する間は減少する。従って、直射日光が強く光量の多い位置Su2から位置Su3において、調光部16の透過率が下がるように、光量の第1閾値Th1が、設定される。なお、実際にはSu1とSu3とでは光量の差が50倍程度あるが、図10では説明の便宜のために各太陽の位置Su1~Su5における光量の差を実際よりも小さく示している。 As shown in FIG. 10, at these positions Su1 to Su5, the amount of light detected by the first light receiving unit 20 increases while the sun moves from position Su1 to position Su3, and the sun moves from position Su3 to position Su5. Decreases while moving to. Therefore, the first threshold value Th1 of the light amount is set so that the transmittance of the light control unit 16 is lowered from the position Su2 to the position Su3 where the direct sunlight is strong and the light amount is large. Actually, the difference in the light amount between Su1 and Su3 is about 50 times, but in FIG. 10, the difference in the light amount at each sun position Su1 to Su5 is shown smaller than the actual for convenience of explanation.
 また、位置Su1から位置Su5において、第1受光部20の受光する光の色は、太陽が位置Su1から位置Su5に移動する間に徐々に赤みを帯びる。従って、照度自体はそれほど強くないが入射角度が低いことから人の眼にわずらわしく感じやすい夕日Su4において、調光部16の透過率が下がるように、光量の第2閾値Th2及び色基準が設定される。 Further, from the position Su1 to the position Su5, the color of light received by the first light receiving unit 20 gradually becomes reddish while the sun moves from the position Su1 to the position Su5. Accordingly, the second threshold value Th2 and the color reference are set so that the transmittance of the light control unit 16 is lowered in the sunset Su4, which is not so strong but the incident angle is low and is easily disturbed by human eyes. The
 図11は、第1調光状態の調光部16の変形例を示す。主制御部54は、第1調光状態において、調光部16の第1領域62の透過率を異ならせてよい。例えば、主制御部54は、光量が予め定められた基準以上大きい場合に第1調光状態の第1領域62を図11(a)に示すように第2領域64よりも透過率が高いが無調光状態よりは透過率が低い半透過状態としてよく、また光量が基準未満の場合に第1領域62を図11(b)に示すように無調光状態と同じ透過状態としてよい。 FIG. 11 shows a modification of the light control unit 16 in the first light control state. The main control unit 54 may vary the transmittance of the first region 62 of the dimming unit 16 in the first dimming state. For example, when the light amount is larger than a predetermined reference, the main control unit 54 has a higher transmittance than the second region 64 in the first region 62 in the first dimming state as shown in FIG. The semi-transmission state may have a lower transmittance than the non-dimming state, and the first region 62 may have the same transmission state as the non-dimming state as shown in FIG.
 一例として、主制御部54は、複数の受光センサからの信号に基づいて、図8表(a)、(b)又は(d)に該当すると判断した場合、調光部16を第1調光状態に制御する。ここで、主制御部54は、第1調光状態において、まぶしさをより低減するために第1領域62をより透過率が低い状態(例えば、図11(a)の半透過状態)にするように、調光部16の透過率を制御してよい。なお、主制御部54は、図8(a)及び(d)の場合に第1領域62を半透過状態に制御し、図8(b)の場合には半透過状態にしないように制御してもよく、これにより強い夕日が入射して夕日以外の景色が暗い状況等でユーザが周囲の状況を視認しにくくなることを避けることができる。 As an example, when the main control unit 54 determines that it corresponds to the table (a), (b), or (d) of FIG. 8 based on the signals from the plurality of light receiving sensors, the main control unit 54 controls the first dimming unit 16. Control to the state. Here, in the first dimming state, the main control unit 54 places the first region 62 in a state where the transmittance is lower (for example, the semi-transmissive state in FIG. 11A) in order to further reduce glare. As described above, the transmittance of the light control unit 16 may be controlled. The main control unit 54 controls the first region 62 to be in a semi-transmissive state in the cases of FIGS. 8A and 8D, and controls not to be in a semi-transmissive state in the case of FIG. 8B. As a result, it is possible to prevent the user from seeing the surrounding situation in a situation where a strong sunset is incident and the scenery other than the sunset is dark.
 また、主制御部54は、複数の受光センサからの信号(例えば第1信号、第2信号又は第3信号、若しくはこれらの2以上の組み合わせ等)に基づいて、第1受光部20が受光した光が予め定められた色基準以上赤く、かつ、第1受光部20が受光した光が予め定められた照度基準Th1未満の明るさであると判断した場合(例えば、図8(b)の場合)に、第1調光状態において、第1領域62をより透過率が高い状態(例えば、図11(b)の透過状態)にするように、調光部16の透過率を制御してよい。 The main control unit 54 receives light from the first light receiving unit 20 based on signals from a plurality of light receiving sensors (for example, the first signal, the second signal, the third signal, or a combination of two or more thereof). When it is determined that the light is more red than a predetermined color reference and the light received by the first light receiving unit 20 has a brightness lower than a predetermined illuminance reference Th1 (for example, in the case of FIG. 8B) ), In the first dimming state, the transmittance of the dimming unit 16 may be controlled so that the first region 62 has a higher transmittance (for example, the transmitting state in FIG. 11B). .
 これにより、例えば、図10のSu3の太陽がある環境では太陽だけでなく周囲の風景もまぶしい可能性が高いので、光学装置110は、第1調光状態において第2領域64だけでなく第1領域62の透過率も多少減少させて、ユーザのまぶしさを低減することができる。一方で、図10のSu4の太陽がある環境下では、Su3の太陽がある環境と比較してより夕暮れに近い状態になるので、光学装置110は、第1調光状態において第1領域62の透過率を減少せず、ユーザに太陽以外の風景等を十分に観察できるようにすることができる。 Accordingly, for example, in an environment where the sun of Su3 in FIG. 10 is present, there is a high possibility that not only the sun but also the surrounding scenery is dazzling. The transmittance of the area 62 can also be slightly reduced, reducing the glare of the user. On the other hand, in the environment where the sun of Su4 in FIG. 10 is present, the state is closer to dusk as compared to the environment where the sun of Su3 is present. Therefore, the optical device 110 has the first region 62 in the first dimming state. It is possible to allow the user to fully observe scenery other than the sun without reducing the transmittance.
 図12は、第1調光状態の調光部16の別の変形例を示す。主制御部54は、第1調光状態において、調光部16の第1領域62の透過率を異ならせることに加えて/代えて、第2領域64の透過率を異ならせてよい。例えば、主制御部54は、光量が予め定められた基準以上大きい場合に第1調光状態の第2領域64を図12(a)に示すように透過率が低い状態としてよく、また光量が基準未満の場合に第2領域64を図12(b)に示すように透過状態ではないが比較的透過率が高い状態としてよい。 FIG. 12 shows another modification of the light control unit 16 in the first light control state. The main control unit 54 may change the transmittance of the second region 64 in addition to / instead of changing the transmittance of the first region 62 of the dimming unit 16 in the first dimming state. For example, when the light amount is larger than a predetermined reference, the main control unit 54 may set the second region 64 in the first dimming state to a low transmittance state as shown in FIG. If it is less than the reference, the second region 64 may not be in the transmissive state as shown in FIG.
 一例として、主制御部54は、第1調光状態において、図8(a)および/または(d)に相当する場合に第2領域64がより透過率が低い状態(図12(a))になり、図8(b)に相当する場合に第2領域64がより透過率が高い状態(図12(b))となるように調光部16の透過率を制御してよい。これにより、光学装置110は、光源のまぶしさに応じて第1調光状態における庇状の遮光領域の減光作用を調節することができる。 As an example, the main control unit 54 is in a state where the second region 64 has a lower transmittance in the first dimming state when it corresponds to FIG. 8A and / or FIG. 8D (FIG. 12A). Thus, in the case corresponding to FIG. 8B, the transmittance of the light control unit 16 may be controlled so that the second region 64 has a higher transmittance (FIG. 12B). Thereby, the optical device 110 can adjust the dimming action of the bowl-shaped light shielding region in the first dimming state according to the glare of the light source.
 図13は、第2調光状態の調光部16の変形例を示す。主制御部54は、第2調光状態において、調光部16の透過率を複数のレベルに切り替えてよい。例えば、主制御部54は、第2調光状態において、光量に応じて調光部16の透過率を細分化した複数のレベルに制御してよい。 FIG. 13 shows a modification of the light control unit 16 in the second light control state. The main control unit 54 may switch the transmittance of the dimming unit 16 to a plurality of levels in the second dimming state. For example, in the second dimming state, the main control unit 54 may control the transmittance of the dimming unit 16 to a plurality of subdivided levels according to the light amount.
 一例として、主制御部54は、第1信号及び第2信号等に基づいて第1受光部20が受光した光が図8(e)に該当すると判断する場合に、第1閾値Th1>第3閾値Th1.1>第2閾値Th2となる第3閾値Th1.1を設定し、受光した光量LAがTh2≦LA<Th1.1となるか、又はTh1.1≦LA<Th1となるかを判定する。主制御部54は、Th2≦LA<Th1.1を満たすと判定した場合は、図13(a)に示すように調光部16の透過率を比較的高い第1レベルにし、Th1.1≦LA<Th1を満たすと判定した場合は、図13(b)に示すように調光部16の透過率を比較的低い第2レベルにする。これにより、主制御部54は、第2調光状態においても、入射光の光量に応じて適切な調光部16の減光作用を適切な程度にすることができる。 As an example, when the main control unit 54 determines that the light received by the first light receiving unit 20 corresponds to FIG. 8E based on the first signal, the second signal, and the like, the first threshold Th1> third. A third threshold value Th1.1 that satisfies threshold value Th1.1> second threshold value Th2 is set, and it is determined whether the received light amount LA satisfies Th2 ≦ LA <Th1.1 or Th1.1 ≦ LA <Th1. To do. When the main control unit 54 determines that Th2 ≦ LA <Th1.1 is satisfied, the transmittance of the light control unit 16 is set to a relatively high first level as illustrated in FIG. When it is determined that LA <Th1 is satisfied, the transmittance of the light control unit 16 is set to a relatively low second level as shown in FIG. Thereby, the main control part 54 can make the suitable dimming effect | action of the suitable light control part 16 according to the light quantity of incident light to an appropriate grade also in a 2nd light control state.
 更に、主制御部54は、第2調光状態において調光部16を複数の透過率のレベルで制御する際に、調光部16の透過率を一の閾値に基づいてあるレベルから別のレベルに切り替えた後は、透過率を再び別のレベルから元のレベルに戻すための閾値を、最初に用いた一の閾値によりも余裕を持たせてよい。 Further, when the main control unit 54 controls the dimming unit 16 at a plurality of transmittance levels in the second dimming state, the main control unit 54 changes the transmittance of the dimming unit 16 from a certain level to another level. After switching to the level, the threshold value for returning the transmittance from another level to the original level again may be given more margin than the first threshold value used first.
 例えば、まず、主制御部54は、第2調光状態において、第1閾値Th1>第3閾値Th1.1>第2閾値Th2となる第3閾値Th1.1を設定する。そして、主制御部54は、第1受光部20が受光した光が第3閾値Th1.1以上明るくなったと判断した場合、調光部16の透過率を第1レベルから第1レベルよりも透過率が低い第2レベルに切り替える。その後、主制御部54は、第2調光状態において、第3閾値Th1.1>第4閾値Th1.2>第2閾値Th2となる第3閾値Th1.1よりも小さい第4閾値Th1.2を設定し、第1受光部20が受光した光が第4閾値Th1.2より暗くなったと判断した場合、調光部16の透過率を第2レベルから第1レベルに切り替えてよい。 For example, first, in the second dimming state, the main control unit 54 sets the third threshold Th1.1 that satisfies the first threshold Th1> the third threshold Th1.1> the second threshold Th2. When the main control unit 54 determines that the light received by the first light receiving unit 20 has become brighter than the third threshold Th1.1, the main control unit 54 transmits the transmittance of the light control unit 16 from the first level to the first level. Switch to the second level where the rate is low. Thereafter, in the second dimming state, the main control unit 54 has a fourth threshold value Th1.2 that is smaller than the third threshold value Th1.1 that satisfies the third threshold value Th1.1> the fourth threshold value Th1.2> the second threshold value Th2. And the transmittance of the light control unit 16 may be switched from the second level to the first level when it is determined that the light received by the first light receiving unit 20 has become darker than the fourth threshold Th1.2.
 これにより、主制御部54は、第2調光状態で調光部16の透過率のレベルを一度切り替えた後は、光量がもとに戻っても透過率のレベルを容易に元に戻さないようにすることができ、光量の閾値付近で調光状態が次々に切り替わる現象を防ぐ。従って、光学装置110は、ユーザの視認性を向上させることができる。 As a result, the main control unit 54 does not easily return the transmittance level to the original level even if the light amount returns to the original level after once switching the transmittance level of the dimming unit 16 in the second dimming state. This prevents a phenomenon in which the dimming state is switched one after another in the vicinity of the light amount threshold value. Therefore, the optical device 110 can improve the visibility of the user.
 図14は、液晶部材38に分割電極160等を介して印加される電圧のデューティ比と、透過率が安定化するまでの時間の関係を示す図である。図14に示す例は、液晶部材38をスーパーツイストネマティックモードとした場合である。図14に示すように、調光部16の透過率は、電圧が高電圧から低電圧に切り替えられると、略最大値となって飽和する。 FIG. 14 is a diagram showing the relationship between the duty ratio of the voltage applied to the liquid crystal member 38 via the divided electrode 160 and the time until the transmittance is stabilized. The example shown in FIG. 14 is a case where the liquid crystal member 38 is set to a super twist nematic mode. As shown in FIG. 14, the transmittance of the light control unit 16 becomes a substantially maximum value and is saturated when the voltage is switched from a high voltage to a low voltage.
 図14に示すように、調光部16の透過率が、最小値から最大値に変化する場合、高電圧から低電圧に切り替えてから透過率が安定化するまでに必要な時間は、約7msである。ここでいう、透過率の安定化に要する時間とは、調光部16の透過率が最小値の状態から、電圧を切り替えて最大値になるまでの時間である。尚、60Hzの1周期は16.67msなので、1周期の間で低電圧が印加されている時間は8.33msである。透過率が最小値から最大値に変化する場合、液晶部材38の液晶分子は、直線状に配列した状態から、入射側から出射側に沿って捩れた状態に戻る。 As shown in FIG. 14, when the transmittance of the light control unit 16 changes from the minimum value to the maximum value, the time required for the transmittance to stabilize after switching from the high voltage to the low voltage is about 7 ms. It is. Here, the time required for stabilization of the transmittance is the time from when the transmittance of the light control unit 16 is at the minimum value until the voltage is switched to the maximum value. Since one cycle of 60 Hz is 16.67 ms, the time during which a low voltage is applied during one cycle is 8.33 ms. When the transmittance changes from the minimum value to the maximum value, the liquid crystal molecules of the liquid crystal member 38 return from the linear arrangement state to the twisted state from the incident side along the emission side.
 一方、調光部16の透過率が、最大値から最小値に変化する場合、低電圧から高電圧に切り替えてから透過率が安定化するまでに必要な時間は、約300μsである。従って、透過率が大きくなって安定化するまでの時間は、透過率が小さくなって安定化するまでの時間よりも長い。尚、透過率が最大値から最小値に変化する場合、液晶部材38の液晶分子は、入射側から出射側に沿って捩れた状態から、直線状に配列した状態へと変化する。 On the other hand, when the transmittance of the light control unit 16 changes from the maximum value to the minimum value, the time required for the transmittance to stabilize after switching from the low voltage to the high voltage is about 300 μs. Therefore, the time until the transmittance increases and stabilizes is longer than the time until the transmittance decreases and stabilizes. When the transmittance changes from the maximum value to the minimum value, the liquid crystal molecules of the liquid crystal member 38 change from the twisted state along the exit side from the incident side to the linearly arranged state.
 主制御部54は、第1受光部20から光量の増加を示す信号を受け取ってから当該信号を処理して、調光部16を制御する信号を出力するのに若干処理時間を必要とする。しかし、主制御部54は、第1信号及び/又は第2信号等に基づいて第1受光部20の光量の増加を検出してから0.2秒未満で調光部16を第1調光状態又は第2調光状態に制御し、調光部16の透過率を低下させる。調光部16の調光状態の変化時間の詳細については後述する。これにより、光学装置110は、人がまぶしい光を不快に感じる時間が経過する前に、適切な調光をユーザに提供することができる。 The main control unit 54 needs a little processing time to process the signal after receiving the signal indicating the increase in the light amount from the first light receiving unit 20 and to output a signal for controlling the light control unit 16. However, the main controller 54 detects the increase in the amount of light from the first light receiving unit 20 based on the first signal and / or the second signal, etc. The state or the second dimming state is controlled to reduce the transmittance of the dimming unit 16. Details of the change time of the light control state of the light control unit 16 will be described later. As a result, the optical device 110 can provide appropriate light control to the user before the time when a person feels uncomfortable with the dazzling light has elapsed.
 尚、ツイストネマティックモードでは、調光部16の透過率が、最小値から最大値に変化する場合、高電圧から低電圧に切り替えてから透過率が安定化するまでに必要な時間は、約5msである。但し、ツイストネマティックモードでは、高電圧から低電圧に切り替えてから透過率が変化し始めるのに、1msを要する。ツイストネマティックモードでは、調光部16の透過率が、最大値から最小値に変化する場合、低電圧から高電圧に切り替えてから透過率が安定化するまでに必要な時間は、約300μsである。 In the twisted nematic mode, when the transmittance of the dimmer 16 changes from the minimum value to the maximum value, the time required for the transmittance to stabilize after switching from the high voltage to the low voltage is about 5 ms. It is. However, in the twisted nematic mode, it takes 1 ms for the transmittance to start changing after switching from a high voltage to a low voltage. In the twisted nematic mode, when the transmittance of the light control unit 16 changes from the maximum value to the minimum value, the time required for the transmittance to stabilize after switching from the low voltage to the high voltage is about 300 μs. .
 主制御部54は、図14の下部に示すように、例えば、600Hzで高電圧を印加する。図14に示すように、主制御部54は、調光部16の透過率が最小値の状態から電圧を切り替えて最大値へと変化する場合に安定化に要する時間と、調光部16の透過率が最大値の状態から電圧を切り替えて最小値へと変化する場合に安定化に要する時間との和よりも短い周期で、高電圧と低電圧とを切り替えている。より詳細には、主制御部54は、調光部16の透過率が最小値の状態から、電圧を切り替えて最大値へと変化する場合に安定化に要する時間より短い周期で、高電圧と低電圧とを切り替えている。ここで、図14の下部に示すように、一の周期において、複数のデューティ比が存在する。上述したようにこの複数のデューティ比は、調光部16の透過率と関係がある。この関係の具体例について説明する。 The main controller 54 applies a high voltage at 600 Hz, for example, as shown in the lower part of FIG. As shown in FIG. 14, the main control unit 54 determines the time required for stabilization when the transmittance of the dimmer 16 changes from the minimum value to the maximum value by switching the voltage, and the dimmer 16 When the transmittance changes from the maximum value to the minimum value by switching the voltage, the high voltage and the low voltage are switched in a cycle shorter than the sum of the time required for stabilization. More specifically, the main control unit 54 sets the high voltage at a cycle shorter than the time required for stabilization when the transmittance of the dimming unit 16 is changed from the minimum value to the maximum value by switching the voltage. Switching between low voltage. Here, as shown in the lower part of FIG. 14, a plurality of duty ratios exist in one cycle. As described above, the plurality of duty ratios are related to the transmittance of the light control unit 16. A specific example of this relationship will be described.
 図15は、デューティ比と、調光部16の透過率との関係を示すグラフである。図15の下のグラフは、調光部16に印加される電圧の波形を示す。図15の下のグラフにおいて、各電圧波形VL1から電圧波形VL5の周期は同じである。電圧波形VL1から電圧波形VL5のそれぞれにおいて、高電圧の値は互いに同じであり、低電圧の値は互いに同じである。電圧波形VL1から電圧波形VL5の順で、高電圧のデューティ比が徐々に小さくなる。図15の上のグラフにおける透過率波形WA1から透過率波形WA5は、それぞれ電圧波形VL1から電圧波形VL5が印加された調光部16の前方透過率のグラフである。 FIG. 15 is a graph showing the relationship between the duty ratio and the transmittance of the light control unit 16. The lower graph of FIG. 15 shows the waveform of the voltage applied to the dimmer 16. In the lower graph of FIG. 15, the period from each voltage waveform VL1 to voltage waveform VL5 is the same. In each of the voltage waveforms VL1 to VL5, the high voltage values are the same and the low voltage values are the same. In the order of the voltage waveform VL1 to the voltage waveform VL5, the duty ratio of the high voltage gradually decreases. The transmittance waveform WA1 to the transmittance waveform WA5 in the upper graph of FIG. 15 are graphs of the forward transmittance of the dimming unit 16 to which the voltage waveform VL5 is applied, respectively.
 図15に示すように、調光部16の透過率は、印加される電圧の周期が液晶部材38の安定化するまでの時間よりも短いので、最大値と最小値との間の一部の領域で振幅する。更に、高電圧のデューティ比は、透過率と関係がある。具体的には、電圧波形VL1等のようにデューティ比が高くなると、高電圧の時間が長くなる。従って、透過率が高い時間が短くなるので、透過率を時間で積算した積算透過率は低くなる。一方、電圧波形VL5のようにデューティ比が低くなると、低電圧の時間が長くなる。従って、透過率が高い時間が長くなるので、積算透過率は高くなる。尚、本実施形態では、主制御部54は、分割電極に対して電圧波形VL1~VL5のいずかを与え、又は、電圧を印加しないことにより、調光部16の各領域の透過率を切り替え、これにより調光部16の各調光状態を実現する。 As shown in FIG. 15, the transmittance of the light control unit 16 is shorter than the time until the liquid crystal member 38 stabilizes the period of the applied voltage, and therefore, a part of the transmittance between the maximum value and the minimum value. Amplitude in region. Furthermore, the duty ratio of the high voltage is related to the transmittance. Specifically, as the duty ratio increases as in the voltage waveform VL1 or the like, the high voltage time becomes longer. Therefore, since the time during which the transmittance is high is shortened, the integrated transmittance obtained by integrating the transmittance with time is low. On the other hand, when the duty ratio is low as in the voltage waveform VL5, the low voltage time is lengthened. Accordingly, since the time during which the transmittance is high is prolonged, the integrated transmittance is increased. In the present embodiment, the main control unit 54 gives one of the voltage waveforms VL1 to VL5 to the divided electrodes, or does not apply a voltage, so that the transmittance of each region of the light control unit 16 is increased. By switching, each light control state of the light control unit 16 is realized.
 光学装置110では、主制御部54は、高電圧と低電圧とを液晶部材38が安定化する時間よりも短い周期で切り替えて、調光部16に印加する。これにより、光学装置110は、調光部16の透過率を最大値と最小値との間の一部の領域で振幅させることができる。これにより、ユーザは、光量が一定の値で振幅した状態で外部を見ることになるので、光学装置110は、フリッカを緩和することができる。 In the optical device 110, the main control unit 54 switches the high voltage and the low voltage at a cycle shorter than the time during which the liquid crystal member 38 is stabilized, and applies it to the light control unit 16. Thereby, the optical device 110 can amplify the transmittance of the light control unit 16 in a partial region between the maximum value and the minimum value. As a result, the user sees the outside in a state where the light amount is amplified at a constant value, and thus the optical device 110 can reduce flicker.
 また、光学装置110は、主制御部54が、高電圧と低電圧とを信号機等の点滅周期よりも極めて短い周期で切り替えている。これにより、光学装置110は、ユーザの目に光がほとんど達しない時間が連続することを抑制できる。この結果、光学装置110は、フリッカをより抑制することができる。 In the optical device 110, the main control unit 54 switches between a high voltage and a low voltage at a cycle that is extremely shorter than the blinking cycle of a traffic light or the like. Thereby, the optical apparatus 110 can suppress that the time when light hardly reaches eyes of a user continues. As a result, the optical device 110 can further suppress flicker.
 図16は、光学装置110による処理のフローチャートである。 FIG. 16 is a flowchart of processing by the optical device 110.
 まず、主制御部54は、S10において、近接センサ18がユーザを検出したか否かを判定する。主制御部54は、ユーザを検出できない場合(S10:No)、近接センサ18がユーザを検出したと判定するまで待機状態となる。主制御部54は、ユーザが眼鏡型の光学装置110を装着したこと等に応じてユーザを検出した場合(S10:Yes)、近接センサ18はユーザを検出したことを示す存在信号を主制御部54へと出力する。 First, the main control unit 54 determines whether or not the proximity sensor 18 has detected a user in S10. When the main control unit 54 cannot detect the user (S10: No), the main control unit 54 is in a standby state until it is determined that the proximity sensor 18 has detected the user. When the main control unit 54 detects the user according to the user wearing the glasses-type optical device 110 or the like (S10: Yes), the proximity sensor 18 sends a presence signal indicating that the user has been detected to the main control unit. To 54.
 次に、S12において、主制御部54は、光量を検出の要否を判定する検出時間tをリセットして「0」にする。 Next, in S12, the main control unit 54 resets the detection time t for determining whether it is necessary to detect the light amount to “0”.
 次に、S14において、主制御部54は、検出時間tが光量を検出する検出周期P0以上となったか否かを判定する。主制御部54は、検出時間tが検出周期P0以上となるまで、待機状態となる(S14:No)。主制御部54は、検出時間tが検出周期P0以上となったと判定すると(S14:Yes)、処理をS16に進める。 Next, in S14, the main control unit 54 determines whether or not the detection time t is equal to or longer than the detection cycle P0 for detecting the light amount. The main control unit 54 is in a standby state until the detection time t becomes equal to or longer than the detection cycle P0 (S14: No). If the main control unit 54 determines that the detection time t is equal to or greater than the detection cycle P0 (S14: Yes), the process proceeds to S16.
 S16において、主制御部54は、第1受光部20の複数の受光センサから受光した光量に関する情報を取得する。 In S16, the main control unit 54 acquires information on the amount of light received from the plurality of light receiving sensors of the first light receiving unit 20.
 次に、S18において、主制御部54は、取得した光量に関する情報に基づいて、第1受光部20によって検出された光量が第2閾値Th2以上か否かを判定する。例えば、主制御部54は、複数の受光センサが受光した光量の平均が第2閾値Th2以上か否かを判定する。一例として、主制御部54は、第1受光センサ202からの第1信号、第2受光センサ204からの第2信号、及び、第3受光センサ206からの第3信号(又はその一部、例えば第1信号と第2信号)の信号強度の平均値に対応する光量が、第1閾値Th1よりも小さい第2閾値Th2以上明るいか、又は第2閾値Th2未満かを判定する。ここで、第1~第3信号がデジタル信号である場合は、主制御部54は、複数の受光センサからの信号の信号強度に代えてデジタル信号が示す光量の値を用いてよい。 Next, in S18, the main control unit 54 determines whether or not the light amount detected by the first light receiving unit 20 is greater than or equal to the second threshold Th2 based on the acquired information regarding the light amount. For example, the main control unit 54 determines whether or not the average amount of light received by the plurality of light receiving sensors is equal to or greater than the second threshold Th2. As an example, the main control unit 54 includes a first signal from the first light receiving sensor 202, a second signal from the second light receiving sensor 204, and a third signal from the third light receiving sensor 206 (or a part thereof, for example, It is determined whether the amount of light corresponding to the average value of the signal intensity of the first signal and the second signal is brighter than the second threshold Th2 that is smaller than the first threshold Th1 or less than the second threshold Th2. Here, when the first to third signals are digital signals, the main control unit 54 may use the value of the light quantity indicated by the digital signals instead of the signal intensity of the signals from the plurality of light receiving sensors.
 主制御部54は、光量が第2閾値Th2未満と判定すると(S18:No)処理をS20に進め、光量が第2閾値Th2以上と判定すると(S18:Yes)処理をS22に進める。 If the main control unit 54 determines that the light amount is less than the second threshold Th2 (S18: No), the process proceeds to S20, and if the light amount is determined to be greater than or equal to the second threshold Th2 (S18: Yes), the process proceeds to S22.
 S20において、主制御部54は、調光部16を無調光状態に制御し、処理をS30に進める。 In S20, the main control unit 54 controls the light control unit 16 to the non-light control state, and advances the process to S30.
 S22において、主制御部54は、取得した光量に関する情報に基づいて、S18と同様に第1受光部20によって検出された光量が第2閾値Th2よりも大きい第1閾値Th1以上か否かを判定する。例えば、主制御部54は、複数の受光センサが受光した光量の平均等が第1閾値Th1以上か否かを判定する。主制御部54は、光量が第1閾値Th1未満と判定すると(S22:No)処理をS24に進め、光量が第1閾値Th1以上と判定すると(S22:Yes)処理をS26に進める。 In S22, the main control unit 54 determines whether or not the amount of light detected by the first light receiving unit 20 is greater than or equal to the first threshold Th1, which is larger than the second threshold Th2, based on the acquired information on the amount of light. To do. For example, the main control unit 54 determines whether or not the average light amount received by the plurality of light receiving sensors is equal to or greater than the first threshold Th1. If the main control unit 54 determines that the light amount is less than the first threshold Th1 (S22: No), the process proceeds to S24. If the main control unit 54 determines that the light amount is greater than or equal to the first threshold Th1 (S22: Yes), the process proceeds to S26.
 S24において、主制御部54は、取得した光量に関する情報に基づいて、第1受光部20に受光された光の赤さが予め定められた基準以上か否かを判定する。例えば、主制御部54は、赤色を受光する第1受光センサ202からの第1信号の強度の、他の受光センサからの信号の強度(例えば、第2信号及び第3信号の一方の強度、又は、これらの強度の総和)に対する割合を色情報とし、当該割合が予め定められた値以上であるかを判定する。すなわち、主制御部54は、複数の受光センサからのRGB信号中のR信号の比率が一定以上大きいときに入射光が赤いと判定する。 In S24, the main control unit 54 determines whether or not the red color of the light received by the first light receiving unit 20 is equal to or higher than a predetermined reference based on the acquired information regarding the light amount. For example, the main control unit 54 uses the intensity of the first signal from the first light receiving sensor 202 that receives red light, the intensity of the signal from the other light receiving sensor (for example, the intensity of one of the second signal and the third signal, Alternatively, a ratio to the sum of these intensities) is used as color information, and it is determined whether the ratio is equal to or greater than a predetermined value. That is, the main control unit 54 determines that the incident light is red when the ratio of the R signal in the RGB signals from the plurality of light receiving sensors is larger than a certain value.
 これに代えて、例えば、主制御部54は、RGBカラーセンサである複数の受光センサからの信号の強度に基づいて、第1受光部20が受光した光の色をxy色度図等の色空間上の座標に変換し、受光した光が色空間上で赤色を示す空間(一例として、xy色度図上で(x,y)=(0.52,0.41)から予め定められた距離内の空間)に含まれる場合に予め定められた基準以上赤いと判定してもよい。S24において、主制御部54は、光の赤さが予め定められた基準以上と判定した場合、処理をS26に進め、そうでない場合処理をS28に進める。 Instead, for example, the main control unit 54 changes the color of light received by the first light receiving unit 20 based on the intensity of signals from a plurality of light receiving sensors that are RGB color sensors, such as an xy chromaticity diagram. A space in which received light is converted into coordinates in space and red is displayed on the color space (as an example, it is predetermined from (x, y) = (0.52, 0.41) on the xy chromaticity diagram) If it is included in a space within a distance, it may be determined that the color is red above a predetermined reference. In S24, the main control unit 54 advances the process to S26 if the light red is determined to be greater than or equal to a predetermined reference, and advances the process to S28 otherwise.
 S26において、主制御部54は、調光部16を第1調光状態に制御し、処理をS30に進める。例えば、主制御部54は、図6、図11及び図12等で説明した手法で調光部16を第1調光状態に制御してよい。 In S26, the main control unit 54 controls the dimming unit 16 to the first dimming state, and advances the process to S30. For example, the main control unit 54 may control the dimming unit 16 to the first dimming state by the method described with reference to FIGS. 6, 11, and 12.
 S28において、主制御部54は、調光部16を第2調光状態に制御し、処理をS30に進める。例えば、主制御部54は、図7及び図13等で説明した手法で調光部16を第2調光状態に制御してよい。 In S28, the main control unit 54 controls the dimming unit 16 to the second dimming state, and advances the process to S30. For example, the main control unit 54 may control the dimming unit 16 to the second dimming state by the method described with reference to FIGS.
 S30において、主制御部54は、近接センサ18から存在信号を取得して、近接センサ18がユーザを検出しているか否かを判定する。例えば、主制御部54は、近接センサ18から存在信号を検出している場合は処理をS12に戻し、近接センサ18から存在信号を検出していない場合は処理を終了する。 In S30, the main control unit 54 acquires a presence signal from the proximity sensor 18 and determines whether or not the proximity sensor 18 detects a user. For example, when the presence signal is detected from the proximity sensor 18, the main control unit 54 returns the process to S <b> 12 and ends the process when the presence signal is not detected from the proximity sensor 18.
 上述したように、光学装置110によると、主制御部54が、第1受光部20が受光した光の光量及び色に応じて、調光部16の調光状態を制御する。これにより、光学装置110は、異なる外光環境に対応して適切な調光をユーザに提供することができる。特に、光学装置110では、主制御部54は、光量が非常に大きい場合又は光量が一定以上大きくかつ赤い光が入射する場合に、太陽光が直接ユーザの眼に入射する可能性が高いと判断して、調光部16を第1調光状態にする。これにより、光学装置110は、例えば、日中の太陽及び夕暮れ時の太陽に対して適切に遮光することができる。 As described above, according to the optical device 110, the main control unit 54 controls the dimming state of the dimming unit 16 according to the light amount and color of the light received by the first light receiving unit 20. Thereby, the optical device 110 can provide a user with appropriate light control corresponding to different external light environments. In particular, in the optical device 110, the main control unit 54 determines that there is a high possibility that sunlight is directly incident on the user's eyes when the amount of light is very large or when the amount of light is greater than a certain level and red light is incident. Then, the dimming unit 16 is set to the first dimming state. Accordingly, the optical device 110 can appropriately shield light from, for example, the sun during the daytime and the sun at dusk.
 図17、図18、図19及び図20は、光学装置110が複数の受光部を有する変形例を示す。本変形例において、光学装置110は、図17に示すように第1受光部20a、第2受光部20b、及び、マスク280を備える。光学装置110は、更に3個目以降の受光部を備えてもよい。 FIGS. 17, 18, 19 and 20 show modifications in which the optical device 110 has a plurality of light receiving portions. In this modification, the optical device 110 includes a first light receiving unit 20a, a second light receiving unit 20b, and a mask 280 as shown in FIG. The optical device 110 may further include third and subsequent light receiving units.
 第1受光部20aは、既に説明した第1受光部20と同様であってよい。第2受光部20bは、第1受光部20aと異なる方向からの光を受光し、受光した光量に応じた第4信号を少なくとも出力する。例えば、第2受光部20bは、可視光全体の波長域を受光する単一の受光センサを備え、当該単一の受光センサが受光した光量に応じた第4信号を出力してもよい。これに代えて、第2受光部20bは、図1で説明した第1受光部20と同様に、複数の受光センサからRGBの3色の受光量に応じた第4~第6信号を出力するカラーセンサであってもよい。第2受光部20bがカラーセンサである場合、第1受光部20aは、カラーセンサであってもなくてもよい。 The first light receiving unit 20a may be the same as the first light receiving unit 20 already described. The second light receiving unit 20b receives light from a direction different from that of the first light receiving unit 20a, and outputs at least a fourth signal corresponding to the received light amount. For example, the second light receiving unit 20b may include a single light receiving sensor that receives the entire wavelength range of visible light, and may output a fourth signal corresponding to the amount of light received by the single light receiving sensor. Instead, the second light receiving unit 20b outputs the fourth to sixth signals corresponding to the received light amounts of the three colors of RGB from the plurality of light receiving sensors, similarly to the first light receiving unit 20 described in FIG. A color sensor may be used. When the second light receiving unit 20b is a color sensor, the first light receiving unit 20a may or may not be a color sensor.
 マスク280は、開口部282を有し、第1受光部20a及び第2受光部20bの入射側に設けられる。マスク280は、枠本体部26の前面の中央部に配置されてよい。マスク280は、外部からの光のうち水平方向の光を開口部282から通過させ、水平方向以外の光を遮蔽する。マスク280は、例えば、枠形状の部材である。これに代えてマスク280は、液晶素子により実現されてもよい。 The mask 280 has an opening 282 and is provided on the incident side of the first light receiving unit 20a and the second light receiving unit 20b. The mask 280 may be disposed at the center of the front surface of the frame main body 26. The mask 280 allows light in the horizontal direction out of the light from the outside to pass through the opening 282 and shields light other than in the horizontal direction. The mask 280 is a frame-shaped member, for example. Alternatively, the mask 280 may be realized by a liquid crystal element.
 図18に示すように、水平方向(水平方向から予め定められた角度分上方にずれた方向を含んでよい)から入射した光は、マスク280を通過して、第1受光部20a及び第2受光部20bの両方に入射する。また図19に示すように、水平に対して斜め上方向から入射した光の一部はマスク280で遮蔽され、光の一部はマスク280を通過して第2受光部20bに入射する。これにより、図19に示す状態では、第2受光部20bのみに強い光が入射する。 As shown in FIG. 18, light incident from the horizontal direction (which may include a direction shifted upward from the horizontal direction by a predetermined angle) passes through the mask 280 and passes through the first light receiving unit 20 a and the second light receiving unit 20 a. It is incident on both of the light receiving portions 20b. Further, as shown in FIG. 19, a part of the light incident obliquely upward with respect to the horizontal is shielded by the mask 280, and a part of the light passes through the mask 280 and enters the second light receiving unit 20b. Thereby, in the state shown in FIG. 19, strong light is incident only on the second light receiving unit 20b.
 このように、入射光の入射角により、同一の光源について第1受光部20a及び第2受光部20bで受光する光量が異なる。本変形例において、主制御部54は、第1信号、第2信号、第3信号、及び第4信号等に基づき入射光の角度を推定し、入射した光の光量、色、及び、角度に応じて調光部16の透過率を制御する。 Thus, the amount of light received by the first light receiving unit 20a and the second light receiving unit 20b for the same light source varies depending on the incident angle of the incident light. In this modification, the main control unit 54 estimates the angle of incident light based on the first signal, the second signal, the third signal, the fourth signal, and the like, and sets the amount, color, and angle of the incident light. Accordingly, the transmittance of the light control unit 16 is controlled.
 図20は、本変形例の主制御部54による光量及び色に基づく制御の一例を示す。主制御部54は、第1受光部20a及び第2受光部20bから入射した光の光量を示す信号を受信して、入射光の光量、色及び角度を判断し、これらの光量等が予め定められた基準を満たすか否かを判断し、判断結果に基づき調光部16を無調光状態と第1調光状態と第2調光状態とで切り換える。 FIG. 20 shows an example of control based on the light amount and color by the main control unit 54 of the present modification. The main control unit 54 receives a signal indicating the amount of incident light from the first light receiving unit 20a and the second light receiving unit 20b, determines the amount, color, and angle of the incident light, and these amounts of light are determined in advance. It is determined whether or not the specified standard is satisfied, and the dimming unit 16 is switched between the non-dimming state, the first dimming state, and the second dimming state based on the determination result.
 例えば、まず、主制御部54は、第1受光部20aの1又は複数の受光センサから受信した信号強度の平均等から、第1受光部20aが受光した光の光量を算出して、当該光量に基づいて第1受光部20aが受光した光が予め定められた照度基準以上明るいか否かを判断する。一例として、主制御部54は、第1受光部20aが受光した光が、第1閾値Th1以上明るいか、第1受光部20aが受光した光が第1閾値Th1よりも小さい第2閾値Th2以上明るいか、又は第1受光部20aが受光した光の明るさが第2閾値Th2未満かを判定する。同様に、主制御部54は、第2受光部20bの1又は複数の受光センサから受信した信号強度の平均等から、第2受光部20bが受光した光の光量を算出して、当該光量に基づいて第2受光部20bが受光した光が予め定められた照度基準以上明るいか否かを判断する。 For example, first, the main control unit 54 calculates the amount of light received by the first light receiving unit 20a from the average of the signal intensities received from one or more light receiving sensors of the first light receiving unit 20a, and the light amount Based on the above, it is determined whether or not the light received by the first light receiving unit 20a is brighter than a predetermined illuminance standard. As an example, the main control unit 54 determines whether the light received by the first light receiving unit 20a is brighter than the first threshold Th1, or the light received by the first light receiving unit 20a is equal to or higher than the second threshold Th2 smaller than the first threshold Th1. It is determined whether the light is bright or the brightness of the light received by the first light receiving unit 20a is less than the second threshold Th2. Similarly, the main control unit 54 calculates the light amount of the light received by the second light receiving unit 20b from the average of the signal intensities received from the one or more light receiving sensors of the second light receiving unit 20b, and sets the light amount. Based on this, it is determined whether or not the light received by the second light receiving unit 20b is brighter than a predetermined illuminance standard.
 次に、主制御部54は、第1受光部20a及び/又は第2受光部20bの1又は複数の受光センサから受信した信号強度の割合等から、第1受光部20a等が受光した光の色情報を算出する。例えば、主制御部54は、第1受光部20a及び第2受光部20bから同色の受光センサの信号強度を取得し、これらを平均することで受光部間で平均化されたRBGごとの信号強度を算出し、平均化されたRBGごとの信号強度から色情報を算出してよい。また、例えば、主制御部54は、第1受光部20a及び第2受光部20bからの信号のうち受光した光量が大きい一方から光量に関する信号を受信して、色情報を算出してよい。これにより、例えば図19に示すように斜めから光が入射して、実質的に第1受光部20a及び第2受光部20bの一方のみに光が入射する場合でも、入射した光の色をより正確に算出することができる。主制御部54は、算出した色情報に基づいて第1受光部20a等が受光した光が予め定められた色基準以上赤いか否かを判断する。 Next, the main control unit 54 determines the light received by the first light receiving unit 20a and the like from the ratio of the signal intensity received from one or more light receiving sensors of the first light receiving unit 20a and / or the second light receiving unit 20b. Color information is calculated. For example, the main control unit 54 acquires the signal intensity of the light receiving sensor of the same color from the first light receiving unit 20a and the second light receiving unit 20b, and averages them to obtain the signal intensity for each RBG averaged between the light receiving units. And color information may be calculated from the averaged signal strength for each RBG. In addition, for example, the main control unit 54 may calculate a color information by receiving a signal related to the light amount from one of the signals received from the first light receiving unit 20a and the second light receiving unit 20b having a large received light amount. Thereby, for example, as shown in FIG. 19, even when light is incident from an oblique direction and light is incident on substantially only one of the first light receiving unit 20a and the second light receiving unit 20b, the color of the incident light is further increased. It can be calculated accurately. Based on the calculated color information, the main control unit 54 determines whether or not the light received by the first light receiving unit 20a and the like is red above a predetermined color reference.
 一例として、主制御部54は、第1受光部20aが受光した光が第1閾値Th1以上明るく、第2受光部20bが受光した光が第1閾値Th1以上明るいと判断した場合(図20(a))に、調光部16を第1調光状態に制御する。これにより、主制御部54は、水平方向(または、水平方向から予め定められた角度分上方にずれた方向を含む範囲の方向)に非常に強い光が入射したことに応じて、調光部16を第1調光状態にすることができる。すなわち、このような場合に、主制御部54は、太陽光が直接ユーザの眼に入射していると判断して、調光部16のうち太陽光が通過する可能性が高い端部領域に庇状の遮光領域を形成して、ユーザのまぶしさを低減することができる。 As an example, the main control unit 54 determines that the light received by the first light receiving unit 20a is brighter than the first threshold Th1, and the light received by the second light receiving unit 20b is brighter than the first threshold Th1 (FIG. 20 ( a)), the light control unit 16 is controlled to the first light control state. Thereby, the main control unit 54 controls the dimming unit according to the fact that very strong light is incident in the horizontal direction (or the direction including the direction shifted upward from the horizontal direction by a predetermined angle). 16 can be set to the first dimming state. That is, in such a case, the main control unit 54 determines that the sunlight is directly incident on the user's eyes, and in the end region where the sunlight is likely to pass through the dimming unit 16. It is possible to reduce glare of the user by forming a bowl-shaped light shielding region.
 また、主制御部54は、第1受光部20aが受光した光が第1閾値Th1以上明るく、第2受光部20bが受光した光の明るさが第1閾値Th1未満と判断した場合(図20(d)及び(g))、並びに、第2受光部20bが受光した光が第1閾値Th1以上明るく、第1受光部20aが受光した光の明るさが第1閾値Th1未満と判断した場合(図20(b)及び(c))に、調光部16を第2調光状態に制御する。これにより、主制御部54は、水平に対して斜め方向から非常に強い光が入射したことに応じて、調光部16を第2調光状態にすることができる。すなわち、このような場合には、太陽光が直接ユーザの眼には入らないが、建物の表面及び調光部16表面等で乱反射した光がユーザの眼に入りまぶしい状態であると主制御部54が判断して、調光部16全体に薄い遮光領域を形成して、ユーザのまぶしさを低減することができる。これに代えて、主制御部54は、第1受光部20aの受光した光が第1閾値Th1以上の場合(図20(a)、(d)及び(g))の場合には、第2受光部20bの受光量に関わらず、調光部16を第1調光状態としてもよい。 Further, the main control unit 54 determines that the light received by the first light receiving unit 20a is brighter than the first threshold Th1, and the brightness of the light received by the second light receiving unit 20b is less than the first threshold Th1 (FIG. 20). (D) and (g)), and the light received by the second light receiving unit 20b is brighter than the first threshold Th1, and the brightness of the light received by the first light receiving unit 20a is determined to be less than the first threshold Th1. In FIG. 20B and FIG. 20C, the light control unit 16 is controlled to the second light control state. Thereby, the main control part 54 can make the light control part 16 into a 2nd light control state according to the very strong light having entered from the diagonal direction with respect to the horizontal. That is, in such a case, the main control unit is assumed that the sunlight does not directly enter the user's eyes, but the light irregularly reflected on the surface of the building, the surface of the light control unit 16, etc. is dazzling the user's eyes. As a result, it is possible to reduce the glare of the user by forming a thin light-shielding region in the entire light control unit 16. Instead, the main control unit 54 determines the second when the light received by the first light receiving unit 20a is equal to or greater than the first threshold Th1 (FIGS. 20A, 20D, and 20G). Regardless of the amount of light received by the light receiving unit 20b, the light control unit 16 may be in the first light control state.
 また、主制御部54は、第1受光部20aが受光した光の明るさが第1閾値Th1未満第2閾値Th2以上で、第2受光部20bが受光した光の明るさが第1閾値Th1未満第2閾値Th2以上と判断した場合(図20(e))、受光した光の色に応じて、調光部16を第1調光状態又は第2調光状態に制御する。主制御部54は、受光した光の色が予め定められた基準以上赤いと判断した場合に調光部16を第1調光状態に制御し、受光した光の色が予め定められた基準以上赤くないと判断した場合に調光部16を第2調光状態に制御する。 Further, the main control unit 54 determines that the brightness of the light received by the first light receiving unit 20a is less than the first threshold Th1 and the second threshold Th2, and the brightness of the light received by the second light receiving unit 20b is the first threshold Th1. When it is determined that the value is less than or equal to the second threshold Th2 (FIG. 20E), the dimming unit 16 is controlled to the first dimming state or the second dimming state according to the color of the received light. When the main control unit 54 determines that the color of the received light is red above a predetermined reference, the main control unit 54 controls the dimming unit 16 to the first dimming state, and the color of the received light exceeds the predetermined reference. When it is determined that the light is not red, the light control unit 16 is controlled to the second light control state.
 これにより、主制御部54は、第1受光部20a等に受光した光が一定以上明るく、かつ赤い場合に、夕日が入射していると判断し、調光部16に庇状の遮光領域を形成して、ユーザのまぶしさを低減することができる。一方で、主制御部54は、第1受光部20に受光した光が一定以上明るく、かつ赤くない場合に、やや強い環境光が入射していると判断し、調光部16全体に薄めの遮光領域を形成して、ユーザのまぶしさを低減することができる。 As a result, the main control unit 54 determines that the sunset is incident when the light received by the first light receiving unit 20a and the like is brighter than a certain level and is red, so that the light adjusting unit 16 has a bowl-shaped light shielding region. This can reduce the glare of the user. On the other hand, when the light received by the first light receiving unit 20 is brighter than a certain level and is not red, the main control unit 54 determines that slightly strong ambient light is incident, and the light control unit 16 is thinned. The light-shielding area can be formed to reduce the glare of the user.
 主制御部54は、これ以外の場合(図20(f)、(h)及び(i))の場合、調光部16を無調光状態としてよいが、これに代えて第2調光状態としてもよい。 In other cases (FIGS. 20 (f), (h), and (i)), the main control unit 54 may place the dimming unit 16 in the non-dimming state, but instead, the second dimming state. It is good.
 図21及び図22は、調光部16が3個の領域を有する光学装置110の変形例を示す。本変形例において、図示するように、光学装置110は、それぞれが独立に透過率を変更可能な第1領域62、第2領域64、及び、第3領域66を有する一対の調光部16を備える。例えば、調光部16は、図示するように調光部16の最下端に位置し、調光部16の中央部を含む第1領域62、第1領域62の上部に位置する第2領域64と、調光部16の上端部かつ第2領域64の上部に設けられた第3領域66とを有する。 21 and 22 show a modification of the optical device 110 in which the light control unit 16 has three regions. In this modification, as illustrated, the optical device 110 includes a pair of light control units 16 each having a first region 62, a second region 64, and a third region 66 that can change the transmittance independently. Prepare. For example, the dimming unit 16 is located at the lowermost end of the dimming unit 16 as illustrated, and includes a first region 62 including the central portion of the dimming unit 16, and a second region 64 located above the first region 62. And a third region 66 provided at the upper end of the light control unit 16 and above the second region 64.
 図22は、本変形例における調光部16の第1調光状態の例を示す。本変形例において、主制御部54は、第1調光状態において、光量及び色等に応じて、調光部16を更に複数の異なる調光状態に制御してよい。例えば、主制御部54は、第1調光状態の中で光量が比較的多い条件下で、図22(a)のように第3領域66のみを比較的透過率が低い半透過状態又は不透過状態に制御してよい。また、主制御部54は、第1調光状態の中で光量が比較的少ない条件下で、図22(b)のように第2領域64に加えて第3領域66を図22(a)の第3領域66に比べて透過率が高い半透過状態に制御してよい。 FIG. 22 shows an example of the first dimming state of the dimming unit 16 in this modification. In this modification, the main control unit 54 may further control the dimming unit 16 to a plurality of different dimming states in the first dimming state according to the light amount, the color, and the like. For example, the main control unit 54 performs the semi-transmission state or the non-transmission state in which only the third region 66 is relatively low as shown in FIG. The transmission state may be controlled. Further, the main control unit 54 places the third area 66 in addition to the second area 64 as shown in FIG. 22B under the condition that the amount of light is relatively small in the first dimming state. The semi-transmission state may be controlled such that the transmittance is higher than that of the third region 66.
 図23、図24、及び図25は、光学装置110が単一の受光部で光の入射方向を推定する変形例を示す。図23に示すように、本変形例で光学装置110は、第1受光部20の前面に複数の分割透過領域272a、272b、及び、272cを備える。複数の分割透過領域272a、272b、及び、272cは、例えば、枠本体部26の前面の中央部に配置されてよく、主制御部54によりそれぞれが独立して透過/遮光状態を制御可能な液晶素子であってよい。主制御部54は、光量を検出する場合、例えば、複数の分割透過領域272a~cの少なくとも1個を開状態として、残りを閉状態としてよい。 23, 24, and 25 show modifications in which the optical device 110 estimates the incident direction of light with a single light receiving unit. As shown in FIG. 23, in this modification, the optical device 110 includes a plurality of divided transmission regions 272a, 272b, and 272c on the front surface of the first light receiving unit 20. The plurality of divided transmission regions 272a, 272b, and 272c may be disposed, for example, in the center of the front surface of the frame body 26, and the main control unit 54 can independently control the transmission / light shielding state. It may be an element. When detecting the amount of light, the main control unit 54 may open at least one of the plurality of divided transmission regions 272a to 272c and close the remaining one, for example.
 図24は、複数の分割透過領域の動作の一例を示す。主制御部54は、複数の分割透過領域272a~cのうちの開状態とするものを時分割で切り替える。例えば、主制御部54は、図22に示すように、まず複数の分割透過領域272a~cのうち分割透過領域272aのみを開状態にし、残りを閉状態とする。これにより、第1受光部20は、水平方向に対し大きい角度から入射した光のみを受光する。次に主制御部54は、複数の分割透過領域272a~cのうち分割透過領域272bのみを開状態にし、残りを閉状態とする。これにより、第1受光部20は、水平方向に対し中程度の角度から入射した光を受光する。次に、主制御部54は、複数の分割透過領域272a~cのうち分割透過領域272cのみを開状態にし、残りを閉状態とする。これにより、第1受光部20は、ほぼ水平方向から入射した光を受光する。 FIG. 24 shows an example of the operation of a plurality of divided transparent areas. The main control unit 54 switches one of the plurality of divided transmission regions 272a to 272c that are in the open state in a time division manner. For example, as shown in FIG. 22, the main control unit 54 first opens only the divided transmission region 272a among the plurality of divided transmission regions 272a to 272c and closes the rest. Thereby, the 1st light-receiving part 20 receives only the light which injected from the big angle with respect to the horizontal direction. Next, the main control unit 54 opens only the divided transmission region 272b among the plurality of divided transmission regions 272a to 272c and closes the rest. Thereby, the 1st light-receiving part 20 receives the light which injected from the medium angle with respect to the horizontal direction. Next, the main control unit 54 opens only the divided transmission region 272c among the plurality of divided transmission regions 272a to 272c and closes the rest. Thereby, the 1st light-receiving part 20 receives the light which injected from the substantially horizontal direction.
 主制御部54は、このように複数の分割透過領域272a~cのいずれかを順次開状態にしつつ、第1受光部20から光量に関する信号を受信する。主制御部54は、光量に関する信号から光量を特定して、最も大きい光量を検出したときの開状態の分割透過領域272a~cを特定する。これにより、主制御部54は、外部からの入射光の入射角を粗く推定する。例えば、主制御部54は、分割透過領域272aが開状態での光量が最も大きいと判定すると、前方から上方に大きく傾斜した角度(例えば、45°以上)を光の入射角と特定する。主制御部54は、第1受光部20の受光した光の光量、色及び入射角に応じて、調光部16の調光状態を切り替えるように、調光部16に電圧を印加する。 The main control unit 54 receives a signal relating to the light amount from the first light receiving unit 20 while sequentially opening any one of the plurality of divided transmission regions 272a to 272c in this way. The main control unit 54 specifies the light amount from the signal relating to the light amount, and specifies the divided transmission regions 272a to 272c in the open state when the largest light amount is detected. Thereby, the main controller 54 roughly estimates the incident angle of the incident light from the outside. For example, when the main control unit 54 determines that the amount of light when the divided transmission region 272a is open is the largest, the main control unit 54 identifies an angle (for example, 45 ° or more) that is greatly inclined upward from the front as the incident angle of light. The main control unit 54 applies a voltage to the dimming unit 16 so as to switch the dimming state of the dimming unit 16 according to the light amount, color, and incident angle of the light received by the first light receiving unit 20.
 図25は、本変形例における、主制御部54による光量、色及び入射角に基づく制御の一例を示す。例えば、主制御部54は、図21及び図22に係る光学装置において図25の制御を実行してよい。主制御部54は、第1受光部20から入射した光の光量の信号を受信し、受信した信号から入射光の光量、色及び入射角を特定し、これらが予め定められた基準を満たすか否かを判断し、判断結果に基づき調光部16を無調光状態と第1調光状態と第2調光状態とで切り換える。 FIG. 25 shows an example of control based on the amount of light, the color, and the incident angle by the main control unit 54 in this modification. For example, the main control unit 54 may execute the control of FIG. 25 in the optical device according to FIGS. The main control unit 54 receives the signal of the amount of light incident from the first light receiving unit 20, identifies the amount of light, color, and incident angle of the incident light from the received signal, and whether these satisfy predetermined criteria The dimming unit 16 is switched between the non-dimming state, the first dimming state, and the second dimming state based on the determination result.
 例えば、主制御部54は、図8で説明した手法と同様の方法で第1受光部20が受光した光が予め定められた照度基準以上明るいか否かを判断し、受光した光が予め定められた色基準以上赤いか否かを判断する。 For example, the main control unit 54 determines whether or not the light received by the first light receiving unit 20 is brighter than a predetermined illuminance reference by a method similar to the method described in FIG. 8, and the received light is determined in advance. It is judged whether or not it is red above the specified color standard.
 次に、主制御部54は、第1受光部20が受光した光の入射角が低角度、中角度、高角度のいずれであるかを判断する。例えば、主制御部54は、分割透過領域272aが開状態での光量が最も大きいと判定すると入射角が高角度であると判断し、分割透過領域272bが開状態での光量が最も大きいと判定すると入射角が中角度であると判断し、分割透過領域272cが開状態での光量が最も大きいと判定すると入射角が低角度であると判断する。 Next, the main control unit 54 determines whether the incident angle of the light received by the first light receiving unit 20 is a low angle, a medium angle, or a high angle. For example, the main control unit 54 determines that the incident angle is a high angle when it determines that the amount of light when the divided transmission region 272a is open is the largest, and determines that the amount of light when the divided transmission region 272b is open is the maximum. Then, it is determined that the incident angle is a medium angle, and when it is determined that the amount of light when the divided transmission region 272c is open is the largest, the incident angle is determined to be a low angle.
 そして、主制御部54は、第1受光部20が受光した光が低角度で第1閾値Th1以上明るいと判断した場合(図25(a))、調光部16を第1調光状態に制御する。これにより、主制御部54は、水平方向に近い低角度方向から非常に強い光が入射したことに応じて、調光部16を第1調光状態にすることができる。例えば、主制御部54は、図21及び図22において第2領域64及び第3領域66を不透過状態としてよい。すなわち、このような場合に、主制御部54は、太陽光が直接ユーザの眼に入射していると判断して、調光部16のうち太陽光が通過する可能性が高い端部の第3領域66だけでなく第2領域64に庇状の遮光領域を形成して、ユーザのまぶしさを最大限低減することができる。 When the main control unit 54 determines that the light received by the first light receiving unit 20 is brighter than the first threshold Th1 at a low angle (FIG. 25A), the main control unit 54 is set to the first dimming state. Control. Thereby, the main control part 54 can make the light control part 16 into a 1st light control state according to the very strong light having entered from the low angle direction near a horizontal direction. For example, the main control unit 54 may set the second region 64 and the third region 66 in the opaque state in FIGS. 21 and 22. That is, in such a case, the main control unit 54 determines that the sunlight is directly incident on the user's eyes, and the light control unit 16 has a high possibility that the sunlight will pass. It is possible to reduce the glare of the user as much as possible by forming a bowl-shaped light shielding region in the second region 64 as well as the three regions 66.
 また、主制御部54は、第1受光部20が受光した光が中角度で第1閾値Th1以上明るいと判断した場合(図25(d))、調光部16を第1調光状態に制御する。これにより、主制御部54は、水平方向に比較的近い中角度方向から非常に強い光が入射したことに応じて、調光部16を第1調光状態にすることができる。ここで、例えば、主制御部54は、図21及び図22において第3領域66のみを不透過状態としてよい。すなわち、この場合、低角度の図25(a)の場合と異なり、第2領域64を透過状態(又は半透過状態)とする。これにより、図25(a)の場合と比べて高角度からの明るい光を遮光しつつ中角度以下の景色等をユーザに視認させることができる。 Further, when the main control unit 54 determines that the light received by the first light receiving unit 20 is brighter than the first threshold Th1 at a medium angle (FIG. 25 (d)), the main control unit 54 is set to the first dimming state. Control. Thereby, the main control part 54 can make the light control part 16 into a 1st light control state according to very strong light having entered from the medium angle direction comparatively close to a horizontal direction. Here, for example, the main control unit 54 may set only the third region 66 in the opaque state in FIGS. 21 and 22. That is, in this case, unlike the case of FIG. 25A at a low angle, the second region 64 is set in a transmission state (or a semi-transmission state). Accordingly, it is possible to make the user visually recognize a landscape or the like at a medium angle or less while blocking bright light from a high angle as compared with the case of FIG.
 また、主制御部54は、第1受光部20が受光した光が高角度であり、かつ第1閾値Th1以上明るいと判断した場合(図25(g))に、調光部16を第2調光状態に制御する。これにより、主制御部54は、斜め方向に一定以上の強い光が入射したことに応じて、調光部16を第2調光状態にすることができる。すなわち、このような場合に、主制御部54は、太陽光が直接ユーザの眼には入らないが環境が明るすぎると判断して、調光部16全体に薄い遮光領域を形成して、ユーザのまぶしさを低減することができる。 When the main control unit 54 determines that the light received by the first light receiving unit 20 is at a high angle and is brighter than the first threshold Th1 (FIG. 25 (g)), the main control unit 54 sets the second light control unit 16 to the second level. Control to dimming state. Thereby, the main control part 54 can make the light control part 16 into a 2nd light control state according to the strong light more than fixed being incident in the diagonal direction. That is, in such a case, the main control unit 54 determines that the sunlight does not directly enter the user's eyes but the environment is too bright, and forms a thin light-shielding region in the entire dimming unit 16, so that the user The glare can be reduced.
 また、主制御部54は、第1受光部20が受光した光が低角度であり、かつ第1閾値Th1未満第2閾値Th2以上明るいと判断した場合(図25(b))、又は、第1受光部20が受光した光が中角度であり、かつ第1閾値Th1未満第2閾値Th2以上明るいと判断した場合(図25(e))に、受光した光の色に応じて、調光部16を第1調光状態又は第2調光状態に制御する。主制御部54は、受光した光の色が予め定められた基準以上赤いと判断した場合に調光部16を第1調光状態に制御し、受光した光の色が予め定められた基準以上赤くないと判断した場合に調光部16を第2調光状態に制御する。 The main control unit 54 determines that the light received by the first light receiving unit 20 is at a low angle and brighter than the first threshold Th1 and the second threshold Th2 (FIG. 25 (b)), or When it is determined that the light received by the first light receiving unit 20 has a medium angle and is brighter than the first threshold Th1 and the second threshold Th2 (FIG. 25 (e)), dimming according to the color of the received light The unit 16 is controlled to the first dimming state or the second dimming state. When the main control unit 54 determines that the color of the received light is red above a predetermined reference, the main control unit 54 controls the dimming unit 16 to the first dimming state, and the color of the received light exceeds the predetermined reference. When it is determined that the light is not red, the light control unit 16 is controlled to the second light control state.
 これにより、主制御部54は、第1受光部20に受光した光が一定以上明るく、かつ赤い場合に、夕日が入射していると判断し、調光部16の第2領域64に庇状の遮光領域を形成して、ユーザのまぶしさを低減することができる。一方で、主制御部54は、第1受光部20に受光した光が一定以上明るく、かつ赤くない場合に、やや強い環境光が入射していると判断し、調光部16全体に薄めの遮光領域を形成して、ユーザのまぶしさを低減することができる。 As a result, the main control unit 54 determines that the sunset is incident when the light received by the first light receiving unit 20 is brighter than a certain level and is red, and the main control unit 54 has a saddle shape in the second region 64 of the light control unit 16. Thus, the user's glare can be reduced. On the other hand, when the light received by the first light receiving unit 20 is brighter than a certain level and is not red, the main control unit 54 determines that slightly strong ambient light is incident, and the light control unit 16 is thinned. The light-shielding area can be formed to reduce the glare of the user.
 ここで、図25(b)において受光した光が赤く第1調光状態とする場合、主制御部54は、図25(a)の制御と同様に、図21及び図22において調光部16の第2領域64及び第3領域66を不透過状態としてよい。また、図25(e)において受光した光が赤く第1調光状態とする場合、主制御部54は、図25(d)の制御と同様に、図21及び図22において調光部16の第3領域66のみを不透過状態とし、第2領域64を透過状態(又は半透過状態)としてよい。 Here, when the light received in FIG. 25B is red and in the first dimming state, the main control unit 54 controls the dimming unit 16 in FIGS. 21 and 22 in the same manner as the control in FIG. The second region 64 and the third region 66 may be impermeable. In addition, when the light received in FIG. 25E is red and in the first dimming state, the main control unit 54 performs the control of the dimming unit 16 in FIGS. 21 and 22 as in the control of FIG. Only the third region 66 may be in a non-transmissive state, and the second region 64 may be in a transmissive state (or a semi-transmissive state).
 主制御部54は、これ以外の場合(図25(c)、(f)、(h)及び(i))の場合、調光部16を無調光状態としてよいが、これに代えて第2調光状態としてもよい。 In other cases (FIGS. 25 (c), (f), (h) and (i)), the main control unit 54 may place the dimming unit 16 in a non-dimming state. It is good also as a 2 light control state.
 図26及び図27は、光学装置110による処理の変形例のフローチャートを示す。本変形例において、調光部16が第1領域62及び第2領域64を有し、主制御部54は、複数の調光状態を切り替える速さを制御する。 FIGS. 26 and 27 are flowcharts of modified examples of processing by the optical device 110. FIG. In this modification, the light control part 16 has the 1st area | region 62 and the 2nd area | region 64, and the main control part 54 controls the speed which switches a some light control state.
 まず、主制御部54は、図26に示すS110において、近接センサ18がユーザを検出したか否かを判定する。主制御部54は、ユーザを検出できない場合(S110:No)、近接センサ18がユーザを検出したと判定するまで待機状態となる。主制御部54は、ユーザが眼鏡型の光学装置110を装着したこと等に応じてユーザを検出した場合(S110:Yes)、近接センサ18はユーザを検出したことを示す存在信号を主制御部54へと出力する。 First, the main control unit 54 determines whether or not the proximity sensor 18 has detected a user in S110 shown in FIG. When the main control unit 54 cannot detect the user (S110: No), the main control unit 54 is in a standby state until it is determined that the proximity sensor 18 has detected the user. When the main control unit 54 detects the user in response to the user wearing the glasses-type optical device 110 (S110: Yes), the proximity sensor 18 sends a presence signal indicating that the user has been detected to the main control unit. To 54.
 次に、S112において、主制御部54は、光量を検出の要否を判定する検出時間t及び駆動時間t1をリセットして「0」にする。 Next, in S112, the main control unit 54 resets the detection time t and the drive time t1 for determining whether or not it is necessary to detect the light amount to “0”.
 次に、S114において、主制御部54は、検出時間tが光量を検出する検出周期P0以上となったか否かを判定する。主制御部54は、検出時間tが検出周期P0以上となるまで、待機状態となる(S114:No)。主制御部54は、検出時間tが検出周期P0以上となったと判定すると(S114:Yes)、処理をS116に進める。 Next, in S114, the main control unit 54 determines whether or not the detection time t is equal to or longer than the detection cycle P0 for detecting the light amount. The main control unit 54 is in a standby state until the detection time t becomes equal to or longer than the detection cycle P0 (S114: No). If the main control unit 54 determines that the detection time t is equal to or longer than the detection cycle P0 (S114: Yes), the process proceeds to S116.
 S116において、主制御部54は、第1受光部20等から受光した光量に関する情報を取得する。主制御部54は、取得した光量に関する情報から光量を算出して、次式に基づいて光量の加重移動平均である平均化光量ALを算出する。尚、平均化光量は単純移動平均、または、指数移動平均によって求めてもよい。また、主制御部54は、第1受光部20等からの光量に関する情報から受光した光の色、及び、必要に応じて受光した光の入射角を取得する。
Figure JPOXMLDOC01-appb-M000001
In S116, the main control unit 54 acquires information regarding the amount of light received from the first light receiving unit 20 or the like. The main control unit 54 calculates the light amount from the acquired information regarding the light amount, and calculates an averaged light amount AL that is a weighted moving average of the light amount based on the following equation. Note that the averaged light quantity may be obtained by a simple moving average or an exponential moving average. Further, the main control unit 54 acquires the color of the received light from the information regarding the amount of light from the first light receiving unit 20 and the incident angle of the received light as necessary.
Figure JPOXMLDOC01-appb-M000001
 次に、S118において、主制御部54は、平均化光量等に基づいて、調光部16の調光状態を決定する。例えば、主制御部54は、平均化光量ALを光量LAとして、図8、図20又は図25で説明した方法及び図16のS18~S28の処理に基づいて、調光部16の調光状態を決定してよい。 Next, in S118, the main control unit 54 determines the dimming state of the dimming unit 16 based on the averaged light amount and the like. For example, the main control unit 54 sets the averaged light amount AL as the light amount LA, and controls the light control state of the light control unit 16 based on the method described in FIG. 8, FIG. 20, or FIG. 25 and the processing in S18 to S28 in FIG. May be determined.
 次に、S120において、主制御部54は、記憶部56に格納された目標透過率テーブルに従って、決定した調光状態に応じた調光部16の目標透過率TTrを取得する。例えば、主制御部54は、調光状態が第1調光状態に決定されたことに応じて第1領域62の目標透過率TTr1-1及び第2領域64の目標透過率TTr1-2を取得し、調光状態が第2調光状態に決定されたことに応じて第1領域62及び第2領域64の目標透過率TTr2を取得する。図11から図13に説明した形態を実施する場合、主制御部54は、各調光状態において平均化光量ごとに更に細分化された目標透過率を取得してもよい。 Next, in S120, the main control unit 54 acquires the target transmittance TTr of the dimming unit 16 according to the determined dimming state according to the target transmittance table stored in the storage unit 56. For example, the main control unit 54 acquires the target transmittance TTr1-1 of the first region 62 and the target transmittance TTr1-2 of the second region 64 in response to the determination of the dimming state to the first dimming state. Then, the target transmittance TTr2 of the first region 62 and the second region 64 is acquired in response to the light control state being determined to be the second light control state. When implementing the form described in FIG. 11 to FIG. 13, the main control unit 54 may acquire the target transmittance further subdivided for each averaged light amount in each dimming state.
 次に、S122において、主制御部54は、調光部16の各領域に対し、目標透過率TTr及び現在透過率PTrに基づいて、単位時間当たりの透過率変化量ΔTrを算出する(S122)。透過率変化量ΔTrは、次式で算出される。尚、qは、予め定められた設定数である。qが大きいほど、透過率変化量ΔTrが小さくなり、透過率の変化を滑らかにすることができる。これにより、主制御部54は、例えば、第1領域62に対する透過率変化量ΔTr1及び第2領域64に対する透過率変化量ΔTr2を算出する。主制御部54は、現在、印加している電圧のデューティ比から現在透過率PTrを特定してよい。
 ΔTr=(TTr-PTr)/q
Next, in S122, the main control unit 54 calculates a transmittance change amount ΔTr per unit time for each region of the light control unit 16 based on the target transmittance TTr and the current transmittance PTr (S122). . The transmittance change amount ΔTr is calculated by the following equation. Note that q is a predetermined number. The larger q is, the smaller the transmittance change amount ΔTr is, and the change in transmittance can be smoothed. Accordingly, the main control unit 54 calculates, for example, the transmittance change amount ΔTr1 for the first region 62 and the transmittance change amount ΔTr2 for the second region 64. The main control unit 54 may specify the current transmittance PTr from the duty ratio of the currently applied voltage.
ΔTr = (TTr−PTr) / q
 主制御部54は、変更対象の調光状態ごとに異なる値のqを用いてよい。例えば、主制御部54は、第1調光状態に変更する場合はqの値を小さくし(例えばq=1)とし、第2調光状態に変更する場合はqの値を大きくし(例えばq=10)としてよい。 The main control unit 54 may use a different value q for each dimming state to be changed. For example, the main control unit 54 reduces the value of q when changing to the first dimming state (for example, q = 1), and increases the value of q when changing to the second dimming state (for example, q = 10).
 次に、S124において、主制御部54は、検出時間tを「0」に設定する。 Next, in S124, the main control unit 54 sets the detection time t to “0”.
 次に、図27に示すS126において、主制御部54は、駆動時間t1が調光部16を駆動する周期である駆動周期P1以上となったか否かを判定する。主制御部54は、駆動時間t1が駆動周期P1以上となるまで、待機状態となる(S126:No)。主制御部54は、駆動時間t1が駆動周期P1以上となったと判定すると(S126:Yes)、処理をS128に進める。駆動周期P1は、検出周期P0より短くてよい。 Next, in S126 shown in FIG. 27, the main control unit 54 determines whether or not the driving time t1 is equal to or longer than the driving cycle P1, which is the cycle for driving the dimming unit 16. The main control unit 54 is in a standby state until the driving time t1 becomes equal to or longer than the driving cycle P1 (S126: No). If the main control unit 54 determines that the drive time t1 is equal to or greater than the drive cycle P1 (S126: Yes), the process proceeds to S128. The driving cycle P1 may be shorter than the detection cycle P0.
 S128において、主制御部54は、調光部16の各領域について、目標透過率TTrと現在の現在透過率PTrが等しいか否かを判定して、透過率の切り替えの要否を判定する。調光部16の全領域において目標透過率TTrと現在の現在透過率PTrが等しい(又は、両者の差が予め定められた閾値未満である)場合、主制御部54は、処理をS136に進め、そうでない場合、処理をS130に進める。 In S128, the main control unit 54 determines whether the target transmittance TTr is equal to the current current transmittance PTr for each region of the light control unit 16, and determines whether or not the transmittance needs to be switched. When the target transmittance TTr is equal to the current current transmittance PTr in all the areas of the light control unit 16 (or the difference between the two is less than a predetermined threshold value), the main control unit 54 advances the process to S136. If not, the process proceeds to S130.
 S130において、主制御部54は、調光部16の複数の領域のうち、目標透過率TTrと現在の現在透過率PTrが等しくないと判断された領域について、現在透過率PTrと透過率変化量ΔTrとの和を算出する。 In S <b> 130, the main control unit 54 determines the current transmittance PTr and the transmittance change amount for a region in which the target transmittance TTr and the current current transmittance PTr are determined not to be equal among the plurality of regions of the dimming unit 16. The sum with ΔTr is calculated.
 次に、S132において、主制御部54は、現在透過率PTrと透過率変化量ΔTrとの和が算出された調光部16の領域に対して、透過率が現在透過率PTrと透過率変化量ΔTrとの和となるように、電圧のデューティ比を変更して、透過率を切り替える。これにより、主制御部54は、調光部16の各領域に対する調光状態を制御する。 Next, in S132, the main control unit 54 determines that the transmittance is the current transmittance PTr and the transmittance change with respect to the area of the light control unit 16 in which the sum of the current transmittance PTr and the transmittance change amount ΔTr is calculated. The transmittance is switched by changing the duty ratio of the voltage so as to be the sum of the amount ΔTr. Thereby, the main control unit 54 controls the dimming state for each area of the dimming unit 16.
 次にS134において、主制御部54は、駆動時間t1を「0」に設定する。 Next, in S134, the main control unit 54 sets the drive time t1 to “0”.
 次にS136において、主制御部54は、近接センサ18から存在信号を取得して、近接センサ18がユーザを検出しているか否かを判定する。例えば、主制御部54は、近接センサ18から存在信号を検出している場合は処理をS114に戻し(図26及び27のA)、近接センサ18から存在信号を検出していない場合は処理を終了する。 Next, in S136, the main control unit 54 acquires a presence signal from the proximity sensor 18 and determines whether or not the proximity sensor 18 has detected a user. For example, the main control unit 54 returns the process to S114 when the presence signal is detected from the proximity sensor 18 (A in FIGS. 26 and 27), and performs the process when the presence signal is not detected from the proximity sensor 18. finish.
 ここで、図27のS130及びS132の処理にあたり、主制御部54は、第2調光状態において、第1信号及び第2信号等により示される受光した光量の大きさの変化速度に基づいて、調光部16の透過率の変化速度を制御してよい。例えば、主制御部54は、第1受光部20等から受光した現在の光量が、S116において算出した平均化光量ALに対して予め定められた基準以上解離した場合、S122の処理においてΔTrを算出する際のqの値を予め定められた値又は解離度に応じた値減じてよい。このように、光学装置110は、外光の変化の速さに応じて調光部16の透過率を変化させるので、例えば室内から野外に移動した場合等に調光部16が速やかに外光を減光させてユーザにまぶしさを感じさせることがなく、また、ゆっくり明るさが変わる場合にはゆっくり遮光度合も変化させることで、ユーザに対して自然な調光を提供することができる。 Here, in the processing of S130 and S132 of FIG. 27, the main control unit 54, in the second dimming state, based on the change rate of the magnitude of the received light amount indicated by the first signal, the second signal, etc. The change rate of the transmittance of the light control unit 16 may be controlled. For example, the main control unit 54 calculates ΔTr in the process of S122 when the current light amount received from the first light receiving unit 20 or the like dissociates more than a predetermined reference with respect to the averaged light amount AL calculated in S116. In this case, the value of q may be reduced by a predetermined value or a value corresponding to the degree of dissociation. As described above, the optical device 110 changes the transmittance of the light control unit 16 in accordance with the speed of change of the external light. For example, when the light control unit 16 moves from the room to the outdoors, the light control unit 16 quickly Therefore, when the brightness changes slowly, the degree of shading is changed slowly so that natural dimming can be provided to the user.
 図28及び図29は、光学装置110による無調光状態から第1調光状態及び第2調光状態への変化の例を示す。主制御部54は、調光部16を無調光状態から第1調光状態へ変化させる場合と、無調光状態から第2調光状態へと変化させる場合とで、変化速度を異ならせてもよい。例えば、図28に示すように、主制御部54は、無調光状態から第1調光状態への変化を短い時間(例えば、0.2秒)で完了してよい。また、例えば、図29に示すように、主制御部54は、無調光状態から第2調光状態への変化を比較的長い時間(例えば、1.5秒)で完了してよい。 28 and 29 show examples of changes from the non-dimming state by the optical device 110 to the first dimming state and the second dimming state. The main control unit 54 changes the change speed between when the dimming unit 16 is changed from the non-dimming state to the first dimming state and when the dimming state is changed from the non-dimming state to the second dimming state. May be. For example, as shown in FIG. 28, the main control unit 54 may complete the change from the non-dimming state to the first dimming state in a short time (for example, 0.2 seconds). For example, as shown in FIG. 29, the main control unit 54 may complete the change from the non-dimming state to the second dimming state in a relatively long time (for example, 1.5 seconds).
 すなわち、主制御部54は、第1調光状態に切り替える時間よりも長い時間をかけて調光部を第2調光状態に切り替える。第1調光状態に切り替える場面では強烈な外光が直接眼に入射し迅速な遮光が望まれる一方で、第2調光状態に切り替える場面では外光の強度が一定程度に収まるので迅速な遮光を行うよりもゆっくり調光状態を切り替えた方がユーザにとってわずらわしくない。本変形例の光学装置110によると、状況に応じてユーザに心地よい調光を提供することができる。 That is, the main control unit 54 switches the dimming unit to the second dimming state over a longer time than the time for switching to the first dimming state. In the scene to switch to the first dimming state, intense external light is directly incident on the eye and prompt light blocking is desired. On the other hand, in the scene to switch to the second dimming state, the intensity of the external light is kept at a certain level so that the light is quickly blocked. It is not cumbersome for the user to switch the dimming state more slowly than to perform. According to the optical device 110 of the present modification, dimming that is comfortable for the user can be provided according to the situation.
 図28及び図30に示すように、主制御部54は、調光部16を無調光状態から第1調光状態へ変化させる場合と、第1調光状態から無調光状態へと変化させる場合とで、変化速度を異ならせてもよい。例えば、図30に示すように、主制御部54は、第1調光状態から無調光状態へ変化させる時間(例えば、1.5秒)を無調光状態から第1調光状態へ変化させる時間(例えば、0.2秒)より長くしてよい。第1調光状態に切り替える場面では強烈な外光が直接眼に入射し迅速な遮光が望まれる一方で、第1調光状態から無調光状態に切り替える場面では外光が弱いので迅速な遮光を行うよりもゆっくり調光状態を切り替えた方がユーザにとってわずらわしくない。本変形例の光学装置110によると、状況に応じてユーザに心地よい調光を提供することができる。主制御部54は、調光部16を第1調光状態と第2調光状態との間で変化させる場合にも、同様に変化時間に差を設けてよい。 As shown in FIGS. 28 and 30, the main control unit 54 changes the dimming unit 16 from the non-dimming state to the first dimming state and from the first dimming state to the non-dimming state. The rate of change may be different depending on the case. For example, as shown in FIG. 30, the main control unit 54 changes the time (for example, 1.5 seconds) for changing from the first dimming state to the non-dimming state from the non-dimming state to the first dimming state. You may make it longer than the time (for example, 0.2 second) to make. In the scene to switch to the first dimming state, intense external light is directly incident on the eye and prompt light shielding is desired. On the other hand, in the scene to switch from the first dimming state to the non-dimming state, the external light is weak and thus prompt light shielding. It is not cumbersome for the user to switch the dimming state more slowly than to perform. According to the optical device 110 of the present modification, dimming that is comfortable for the user can be provided according to the situation. The main control unit 54 may similarly provide a difference in the change time when the dimming unit 16 is changed between the first dimming state and the second dimming state.
 また、光学装置110は、調光状態間の変化速度を異ならせることに加えて/代わりに、調光状態に遷移するための光量の測定時間/回数を異ならせてよい。例えば、主制御部54は、第1信号及び第2信号等を含む光量についての信号を順次取得し、第1調光状態に切り替えるために参照する第1信号及び第2信号等の取得回数よりも、第2調光状態に切り替えるために参照する第1信号及び第2信号の取得回数を多くしてよい。 Further, in addition to / instead of varying the change rate between the dimming states, the optical device 110 may vary the measurement time / number of times of the light amount for transitioning to the dimming state. For example, the main control unit 54 sequentially acquires signals regarding the amount of light including the first signal and the second signal, and acquires the first signal and the second signal that are referred to for switching to the first dimming state. Alternatively, the number of acquisitions of the first signal and the second signal referred to for switching to the second dimming state may be increased.
 具体的には、図26のS118において、調光状態を決定する場合、主制御部54は、S118において平均化光量ALを照度基準と一度のみ比較して調光部16の調光状態を決定することに代えて、S114~S118の処理を繰り返して(すなわち、S118の後に、検出時間t=0とし、処理をS114に戻す)、平均化光量ALを照度基準と複数回比較した結果により調光状態を決定する。ここで、主制御部54は、繰り返しの中で、予め定められた第1の回数(例えば、2回)連続して調光状態を第1調光状態にすべきと判断したときに調光状態を第1調光状態にすると決定して処理をS120に進め、第1の回数よりも大きい第2の回数(例えば、4回)連続して調光状態を第2調光状態にすべきと判断したときに調光状態を第2調光状態にすると決定して処理をS120に進めてよい。 Specifically, when determining the dimming state in S118 of FIG. 26, the main control unit 54 determines the dimming state of the dimming unit 16 by comparing the averaged light amount AL only once with the illuminance reference in S118. Instead, the processes of S114 to S118 are repeated (that is, after S118, the detection time t = 0 and the process is returned to S114), and the average light amount AL is adjusted based on the result of comparison with the illuminance reference a plurality of times. Determine the light state. Here, dimming is performed when the main control unit 54 determines that the dimming state should be changed to the first dimming state continuously for a first predetermined number of times (for example, twice) during the repetition. The state is determined to be the first dimming state, and the process proceeds to S120, and the dimming state should be changed to the second dimming state continuously for a second number of times (for example, four times) greater than the first number of times. If it is determined that the dimming state is to be the second dimming state, the process may proceed to S120.
 図31は、透過率、平均化光量、検出された光量の時間変化を測定した実験結果のグラフである。図31に示すグラフは、次の条件の下で図26及び図27に係る処理で調光部16の制御(例えば、無調光状態と第1又は第2調光状態との切り替え)が実行された結果である。図31に示す横軸の1目盛は、平均化光量を算出する周期の1/2である。
 (1)検出された光量の最大値:14000ルクス、
 (2)検出された光量の最小値:3000ルクス、
 (3)光量の変化:11000ルクス/200ms、
 (4)調光部16の透過率の最大値:40%、
 (5)調光部16の透過率の最小値:9%、
 (6)第1受光部20の検出周期:50ms、
 (7)平均化光量の検出回数m:10、
 (8)透過率変化量ΔTr算出時のq:30。
FIG. 31 is a graph of experimental results obtained by measuring the transmittance, the averaged light amount, and the change over time of the detected light amount. The graph shown in FIG. 31 performs control of the dimming unit 16 (for example, switching between the non-dimming state and the first or second dimming state) in the processing according to FIGS. 26 and 27 under the following conditions. Is the result. One scale on the horizontal axis shown in FIG. 31 is ½ of the cycle for calculating the averaged light quantity.
(1) Maximum value of detected light amount: 14000 lux,
(2) Minimum value of detected light amount: 3000 lux,
(3) Change in light quantity: 11000 lux / 200 ms,
(4) Maximum transmittance of the light control unit 16: 40%,
(5) Minimum value of transmittance of the light control section 16: 9%,
(6) Detection period of the first light receiving unit 20: 50 ms,
(7) Number of detections of averaged light quantity m: 10,
(8) q: 30 when calculating the transmittance change amount ΔTr.
 図31に示す光量(=照度)の最大値14000ルクスは概ね日中の日向の光量に相当し、光量の最小値3000ルクスは概ね日中の日陰の光量に相当する。光量の変化を算出する単位時間200msは、人の目の瞬きと同程度の時間である。このような、光量の環境変化に対して、調光部16の透過率は、光量の変化が開始した100ms以内から変化を始め、約1s後には、(現在透過率PTr+ΔTr)に近い透過率に到達する。その後、光学装置110は、ゆっくりと調光部16の透過率を変化させていく。この実験では、光学装置110は、調光部16の透過率変化をゆっくり変化させることにより、光量の変化に対して透過率を急峻に変化させるよりも、ユーザの違和感を低減できる。また、光学装置110は、急な光量変化に対する眩しさ除去の機能も充分に作用することができる。 31. The maximum value 14000 lux of the light amount (= illuminance) shown in FIG. 31 substantially corresponds to the amount of sunlight in the daytime, and the minimum value of 3000 lux of light amount corresponds to the amount of light in the shade in the daytime. The unit time 200 ms for calculating the change in the amount of light is about the same as the blink of the human eye. In response to such an environmental change in the amount of light, the transmittance of the light control unit 16 starts to change within 100 ms when the change in the amount of light starts, and after about 1 s, the transmittance is close to (current transmittance PTr + ΔTr). To reach. Thereafter, the optical device 110 slowly changes the transmittance of the light control unit 16. In this experiment, the optical device 110 can reduce the user's uncomfortable feeling by changing the transmittance change of the light control unit 16 more slowly than when changing the transmittance sharply with respect to the change in the light amount. In addition, the optical device 110 can sufficiently function to remove glare from a sudden change in light quantity.
 ここで、人の眼に対しスポットライトを当てて瞳孔の変化を観測した実験の結果を説明する。実験では、軽度屈折異常以外の眼科的疾患がない視力又は矯正視力が良好な(前例遠方視力1.2以上、近方視力1.0以上)青年30人を被験者とした。スポットライト(タングステンランプ:Pro-light,Lowel社製)を点灯した場合の環境照度は視点位置近傍において20000lx(太陽光を想定)とし、スポットライトを点灯しない環境照度は視点位置近傍において300lxとした。照度は照度計T10(Minolta,Co,Ltd.,)を用いて計測した。スポットライトを計測開始後1秒間照射を継続するように設定し、遮光レンズ(調光部16に相当)をスポットライトが照射開始してから0.05秒後、0.1秒後、0.2秒後、0.3秒後、0.5秒後に、スポットライトから被験者の両眼への光を遮光するように設定した。遮光レンズの透過率を1%(第1調光状態に相当)に設定した。対象者の右眼を計測及び解析対象とし、各計測の間には15分の休憩時間を設定した。瞳孔反応計測器として、メディテスターVOG-L(パナソニック社製)を用い、40万画素の赤外線CCDカメラにより眼球の鮮明な画像を撮影し、照射開始前後の被験者の瞳孔反応量(縮瞳量)を計測した。瞳孔反応計測器の前部に遮光レンズを設置した。 Here, we explain the results of an experiment in which changes in the pupil were observed by applying a spotlight to the human eye. In the experiment, 30 adolescents with good visual acuity or correct visual acuity without ophthalmic diseases other than mild refractive error (previous far vision 1.2 or more, near vision 1.0 or more) were used as subjects. When the spotlight (tungsten lamp: Pro-light, manufactured by Lowel) is turned on, the ambient illuminance is 20000 lx (assuming sunlight) near the viewpoint position, and the ambient illuminance without the spotlight is 300 lx near the viewpoint position. . The illuminance was measured using an illuminometer T10 (Minolta, Co, Ltd.). The spotlight is set to continue irradiation for 1 second after the measurement is started, 0.05 seconds after the spotlight starts to irradiate the light shielding lens (corresponding to the light control unit 16), 0.1 seconds later, 0. After 2 seconds, 0.3 seconds, and 0.5 seconds, the light from the spotlight to both eyes of the subject was set to be shielded. The transmittance of the light shielding lens was set to 1% (corresponding to the first light control state). The subject's right eye was used for measurement and analysis, and a 15-minute break was set between each measurement. Meditester VOG-L (manufactured by Panasonic Corporation) is used as a pupil response measuring instrument, and a clear image of the eyeball is taken with a 400,000-pixel infrared CCD camera, and the pupil reaction amount (miosis amount) of the subject before and after the start of irradiation Was measured. A light-shielding lens was installed in front of the pupil reaction measuring instrument.
 表1は、実験結果を示す。表の「対光反応前瞳孔径」はスポットライト照射前の被験者の瞳孔径の平均を示し、「対光反応(最小縮小)瞳孔径」はスポットライト照射後の被験者の瞳孔径の最小値を示し、「瞳孔径反応量」は「対光反応前瞳孔径」と「対光反応(最小縮小)瞳孔径」との差分を示す。表に示すように、遮光開始時間が0.05秒及び0.1秒の場合には、瞳孔径反応量が1.2~1.3mm程度となっており瞳孔の変化は比較的小さい。従って、被験者がまぶしさを感じる程度は比較的小さいと考えられる。一方で、遮光開始時間が0.2秒以上の場合には、瞳孔径反応量が1.9~2.1mm程度と大きくなる。従って、被験者がまぶしさを感じる程度は増大したと考えられる。なお、被験者の自覚においても、0.05秒及び0.1秒ではスポットライトのまぶしさが0.2秒以上の場合と比較して軽減されていることが確認された。実験結果から調光部16による無調光状態から第1/第2調光状態への変化(特に第1調光状態への変化)は0.2秒未満(例えば、0.05~0.1秒の範囲)で実行することが好ましいことが示される。
Figure JPOXMLDOC01-appb-T000002
Table 1 shows the experimental results. The “pupil diameter before light response” in the table indicates the average pupil diameter of subjects before spotlight irradiation, and the “light response (minimum reduction) pupil diameter” indicates the minimum pupil diameter of subjects after spotlight irradiation. “Pupil diameter response amount” indicates a difference between “a pupil diameter before light reaction” and “a light reaction (minimum reduction) pupil diameter”. As shown in the table, when the light shielding start time is 0.05 seconds and 0.1 seconds, the pupil diameter response amount is about 1.2 to 1.3 mm, and the change of the pupil is relatively small. Therefore, it is considered that the degree to which the subject feels glare is relatively small. On the other hand, when the light shielding start time is 0.2 seconds or more, the pupil diameter reaction amount increases to about 1.9 to 2.1 mm. Therefore, it is considered that the degree to which the subject feels glare has increased. In the subject's awareness, it was also confirmed that the glare of the spotlight was reduced at 0.05 seconds and 0.1 seconds compared to the case where the spotlight was 0.2 seconds or more. From the experimental results, the change from the non-dimming state to the first / second dimming state (particularly, the change to the first dimming state) by the dimming unit 16 is less than 0.2 seconds (for example, 0.05 to 0.00). It is shown that it is preferable to run in the range of 1 second.
Figure JPOXMLDOC01-appb-T000002
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
 12 枠体、   14 電源部、   16 調光部、   18 近接センサ、   20 第1受光部、   20a 第1受光部、   20b 第2受光部、   22 制御部、   24 腕部、   26 枠本体部、   30 入射側偏光板、   32 入射側基板、   34 入射側透明電極、   36 入射側配向膜、   38 液晶部材、   40 出射側配向膜、   42 出射側透明電極、   44 出射側基板、   46 出射側偏光板、   50 充電部、   52 液晶駆動部、   54 主制御部、   56 記憶部、   62 第1領域、   64 第2領域、   66 第3領域、   110 光学装置、   160 分割電極、   162 分割電極、202 第1受光センサ、   204 第2受光センサ、   206 第3受光センサ、   272 分割透過領域、   280 マスク、   282 開口部 12 frame body, 14 power supply section, 16 dimming section, 18 proximity sensor, 20 first light receiving section, 20a first light receiving section, 20b second light receiving section, 22 control section, 24 arm section, 26 frame main body section, 30 incident Side polarizing plate, 32 incident side substrate, 34 incident side transparent electrode, 36 incident side alignment film, 38 liquid crystal member, 40 output side alignment film, 42 output side transparent electrode, 44 output side substrate, 46 output side polarizing plate, 50 charge Part, 52 liquid crystal drive part, 54 main control part, 56 storage part, 62 1st area, 64 2nd area, 66 3rd area, 110 optical device, 160 divided electrode, 162 divided electrode 202 first light receiving sensor, 204 second light receiving sensor, 206 third light receiving sensor, 272 divided transmissive region 280 masks, 282 opening

Claims (11)

  1.  透過率を変更可能な調光部と、
     第1波長の光を受光して光量に応じた第1信号を出力し、前記第1波長と異なる第2波長の光を受光して光量に応じた第2信号を出力する第1受光部と、
     前記第1信号及び前記第2信号に基づいて、前記調光部の透過率を制御する制御部と、
     を備える光学装置。
    A dimmer that can change the transmittance,
    A first light receiving unit that receives light of a first wavelength and outputs a first signal corresponding to the amount of light; receives light of a second wavelength different from the first wavelength; and outputs a second signal corresponding to the amount of light; ,
    A control unit for controlling the transmittance of the dimming unit based on the first signal and the second signal;
    An optical device comprising:
  2.  前記制御部は、前記第1信号または前記第2信号に基づく光量の増加を検出してから0.2秒未満で前記調光部の透過率を低下させる請求項1に記載の光学装置。 The optical device according to claim 1, wherein the control unit decreases the transmittance of the light control unit in less than 0.2 seconds after detecting an increase in light quantity based on the first signal or the second signal.
  3.  前記制御部は、上下方向において、前記調光部の中央部よりも少なくとも一部の端部の透過率が低い第1調光状態と、前記第1調光状態よりも前記中央部と前記端部の透過率の差が小さい第2調光状態とに前記調光部を切り替え可能であって、
     前記制御部は、前記第1信号及び前記第2信号に基づいて、前記調光部を前記第1調光状態又は前記第2調光状態に切り換える請求項1又は2に記載の光学装置。
    In the vertical direction, the control unit includes a first dimming state in which the transmittance of at least a part of the end portion is lower than that of the central portion of the dimming unit, and the central portion and the end of the first dimming state. The dimming part can be switched to the second dimming state where the difference in transmittance between the parts is small,
    The optical device according to claim 1, wherein the control unit switches the dimming unit to the first dimming state or the second dimming state based on the first signal and the second signal.
  4.  前記制御部は、前記第1信号及び前記第2信号に基づいて、前記第1受光部が受光した光が予め定められた色基準以上赤いか否か、及び、前記第1受光部が受光した光が予め定められた照度基準以上明るいか否かを判断し、判断結果に基づき第1調光状態と前記第2調光状態とで切り換える請求項3に記載の光学装置。 Based on the first signal and the second signal, the control unit determines whether or not the light received by the first light receiving unit is red above a predetermined color reference, and the first light receiving unit receives the light. 4. The optical apparatus according to claim 3, wherein it is determined whether or not the light is brighter than a predetermined illuminance standard, and switching is performed between the first dimming state and the second dimming state based on the determination result.
  5.  前記制御部は、前記第1受光部が受光した光が第1閾値以上明るいと判断した場合、及び、前記第1受光部が受光した光が前記第1閾値よりも小さい第2閾値以上明るく、予め定められた基準以上赤いと判断した場合に、前記調光部を第1調光状態に切り替える、
     請求項4に記載の光学装置。
    When the control unit determines that the light received by the first light receiving unit is brighter than a first threshold, and the light received by the first light receiving unit is brighter than a second threshold smaller than the first threshold, When it is determined that the red color is higher than a predetermined reference, the dimming unit is switched to the first dimming state.
    The optical device according to claim 4.
  6.  前記第1受光部と異なる方向からの光を受光し、受光した光量に応じた第3信号を出力する第2受光部を更に備え、
     前記制御部は、前記第1信号、前記第2信号、及び前記第3信号に基づいて、前記調光部の透過率を制御する、
     請求項1から3のいずれか1項に記載の光学装置。
    A second light receiving unit that receives light from a different direction from the first light receiving unit and outputs a third signal corresponding to the received light amount;
    The control unit controls the transmittance of the dimming unit based on the first signal, the second signal, and the third signal.
    The optical device according to any one of claims 1 to 3.
  7.  前記制御部は、
     前記第2調光状態において、前記第1信号及び前記第2信号に基づいて前記第1受光部が受光した光が第3閾値以上明るいと判断した場合、前記調光部の透過率を第1レベルから前記第1レベルよりも透過率が低い第2レベルに切り替え、
     その後、前記第1受光部が受光した光が第3閾値よりも小さい第4閾値より暗くなったと判断した場合、前記調光部の透過率を前記第2レベルから前記第1レベルに切り替える、
     請求項3に記載の光学装置。
    The controller is
    In the second dimming state, when it is determined that the light received by the first light receiving unit is brighter than a third threshold based on the first signal and the second signal, the transmittance of the dimming unit is set to the first Switch from level to second level, which has lower transmission than the first level,
    Thereafter, when it is determined that the light received by the first light receiving unit is darker than a fourth threshold value that is smaller than a third threshold value, the transmittance of the dimming unit is switched from the second level to the first level.
    The optical device according to claim 3.
  8.  前記制御部は、前記第2調光状態において、前記第1信号及び前記第2信号の大きさの変化速度に基づいて、前記調光部の透過率の変化速度を制御する、
     請求項7に記載の光学装置。
    The control unit controls the change rate of the transmittance of the dimming unit based on the change rate of the magnitudes of the first signal and the second signal in the second dimming state.
    The optical device according to claim 7.
  9.  前記制御部は、
     前記第1信号及び前記第2信号を順次取得し、
     前記第1調光状態に切り替えるために参照する前記第1信号及び前記第2信号の取得回数よりも、前記第2調光状態に切り替えるために参照する前記第1信号及び前記第2信号の取得回数の方が多い、
     請求項3に記載の光学装置。
    The controller is
    Sequentially acquiring the first signal and the second signal;
    Acquisition of the first signal and the second signal referred to switch to the second dimming state rather than the number of acquisition times of the first signal and the second signal referred to switch to the first dimming state More times,
    The optical device according to claim 3.
  10.  前記調光部は、それぞれが独立に透過率を変更可能な第1領域と第2領域とを有し、
     前記第1領域は、前記調光部の前記中央部を含むが前記端部を含まず、
     前記制御部は、前記第1調光状態において、前記第1領域及び前記第2領域の透過率を独立に制御する、
     請求項3に記載の光学装置。
    The light control unit has a first region and a second region, each of which can independently change the transmittance,
    The first region includes the central portion of the light control unit but does not include the end portion,
    The controller independently controls the transmittance of the first region and the second region in the first dimming state;
    The optical device according to claim 3.
  11.  前記制御部は、前記第1調光状態において、
     前記第1信号及び前記第2信号に基づいて、前記第1受光部が受光した光が予め定められた色基準以上赤く、かつ、前記第1受光部が受光した光が予め定められた照度基準未満の明るさであると判断した場合、
     前記第1信号及び前記第2信号に基づいて、前記第1受光部が受光した光が予め定められた色基準以上赤くなく、かつ、前記第1受光部が受光した光が予め定められた照度基準以上明るいと判断した場合と比較して、
     前記第1領域の透過率を高くするように、前記調光部の透過率を制御する、
     請求項10に記載の光学装置。
    The control unit, in the first dimming state,
    Based on the first signal and the second signal, the light received by the first light receiving unit is red above a predetermined color reference, and the light received by the first light receiving unit is a predetermined illuminance reference. If it is judged that the brightness is less than
    Based on the first signal and the second signal, the light received by the first light receiving unit is not red above a predetermined color reference, and the light received by the first light receiving unit is predetermined illuminance. Compared to the case where it is brighter than the standard,
    Controlling the transmittance of the dimmer so as to increase the transmittance of the first region;
    The optical device according to claim 10.
PCT/JP2015/050260 2015-01-07 2015-01-07 Optical device WO2016110959A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015527614A JP5947464B1 (en) 2015-01-07 2015-01-07 Optical device
PCT/JP2015/050260 WO2016110959A1 (en) 2015-01-07 2015-01-07 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050260 WO2016110959A1 (en) 2015-01-07 2015-01-07 Optical device

Publications (1)

Publication Number Publication Date
WO2016110959A1 true WO2016110959A1 (en) 2016-07-14

Family

ID=56329473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050260 WO2016110959A1 (en) 2015-01-07 2015-01-07 Optical device

Country Status (2)

Country Link
JP (1) JP5947464B1 (en)
WO (1) WO2016110959A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030390A (en) * 2018-08-24 2020-02-27 株式会社ジンズホールディングス Eyewear, eyewear accessory, and lens used therefor
CN111279249A (en) * 2018-05-06 2020-06-12 斯普科姆有限公司 Light transmittance adjustable glasses
JP2021500620A (en) * 2017-10-24 2021-01-07 エシロール・アンテルナシオナル Eyeglass lenses including activating optical filters and optical instruments including such eyeglass lenses

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811305B2 (en) * 2017-03-13 2021-01-13 三井化学株式会社 Eyewear
WO2022244488A1 (en) * 2021-05-17 2022-11-24 充 横田 Shading control device and solar shading device using same, solar shading system, and shading control program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2530039A1 (en) * 1982-07-06 1984-01-13 Cuvelier Antoine Safety (protective) glasses having automatically adjustable transmission using liquid crystals
JPH0719956A (en) * 1992-11-04 1995-01-20 Reliant Technol Inc Liquid crystal sunglasses that show excessive irradiation of ultraviolet ray
JPH08122736A (en) * 1994-10-27 1996-05-17 Honda Motor Co Ltd Partial attenuation device
US6244703B1 (en) * 1999-03-16 2001-06-12 Nathaniel Resnikoff Method and apparatus for calibration of an electronic vision device
US20130222710A1 (en) * 2010-10-22 2013-08-29 Otos Wing. Co., Ltd. Optical-characteristics adjusting system for sunglasses or goggles and sunglasses and goggles equipped therewith
WO2014087448A1 (en) * 2012-12-03 2014-06-12 カラーリンク・ジャパン 株式会社 Optical device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992731B1 (en) * 1999-10-28 2006-01-31 Mitchell Joseph Aiosa Morris Electro-optic lens having multiple responsive regions of a variable degree of light transmission, method of fabrication thereof and method of operation thereof
JP4711192B2 (en) * 2006-10-27 2011-06-29 日本ビクター株式会社 Electronic sunglasses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2530039A1 (en) * 1982-07-06 1984-01-13 Cuvelier Antoine Safety (protective) glasses having automatically adjustable transmission using liquid crystals
JPH0719956A (en) * 1992-11-04 1995-01-20 Reliant Technol Inc Liquid crystal sunglasses that show excessive irradiation of ultraviolet ray
JPH08122736A (en) * 1994-10-27 1996-05-17 Honda Motor Co Ltd Partial attenuation device
US6244703B1 (en) * 1999-03-16 2001-06-12 Nathaniel Resnikoff Method and apparatus for calibration of an electronic vision device
US20130222710A1 (en) * 2010-10-22 2013-08-29 Otos Wing. Co., Ltd. Optical-characteristics adjusting system for sunglasses or goggles and sunglasses and goggles equipped therewith
WO2014087448A1 (en) * 2012-12-03 2014-06-12 カラーリンク・ジャパン 株式会社 Optical device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021500620A (en) * 2017-10-24 2021-01-07 エシロール・アンテルナシオナル Eyeglass lenses including activating optical filters and optical instruments including such eyeglass lenses
US11586056B2 (en) 2017-10-24 2023-02-21 Essilor International Spectacle lens comprising an activable optical filter and optical equipment comprising such spectacle lens
CN111279249A (en) * 2018-05-06 2020-06-12 斯普科姆有限公司 Light transmittance adjustable glasses
JP2021500592A (en) * 2018-05-06 2021-01-07 スポコム カンパニー リミテッド Light transmittance adjustment eyewear
US11087715B2 (en) 2018-05-06 2021-08-10 Spocom Co., Ltd. Light transmittance adjustable eyewear
CN111279249B (en) * 2018-05-06 2022-02-08 斯普科姆有限公司 Light transmittance adjustable glasses
JP7022205B2 (en) 2018-05-06 2022-02-17 スポコム カンパニー リミテッド Light transmittance adjustment eyewear
JP2020030390A (en) * 2018-08-24 2020-02-27 株式会社ジンズホールディングス Eyewear, eyewear accessory, and lens used therefor

Also Published As

Publication number Publication date
JP5947464B1 (en) 2016-07-06
JPWO2016110959A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
RU2755834C1 (en) Electronic glasses
JP5947464B1 (en) Optical device
CN103309056A (en) Instant automatic light-adjusting safety lens device
US9523866B2 (en) Optical device provided to an eye glass or a helmet having a frontal transmittance and a peripheral transmittance
US9678362B2 (en) Optical device provided to an eye glass or a helmet having a voltage control unit that switches a voltage cyclically
JP2023155326A (en) Spectacle lens comprising activatable optical filter, and optical device comprising such spectacle lens
CN104407451B (en) day and night anti-dazzle liquid crystal glasses
CN111279249B (en) Light transmittance adjustable glasses
RU2806339C1 (en) Electronic glasses
CN104407449A (en) Design method of anti-dazzle liquid crystal automobile meeting mirror and device thereof
JP7470223B2 (en) Electronic Glasses
RU2792656C1 (en) Electronic glasses
RU2781236C1 (en) Electronic glasses
RU2721308C2 (en) Electronic glasses

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015527614

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876837

Country of ref document: EP

Kind code of ref document: A1