WO2016133203A1 - Ventricular assistance device - Google Patents

Ventricular assistance device Download PDF

Info

Publication number
WO2016133203A1
WO2016133203A1 PCT/JP2016/054877 JP2016054877W WO2016133203A1 WO 2016133203 A1 WO2016133203 A1 WO 2016133203A1 JP 2016054877 W JP2016054877 W JP 2016054877W WO 2016133203 A1 WO2016133203 A1 WO 2016133203A1
Authority
WO
WIPO (PCT)
Prior art keywords
heart
pair
piston
magnet
container
Prior art date
Application number
PCT/JP2016/054877
Other languages
French (fr)
Japanese (ja)
Inventor
義弘 福本
Original Assignee
学校法人久留米大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人久留米大学 filed Critical 学校法人久留米大学
Priority to JP2017500758A priority Critical patent/JP6773953B2/en
Publication of WO2016133203A1 publication Critical patent/WO2016133203A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/191Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart mechanically acting upon the outside of the patient's native heart, e.g. compressive structures placed around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/161Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel mechanically acting upon the outside of the patient's blood vessel structure, e.g. compressive structures placed around a vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/289Devices for mechanical circulatory actuation assisting the residual heart function by means mechanically acting upon the patient's native heart or blood vessel structure, e.g. direct cardiac compression [DCC] devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/465Details relating to driving for devices for mechanical circulatory actuation
    • A61M60/468Details relating to driving for devices for mechanical circulatory actuation the force acting on the actuation means being hydraulic or pneumatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/465Details relating to driving for devices for mechanical circulatory actuation
    • A61M60/489Details relating to driving for devices for mechanical circulatory actuation the force acting on the actuation means being magnetic
    • A61M60/495Electromagnetic force
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/515Regulation using real-time patient data

Definitions

  • the present invention relates to an auxiliary heart device that assists in the movement of the heart.
  • a technique for assisting ventricular function by compressing and relaxing the external wall surface of the heart has been known.
  • a balloon is installed on the external wall surface of the heart, an operation of compressing the ventricle by inflating the balloon by introducing a fluid into the balloon, and an operation of relaxing the ventricle by discharging the fluid from the balloon and contracting the balloon
  • an auxiliary heart device for performing see, for example, Patent Document 1.
  • a piston type pump system using a small electric motor is disclosed as being capable of being installed in the body (for example, , See Patent Document 2).
  • the present invention has been made in view of such a point, and an object of the present invention is to provide an auxiliary heart device including an in-body pumping system without causing a time lag between the pumping system and the balloon. It is to provide immediacy and to inflate and deflate the balloon with high response and reliability.
  • At least one of the pair of magnets is an electromagnetic coil (electromagnet), and the electromagnet is turned on or off by current reversal or the like.
  • the opposing magnets may be affected by the interaction between the magnets such as the disappearance of the magnetic poles and the change of the magnetic poles (change from the S pole to the N pole or from the N pole to the S pole).
  • the electromagnetic coil (electromagnet) instantaneously disappears or changes in polarity due to ON / OFF of the current or reverse (reversal) of the direction of the current flowing through the electromagnet. Therefore, the pumping system of the present invention instantaneously It is possible to achieve a conversion of the working force.
  • ON / OFF of the current flowing through the electromagnetic coil (electromagnet) and the reversal of the direction of the current are performed based on the sensed signal by sensing a signal from the heart (electrocardiogram, heartbeat, etc.).
  • a repulsive force and an attractive force generated by a pair of magnets are used as a power source, and the force is applied to a piston installed in a cylinder provided in the device of the present invention as required by a coil spring (elastic member) (hereinafter simply referred to as a spring (Also referred to as a spring)) and is used together with the restoring force, and the piston sucks and discharges the fluid in the cylinder of the apparatus of the present invention.
  • the discharged fluid covers the outer wall of the heart and is introduced into a balloon chamber in a balloon (cardiac container) installed so as to be in contact therewith. Conversely, the fluid in the balloon chamber is discharged by sucking the fluid into the cylinder by the movement of the piston.
  • the present invention is not limited only to these exemplified devices, and as described above, by magnetic force.
  • a device that compresses and relaxes the outer wall of the heart, centering around the ventricle, by introducing and discharging fluid such as the heart balloon by converting the repulsive-suction force into piston motion and moving the fluid can be used as the device of the present invention, including a balloon-type container shape, a compression position and part, a cylinder or a piston shape, etc., which will be described later.
  • auxiliary heart device of the present invention for a balloon-type heart that is in contact with the outer wall of the heart (particularly the ventricular portion) and that is entirely or at least partially made of a flexible material
  • a container (20a to 20f) and a piston pump which is disposed in the body and expands and relaxes (returns to the normal shape of the container) by introducing and discharging fluid to and from the heart container (20a to 20f) (30a to 30c), and the piston pump (30a to 30f) is accommodated in a cylinder (31a to 31f) connected to the heart container (20a to 20f) and the cylinder (31a to 31f).
  • current control such as turning on and off the current flowing in the coils of the electromagnets (35a to 35f) and reversing (reversing) the current flow direction at regular intervals is performed.
  • aortic balloons flexible balloon-type aortic containers (25e, 25f) (hereinafter also referred to as aortic balloons) in contact with the outer peripheral wall surface of the aorta adjacent to the heart (particularly the descending aorta).
  • the piston pump (30e, 30f) is connected to the one end of the cylinder (31e, 31f) with the heart container (20e, 20f) and the other end of the cylinder (31e, 31f) with respect to the aorta
  • a container (25e, 25f) is connected to change the magnetic pole state generated between the pair of magnet members (33a to 33f, 35a to 35f), and the piston (32e, 32f) is moved to the cylinder (31e, 31f). It is preferable that the contact surface with the heart in the heart container (20e, 20f) is expanded and contracted and the contact surface with the aorta in the aorta container (25e, 25f) is expanded and contracted by reciprocating the inner wall.
  • the auxiliary heart device further includes a flexible balloon-type container for aorta (25e, 25f) in contact with the outer peripheral wall surface of the aorta, and the cylinder (31e, 31f) includes two cylinder chambers (45e ⁇ 45f, 46e-46f), the piston (32e, 32f) is accommodated in each cylinder chamber (45e-45f, 46e-46f), and the piston pump (30e, 30f) is a container for the heart (20e, 20f) (hereinafter also referred to as a heart balloon) is connected to one cylinder chamber (45e to 45f), and the aortic vessel (25e, 25f) is connected to the other cylinder chamber (46e to 46f)
  • the magnetic pole state generated between the pair of magnet members (33a to 33f, 35a to 35f) is controlled as described above, and the piston (32e, 32f) is reciprocated in the cylinder (31e, 31f).
  • a magnetic power mechanism is constituted by at least one electromagnet and an electromagnet or a permanent magnet fixed or coupled to each piston.
  • the auxiliary heart device of the present invention includes one having only the aortic balloon without the heart balloon. That is, for example, the aorta container (25g, 25h) which can be expanded and contracted in contact with the outer wall of the aorta, and the aorta container (25g, 25h) disposed in the body and introduced into and sucked into the aorta container (25g, 25h)
  • a cylinder (31g, 31h) having a piston pump (30g, 30h) and a piston pump (30g, 30h) connected to the aortic vessel (25g, 25h)
  • the piston (32g, 32h) is connected or fixed to only one of the pair of magnet members (33g, 33h, 35g, 35h
  • the pair of magnet members By changing the magnetic pole state generated between the pair of magnet members (33g, 33h, 35g, 35h), the pair of magnet members By reciprocating the piston (32g, 32h) in the cylinder (31g, 31h) using repulsive force and / or attractive force generated between members (33g, 33h, 35g, 35h) as a drive source, The contact surface of the container (25g, 25h) with the aorta is expanded or contracted.
  • the driving force of the piston as in the case of the device described above is based on the interaction between the magnets as described later, or, if necessary, the restoring force of the coil spring in addition to the interaction between the magnets. Can also be obtained.
  • a balloon-type container (hereinafter, also referred to as a balloon) having a flexible material is a fluid (such as liquid or gas) introduced into the container (usually press-fitting.
  • press-fitting with a piston is used.
  • a container made of a material that can be deformed when tension is applied from the container, and can return to its original shape when released from the tension examples include silicone rubber, natural rubber, styrene-butadiene rubber (SBR), and urethane elastomer.
  • the entire container need not be made of a flexible material, and may be a balloon partially using the material.
  • a portion that contacts the heart wall is made of a flexible material, and the other portion is a container made of a hard non-flexible material, or a contact surface with the heart.
  • a container in which a flexible material is partially for example, slit-shaped or spot-shaped.
  • the pair of magnet members ((33a, 33b, 33d, 33e, 33g), (35a, 35b, 35d, 35e, 35g)) is one of the magnet members (35a, 35b).
  • 35d, 35e, 35g) is fixed to the end of the cylinder (31a, 31b, 31d, 31e, 31g), and the other magnet member (33a, 33b, 33d, 33e, 33g) is fixed to the piston (32a, 32b).
  • 32d, 32e, 32g) is preferably movably accommodated inside the cylinder (31a, 31b, 31d, 31e, 31g) in a state of being fixed or coupled to the cylinder. Thereby, the repulsive force and / or attractive force that the magnet receives due to the interaction with the other magnet can be directly transmitted to the piston.
  • the pair of magnet members ((33c, 33f, 33h), (35c, 35f, 35h)) is composed of one magnet member (35c, 35f, 35h) and the pair of magnet members ((33c, 33f, 33h), (35c, 35f, 35h)) is configured to perform rotational movement by repulsive force and attractive force generated between the one magnet member (35c, 35f, 35h) and the piston (32c, 32f, 32h).
  • a link mechanism (37c, 37f, 37h) for converting the rotational movement of the one magnet member (35c, 35f, 35h) into the reciprocating movement of the piston (32c, 32f, 32h). Is preferred.
  • a combination of an electromagnet and a permanent magnet is a preferred configuration.
  • the device of the present invention can be driven. Attraction and repulsion between magnets by derivation and disappearance of magnetism due to current ON-OFF to electromagnet, or polarity (NS) change by alternately reversing the direction of current flowing to electromagnet Can be controlled. In particular, instantaneous attractive or repulsive forces can be generated by polarity conversion.
  • an elastic member (36a to 36h) is provided between the pair of magnet members (33a to 33h, 35a to 35h). More preferably, the elastic member has a restoring force that is deformed by an external force and returns to its original shape when the external force is removed.
  • the elastic member By interposing such an elastic member, it is also recommended to use or assist the restoring force of the spring as the driving force of the piston with respect to either the repulsive force or the attractive force generated by the pair of magnet members, or both. .
  • the restoring force of the spring member when used together with the interaction between the magnets as the driving force of the piston, it is preferable that the restoring force substantially antagonizes the force (energy) obtained from the interaction between the magnets. .
  • one of the magnet members is fixed or connected to the piston, and the interaction (repulsive force and / or attractive force) between the magnets is transmitted to the piston, so that the restoring force of the elastic member can be reduced as necessary.
  • the balloon can be inflated with high response and reliability without causing a time lag between the piston pump and the balloon, compared to a conventional small electric motor. Can be shrunk.
  • it since it is a simple mechanism that utilizes the change of the magnetic pole state of a pair of magnet members, it is more compact than conventional small electric motors and is ideal for installing a piston pump in the body. It is.
  • FIG. 1 is a schematic view when an auxiliary heart device according to an embodiment of the present invention assists in contracting the heart.
  • FIG. 2 is a schematic view when an auxiliary heart device according to an embodiment of the present invention assists in the expansion of the heart.
  • FIG. 3 is an operation diagram of the heart balloon, where (a) shows a deflated state and (b) shows an inflated state.
  • FIG. 4 is a view showing another embodiment of the heart balloon.
  • FIG. 5 is a schematic view of an auxiliary heart device that assists in contracting the heart by an interaction (repulsive force) of a magnet due to reversal of current in one embodiment.
  • FIG. 6 is a schematic view of the auxiliary heart device assisting the expansion of the heart when the direction of the current is reversed from the current direction of FIG.
  • FIG. 7 is a schematic diagram when the auxiliary heart device according to the first modification of the embodiment assists in the contraction of the heart.
  • FIG. 8 is a schematic diagram when the auxiliary heart device according to the first modification of the embodiment assists the expansion of the heart.
  • FIG. 9 is a schematic diagram of an auxiliary heart device according to Modification 2 of the embodiment.
  • FIG. 10 is a schematic diagram when the auxiliary heart device according to the third modification of the embodiment assists the contraction of the heart.
  • FIG. 11 is a schematic diagram when the auxiliary heart device according to the third modification of the embodiment assists the expansion of the heart.
  • FIG. 12 is an operation diagram of the balloon for the aorta, where (a) shows a deflated state and (b) shows an inflated state.
  • FIG. 13 is a schematic diagram of an auxiliary heart device according to Modification 4 of the embodiment.
  • FIG. 14 is an embodiment of the present invention, and is a schematic view when an auxiliary heart device that does not include a heart balloon and instead includes only an aortic balloon assists the heart contraction.
  • FIG. 15 is a schematic view when the auxiliary heart device according to the embodiment of FIG. 14 assists in the expansion of the heart.
  • FIG. 16 is a schematic view showing an embodiment different from FIGS. 14 and 15 of an auxiliary heart device that does not include a heart balloon but instead includes only an aortic balloon.
  • FIG. 17 is a schematic view of the vicinity of a control unit and sensors of an auxiliary heart device according to another embodiment.
  • the auxiliary cardiac device (10a) of one embodiment does not require insertion into the heart or nearby arteries, but by applying stress to the outer wall of the heart to synchronize with the expansion and contraction of the heart, It helps to shrink. Since this auxiliary heart device (10a) is non-invasive to the inside of the heart or the inside of the artery and is not in contact with blood, it does not generate a thrombus due to blood coagulation when assisting the movement of the heart. is there.
  • the auxiliary heart device (10a) includes a balloon for heart (20a), a piston pump (30a), and a controller (40a) as a balloon-type heart container made of a flexible material. And.
  • the piston pump (30a) expands and contracts the heart balloon (20a).
  • the piston pump (30a) includes a cylinder (31a), a piston (32a), and a pair of magnet members (33a, 35a).
  • the piston pump (30a) is disposed in the body.
  • the heart balloon (20a) as an example of the auxiliary heart device (10a) is an expandable / contractable bag-like body having a recess (21a) in which the heart is accommodated.
  • the recess (21a) is configured to cover the outer wall on the ventricle side of the heart and expose a part of the outer wall on the atrial side of the heart.
  • the inner surface of the recess (21a) is formed of a flexible film (22a) and contacts the heart, and the outer surface of the recess (21a) is formed of a hard film (23a).
  • the flexible film (22a) is more elastically deformed than the hard film (23a).
  • the flexible membrane (22a) of the heart balloon (20a) is formed of silicone rubber.
  • the flexible membrane (22a) is not limited to silicone rubber.
  • a fluid such as a synthetic rubber such as SBR or natural rubber can be sealed, the material is deformed by an external force, and the external force is removed.
  • any material can be used as long as it can return to its original shape.
  • a through hole is formed in the hard membrane (23a) of the heart balloon (20a), and the cylindrical cylinder (31a) of the auxiliary heart device (10a) is connected to the through hole.
  • the internal space of the heart balloon (20a) and the internal space of the cylinder (31a) communicate with each other, and the fluid (24a) is sealed in these internal spaces.
  • the piston (32a) of the auxiliary heart device (10a) is accommodated in the cylinder (31a).
  • the fluid (24a) is reciprocated between the cylinder (31a) and the heart balloon (20a).
  • the heart balloon (20a) is inflated and contracted.
  • FIG. 3 is a simplified diagram showing the operation of the heart balloon (20a).
  • 3A shows a state in which the heart balloon (20a) is deflated
  • FIG. 3 (b) shows a state in which the heart balloon (20a) is inflated.
  • the heart balloon (20a) is inflated by the reciprocating motion of the piston (32a), returns to its original shape without receiving external force, or by suction force accompanying suction and discharge of fluid from the balloon. It is wilt. Therefore, the mechanical action on the heart, centered on the ventricle, occurs as the volume of the balloon container changes as fluid is introduced into and discharged from the balloon.
  • the form of change from the normal state of the balloon (the part made of the flexible material is free of tension due to external force)
  • the form of the expansion of the flexible film part and the normal state of the balloon (1)
  • Form that is in a normal state when liquid is supplied into the balloon container, and expands when liquid is discharged from the balloon container (hereinafter also referred to as form (1))
  • form (2) When discharged from the balloon container Is in a normal state and expands when fluid is introduced into the balloon container
  • form (2) When fluid is maximum introduced into the balloon container (Fig. 1) and maximum discharge.
  • the time point (intermediate point, etc.) between the times (FIG. 2) may be in any form that is in a normal state (hereinafter also referred to as form (3)).
  • the hard membrane (23a) is located on the outer surface (70) side, and the flexible membrane (22a) is located on the inner surface (71) side.
  • the inner surface (71) of the heart balloon (20a) is fixed to the heart (100) via a surgical adhesive tape.
  • the surgical adhesive tape is an example, and a surgical adhesive or a combination of a surgical adhesive tape and a surgical adhesive may be used.
  • a protective film may be provided between the heart (100) and the heart balloon (20a) to protect the heart (100).
  • any known method for immobilizing a heart balloon that is effective in the present invention can be employed.
  • the normal state of the heart balloon (20a) and the shape change (expansion and contraction) due to the introduction or discharge of the fluid of the flexible membrane portion are the above-mentioned types (1 ),
  • the piston (32a) is pulled and the volume of the heart balloon (20a) is reduced due to release from expansion, etc.
  • the outer surface (70) and the inner surface (71) of the heart balloon (20a) face each other.
  • the distance (d) is narrowed, the inner surface (71) is extended, and the film is in tension.
  • the above-mentioned facing distance (d) is increased and the inner surface (71) is restored to its restoring force. It will be in the state which returned from the state extended by.
  • the heart balloon (20a) when the heart balloon (20a) is inflated, the inner surface (71) is tensioned and the inner surface (71) is contracted (see FIG. 3B). reference).
  • the heart balloon (20a) can be quickly deflated, and the compression of the heart (100) can be released in a short time.
  • the entire inner surface (71) of the heart balloon (20a) need not be formed of a flexible membrane (22a).
  • a large number of holes (55) are formed in the hard film (23a), and a flexible film (22a) is disposed so as to cover the holes (55), and the flexible film (22a ) May be expanded or contracted by the reciprocating motion of the piston (32a).
  • the pair of magnet members (33a, 35a) of the auxiliary heart device (10a) are an electromagnet (35a) and a permanent magnet (33a).
  • the combination of the electromagnet (35a) and the permanent magnet (33a) is an example, and two electromagnets (35a) may be used as a pair of magnet members.
  • the magnet member (33a) in the cylinder (31a) is a permanent magnet
  • the magnet member (35a) outside the cylinder (31a) is an electromagnet.
  • the magnet member (33a) in the cylinder (31a) is an electromagnet.
  • the magnet member (35a) outside the cylinder (31a) may be used as a permanent magnet.
  • the wiring from the power circuit built in the control unit (40a) is connected to the magnet member ( Connected to 33a).
  • both are electromagnets either one of the electromagnets is always energized in the same direction to maintain the function as a magnet at all times, or the energization of the other electromagnet is turned off. At that time, the energization of the one electromagnet may be stopped at the same time, and the magnetism may be lost.
  • the electromagnet (35a) includes an iron core, a coil wound around the iron core, and a film such as Teflon (registered trademark) covering the iron core and the coil.
  • the iron core described above is an example, and the core may be any magnetic material other than iron, and may be nickel, for example.
  • Teflon (registered trademark) is merely an example, and may be an insulating polymer material other than Teflon (registered trademark), for example, a polyethylene-based, polypropylene-based, acrylic-based resin or silicone resin. Also good.
  • the electromagnet (35a) made of this electromagnetic induction coil can reverse the magnetic poles by reversing the direction of the current flowing through the coil.
  • the magnet (33a) fixed or connected to the piston is a permanent magnet
  • the magnet (35a) installed outside the cylinder is an electromagnet.
  • the adjacent magnetic poles of the pair of magnets are different as shown in FIG.
  • the electromagnet (35a) becomes N pole, and the permanent magnet maintains S pole), and the permanent magnet (33a) is attracted to the electromagnet.
  • the electromagnet (35a) is energized (powered on). ) Is magnetized, an attractive force is generated between the pair of magnets (33a), and the magnet (33a) is attracted to the end of the cylinder on the electromagnet side.
  • the piston connected to the magnet (33a) is also attracted to the end side, so that the fluid flows from the balloon container into the cylinder, and as a result, the amount of fluid in the balloon and the balloon volume are minimized.
  • the spring (36a) contracts in response to the attractive force between the magnets from the normal state (the state where no mechanical force is applied) shown in FIG. Further, by stopping energization of the electromagnet (35a) (power OFF), the attractive force between the magnets is released due to the disappearance of the magnetism. At this time, the spring (36a) has a restoring force to return from the contracted state to the original state (the normal state and the state shown in FIG. 1). It becomes. As a result, the piston moves from the position shown in FIG. 2 to the position shown in FIG. As a result, the fluid in the cylinder is introduced into the balloon, and the heart is pressed by the expansion of the balloon volume. At this time, if the action mode of the balloon is the above-described change in shape of the flexible film of the balloon (1), this action is assisted.
  • the action of the electromagnet (35a) is not due to such an ON / OFF operation of current, but a series of actions can be performed by controlling the direction of current flow to the electromagnet (reversing the current direction).
  • An apparatus for controlling the direction of such current is illustrated in FIGS. 5 and 6.
  • FIG. In this case, first, the electromagnet (35b) is installed so that an attractive force is generated between the magnets by changing the opposing magnetic poles in the pair of magnets to different magnetic poles (N and S) in FIG. Thereafter, the direction of the current is reversed in the controller (42b).
  • the magnetic poles of the electromagnet (35b) reverse, the opposing magnetic poles become the same by controlling the current between the magnet (33b) and the electromagnet (35b), and repulsive force is generated, and the state shifts to the state of FIG. Therefore, it is also recommended to use an auxiliary heart device based on a method in which attractive force and repulsive force are used together as an interaction between magnets.
  • the state of FIG. 5 is the normal state of the spring or the state of FIG. Any of the springs in the normal state can be used.
  • FIG. 5 is the normal state, and the spring is compressed by the attractive force between the magnets generated by reversing the current of the electromagnet (FIG. 6), or the spring state in FIG. It is possible to use any type of spring in which the spring is in a developed state (FIG. 5) due to the repulsive force. Even a device that does not use a spring can be the auxiliary heart device of the present invention.
  • the apparatus of the present invention when the apparatus of the present invention is operated by the interaction between the magnets due to the generation and disappearance of the magnetic poles of the electromagnet by the ON / OFF operation of the current of the electromagnet, the repulsive force between the magnets can be used.
  • the state of FIG. 1 is the energization state (ON) to the electromagnet
  • the state of FIG. 2 is the energization OFF state.
  • it will be in the state which a repulsive force generate
  • an electromagnet and a permanent magnet may be used so that the magnetic poles on the electromagnet side are completely opposite to those in FIGS. 1 and 2 when energized.
  • the magnetic poles are the same as those in FIGS. 1 and 2. .).
  • the repulsive force between the magnets is transmitted to the piston, and the fluid is introduced into the balloon chamber in the state shown in FIG.
  • the piston and the spring are brought into the state shown in FIG. 2 and the fluid is sucked into the cylinder by the restoring force of the spring.
  • the spring to be used is changed from the normal spring state to the repulsive force of the magnet. It is necessary to select and arrange a spring that expands and loses repulsive force, and returns to a normal state by the restoring force of the spring.
  • the method by reversing the direction of the current flowing through the electromagnet (35b) is exemplified, but other methods using both the attractive force and the repulsive force are exemplified.
  • the electromagnet (35b) is an electromagnet composed of two electromagnets (35b1 and 35b2) having different current circuits, it can be used in the present invention.
  • this method is based on a method in which the electromagnet (35b) is composed of two electromagnets, the electromagnet 1 and the electromagnet 2, and the energization of the electromagnet is switched in the control unit. Specifically, when the electromagnet 1 is energized, the electromagnet 2 is not energized. At this time, the interaction between the electromagnet 1 and the permanent magnet (33b) is set to be attractive, and then When the electromagnet 1 is turned off and the electromagnet 2 is energized, the interaction between the electromagnet 2 and the permanent magnet (33b) is set to be repulsive.
  • both the attractive force and the repulsive force can be used as in the case of reversing the current direction.
  • the control unit (40a) of the auxiliary heart device (10a) includes a sensor (41a) and a controller (42a).
  • the sensor (41a) generally converts the heartbeat into an electrical signal and transmits it to the controller (42a), similar to sensing by an electrocardiograph or the like, and moves the heartbeat, heartbeat, etc. Any method may be used as long as it senses and transmits this as an electrical signal to the controller (42a).
  • any position / part of the sensor (41a) can be used as long as it senses the movement of the heart and can effectively drive the auxiliary heart device (10a) from the state of the movement.
  • the controller (42a) is installed outside the body.
  • the sensor (41a) and the controller (42a) are connected by a signal line.
  • the controller (42a) can be installed at any position inside or outside the body, and is not particularly limited. It is recommended to leave it in the body from the viewpoints of lowering the invasiveness and uncomfortable feeling.
  • the sensor (41a) is exemplified by using a sensing system similar to a general electrocardiograph.
  • a general electrocardiograph is an example, and a sensing system similar to that other than the electrocardiograph can be used as long as it can detect the state of the heart such as the heartbeat.
  • the controller (42a) has a function of controlling the interaction of the electromagnets based on the signal from the power source and sensor for operating the auxiliary heart device. Since the power source operates an electromagnet formed of an electromagnetic coil, it is a direct current power source and is generally constituted by a battery.
  • one of the following functions is employed as the function of controlling the electromagnet.
  • (1) The case where both attractive force and repulsive force are used as the interaction between a pair of magnets by ON / OFF control of energization to the electromagnet.
  • (2) A case where both attractive force and repulsive force are used as an interaction between a pair of magnets by controlling the current direction of energization to the electromagnet (reversing the current direction).
  • (3) The case where both attractive force and repulsive force are used as the interaction between the electromagnet and the opposing magnet by using two electromagnets as the electromagnet to be energized according to the situation.
  • the ON-OFF operation of (1) receives a signal from the sensor, activates the electromagnet by the ON operation, generates an interaction with the opposing magnet, and interacts with the opposing magnet by the OFF operation. Disappear.
  • control can be performed by using, for example, a magnet switch that operates based on a signal from a sensor.
  • the apparatus of the present invention is not limited to such an example, and any method can be adopted as long as it can achieve ON / OFF of energization to the electromagnet following the signal.
  • the current direction control (reversal / reversal) method (2) is performed by a system in which two current circuits are formed, for example, using a magnet switch or the like (selecting a junction with a circuit terminal).
  • any method can be adopted as long as it is a control method capable of alternately reversing the direction of the current introduced to the electromagnet.
  • the method of selectively controlling the energization of the two electromagnets can be achieved by the same method as the circuit selection method described above.
  • any method may be adopted as long as it is a method for selecting a circuit.
  • controller examples can be used in any of the example devices and modifications described above and below.
  • the piston pump (30a, 30b) since the magnetic interaction of the auxiliary heart device (10a, 10b) is converted into piston motion, the piston pump (30a, 30b) does not directly lose or flow 100% of the fluid (24a, 24b). And it can implement simultaneously without a time lag.
  • Modification 1 of one embodiment As shown in FIGS. 7 and 8, the auxiliary heart device (10c) of Modification 1 is different from the above-described embodiment in that the piston (32c) is driven. Hereinafter, this difference will be mainly described.
  • a permanent magnet (33c) and a coil spring (36c) are arranged outside the cylinder (31c).
  • the electromagnet (35c) is formed in a rod shape.
  • the rod-shaped electromagnet (35c) has a rotating shaft (38c) attached to an intermediate portion in the length direction.
  • the rod-shaped electromagnet (35c) is supported by the rotating shaft (38c) so as to be rotatable about the rotating shaft (38c).
  • the rod-shaped electromagnet (35c) is connected to the piston (32c) via the link mechanism (37c).
  • This link mechanism (37c) converts the rotational motion of the rod-shaped electromagnet (35c) into the reciprocating motion of the piston (32c).
  • the other end of the rod-shaped electromagnet (35c) is connected to the permanent magnet (33c) via a coil spring (36c). In this case as well, the connection with the coil spring by the link mechanism is preferable.
  • the permanent magnet (33c) is bonded and fixed to the hard film (23c) of the heart balloon (20c).
  • the electromagnet (35c) and the permanent magnet (33c) are arranged so that the magnetic poles of these magnets face each other.
  • the electromagnet (35c) when the heart contracts, the electromagnet (35c) is turned off, the magnetism of the electromagnet disappears, and the electromagnet (35c) and the permanent magnet (33c) are not connected. Magnetic interaction disappears. Then, the coil spring (36c) is stretched to a normal shape by a restoring force, and the electromagnet (35c) rotates clockwise around the rotation axis (38c). As a result, the piston (32c) of the electromagnet is rotated by this rotational force.
  • the coil spring of FIG. 7 has substantially the same shape as a shape to which a normal external force is not applied.
  • the energization of the electromagnet (35c) is turned ON at the timing when the heart expands, and between the electromagnet (35c) and the permanent magnet (33c).
  • the coil spring (36c) is contracted and elastic energy is stored in the coil spring (36c), and the electromagnet (35c) rotates in the reverse direction, so that the piston (32c) is retracted and the heart balloon (20c) is deflated.
  • the pressing force of the heart balloon (20c) against the heart is reduced so as to assist in the expansion of the heart.
  • the magnet member (33c) bonded and fixed to the hard film (23c) is an electromagnet
  • the rod-shaped magnet member (35c) is a permanent magnet.
  • the current from the controller flows to the electromagnet (33c).
  • the magnet member (33c) bonded and fixed to the hard film (23c) is an electromagnet
  • the rod-shaped magnet member (35c) is a rod-shaped permanent magnet, and the shape is easier to deform and mold. As a result, the transmission of force between the piston and the spring may be smooth.
  • the apparatus uses both repulsive and attractive interactions.
  • such an apparatus can be achieved by, for example, reversing or reversing the direction of the current to be applied to the electromagnet, or by alternately energizing using two electromagnets.
  • the permanent magnet and the electromagnet shown in FIGS. 7 and 8 are converted as described above, and the magnet member (33c) bonded and fixed to the hard film (23c) is used as an electromagnet, and a rod-like magnet member.
  • (35c) may be a permanent magnet, which is applied to the apparatus of the present invention.
  • the rod-shaped magnet member (35c) may be replaced with an electromagnet, and both may be electromagnets.
  • the two electromagnets can be turned ON / OFF at the same time. Only the ON / OFF operation is performed, and the other electromagnet may be always energized.
  • the auxiliary heart device (10d) As shown in FIG. 9, the auxiliary heart device (10d) according to the second modified example is configured such that the heart balloon (20d) and the cylinder (31d) are connected through a tube (39d). This is different from the first modification.
  • the piston (32d) is reciprocated by turning on and off the electromagnet (35d) as in the first embodiment illustrated at the beginning.
  • the present invention is not limited to this.
  • the piston (32d) may be reciprocated by reversing the magnetic poles of the electromagnet (35d).
  • the electromagnet (35d) when the electromagnet (35d) is ON, an attractive force is generated between the pair of magnets (33d, 35d), and the coil spring (36d) is contracted to store elastic energy.
  • the elastic energy may be stored by repulsive force generated between the pair of magnets (33d, 35d) when the electromagnet (35d) is ON and the coil spring (36d) is extended.
  • the apparatus uses both repulsive and attractive interactions.
  • such an apparatus can be achieved by, for example, reversing or reversing the direction of the current to be applied to the electromagnet, or by alternately energizing using two electromagnets.
  • the permanent magnet and the electromagnet in FIGS. 7 and 8 are converted, the magnet member (33d) in the cylinder (31d) is used as an electromagnet, and the magnet member outside the cylinder (31d) ( Of course, it is possible to use 35d) as a permanent magnet, which is applied to the apparatus of the present invention.
  • the magnet member (35d) outside the cylinder (31d) may be replaced with an electromagnet, and both may be electromagnets.
  • the two electromagnets can be turned ON / OFF at the same time. Only the ON / OFF operation is performed, and the other electromagnet may be always energized.
  • Modification 3 of one embodiment As shown in FIGS. 10 and 11, the auxiliary heart device (10e) of Modification 3 is different from the embodiment and Modifications 1 and 2 in that not only the heart but also the descending aorta (50) is expanded and contracted. Hereinafter, this difference will be mainly described.
  • the cylinder (31e) has two cylinder chambers (45e, 46e).
  • One cylinder chamber (45e) of the cylinder (31e) is connected to the heart balloon (20e) through the tube (39e1), and the other cylinder chamber (46e) is connected to the aortic balloon (25e) through the tube (39e2). It is connected.
  • the aortic balloon (25e) is formed into a tubular shape by winding a single hollow sheet (18) and joining them at the seam (19).
  • the tube (39e2) described above is connected to the hollow sheet (18).
  • the aortic balloon (25e) covers the entire outer peripheral direction of the descending aorta (50) with a certain width.
  • the aortic balloon (25e) is deflated (see FIG. 12 (a)), the pressing force on the descending aorta (50) is reduced, and the descending aorta ( 50) assist with expansion.
  • the material of the inner surface in contact with the aorta of the aortic balloon (25e) of Modification 3 is made of a flexible material and the shape is flat, but the shape is not particularly limited to this, for example, When the aortic balloon (25e) is inflated, the inner surface may be partially raised. By doing so, the pressing force to the descending aorta (50) can be increased.
  • the outer surface of the balloon for aorta (25e) may be made of a flexible material like the inner surface, and may be a hard material, as illustrated above.
  • Two cylinder chambers (45e, 46e) similar to some examples described above are provided inside the cylinder (31e), and for each cylinder chamber, a piston (32e1, 32e2) and Permanent magnets (33e1, 33e2) and coil springs (36e1, 36e2) are accommodated.
  • the coil spring (36e2) on the descending aorta side is configured to store elastic energy when extended
  • the coil spring (36e1) on the heart side is configured to store elastic energy when contracted.
  • an electromagnet (35e) is disposed outside the cylinder chamber (45e, 46e) so as to face each permanent magnet (33e1, 33e2).
  • the heart balloon (20e) when the electromagnet (35e) is turned off at the timing when the heart contracts, the heart balloon (20e) is inflated to assist the heart contraction and at the same time the aortic balloon (25e). Is configured to wither (see FIG. 10). The inflating of the heart balloon (20e) assists in the contraction of the heart, and at the same time, the aortic balloon (25e) is deflated so that the descending aorta (50) is released from the compression of the aortic balloon (25e). Blood outflow is supported.
  • the electromagnet (35e) when the electromagnet (35e) is turned off, the attractive force between the electromagnet (35e) and the heart side permanent magnet (33e1) disappears and the electromagnet (35e) and the descending aorta side permanent magnet ( The repulsion with 33e2) disappears. Then, the coil spring (36e1) on the heart side is extended with restoring force. In addition, the coil spring (36e2) on the descending aorta side contracts due to the restoring force. When the coil spring (36e1) on the heart side extends, the piston (32e1) on the heart side is pushed, the fluid (24e) flows into the heart balloon (20e), and the heart balloon (20e) expands.
  • the aortic balloon (25e) is inflated at the same time as the heart balloon (20e) is deflated so as to assist the expansion of the heart. (See FIG. 11).
  • the aortic balloon (25e) is inflated by the deflation of the heart balloon (20e), while the descending aorta (50e) is compressed from the aortic balloon (25e), and the descending aorta (50e) ), The blood flow into the ventricle is supported.
  • the present invention is not limited to this.
  • An auxiliary heart device that reciprocates the pistons (32e1, 32e2) by reversing the magnetic poles of the electromagnet (35e) by reversing the direction is also exemplified as a preferred example.
  • the coil spring (36e1, 36e2) may be used for simple buffering, or the reciprocating motion by changing the magnetic pole state of the piston (32e1, 32e2) using the restoring force of the coil spring (36e1, 36e2) May be assisted.
  • the permanent magnet of this example is a fixed electromagnet and is always energized. This is because a result equivalent to that of a permanent magnet can be obtained by having the same polarity as that of the permanent magnet.
  • fluid is taken in and out of the heart balloon and the aorta balloon using two pistons and cylinders for the heart and the aorta.
  • the amount of fluid to be taken in and out is usually different, and the amount of fluid to be taken in and out is overwhelmingly large in and out of the heart balloon.
  • the following response is made. (1) When the cylinder inner diameters are substantially equal, the movable region of the piston is changed. Specifically, the movable range of both the coil springs (the difference between the coil length in the normal state and the length in the tensioned state) is adjusted. (2) By adjusting the cylinder bore. When the movable ranges of both pistons are equal, a quantitative difference can be achieved by squaring the length of the inner diameter. as well as, (3) It can be achieved by a combination of these.
  • the auxiliary heart device (10f) of the modification 4 matches the modification 3 in that not only the heart but also the descending aorta (50) is expanded or contracted.
  • the driving method of the pistons (32f1, 32f2) Is different.
  • the pistons (32f1, 32f2) are driven by the rotation of the rod-shaped electromagnet (35f).
  • the cylinder (31f) has two cylinder chambers (45f, 46f).
  • a heart balloon (20f) is connected to one cylinder chamber (45f) of the cylinder (31f), and an aortic balloon (25f) is connected to the other cylinder chamber (46f) through a tube (39f).
  • the aortic balloon (25f) is connected to the cylinder chamber (46f) via a tube (39f).
  • a piston (32f) is accommodated in each cylinder chamber (45f, 46f) inside the cylinder (31f).
  • These pistons (32f) are connected to one end of a rod-shaped electromagnet (35f) via a link mechanism (37f).
  • the two pistons (32f) are disposed on both sides of one end of the electromagnet (35f).
  • the control unit (40f) includes a rectifier that alternately reverses the magnetic poles of the rod-shaped electromagnet (35f).
  • a repulsive force is generated between these magnets, and the electromagnet (35f) rotates clockwise, causing the heart side piston (32f) to move.
  • the piston (32f) on the descending aorta side retracts away from the tube (39f) of the aortic balloon (25f) at the same time as it advances toward the heart balloon (20f). Accordingly, the aortic balloon (25f) is deflated at the same time as the heart balloon (20f) is expanded.
  • the electromagnet (35f) When the magnetic pole of the electromagnet (35f) is switched by the control unit (40f) and the permanent magnet (33f) and the electromagnet (35f) face each other with different polarities, an attractive force is generated between these magnets, and the electromagnet (35f) rotates counterclockwise.
  • the piston (32f) on the descending aorta side advances at the same time as the piston (32f) on the heart side moves backward.
  • the aortic balloon (25f) is expanded when the heart balloon (20f) is deflated.
  • the rod-shaped magnet member (35f) may be a permanent magnet
  • the magnet member (33f) bonded and fixed to the hard film of the heart balloon (20f) may be an electromagnet. There is no problem. Moreover, both can use an electromagnet by performing current control as described above.
  • the descending aorta and the ventricle of the heart can be assisted at the same time for expansion and contraction.
  • the simultaneous operation means that the descending aorta is in an expanded state when the heart ventricle is compressed, and the descending aorta is compressed when the heart ventricle is expanded.
  • the piston pump (30e, 30f) the heart (ventricle) and the descending aorta can be efficiently and simultaneously acted on, which can be an effective auxiliary heart.
  • the piston pumps (30e, 30f) are compact, it is effective for installation in the body, and it is possible to construct a system that does not interfere with daily life.
  • a balloon is placed around the descending aorta near the heart and only the descending aorta is compressed.
  • This system is equipped with a storage bag that stores fluid together with the balloon (hereinafter also referred to simply as a bag), and hinge-type plate-like electromagnets with one end rotatable on both outer surfaces of the storage bag.
  • a storage bag that stores fluid together with the balloon (hereinafter also referred to simply as a bag), and hinge-type plate-like electromagnets with one end rotatable on both outer surfaces of the storage bag.
  • the both plates are closed by electromagnetic force.
  • the storage bag is pressed by closing the plate, and the fluid is sent to the balloon. This inflates the balloon and compresses the descending aorta.
  • both the balloons ((20e, 25e), (20f, 25f)) are expanded and contracted by the reciprocating motion of the pistons ((32e1,32e2), 32f), so the balloons ((20e, 25e) , (20f, 25f)) can be performed more smoothly than the conventional system described above.
  • the auxiliary heart device (10g) which is an embodiment different from the above shown in FIGS. 14 and 15 does not include a heart balloon, but instead includes only an aortic balloon (25g). Except for not having a heart balloon, the material, basic functions, and the like of the constituent members are the same as in the above-described embodiment.
  • the driving force generated between the pair of magnet members (33g, 35g) includes the attractive force or repulsive force between the pair of magnet members (33g, 35g) and the restoring force of the elastic member (36g).
  • the above-mentioned auxiliary heart device (10h) is not provided with a heart balloon, but is provided with only an aortic balloon (25h) instead. 10g), but a pair of magnet members (33h, 35h) is arranged between one magnet member (33h) and the other magnet member (35h) as in the first modification (FIG. 7). And a link mechanism (37h) that is formed so as to perform a rotational motion by an attractive force or a repulsive force, and that converts the rotational motion of one magnet member (35h) into a reciprocating motion of a piston (32h).
  • the driving force generated between the pair of magnet members (33g, 33h, 35g, 35h) is the current to the electromagnet (35g, 35h).
  • An attractive force or a repulsive force generated by reversing the introduction direction can also be included.
  • the control unit (40g, 40h), the piston pump (30g, 30h), and the cylinder (31g, 31h), piston ( 32g, 32h) and magnet members (33g, 33h, 35g, 35h), and coil springs (elastic members) (36g, 36h), link mechanisms (37h), etc. can be provided not only inside the body but also outside the body. Needless to say.
  • one heart balloon (20a) is configured to cover the heart.
  • the present invention is not limited to this.
  • the heart balloon (20a) partially covers the heart. It may be one that compresses the target, or a plurality of balloons may be installed for one heart. Even in this case, the same effect as the present invention can be obtained.
  • the blood in the heart can be efficiently discharged to the aorta by placing the heart so as to face the left ventricle of the heart.
  • a time lag is generated between the pumping system and the balloon in the embodiment having no cardiac balloon as shown in FIGS. 14, 15 and 16 and having only the aortic balloon instead. Therefore, the balloon can be inflated and deflated with high response and reliability.
  • the senor (41a) is installed on the outer wall of the heart.
  • the present invention is not limited to this, and as shown in FIG. 17, the sensor (41a) is installed on the body surface. Also good.
  • the present invention is useful for an auxiliary heart device that assists in the movement of the heart.
  • the electromagnet needs to be covered with a coating or the like so that a body fluid such as a body fluid does not flow into the electromagnetic coil.
  • a body fluid such as a body fluid does not flow into the electromagnetic coil.

Abstract

The present invention is a ventricular assistance device provided with an internal implant-type pumping system, the device using a simple configuration in which one magnetic member (33a) is secured to a piston (32a) and the piston (32a) is made to travel in reciprocating motion by means of repulsive force and attractive force arising between a pair of magnetic members (33a, 35a). The foregoing configuration makes it possible, compared to conventional small electric motors, to inflate or deflate a balloon (20a) in a highly responsive and reliable manner without producing a time lag between a piston pump (30a) and the balloon (20a).

Description

補助心臓装置Auxiliary heart device
 本発明は、心臓の動きを補助する補助心臓装置に関するものである。 The present invention relates to an auxiliary heart device that assists in the movement of the heart.
 心臓の外部壁面を圧迫、弛緩させ、心室機能を補助する手法は従来から知られている。特に、心臓の外部壁面にバルーンを設置し、バルーンへ流体を導入してバルーンを膨張させることにより心室を圧迫させる動作とバルーンから流体を排出してバルーンを収縮させることにより心室を弛緩させる動作とを行う補助心臓装置が知られている(例えば、特許文献1を参照)。 A technique for assisting ventricular function by compressing and relaxing the external wall surface of the heart has been known. In particular, a balloon is installed on the external wall surface of the heart, an operation of compressing the ventricle by inflating the balloon by introducing a fluid into the balloon, and an operation of relaxing the ventricle by discharging the fluid from the balloon and contracting the balloon There is known an auxiliary heart device for performing (see, for example, Patent Document 1).
 また、補助心臓装置に設けられて、バルーンへの流体の導入と排出を行うポンピングシステムに関しては、体内設置が可能なものとして、小型電気モータを用いたピストン型ポンプシステムが開示されている(例えば、特許文献2を参照)。 Further, regarding a pumping system that is provided in an auxiliary heart device and introduces and discharges fluid to and from a balloon, a piston type pump system using a small electric motor is disclosed as being capable of being installed in the body (for example, , See Patent Document 2).
特表2001-521790号公報JP 2001-521790 Gazette 特開昭63-294865号公報JP 63-294865 A
 しかしながら、従来の補助心臓装置のポンピングシステムの場合、電動モータを駆動源としている。一方、心臓の血流の補助、特に心室の外部からバルーン等の膨張可能容器の膨張収縮によって、心室の拡張収縮を補助するには、非常に繊細な時間的、周期的な制御を要求される。電気的に駆動するモータを用いたポンピングシステムにおいて、電流のON-OFFによるモータの駆動に際しては、若干の即時性に問題を残し、時間的なずれ(タイムラグ)が生じる恐れがある。更にモータ自体の定常駆動に関しても時間的なずれが生じ、駆動時は摩擦等の抵抗によりその駆動力が減少される恐れや、駆動におけるタイムラグを引き起こす要因ともなりうる。 However, in the case of a conventional pumping system for an auxiliary heart device, an electric motor is used as a drive source. On the other hand, in order to assist the expansion and contraction of the ventricle by assisting the blood flow of the heart, especially by expanding and contracting an inflatable container such as a balloon from the outside of the ventricle, very delicate temporal and periodic control is required. . In a pumping system using an electrically driven motor, when the motor is driven by turning on and off the current, there is a possibility that a slight time imperfection remains and a time lag occurs. Furthermore, a time lag also occurs in the steady drive of the motor itself, and at the time of driving, the driving force may be reduced by resistance such as friction, and it may cause a time lag in driving.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、体内設置型ポンピングシステムを備えた補助心臓装置において、ポンピングシステムとバルーンとの間でタイムラグを生じさせることなく、ポンピングシステムの即時性をもたらし、バルーンを高レスポンス且つ確実に膨張、収縮させることにある。 The present invention has been made in view of such a point, and an object of the present invention is to provide an auxiliary heart device including an in-body pumping system without causing a time lag between the pumping system and the balloon. It is to provide immediacy and to inflate and deflate the balloon with high response and reliability.
 本発明におけるタイムラグを生じさせないポンピングシステムを達成する手段として、磁気の吸引力と反発力に着目し、一対(2つの磁石で構成される)磁石の吸引力と反発力を利用することに着目した。具体的には、基本の構成として、2つの磁石で構成される、一対の磁石において少なくとも一方の磁石は電磁コイル(電磁石)とし、電流のオン-オフまたは電流の向きの逆転等により、当該電磁石の磁極の消滅や、磁極の変化(S極からN極またはN極からS極への転換)といった磁石間の相互作用により、相対する磁石(電磁石であっても、永久磁石であっても差し支えない)との間で相互作用から生じる反発力(斥力)や吸引力(引力)を動力源としたポンピングシステムである。電磁コイル(電磁石)は、電流のON、OFFや電磁石を流れる電流方向の逆転(反転)により瞬時に、磁極の消滅や、磁極の転換が生じることから、本発明のポンピングシステムでの、瞬時に作動する力の変換を達成することが可能となる。ここにおいて、電磁コイル(電磁石)に流れる電流のON、OFFや電流の向きの逆転は心臓からの信号(心電、心拍等)をセンサにより感知し、感知された信号に基づき行われる。 As means for achieving a pumping system that does not cause a time lag in the present invention, attention is paid to magnetic attraction and repulsion, and attention is paid to using attraction and repulsion of a pair of magnets (consisting of two magnets). . Specifically, as a basic configuration, at least one of the pair of magnets is an electromagnetic coil (electromagnet), and the electromagnet is turned on or off by current reversal or the like. The opposing magnets (electromagnets or permanent magnets) may be affected by the interaction between the magnets such as the disappearance of the magnetic poles and the change of the magnetic poles (change from the S pole to the N pole or from the N pole to the S pole). This is a pumping system that uses a repulsive force (repulsive force) or a suction force (attractive force) generated from the interaction with the power source. The electromagnetic coil (electromagnet) instantaneously disappears or changes in polarity due to ON / OFF of the current or reverse (reversal) of the direction of the current flowing through the electromagnet. Therefore, the pumping system of the present invention instantaneously It is possible to achieve a conversion of the working force. Here, ON / OFF of the current flowing through the electromagnetic coil (electromagnet) and the reversal of the direction of the current are performed based on the sensed signal by sensing a signal from the heart (electrocardiogram, heartbeat, etc.).
 本発明においては、一対の磁石により生じる斥力と引力を動力源として、該力を、本発明装置に設けられる、シリンダ内に設置されるピストンに必要に応じてコイルバネ(弾性部材)(以下、単にバネとも記す。)の復元力との併用により伝達され、該ピストンにより、本発明の装置における流体のシリンダ内への吸入、排出を行う。排出された流体は心臓の外壁を覆い、接するように設置されたバルーン(心臓用容器)内のバルーン室に導入される。また、逆にピストンの運動によりシリンダ内への流体の吸入を行うことによって、バルーン室の流体が排出される。 In the present invention, a repulsive force and an attractive force generated by a pair of magnets are used as a power source, and the force is applied to a piston installed in a cylinder provided in the device of the present invention as required by a coil spring (elastic member) (hereinafter simply referred to as a spring (Also referred to as a spring)) and is used together with the restoring force, and the piston sucks and discharges the fluid in the cylinder of the apparatus of the present invention. The discharged fluid covers the outer wall of the heart and is introduced into a balloon chamber in a balloon (cardiac container) installed so as to be in contact therewith. Conversely, the fluid in the balloon chamber is discharged by sucking the fluid into the cylinder by the movement of the piston.
 ここにおいて、本発明装置をより詳しく説明するために、具体的な装置を以下に例示するが、本発明はこれらの例示された装置のみに限定されるものではなく、上記したように、磁力による反発-吸引力をピストン運動に変換させて流体移動をさせ、これにより、心臓のバルーン等の流体の導入と排出により心室部周囲を中心とした、心臓外壁への圧迫・弛緩を行う装置であれば、後記するバルーンタイプの容器形状、圧迫位置や部位、シリンダやピストン形状等を含めて、いずれの装置であっても本発明の装置となり得る。 Here, in order to describe the device of the present invention in more detail, specific devices will be exemplified below. However, the present invention is not limited only to these exemplified devices, and as described above, by magnetic force. A device that compresses and relaxes the outer wall of the heart, centering around the ventricle, by introducing and discharging fluid such as the heart balloon by converting the repulsive-suction force into piston motion and moving the fluid. For example, any device can be used as the device of the present invention, including a balloon-type container shape, a compression position and part, a cylinder or a piston shape, etc., which will be described later.
 本発明の補助心臓装置の具体的例示の一つとしては、図に示すように心臓(特に心室部)の外壁に接する、総てまたは少なくとも一部が可撓性材質からなるバルーンタイプの心臓用容器(20a~20f)と、体内に配置され且つ前記心臓用容器(20a~20f)を該容器への流体の導入と排出により、膨張及び、弛緩(容器の通常の形状に戻る)させるピストンポンプ(30a~30c)とを備え、前記ピストンポンプ(30a~30f)は、前記心臓用容器(20a~20f)に接続されたシリンダ(31a~31f)と、前記シリンダ(31a~31f)に収容されたピストン(32a~32f)と、少なくとも電磁誘導コイルからなる一方に電磁石(35a~35f)を含む一対の磁石部材(33a~33f,35a~35f)とを有し、前記ピストン(32a~32f)が前記一対の磁石部材(33a~33f,35a~35f)の一方のみに固定もしくは連結されるとともに、前記電磁石(35a~35f)のコイルに流れる電流をON-OFFさせることや該電流の流れ方向を一定の間隔で逆転(反転)を繰り返す操作といった電流制御を行うことで前記一対の磁石部材(33a~33f, 35a~35f)間に生じる磁気の相互作用(磁石間の引力と斥力)を制御させて、更には必要に応じて、コイルバネ(36a~36f)の復元力を併用させて、前記ピストン(32a~32f)を前記シリンダ(31a~31f)内で往復運動させることにより、心臓用容器(20a~20f)における心臓との接触面において、心臓外壁を圧迫(押圧)及び弛緩(圧迫の開放)させる。 As a specific example of the auxiliary heart device of the present invention, as shown in the drawing, for a balloon-type heart that is in contact with the outer wall of the heart (particularly the ventricular portion) and that is entirely or at least partially made of a flexible material A container (20a to 20f) and a piston pump which is disposed in the body and expands and relaxes (returns to the normal shape of the container) by introducing and discharging fluid to and from the heart container (20a to 20f) (30a to 30c), and the piston pump (30a to 30f) is accommodated in a cylinder (31a to 31f) connected to the heart container (20a to 20f) and the cylinder (31a to 31f). And a pair of magnet members (33a to 33f, 35a to 35f) including at least one electromagnet (35a to 35f) made of an electromagnetic induction coil, and the pistons (32a to 32f) Is fixed to only one of the pair of magnet members (33a to 33f, 35a to 35f). Are connected to each other, and current control such as turning on and off the current flowing in the coils of the electromagnets (35a to 35f) and reversing (reversing) the current flow direction at regular intervals is performed. By controlling the magnetic interaction (attraction and repulsion between magnets) generated between a pair of magnet members (33a-33f, 35a-35f), and if necessary, the restoring force of the coil spring (36a-36f) In combination, by reciprocating the pistons (32a to 32f) in the cylinders (31a to 31f), the outer wall of the heart is compressed (pressed) at the contact surface with the heart in the heart container (20a to 20f). And relax (release the pressure).
 また、本発明の補助心臓装置において、心臓に隣接する大動脈(特に下行大動脈)の外周壁面に接する可撓性のバルーンタイプの大動脈用容器(25e,25f)(以下、大動脈用バルーンとも記す。)を備え、前記ピストンポンプ(30e,30f)は、前記シリンダ(31e,31f)の一端に前記心臓用容器(20e,20f)が接続され、前記シリンダ(31e,31f)の他端に前記大動脈用容器(25e,25f)が接続され、前記一対の磁石部材(33a~33f,35a~35f)間に生じる磁気の磁極状態を変更させて、前記ピストン(32e,32f)を前記シリンダ(31e,31f)内で往復運動させることにより、心臓用容器(20e,20f)における心臓との接触面を拡縮させるとともに大動脈用容器(25e,25f)における大動脈との接触面を拡縮させるのが好ましい。 In the auxiliary heart device of the present invention, flexible balloon-type aortic containers (25e, 25f) (hereinafter also referred to as aortic balloons) in contact with the outer peripheral wall surface of the aorta adjacent to the heart (particularly the descending aorta). The piston pump (30e, 30f) is connected to the one end of the cylinder (31e, 31f) with the heart container (20e, 20f) and the other end of the cylinder (31e, 31f) with respect to the aorta A container (25e, 25f) is connected to change the magnetic pole state generated between the pair of magnet members (33a to 33f, 35a to 35f), and the piston (32e, 32f) is moved to the cylinder (31e, 31f). It is preferable that the contact surface with the heart in the heart container (20e, 20f) is expanded and contracted and the contact surface with the aorta in the aorta container (25e, 25f) is expanded and contracted by reciprocating the inner wall.
 また、本発明の補助心臓装置において、大動脈の外周壁面に接する可撓性のバルーンタイプの大動脈用容器(25e,25f)を備え、前記シリンダ(31e,31f)は、2つのシリンダ室(45e~45f,46e~46f)を有し、前記ピストン(32e,32f)は、各シリンダ室(45e~45f,46e~46f)ごとに収容され、前記ピストンポンプ(30e,30f)は、前記心臓用容器(20e,20f)(以下、心臓用バルーンとも記す。)が一方のシリンダ室(45e~45f)に接続され、前記大動脈用容器(25e,25f)が他方のシリンダ室(46e~46f)に接続され、前記一対の磁石部材(33a~33f,35a~35f)間に生じる磁気の磁極状態を上記したように制御させて、前記ピストン(32e,32f)を前記シリンダ(31e,31f)内で往復運動させることにより、心臓用容器(20e,20f)における心臓との接触面を圧迫、弛緩させるのが好ましい。この場合でも、前記装置と同様にピストンの駆動力は、磁石間の相互作用によって、または、必要により、磁石間の相互作用とコイルバネの復元力とによって得られる。このように動脈と心臓とを並行的に圧迫・弛緩させる場合には、少なくとも一つの電磁石と、各ピストンにそれぞれ固定若しくは連結された、電磁石若しくは永久磁石から、磁気による動力機構は構成される。 The auxiliary heart device according to the present invention further includes a flexible balloon-type container for aorta (25e, 25f) in contact with the outer peripheral wall surface of the aorta, and the cylinder (31e, 31f) includes two cylinder chambers (45e˜ 45f, 46e-46f), the piston (32e, 32f) is accommodated in each cylinder chamber (45e-45f, 46e-46f), and the piston pump (30e, 30f) is a container for the heart (20e, 20f) (hereinafter also referred to as a heart balloon) is connected to one cylinder chamber (45e to 45f), and the aortic vessel (25e, 25f) is connected to the other cylinder chamber (46e to 46f) The magnetic pole state generated between the pair of magnet members (33a to 33f, 35a to 35f) is controlled as described above, and the piston (32e, 32f) is reciprocated in the cylinder (31e, 31f). By exercising, it is preferable to compress and relax the contact surface of the heart container (20e, 20f) with the heart. Arbitrariness. Even in this case, the driving force of the piston is obtained by the interaction between the magnets or, if necessary, by the interaction between the magnets and the restoring force of the coil spring, as in the above-described device. When the artery and heart are compressed and relaxed in parallel as described above, a magnetic power mechanism is constituted by at least one electromagnet and an electromagnet or a permanent magnet fixed or coupled to each piston.
 また、本発明の補助心臓装置においては、上記と異なり、心臓用バルーンを備えず、大動脈用バルーンのみを備えるものも含まれる。すなわち、例えば、大動脈の外壁に接する拡縮自在の大動脈用容器(25g,25h)と、体内に配置され且つ前記大動脈用容器(25g,25h)への流体の導入と吸引により、前記大動脈用容器(25g,25h)の容積変化をもたらす、ピストンポンプ(30g,30h)とを備え、前記ピストンポンプ(30g,30h)が、前記大動脈用容器(25g,25h)に接続されたシリンダ(31g,31h)と、前記シリンダ(31g,31h)に収容されたピストン(32g,32h)と、少なくとも一方に1以上の電磁石(35g,35h)を含む一対の磁石部材(33g,33h,35g,35h)とを有し、前記ピストン(32g,32h)が前記一対の磁石部材(33g,33h,35g,35h)の一方のみに連結または固定されるとともに、前記電磁石(35g,35h)の電流制御を行うことで前記一対の磁石部材(33g,33h,35g,35h)間に生じる磁気の磁極状態を変更させて、前記一対の磁石部材(33g,33h,35g,35h)間に生じる、斥力及び/または引力を駆動源として、前記ピストン(32g,32h)を前記シリンダ(31g,31h)内で往復運動させることにより、前記大動脈用容器(25g,25h)における大動脈との接触面を拡縮させるというものである。この場合においても、前記装置と同様にピストンの駆動力は、後述するように、磁石間の相互作用によって、または、必要に応じて、かかる磁石間の相互作用に加えて、コイルバネの復元力によっても得ることができる。 Further, unlike the above, the auxiliary heart device of the present invention includes one having only the aortic balloon without the heart balloon. That is, for example, the aorta container (25g, 25h) which can be expanded and contracted in contact with the outer wall of the aorta, and the aorta container (25g, 25h) disposed in the body and introduced into and sucked into the aorta container (25g, 25h) A cylinder (31g, 31h) having a piston pump (30g, 30h) and a piston pump (30g, 30h) connected to the aortic vessel (25g, 25h) A piston (32g, 32h) housed in the cylinder (31g, 31h) and a pair of magnet members (33g, 33h, 35g, 35h) including at least one electromagnet (35g, 35h) in at least one of them The piston (32g, 32h) is connected or fixed to only one of the pair of magnet members (33g, 33h, 35g, 35h), and the current of the electromagnet (35g, 35h) is controlled. By changing the magnetic pole state generated between the pair of magnet members (33g, 33h, 35g, 35h), the pair of magnet members By reciprocating the piston (32g, 32h) in the cylinder (31g, 31h) using repulsive force and / or attractive force generated between members (33g, 33h, 35g, 35h) as a drive source, The contact surface of the container (25g, 25h) with the aorta is expanded or contracted. In this case as well, the driving force of the piston as in the case of the device described above is based on the interaction between the magnets as described later, or, if necessary, the restoring force of the coil spring in addition to the interaction between the magnets. Can also be obtained.
 本発明でいう、可撓性材質を有するバルーンタイプの容器(以下、バルーンとも記す。)とは、当該容器に液体や気体などの流体を導入(通常は圧入である。本発明ではピストンによる圧入である。)や、容器から吸引した、テンションがかかった際に、変形し、テンションから開放された際に、元の形状に戻ることが出来る材質を用いた容器である。このような容器に用いる、可撓性材質としては、シリコーンゴム、天然ゴム、スチレンーブタジエンラバー(SBR)やウレタン系エラストマーなどが例示される。また、容器の全体が総て、可撓性材質で構成される必要は無く、該材質が部分的に用いられたバルーンであっても良い。部分的に可撓性材質からなるバルーンとしては、例えば、心臓壁と接触する部分を、可撓性材質として、他の部分は硬質の非可撓性材質からなる容器や、心臓との接触面において、部分的(例えばスリット状やスポット状)に可撓性材質が配置された容器などが挙げられる。 In the present invention, a balloon-type container (hereinafter, also referred to as a balloon) having a flexible material is a fluid (such as liquid or gas) introduced into the container (usually press-fitting. In the present invention, press-fitting with a piston is used. Or a container made of a material that can be deformed when tension is applied from the container, and can return to its original shape when released from the tension. Examples of the flexible material used for such a container include silicone rubber, natural rubber, styrene-butadiene rubber (SBR), and urethane elastomer. Further, the entire container need not be made of a flexible material, and may be a balloon partially using the material. As a balloon made of a partially flexible material, for example, a portion that contacts the heart wall is made of a flexible material, and the other portion is a container made of a hard non-flexible material, or a contact surface with the heart. And a container in which a flexible material is partially (for example, slit-shaped or spot-shaped).
 また、本発明の補助心臓装置において、前記一対の磁石部材((33a,33b,33d,33e,33g),(35a,35b,35d,35e,35g))は、一方の磁石部材(35a,35b,35d,35e,35g)が前記シリンダ(31a,31b,31d,31e,31g)の端部に固定され、他方の磁石部材(33a,33b,33d,33e,33g)が前記ピストン(32a,32b,32d,32e,32g)に固定または連結された状態で前記シリンダ(31a,31b,31d,31e,31g)の内部に可動自在に収容されているのが好ましい。これにより、磁石が他方の磁石との相互作用により受ける斥力及び/又は引力を直接ピストンに伝達することが可能となる。 Further, in the auxiliary heart device of the present invention, the pair of magnet members ((33a, 33b, 33d, 33e, 33g), (35a, 35b, 35d, 35e, 35g)) is one of the magnet members (35a, 35b). 35d, 35e, 35g) is fixed to the end of the cylinder (31a, 31b, 31d, 31e, 31g), and the other magnet member (33a, 33b, 33d, 33e, 33g) is fixed to the piston (32a, 32b). , 32d, 32e, 32g) is preferably movably accommodated inside the cylinder (31a, 31b, 31d, 31e, 31g) in a state of being fixed or coupled to the cylinder. Thereby, the repulsive force and / or attractive force that the magnet receives due to the interaction with the other magnet can be directly transmitted to the piston.
 前記一対の磁石部材((33c,33f,33h),(35c,35f,35h))は、一方の磁石部材(35c,35f,35h)が前記一対の磁石部材((33c,33f,33h),(35c,35f,35h))間に生じる斥力及び引力によって回動運動を行うように構成され、前記一方の磁石部材(35c,35f,35h)と前記ピストン(32c,32f,32h)との間には、前記一方の磁石部材(35c,35f,35h)の回動運動を前記ピストン(32c,32f,32h)の往復運動に変換するリンク機構(37c,37f,37h)が設けられているのが好ましい。この時、一対の磁石部材の構成は、少なくとも一つが電磁石であることが必要である。特に、電磁石と永久磁石の組み合わせが好ましい構成となる。但し、双方とも電磁石であっても、本発明装置を駆動することが出来る。電磁石への、電流のON-OFFによる、磁性の派生と消滅または、電磁石へ流す、電流の向きを交互に反転させることによる、極性(N-S)の転換等により、磁石間の引力と斥力を制御することができる。特に、極性の変換により、瞬間的な引力または斥力を生じさせることができる。 The pair of magnet members ((33c, 33f, 33h), (35c, 35f, 35h)) is composed of one magnet member (35c, 35f, 35h) and the pair of magnet members ((33c, 33f, 33h), (35c, 35f, 35h)) is configured to perform rotational movement by repulsive force and attractive force generated between the one magnet member (35c, 35f, 35h) and the piston (32c, 32f, 32h). Is provided with a link mechanism (37c, 37f, 37h) for converting the rotational movement of the one magnet member (35c, 35f, 35h) into the reciprocating movement of the piston (32c, 32f, 32h). Is preferred. At this time, it is necessary that at least one of the pair of magnet members is an electromagnet. In particular, a combination of an electromagnet and a permanent magnet is a preferred configuration. However, even if both are electromagnets, the device of the present invention can be driven. Attraction and repulsion between magnets by derivation and disappearance of magnetism due to current ON-OFF to electromagnet, or polarity (NS) change by alternately reversing the direction of current flowing to electromagnet Can be controlled. In particular, instantaneous attractive or repulsive forces can be generated by polarity conversion.
 また、本発明の補助心臓装置において、前記一対の磁石部材(33a~33h,35a~35h)の間には弾性部材(36a~36h)が設けられているのが好ましい。該弾性部材が外力により変形し、且つ外力を取り除いた際には元の形状に戻る、復元力を有することが更に好ましい。このような弾性部材を介在させることで、一対の磁石部材により生じる斥力または引力のいずれか、若しくは双方に関してバネの復元力をピストンの駆動力として併用したり、または、補助することも推奨される。これにより、一対の磁石部材の間に生じる、急激に大きな斥力及び/または引力の強さを緩和等によりコントロールすることも可能であり、この場合、心臓に極端に大きな刺激力を与えず、マイルドな力を加えることができる。 In the auxiliary heart device of the present invention, it is preferable that an elastic member (36a to 36h) is provided between the pair of magnet members (33a to 33h, 35a to 35h). More preferably, the elastic member has a restoring force that is deformed by an external force and returns to its original shape when the external force is removed. By interposing such an elastic member, it is also recommended to use or assist the restoring force of the spring as the driving force of the piston with respect to either the repulsive force or the attractive force generated by the pair of magnet members, or both. . As a result, it is possible to control suddenly large repulsive force and / or attractive force generated between a pair of magnet members by relaxation or the like. Can be applied.
 また、バネ部材の復元力をピストンの駆動力として、磁石間の相互作用と共に併用する場合には、その復元力は、磁石間の相互作用から得られる力(エネルギー)とほぼ拮抗することが好ましい。 Further, when the restoring force of the spring member is used together with the interaction between the magnets as the driving force of the piston, it is preferable that the restoring force substantially antagonizes the force (energy) obtained from the interaction between the magnets. .
 本発明によれば、一方の磁石部材をピストンに固定または連結させて、磁石間の相互作用(斥力及び/または引力)をピストンに伝達させることにより、必要に応じて弾性部材の復元力との併用により、ピストンを往復運動させるという簡便な構成を採用したので、従来の小型電気モータに比べて、ピストンポンプとバルーンとの間でタイムラグを生じさせることなく、バルーンを高レスポンス且つ確実に膨張、収縮させることができる。また、上記したように、一対の磁石部材の磁気の磁極状態の変更を利用した簡便な機構であるため、従来の小型電気モータに比べてコンパクトであり、ピストンポンプを体内に設置するのに最適である。 According to the present invention, one of the magnet members is fixed or connected to the piston, and the interaction (repulsive force and / or attractive force) between the magnets is transmitted to the piston, so that the restoring force of the elastic member can be reduced as necessary. By adopting a simple configuration of reciprocating the piston, the balloon can be inflated with high response and reliability without causing a time lag between the piston pump and the balloon, compared to a conventional small electric motor. Can be shrunk. In addition, as described above, since it is a simple mechanism that utilizes the change of the magnetic pole state of a pair of magnet members, it is more compact than conventional small electric motors and is ideal for installing a piston pump in the body. It is.
図1は、本発明の一実施形態に係る補助心臓装置が心臓の収縮を補助したときの概略図である。FIG. 1 is a schematic view when an auxiliary heart device according to an embodiment of the present invention assists in contracting the heart. 図2は、本発明の一実施形態に係る補助心臓装置が心臓の拡張を補助したときの概略図である。FIG. 2 is a schematic view when an auxiliary heart device according to an embodiment of the present invention assists in the expansion of the heart. 図3は、心臓用バルーンの動作図であり、(a)が萎んだ状態を示し、(b)が膨らんだ状態を示す。FIG. 3 is an operation diagram of the heart balloon, where (a) shows a deflated state and (b) shows an inflated state. 図4は、心臓用バルーンの他の実施例を示す図である。FIG. 4 is a view showing another embodiment of the heart balloon. 図5は、一実施形態において電流の反転による磁石の相互作用(斥力)による補助心臓装置が心臓の収縮を補助したときの概略図である。FIG. 5 is a schematic view of an auxiliary heart device that assists in contracting the heart by an interaction (repulsive force) of a magnet due to reversal of current in one embodiment. 図6は、一実施形態において、図5の電流方向から、電流の向きを反転させ、磁石間の相互作用として引力を発生させた際の補助心臓装置が心臓の拡張を補助したときの概略図である。FIG. 6 is a schematic view of the auxiliary heart device assisting the expansion of the heart when the direction of the current is reversed from the current direction of FIG. 5 and an attractive force is generated as an interaction between magnets in one embodiment. It is. 図7は、一実施形態の変形例1に係る補助心臓装置が心臓の収縮を補助したときの概略図である。FIG. 7 is a schematic diagram when the auxiliary heart device according to the first modification of the embodiment assists in the contraction of the heart. 図8は、一実施形態の変形例1に係る補助心臓装置が心臓の拡張を補助したときの概略図である。FIG. 8 is a schematic diagram when the auxiliary heart device according to the first modification of the embodiment assists the expansion of the heart. 図9は、一実施形態の変形例2に係る補助心臓装置の概略図である。FIG. 9 is a schematic diagram of an auxiliary heart device according to Modification 2 of the embodiment. 図10は、一実施形態の変形例3に係る補助心臓装置が心臓の収縮を補助したときの概略図である。FIG. 10 is a schematic diagram when the auxiliary heart device according to the third modification of the embodiment assists the contraction of the heart. 図11は、一実施形態の変形例3に係る補助心臓装置が心臓の拡張を補助したときの概略図である。FIG. 11 is a schematic diagram when the auxiliary heart device according to the third modification of the embodiment assists the expansion of the heart. 図12は、大動脈用バルーンの動作図であり、(a)が萎んだ状態を示し、(b)が膨らんだ状態を示す。FIG. 12 is an operation diagram of the balloon for the aorta, where (a) shows a deflated state and (b) shows an inflated state. 図13は、一実施形態の変形例4に係る補助心臓装置の概略図である。FIG. 13 is a schematic diagram of an auxiliary heart device according to Modification 4 of the embodiment. 図14は、本発明の一実施形態であって、心臓用バルーンを備えず、その替わりに大動脈用バルーンのみを備えている補助心臓装置が心臓の収縮を補助したときの概略図である。FIG. 14 is an embodiment of the present invention, and is a schematic view when an auxiliary heart device that does not include a heart balloon and instead includes only an aortic balloon assists the heart contraction. 図15は、図14の実施形態に係る補助心臓装置が心臓の拡張を補助したときの概略図である。FIG. 15 is a schematic view when the auxiliary heart device according to the embodiment of FIG. 14 assists in the expansion of the heart. 図16は、心臓用バルーンを備えず、その替わりに大動脈用バルーンのみを備えている補助心臓装置の図14、15と異なる実施形態を示す概略図である。FIG. 16 is a schematic view showing an embodiment different from FIGS. 14 and 15 of an auxiliary heart device that does not include a heart balloon but instead includes only an aortic balloon. 図17は、その他の実施形態に係る補助心臓装置の制御部とセンサ付近の概略図である。FIG. 17 is a schematic view of the vicinity of a control unit and sensors of an auxiliary heart device according to another embodiment.
 以下、本発明の一実施形態に係る補助心臓装置を図面に基づいて詳細に説明する。なお、以下に説明する一実施形態は例示であり、本発明が一実施形態に限定されるものではない。 Hereinafter, an auxiliary heart device according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that one embodiment described below is an exemplification, and the present invention is not limited to one embodiment.
 一実施形態の補助心臓装置(10a)は、心臓や近傍の動脈内への挿入を必要とせず、心臓の拡張と収縮に同調させるように心臓の外壁へ応力を作用させることにより、心臓の拡張と収縮を補助するものである。この補助心臓装置(10a)は、心臓の内部又は動脈の内部に対して非侵襲であって血液と非接触であるので、心臓の動きを補助する際に血液凝固等による血栓を生成させないものである。 The auxiliary cardiac device (10a) of one embodiment does not require insertion into the heart or nearby arteries, but by applying stress to the outer wall of the heart to synchronize with the expansion and contraction of the heart, It helps to shrink. Since this auxiliary heart device (10a) is non-invasive to the inside of the heart or the inside of the artery and is not in contact with blood, it does not generate a thrombus due to blood coagulation when assisting the movement of the heart. is there.
 補助心臓装置(10a)は、図1及び図2に示すように、可撓性材質からなるバルーンタイプの心臓用容器としての心臓用バルーン(20a)とピストンポンプ(30a)と制御部(40a)とを備えている。ピストンポンプ(30a)は心臓用バルーン(20a)を拡縮させるものである。ピストンポンプ(30a)は、シリンダ(31a)とピストン(32a)と一対の磁石部材(33a,35a)とを備えている。ピストンポンプ(30a)は体内に配置されている。 As shown in FIGS. 1 and 2, the auxiliary heart device (10a) includes a balloon for heart (20a), a piston pump (30a), and a controller (40a) as a balloon-type heart container made of a flexible material. And. The piston pump (30a) expands and contracts the heart balloon (20a). The piston pump (30a) includes a cylinder (31a), a piston (32a), and a pair of magnet members (33a, 35a). The piston pump (30a) is disposed in the body.
 補助心臓装置(10a)の、一例としての心臓用バルーン(20a)は、心臓が収容される凹部(21a)を有する拡縮自在の袋状体である。ここで、凹部(21a)は、心臓の心室側の外壁を覆って心臓の心房側の外壁の一部を露出させるように構成されている。凹部(21a)の内面は可撓性膜(22a)で形成されて心臓に接し、凹部(21a)の外面は硬質膜(23a)で形成されている。可撓性膜(22a)は硬質膜(23a)よりも弾性変形しやすい。心臓用バルーン(20a)の可撓性膜(22a)は、シリコーンゴムで形成されている。ここで、可撓性膜(22a)は、シリコーンゴムに限定されず、例えば、SBR等の合成ゴムや天然ゴム等、流体を密閉でき、且つ素材が外力により変形し、かつ、外力を取り除いた際には元の形状に復帰できる素材であればいかなる素材であってもよい。 The heart balloon (20a) as an example of the auxiliary heart device (10a) is an expandable / contractable bag-like body having a recess (21a) in which the heart is accommodated. Here, the recess (21a) is configured to cover the outer wall on the ventricle side of the heart and expose a part of the outer wall on the atrial side of the heart. The inner surface of the recess (21a) is formed of a flexible film (22a) and contacts the heart, and the outer surface of the recess (21a) is formed of a hard film (23a). The flexible film (22a) is more elastically deformed than the hard film (23a). The flexible membrane (22a) of the heart balloon (20a) is formed of silicone rubber. Here, the flexible membrane (22a) is not limited to silicone rubber. For example, a fluid such as a synthetic rubber such as SBR or natural rubber can be sealed, the material is deformed by an external force, and the external force is removed. In any case, any material can be used as long as it can return to its original shape.
 心臓用バルーン(20a)の硬質膜(23a)には貫通孔が形成され、この貫通孔に補助心臓装置(10a)の筒状のシリンダ(31a)が接続されている。心臓用バルーン(20a)の内部空間とシリンダ(31a)の内部空間とは互いに連通し、これらの内部空間に流体(24a)が封入されている。 A through hole is formed in the hard membrane (23a) of the heart balloon (20a), and the cylindrical cylinder (31a) of the auxiliary heart device (10a) is connected to the through hole. The internal space of the heart balloon (20a) and the internal space of the cylinder (31a) communicate with each other, and the fluid (24a) is sealed in these internal spaces.
 シリンダ(31a)内には、補助心臓装置(10a)のピストン(32a)が収容されている。このピストン(32a)をシリンダ(31a)の軸方向に沿って直線的に往復運動させることにより、シリンダ(31a)と心臓用バルーン(20a)との間で流体(24a)を往復流動させて、心臓用バルーン(20a)を膨張と縮小とをさせる。 The piston (32a) of the auxiliary heart device (10a) is accommodated in the cylinder (31a). By reciprocating the piston (32a) linearly along the axial direction of the cylinder (31a), the fluid (24a) is reciprocated between the cylinder (31a) and the heart balloon (20a). The heart balloon (20a) is inflated and contracted.
 つまり、図1に示すように、ピストン(32a)が心臓用バルーン(20a)へ向かって前進すると、シリンダ(31a)内の流体(24a)が心臓用バルーン(20a)へ流入し、心臓用バルーン(20a)の内容積が増大し、心臓用バルーン(20a)が膨らんで上記した流体圧力から生じる力によって、バルーン内壁により心室を中心に心臓が押圧されることにより、心臓(特に心室)の収縮を補助する。 That is, as shown in FIG. 1, when the piston (32a) advances toward the heart balloon (20a), the fluid (24a) in the cylinder (31a) flows into the heart balloon (20a), and the heart balloon The inner volume of (20a) is increased, and the heart balloon (20a) is inflated and the force generated from the fluid pressure described above causes the heart to be pressed around the ventricle by the inner wall of the balloon, thereby contracting the heart (particularly the ventricle). To assist.
 一方、図2に示すように、ピストン(32a)及び磁石(33a)が相対する磁石(35a)に接近することで、心臓用バルーン(20a)内の流体(24a)がバルーンから排出され、シリンダ(31a)へ流れて、膨らんでいた心臓用バルーン(20a)の内容積が減少する。これにより、心臓用バルーン(20a)が心臓を押圧する力が減少し、心臓(心室)の拡張時の状態への移行がスムーズに行われる。 On the other hand, as shown in FIG. 2, when the piston (32a) and the magnet (33a) approach the opposing magnet (35a), the fluid (24a) in the heart balloon (20a) is discharged from the balloon, and the cylinder Flowing to (31a), the volume of the balloon for heart (20a) that has been inflated decreases. As a result, the force with which the heart balloon (20a) presses the heart is reduced, and the transition to the state when the heart (ventricle) is expanded is performed smoothly.
 心臓用バルーン(20a)の動作についてさらに詳しく説明する。図3は、心臓用バルーン(20a)の動作を示す簡略図である。図3(a)は心臓用バルーン(20a)が萎んだ状態を示し、図3(b)は心臓用バルーン(20a)が膨らんだ状態を示す。上述したように、心臓用バルーン(20a)は、ピストン(32a)の往復運動によって膨らんだり、外部からの力を受けない元の形状に戻る、若しくはバルーンからの流体の吸引排出に伴う吸引力により萎んだりする。従って、心室を中心とした心臓への力学的作用は、バルーン内への流体の導入と排出に伴う、バルーン容器の容積の変化に伴い生ずる。また、バルーンの平常時の状態(可撓性材質からなる部分に外力によるテンションのない状態)からの変化の形式については、バルーンにおける、可撓膜部分の膨張と平常時の状態の形式については、(1)バルーン容器内への液体供給時に平常時の状態とし、バルーン容器内からの液体排出時に膨張する形式(以下、形式(1)とも記す)、(2)バルーン容器内からの排出時が平常状態で、バルーン容器内への流体導入時に膨張する形式(以下、形式(2)とも記す)や、更には、(3)バルーン容器への流体の最高導入時(図1)と最高排出時(図2)の間の時点(中間点等)が、平常時の状態となる形式(以下、形式(3)とも記す)のいずれの形式であっても差し支えない。 The operation of the heart balloon (20a) will be described in more detail. FIG. 3 is a simplified diagram showing the operation of the heart balloon (20a). 3A shows a state in which the heart balloon (20a) is deflated, and FIG. 3 (b) shows a state in which the heart balloon (20a) is inflated. As described above, the heart balloon (20a) is inflated by the reciprocating motion of the piston (32a), returns to its original shape without receiving external force, or by suction force accompanying suction and discharge of fluid from the balloon. It is wilt. Therefore, the mechanical action on the heart, centered on the ventricle, occurs as the volume of the balloon container changes as fluid is introduced into and discharged from the balloon. In addition, regarding the form of change from the normal state of the balloon (the part made of the flexible material is free of tension due to external force), the form of the expansion of the flexible film part and the normal state of the balloon , (1) Form that is in a normal state when liquid is supplied into the balloon container, and expands when liquid is discharged from the balloon container (hereinafter also referred to as form (1)), (2) When discharged from the balloon container Is in a normal state and expands when fluid is introduced into the balloon container (hereinafter also referred to as "form (2)"), and (3) when fluid is maximum introduced into the balloon container (Fig. 1) and maximum discharge. The time point (intermediate point, etc.) between the times (FIG. 2) may be in any form that is in a normal state (hereinafter also referred to as form (3)).
 本例示の心臓用バルーン(20a)は、硬質膜(23a)が外面(70)側に位置し、可撓性膜(22a)が内面(71)側に位置する。心臓用バルーン(20a)の内面(71)は外科用接着テープを介して心臓(100)に固定されている。尚、外科用接着テープは例示であり、外科用接着剤や、外科用接着テープと外科用接着剤との併用であってもよい。また、心臓(100)と心臓用バルーン(20a)との間に保護膜を設け、心臓(100)を保護するようにしてもよい。更には、本発明における有効となる、公知の心臓用バルーンの固定化方法であれば、いずれの方法も採用することが出来る。 In the illustrated balloon for heart (20a), the hard membrane (23a) is located on the outer surface (70) side, and the flexible membrane (22a) is located on the inner surface (71) side. The inner surface (71) of the heart balloon (20a) is fixed to the heart (100) via a surgical adhesive tape. The surgical adhesive tape is an example, and a surgical adhesive or a combination of a surgical adhesive tape and a surgical adhesive may be used. Further, a protective film may be provided between the heart (100) and the heart balloon (20a) to protect the heart (100). Furthermore, any known method for immobilizing a heart balloon that is effective in the present invention can be employed.
 この心臓用バルーン(20a)の平常時の状態と、可撓性膜部分の流体の導入若しくは排出による形状変化(膨張、縮小)は、図3(a)に示すように、上記の形式(1)では、ピストン(32a)が引かれて心臓用バルーン(20a)が膨張からの解除等により容量が縮小する際に、心臓用バルーン(20a)の外面(70)と内面(71)との対向距離(d)が狭まって内面(71)が伸び、膜にテンションがかかった状態になる。一方、ピストン(32a)が押されて心臓用バルーン(20a)が膨らむ際には、図3(b)に示すように、上述の対向距離(d)が広がって内面(71)がその復元力で伸びた状態から元に戻った状態になる。 As shown in FIG. 3 (a), the normal state of the heart balloon (20a) and the shape change (expansion and contraction) due to the introduction or discharge of the fluid of the flexible membrane portion are the above-mentioned types (1 ), When the piston (32a) is pulled and the volume of the heart balloon (20a) is reduced due to release from expansion, etc., the outer surface (70) and the inner surface (71) of the heart balloon (20a) face each other. The distance (d) is narrowed, the inner surface (71) is extended, and the film is in tension. On the other hand, when the heart balloon (20a) is inflated by pushing the piston (32a), as shown in FIG. 3 (b), the above-mentioned facing distance (d) is increased and the inner surface (71) is restored to its restoring force. It will be in the state which returned from the state extended by.
 このように、上記の形式(1)では心臓用バルーン(20a)が膨らむ場合には、上述した内面(71)の復元力が加わるため、心臓用バルーン(20a)を素早く膨らませることができる。これにより、心臓(100)の圧迫を短時間で行うことができる。 Thus, in the above-described type (1), when the heart balloon (20a) is inflated, the restoring force of the inner surface (71) is added, so that the heart balloon (20a) can be inflated quickly. Thereby, compression of the heart (100) can be performed in a short time.
 また、上記の形式(2)のように、心臓用バルーン(20a)が膨らんだときに内面(71)にテンションがかかって内面(71)が縮むように構成されている(図3(b)を参照)。この場合には、心臓用バルーン(20a)を素早く萎ませることができ、心臓(100)の圧迫を短時間で解除させることができる。 Further, as in the above form (2), when the heart balloon (20a) is inflated, the inner surface (71) is tensioned and the inner surface (71) is contracted (see FIG. 3B). reference). In this case, the heart balloon (20a) can be quickly deflated, and the compression of the heart (100) can be released in a short time.
 尚、心臓用バルーン(20a)の内面(71)全体が可撓性膜(22a)で形成される必要はなく、例えば、図4に示すように、内面(71)の一部が硬質膜(23a)で形成され、その硬質膜(23a)に多数の孔(55)が形成され、その孔(55)を覆うように可撓性膜(22a)が配置され、その可撓性膜(22a)をピストン(32a)の往復運動によって拡縮させてもよい。 The entire inner surface (71) of the heart balloon (20a) need not be formed of a flexible membrane (22a). For example, as shown in FIG. A large number of holes (55) are formed in the hard film (23a), and a flexible film (22a) is disposed so as to cover the holes (55), and the flexible film (22a ) May be expanded or contracted by the reciprocating motion of the piston (32a).
 補助心臓装置(10a)の一対の磁石部材(33a,35a)は、電磁石(35a)及び永久磁石(33a)である。尚、一対の磁石部材(33a,35a)において、電磁石(35a)及び永久磁石(33a)の組み合わせは例示であり、電磁石(35a)を2つ用いて一対の磁石部材としてもよい。更には、シリンダ(31a)内の磁石部材(33a)を永久磁石とし、シリンダ(31a)外の磁石部材(35a)を電磁石としているが、シリンダ(31a)内の磁石部材(33a)を電磁石とし、シリンダ(31a)外の磁石部材(35a)を永久磁石としても差し支えないが、この際は、制御部(40a)に内蔵される電源回路からの配線は、シリンダ(31a)内の磁石部材(33a)に結線される。また、双方を電磁石とした場合には、何れか一方の電磁石は、常時、同一方向に電流を通電させ常時、磁石としての機能を維持させておくか、相手方の電磁石への通電をOFFとした際には、当該一方の電磁石の通電を同時に停止し、磁性を消失させても良い。 The pair of magnet members (33a, 35a) of the auxiliary heart device (10a) are an electromagnet (35a) and a permanent magnet (33a). In the pair of magnet members (33a, 35a), the combination of the electromagnet (35a) and the permanent magnet (33a) is an example, and two electromagnets (35a) may be used as a pair of magnet members. Furthermore, the magnet member (33a) in the cylinder (31a) is a permanent magnet, and the magnet member (35a) outside the cylinder (31a) is an electromagnet. The magnet member (33a) in the cylinder (31a) is an electromagnet. The magnet member (35a) outside the cylinder (31a) may be used as a permanent magnet. In this case, the wiring from the power circuit built in the control unit (40a) is connected to the magnet member ( Connected to 33a). In addition, when both are electromagnets, either one of the electromagnets is always energized in the same direction to maintain the function as a magnet at all times, or the energization of the other electromagnet is turned off. At that time, the energization of the one electromagnet may be stopped at the same time, and the magnetism may be lost.
 電磁石(35a)は、鉄芯と、鉄芯の周囲に巻かれたコイルと、鉄芯及びコイルを被覆するテフロン(登録商標)等の膜とを備えている。尚、上述の鉄芯は例示であり、芯は鉄以外の磁性材料であればよく、例えばニッケルであってもよい。また、上述のテフロン(登録商標)は例示であり、テフロン(登録商標)以外の絶縁性の高分子材料であってもよく、例えばポリエチレン系、ポリプロピレン系、アクリル系の樹脂やシリコーン樹脂であってもよい。この電磁誘導コイルからなる電磁石(35a)は、コイルを流れる電流の向きを逆転させることにより、磁極を反転させることができる。 The electromagnet (35a) includes an iron core, a coil wound around the iron core, and a film such as Teflon (registered trademark) covering the iron core and the coil. The iron core described above is an example, and the core may be any magnetic material other than iron, and may be nickel, for example. The above-mentioned Teflon (registered trademark) is merely an example, and may be an insulating polymer material other than Teflon (registered trademark), for example, a polyethylene-based, polypropylene-based, acrylic-based resin or silicone resin. Also good. The electromagnet (35a) made of this electromagnetic induction coil can reverse the magnetic poles by reversing the direction of the current flowing through the coil.
 ここにおいて、図1、図2における一対の磁石の相互作用とピストンへの力の伝達についてより詳しく述べる。 Here, the interaction between the pair of magnets in FIGS. 1 and 2 and the transmission of force to the piston will be described in more detail.
 図1及び図2では、ピストンに固定若しくは連結した磁石(33a)を永久磁石とし、シリンダ外部に設置された磁石(35a)を電磁石としている。この時、制御部内において、回路の電流をONにし、電磁石(35a)へ通電することにより、図2に示すように、一対の磁石の近接した磁極が異なり、N-Sの組み合わせ(図2の場合、通電することで電磁石(35a)はN極となり、永久磁石はS極を維持)による磁石間での引力が発生し、永久磁石(33a)が電磁石にひきつけられ、これに伴い、ピストン(32a)が電磁石方向に移動し、その結果バルーン容器内の流体がシリンダ内に移入することで、バルーン容器による心臓(特に心室)の押圧状態が解除され、心臓の心室に血液が流入することを補助する。従って、心臓(心室)の拡張期と磁石同士の相互作用である引力とを同調させることが好ましい。 1 and 2, the magnet (33a) fixed or connected to the piston is a permanent magnet, and the magnet (35a) installed outside the cylinder is an electromagnet. At this time, by turning on the circuit current and energizing the electromagnet (35a) in the control unit, the adjacent magnetic poles of the pair of magnets are different as shown in FIG. In this case, when energized, the electromagnet (35a) becomes N pole, and the permanent magnet maintains S pole), and the permanent magnet (33a) is attracted to the electromagnet. 32a) moves in the direction of the electromagnet, and as a result, the fluid in the balloon container moves into the cylinder, so that the pressed state of the heart (particularly the ventricle) by the balloon container is released, and blood flows into the ventricle of the heart. Assist. Therefore, it is preferable to synchronize the diastole of the heart (ventricle) and the attractive force that is the interaction between the magnets.
 磁石同士の力学的作用、ピストン運動及びバルーンの容量変化による心臓への作用については、図1及び図2に示したように、電磁石(35a)に通電(電源ON)することによって、電磁石(35a)が磁化し、対の磁石(33a)との間に引力が発生し、磁石(33a)はシリンダの電磁石側末端に引き寄せられる。これに付随し、磁石(33a)に連結したピストンも同様に該末端側に引き寄せられることで、バルーン容器内からシリンダ内へ流体が流入し、結果としてバルーン内の流体量及びバルーン体積は最小となる。この際、バネ(36a)は、図1に示した、通常の状態(力学的な力を加えられたいない状態)から、磁石間の引力を受けて縮む。又、電磁石(35a)への通電を停止(電源OFF)により、電磁石の磁性消失により磁石間の引力が解除される。この時、バネ(36a)は縮んだ状態から、元の状態(通常の状態であり図1の状態)に戻ろうとする復元力を有していることから、該復元力が、ピストンを押す力となる。これにより、ピストンは図2に示す位置から図1に示す位置に移行する。この結果、シリンダ内の流体がバルーン内に導入され、バルーン体積の膨張により、心臓を押圧する。この際に、バルーンの作用形式が、上記した、バルーンの可撓性膜の形状変化が形式(1)であれば、この作用を補助することとなる。 As shown in FIGS. 1 and 2, the mechanical action between the magnets, the piston movement, and the action on the heart due to the change in the volume of the balloon, the electromagnet (35a) is energized (powered on). ) Is magnetized, an attractive force is generated between the pair of magnets (33a), and the magnet (33a) is attracted to the end of the cylinder on the electromagnet side. Along with this, the piston connected to the magnet (33a) is also attracted to the end side, so that the fluid flows from the balloon container into the cylinder, and as a result, the amount of fluid in the balloon and the balloon volume are minimized. Become. At this time, the spring (36a) contracts in response to the attractive force between the magnets from the normal state (the state where no mechanical force is applied) shown in FIG. Further, by stopping energization of the electromagnet (35a) (power OFF), the attractive force between the magnets is released due to the disappearance of the magnetism. At this time, the spring (36a) has a restoring force to return from the contracted state to the original state (the normal state and the state shown in FIG. 1). It becomes. As a result, the piston moves from the position shown in FIG. 2 to the position shown in FIG. As a result, the fluid in the cylinder is introduced into the balloon, and the heart is pressed by the expansion of the balloon volume. At this time, if the action mode of the balloon is the above-described change in shape of the flexible film of the balloon (1), this action is assisted.
 また、電磁石(35a)の作用が、このような電流のON-OFF操作によるものではなく、電磁石への電流通電の向きの制御(電流方向の逆転)により、一連の作用を行うことも出来る。このような電流の向きの制御における装置について、図5及び図6に例示する。この場合、先ず図6における、電流の向きが、一対の磁石において相対する磁極を異なる磁極(NとS)にすることで磁石間に引力が生じるように、電磁石(35b)を設置する。その後、制御器(42b)において、電流の方向を逆転させる。この結果、電磁石(35b)の磁極は逆転し、磁石(33b)と電磁石(35b)との間に電流の制御により相対する磁極が同一となり、斥力が生じ、図5の状態へ移行する。従って、このように磁石間の相互作用として、引力及び斥力を併用する方法による、補助心臓装置とすることも推奨される。磁石間の引力及び斥力双方の相互作用を利用する場合、図中に示されたバネ(36b)については、前記のように、図5の状態がバネの通常状態である又は、図6の状態が通常状態であるバネのいずれのバネを用いても差し支えない。図5におけるバネの状態を通常状態として、電磁石の電流を反転させ生じる、磁石間の引力により、バネが圧縮状態となる(図6)、又は図6におけるバネの状態が通常状態であり、磁石間の斥力によりバネが進展状態(図5)となる、いずれの方式のバネを用いることも可能である。また、バネを使用しない装置であっても本発明の補助心臓装置となり得る。 Also, the action of the electromagnet (35a) is not due to such an ON / OFF operation of current, but a series of actions can be performed by controlling the direction of current flow to the electromagnet (reversing the current direction). An apparatus for controlling the direction of such current is illustrated in FIGS. 5 and 6. FIG. In this case, first, the electromagnet (35b) is installed so that an attractive force is generated between the magnets by changing the opposing magnetic poles in the pair of magnets to different magnetic poles (N and S) in FIG. Thereafter, the direction of the current is reversed in the controller (42b). As a result, the magnetic poles of the electromagnet (35b) reverse, the opposing magnetic poles become the same by controlling the current between the magnet (33b) and the electromagnet (35b), and repulsive force is generated, and the state shifts to the state of FIG. Therefore, it is also recommended to use an auxiliary heart device based on a method in which attractive force and repulsive force are used together as an interaction between magnets. When using the interaction of both the attractive force and the repulsive force between the magnets, the state of FIG. 5 is the normal state of the spring or the state of FIG. Any of the springs in the normal state can be used. The spring state in FIG. 5 is the normal state, and the spring is compressed by the attractive force between the magnets generated by reversing the current of the electromagnet (FIG. 6), or the spring state in FIG. It is possible to use any type of spring in which the spring is in a developed state (FIG. 5) due to the repulsive force. Even a device that does not use a spring can be the auxiliary heart device of the present invention.
 又、電磁石の電流のON-OFF操作による、電磁石の磁極の発生と消失による磁石間の相互作用により、本発明の装置を作動する場合に、磁石間の斥力を利用することも可能である。磁石間の斥力を利用する場合には、図1の状態を電磁石への通電状態(ON)とし、図2の状態を通電OFF状態とする。これにより、図1において、磁石間の相互作用として斥力が発生する状態となる。このように、通電することで図1及び図2とは全く逆の電磁石側の磁極となるように、電磁石及び永久磁石(常時ONの電磁石でも良い。また、磁極は図1及び図2と同一。)を配置させる。この時、磁石間の斥力がピストンに伝達され、図1の状態で流体をバルーン室に導入させる。更に、電流をOFFとした場合、磁石間の相互作用が消失することから、ピストン及び、バネを図2の状態にし、シリンダ内への流体を吸入させるには、バネの復元力により行う。従って、電磁石への電流のON-OFF操作での磁石間の斥力とバネの復元力との併用を動力とするピストン運動のためには、使用するバネは通常のバネ状態から、磁石の斥力よって、バネが伸展し、斥力の消失によって、バネの復元力によって、バネが通常の状態に戻るバネを選択、配置する必要がある。 Also, when the apparatus of the present invention is operated by the interaction between the magnets due to the generation and disappearance of the magnetic poles of the electromagnet by the ON / OFF operation of the current of the electromagnet, the repulsive force between the magnets can be used. When using the repulsive force between the magnets, the state of FIG. 1 is the energization state (ON) to the electromagnet, and the state of FIG. 2 is the energization OFF state. Thereby, in FIG. 1, it will be in the state which a repulsive force generate | occur | produces as interaction between magnets. In this way, an electromagnet and a permanent magnet (always-on electromagnets may be used so that the magnetic poles on the electromagnet side are completely opposite to those in FIGS. 1 and 2 when energized. The magnetic poles are the same as those in FIGS. 1 and 2. .). At this time, the repulsive force between the magnets is transmitted to the piston, and the fluid is introduced into the balloon chamber in the state shown in FIG. Furthermore, since the interaction between the magnets disappears when the current is turned off, the piston and the spring are brought into the state shown in FIG. 2 and the fluid is sucked into the cylinder by the restoring force of the spring. Therefore, for a piston motion that uses both the repulsive force between magnets and the restoring force of the spring in the ON / OFF operation of the current to the electromagnet, the spring to be used is changed from the normal spring state to the repulsive force of the magnet. It is necessary to select and arrange a spring that expands and loses repulsive force, and returns to a normal state by the restoring force of the spring.
 以上、記載したように、磁石の相互作用を用いる場合、引力のみ、又は斥力のみを利用する場合には、バネの復元力等を用いる必要がある。又、バネの相互作用の利用として、引力と斥力双方を利用する場合には、必ずしも、バネ等の復元力は必要としないが、ピストン運動の滑らかさ、緩衝的な役割等が期待されることから、バネ等を利用することが推奨される。 As described above, when using the interaction of magnets, it is necessary to use the restoring force of a spring or the like when using only attractive force or only repulsive force. Also, when using both attractive force and repulsive force as a spring interaction, a restoring force such as a spring is not necessarily required, but a smooth piston motion, a buffering role, etc. are expected. Therefore, it is recommended to use a spring or the like.
 前記したように、磁石間の相互作用として、引力と斥力の双方を用いる方法としては、電磁石(35b)に流す電流方向の逆転による方法を例示したが、引力、斥力の双方を利用する他の手段としては、電磁石(35b)が、異なる電流回路を有する、2つの電磁石(35b1及び35b2)から構成される電磁石であっても本発明に用いることが出来る。 As described above, as the method of using both the attractive force and the repulsive force as the interaction between the magnets, the method by reversing the direction of the current flowing through the electromagnet (35b) is exemplified, but other methods using both the attractive force and the repulsive force are exemplified. As a means, even if the electromagnet (35b) is an electromagnet composed of two electromagnets (35b1 and 35b2) having different current circuits, it can be used in the present invention.
 この方式は、上記したように、電磁石(35b)が電磁石1及び電磁石2の2つの電磁石で構成されており、制御部において、電磁石への通電を切り替える方式による。具体的には電磁石1に通電している際には、電磁石2には通電されず、この際に、電磁石1と永久磁石(33b)との相互作用を引力となるように設置し、次に電磁石1への通電をOFFとし、電磁石2へ通電させると、電磁石2と永久磁石(33b)との相互作用が斥力となるように設定する。このように、2つの電磁石の通電を一定間隔で交互にON-OFFのスイッチングさせることで、電流方向を反転させるときと同様に、引力、斥力の双方を利用することが出来、本発明の補助心臓装置に使用することが出来る。本磁石相互作用方式では、前記の電磁石に通電する電流の一定間隔での反転による、引力と斥力によるピストン駆動と同様に、必ずしもバネを設置する必要は無いが、設置しても前記同様に何ら差し支えはない。 As described above, this method is based on a method in which the electromagnet (35b) is composed of two electromagnets, the electromagnet 1 and the electromagnet 2, and the energization of the electromagnet is switched in the control unit. Specifically, when the electromagnet 1 is energized, the electromagnet 2 is not energized. At this time, the interaction between the electromagnet 1 and the permanent magnet (33b) is set to be attractive, and then When the electromagnet 1 is turned off and the electromagnet 2 is energized, the interaction between the electromagnet 2 and the permanent magnet (33b) is set to be repulsive. In this way, by alternately switching the energization of the two electromagnets at regular intervals, both the attractive force and the repulsive force can be used as in the case of reversing the current direction. Can be used for heart devices. In this magnet interaction system, it is not always necessary to install a spring, as in the case of piston drive by attractive force and repulsive force by reversing the current flowing through the electromagnet at regular intervals. There is no problem.
 補助心臓装置(10a)の制御部(40a)は、センサ(41a)と制御器(42a)とを備えている。センサー(41a)は、一般的には心電計等のセンシングと同様に、心臓の鼓動を電気信号に変換して制御器(42a)へ伝達するものであり、心臓の心拍、鼓動等の動きを感知し、これを電気信号として制御器(42a)へ伝達する方式であれば良い。センサ(41a)の設置位置・部位に関しては、心臓の動きを感知し、該動きの状態から、補助心臓装置(10a)を効果的に駆動させうる位置・部位であればいずれの位置・部位に設置しても差し支えないが、基本的には直接心臓外壁部に接触等で設置することが、より確実なセンシングを容易とすることが期待され好ましい。例えば、心臓の左心房側等の外壁部に設置される。制御器(42a)は、体外に設置されている。センサ(41a)と制御器(42a)とは、信号線によって接続されている。尚、制御器(42a)の設置位置は、体内、体外のいずれの位置にも設置することが可能であり、特に限定されるものではない。より侵襲性を低下させることや、違和感等の観点から、体内に留置させることが推奨される。 The control unit (40a) of the auxiliary heart device (10a) includes a sensor (41a) and a controller (42a). The sensor (41a) generally converts the heartbeat into an electrical signal and transmits it to the controller (42a), similar to sensing by an electrocardiograph or the like, and moves the heartbeat, heartbeat, etc. Any method may be used as long as it senses and transmits this as an electrical signal to the controller (42a). As for the installation position / part of the sensor (41a), any position / part can be used as long as it senses the movement of the heart and can effectively drive the auxiliary heart device (10a) from the state of the movement. Although it can be installed, it is basically preferable to install it directly on the outer wall of the heart by contact or the like because it is expected to facilitate more reliable sensing. For example, it is installed on the outer wall such as the left atrium side of the heart. The controller (42a) is installed outside the body. The sensor (41a) and the controller (42a) are connected by a signal line. The controller (42a) can be installed at any position inside or outside the body, and is not particularly limited. It is recommended to leave it in the body from the viewpoints of lowering the invasiveness and uncomfortable feeling.
 センサ(41a)は、一般的な心電計と同様のセンシングシステムを用いることが例示される。尚、一般的な心電計は例示であり、心臓の拍動等の心臓の状態を検出できるものであれば、心電計以外のものと同様のセンシングシステムを利用することも出来る。 The sensor (41a) is exemplified by using a sensing system similar to a general electrocardiograph. Note that a general electrocardiograph is an example, and a sensing system similar to that other than the electrocardiograph can be used as long as it can detect the state of the heart such as the heartbeat.
 制御器(42a)は、本補助心臓装置を作動させるための電源とセンサからの信号を基に、電磁石の相互作用を制御する機能を有している。電源は、電磁コイルから形成される電磁石を作動させることから、直流の電源であり、一般的には電池で構成される。 The controller (42a) has a function of controlling the interaction of the electromagnets based on the signal from the power source and sensor for operating the auxiliary heart device. Since the power source operates an electromagnet formed of an electromagnetic coil, it is a direct current power source and is generally constituted by a battery.
 また、電磁石を制御する機能としては、前記したように、以下の機能のいずれかの機能が採用される。
 (1)電磁石への通電のON-OFFによる制御により、一対の磁石の相互作用として引力と斥力の双方を用いる場合。
 (2)電磁石への通電の電流方向の制御(電流方向の反転)により、一対の磁石の相互作用として引力と斥力の双方を用いる場合。
 (3)2個の電磁石を用いて、通電する磁石を状況に応じて、いずれかの電磁石とすることで、電磁石と相対する磁石との相互作用として、引力と斥力の双方を用いる場合。
In addition, as described above, one of the following functions is employed as the function of controlling the electromagnet.
(1) The case where both attractive force and repulsive force are used as the interaction between a pair of magnets by ON / OFF control of energization to the electromagnet.
(2) A case where both attractive force and repulsive force are used as an interaction between a pair of magnets by controlling the current direction of energization to the electromagnet (reversing the current direction).
(3) The case where both attractive force and repulsive force are used as the interaction between the electromagnet and the opposing magnet by using two electromagnets as the electromagnet to be energized according to the situation.
 (1)のON-OFF操作は、センサからの信号を受けて、ONの操作により、電磁石を作動させて、相対する磁石との相互作用を生じ、OFF操作により相対する磁石との相互作用を消失させる。このような制御には、具体的には例えば、センサからの信号に基づき作動する、マグネットスイッチ等を使用することで制御されることが出来る。しかしながら、本発明装置においてはこのような例示に限定されることは無く、信号に追随して、電磁石への通電のON-OFFが達成される方法であればいずれの方法も採用される。 The ON-OFF operation of (1) receives a signal from the sensor, activates the electromagnet by the ON operation, generates an interaction with the opposing magnet, and interacts with the opposing magnet by the OFF operation. Disappear. Specifically, such control can be performed by using, for example, a magnet switch that operates based on a signal from a sensor. However, the apparatus of the present invention is not limited to such an example, and any method can be adopted as long as it can achieve ON / OFF of energization to the electromagnet following the signal.
 (2)の電流の向きの制御(反転・逆転)の方法も同様に、2つの電流回路が形成されるシステムにより、例えば、マグネットスイッチ等を用いて、回路選択(回路端子との接合選択)を行うことで可能であるが、電磁石へ導入される電流の向きを交互に反転させることが出来る制御方法であればいずれの方法も採用することが出来る。 Similarly, the current direction control (reversal / reversal) method (2) is performed by a system in which two current circuits are formed, for example, using a magnet switch or the like (selecting a junction with a circuit terminal). However, any method can be adopted as long as it is a control method capable of alternately reversing the direction of the current introduced to the electromagnet.
 (3)の2つの電磁石への通電を選択制御する方法としては、前記の回路選択方法と同様の手法により達成することが出来る。また、2つの電源を用いて、相互にON-OFF操作を行うことでも可能であるが、回路選択を行う方法であればいずれの方法を採用して差し支えない。 (3) The method of selectively controlling the energization of the two electromagnets can be achieved by the same method as the circuit selection method described above. In addition, although it is possible to perform two ON / OFF operations using two power sources, any method may be adopted as long as it is a method for selecting a circuit.
 これらの例示した制御器に関しては、前記及び以降に記載する何れの例示装置、変形例にも用いることが出来る。 These controller examples can be used in any of the example devices and modifications described above and below.
 このように、補助心臓装置(10a,10b)の磁気の相互作用をピストン運動に転換させることから、ピストンポンプ(30a,30b)は、流体(24a,24b)の流出入を直接100%ロス無く且つタイムラグ無しに同時的に実施することができる。 In this way, since the magnetic interaction of the auxiliary heart device (10a, 10b) is converted into piston motion, the piston pump (30a, 30b) does not directly lose or flow 100% of the fluid (24a, 24b). And it can implement simultaneously without a time lag.
(一実施形態の変形例1)
 変形例1の補助心臓装置(10c)は、図7及び図8に示すように、ピストン(32c)を駆動させる構成が上述の一実施形態とは異なる。以下、この異なる点について主に説明する。
(Modification 1 of one embodiment)
As shown in FIGS. 7 and 8, the auxiliary heart device (10c) of Modification 1 is different from the above-described embodiment in that the piston (32c) is driven. Hereinafter, this difference will be mainly described.
 変形例1では、シリンダ(31c)の外側に永久磁石(33c)とコイルバネ(36c)とが配置されている。電磁石(35c)は棒状に形成されている。棒状の電磁石(35c)は、長さ方向中間部分に回転軸(38c)が取り付けられている。棒状の電磁石(35c)は、回転軸(38c)を中心として回動自在に回転軸(38c)に支持されている。 In the first modification, a permanent magnet (33c) and a coil spring (36c) are arranged outside the cylinder (31c). The electromagnet (35c) is formed in a rod shape. The rod-shaped electromagnet (35c) has a rotating shaft (38c) attached to an intermediate portion in the length direction. The rod-shaped electromagnet (35c) is supported by the rotating shaft (38c) so as to be rotatable about the rotating shaft (38c).
 棒状の電磁石(35c)の一端は、リンク機構(37c)を介してピストン(32c)に接続されている。このリンク機構(37c)は、棒状の電磁石(35c)の回動運動をピストン(32c)の往復運動へ変換させるものである。一方、棒状の電磁石(35c)の他端は、コイルバネ(36c)を介して永久磁石(33c)に接続されている。この場合も同様にコイルバネとの間でのリンク機構による接続が好ましい。尚、永久磁石(33c)は、心臓用バルーン(20c)の硬質膜(23c)に接合・固定されている。電磁石(35c)と永久磁石(33c)とは、これらの磁石の磁極同士が互いに対向するように配置されている。 One end of the rod-shaped electromagnet (35c) is connected to the piston (32c) via the link mechanism (37c). This link mechanism (37c) converts the rotational motion of the rod-shaped electromagnet (35c) into the reciprocating motion of the piston (32c). On the other hand, the other end of the rod-shaped electromagnet (35c) is connected to the permanent magnet (33c) via a coil spring (36c). In this case as well, the connection with the coil spring by the link mechanism is preferable. The permanent magnet (33c) is bonded and fixed to the hard film (23c) of the heart balloon (20c). The electromagnet (35c) and the permanent magnet (33c) are arranged so that the magnetic poles of these magnets face each other.
 この変形例1では、図7からわかるように、心臓が収縮するタイミングで電磁石(35c)の通電がOFFとなり、電磁石の磁気が消滅し、電磁石(35c)と永久磁石(33c)との間の磁気的相互作用が消失する。すると、コイルバネ(36c)が復元力で通常の形状に伸びて電磁石(35c)が回転軸(38c)を中心に右回りの回転が生じ、この結果、この回転力によって電磁石のピストン(32c)は電磁石の他端により押され、クランク機構を介して前進して心臓用バルーン(20c)へシリンダ内の流体を押し込まれ、膨らみ、心臓の収縮を補助するように心臓用バルーン(20c)が心臓を押圧する。従って、図7のコイルバネが、通常の外力が加わっていない形状とほぼ同一の形状である。 In the first modification, as can be seen from FIG. 7, when the heart contracts, the electromagnet (35c) is turned off, the magnetism of the electromagnet disappears, and the electromagnet (35c) and the permanent magnet (33c) are not connected. Magnetic interaction disappears. Then, the coil spring (36c) is stretched to a normal shape by a restoring force, and the electromagnet (35c) rotates clockwise around the rotation axis (38c). As a result, the piston (32c) of the electromagnet is rotated by this rotational force. Pushed by the other end of the electromagnet and advanced through the crank mechanism, the fluid in the cylinder is pushed into the heart balloon (20c), swells, and the heart balloon (20c) pushes the heart to assist the heart contraction. Press. Therefore, the coil spring of FIG. 7 has substantially the same shape as a shape to which a normal external force is not applied.
 心臓用バルーン(20c)が心臓を押圧した後、図8からわかるように、心臓が拡張するタイミングで電磁石(35c)の通電がONとなり、電磁石(35c)と永久磁石(33c)との間に引力が生じると、コイルバネ(36c)が縮んでコイルバネ(36c)に弾性エネルギが蓄えられるとともに電磁石(35c)が逆回転することにより、ピストン(32c)が後退して心臓用バルーン(20c)が萎み、心臓の拡張を補助するように心臓用バルーン(20c)の心臓に対する押圧力が減少する。 After the heart balloon (20c) presses the heart, as can be seen from FIG. 8, the energization of the electromagnet (35c) is turned ON at the timing when the heart expands, and between the electromagnet (35c) and the permanent magnet (33c). When the attractive force is generated, the coil spring (36c) is contracted and elastic energy is stored in the coil spring (36c), and the electromagnet (35c) rotates in the reverse direction, so that the piston (32c) is retracted and the heart balloon (20c) is deflated. Thus, the pressing force of the heart balloon (20c) against the heart is reduced so as to assist in the expansion of the heart.
 尚、変形例1では、電磁石(35c)の通電がONのときに電磁石(35c)と永久磁石(33c)との間に引力が生じ、コイルバネ(36c)が縮むことでコイルバネ(36c)に弾性エネルギが蓄えられていたが、これに限定されず、電磁石(35c)の通電がONのときに斥力が生じ、コイルバネ(36c)が伸びることでコイルバネ(36c)に弾性エネルギが蓄えられるように構成されてもよい。また、上述の一実施形態と同様に、電磁石(35c)の磁極を交互に反転させることにより、ピストン(32c)を往復運動させるようにしてもよい。この場合は、図8に示したコイルバネの形状が、通常の外力を加えられていない形状であり、図7の形状が、斥力に基づいて伸張した状態であり、バネの弾性エネルギを蓄えた状態となる。 In Modification 1, when the electromagnet (35c) is energized, an attractive force is generated between the electromagnet (35c) and the permanent magnet (33c), and the coil spring (36c) is contracted, so that the coil spring (36c) is elastic. Energy was stored, but not limited to this, repulsive force is generated when energization of the electromagnet (35c) is ON, and elastic energy is stored in the coil spring (36c) by extending the coil spring (36c) May be. Further, as in the above-described embodiment, the piston (32c) may be reciprocated by alternately reversing the magnetic poles of the electromagnet (35c). In this case, the shape of the coil spring shown in FIG. 8 is a shape in which a normal external force is not applied, and the shape of FIG. 7 is a state in which the shape is expanded based on the repulsive force and the elastic energy of the spring is stored. It becomes.
 また、図7及び図8における、硬質膜(23c)に接合・固定された磁石部材(33c)を電磁石とし、棒状の磁石部材(35c)を永久磁石としても、本発明装置となる。この場合、制御器からの電流は電磁石(33c)へ流れる。作用機構については前記の一実施形態で示した変形例と同様である。寧ろ、硬質膜(23c)に接合・固定された磁石部材(33c)を電磁石とし、棒状の磁石部材(35c)を棒状の永久磁石とした方が、形態を好ましい形状に変形、成型しやすく、その結果、ピストンやバネとの間の力の伝達がスムーズとなる場合も有る。 7 and 8, the magnet member (33c) bonded and fixed to the hard film (23c) is an electromagnet, and the rod-shaped magnet member (35c) is a permanent magnet. In this case, the current from the controller flows to the electromagnet (33c). About an action mechanism, it is the same as that of the modification shown in the above-mentioned one embodiment. Rather, the magnet member (33c) bonded and fixed to the hard film (23c) is an electromagnet, and the rod-shaped magnet member (35c) is a rod-shaped permanent magnet, and the shape is easier to deform and mold. As a result, the transmission of force between the piston and the spring may be smooth.
 更には、電磁石(35c)と永久磁石の相互作用として、当然、斥力と引力の双方の相互作用を用いる装置であっても差し支えない。このような装置としては、前記したように、電磁石に通電する電流の方向を正逆、反転することや電磁石を2つ用いて、交互に通電する方法等により達成される。さらに、このような装置でも、上記のように図7及び図8における永久磁石と電磁石を変換し、硬質膜(23c)に接合・固定された磁石部材(33c)を電磁石とし、棒状の磁石部材(35c)を永久磁石とすることも当然可能であり、本発明の装置に適用される。 Furthermore, as an interaction between the electromagnet (35c) and the permanent magnet, it is a matter of course that the apparatus uses both repulsive and attractive interactions. As described above, such an apparatus can be achieved by, for example, reversing or reversing the direction of the current to be applied to the electromagnet, or by alternately energizing using two electromagnets. Further, even in such an apparatus, the permanent magnet and the electromagnet shown in FIGS. 7 and 8 are converted as described above, and the magnet member (33c) bonded and fixed to the hard film (23c) is used as an electromagnet, and a rod-like magnet member. Naturally, (35c) may be a permanent magnet, which is applied to the apparatus of the present invention.
 また、棒状の磁石部材(35c)を電磁石に代えて、双方とも電磁石としても差し支えない。この場合、電流のON、OFF機構による磁石間の相互作用として斥力又は引力のいずれか一方を用いる場合には、同時に2つの電磁石のON、OFF操作を行っても差し支えないし、何れか一方の電磁石のみON、OFF操作を行い、他方の電磁石は常時通電状態としても差し支えない。 Also, the rod-shaped magnet member (35c) may be replaced with an electromagnet, and both may be electromagnets. In this case, when either repulsive force or attractive force is used as the interaction between the magnets by the current ON / OFF mechanism, the two electromagnets can be turned ON / OFF at the same time. Only the ON / OFF operation is performed, and the other electromagnet may be always energized.
(一実施形態の変形例2)
 変形例2の補助心臓装置(10d)は、図9に示すように、心臓用バルーン(20d)とシリンダ(31d)との間がチューブ(39d)を通じて接続されている点が、一実施形態、変形例1とは異なる。尚、変形例2では、最初に例示した、一実施形態と同様に、電磁石(35d)の通電のON/OFFでピストン(32d)を往復運動させているが、これに限定されず、変形例1と同様に、電磁石(35d)の磁極の反転によって、ピストン(32d)を往復運動させてもよい。
(Modification 2 of one embodiment)
As shown in FIG. 9, the auxiliary heart device (10d) according to the second modified example is configured such that the heart balloon (20d) and the cylinder (31d) are connected through a tube (39d). This is different from the first modification. In the second modification, the piston (32d) is reciprocated by turning on and off the electromagnet (35d) as in the first embodiment illustrated at the beginning. However, the present invention is not limited to this. Similarly to 1, the piston (32d) may be reciprocated by reversing the magnetic poles of the electromagnet (35d).
 また、変形例2では、電磁石(35d)がONのときに一対の磁石(33d,35d)間に引力が生じコイルバネ(36d)が縮むことで弾性エネルギを蓄えるように構成されているが、これに限定されず、電磁石(35d)がONのときに一対の磁石(33d,35d)間に斥力が生じコイルバネ(36d)が伸びることで弾性エネルギを蓄えるように構成されてもよい。 Further, in the second modification, when the electromagnet (35d) is ON, an attractive force is generated between the pair of magnets (33d, 35d), and the coil spring (36d) is contracted to store elastic energy. The elastic energy may be stored by repulsive force generated between the pair of magnets (33d, 35d) when the electromagnet (35d) is ON and the coil spring (36d) is extended.
 更には、電磁石と永久磁石の相互作用として、当然、斥力と引力の双方の相互作用を用いる装置であっても差し支えない。このような装置としては、前記したように、電磁石に通電する電流の方向を正逆、反転することや電磁石を2つ用いて、交互に通電する方法等により達成される。さらに、このような装置でも、上記のように図7及び図8における永久磁石と電磁石を変換し、シリンダ(31d)内の磁石部材(33d)を電磁石とし、シリンダ(31d)外の磁石部材(35d)を永久磁石とすることも当然可能であり、本発明の装置に適用される。 Furthermore, as an interaction between the electromagnet and the permanent magnet, it is a matter of course that the apparatus uses both repulsive and attractive interactions. As described above, such an apparatus can be achieved by, for example, reversing or reversing the direction of the current to be applied to the electromagnet, or by alternately energizing using two electromagnets. Further, even in such an apparatus, as described above, the permanent magnet and the electromagnet in FIGS. 7 and 8 are converted, the magnet member (33d) in the cylinder (31d) is used as an electromagnet, and the magnet member outside the cylinder (31d) ( Of course, it is possible to use 35d) as a permanent magnet, which is applied to the apparatus of the present invention.
 また、シリンダ(31d)外の磁石部材(35d)を電磁石に代えて、双方とも電磁石としても差し支えない。この場合、電流のON、OFF機構による磁石間の相互作用として斥力又は引力のいずれか一方を用いる場合には、同時に2つの電磁石のON、OFF操作を行っても差し支えないし、何れか一方の電磁石のみON、OFF操作を行い、他方の電磁石は常時通電状態としても差し支えない。 Also, the magnet member (35d) outside the cylinder (31d) may be replaced with an electromagnet, and both may be electromagnets. In this case, when either repulsive force or attractive force is used as the interaction between the magnets by the current ON / OFF mechanism, the two electromagnets can be turned ON / OFF at the same time. Only the ON / OFF operation is performed, and the other electromagnet may be always energized.
(一実施形態の変形例3)
 変形例3の補助心臓装置(10e)は、図10及び図11に示すように、心臓だけでなく下行大動脈(50)も拡縮させる点において一実施形態及び変形例1~2とは異なる。以下、この異なる点を主に説明する。
(Modification 3 of one embodiment)
As shown in FIGS. 10 and 11, the auxiliary heart device (10e) of Modification 3 is different from the embodiment and Modifications 1 and 2 in that not only the heart but also the descending aorta (50) is expanded and contracted. Hereinafter, this difference will be mainly described.
 変形例3では、シリンダ(31e)が2つのシリンダ室(45e,46e)を有している。シリンダ(31e)の一方のシリンダ室(45e)にはチューブ(39e1)を通じて心臓用バルーン(20e)が接続され、他方のシリンダ室(46e)にはチューブ(39e2)を通じて大動脈用バルーン(25e)が接続されている。 In modification 3, the cylinder (31e) has two cylinder chambers (45e, 46e). One cylinder chamber (45e) of the cylinder (31e) is connected to the heart balloon (20e) through the tube (39e1), and the other cylinder chamber (46e) is connected to the aortic balloon (25e) through the tube (39e2). It is connected.
 大動脈用バルーン(25e)は、図12からわかるように、1枚の中空シート(18)を巻いて継ぎ目(19)で合わせることにより筒状となるように構成されている。中空シート(18)には、上述したチューブ(39e2)が接続されている。この大動脈用バルーン(25e)は、下行大動脈(50)の外周方向全体に亘って一定の幅で覆う。大動脈用バルーン(25e)内の流体が排出されると、大動脈用バルーン(25e)が萎んで(図12(a)を参照)、下行大動脈(50)への押圧力が減少し、下行大動脈(50)の拡張を補助する。一方、大動脈用バルーン(25e)内へ流体が流入されると、大動脈用バルーン(25e)が膨らんで(図12(b)を参照)、下行大動脈(50)への押圧力が増加し、下行大動脈(50)の収縮を補助する。 As can be seen from FIG. 12, the aortic balloon (25e) is formed into a tubular shape by winding a single hollow sheet (18) and joining them at the seam (19). The tube (39e2) described above is connected to the hollow sheet (18). The aortic balloon (25e) covers the entire outer peripheral direction of the descending aorta (50) with a certain width. When the fluid in the aortic balloon (25e) is discharged, the aortic balloon (25e) is deflated (see FIG. 12 (a)), the pressing force on the descending aorta (50) is reduced, and the descending aorta ( 50) assist with expansion. On the other hand, when the fluid flows into the aortic balloon (25e), the aortic balloon (25e) is inflated (see FIG. 12 (b)), and the pressing force to the descending aorta (50) increases, and the descending Assists the contraction of the aorta (50).
 ここで、変形例3の大動脈用バルーン(25e)の大動脈と接する内面の素材は可撓性材料で構成され、且つ形状は平坦であるが、形状については、特にこれに限定されず、例えば、大動脈用バルーン(25e)が膨らんだときに、その内面が部分的に隆起するものであってもよい。こうすることで、下行大動脈(50)への押圧力を増加させることができる。又、大動脈用バルーン(25e)の外面に関しては、内面同様に可撓性材料で構成されていても良く、また、前記の例示のごとく、硬質素材であっても差支えない。 Here, the material of the inner surface in contact with the aorta of the aortic balloon (25e) of Modification 3 is made of a flexible material and the shape is flat, but the shape is not particularly limited to this, for example, When the aortic balloon (25e) is inflated, the inner surface may be partially raised. By doing so, the pressing force to the descending aorta (50) can be increased. Further, the outer surface of the balloon for aorta (25e) may be made of a flexible material like the inner surface, and may be a hard material, as illustrated above.
 シリンダ(31e)の内部には、前記されている、いくつかの例示と同様のシリンダ室(45e,46e)が2つ設けられており、それぞれのシリンダ室毎に、ピストン(32e1,32e2)と永久磁石(33e1,33e2)とコイルバネ(36e1,36e2)とが収容されている。下行大動脈側のコイルバネ(36e2)は、伸びたときに弾性エネルギを蓄えるように構成され、心臓側のコイルバネ(36e1)は、縮んだときに弾性エネルギを蓄えるように構成されている。 Two cylinder chambers (45e, 46e) similar to some examples described above are provided inside the cylinder (31e), and for each cylinder chamber, a piston (32e1, 32e2) and Permanent magnets (33e1, 33e2) and coil springs (36e1, 36e2) are accommodated. The coil spring (36e2) on the descending aorta side is configured to store elastic energy when extended, and the coil spring (36e1) on the heart side is configured to store elastic energy when contracted.
 また、2つの永久磁石(33e1,33e2)の間には、各永久磁石(33e1,33e2)に対向するように、シリンダ室(45e,46e)の外側に電磁石(35e)が配置されている。 Also, between the two permanent magnets (33e1, 33e2), an electromagnet (35e) is disposed outside the cylinder chamber (45e, 46e) so as to face each permanent magnet (33e1, 33e2).
 変形例3の装置では、心臓が収縮するタイミングで電磁石(35e)への通電がOFFされると、心臓の収縮を補助するように心臓用バルーン(20e)が膨らむと同時に大動脈用バルーン(25e)が萎むように構成されている(図10を参照)。心臓用バルーン(20e)が膨らむことで心臓の収縮を補助すると同時に、大動脈用バルーン(25e)が萎むことで、下行大動脈(50)が大動脈用バルーン(25e)の圧迫から解放され、心室からの血液の流出がサポートされる。 In the device of the modification 3, when the electromagnet (35e) is turned off at the timing when the heart contracts, the heart balloon (20e) is inflated to assist the heart contraction and at the same time the aortic balloon (25e). Is configured to wither (see FIG. 10). The inflating of the heart balloon (20e) assists in the contraction of the heart, and at the same time, the aortic balloon (25e) is deflated so that the descending aorta (50) is released from the compression of the aortic balloon (25e). Blood outflow is supported.
 具体的には、電磁石(35e)への通電がOFFされると、電磁石(35e)と心臓側の永久磁石(33e1)との引力が消失するとともに電磁石(35e)と下行大動脈側の永久磁石(33e2)との斥力が消失する。すると、心臓側のコイルバネ(36e1)が復元力で伸びる。また、下行大動脈側のコイルバネ(36e2)が復元力で縮む。心臓側のコイルバネ(36e1)が伸びると心臓側のピストン(32e1)が押され、流体(24e)が心臓用バルーン(20e)へ流入し、心臓用バルーン(20e)が膨らむ。下行大動脈側のコイルバネ(36e2)が縮むと下行大動脈側のピストン(32e2)が引かれ、流体(24e)が大動脈用バルーン(25e)から流出し、大動脈用バルーン(25e)が萎む。 Specifically, when the electromagnet (35e) is turned off, the attractive force between the electromagnet (35e) and the heart side permanent magnet (33e1) disappears and the electromagnet (35e) and the descending aorta side permanent magnet ( The repulsion with 33e2) disappears. Then, the coil spring (36e1) on the heart side is extended with restoring force. In addition, the coil spring (36e2) on the descending aorta side contracts due to the restoring force. When the coil spring (36e1) on the heart side extends, the piston (32e1) on the heart side is pushed, the fluid (24e) flows into the heart balloon (20e), and the heart balloon (20e) expands. When the coil spring (36e2) on the descending aorta side contracts, the piston (32e2) on the descending aorta side is pulled, the fluid (24e) flows out from the aortic balloon (25e), and the aortic balloon (25e) is deflated.
 一方、心臓が拡張するタイミングで電磁石(35e)への通電がONされると、心臓の拡張を補助するように心臓用バルーン(20e)が萎むと同時に大動脈用バルーン(25e)が膨らむように構成されている(図11を参照)。心臓用バルーン(20e)が萎むことで心臓の拡張を補助すると同時に、大動脈用バルーン(25e)が膨らむことで、下行大動脈(50)が大動脈用バルーン(25e)から圧迫され、下行大動脈(50)の血液の流れを抑えることで、心室への血液の流入がサポートされる。 On the other hand, when energization to the electromagnet (35e) is turned on at the timing of expansion of the heart, the aortic balloon (25e) is inflated at the same time as the heart balloon (20e) is deflated so as to assist the expansion of the heart. (See FIG. 11). The aortic balloon (25e) is inflated by the deflation of the heart balloon (20e), while the descending aorta (50e) is compressed from the aortic balloon (25e), and the descending aorta (50e) ), The blood flow into the ventricle is supported.
 尚、本変形例3において、電磁石(35e)への通電のON/OFFでピストン(32e1,32e2)の往復運動に代えて、これに限定されず、前記したように電磁石へ通電される電流の向きの反転による、電磁石(35e)の磁極の反転でピストン(32e1,32e2)を往復運動させる補助心臓装置も好ましい例として例示される。この場合、コイルバネ(36e1,36e2)を単純な緩衝用として用いてもよいし、コイルバネ(36e1,36e2)の復元力を利用してピストン(32e1,32e2)の磁気の磁極状態の変更による往復運動を補助させるようにしてもよい。 In the third modification, instead of reciprocating the pistons (32e1, 32e2) by turning on / off the energization of the electromagnet (35e), the present invention is not limited to this. An auxiliary heart device that reciprocates the pistons (32e1, 32e2) by reversing the magnetic poles of the electromagnet (35e) by reversing the direction is also exemplified as a preferred example. In this case, the coil spring (36e1, 36e2) may be used for simple buffering, or the reciprocating motion by changing the magnetic pole state of the piston (32e1, 32e2) using the restoring force of the coil spring (36e1, 36e2) May be assisted.
 また、用いる磁石総てを電磁石とすることも、本例示の装置と同様の装置となりうる。この理由は、電流をONとした状態での、磁石間の斥力、又は引力の発生は、永久磁石の極性と同様の極性をもたらすことができるため、同様のテンションをコイルバネに与えることが出来、また電流をOFFにした際は、磁力は総て消失した状態であり、磁気の相互作用は消失する。これは、一方が永久磁石であっての他方の電磁石が磁気消失した際も同様に、磁石間の相互作用は消失し、同一の状態をもたらすことができるためである。 In addition, it is possible to use an electromagnet for all of the magnets used in the same manner as the apparatus illustrated in this example. The reason for this is that the repulsive force between the magnets with the current turned on, or the generation of attractive force can bring the same polarity as the polarity of the permanent magnet, so that the same tension can be given to the coil spring, When the current is turned off, the magnetic force is completely lost, and the magnetic interaction is lost. This is because, when one of the permanent magnets and the other electromagnet disappear, the interaction between the magnets disappears and the same state can be brought about.
 また、前記のように電流の向きを反転させ、磁石間の相互作用として、斥力と引力を利用する装置の場合であっては、本例示の永久磁石を固定電磁石とし、常時通電し、永久磁石と同一の極性を示すようにすることで、永久磁石と同等の結果を得ることが出来るためである。 In the case of a device that reverses the direction of the current and uses repulsive force and attractive force as the interaction between the magnets as described above, the permanent magnet of this example is a fixed electromagnet and is always energized. This is because a result equivalent to that of a permanent magnet can be obtained by having the same polarity as that of the permanent magnet.
 本変形例3においては、心臓用バルーンの膨張収縮と大動脈用バルーンの膨張収縮は密接な相関関係を保持させることが求められ、その相関関係は、上記したように、心臓用バルーンの膨張時(心臓を押圧)は、大動脈用バルーンは収縮状態である必要があり、逆に、心臓用バルーンの収縮時(心臓を拡張)では、大動脈用バルーンは膨張状態で、大動脈を押圧することが必要となる。 In Modification 3, it is required to maintain a close correlation between the expansion and contraction of the balloon for the heart and the expansion and contraction of the balloon for the aorta. When pressing the heart), the aortic balloon needs to be in a deflated state, and conversely, when the heart balloon is deflated (the heart is expanded), the aortic balloon is in an inflated state and the aorta needs to be pressed. Become.
 また、本例示においては、心臓用及び大動脈用として、ピストン、シリンダを2基用いて、心臓用バルーン及び大動脈用バルーンへ流体を出し入れする。心臓や大動脈の構造やその大きさから、その出し入れする流体量は通常異なり、出し入れする流体量は圧倒的に心臓用バルーンへの出し入れ量が大きくなる。このような場合への対応としては、例えば、以下のように対応する。
 (1)ほぼ同等のシリンダ内径である場合には、ピストンの可動領域を変化させる。具体的には、双方のコイルバネの可動域(通常状態のコイル長さと、テンションがかかった状態での長さとの差)を調節する。
 (2)シリンダ内径の調節による。双方のピストンの可動域が同等である場合には、内径の長さに2乗で量的な差を達成できる。及び、
 (3)これらの組み合わせにより達成することが出来る。
In this example, fluid is taken in and out of the heart balloon and the aorta balloon using two pistons and cylinders for the heart and the aorta. Depending on the structure and size of the heart and aorta, the amount of fluid to be taken in and out is usually different, and the amount of fluid to be taken in and out is overwhelmingly large in and out of the heart balloon. As a response to such a case, for example, the following response is made.
(1) When the cylinder inner diameters are substantially equal, the movable region of the piston is changed. Specifically, the movable range of both the coil springs (the difference between the coil length in the normal state and the length in the tensioned state) is adjusted.
(2) By adjusting the cylinder bore. When the movable ranges of both pistons are equal, a quantitative difference can be achieved by squaring the length of the inner diameter. as well as,
(3) It can be achieved by a combination of these.
(一実施形態の変形例4)
 変形例4の補助心臓装置(10f)は、図13に示すように、心臓だけでなく下行大動脈(50)も拡縮させる点において変形例3と一致するが、ピストン(32f1,32f2)の駆動方法が異なる。変形例4では、変形例1に示したように、棒状の電磁石(35f)の回転によってピストン(32f1,32f2)が駆動される。
(Modification 4 of one embodiment)
As shown in FIG. 13, the auxiliary heart device (10f) of the modification 4 matches the modification 3 in that not only the heart but also the descending aorta (50) is expanded or contracted. However, the driving method of the pistons (32f1, 32f2) Is different. In the modified example 4, as shown in the modified example 1, the pistons (32f1, 32f2) are driven by the rotation of the rod-shaped electromagnet (35f).
 変形例4では、シリンダ(31f)が2つのシリンダ室(45f,46f)を有している。シリンダ(31f)の一方のシリンダ室(45f)に心臓用バルーン(20f)が接続され、他方のシリンダ室(46f)にはチューブ(39f)を通じて大動脈用バルーン(25f)が接続されている。大動脈用バルーン(25f)はチューブ(39f)を介してシリンダ室(46f)に接続されている。また、シリンダ(31f)の内部には、シリンダ室(45f,46f)毎にピストン(32f)が収容されている。これらのピストン(32f)は、リンク機構(37f)を介して棒状の電磁石(35f)の一端に接続されている。2つのピストン(32f)は、電磁石(35f)の一端を挟んで両側に配置されている。 In Modification 4, the cylinder (31f) has two cylinder chambers (45f, 46f). A heart balloon (20f) is connected to one cylinder chamber (45f) of the cylinder (31f), and an aortic balloon (25f) is connected to the other cylinder chamber (46f) through a tube (39f). The aortic balloon (25f) is connected to the cylinder chamber (46f) via a tube (39f). Further, a piston (32f) is accommodated in each cylinder chamber (45f, 46f) inside the cylinder (31f). These pistons (32f) are connected to one end of a rod-shaped electromagnet (35f) via a link mechanism (37f). The two pistons (32f) are disposed on both sides of one end of the electromagnet (35f).
 制御部(40f)は、棒状の電磁石(35f)の磁極を交互に反転させる整流器を備えている。永久磁石(33f)と電磁石(35f)とが同極で向き合うと、これらの磁石の間に斥力が生じ、電磁石(35f)が時計回りに回動することにより、心臓側のピストン(32f)が心臓用バルーン(20f)へ向かって前進すると同時に、下行大動脈側のピストン(32f)が大動脈用バルーン(25f)のチューブ(39f)から離れるように後退する。これにより、心臓用バルーン(20f)が拡張すると同時に大動脈用バルーン(25f)が収縮する。 The control unit (40f) includes a rectifier that alternately reverses the magnetic poles of the rod-shaped electromagnet (35f). When the permanent magnet (33f) and the electromagnet (35f) face each other with the same polarity, a repulsive force is generated between these magnets, and the electromagnet (35f) rotates clockwise, causing the heart side piston (32f) to move. The piston (32f) on the descending aorta side retracts away from the tube (39f) of the aortic balloon (25f) at the same time as it advances toward the heart balloon (20f). Accordingly, the aortic balloon (25f) is deflated at the same time as the heart balloon (20f) is expanded.
 制御部(40f)によって電磁石(35f)の磁極が入れ替わり、永久磁石(33f)と電磁石(35f)とが異極で向き合うと、これらの磁石間に引力が生じ、電磁石(35f)が反時計回りに回動することにより、心臓側のピストン(32f)が後退すると同時に、下行大動脈側のピストン(32f)が前進する。これにより、心臓用バルーン(20f)が収縮したときに大動脈用バルーン(25f)が拡張する。 When the magnetic pole of the electromagnet (35f) is switched by the control unit (40f) and the permanent magnet (33f) and the electromagnet (35f) face each other with different polarities, an attractive force is generated between these magnets, and the electromagnet (35f) rotates counterclockwise. By rotating to the heart side, the piston (32f) on the descending aorta side advances at the same time as the piston (32f) on the heart side moves backward. As a result, the aortic balloon (25f) is expanded when the heart balloon (20f) is deflated.
 従って、心臓用バルーン及び動脈用バルーンへの流体の導入に関しての相関関係は、上記した変形例3と同様の相関関係となる。 Therefore, the correlation with respect to the introduction of fluid into the heart balloon and the arterial balloon is the same as that in the third modification described above.
 また、変形例1と同様に、棒状の磁石部材(35f)を永久磁石とし、心臓用バルーン(20f)の硬質膜に接合・固定された磁石部材(33f)を電磁石とする装置であっても差し支えない。また、双方とも前記のような電流制御を行うことで、双方とも電磁石を用いることも出来る。 Similarly to the first modification, the rod-shaped magnet member (35f) may be a permanent magnet, and the magnet member (33f) bonded and fixed to the hard film of the heart balloon (20f) may be an electromagnet. There is no problem. Moreover, both can use an electromagnet by performing current control as described above.
 更には、これまでの総ての例示と同様に、磁石の相互作用として、斥力と引力の双方を使用するシステムも可能であり、前記と同様に、電流の向きを反転させることで達成される。 Furthermore, as in all the previous examples, a system that uses both repulsive force and attractive force as the magnet interaction is also possible, and is achieved by reversing the direction of the current as described above. .
 このように、変形例3、4によれば、下行大動脈と心臓の心室の拡張、収縮の補助を同時に行うことができる。ここで、同時に行うということは、心臓の心室の圧迫時に下行大動脈は拡張状態、心臓の心室の拡張時は下行大動脈を圧迫させることである。1つのピストンポンプ(30e,30f)の実施態様では、心臓(心室)と下行大動脈とに同時的に効率よく作用させることができ、有効な補助心臓となりうる。また、ピストンポンプ(30e,30f)はコンパクトに形成されることから、体内設置用として有効であり、日常の生活に支障をきたさないシステムを構築することが可能である。 As described above, according to the third and fourth modifications, the descending aorta and the ventricle of the heart can be assisted at the same time for expansion and contraction. Here, the simultaneous operation means that the descending aorta is in an expanded state when the heart ventricle is compressed, and the descending aorta is compressed when the heart ventricle is expanded. In one embodiment of the piston pump (30e, 30f), the heart (ventricle) and the descending aorta can be efficiently and simultaneously acted on, which can be an effective auxiliary heart. In addition, since the piston pumps (30e, 30f) are compact, it is effective for installation in the body, and it is possible to construct a system that does not interfere with daily life.
 尚、心臓近傍の下行大動脈周囲にバルーンを設置し、下行大動脈のみを圧迫する従来のシステムがある。このシステムは、バルーンと共に流体を貯留する貯留袋(以下、単に袋とも記す。)が設置されており、当該貯留袋の両外面に一端を回転可能とした、蝶番タイプの板状の電磁石が設置されている。バルーンに流体を挿入させ膨張する際には、電磁力により当該両板は閉じる。板が閉じることで貯留袋を押圧し、流体をバルーンに送る。これにより、バルーンが膨張し、下行大動脈を圧迫する。 There is a conventional system in which a balloon is placed around the descending aorta near the heart and only the descending aorta is compressed. This system is equipped with a storage bag that stores fluid together with the balloon (hereinafter also referred to simply as a bag), and hinge-type plate-like electromagnets with one end rotatable on both outer surfaces of the storage bag. Has been. When the fluid is inserted into the balloon and inflated, the both plates are closed by electromagnetic force. The storage bag is pressed by closing the plate, and the fluid is sent to the balloon. This inflates the balloon and compresses the descending aorta.
 しかしながら、この従来のシステムでは、下行大動脈拡張補助のために、バルーンに流入させた流体を、上記貯留袋に戻すときは、直接電磁力は作用せず、たとえば貯留袋を元の体積に戻すには、袋の自己復元力に頼らざるを得なく、現実的には非常に非効率な復元速度とならざるを得ない。つまり、袋が元に戻る時間が遅く、流体が袋へ戻る力が弱い。また、貯留袋の圧縮において、上記蝶番上板を用いることから、部分的な貯留袋への蝶番板のよる押圧力となり、力は分散され、上述のタイムラグ等が生じる恐れがある。更には、本システムにおいては、下行大動脈と心室の圧縮弛緩作用を行うことはできない。 However, in this conventional system, when the fluid that has flowed into the balloon is returned to the storage bag in order to assist the expansion of the descending aorta, direct electromagnetic force does not act, for example, to return the storage bag to its original volume. Must rely on the self-restoring power of the bag, and in reality, it must be a very inefficient restoration speed. That is, the time for the bag to return to the bag is slow, and the force for the fluid to return to the bag is weak. In addition, since the hinge upper plate is used in compression of the storage bag, there is a possibility that the force is distributed by the hinge plate to the partial storage bag, the force is dispersed, and the above-described time lag or the like occurs. Furthermore, in this system, the compression and relaxation of the descending aorta and the ventricle cannot be performed.
 変形例3、4の場合、ピストン((32e1,32e2),32f)の往復運動によって両方のバルーン((20e,25e),(20f,25f))を拡縮させるので、バルーン((20e,25e),(20f,25f))の拡縮動作を上述の従来システムよりもスムーズに行わせることができる。 In the modified examples 3 and 4, both the balloons ((20e, 25e), (20f, 25f)) are expanded and contracted by the reciprocating motion of the pistons ((32e1,32e2), 32f), so the balloons ((20e, 25e) , (20f, 25f)) can be performed more smoothly than the conventional system described above.
 一方、図14及び図15に示す上記と異なる実施形態である補助心臓装置(10g)は、心臓用バルーンを備えず、その替わりに大動脈用バルーン(25g)のみを備えている。心臓用バルーンを備えていないことを除き、その構成部材の材質や基本機能等は、上記した実施形態と同様である。すなわち、補助心臓装置(10g)では、一対の磁石部材(33g,35g)において、一方の磁石部材(35g)が前記シリンダ(31g)のピストン側端部に固定され、他方の磁石部材(33g)がピストン(32g)に固定された状態でシリンダ(31g)の内部に可動自在に収容されており、さらに、一対の磁石部材(33g,35g)の間に弾性部材(36g)であるバネを設けている。この場合、一対の磁石部材(33g,35g)間に生じる駆動力が、当該一対の磁石部材(33g,35g)間の引力または斥力と、前記弾性部材(36g)の復元力を含むこととなる。 On the other hand, the auxiliary heart device (10g) which is an embodiment different from the above shown in FIGS. 14 and 15 does not include a heart balloon, but instead includes only an aortic balloon (25g). Except for not having a heart balloon, the material, basic functions, and the like of the constituent members are the same as in the above-described embodiment. That is, in the auxiliary heart device (10g), in the pair of magnet members (33g, 35g), one magnet member (35g) is fixed to the piston side end of the cylinder (31g), and the other magnet member (33g) Is fixed to the piston (32g) and is movably accommodated inside the cylinder (31g), and a spring as an elastic member (36g) is provided between the pair of magnet members (33g, 35g). ing. In this case, the driving force generated between the pair of magnet members (33g, 35g) includes the attractive force or repulsive force between the pair of magnet members (33g, 35g) and the restoring force of the elastic member (36g). .
 また、図16に示す、さらに異なる実施形態である補助心臓装置(10h)では、心臓用バルーンを備えず、その替わりに大動脈用バルーン(25h)のみを備えている点では上記の補助心臓装置(10g)と同様であるが、上記した変形例1(図7)と同様に一対の磁石部材(33h,35h)が、一方の磁石部材(33h)と、他方の磁石部材(35h)との間に生じる引力または斥力によって回動運動を行うように形成され、一方の磁石部材(35h)の回動運動をピストン(32h)の往復運動に変換するリンク機構(37h)を備えている。
 さらに、補助心臓装置(10g)と補助心臓装置(10h)のいずれにおいても、一対の磁石部材(33g,33h,35g,35h)間に生じる駆動力が、電磁石(35g,35h)への電流の導入方向の反転により生じる引力または斥力を含むようにすることもできる。また、補助心臓装置(10g)と補助心臓装置(10h)のいずれにおいても、制御部(40g,40h)やピストンポンプ(30g,30h)及びこれに付随する、シリンダ(31g,31h)、ピストン(32g,32h)及び磁石部材(33g,33h,35g,35h)、更には、コイルバネ(弾性部材)(36g,36h)、リンク機構(37h)等は、体内のみならず、体外に設けることが可能なことはいうまでもない。
Further, in the auxiliary heart device (10h) which is a further different embodiment shown in FIG. 16, the above-mentioned auxiliary heart device (10h) is not provided with a heart balloon, but is provided with only an aortic balloon (25h) instead. 10g), but a pair of magnet members (33h, 35h) is arranged between one magnet member (33h) and the other magnet member (35h) as in the first modification (FIG. 7). And a link mechanism (37h) that is formed so as to perform a rotational motion by an attractive force or a repulsive force, and that converts the rotational motion of one magnet member (35h) into a reciprocating motion of a piston (32h).
Furthermore, in both the auxiliary heart device (10g) and the auxiliary heart device (10h), the driving force generated between the pair of magnet members (33g, 33h, 35g, 35h) is the current to the electromagnet (35g, 35h). An attractive force or a repulsive force generated by reversing the introduction direction can also be included. In both the auxiliary heart device (10g) and the auxiliary heart device (10h), the control unit (40g, 40h), the piston pump (30g, 30h), and the cylinder (31g, 31h), piston ( 32g, 32h) and magnet members (33g, 33h, 35g, 35h), and coil springs (elastic members) (36g, 36h), link mechanisms (37h), etc. can be provided not only inside the body but also outside the body. Needless to say.
(その他の実施形態)
 上記の心臓用バルーンを備えた一実施形態では、1つの心臓用バルーン(20a)が心臓を覆うように構成されていたが、これに限定されず、例えば心臓用バルーン(20a)が心臓を部分的に圧迫するものであってもよいし、1つの心臓に対してバルーンを複数設置するようにしてもよい。この場合であっても、本願発明と同様の効果を得ることができる。ここで、心臓を部分的に圧迫する場合には、心臓の左心室に対向するように配置すると、心臓内の血液を効率よく大動脈へ排出させることができる。
(Other embodiments)
In one embodiment provided with the above-mentioned heart balloon, one heart balloon (20a) is configured to cover the heart. However, the present invention is not limited to this. For example, the heart balloon (20a) partially covers the heart. It may be one that compresses the target, or a plurality of balloons may be installed for one heart. Even in this case, the same effect as the present invention can be obtained. Here, when the heart is partially compressed, the blood in the heart can be efficiently discharged to the aorta by placing the heart so as to face the left ventricle of the heart.
 一方、図14、15及び、図16に示すような、心臓用バルーンを備えず、その替わりに大動脈用バルーンのみを備えている実施形態においても、ポンピングシステムとバルーンとの間でタイムラグを生じさせることなく、バルーンを高レスポンス且つ確実に膨張、収縮させることができる。 On the other hand, a time lag is generated between the pumping system and the balloon in the embodiment having no cardiac balloon as shown in FIGS. 14, 15 and 16 and having only the aortic balloon instead. Therefore, the balloon can be inflated and deflated with high response and reliability.
 さらに、上記の一実施形態では、センサー(41a)を心臓の外壁に設置していたが、これに限定されず、図17に示すように、センサー(41a)を体表に設置するようにしてもよい。このことは、心臓用バルーンを備えず、大動脈用バルーン(25g,25h)のみを備える補助心臓装置(10g,10h)におけるセンサー(41g,41h)においても同様である。 Further, in the above-described embodiment, the sensor (41a) is installed on the outer wall of the heart. However, the present invention is not limited to this, and as shown in FIG. 17, the sensor (41a) is installed on the body surface. Also good. The same applies to the sensor (41g, 41h) in the auxiliary heart device (10g, 10h) that does not include the heart balloon but includes only the aortic balloon (25g, 25h).
 以上、説明したように、本発明は、心臓の動きを補助する補助心臓装置について有用である。 As described above, the present invention is useful for an auxiliary heart device that assists in the movement of the heart.
 尚、本発明装置はその殆ど、または、総てが人体内に留置されることになる。従って、電磁石は特に、外面をコーティング等で被覆し、電磁コイル内部に体液等の体内液が流入しない措置をとる必要がある。また、永久磁石、センサ、コード類についても、防錆の観点や、感電の防止の観点から、被覆処理等により、直接体内液等との接触を防ぐことが推奨される。 Note that most or all of the device of the present invention is indwelled in the human body. Therefore, in particular, the electromagnet needs to be covered with a coating or the like so that a body fluid such as a body fluid does not flow into the electromagnetic coil. For permanent magnets, sensors, and cords, it is recommended to prevent direct contact with bodily fluids by coating treatment from the viewpoint of rust prevention and prevention of electric shock.
 10a  補助心臓装置
 20a  心臓用バルーン
 21a  凹部
 22a  可撓性膜
 23a  硬質膜
 24a  流体
 25a  大動脈用バルーン
 30a  ピストンポンプ
 31a  シリンダ
 32a  ピストン
 33a  永久磁石
 35a  電磁石
 36a  コイルバネ(弾性部材)
 37a  リンク機構
 40a  制御部
 41a  センサ
10a Auxiliary heart device 20a Heart balloon 21a Recess 22a Flexible membrane 23a Hard membrane 24a Fluid 25a Aortic balloon 30a Piston pump 31a Cylinder 32a Piston 33a Permanent magnet 35a Electromagnet 36a Coil spring (elastic member)
37a Link mechanism 40a Control unit 41a Sensor

Claims (14)

  1.  心臓の外壁に接する、総てまたは一部が可撓性膜からなる心臓用容器(20a~20f)と、
     体内に配置され且つ前記心臓用容器(20a~20f)への流体の導入と吸引により、心臓用容器(20a~20f)の容積変化をもたらす、ピストンポンプ(30a~30f)とを備え、
     前記ピストンポンプ(30a~30f)は、前記心臓用容器(20a~20f)に接続されたシリンダ(31a~31f)と、前記シリンダ(31a~31f)に収容されたピストン(32a~32f)と、少なくとも一方に1以上の電磁石(35a~35f)を含む一対の磁石部材(33a~33f,35a~35f)とを有し、前記ピストン(32a~32f)が前記一対の磁石部材(33a~33f,35a~35f)の一方のみに連結または固定されるとともに、前記電磁石(35a~35f)の電流制御を行うことで前記一対の磁石部材(33a~33f,35a~35f)間に生じる磁気の磁極状態を変更させて、前記一対の磁石部材(33a~33f,35a~35f)間に生じる、斥力及び/または引力を駆動源として、前記ピストン(32a~32f)を前記シリンダ(31a~31f)内で往復運動させることにより、心臓用容器(20a~20f)における心臓との接触面を拡縮させることを特徴とする補助心臓装置。
    A cardiac container (20a-20f) consisting of a flexible membrane, in whole or in part, in contact with the outer wall of the heart;
    A piston pump (30a-30f) disposed in the body and causing volume change of the heart container (20a-20f) by introduction and suction of fluid into the heart container (20a-20f),
    The piston pumps (30a to 30f) include cylinders (31a to 31f) connected to the cardiac containers (20a to 20f), pistons (32a to 32f) accommodated in the cylinders (31a to 31f), A pair of magnet members (33a to 33f, 35a to 35f) including one or more electromagnets (35a to 35f) on at least one side, and the piston (32a to 32f) is connected to the pair of magnet members (33a to 33f, 35a to 35f) are connected to or fixed to only one of the magnets, and the magnetic pole state generated between the pair of magnet members (33a to 33f, 35a to 35f) by controlling the current of the electromagnets (35a to 35f) The pistons (32a to 32f) are moved in the cylinders (31a to 31f) using repulsive force and / or attractive force generated between the pair of magnet members (33a to 33f, 35a to 35f) as a drive source. By reciprocating, the contact surface with the heart in the heart container (20a to 20f) can be expanded and contracted. Auxiliary heart device characterized.
  2.  大動脈の外壁に接する拡縮自在の大動脈用容器(25e,25f)を備え、
     前記ピストンポンプ(30e,30f)は、前記シリンダ(31e,31f)の一端に前記心臓用容器(20e,20f)が接続され、前記シリンダ(31e,31f)の他端に前記大動脈用容器(25e,25f)が接続され、前記一対の磁石部材(33a~33f,35a~35f)間に生じる磁気の磁極状態を変更させて、前記ピストン(32e,32f)を前記シリンダ(31e,31f)内で往復運動させることにより、心臓用容器(20e,20f)における心臓との接触面を拡縮させるとともに大動脈用容器(25e,25f)における大動脈との接触面を拡縮させることを特徴とする、請求項1に記載の補助心臓装置。
    Equipped with an aorta container (25e, 25f) that can be expanded and contracted in contact with the outer wall of the aorta,
    The piston pump (30e, 30f) has one end of the cylinder (31e, 31f) connected to the heart container (20e, 20f) and the other end of the cylinder (31e, 31f) to the aorta container (25e). , 25f) is connected, and the magnetic pole state generated between the pair of magnet members (33a to 33f, 35a to 35f) is changed, and the piston (32e, 32f) is moved in the cylinder (31e, 31f). The contact surface with the heart in the heart container (20e, 20f) is expanded and contracted by reciprocating, and the contact surface with the aorta in the aorta container (25e, 25f) is expanded and contracted. Auxiliary heart device according to 1.
  3.  大動脈の外壁に接する拡縮自在の大動脈用容器(25e,25f)を備え、
     前記シリンダ(31e,31f)は、2つのシリンダ室(45e~45f, 46e~46f)を有し、
     前記ピストン(32e,32f)は、各シリンダ室(45e~45f, 46e~46f)ごとに収容され、
     前記ピストンポンプ(30e,30f)は、前記心臓用容器(20e,20f)が一方のシリンダ室(45e~45f)に接続され、前記大動脈用容器(25e,25f)が他方のシリンダ室(46e~46f)に接続され、前記一対の磁石部材(33a~33f,35a~35f)間に生じる磁気の磁極状態を変更させて、前記ピストン(32e,32f)を前記シリンダ(31e,31f)内で往復運動させることにより、心臓用容器(20e,20f)における心臓との接触面を拡縮させるとともに大動脈用容器(25e,25f)における大動脈との接触面を拡縮させることを特徴とする、請求項1に記載の補助心臓装置。
    Equipped with an aorta container (25e, 25f) that can be expanded and contracted in contact with the outer wall of the aorta,
    The cylinder (31e, 31f) has two cylinder chambers (45e to 45f, 46e to 46f),
    The piston (32e, 32f) is accommodated in each cylinder chamber (45e-45f, 46e-46f),
    In the piston pump (30e, 30f), the cardiac container (20e, 20f) is connected to one cylinder chamber (45e to 45f), and the aortic container (25e, 25f) is connected to the other cylinder chamber (46e to 46f), changing the magnetic pole state generated between the pair of magnet members (33a to 33f, 35a to 35f) and reciprocating the piston (32e, 32f) in the cylinder (31e, 31f) The contact surface with the heart in the container for heart (20e, 20f) is expanded and contracted by exercising, and the contact surface with the aorta in the container for aorta (25e, 25f) is expanded and contracted. Auxiliary heart device as described.
  4.  前記一対の磁石部材((33a,33b,33d,33e),(35a,35b,35d,35e))は、一方の磁石部材(35a,35b,35d,35e)が前記シリンダ(31a,31b,31d,31e)の端部に固定され、他方の磁石部材(33a,33b,33d,33e)が前記ピストン(32a,32b,32d,32e)に固定された状態で前記シリンダ(31a,31b,31d,31e)の内部に可動自在に収容されていることを特徴とする、請求項1から3の何れか1項に記載の補助心臓装置。 In the pair of magnet members ((33a, 33b, 33d, 33e), (35a, 35b, 35d, 35e)), one of the magnet members (35a, 35b, 35d, 35e) is the cylinder (31a, 31b, 31d). , 31e) and the other magnet member (33a, 33b, 33d, 33e) is fixed to the piston (32a, 32b, 32d, 32e) and the cylinder (31a, 31b, 31d, The auxiliary heart device according to any one of claims 1 to 3, wherein the auxiliary heart device is movably accommodated in 31e).
  5.  前記一対の磁石部材((33c,33f),(35c,35f))は、一方の磁石部材(35c,35f)が前記一対の磁石部材((33c,33f),(35c,35f))間に生じる斥力及び引力によって回動運動を行うように構成され、
     前記一方の磁石部材(35c,35f)と前記ピストン(32c,32f)との間には、前記一方の磁石部材(35c,35f)の回動運動を前記ピストン(32c,32f)の往復運動に変換するリンク機構(37c,37f)が設けられていることを特徴とする、請求項1から4の何れか1項に記載の補助心臓装置。
    The pair of magnet members ((33c, 33f), (35c, 35f)) has one magnet member (35c, 35f) between the pair of magnet members ((33c, 33f), (35c, 35f)). It is configured to perform a rotational movement by the repulsive force and attractive force generated,
    Between the one magnet member (35c, 35f) and the piston (32c, 32f), the rotational movement of the one magnet member (35c, 35f) is reciprocated by the piston (32c, 32f). The auxiliary heart device according to any one of claims 1 to 4, wherein a link mechanism (37c, 37f) for conversion is provided.
  6.  前記一対の磁石部材(33a~33f,35a~35f)の間に生じる磁気の磁極状態の変更による前記一対の磁石部材(33a~33f,35a~35f)間に生じる駆動源となる力が、少なくとも一方の前記電磁石(35a~35f)への電流の導入を一定間隔での電流の導入向きに反転操作により生じる前記一対の磁石部材(33a~33f,35a~35f)間の引力及び斥力であり、これにより、ピストン(32c,32f)の往復運動を連続的に行う、請求項1から5の何れか1項に記載の補助心臓装置。 A force serving as a drive source generated between the pair of magnet members (33a to 33f, 35a to 35f) due to a change in the magnetic pole state generated between the pair of magnet members (33a to 33f, 35a to 35f) is at least An attractive force and a repulsive force between the pair of magnet members (33a to 33f, 35a to 35f) generated by reversing the current introduction to the one electromagnet (35a to 35f) in the direction of current introduction at a constant interval; Thereby, the auxiliary heart device according to any one of claims 1 to 5, wherein the reciprocating motion of the piston (32c, 32f) is continuously performed.
  7.  前記一対の磁石部材(33a~33f,35a~35f)の間には弾性部材(36a~36f)が設けられ、
     前記一対の磁石部材(33a~33f,35a~35f)の間に生じる磁気の磁極状態の変更による前記一対の磁石部材(33a~33f,35a~35f)間に生じる駆動源となる力が、少なくとも一方の前記電磁石(35a~35f)への電流の一定間隔での導入と切断により生じる前記一対の磁石部材(33a~33f,35a~35f)間の引力または斥力であり、更に、弾性部材(36a~36f)の復元力と、該斥力または引力を併用することにより、ピストン(32c,32f)の往復運動を連続的に行う、請求項1から5の何れか1項に記載の補助心臓装置。
    Elastic members (36a to 36f) are provided between the pair of magnet members (33a to 33f, 35a to 35f),
    A force serving as a drive source generated between the pair of magnet members (33a to 33f, 35a to 35f) due to a change in the magnetic pole state generated between the pair of magnet members (33a to 33f, 35a to 35f) is at least An attractive force or a repulsive force between the pair of magnet members (33a to 33f, 35a to 35f) generated by introduction and disconnection of a current into the electromagnet (35a to 35f) at a constant interval; and an elastic member (36a The auxiliary heart device according to any one of claims 1 to 5, wherein the reciprocating motion of the piston (32c, 32f) is continuously performed by using the restoring force (36f) and the repulsive force or attractive force together.
  8.  前記一対の磁石部材(33a~33f,35a~35f)の間には弾性部材(36a~36f)が設けられていることを特徴とする、請求項1から6の何れか1項に記載の補助心臓装置。 The auxiliary according to any one of claims 1 to 6, wherein an elastic member (36a to 36f) is provided between the pair of magnet members (33a to 33f, 35a to 35f). Heart device.
  9.  大動脈の外壁に接する拡縮自在の大動脈用容器(25g,25h)と、体内に配置され且つ前記大動脈用容器(25g,25h)への流体の導入と吸引により、前記大動脈用容器(25g,25h)の容積変化をもたらす、ピストンポンプ(30g,30h)とを備え、
     前記ピストンポンプ(30g,30h)が、前記大動脈用容器(25g,25h)に接続されたシリンダ(31g,31h)と、前記シリンダ(31g,31h)に収容されたピストン(32g,32h)と、少なくとも一方に1以上の電磁石(35g,35h)を含む一対の磁石部材(33g,33h,35g,35h)とを有し、前記ピストン(32g,32h)が前記一対の磁石部材(33g,33h,35g,35h)の一方のみに連結または固定されるとともに、前記電磁石(35g,35h)の電流制御を行うことで前記一対の磁石部材(33g,33h,35g,35h)間に生じる磁気の磁極状態を変更させて、前記一対の磁石部材(33g,33h,35g,35h)間に生じる、斥力及び/または引力を駆動源として、前記ピストン(32g,32h)を前記シリンダ(31g,31h)内で往復運動させることにより、前記大動脈用容器(25g,25h)における大動脈との接触面を拡縮させることを特徴とする補助心臓装置。
    An aorta container (25g, 25h) that can be expanded and contracted in contact with the outer wall of the aorta, and the aorta container (25g, 25h) disposed in the body and introduced and aspirated into the aorta container (25g, 25h) Equipped with a piston pump (30g, 30h)
    The piston pump (30g, 30h) includes a cylinder (31g, 31h) connected to the aorta container (25g, 25h), a piston (32g, 32h) accommodated in the cylinder (31g, 31h), A pair of magnet members (33g, 33h, 35g, 35h) including one or more electromagnets (35g, 35h) in at least one, and the piston (32g, 32h) is connected to the pair of magnet members (33g, 33h, Magnetic pole state generated between the pair of magnet members (33g, 33h, 35g, 35h) by being connected or fixed to only one of the 35g, 35h) and controlling the current of the electromagnet (35g, 35h) The piston (32g, 32h) is moved in the cylinder (31g, 31h) using repulsive force and / or attractive force generated between the pair of magnet members (33g, 33h, 35g, 35h) as a drive source. Reciprocating motion expands or contracts the contact surface of the aorta container (25g, 25h) with the aorta Organ system.
  10.  前記一対の磁石部材(33h,35h)が、一方の磁石部材(33h)と、他方の磁石部材(35h)との間に生じる引力または斥力によって回動運動を行うように形成され、前記一方の磁石部材(35h)の回動運動を前記ピストン(32h)の往復運動に変換するリンク機構(37h)を有することを特徴とする、請求項9に記載の補助心臓装置。 The pair of magnet members (33h, 35h) is formed so as to perform a rotating motion by attractive force or repulsive force generated between one magnet member (33h) and the other magnet member (35h), The auxiliary heart device according to claim 9, further comprising a link mechanism (37h) for converting a rotational movement of the magnet member (35h) into a reciprocating movement of the piston (32h).
  11.  前記一対の磁石部材(33g,35g)において、一方の磁石部材(35g)が前記シリンダ(31g)のピストン(32g)側端部に固定され、他方の磁石部材(33g)が前記ピストン(32g)に固定された状態で前記シリンダ(31g)の内部に可動自在に収容されていることを特徴とする、請求項9に記載の補助心臓装置。 In the pair of magnet members (33g, 35g), one magnet member (35g) is fixed to the piston (32g) side end of the cylinder (31g), and the other magnet member (33g) is the piston (32g). The auxiliary heart device according to claim 9, wherein the auxiliary heart device is movably accommodated in the cylinder (31g) while being fixed to the cylinder.
  12.  前記一対の磁石部材(33g,35g)の間に弾性部材(36g)を設けたことを特徴とする、請求項11に記載の補助心臓装置。 The auxiliary heart device according to claim 11, wherein an elastic member (36g) is provided between the pair of magnet members (33g, 35g).
  13.  前記一対の磁石部材(33g,35g)間に生じる駆動力が、当該一対の磁石部材(33g,35g)間の引力または斥力と、前記弾性部材(36g)の復元力を含んでなることを特徴とする、請求項12に記載の補助心臓装置。 The driving force generated between the pair of magnet members (33g, 35g) includes an attractive force or a repulsive force between the pair of magnet members (33g, 35g) and a restoring force of the elastic member (36g). The auxiliary heart device according to claim 12.
  14.  前記一対の磁石部材(33g,33h,35g,35h)間に生じる駆動力が、前記電磁石(35g,35h)への電流の導入方向の反転により生じる引力または斥力を含んでなることを特徴とする、請求項9乃至13の何れか1項に記載の補助心臓装置。 The driving force generated between the pair of magnet members (33g, 33h, 35g, 35h) includes an attractive force or a repulsive force generated by reversing the current introduction direction to the electromagnet (35g, 35h). The auxiliary heart device according to any one of claims 9 to 13.
PCT/JP2016/054877 2015-02-19 2016-02-19 Ventricular assistance device WO2016133203A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017500758A JP6773953B2 (en) 2015-02-19 2016-02-19 Auxiliary heart device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-030313 2015-02-19
JP2015030313 2015-02-19

Publications (1)

Publication Number Publication Date
WO2016133203A1 true WO2016133203A1 (en) 2016-08-25

Family

ID=56689417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054877 WO2016133203A1 (en) 2015-02-19 2016-02-19 Ventricular assistance device

Country Status (2)

Country Link
JP (1) JP6773953B2 (en)
WO (1) WO2016133203A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045654A1 (en) * 2018-08-30 2020-03-05 Cyberdyne株式会社 Cardiac pumping assistance device
WO2020064922A1 (en) * 2018-09-28 2020-04-02 Artract Medical UG Apparatus, control device, kit for supporting the heart action, insertion system, and method
CN112690554A (en) * 2021-01-13 2021-04-23 长沙环康科技有限公司 Outdoor multi-functional emergent kettle
CN116099121A (en) * 2023-03-15 2023-05-12 江苏大学 Novel magnetic drive direct ventricular assist device
CN113975623B (en) * 2021-09-27 2023-10-31 江苏大学 Novel negative pressure non-contact heart pump

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2550086A1 (en) * 1983-04-15 1985-02-08 Mariani Antoine Auxiliary artificial heart
JPH07503160A (en) * 1992-01-31 1995-04-06 メドトロニック インコーポレーテッド cardiac assist device
US5429584A (en) * 1990-11-09 1995-07-04 Mcgill University Cardiac assist method and apparatus
JP2000170646A (en) * 1998-12-10 2000-06-20 Robert Bosch Gmbh Pump unit
US20040015039A1 (en) * 2002-07-16 2004-01-22 The University Of Cincinnati Modular power system and method for a heart wall actuation system for the natural heart
US20050004420A1 (en) * 2003-06-18 2005-01-06 The Texas A&M University System Device for proactive modulation of cardiac strain patterns
WO2007092494A2 (en) * 2006-02-03 2007-08-16 Mahmood Mirhoseini Cardiac assist device and method
JP2009168971A (en) * 2008-01-15 2009-07-30 Oiree Kikaku:Kk Variable focus lens and variable focus eyeglasses

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572529B2 (en) * 1993-06-17 2003-06-03 Wilk Patent Development Corporation Intrapericardial assist method
US5957977A (en) * 1996-01-02 1999-09-28 University Of Cincinnati Activation device for the natural heart including internal and external support structures
JP2006296579A (en) * 2005-04-18 2006-11-02 Japan Health Science Foundation Auxiliary artificial heart system
EP3909559A1 (en) * 2008-10-10 2021-11-17 Medical Tree Patent Ltd Heart help device and system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2550086A1 (en) * 1983-04-15 1985-02-08 Mariani Antoine Auxiliary artificial heart
US5429584A (en) * 1990-11-09 1995-07-04 Mcgill University Cardiac assist method and apparatus
JPH07503160A (en) * 1992-01-31 1995-04-06 メドトロニック インコーポレーテッド cardiac assist device
JP2000170646A (en) * 1998-12-10 2000-06-20 Robert Bosch Gmbh Pump unit
US20040015039A1 (en) * 2002-07-16 2004-01-22 The University Of Cincinnati Modular power system and method for a heart wall actuation system for the natural heart
US20050004420A1 (en) * 2003-06-18 2005-01-06 The Texas A&M University System Device for proactive modulation of cardiac strain patterns
WO2007092494A2 (en) * 2006-02-03 2007-08-16 Mahmood Mirhoseini Cardiac assist device and method
JP2009168971A (en) * 2008-01-15 2009-07-30 Oiree Kikaku:Kk Variable focus lens and variable focus eyeglasses

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045654A1 (en) * 2018-08-30 2020-03-05 Cyberdyne株式会社 Cardiac pumping assistance device
JPWO2020045654A1 (en) * 2018-08-30 2021-08-12 Cyberdyne株式会社 Heartbeat support device
JP7057925B2 (en) 2018-08-30 2022-04-21 Cyberdyne株式会社 Heart rate support device
WO2020064922A1 (en) * 2018-09-28 2020-04-02 Artract Medical UG Apparatus, control device, kit for supporting the heart action, insertion system, and method
CN112690554A (en) * 2021-01-13 2021-04-23 长沙环康科技有限公司 Outdoor multi-functional emergent kettle
CN113975623B (en) * 2021-09-27 2023-10-31 江苏大学 Novel negative pressure non-contact heart pump
CN116099121A (en) * 2023-03-15 2023-05-12 江苏大学 Novel magnetic drive direct ventricular assist device

Also Published As

Publication number Publication date
JPWO2016133203A1 (en) 2017-11-30
JP6773953B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
WO2016133203A1 (en) Ventricular assistance device
EP1171712B1 (en) Hydro elastic pump which pumps using non-rotary bladeless and valveless operations
US20040230090A1 (en) Vascular assist device and methods
US6251061B1 (en) Cardiac assist device using field controlled fluid
CN100418470C (en) Air pump, pump system, electronic blood pressure monitor, and massager
EP1512215B1 (en) Electroactive polymer devices for moving fluid
WO2002024254A3 (en) A blood circulation assistance device
WO1993010829A1 (en) Drive system for artificial hearts and left-ventricular assist devices
JPH07503160A (en) cardiac assist device
AU2001290088A1 (en) A blood circulation assistance device
US20050148814A1 (en) Muscle function augmentation
CA2446100A1 (en) External counterpulsation cardiac assist device
JP2004517645A (en) Massage device using inflatable air bag
CA2506758A1 (en) Miniature, pulsatile implantable ventricular assist devices and methods of controlling ventricular assist devices
GB2313784A (en) Device for facilitating blood circulation in the lower limbs
AU2017385410B2 (en) Methods and devices relating to hydraulic valves and switches
CN106859946B (en) Electric massage device
US4969864A (en) Venticular assist device
US20160123316A1 (en) Pipe pump system
CN111298225A (en) Balloon heart counterpulsation device comprising electromagnet
US11241571B2 (en) Implantable ventricular assist device
JPS5869577A (en) Blood vessel dilator apparatus
JP2006204438A (en) Chair type massage machine
WO2020006324A1 (en) Peristalsis artificial heart and ventricular assist device
WO2022239634A1 (en) Artificial muscle actuator device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500758

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752589

Country of ref document: EP

Kind code of ref document: A1