WO2016147779A1 - Multilayered spun yarn, heat-resistant fabric obtained using same, and heat-resistant protective garment - Google Patents

Multilayered spun yarn, heat-resistant fabric obtained using same, and heat-resistant protective garment Download PDF

Info

Publication number
WO2016147779A1
WO2016147779A1 PCT/JP2016/054388 JP2016054388W WO2016147779A1 WO 2016147779 A1 WO2016147779 A1 WO 2016147779A1 JP 2016054388 W JP2016054388 W JP 2016054388W WO 2016147779 A1 WO2016147779 A1 WO 2016147779A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
heat
spun yarn
yarn
flame retardant
Prior art date
Application number
PCT/JP2016/054388
Other languages
French (fr)
Japanese (ja)
Inventor
大森英城
高橋雅信
岡部孝之
Original Assignee
日本毛織株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本毛織株式会社 filed Critical 日本毛織株式会社
Priority to EP16745032.9A priority Critical patent/EP3109351A4/en
Publication of WO2016147779A1 publication Critical patent/WO2016147779A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/443Heat-resistant, fireproof or flame-retardant yarns or threads
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/14Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/14Dyeability

Definitions

  • the present invention relates to a multi-layer structure spun yarn including polybenzimidazole fiber and para-aramid fiber, a heat-resistant fabric using the same, and a heat-resistant protective clothing.
  • a woven fabric woven with para-aramid fiber is usually used.
  • This woven fabric is composed of a warp yarn or a weft yarn, one of which is a spun yarn made of polybenzimidazole fiber, and the other of which is a filament yarn made of para-aramid fiber.
  • Patent Documents 1 and 2 As another woven fabric excellent in heat resistance and flame retardancy, the present inventors use a check spun yarn of para-aramid fiber for the core, and meta-aramid fiber, flame-retardant acrylic fiber or polyetherimide fiber for the sheath. Have been proposed (Patent Documents 1 and 2).
  • the present invention is a multi-layered spun yarn having a high heat resistance and flame retardancy, and a heat-resistant and flame-resistant multi-layer spun yarn that is easy to color match, does not cause poor appearance and light embrittlement due to fibrillation.
  • a protective fabric and heat-resistant protective clothing are provided.
  • the multilayer structure spun yarn of the present invention is a para-aramid fiber yarn in which the core component is check spun, and the sheath component is a multilayer structure spun yarn containing polybenzimidazole fiber, wherein the sheath component is polybenzimidazole fiber And a flame retardant fiber (excluding the para-aramid fiber yarn and the polybenzimidazole fiber), and the polybenzimidazole fiber and the flame retardant fiber are different in at least two colors.
  • the multi-layer structure spun yarn has a color tone that is apparently different from that of the polybenzimidazole fiber and the flame-retardant fiber.
  • the heat resistant fabric of the present invention is characterized by using the above-mentioned multilayered spun yarn.
  • the heat-resistant protective clothing of the present invention is characterized by using the heat-resistant fabric.
  • the multi-layer structure spun yarn of the present invention is a para-aramid fiber yarn in which the core component is check spun, and the sheath component is a multi-layer structure spun yarn containing polybenzimidazole fiber, and the sheath component is composed of polybenzimidazole fiber and And flame retardant fibers (excluding the para-aramid fiber yarn and the polybenzimidazole fiber), and the polybenzimidazole fiber and the flame retardant fiber are at least two different colors.
  • the multi-layer structure spun yarn apparently has a color tone different from that of the polybenzimidazole fiber and the flame retardant fiber, so that color matching is easy and resistance to appearance is not exhibited in the sense that it does not exhibit poor appearance due to fibrillation.
  • a multilayer structure spun yarn having high washability and high heat resistance and flame retardancy, a heat resistant fabric and a heat resistant protective clothing using the same can be provided. That is, color matching is facilitated by blending different colored fibers at the same time, and a sheath component containing polybenzimidazole fiber having higher heat resistance and flame retardancy is arranged in the portion directly exposed to the flame, Cloth made by fibrillation of para aramid fiber even if it is washed repeatedly by arranging para-aramid fiber yarn spun in the core component to maintain high strength, heat resistance and flame retardancy. It can be set as the fabric in which the whitening phenomenon of a surface does not occur easily.
  • FIG. 1 is a perspective view showing a main part of a ring spinning machine for producing a core-sheath structure spun yarn in one embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of a core-sheath spun yarn in one embodiment of the present invention.
  • FIG. 3 is a woven structure diagram of a fabric in one embodiment of the present invention.
  • the multi-layer structure spun yarn of the present invention is a para-aramid fiber yarn in which the core component is check-spun, and the sheath component is a polybenzimidazole fiber and a flame-retardant fiber (provided that the para-aramid fiber yarn and the poly-aramide fiber yarn). It is a fiber that has been blended with (excluding benzimidazole fiber).
  • Polybenzimidazole (hereinafter also referred to as “PBI”) fiber is, for example, a fiber made from a polymer of 2,2 ′-(m-phenylen) -5,5′-bibenzimidazole, and has a thermal decomposition temperature exceeding 600 ° C.
  • the deflection temperature under load is 410 ° C.
  • the glass transition point is 427 ° C.
  • the oxygen index (OI) value is 41 or more.
  • This fiber has a strength retention of 95% even after being exposed to air at 230 ° C. for 2 weeks, can maintain the fiber performance up to 1000 ° C. in nitrogen, is essentially nonflammable and has high heat resistance (hereinafter “ Encyclopedia of Textiles, page 848, Maruzen, March 25, 2002).
  • PBI fiber is a product manufactured by PBI Performance Products, Inc. in the United States.
  • PBI fiber Since PBI fiber has a high equilibrium moisture content of about 14.6% by weight, the fabric containing this fiber has a total heat loss measured by ASTM F 1868 Part C of 300 W / m 2 or more, Heat transfer that emanates from the body also increases, making it a comfortable heat-resistant protective clothing.
  • Para-aramid fiber is a homopolymerization system manufactured by DuPont in the US, trade name "Kevlar” (same product name from Toray DuPont in Japan), Teijin, trade name “Twaron” There is a product name “Technora” manufactured by Teijin Limited. These fibers have a tensile strength of 20.3 to 24.7 cN / dtex, a thermal decomposition starting temperature of about 500 ° C., and an oxygen index (OI) value of 25 to 29. Although heat resistance and flame retardancy are inferior to PBI fibers, they are higher than ordinary fibers.
  • the sheath component is blended including PBI fiber and flame retardant fiber (excluding the para-aramid fiber yarn and the PBI fiber), and the PBI fiber and the flame retardant fiber are at least two colors.
  • the PBI fiber and the flame retardant fiber appear to have different colors.
  • Each fiber is mixed by spinning and has a predetermined color tone, which facilitates color matching.
  • the PBI fibers are preferably produced or original fibers.
  • the term “generated” refers to a state in which neither the original deposition nor the staining is performed. PBI fibers are yellow in their formed state. Therefore, this yellow color is mixed.
  • the original is colored by adding a colorant to a polymer and then fiberized. Therefore, the color tone is limited.
  • Thread stage Thread dyeing is dyed in the yarn state, but this is dyed with cocoon dye according to its shape, and then corn dyeed after being softly wound up on a special die cone tube to make it easier to pass through the dye liquor.
  • Knitted fabric stage Anti-dyeing is performed by dyeing fabric in the fabric state. It is also called post-dying because it is dyed after weaving the fabric yarn.
  • the above-mentioned (1) which has already been given a hue before weaving, is called colored yarn, (2) is called dyed yarn, and both are also called pre-dyed.
  • the flame-retardant fiber of the multi-layer structure spun yarn is preferably colored with at least one selected from an original fiber, rose dyeing, sliver dyeing, top dyeing fiber and yarn dyeing.
  • the flame-retardant fiber after making into a fabric may be post-dyed.
  • the PBI fiber is a produced or original fiber, and the color tone is limited.
  • a desired color tone can be expressed by blending or dyeing the flame-retardant fiber in various colors.
  • the PBI fiber is preferably 10% by mass to 90% by mass
  • the flame retardant fiber is preferably 10% by mass to 90% by mass. More preferably, the PBI fiber is 20% by mass or more and 80% by mass or less, the flame retardant fiber is 20% by mass or more and 80% by mass or less, and more preferably, the PBI fiber is 30% by mass or more and 70% by mass or less. The flame retardant fiber is 30% by mass or more and 70% by mass or less. Within the above range, color matching is easy and heat resistance is high.
  • the core component is 20 to 40% by mass
  • the sheath component is preferably 60 to 80% by mass, and more preferably the core component is 22 to 35% by mass.
  • the component is 65 to 78% by mass.
  • the core component is less than 20% by mass, the check spun yarn of the core component must be made extremely fine, and it is difficult to produce the check spun yarn.
  • the sheath fiber coverage becomes low.
  • the sheath component is less than 60% by mass, the covering property is not good, and when it exceeds 80% by mass, the fineness of the entire multi-layer structure spun yarn is undesirably increased.
  • the PBI fiber is preferably a toe-breaked check fiber, a bias-cut or square-cut fiber.
  • a toe-breaked check fiber is a fiber similar to a check-spun para-aramid fiber yarn of the core component (both torn fibers), so the affinity between the core component and the sheath component is good and unity It becomes a good multilayer structure spun yarn.
  • the sheath component may be bias cut or square cut. Bias cut refers to alternately repeating perpendicular cutting and oblique cutting with respect to the traveling direction of the long fiber bundle (tow). For example, in the case of a 76/102 mm bias cut, the fiber length is uniformly distributed from the shortest 76 mm to the longest 102 mm.
  • the square cut repeats only a fixed length of right-angle cutting.
  • all the fiber lengths are uniformly 51 mm.
  • a mix cut such as 76 mm (33%) + 89 mm (34%) + 102 mm (33%), in which square cuts having different fiber lengths are mixed. It is in circulation.
  • the preferred fiber length of the cut fibers is in the range of 30 to 180 mm, more preferably 45 to 150 mm, particularly preferably 50 to 125 mm. Within this range, the strength can be maintained higher.
  • the single fiber fineness is preferably in the range of 1 to 5 dtex, more preferably in the range of 1.5 to 4 dtex.
  • the flame retardant fiber preferably has an oxygen index (O.I) measured by JIS K 7201-2 of 26 or more. If it is the said range, the multi-layer structure spun yarn with high heat resistance and a flame retardance will be obtained with the para-aramid fiber yarn by which the core component was spun and the PBI fiber of the sheath component.
  • the flame retardant fiber is at least one selected from meta-aramid fiber, polyarylate fiber, polybenzoxazole fiber, polyetherimide fiber, flame retardant wool, flame retardant rayon, flame retardant cotton and flame retardant acrylic fiber. One fiber is preferred.
  • the sheath component fiber is processed into a coated short fiber bundle having an optimal shape and form by a spinning method according to the fineness and fiber length.
  • French style wool spinning is a suitable method for wool with thick fineness and long fiber length.
  • the hues and different types of fibers are mixed by, for example, passing a plurality of types of fiber bundles (sliver) each having a composition of 100% through an intersecting gill box, and doubling in the subsequent comber or pre-spinning process. And leveling by the drafting action.
  • this method is referred to as “sliver blending”. This method has a good yield and is suitable for high-mix low-volume production.
  • cotton spinning is a method suitable for cotton having a small fineness and a short fiber length.
  • the hue and the dissimilar fibers are mixed mainly by a card machine during the blended cotton and carding process.
  • this method is referred to as “card blending”, which is suitable for mass production of small varieties although the yield is poor.
  • the coated fiber is further blended with an antistatic fiber.
  • antistatic fibers When antistatic fibers are blended, it is possible to prevent ignition due to static electricity.
  • the antistatic fiber is preferably blended in the range of 0.1 to 1% by mass.
  • the multi-layer structure spun yarn preferably has a metric count of 28 to 52 (fineness: 357 to 192 dtex). If it is in this range, protective work clothes with good workability can be obtained.
  • a heat-resistant fabric is produced using the above-described multilayered spun yarn.
  • the fabric is preferably a woven fabric.
  • the heat resistant fabric has no flame, no holes, no melt, an average flame time of 2 seconds or less, and an average dust time of 2 seconds or less. Is preferred.
  • the heat-resistant fabric preferably has a shrinkage rate of 5% or less without melting, dropping, separating and igniting the fabric in 5 minutes at 180 ° C. in a heat resistance test of ISO 1311613-1999. With these physical properties, the heat resistance and flame retardancy are very excellent.
  • the heat resistant fabric preferably has an oxygen index (O.I) measured by JIS K 7201-2 of 26 or more, more preferably 26 to 50, more preferably 32 to 50, and particularly preferably. 37-48. Thereby, a flame retardance becomes high.
  • O.I oxygen index
  • the heat-resistant fabric conforms to ISO 6330-1984, 2A-E specified in the international performance standard ISO 11613-1999, which is a test for measuring washing resistance in the sense that it does not exhibit poor appearance due to fibrillation. It is preferable that no whitening is observed even after washing 5 times. Thereby, the product value can be maintained high.
  • the light resistance is preferably 2-3 or higher in both the carbon arc lamp test of JIS L 0842.7.2 (a) and the xenon arc lamp test of JIS L 0843. Thereby, the discoloration by light is low and a product value can be maintained high.
  • the heat-resistant protective clothing using the heat-resistant fabric of the present invention is suitable as work clothing for fire fighting suits, emergency crews, life crews, marine rescue workers, military personnel, oil-related facility workers, chemical factory workers, etc. It is. In the case of fire fighting clothes, it is preferable to use the heat resistant fabric of the present invention for the outer layer. This is because the heat resistance is high.
  • Meta-aramid fibers are, for example, manufactured by Du Pont in the United States, trade name "Nomesque” (same product name by Toray DuPont, Japan), Teijin, trade name “Conex”, etc. There is.
  • the oxygen index (OI) is 29-30.
  • flame-retardant wool As flame-retardant wool, there is flame-retardant wool treated with titanium and zirconium salt, which is called Zapro processing, using a wool such as a general merino type. As the wool, non-modified wool may be used, or the scale may be removed and shrink-proofed.
  • the use of such non-modified wool or modified wool improves moisture absorption, blocks radiant heat, and keeps comfort even when sweating and getting wet in high temperature and harsh environments. This is because the heat resistance for protecting the human body can be exhibited.
  • the oxygen index (OI) is 27-33.
  • flame retardant rayon examples include Provan processing (ammonia curing processing using tetrakishydroxymethylphosphonium salt developed by Albright & Wilson), Pyropatex CP processing developed by Ciba Geigy (N -Methylol dimethylphosnopropionamide processing), the brand name “Viscose FR” of Lenzing, Austria.
  • the oxygen index (OI) is 26.
  • Flame Retardant Cotton Flame retardant cotton such as Provan processing (processing in which tetrakishydroxymethylphosphonium salt is attached to cotton by ammonia curing method), Pyropatex CP processing (N-methyloldimethylphosnopropionamide processing), etc. Can be used.
  • the oxygen index (OI) is 26.
  • Flame-retardant acrylic fiber An acrylic fiber obtained by copolymerizing a vinyl chloride monomer as a flame retardant with acrylonitrile can be used. There is a product name "Protex” manufactured by Kaneka Corporation.
  • the oxygen index (OI) is 29-37.
  • the polyetherimide (PEI) fiber includes, for example, “ULTEM” (oxygen index (OI) 32) manufactured by SABIC Innovative Plastics. This fiber has a tensile strength of about 3 cN / dtex.
  • the fineness of the polyetherimide single fiber is preferably 3.9 dtex (3.5 denier) or less, more preferably 2.8 dtex (2.5 denier) or less. If it is 3.9 dtex (3.5 denier) or less, it is flexible and has a good texture, and is suitable as work clothes.
  • the preferred average fiber length of the polyetherimide fiber is in the range of 30 to 180 mm, more preferably 45 to 150 mm, and particularly preferably 50 to 125 mm.
  • Polyarylate fiber As the polyarylate fiber, there is a trade name “Vectran” manufactured by Kuraray Co., Ltd. This fiber has a strength of 18 to 22 cN / dtex, an elastic modulus of 600 to 741 cN / dtex, a melting point or decomposition temperature of 300 ° C., and an oxygen index (OI) of 27 to 28.
  • Polybenzoxazole fiber As polybenzoxazole (PBO) fiber, there is a product name “Zylon” manufactured by Toyobo Co., Ltd. This fiber has a tensile strength of 37 cN / dtex, an elastic modulus of 270 MPa, a melting point or decomposition temperature of 670 ° C., and an oxygen index (OI) of 64.
  • the core component is para-aramid fiber yarn that has been spun.
  • the check spun yarn refers to a yarn obtained by drafting a long fiber bundle (tow), cutting (stripping), and twisting it into a spun yarn.
  • a direct spinning method in which draft-twisting is performed by one fine spinning machine may be used, or a slur bar may be once twisted to form a spun yarn (Perlock method or converter method) in two or more steps.
  • the direct spinning method is preferable.
  • the preferred fineness of the check spun yarn is preferably in the range of 5.56 to 20.0 tex (single yarn, 50 to 180 single yarn), more preferably 6.67 to 16.7 tex (meter count). 60 to 150 single yarn). If the fineness is in the above range, the strength is high and it is suitable for heat-resistant protective clothing and the like from the viewpoint of texture and the like.
  • the number of twists is preferably 350 to 550 times / m, more preferably 400 to 500 times / m in the 125th single yarn having a metric count. When the number of twists is in the above range, the integrity with the coated fiber is further increased.
  • the preferred fiber length is distributed in the range of 30 to 180 mm, and the average fiber length is in the range of 45 to 150 mm, preferably 50 to 125 mm. Within this range, the strength can be maintained higher.
  • FIG. 1 is a perspective view showing a main part of a ring spinning machine in one embodiment of the present invention.
  • Two large and small cylindrical bodies 2 and 3 having different diameters are provided for each weight on the front bottom roller 1 that is actively rotated.
  • the two cylindrical bodies 2 and 3 are directly connected coaxially in the axial direction.
  • Two cylindrical front top rollers 4 and 5 having different diameters are placed on the two cylindrical bodies 2 and 3.
  • the difference in diameter between the two front top rollers 4 and 5 is substantially the same as the difference in diameter between the lower two cylindrical bodies 2 and 3, but the size is opposite to that of the lower two cylindrical bodies 2 and 3.
  • the two front top rollers 4 and 5 are covered with a rubber cot, and are fitted on a common arbor 6 to which a load is applied so as to be independently rollable.
  • the short fiber bundle 16 pulled out from the roving bobbin is supplied from the guide bar to the back roller 8 through the trumpet feeder 7.
  • the short fiber bundle 15 is a para-aramid check fiber bundle of core fibers, and the short fiber bundle 16 is a coated fiber bundle.
  • the trumpet feeder 7 can be swung in the axial direction of the front bottom roller 1, and the swiveling width can be adjusted.
  • the short fiber bundle B sent from the back roller 8 and passed through the draft apron 9 is held and spun by the large diameter side cylindrical body 3 and the small diameter side cylindrical front top roller 5.
  • the short fiber bundle A is spun by being supplied to the small-diameter columnar body 2 and the large-diameter cylindrical front top roller 4 via the yarn guide 14.
  • the delivery speed of the short fiber bundle 16 spun from the large diameter side cylindrical body 3 is higher than the spinning speed of the short fiber bundle 15 spun from the small diameter side cylindrical body 2, the two are connected via the snell wire 10.
  • the spun short fiber bundles 15 and 16 are twisted together, the short fiber bundle 16 is entangled around the short fiber bundle 15, and the short fiber bundle 15 serves as a core and the short fiber bundle 16 serves as a sheath.
  • a structural spun yarn 17 is formed.
  • the overfeed rate of the short fiber bundle 16 with respect to the short fiber bundle 15 is preferably 5 to 9%, more preferably 6 to 8%.
  • the short fiber bundle 16 can wrap the short fiber bundle 15 in a “twist” shape and cover the core fiber with a coverage of almost 100%.
  • the formed multi-layered spun yarn 17 is wound around the thread tube 13 on the weight via the anti-node ring 11 and the traveler 12. Even if the gripping positions of the short fiber bundles 15 and 16 on the cylindrical bodies 2 and 3 are somewhat different from one weight to another, the ratio of the feeding speeds of the two is always constant. There is no possibility that the properties of the thread 17 vary from one weight to another. Further, when the trumpet feeder 7 is swung as far as possible in the axial direction of the front bottom roller 1, the friction area of the front top roller 5 with the short fiber bundle 16 of the rubber cot coating is dispersed to prevent premature wear of the rubber cot coating. can do. Although not shown, it is desirable that the yarn guide 14 is swung in the axial direction of the front bottom roller 1 to reduce wear of the rubber cot coating of the cylindrical front top roller 4.
  • the proportionality constant Rs 0.495
  • the core fiber and the sheath fiber show the highest degree of integrity like a bolt and a nut
  • the single yarn strength of the core-sheath multi-layer structure spun yarn is the maximum value. I take the.
  • T max Rc ⁇ T 0 / ⁇ C 0
  • Rc 15.7
  • the core component fiber 21 is a check-spun para-aramid fiber yarn
  • the sheath component fiber 22 includes PBI fiber and meta-aramid fiber, and covers the periphery of the core component 21, so that the integrity is good. Even after washing, damage due to wear of para-aramid fiber yarns is reduced, or the ratio of para-aramid fibers appearing on the surface of the spun yarn decreases, and even if wear or washing causes damage such as wear The appearance is not deteriorated. Similarly, there is no fear of discoloration or strength reduction. In any case, deterioration of the quality can be prevented.
  • the fabric for protective clothing of the present invention is preferably formed by twisting two core-sheath spun yarns (single yarns) into a double yarn and making it a woven fabric.
  • twin yarn has a strength that is more than twice that of single yarn and provides a binding force to prevent yarn breakage during weaving. It is to do.
  • the twin yarn is manufactured using a twisting machine such as a double twister.
  • the double twister is excellent in productivity because it can be twisted twice with one rotation of the spindle.
  • the precious covering portion tends to be peeled off and disturbed to easily expose the core portion.
  • a ring twister at the same two points is preferable, and an up twister with a very short twisted yarn path at the two points is most preferable.
  • the single yarn is glued as warp yarn.
  • the warp yarns repeatedly rub against each other every time the loom opens, and each time they receive tension, they rotate in a direction to return twist.
  • the surface fluff of the warp yarn is entangled, and further fluff is pulled out from the yarn to reduce the tying force, and eventually the loom is stopped upon reaching cutting.
  • the fiber is hydrophilic, starch and the like are easily glued to the yarn, and the surface fluff is hardened with a glue, so that the conjugation force does not decrease during weaving, and no warp yarn breakage occurs.
  • after weaving it can be easily removed by washing with water during the scouring process.
  • the warp yarn breakage in a loom is much more dependent on the conjugation force related to rubbing / entanglement / peeling of the surface fluff than the single fiber strength (cN / dtex) constituting the yarn. Accordingly, the warp yarn is preferably a twin yarn.
  • the twist direction / twist factor K 1 of the single yarn is set to S or Z as that of the double yarn, and the twist factor K 2 in that case is set depending on the woven fabric.
  • the twist factor K 2 in that case is set depending on the woven fabric.
  • ply yarns also a so-called strong twine set slightly larger a K 2 as Z twist.
  • double yarn is S twisted versus single yarn Z twisted to promote shrinking and raising.
  • sweet twist with K 2 set to be small is
  • the spun yarn When the spun yarn is indicated by a count, it is preferably in the range of 1/28 to 1/52, the single yarn twist coefficient Kc 1 is in the range of 81 to 87, and the twist direction of the double yarn is the twist of the single yarn. The direction is opposite and the twist coefficient Kc 2 is preferably in the range of 78-84.
  • twist factor Kc 1 having a single fiber twist factor Kc 2 twin yarns, following calculated by formula.
  • Kc 1 T 1 / ⁇ C 1
  • Kc 2 T 2 / ⁇ C 1
  • T 1 represents the number of twists of single yarn (times / m)
  • T 2 represents the number of twists of twin yarn (times / m)
  • C 1 represents the number of single yarns (m / g).
  • the twisted structure is stable, the yarn packing property is high, and the fabric can be made into a soft and soft texture.
  • the obtained double yarn is twisted and used as a woven fabric for warp and weft.
  • a woven fabric structure plain weave, twill weave, also called satin weave, satin weave, and other changed weave can be used.
  • plain weave, twill weave, also called satin weave, satin weave, and other changed weave can be used.
  • any of flat knitting, circular knitting and warp knitting can be applied. Any organization may be used.
  • air is included in the knitted fabric, it is knitted into a double-bonded pile fabric.
  • the mat weave shown in FIG. 3 is particularly preferable, and this mat woven fabric is called a flat +3/3 mat weave.
  • the plain weave part is a plain structure composed of 8 warps and wefts, and the 3/3 mat weave part has three warps and wefts aligned, and this part protrudes from the surface. Therefore, it has a non-slip effect, and even if the flat structure is torn, it stops at the mat-woven portion and is hard to break. This is called Rip Stop structure in the sense of tearing prevention.
  • the weight (unit weight) per unit of the protective clothing fabric of the present invention is preferably in the range of 100 to 340 g / m 2 . If it is the said range, it can be set as lighter and more comfortable work clothes. More preferably, it is in the range of 140 to 300 g / m 2 , and particularly preferably in the range of 180 to 260 g / m 2 .
  • antistatic fibers it is preferable to add antistatic fibers to the fabric so that it will not be charged during activity.
  • the antistatic fiber include metal fiber, carbon fiber, metal particles, and fibers kneaded with carbon particles.
  • the antistatic fiber is preferably added in the range of 0.1 to 1% by mass, more preferably in the range of 0.3 to 0.7% by mass with respect to the spun yarn.
  • Antistatic fiber yarns can also be added during weaving.
  • “Beltron” manufactured by KB Seiren, “Kurabo” manufactured by Kuraray, carbon fiber, metal fiber, etc. are preferably added in the range of 0.1 to 1% by mass.
  • Examples and Comparative Examples of the present invention were as follows.
  • ⁇ Charge voltage test> The voltage immediately after charging was measured by the triboelectric charge decay measurement method specified in JIS L1094.5.4 method.
  • Core component As a core component, para-aramid fiber, a check-up spun yarn of Teijin's trade name “Technola” (twisted number Z direction 45 times / 10 cm), yarn fineness 8.0 tex (meter number: 1) / 125) (single fiber fineness 1.7 dtex, average fiber length 100 mm, black original product) was used.
  • Second component The following three types of fibers were blended. (i) PBI fiber Tow (790000dtex (711000 denier), 444,000 fibers) with a PBI single fiber fineness of 1.8dtex manufactured by PBI Performance Products, Inc., USA, is obtained as a square cut with a fiber length of 51mm.
  • the PBI fiber was a product (yellow).
  • Meta-aramid fiber The trade name “Conex” (fiber length 76/102 mm bias cut, fineness 2.2 dtex) manufactured by Teijin Limited was used.
  • Antistatic fiber As the antistatic fiber, a trade name “Bertron” manufactured by KB Seiren, single fiber fineness 5.6 dtex, fiber length: 89 mm square cut was used.
  • Example 1 The core sheath was the same as in Example 1 except that the sheath component was 73.9% by mass of meta-aramid fiber (manufactured by Teijin Ltd., trade name “Conex”, fiber length 76/102 mm bias cut, fineness 2.2 dtex, beige color) Made spun yarn and fabric.
  • the color tone of the blended yarn is shown in Table 1, and the conditions and results of the fabric are collectively shown in Table 2.
  • Table 2 shows the following. (1) Combustibility, especially carbonization length is short, which is a great advantage of PBI fiber. It can be judged that it exhibits extremely excellent surface integrity. (2) The oxygen index of the woven fabric mixed with PBI fibers is high, and the flame retardancy is extremely high. (3) When PBI fibers are mixed, the frictional voltage becomes 150 V or less, and the measurement is impossible. This is estimated to be due to the fact that the moisture content of the PBI fiber is 14.6%. A fabric having a low frictional voltage is less likely to generate static electricity and has high safety. (4) In the woven fabric as in the case of the core-sheath spun yarn, although the PBI fibers have a limited color, woven fabrics of various colors were obtained by uniformly blending meta-aramid fibers having different colors.
  • Example 5 Comparative Example 2
  • an actual fireproof garment was assumed, and a test was conducted by laminating a fabric composed of three layers of an outer layer, a middle layer, and an inner layer.
  • Outer layer The fabric obtained in Example 1 and Comparative Example 1 was used.
  • Middle layer Moisture permeable waterproof layer, moisture barrier
  • Moisture permeable waterproof membrane on a base fabric made of a plain woven fabric mass of 77 g / m 2
  • 85% by mass of meta-aramid fiber fineness 2.2 dtex, fiber length 76/102 mm bias cut
  • a polytetrafluoroethylene film laminated with a mass of 105 g / m 2 was used as an intermediate layer.
  • Inner layer thermal barrier, inner liner
  • a 16-sheet honeycomb fabric (mass 213 g / m 2 ) using a blended spun yarn of 85% by mass of meta-aramid fiber (fineness 2.2 dtex, fiber length 76/102 mm bias cut) and 15% by mass of wool was used.
  • the measurement results of the above laminated products are summarized in Table 3. Table 3 was measured by the ISO11613 European method.
  • Table 3 shows that all test items passed.
  • the total heat loss by ASTM F 1868 Part C of the three-layer laminate is as shown in Table 4.
  • Table 4 shows that the total heat loss is high when the fabric of the present invention is used for the outer layer. In general, if the value of total heat loss is high, the heat flux emanating from the body due to fire fighting activities also increases, so it is far from the risk of heat stroke caused by protective prejudice, and it is considered that comfort in clothes increases. It is estimated that the reason for this high total heat loss is that the moisture content of the PBI fiber is 14.6%.
  • Example 6 Replaced with PBI fiber and antistatic fiber blend of sheath component, PBI fiber, antistatic fiber and meta-aramid fiber (made by Teijin Limited, trade name "Conex”, fiber length 76 / 102mm bias cut fineness 2.2dtex, beige This was carried out in the same manner as in Example 1 except that the color) blended product was used.
  • the oxygen index of the obtained yarn is shown in Table 5, and the conditions and results of the fabric are shown together in Table 6.
  • the core-sheath yarns of Examples of the present invention have high oxygen index and high flame retardancy.
  • three kinds of orange spun yarn could be obtained.
  • Table 6 shows the following. (1) It is a great advantage of PBI fibers that the flammability, especially the carbonization length, decreases significantly with an increase in the mixed use ratio of PBI fibers. It can be judged that it exhibits extremely excellent surface integrity. (2) The oxygen index of the woven fabric mixed with PBI fibers is high, and the flame retardancy is extremely high. (3) When PBI fibers are mixed, the frictional voltage becomes 150 V or less, and the measurement is impossible. This is estimated to be due to the fact that the moisture content of the PBI fiber is 14.6%. A fabric having a low frictional voltage is less likely to generate static electricity and has high safety.
  • Example 9 to 15 The same procedure as in Example 1 was conducted except that the blending rate of the sheath component of the multilayer structure spun yarn was as shown in Table 7.
  • Table 7 the washing test is a washing test for measuring fabric damage.
  • the PBI fiber was a toe-breaked check fiber, and a product (yellow) or black original was used.
  • the sheath component blend is a sliver blend, and the contents of each fiber are as follows.
  • the flame-retardant wool fiber was an Australian-made, merino-type unmodified wool (average fiber length: 75 mm), and was dyed in an olive green color by an ordinary method using an acid dye. Zapro processed to give flame retardancy.
  • the flame retardant rayon uses the product name "Viscose FR" (average fineness 3.3dtex, fiber length 89mm mix cut) of Lenzing, Austria, and is converted into a sky blue color using a reactive dye. Stained.
  • the flame-retardant cotton used was propane-processed cotton (process in which tetrakishydroxymethylphosphonium salt was attached to the cotton by an ammonia curing method). In this case, it was left as it was without being dyed.
  • As the flame-retardant acrylic fiber trade name “Protex M” (average fineness 3.3 dtex, fiber length 82/120 mm bias cut) manufactured by Kaneka Corporation was used.
  • Polyetherimide (PEI) fiber uses “ULTEM” (oxygen index (O.I) 32) manufactured by SABIC Innovative Plastics, single fiber fineness 3.3 dtex (3 denier), fiber length 76/102 mm bias cut did. It was dyed red using a disperse dye by a conventional method.
  • Polyarylate fiber As the polyarylate fiber, Kuraray Co., Ltd., trade name “Vectran”, single fiber fineness 3.3 dtex (3 denier), fiber length 76/102 mm bias cut was used.
  • the oxygen index (O.I) is 27-28. In this case, an original brown color was used as the polyarylate fiber.
  • Polybenzoxazole fiber As polybenzoxazole (PBO) fiber, Toyobo Co., Ltd., trade name “Zylon”, single fiber fineness 3.3 dtex (3 denier), fiber length 76/102 mm bias cut was used.
  • the oxygen index (O.I) is 64.
  • PBI fiber and other flame retardant fibers flame retardant wool fiber, flame retardant rayon fiber, flame retardant cotton fiber, flame retardant acrylic fiber, PEI fiber, polyarylate
  • flame retardant wool fiber flame retardant rayon fiber
  • flame retardant cotton fiber flame retardant cotton fiber
  • flame retardant acrylic fiber flame retardant acrylic fiber
  • PEI fiber polyarylate
  • a multi-layer structure spun yarn having a sheath component of a blended fiber with a fiber or PBO fiber has high washing resistance in the sense that it can be car-matched by color mixing and does not exhibit poor appearance due to fibrillation, and has heat resistance and difficulty. It was confirmed that the flammability was high.
  • the heat-resistant protective clothing using the heat-resistant fabric of the present invention is suitable as work clothing for fire fighting suits, emergency crews, life crews, marine rescue workers, military personnel, oil-related facility workers, chemical factory workers, etc. It is.
  • it is a para-aramid fiber yarn in which the core component is check spun, and the sheath component is a blended fiber including PBI fiber and meta-aramid fiber, so that the fabric has high heat resistance and flame retardancy and has various colors. be able to.

Abstract

This multilayered spun yarn (20) comprises a core component (21) constituted of para-based aramid fiber yarns obtained by stretch breaking spinning and a sheath component (22) including polybenzimidazole fibers, wherein the sheath component (22) has been obtained by mix spinning so as to include the polybenzimidazole fibers and meta-based aramid fibers, the polybenzimidazole fibers and the meta-based aramid fibers having at least two different colors. In the multilayered spun yarn (20), the polybenzimidazole fibers and the meta-based aramid fibers apparently differ in color tone. This heat-resistant fabric is obtained using the multilayered spun yarn, and this heat-resistant protective garment is obtained using the heat-resistant fabric. Thus, a multilayered spun yarn which renders color matching easy and has not only high laundering resistance but also high heat resistance and flame retardancy, a heat-resistant fabric obtained using the multilayered spun yarn, and a heat-resistant protective garment are provided.

Description

多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服Multi-layer structure spun yarn, heat-resistant fabric using the same, and heat-resistant protective clothing
 本発明は、ポリベンズイミダゾール繊維とパラ系アラミド繊維を含む多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服に関する。 The present invention relates to a multi-layer structure spun yarn including polybenzimidazole fiber and para-aramid fiber, a heat-resistant fabric using the same, and a heat-resistant protective clothing.
 防護服は、消防、救急隊員、救命隊員、海上救護員、軍隊、石油関連施設の作業員、化学工場の作業員などの作業服として使用されている。近年の米国、カナダ、豪州、及び一部の欧州における消防服は、耐熱性及び難燃性の優れたポリベンズイミダゾール繊維が使用されている。この繊維は強度が約2.4cN/decitex(decitexは以下dtexと略す)と弱いため、通常はパラ系アラミド繊維と交織した織物が使用されている。この織物は、経糸又は緯糸のうち、一方の糸がポリベンズイミダゾール繊維からなる紡績糸、他方の糸がパラ系アラミド繊維からなるフィラメント糸で構成されている。別の耐熱性及び難燃性の優れた織物として、本発明者らは芯にパラ系アラミド繊維の牽切紡績糸を使用し、鞘にメタ系アラミド繊維、難燃アクリル繊維又はポリエーテルイミド繊維等を使用した芯鞘紡績糸を提案している(特許文献1~2)。 Protective clothing is used as work clothes for fire fighters, ambulance crews, life crews, marine rescuers, military, oil-related facilities workers, chemical factory workers, and others. In recent years, fire fighting garments in the United States, Canada, Australia, and some Europe use polybenzimidazole fibers having excellent heat resistance and flame retardancy. Since this fiber has a weak strength of about 2.4 cN / decitex (decitex is abbreviated as dtex hereinafter), a woven fabric woven with para-aramid fiber is usually used. This woven fabric is composed of a warp yarn or a weft yarn, one of which is a spun yarn made of polybenzimidazole fiber, and the other of which is a filament yarn made of para-aramid fiber. As another woven fabric excellent in heat resistance and flame retardancy, the present inventors use a check spun yarn of para-aramid fiber for the core, and meta-aramid fiber, flame-retardant acrylic fiber or polyetherimide fiber for the sheath. Have been proposed (Patent Documents 1 and 2).
WO2009/014007号公報WO2009 / 014007 WO2012/137556号公報WO2012 / 137556
 しかし、ポリベンズイミダゾール繊維は染色できないため、原着によって限られた色の繊維しか入手できず、様々な色の糸や布帛を得ることは困難であるという問題があった。また、従来のポリベンズイミダゾール繊維からなる紡績糸とパラ系アラミド繊維からなるフィラメント糸を交織した織物は、パラ系アラミド繊維が洗濯や着用時の擦過作用等によって容易にフィブリル化し、布帛表面に白化現象が生じて著しい外観不良を呈するという問題がある上、パラ系アラミド繊維は光によって変色し、かつ強度低下が容易に発生しやすいという問題があった。また、特許文献1~2に提案の繊維組成は、耐熱性及び難燃性が不足であるという問題があった。 However, since polybenzimidazole fibers cannot be dyed, only limited-color fibers can be obtained depending on the original, and there is a problem that it is difficult to obtain yarns and fabrics of various colors. In addition, fabrics made by interweaving conventional spun yarns made of polybenzimidazole fibers and filament yarns made of para-aramid fibers are easily fibrillated by the rubbing action during washing and wearing, and whitened on the fabric surface. In addition to the problem that the phenomenon occurs and the appearance deteriorates remarkably, the para-aramid fiber is discolored by light, and the strength is easily reduced. Further, the fiber compositions proposed in Patent Documents 1 and 2 have a problem that heat resistance and flame retardancy are insufficient.
 本発明は、前記従来の問題を解決するため、カラーマッチングが容易でフィブリル化による外観不良および光脆化が起こらず、かつ耐熱性及び難燃性も高い多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服を提供する。 In order to solve the above-mentioned conventional problems, the present invention is a multi-layered spun yarn having a high heat resistance and flame retardancy, and a heat-resistant and flame-resistant multi-layer spun yarn that is easy to color match, does not cause poor appearance and light embrittlement due to fibrillation. A protective fabric and heat-resistant protective clothing are provided.
 本発明の多層構造紡績糸は、芯成分が牽切紡績されたパラ系アラミド繊維糸であり、鞘成分がポリベンズイミダゾール繊維を含む多層構造紡績糸であって、前記鞘成分はポリベンズイミダゾール繊維と、難燃性繊維(但し、前記パラ系アラミド繊維糸及び前記ポリベンズイミダゾール繊維を除く)を含んで混紡されており、前記ポリベンズイミダゾール繊維と前記難燃性繊維は少なくとも2色の異なった色であり、前記多層構造紡績糸は見掛け上前記ポリベンズイミダゾール繊維と前記難燃性繊維とは異なった色調であることを特徴とする。 The multilayer structure spun yarn of the present invention is a para-aramid fiber yarn in which the core component is check spun, and the sheath component is a multilayer structure spun yarn containing polybenzimidazole fiber, wherein the sheath component is polybenzimidazole fiber And a flame retardant fiber (excluding the para-aramid fiber yarn and the polybenzimidazole fiber), and the polybenzimidazole fiber and the flame retardant fiber are different in at least two colors. The multi-layer structure spun yarn has a color tone that is apparently different from that of the polybenzimidazole fiber and the flame-retardant fiber.
 本発明の耐熱性布帛は、前記の多層構造紡績糸を使用したことを特徴とする。また、本発明の耐熱性防護服は、前記の耐熱性布帛を使用したことを特徴とする。 The heat resistant fabric of the present invention is characterized by using the above-mentioned multilayered spun yarn. The heat-resistant protective clothing of the present invention is characterized by using the heat-resistant fabric.
 本発明の多層構造紡績糸は、芯成分が牽切紡績されたパラ系アラミド繊維糸であり、鞘成分がポリベンズイミダゾール繊維を含む多層構造紡績糸であり、前記鞘成分はポリベンズイミダゾール繊維と、難燃性繊維(但し、前記パラ系アラミド繊維糸及び前記ポリベンズイミダゾール繊維を除く)を含んで混紡されており、前記ポリベンズイミダゾール繊維と前記難燃性繊維は少なくとも2色の異なった色であり、前記多層構造紡績糸は見掛け上前記ポリベンズイミダゾール繊維と前記難燃性繊維とは異なった色調であることにより、カラーマッチングが容易で、フィブリル化による外観不良を呈しないという意味で耐洗濯性が高く、かつ耐熱性及び難燃性も高い多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服を提供できる。すなわち、異なった色の繊維を混紡すると同時に混色することによりカラーマッチングを容易とし、火炎に直接晒される部分には耐熱性と難燃性のより高いポリベンズイミダゾール繊維を含む鞘成分を配置し、芯成分には牽切紡績されたパラ系アラミド繊維糸を配置することにより、全体の強度と耐熱性と難燃性を高く維持し、かつ洗濯を繰り返してもパラ系アラミド繊維のフィブリル化による布帛表面の白化現象が起こりにくい布帛とすることができる。加えて、ポリベンズイミダゾール繊維は高い水分率を有するため、総熱損失(Total heat loss)が大きく、体内から発散する熱移動も大きくなるため着心地のよい耐熱性防護服となる。 The multi-layer structure spun yarn of the present invention is a para-aramid fiber yarn in which the core component is check spun, and the sheath component is a multi-layer structure spun yarn containing polybenzimidazole fiber, and the sheath component is composed of polybenzimidazole fiber and And flame retardant fibers (excluding the para-aramid fiber yarn and the polybenzimidazole fiber), and the polybenzimidazole fiber and the flame retardant fiber are at least two different colors. The multi-layer structure spun yarn apparently has a color tone different from that of the polybenzimidazole fiber and the flame retardant fiber, so that color matching is easy and resistance to appearance is not exhibited in the sense that it does not exhibit poor appearance due to fibrillation. A multilayer structure spun yarn having high washability and high heat resistance and flame retardancy, a heat resistant fabric and a heat resistant protective clothing using the same can be provided. That is, color matching is facilitated by blending different colored fibers at the same time, and a sheath component containing polybenzimidazole fiber having higher heat resistance and flame retardancy is arranged in the portion directly exposed to the flame, Cloth made by fibrillation of para aramid fiber even if it is washed repeatedly by arranging para-aramid fiber yarn spun in the core component to maintain high strength, heat resistance and flame retardancy. It can be set as the fabric in which the whitening phenomenon of a surface does not occur easily. In addition, since polybenzimidazole fiber has a high moisture content, the total heat loss (Total 大 き く heat 熱 loss) is large, and the heat transfer emanating from the body is also large, so that the heat-resistant protective clothing is comfortable to wear.
図1は本発明の一実施例における芯鞘構造紡績糸を製造するためのリング精紡機の要部を示す斜視図である。FIG. 1 is a perspective view showing a main part of a ring spinning machine for producing a core-sheath structure spun yarn in one embodiment of the present invention. 図2は本発明の一実施例における芯鞘構造紡績糸の模式的斜視図である。FIG. 2 is a schematic perspective view of a core-sheath spun yarn in one embodiment of the present invention. 図3は本発明の一実施例における織物の織組織図である。FIG. 3 is a woven structure diagram of a fabric in one embodiment of the present invention.
 本発明の多層構造紡績糸は、芯成分が牽切紡績されたパラ系アラミド繊維糸であり、鞘成分はポリベンズイミダゾール繊維と、難燃性繊維(但し、前記パラ系アラミド繊維糸及び前記ポリベンズイミダゾール繊維を除く)を含んで混紡された繊維である。ポリベンズイミダゾール(以下「PBI」ともいう)繊維は、例えば2,2'-(m-phenylen)-5,5'-bibenzimidazoleのポリマーから作られる繊維であり、600℃を超える熱分解温度を持ち、荷重たわみ温度が410℃、ガラス転移点が427℃、酸素指数(OI)値が41以上である。この繊維は230℃の空気中で2週間暴露しても強度保持率は95%、窒素中では1000℃まで繊維性能を維持でき、本質的に不燃性であるとともに高耐熱性である(以上「繊維の百科事典」848頁,丸善,平成14年3月25日)。PBI繊維は米国PBI Performance Products, Inc.社製の製品が知られている。PBI繊維は、約14.6質量%の高い平衡水分率を有するため、この繊維を含む布帛はASTM F 1868 Part Cで測定される総熱損失(Total heat loss)が300W/m2以上となり、体内から発散する熱移動も大きくなるため着心地のよい耐熱性防護服となる。 The multi-layer structure spun yarn of the present invention is a para-aramid fiber yarn in which the core component is check-spun, and the sheath component is a polybenzimidazole fiber and a flame-retardant fiber (provided that the para-aramid fiber yarn and the poly-aramide fiber yarn). It is a fiber that has been blended with (excluding benzimidazole fiber). Polybenzimidazole (hereinafter also referred to as “PBI”) fiber is, for example, a fiber made from a polymer of 2,2 ′-(m-phenylen) -5,5′-bibenzimidazole, and has a thermal decomposition temperature exceeding 600 ° C. The deflection temperature under load is 410 ° C., the glass transition point is 427 ° C., and the oxygen index (OI) value is 41 or more. This fiber has a strength retention of 95% even after being exposed to air at 230 ° C. for 2 weeks, can maintain the fiber performance up to 1000 ° C. in nitrogen, is essentially nonflammable and has high heat resistance (hereinafter “ Encyclopedia of Textiles, page 848, Maruzen, March 25, 2002). PBI fiber is a product manufactured by PBI Performance Products, Inc. in the United States. Since PBI fiber has a high equilibrium moisture content of about 14.6% by weight, the fabric containing this fiber has a total heat loss measured by ASTM F 1868 Part C of 300 W / m 2 or more, Heat transfer that emanates from the body also increases, making it a comfortable heat-resistant protective clothing.
 パラ系アラミド繊維は、単独重合系として米国Du pont社製、商品名"ケブラー"(日本の東レ・デュポン社製も同一商品名)、帝人社製、商品名"トワロン"があり、共重合系として帝人社製、商品名"テクノーラ"がある。これらの繊維の引張強度は20.3~24.7cN/dtex、熱分解開始温度は約500℃、酸素指数(OI)値は25~29である。耐熱性及び難燃性はPBI繊維には劣るが、通常の繊維に比較すると高い。 Para-aramid fiber is a homopolymerization system manufactured by DuPont in the US, trade name "Kevlar" (same product name from Toray DuPont in Japan), Teijin, trade name "Twaron" There is a product name "Technora" manufactured by Teijin Limited. These fibers have a tensile strength of 20.3 to 24.7 cN / dtex, a thermal decomposition starting temperature of about 500 ° C., and an oxygen index (OI) value of 25 to 29. Although heat resistance and flame retardancy are inferior to PBI fibers, they are higher than ordinary fibers.
 本発明においては、鞘成分はPBI繊維と難燃性繊維(但し、前記パラ系アラミド繊維糸及び前記PBI繊維を除く)を含んで混紡されており、PBI繊維と前記難燃繊維は少なくとも2色の異なった色であり、見掛け上PBI繊維と前記難燃繊維とは異なった色調である。各繊維は混紡により混色され、所定の色調となり、これによりカラーマッチングが容易となる。 In the present invention, the sheath component is blended including PBI fiber and flame retardant fiber (excluding the para-aramid fiber yarn and the PBI fiber), and the PBI fiber and the flame retardant fiber are at least two colors. The PBI fiber and the flame retardant fiber appear to have different colors. Each fiber is mixed by spinning and has a predetermined color tone, which facilitates color matching.
 PBI繊維は生成り又は原着繊維が好ましい。ここで生成りとは、原着も染色もされていない状態をいう。PBI繊維は生成りの状態で黄色である。したがって、この黄色を生かして混色する。原着は、ポリマーに着色剤を加えて着色し、その後に繊維化したものである。したがって、色調は限られている。染色可能な繊維に色相を付与するには以下の三つのステージがある。(1)綿ステージ:バラバラの繊維塊を直接染色するバラ染め、短繊維束すなわちスライバー状態で染色するスライバー染め、これを巻上げてトップとしてから染色するトップ染めがある。(2)糸ステージ:糸状態で染色するのが糸染めであるが、これにはその形状により綛染め、染液を通りやすくするため特殊なダイコーンチューブにソフトに巻上げてから染色するコーン染めがある。(3)編織物ステージ:布帛の反物状態で染色するのが反染めである。生地糸を編織した後で染色するので別名後染めとも言う。これに対し、編織する前に既に色相が付与されている前記(1)は色糸、(2)は染糸と呼ばれ、両者は先染とも言う。 The PBI fibers are preferably produced or original fibers. Here, the term “generated” refers to a state in which neither the original deposition nor the staining is performed. PBI fibers are yellow in their formed state. Therefore, this yellow color is mixed. The original is colored by adding a colorant to a polymer and then fiberized. Therefore, the color tone is limited. There are the following three stages for imparting a hue to a dyeable fiber. (1) Cotton stage: There are rose dyeing for directly dyeing disjointed fiber lumps, sliver dyeing for short fiber bundles, that is, dyeing in a sliver state, and top dyeing after winding this up and dyeing. (2) Thread stage: Thread dyeing is dyed in the yarn state, but this is dyed with cocoon dye according to its shape, and then corn dyeed after being softly wound up on a special die cone tube to make it easier to pass through the dye liquor. There is. (3) Knitted fabric stage: Anti-dyeing is performed by dyeing fabric in the fabric state. It is also called post-dying because it is dyed after weaving the fabric yarn. On the other hand, the above-mentioned (1), which has already been given a hue before weaving, is called colored yarn, (2) is called dyed yarn, and both are also called pre-dyed.
 前記多層構造紡績糸の難燃性繊維は原着繊維、及びバラ染め、スライバー染め、トップ染め繊維並びに糸染めから選ばれる少なくとも一つで着色されているのが好ましい。布帛とした後の難燃性繊維は、後染めされていても良い。これにより、PBI繊維は生成り又は原着繊維であり、色調は限られているが、前記難燃性繊維を様々な色調とし混紡ないしは染色することにより、所望の色調を発現できる。 The flame-retardant fiber of the multi-layer structure spun yarn is preferably colored with at least one selected from an original fiber, rose dyeing, sliver dyeing, top dyeing fiber and yarn dyeing. The flame-retardant fiber after making into a fabric may be post-dyed. As a result, the PBI fiber is a produced or original fiber, and the color tone is limited. However, a desired color tone can be expressed by blending or dyeing the flame-retardant fiber in various colors.
 前記鞘成分を100質量%としたとき、PBI繊維は10質量%以上90質量%以下であり、前記難燃性繊維は10質量%以上90質量%以下であるのが好ましい。さらに好ましくは、PBI繊維が20質量%以上80質量%以下であり、前記難燃性繊維は20質量%以上80質量%以下であり、より好ましくは、PBI繊維が30質量%以上70質量%以下であり、前記難燃性繊維は30質量%以上70質量%以下である。前記の範囲であればカラーマッチングが容易で耐熱性も高いものとなる。 When the sheath component is 100% by mass, the PBI fiber is preferably 10% by mass to 90% by mass, and the flame retardant fiber is preferably 10% by mass to 90% by mass. More preferably, the PBI fiber is 20% by mass or more and 80% by mass or less, the flame retardant fiber is 20% by mass or more and 80% by mass or less, and more preferably, the PBI fiber is 30% by mass or more and 70% by mass or less. The flame retardant fiber is 30% by mass or more and 70% by mass or less. Within the above range, color matching is easy and heat resistance is high.
 前記多層構造紡績糸を100質量%としたとき、芯成分は20~40質量%であり、鞘成分は60~80質量%が好ましく、さらに好ましくは芯成分が22~35質量%であり、鞘成分が65~78質量%である。芯成分が20質量%未満では、芯成分の牽切紡績糸を極細としなければならず、牽切紡績糸を製造することに困難が伴う。また、芯成分が40質量%を超えると、鞘繊維の被覆性が低くなる。また、鞘成分が60質量%未満では被覆性が良好とならず、80質量%を超すと多層構造紡績糸全体の繊度が高くなり好ましくない。 When the multilayer structure spun yarn is 100% by mass, the core component is 20 to 40% by mass, the sheath component is preferably 60 to 80% by mass, and more preferably the core component is 22 to 35% by mass. The component is 65 to 78% by mass. When the core component is less than 20% by mass, the check spun yarn of the core component must be made extremely fine, and it is difficult to produce the check spun yarn. On the other hand, when the core component exceeds 40% by mass, the sheath fiber coverage becomes low. Further, when the sheath component is less than 60% by mass, the covering property is not good, and when it exceeds 80% by mass, the fineness of the entire multi-layer structure spun yarn is undesirably increased.
 前記PBI繊維はトウブレークした牽切繊維、バイアスカット又はスクエアカットされている繊維であることが好ましい。トウブレークした牽切繊維であれば、芯成分の牽切紡績されたパラ系アラミド繊維糸に近似した繊維(ともに引きちぎり繊維)であるため、芯成分と鞘成分の親和性が良く一体性の良い多層構造紡績糸となる。鞘成分はバイアスカット又はスクエアカットされていても良い。バイアスカットとは、長繊維束(トウ)の進行方向に対し直角切りと斜め切りを交互に繰り返すことをいう。例えば76/102mmバイアスカットとした場合、その繊維長は最短の76mmから最長の102mmまで一様に分布している。これに対しスクエアカットとは、一定長の直角切りだけを繰り返すので、例えば51mmスクエアカットとした場合、すべての繊維長は均一に51mmとなる。
 さらに近年では、繊維長の異なるスクエアカット同士を混合した、例えば76mm(33%)+89mm(34%)+102mm(33%)のような、ミックスカットと称される階段状の分布を有する商品も市中に流通している。カットされた繊維の好ましい繊維長は30~180mmの範囲、更に好ましくは45~150mm、特に好ましくは50~125mmの範囲である。この範囲であればさらに強力を高く維持できる。また、単繊維繊度は1~5dtexの範囲が好ましく、更に好ましくは1.5~4dtexの範囲である。
The PBI fiber is preferably a toe-breaked check fiber, a bias-cut or square-cut fiber. A toe-breaked check fiber is a fiber similar to a check-spun para-aramid fiber yarn of the core component (both torn fibers), so the affinity between the core component and the sheath component is good and unity It becomes a good multilayer structure spun yarn. The sheath component may be bias cut or square cut. Bias cut refers to alternately repeating perpendicular cutting and oblique cutting with respect to the traveling direction of the long fiber bundle (tow). For example, in the case of a 76/102 mm bias cut, the fiber length is uniformly distributed from the shortest 76 mm to the longest 102 mm. On the other hand, the square cut repeats only a fixed length of right-angle cutting. For example, in the case of a 51 mm square cut, all the fiber lengths are uniformly 51 mm.
Further, in recent years, there are also products that have a stepwise distribution called a mix cut, such as 76 mm (33%) + 89 mm (34%) + 102 mm (33%), in which square cuts having different fiber lengths are mixed. It is in circulation. The preferred fiber length of the cut fibers is in the range of 30 to 180 mm, more preferably 45 to 150 mm, particularly preferably 50 to 125 mm. Within this range, the strength can be maintained higher. The single fiber fineness is preferably in the range of 1 to 5 dtex, more preferably in the range of 1.5 to 4 dtex.
 前記難燃性繊維は、JIS K 7201-2測定される酸素指数(O.I)が26以上であることが好ましい。前記の範囲であれば、前記芯成分の牽切紡績されたパラ系アラミド繊維糸と、鞘成分のPBI繊維と相俟って耐熱性及び難燃性の高い多層構造紡績糸が得られる。前記難燃性繊維は、メタ系アラミド繊維、ポリアリレート繊維、ポリベンズオキサゾール繊維、ポリエーテルイミド繊維、難燃ウール、難燃性レーヨン、難燃性コットン及び難燃性アクリル繊維から選ばれる少なくとも一つの繊維が好ましい。 The flame retardant fiber preferably has an oxygen index (O.I) measured by JIS K 7201-2 of 26 or more. If it is the said range, the multi-layer structure spun yarn with high heat resistance and a flame retardance will be obtained with the para-aramid fiber yarn by which the core component was spun and the PBI fiber of the sheath component. The flame retardant fiber is at least one selected from meta-aramid fiber, polyarylate fiber, polybenzoxazole fiber, polyetherimide fiber, flame retardant wool, flame retardant rayon, flame retardant cotton and flame retardant acrylic fiber. One fiber is preferred.
 鞘成分繊維はその繊度と繊維長に応じた紡績方法によって、最適な形状・形態の被覆短繊維束まで加工される。仏式梳毛紡績は太い繊度と長い繊維長を有する羊毛に適した方法である。ここにおいて色相や異種繊維の混合は、例えば混毛インターセクティング ギル ボックス(intersecting gill box)に各々が100%組成である複数種の繊維束(スライバー)を通し、後のコーマーや前紡工程におけるダブリング及びドラフティング作用によって、平行かつ均整化する。以下この方法を「スライバー混紡」という。この方法は歩留りが良く、多品種少量生産に好適である。これに対し綿紡績は細い繊度と短い繊維長を有する綿花に適した方法である。ここにおいて色相や異種繊維の混合は、混打綿や梳綿工程中の主としてカード機でなされる。以下この方法を「カード混紡」といい、歩留りは悪いが小品種大量生産に好適である。 The sheath component fiber is processed into a coated short fiber bundle having an optimal shape and form by a spinning method according to the fineness and fiber length. French style wool spinning is a suitable method for wool with thick fineness and long fiber length. Here, the hues and different types of fibers are mixed by, for example, passing a plurality of types of fiber bundles (sliver) each having a composition of 100% through an intersecting gill box, and doubling in the subsequent comber or pre-spinning process. And leveling by the drafting action. Hereinafter, this method is referred to as “sliver blending”. This method has a good yield and is suitable for high-mix low-volume production. On the other hand, cotton spinning is a method suitable for cotton having a small fineness and a short fiber length. Here, the hue and the dissimilar fibers are mixed mainly by a card machine during the blended cotton and carding process. Hereinafter, this method is referred to as “card blending”, which is suitable for mass production of small varieties although the yield is poor.
 前記被覆繊維には、更に帯電防止繊維が混紡されているのが好ましい。帯電防止繊維が混紡されていると静電気による発火を防止できる。帯電防止繊維は0.1~1質量%の範囲混紡するのが好ましい。 It is preferable that the coated fiber is further blended with an antistatic fiber. When antistatic fibers are blended, it is possible to prevent ignition due to static electricity. The antistatic fiber is preferably blended in the range of 0.1 to 1% by mass.
 前記多層構造紡績糸は、メートル番手で28~52番(繊度:357~192dtex)の範囲であるのが好ましい。この範囲であれば、作業性の良い防護服が得られる。 The multi-layer structure spun yarn preferably has a metric count of 28 to 52 (fineness: 357 to 192 dtex). If it is in this range, protective work clothes with good workability can be obtained.
 本発明は前記の多層構造紡績糸を使用して耐熱性布帛とする。布帛は織物が好ましい。前記耐熱性布帛は、EN532の防炎性試験において、炎が端に達せず、穴も開かず、溶融物はなく、平均残炎時間が2秒以下、平均残塵時間が2秒以下であるのが好ましい。また、前記耐熱性布帛は、ISO 11613-1999の耐熱性試験180℃、5分において、生地が溶融、落下、分離及び発火せず、収縮率は5%以下であるのが好ましい。この物性であれば耐熱性も難燃性も非常に優れたレベルである。また、前記耐熱性布帛は、JIS K 7201-2で測定される酸素指数(O.I)が26以上であるのが好ましく、さらに好ましくは26~50、より好ましくは32~50、とくに好ましくは37~48である。これにより難燃性が高いものとなる。 In the present invention, a heat-resistant fabric is produced using the above-described multilayered spun yarn. The fabric is preferably a woven fabric. In the flameproof test of EN532, the heat resistant fabric has no flame, no holes, no melt, an average flame time of 2 seconds or less, and an average dust time of 2 seconds or less. Is preferred. The heat-resistant fabric preferably has a shrinkage rate of 5% or less without melting, dropping, separating and igniting the fabric in 5 minutes at 180 ° C. in a heat resistance test of ISO 1311613-1999. With these physical properties, the heat resistance and flame retardancy are very excellent. The heat resistant fabric preferably has an oxygen index (O.I) measured by JIS K 7201-2 of 26 or more, more preferably 26 to 50, more preferably 32 to 50, and particularly preferably. 37-48. Thereby, a flame retardance becomes high.
 前記耐熱性布帛は、フィブリル化による外観不良を呈しないという意味で耐洗濯性を測定するための試験である国際性能基準ISO 11613-1999に規定されているISO 6330-1984, 2A-Eにしたがい、5回洗濯した後においても、白化が見られないことが好ましい。これにより、製品価値を高く維持できる。また耐光性は、JIS L 0842.7.2(a)のカーボンアーク灯試験、及びJIS L 0843のキセノンアーク灯試験でいずれも2-3級以上が好ましい。これにより光による変色が低く、製品価値を高く維持できる。 The heat-resistant fabric conforms to ISO 6330-1984, 2A-E specified in the international performance standard ISO 11613-1999, which is a test for measuring washing resistance in the sense that it does not exhibit poor appearance due to fibrillation. It is preferable that no whitening is observed even after washing 5 times. Thereby, the product value can be maintained high. The light resistance is preferably 2-3 or higher in both the carbon arc lamp test of JIS L 0842.7.2 (a) and the xenon arc lamp test of JIS L 0843. Thereby, the discoloration by light is low and a product value can be maintained high.
 本発明の耐熱性布帛を使用した耐熱性防護服は、消防服のほか、救急隊員、救命隊員、海上救護員、軍隊、石油関連施設の作業員、化学工場の作業員などの作業服として好適である。消防服の場合は、外層に本発明の耐熱性布帛を使用するのが好ましい。耐熱性が高いからである。 The heat-resistant protective clothing using the heat-resistant fabric of the present invention is suitable as work clothing for fire fighting suits, emergency crews, life crews, marine rescue workers, military personnel, oil-related facility workers, chemical factory workers, etc. It is. In the case of fire fighting clothes, it is preferable to use the heat resistant fabric of the present invention for the outer layer. This is because the heat resistance is high.
 以下、鞘成分に混紡する難燃性繊維について説明する。
(1)メタ系アラミド繊維
 メタ系アラミド繊維は、例えば米国Du pont社製、商品名"ノーメッスク"(日本の東レ・デュポン社製も同一商品名)、帝人社製、商品名"コーネックス"などがある。酸素指数(OI)は29~30である。
(2)難燃ウール
 難燃ウールとしては一般的なメリノ種などのウールを使用し、ザプロ加工と言われるチタンとジルコニウム塩により処理した難燃ウールがある。ウールは非改質ウールを使用しても良いし、スケールを除去して防縮加工しても良い。このような非改質ウール又は改質ウールを使用するのは、吸湿性を向上し、輻射熱を遮断し、高温で過酷な環境下における作業で発汗して濡れても着心地を良好に保て、人体保護のための耐熱性を発揮できるからである。酸素指数(OI)は27~33である。
(3)難燃レーヨン
 難燃レーヨンとしては、例えばプロバン加工(オルブライト&ウイルソン社が開発したテトラキスヒドロキシメチルホスホニウム塩を用いたアンモニアキュアリング加工)、チバ・ガイギー社が開発したピロパテックスCP加工(N-メチロールジメチルホスノプロピオンアミド加工)、オーストリア国レンチング社の商品名“ビスコースFR”等がある。酸素指数(OI)は26である。
(4)難燃性コットン
 プロバン加工(コットンにテトラキスヒドロキシメチルホスホニウム塩をアンモニアキュアリング法により付着させた加工)、ピロパテックスCP加工(N-メチロールジメチルホスノプロピオンアミド加工)等の難燃コットンを使用できる。酸素指数(OI)は26である。
(5)難燃性アクリル繊維
 アクリロニトリルに難燃剤として塩化ビニル系モノマーを共重合したアクリル繊維を使用できる。カネカ社製、商品名“プロテックス”などがある。酸素指数(OI)は29~37である。
(6)ポリエーテルイミド繊維
 ポリエーテルイミド(PEI)繊維としては、例えばSABIC Innovative Plastics社製“ULTEM”(酸素指数(OI)32)がある。この繊維は約3cN/dtex程度の引張強度がある。ポリエーテルイミド単繊維の繊度は3.9dtex(3.5デニール)以下が好ましく、更に好ましくは2.8dtex(2.5デニール)以下である。3.9dtex(3.5デニール)以下であれば、柔軟で風合いもよく、作業服として好適である。ポリエーテルイミド繊維の好ましい平均繊維長は30~180mmの範囲であり、更に好ましくは45~150mmであり、特に好ましくは50~125mmの範囲である。前記範囲であれば紡績し易い。
(7)ポリアリレート繊維
 ポリアリレート繊維としては、クラレ社製、商品名“ベクトラン”がある。この繊維は強度が18~22cN/dtex,弾性率600~741cN/dtex,融点又は分解温度が300℃、酸素指数(OI)は27~28である。
(8)ポリベンズオキサゾール繊維
 ポリベンズオキサゾール(PBO)繊維としては、東洋紡社製、商品名“ザイロン”がある。この繊維は引張強度が37cN/dtex,弾性率270MPa, 融点又は分解温度が670℃、酸素指数(OI)は64である。
Hereinafter, the flame retardant fiber blended with the sheath component will be described.
(1) Meta-aramid fibers Meta-aramid fibers are, for example, manufactured by Du Pont in the United States, trade name "Nomesque" (same product name by Toray DuPont, Japan), Teijin, trade name "Conex", etc. There is. The oxygen index (OI) is 29-30.
(2) Flame-retardant wool As flame-retardant wool, there is flame-retardant wool treated with titanium and zirconium salt, which is called Zapro processing, using a wool such as a general merino type. As the wool, non-modified wool may be used, or the scale may be removed and shrink-proofed. The use of such non-modified wool or modified wool improves moisture absorption, blocks radiant heat, and keeps comfort even when sweating and getting wet in high temperature and harsh environments. This is because the heat resistance for protecting the human body can be exhibited. The oxygen index (OI) is 27-33.
(3) Flame retardant rayon Examples of flame retardant rayon include Provan processing (ammonia curing processing using tetrakishydroxymethylphosphonium salt developed by Albright & Wilson), Pyropatex CP processing developed by Ciba Geigy (N -Methylol dimethylphosnopropionamide processing), the brand name “Viscose FR” of Lenzing, Austria. The oxygen index (OI) is 26.
(4) Flame Retardant Cotton Flame retardant cotton such as Provan processing (processing in which tetrakishydroxymethylphosphonium salt is attached to cotton by ammonia curing method), Pyropatex CP processing (N-methyloldimethylphosnopropionamide processing), etc. Can be used. The oxygen index (OI) is 26.
(5) Flame-retardant acrylic fiber An acrylic fiber obtained by copolymerizing a vinyl chloride monomer as a flame retardant with acrylonitrile can be used. There is a product name "Protex" manufactured by Kaneka Corporation. The oxygen index (OI) is 29-37.
(6) Polyetherimide fiber The polyetherimide (PEI) fiber includes, for example, “ULTEM” (oxygen index (OI) 32) manufactured by SABIC Innovative Plastics. This fiber has a tensile strength of about 3 cN / dtex. The fineness of the polyetherimide single fiber is preferably 3.9 dtex (3.5 denier) or less, more preferably 2.8 dtex (2.5 denier) or less. If it is 3.9 dtex (3.5 denier) or less, it is flexible and has a good texture, and is suitable as work clothes. The preferred average fiber length of the polyetherimide fiber is in the range of 30 to 180 mm, more preferably 45 to 150 mm, and particularly preferably 50 to 125 mm. If it is the said range, it will be easy to spin.
(7) Polyarylate fiber As the polyarylate fiber, there is a trade name “Vectran” manufactured by Kuraray Co., Ltd. This fiber has a strength of 18 to 22 cN / dtex, an elastic modulus of 600 to 741 cN / dtex, a melting point or decomposition temperature of 300 ° C., and an oxygen index (OI) of 27 to 28.
(8) Polybenzoxazole fiber As polybenzoxazole (PBO) fiber, there is a product name “Zylon” manufactured by Toyobo Co., Ltd. This fiber has a tensile strength of 37 cN / dtex, an elastic modulus of 270 MPa, a melting point or decomposition temperature of 670 ° C., and an oxygen index (OI) of 64.
 次に芯鞘紡績糸について説明する。まず芯成分として牽切紡績糸を使用する。芯成分は牽切紡績されたパラ系アラミド繊維糸である。ここで牽切紡績糸とは、長繊維束(トウ)をドラフトしてカット(引きちぎり)し、加撚して紡績糸としたものをいう。ドラフト-加撚を1つの精紡機で行う直紡方式であっても良いし、一旦スラーバーとし撚り掛けして2工程以上で紡績糸(パーロック方式又はコンバータ法)としてもよい。好ましくは、直紡方式である。牽切糸を使用することにより、強力を高く維持でき、鞘繊維との一体性に優れた芯鞘構造紡績糸が得られる。 Next, the core-sheath spun yarn will be described. First, a check spun yarn is used as a core component. The core component is para-aramid fiber yarn that has been spun. Here, the check spun yarn refers to a yarn obtained by drafting a long fiber bundle (tow), cutting (stripping), and twisting it into a spun yarn. A direct spinning method in which draft-twisting is performed by one fine spinning machine may be used, or a slur bar may be once twisted to form a spun yarn (Perlock method or converter method) in two or more steps. The direct spinning method is preferable. By using the check yarn, a high strength can be maintained and a core-sheath structure spun yarn excellent in integrity with the sheath fiber can be obtained.
 牽切紡績糸の好ましい繊度は、単糸で5.56~20.0 tex(メートル番手で50~180番単糸)の範囲が好ましく、更に好ましくは6.67~16.7 tex(メートル番手で60~150番単糸)の範囲である。繊度が前記の範囲であれば、強力も高く、風合いなどの面からも耐熱性防護服等に好適である。また、撚り数はメートル番手125番単糸で350~550回/mが好ましく、更に好ましくは400~500回/mである。撚り数が前記範囲であれば、被覆繊維との一体性がさらに高いものとなる。また、好ましい繊維長は30~180mmの範囲に分布しており、平均繊維長は45~150mm、好ましくは50~125mmの範囲である。この範囲であれば強力をさらに高く維持できる。 The preferred fineness of the check spun yarn is preferably in the range of 5.56 to 20.0 tex (single yarn, 50 to 180 single yarn), more preferably 6.67 to 16.7 tex (meter count). 60 to 150 single yarn). If the fineness is in the above range, the strength is high and it is suitable for heat-resistant protective clothing and the like from the viewpoint of texture and the like. The number of twists is preferably 350 to 550 times / m, more preferably 400 to 500 times / m in the 125th single yarn having a metric count. When the number of twists is in the above range, the integrity with the coated fiber is further increased. The preferred fiber length is distributed in the range of 30 to 180 mm, and the average fiber length is in the range of 45 to 150 mm, preferably 50 to 125 mm. Within this range, the strength can be maintained higher.
 本発明において、牽切紡績糸単糸の繊度をS(tex)、その撚り数をT(回/m) とすると、同単糸の撚り係数Ks0は、次に示す数式によって計算する。
Ks0=T0・√S0
In the present invention, if the fineness of the single spun yarn is S 0 (tex) and the number of twists is T 0 (times / m), the twist coefficient Ks 0 of the single yarn is calculated by the following equation. .
Ks 0 = T 0 · √S 0
 前記紡績糸を番手表示する場合は、単糸の番手をC(m/g)、その撚り数をT(回/m) とすると、同単糸の撚り係数Kcは、次に示す数式によって計算する。
Kc0=T0/√C0
When displaying the spun yarn count, assuming that the count of the single yarn is C 0 (m / g) and the number of twists is T 0 (times / m), the twist coefficient Kc 0 of the single yarn is as follows: Calculate with mathematical formula.
Kc 0 = T 0 / √C 0
 次に本発明の芯鞘構造糸を製造するための装置と方法について説明する。図1は本発明の一実施例におけるリング精紡機の要部を示す斜視図である。積極回転駆動するフロントボトムローラ1に、直径の異なる2つの大小の円柱体2,3を錘ごとに設ける。2つの円柱体2,3は軸方向に同軸に直結する。2つの円柱体2,3の上に、2つの直径の異なる円筒形のフロントトップローラ4,5をのせる。2つのフロントトップローラ4,5の直径差は下側の2つの円柱体2,3の直径差と略同じであるが、大小は下側の2つの円柱体2,3とは逆である。2つのフロントトップローラ4,5はゴムコットで被覆され、荷重を掛けた共通のアーバー6にそれぞれ独立に転動可能に外嵌する。粗糸ボビンから引き出した短繊維束16は、ガイドバーからトランペットフィーダー7を介してバックローラ8に供給する。 Next, an apparatus and method for producing the core-sheath structured yarn of the present invention will be described. FIG. 1 is a perspective view showing a main part of a ring spinning machine in one embodiment of the present invention. Two large and small cylindrical bodies 2 and 3 having different diameters are provided for each weight on the front bottom roller 1 that is actively rotated. The two cylindrical bodies 2 and 3 are directly connected coaxially in the axial direction. Two cylindrical front top rollers 4 and 5 having different diameters are placed on the two cylindrical bodies 2 and 3. The difference in diameter between the two front top rollers 4 and 5 is substantially the same as the difference in diameter between the lower two cylindrical bodies 2 and 3, but the size is opposite to that of the lower two cylindrical bodies 2 and 3. The two front top rollers 4 and 5 are covered with a rubber cot, and are fitted on a common arbor 6 to which a load is applied so as to be independently rollable. The short fiber bundle 16 pulled out from the roving bobbin is supplied from the guide bar to the back roller 8 through the trumpet feeder 7.
 短繊維束15は芯繊維のパラ系アラミド牽切繊維束とし、短繊維束16は被覆繊維束とする。図示していないが、トランペットフィーダー7はフロントボトムローラ1の軸方向に揺動させることが可能であり、その揺動幅は調節することができる。バックローラ8から送出されてドラフトエプロン9を経た短繊維束Bは、大径側円柱体3と小径側の円筒形フロントトップローラ5に把持されて紡出される。短繊維束Aは、ヤーンガイド14を介して、小径の円柱体2と大径の円筒形フロントトップローラ4に供給して紡出される。 The short fiber bundle 15 is a para-aramid check fiber bundle of core fibers, and the short fiber bundle 16 is a coated fiber bundle. Although not shown, the trumpet feeder 7 can be swung in the axial direction of the front bottom roller 1, and the swiveling width can be adjusted. The short fiber bundle B sent from the back roller 8 and passed through the draft apron 9 is held and spun by the large diameter side cylindrical body 3 and the small diameter side cylindrical front top roller 5. The short fiber bundle A is spun by being supplied to the small-diameter columnar body 2 and the large-diameter cylindrical front top roller 4 via the yarn guide 14.
 小径側円柱体2から紡出される短繊維束15の紡出速度よりも、大径側円柱体3から紡出される短繊維束16の送出速度の方が速いから、スネルワイヤ10を介して2本の紡出された短繊維束15、16を撚り合わせると、短繊維束15の周りに短繊維束16が絡み、短繊維束15を芯とし短繊維束16が鞘となる芯鞘型の多層構造紡績糸17が形成される。 Since the delivery speed of the short fiber bundle 16 spun from the large diameter side cylindrical body 3 is higher than the spinning speed of the short fiber bundle 15 spun from the small diameter side cylindrical body 2, the two are connected via the snell wire 10. When the spun short fiber bundles 15 and 16 are twisted together, the short fiber bundle 16 is entangled around the short fiber bundle 15, and the short fiber bundle 15 serves as a core and the short fiber bundle 16 serves as a sheath. A structural spun yarn 17 is formed.
 短繊維束15に対する短繊維束16のオーバーフィード率は5~9%が好ましく、更に好ましくは6~8%である。オーバーフィード率が前記の範囲であると、短繊維束16は短繊維束15を「こより状」に包み込み、ほぼ100%の被覆率で芯繊維を被覆できる。 The overfeed rate of the short fiber bundle 16 with respect to the short fiber bundle 15 is preferably 5 to 9%, more preferably 6 to 8%. When the overfeed rate is within the above range, the short fiber bundle 16 can wrap the short fiber bundle 15 in a “twist” shape and cover the core fiber with a coverage of almost 100%.
 形成された多層構造紡績糸17は、アンチノードリング11とトラベラ12を介して錘上の糸管13に巻き取られる。短繊維束15,16の円柱体2,3上の把時位置が錘ごとに多少のばらつきがあっても、両者の送出速度比は常に一定であるから、製造した芯鞘型の多層構造紡績糸17の性状が錘ごとにばらつくおそれはない。又、トランペットフィーダー7をフロントボトムローラ1の軸方向に可能な範囲で揺動させると、フロントトップローラ5のゴムコット被覆の短繊維束16との摩擦領域が分散し、ゴムコット被覆の早期摩耗を防止することができる。図示していないが、ヤーンガイド14は、フロントボトムローラ1の軸方向に揺動させて円筒形フロントトップローラ4のゴムコット被覆の摩耗を軽減することが望ましい。 The formed multi-layered spun yarn 17 is wound around the thread tube 13 on the weight via the anti-node ring 11 and the traveler 12. Even if the gripping positions of the short fiber bundles 15 and 16 on the cylindrical bodies 2 and 3 are somewhat different from one weight to another, the ratio of the feeding speeds of the two is always constant. There is no possibility that the properties of the thread 17 vary from one weight to another. Further, when the trumpet feeder 7 is swung as far as possible in the axial direction of the front bottom roller 1, the friction area of the front top roller 5 with the short fiber bundle 16 of the rubber cot coating is dispersed to prevent premature wear of the rubber cot coating. can do. Although not shown, it is desirable that the yarn guide 14 is swung in the axial direction of the front bottom roller 1 to reduce wear of the rubber cot coating of the cylindrical front top roller 4.
 芯鞘型の多層構造紡績糸単糸の好ましい撚り方向は牽切糸単糸と同方向であり、かつ最も好ましい撚り数Tmax (回/m) は、鞘繊維を被覆した後の単糸繊度に関わらず、牽切紡績糸繊度S0 (tex) とその撚り数T(回/m) によって決定され、次式が成立する。
max=Rs・T0・√S0
ここにおいて、比例定数Rs=0.495とすれば、芯繊維と鞘繊維はいわばボルトとナットのように最高度の一体性を示し、芯鞘型の多層構造紡績糸の単糸強力は極大値を取る。
The preferred twisting direction of the core-sheath type multi-layer structure spun yarn is the same as that of the check yarn, and the most preferred twist number T max (times / m) is the fineness of the single yarn after coating the sheath fiber. Regardless, it is determined by the check spun yarn fineness S 0 (tex) and its twist number T 0 (times / m), and the following equation is established.
T max = Rs · T 0 · √S 0
Here, if the proportionality constant Rs = 0.495, the core fiber and the sheath fiber show the highest degree of integrity like a bolt and a nut, and the single yarn strength of the core-sheath multi-layer structure spun yarn is the maximum value. I take the.
 前記単糸を番手表示する場合、最も好ましい撚り数Tmax (回/m) は、牽切紡績糸単糸番手C0 (m/g) とその撚り数T(回/m) によって決定され、次式が成立する。
max=Rc・T0/√C0
ここにおいて、比例定数Rc=15.7とすれば、最高度の一体性を示し、多層構造紡績糸の単糸強力は極大値を取る。
When said single yarns to count display, the most preferred twist T max (times / m) is determined by the stretch-broken yarn single yarn count C 0 (m / g) and its twist T 0 (times / m) The following equation is established.
T max = Rc · T 0 / √C 0
Here, when the proportionality constant Rc = 15.7, the highest unity is shown, and the single yarn strength of the multilayer structure spun yarn takes the maximum value.
 以上のようにして得られた多層構造紡績糸20を図2に示す。図2において芯成分繊維21は牽切紡績されたパラ系アラミド繊維糸であり、鞘成分繊維22はPBI繊維とメタアラミド繊維を含み、芯成分21の周囲を被覆しており、一体性も良いため、洗濯してもパラ系アラミド繊維糸の摩耗などによる傷みは減少されるか、又はパラ系アラミド繊維が紡績糸の表面に現れる割合が少なくなり、着用や洗濯によって摩耗などの傷みが生じても外観を悪くすることはない。同様に変色や強度低下の恐れもない。いずれにしても品位の低下を防止できる。 The multilayer structure spun yarn 20 obtained as described above is shown in FIG. In FIG. 2, the core component fiber 21 is a check-spun para-aramid fiber yarn, and the sheath component fiber 22 includes PBI fiber and meta-aramid fiber, and covers the periphery of the core component 21, so that the integrity is good. Even after washing, damage due to wear of para-aramid fiber yarns is reduced, or the ratio of para-aramid fibers appearing on the surface of the spun yarn decreases, and even if wear or washing causes damage such as wear The appearance is not deteriorated. Similarly, there is no fear of discoloration or strength reduction. In any case, deterioration of the quality can be prevented.
 本発明の防護服用布帛は、前記芯鞘紡績糸(単糸)を2本撚り合わせて双糸にし、これを織物にするのが好ましい。双糸を使う理由は、単糸の2倍以上の強度をもってして製織時の糸切れを防止する抱合力を付与するとともに、単糸の持つ太さムラを相殺させ、織物の目風をきれいにするためである。双糸は一例としてダブルツイスター等の撚り機を使用して製造する。ダブルツイスターはその名前の通り、スピンドル1回転で2回の撚りが得られるので生産性抜群である。しかし非常に長い撚りかけ糸道に6ヶ所もの擦過地点があるため、せっかくの被覆部分が剥ぎ取られ、乱されて芯部が露出しやすい傾向にある。好ましくは同2地点のリングツイスター、最も好ましくは同2地点で極めて短い撚りかけ糸道のアップツイスターである。 The fabric for protective clothing of the present invention is preferably formed by twisting two core-sheath spun yarns (single yarns) into a double yarn and making it a woven fabric. The reason for using twin yarn is that it has a strength that is more than twice that of single yarn and provides a binding force to prevent yarn breakage during weaving. It is to do. As an example, the twin yarn is manufactured using a twisting machine such as a double twister. As the name suggests, the double twister is excellent in productivity because it can be twisted twice with one rotation of the spindle. However, since there are 6 rubbing points on a very long twisted yarn path, the precious covering portion tends to be peeled off and disturbed to easily expose the core portion. A ring twister at the same two points is preferable, and an up twister with a very short twisted yarn path at the two points is most preferable.
 木綿(コットン)に代表される親水性繊維の織物においては、タテ糸として単糸に糊付けをして使用する。製織時にタテ糸は隣接同士で織機開口運動の度毎に繰り返し摩擦し合い、張力を受ける度毎に撚りを戻す方向へ回転する。その結果、タテ糸の表面毛羽が絡み合い、糸からさらなる毛羽を引き出して抱合力を低下させ、やがては切断に到って織機を停台させる。繊維が親水性であれば澱粉等が糸に糊着しやすく、表面毛羽は糊剤で固められているので製織中に抱合力が低下することもなく、タテ糸切れは発生しない。なおかつ織り上げた後は精練工程中の水洗で容易に除去することが可能である。 In the fabric of hydrophilic fiber typified by cotton, the single yarn is glued as warp yarn. When weaving, the warp yarns repeatedly rub against each other every time the loom opens, and each time they receive tension, they rotate in a direction to return twist. As a result, the surface fluff of the warp yarn is entangled, and further fluff is pulled out from the yarn to reduce the tying force, and eventually the loom is stopped upon reaching cutting. If the fiber is hydrophilic, starch and the like are easily glued to the yarn, and the surface fluff is hardened with a glue, so that the conjugation force does not decrease during weaving, and no warp yarn breakage occurs. Moreover, after weaving, it can be easily removed by washing with water during the scouring process.
 これに対しウールや多くの合成繊維は疎水性であるため、澱粉等が効果的に作用しない。仮に特殊な糊剤を用いて糸表面に塗布できたとしても、織り上げた後の精練工程中において水洗い程度の手段で簡便かつ安価に除去できる方法は現時点で見いだされていない。 On the other hand, since wool and many synthetic fibers are hydrophobic, starch and the like do not act effectively. Even if it can be applied to the surface of the yarn using a special glue, no method has been found at this time that can be removed easily and inexpensively by means such as washing with water during the scouring process after weaving.
 織機におけるタテ糸切れは、糸を構成する単繊維強力(cN/dtex)よりは、表面毛羽の擦れ具合・絡み合い・剥ぎ取りに関する抱合力の方にはるかに大きく依存している。従って、タテ糸は双糸とするのが好ましい。 The warp yarn breakage in a loom is much more dependent on the conjugation force related to rubbing / entanglement / peeling of the surface fluff than the single fiber strength (cN / dtex) constituting the yarn. Accordingly, the warp yarn is preferably a twin yarn.
 単糸の撚り方向・撚り係数K1に対して、双糸のそれをSとするかZとするか、またその場合の撚り係数K2は、どのような織物にするかによって設定される。毛織物を例に取れば、ジョーゼットやボイルのようにシボ感やシャリ感を得たい場合は、単糸Z撚りに対し、双糸もZ撚りとしてK2を大きめに設定したいわゆる強撚糸とする。逆にサキソニーやフラノのように織物表面に毛羽をたくさん出してソフトでふくらみやぬめり感を持たせたい場合は、縮絨や起毛が促進されるよう単糸Z撚りに対し、双糸はS撚りとしてK2を小さめに設定したいわゆる甘撚とする。 The twist direction / twist factor K 1 of the single yarn is set to S or Z as that of the double yarn, and the twist factor K 2 in that case is set depending on the woven fabric. Taking wool as an example, if it is desired to obtain a grain feeling and Shari as georgette or voile to single yarn Z twisting, ply yarns also a so-called strong twine set slightly larger a K 2 as Z twist . On the other hand, if you want a lot of fluff on the surface of the fabric, like saxony or furano, to make it soft and bulging or slimy, double yarn is S twisted versus single yarn Z twisted to promote shrinking and raising. As a so-called sweet twist with K 2 set to be small.
 前記紡績糸を番手表示する場合は、1/28~1/52の範囲が好ましく、単糸の撚り係数Kc1は81~87の範囲であり、前記双糸の撚り方向は前記単糸の撚り方向と逆であり、かつ撚り係数Kc2は78~84の範囲とするのが好ましい。但し、単糸の撚り係数Kc1、双糸の撚り係数Kc2は、次に示す数式によって計算する。
Kc1=T1/√C1
Kc2=T2/√C1
ここにおいてT1は単糸の撚り数(回/m)、T2は双糸の撚り数(回/m)、C1は単糸番手(m/g)を表す。
When the spun yarn is indicated by a count, it is preferably in the range of 1/28 to 1/52, the single yarn twist coefficient Kc 1 is in the range of 81 to 87, and the twist direction of the double yarn is the twist of the single yarn. The direction is opposite and the twist coefficient Kc 2 is preferably in the range of 78-84. However, twist factor Kc 1 having a single fiber, twist factor Kc 2 twin yarns, following calculated by formula.
Kc 1 = T 1 / √C 1
Kc 2 = T 2 / √C 1
Here, T 1 represents the number of twists of single yarn (times / m), T 2 represents the number of twists of twin yarn (times / m), and C 1 represents the number of single yarns (m / g).
 前記範囲であると撚構造が安定し、糸包合性も高く、さらに目風がきれいでソフトな風合いの織物とすることができる。 Within the above range, the twisted structure is stable, the yarn packing property is high, and the fabric can be made into a soft and soft texture.
 得られた双糸は、撚り止めし、経糸と緯糸に使用して織物とする。織物組織は、平織(plain weave)、斜文織(twill weave、綾織ともいう)、又は朱子織(satin weave)組織、その他の変化織組織等を使用できる。編物にする場合は、横編、丸編、経編のいずれでも適用できる。編組織はどのようなものであっても良い。編物内に空気を含ませる場合は、二重接結パイル布帛に編成する。織物組織の中でもとくに好ましいのは図3に示すマット織であり、このマット織組織は、平+3/3マット織と称される。平織の部分は8本の経糸と緯糸で構成されプレーンな組織であり、3/3マット織の部分は経糸も緯糸も3本引き揃えられており、この部分は表面に突出している。したがって、滑り止め効果があるとともに、平組織が破れてもマット織の部分で止まり、破れにくい組織である。これは引き裂き止めという意味合いからRip Stop 構造と呼ばれている。 The obtained double yarn is twisted and used as a woven fabric for warp and weft. As the woven fabric structure, plain weave, twill weave, also called satin weave, satin weave, and other changed weave can be used. When making a knitted fabric, any of flat knitting, circular knitting and warp knitting can be applied. Any organization may be used. When air is included in the knitted fabric, it is knitted into a double-bonded pile fabric. Among the woven fabrics, the mat weave shown in FIG. 3 is particularly preferable, and this mat woven fabric is called a flat +3/3 mat weave. The plain weave part is a plain structure composed of 8 warps and wefts, and the 3/3 mat weave part has three warps and wefts aligned, and this part protrudes from the surface. Therefore, it has a non-slip effect, and even if the flat structure is torn, it stops at the mat-woven portion and is hard to break. This is called Rip Stop structure in the sense of tearing prevention.
 本発明の防護服用布帛の単位あたりの重量(目付)は100~340g/m2の範囲が好ましい。前記範囲であれば、さらに軽くて着心地の良い作業服とすることができる。さらに好ましくは140~300g/m2の範囲、とくに好ましくは180~260g/m2の範囲である。 The weight (unit weight) per unit of the protective clothing fabric of the present invention is preferably in the range of 100 to 340 g / m 2 . If it is the said range, it can be set as lighter and more comfortable work clothes. More preferably, it is in the range of 140 to 300 g / m 2 , and particularly preferably in the range of 180 to 260 g / m 2 .
 前記生地には帯電防止繊維を加えることが、活動時に帯電させないために好ましい。帯電防止繊維としては、金属繊維、炭素繊維、金属粒子や炭素粒子を練りこんだ繊維などがある。帯電防止繊維は、紡績糸に対して0.1~1質量%の範囲加えることが好ましく、更に好ましくは0.3~0.7質量%の範囲である。帯電防止繊維糸は製織時に加えることもできる。例えばKBセーレン社製“ベルトロン”、クラレ社製“クラカーボ”、炭素繊維、金属繊維等を0.1~1質量%の範囲加えるのが好ましい。 It is preferable to add antistatic fibers to the fabric so that it will not be charged during activity. Examples of the antistatic fiber include metal fiber, carbon fiber, metal particles, and fibers kneaded with carbon particles. The antistatic fiber is preferably added in the range of 0.1 to 1% by mass, more preferably in the range of 0.3 to 0.7% by mass with respect to the spun yarn. Antistatic fiber yarns can also be added during weaving. For example, “Beltron” manufactured by KB Seiren, “Kurabo” manufactured by Kuraray, carbon fiber, metal fiber, etc. are preferably added in the range of 0.1 to 1% by mass.
 以下、実施例を用いてさらに具体的に説明する。本発明は下記の実施例に限定されるものではない。 Hereinafter, more specific description will be given using examples. The present invention is not limited to the following examples.
 本発明の実施例、比較例における測定方法は次のとおりとした。
<酸素指数(O.I)試験>
 JIS K 7201-2に従って測定した。
<耐熱性試験>
 ISO 11613-1999に従って、180℃、5分の条件で測定した。
<防炎性試験>
 EN532に従って測定した。
<耐燃焼性>
 JIS L 1091A-4法で規定される、垂直に配置した織物試料の下端にブンゼンバーナーで12秒間接炎したときの炭化長、炎を外したときの残炎時間、及び残塵時間を測定した。
<耐洗濯性>
 国際性能基準ISO 11613-1999に規定されているISO 6330-1984, 2A-Eにしたがい、5回洗濯した。
<帯電圧試験>
 JIS L1094. 5.4法で規定される摩擦帯電減衰測定法により、帯電直後の電圧を測定した。
<総熱損失>
 ASTM F 1868 Part Cに従って測定した。
<その他の物性>
 JIS又は業界規格にしたがって測定した。
The measurement methods in Examples and Comparative Examples of the present invention were as follows.
<Oxygen index (O.I) test>
Measured according to JIS K 7201-2.
<Heat resistance test>
According to ISO 11613-1999, measurement was performed at 180 ° C. for 5 minutes.
<Flameproof test>
Measured according to EN532.
<Flame resistance>
Measured were carbonization length when indirect flame was burned with a Bunsen burner for 12 seconds at the lower end of a vertically arranged fabric sample specified by the JIS L 1091A-4 method, afterflame time when the flame was removed, and residual dust time. .
<Washing resistance>
Washed 5 times according to ISO 6330-1984, 2A-E specified in international performance standard ISO 11613-1999.
<Charge voltage test>
The voltage immediately after charging was measured by the triboelectric charge decay measurement method specified in JIS L1094.5.4 method.
<Total heat loss>
Measured according to ASTM F 1868 Part C.
<Other physical properties>
Measured according to JIS or industry standards.
 (実施例1~4)
1.使用繊維
(1)芯成分
 芯成分として、パラ系アラミド繊維、帝人社製商品名“テクノーラ”の牽切紡績糸(撚り数Z方向45回/10cm)、糸繊度8.0tex(メートル番手:1/125)(単繊維繊度1.7dtex、平均繊維長100mm、黒原着品)を使用した。
(2)鞘成分
 下記の3種類の繊維を混紡した。
(i)PBI繊維
 米国PBI Performance Products, Inc.社製のPBI単繊維繊度1.8dtex、のトウ(790000dtex(711000デニール),繊維本数444000本)を入手し、繊維長51mmのスクエアカットとして、カード混紡により繊維束(スライバー)を作製した。PBI繊維は生成り品(黄色)とした。
(ii)メタアラミド繊維
 帝人社製、商品名"コーネックス"、(繊維長76/102mmバイアスカット、繊度2.2dtex)を使用した。
(iii)帯電防止繊維
 帯電防止繊維はKBセーレン社製商品名“ベルトロン”、単繊維繊度5.6dtex、繊維長:89mmスクエアカットを使用した。
(Examples 1 to 4)
1. Used fiber (1) Core component As a core component, para-aramid fiber, a check-up spun yarn of Teijin's trade name “Technola” (twisted number Z direction 45 times / 10 cm), yarn fineness 8.0 tex (meter number: 1) / 125) (single fiber fineness 1.7 dtex, average fiber length 100 mm, black original product) was used.
(2) Sheath component The following three types of fibers were blended.
(i) PBI fiber Tow (790000dtex (711000 denier), 444,000 fibers) with a PBI single fiber fineness of 1.8dtex manufactured by PBI Performance Products, Inc., USA, is obtained as a square cut with a fiber length of 51mm. Thus, a fiber bundle (sliver) was produced. The PBI fiber was a product (yellow).
(ii) Meta-aramid fiber The trade name “Conex” (fiber length 76/102 mm bias cut, fineness 2.2 dtex) manufactured by Teijin Limited was used.
(iii) Antistatic fiber As the antistatic fiber, a trade name “Bertron” manufactured by KB Seiren, single fiber fineness 5.6 dtex, fiber length: 89 mm square cut was used.
2.紡績糸双糸の作製
(1)芯鞘紡績糸
 図1に示す方法によりパラ系アラミド繊維(黒原着品)25.6質量%を芯とし、PBI繊維とパラアラミド繊維の合計73.9質量%と、帯電防止繊維0.5質量%をカード混紡した繊維束(スライバー)を鞘とし、芯鞘紡績糸を作製した。芯鞘紡績糸の撚り方向はZ、撚り数は63回/10cm、繊度312.5dtexとした。得られた糸の色調は表1にまとめて示す。
(2)双糸
 前記芯鞘紡績糸をアップツイスターで撚り合わせて双糸とした。双糸の撚り方向はS、撚り数は60回/10cm、繊度625dtexとした。
2. Production of spun yarn double yarn (1) Core-sheath spun yarn By the method shown in FIG. 1, 25.6% by mass of the para-aramid fiber (black original product) is used as the core, and 73.9% by mass in total of PBI fiber and para-aramid fiber. A core-sheath spun yarn was prepared using a fiber bundle (sliver) obtained by card-spinning 0.5% by mass of antistatic fibers as a sheath. The twist direction of the core-sheath spun yarn was Z, the number of twists was 63 times / 10 cm, and the fineness was 312.5 dtex. The color tone of the yarn obtained is summarized in Table 1.
(2) Twist yarn The core-sheath spun yarn was twisted with an up twister to obtain a double yarn. The twist direction of the twin yarn was S, the number of twists was 60 times / 10 cm, and the fineness was 625 dtex.
3.織物の作製
 前記双糸を経糸と緯糸に使用し、レピア織機を使用して図3に示す平+3/3マット織り組織の織物を作製した。得られた織物の条件及び結果はまとめて表2に示す。
3. Fabrication of Woven Fabric A fabric of a flat +3/3 mat weave structure shown in FIG. 3 was fabricated using a rapier loom using the above-mentioned double yarn as warp and weft. The conditions and results of the resulting fabric are summarized in Table 2.
 (比較例1)
 鞘成分をメタアラミド繊維(帝人社製、商品名"コーネックス"、 繊維長76/102mmバイアスカット、繊度 2.2dtex、ベージュ色)73.9質量%とした以外は実施例1と同様に芯鞘紡績糸と織物を作成した。混紡糸の色調は表1に示し、織物の条件及び結果はまとめて表2に示す。
(Comparative Example 1)
The core sheath was the same as in Example 1 except that the sheath component was 73.9% by mass of meta-aramid fiber (manufactured by Teijin Ltd., trade name “Conex”, fiber length 76/102 mm bias cut, fineness 2.2 dtex, beige color) Made spun yarn and fabric. The color tone of the blended yarn is shown in Table 1, and the conditions and results of the fabric are collectively shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1のとおり、PBI繊維は限られた色であるが、色調の異なるメタアラミド繊維を均一混紡することにより、様々な色調の糸が得られた。 As shown in Table 1, although PBI fibers have a limited color, yarns of various tones were obtained by uniformly blending meta-aramid fibers having different tones.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から次のことが分かる。
(1)燃焼性、とくに炭化長は短く、PBI繊維の大きな利点である。きわめて優れた表面保全性を示していると判断できる。
(2)PBI繊維を混用した織物の酸素指数は高く、難燃性がきわめて高い。
(3)PBI繊維を混用すると、摩擦帯電圧が150V以下の測定不能の状態となる。これはPBI繊維の水分率は14.6%であることに起因するものと推定される。摩擦帯電圧が低い布帛は静電気が発生しにくく安全性が高い。
(4)芯鞘紡績糸と同様に織物においても、PBI繊維は限られた色であるが、色調の異なるメタアラミド繊維を均一混紡することにより、様々な色調の織物が得られた。
Table 2 shows the following.
(1) Combustibility, especially carbonization length is short, which is a great advantage of PBI fiber. It can be judged that it exhibits extremely excellent surface integrity.
(2) The oxygen index of the woven fabric mixed with PBI fibers is high, and the flame retardancy is extremely high.
(3) When PBI fibers are mixed, the frictional voltage becomes 150 V or less, and the measurement is impossible. This is estimated to be due to the fact that the moisture content of the PBI fiber is 14.6%. A fabric having a low frictional voltage is less likely to generate static electricity and has high safety.
(4) In the woven fabric as in the case of the core-sheath spun yarn, although the PBI fibers have a limited color, woven fabrics of various colors were obtained by uniformly blending meta-aramid fibers having different colors.
 (実施例5、比較例2)
 この実施例では、実際の防火服を想定し、外層と中層と内層の3層からなる織物を積層して試験をした。
(1)外層
 前記実施例1及び比較例1で得られた織物を使用した。
(2)中層(透湿防水層、モイスチャーバリアー)
 メタアラミド繊維(繊度2.2dtex,繊維長76/102mmバイアスカット)85質量%、ウール15質量%の混紡紡績糸を用いた平織物(質量77g/m2)からなる基布に、透湿防水膜としてポリテトラフルオロエチレンフィルムをラミネートした質量105g/m2の中層を使用した。
(3)内層(防熱層、インナーライナー)
 メタアラミド繊維(繊度2.2dtex,繊維長76/102mmバイアスカット)85質量%、ウール15質量%の混紡紡績糸を用いた16枚綜絖の蜂巣織物(質量213g/m2)を使用した。
 以上の積層品の測定結果を表3にまとめて示す。なお、表3はISO11613欧州法によって測定した。
(Example 5, Comparative Example 2)
In this example, an actual fireproof garment was assumed, and a test was conducted by laminating a fabric composed of three layers of an outer layer, a middle layer, and an inner layer.
(1) Outer layer The fabric obtained in Example 1 and Comparative Example 1 was used.
(2) Middle layer (moisture permeable waterproof layer, moisture barrier)
Moisture permeable waterproof membrane on a base fabric made of a plain woven fabric (mass of 77 g / m 2 ) using 85% by mass of meta-aramid fiber (fineness 2.2 dtex, fiber length 76/102 mm bias cut) and 15% by mass of wool. As an intermediate layer, a polytetrafluoroethylene film laminated with a mass of 105 g / m 2 was used.
(3) Inner layer (thermal barrier, inner liner)
A 16-sheet honeycomb fabric (mass 213 g / m 2 ) using a blended spun yarn of 85% by mass of meta-aramid fiber (fineness 2.2 dtex, fiber length 76/102 mm bias cut) and 15% by mass of wool was used.
The measurement results of the above laminated products are summarized in Table 3. Table 3 was measured by the ISO11613 European method.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から、すべての試験項目において合格であったことが分かる。前記3層積層品のASTM F 1868 Part Cによる総熱損失は表4に示すとおりである。 Table 3 shows that all test items passed. The total heat loss by ASTM F 1868 Part C of the three-layer laminate is as shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から本発明の織物を外層に使用すると総熱損失が高いことがわかった。一般に総熱損失の値が高いと、消火活動により体内から発散する熱流束も大となるため、防護性偏重によってもたらされる熱中症の危険からは遠のき、衣服内の快適性が増すと考えられる。この総熱損失が高い理由は、PBI繊維の水分率が14.6%であることに起因するものと推定される。 Table 4 shows that the total heat loss is high when the fabric of the present invention is used for the outer layer. In general, if the value of total heat loss is high, the heat flux emanating from the body due to fire fighting activities also increases, so it is far from the risk of heat stroke caused by protective prejudice, and it is considered that comfort in clothes increases. It is estimated that the reason for this high total heat loss is that the moisture content of the PBI fiber is 14.6%.
 (実施例6~8)
 鞘成分のPBI繊維と制電繊維の混紡品に換えて、PBI繊維と制電繊維とメタアラミド繊維(帝人社製、商品名"コーネックス"、繊維長76/102mmバイアスカット繊度2.2dtex,ベージュ色)の混紡品とした以外は実施例1と同様に実施した。得られた糸の酸素指数は表5に示し、織物の条件及び結果はまとめて表6に示す。
(Examples 6 to 8)
Replaced with PBI fiber and antistatic fiber blend of sheath component, PBI fiber, antistatic fiber and meta-aramid fiber (made by Teijin Limited, trade name "Conex", fiber length 76 / 102mm bias cut fineness 2.2dtex, beige This was carried out in the same manner as in Example 1 except that the color) blended product was used. The oxygen index of the obtained yarn is shown in Table 5, and the conditions and results of the fabric are shown together in Table 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5のとおり、本発明の実施例の芯鞘紡績糸の酸素指数は高く、難燃性が高いことが分かる。加えて3種のオレンジ色の紡績糸とすることができた。 As shown in Table 5, it can be seen that the core-sheath yarns of Examples of the present invention have high oxygen index and high flame retardancy. In addition, three kinds of orange spun yarn could be obtained.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6から次のことが分かる。
(1)燃焼性、とくに炭化長はPBI繊維の混用率の増加に伴って顕著に減少するのは、PBI繊維の大きな利点である。きわめて優れた表面保全性を示していると判断できる。
(2)PBI繊維を混用した織物の酸素指数は高く、難燃性がきわめて高い。
(3)PBI繊維を混用すると、摩擦帯電圧が150V以下の測定不能の状態となる。これはPBI繊維の水分率は14.6%であることに起因するものと推定される。摩擦帯電圧が低い布帛は静電気が発生しにくく安全性が高い。
(4)洗濯寸法変化がPBI繊維混用率の増加に伴って高くなるのは、水分率が2~3%のm-アラミド繊維に対して、PBI繊維の水分率は14.6%であることに起因するものと推定される。水分率が高いと、洗濯時に繊維が膨潤と収縮の差が大きくなり、寸法変化しやすい。
(5)耐光性を測定するためのカーボンアーク及びキセノンアーク灯照射下における変色の度合いがPBI繊維混用率の増加に伴って悪化する傾向にある。
Table 6 shows the following.
(1) It is a great advantage of PBI fibers that the flammability, especially the carbonization length, decreases significantly with an increase in the mixed use ratio of PBI fibers. It can be judged that it exhibits extremely excellent surface integrity.
(2) The oxygen index of the woven fabric mixed with PBI fibers is high, and the flame retardancy is extremely high.
(3) When PBI fibers are mixed, the frictional voltage becomes 150 V or less, and the measurement is impossible. This is estimated to be due to the fact that the moisture content of the PBI fiber is 14.6%. A fabric having a low frictional voltage is less likely to generate static electricity and has high safety.
(4) The change in the washing dimension increases with the increase in the PBI fiber mixture ratio, with respect to the m-aramid fiber having a moisture content of 2 to 3%, the moisture content of the PBI fiber is 14.6%. It is presumed to be caused by When the moisture content is high, the difference between the swelling and shrinkage of the fibers during washing increases, and the dimensions are likely to change.
(5) The degree of discoloration under the irradiation of carbon arc and xenon arc lamp for measuring light resistance tends to deteriorate as the PBI fiber mixture ratio increases.
 (実施例9~15)
 多層構造紡績糸の鞘成分の混紡率を表7に示すとおりとした以外は実施例1と同様に実施した。表7において洗濯試験は生地傷みを測定するための洗濯試験のことである。なお、前記PBI繊維はトウブレークした牽切繊維であり、生成り品(黄色)又は黒原着を用いた。鞘成分の混紡はスライバー混紡とし、各繊維の内容は次の通りである。
(1)難燃性ウール繊維はオーストラリア産、メリノ種の非改質ウール(平均繊維長:75mm)を使用し、酸性染料を用いて常法によりオリーブグリーン色に染色した。難燃性を付与するためザプロ加工されている。
(2)難燃性レーヨンは、オーストリア国レンチング社の商品名“ビスコースFR”(平均繊度3.3dtex ,繊維長89mmミックスカット)を使用し、反応染料を用いて常法によりスカイブルー色に染色した。
(3)難燃性コットンはプロパン加工(コットンにテトラキスヒドロキシメチルホスホニウム塩をアンモニアキュアリング法により付着させた加工)したコットンを使用した。この場合染色はせずに生成りのままの白残しとした。
(4)難燃性アクリル繊維はカネカ社製、商品名"プロテックスM" (平均繊度3.3dtex , 繊維長82/120mmバイアスカット)を用いた。カチオン染料を用いて常法によりオリエンタルブルー色に染色した。
(5)ポリエーテルイミド(PEI)繊維はSABIC Innovative Plastics社製“ULTEM”(酸素指数(O.I)32)、単繊維繊度3.3dtex(3デニール)、繊維長76/102mmバイアスカットを使用した。分散染料を用いて常法により赤色に染色した。
(6)ポリアリレート繊維
 ポリアリレート繊維としては、クラレ社製、商品名“ベクトラン”、単繊維繊度3.3dtex(3デニール)、繊維長76/102mmバイアスカットを使用した。酸素指数(O.I)は27~28である。この場合ポリアリレート繊維は原着茶色を使用した。
(7)ポリベンズオキサゾール繊維
 ポリベンズオキサゾール(PBO)繊維としては、東洋紡社製、商品名“ザイロン”、単繊維繊度3.3dtex(3デニール)、繊維長76/102mmバイアスカットを使用した。酸素指数(O.I)は64である。PBO繊維は生成り(薄黄色)をそのまま使用した。
(Examples 9 to 15)
The same procedure as in Example 1 was conducted except that the blending rate of the sheath component of the multilayer structure spun yarn was as shown in Table 7. In Table 7, the washing test is a washing test for measuring fabric damage. The PBI fiber was a toe-breaked check fiber, and a product (yellow) or black original was used. The sheath component blend is a sliver blend, and the contents of each fiber are as follows.
(1) The flame-retardant wool fiber was an Australian-made, merino-type unmodified wool (average fiber length: 75 mm), and was dyed in an olive green color by an ordinary method using an acid dye. Zapro processed to give flame retardancy.
(2) The flame retardant rayon uses the product name "Viscose FR" (average fineness 3.3dtex, fiber length 89mm mix cut) of Lenzing, Austria, and is converted into a sky blue color using a reactive dye. Stained.
(3) The flame-retardant cotton used was propane-processed cotton (process in which tetrakishydroxymethylphosphonium salt was attached to the cotton by an ammonia curing method). In this case, it was left as it was without being dyed.
(4) As the flame-retardant acrylic fiber, trade name “Protex M” (average fineness 3.3 dtex, fiber length 82/120 mm bias cut) manufactured by Kaneka Corporation was used. It was dyed in Oriental Blue using a cationic dye by a conventional method.
(5) Polyetherimide (PEI) fiber uses “ULTEM” (oxygen index (O.I) 32) manufactured by SABIC Innovative Plastics, single fiber fineness 3.3 dtex (3 denier), fiber length 76/102 mm bias cut did. It was dyed red using a disperse dye by a conventional method.
(6) Polyarylate fiber As the polyarylate fiber, Kuraray Co., Ltd., trade name “Vectran”, single fiber fineness 3.3 dtex (3 denier), fiber length 76/102 mm bias cut was used. The oxygen index (O.I) is 27-28. In this case, an original brown color was used as the polyarylate fiber.
(7) Polybenzoxazole fiber As polybenzoxazole (PBO) fiber, Toyobo Co., Ltd., trade name “Zylon”, single fiber fineness 3.3 dtex (3 denier), fiber length 76/102 mm bias cut was used. The oxygen index (O.I) is 64. The PBO fiber produced (light yellow) was used as it was.


Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7からパラ系アラミド繊維を芯成分とし、PBI繊維と他の難燃性繊維(難燃ウール繊維、難燃性レーヨン繊維、難燃性コットン繊維、難燃性アクリル繊維、PEI繊維、ポリアリレート繊維又はPBO繊維)との混紡繊維を鞘成分とする多層構造紡績糸は、混色によるカーマッチングができ、かつフィブリル化による外観不良を呈しないという意味で耐洗濯性が高く、かつ耐熱性及び難燃性も高いことが確認できた。 From Table 7, using para-aramid fiber as the core component, PBI fiber and other flame retardant fibers (flame retardant wool fiber, flame retardant rayon fiber, flame retardant cotton fiber, flame retardant acrylic fiber, PEI fiber, polyarylate A multi-layer structure spun yarn having a sheath component of a blended fiber with a fiber or PBO fiber) has high washing resistance in the sense that it can be car-matched by color mixing and does not exhibit poor appearance due to fibrillation, and has heat resistance and difficulty. It was confirmed that the flammability was high.
 本発明の耐熱性布帛を使用した耐熱性防護服は、消防服のほか、救急隊員、救命隊員、海上救護員、軍隊、石油関連施設の作業員、化学工場の作業員などの作業服として好適である。とくに芯成分が牽切紡績されたパラ系アラミド繊維糸であり、鞘成分がPBI繊維とメタアラミド繊維を含む混紡繊維であるため、耐熱性と難燃性が高く、かつ様々な色調の布帛とすることができる。 The heat-resistant protective clothing using the heat-resistant fabric of the present invention is suitable as work clothing for fire fighting suits, emergency crews, life crews, marine rescue workers, military personnel, oil-related facility workers, chemical factory workers, etc. It is. In particular, it is a para-aramid fiber yarn in which the core component is check spun, and the sheath component is a blended fiber including PBI fiber and meta-aramid fiber, so that the fabric has high heat resistance and flame retardancy and has various colors. be able to.
1 フロントボトムローラ
2 大径円柱体
3 小系円柱体
4,5 フロントトップローラ
6 アーバー
7 トランペットフィーダー
8 バックローラ
9 ドラフトエプロン
10 スネルワイヤ
11 アンチノードリング
12 トラベラー
13 糸管
14 ヤーンガイド
15 短繊維束(芯繊維のパラ系アラミド牽切繊維束)
16 短繊維束(被覆繊維束)
17,20 多層構造紡績糸
21 芯成分繊維
22 鞘成分繊維
DESCRIPTION OF SYMBOLS 1 Front bottom roller 2 Large diameter cylindrical body 3 Small cylindrical body 4,5 Front top roller 6 Arbor 7 Trumpet feeder 8 Back roller 9 Draft apron 10 Snell wire 11 Anti-node ring 12 Traveler 13 Thread tube 14 Yarn guide 15 Short fiber bundle ( Para-aramid checkered fiber bundle of core fiber)
16 Short fiber bundle (Coated fiber bundle)
17, 20 Multilayer structure spun yarn 21 Core component fiber 22 Sheath component fiber

Claims (14)

  1.  芯成分が牽切紡績されたパラ系アラミド繊維糸であり、鞘成分がポリベンズイミダゾール繊維を含む多層構造紡績糸であって、
     前記鞘成分はポリベンズイミダゾール繊維と、難燃性繊維(但し、前記パラ系アラミド繊維糸及び前記ポリベンズイミダゾール繊維を除く)を含んで混紡されており、
     前記ポリベンズイミダゾール繊維と前記難燃性繊維は少なくとも2色の異なった色であり、
     前記多層構造紡績糸は見掛け上前記ポリベンズイミダゾール繊維と前記難燃性繊維とは異なった色調であることを特徴とする多層構造紡績糸。
    A para-aramid fiber yarn in which the core component is check spun, and a sheath component is a multilayer structure spun yarn containing polybenzimidazole fiber,
    The sheath component is blended including polybenzimidazole fiber and flame retardant fiber (however, excluding the para-aramid fiber yarn and the polybenzimidazole fiber),
    The polybenzimidazole fiber and the flame retardant fiber are at least two different colors,
    The multilayer structure spun yarn is characterized in that the polybenzimidazole fiber and the flame retardant fiber are apparently different in color tone.
  2.  前記ポリベンズイミダゾール繊維は生成り又は原着繊維である請求項1に記載の多層構造紡績糸。 The multi-layer structure spun yarn according to claim 1, wherein the polybenzimidazole fiber is a produced or original fiber.
  3.  前記難燃性繊維は原着繊維、綿染め繊維及び糸染めから選ばれる少なくとも一つである請求項1又は2に記載の多層構造紡績糸。 The multilayer structure spun yarn according to claim 1 or 2, wherein the flame-retardant fiber is at least one selected from an original fiber, a cotton dyed fiber and a yarn dyed.
  4.  前記鞘成分を100質量%としたとき、前記ポリベンズイミダゾール繊維は10質量%以上90質量%以下であり、前記難燃性繊維は10質量%以上90質量%以下である請求項1~3のいずれかに記載の多層構造紡績糸。 The polybenzimidazole fiber is 10% by mass or more and 90% by mass or less, and the flame retardant fiber is 10% by mass or more and 90% by mass or less when the sheath component is 100% by mass. The multilayer structure spun yarn according to any one of the above.
  5.  前記難燃性繊維は、JIS K 7201-2で測定される酸素指数(O.I)が26以上である請求項1~4のいずれかに記載の多層構造紡績糸。 The multi-layer structure spun yarn according to any one of claims 1 to 4, wherein the flame-retardant fiber has an oxygen index (O.I) measured by JIS K 7201-2 of 26 or more.
  6.  前記難燃性繊維は、メタ系アラミド繊維、ポリアリレート繊維、ポリベンズオキサゾール繊維、ポリエーテルイミド繊維、難燃ウール、難燃性レーヨン、難燃性コットン及び難燃性アクリル繊維から選ばれる少なくとも一つの繊維である請求項1~5のいずれかに記載の多層構造紡績糸。 The flame retardant fiber is at least one selected from meta-aramid fiber, polyarylate fiber, polybenzoxazole fiber, polyetherimide fiber, flame retardant wool, flame retardant rayon, flame retardant cotton and flame retardant acrylic fiber. The multilayer structure spun yarn according to any one of claims 1 to 5, which is a single fiber.
  7.  前記被覆繊維には、さらに帯電防止繊維が混紡されている請求項1~6のいずれかに記載の多層構造紡績糸。 The multilayer structure spun yarn according to any one of claims 1 to 6, wherein the coated fiber is further blended with an antistatic fiber.
  8.  前記多層構造紡績糸は、メートル番手で28~52番(繊度:357~192decitex)の範囲である請求項1~7のいずれかに記載の多層構造紡績糸。 The multilayer structure spun yarn according to any one of claims 1 to 7, wherein the multilayer structure spun yarn has a metric count of 28 to 52 (fineness: 357 to 192 decitex).
  9.  請求項1~8のいずれか1項に記載の多層構造紡績糸を使用した耐熱性布帛。 A heat-resistant fabric using the multilayered spun yarn according to any one of claims 1 to 8.
  10.  前記耐熱性布帛は、EN532の防炎性試験において、炎が端に達せず、穴も開かず、溶融物はなく、平均残炎時間が2秒以下、平均残塵時間が2秒以下である請求項9に記載の耐熱性布帛。 In the flameproof test of EN532, the heat resistant fabric has no flame, no holes, no melt, an average flame time of 2 seconds or less, and an average dust time of 2 seconds or less. The heat resistant fabric according to claim 9.
  11.  前記耐熱性布帛は、ISO11613:1999の耐熱性試験180℃、5分において、生地が溶融、落下、分離及び発火せず、収縮率は5%以下である請求項9又は10に記載の耐熱性布帛。 The heat-resistant fabric according to claim 9 or 10, wherein the heat-resistant fabric does not melt, drop, separate, or ignite at a heat resistance test of ISO11613: 1999 at 180 ° C for 5 minutes, and the shrinkage rate is 5% or less. Fabric.
  12.  前記耐熱性布帛は、JIS K 7201-2で測定される酸素指数(O.I)が26以上である請求項9~11のいずれかに記載の耐熱性布帛。 The heat-resistant fabric according to any one of claims 9 to 11, wherein the heat-resistant fabric has an oxygen index (O.I) measured by JIS K 7201-2 of 26 or more.
  13.  前記耐熱性布帛の難燃性繊維は、後染めされている請求項9~12のいずれかに記載の耐熱性布帛。 The heat resistant fabric according to any one of claims 9 to 12, wherein the flame retardant fiber of the heat resistant fabric is post-dyed.
  14.  請求項9~13のいずれかに記載の耐熱性布帛を使用した耐熱性防護服。 A heat-resistant protective clothing using the heat-resistant fabric according to any one of claims 9 to 13.
PCT/JP2016/054388 2015-03-18 2016-02-16 Multilayered spun yarn, heat-resistant fabric obtained using same, and heat-resistant protective garment WO2016147779A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16745032.9A EP3109351A4 (en) 2015-03-18 2016-02-16 Multilayered spun yarn, heat-resistant fabric obtained using same, and heat-resistant protective garment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-055417 2015-03-18
JP2015055417A JP5972420B1 (en) 2015-03-18 2015-03-18 Multi-layer structure spun yarn, heat-resistant fabric using the same, and heat-resistant protective clothing

Publications (1)

Publication Number Publication Date
WO2016147779A1 true WO2016147779A1 (en) 2016-09-22

Family

ID=56701707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054388 WO2016147779A1 (en) 2015-03-18 2016-02-16 Multilayered spun yarn, heat-resistant fabric obtained using same, and heat-resistant protective garment

Country Status (3)

Country Link
EP (1) EP3109351A4 (en)
JP (1) JP5972420B1 (en)
WO (1) WO2016147779A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111830A1 (en) * 2017-12-04 2019-06-13 クラレトレーディング株式会社 Twisted yarn and twisted yarn structure using same
WO2019171608A1 (en) * 2018-03-07 2019-09-12 日本毛織株式会社 Spun yarn having multilayer structure, and heat-resistant cloth and heat-resistant protective clothing each using same
EP3524721A4 (en) * 2016-10-05 2020-06-03 Toray Industries, Inc. Flame-resistant knitted fabric

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6666129B2 (en) * 2015-12-11 2020-03-13 帝人株式会社 Fabrics and textile products
MX2019003778A (en) 2016-10-05 2019-07-01 Toray Industries Flame-resistant woven fabric.
JP2019073834A (en) * 2017-10-18 2019-05-16 帝人株式会社 Flame-retardant fabric and textile products
CN110004542A (en) * 2019-03-08 2019-07-12 东华大学 A kind of production method of the mixed yarn containing flame retardant viscose fiber and polyarylate fiber
CN109938520A (en) * 2019-04-15 2019-06-28 刘国成 A kind of wormwood antibacterial mosquito repellent pad
CN112853561B (en) * 2019-11-27 2023-03-24 太仓市泽记新材料有限公司 Flame-retardant polyester yarn and preparation method thereof
CN111058134B (en) * 2019-11-30 2022-03-11 黑牡丹纺织有限公司 Composite jean yarn and manufacturing method thereof
CA3161838A1 (en) * 2019-12-19 2021-06-24 Keith Edward PICKERING Flame resistant fabrics with increased strength
JP7280295B2 (en) * 2021-02-03 2023-05-23 日本毛織株式会社 Multilayer structure spun yarn, manufacturing method thereof, heat-resistant fabric and heat-resistant protective clothing
KR102387248B1 (en) * 2021-07-06 2022-04-15 (주)효림세울 Equipment for manufacturing sirofil Composite Yarn and sirofil Composite Yarn and method for manufacturing sirofil Composite Yarn
CN117693616A (en) * 2022-07-11 2024-03-12 日本毛织株式会社 Multilayer structure staple yarn, method for producing same, heat-resistant fabric, and heat-resistant protective garment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500392A (en) * 1985-08-13 1988-02-12 テン ケイト オ−バ−−オ−ル フアブリクス ビ−ブイ Improvements in flame-resistant materials
JPH02182936A (en) * 1988-12-22 1990-07-17 Springs Ind Inc Core spun yarn for fireproof safety clothing and preparation thereof
JPH0754229A (en) * 1993-08-09 1995-02-28 Toyobo Co Ltd Composite yarn
JP2000064140A (en) * 1998-06-05 2000-02-29 Wl Gore & Assoc Gmbh Yarn
JP2000328384A (en) * 1999-05-21 2000-11-28 Toray Ind Inc Composite spun yarn and cloth by using the same
US20030228812A1 (en) * 2002-06-07 2003-12-11 Southern Mills, Inc. Flame resistant fabrics comprising filament yarns
JP2004532367A (en) * 2001-06-28 2004-10-21 ケルメル Composite yarn
JP2007506006A (en) * 2003-09-15 2007-03-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Composite twisted core spun yarn and method and apparatus for manufacturing the same
WO2009014007A1 (en) 2007-07-25 2009-01-29 The Japan Wool Textile Co., Ltd. Multilayer structured spun yarn, process for producing the same, and, fabricated from the yarn, heat-resistant fabric and heat-resistant protective suit
JP2009249758A (en) * 2008-04-04 2009-10-29 Toyobo Co Ltd Core-sheath conjugate yarn having excellent covering property and abrasion resistance, and woven or knitted fabric
WO2012137556A1 (en) 2011-04-01 2012-10-11 日本毛織株式会社 Fabric for protective clothing and spun yarn for use therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2581665B1 (en) * 1985-05-07 1987-06-12 Rhone Poulenc Textile FIBER YARNS OF THERMOSTABLE TEXTILE MATERIALS
DE69835582T2 (en) * 1998-06-05 2007-08-16 W.L. Gore & Associates Gmbh Textile composite
US6840288B2 (en) * 2002-06-06 2005-01-11 E. I. Du Pont De Nemours And Company Fire-retardant fabric with improved tear, cut, and abrasion resistance
US7127879B2 (en) * 2002-10-03 2006-10-31 E. I. Du Pont De Nemours And Company Ply-twisted yarn for cut resistant fabrics

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500392A (en) * 1985-08-13 1988-02-12 テン ケイト オ−バ−−オ−ル フアブリクス ビ−ブイ Improvements in flame-resistant materials
JPH02182936A (en) * 1988-12-22 1990-07-17 Springs Ind Inc Core spun yarn for fireproof safety clothing and preparation thereof
JPH0754229A (en) * 1993-08-09 1995-02-28 Toyobo Co Ltd Composite yarn
JP2000064140A (en) * 1998-06-05 2000-02-29 Wl Gore & Assoc Gmbh Yarn
JP2000328384A (en) * 1999-05-21 2000-11-28 Toray Ind Inc Composite spun yarn and cloth by using the same
JP2004532367A (en) * 2001-06-28 2004-10-21 ケルメル Composite yarn
US20030228812A1 (en) * 2002-06-07 2003-12-11 Southern Mills, Inc. Flame resistant fabrics comprising filament yarns
JP2007506006A (en) * 2003-09-15 2007-03-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Composite twisted core spun yarn and method and apparatus for manufacturing the same
WO2009014007A1 (en) 2007-07-25 2009-01-29 The Japan Wool Textile Co., Ltd. Multilayer structured spun yarn, process for producing the same, and, fabricated from the yarn, heat-resistant fabric and heat-resistant protective suit
JP2009249758A (en) * 2008-04-04 2009-10-29 Toyobo Co Ltd Core-sheath conjugate yarn having excellent covering property and abrasion resistance, and woven or knitted fabric
WO2012137556A1 (en) 2011-04-01 2012-10-11 日本毛織株式会社 Fabric for protective clothing and spun yarn for use therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Encyclopedia of fiber", 25 March 2002, MARUZEN, pages: 848
See also references of EP3109351A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3524721A4 (en) * 2016-10-05 2020-06-03 Toray Industries, Inc. Flame-resistant knitted fabric
WO2019111830A1 (en) * 2017-12-04 2019-06-13 クラレトレーディング株式会社 Twisted yarn and twisted yarn structure using same
WO2019171608A1 (en) * 2018-03-07 2019-09-12 日本毛織株式会社 Spun yarn having multilayer structure, and heat-resistant cloth and heat-resistant protective clothing each using same
CN110603351A (en) * 2018-03-07 2019-12-20 日本毛织株式会社 Multilayer-structured spun yarn, and heat-resistant fabric and heat-resistant protective clothing using same

Also Published As

Publication number Publication date
JP2016176149A (en) 2016-10-06
EP3109351A1 (en) 2016-12-28
JP5972420B1 (en) 2016-08-17
EP3109351A4 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
JP5972420B1 (en) Multi-layer structure spun yarn, heat-resistant fabric using the same, and heat-resistant protective clothing
JP5060668B1 (en) Protective clothing fabric and spun yarn used therefor
US8209948B2 (en) Multilayer structured spun yarn, process for producing the same, and, fabricated from the yarn, heat-resistant fabric and heat-resistant protective suit
EP3009547B1 (en) Fabric and textile product
DE60225816T2 (en) TEXTILE SURFACE APPEARANCE AS A TOOTH OF A FIREFUL CLOTHING PIECE
JP5036922B1 (en) Protective clothing fabric and spun yarn used therefor
US20120110721A1 (en) Waterproof moisture-permeable sheet with fire protection performance and fire-protecting clothing using same
WO2010122836A1 (en) Fireproof fabric and fireproof clothing including same
DE60219422T2 (en) IMPROVED PROTECTIVE CLOTHES AND PROTECTIVE CLOTHING
JP2009249758A (en) Core-sheath conjugate yarn having excellent covering property and abrasion resistance, and woven or knitted fabric
US20210238773A1 (en) Composite yarn with glass core
JP6599496B2 (en) Multi-layer structure spun yarn, heat-resistant fabric using the same, and heat-resistant protective clothing
JP2019183299A (en) Fabric and textile product
JP7280295B2 (en) Multilayer structure spun yarn, manufacturing method thereof, heat-resistant fabric and heat-resistant protective clothing
WO2024013790A1 (en) Multilayer-structured spun yarn, method for producing same, heat-resistant cloth, and heat-resistant protective garment
JP6987882B2 (en) Woven knitting for clothes and clothes using it
US20200399796A1 (en) Fiber mix for yarn and fabrics
JP2021195681A (en) Fabric and fiber product
JP2022086678A (en) Fire retardant bundle spun yarn and fire retardant fabric and fire retardant protective clothing containing the same
JP2024045535A (en) Flame-retardant bound spun yarn, flame-retardant fabrics containing the same, and flame-retardant protective clothing

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016745032

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016745032

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16745032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE