WO2017010841A1 - 3d ceramic printer and a method using the same - Google Patents

3d ceramic printer and a method using the same Download PDF

Info

Publication number
WO2017010841A1
WO2017010841A1 PCT/KR2016/007736 KR2016007736W WO2017010841A1 WO 2017010841 A1 WO2017010841 A1 WO 2017010841A1 KR 2016007736 W KR2016007736 W KR 2016007736W WO 2017010841 A1 WO2017010841 A1 WO 2017010841A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing material
transparent film
printing
film
printer according
Prior art date
Application number
PCT/KR2016/007736
Other languages
French (fr)
Inventor
Hui Suk Yun
Original Assignee
Korea Institute Of Machinery & Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150139339A external-priority patent/KR101754771B1/en
Application filed by Korea Institute Of Machinery & Materials filed Critical Korea Institute Of Machinery & Materials
Priority to EP16824757.5A priority Critical patent/EP3322582B1/en
Priority to CN201680039062.0A priority patent/CN107810094A/en
Publication of WO2017010841A1 publication Critical patent/WO2017010841A1/en
Priority to US15/857,959 priority patent/US11192277B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present invention relates to a 3D ceramic printer and a 3D printing method using the same. More precisely, the present invention relates to a 3D ceramic printer wherein a printing material is placed and hardened on a transparent film and a 3D printing method using the same.
  • a 3D printer is understood as a device to realize a 3D shape of a printing material by the following steps; printing the material as flat as a 2D printer does and layering the 2D printed materials.
  • a 3D printer has been used to find out any problem in a future product in advance by making a copy of the product with chip and easy molded materials before the product is actually going to a market. Recently, a 3D printer is wanted in various fields because it can produce a 3D shape shortly based on the digitalized drawing information. In particular, a 3D printer has been used to produce precision parts and high strength ceramic.
  • both DLP and SLA are characterized by the following steps; loading a slurry or paste having ceramic powders dispersed in a photo-hardening agent to a printing bed or tank; handling the Z-axis stage down or up every time after loading the slurry or paste; and hardening the slurry or paste by radiating light to the same.
  • the filling ratio of inorganic materials goes up, the liquidity of the printing slurry or paste is reduced, suggesting that a flat layer is hard to be produced evenly. So, it is necessary to rake the printer surface with a blade or to rotate the vessel containing the slurry or paste.
  • the printing speed gets slow down because all of the following steps take time: molding a printing layer; separating the molded stage; reproviding a slurry and a paste; and straightening the surface.
  • Korean patent Publication No. 10-2014-0146689 describes the development of a hardening device using a ultraviolet light emitting diode designed and arranged for a variety of 3D printing processes.
  • the development does not provide any method for 3D printing by providing a slurry or a paste in a proper thickness for layering, evenly and continuously onto a film, in order to provide a green body layer necessary for molding each layer, layer by layer.
  • Korean patent Publication No. 10-2014-0140782 describes a 3D printer and a method for 3D printing, wherein an area of light can be regulated by using a lens and a large area 3D shape can be printed by moving a reflective part or a printing part on a prepared stage.
  • this invention is far from the method for 3D printing accomplished by providing evenly and continuously a slurry or a paste in a proper thickness for layering onto a film in order to provide a green body necessary for the molding of each layer, layer by layer.
  • Patent Reference 1 Korean Patent Publication No. 10-2014-0146689
  • Patent reference 2 Korean Patent Publication No. 10-2014-0140782
  • the present invention provides a 3D printer composed of the film supplying part to provide a transparent film; the material supplying part to provide a printing material on the transparent film; the photo-hardening part to solidify the printing material provided onto the transparent film as a designed form; and the film collecting part to collect the transparent film and the remaining printing material after the printing material has been hardened by the photo-hardening part.
  • the film supplying part herein is composed of at least one of roll elements for rolling of the transparent film, a motor to drive the roll element, and a height regulating element to regulate the height of the roll element.
  • At least one of blades can be included in order to regulate the thickness of a printing material provided on the transparent film above.
  • the 3D printer of the present invention can additionally include a pair of cutters to regulate the width and the position of a printing material provided on the transparent film.
  • the material supplying part herein can include at least one of those syringe equipped with a mixing screw, an extrusion container equipped with a mixing stirrer, and a slurry feeder plate for the distribution of a printing material on the surface of the transparent film during the rotation of the transparent film rolled on the film supplying part.
  • the syringe type material supplying part includes a cylinder containing a printing material, a mixing screw equipped in the inside of the cylinder, an extruding syringe to extrude the printing material on the transparent film, and an oil hydraulic motor to regulate the up-down movement of the extruding syringe.
  • the extrusion container type material supplying part includes a case containing a printing material, a stirrer equipped in the inside of the case to stir the printing material, an outlet to discharge the printing material on the transparent film, and a pressure regulating motor to regulate the extrusion pressure.
  • a temperature regulating plate can also be included in order to maintain the temperature of a printing material regularly on a transparent film before the transparent film is provided in the photo-hardening part.
  • the photo-hardening part includes a light radiation unit, the first molding stage where the transparent film provided with a printing material is placed, and the second molding stage where the printing material is compressed onto the transparent film.
  • the 3D ceramic printer of the present invention can additionally include a ceramic molding plate having a ⁇ pattern in 20 um ⁇ 200 um depth that can be attached onto and detached from the bottom of the second molding stage.
  • the first molding stage includes a pressure reducing hole to maintain the transparent film flat and tight.
  • the first molding stage can also have a inclined plane or a slant groove for the easy separation of a hardened printing material from the transparent film.
  • the film collecting part includes at least one of collecting roll elements for the rolling of a transparent film and a motor to drive the collecting roll element.
  • the 3D printing method of the resent invention is composed of the following steps; providing a transparent film; providing a printing material on the transparent film; regulating the thickness of the provided printing material; hardening the printing material regulated with its thickness as a designed shape; and separating the hardened printing material from the transparent film.
  • the step of providing a printing material on the transparent film can also provide at least two different printing materials.
  • a step of regulating the temperature of the printing material can be additionally included.
  • a step of collecting the remaining printing material and the transparent film can be additionally included.
  • various materials including the ones with a high inorganic material filling ratio can be used; fine regulation of the layering thickness is possible; a sculpture can be formed layer by layer with even thickness; and thereby the failure rate of the final printing product (3D printing structure) can be lowered.
  • a molding time can be significantly reduced owing to the continuous providing of a printing material by the material supplying part in the course of the molding with the light-irradiation on the molding stage.
  • the remaining slurry after being contacted on the film by an angled blade can be recovered and recycled.
  • the used film can be recovered and collected by using a film collecting roll.
  • an embossed bumpy pattern is formed on the bottom of the ceramic molding plate, so that the binding force of a printed structure on the first stage is excellent and thereby the separation of the structure from the second stage can be prevented.
  • the printed structure desirably has the pattern depth as deep as easy to separate from the second stage.
  • the ceramic molding plate is easy to attach on and separate from the second stage, indicating that washing or repair is easy.
  • the 3D ceramic printer of the present invention can minimize the waste of slurry by regulating the width of the printing material provided on a transparent film by using a cutter equipped in the printer along with a blade.
  • Figure 1 is a diagram illustrating the method for providing a material of the conventional 3D printer.
  • Figure 2 is a diagram illustrating a 3D printer according to an example of the present invention.
  • Figure 3 is a diagram illustrating another 3D printer according to another example of the present invention.
  • Figure 4 is a diagram illustrating also a 3D printer according to another example of the present invention.
  • Figure 5 is a diagram illustrating the material supplying parts according to the examples of the present invention.
  • Figure 6 is a diagram illustrating the set of cutters and blades according to an example of the present invention.
  • Figure 7 is a diagram illustrating the molding plate according to an example of the present invention.
  • Figure 8 is a flow chart illustrating the method of 3D printing according to an example of the present invention.
  • Figure 2 is a diagram illustrating a 3D printer according to an example of the present invention
  • Figure 3 is a diagram illustrating another 3D printer according to another example of the present invention
  • Figure 4 is also a 3D printer according to another example of the invention
  • Figure 5 is a diagram illustrating the material supplying parts according to the examples of the present invention.
  • the 3D printer according to an example of the invention is composed of the film supplying unit (10), the material supplying part (20), the photo-hardening part (30), and the film collecting part (40).
  • the film supplying part (10 : 11 ⁇ 15) is composed of at least one of roll elements (11, 12, 13, and 14) for rolling of the transparent film (P) and a motor to drive the roll element (not shown). It also includes a height regulating element (15) to regulate the height of the roller element precisely.
  • the roll elements (11, 12, 13, and 14) play a role of maintaining the transparent film flat and even and of providing the transparent film to the material supplying part (20).
  • the height regulating element (15) regulates the height (z-axis) where the transparent film is provided.
  • the transparent film (P) above preferably has a low surface energy so that it embraces a printing material with a weak binding force on the film and let the film be apart easily after the molding.
  • a transparent film is exemplified by polyethylene, teflon, silicon, and cellulose acetate, but not always limited thereto.
  • the material supplying part (20 : 20a, 20b, 20c, see Figure 5) provides a printing material on the transparent film (P) provided by the film supplying part (10).
  • a preferable printing material is ceramic, but not always limited thereto.
  • the material supplying part (20), as shown in Figure 2 and Figure 5, is equipped with a cylinder (21) where a printing material such as slurry or paste is included; a mixing screw (22) placed in the cylinder to eliminate the air generated in the inside of the printing material and to prevent the contact with outside air; an extruding syringe (23) to extrude the printing material on the transparent film; and an oil hydraulic motor (24) to regulate the up-down movement of the extruding syringe, which is the syringe type material supplying part (20a).
  • a printing material such as slurry or paste
  • the material supplying part (20) is composed of a case (25) where a printing material such as slurry or paste is loaded; a stirrer (26) to stir the printing material which is equipped in the inside of the case; an outlet (28) to discharge the printing material on the transparent film; and a pressure regulating motor (27) to regulate the extrusion pressure, which is the extrusion container type material supplying part (20b).
  • the material supplying part (20) in another example of the invention can be formed as the slurry supplying plate type (20c) including the slurry supplying plate (29) installed closely to the rotating surface of a roll element so as to distribute a printing material evenly on the surface while the roll element is rotating.
  • the syringe type material supplying part shown in Figure 2 is suitable for providing a printing material in a line on a transparent film
  • the extrusion container type material supplying part shown in Figure 3 is suitable for providing a printing material to fill the area as a face
  • the slurry supplying plate type material supplying part shown in Figure 4 is suitable for providing a printing material to fill the area as a face.
  • the slurry supplying plate type material supplying part does not need an additional stirring device, which favors making the printer structure simpler.
  • the material supplying part (20) provides a printing material on a transparent film with the regulation of the amount, the concentration, and the viscosity of a printing material. While the printing material is provided by the material supplying part (20), the transparent film is moved onto the first molding stage (32) by the first moving stage (50).
  • the material supplying part (20) can include a mesh type filter in the outlet through which a printing material is sprayed.
  • the mesh type filter is preferably made of such a material that does not react with the hardening solution and preferably lets the particles under 10 ⁇ m pass through.
  • the material supplying part (20) can prevent the conglomeration of particles that can be formed by the polymerization of a molding solution when it is repeatedly re-used when the printing material is recycled.
  • the material supplying part (20) can include at least one of blades (B1 and B2) in order to regulate the thickness of the provided printing material.
  • the first blade (B1) shown in Figure 2 can make the printing material provided on the transparent film flat and the second blade (B2) can regulate the thickness of the printing material treated as flat above more precisely.
  • the height regulating element (B3) can also be included in order to regulate the height of such blades (B1 and B2).
  • the heights of the first and the second blades (B1 and B2) are regulated by the height regulating element (B3), resulting in the regulation of the thickness of the transparent film.
  • the two blades shown in the Figure are only examples and that does not mean the printer of the present invention is equipped with only two blades.
  • the first moving stage (50) is equipped with the temperature regulation plate (51) to maintain the temperature of a printing material on a transparent film stably before the transparent film provided with the printing material is provided to the photo-hardening part (30).
  • the photo-hardening part (30) includes the light irradiation unit (31), the first molding stage (32), and the second molding stage (33).
  • the light irradiation unit (31) irradiates light onto the transparent film landed on the first molding stage (32).
  • the first molding stage is preferably made of a transparent material in order for the light to reach the transparent film in the light irradiation unit (31).
  • the second molding stage (33) descends by the stage driving part (34) close to the printing material on the transparent film landed on the first molding stage (32). At this time, duration, light wavelength, and light intensity are controlled based on the stereolithography principles layer by layer and at last the printing material is hardened as programmed.
  • the first molding stage (32) has the pressure reducing hole (35) attached on a corner of it that helps the transparent film to contact the first molding stage (32) flat and tightly.
  • the first molding stage (32) can include an inclined plane (36) on one side for the easy separation of the printing material hardened by the second molding stage (33) from the transparent film.
  • the side of the first molding stage (32) where the inclined plane (36) is formed is connected with the second moving stage (60) and the transparent film has moved over the second moving stage (60) is collected by the film collecting part (40).
  • the film collecting part (40) is composed of at least one of the collecting roll elements (41) for rolling of the printed transparent film and a motor (not shown) to drive the collecting roll element (41). It can also include a weight (42) to give a certain pressure on the transparent film.
  • a printing material collecting container (61) might be formed in the end of the second moving stage (60). Also, a container height regulating element (62) can be included to regulate the height of the printing material collecting container.
  • the printing material remaining on the transparent film without being hardened is collected by the printing material collecting container (61).
  • the printing material collecting container (61) is equipped with a chisel board whose height can be adjusted, and the printing material remaining on the film is collected by the film collecting part (40) by contacting the chisel board tightly with the transparent film.
  • Figure 6 is a diagram illustrating the set of cutters (71a and 71b) and blades (B1 and B2) according to an example of the present invention. As shown in Figure 6, a package of the blades (B1 and B2) and the cutters (71a and 71b) can be equipped in the assembly line of the fist moving stage (50).
  • the printing material can be sprayed all over the total area of a transparent film that would moved to the moving stage, according to a printing target, but also can be processed only on a part or a certain area of a transparent film if the size of a target is not so big. That is, the width or location of the distribution of the printing material can be regulated, by which the printing material waste would be significantly reduced by spraying the material only on a target area instead of spraying the material everywhere and also the material can be recycled.
  • Figure 6 also illustrates an example of a set of cutters (71a and 71b) additionally equipped to regulate the width of the printing material that would be sprayed on a transparent film.
  • these cutters (71a and 71b) are included in a package composed of the blades (B1 and B2), the blade height regulating element (B3), and the cutters (71a and 71b), which are prepared in a case (70).
  • the material supplying part (20 : 20a, 20b, and 20c) can spray a printing material from the top of the case (70) through a pair of cutters (71a and 71b).
  • the material supplying part (20 : 20a, 20b, and 20c) is designed to fit the inside structure of the case (70) to prevent the leaking of the printing material such as slurry.
  • a set of cutters (71a and 71b) are arranged in two parallel lines with some space on the first moving stage (50), which are included in the case (70) to slide toward the width direction of the transparent film.
  • the material supplying part (20) sprays the printing material in the space between the first cutter (71a) and the second cutter (71b). Accordingly, the width of the printing material is regulated according to the interval of the cutters (71a and 71b).
  • the cutters (71 and 71b) slide toward the width direction of the transparent film to regulate the location of the printing material.
  • FIG. 7 is a diagram illustrating the molding plate (335) according to an example of the present invention.
  • the molding plate (335) is to prevent the separation of the ceramic structure from the second molding stage (33) that might be happening in the course of the repeated attachment/separation of the film on the first molding stage (21) and the 3D ceramic structure shaped on the second molding stage and to prevent the impurities during the printing process.
  • the molding plate (335) is attached under the second molding stage (33) and is provided in the bumpy ceramic material having a ⁇ pattern (3351) in the depth of 20 um ⁇ 200 um that can be attached onto and detached from the bottom of the second molding stage.
  • the molding plate (335) is designed to be easily attached on and separated from the second molding stage (33) for the maintenance and repair.
  • an engraved groove (331) is made on the lower surface of the second molding stage (33), while an embossed protrusion (333) is made with corresponding to the engraved groove (331) on the upper side of the molding plate.
  • a ceramic material is used as a printing material for the 3D ceramic printer of the invention.
  • a product is heavier than a product produced with a general light curing resin. So, the molding plate (335) made of the same ceramic material is favored for the prevention of the mixing with impurities and for the safe attachment of a sculpture.
  • a ⁇ pattern (3351) is formed on the lower surface of the molding plate (335) to increase the adhesiveness due to the widened area.
  • the ⁇ pattern (3351) can be provided in the shapes of line, lattice, and wave.
  • the distance between grooves is preferably 1 mm ⁇ 5 mm. If the depth of the groove in the ⁇ pattern (3351) is too deep, the attached printing product is not separated. Therefore, the depth of the groove is preferably 20 um ⁇ 200 um.
  • the film supplying part (10) provides a transparent film (P) and a printing material on the provided transparent film.
  • the printing material is hardened as programmed in the first and the second molding stages (32 and 33).
  • the used film and the remaining printing material are collected in the film collecting part (40).
  • the transparent film is moved by the first and the second moving stages (50 and 60), for which a weight (42) is used to give force to the transparent film. This procedure is described in more detail hereinafter.
  • a transparent film is provided (S10).
  • the transparent film rolled on the roll element is provided to the first moving stage (50) by operating the motor equipped to drive the roll elements (11 ⁇ 14). More precisely, those roll elements (11 ⁇ 14) are designed to maintain the rolled transparent film flat and even and to provide the film to the material supplying part (20). At this time, the height and the direction (z-axis) of the provided transparent film can be adjusted by using a height regulating element (15).
  • a printing material is projected or distributed on the transparent film provided in the first moving stage (50) by using at least one of many types of the material supplying part (20).
  • the amount, supply speed, concentration, and viscosity of the printing material can be regulated so that the printing material supplying time would be same as the time consumed for the step of photo-hardening (S40) which will be described hereinafter, by which the printing material supplying process and the printing material hardening process can be accomplished at the same time and as a result the whole production time for the final printing product will be effectively reduced.
  • the thickness of the printing material provided on the transparent film is regulated (S30).
  • the thickness of the printing material can be regulated as wanted by adjusting the height of at least one of those blades (B1 and B2). If multiple blades are used, the height of each blade can be adjusted differently to achieve a more precise control of the thickness in each step.
  • the printing material provided on the transparent film is being flattened primarily by the first blade (B1) and the thickness of the flattened printing material is precisely regulated by using the second blade (B2).
  • the height of the blades can be controlled according to the material supplying part (20) type.
  • the regulation of the printing material thickness can be optimized and the temperature of the printing material can be optimized as well for the hardening simultaneously or before and after the thickness regulation.
  • the printing material is hardened in the programmed shape (S40).
  • the transparent film on which the printing material is loaded with the regulation of its thickness is moved onto the first molding stage (32).
  • the second molding stage (33) descends thereon to contact with the printing material.
  • Time, light wavelength, and light intensity are regulated based on the stereolithography principles.
  • the material is hardened layer by layer as programmed. At this time, the transparent film is contacted tightly and flat onto the first molding stage (32) through the pressure reducing hole (35) formed on the first molding stage (32).
  • the hardened printing material is adhered onto the second molding stage (33) to form a layer.
  • the newly layered printing material on the first molding stage (32) is added to the hardened layer to form another layer.
  • the transparent film Upon completion of the hardening, the transparent film is moved by the moving stages (50 and 60), followed by the separation of the hardened printing material from the transparent film. To make the separation smooth, the transparent film is pulled via pressure reduction by the pressure reducing hole (35). Or, the transparent film is let slide the inclined plane or the slant groove (36) formed on a side of the first molding stage (32) in order to separate the hardened printing material easily.
  • the used transparent film is collected by the collecting roll element (41) and the printing material that remained on the transparent film without being hardened is collected in the printing material collecting container (61).
  • the printing is processed at a certain sized transparent film unit, so a material for the printing is not limited and various materials can be processed in one device. It is also possible to control the thickness of layering very precisely and to form a sculpture in an even thickness layer by layer, suggesting that the failure rate of a final printing product (3D printing structure) is going to be lowered.
  • the printing material can be contacted with the transparent film tightly and such conditions as printing time, light wavelength, and light intensity can be regulated based on the stereolithography principles to harden the printing material layer by layer at an even thickness, according to the present invention. Therefore, the partial solidification or the hardening solution denaturation that is not wanted but induced by a longer irradiation time or a higher irradiation dose that causes light scattering can be prevented and instead the quality of the printing product remains good and regular.
  • the material supplying part is working in the way of continuous driving to provide a printing material, indicating that the molding time can be reduced significantly.
  • the printing material is provided every time on a new film so that a structure having a complicated structure can be produced by using two or more materials with the multiple supplying containers.
  • the remaining slurry left after the molding can be collected by using a blade contacting with the film at a certain angle and recycled before the film is moved in order to place a new film with a different material.
  • the used film can be collected or recovered by using the film collecting roll.

Abstract

The present invention relates to a 3D printer wherein a printing material is placed and hardened on a transparent film and a 3D printing method using the same. The 3D printer of the present invention is composed of the film supplying part to provide a transparent film; the material supplying part to provide a printing material on the transparent film; the photo-hardening part to solidify the printing material provided onto the transparent film as a designed form; and the film collecting part to collect the transparent film and the remaining printing material after the printing material has been hardened by the photo-hardening part.

Description

3D CERAMIC PRINTER AND A METHOD USING THE SAME
The present invention relates to a 3D ceramic printer and a 3D printing method using the same. More precisely, the present invention relates to a 3D ceramic printer wherein a printing material is placed and hardened on a transparent film and a 3D printing method using the same.
In general, a 3D printer is understood as a device to realize a 3D shape of a printing material by the following steps; printing the material as flat as a 2D printer does and layering the 2D printed materials.
A 3D printer has been used to find out any problem in a future product in advance by making a copy of the product with chip and easy molded materials before the product is actually going to a market. Recently, a 3D printer is wanted in various fields because it can produce a 3D shape shortly based on the digitalized drawing information. In particular, a 3D printer has been used to produce precision parts and high strength ceramic.
To produce precision parts and high strength ceramic with a 3D printer, the photo-hardening system such as DLP and SLA is mainly used (see Figure 1). However, both DLP and SLA are characterized by the following steps; loading a slurry or paste having ceramic powders dispersed in a photo-hardening agent to a printing bed or tank; handling the Z-axis stage down or up every time after loading the slurry or paste; and hardening the slurry or paste by radiating light to the same. According to the method above, as the filling ratio of inorganic materials goes up, the liquidity of the printing slurry or paste is reduced, suggesting that a flat layer is hard to be produced evenly. So, it is necessary to rake the printer surface with a blade or to rotate the vessel containing the slurry or paste.
Both cases use a printing tank containing a slurry or paste all together, and accordingly the filling ratio of inorganic materials increases with producing the following problems.
First, it is hard to produce a printing layer green body with an even thickness and a smooth surface.
Second, it is hard to regulate the thickness of each layer of the printing layer green body accurately.
Third, it is hard to accomplish the photo-hardening because of the light scattering caused by particles, which makes the radiation time longer and thereby the regulation of the thickness of each layer of the printing layer green body becomes difficult.
Fourth, there is a chance of partial hardening in an unwanted place because of the light scattering according to the prolonged radiation time or enlarged radiation dose, which causes the denaturation of a hardening solution, resulting in the problem of a final printing product.
Fifth, the printing speed gets slow down because all of the following steps take time: molding a printing layer; separating the molded stage; reproviding a slurry and a paste; and straightening the surface.
Sixth, a combination of different materials cannot be molded because only one kind of material can be used when a printing slurry or a paste bed is used.
Korean patent Publication No. 10-2014-0146689 describes the development of a hardening device using a ultraviolet light emitting diode designed and arranged for a variety of 3D printing processes. However, the development does not provide any method for 3D printing by providing a slurry or a paste in a proper thickness for layering, evenly and continuously onto a film, in order to provide a green body layer necessary for molding each layer, layer by layer.
Korean patent Publication No. 10-2014-0140782 describes a 3D printer and a method for 3D printing, wherein an area of light can be regulated by using a lens and a large area 3D shape can be printed by moving a reflective part or a printing part on a prepared stage. However, this invention is far from the method for 3D printing accomplished by providing evenly and continuously a slurry or a paste in a proper thickness for layering onto a film in order to provide a green body necessary for the molding of each layer, layer by layer.
[PRIOR ART REFERENCE]
[PATENT REFERENCE]
(Patent Reference 1) Korean Patent Publication No. 10-2014-0146689
(Patent reference 2) Korean Patent Publication No. 10-2014-0140782
In order to overcome the problems of the conventional art, it is an object of the present invention to provide a 3D printer and a method for 3D printing using the same that can provide a slurry or a paste in a proper thickness for layering evenly and continuously, wherein a transparent film is used for the layering of a printing material that does not hinder the light transmission for photo-fabrication and can be easily separated after molding, so that a green body necessary for the molding can be provided each time.
To achieve the abject above, the present invention provides a 3D printer composed of the film supplying part to provide a transparent film; the material supplying part to provide a printing material on the transparent film; the photo-hardening part to solidify the printing material provided onto the transparent film as a designed form; and the film collecting part to collect the transparent film and the remaining printing material after the printing material has been hardened by the photo-hardening part.
The film supplying part herein is composed of at least one of roll elements for rolling of the transparent film, a motor to drive the roll element, and a height regulating element to regulate the height of the roll element.
Also, at least one of blades can be included in order to regulate the thickness of a printing material provided on the transparent film above.
The 3D printer of the present invention can additionally include a pair of cutters to regulate the width and the position of a printing material provided on the transparent film.
The material supplying part herein can include at least one of those syringe equipped with a mixing screw, an extrusion container equipped with a mixing stirrer, and a slurry feeder plate for the distribution of a printing material on the surface of the transparent film during the rotation of the transparent film rolled on the film supplying part.
The syringe type material supplying part includes a cylinder containing a printing material, a mixing screw equipped in the inside of the cylinder, an extruding syringe to extrude the printing material on the transparent film, and an oil hydraulic motor to regulate the up-down movement of the extruding syringe.
The extrusion container type material supplying part includes a case containing a printing material, a stirrer equipped in the inside of the case to stir the printing material, an outlet to discharge the printing material on the transparent film, and a pressure regulating motor to regulate the extrusion pressure.
A temperature regulating plate can also be included in order to maintain the temperature of a printing material regularly on a transparent film before the transparent film is provided in the photo-hardening part.
The photo-hardening part includes a light radiation unit, the first molding stage where the transparent film provided with a printing material is placed, and the second molding stage where the printing material is compressed onto the transparent film.
The 3D ceramic printer of the present invention can additionally include a ceramic molding plate having a 凹凸 pattern in 20 um ~ 200 um depth that can be attached onto and detached from the bottom of the second molding stage.
The first molding stage includes a pressure reducing hole to maintain the transparent film flat and tight.
The first molding stage can also have a inclined plane or a slant groove for the easy separation of a hardened printing material from the transparent film.
The film collecting part includes at least one of collecting roll elements for the rolling of a transparent film and a motor to drive the collecting roll element.
The 3D printing method of the resent invention is composed of the following steps; providing a transparent film; providing a printing material on the transparent film; regulating the thickness of the provided printing material; hardening the printing material regulated with its thickness as a designed shape; and separating the hardened printing material from the transparent film.
The step of providing a printing material on the transparent film can also provide at least two different printing materials.
After the step of regulating the thickness of the provided printing material, a step of regulating the temperature of the printing material can be additionally included.
After the step of separating the hardened printing material from the transparent film, a step of collecting the remaining printing material and the transparent film can be additionally included.
[Advantageous Effect]
According to the 3D ceramic printer of the present invention and the method for 3D printing using the same, various materials including the ones with a high inorganic material filling ratio can be used; fine regulation of the layering thickness is possible; a sculpture can be formed layer by layer with even thickness; and thereby the failure rate of the final printing product (3D printing structure) can be lowered.
In addition, a molding time can be significantly reduced owing to the continuous providing of a printing material by the material supplying part in the course of the molding with the light-irradiation on the molding stage.
Also such problems of the method using the conventional material tank as the low precision caused by the undesirable strength or scattering of light, the hardening of slurry around, and the denaturation can be solved by the way of providing a material every time as much as needed.
According to the method of the present invention, it is also possible to provide a printing material every time on a new film, so that a structure providing various performances can be constructed with two or more materials provided by multiple providing devices.
When it is necessary to move a film in order to provide the film loaded with a new material after the molding, the remaining slurry after being contacted on the film by an angled blade can be recovered and recycled. The used film can be recovered and collected by using a film collecting roll.
According to the present invention, an embossed bumpy pattern is formed on the bottom of the ceramic molding plate, so that the binding force of a printed structure on the first stage is excellent and thereby the separation of the structure from the second stage can be prevented. At this time, upon completion of the printing, the printed structure desirably has the pattern depth as deep as easy to separate from the second stage. The ceramic molding plate is easy to attach on and separate from the second stage, indicating that washing or repair is easy.
The 3D ceramic printer of the present invention can minimize the waste of slurry by regulating the width of the printing material provided on a transparent film by using a cutter equipped in the printer along with a blade.
The application of the preferred embodiments of the present invention is best understood with reference to the accompanying drawings, wherein:
Figure 1 is a diagram illustrating the method for providing a material of the conventional 3D printer.
Figure 2 is a diagram illustrating a 3D printer according to an example of the present invention.
Figure 3 is a diagram illustrating another 3D printer according to another example of the present invention.
Figure 4 is a diagram illustrating also a 3D printer according to another example of the present invention.
Figure 5 is a diagram illustrating the material supplying parts according to the examples of the present invention.
Figure 6 is a diagram illustrating the set of cutters and blades according to an example of the present invention.
Figure 7 is a diagram illustrating the molding plate according to an example of the present invention.
Figure 8 is a flow chart illustrating the method of 3D printing according to an example of the present invention.
Hereinafter, the examples of the present invention are illustrated in more detail with the diagrams attached herein. In those diagrams, same components are given the same reference marks even though they are presented in different diagrams. In the explanation of the present invention, the description on the composition or functions in association with the present invention that are clearly understood by those in the art but might obscure the point of the invention can be omitted.
Figure 2 is a diagram illustrating a 3D printer according to an example of the present invention, and Figure 3 is a diagram illustrating another 3D printer according to another example of the present invention. Figure 4 is also a 3D printer according to another example of the invention, and Figure 5 is a diagram illustrating the material supplying parts according to the examples of the present invention.
As shown in Figure 2, the 3D printer according to an example of the invention is composed of the film supplying unit (10), the material supplying part (20), the photo-hardening part (30), and the film collecting part (40).
The film supplying part (10 : 11 ~ 15) is composed of at least one of roll elements (11, 12, 13, and 14) for rolling of the transparent film (P) and a motor to drive the roll element (not shown). It also includes a height regulating element (15) to regulate the height of the roller element precisely.
The roll elements (11, 12, 13, and 14) play a role of maintaining the transparent film flat and even and of providing the transparent film to the material supplying part (20). At this time, the height regulating element (15) regulates the height (z-axis) where the transparent film is provided.
The transparent film (P) above preferably has a low surface energy so that it embraces a printing material with a weak binding force on the film and let the film be apart easily after the molding. Such a transparent film is exemplified by polyethylene, teflon, silicon, and cellulose acetate, but not always limited thereto.
The material supplying part (20 : 20a, 20b, 20c, see Figure 5) provides a printing material on the transparent film (P) provided by the film supplying part (10). At this time, a preferable printing material is ceramic, but not always limited thereto.
The material supplying part (20), as shown in Figure 2 and Figure 5, is equipped with a cylinder (21) where a printing material such as slurry or paste is included; a mixing screw (22) placed in the cylinder to eliminate the air generated in the inside of the printing material and to prevent the contact with outside air; an extruding syringe (23) to extrude the printing material on the transparent film; and an oil hydraulic motor (24) to regulate the up-down movement of the extruding syringe, which is the syringe type material supplying part (20a). At this time, there can be one or more the syringe type material supplying parts (20a), which can shorten the molding time significantly by providing a printing material by continuous drive system.
In another preferred embodiment of the present invention, the material supplying part (20), as shown in Figure 3 and Figure 5, is composed of a case (25) where a printing material such as slurry or paste is loaded; a stirrer (26) to stir the printing material which is equipped in the inside of the case; an outlet (28) to discharge the printing material on the transparent film; and a pressure regulating motor (27) to regulate the extrusion pressure, which is the extrusion container type material supplying part (20b).
Also, the material supplying part (20) in another example of the invention, as shown in Figure 4 and Figure 5, can be formed as the slurry supplying plate type (20c) including the slurry supplying plate (29) installed closely to the rotating surface of a roll element so as to distribute a printing material evenly on the surface while the roll element is rotating.
The syringe type material supplying part shown in Figure 2 is suitable for providing a printing material in a line on a transparent film, while the extrusion container type material supplying part shown in Figure 3 is suitable for providing a printing material to fill the area as a face. The slurry supplying plate type material supplying part shown in Figure 4 is suitable for providing a printing material to fill the area as a face. The slurry supplying plate type material supplying part does not need an additional stirring device, which favors making the printer structure simpler.
The material supplying part (20) provides a printing material on a transparent film with the regulation of the amount, the concentration, and the viscosity of a printing material. While the printing material is provided by the material supplying part (20), the transparent film is moved onto the first molding stage (32) by the first moving stage (50).
In a preferred embodiment of the present invention, the material supplying part (20) can include a mesh type filter in the outlet through which a printing material is sprayed. The mesh type filter is preferably made of such a material that does not react with the hardening solution and preferably lets the particles under 10 ㎛ pass through. The material supplying part (20) can prevent the conglomeration of particles that can be formed by the polymerization of a molding solution when it is repeatedly re-used when the printing material is recycled.
In the meantime, the material supplying part (20) can include at least one of blades (B1 and B2) in order to regulate the thickness of the provided printing material. The first blade (B1) shown in Figure 2 can make the printing material provided on the transparent film flat and the second blade (B2) can regulate the thickness of the printing material treated as flat above more precisely. And the height regulating element (B3) can also be included in order to regulate the height of such blades (B1 and B2).
While a transparent film is moving from the first moving stage (50) to the first molding stage (32), the heights of the first and the second blades (B1 and B2) are regulated by the height regulating element (B3), resulting in the regulation of the thickness of the transparent film. The two blades shown in the Figure are only examples and that does not mean the printer of the present invention is equipped with only two blades.
The first moving stage (50) is equipped with the temperature regulation plate (51) to maintain the temperature of a printing material on a transparent film stably before the transparent film provided with the printing material is provided to the photo-hardening part (30).
The photo-hardening part (30) includes the light irradiation unit (31), the first molding stage (32), and the second molding stage (33).
On the first molding stage (32) is landed a transparent film provided with a printing material whose temperature has been maintained regularly by the temperature regulation plate (50).
The light irradiation unit (31) irradiates light onto the transparent film landed on the first molding stage (32). So, the first molding stage is preferably made of a transparent material in order for the light to reach the transparent film in the light irradiation unit (31).
The second molding stage (33) descends by the stage driving part (34) close to the printing material on the transparent film landed on the first molding stage (32). At this time, duration, light wavelength, and light intensity are controlled based on the stereolithography principles layer by layer and at last the printing material is hardened as programmed.
The first molding stage (32) has the pressure reducing hole (35) attached on a corner of it that helps the transparent film to contact the first molding stage (32) flat and tightly.
In the meantime, the first molding stage (32) can include an inclined plane (36) on one side for the easy separation of the printing material hardened by the second molding stage (33) from the transparent film.
The side of the first molding stage (32) where the inclined plane (36) is formed is connected with the second moving stage (60) and the transparent film has moved over the second moving stage (60) is collected by the film collecting part (40).
The film collecting part (40) is composed of at least one of the collecting roll elements (41) for rolling of the printed transparent film and a motor (not shown) to drive the collecting roll element (41). It can also include a weight (42) to give a certain pressure on the transparent film.
In the meantime, a printing material collecting container (61) might be formed in the end of the second moving stage (60). Also, a container height regulating element (62) can be included to regulate the height of the printing material collecting container.
The printing material remaining on the transparent film without being hardened is collected by the printing material collecting container (61). The printing material collecting container (61) is equipped with a chisel board whose height can be adjusted, and the printing material remaining on the film is collected by the film collecting part (40) by contacting the chisel board tightly with the transparent film.
Figure 6 is a diagram illustrating the set of cutters (71a and 71b) and blades (B1 and B2) according to an example of the present invention. As shown in Figure 6, a package of the blades (B1 and B2) and the cutters (71a and 71b) can be equipped in the assembly line of the fist moving stage (50).
The printing material can be sprayed all over the total area of a transparent film that would moved to the moving stage, according to a printing target, but also can be processed only on a part or a certain area of a transparent film if the size of a target is not so big. That is, the width or location of the distribution of the printing material can be regulated, by which the printing material waste would be significantly reduced by spraying the material only on a target area instead of spraying the material everywhere and also the material can be recycled.
Figure 6 also illustrates an example of a set of cutters (71a and 71b) additionally equipped to regulate the width of the printing material that would be sprayed on a transparent film. As shown in Figure 6, these cutters (71a and 71b) are included in a package composed of the blades (B1 and B2), the blade height regulating element (B3), and the cutters (71a and 71b), which are prepared in a case (70). As shown in Figure 6, the material supplying part (20 : 20a, 20b, and 20c) can spray a printing material from the top of the case (70) through a pair of cutters (71a and 71b). The material supplying part (20 : 20a, 20b, and 20c) is designed to fit the inside structure of the case (70) to prevent the leaking of the printing material such as slurry.
A set of cutters (71a and 71b) are arranged in two parallel lines with some space on the first moving stage (50), which are included in the case (70) to slide toward the width direction of the transparent film. The material supplying part (20) sprays the printing material in the space between the first cutter (71a) and the second cutter (71b). Accordingly, the width of the printing material is regulated according to the interval of the cutters (71a and 71b). Likewise, the cutters (71 and 71b) slide toward the width direction of the transparent film to regulate the location of the printing material.
Figure 7 is a diagram illustrating the molding plate (335) according to an example of the present invention. The molding plate (335) is to prevent the separation of the ceramic structure from the second molding stage (33) that might be happening in the course of the repeated attachment/separation of the film on the first molding stage (21) and the 3D ceramic structure shaped on the second molding stage and to prevent the impurities during the printing process.
The molding plate (335) is attached under the second molding stage (33) and is provided in the bumpy ceramic material having a 凹凸 pattern (3351) in the depth of 20 um ~ 200 um that can be attached onto and detached from the bottom of the second molding stage. The molding plate (335) is designed to be easily attached on and separated from the second molding stage (33) for the maintenance and repair. In a preferred embodiment of the present invention, an engraved groove (331) is made on the lower surface of the second molding stage (33), while an embossed protrusion (333) is made with corresponding to the engraved groove (331) on the upper side of the molding plate.
According to an example of the present invention, a ceramic material is used as a printing material for the 3D ceramic printer of the invention. When ceramic is used as a raw material, a product is heavier than a product produced with a general light curing resin. So, the molding plate (335) made of the same ceramic material is favored for the prevention of the mixing with impurities and for the safe attachment of a sculpture. At this time, a 凹凸 pattern (3351) is formed on the lower surface of the molding plate (335) to increase the adhesiveness due to the widened area. The 凹凸 pattern (3351) can be provided in the shapes of line, lattice, and wave. The distance between grooves is preferably 1 mm ~ 5 mm. If the depth of the groove in the 凹凸 pattern (3351) is too deep, the attached printing product is not separated. Therefore, the depth of the groove is preferably 20 um ~ 200 um.
Next, the method for 3D printing of the present invention is described with referring to Figure 8.
Overall, the film supplying part (10) provides a transparent film (P) and a printing material on the provided transparent film. The printing material is hardened as programmed in the first and the second molding stages (32 and 33). The used film and the remaining printing material are collected in the film collecting part (40). During the process, the transparent film is moved by the first and the second moving stages (50 and 60), for which a weight (42) is used to give force to the transparent film. This procedure is described in more detail hereinafter.
First, a transparent film is provided (S10).
The transparent film rolled on the roll element is provided to the first moving stage (50) by operating the motor equipped to drive the roll elements (11 ~ 14). More precisely, those roll elements (11 ~ 14) are designed to maintain the rolled transparent film flat and even and to provide the film to the material supplying part (20). At this time, the height and the direction (z-axis) of the provided transparent film can be adjusted by using a height regulating element (15).
Next, a printing material is provided on the transparent film (S20).
A printing material is projected or distributed on the transparent film provided in the first moving stage (50) by using at least one of many types of the material supplying part (20). At this time, in the step of providing the printing material, the amount, supply speed, concentration, and viscosity of the printing material can be regulated so that the printing material supplying time would be same as the time consumed for the step of photo-hardening (S40) which will be described hereinafter, by which the printing material supplying process and the printing material hardening process can be accomplished at the same time and as a result the whole production time for the final printing product will be effectively reduced.
Next, the thickness of the printing material provided on the transparent film is regulated (S30).
The thickness of the printing material can be regulated as wanted by adjusting the height of at least one of those blades (B1 and B2). If multiple blades are used, the height of each blade can be adjusted differently to achieve a more precise control of the thickness in each step.
More precisely, the printing material provided on the transparent film is being flattened primarily by the first blade (B1) and the thickness of the flattened printing material is precisely regulated by using the second blade (B2).
The height of the blades can be controlled according to the material supplying part (20) type. The regulation of the printing material thickness can be optimized and the temperature of the printing material can be optimized as well for the hardening simultaneously or before and after the thickness regulation.
Then, the printing material is hardened in the programmed shape (S40).
The transparent film on which the printing material is loaded with the regulation of its thickness is moved onto the first molding stage (32). The second molding stage (33) descends thereon to contact with the printing material. Time, light wavelength, and light intensity are regulated based on the stereolithography principles. The material is hardened layer by layer as programmed. At this time, the transparent film is contacted tightly and flat onto the first molding stage (32) through the pressure reducing hole (35) formed on the first molding stage (32).
The hardened printing material is adhered onto the second molding stage (33) to form a layer. The newly layered printing material on the first molding stage (32) is added to the hardened layer to form another layer.
Next, the hardened printing material is separated from the transparent film (S 50).
Upon completion of the hardening, the transparent film is moved by the moving stages (50 and 60), followed by the separation of the hardened printing material from the transparent film. To make the separation smooth, the transparent film is pulled via pressure reduction by the pressure reducing hole (35). Or, the transparent film is let slide the inclined plane or the slant groove (36) formed on a side of the first molding stage (32) in order to separate the hardened printing material easily.
Next, the remaining printing material and the transparent film are collected (S60).
The used transparent film is collected by the collecting roll element (41) and the printing material that remained on the transparent film without being hardened is collected in the printing material collecting container (61).
The steps of S10 ~ S60 are repeated, by which the hardened printing materials are accumulated layer by layer, resulting in the preparation of a 3D printing product as programmed. The collected remaining printing material and the transparent film can be recycled.
According to the 3D ceramic printer and the method for 3D printing of the present invention, the printing is processed at a certain sized transparent film unit, so a material for the printing is not limited and various materials can be processed in one device. It is also possible to control the thickness of layering very precisely and to form a sculpture in an even thickness layer by layer, suggesting that the failure rate of a final printing product (3D printing structure) is going to be lowered.
The printing material can be contacted with the transparent film tightly and such conditions as printing time, light wavelength, and light intensity can be regulated based on the stereolithography principles to harden the printing material layer by layer at an even thickness, according to the present invention. Therefore, the partial solidification or the hardening solution denaturation that is not wanted but induced by a longer irradiation time or a higher irradiation dose that causes light scattering can be prevented and instead the quality of the printing product remains good and regular. In the course of molding by light irradiation on the molding stage, the material supplying part is working in the way of continuous driving to provide a printing material, indicating that the molding time can be reduced significantly.
In addition, such problems as low precision degree, slurry solidification in the neighbor, and denaturation caused by the inadequate light intensity or scattering that are observed in the conventional method using the material tank can be solved because only a necessary amount of material for each layer is provided according to the present invention.
The printing material is provided every time on a new film so that a structure having a complicated structure can be produced by using two or more materials with the multiple supplying containers.
In the meantime, the remaining slurry left after the molding can be collected by using a blade contacting with the film at a certain angle and recycled before the film is moved in order to place a new film with a different material. The used film can be collected or recovered by using the film collecting roll.
Those skilled in the art will appreciate that the conceptions and specific embodiments disclosed in the foregoing description may be readily utilized as a basis for modifying or designing other embodiments for carrying out the same purposes of the present invention. Those skilled in the art will also appreciate that such equivalent embodiments do not depart from the spirit and scope of the invention as set forth in the appended claims.

Claims (17)

  1. A 3D ceramic printer comprising:
    film supplying part to provide a transparent film;
    material supplying part to provide a printing material on the transparent film;
    photo-hardening part to solidify the printing material provided onto the transparent film as a designed form; and
    film collecting part to collect the transparent film and the remaining printing material after the printing material has been hardened by the photo-hardening part.
  2. The 3D ceramic printer according to claim 1, wherein the film supplying part comprising at least one of roll elements to roll the transparent film, a motor to drive the roll element, and a height regulating element to regulate the height of the roll element.
  3. The 3D ceramic printer according to claim 1, further comprising at least one of blades to regulate the thickness of the printing material provided on the transparent film.
  4. The 3D ceramic printer according to claim 1, wherein the film supplying part comprising at least one of those components: a syringe equipped with a mixing screw, an extrusion container equipped with a mixing stirrer, and a slurry feeder plate for the distribution of a printing material on the surface of the transparent film during the rotation of the transparent film rolled on the film supplying part.
  5. The 3D ceramic printer according to claim 4, wherein the syringe type material supplying part comprising a cylinder containing a printing material, a mixing screw equipped in the inside of the cylinder, an extruding syringe to extrude the printing material on the transparent film, and an oil hydraulic motor to regulate the up-down movement of the extruding syringe.
  6. The 3D ceramic printer according to claim 4, wherein the extrusion container type material supplying part comprising a case containing a printing material, a stirrer equipped in the inside of the case to stir the printing material, an outlet to discharge the printing material on the transparent film, and a pressure regulating motor to regulate the extrusion pressure.
  7. The 3D ceramic printer according to claim 1, further comprising a temperature regulating plate to maintain the temperature of the printing material on the transparent film before the transparent film is provided into the photo-hardening part.
  8. The 3D ceramic printer according to claim 1, wherein the photo-hardening part comprising a light radiation unit, the first molding stage where the transparent film provided with a printing material is placed, and the second molding stage where the printing material is compressed onto the transparent film.
  9. The 3D ceramic printer according to claim 8, further comprising a ceramic molding plate having a 凹凸 pattern in the depth of 20 ~ 200 um which is easily attached on and separated from the lower surface of the second molding stage.
  10. The 3D ceramic printer according to claim 8, the first molding stage comprising a pressure reducing hole to maintain the transparent film tightly and flat.
  11. The 3D ceramic printer according to claim 8, wherein the first molding stage comprising a inclined plane or a slant groove in one side for the easy separation of a hardened printing material from the transparent film.
  12. The 3D ceramic printer according to claim 1, wherein the film collecting part comprising at least one of collecting roll elements for the rolling of a transparent film and a motor to drive the collecting roll element.
  13. The 3D ceramic printer according to claim 1, further comprising at least one of blades to regulate the thickness of the printing material provided on the transparent film; and
    a set of cutters to regulate the width or the position of the printing material provided on the transparent film.
  14. A method for 3D printing comprising:
    providing a transparent film;
    providing a printing material on the transparent film;
    regulating the thickness of the printing material provided above;
    hardening the printing material whose thickness has been regulated above as programmed; and
    separating the hardened printing material from the transparent film.
  15. The method for 3D printing according to claim 14, wherein the step of providing the printing material on the transparent film is characterized by providing at least two kinds of printing materials.
  16. The method for 3D printing according to claim 14, wherein the step of regulating the temperature of the printing material is additionally included after the step of regulating the thickness of the provided printing material.
  17. The method for 3D printing according to claim 14, wherein the step of collecting the used transparent film and the remaining printing material is additionally included after the step of separating the hardened printing material from the transparent film.
PCT/KR2016/007736 2015-07-16 2016-07-15 3d ceramic printer and a method using the same WO2017010841A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16824757.5A EP3322582B1 (en) 2015-07-16 2016-07-15 3d ceramic printer and a method using the same
CN201680039062.0A CN107810094A (en) 2015-07-16 2016-07-15 3D ceramic printers and the method using the 3D ceramic printers
US15/857,959 US11192277B2 (en) 2015-07-16 2017-12-29 3D ceramic printer and a method using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0100924 2015-07-16
KR20150100924 2015-07-16
KR10-2015-0139339 2015-10-02
KR1020150139339A KR101754771B1 (en) 2015-07-16 2015-10-02 3D ceramic printer and a method using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/857,959 Continuation-In-Part US11192277B2 (en) 2015-07-16 2017-12-29 3D ceramic printer and a method using the same

Publications (1)

Publication Number Publication Date
WO2017010841A1 true WO2017010841A1 (en) 2017-01-19

Family

ID=57758025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007736 WO2017010841A1 (en) 2015-07-16 2016-07-15 3d ceramic printer and a method using the same

Country Status (1)

Country Link
WO (1) WO2017010841A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107803986A (en) * 2017-12-04 2018-03-16 厦门光服科技有限公司 A kind of 3D printing device and its application method
CN108621415A (en) * 2017-03-24 2018-10-09 韩国机械研究院 3D printing device for more materials and the 3D printing method for more materials
CN109397468A (en) * 2018-11-08 2019-03-01 苏州云植医学技术有限公司 A kind of extruded type ceramics printing
CN112108651A (en) * 2020-09-09 2020-12-22 江苏海洋大学 3D forming equipment for irradiating solidified metal in ultraviolet light selective area

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872153A (en) * 1994-09-02 1996-03-19 Teijin Seiki Co Ltd Optical shaping apparatus
US20030047133A1 (en) * 2001-09-11 2003-03-13 Korea Advanced Institute Of Science And Technology Apparatus and method for photo-induced process
US8003040B2 (en) * 2007-10-26 2011-08-23 Envisiontec Gmbh Process and freeform fabrication system for producing a three-dimensional object
US20130140741A1 (en) * 2009-10-19 2013-06-06 Global Filtration Systems, Inc. Resin solidification substrate and assembly
US8845316B2 (en) * 2007-07-04 2014-09-30 Envisiontec Gmbh Process and device for producing a three-dimensional object

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872153A (en) * 1994-09-02 1996-03-19 Teijin Seiki Co Ltd Optical shaping apparatus
US20030047133A1 (en) * 2001-09-11 2003-03-13 Korea Advanced Institute Of Science And Technology Apparatus and method for photo-induced process
US8845316B2 (en) * 2007-07-04 2014-09-30 Envisiontec Gmbh Process and device for producing a three-dimensional object
US8003040B2 (en) * 2007-10-26 2011-08-23 Envisiontec Gmbh Process and freeform fabrication system for producing a three-dimensional object
US20130140741A1 (en) * 2009-10-19 2013-06-06 Global Filtration Systems, Inc. Resin solidification substrate and assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108621415A (en) * 2017-03-24 2018-10-09 韩国机械研究院 3D printing device for more materials and the 3D printing method for more materials
CN107803986A (en) * 2017-12-04 2018-03-16 厦门光服科技有限公司 A kind of 3D printing device and its application method
CN109397468A (en) * 2018-11-08 2019-03-01 苏州云植医学技术有限公司 A kind of extruded type ceramics printing
CN112108651A (en) * 2020-09-09 2020-12-22 江苏海洋大学 3D forming equipment for irradiating solidified metal in ultraviolet light selective area

Similar Documents

Publication Publication Date Title
EP3322582A1 (en) 3d ceramic printer and a method using the same
WO2017010841A1 (en) 3d ceramic printer and a method using the same
KR100205677B1 (en) Method and device for laminate forming a sand mould
WO2018117351A1 (en) Lcd type 3d printer
CN1875448A (en) Method of forming microstructures on a substrate and a microstructured assembly used for same
US9592635B2 (en) Method for the construction of a shaped body
KR101215587B1 (en) Powder slush molding machine and powder slush molding method
CN1684775A (en) Methods of applying a coating to an optical surface
EP3383623B1 (en) Additive manufacturing device
WO2016204475A1 (en) Method for manufacturing three-dimensional shape
CN105140183A (en) Wafer processing method
WO2019103218A1 (en) 3d printer
CN105383058B (en) High-speed circulating formula colour 3D printer
CN112437719B (en) Method for hierarchically constructing objects and 3D printing device for performing such a method
EP1523413B1 (en) Method and device for producing a stamp
WO2019045162A1 (en) 3d printing apparatus having wiper-type powder supply part
CN1579736A (en) Method for forming decorative product
JP2019214198A (en) Descending type ceramic 3d printer
WO2020071731A1 (en) Molding apparatus and method for manufacturing molded article
CN1217776C (en) Synthetic resin molded article and its making process
KR20110089552A (en) Micro-imprinting apparatus and method of patterned sheet
CN205674511U (en) Paving liquid device and the forming machine containing this paving liquid device
CN106945269A (en) A kind of flowing continuous supplementation DLP light curring units and method naturally
CN1424190A (en) Apparatus and method for moulding porcelain with artificial natural stone patterns
CN108340574A (en) three-dimensional printing mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016824757

Country of ref document: EP