WO2017154492A1 - Vibration measurement device, vibration measurement system, and vibration measurement method - Google Patents

Vibration measurement device, vibration measurement system, and vibration measurement method Download PDF

Info

Publication number
WO2017154492A1
WO2017154492A1 PCT/JP2017/005536 JP2017005536W WO2017154492A1 WO 2017154492 A1 WO2017154492 A1 WO 2017154492A1 JP 2017005536 W JP2017005536 W JP 2017005536W WO 2017154492 A1 WO2017154492 A1 WO 2017154492A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
contact piece
rotating shaft
measuring device
contact
Prior art date
Application number
PCT/JP2017/005536
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 有川
英樹 戸中
成人 原田
直之 長井
佐々木 祐一
Original Assignee
三菱重工コンプレッサ株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社, 三菱重工業株式会社 filed Critical 三菱重工コンプレッサ株式会社
Publication of WO2017154492A1 publication Critical patent/WO2017154492A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Definitions

  • the present invention relates to a vibration measuring apparatus, a vibration measuring system, and a vibration measuring method for measuring vibrations of blades of a rotary machine.
  • This application claims priority on March 8, 2016 based on Japanese Patent Application No. 2016-044180 for which it applied to Japan, and uses the content for it here.
  • Patent Document 1 describes a method of detecting vibration of a blade by installing a vibration sensor in a bearing, a casing, or the like that is in sliding contact with a rotating shaft to which a moving blade is coupled.
  • a vibration sensor for detecting the passage of the blade is provided on the stationary side of the low pressure stage, the passage time of the blade is detected, and the result is used.
  • the vibration sensor provided in the bearing
  • the detection target signal is generated due to a decrease in the S / N ratio of the detection target signal, attenuation of the vibration due to the bearing oil film, or dark vibration caused by peripheral members such as the bearing box. There is a possibility of being masked. No method has been provided for detecting vibrations in high pressure stage blades.
  • the present invention provides a vibration measuring device, a vibration measuring system, and a vibration measuring method capable of solving the above-described problems.
  • the vibration measurement device includes a contact piece that contacts the outer periphery of the rotating shaft, a contact body that supports the contact piece, and vibration transmitted from the rotating shaft to the contact piece. And a sensor for detection.
  • a contact piece can be made to contact a rotating shaft, the vibration of a rotating shaft can be measured directly, and a measurement precision improves.
  • the contact piece may have conductivity.
  • the contact piece may be elastically deformed while being in contact with the rotating shaft.
  • the contact piece may be provided between the contact main body and the outer periphery of the rotating shaft, and may slide on the outer periphery of the rotating shaft.
  • the contact piece may be in a brush shape.
  • the contact piece may have a block shape.
  • the senor is transmitted to the contact piece via a fluid layer formed between the rotation shaft and the contact piece in a state where the rotation shaft is rotating. Vibration may be measured.
  • the vibration measuring device can measure the vibration of the rotating shaft in a state in which vibration due to sliding of the contact piece on the surface of the rotating shaft does not occur, so that the measurement accuracy can be improved.
  • the surface which faces the direction where the said rotating shaft rotates among the side surfaces of the said contact piece may incline in the back side of the rotation direction. According to the said structure, formation of a fluid layer can be made easy and the measurement precision of the vibration of a rotating shaft can be improved.
  • a blade is coupled to the rotating shaft, and the sensor may detect the vibration of the blade transmitted through the rotating shaft.
  • the contact piece can be brought into contact with the rotating shaft to which the blade is coupled. Therefore, the vibration of the rotating shaft due to the vibration of the blade can be directly measured, and the measurement accuracy is improved.
  • the contact body is supported by the elastic support portion, and the spring rigidity of the elastic support portion is amplified so that the amplitude of vibration of the elastic support portion with respect to a predetermined frequency is amplified. You may adjust it.
  • the support method of the vibration measurement device for the natural frequency of the blade to be measured, the response of the sensor to the desired frequency is increased, and the detection accuracy of the vibration of the target blade is improved. can do.
  • the spring stiffness of the elastic support portion may be variable, and the spring stiffness adjusted for each of a plurality of frequencies may be switched.
  • the spring stiffness can be switched by switching the spring stiffness corresponding to each natural frequency with respect to the elastic support portion having variable spring stiffness.
  • the vibration measuring device is a vibration measuring device in which a sensor for detecting vibration is provided on a ground brush that grounds the shaft voltage generated on the rotating shaft, and the sensor includes the shaft You may detect the vibration of the said rotating shaft transmitted through the contact piece of the said earth brush contacted with the said rotating shaft in order to earth
  • the vibration measuring device can also be used as an earth brush, so that it can be introduced at a low cost. There is no need to provide a new installation space for the introduction of the vibration measuring device.
  • a vibration measurement system is obtained from one or more of the vibration measurement devices including a contact piece brought into contact with the rotation shaft, and the one or more vibration measurement devices. And an analysis device for analyzing the vibration signal.
  • the contact piece in the vibration measuring method, the contact piece is brought into contact with the outer periphery of the rotation shaft, and the sensor provided on the contactor body supporting the contact piece is used to change the rotation piece from the rotation shaft to the contact piece.
  • the transmitted vibration may be detected.
  • the contact piece (sliding member) brought into contact with the rotor to which the moving blade is fixed, or the fluid formed between the contact piece and the rotor Since the vibration of the moving blade is directly transmitted by the layer, the detection accuracy of the blade vibration can be improved.
  • FIG. 1 is a schematic diagram of a turbine in a first embodiment according to the present invention.
  • the turbine 1 includes a rotating shaft 2 that rotates about an axis O, a casing 3 that supports the rotating shaft 2, a stationary blade 4 that protrudes from the casing 3 toward the rotating shaft 2, and a rotating shaft 2. And a moving blade 5 protruding toward the casing 3.
  • the rotating shaft 2 is a columnar member extending in the direction of the axis O.
  • the casing 3 has a cylindrical shape that covers the rotary shaft 2 from the outer peripheral side.
  • the casing 3 is provided with a bearing 6.
  • the casing 3 supports the rotating shaft 2 via the bearing 6 so that the rotating shaft 2 can rotate.
  • the bearing box 7 covers the bearing 6 from the outside in the radial direction and fixes the bearing 6 to the main body of the turbine 1.
  • the stationary blades 4 are fixed to the casing 3 and are arranged so as to protrude radially inward of the axis O from the casing 3, and are provided in a plurality of rows at intervals in the direction of the axis O.
  • the rotor blades 5 are fixed to the rotary shaft 2 and are arranged so as to protrude radially outward of the axis O from the rotary shaft 2, and are provided in a plurality of rows at intervals in the direction of the axis O.
  • the moving blade 5 is coupled to the rotating shaft 2, and the rotating shaft 2 rotationally drives the moving blade 5.
  • the stationary blade 4 and the moving blade 5 form a pair of “stages”, and the turbine 1 is provided with a number of stages.
  • Each stage has a blade height of the stationary blade 4 and the moving blade 5 (the blade length in a direction substantially perpendicular to the rotating shaft 2) in accordance with the flow direction of the gas flowing through the turbine 1 (the direction from the left side to the right side of the drawing).
  • it is comprised so that it may become long. That is, the blade height of the stationary blade 4 and the moving blade 5 at a position where the gas flowing into the turbine 1 is at a high temperature and high pressure is low, and the blade of the stationary blade 4 and the moving blade 5 at a relatively low temperature and low pressure.
  • the height of the wings is high.
  • the rotating shaft 2 When the rotating shaft 2 rotates, an axial voltage is generated on the rotating shaft 2 along with the rotation. For this reason, the rotating shaft 2 is provided with a ground brush for grounding this voltage.
  • the earth brush is disposed on the side surface of the rotating shaft 2.
  • the ground brush has a conductive contact piece, and is supported by the main body of the turbine 1 so that the contact piece contacts the outer periphery of the rotating shaft 2 in an elastically deformed state.
  • the vibration measuring device 10 is a device that measures the vibration of the rotating shaft 2.
  • the vibration measuring device 10 measures the vibration of the rotating shaft 2 transmitted through the contact piece that is in sliding contact with the rotating shaft 2.
  • the vibration measuring device 10 may be disposed at an arbitrary position on the rotating shaft 2.
  • the vibration measuring device 10 may be configured, for example, by providing a sensor for detecting vibration on an earth brush.
  • FIG. 2 is a first view of the vibration measuring apparatus according to the first embodiment of the present invention viewed from the axial direction.
  • the vibration measuring device 10 detects a contact piece 12 that contacts the outer periphery of the rotating shaft 2 in an elastically deformed state, a contact body 11 that supports the contact piece, and vibration transmitted from the rotating shaft 2 to the contact piece 12. And the sensor 13 to be used.
  • the contact piece 12 may have conductivity.
  • the contact piece 12 is provided between the contact main body 11 and the outer periphery of the rotating shaft 2 and slides on the outer periphery of the rotating shaft 2.
  • the contact piece may be a brush-like member made of a material such as an aluminum alloy, a copper alloy, or stainless steel.
  • the contact piece 12 may be a block-shaped member made of a material such as a carbon sintered material or graphite.
  • the contact piece 12 is supported by a contact body 11, and the contact body 11 is fixed to the stationary side of the turbine 1 by a support member (not shown).
  • the contact body 11 is provided with a sensor 13.
  • the contact piece 12 is pressed against the rotary shaft 2, and when the rotary shaft 2 rotates, vibration of the rotary shaft 2 is transmitted to the contact body 11 through the contact piece 12.
  • the vibration transmitted to the contact body 11 is detected by a sensor 13 provided on the contact body 11.
  • the sensor 13 is, for example, an acceleration sensor, a speed sensor, a displacement sensor, or the like.
  • the sensor 13 measures the vibration transmitted to the contact body 11.
  • the vibration measured by the sensor 13 includes blade vibration generated in each of the plurality of moving blades 5 in addition to the vibration of the rotating shaft 2 itself.
  • the sensor 13 and the analysis device 20 are connected to be communicable by wire or wireless.
  • the analysis device 20 acquires vibration information measured by the sensor 13.
  • the analysis device 20 performs a process of removing the vibration of the contact piece 12 itself, a process of analyzing the vibration information by a technique such as FFT (Fast Fourier Transform), and the like.
  • the analysis device 20 analyzes, for example, changes in vibration magnitude (amplitude), vibration direction, vibration magnitude and direction per unit time for each vibration frequency.
  • the analysis device 20 determines, for example, whether abnormal vibration has occurred in the moving blade 5 based on the analysis result.
  • the analysis device 20 may have a function of notifying an alarm or the like when an abnormality is determined.
  • the vibration of the rotating shaft 2 can be directly measured by the contact piece 12 that is always in contact with an arbitrary position of the rotating shaft 2. Since the vibration measuring device 10 has a configuration similar to that of an earth brush, an acceleration sensor is added to the contact main body 11 of the earth brush, and the vibration measuring device 10 can be combined with the analyzing device 20 to be used as an earth brush. .
  • FIG. 3 is a second view of the vibration measuring apparatus according to the first embodiment of the present invention viewed from the axial direction.
  • the tip of the contact piece 12 is pressed against the rotary shaft 2.
  • the air between the contact piece 12 and the rotating shaft 2 is caught in the rotation and the air membrane 14 (between the rotating shaft 2 and the contact piece 12 ( Fluid layer).
  • the contact piece 12 is lifted from the shaft surface of the rotary shaft 2, and the contact piece 12 and the rotary shaft 2 are in a non-contact state.
  • a signal due to abnormal vibration of the blade can be directly detected.
  • the vibration of the rotating shaft 2 is more accurately transmitted to the contact piece 12 through the air membrane 14.
  • the vibration measuring device 10 when the vibration measuring device 10 is also used as an earth brush, a conductive member is used for the contact piece 12. Even in such a case, since the gas film 14 is formed, the contact piece 12 and the rotary shaft 2 are not in electrical contact with each other, and the sensor 13 is affected by electrical noise from the rotary shaft 2. It becomes difficult.
  • FIG. 4 is a diagram for explaining the relationship between the air entrainment amount and the measurement accuracy in the first embodiment according to the present invention.
  • the vertical axis of the graph shown in FIG. 4 indicates the measurement accuracy, and the horizontal axis indicates the rotational speed of the rotary shaft 2.
  • a region H indicates the number of rotations at which the air film 14 is not formed even when the rotation shaft 2 rotates.
  • the graph H1 is a graph showing the relationship between the number of rotations of the rotating shaft 2 and the measurement accuracy when the adjustment of the air entrainment amount is increased.
  • the graph H2 is a graph showing the relationship between the rotational speed of the rotary shaft 2 and the measurement accuracy when the adjustment of the air entrainment amount is small. From FIG.
  • the measurement accuracy varies depending on the amount of air entrainment.
  • the adjustment of the air entrainment amount is increased so that a large amount of air is entrained, and the air membrane 14 suitable for vibration transmission is obtained.
  • Adjust the thickness For example, when the rated rotational speed of the turbine 1 is relatively large, the amount of air that is naturally entrained by high-speed rotation increases, so the adjustment of the air entrainment amount is reduced and the thickness of the gas film 14 suitable for vibration transmission Adjust so that
  • the shape of the tip of the contact piece 12 may be a brush shape or a block shape in surface contact like a carbon brush as long as it has a function of entraining air.
  • the surface that receives air as the rotary shaft 2 rotates is inclined forward (from the root side to the tip side of the contact piece 12 with respect to the rotation direction of the rotary shaft 2.
  • the air entrainment amount is adjusted by inclining at a predetermined angle ⁇ so that the direction is inclined rearward in the rotational direction.
  • FIG. 5A is a first view showing an example of a contact piece in the first embodiment according to the present invention.
  • FIG. 5B is a second view showing an example of a contact piece in the first embodiment according to the present invention.
  • FIG. 5A shows an example of the brush-like contact piece 12 when a configuration for adjusting the air entrainment amount is not provided.
  • a surface ⁇ of the side surface of the contact piece 12 that is opposed to the air trapped between the rotation shaft 2 and the contact piece 12 as it rotates is configured to be perpendicular to the surface of the rotation shaft 2. ing.
  • the surface ⁇ is configured to be inclined by an angle ⁇ .
  • FIG. 5B shows an example of the brush-like contact piece 12 when a configuration for adjusting the air entrainment amount is provided.
  • the surface ⁇ of the contact piece 12 is inclined at a predetermined angle ⁇ on the rear side in the rotation direction of the rotary shaft 2.
  • inclining the surface ⁇ in this way air easily flows between the contact piece 12 and the rotary shaft 2 as the rotary shaft 2 rotates. Thereby, the air film 14 is easily formed. If the angle of inclination ⁇ is large, the amount of air entrained increases and the air film 14 tends to be thick.
  • the air film 14 having a thickness that increases the measurement accuracy by relatively increasing the inclination angle ⁇ .
  • the thickness of the gas film 14 that increases the measurement accuracy can be formed by reducing the inclination angle ⁇ .
  • An appropriate inclination angle ⁇ is separately obtained by actual machine tests or calculations.
  • FIG. 6A is a third view showing an example of a contact piece in the first embodiment according to the present invention.
  • FIG. 6B is a fourth diagram showing an example of a contact piece in the first embodiment according to the present invention.
  • FIG. 6C is a fifth diagram illustrating an example of a contact piece according to the first embodiment of the present invention.
  • FIG. 6A shows an example of the block-shaped contact piece 12 when a configuration for adjusting the air entrainment amount is not provided.
  • the surface ⁇ of the side surface of the contact piece 12 facing the air that is entrained as it rotates is configured to be perpendicular to the surface of the rotating shaft 2. In the case of this configuration, air becomes difficult to be caught, which is disadvantageous for the formation of the air film 14.
  • FIG. 6B The example of the block-shaped contact piece 12 at the time of providing the structure which adjusts the amount of air entrainment in FIG. 6B is shown.
  • a guide 15 is provided on the surface ⁇ of the contact piece 12 so that the air intake surface ⁇ is inclined rearward in the rotational direction of the rotary shaft 2.
  • the surface ⁇ of the guide 15 is inclined at a predetermined angle ⁇ .
  • the guide 15 may not be provided, but the surface ⁇ may be inclined as in the example of FIG. 5B. As shown in FIG. 6C, a corner radius may be attached to the side where the surface ⁇ and the sliding surface intersect. In this manner, by providing the inclination, guide, and corner radius on the side facing the rotation direction of the contact piece 12 (side where air is entrained), the amount of air entrainment can be adjusted in accordance with the rotational speed of the turbine 1.
  • Air is supplied to the contact main body 11, and air is ejected from the discharge holes provided in the contact main body 11 and the contact piece 12 to the contact surface with the rotary shaft 2, so that The air film 14 may be formed.
  • the vibration measuring device 10 may be arranged at any position on the rotary shaft 2. For example, when the position (maximum response point) at which the natural frequency of the moving blade 5 where vibration is desired to be detected is known among the plurality of moving blades 5, the vibration measuring device 10 may be disposed at that position. .
  • the turbine 1 may be designed so that the vibration measuring device 10 can be arranged at a position where desired vibration can be detected.
  • the vibration measuring device 10 may be arranged one by one at the maximum response point corresponding to each frequency.
  • the vibration measuring device 10 can be separated from the earth brush.
  • the vibration measuring device 10 is specially configured as a blade vibration measuring device independent of the earth brush, the contact body 11 and the contact piece 12 can be reduced in size and weight. Since the contact main body 11 and the like can be reduced in size, for example, the possibility that the contact piece 12 can be brought into contact with a small space on the rotary shaft 2 is increased. Thereby, it becomes easy to arrange the vibration measuring apparatus 10.
  • the contact body 11 and the contact piece 12 can be reduced in weight.
  • the contact piece 12 can be separated from the rotating shaft 2 even with a small amount of air caught by the rotation of the rotating shaft 2, and the formation of the air film 14 is facilitated, and the measurement accuracy of vibration is improved.
  • the fluid forming the gas film 14 is not air but may be other gas.
  • a liquid film such as a lubricating oil may be supplied to form a liquid film.
  • an acceleration sensor is provided in the bearing box 7 and the vibration detected by the acceleration sensor is analyzed to monitor the vibration of the moving blade 5.
  • the vibration measured by the acceleration sensor includes not only the vibration of the moving blade 5 and the rotating shaft 2 but also the vibration of the bearing 6 and the bearing housing 7, and the influence of the damping by the bearing oil film.
  • the contact piece 12 is directly brought into contact with the rotating shaft 2 and the vibration of the rotating shaft 2 is measured, the influence of dark vibration and the like are eliminated, and the accuracy of vibration measurement can be improved. .
  • the vibration measuring device 10 can be disposed at an arbitrary position on the rotating shaft 2, for example, the contact piece 12 is brought into contact with the maximum response point at which a vibration mode matching the natural frequency of the wing to be measured can be detected.
  • the desired blade vibration can be measured.
  • the analysis by the analysis device 20 increases the possibility that the blade vibration of the high-pressure stage can be measured.
  • a vibration measuring apparatus 10 according to a second embodiment of the present invention will be described with reference to FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • This second embodiment is different from the first embodiment in that the support method of the vibration measuring device 10 is devised to increase the response of the sensor 13 to a specific frequency (frequency).
  • FIG. 7 is a diagram of the vibration measuring apparatus according to the second embodiment of the present invention viewed from the axial direction.
  • the vibration measuring device 10 is supported by a support portion 40 fixed to the stationary side of the turbine 1 by an elastic support portion 30.
  • the elastic support portion 30 is provided so as to press the contact piece 12 in the direction of the surface of the rotary shaft 2 via a spring.
  • the spring rigidity of the elastic support part 30 is adjusted so that the natural frequency of the contactor body 11 becomes the frequency to be measured.
  • the frequency to be measured is, for example, the natural frequency of the moving blade 5 in the high pressure stage of the turbine 1.
  • Conventionally, methods for measuring vibration of blades with high height (low pressure stage) have been provided, but vibration of blades with low height is difficult to install in high temperature and high pressure environments.
  • a plurality of elastic support portions 30 adjusted to correspond to the respective natural frequencies are prepared, and adjusted to correspond to each natural frequency at an arbitrary position of the rotating shaft 2. You may make it arrange
  • the natural frequency of the contact main body 11 may be adjusted by adjusting the shape and weight of the contact main body 11.
  • the vibration measuring apparatus 10 of the present embodiment in addition to the effects of the first embodiment, the presence / absence of the vibration mode of the rotating shaft 2 that matches the natural frequency of the blade to be detected and the vibration measurement to its maximum response point.
  • the vibration measuring device 10 can be arranged at an arbitrary position on the rotating shaft 2 without measuring whether or not the device 10 can be attached, and desired blade vibration can be measured.
  • the contact piece (sliding member) brought into contact with the rotor to which the moving blade is fixed, or the fluid formed between the contact piece and the rotor Since the vibration of the moving blade is directly transmitted by the layer, the detection accuracy of the blade vibration can be improved.

Abstract

The vibration measurement device according to the present invention has a contact piece for contacting the external periphery of a rotary shaft in a state of elastic deformation, a contactor body for supporting the contact piece, and a sensor for detecting vibration transmitted from the rotary shaft to the contact piece.

Description

振動計測装置、振動計測システム及び振動計測方法Vibration measuring device, vibration measuring system, and vibration measuring method
 本発明は、回転機械の翼の振動を計測する振動計測装置、振動計測システム及び振動計測方法に関する。
 本願は、2016年3月8日に、日本に出願された特願2016-044180号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a vibration measuring apparatus, a vibration measuring system, and a vibration measuring method for measuring vibrations of blades of a rotary machine.
This application claims priority on March 8, 2016 based on Japanese Patent Application No. 2016-044180 for which it applied to Japan, and uses the content for it here.
 タービン等の回転機械では、動翼の振動の監視が行われる。例えば、特許文献1には、動翼が結合された回転軸に摺動接触する軸受やケーシング等に振動センサを設置し、翼の振動を検出する方法が記載されている。例えば、低圧段に設けられた高さが高い翼の振動を検出する方法として、低圧段の静止側に翼の通過を検出するセンサを設け、翼の通過時間を検出し,その結果を用いて演算して翼の振動形態および振動量を算出する方法が提供されている。 Rotating machines such as turbines monitor the vibration of moving blades. For example, Patent Document 1 describes a method of detecting vibration of a blade by installing a vibration sensor in a bearing, a casing, or the like that is in sliding contact with a rotating shaft to which a moving blade is coupled. For example, as a method of detecting the vibration of a blade with a high height provided in the low pressure stage, a sensor for detecting the passage of the blade is provided on the stationary side of the low pressure stage, the passage time of the blade is detected, and the result is used. There is provided a method for calculating a vibration form and a vibration amount of a blade by calculation.
特許第1169552号公報Japanese Patent No. 1169552
 しかし、例えば、軸受に設けた振動センサによって動翼の振動を検出する方法の場合、動翼の振動が軸受箱の振動センサへ振動が伝達する間には、軸本体、軸受油膜、軸受、軸受箱など、振動に対して影響する要素を介するため、検出対象信号のSN比が低下したり、軸受油膜で振動が減衰したり、軸受箱などの周辺部材に起因する暗振動により検出対象信号がマスキングされたりする可能性がある。高圧段の動翼の振動を検出する方法は提供されてこなかった。 However, for example, in the case of the method of detecting the vibration of the moving blade by the vibration sensor provided in the bearing, the shaft main body, the bearing oil film, the bearing, the bearing while the vibration of the moving blade is transmitted to the vibration sensor of the bearing box. The detection target signal is generated due to a decrease in the S / N ratio of the detection target signal, attenuation of the vibration due to the bearing oil film, or dark vibration caused by peripheral members such as the bearing box. There is a possibility of being masked. No method has been provided for detecting vibrations in high pressure stage blades.
 本発明は、上述の課題を解決することのできる振動計測装置、振動計測システム及び振動計測方法を提供する。 The present invention provides a vibration measuring device, a vibration measuring system, and a vibration measuring method capable of solving the above-described problems.
 本発明の第1の態様によれば、振動計測装置は、回転軸の外周に接触する接触片と、前記接触片を支持する接触子本体と、前記回転軸から接触片に伝達された振動を検出するセンサと、を備える。
 上記構成によれば、回転軸に接触片を接触させて回転軸の振動を直接的に計測することができ、計測精度が向上する。
According to the first aspect of the present invention, the vibration measurement device includes a contact piece that contacts the outer periphery of the rotating shaft, a contact body that supports the contact piece, and vibration transmitted from the rotating shaft to the contact piece. And a sensor for detection.
According to the said structure, a contact piece can be made to contact a rotating shaft, the vibration of a rotating shaft can be measured directly, and a measurement precision improves.
 本発明の第2の態様によれば、前記接触片は導電性を有していてもよい。
 本発明の第3の態様によれば、前記接触片は、前記回転軸に接触した状態で弾性変形していてもよい。
 本発明の第4の態様によれば、前記接触片は、前記接触子本体と前記回転軸の外周との間に設けられていて、前記回転軸の外周に摺動してもよい。
 本発明の第5の態様によれば、前記接触片はブラシ状であってもよい。
 本発明の第6の態様によれば、前記接触片はブロック状であってもよい。
 上記構成によれば、振動計測装置は、アースブラシと兼用することができるので低コストでの導入が可能である。振動計測装置の導入にあたり新たな設置スペースを設ける必要が無い。
According to the second aspect of the present invention, the contact piece may have conductivity.
According to the third aspect of the present invention, the contact piece may be elastically deformed while being in contact with the rotating shaft.
According to the fourth aspect of the present invention, the contact piece may be provided between the contact main body and the outer periphery of the rotating shaft, and may slide on the outer periphery of the rotating shaft.
According to the fifth aspect of the present invention, the contact piece may be in a brush shape.
According to the sixth aspect of the present invention, the contact piece may have a block shape.
According to the above configuration, the vibration measuring device can also be used as an earth brush, so that it can be introduced at a low cost. There is no need to provide a new installation space for the introduction of the vibration measuring device.
 本発明の第7の態様によれば、前記センサは、前記回転軸が回転している状態において前記回転軸と前記接触片との間に形成される流体層を介して前記接触片に伝達された振動を計測してもよい。
 上記構成によれば、振動計測装置は、接触片の回転軸表面への摺動による振動が発生しない状態で回転軸の振動を計測できるので、計測精度を向上させることができる。
According to a seventh aspect of the present invention, the sensor is transmitted to the contact piece via a fluid layer formed between the rotation shaft and the contact piece in a state where the rotation shaft is rotating. Vibration may be measured.
According to the above configuration, the vibration measuring device can measure the vibration of the rotating shaft in a state in which vibration due to sliding of the contact piece on the surface of the rotating shaft does not occur, so that the measurement accuracy can be improved.
 本発明の第8の態様によれば、前記接触片の側面のうち、前記回転軸が回転する方向に対して向かう面が、その回転方向の後方側に傾斜していてもよい。
 上記構成によれば、流体層の形成を容易にし、回転軸の振動の計測精度を向上させることができる。
According to the 8th aspect of this invention, the surface which faces the direction where the said rotating shaft rotates among the side surfaces of the said contact piece may incline in the back side of the rotation direction.
According to the said structure, formation of a fluid layer can be made easy and the measurement precision of the vibration of a rotating shaft can be improved.
 本発明の第9の態様によれば、前記回転軸には翼が結合されており、前記センサは、前記回転軸を介して伝達された前記翼の振動を検出してもよい。
 上記構成によれば、翼が結合された回転軸に接触片を接触させることができるので、翼の振動による回転軸の振動を直接的に計測することができ、計測精度が向上する。
According to a ninth aspect of the present invention, a blade is coupled to the rotating shaft, and the sensor may detect the vibration of the blade transmitted through the rotating shaft.
According to the above configuration, the contact piece can be brought into contact with the rotating shaft to which the blade is coupled. Therefore, the vibration of the rotating shaft due to the vibration of the blade can be directly measured, and the measurement accuracy is improved.
 本発明の第10の態様によれば、前記接触子本体を弾性支持部で支持し、前記弾性支持部のばね剛性を、所定の振動数に対する前記弾性支持部の振動の振幅が増幅されるように調整してもよい。
 上記構成によれば、計測したい翼の固有振動数に対して振動計測装置の支持方法を調整することで所望の振動数に対するセンサの応答を大きくし、対象とする翼の振動の検出精度を向上することができる。
According to the tenth aspect of the present invention, the contact body is supported by the elastic support portion, and the spring rigidity of the elastic support portion is amplified so that the amplitude of vibration of the elastic support portion with respect to a predetermined frequency is amplified. You may adjust it.
According to the above configuration, by adjusting the support method of the vibration measurement device for the natural frequency of the blade to be measured, the response of the sensor to the desired frequency is increased, and the detection accuracy of the vibration of the target blade is improved. can do.
 本発明の第11の態様によれば、前記弾性支持部のばね剛性は可変であって、複数の振動数の各々に対して調整されたばね剛性を切り替え可能なように構成されていてもよい。
 上記構成によれば、計測したい固有振動数が複数ある場合、ばね剛性が可変な前記弾性支持部について、各固有振動数に対応したばね剛性を切り替えられるようにしておくことで、ばね剛性を切り替えることによって、1台の振動計測装置で複数の振動数を計測することができる。
According to the eleventh aspect of the present invention, the spring stiffness of the elastic support portion may be variable, and the spring stiffness adjusted for each of a plurality of frequencies may be switched.
According to the above configuration, when there are a plurality of natural frequencies to be measured, the spring stiffness can be switched by switching the spring stiffness corresponding to each natural frequency with respect to the elastic support portion having variable spring stiffness. Thus, it is possible to measure a plurality of vibration frequencies with a single vibration measuring device.
 本発明の第12の態様によれば、振動計測装置は、回転軸に生じた軸電圧を接地するアースブラシに振動を検出するセンサを設けた振動計測装置であって、前記センサは、前記軸電圧を接地させるために前記回転軸に接触させた前記アースブラシの接触片を介して伝達された前記回転軸の振動を検出してもよい。
 上記構成によれば、振動計測装置は、アースブラシと兼用することができるので低コストでの導入が可能である。振動計測装置の導入にあたり新たな設置スペースを設ける必要が無い。
According to a twelfth aspect of the present invention, the vibration measuring device is a vibration measuring device in which a sensor for detecting vibration is provided on a ground brush that grounds the shaft voltage generated on the rotating shaft, and the sensor includes the shaft You may detect the vibration of the said rotating shaft transmitted through the contact piece of the said earth brush contacted with the said rotating shaft in order to earth | ground a voltage.
According to the above configuration, the vibration measuring device can also be used as an earth brush, so that it can be introduced at a low cost. There is no need to provide a new installation space for the introduction of the vibration measuring device.
 本発明の第13の態様によれば、振動計測システムは、前記回転軸に接触させた接触片を備える1つまたは複数の上記の振動計測装置と、前記1つまたは複数の振動計測装置から取得した振動信号を解析する解析装置と、を備える。 According to a thirteenth aspect of the present invention, a vibration measurement system is obtained from one or more of the vibration measurement devices including a contact piece brought into contact with the rotation shaft, and the one or more vibration measurement devices. And an analysis device for analyzing the vibration signal.
 本発明の第14の態様によれば、振動計測方法は、接触片を回転軸の外周に接触させ、前記接触片を支持する接触子本体に設けられたセンサによって、前記回転軸から接触片に伝達された振動を検出してもよい。 According to the fourteenth aspect of the present invention, in the vibration measuring method, the contact piece is brought into contact with the outer periphery of the rotation shaft, and the sensor provided on the contactor body supporting the contact piece is used to change the rotation piece from the rotation shaft to the contact piece. The transmitted vibration may be detected.
 上記した振動計測装置、振動計測システム及び振動計測方法によれば、動翼が固定されたロータに接触させた接触片(摺動部材)、または、接触片とロータとの間に形成される流体層によって、直接的に動翼の振動が伝達するので、翼振動の検出精度を高めることができる。 According to the above-described vibration measuring device, vibration measuring system, and vibration measuring method, the contact piece (sliding member) brought into contact with the rotor to which the moving blade is fixed, or the fluid formed between the contact piece and the rotor Since the vibration of the moving blade is directly transmitted by the layer, the detection accuracy of the blade vibration can be improved.
本発明に係る第一実施形態におけるタービンの概要図である。It is a schematic diagram of the turbine in a first embodiment concerning the present invention. 本発明に係る第一実施形態における振動計測装置を軸線方向から見た第一の図である。It is the 1st figure which looked at the vibration measuring device in a first embodiment concerning the present invention from the direction of an axis. 本発明に係る第一実施形態における振動計測装置を軸線方向から見た第二の図である。It is the 2nd figure which looked at the vibration measuring device in a first embodiment concerning the present invention from the direction of an axis. 本発明に係る第一実施形態における空気の巻き込み量と計測精度との関係を説明する図である。It is a figure explaining the relationship between the amount of air entrainment and measurement accuracy in the first embodiment according to the present invention. 本発明に係る第一実施形態における接触片の一例を示す第一の図である。It is a 1st figure which shows an example of the contact piece in 1st embodiment which concerns on this invention. 本発明に係る第一実施形態における接触片の一例を示す第二の図である。It is a 2nd figure which shows an example of the contact piece in 1st embodiment which concerns on this invention. 本発明に係る第一実施形態における接触片の一例を示す第三の図である。It is a 3rd figure which shows an example of the contact piece in 1st embodiment which concerns on this invention. 本発明に係る第一実施形態における接触片の一例を示す第四の図である。It is a 4th figure which shows an example of the contact piece in 1st embodiment which concerns on this invention. 本発明に係る第一実施形態における接触片の一例を示す第五の図である。It is a 5th figure which shows an example of the contact piece in 1st embodiment which concerns on this invention. 本発明に係る第二実施形態における振動計測装置を軸線方向から見た図である。It is the figure which looked at the vibration measuring device in a second embodiment concerning the present invention from the direction of an axis.
<第一実施形態>
 以下、本発明の一実施形態による振動計測装置を図1~図6Cを参照して説明する。
 図1は、本発明に係る第一実施形態におけるタービンの概要図である。
 図示するようにタービン1は、軸線Oを中心として回転する回転軸2と、回転軸2を支持するケーシング3と、ケーシング3から回転軸2に向かって突出する静翼4と、回転軸2からケーシング3に向かって突出する動翼5とを備えている。回転軸2は、軸線Oの方向に延びる柱状部材である。ケーシング3は、回転軸2を外周側から覆う筒状を有している。このケーシング3には軸受6が設けられている。ケーシング3がこの軸受6を介して回転軸2を支持することで回転軸2が回転可能となっている。軸受箱7は、軸受6を径方向の外側から覆うとともに、軸受6をタービン1の本体に固定している。
<First embodiment>
Hereinafter, a vibration measuring apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6C.
FIG. 1 is a schematic diagram of a turbine in a first embodiment according to the present invention.
As illustrated, the turbine 1 includes a rotating shaft 2 that rotates about an axis O, a casing 3 that supports the rotating shaft 2, a stationary blade 4 that protrudes from the casing 3 toward the rotating shaft 2, and a rotating shaft 2. And a moving blade 5 protruding toward the casing 3. The rotating shaft 2 is a columnar member extending in the direction of the axis O. The casing 3 has a cylindrical shape that covers the rotary shaft 2 from the outer peripheral side. The casing 3 is provided with a bearing 6. The casing 3 supports the rotating shaft 2 via the bearing 6 so that the rotating shaft 2 can rotate. The bearing box 7 covers the bearing 6 from the outside in the radial direction and fixes the bearing 6 to the main body of the turbine 1.
 静翼4は、ケーシング3に固定されてケーシング3から軸線Oの径方向内側に突出して配され、軸線Oの方向に互いに間隔をあけて複数列に設けられている。動翼5は、回転軸2に固定されて回転軸2から軸線Oの径方向外側に突出して配され、軸線Oの方向に互いに間隔をあけて複数列に設けられている。動翼5は、回転軸2に結合されており、回転軸2は動翼5を回転駆動する。 The stationary blades 4 are fixed to the casing 3 and are arranged so as to protrude radially inward of the axis O from the casing 3, and are provided in a plurality of rows at intervals in the direction of the axis O. The rotor blades 5 are fixed to the rotary shaft 2 and are arranged so as to protrude radially outward of the axis O from the rotary shaft 2, and are provided in a plurality of rows at intervals in the direction of the axis O. The moving blade 5 is coupled to the rotating shaft 2, and the rotating shaft 2 rotationally drives the moving blade 5.
 静翼4と動翼5は、一対となって一個の「段」を構成しており、タービン1には、多数の段が設けられている。各段は、タービン1を流れるガスの流れる方向(紙面の左側から右側に向かう方向)に従って、静翼4及び動翼5の翼高さ(回転軸2に略直交する方向の翼の長さ)が、長くなるよう構成されている。つまり、タービン1に流入するガスが高温、高圧な位置の静翼4及び動翼5の翼高さの翼高さは低く、比較的低温、低圧な位置の静翼4及び動翼5の翼高さの翼高さは高くなっている。 The stationary blade 4 and the moving blade 5 form a pair of “stages”, and the turbine 1 is provided with a number of stages. Each stage has a blade height of the stationary blade 4 and the moving blade 5 (the blade length in a direction substantially perpendicular to the rotating shaft 2) in accordance with the flow direction of the gas flowing through the turbine 1 (the direction from the left side to the right side of the drawing). However, it is comprised so that it may become long. That is, the blade height of the stationary blade 4 and the moving blade 5 at a position where the gas flowing into the turbine 1 is at a high temperature and high pressure is low, and the blade of the stationary blade 4 and the moving blade 5 at a relatively low temperature and low pressure. The height of the wings is high.
 回転軸2が回転すると、その回転に伴って回転軸2には軸電圧が発生する。このため、回転軸2には、この電圧をアース(接地)するためにアースブラシが設けられている。アースブラシは、回転軸2の側面に配置される。アースブラシは、導電性の接触片を有し、この接触片が回転軸2の外周に弾性変形した状態で接触するようタービン1の本体に支持されている。 When the rotating shaft 2 rotates, an axial voltage is generated on the rotating shaft 2 along with the rotation. For this reason, the rotating shaft 2 is provided with a ground brush for grounding this voltage. The earth brush is disposed on the side surface of the rotating shaft 2. The ground brush has a conductive contact piece, and is supported by the main body of the turbine 1 so that the contact piece contacts the outer periphery of the rotating shaft 2 in an elastically deformed state.
 振動計測装置10は、回転軸2の振動を計測する装置である。振動計測装置10は、回転軸2に摺動接触した接触片を介して伝達された回転軸2の振動を計測する。振動計測装置10は、回転軸2の任意の位置に配置されてよい。振動計測装置10は、例えば、アースブラシに振動を検出するセンサを設けて構成されたものであってもよい。 The vibration measuring device 10 is a device that measures the vibration of the rotating shaft 2. The vibration measuring device 10 measures the vibration of the rotating shaft 2 transmitted through the contact piece that is in sliding contact with the rotating shaft 2. The vibration measuring device 10 may be disposed at an arbitrary position on the rotating shaft 2. The vibration measuring device 10 may be configured, for example, by providing a sensor for detecting vibration on an earth brush.
 図2は、本発明に係る第一実施形態における振動計測装置を軸線方向から見た第一の図である。
 振動計測装置10は、回転軸2の外周に弾性変形した状態で接触する接触片12と、この接触片を支持する接触子本体11と、回転軸2から接触片12に伝達された振動を検出するセンサ13とを有する。この接触片12は、導電性を有していてもよい。接触片12は、接触子本体11と回転軸2の外周との間に設けられていて、回転軸2の外周に摺動する。この接触片は、アルミ合金、銅合金、ステンレス等の素材でできたブラシ状の部材でもよい。接触片12は、カーボン焼結材、黒鉛などの素材でできたブロック状をした部材でもよい。接触片12は、接触子本体11によって支持され、接触子本体11は、図示しない支持部材によってタービン1の静止側に固定されている。接触子本体11には、センサ13が設けられている。
FIG. 2 is a first view of the vibration measuring apparatus according to the first embodiment of the present invention viewed from the axial direction.
The vibration measuring device 10 detects a contact piece 12 that contacts the outer periphery of the rotating shaft 2 in an elastically deformed state, a contact body 11 that supports the contact piece, and vibration transmitted from the rotating shaft 2 to the contact piece 12. And the sensor 13 to be used. The contact piece 12 may have conductivity. The contact piece 12 is provided between the contact main body 11 and the outer periphery of the rotating shaft 2 and slides on the outer periphery of the rotating shaft 2. The contact piece may be a brush-like member made of a material such as an aluminum alloy, a copper alloy, or stainless steel. The contact piece 12 may be a block-shaped member made of a material such as a carbon sintered material or graphite. The contact piece 12 is supported by a contact body 11, and the contact body 11 is fixed to the stationary side of the turbine 1 by a support member (not shown). The contact body 11 is provided with a sensor 13.
 接触片12は回転軸2に押し当てられており、回転軸2が回転すると接触片12を介して接触子本体11に回転軸2の振動が伝達する。接触子本体11に伝達した振動は、接触子本体11に設けられたセンサ13によって検出される。センサ13は、例えば、加速度センサ、速度センサ、変位センサなどである。センサ13は、接触子本体11に伝達された振動を計測する。センサ13が計測する振動には、回転軸2自身の振動の他、複数の動翼5それぞれに発生している翼振動が含まれている。センサ13と解析装置20とは、有線または無線によって通信可能に接続されている。解析装置20は、センサ13が計測した振動情報を取得する。解析装置20は、接触片12自身の振動を取り除く処理や、振動情報をFFT(Fast Fourier Transform)等の手法で解析する処理等を行う。解析装置20は、例えば、振動の周波数ごとに振動の大きさ(振幅)、振動の方向、単位時間当たりの振動の大きさおよび方向の変化などを解析する。解析装置20は、解析結果に基づいて、例えば、動翼5に異常振動が発生したかどうかなどを判定する。解析装置20は、異常を判定した場合にアラームなどを通知する機能を有していてもよい。
 このように、本実施形態の振動計測装置10によれば、回転軸2の任意の位置に常時接触させた接触片12によって、回転軸2の振動を直接的に計測することができる。振動計測装置10は、アースブラシと似た構成をしているので、アースブラシの接触子本体11に加速度センサを付加し、解析装置20と接続することで、アースブラシとの兼用が可能である。
The contact piece 12 is pressed against the rotary shaft 2, and when the rotary shaft 2 rotates, vibration of the rotary shaft 2 is transmitted to the contact body 11 through the contact piece 12. The vibration transmitted to the contact body 11 is detected by a sensor 13 provided on the contact body 11. The sensor 13 is, for example, an acceleration sensor, a speed sensor, a displacement sensor, or the like. The sensor 13 measures the vibration transmitted to the contact body 11. The vibration measured by the sensor 13 includes blade vibration generated in each of the plurality of moving blades 5 in addition to the vibration of the rotating shaft 2 itself. The sensor 13 and the analysis device 20 are connected to be communicable by wire or wireless. The analysis device 20 acquires vibration information measured by the sensor 13. The analysis device 20 performs a process of removing the vibration of the contact piece 12 itself, a process of analyzing the vibration information by a technique such as FFT (Fast Fourier Transform), and the like. The analysis device 20 analyzes, for example, changes in vibration magnitude (amplitude), vibration direction, vibration magnitude and direction per unit time for each vibration frequency. The analysis device 20 determines, for example, whether abnormal vibration has occurred in the moving blade 5 based on the analysis result. The analysis device 20 may have a function of notifying an alarm or the like when an abnormality is determined.
Thus, according to the vibration measuring apparatus 10 of the present embodiment, the vibration of the rotating shaft 2 can be directly measured by the contact piece 12 that is always in contact with an arbitrary position of the rotating shaft 2. Since the vibration measuring device 10 has a configuration similar to that of an earth brush, an acceleration sensor is added to the contact main body 11 of the earth brush, and the vibration measuring device 10 can be combined with the analyzing device 20 to be used as an earth brush. .
 図3は、本発明に係る第一実施形態における振動計測装置を軸線方向から見た第二の図である。
 回転軸2が停止した状態では、接触片12の先端は、回転軸2に押し付けられた状態である。しかし、回転軸2の回転が始まり、次第に高速回転となると、接触片12と回転軸2との間の空気が、回転に巻き込まれて回転軸2と接触片12との間に気膜14(流体層)を形成する。このとき、接触片12は回転軸2の軸表面から浮き上がり、接触片12と回転軸2は非接触状態になる。気膜14を介して接触片12に伝わる振動を加速度計で検出することで、翼の異常振動による信号をダイレクトに検出できる。後に図4を用いて説明するように、気膜14を介した方が回転軸2の振動は、より正確に接触片12へ伝達する。
FIG. 3 is a second view of the vibration measuring apparatus according to the first embodiment of the present invention viewed from the axial direction.
When the rotary shaft 2 is stopped, the tip of the contact piece 12 is pressed against the rotary shaft 2. However, when the rotation of the rotating shaft 2 starts and gradually becomes high-speed rotation, the air between the contact piece 12 and the rotating shaft 2 is caught in the rotation and the air membrane 14 (between the rotating shaft 2 and the contact piece 12 ( Fluid layer). At this time, the contact piece 12 is lifted from the shaft surface of the rotary shaft 2, and the contact piece 12 and the rotary shaft 2 are in a non-contact state. By detecting the vibration transmitted to the contact piece 12 through the air membrane 14 with an accelerometer, a signal due to abnormal vibration of the blade can be directly detected. As will be described later with reference to FIG. 4, the vibration of the rotating shaft 2 is more accurately transmitted to the contact piece 12 through the air membrane 14.
 例えば、振動計測装置10をアースブラシと兼用したような場合、接触片12には伝導性の部材が用いられる。そのような場合であっても気膜14が形成されることにより、接触片12と回転軸2は電気的に非接触となり、センサ13は、回転軸2からの電気的なノイズの影響を受けにくくなる。 For example, when the vibration measuring device 10 is also used as an earth brush, a conductive member is used for the contact piece 12. Even in such a case, since the gas film 14 is formed, the contact piece 12 and the rotary shaft 2 are not in electrical contact with each other, and the sensor 13 is affected by electrical noise from the rotary shaft 2. It becomes difficult.
 図4は、本発明に係る第一実施形態における空気の巻き込み量と計測精度との関係を説明する図である。
 図4に示すグラフの縦軸は計測精度、横軸は回転軸2の回転数を示している。領域Hは、回転軸2が回転しても気膜14が形成されない回転数を示している。グラフH1は、空気巻込量の調整を大きくした場合の回転軸2の回転数と計測精度との関係を示すグラフである。グラフH2は、空気巻込量の調整が小さい場合の回転軸2の回転数と計測精度との関係を示すグラフである。図4より、回転軸2の回転数が比較的少ない場合には、空気巻込量の調整が大きい方(グラフH1)が、計測精度が良く、回転軸2の回転数が比較的多くなると、空気巻込量の調整が小さい方(グラフH2)が、計測精度が良くなることが分かる。気膜14が形成される程度に回転数が上昇した状態の方が、気膜が形成されず接触片12が回転軸2に接している状態よりも計測精度が良いことが分かる。
FIG. 4 is a diagram for explaining the relationship between the air entrainment amount and the measurement accuracy in the first embodiment according to the present invention.
The vertical axis of the graph shown in FIG. 4 indicates the measurement accuracy, and the horizontal axis indicates the rotational speed of the rotary shaft 2. A region H indicates the number of rotations at which the air film 14 is not formed even when the rotation shaft 2 rotates. The graph H1 is a graph showing the relationship between the number of rotations of the rotating shaft 2 and the measurement accuracy when the adjustment of the air entrainment amount is increased. The graph H2 is a graph showing the relationship between the rotational speed of the rotary shaft 2 and the measurement accuracy when the adjustment of the air entrainment amount is small. From FIG. 4, when the rotational speed of the rotating shaft 2 is relatively small, the greater the adjustment of the air entrainment amount (graph H1), the better the measurement accuracy, and the relatively high rotational speed of the rotating shaft 2 It can be seen that the smaller the adjustment of the air entrainment amount (graph H2), the better the measurement accuracy. It can be seen that the measurement accuracy is better in the state where the rotational speed is increased to the extent that the air film 14 is formed than in the state where the air film is not formed and the contact piece 12 is in contact with the rotary shaft 2.
 回転数に応じて、空気巻込量の調整の大小によって計測精度が変動するのは、形成される気膜14の厚さが薄いほど計測精度は向上するが、回転速度が上昇すると、空気を巻き込む量が増加し、気膜14が厚くなることと関係している。この関係を考慮すると、例えば、タービン1の定格回転数が、比較的少ない場合、空気巻込量の調整を大きくし、多くの空気が巻き込まれるようにし、振動の伝達に適した気膜14の厚さとなるように調整する。例えば、タービン1の定格回転数が、比較的多い場合、高速回転により自然と巻き込まれる空気量が多くなるので、空気巻込量の調整を小さくし、振動の伝達に適した気膜14の厚さとなるように調整する。 Depending on the number of rotations, the measurement accuracy varies depending on the amount of air entrainment. The thinner the film 14 formed, the better the measurement accuracy. This is related to an increase in the amount of entrainment and an increase in the thickness of the air membrane 14. Considering this relationship, for example, when the rated rotational speed of the turbine 1 is relatively small, the adjustment of the air entrainment amount is increased so that a large amount of air is entrained, and the air membrane 14 suitable for vibration transmission is obtained. Adjust the thickness. For example, when the rated rotational speed of the turbine 1 is relatively large, the amount of air that is naturally entrained by high-speed rotation increases, so the adjustment of the air entrainment amount is reduced and the thickness of the gas film 14 suitable for vibration transmission Adjust so that
 次に、空気を巻き込む量の調整方法について説明する。接触片12の先端の形状は,空気を巻き込むという機能を有していれば、ブラシ状でも、カーボンブラシのように面接触するブロック状でもよい。いずれの場合でも、接触片12の側面のうち、回転軸2の回転に伴って空気を迎え入れる面が、回転軸2の回転方向に対し、前傾状(接触片12の根本側から先端側の方向が回転方向の後方側に傾斜している)となるように所定の角度θで傾斜するように構成することで、空気巻込量を調整する。 Next, a method for adjusting the amount of air involved will be described. The shape of the tip of the contact piece 12 may be a brush shape or a block shape in surface contact like a carbon brush as long as it has a function of entraining air. In any case, of the side surfaces of the contact piece 12, the surface that receives air as the rotary shaft 2 rotates is inclined forward (from the root side to the tip side of the contact piece 12 with respect to the rotation direction of the rotary shaft 2. The air entrainment amount is adjusted by inclining at a predetermined angle θ so that the direction is inclined rearward in the rotational direction.
 図5Aは、本発明に係る第一実施形態における接触片の一例を示す第一の図である。図5Bは、本発明に係る第一実施形態における接触片の一例を示す第二の図である。
 図5Aに空気巻込量の調整を行う構成を設けない場合のブラシ状の接触片12の例を示す。図示するように、接触片12の側面のうち、回転に伴って回転軸2と接触片12の間に巻き込まれる空気と相対する面αは、回転軸2の表面と垂直となるように構成されている。この構成の場合、空気は巻き込まれにくくなり、気膜14の形成に不利である。そこで図5Bに示すように面αを角度θだけ傾斜させた形状に構成する。
FIG. 5A is a first view showing an example of a contact piece in the first embodiment according to the present invention. FIG. 5B is a second view showing an example of a contact piece in the first embodiment according to the present invention.
FIG. 5A shows an example of the brush-like contact piece 12 when a configuration for adjusting the air entrainment amount is not provided. As shown in the drawing, a surface α of the side surface of the contact piece 12 that is opposed to the air trapped between the rotation shaft 2 and the contact piece 12 as it rotates is configured to be perpendicular to the surface of the rotation shaft 2. ing. In the case of this configuration, air becomes difficult to be caught, which is disadvantageous for the formation of the air film 14. Therefore, as shown in FIG. 5B, the surface α is configured to be inclined by an angle θ.
 図5Bに空気巻込量の調整を行う構成を設けた場合のブラシ状の接触片12の例を示す。図5Bに示すように接触片12の面αは、回転軸2の回転方向の後方側に所定の角度θで傾斜している。このように面αを傾斜させることで、回転軸2の回転に伴い、空気が接触片12と回転軸2との間に流入し易くなる。これにより、気膜14が形成され易くなる。傾斜角θの角度を大きく取れば、巻き込まれる空気の量が増大し、気膜14が厚くなり易くなる。上述のとおり、回転軸2の回転数が少ない場合は、比較的傾斜角θの角度を大きくすることで、計測精度を高める厚さの気膜14を形成することができる。一方、回転軸2の回転数が多い場合は、傾斜角θの角度を小さくすることで、計測精度を高める厚さの気膜14を形成することができる。適切な傾斜角θについては、別途、実機試験や演算などにより求めておく。次に接触片12がブロック状の摺動部材の場合の空気巻込量の調整方法について説明する。 FIG. 5B shows an example of the brush-like contact piece 12 when a configuration for adjusting the air entrainment amount is provided. As shown in FIG. 5B, the surface α of the contact piece 12 is inclined at a predetermined angle θ on the rear side in the rotation direction of the rotary shaft 2. By inclining the surface α in this way, air easily flows between the contact piece 12 and the rotary shaft 2 as the rotary shaft 2 rotates. Thereby, the air film 14 is easily formed. If the angle of inclination θ is large, the amount of air entrained increases and the air film 14 tends to be thick. As described above, when the number of rotations of the rotating shaft 2 is small, it is possible to form the air film 14 having a thickness that increases the measurement accuracy by relatively increasing the inclination angle θ. On the other hand, when the number of rotations of the rotating shaft 2 is large, the thickness of the gas film 14 that increases the measurement accuracy can be formed by reducing the inclination angle θ. An appropriate inclination angle θ is separately obtained by actual machine tests or calculations. Next, a method for adjusting the air entrainment amount when the contact piece 12 is a block-shaped sliding member will be described.
 図6Aは、本発明に係る第一実施形態における接触片の一例を示す第三の図である。図6Bは、本発明に係る第一実施形態における接触片の一例を示す第四の図である。図6Cは、本発明に係る第一実施形態における接触片の一例を示す第五の図である。
 図6Aに空気巻込量の調整を行う構成を設けない場合のブロック状の接触片12の例を示す。図示するように、接触片12の側面のうち、回転に伴って巻き込まれる空気と相対する面αは、回転軸2の表面と垂直となるように構成されている。この構成の場合、空気は巻き込まれにくくなり、気膜14の形成に不利となる。
FIG. 6A is a third view showing an example of a contact piece in the first embodiment according to the present invention. FIG. 6B is a fourth diagram showing an example of a contact piece in the first embodiment according to the present invention. FIG. 6C is a fifth diagram illustrating an example of a contact piece according to the first embodiment of the present invention.
FIG. 6A shows an example of the block-shaped contact piece 12 when a configuration for adjusting the air entrainment amount is not provided. As shown in the figure, the surface α of the side surface of the contact piece 12 facing the air that is entrained as it rotates is configured to be perpendicular to the surface of the rotating shaft 2. In the case of this configuration, air becomes difficult to be caught, which is disadvantageous for the formation of the air film 14.
 図6Bに空気巻込量の調整を行う構成を設けた場合のブロック状の接触片12の例を示す。図6Bに示すように接触片12の面αには、空気の取り込み面βが回転軸2の回転方向の後方側に傾斜するようガイド15が設けられている。ガイド15の面βは、所定の角度θで傾斜している。このように面βを傾斜させることで、回転軸2の回転に伴い、空気が接触片12と回転軸2との間に流入し易くなる。これにより、気膜14が形成され易くなる。ガイド15の面βの傾斜角θの大きさは、上述のとおりタービン1の回転数に応じて形成すればよい。接触片12がブロック状の場合にも、ガイド15を設けるのではなく、図5Bの例と同様に面αを傾斜させてもよい。図6Cに示すように面αと摺動面とが交わる辺に角アールを付けてもよい。
 このように、接触片12の回転方向に対向する側(空気を巻き込む側)にて、傾斜やガイド、角アールを設けることで、タービン1の回転数に合わせて空気の巻き込み量を調整できる。
The example of the block-shaped contact piece 12 at the time of providing the structure which adjusts the amount of air entrainment in FIG. 6B is shown. As shown in FIG. 6B, a guide 15 is provided on the surface α of the contact piece 12 so that the air intake surface β is inclined rearward in the rotational direction of the rotary shaft 2. The surface β of the guide 15 is inclined at a predetermined angle θ. By inclining the surface β in this way, air easily flows between the contact piece 12 and the rotary shaft 2 as the rotary shaft 2 rotates. Thereby, the air film 14 is easily formed. What is necessary is just to form the magnitude | size of inclination | tilt angle (theta) of the surface (beta) of the guide 15 according to the rotation speed of the turbine 1 as above-mentioned. Even when the contact piece 12 is in a block shape, the guide 15 may not be provided, but the surface α may be inclined as in the example of FIG. 5B. As shown in FIG. 6C, a corner radius may be attached to the side where the surface α and the sliding surface intersect.
In this manner, by providing the inclination, guide, and corner radius on the side facing the rotation direction of the contact piece 12 (side where air is entrained), the amount of air entrainment can be adjusted in accordance with the rotational speed of the turbine 1.
 接触子本体11へ空気を供給し、接触子本体11や接触片12に設けた吐出孔から回転軸2との接触面に対して空気を噴出して接触片12と回転軸2の間に空気を送り込み、気膜14を形成するようにしてもよい。 Air is supplied to the contact main body 11, and air is ejected from the discharge holes provided in the contact main body 11 and the contact piece 12 to the contact surface with the rotary shaft 2, so that The air film 14 may be formed.
 接触片12を接触させる空間があれば、振動計測装置10は、回転軸2のどの位置に配置してもよい。例えば、複数の動翼5のうち、振動を検出したい動翼5の固有振動数が検出しやすい位置(最大応答点)が分かっている場合、その位置に振動計測装置10を配置してもよい。所望の振動を検出できる位置に振動計測装置10を配置することができるようタービン1を設計してもよい。計測したい振動数が複数ある場合、それぞれの振動数に応じた最大応答点に1つずつ振動計測装置10を配置してもよい。 If there is a space for contacting the contact piece 12, the vibration measuring device 10 may be arranged at any position on the rotary shaft 2. For example, when the position (maximum response point) at which the natural frequency of the moving blade 5 where vibration is desired to be detected is known among the plurality of moving blades 5, the vibration measuring device 10 may be disposed at that position. . The turbine 1 may be designed so that the vibration measuring device 10 can be arranged at a position where desired vibration can be detected. When there are a plurality of frequencies to be measured, the vibration measuring device 10 may be arranged one by one at the maximum response point corresponding to each frequency.
 上記では、一例としてアースブラシにセンサ13(加速度計)を設ける場合を例に説明を行った。既存のアースブラシと兼用する場合、振動計測装置10を配置するスペースを新たに設ける必要が無く、低コストで振動計測装置10を導入できる。振動計測装置10は、アースブラシと別体にすることも可能である。振動計測装置10を、アースブラシとは独立した翼振動の計測装置に特化して構成した場合、接触子本体11および接触片12を小型化、軽量化することができる。接触子本体11などを小型化することができるので、例えば、回転軸2上のわずかなスペースに対しても接触片12を接触させられる可能性が高まる。これにより、振動計測装置10が配置しやすくなる。小型化により、接触子本体11および接触片12を軽量化することができる。軽量化によって、回転軸2の回転によって巻き込まれるわずかな空気量でも接触片12は、回転軸2から離れ、気膜14の形成が容易になり、振動の計測精度が向上する。 In the above description, the case where the sensor 13 (accelerometer) is provided on the earth brush is described as an example. When the existing earth brush is also used, it is not necessary to newly provide a space for arranging the vibration measuring device 10, and the vibration measuring device 10 can be introduced at low cost. The vibration measuring device 10 can be separated from the earth brush. When the vibration measuring device 10 is specially configured as a blade vibration measuring device independent of the earth brush, the contact body 11 and the contact piece 12 can be reduced in size and weight. Since the contact main body 11 and the like can be reduced in size, for example, the possibility that the contact piece 12 can be brought into contact with a small space on the rotary shaft 2 is increased. Thereby, it becomes easy to arrange the vibration measuring apparatus 10. By reducing the size, the contact body 11 and the contact piece 12 can be reduced in weight. By reducing the weight, the contact piece 12 can be separated from the rotating shaft 2 even with a small amount of air caught by the rotation of the rotating shaft 2, and the formation of the air film 14 is facilitated, and the measurement accuracy of vibration is improved.
 気膜14を形成する流体は空気で無く、他の気体でもよい。潤滑油などの液体を供給し、液膜を形成するようにしてもよい。 The fluid forming the gas film 14 is not air but may be other gas. A liquid film such as a lubricating oil may be supplied to form a liquid film.
 従来では、例えば、軸受箱7に加速度センサを設け、その加速度センサが検出した振動を解析して動翼5の振動を監視していた。このような方法の場合、加速度センサが計測する振動には、動翼5や回転軸2の振動だけではなく、軸受6、軸受箱7などの振動が含まれていたり、軸受油膜による減衰の影響が含まれていたりした。本実施形態によれば、接触片12を直接的に回転軸2に接触させ、回転軸2の振動を計測するので、暗振動の影響等が排除され、振動計測の精度を向上することができる。 Conventionally, for example, an acceleration sensor is provided in the bearing box 7 and the vibration detected by the acceleration sensor is analyzed to monitor the vibration of the moving blade 5. In the case of such a method, the vibration measured by the acceleration sensor includes not only the vibration of the moving blade 5 and the rotating shaft 2 but also the vibration of the bearing 6 and the bearing housing 7, and the influence of the damping by the bearing oil film. Was included. According to the present embodiment, since the contact piece 12 is directly brought into contact with the rotating shaft 2 and the vibration of the rotating shaft 2 is measured, the influence of dark vibration and the like are eliminated, and the accuracy of vibration measurement can be improved. .
 振動計測装置10は、回転軸2の任意の位置に配置することができるので、例えば、計測対象の翼の固有振動数に一致する振動モードが検出できる最大応答点に接触片12を接触させることによって、所望の翼振動を計測することができる。これにより、従来は困難であった高温、高圧段の動翼5の翼振動を計測することができる。最大応答点に設けることができなかった場合であっても、振動数の減衰などの影響を受けないため、解析装置20での解析により、高圧段の翼振動を計測できる可能性が高まる。 Since the vibration measuring device 10 can be disposed at an arbitrary position on the rotating shaft 2, for example, the contact piece 12 is brought into contact with the maximum response point at which a vibration mode matching the natural frequency of the wing to be measured can be detected. Thus, the desired blade vibration can be measured. Thereby, it is possible to measure the blade vibration of the moving blade 5 in the high temperature and high pressure stage, which has been difficult in the past. Even if it cannot be provided at the maximum response point, it is not affected by the attenuation of the frequency, etc., so that the analysis by the analysis device 20 increases the possibility that the blade vibration of the high-pressure stage can be measured.
<第二実施形態>
 以下、本発明の第二実施形態による振動計測装置10を、図7を参照して説明する。
 第二実施形態においては第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。この第二実施形態では、振動計測装置10の支持方法を工夫して、特定の振動数(周波数)に対するセンサ13の応答を高める点で、第一実施形態と相違する。
<Second embodiment>
Hereinafter, a vibration measuring apparatus 10 according to a second embodiment of the present invention will be described with reference to FIG.
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. This second embodiment is different from the first embodiment in that the support method of the vibration measuring device 10 is devised to increase the response of the sensor 13 to a specific frequency (frequency).
 図7は、本発明に係る第二実施形態における振動計測装置を軸線方向から見た図である。
 振動計測装置10は、弾性支持部30によってタービン1の静止側に固定された支持部40に支持されている。弾性支持部30は、ばねを介して接触片12を回転軸2の表面の方向に押圧するようにして設けられている。弾性支持部30のばね剛性は、接触子本体11の固有振動数が、計測対象の振動数となるように調整されている。計測対象の振動数とは、例えば、タービン1の高圧段の動翼5の固有振動数である。従来から、高さが高い翼(低圧段)の振動の計測方法は提供されているものの、高さが低い翼の振動については、高温、高圧環境下にあってセンサの設置が困難なこと等から有効な計測方法が提供されてこなかった。この第二実施形態では、弾性支持部30のばね剛性を調整することで、接触片12や気膜14を介して、検出対象の動翼5の固有振動数に近い振動が接触子本体11に伝達される。すると、接触子本体11の振動の振幅が大きくなり、センサ13の応答も大きくなる。動翼5の振動数は、気膜14を介して直接的に接触子本体11に伝達されるので、従来のように軸受箱7に加速度計を設けて計測する場合に比べ、軸受油膜による減衰や軸受6などによる暗振動の影響が少ない。解析装置20は、増幅された検出対象の振動信号を抽出して、動翼5の振動を解析する。これにより、所望の翼振動に対する検出精度を高めることができる。高圧段の翼の固有振動数については、演算で計算することができる。
FIG. 7 is a diagram of the vibration measuring apparatus according to the second embodiment of the present invention viewed from the axial direction.
The vibration measuring device 10 is supported by a support portion 40 fixed to the stationary side of the turbine 1 by an elastic support portion 30. The elastic support portion 30 is provided so as to press the contact piece 12 in the direction of the surface of the rotary shaft 2 via a spring. The spring rigidity of the elastic support part 30 is adjusted so that the natural frequency of the contactor body 11 becomes the frequency to be measured. The frequency to be measured is, for example, the natural frequency of the moving blade 5 in the high pressure stage of the turbine 1. Conventionally, methods for measuring vibration of blades with high height (low pressure stage) have been provided, but vibration of blades with low height is difficult to install in high temperature and high pressure environments. Has not provided an effective measurement method. In the second embodiment, by adjusting the spring rigidity of the elastic support portion 30, vibration close to the natural frequency of the moving blade 5 to be detected is applied to the contactor body 11 via the contact piece 12 and the air film 14. Communicated. As a result, the amplitude of vibration of the contact main body 11 increases and the response of the sensor 13 also increases. Since the vibration frequency of the moving blade 5 is directly transmitted to the contact body 11 through the air film 14, the vibration due to the bearing oil film is attenuated as compared with the case where the accelerometer is provided in the bearing housing 7 as in the prior art. And the influence of dark vibration by the bearing 6 or the like is small. The analysis device 20 extracts the amplified vibration signal to be detected and analyzes the vibration of the moving blade 5. Thereby, the detection accuracy with respect to desired blade vibration can be improved. The natural frequency of the high-pressure stage blade can be calculated by calculation.
 計測したい動翼5が複数ある場合、それぞれの固有振動数に対応するよう調整された弾性支持部30を複数用意し、回転軸2の任意の位置に各固有振動数に対応して調整された弾性支持部30で支持された振動計測装置10の各々を配置するようにしてもよい。このように、複数台の振動計測装置10を配置するようにすれば、複数段の翼振動を同時に精度よく計測することができる。 When there are a plurality of moving blades 5 to be measured, a plurality of elastic support portions 30 adjusted to correspond to the respective natural frequencies are prepared, and adjusted to correspond to each natural frequency at an arbitrary position of the rotating shaft 2. You may make it arrange | position each of the vibration measuring devices 10 supported by the elastic support part 30. FIG. Thus, if a plurality of vibration measuring devices 10 are arranged, a plurality of blade vibrations can be simultaneously measured with high accuracy.
 弾性支持部30に可変剛性ばねを用い、複数の所定のばね剛性のうち、計測対象の固有振動数に対応したばね剛性に切り替えることで、所望の翼振動を検出するようにしてもよい。このように、ばね剛性を可変とすれば、1台の振動計測装置10で複数の翼振動を精度よく計測することができる。 It is also possible to detect a desired blade vibration by using a variable stiffness spring for the elastic support portion 30 and switching to a spring stiffness corresponding to the natural frequency to be measured among a plurality of predetermined spring stiffnesses. Thus, if the spring stiffness is variable, a plurality of blade vibrations can be accurately measured with one vibration measuring device 10.
 特に振動計測装置10をアースブラシと兼用しない場合、接触子本体11の形状、重さなどを調整して、接触子本体11の固有振動数を調整してもよい。 In particular, when the vibration measuring device 10 is not used as an earth brush, the natural frequency of the contact main body 11 may be adjusted by adjusting the shape and weight of the contact main body 11.
 本実施形態の振動計測装置10によれば、第一実施形態の効果に加え、検出対象とする翼の固有振動数に一致する回転軸2の振動モードの有無やその最大応答点への振動計測装置10の取り付け可否を問題にすることなく、回転軸2上の任意の位置に振動計測装置10を配置して、所望の翼振動を計測することができる。 According to the vibration measuring apparatus 10 of the present embodiment, in addition to the effects of the first embodiment, the presence / absence of the vibration mode of the rotating shaft 2 that matches the natural frequency of the blade to be detected and the vibration measurement to its maximum response point. The vibration measuring device 10 can be arranged at an arbitrary position on the rotating shaft 2 without measuring whether or not the device 10 can be attached, and desired blade vibration can be measured.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with known constituent elements without departing from the spirit of the present invention. The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
 上記した振動計測装置、振動計測システム及び振動計測方法によれば、動翼が固定されたロータに接触させた接触片(摺動部材)、または、接触片とロータとの間に形成される流体層によって、直接的に動翼の振動が伝達するので、翼振動の検出精度を高めることができる。 According to the above-described vibration measuring device, vibration measuring system, and vibration measuring method, the contact piece (sliding member) brought into contact with the rotor to which the moving blade is fixed, or the fluid formed between the contact piece and the rotor Since the vibration of the moving blade is directly transmitted by the layer, the detection accuracy of the blade vibration can be improved.
 1   タービン
 2   回転軸
 3   ケーシング
 4   静翼
 5   動翼
 6   軸受
 7   軸受箱
 10   振動計測装置
 11   接触子本体
 12   接触片
 13   センサ
 14   気膜
 15   ガイド
 20   解析装置
 30   弾性支持部
 40   支持部
DESCRIPTION OF SYMBOLS 1 Turbine 2 Rotating shaft 3 Casing 4 Stator blade 5 Rotor blade 6 Bearing 7 Bearing box 10 Vibration measuring device 11 Contact body 12 Contact piece 13 Sensor 14 Air film 15 Guide 20 Analyzing device 30 Elastic support portion 40 Support portion

Claims (14)

  1.  回転軸の外周に接触する接触片と、
     前記接触片を支持する接触子本体と、
     前記回転軸から接触片に伝達された振動を検出するセンサと、
     を備える振動計測装置。
    A contact piece that contacts the outer periphery of the rotating shaft;
    A contact body for supporting the contact piece;
    A sensor for detecting vibration transmitted from the rotating shaft to the contact piece;
    A vibration measuring device comprising:
  2.  前記接触片は導電性を有する、
     請求項1に記載の振動計測装置。
    The contact piece is electrically conductive;
    The vibration measuring device according to claim 1.
  3.  前記接触片は、前記回転軸に接触した状態で弾性変形している、
     請求項1または請求項2に記載の振動計測装置。
    The contact piece is elastically deformed while being in contact with the rotating shaft.
    The vibration measuring device according to claim 1 or 2.
  4.  前記接触片は、前記接触子本体と前記回転軸の外周との間に設けられていて、前記回転軸の外周に摺動する、
     請求項1から請求項3の何れか1項に記載の振動計測装置。
    The contact piece is provided between the contact body and the outer periphery of the rotating shaft, and slides on the outer periphery of the rotating shaft.
    The vibration measuring device according to any one of claims 1 to 3.
  5.  前記接触片はブラシ状である、
     請求項4に記載の振動計測装置。
    The contact piece has a brush shape,
    The vibration measuring device according to claim 4.
  6.  前記接触片はブロック状である、
     請求項4に記載の振動計測装置。
    The contact piece is in a block shape,
    The vibration measuring device according to claim 4.
  7.  前記センサは、前記回転軸が回転している状態において前記回転軸と前記接触片との間に形成される流体層を介して前記接触片に伝達された振動を計測する、
     請求項1から請求項6の何れか1項に記載の振動計測装置。
    The sensor measures vibration transmitted to the contact piece via a fluid layer formed between the rotation shaft and the contact piece in a state where the rotation shaft is rotating;
    The vibration measuring device according to any one of claims 1 to 6.
  8.  前記接触片の側面のうち、前記回転軸が回転する方向に対して向かう面が、その回転方向の後方側に傾斜した、
     請求項1から請求項7の何れか1項に記載の振動計測装置。
    Of the side surfaces of the contact piece, the surface facing the direction in which the rotation shaft rotates is inclined rearward in the rotation direction.
    The vibration measuring device according to any one of claims 1 to 7.
  9.  前記回転軸には翼が結合されており、
     前記センサは、前記回転軸を介して伝達された前記翼の振動を検出する、
     請求項1から請求項8の何れか1項に記載の振動計測装置。
    Wings are coupled to the rotating shaft,
    The sensor detects the vibration of the blade transmitted through the rotating shaft;
    The vibration measuring device according to any one of claims 1 to 8.
  10.  前記接触子本体を弾性支持部で支持し、前記弾性支持部のばね剛性を、所定の振動数に対する前記弾性支持部の振動の振幅が増幅されるように調整した、
     請求項1から請求項9の何れか1項に記載の振動計測装置。
    The contactor body is supported by an elastic support part, and the spring rigidity of the elastic support part is adjusted so that the amplitude of vibration of the elastic support part with respect to a predetermined frequency is amplified.
    The vibration measuring device according to any one of claims 1 to 9.
  11.  前記弾性支持部のばね剛性は可変であって、複数の振動数の各々に対して調整されたばね剛性を切り替え可能なように構成された、
     請求項10に記載の振動計測装置。
    The spring stiffness of the elastic support portion is variable, and is configured to be able to switch the spring stiffness adjusted for each of a plurality of frequencies.
    The vibration measuring device according to claim 10.
  12.  回転軸に生じた軸電圧を接地するアースブラシに振動を検出するセンサを設けた振動計測装置であって、
     前記センサは、前記軸電圧を接地させるために前記回転軸に接触させた前記アースブラシの接触片を介して伝達された前記回転軸の振動を検出する、
     振動計測装置。
    A vibration measuring device provided with a sensor for detecting vibration on an earth brush that grounds a shaft voltage generated on a rotating shaft,
    The sensor detects the vibration of the rotating shaft transmitted through a contact piece of the earth brush brought into contact with the rotating shaft to ground the shaft voltage.
    Vibration measuring device.
  13.  前記回転軸に接触させた接触片を備える1つまたは複数の請求項1から請求項8の何れか1項に記載の振動計測装置と、
     前記1つまたは複数の振動計測装置から取得した振動信号を解析する解析装置と、
     を備えた振動計測システム。
    One or a plurality of vibration measuring devices according to any one of claims 1 to 8, comprising a contact piece brought into contact with the rotating shaft,
    An analysis device for analyzing a vibration signal acquired from the one or more vibration measurement devices;
    Vibration measurement system with
  14.  接触片を回転軸の外周に接触させ、
     前記接触片を支持する接触子本体に設けられたセンサによって、前記回転軸から接触片に伝達された振動を検出する、
     振動計測方法。
    Contact the contact piece to the outer periphery of the rotating shaft,
    Detecting vibration transmitted from the rotating shaft to the contact piece by a sensor provided in a contactor body supporting the contact piece;
    Vibration measurement method.
PCT/JP2017/005536 2016-03-08 2017-02-15 Vibration measurement device, vibration measurement system, and vibration measurement method WO2017154492A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016044180A JP2017161277A (en) 2016-03-08 2016-03-08 Vibration measurement device, vibration measurement system, and vibration measurement method
JP2016-044180 2016-03-08

Publications (1)

Publication Number Publication Date
WO2017154492A1 true WO2017154492A1 (en) 2017-09-14

Family

ID=59790487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005536 WO2017154492A1 (en) 2016-03-08 2017-02-15 Vibration measurement device, vibration measurement system, and vibration measurement method

Country Status (2)

Country Link
JP (1) JP2017161277A (en)
WO (1) WO2017154492A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113945344A (en) * 2020-07-17 2022-01-18 河南科技大学 Gas film rigidity measuring method of gas bearing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7181773B2 (en) * 2018-11-23 2022-12-01 株式会社テイエルブイ vibration detector
CN112326162B (en) * 2020-09-17 2021-07-06 北京航空航天大学 Wing elastic deformation measuring method for airborne distributed POS
CN112414656B (en) * 2020-11-06 2023-02-10 中国电子科技集团公司第十四研究所 Cabin section vibration test automatic transmission installation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110878U (en) * 1976-02-20 1977-08-23
JPS5619732U (en) * 1979-07-23 1981-02-21
JP2003149043A (en) * 2001-11-16 2003-05-21 Toshiba Corp Method and apparatus for diagnosing vibration of rotating machine
JP2005337936A (en) * 2004-05-28 2005-12-08 Mitsubishi Electric Corp Shaft vibration meter
US20100076703A1 (en) * 2008-09-24 2010-03-25 Siemens Energy, Inc. Method and Apparatus for Monitoring Blade Vibration With A Fiber Optic Ribbon Probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110878U (en) * 1976-02-20 1977-08-23
JPS5619732U (en) * 1979-07-23 1981-02-21
JP2003149043A (en) * 2001-11-16 2003-05-21 Toshiba Corp Method and apparatus for diagnosing vibration of rotating machine
JP2005337936A (en) * 2004-05-28 2005-12-08 Mitsubishi Electric Corp Shaft vibration meter
US20100076703A1 (en) * 2008-09-24 2010-03-25 Siemens Energy, Inc. Method and Apparatus for Monitoring Blade Vibration With A Fiber Optic Ribbon Probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113945344A (en) * 2020-07-17 2022-01-18 河南科技大学 Gas film rigidity measuring method of gas bearing

Also Published As

Publication number Publication date
JP2017161277A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
WO2017154492A1 (en) Vibration measurement device, vibration measurement system, and vibration measurement method
KR101579282B1 (en) Bearing Test appratus for testing durability of the bearing
US10684193B2 (en) Strain based systems and methods for performance measurement and/or malfunction detection of rotating machinery
US7215129B1 (en) Multi tip clearance measurement system and method of operation
JP7006520B2 (en) Vacuum pump and diagnostic system
CN110462364B (en) Blade abnormality detection device, blade abnormality detection system, rotary machine system, and blade abnormality detection method
US9395171B2 (en) Capacitive sensor with orthogonal fields
CN108593229B (en) Integral impeller blade vibration measurement device and measurement method
US7414413B2 (en) Blade tip clearance probe holder and a method for measuring blade tip clearance
EP2236977A1 (en) Time-indicating rub pin for transient clearance measurement and related method
EP3054292A1 (en) Apparatus and method for diagnosing abnormality of bearing
RU2593427C2 (en) Device and method of measuring propagation time of tops of blades in turbine machine
CN103133386A (en) Method and equipment for detecting rotating stall and compressor
CN109141794B (en) Rotating blade excitation testing device and system
JP2018145866A (en) Blade vibration monitoring device and rotary machine system
JP2018141751A (en) Blade vibration monitoring device and rotary machinery system
KR20090120030A (en) Dynamic characteristic analysis device of superspeed air bearing spindle
Kiliç Determination of imbalance problem in electric motor and centrifugal pump by vibration analysis
WO2017149921A1 (en) Oscillation measurement device, oscillation measurement system, and oscillation measurement method
CA2962702C (en) Rotating machine and installation for converting energy comprising such a machine
JP2010190350A (en) Static pressure gas bearing device
JP6176940B2 (en) Axial movement measurement system that measures the movement of the rotating body in the axial direction
KR20070019910A (en) Measurement system for axial load
KR100967398B1 (en) Centrifugal turbo machine for monitoring bearing operation
JP2018173297A (en) Blade vibration monitoring apparatus, rotation machine system, and blade vibration monitoring method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762835

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762835

Country of ref document: EP

Kind code of ref document: A1