Preliminary Design Review

C.O.S.M.I.C – Wednesday, June 2nd, 2021

Introduction

C.O.S.M.I.C. (Celestial Object Sensing and Measuring Identification Campaign)

Our Team is a dedicated engineering group of 72 Cal Poly Spacecraft Design students working cooperatively in a virtual environment.

Our Mission is to provide space systems for interstellar exploration to further our understanding of the origins of the solar system through the study of interstellar objects and near-parabolic comets.

Speaker: David S

Table of Contents

Day 1 (Wed, 6/2)

- Introduction (2) 1.
 - Entrance and Success Criteria (5)
 - Solicitation Breakdown (6)
 - Design Challenges (9)
- System Design (15) 2.
- Mission Phases (22 89) 3.
 - Phase 1: Launch (22)
 - Phase 2: Orbital Insertion (37)
 - Phase 3: Prepositioned (44)
 - Phase 4: Navigation to ISO (67)
- Closing Remarks (90)

Day 2 Preview (Fri, 6/4)

- Introduction (92)
- Mission Phases Continued (96 148)
 - Phase 5: Interstellar Object Flyby (96)
 - Phase 6: Data Downlink (135)
 - Phase 7: Decommission (145)
- Project Life Cycle, System Integration and Testing (149) 3.
- Mission Budget (161)
- Summary (164)

Speaker: Natalia C.

PDR Entrance and Success Criteria

Entrance

The following primary products are ready for review: A preliminary design that can be shown to meet all technical requirements and performance measures.

Life-Cycle Cost and Integrated Master Schedule (IMS) that are ready to be baselined after review comments are incorporated.

Baseline operations concept

Updated risk assessment and mitigation

Success

The flow down of verifiable requirements is complete and proper, or, if not, an adequate plan exists for timely resolution of open items. Requirements are traceable to parent technical requirements and to mission goals and objectives

Preliminary analysis of the primary subsystems has been completed and summarized, highlighting performance and design margin challenges

TBD and TBR items are clearly identified with acceptable plans and schedule for their disposition

The preliminary design is expected to meet the requirements at an acceptable level of risk

Speaker: Natalia C. INTRODUCTION / 5

Solicitation Breakdown

Goal: To collect data on the composition, morphology, and state of an ISO (InterStellar Object) or NPC (Near-Parabolic Comet)

Primary Objectives: The proposed system must be able to identify at least one ISO or NPC within 20 years of the system readiness date.

- Composition
- Morphology
- Angular Momentum

Secondary Objective Options: The proposed system must be able achieve at least one secondary objective.

- Impactor Science
- Remote Observation Platform
- Advanced Object Definition *
- Heliophysics Platform
- Exoplanet Platform
- o Data Relay

Additional Points:

- The initial incoming ISO trajectory is provided by the customer at 3 AU
- 2 launches are requested by the customer, within the 20-year mission period of 2030-2050

Speaker: Natalia C.

Level 1 Requirements

Primary Objectives

ID: MP = Mission Primary

ID	Traceability	Requirement
MP1	Solicitation	The mission shall be ready to react to an ISO no later than 12/31/2030.
MP2	Solicitation	The mission shall have an 80% likelihood of reaching at least 1 object with the parameters specified in Table 1 within 20 years of its readiness date.
MP3	Solicitation A.2	The mission shall acquire visible imagery of 50% of the object's illuminated surface with a resolution of at least 5.0 meters per pixel.
MP4	Solicitation A.2	The mission shall acquire infrared imagery of 50% of the object's visible surface with a resolution of at least 10.0 meters per pixel.
MP5	Solicitation A.3, Solicitation B.1	The mission shall model 50% of the object's shape within +/- 10 meters using active measurement.
MP6	Solicitation A.3	The mission shall determine the object's mean dimension within +/- 10 meters.
MP7	Solicitation A.4	The mission shall determine the object's spin axis within +/- 1.0 degree.
MP8	Solicitation A.4, Customer Conversation 5/7/2021	The mission shall determine the object's rotation rate within 1%.
MP9	Customer Conversation 1/8/2021	The mission shall return data to the customer no later than 9 months post collection.
MP10	Customer Conversation 1/8/2021	The mission shall communicate with the deep space network.

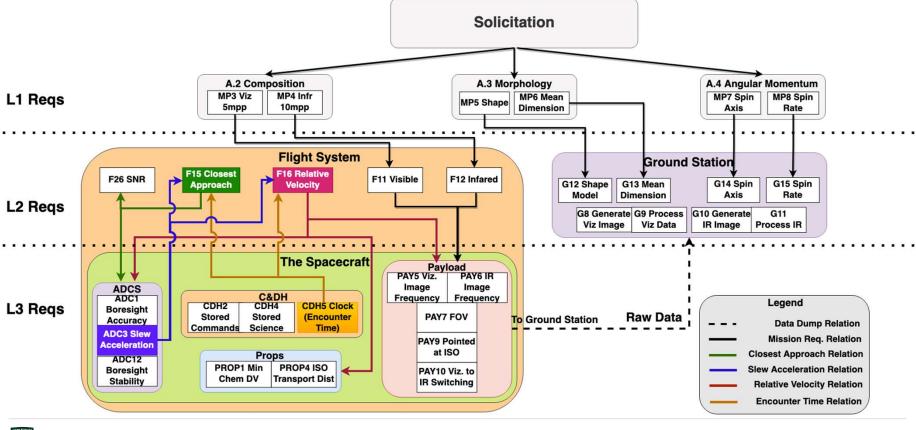
Speaker: Bailey G.

Level 1 Requirements

Secondary Objectives

ID: MS = Mission Secondary

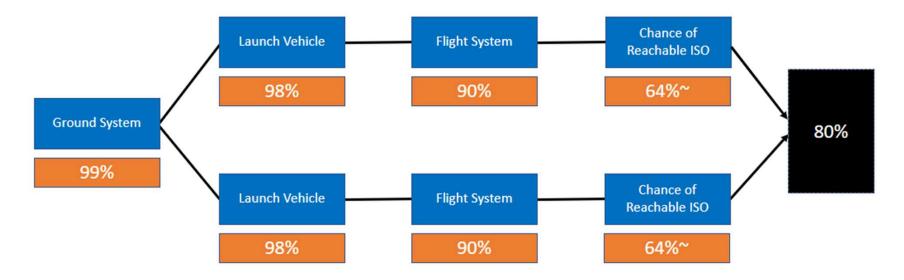
ID	Traceability	Requirement
MS1	Solicitation B.1	The mission shall measure the object's dielectric constant within +/- TBD.
MS2	Solicitation B.3, Solicitation B.5	The mission shall have a sky coverage of 0.15 % in the prepositioned orbit.
MS3	Solicitation B.3	The mission shall observe heliocentric orbiting bodies.
MS4	Solicitation B.5	The mission shall acquire exoplanet photometry of a minimum of 1 star system.



Speaker: Bailey G.

Design Challenges Overview

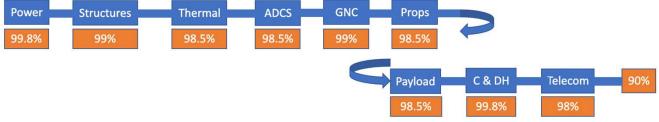
Speaker: Keilan R.

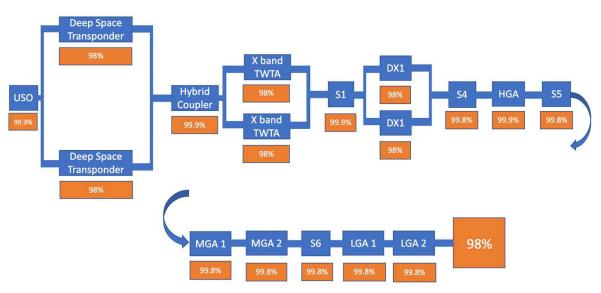

Encounter Justification

Speaker: Alex H.

Probability Model

System Level (Level 2) Reliability Block Diagram

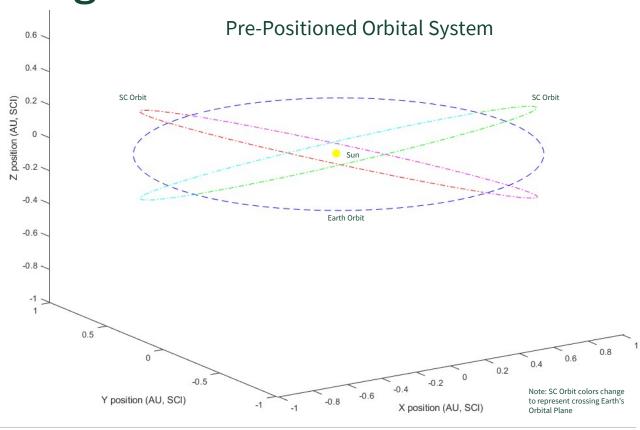

Note: Chance of Reachable ISO is 64% for each S/C, equivalent to an 87% chance of at least one Reachable ISO between both S/C


Speaker: Keilan R.

Flight System Reliability Model

Level 3 Reliability (Flight System)

Level 4 Reliability (e.g., Comms)

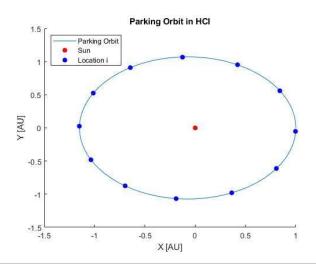


Speaker: Kinsey A.

INTRODUCTION: DESIGN CHALLENGES / 12

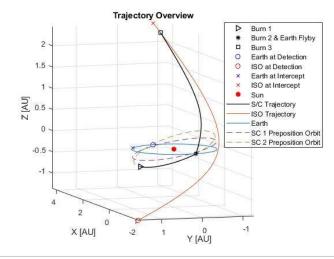
Mission Design

- Require ISO Encounter within set parameters
- Require 87% chance of encountering ISO within 20 years
- Mission Design facilitates Encounter and ensures Coverage
 - Pre-positioned orbits chosen allow for use of Earth Gravity Assist in transfer to ISOs
- This Mission Design has an 87% chance of achieving specified ISO Encounter for a spacecraft carrying 4.5 km/s of onboard dV


Speaker: Jordan W. INTRODUCTION: DESIGN CHALLENGES / 13

Problem Identification — E-Prop

vs. Chem Prop


Preliminary Prepositioned System

- Large magnitudes of Delta-V (~22 km/s)
- Extended transfer durations
- Favored electric propulsion configuration

Inclined Gravity Assist Constellation

- Earth gravity assists became necessary to achieve the required high Delta-V
- Shorter transfer durations (as low as 27 days)
- Electric propulsion configuration not beneficial

Speaker: Jack K.

System Design

Speaker: Sean T.

Cal Poly Spacecraft Design 20-21

Mission Concept Of Operations

Phase 0

Pre-Launch

The launch services will transport and prepare each launch vehicle to be ready for a launch window around October 9, 2029 and January 3, 2030. The ground system (GS) will be prepared for launch by staffing the necessary personnel and creating software for the mission. Each S/C will also be integrated into each launch vehicle.

The mission will launch separately out of KSC using the launch services provided by SpaceX using two Falcon Heavy Expendables. During launch, the GS will monitor the telemetry of the S/C. This phase will conclude when the S/C detumbles after separation from the second stage of the launch vehicle.

Phase 1

Phase 2

Orbital Insertion

After separation from the launch vehicle, each S/C will detumble and begin communication with the ground system. The mission shall have each S/C complete two gravity assists around Earth to increase inclination. The final PP orbits of the spacecraft will be a circular, heliocentric orbit at 1 AU with 21 degrees of inclination, and 90 degree RAAN difference.

Phase 3

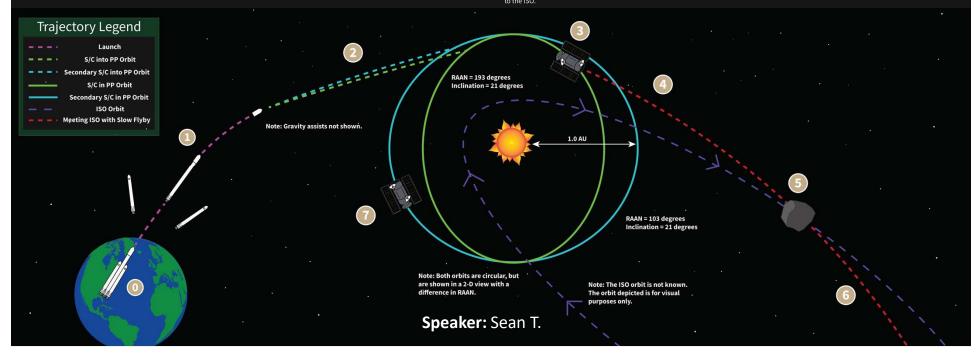
PP Orbit Waiting Period Each of the S/C will be commanded by the GS to complete secondary objective campaigns until an ISO is pursued. The secondary objectives attempted in this phase include remote observation platform (B.3), and exoplanet platform (B.5). Each S/C will be in orbit and ready to conduct objectives before

Phase 4

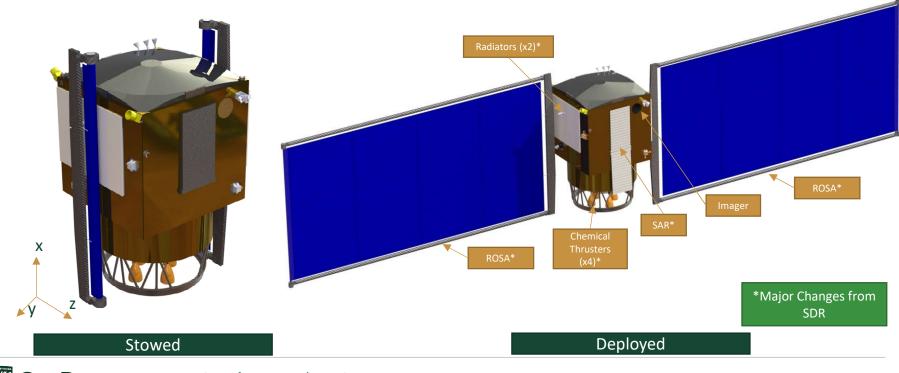
Navigation to ISO Upon detection of an ISO, the S/C chosen to pursue will be commanded by the GS to leave its PP orbit on a trajectory towards an Earth gravity assist. This S/C will then be designated as the Encounter S/C with the other S/C as the Secondary S/C. The mission will use OpNav on the way to the ISO and switch to Autonomous Optical Navigation at a distance of 55,000 km to the ISO.

Phase 5

ISO Flyby As Autonomous Optical Navigation begins, the flyby of the ISO will begin with a closest approach relative velocity of 13 km/s. During this phase, the S/C will complete all primary objectives as well as partial completion of the secondary objective of Advanced Object Definition (B.1).


Phase 6

Downlink Data Once the ISO is out of range of the S/C, data taken during the encounter will begin to be distance of 400 km and a maximum downlinked to the GS. All of the data decommision phase to be prepare must be downlinked before nine months after flyby of the ISO have elapsed. The GS will receive the data and begin processing. Once processed, the data will be made available to the customer.

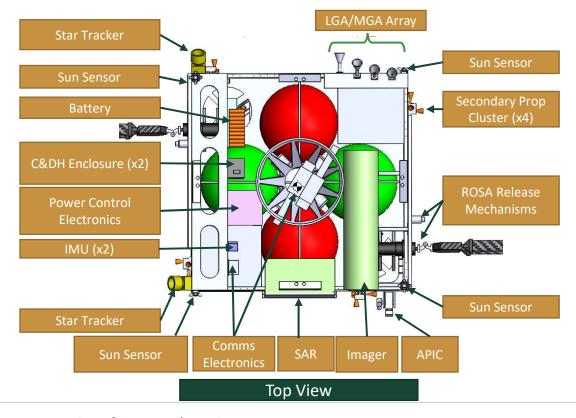

Phase 7

Decommission After the primary science data has been downlinked back to the GS, the Encounter S/C will enter the for shutoff. During this time, the GS will monitor the Encounter S/C trajectory to ensure a safe graveyard orbit. The Secondary S/C will remain in its PP orbit for a minimum of 20 years since

emplaced until decommision.

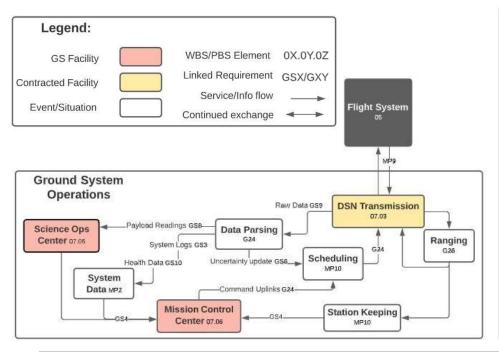
The Flight System(1/3)

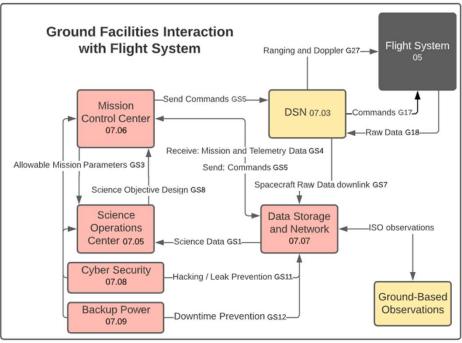
Speaker: Matthew S.


The Flight System (2/3)

Speaker: Matthew S. SYSTEM DESIGN / 18

The Flight System(3/3)





Speaker: Matthew S.

Ground System Block Diagram

SYSTEM DESIGN / 20

Speaker: Berenice C.

Mass Breakdown

Link to Backup

Subsystem	Basic Mass Estimate (kg)	Mass Growth Allowance ¹	Predicted Mass Estimate (kg)
Payload	155	30%	202
Propulsion	657	20%	788
Power	405	20%	486
Comms	101	15%	116
Thermal	224	30%	291
GNC	5	30%	7
ADCS	72	20%	86
Structures	909	20%	1,091
C&DH	60	15%	69
Propellant	10,818	N/A	10,818

Predicted System Mass	Allowable Mass	System Mass Margin
13,953 kg	14,000 kg	0.35%

[1] "Standard: Mass Properties Control for Space Systems" ANSI/AIAA S-120A-2015), American Institute of Aeronautics and Astronautics, Inc., 2015, DOI:10.2514/4.103858.001

Speaker: Garima A. system design / 21

Phase 1

Speaker: Austin I.

Phase 1: Launch Overview

- Launch Vehicle: SpaceX's Falcon Heavy Expendable
- First Spacecraft Launch: October 9, 2029 (2-week window)
- Second Spacecraft Launch: January 3, 2030 (2-week window)
- Launch into predetermined orbit and will separate from the second stage of the Falcon Heavy
- Includes separation, detumble operations, and deployment order

Speaker: Austin I. Phase 1: Launch / 23

Phase 1: Launch

Applicable Level 2 Requirements

ID: F = Flight SystemID: G = Ground SystemID: L = Launch System

ID	Requirement	Compliance (Y/N/M)
F4	The flight system shall survive the launch environment.	No
F6	The flight system shall have a maximum mass of 14,000 kg.	Yes
F7	The flight system shall fit within a volume of 175.15 m ³ with the dimensions specified in Figure 1.	Yes
F30	The flight system shall enter system fault mode in response to mission critical anomalies defined by Table 7.	Yes
G18	The ground system shall receive telemetry data from the launch vehicle.	Yes
L5	The launch system shall provide telemetry data to the ground system.	Yes
L1	The launch system shall be ready to launch no later than October 9th, 2029.	Maybe
L3	The launch system shall have a minimum reliability of 98% per launch vehicle.	Maybe

Speaker: Bailey G. Phase 1: LAUNCH / 24

Phase 1: Launch

Applicable Level 3 Structure Requirements

ID	Requirement	Driving Phase	Compliance (Y/N/M)
STR1	The structure shall survive the launch environment as defined by the Falcon Heavy User Guide.	Phase 1	No
STR5	The structure shall survive the operational limit loads as defined by Table TBD.	N/A	Maybe
STR12	The structure shall have factors of safety defined by Table 4.3.	N/A	Maybe

Speaker: Matthew S. Phase 1: LAUNCH / 25

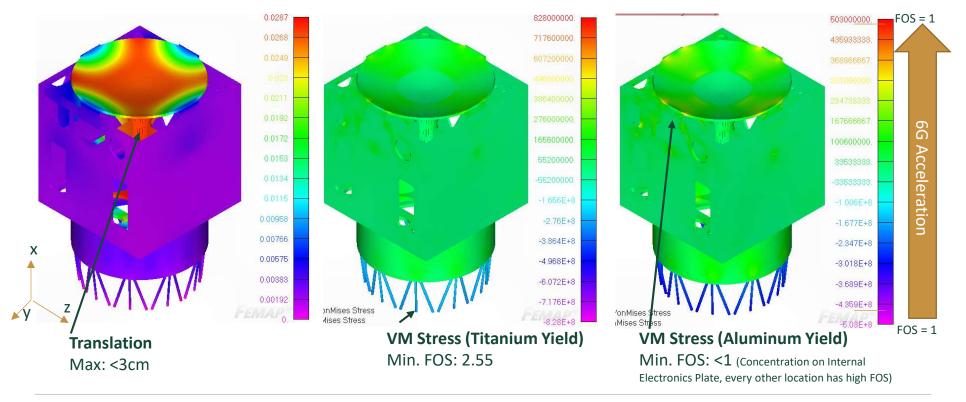
Launch Load Cases and FOS

Loading	Scenario
6G Axial	Launch
2G Lateral	Launch
Modes up to 35Hz	Launch
Random Vibrations	Launch
Deployment	Operational
Thrusting	Operational
Control Torques	Operational

Factors of Safety

- Dependent on materials used
 - Metallic
 - Composite/Bonded
 - Glass/Ceramics
 - Bonds in Glass/Ceramics
 - Softgoods
 - Beryllium
- Dependent on verification approach
 - Prototype
 - Protoflight
- Dependent on type of design
 - Ultimate Design Factor
 - Yield Design Factor
 - Qualification Factor
 - Proof Test Factor

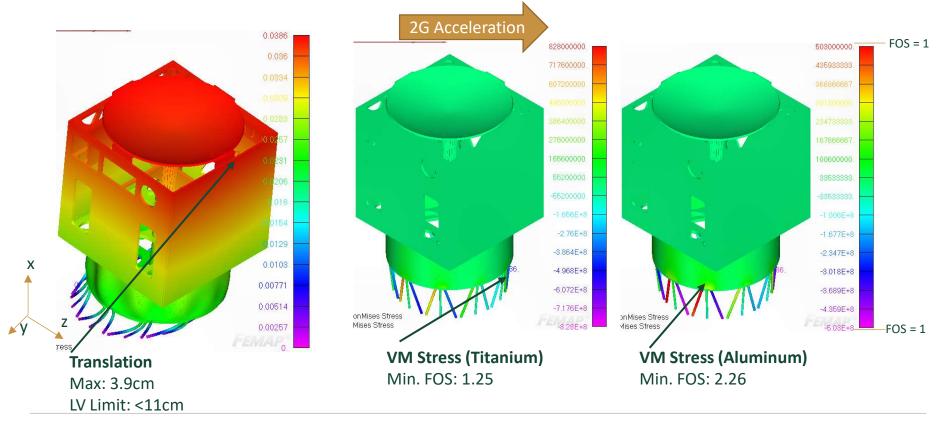
Ex.


AL-7075, Protoflight, Yield Design -> FOS = 1.25

FOS Table

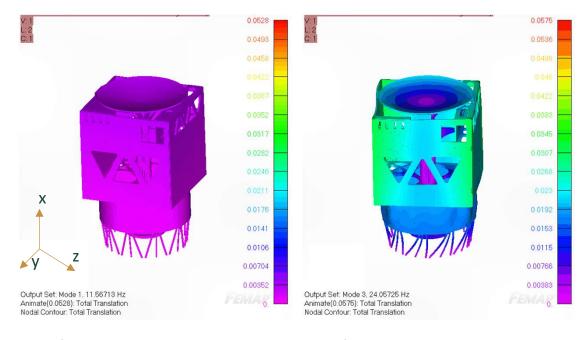
Speaker: Matthew S.

Launch Loading Results: 6G Axial



Speaker: Matthew S. Phase 1: LAUNCH / 27

Link to Detailed Analysis Backup


Launch Loading Results: 2G Lateral

CAL POLY

Speaker: Matthew S.

Open Issue: Launch Modal Results

Currently Not Meeting Launch Vehicle Requirement of under 35Hz

Current mass estimate: 910kg Maximum mass allocation: 1100kg

Routes for Improvement

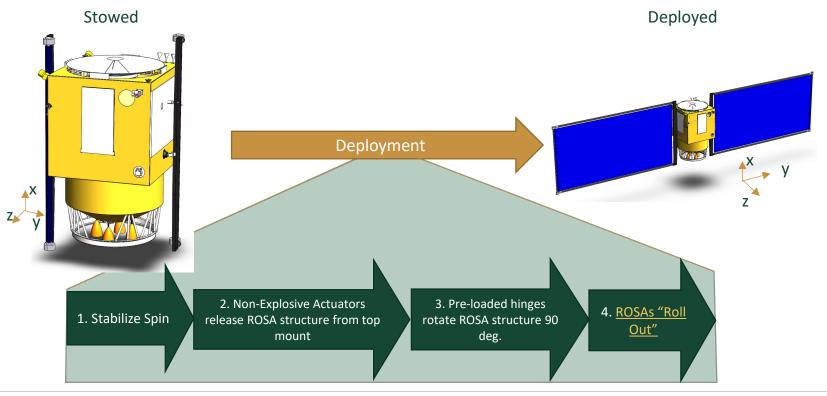
- Stiffer base beams or horizontal beams on base
- Added plate near base beams
- Internal gussets between corners of bus along plane of translation

Mode 1: 11.5Hz Max Translation: 5.3cm LV Limit: <7cm Mode 3: 24.1Hz
Max Translation: 5.8cm

LV Limit: <7cm

Speaker: Matthew S. Phase 1: LAUNCH / 29

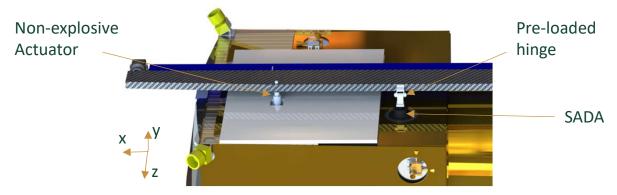
Phase 1: Launch


Applicable Level 3 Structure Requirements

ID	Requirement	Driving Phase	Compliance (Y/N/M)
POW2	The power system shall generate a minimum of 690 Watts + TBD Watts at end of life.	N/A	Yes
F7	The flight system shall fit within a volume of 175.15 m^3 [TBC] with the dimensions specified in Figure 1.	Phase 1	Yes
STR7	The structure shall sense the solar array's angular position within +/- 0.02 degrees.	N/A	Yes
STR8	The structure shall articulate the solar arrays +/- 179 degrees from the zero position.	N/A	Yes

Speaker: Anthony G. Phase 1: LAUNCH / 30

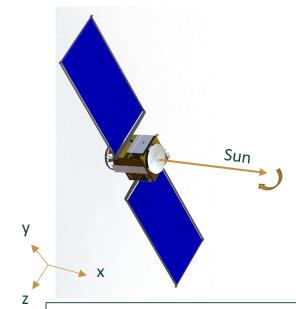
ROSA Deployment



Speaker: Anthony G. PHASE 1: LAUNCH / 31

Mechanisms - Structures

Mechanism	Source	Mass	Continuous Draw	Actuation Draw	Actuation Type	Range	Resolution	Operating Temperatures	Details
SADA (x2)	MOOG High Power Type 5	40kg	<20W	20W	Motor	+/-179 deg.	+/-0.02 deg.	-50 C to +70 C	[1]
Roll Out Solar Arrays (ROSAs, x2)	DSS ROSA	600 kg	N/A	N/A	Roll out	N/A	N/A	-65 C to +90 C	[3]
Non-Explosive Actuator for ROSA (x2)	EBAD NEA HDRM	4.3kg	250 mA	4 A (release current)	Hold Down and Release	N/A	N/A	-240 C to +135 C	[4]
Deployment Hinge for ROSA (x2)	Deployment System for Large Appendages	3kg	N/A	N/A	Spring driven	90-180 deg.	+/006 deg	-30C to +50 C (Survivable temperatures +/-150 C)	[5]



Speaker: Anthony Garcia


Detumble and System Fault Mode

Procedure (system fault mode):

- 1. System will turn off power for SAR, Imager, primary thrusters, Ka band travelling tube amplifiers, and APIC
- 2. IMUs will determine the spacecrafts inertial angular rates, using secondary thrusters to nullify angular rates
- 3. Once stabilized, the solar arrays will deploy
- 4. Sun sensors will locate the sun relative to the spacecraft
- 5. Solar arrays and HGA face will be positioned to point at the sun, then the solar array drives will lock the spacecraft into the sun pointing configuration
- 6. LGA will begin transmitting system level health data, and any secondary faults that were run
- 7. Secondary thrusters will rotate the spacecraft about the HGA boresight axis at 3 deg/min
- 8. System will await commands from ground

In this configuration the system will be **power positive**, **thermally stable** and **communication capable**.

Speaker: Maya G.

System Fault Mode

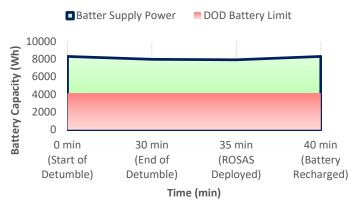
Applicable Level 3 Telecom Requirements

ID	Requirement	Driving Phase	Compliance (Y/N/M)
COM18	The communication system shall transmit telemetry at a minimum data rate of 20 bps [TBC] while in system fault mode.	Phase 6	Yes
COM19	The communication system shall receive commands at a minimum data rate of TBD while in system fault mode.	Phase 6	Maybe
COM20	The communication system shall be capable of continuous transmission.	N/A	Maybe
COM20	The communication system shall be capable of continuous transmission.	N/A	Maybe
COM21	The communication system shall be capable of continuous reception.	N/A	Maybe
COM21	The communication system shall be capable of continuous reception.	N/A	Maybe

Speaker: Josh F.

Phase 1: Launch

Applicable Level 3 Power Requirements


ID	Requirement	Driving Phase	Compliance (Y/N/M)
POW1	The power system's battery shall be capable of supplying a minimum of 393 + TBD Whr of power before solar array deployment.	Phase 6	Yes
POW5	The power system shall provide 305 +/- TBD Watts during system fault mode.	N/A	Yes

Speaker: Ethan T. Phase 1: Launch / 35

Battery Schedule

Phase 1 Detumble Timeline

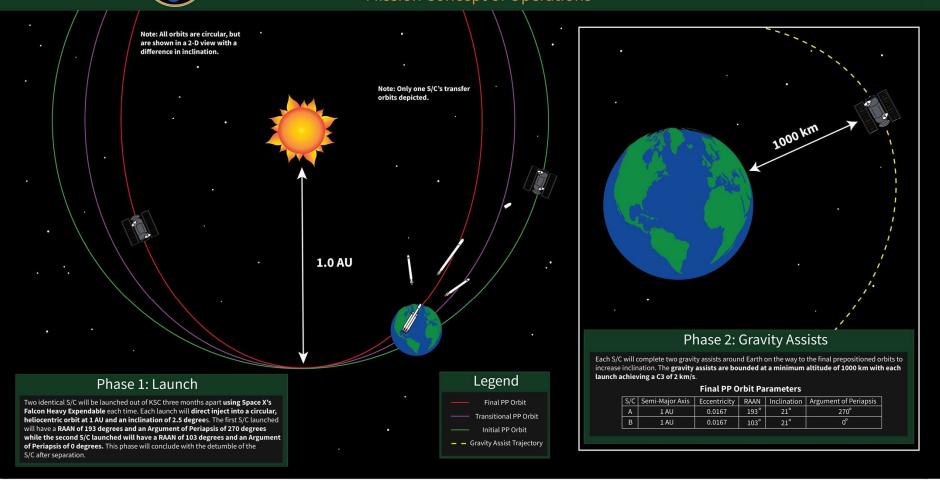
 Detumble phase is estimated to take 30 minutes at a respective system power draw of 548 W. Given this power need the battery system is capable of detumbling for ~14 hours without array deployment.

Subsystem	Component	Power Draw (W)	Detumbling (30 mins)	ROSA deployment (5 mins)
	Chem Prop Heater	150	ON	ON
Thermal	Temp feedback devices	1	ON	ON
	Pumps for Cooling	50	ON	ON
	CMGs (x4)	148	OFF	ON
ADCS	A-STRs (x2)	18	ON	ON
	IMUs (x2)	20	ON	ON
C&DH	Flight Computer	95	ON	ON
CQDH	Health Sensors	5	ON	ON
Structures	ROSA Deployment	40	OFF	ON
Propulsions	Secondary Thrusters	194	ON	OFF
Comms	Deep Space Transponder	13	ON	ON
	Ultra Stable Oscillator	3	ON	ON
		Total (W) :	548	543

Initial Battery Specifications

Battery (Li-Ion)	Size (m^3)	Mass (kg)	Capacity (Wh)	Cell Configuration
SAFT VL51ES	0.06892	80.4	10,452	6p10s

Speaker: Ethan T. Phase 1: Launch / 36


Phase 2

Speaker: Sean T.

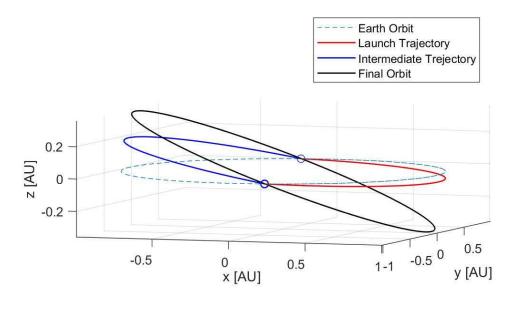
Launch to Orbital Insertion: Phase 1 and 2

Mission Concept of Operations

Phase 2: Orbital Insertion

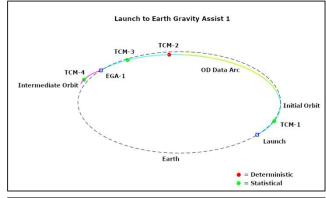
Applicable Level 2 Requirements

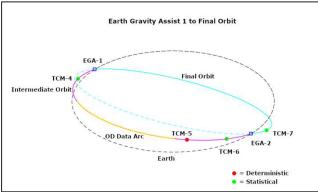
<u>Backup</u>


ID	Requirement	Compliance (Y/N/M)
L2	The launch system shall deliver the flight system to an orbit defined by Table 6.1 by 12/31/2030.	Yes
L4	The launch system shall be capable of delivering the mass and C3 combinations given in Figure 2.	Yes
F22	The flight system shall be compatible with the deep space network.	Yes

Speaker: Bailey G. Phase 2: Launch to Orbital Insertion / 39

Gravity Assists - Orbits


Spacecraft	Gravity Assist/Launch Date	Orbit Inclination (deg)
	Oct. 9, 2029	2.5
А	Apr. 5, 2030	11
	Oct. 9, 2030	21
	Jan. 3, 2030	2.5
В	Jul. 8, 2030	11
	Jan. 4, 2031	21



Speaker: Dominick B.

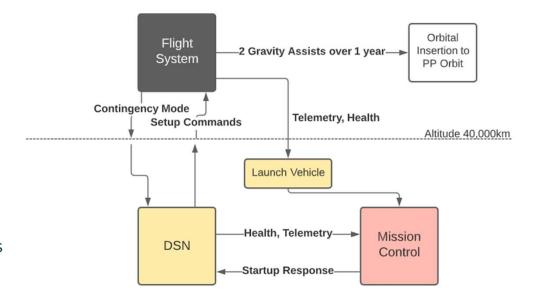
Navigation Timeline - GNC

Maneuver	Date (COSMIC A COSMIC B)	Purpose
TCM 1	July 25, 2029 October 26, 2029	Separation Cleanup
TCM 2	November 20, 2029 February 17, 2030	EGA-1 Maneuver
TCM 3	December 15, 2029 March 14, 2030	TCM 2 Cleanup
TCM 4	January 24, 2030 April 23, 2030	EGA-1 Cleanup
TCM 5	May 21, 2030 August 23, 2030	EGA-2 Maneuver
TCM 6	June 15, 2030 September 17, 2030	TCM 5 Cleanup
TCM 7	July 25, 2030 October 27, 2030	EGA-2 Cleanup

Speaker: Liam M.

Phase 2: Orbital Insertion

Speaker: Alexi D.


Applicable Level 2 Ground System Requirements

ID	Requirement	Compliance (Y/N/M)
G3:	The ground system shall establish two-way communication sessions with the flight system on average of three times a week for four hours per session during the orbital insertion mission phase	Yes

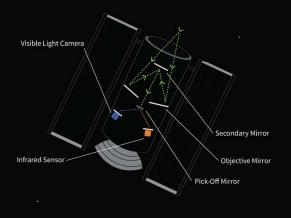
Ground Operations – Orbital Insertion

- Launch Provider handles actions prior to separation, later sends data to Ground
- DSN Communication occurs at altitudes surpassing 40,000km for startup
 - Gravity assist within 1000km of Earth will be without transmission/reception
- Secondary science can begin after initial contact/setup, during emplacement
- Health checks
- Note: Startup Response procedures are the same to system fault Continency Operations

Speaker: Berenice C. Phase 2: Launch to Orbital Insertion / 43

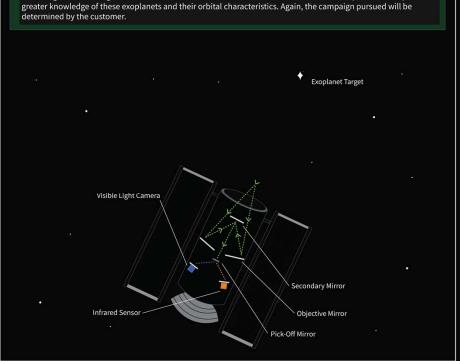
Phase 3

Speaker: Sean T.


Prepositioned Orbit Waiting Period: Phase 3

Mission Concept of Operations

B.3 Remote Observation Platform


To meet B.3 Remote Observation Platform, the **S/C will observe objects for 2-4 weeks at a time**. These will be follow-up observations, and will alternate with B.5 Exoplanet Platform campaigns. Images will be acquired with the primary telescope so that **the target is observable with an SNR greater than or equal to 2.5**, based off of known near earth objects or heliocentric orbiting bodies. These observations will provide further knowledge of the targets to the scientific community, potentially used to derive spin rates or see how their orbits change over time. The campaigns pursued will be determined by the customer.

B.5 Exoplanet Platform

To complete B.5 Exoplanet Platform, each spacecraft will perform follow-up science on known exoplanets for 2-4 weeks at a time, acquiring images every 30 minutes to build light curves that will be analyzed on the ground to look for exoplanet transits. Targets will be selected based on known exoplanets with apparent magnitude of their stars brighter than Magnitude 14.43 to ensure the transits are observable. This follow-up science will provide greater knowledge of these exoplanets and their orbital characteristics. Again, the campaign pursued will be determined by the customer.

Pre-Positioned Orbit Model

- 2 spacecraft in the orbits described in Table and shown in Figure
 - Each spacecraft has 1 Earth approach every 6 months
- Advantages
 - Gravity Assists: the system collectively has 1 potential assist every 3 months
 - This reduces onboard DV required by up to 7 km/s
 - Potential to assist station-keeping
 - <u>Low emplacement cost</u>: Takes advantage of assists and launch vehicle
 - <u>Stable Heliocentric Orbit</u>: benefits various systems e.g. Power, Comms, Thermal, Secondary Science
- Coverage
 - Over 2000 20-year missions were simulated, with Monte Carlo style analysis run on the results
 - The system as designed has at least an 87% chance of encountering at least 1 ISO over a 20-year mission
 - This is tied to other design factors such as propulsive capacity and relative speed at encounter

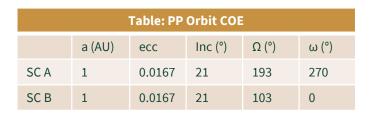
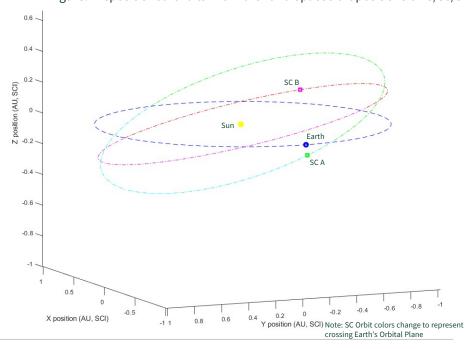



Figure: Prepositioned Orbits with Earth and Spacecraft positions on 3/30/31

Speaker: Jordan W.

Applicable Level 2 Requirements

<u>Backup</u>

ID	Requirement
F23	The flight system shall stay in the prepositioned orbit defined by Table 6.2 for a minimum of 10 months.
F24	The flight system shall observe 0.0126% of sky per month.
F25	The flight system shall detect objects with a limiting apparent magnitude of 14.5 in the visible band.
F29	The flight system shall detect objects with a limiting apparent magnitude of 12.5 in the near-infrared band.
F26	The flight system shall acquire photometry data with a signal to noise ratio of at least 2.5
F27	The flight system shall monitor one star system for at least 14 days.

Speaker: Bailey G. PHASE 3: PRE-POSITIONED ORBIT / 47

Applicable Level 3 Payload Requirements

ID	Requirement	Driving Phase	Compliance (Y/N/M)
PAY4	The payload shall be capable of taking a visible image once every 200 milliseconds.	Phase 5	Υ
PAY6	The payload shall be capable of taking a visible image with an exposure time of 13 milliseconds.	Phase 5	Υ
PAY8	The payload shall have an FOV of 0.55 +/- TBD degrees.	Phase 5	Υ

Speaker: PJ R. PHASE 3: PRE-POSITIONED ORBIT / 48

Science Collection - Payload

Secondary science to be conducted with Primary Imager

Remote Observation		Exoplanet Campa	ign
		6 total campaigns	
6-month observation campaign		Each is a 2-4 week follow-up observation using transit method	
Visual or IR images		Visual or IR images	
Images taken every hour		Images taken every 30 minutes	
~8 GB of memory red	quired	~8 GB memory required	
DSN Schedule Available Data Rate		Link Margin	Antenna
4-8 hrs per s/c per week	3 Mbps	> 5 dB	HGA

Speaker: Jacob Z. Phase 3: PRE-POSITIONED ORBIT / 49

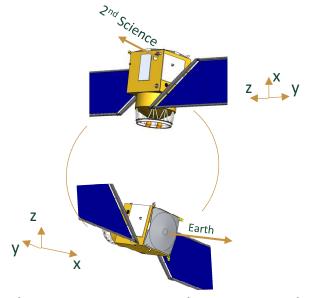
Applicable Level 3 ADCS Requirements

ID	Requirement	Driving Phase	Compliance (Y/N/M)
ADC2	The ADCS shall point the optical boresight with an accuracy of 810 arcsec during secondary science acquisition.	Phase 3	Y
ADC4	The ADCS shall be capable of a maximum slew acceleration of TBD deg/s^2 during secondary science acquisition.	Phase 3	М
ADC5	The ADCS shall point the boresight of the high gain antenna with an accuracy of 360 arcsec during telecom.	All	Y
ADC6	The ADCS shall determine the direction of the Sun relative to the center of the solar array with an accuracy of TBD arcsec.	All	M
ADC8	The ADCS shall command the solar array drive assemblies to point at the Sun with an accuracy of 10 degrees.	All	Y
ADC10	The ADCS shall control the imager boresight stability to 11 arcsec/sec during secondary science acquisition.	Phase 3	Y

Speaker: Scott P. Phase 3: PRE-POSITIONED ORBIT / 50

Science Collection - Pointing

Pointing Summary

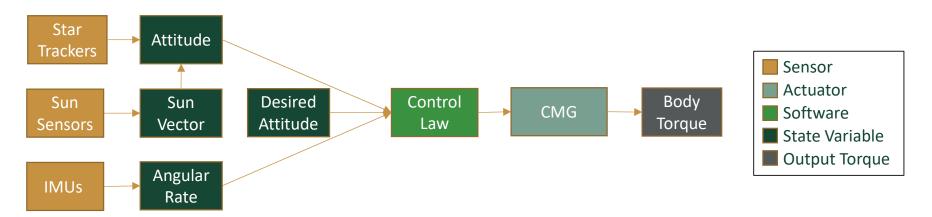

HGA: Earth pointed for 4-8 hrs once a week to

communicate with the DSN

Solar Arrays: Sun pointed

Imager: Will alternate between performing

exoplanet campaign and remote observation


Phase 3: Prepositioned Pointing Cycle

Pointing Budget Description	Per-Axis Error Value (3 σ) [arcsec]	Radial Pointing Error (3 σ) [arcsec]	Radial Pointing Requirement [arcsec]	Stability Error (3 σ) [arcsec / s]	Stability Requirement [arcsec/s]
Preposition Science	189.69	201.58	810	10.81	10.81
Solar Arrays	260.30	468.54	36000	N/A	N/A
Downlink	188.30	213.66	360	N/A	N/A

Speaker: Maya G.

ADCS Overview

Component	Quantity	Manufacturer	Mass (Each)	Power (Each)	Performance
Star Tracker	2	Leonardo A&SS	3.55 kg	8.9 - 13 W	2°/s tracking rate
Sun Sensor	4	Bradford Space	0.215 kg	0 W (Passive)	< ±1.5 accuracy on boresight
IMU	2	InnaLabs	2 kg	10 W	Range: ± 400°/s, ± 40g
CMG	4	Blue Canyon	15 kg	20 - 35 W	12 Nm Max Torque

Speaker: Scott P.

Mass Memory Card Rationale

Applicable Level 3 C&DH Requirement

ID	Requirement	Driving Phase	Compliance
CDH7	The C&DH system shall have a minimum storage capacity of 21 GB [TBC].	Phase 3	Yes

- PP Science data drives MMC (~16 GB), not Encounter data (~470 MB)
- Each will carry min. 21 GB
 - Additional ~5 GB health data system-wide
- Final campaign may differ
 - e.g, a 12-hour Remote Observation campaign at 5 sec cadence requires 16 GB
- Each C&DH system will have one additional MMC for redundancy (2x per system, 4 total)

Instrument, <i>Phase</i>	Data Storage (MB)
SAR	320.8
Vis. Imager	-
Remote Obs.	8078.4
Exoplanet*	1344
Encounter	112.2
IR Imager	24

^{*}one campaign; conceptual year-plan accounts for 6 campaigns

Backup

Speaker: Solomon D.

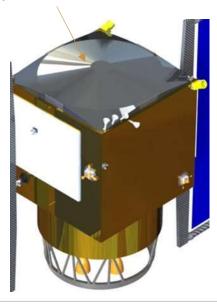
Applicable Level 3 Shielding Requirements

ID	Requirement	Driving Phase	Compliance (Y/N/M)
STR4	The structure shall shield sensitive components from the space environment as defined by Table 4.2.	N/A	Υ
THR1	The thermal system shall keep components that are turned on within their operational temperature ranges as defined by Table 3.1.	N/A	Υ
THR2	The thermal system shall keep components that are turned off within their survivable temperature ranges as defined by Table 3.2.	N/A	Υ
COM20	The communication system shall operate in the space environment for 22 years.	N/A	M

Speaker: Anthony G. Phase 3: PRE-POSITIONED ORBIT / 54

Spacecraft Shielding - Structures

MLI

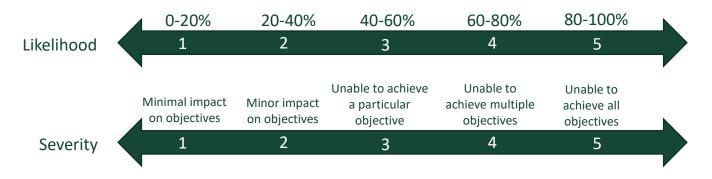

- The MLI shielding is a 15 mm thick, 30 layer blanket consisting of aluminized Mylar and Dacron
- Packing density of 30 layer/15 mm was chosen to reduce conductive shorting
- High gain antenna will be covered in a germanium coated polyimide, which is RF transparent

MMOD Shielding

- Shielding consists of honeycomb aluminum walls with 1 mm wall thickness on each side with a 5 cm honeycomb core.
- This shield can protect against particles with a critical diameter up to 1.5 cm

Link to Detailed MLI Link to Detailed MMOD

Germanium coated kapton MLI for HGA



Speaker: Anthony G.

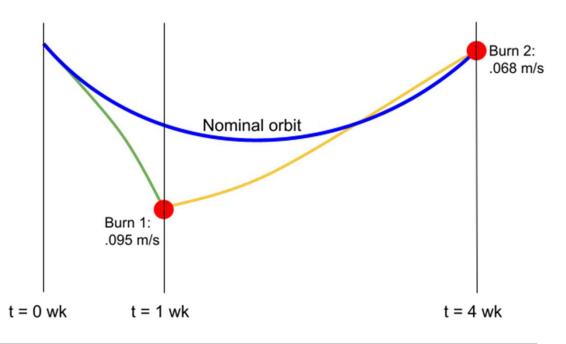
Preposition Risks - Structures

Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
The exposure periods are longer than expected	The shielding not being able to withstand the exposure	The payload and support bus	The shielding degrading	1	2	Structures

Speaker: Ismael C.

Applicable Level 3 Propulsion Requirements

Subsystem	ID	Requirement	Driving Phase	Compliance
Propulsion	PROP2	The propulsion system shall provide the flight system with a dV of 60 +/- 15 m/s for station-keeping within the prepositioned orbit.	Phase 3	Υ
Propulsion	PROP2	The propulsion system shall provide the flight system with a dV of 15 +/- 5 m/s for desaturation within the prepositioned orbit.	Phase 3	Υ



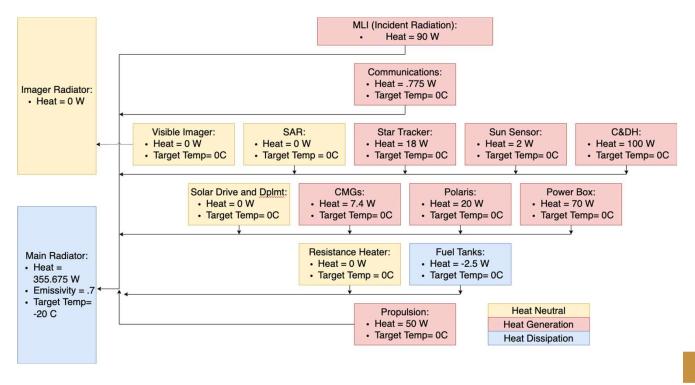
Speaker: Chris L. PHASE 3: PRE-POSITIONED ORBIT / 57

Station Keeping - Orbits & Propulsion

- Required to maintain the gravity assist schedule
- SRP (s/c only within Earth SOI for ~1.1% of orbit)
- 4wk cycle: 1wk wait, 3wk transfer
- 0.16m/s of DV per 4wk cycle *
 21 years of station keeping = 45
 m/s total DV needed for the
 21 years of emplacement
 + prepositioned orbit

Station Keeping 4wk Cycle Overview

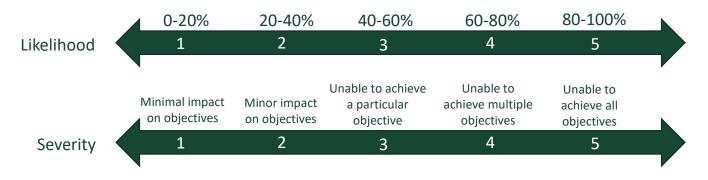
Speaker: Evan A.


Applicable Level 3 Thermal Requirements

Subsystem	ID	Requirement	Driving Phase	Compliance (Y/N/M)
Thermal	THR1	The thermal system shall keep components that are turned on within their operational temperature ranges as defined by Table 3.1.	N/A	Υ
Thermal	THR2	The thermal system shall keep components that are turned off within their survivable temperature ranges as defined by Table 3.2.	N/A	Υ

Speaker: Alec J. Phase 3: PRE-POSITIONED ORBIT / 59

Prepositioned - Thermal Design


Back Up Slides

Speaker: Joey H. Phase 3: PRE-POSITIONED ORBIT / 60

Radiator Pointing Error Risk

Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
There are pointing errors which affect the orientation of the radiators	A reduction in heat rejection capability or excessive heat loads into the spacecraft	Any power consuming systems as waste heat will need to be reduced	A negative effect on the performance of the thermal system	1	3	Thermal

Speaker: Colton H.

Applicable Level 3 Communication Requirements

Subsystem	ID	Requirement	Driving Phase	Compliance
Comms	COM15	The communication system shall transmit science data with a minimum data rate of 32.4 kbps [TBC].	Phase 6	YES
Comms	COM16	The communication system shall receive commands with a data rate of up to 2 kbps [TBC].	N/A	YES
Comms	COM18	The communication system shall transmit telemetry at a minimum data rate of 20 bps [TBC] while in system fault mode.	N/A	YES
Comms	COM19	The communication system shall receive commands at a data rate of TBD bps during system fault mode.	N/A	Maybe
Comms	COM22	The communication system shall have a high gain transmission EIRP of 80.89 [TBC] dBW	Phase 6	YES

Speaker: Syed R. Phase 3: PRE-POSITIONED ORBIT / 62

Communication - Telecom Parameters Overview

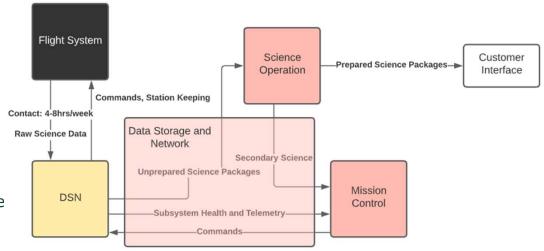
Antenna	Quantity	Туре	Frequency Band	Diameter [m]	Transmit Power [W]	Data Rate (7AU /PP)	Purpose
HGA	1	Parabolic Reflector	Ka / X	3	200 / 160	110 kbps to 3 Mbps	Science/telemetry d/l, command u/l ,ranging
MGA	2	RF Conical Horn	Х	~0.15	160	25bps to 1.95 kbps	Safe Mode
LGA	2	Choked Horn	Х	~0.1	160	N/A to 196 bps	Safe Mode

Speaker: Syed R.

ID	Requirement	Driving Phase	Compliance (Y/N/M)
G5	The ground system shall support the flight system for a minimum of 22 years [TBC].	N/A	Maybe
G23	The ground system centers shall interface with the deep space network.	N/A	Yes
G34	The ground system shall establish two-way communication with the flight system on average of once a week for four-to-eight hours per session during the preposition mission phase.	Phase 3	Yes
G25	The ground system shall provide the flight system with its trajectory +/- TBD km every 14 weeks.	Phase 3/4/6	Yes
G26	The ground system shall provide the flight system with a best-fit curve of Earth's position to +/- TBD km every 1 year.	Phase 3/4/6	Yes
G39	The ground system shall process science data to provide an exoplanet science package to the customer	Phase 3	Yes
G40	The grounds system shall process science data to provide a remote observation science package to the customer	Phase	Yes

Speaker: Alexi D. PHASE 3: PRE-POSITIONED ORBIT / 64

Applicable Level 3 Ground System Requirements


ID	Requirement	Driving Phase	Compliance (Y/N/M)
GS5	The Mission Control Center shall interface indirectly with DSN via the Data Storage and Network to transmit or receive data/commands	N/A	Yes
GS3	The Mission Control Center shall design and execute commands to meet the mission demands	N/A	Yes
GS9	The Data Storage and Network shall store all data of all types locally	N/A	Maybe
GS1	The Science Operations Center shall analyze science data stored in the Data Storage and Network using science models	N/A	Maybe
GS2	The Science Operations Center shall provide science packages to the customer through the customer interface	N/A	Yes

Speaker: Alexi D. PHASE 3: PRE-POSITIONED ORBIT / 65

Ground Operations - Preposition

- Secondary Science Data Product Generation
 - Downlink → Storage → Science Product
 Generation → Customer
- Determination of coverage requirements for ISO intercept confirmation
- Contact Schedule: Once per week per spacecraft for 4-8hrs
 - Ephemeris Information
 - Earth, Flight System
 - Data downlink for science production
- Routine Health Checks, station keeping, course correction

Future Steps:

- Further analysis to determine if the ground system facilities and interfaces have a life span of at least 22 years (G4)
- Further analysis to determine total science data size and storage facility capabilities (GS9)

Speaker: Berenice C. Phase 3: PRE-POSITIONED ORBIT / 66

Phase 4

Speaker: Austin I.

Phase 4: Navigation to ISO - Overview

Major Event	Encounter S/C Operations	Ground System Interactions
ISO Detection and Selection	ES waits in its PP orbit for an ISO to be selected.	After an ISO is detected by a third-party, the orbital data and trajectory is provided to GS. The GS team will verify that this is a desirable ISO.
End of ISO Waiting Period	ES receives ISO data and prepares for third GA.	Three days after ISO selection, GS will communicate to ES to tell it the ISO has been selected and where it is.
Beginning of Third Gravity Assist	ES uses a burn to leave its PP orbit and a second burn to begin its third GA.	ES Leaves PP Orbit and Begins Third Earth Gravity Assist.
End of Third Gravity Assist	ES finishes third GA.	GS updates ES on its location.
End of ISO Travel	ES uses a high magnitude burn to put it on a trajectory towards the ISO.	GS updates ES on ISO location and trajectory.
ES is 55,000 km Away from ISO	ES begins using automatic optical navigation.	GS stops communicating with ES until completion of flyby.

Speaker: Austin I. Phase 4: Navigation to ISO / 68

Phase 4: Navigation to ISO

Applicable Level 2 Flight System Requirements

ID	Requirement	Flight System Compliance (Y/N/M)
F8	The flight system shall carry a minimum onboard dV of 4.8 km/s [TBC].	Yes
F15	The flight system shall perform trajectory corrections to achieve a closest approach distance of 400 km +/- TBD .	Yes
F16	The flight system shall perform trajectory corrections to achieve a maximum relative velocity to the ISO of 13 km/s at closest approach.	Yes
F28	The flight system shall transmit radiometric position signals to the ground system.	Yes
F31	The flight system shall receive trajectory updates from the ground system every TBD days.	Maybe

Speaker: Bailey G. Phase 4: NAVIGATION TO ISO / 69

Phase 4: Navigation to ISO

Applicable Level 2 Ground System Requirements

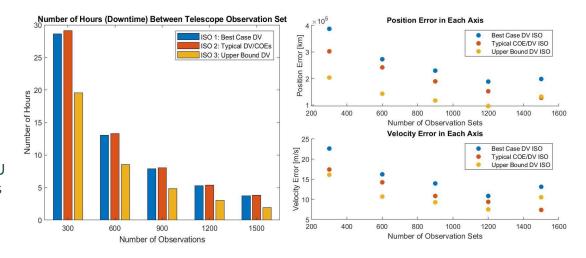
ID	Requirement	Driving Phase	Compliance (Y/N/M)
G4	The ground system shall command the flight system to depart its prepositioned orbit.	Phase 4	Yes
G35	The ground system shall establish two-way communication sessions with the flight system at least once every 36 hours for one hour per session during the navigation mission phase	Phase 4	Yes
G36	The ground system shall establish a minimum of 42 hours of two-way communication with the flight system within 2 weeks prior to the encounter	Phase 4	Yes
G6	The ground system shall navigate the flight system to a closest approach distance of 400 km +/- TBD km.	Phase 4	Maybe
G26	The ground system shall provide the flight system with a best-fit curve of Earth's position to +/- TBD km every 1 year.	Phase 3/4/6	Yes
G25	The ground system shall provide the flight system with its trajectory +/- TBD km every 14 weeks.	Phase 3/4/6	Yes
G27	The ground system shall provide the flight system with the ISO ephemeris 24 hours prior to the beginning of autonomous operations.	Phase 3/4/6	Yes
G30	The ground system shall provide an ISO ephemeris with positional accuracy of +/- 20 km in all axes.	Phase 3/4/6	Maybe

Speaker: Alexi D.

PHASE 4: NAVIGATION TO ISO / 70

Phase 4: Navigation to ISO

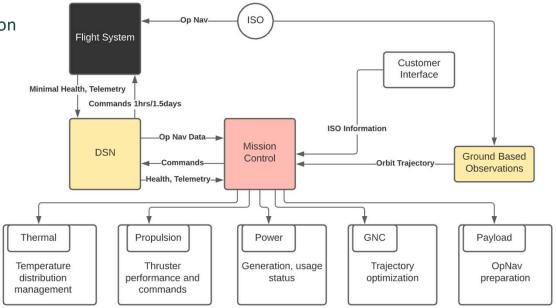
Applicable Level 3 Ground System Requirements


ID	Requirement	Driving Phase	Compliance (Y/N/M)
GS6	The Mission Control Center shall decide whether any customer provided ISO ephemeris meets the mission capabilities	N/A	Yes
GS3	The Mission Control Center shall design and execute commands to meet the mission demands	N/A	Yes
GS9	The Data Storage and Network shall store all data of all types locally	N/A	Maybe
GS1	The Science Operations Center shall analyze science data stored in the Data Storage and Network using science models	N/A	Yes
GS2	The Science Operations Center shall provide science packages to the customer through the customer interface	N/A	Yes

Speaker: Alexi D. PHASE 4: NAVIGATION TO ISO / 71

Ground Based Observations – Ephemeris Uncertainties

- Ground based telescopes will be used to take observations sets:
- 1200 observation sets are recommended
 - 2.5 hour observation sets (30 observations spaced by 5 min)
 - Require observations 5 hours apart from detection until the ISO leaves 3AU
 - Increasing the number of observations beyond 1200 decreases allowable downtime while not decreasing ephemeris uncertainty significantly



Speaker: Aaron L. Phase 4: Navigation to ISO / 72

Ground Operations — Preposition Departure to Encounter

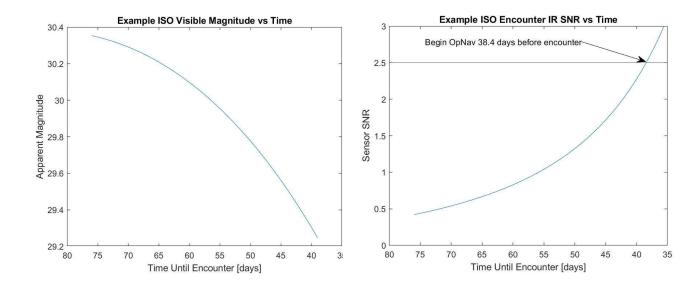
- New Contact Schedule starts upon ISO detection
 - One hour every 36hours to command departure and collect/update telemetry
 - Once daily for 2-4hrs weeks before AutoOpNav
- New Commands Designed on ground for
 - Ephemeris of Earth, Trajectory update
 - ISO imaging procedures for pointing
- Continued Data Ground-Downlink
 - Monitor flight system status
- Prepare for AutoOpNav and GNC
 - Design burn schedule
 - Assess possible gravity assists

Speaker: Berenice C.

PHASE 4: NAVIGATION TO ISO / 73

Phase 4: Navigation to ISO

Applicable Level 3 GNC Requirements


ID	Requirement	Driving Phase	Compliance (Y/N/M)
GNC1	The GNC system shall propagate the heliocentric velocity of the flight system to +/- 10 m/s in all axes for 14 days	Phase 5	М
GNC2	The GNC system shall propagate the heliocentric position of the flight system to +/- 1000 km in all axes for 14 days	Phase 2,3,4,5,6	Υ
GNC3	The GNC system shall receive the heliocentric position of the flight system to +/- TBD km in all axes every 14 days.	Phase 2,3,4,5,6	М
GNC4	The GNC system shall propagate the heliocentric position of Earth to +/- 1514 km in all axes for 1 year.	Phase 2,3,4,5,6	Υ
GNC5	The GNC system shall receive the heliocentric position of Earth to +/- TBD km in all axes every 1 year.	Phase 2,3,4,5,6	М

Speaker: Helen M.W.

Optical Navigation-IR vs. Visual

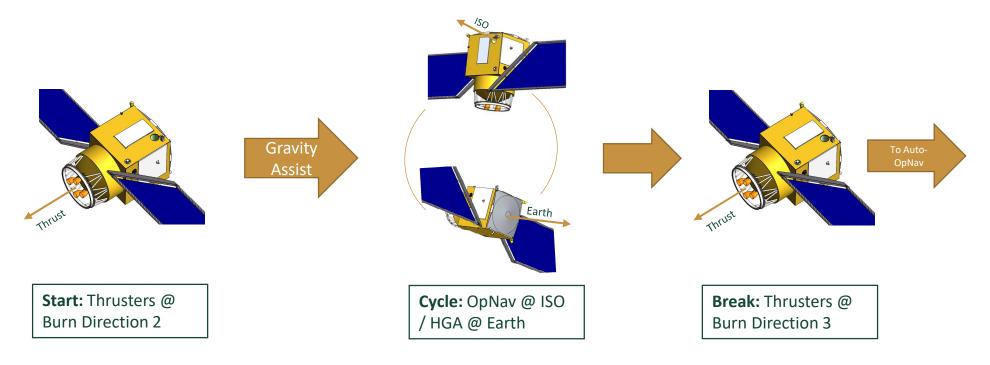
- Due to small ISO size, large heliocentric range, and large phase angles (angle between the ISO 2 Sun Vector and the ISO 2 SC vector), the IR sensor on the primary science imager will be used to detect the ISO at the beginning of the optical navigation campaign.
- Using IR allows us to start optical navigation earlier than if we used the visual sensor.

Future Work: Create model of fuel slosh during navigation to ISO, potentially add Diaphragm-style positive expulsion Pressure Management Device to fuel tanks to minimize fuel slosh

Speaker: Nicholas S. Phase 4: Navigation to ISO / 75

Phase 4 Navigation Timeline

- TCM 8 and 9 compose our third Earth Gravity Assist and set us on a trajectory towards the ISO
- TCM 10-13 are additional maneuvers taken based on optical navigation data from the spacecraft to correct for uncertainty in the ISO ephemeris knowledge generated by ground systems


Event	Date (Days before Encounter)	Data Arc (#Days)
TCM 8	N/A	N/A
TCM 9	N/A	N/A
Op Nav Begins	T – 38	N/A
TCM 10	T – 18	20
TCM 11	T-6	12
TCM 12	T – 2	4
TCM 13	T-1	1

Speaker: Zach Lofquist

PHASE 4: NAVIGATION TO ISO / 76

Navigation Pointing Directions

Speaker: Matthew S.

PHASE 4: NAVIGATION TO ISO / 77

Burn Order

Burn 1

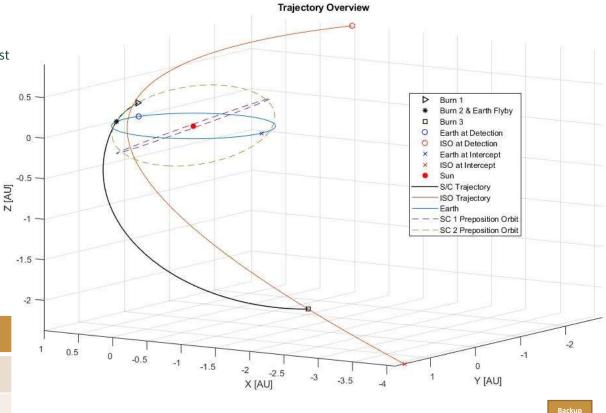
• 3-90 days prior to selected Earth gravity assist

• Departs from prepositioned orbit

Burn 2

Occurs at Earth gravity assist

Corrects velocity vector into assist

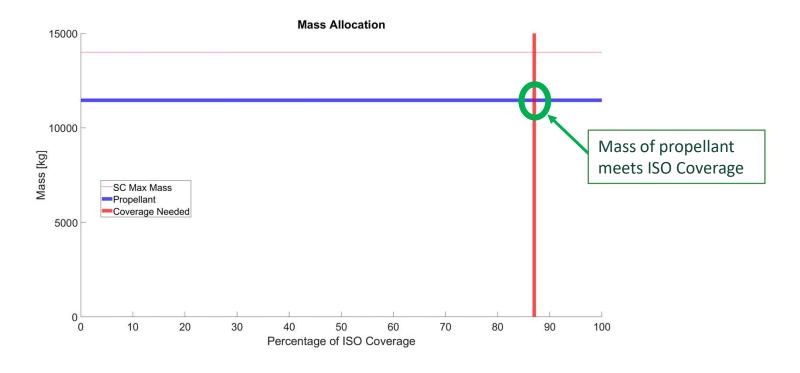

Burn 3

Occurs at ISO intercept

• Reduces SC-ISO relative velocity to less than 13 km/s

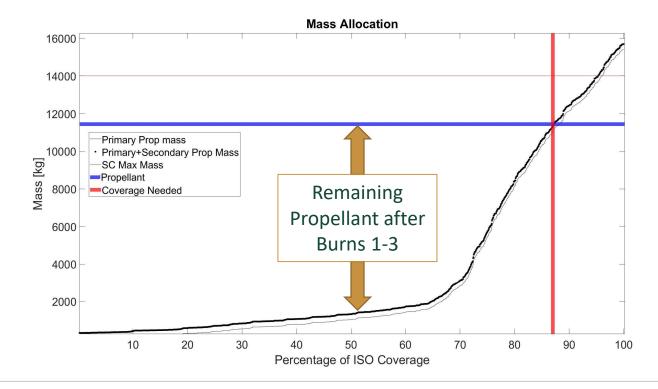
• Uses remainder of propellant to make ISO intercept as slow as possible

[km/s]	Burn 1	Burn 2	Burn 3
Mean	0.10	0.10	3.86
STD	0.12	0.13	0.25

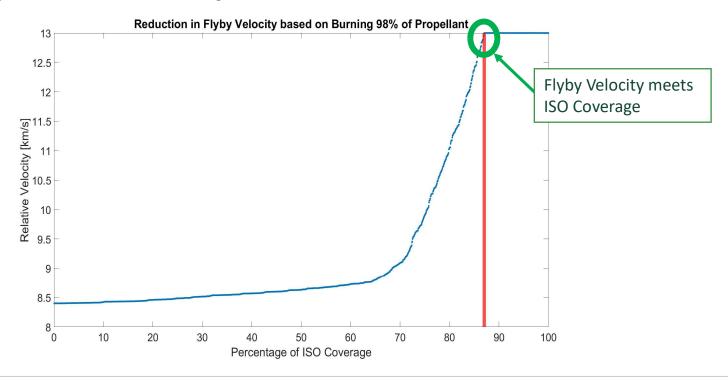


Speaker: Jack K.

PHASE 4: NAVIGATION TO ISO / 78

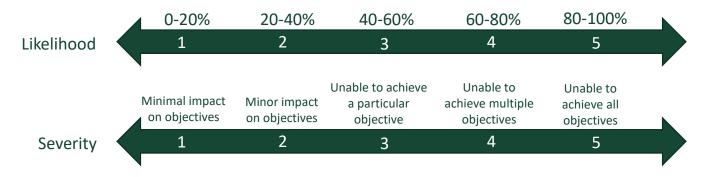

Mass Sizing

Speaker: Ryan M


Mass Sizing

Speaker: Ryan M

Flyby Velocity Reduction



Speaker: Ryan M

ISO Flyby Risks -

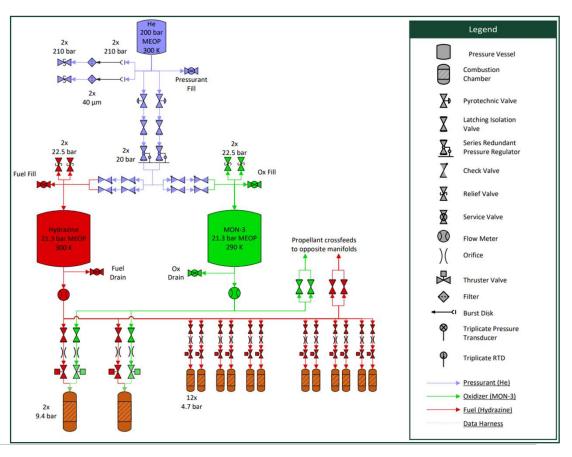
Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
There are uncertainties about the ISO state	The ISO not being at the distance or relative velocity that was predicted	The propulsion system's dV capability and payload subsystem	The spacecraft navigating to a location from which we can no longer complete the mission	2	3	Orbits

Speaker: Jack K

Phase 4: Navigation to ISO

Applicable Level 3 Propulsion Requirements

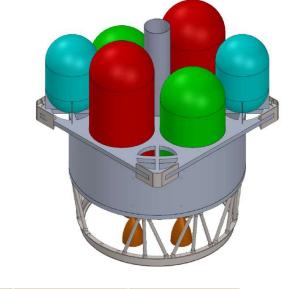
ID	Requirement	Driving Phase	Compliance
PROP1	The propulsion system shall provide the flight system with a dV of 4.5 \pm +/- 0.5 km/s for transport to the ISO .	4	Yes
PROP4	The propulsion system shall have a minimum reliability of 98.5%	All	Maybe
PROP5	The propulsion system shall have a mass of 11481 kg +/- 300 kg	All	Yes
PROP6	The propulsion system shall have a volume of 15 m^3 +/- 3 m^3	All	Yes
PROP7	The propulsion system shall operate in the space environment for 22 years.	All	Yes
PROP8	The propulsion system shall operate at a heliocentric range of 0.5-7 AU	All	Yes



Speaker: Chris L. PHASE 4: NAVIGATION TO ISO / 83

Propulsion System

- Propulsion system is composed of:
 - Primary propulsion, which will be used for large-dV maneuvers such as navigating to the ISO
 - Secondary propulsion, which is used for prepositioning burns, stationkeeping, and ADCS CMG singularity-avoidance
- Propulsion system designed to be one-fault tolerant to ensure we're always able to get to the ISO
 - Most valves have single-redundant backups
 - All thrusters a single-redundant backup
 - Pressure/temperature measurements are taken in triplicate, using the median value



Speaker: Chris L. PHASE 4: NAVIGATION TO ISO / 84

Propulsion System Components

- Tank sizing was calculated using propellant mass outputs from the Mass Model.
 - The tanks are <u>designed</u> as homogenous 6Al-4V titanium
 - Tanks will use a surface-tension style propellant management device (<u>PMD</u>) to ensure proper propellant flowrate in zero-G conditions
 - Extra <u>ullage</u> space in the fuel tank allows blowdown functionality for small burns prior to pyro valve actuation.
 - A propellant utilization (<u>PU</u>) algorithm will be used to ensure maximum dV for a given propellant split.

Thruster	Quantity	Propellants	Thrust [N]	Isp [s]	Mixture Ratio
<u>R-4D-15</u>	4	Hydrazine/MON-3	445	329	0.70-1.33 1.0 Nominal
<u>MR-111G</u>	24	Monopropellant Hydrazine	4	229-219	N/A

Backup

PHASE 4: NAVIGATION TO ISO / 85

Speaker: Chris L.

Phase 4: Navigation to ISO

Applicable Level 3 Structure Requirements

ID	Requirement	Driving Phase	Compliance (Y/N/M)
STR6	The structure shall sense the thruster's angular position within 0.1 +/- 0.01 degrees .	Phase 4	Yes
STR9	The structure shall articulate the thrusters +/- 8 degrees from the zero position.	Phase 4	Yes

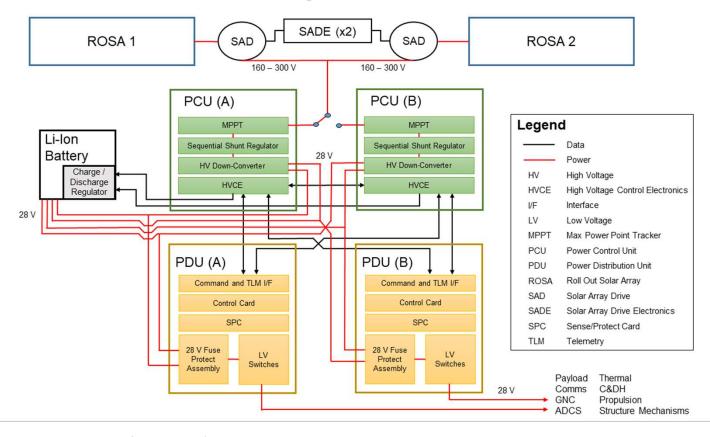
Speaker: Ricardo C. Phase 4: Navigation to ISO / 86

Mechanisms - Structures

Mechanism	Source	Total Mass	Continuous Draw	Actuation Draw	Actuation Type	Range	Resolution	Operating Temperatures	Details
Thruster Ring Actuator (x8)	MOOG 310	16 kg	<28 V DC	28 V DC	Motion translation (rotational to linear)	17 cm stroke	0.025 mm	-50°C to 80°C	[2]

Speaker: Ricardo C. Phase 4: Navigation to ISO / 87

Phase 4: Navigation to ISO


Applicable Level 3 Power Requirements

ID	Requirement	Driving Phase	Compliance
POW2	The power system's solar panels shall generate a minimum of 690 + TBD Watts at end of life.	Phase 6	Yes
POW3	The power system shall allocate power for each subsystem as specified by <u>Table 2.0</u> .	N/A	Yes
POW4	The power system shall provide 28 +/- TBD Volts to all components.	N/A	Yes
POW5	The power system shall provide 305 +/- TBD Watts during system fault mode.	N/A	Yes

Speaker: Joseph P. PHASE 4: NAVIGATION TO ISO / 88

Power Block Diagram

Speaker: Joseph P.

Speaker: David S.

Preliminary Design Review – Day 2

C.O.S.M.I.C – Friday, June 4th, 2021

Introduction

Speaker:

C.O.S.M.I.C. (Celestial Object Sensing and Measuring Identification Campaign)

Our Team is a dedicated engineering group of 72 Cal Poly Spacecraft Design students working cooperatively in a virtual environment.

Our Mission is to provide space systems for interstellar exploration to further our understanding of the origins of the solar system through the study of interstellar objects and near-parabolic comets.

Table of Contents

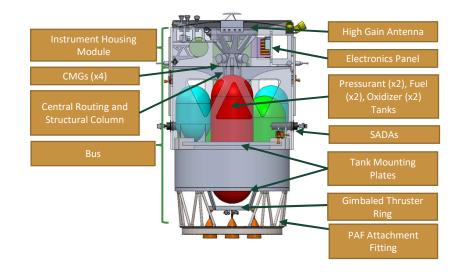
```
Day 2 (Fri, 6/4)

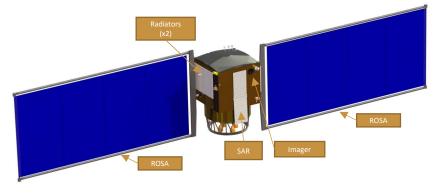
Introduction (92)

1. Overview of Day 1 (95)
```

- 2. <u>Mission Phases Cont.</u> (96 148)
 - 1. Phase 5: Interstellar Object Flyby (96)
 - 2. Phase 6: Data Downlink (135)
 - 3. Phase 7: Decommission (145)
- 3. <u>Project Life Cycle, System Integration and Test</u> (149)
- 4. <u>Mission Budget</u> (161)
- 5. <u>Summary</u> (164)
- 6. <u>Support Slides (170-327)</u>

```
Day 1 Recap (Wed, 6/2)
```


- 1. <u>Introduction</u> (2)
 - 1. Entrance and Success Criteria (5)
 - 2. Solicitation Breakdown (6)
 - 3. Design Challenges (9)
- 2. <u>System Design</u> (15)
- 3. <u>Mission Phases</u> (22 89)
 - 1. Phase 1 : Launch (22)
 - 2. Phase 2: Orbital Insertion (37)
 - 3. Phase 3: Prepositioned (44)
 - 4. Phase 4: Navigation to ISO (67)
- 4. <u>Closing Remarks</u> (90)

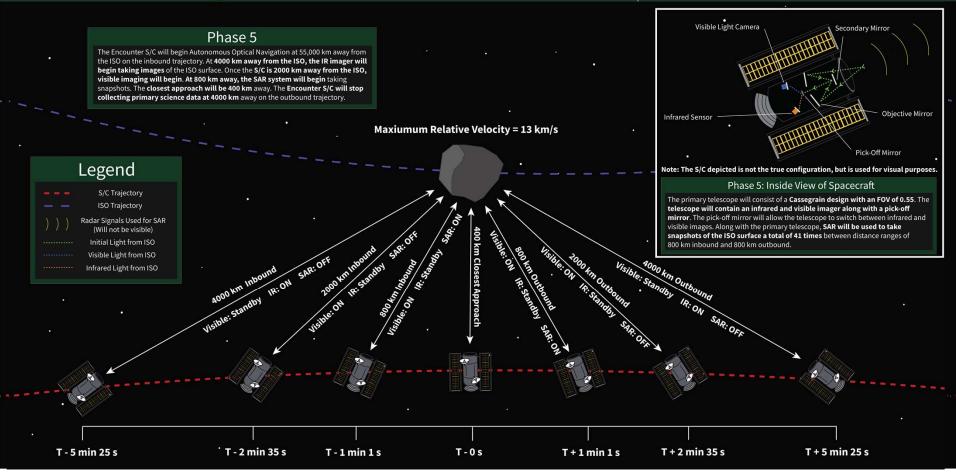


1.

Day 1 Summary

- Introduced the Solicitation
 - Composition
 - Morphology
 - Angular Momentum
 - o Advanced Object Definition
 - Remote Observation
 - Exoplanet
- Decomposition of System Design
- Phase 1: Launch to Detumble
- Phase 2: Orbital Insertion into Preposition
- · Phase 3: Prepositioned
- Phase 4: Navigation

Speaker: David S.


Phase 5

Speaker: Sean T.

Encounter Strategy: Phase 5

Mission Concept of Operations

Phase 5: Encounter

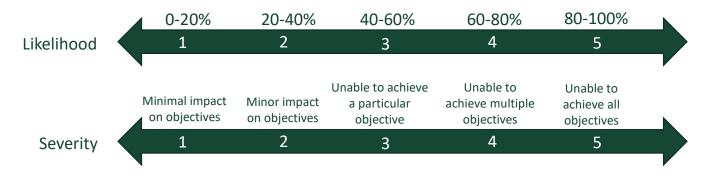
Applicable Level 2 Flight System Requirements

ID	Requirement	Compliance (Y/N/M)
F9	The flight system shall operate autonomously within 24 hours of closest approach.	Υ
F11	The flight system shall acquire visible imagery of the object at a resolution of 5 mpp.	Υ
F12	The flight system shall acquire infrared imagery of the object at a resolution of 10 mpp.	Υ
F13	The flight system shall acquire radar data of the object with a maximum doppler shift precision of 0.0515 Hz at closest approach to the ISO.	Y
F14	The flight system shall image the object's orthogonal axes.	Υ
F15	The flight system shall perform trajectory corrections to achieve a closest approach distance of 400 km +/- TBD.	Y
F16	The flight system shall perform trajectory corrections to achieve a maximum relative velocity to the ISO of 13 km/s at closest approach.	Y
F32	The flight system shall support a total data volume of up to 21 GB.	Υ
F34	The flight system shall acquire radar data of the object with a maximum slant range uncertainty of 1.5 meters at closest approach.	Y
F35	The flight system shall acquire radar data every 3 degrees of angular position between the ISO and the spacecraft.	Υ

Speaker: Sydney R. Phase 5: ENCOUNTER / 98

Encounter Models

Effect of ISO Rotation Rate on Primary Objectives


	Spin Axis	Rotation Rate	Shape Model Percent Coverage				
ISO Rotational Period	Spin Axis Error	Confidence Within +/-1.0%	+/- 10 m resolution	+/- 20 m resolution	+/- 30 m resolution		
8 min	≤0.18°	Н	50.3%	67.7%	73.5%		
10 min	≤0.23°	Н	48.2%	66.5%	73.0%		
42 min	≤1°	Н	22.7%	42.2%	49.5%		
1 hr	1.4°	Н	14.9%	36.7%	45.8%		
2 hr	2.8°	Н	0%	20.7%	34.1%		
4 hr	6.2°	Н	0%	0%	12.5%		
6 hr	12.2°	Н	0%	0%	0%		
5 days	>50°	Н	0%	0%	0%		
10 days	>50°	M	0%	0%	0%		
20 days	>50°	L	0%	0%	0%		

Speaker: Lauren F. Phase 5: ENCOUNTER / 100

ISO Flyby Risk

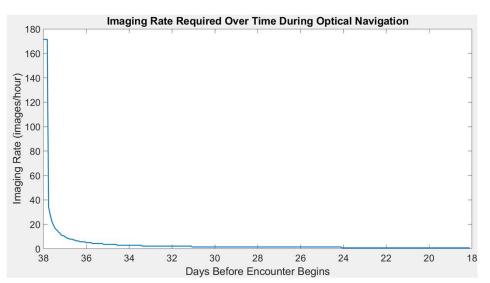
Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
There are unknowns about the ISO	The angular velocity of the ISO being too slow	The post- processing of the mission data necessary to generate the shape mode and determine the spin axis	The radar data not being able to produce a shape model with the required resolution and the images taken not being able to produce spin axis to the required error	4 *unknown because not enough data on ISOs	3-4 Not meeting some primary objectives to the required error but still getting data	Sci Tech

Speaker: Matt J.

Rotation Rate Method Overview and Assumptions

- Method Overview
 - IR light curves will be used to determine the rotation rate of the ISO
 - Images will be taken for ~20 days during OpNav
 - Data will be downlinked before auto navigation begins
- Assumptions (taken from Rosetta flyby of asteroid Steins)
 - The rotation rate can be determined to within 1% with:
 - An imaging rate of 60 images per period
 - An imaging duration between 3 and 4 rotational periods
 - A comet coma will have negligible effects on the light curves

Rotation Rate Method Results


Level 1 Reqs

MP8

The mission shall determine the object's rotation rate within 1%.

✓ Period ≤ 5 days

ISO Rotation Period	Imaging Duration (periods)	Imaging Rate (images/period)
< 0.35 hours	> 4	< 60
0.35 hours to 5 days	3 - 4	≥ 60
5 days to 10 days	2 - 3	≥ 60
10 days to 20 days	1 - 2	≥ 60

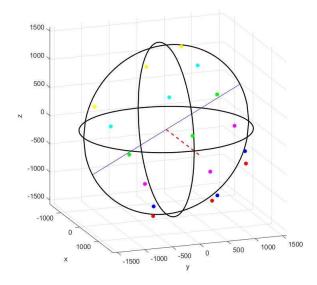
- Requires access to the DSN for 46.2 hours during the 2.2 weeks prior to the encounter.
- Using light curves, the requirement is met for rotation periods between 0.35 hours and 5 days.
- Other radar and image data can be used to determine the rotation rate within 1% for periods less than 0.35 hours.

Spin Axis Model

MP7

The mission shall determine the object's spin axis within +/- 1.0 degree.

✓ Period ≤0.7 hr

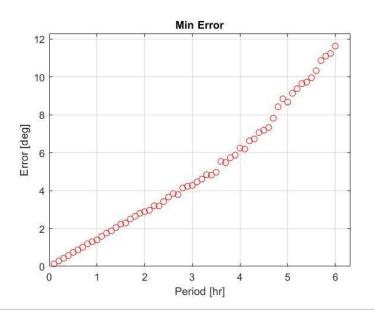

PHASE 5: ENCOUNTER / 104

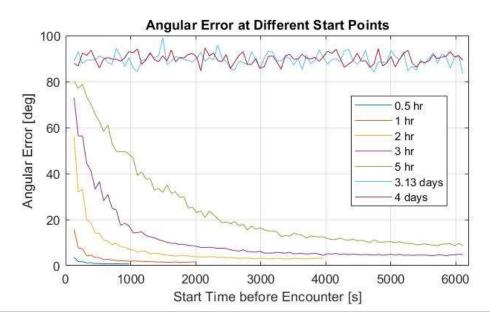
Model Assumptions

- There are identifiable features that can be tracked over multiple images
- Spin axis orientation problems ignored because of multiple viewing angles during encounter
- ISO can be seen with IR and visible imaging (may have problems with comet comas)

Model Overview

- Spin axis can be determined by tracking points on a set of images
- Spin axis knowledge error is calculated by varying time intervals of data





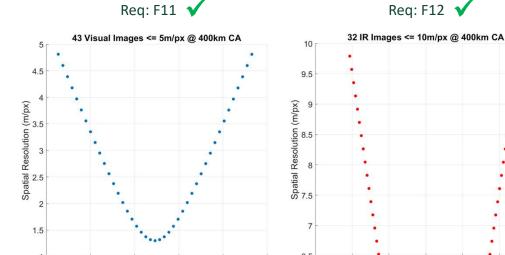
Speaker: Lauren F.

Spin Axis Model

- · Strong correlation between amount of rotation seen and spin axis knowledge error
- Longer imaging intervals required for longer period ISOs

Speaker: Lauren F.

PHASE 5: ENCOUNTER / 105


Image Quality Model (Smear + Jitter)

Jitter:

- Can obtain required resolution for IR/Visual with Jitter = 1⁻⁴ rad/s
- Exceeds current estimated Jitter by 190%

Smear:

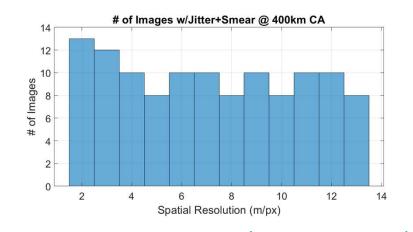
- Cross-Track Smear is fully corrected by slew profile.
- Along-Track (Radial) Smear is given by: iFOV $\times \Delta t_{exp} \times v_{relative}$

1000

1050

Time from Encounter Start (s)

800


1100

Time from Encounter Start (s)

Visual and IR Surface Coverage

Assumptions:

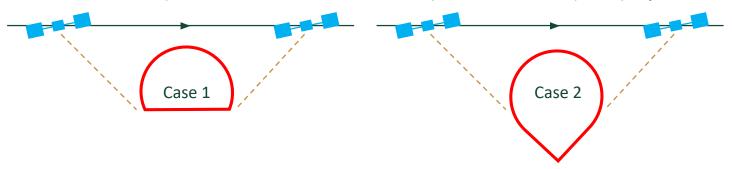
- IR Range = [4000, 2000] km
- Visual Range = [2000, 400] km
- Min. Exposure Time = 15ms
- Max. Framerate = 5 FPS
- Best Image stored per 5s interval

Pog: MD/

	Req. MP4	Req. IVIPS
Stats from ISO Cases A, B, C	Visual (Lit) Coverage %	IR (Unlit) Coverage %
Mean	48.75	97.83
1σ	1.00	0.73

Speaker: Michael L.

Level 1 Reqs

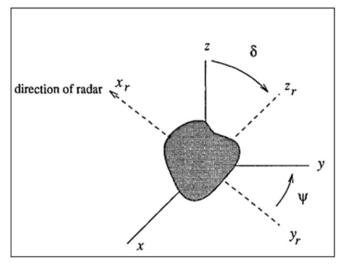

Mean Dimension Model

MP6

The mission shall determine the object's mean dimension within +/- 10 meters.

✓ Period >12 s

- Model Assumptions
 - Spherical ISO
 - Non viewing side of ISO is not concave
- Conclusion
 - Opposite cases within +/- 10 m requirement for 160° viewing angle
 - Mean dimension requirement will be met from data already collected for other primary objectives


Speaker: Lauren F.

PHASE 5: ENCOUNTER / 108

Governing Equations Model

SAR Shape Model Assumptions

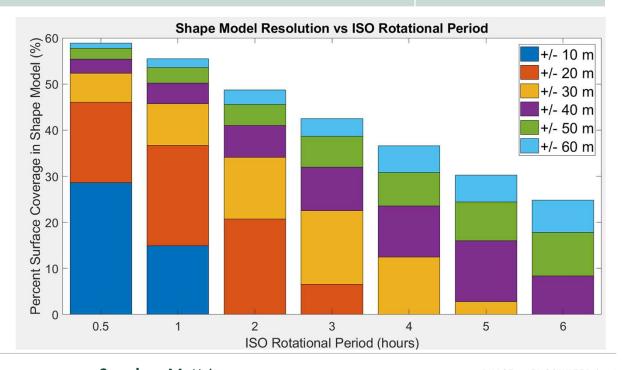
- Spherical ISO shape with radius of 750 meters
- The uncertainties in the following values have a negligible effect on the final shape model:
 - · Radar orientation in inertial space during encounter
 - · Time stamps on all radar and orientation data
 - Backscatter power measurement (24-bit samples)
 - · Angular velocity of the ISO
- Backscatter from the entire surface visible to the radar is collected by the receiver
- Assume the sub-radar latitude (delta) is 30 degrees

Scott Hudson (1994) Three-dimensional reconstruction of asteroids from radar observations, Remote Sensing Reviews, 8:1-3, 195-

203, DOI: 10.1080/02757259309532195

Speaker: Matt J. Phase 5: ENCOUNTER / 109

Level 1 Reqs


SAR Shape Model Results

MP5

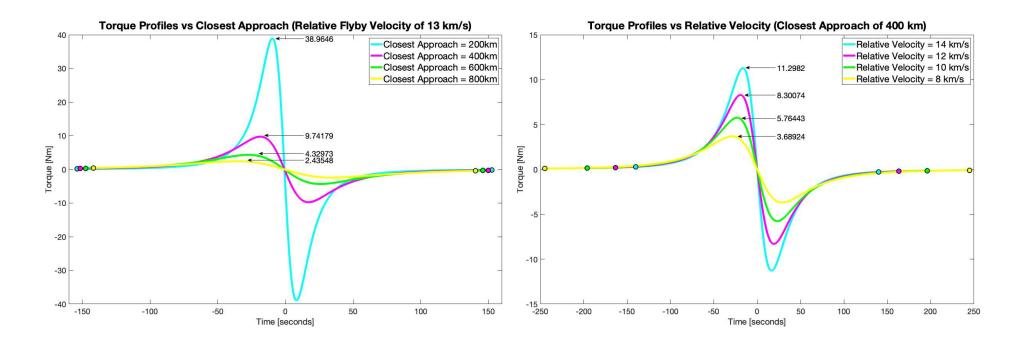
The mission shall model 50% [TBC] of the object's shape within +/- 10 meters using active measurement.

✓ Period ≤ 8 minutes

- Encounter
 Parameters
- Relative Velocity: 13 km/s
- Slant Range to ISO when Data Collection Begins and Ends: 800 km
- Closest Approach
 Distance to ISO: 400 km
- SAR coherent processing interval: 1.63 seconds
- Pulse every 3 degrees in angular position to ISO

Speaker: Matt J.

PHASE 5: ENCOUNTER / 110


Shape Model – Additional Data

- The visual images taken during the flyby can also be used to generate a shape model.
- This data can supplement the radar data to develop a better shape model.
- All visual images are expected to capture around 48.75% of the total ISO surface area.

Resolution (meters per pixel)	Number of Images
≤5	43
5 - 10	32 (IR)
10 - 15	46
15 - 20	46
20 - 25	46
25 - 30	44

Torque vs. Encounter Variables

Speaker: Scott P. PHASE 5: ENCOUNTER / 112

Encounter Summary

Parameter	Range	Driving Considerations	
Maximum Encounter S/C Relative Velocity to ISO	13 km/s	Decision to use Chemical propulsion system	
Distance from ISO AON Begins	55000 km	Distance that ISO resolves to > 1 pixel using APIC	
Primary Telescope Begins Taking IR Images	4000 km away from ISO on inbound trajectory	10 mpp spatial resolution is achieved at 4000 km	
Primary Telescope Begins Taking Visible Images	2000 km away from ISO on inbound trajectory	5 mpp spatial resoluton is achieved at 2000 km	
SAR Begins	800 km away from ISO on inbound trajectory	The SNR for the SAR is too low past 800 km	
Closest Approach Distance	400 km	The SNR for the SAR is sufficient at 400 km	
SAR Ends	800 km away from ISO on outbound trajectory	The SNR for the SAR is too low past 800 km	
Primary Telescope Stops Taking Visible Images	2000 km away from ISO on outbound trajectory	No longer satisfy solicitation req at this distance	
Primary Telescope Stops Taking IR Images	4000 km away from ISO on outbound trajectory	No longer satisfy solicitation req at this distance	
Encounter Duration	11 min and 14 sec +/- 3 min and 30 sec	Function of closest/furthest approach distance and relative velocity	
Maximum Distance from Sun at Closest Approach	5 AU	Beyond this we won't have enough sunlight for solar power	
Number of SAR bursts	41	Provides data redundancy and prevents doppler smearing	
Maximum Slew Acceleration Rate	3.93 x 10 ⁻² rad/s ²	Maintain pointing for ISO within FOV	
Total Amount of Data Taken	469.57 MB	Total encounter data collected	

Speaker: Alex PHASE 5: ENCOUNTER / 113

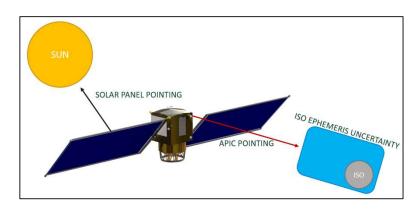
Encounter System Design

Speaker: Helen

Phase 5: Encounter

Applicable Level 3 GNC Requirements

ID	Requirement	Driving Phase	Compliance (Y/N/M)
GNC 6	The GNC system shall propagate the spacecraft relative position of the ISO to +/- 100 m in the imager cross track axis from T-3 minutes to T+3 minutes.	Phase 5	Maybe
GNC 7	The GNC system shall propagate the spacecraft relative position of the ISO to +/- 1.2 km in the imager down track axis from T-3 minutes to T+3 minutes.	Phase 5	Maybe
GNC 8	The GNC system shall propagate the spacecraft relative velocity of the ISO to +/- 50 cm/s in the imager down track axis from T-3 minutes to T+3 minutes.	Phase 5	Maybe
GNC 9	The GNC system shall propagate the ISO ephemeris from 24 hours prior to the beginning of autonomous operations to 24 hours after closest approach.	Phase 5	Yes



Speaker: Helen Phase 5: ENCOUNTER / 115

Auto-OpNav

Method	Time	Down-Track Error	Cross-Track Error
OpNav	T - 24 hrs	9.0 km	9.0 km
Auto OpNav	T - 0 s	1.2 km	0.1 km

- Utilize APIC system to image ISO and star field simultaneously
- APIC resolution becomes <1 km/pixel at 55,000 km from the ISO
- ISO ephemeris will be updated every 15 seconds
- No trajectory correction maneuvers after autonomous cutoff

Primary Pointing

- APIC Pointed at expected ISO position
- Solar Array Pointed to Sun

Mechanisms in use

PHASE 5: ENCOUNTER / 116

- APIC
- Solar Drive Mechanism

Mechanism	Source	Mass	Continuous Draw	Actuation Draw	Actuation Type	Range	Resolution	Operating Temperatures	Details
APIC Gimbal	<u>JPL</u>	<5 kg	<12 W	<12 W	Elevation Actuator	+/-90 deg	19 microrad	Actively controlled	[6]

Speaker: Liam M.

Phase 5: Encounter

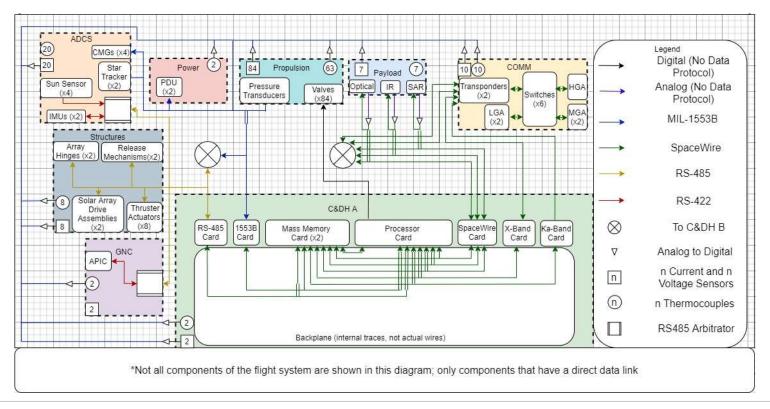
Applicable Level 4 C&DH Requirements

ID	Requirement	Driving Phase	Compliance (Y/N/M)
CDH-C11	The processor card shall have at least 5 MB of RAM.	Phase 5	Υ
CDH-C12	The processor card shall handle at least 85.21 kHz bandwidth.	Phase 5	Υ
CDH-C13	The C&DH subsystem shall have a redundant copy of itself.	Phase 5	Υ
CDH-C14	Each C&DH subsystem shall have a redundant mass memory card.	Phase 5	Υ

OBC Design - C&DH

ID	Requirement	Driving Phase	Compliance (Y/N/M)
CDH-C11	The processor card shall have at least 5 MB of RAM.	Phase 5	Υ
CDH-C12	The processor card shall handle at least 85.21 kHz bandwidth.	Phase 5	Υ

- Current minimum required RAM is 5 MB
 - Informed via APIC autoNav requirements
- Each OBC will have 8 MB RAM
- Processing speed 85.21 (kHz, direct calc from required)
- OBC will have **100 kHz** (inc. 1.2 F.S)
- Dimensions: 0.4 x 0.3 x 0.25 m (0.03 m³ vol.)
- Mass: 30 kg
- Power varies by phase, max 95 W
- Will have an additional C&DH system, one processor card per system


Operation	Processing Speed (kHz)
Secondary Science	69.61
Encounter	85.21

PHASE 5: ENCOUNTER / 118

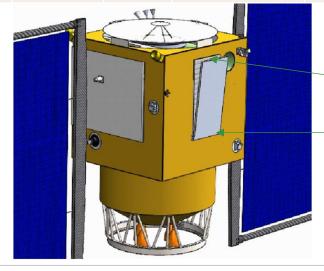
Data Harness - C&DH

Backun

Speaker: Sam W. Phase 5: ENCOUNTER / 119

Design Specifications - SAR

ID			Requirement	Driving Phase	Compliance (Y/N/M)				
PAY-C15	The SAR shall h	nave a gain of 56 dB.		Phase 5	Yes				
PAY-C16		acquire radar data of Hz at closest approac	the object with a doppler uncertainty of less than or h.	Phase 5	Yes				
SAR Par	rameter	Value	Power Source Exciter Transmitter Shared Antenna	Diplexer Reciever	Down Converter F	Signal Processing			
Bandwi	dth	0.1 GHz	2 me	ters					
Central	Frequency	26.5 GHz	13 km/s						
Power A	Average	16 W							
Power F	Peak	246 kW		\mathcal{J}					
Antenn	a Size	4m x 1m	((ISO))						
PRF		6500 Hz							

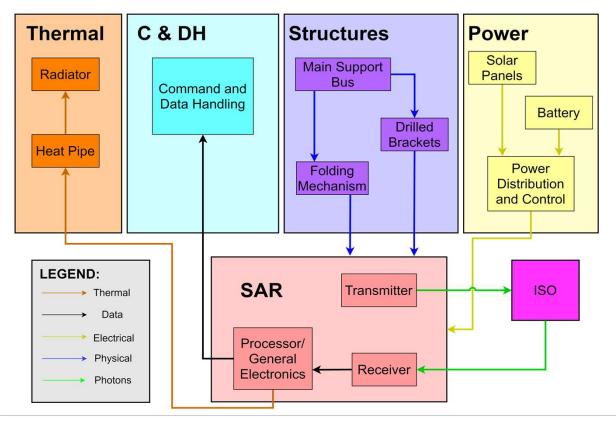


Speaker: Andrew G PHASE 5: ENCOUNTER / 120

To SAR Model Verification:

SAR Mechanisms - Structures

Mechanism	Source	Mass	Continuous Draw	Actuation Draw	Actuation Type	Range	Resolution	Operating Temperatures	Details
Non-Explosive Actuator for SAR	NEA Model 9100	0.7 kg	250 mA	4 A	Hold Down and Release	N/A	N/A	-135C to +135C	[4]
Deployment Hinge for SAR	Deployment System for Large Appendages	1.5 kg	N/A	N/A	Spring driven	90-180 deg.	+/- 0.006 deg.	-30C to +50 C (Survivable temperatures +/-150 C)	[5]


Non-Explosive Actuator

> Pre-Loaded Hinge

Speaker: Ricardo C. Phase 5: Encounter / 121

Bus Connections - Payload (SAR)

Speaker: James P PHASE 5: ENCOUNTER / 122

Advanced Object Definition - SAR

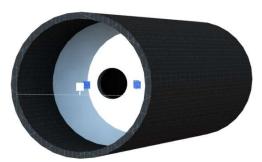
- Active measurement of shape and range
 - Achieved since we are using the SAR for our morphology model
- Active measurement of surface dielectric properties
 - SAR can determine dielectric constant by computing the co-polarized radar cross section for VV and HH polarizations.

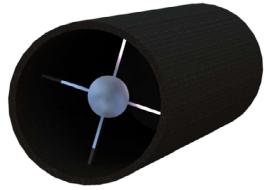
$$\frac{\sigma_{HH}}{\sigma_{W}} = \frac{COS(\theta_i) - \sqrt{\varepsilon_r - \sin^2(\theta_i)} \left(COS(\theta_i) + \sqrt{\varepsilon_r - \sin^2(\theta_i)}\right)^{-1}}{\left(\varepsilon_r - 1\right) \left[\sin^2(\theta_i) - \varepsilon_r - \varepsilon_r \sin^2(\theta_i)\right] \left[\varepsilon_r \cos(\theta_i) + \sqrt{\varepsilon_r - \sin^2(\theta_i)}\right]^{-2}}$$

Equation: Marghany, Maged. "Synthetic Aperture Radar Imaging Mechanisms for Oil Spills" 2020

Speaker: Andrew G PHASE 5: ENCOUNTER / 123

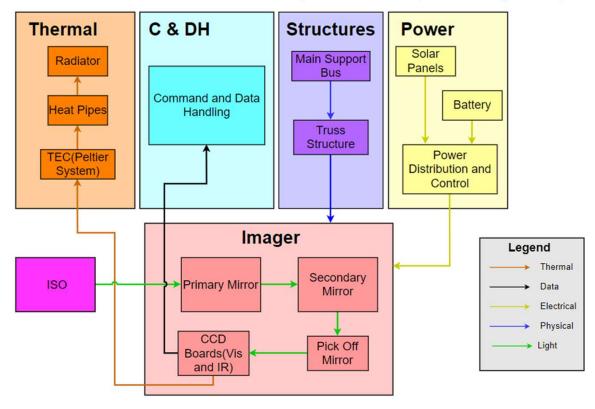
Phase 5: Encounter - Imager


Applicable Level 3 Payload Requirements


ID	Requirement	Driving Phase	Compliance (Y/N/M)
PAY4	The payload shall be capable of taking a visible image once every 200 milliseconds.	5	Υ
PAY5	The payload shall be capable of taking an infrared image every 200 milliseconds.	5	Υ
PAY6	The payload shall be capable of taking a visible image with an exposure time of 13 milliseconds.	5	Υ
PAY7	The payload shall be capable of taking an infrared image with an exposure time of 13 milliseconds.	5	Υ
PAY8	The payload shall have an FOV of 0.55 degrees.	5	Υ
PAY9	The payload shall articulate between the visible and infrared sensors.	5	Υ
PAY12	The visible CCD board shall collect the visible imagery signal.	5	Υ
PAY13	The infrared CCD board shall collect the infrared imagery signal.	5	Υ

Design Specifications - Imager

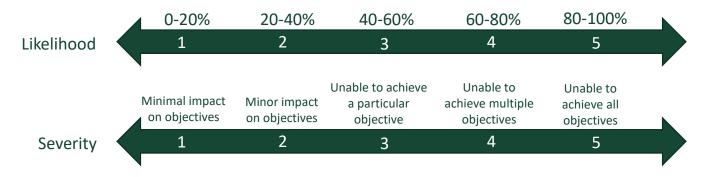
- Imaging system designed to meet 10 meter per pixel IR resolution and 5 meter per pixel visual resolution
- Cassegrain telescope
- CCD boards used for visual and IR sensors
- Pick off mirror to direct light into correct sensor
- 15 ms exposure time


Design Specifications - Imager

Imager Parameter	Value
Total Length	2 m
Primary Aperture	0.500 m
Secondary Aperture	0.125 m
System Focal Length	6 m
FOV (visual and IR)	0.55 deg

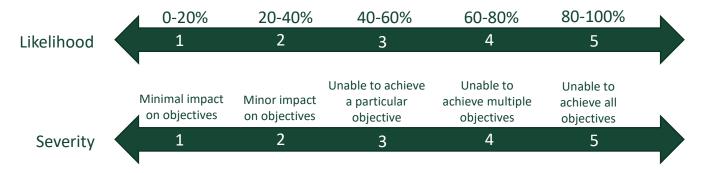
Sensor Parameter	Value
Pixel Count	2715 x 2715
Pixel Size	0.015 mm x 0.015 mm
Full Well Depth	300000 e
Pixel Data Rate	3-6 MHz
Readout Rate	20 ms
Image Size	1.87 MB

Bus Connections - Payload (Imager)



Speaker: James Perez Phase 5: ENCOUNTER / 127

ISO Related Risks


Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
There are uncertainties about the ISO	The coma, temperature, albedo, or position of the ISO are vastly different from what we expect	The encounter	Us not being able to obtain the images that we expect	3	3	Payload

ISO Flyby Risk - Structure

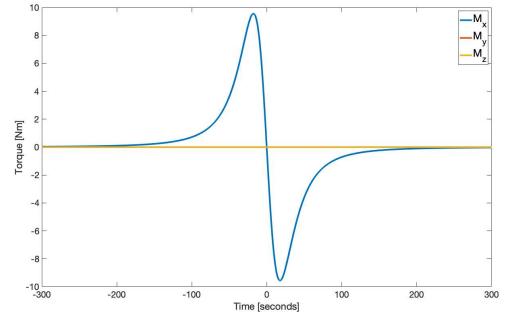
Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
Debris that is larger than the critical diameter of the shielding or has a very high velocity impacts the spacecraft	The payload and critical flight components being damaged	The payload and support bus shielding	Catastrophic failure	1	5	Structures

Speaker: Ismael C.

Phase 5: Encounter

Applicable Level 3 Pointing & ADCS Requirements

ID	Requirement	Driving Phase	Compliance (Y/N/M)
ADC1	The ADCS shall point the optical boresight with an accuracy of 742 arcsec during primary science acquisition	Phase 5	Υ
ADC3	The ADCS shall be capable of a maximum slew acceleration of 0.0393 deg/s^2 during primary science acquisition.	Phase 5	Υ
ADC11	The ADCS shall control the imager boresight stability to 21 arcsec/sec during primary science acquisition.	Phase 5	М



Speaker: Scott P PHASE 5: ENCOUNTER / 130

Encounter Torques-ADCS

- Max Torque during Encounter of 9.5 Nm
- Each of our four CMGs selected can deliver 12 Nm of torque
- Models assumes a relative velocity at encounter of 13 km/s, closest approach of 400 km, and a single axis slew about x-axis
- Individual Wheel Torques and Gimbal Angles are within capability of the 12 Nm CMGs

<u>Backup</u>

Required MED Torques during Encounter

Speaker: Scott P PHASE 5: ENCOUNTER / 131

Pointing Budget - ADCS

Pointing Budget Description	Per-Axis Error Value (3 σ) [arcsec]	Radial Pointing Error (3 σ) [arcsec]	Radial Pointing Requirement [arcsec]	Stability Error [arcsec / s]	Stability Requirement [arcsec/s]
Encounter	580.19	741.60	741.60	12.79*	20.63

- For encounter, ADCS meets the accuracy requirements as clarified by the payload team.
- Stability error does not account for the slew performance error related to the angular velocity.
 - *Required performance error to meet requirement: < 0.03% of maximum slew rate

Speaker: Miles G. Phase 5: ENCOUNTER / 132

Mass, CM, and Inertia Matrix

Mass Matrix (Total, Empty):

Moments of inertia: (kilograms * square meters)

Taken at the center of mass and aligned with the output coordinate system.

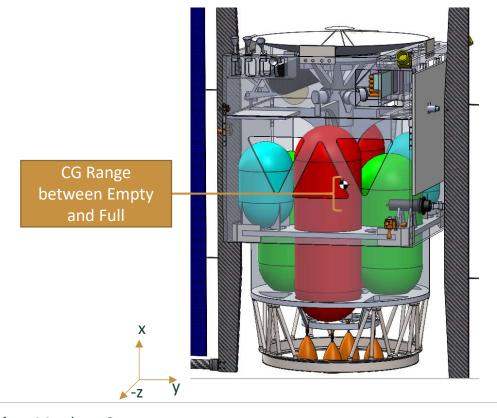
Lxx = 63000, Lyy = 70600, Lzz = 14200

Mass Matrix (Total, Full):

Moments of inertia: (kilograms * square meters)

Taken at the center of mass and aligned with the output coordinate system.

Lxx = 67100, Lyy = 78300, Lzz = 22000

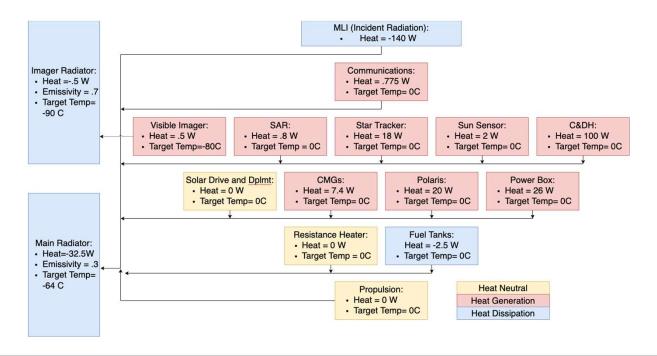

Mass Matrix (Arrays):

Moments of inertia: (kilograms * square meters)

Taken at the center of mass and aligned with the output coordinate system.

Lxx = 60000, Lyy = 64300, Lzz = 5000

(Full) CG from PAF (x = 2.5m)



Speaker: Matthew S.

PHASE 5: ENCOUNTER / 133

Thermal Control – Science Instruments

Speaker: Joey

PHASE 5: ENCOUNTER / 134

Phase 6

Speaker: Austin I

Applicable Level 1 Requirements

ID	Requirement
MP9	The mission shall return data to the customer no later than 9 months post collection.

Applicable Level 2 Requirements

ID	Requirement
F17	The flight system shall downlink data during scheduled passes.
F18	The flight system shall transmit data to the ground system with a minimum data rate of 32.4 kbps during primary science data downlink.
F21	The flight system shall be capable of retransmitting data to the ground system.

Applicable Level 2 **Ground System Requirements**

ID	Requirement
G17	The ground system shall receive data from the flight system with a data rate of at least 32.4 kbps.
G19	The ground system shall verify that all requested data packets were received within TBD hours of receipt.
G37	The ground system shall establish two-way communication sessions with the flight system on average of once a day for four-to-eight hours per session during the post-encounter downlink mission phase.

Speaker: Alexi D. Phase 6: Data DOWNLINK / 137

Applicable Level 3 Telecommunication Requirements

ID	Requirement	Driving Phase	Compliance
COM15	The communication system shall transmit science data with a minimum data rate of TBD bps.	Phase 6	Maybe
COM16	The communication system shall receive commands with a data rate of up to 2 kbps [TBC].	N/A	YES
COM22	The communication system shall have a high gain transmission EIRP of 80.89 dBW [TBC].	Phase 6	YES

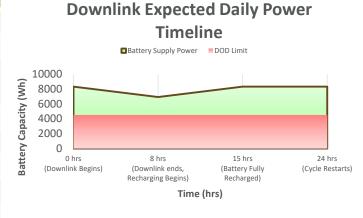
Ka-Band Downlink Budget

Spacecraft Parameter	Value
Antenna	HGA [Ka Band]
Boresight Gain [dBi]	57.88
3 dB Beamwidth [deg]	.217
Centering Frequency [GHz]	32.083
Transmission Power [W]	200
Max Pointing Error [deg]	0.10
Required BER	1E-6
Modulation Scheme	Direct BPSK
Coding	Turbo (R=½, I=5)
Required Eb/No [dB]	1.25
Nominal Link Margin [dB]	3.00

DSN Parameter	Value
Antenna	34m BWG
Boresight Gain [dBi]	79.30
Max Pointing Error [deg]	0.077
Required BER	1E-6
Modulation Scheme	Direct BPSK
Coding	Turbo (R=½, I=5)
Min Elevation Angle [deg]	10.5
Atmospheric Loss [dB]	2.00

Speaker: Josh F. Phase 6: Data DOWNLINK / 139

Applicable Level 3 Power Requirements


ID	Requirement	Driving Phase	Compliance
POW1	The power system's battery shall be capable of supplying a minimum of 1407 + TBD Wh at end of life.	Phase 6	Yes
POW2	The power system's solar panels shall generate a minimum of 690 + TBD Watts at end of life.	Phase 6	Yes
POW5	The power system shall provide 305 +/- TBD Watts during system fault mode.	N/A	Yes

Downlink Power Budget

- End of life battery system capability assumed to degrade a total of 8% over 22 years.
 - Daily power demands during downlink were taken from the operational timeline to verify battery's capability to supply power for the power deficit (~197 W) during downlinking at a max range of 7AU

Subsystem	Component	Power Draw (W)	During Downlink (8 hours)	Recharging (16 hours)
C&DH	C&DH Components*	100	ON	ON
Comms	Deep Space Transponder	13	ON	ON
	Travelling Wave Tube Amplifier K-band	335	ON	OFF
	Ultra Stable Oscillator	3	ON	ON
	Antenna	50	ON	OFF
Thermal	Thermal Components*	201	ON	ON
ADCS	ADCS Components*	186	ON	ON
		Total (W):	887	503

Speaker: Ethan T. Phase 6: Data DOWNLINK / 141

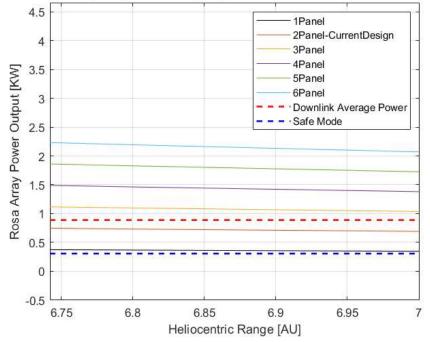
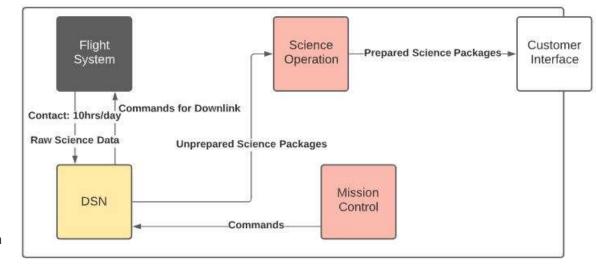

Downlink Power Budget

Table 1. ROSA Array Specifications

Size Deployed	Size Stowed	Mass (kg)	Specific	BOL Power @
(m2)	(m^3)		Power (W/kg)	1 AU (kW)
156.25	~1.14	407.59	112.3	45.776

- End of life array power generation taken to be reduced by ~1.25% yearly from exposure to the operating environment
 - Assumed average cosine loss is 10 degrees throughout
- Array sized for worst case scenario during most power sensitive portions of the mission
 - Initial model limit taken to be 5 AU given additional panel mass and power generation trade would be not optimal due to solar irradiance fall off.


Applicable Level 3 Ground System Requirements

ID	Requirement	Driving Phase	Compliance (Y/N/M)
GS6	The Mission Control Center shall decide whether any customer provided ISO ephemeris meets the mission capabilities	N/A	Yes
GS3	The Mission Control Center shall design and execute commands to meet the mission demands	N/A	Yes
GS9	The Data Storage and Network shall store all data of all types locally	N/A	Maybe
GS1	The Science Operations Center shall analyze science data stored in the Data Storage and Network using science models	N/A	Yes
GS2	The Science Operations Center shall provide science packages to the customer through the customer interface	N/A	Yes

Ground Operations - Post Encounter Downlink

- Data Storage
 - Daily ground contacts for up to 10hrs
 - Data immediately transfers to GS facilities for storage and processing
- Science Product Generation
 - Science models are assembled from raw data packages
 - Complete products are generated for analysis
- Customer Interface
 - Science products packaged for customer according to accessibility requirements
 - Once packaged, products made available via required transmission methods

Speaker: Berenice C. Phase 6: Data DOWNLINK / 144

Phase 7

Speaker: Austin I

Individual Spacecraft Decommission

Encounter Spacecraft (ES)

- Customer can either choose to have it attempt one of the extended mission scenarios or move directly into decommission.
- ES will be in deep space and in a heliocentric orbit (could also be a hyperbolic trajectory)
- Will just follow the decommission procedure outlined in the next slide

Secondary Spacecraft (SES)

- Customer can either choose to have it attempt one of the extended mission scenarios or move directly into decommission.
 - If SES pursues an ISO, then it will follow ES decommission process
- After 20 years, SES health and telemetry will be analyzed and presented to customer
 - Good condition: customer can choose to decommission or outsource SES
 - · Bad condition: decommission
- If at any point during 20-year span the SES is in bad condition, it will be decommissioned

Decommission Procedure

Order	Decommission Activity
1	Dump remaining propellant from tanks and lines.
2	Vent pressurant from tanks and chambers to safe levels.
3	Turn off payload and science instrumentation.
4	Turn off ADCS and GNC equipment.
5	Turn off radiators and additional thermal equipment.
6	Turn off communications subsystem.
7	Discharge batteries and power subsystem.
8	Turn off solar arrays.

Speaker: Austin I

PHASE 7: DECOMMISSION / 147

Phase 7: Decommission

Applicable Level 2 Flight System Requirements

ID	Requirement
F5	The flight system shall operate in the space environment for a minimum of 22 years.
F33	The flight system shall follow decommission protocol as commanded by ground.
G5	The ground system shall support the flight system for a minimum of 22 years.
G29	The ground system shall command the flight system to decommission.

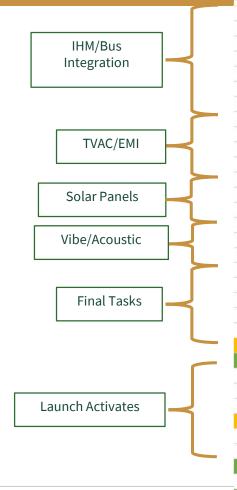
Speaker: Sydney R.

Project Life Cycle, System Integration, and Testing

Speaker: Luke

Backup

COSMIC Project Life Cycle



Speaker: Luke PROJECT LIFE CYCLE / 150

System I&T Schedule

- Timeline overall flow
- Assumption:
 - IHM and bus modules arrive fully integrated and tested
- Any major integration will be followed by a functional test
- 20% margin built into each task duration
- Shipping and handling is built into the duration of tasks

Phase D: System Assembly, Integration & Test, Launch & Checkout	1011 days	Wed 2/18/26	Wed 1/2/30
	929 days	Wed 2/18/26	Mon 9/10/29
Integrate IHM & Bus	70 days	Wed 2/18/26	Tue 5/26/26
IHM & Bus Functional Test	56 days	Wed 5/27/26	Wed 8/12/26
Integrate Antennas	21 days	Thu 8/13/26	Thu 9/10/26
Communication System Functional Test	21 days	Fri 9/11/26	Fri 10/9/26
Integrate Radiators	21 days	Mon 10/12/26	Mon 11/9/26
Thermal System Functional Test	21 days	Tue 11/10/26	Tue 12/8/26
Full Functional Test	49 days	Wed 12/9/26	Mon 2/15/27
Thermal Vacuum Qualification Test	63 days	Tue 2/16/27	Thu 5/13/27
Functional Test	49 days	Fri 5/14/27	Wed 7/21/27
EMI/EMC Qualification Test	49 days	Thu 7/22/27	Tue 9/28/27
Functional Test	49 days	Wed 9/29/27	Mon 12/6/27
Integrate Solar Panels	14 days	Tue 12/7/27	Fri 12/24/27
Power Functional Test	14 days	Mon 12/27/27	Thu 1/13/28
Functional Test	35 days	Fri 1/14/28	Thu 3/2/28
Vibration Qualification Test	42 days	Fri 3/3/28	Mon 5/1/28
Functional Test	49 days	Tue 5/2/28	Fri 7/7/28
Acoustic Qualification Test	42 days	Mon 7/10/28	Tue 9/5/28
Solar Panel First Motion Deployment Test	21 days	Wed 9/6/28	Wed 10/4/28
Full Functional Test	49 days	Thu 10/5/28	Tue 12/12/28
Flight System Mass Properties Evaluation	35 days	Wed 12/13/28	Tue 1/30/29
Finalization	21 days	Wed 1/31/29	Wed 2/28/29
Operational Readiness Review	0 days	Wed 2/28/29	Wed 2/28/29
Margin	56 days	Thu 3/1/29	Thu 5/17/29
Chemical Propellant Loading	35 days	Fri 5/18/29	Thu 7/5/29
Deliver and Unpack at PPF	7 days	Fri 7/6/29	Mon 7/16/29
Functional Test	28 days	Tue 7/17/29	Thu 8/23/29
Flight Readiness Review	0 days	Fri 8/24/29	Fri 8/24/29
Integration with Fairing	7 days	Fri 8/24/29	Mon 9/3/29
SpaceX Activities	5 days	Tue 9/4/29	Mon 9/10/29
Storage COSMIC A	20 days	Tue 9/11/29	Mon 10/8/29
▷ Cosmic - B: Proto/Qualification	929 days	Wed 5/13/26	Mon 12/3/29
Storage COSMIC B	22 days	Tue 12/4/29	Wed 1/2/30
First Launch	1 day	Tue 10/9/29	Tue 10/9/29
Second Launch	1 dav	Thu 1/3/30	Thu 1/3/30

Speaker: Ryan A.

Environmental Testing

	TVAC	EMI/ECI	VIBRATION	ACOUSTIC
C.O.S.M.I.CA Protoflight Qualification Standards	 T-Vac: +/- 10°C Max./min. of predicted levels Thermal Cycling: +/- 25°C Max./min. of predicted levels Pressure: Venting analyses performed 	 As specified for mission Generate electromagnetic compatibility report 	 Quasi-Static Loads: 1.25 x Limit Load for 5 cycles of 30 sec at full level per axis Random Vibration: MEFL + 3 dB for 1 min/axis Sine Vibration: 1.25 x MEFL for 4 oct/min Minimum component vibe test workmanship test: 6.8g_{rms} 	• MEFL + 3dB for 1 minute (w/ minimum of 138 dB)
C.O.S.M.I.CB Acceptance Standards	 T-Vac: +/- 5°C Max./min. of predicted levels Thermal Cycling: +/- 20°C Max./min. of predicted levels Pressure: Venting analyses performed 	 As specified for mission Generate electromagnetic compatibility report 	 Quasi-Static Loads: Limit Load for 5 cycles of 30 sec at full level per axis Random Vibration: MEFL for 1 min/axis Sine Vibration: MEFL for 4 oct/min Minimum component vibe test workmanship test: 6.8g_{rms} 	MEFL for 1 minute (w/ minimum of 138 dB)

Source: NASA GEVS, NASA-STD-7001, NASA-STD-7002

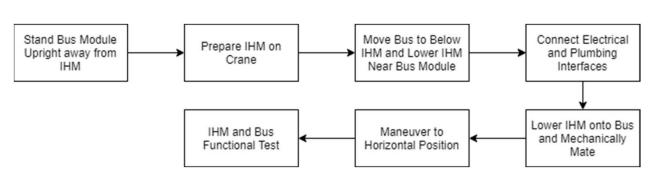
Speaker: Ryan A.

I&T – Personnel & Facilities

Personnel – 1 Shift Per Day

Teams	C.O.S.M.I.CA	C.O.S.M.I.CB
Engineers	8	8
Technicians	8	8
Total Personnel	16	16

Facilities


- · High-bay doors are 6.7 m wide
- Cranes and other lifting equipment in all three large rooms
- Supporting rooms for preparation and smaller assemblies below

Speaker: Chris W. SYSTEM 1&T / 153

I&T Task - IHM and Bus Module Integration Block Diagram

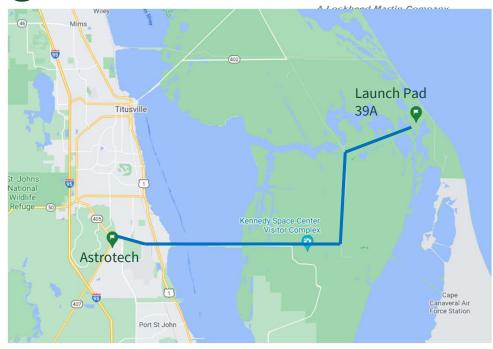
- Task occurs within the C.O.S.M.I.C. facility
- Process activities may be refined after integration of C.O.S.M.I.C.-A to optimize integration of C.O.S.M.I.C.-B

Bus

IHM

Pre-Launch Overview

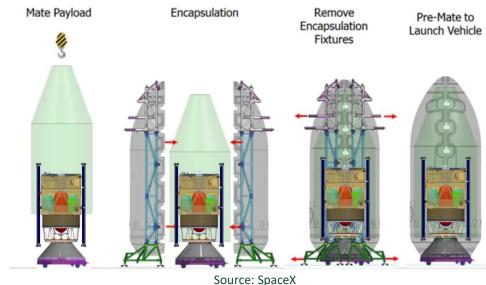
Task	Begins Days Before Launch	Description
Chemical Propellant Loading	82	 Performed at Astrotech approximately 25 miles away from launch pad Operations will occur over 21 work days
Delivery and Unpacking at PPF	47	 Non-standard service for additional time in the PPF will be utilized to perform a functional test to same standards as functional tests during I&T
Functional Test	40	Electrical checkout to check health of subsystems before launch
SpaceX Activities	7	 SpaceX takes over operations SpaceX integrates the spacecraft into the fairing Spacecraft is planned to be vertically integrated into the launch vehicle. It is not publicly disclosed how long each procedure takes System Checks Rollout to pad
Launch	0	


Speaker: Chris W. SYSTEM 1&T / 155

3rd Party Fueling

- Fueling service is about 20 miles (32 km) away from launch site
- 68 days before launch
 - Spacecraft arrives at fueling facility
- 47 days before launch
 - Spacecraft leaves fueling facility and is delivered directly to the SpaceX payload processing facility

Propellant	Amount per Spacecraft
Hydrazine	7200 kg
MON-3	7200 kg
He	$10 m^3$



Speaker: Chris W. SYSTEM 1&T / 156

Launch Vehicle Integration

- C.O.S.M.I.C. will first undergo integration to the PAF within SpaceX's PPF
- C.O.S.M.I.C. will then be integrated by SpaceX to the fairing in the vertical orientation
- The fairing will be horizontally integrated into Falcon Heavy inside the SpaceX hangar facility.

Source. Spaces

• Once integrated onto FH, the hangar facility HVAC system is connected via a fairing air conditioning duct. Also, electrical ground support equipment is reconnected, and electrical interfaces are verified.

Roll Out to Launch Pad

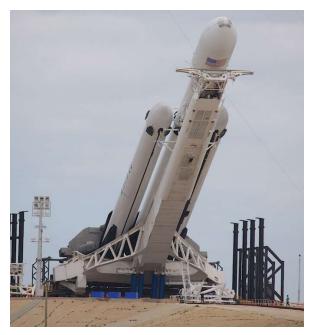
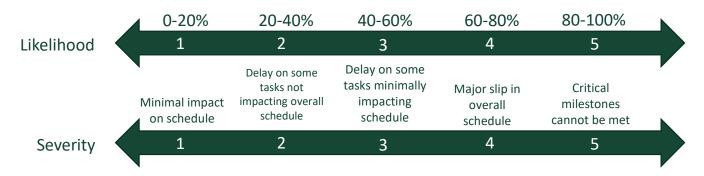



Image: SpaceX

- On the same day of launch, the flight vehicle will be rolled out to launch pad LC-39A, then erected into the vertical orientation.
- During rollout, HVAC & Electrical will be disconnected until the vehicle is at the pad.
 - However, if needed a mobile electrical unit can be used.
- Electrical Ground Support Equipment (EGSE) and HVAC connections are restored once the vehicle reaches the pad (before erection)

Pre-Launch Risks — Launch Window

Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
the launch window is subject to weather or technical issues	a delay in the launch date or time	the entire mission	a delay in the readiness date	4	1 to 4	Launch Services

Speaker: Chris W

Mission Budget

Speaker: Andres MA

Budget Breakdown

System Life Cycle Phase	Direct Labor (\$ in million)	Benefits & Indirect Cost (\$ in million)	Material/Cost (\$ in million)	Total Cost per Phase (\$ in million)
Pre- Phase A to B: Senior Design	0	0	0	0
Phase C: Final Design & Fabrication	41	82	TBD	123
Phase D: System Assembly, Integration & Test, Launch & Checkout	61	122	313	496
Phase E: Operations & Sustainment	131	262	0	393
Phase F: Closeout	0.24	0.48	TBD	0.72
Total Cost per Category	233.24	466.48	313	1,012.72
			Profit (7%):	70.89
			Total Budget:	1,084

Speaker: Andres MA MISSION BUDGET / 161

Assumptions

- Direct Labor Calculation: Used salary databases to estimate average wage for the respective position in California
 - For aerospace engineers in CA, the average pay was \$60 per hour
- Benefits & Indirect costs Calculation: ~2 x Direct Labor
- **Material:** Due to time restraints, the team focused on large material costs such as the launch vehicle and facility cost.
- Formula for Budget Cost: Direct Labor + ~2 x Direct Labor + Materials + 7% Profit
- As a result, we can expect COSMIC's cost to increase as the WBS & Project schedule are refined and material costs are added.

Summary

Speaker: Keilan R

Design and Success Summary

System Summary

- Two Flight Systems
- Falcon Heavy Expendable chosen as the Launch Vehicle for both Flight Systems
- Ground Station which interfaces with the Deep Space Network to communicate with the Flight System

Mission Summary

- Purpose of the mission is to collect science data from an Interstellar Object
- Both spacecraft in pre-positioned orbits (Phase 3) for up to 20 years completing secondary objectives and waiting for a suitable ISO
- One spacecraft will fly by an ISO (Phase 5) to complete primary objectives and ISO associated secondary objectives [40% chance both spacecraft could fly to different ISOs]

Success

The flow down of verifiable requirements is complete and proper, or, if not, an adequate plan exists for timely resolution of open items. Requirements are traceable to parent technical requirements and to mission goals and objectives

Preliminary analysis of the primary subsystems has been completed and summarized, highlighting performance and design margin challenges

TBD and TBR items are clearly identified with acceptable plans and schedule for their disposition

The preliminary design is expected to meet the requirements at an acceptable level of risk

ISO Science Requirements Summary

Speaker: Keilan R

ID: MP = Mission Primary, MS = Mission Secondary

ID	Traceability	Requirement	Completion*	Discussion
MP3	Solicitation A.2	The mission shall acquire visible imagery of 50% of the object's illuminated surface with a resolution of at least 5.0 meters per pixel.	Yes	Slide 107
MP4	Solicitation A.2	The mission shall acquire infrared imagery of 50% of the object's visible surface with a resolution of at least 10.0 meters per pixel.	Yes	Slide 107
MP5	Solicitation A.3, Solicitation B.1	The mission shall model 50% of the object's shape within +/- 10 meters using active measurement.	Some cases	Slide 109-111, Slide 123
MP6	Solicitation A.3	The mission shall determine the object's mean dimension within +/- 10 meters.	Yes	Slide 108
MP7	Solicitation A.4	The mission shall determine the object's spin axis within +/- 1.0 degree.	Some cases	Slide 104-105
MP8	Solicitation A.4, Customer Conversation 5/7/2021	The mission shall determine the object's rotation rate within 1%.	Yes	Slide 103
MS1	Solicitation B.1	The mission shall measure the object's dielectric constant within +/- TBD.	Expected	Slide 123

*Completion for ISO periods of 0.5 to 50 SUMN hours, based on similarly sized asteroids

Prepositioned Science Requirements Summary

ID: MS = Mission Secondary

ID	Traceability	Requirement	Completion	Discussion
MS2		The mission shall have a sky coverage of 0.15 % in the pre-positioned orbit.	Yes	Slides 45-66
MS3	Solicitation B.3	The mission shall observe heliocentric orbiting bodies.	Yes	Slides 45-66
MS4	Solicitation B.5	The mission shall acquire exoplanet photometry of a minimum of 1 star system.	Yes	Slides 45-66

Speaker: Keilan R SUMMARY / 166

Additional Mission Requirements Summary

ID: MP = Mission Primary

ID	Traceability	Requirement	Completion	Discussion
MP1	Solicitation	The mission shall be ready to react to an ISO no later than 12/31/2030.	Yes	150-151
MP2	Solicitation	The mission shall have an 80% likelihood of reaching at least 1 object with the parameters specified in Table 1.0 within 20 years of its readiness date.	Expected	11-12, 46
MP9	Customer Conversation 1/8/2021	The mission shall return data to the customer no later than 9 months post collection.	Yes	136-144
MP10	Customer Conversation 1/8/2021	The mission shall communicate with the deep space network.	Yes	20, 66, 136-144

Speaker: Keilan R

Thank you! End of Day 2

Support Slides

Project Management

Keilan Ramirez

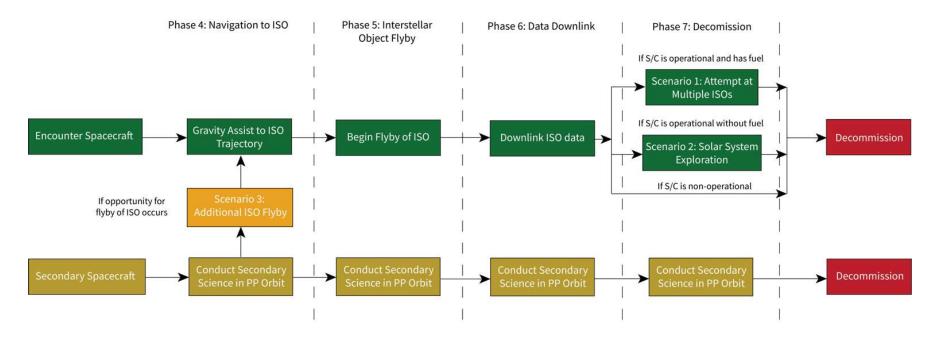
David Schreiber

Luke Kutz

Natalia Cieply

Andres Mendoza Arteaga

System Engineering

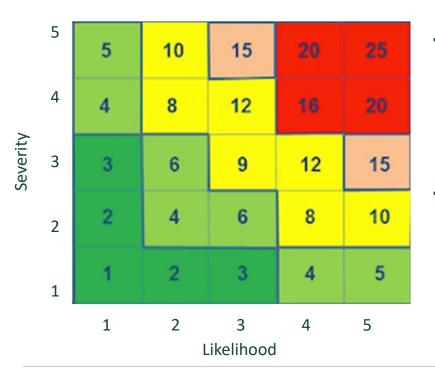

Subsystem Breakdown

Subsystem	Components
Payload	SAR, Imager System
Propulsion	R-4D-15 HiPAT™ 445 N (4 thrusters), Propellant Tanks, Plumbing & valves, Propellant, Pressurant
Power	ROSA Panels (x2), Battery, Solar Drive Assemblies (x2), Solar Array Drive Assembly Electronics, PCE (Power Control Electronics) - Power Box, Wiring Harness
Comms	High Gain Antenna, Medium Gain Antenna (x2), Low Gain Antenna (x2), Deep Space Transponder (x2), Ka-Band Travelling Wave Tube (x2), X-band Travelling Wave Tube (x2), Ultra Stable Oscillator, Diplexer (x2), Cabling/Waveguide, Switches, Hybrid Coupler
Thermal	Radiators, Chem Prop heaters, Heat Pipes, Thermal Switches, Thermal Isolators, MLI Blankets, Louvers, Pump Module, Louvers, thermoelectric coolers
GNC	APIC (OPNAV Camera)
ADCS	CMGs (x4) (Blue Canyon CMG-12) - baseline CMGs, A-STR (Star Tracker), CSS (Course Sun Sensor x4), IMU(Polaris x2)
Structures	Spacecraft Attachment Fitting, Hook Integration Mount, Crane Integration Mount, Solar Array Drive Assemblies (x2), MROSA Deployment Structure (x2), Lower Structure Walls, Upper Structure Walls, Routing Platforms, Electronics Plate, Electronics Floor, Imager Mounts, Center Column, Upper and Lower Tank Plate, Thruster Structure, Brackets, Launch Support Structure
C&DH	Combined Enclosure

Note: sizing of the propellant includes a 10% margin and so it doesn't include a specific MGA percentage

Extended Mission Scenarios

Risk Statement


A concise description of an individual risk that can be understood and acted upon

"Given that [CONDITION] there is a possibility of [DEPARTURE] adversely impacting [ASSET], which can result in [CONSEQUENCE]"

- Condition: a single phrase that describes the current key fact-based situation or environment that is causing concern, doubt, anxiety, or uneasiness
- Departure: describes a possible change from the (agency, program, project, or activity) baseline project plan. It is an undesired event that is made credible or more likely as a result of the CONDITION
- Asset: an element of the organizational unit portfolio (OUP) (analogous to a WBS). It represents the primary source that is affected by the individual risk.
- Consequence: a single phrase that describes the foreseeable, credible negative impact(s) on the organizational unit's ability to meet its performance requirements

Risk Likelihood and Severity

Severity Scale

Impact on performance

- 1. Minimal impact on goals
- 2. Minor impact on goals
- 3. Unable to achieve a particular goal
- 4. Unable to achieve multiple goals
- 5. Unable to achieve the overall goal
- Impact on schedule
 - 1. Minimal impact on schedule
 - 2.Delay on some tasks not impacting overall schedule
 - 3. Delay on some tasks minimally impacting overall schedule
 - 4. Major slip in overall schedule
 - 5. Critical milestones cannot be met

Likelihood Scale

- 1. Not likely (under 20% probability of happening)
- 2. Not very likely (between 20% and 40% probability of happening)
- 3. Likely (between 40% and 60% probability of happening)
- 4. Highly likely (between 60% and 80% probability of happening)
- 5. Near certainty (over 80% probability of happening)

Concept of Operations

Austin lannitti

Sean Thompson

Requirements

Bailey Garrett

Sydney Retzlaff

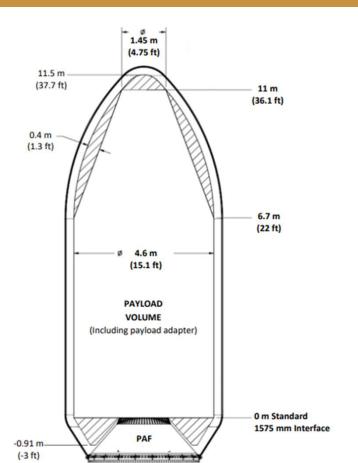

Back to main!

Table 1: ISO Characteristics

ISO Characteristic	Parameters
Inbound Distance	3AU
Detection	Uniform Distribution
Eccentricity	0.99-3.50
Perihelion	0.3 AU - 2 AU
Inclination	0-180 deg
Argument of Perihelion	0.05 or higher
Geometric Albedo	1.0-1.5 km
Mean Dimension	+/- 10 m

Figure 1: Falcon Heavy Launch Vehicle Fairing

Source: Falcon Heavy User Guide Figure 5-1

https://www.spacex.com/media/falcon_users_guide_042020.pdf

Back to main!

Table 7: Fault Mode Causes

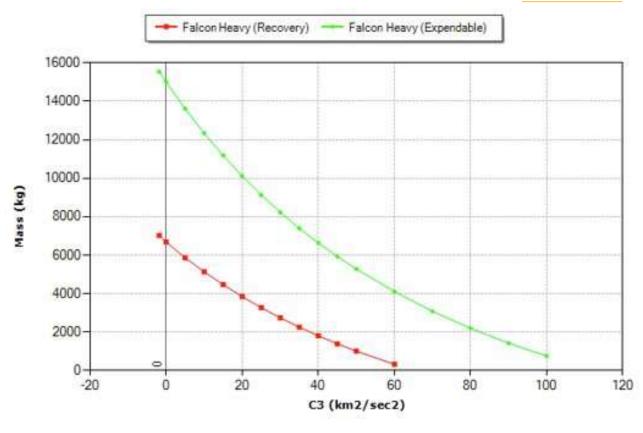
Fault Mode Causes

C&DH does not receive confirmation that a mission critical command was performed.

C&DH does not receive conformation on any attitude commands.

C&DH does not receive conformation on any positioning commands.

C&DH reboots for any unexpected reason.


For power cycle issues.

If a health sensor is outside of survival range.

Following separation from the launch vehicle.

Figure 2: Mass of Payload vs. C3 Values

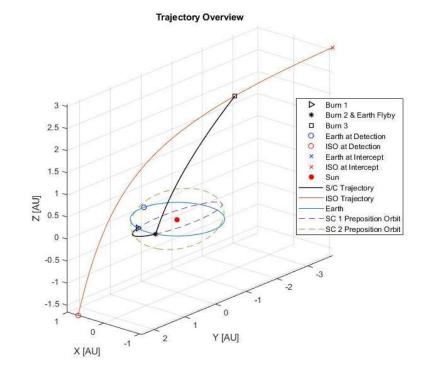
Table 6.1: Initial Emplacement Orbit Definition

Initial Emplacement Orbital Elements by Spacecraft					
	Semi-Major Axis (AU)	Eccentricity	Inclination (°)	Right Ascension of the Ascending Node (°)	Argument of Periapsis (°)
Spacecraft 1	1	0.0167	2.5	103	0
Spacecraft 2	1	0.0167	2.5	193	270

Table 6.2: Pre-Positioned Orbit Definition

Prepositioned Orbital Elements by Spacecraft					
	Semi-Major Axis (AU)	Eccentricity	Inclination (°)	Right Ascension of the Ascending Node (°)	Argument of Periapsis (°)
Spacecraft 1	1	0.0167	21	103	0
Spacecraft 2	1	0.0167	21	193	270

Orbits


Ryan Meisberger

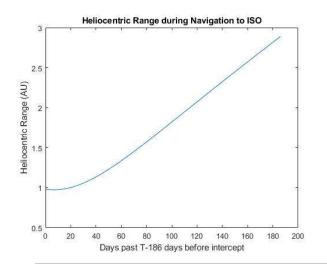
Jack Kelly Jordan Watt Evan Agarwal Dominick Bologna

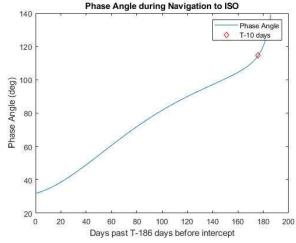
Orbit Case Studies: ISO A

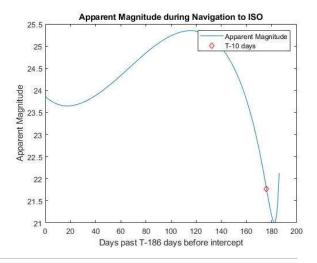
- ISO COEs
 - Eccentricity: 1.65
 - Radius of Perihelion: 1.50 AU
 - Inclination: 93.94 deg
 - RAAN: 71.11 deg
 - Argument of Perihelion: 45.03 deg
- Delta-V
 - Total DV: 4.494 km/s
 - Burn 1: 0.017 km/s
 - Burn 2: 0.018 km/s
 - Burn 3: 4.459 km/s
- Encounter
 - Relative Velocity to ISO: 8.541 km/s
- Flyby
 - Earth Flyby Altitude: 14848 km

Orbit Case Studies: ISO A

Transfer Characteristics

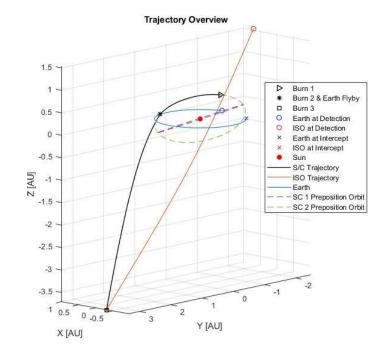

Day of ISO Detection: Sept 19, 2044


Transfer Duration: 186 days


10 Days Before Intercept

Apparent Magnitude: 21.77

• Phase Angle: 114.48 deg

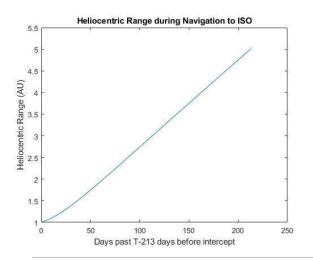


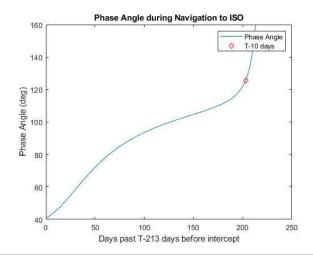
Orbit Case Studies: ISO B

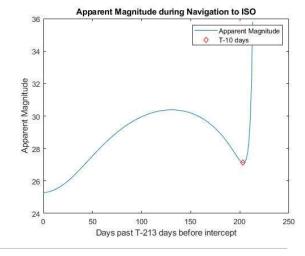
- ISO COEs
 - Eccentricity: 3.07
 - Radius of Perihelion: 1.38 AU
 - Inclination: 71.26 deg
 - RAAN: 117.47 deg
 - Argument of Perihelion: 220.86 deg
- Delta-V
 - Total DV: 4.387 km/s
 - Burn 1: 0.073 km/s
 - Burn 2: 0.073 km/s
 - Burn 3: 4.241 km/s
- Encounter
 - Relative Velocity to ISO: 10.239 km/s
- Flyby
 - Earth Flyby Altitude: 7353 km

Orbit Case Studies: ISO B

Transfer Characteristics

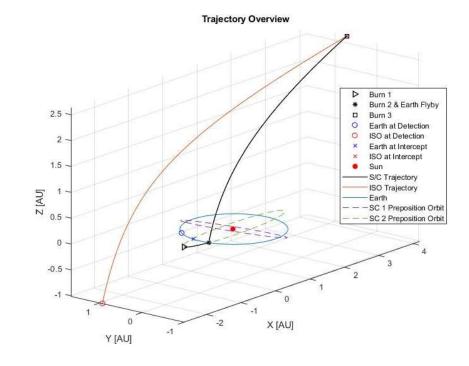

Day of ISO Detection: Dec 29, 2032


Transfer Duration: 213 days


10 Days Before Intercept

Apparent Magnitude: 27.12

• Phase Angle: 125.71 deg

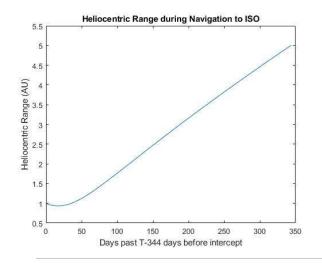


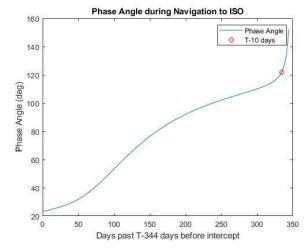
Orbit Case Studies: ISO C

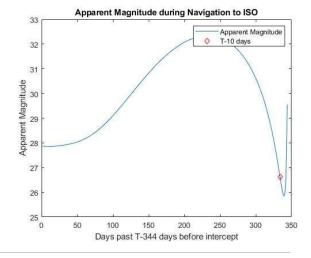
- ISO COEs
 - Eccentricity: 2.18
 - Radius of Perihelion: 1.81 AU
 - Inclination: 144.04 deg
 - RAAN: 131.07 deg
 - Argument of Perihelion: 30.20 deg
- Delta-V
 - Total DV: 4.108 km/s
 - Burn 1: 0.310 km/s
 - Burn 2: 0.312 km/s
 - Burn 3: 3.486 km/s
- Encounter
 - Relative Velocity to ISO: 12.710 km/s
- Flyby
 - Earth Flyby Altitude: 6172 km

Orbit Case Studies: ISO C

Transfer Characteristics


• Day of ISO Detection: Feb 15, 2030


Transfer Duration: 344 days


10 Days Before Intercept

Apparent Magnitude: 26.62

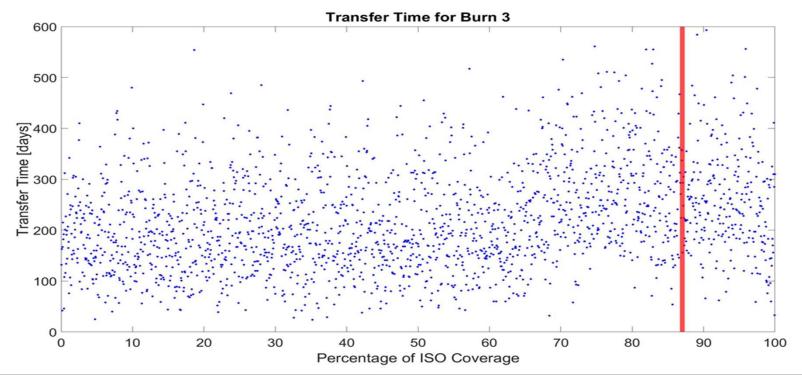
Phase Angle: 121.65 deg

Orbital Simulation Assumptions

Assumption	Reasoning
Only 1 chance at ISO detection per day	Daily checks is sufficiently fine resolution given mission length (up to 20 years). Evaluating more frequently would strain computational resources for diminishing returns.
Probability of ISO detection averages to 1/year	Solicitation states 1/year ISO detection rate
ISO detected at 3 AU heliocentric inbound	Solicitation states customer will identify ISO at 3 AU
Spacecraft are in constant inclination orbits	The final orbital details are to be determined and may involve small changes (<2°) to inclination due to high-altitude Earth flybys. The variation is expected to be minor, but this remains an open action moving forward.
Perturbations are neglected	Perturbations from Solar Radiation Pressure and N-Body effects are expected to be minor. As such they are neglected in the simulation for the sake of processing speed
Impulsive burns	Given the time scales and chemical propulsion system, impulsive burns are suitable for modeling at his level.
Earth modeled as a point mass	The distances involved sufficiently dwarf Earth's Sphere of Influence and the gravity assist functions operate independently of this assumption. The difference is expected to be minor, but this remains an open action moving forward

Orbital Simulation Inputs

Input Categories	Values	Reasoning
Mission Start Date	01/01/2031	Solicitation directs mission readiness by 12/31/2030
Mission Length	7305 days	Solicitation directs mission completion by 12/31/2050
Propagation Time Step	1 day	For time scales involved, 1 day is sufficiently fine resolution
Transfer Evaluation Time Step	1 day	Generates more data for evaluation
Min Spacecraft Distance from Sun	0.5 AU	Preliminary value set by structures
Max Heliocentric Encounter Distance	5 AU	Set by GNC, driven by restrictions in Optical Navigation
Max Relative Speed at Encounter	13 km/s	Set by Encounter lead, driven by Payload and ADCS needs
Min Time From ISO Detection to 1st Burn	3 days	Arbitrary, to be revisited with input from Ground Systems
Max Time From 1 st Burn to Gravity Assist	91 days	Arbitrary, to be revisited in light of station-keeping needs
Min Gravity Assist Altitude	1000 km	Chosen to avoid atmospheric effects, especially drag, as well as concentrations of Low Earth Orbit satellites


Orbital Simulation Process

- 1. Step through each mission day and determine if an ISO is detected
 - 1. Once an ISO is detected, generate its orbital elements randomly in accordance with the solicitation
 - 2. Determine the ISO's initial state and propagate it until it reaches the outer bound set for Encounter
 - 3. Determine the next gravity assist opportunity from day of detection
 - 1. For each transfer timestep calculate the trajectory from Earth to the ISO
 - 1. Use the difference in velocities at the ISO to determine the final burn needed to achieve the relative encounter speed
 - 2. Use the required trajectory velocity at Earth as the outbound velocity of the gravity assist and determine the necessary inbound velocity required to achieve it
 - 3. Determine the spacecraft trajectory from its pre-positioned orbit leaving location to the gravity assist
 - 4. Determine burns required to enter trajectory to gravity assist and to begin gravity assist once at Earth SOI
 - 5. Sum DV magnitudes of all three burns as total cost of achieving the given encounter
 - 2. Repeat 1.3.1 until ISO is passed the outer bound set for encounter
 - 3. Store lowest total DV cost for the given gravity assist
 - 4. Repeat 1.3 for each gravity assist opportunity while the ISO is within the outer bound set for encounter
 - 5. Store lowest total DV cost for the given ISO
- 2. Repeat 1 until mission length is reached
- 3. Store lowest DV cost for the mission

Note: All generation, propagation, and evaluation data generated by the simulator is saved and available for post-processing and analysis.

Transfer Time

Propulsion

Speaker: C. Larkin

Tank Sizing

- Tanks were sized based on R. Meisberger's mass model
- 1.5x burst factor used per AFSPCMAN 91-710
- Propellant tanks:
 - 21.3 bar MEOP
 - Driven by primary prop max inlet pressure
 - 21.3 bar x 1.5 = 34.5 bar MAWP
 - 300 K Hydrazine/290 K MON-3
- Pressurant tanks:
 - 200 bar MEOP
 - Driven by need to keep tanks at 21.3 bar at burnout
 - 200 bar x 1.5 = 300 bar MAWP
 - 300 K Helium

Fluid	Total Volume [m3]	MEOP [bar]	Temp [K]	Fluid Mass [kg]	Tank Mass [kg]
Не	1.2	200	300	18	189
Hydrazine	5.8	21.3	300	5926	216
MON-3	3.7	21.3	290	5408	130

12.3.3. Flight Hardware Metallic Pressure Vessels with Brittle Fracture or Hazardous LBB Failure Mode.

12.3.3.1. Flight Hardware Metallic Pressure Vessels with Brittle Fracture or Hazardous LBB Failure Mode Factor of Safety Requirements.

12.3.3.1.1. Safe-life design methodology based on fracture mechanics techniques shall be used to establish the appropriate design factor of safety and the associated proof factor for metallic pressure vessels that exhibit brittle fracture or hazardous LBB failure mode.

12.3.3.1.2. The loading spectra, material strengths, fracture toughness, and flaw growth rates of the parent material and weldments, test program requirements, stress levels, and the compatibility of the structural materials with the thermal and chemical environments expected in service shall be taken into consideration.

12.3.3.1.3. Nominal values of fracture toughness and flaw growth rate data corresponding to each alloy system, temper, and product form shall be used along with a life factor of 4 on specified service life in establishing the design factor of safety and the associated proof factor.

12.3.3.1.4. Unless otherwise specified, the minimum burst factor shall be 1.5.

Zero-G Propellant Management

- Propellant management is achieved using a surface-tension style propellant management device (PMD)
 - Using a surface-tension style PMD over a positive-expulsion device such as a diaphragm allows multiple pressure cycles to be performed on the propellant tank without having to worry about damage the diaphragm.
 Piston-style devices allow multiple pressure cycles but are heavier.
 - A combination of vanes and a sponge is used to ensure that we always have propellant ready to go
 - Mass flow rates are low for the secondary propulsion system, so it is unlikely to deplete the sponge's propellant capabilities during ADCS "desaturation" burns. If larger burns are required, a settling burn may be performed to allow the sponge to resaturate with propellant.

Vanes help propellant passively commute from opposite side of tank.

Sponge helps guarantee propellant is always available to tank outlet at bottom of tank.

Ullage Calculations

- Because the high-pressure helium system is sealed off using a pyrotechnic valve prior to Phase 4, the Helium tank isn't able to be used to pressurize the propellant tanks.
- In order to allow propellant tanks to function during orbital adjustments/stationkeeping, extra ullage space (~10%) was added to both tanks to allow the propulsion system to perform as a blowdown system prior to Phase 4.
- Ullage calculations were based upon secondary propulsion, but similar sizing was added to the oxidizer tank as well to allow high-thrust contingencies.

Leak Rates

- Helium leakage rates were calculated to verify pressurant mass margin over the 20+ year mission.
- Welded joints were analyzed as leaking 1e-6 scc/s GHe, threaded joints (AN) were analyzed as leaking 1e-4 scc/s Ghe
- Initial findings found leakages of upwards of 7 kg over 21 years, which exceeded out mass margin of 6 kg. Pyrotechnic valves were added to isolate the high-pressure Helium system prior to Phase 4, bringing leakage down to ~.5 kg in the same time span.
- Joints will be tested per NASA-STD-7012 to verify that they are within the leak rates above.
- The system level leakage will also be calculated by taking the sum of all joint leakages after manufacturing, and will be confirmed to provide positive margin at the end of mission.

Pressure/Temperature Data

210 bar

22.5 bar

TCE1

TCE2 1

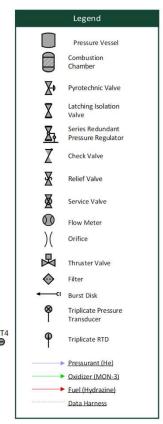
210 bar

Pressurant

O TPM

PCE5-PCE28 .3 bar MEO

Propellant crossfeeds


to opposite bank

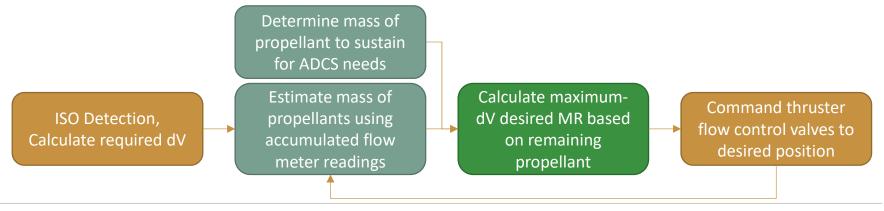
 Pressure and temperature data will be taken using triplicated pressure transducers and resistance temperature detectors (RTD).

Pressure and temperature data will be taken or the tanks, critical junctions of plumbing, and the thrusters.

• Instead of taking temperature data on each of the secondary thrusters, temperature data will be taken on the mounting location of the thruster packs tallow better knowledge of the heat going into the system. This could alternatively be achieved by using thermopiles, at the cost of direct temperature measurement.

Back to main!

Pressure/Temperature Data


- Data Channels will be named as
 - First letter: P/T for pressure/temperature
 - Next letters: Component designator
 - TO: Tank, Oxidizer
 - TF: Tank, Fuel
 - TP: Tank, Pressurant
 - OM: Oxidizer Manifold
 - FM: Fuel Manifold
 - PM: Pressurant manifold
 - CE: Chamber, Engine
 - ST: Secondary Thruster mounting plate
 - Numbers at the end designate multiples of components to help differeniate
 - Not shown at right, will be A/B/C following reference designators for triplicate-redundant sensors.
 - EX: PCE4B: Pressure, Chamber, Engine 4, Channel B

Reference Designator	Description	Data Rate [Hz]	MEOP/T [bar, K]	Driven by
PTO	Ox tank pressure	1000	22.5	PMO
PTF	Fuel Tank Pressure	1000	22.5	PMF
PTP	Pressurant Tank Pressure	1000	205	PTO/PTF after blowdown
POM	Ox manifold pressure	1000	21.5	PCPE
PFM	Fuel manifold pressure	1000	21.5	PCPE
PPM	Pressurant Manifold Pressure	1000	21.5	PTO/PTF
PCE1	Primary Engine 1 Pc	1000	9.4	Aerojet
PCE2	Primary Engine 2 Pc	1000	9.4	Aerojet
PCE3	Primary Engine 3 Pc	1000	9.4	Aerojet
PCE4	Primary Engine 4 Pc	1000	9.4	Aerojet
PCE5	Secondary Engine 1 Pc	1000	6.9	Aerojet
PCE6	Secondary Engine 2 Pc	1000	6.9	Aerojet
PCE7	Secondary Engine 3 Pc	1000	6.9	Aerojet
PCE8	Secondary Engine 4 Pc	1000	6.9	Aerojet
PCE9	Secondary Engine 5 Pc	1000	6.9	Aerojet
PCE10	Secondary Engine 6 Pc	1000	6.9	Aerojet
PCE11	Secondary Engine 7 Pc	1000	6.9	Aerojet
PCE12	Secondary Engine 8 Pc	1000	6.9	Aerojet
PCE13	Secondary Engine 9 Pc	1000	6.9	Aerojet
PCE14	Secondary Engine 10 Pc	1000	6.9	Aerojet
тто	Ox tank temperature	10	290	Ox Boiling
TTF	Fuel tank temperature	10	300	~Ox boiling
TTP	Pressurant tank temperature	10	300	~Ox boiling
том	Ox manifold temperature	10	290	~Ox boiling
TFM	Fuel manifold temperature	10	300	~Ox boiling
TPM				
TCE1	Primary engine 1 Tc	10	3000	PE Tc
TCE2	Primary engine 2 Tc	10	3000	PE Tc
TCE3	Primary engine 3 Tc	10	3000	PE Tc
TCE4	Primary engine 4 Tc	10	3000	PE Tc
TST1	Thruster Plate 1 Temp	10	400	SE Flange temp
TST2	Thruster Plate 2 Temp	10	400	SE Flange temp
TST3	Thruster Plate 3 Temp	10		SE Flange temp
TST4	Thruster Plate 4 Temp	10		SE Flange temp

Propellant Utilization (PU) Algorithm

A propellant utilization (PU) algorithm will be used to maximize the dV while the primary propulsion system is active. This will allow the vehicle to burn at lower or higher mixture ratios in order to guarantee that the spacecraft has a minimal dry mass. Thruster flow control valves on the primary propulsion engines can skew the MR from 0.70 - 1.33 and will be used to achieve bulk MR corrections. The PU algorithm has not been explicitly written, but a general control scheme can be seen below.

Propulsion Team Risks

Given that the propellant lines freeze there is a
 possibility of the necessity of using resistive heaters to
 keep the propellant lines with acceptable
 temperatures adversely impacting the propulsion
 plumbing system, which can result in the spacecraft
 leaking propellant.

Likelihood: 1 Severity: 5

 Given that the gimbal mounting fails or there is degradation of the mounting component over time due to the environment there is a possibility of the components that utilize these mounts not deploying, adversely impacting the secondary thruster system and structural gimbal mounts, which can result in a reduction in attitude control effectiveness, and increased difficulty or destruction, and a reduction of the translational speed control.

Likelihood: 1 Severity: 3 or 4

Given that the secondary thrusters go out there is a
possibility of the propulsion of the spacecraft not
being sufficient to complete the mission adversely
impacting the secondary thruster systems and
propulsion plumbing system, which can result in a
reduction of attitude control effectiveness and a
reduction in translational motion control.

Likelihood: 2 Severity: 3 or 4

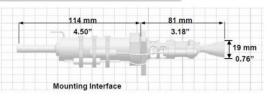
Secondary Propulsion Thrusters

MR-111G 4N (1.0 lbf) Rocket Engine Assembly

AEROJET

Link

Thrust: 4 N each Isp: 219-229 s


Qty: 12 pairs, total quantity 24

Total propellant consumed: (760 kg

Hydrazine)

Monopropellant chosen to provide simple secondary system. Thrust level semi-arbitrary based on ADCS unknowns, upsizing to higher thrust levels is still an option.

Design Characteristics

•	Propellant	Hydrazine
•	Catalyst	S-405
•	Thrust/Steady State	4.9 - 1.8 N (1.1 - 0.4 lbf
•	Feed Pressure	. 24.1 - 6.7 bar (350 - 100 psia
•	Chamber Pressure	10.0 - 3.7 bar (145 - 54 psia
•	Expansion Ratio	
•	Flow Rate 2.0 - 0.77	g/sec (0.0044 - 0.0017 lbm/sec
•	Valve	Dual Sea
•	Valve Power 8	.25 Watts Max @ 28 Vdc & 21°C
•	Valve Heater Power 1	.54 Watts Max @ 28 Vdc & 21°C
•	Cat. Bed Heater Power6	.32 Watts Max @ 28 Vdc & 21°C
•	Mass	0.37 kg (0.82 lbm
	Engine	0.11 kg (0.24 lbm
	 Valve 	0.20 kg (0.44 lbm
	Heaters	

Performance

•	Specific Impulse	229 - 219 sec (lbf-sec/lbm)
•	Total Impulse	262,000 N-sec (59,000 lbf-sec)
•	Total Pulses	
•	Min Impulse Bit 0.07	'6 N-sec @ 15.5 bar & 20 ms ON
•	(0.017	lbf-sec @ 225 psia & 20 ms ON)
•	Steady State Firing 10,000	sec demonstrated - Single Firing

Status

Flight Proven

· Currently in Production

Reference

AIAA-2012-3817

11411 139th Place NE • Redmond, WA 9805 (425) 885-5000 FAX (425) 882-5747

High Pressure Regulator

Helium Flow Rate during Primary Firing (assuming constant nomiunal thrust, ideal Isp)

0.275756083 kg/s

890 N

329 s

0.137878041 0.137878041 kg/s

Link

Force

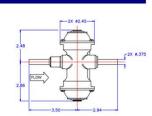
mdot prop

mdot (Ox/Fu)

Isp

Capable of .003 lbm/sec Ghe =1.35e-3 kg/s Ghe System requirement: 8.47e-4 kgs GHe

DESCRIPTION


VACCO Industries offers a compact, pre-integrated system filter and Helium regulator to precisely control the pressure to propellant feed systems. The series-redundant regulator is qualified for use in spacecraft and missile dynamic environments. Dynamic stability and contamination protection has been demonstrated under all operating conditions, including rapid application of inter pressure from a pyrotectnic valve.

The series-redundant pressure regulators are completely protected from external contamination by filters in the inlet, outlet, and sensing ports. For added protection; there is a separate inlet filter for the redundant regulator.

FEATURES

- + Combination System Filter and Regulator
- Series Redundant CRES Regulators
- Regulation Accuracy within ± 2.5%
- Inlet Pressure Range from 4500 to 400 psig
- + Internal Leakage is less than 20 sccm
- Rapid Transient Recovery
- 25 Micron (absolute) Filtration
- Etched Disc Titanium Filters

Volumetric Flow Rate (Ox/Fu)	9.50883E-05	0.000135042	m3/s	Clog-Proof Titanium Sensing Restrictor
Mass Flow Rate (He)	3.43E-04	5.04E-04	kg/s	OPERATING PARAMETERS
	7.55E-04	2.29E-04	lbm/s	Operating Pressure Range 4500 to 400 psig Proof Pressure 6750 psig Burst Pressure 11,250 psig Flow 0.003 lbm/sec GHe
Total Mass Flow Rate (He)		8.47E-04	kg/s	Internal Leakage 20 sccm GHe

Performance characteristics are based upon customer requirements, as such, are not representative of component capabilities or limitations

Operating Temperature.

Low Pressure Relief Valve

Link

LOW PRESSURE RELIEF VALVE V1D10879-01

DESCRIPTION

VACCO Aerospace Products produces a relief valve for designed exclusively to satisfy the needs of the space industry.

A unique advantage of VACCO's relief valve is that the seaf/seal configuration is flight qualified and has demonstrated successful flight heritage for over 10 years. The relief valve incorporates a teflon seat design used for low leakage over a wide range of temperatures.

FEATURES

- Seat/Seal Configuration Flight Qualified
- All Welded External Construction
- Relief Pressure: 335 psid max.
- Reset Pressure: 280 psid min.
 Weight: .75 lbm (340 grams)
- Machined Body to Assure Structural
- Optimized for High Flow Stable Operation

OPERATING PARAMETERS

Operating Pressure Range	
Proof Pressure	650 psig
Burst Pressure	1,300 psig
Flow	
Pressure	
Reseat Pressure	

Note: Based on Actual Test Data **Note: Based on Actual Test Data, 100 scfm @ 355 p *Note: External Leakage measured at 270 ± 5 psia for 5 minu ***Note: Internal Leakage measured from 0-280 psia

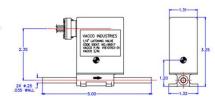
Performance characteristics are based upon customer requirements, as such, are not representative of component capabilities or limitation.

High Pressure Latching Iso Valve

Link

1/4" HIGH PRESSURE LATCH VALVE V1E10763-01

DESCRIPTION


VACCO Industries maintains a product line of titanium latching valves designed to meet industry's demand for high reliability, tight leakage, and quick response capabilities.

The VACCO 5000 psi ¼² latch valve utilizes proven torque tube technology. The all titanium construction helps reduce weight while bolstering reliability; qualified to a minimum 13,000 life cycles while maintaining performance. The valve is fully qualified and is scheduled for flight in 2002.

FEATURES

- 5,000 psig Operating Pressure
- * 13,000 Operating Cycles
- + Ti Body with CRES Interface
- Low Weight 0.75 LB (340 Grams)
- ♦ Integral Microswitch
- 40 Micron Absolute Etched Disc Inlet Filter

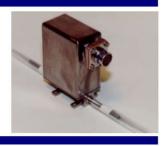
OPERATING PARAMETERS

Operating Pressure	5000 psig
Proof Pressure	7500 psig
Burst Pressure	12,500 psig
Flow/Pressure Drop	<10 psid @ 1.06
Leakage:	. 0
	.0 scch GHe @ 5000 psid
External1x10	6 sccs GHe @ 5000 psid
Deels Decesions Dellet	4500 + 500

1	Cycle Life > 13,000 Cycle
	Operating Temp 14 - 140°F)
	Response Time:
	Opening: 20 msec @ 29 VDC @ 5000 psid
	Closing:20 msec @ 29 VDC, 5000 psid
	Opening Voltage24 - 32 VDC.
	Power Consumption 20 W max @ 29 VDC and 76°F
	Dielectric Strength 500 VAC RMS @ 60 Hz-1 min

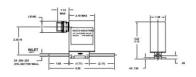
Low Pressure Latching Iso Valve

Link



LOW PRESSURE 1/4" LATCH VALVE V1E10405-04

ESCRIPTION


VACCO Industries maintains a product line of titanium latching valves designed to meet industry's demand for high reliability, tight leakage, and quick response canabilities.

The 1/4" low-pressure latch valve utilizes VACCO's proven torque tube technology. The all titanium construction helps reduce weight while bolstering reliability, qualified to a minimum 20,000 life cycles without deteriorating performance. The valve is fully flight-qualified and holds extensive heritage.

FEATURES.

- + 400 psi Operating Pressure
- Flight Qualified
- All Titanium Construction
- Low Weight 340g/0.75 lbm
- Integral Microswitch
- ⊕ Bi-Directional Flow
- + 40μ Absolute Inlet Filter

OPERATING PARAMETERS

Operating Pressure Range	400 psig
Proof Pressure	900 psig
Burst Pressure	2400 psig
Flow	0.025 lbm/sec H ₂ O
Pressure Drop	<15 psid
Internal Leakage	<5.0 scch GHe
External Leakage	<1 X 10 ⁻⁶ sccs GHe
Weight	

Operating Temperature	+30° to 150° F
Response Time	
Opening	50 msec @ 20 VDC
Closing	50 msec @ 20 VDC
Back Pressure Relief	350 psid
Inlet Filter Rating	40 microns absolute
Operating Voltage	20 - 50 VDC
Dielectric Strength 500 V	AC RMS @ 60 Hz - 1 min

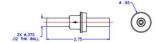
Low Pressure Check Valve

Link

Would need to get check valves manufactured to \(\frac{4}{7}\)(6.35 mm) tube instead of 3/8" tubes.

3/8" LOW PRESSURE CHECK VALVE V1D10856-02

DESCRIPTION


VACCO Industries maintains a product line of stainless and titanium check valves to meet industry's demand for high reliability and tight leakage.

The 3/8° check valve developed for the Mars Ascent program is a titanium welded unit capable of very low external leakage and wide range of temperature extremes (+170° to 45° C). The valve contains an angled-machined seating surface, different from the poppet sealing surface allowing an increase in seat stress. The increase in seat stress improves sealing capability of the valve. This type of design has been in used in other VACCO valves for many years.

FEATURES

- → Temperature Range: -170° to 45° C
- Seat/Seal Configuration Flight Qualified
- + All Welded External Construction
- Departing Pressure: 550 psia
- → Weight: 20 grams
- 10 Years of Successful Flight Heritage

OPERATING PARAMETERS

Operating Pressure Range	550 psi
Proof Pressure	825 psia
Burst Pressure	1,100 psia
Flow	7 grams/second GHe
Pressure Drop	10 psi
Cracking Pressure	7.5 psid

100 scch GHe @ 5 psid 0
170° to +45° C
e40° to +45° C
20 grams

Pyrotechnic Valve

<u>Link</u>

Initiators	Redundant ESA Standard Initiators	
Design	All-welded Titanium design	
Fluid Compability	Helium, Argon, Xenon, Nitrogen, MON MMH, Hydrazine, Deionized Water, IP	
Response Time (Mechanical)	< 7ms	
Mass	< 0.160 kg (depending on type)	
Qualified Operating Temperature	-90°C ≤ T ≤ 100°C	
Qualified Operating Pressure (MEOP)	310 bar	
Proof Pressure	1.5 x MEOP (465 bar)	
Burst Pressure (NO and NC)		
Pre firing	> 4x MEOP (rupture pressure: > 1240 bar)	
Post firing	> 2.5x MEOP (rupture pressure: > 775 bar)	
Leakage		
Normally Open	Internal leak after firing: < 1x10 ⁻⁶ scc/s (GHe) External leak before/after firing: < 1x10 ⁻⁶ scc/s (GHe)	
Normally Closed	Internal leak before firing: < 1x10 ⁶ scc/s (GHe) External leak before/after firing: < 1x10 ⁶ scc/s (GHe)	

Primary Propulsion Engine

R-4D-15 HiPAT™ 445 N (100 lbf) Dual Mode High Performance Rocket Engine

Link

Thrust: 445 N each Isp: 329 s @ ϵ = 375

Qty: 4 total

Total propellant consumed: 10816 kg (5408 kg MON-3, 5408 kg Hydrazine)

Chosen due to highest Isp, reasonable thrust, and capability to use Hydrazine for monopropellant secondary.

Design Characteristics

•	Propellant
•	Nominal Thrust (steady state)
•	Thrust Range (steady state)
•	Chamber Pressure*
•	Inlet Pressure* >16.2 bar (235 psia)
٠	Inlet Pressure Range
•	Valve
•	Expansion Ratio
٠	Nominal Mixture Ratio (O/F)
•	Mixture Ratio Range (O/F)
٠	Mass 300:1= 5.2 kg (11.5 lbm), 375:1 = 5.44 kg (12.0 lbm)

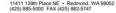
300.1 = 12.8 375.1 = 14.25

Performance

DIMENSIONS ARE IN INCHES

•	Specific Impulse @ 70°F and MR = 1.0
•	Total Impulse Qualified
	> 9.55 X10 ⁶ N-sec (2.15 X 10 ⁶ lbf-sec
•	Minimum Impulse Bit
•	Demonstrated Steady State Firing Duration1,800 sec
•	Total Number of Pulses Qualified 672 starts
	345 thermal cycle

Status


Qualified

Currently in Production

References

AIAA-2003-4775

* At nominal Thrust

Payload

Speaker:

Move to Backup

Operational Timeline - Payload

Payload Operation Timelines

- At 4000 km inbound approach pick off mirror will be directing light to IR sensor
- At 2000 km inbound approach pick off mirror will switch to direct light to visual sensor
- At 800 km inbound approach SAR system will begin to collect data
- At 800 km outbound approach SAR will end data collection
- At 2000 km outbound approach pick off mirror will switch back to IR sensor
- Primary science collection will be finished at 4000 km outbound approach

Speaker: Colleen M

ST: 0:00-0:00

TEMPLATE (WRITE IN ALL CAPS) / 213

SAR Model Verification

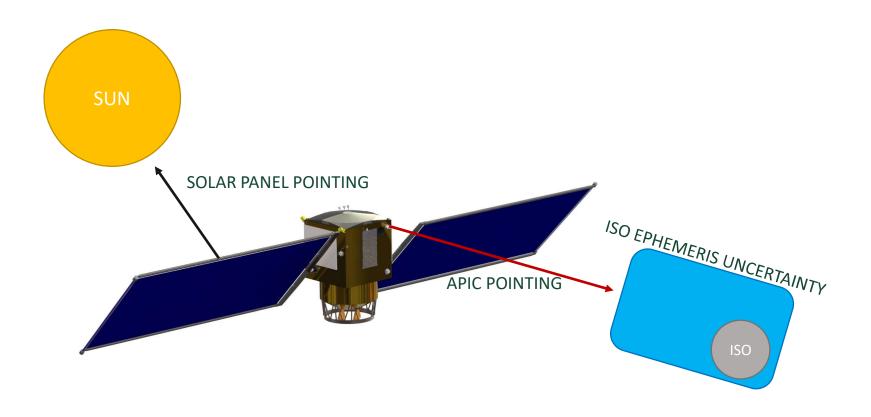
Inputs:

SAR Parameter	Look Angle	SC Height	Bandwidth	Central Frequency	Antenna Size
ERS-1	23 deg	785 km	15.55 MHz	5.3 GHz	10m x 1m

Comparing Outputs vs Actual Performance:

SAR Performance	Model	ERS-1
Cross-track Footprint	96.5 km	100 km
Cross-track Resolution	24.7 m	26.3 m
Slant Range Resolution	9.64 m	10 m

Back to Design
Specifications-SAR

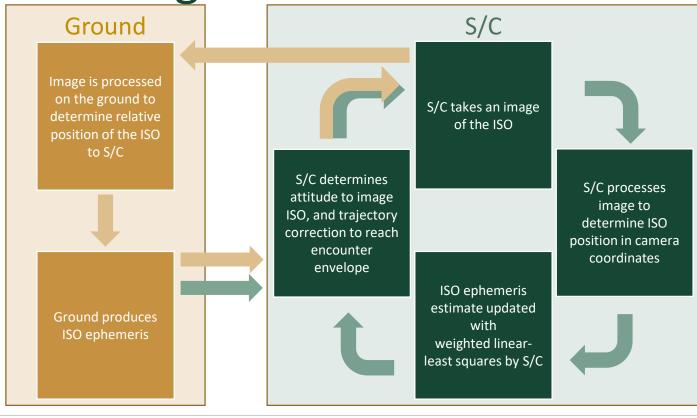

Payload Risks

 Given that the imager isn't aligned properly there is a possibility of a need to abandon primary and secondary sciences on one of the spacecraft adversely impacting the payload and primary and secondary science subsystems, which can result in an ability to only complete half of the required primary and secondary science data, limiting us to only using one spacecraft to rendezvous with the ISO

GNC

Speaker:

Phase 5: ISO Flyby


Applicable Level 3 GNC Requirements

ID	Requirement	Parent Requirement
GNC7	The GNC system shall be capable of optically navigating to the ISO autonomously.	
GNC8	The GNC system shall calculate the relative position between the flight system and the ISO +/- TBD km within a distance of TBD km from the ISO.	
GNC9	The GNC system calculate the relative velocity between the flight system and the ISO +/- TBD km/s within a distance of TBD km from the ISO.	
GNC12	The GNC system shall propagate the position of ISO with an accuracy of +/- TBD km throughout autonomous operations.	
GNC13	The GNC system shall propagate the velocity of the ISO with an accuracy of +/- TBD km/s throughout autonomous operations.	

ST: 2 min

Navigation Model

Image Processing Methods

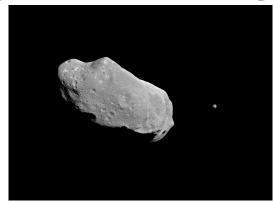
Iso <= 10 Pixels

Analytics Function Fitting

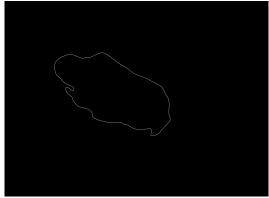
Iso > 10 Pixels

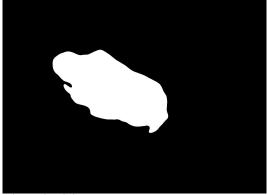
- Threshold Segmentation
- Edge Detection
- Ellipse Approximation via least squares

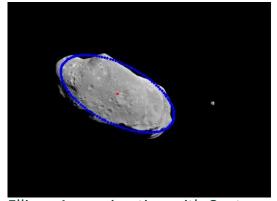
Input


Image of the ISO taken by the Spacecraft

Output


ISO center in Pixel Coordinates


Image Processing Model


Base Image

Edge Detection

Threshold Segmentation

Ellipse Approximation with Center

Speaker: Zach Lofquist

GNC Risks

 Given that the ISO shape and shadow can affect ephemeris updating of the autoNav system leading to false knowledge of the ISO position there is a possibility of an inability to properly image the ISO since we will be at a different range than expected adversely impacting the payload components, which can result in an inability to acquire images and science information from the ISO.

Likelihood: 3

Severity: 1 or 2

Thermal

Speaker:

Speaker: Speaker: Speaker: Speaker:

Overview

- Simplified geometry
- Steady-state thermal studies within SolidWorks
- Multiple scenarios studied varying different parameters

Outcomes

- Verify behavior of combined system
- Provide recommendations for component placement, mounting, and surface finishes

- Geometry
- Material and surface properties
- Component contact resistance
- Mission scenarios

Component heat loads

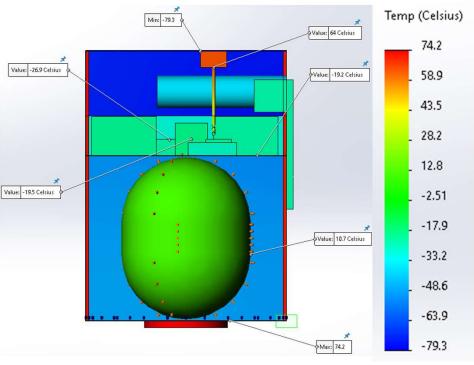
Environmental heating

Louver and heater settings

Outputs

- Temperature distribution
- Heat flux through different surfaces

Scenario Name	Tank Fill	Component Activity	Pointing Orientation	Distance from Sun	Engine Activity
1AU Standard	Full	On	Earth	1 AU	Off
5AU Standard	Full	On	Earth	5 AU	Off
1AU Everything Off	Full	Off	Earth	1 AU	Off
5AU Everything Off	Full	Off	Earth	5 AU	Off
1AU Everything On	Full	On	Earth	1 AU	On
5AU Everything On	Full	On	Earth	5 AU	On
5AU No Prop	Empty	Off	Earth	5 AU	Off
Phase 4 -OpNav	Full	Phase 4.7	Earth	5 AU	On
Phase 7 - EOL	Full	Phase 7.1	Earth	5 AU+	On
Emergency 1	Half	Off	Sun	1 AU	On
Emergency 2	Empty	Off	Sun	5 AU	On



<u>Detumble</u>

THERMAL SUPPORT / 225

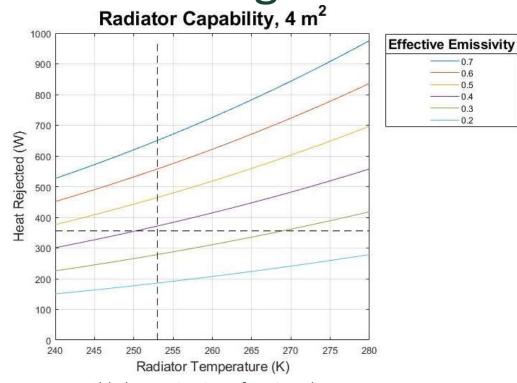
Scenario Name	Temperatures (Deg C)		Louver Value	Heater Value	Notes and Issues	
	Max	Min	Baseplate	(Effective ε)	(W)	
1AU Standard	78	-67	-3	0.3	150	Too cold, excess heat leak
5AU Standard	65	-80	-20	0.3	150	Too cold, excess heat leak
1AU Everything Off	65	-124	-83	0.1	N/A	Too cold, expected
5AU Everything Off	-120	-205	-187	0.1	N/A	Too cold, expected
1AU Everything On	N/A	-68	-6	0.3	50	Engines highly insulated
5AU Everything On	N/A	-71	-9	0.3	100	Engines highly insulated
5AU No Prop	-120	-205	-187	0.1	N/A	See 5 AU Everything Off
Phase 4 -OpNav	N/A	-71	-9	0.3	100	See 5 AU Everything On
Phase 7 - EOL	N/A	-71	-9	0.3	100	See 5 AU Everything On
Emergency 1	76	-64	2	0.3	250	Too cold, excess heat leak
Emergency 2	76	-64	2	0.3	250	Too cold, excess heat leak

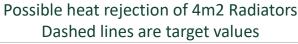
1 AU – Components on, Engines off

- Baseplate ties all components together, keeps them within 5 degrees of same temperature
- Future work: give each component specialized conduction to radiator using heat pipes
- Outer MLI exposed to sun has highest temperatures, not exposed has lowest. Neither significantly affect nearby components
- Internal radiation causes heating to telescope as well as heat leak not via radiator

Assumptions

- Geometry is close enough to provide +- 20 deg accuracy
- Radiation between internal components
- External panels approximate MLI via material and surface properties
- All components operate with constant power use and waste heat generation
- Solar heating modeled by applying internal heat load to inside of MLI sheets


Takeaways


- Heater balance Power positive until later phases. Can run heaters as needed for most of mission, but need enough insulation for final phases
- Heat Leak more heat than anticipated currently leaking from spacecraft, need proper insulation for thermal system to behave as intended
- Conductance high conductance heat paths reduce component temperatures excessively, more design needed to correctly control temperature differentials

Thermal Radiator Sizing

- Total Area = 4 m²
- Target Heat Rejection = 356 W
- Target Temperature = -20 °C
- Louver Control Effective emissivity range: 0.2-0.7
- 180 650 W range at –20 °C

0.5

Thermal Heat Pipe Design and Sizing

- Aluminum was chosen for the main heat pipe material as it has a high heat transfer coefficient and a low density compared to other heat pipe material options considered (Copper and Stainless 316).
- Ammonia was chosen as the operating fluid, as the temperature ranges of ammonia best fit the operating temperature ranges and thermal conductivity that our system components required.
- A grooved aluminum pipe was chosen for the wick design, as it would accomplish the desired capillary action based on our orbital parameters and thermal requirements for ammonia as a working fluid.

Pipe Materials	Pipe Wall Thickness	Pipe Diameter	Pipe Length Estimate	Ammonia and Mercury Mass Estimates	Heat Pipe Total Mass Estimate
Aluminum	0.00089m	0.008m	11.5m < L < 34.5m	2-4kg of Ammonia	90kg – 270kg

MLI Spotheating Risk

Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
There is spot heating on the MLI blankets	An unintended reduction in MLI performance leading to excess heat loads or cooling of the spacecraft	The thermal system	The degradation of MLI which will reduce the ability of the thermal system to operate correctly for the entire mission	3	4	Thermal

Loss of Control Risk

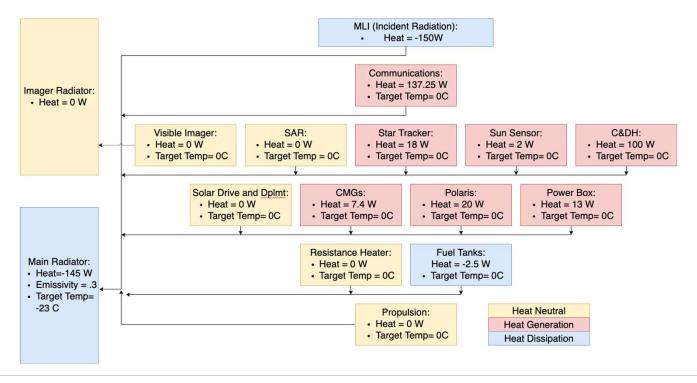
Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
There are vibrations of launch and the 20-year operation length	The components tied to the thermal system losing necessary control	The thermal system	A hinderance in overall performance of the thermal system, potentially up of loss of the spacecraft	3	2	Thermal

Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
The temperature sensors fail and that the team does not currently know a way to calibrate a temperature sensor in space	Component damage due to improper thermal man agement	The proper management and reliability of any component on the spacecraft where temperature knowledge is lost	The reduction of longevity, espe cially of the electronics	2	2	Thermal

Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
Thermal models cannot 100% match real world conditions or represent every interaction within the spacecraft	The expected behavior not being fully achieved leading to incorrect control	The thermal system	Out of bounds temperature s of some components	2	3	Thermal

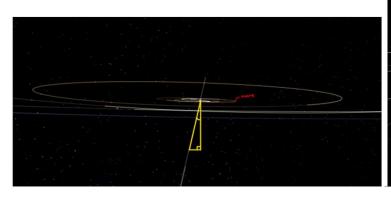
Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
Steady state conditions are much easier to analyze, plan for, and model	Unforeseeable dynamic situations not being modeled or analyzed beforehand	The startup of electronic components as thermal control may lag	Issues quickly adapting to changes in the environment or spacecraft state meaning some timelines mat not be executed as desired			Thermal

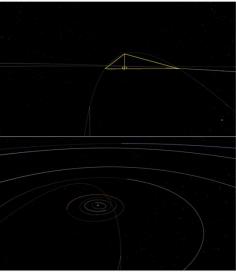
Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
There is inadequate heat power	The heaters failing to keep components warm, particularly the propulsion tanks	The propulsion fuel	The propulsion failing during navigation to the ISO	2	3	Thermal

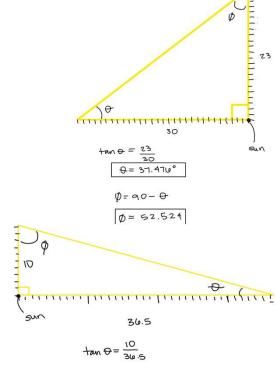

Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
There is unanticipate d degradation of the radiators	The radiators emitting less waste heat than necessary to maintain nominal onboard temperatures	The power system and any power consuming systems	The reduced performance of the thermal system	2	3	Thermal

Given that	There is a possibility of	Adversely impacting	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
There is external heat load coming into the spacecraft due to solar irradiation, albedo from Earth, and albedo from the ISO	The radiators not being sized to emit enough waste heat from the spacecraft	The entire thermal management procedures	The spacecraft heating up more than anticipated and thermal control no longer being able to maintain temperature ranges	2	2	Thermal

Phase 6 - Support Bus Downlink




Ground System


Speaker:

Ground System/Spacecraft Geometry

· ISO entry case

$$\tan \Theta = \frac{10}{36.5}$$

0= 15.3215°

Ground System Risks

 Given that there are unknows about the ISO's trajectory there is a possibility of only being able to contact the spacecraft irregularly during mission critical times adversely impacting the mission control's ability to communicate with the spacecraft, which can result in uncertain orbits and GNC knowledge.

Likelihood: 4

Severity: decreases over time

Mission Operations and Facilities

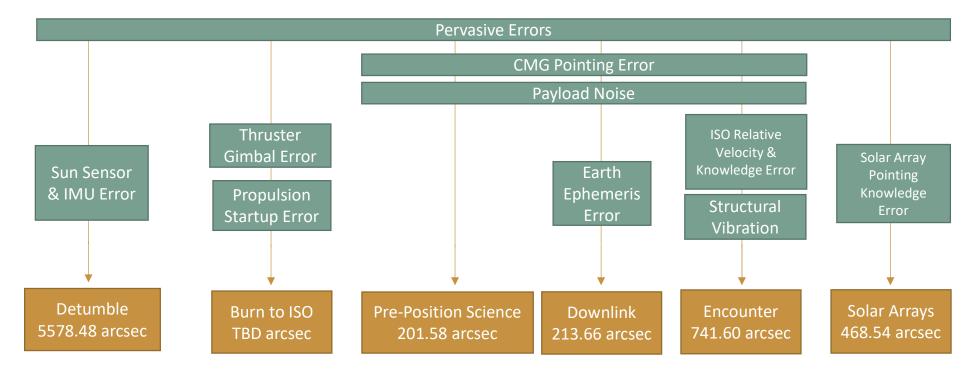
Speaker: Alexi or Berenice

COSMIC Operation Centers — move to backup

ID	GS Facility	Rationale	GS Operation
MP3:8 MS1:4	Science Operation Center	Processes and meets all primary and secondary science-based objectives	
MP1,2 MP9	Mission Control Center	Processes and meets all command, navigation, and monitoring based requirements	
MP10	Network and Data Storage	Supports all operations of the Science and Mission Centers	
MP10	NASA DSN	Contracted Element for spacecraft contact	

Speaker: Alexi or Berenice **ST:** 0:00-0:00 TEMPLATE (WRITE IN ALL CAPS) / 244

Operation Centers Interfaces


ID	Requirement	Rationale	GS Facility	Number of Personnel Assignment Per Spacecraft (x2)
G2, MP2, G26 G27, G28	Orbit design and control	Orbit/trajectory related station keeping, ISO departure determination and command design, and ISO encounter trajectory management	Mission Control Center	3 (ex: ephemeris management)
MP3, MP4, MP5 MP6, MP7, MP8 G25	Science processing	Received science packages must be unloaded to determine progress towards goals	Science Operations Center	2 (ex: dielectric, rotation, dimension)
MS2, MS3, MS4	Science command design	Science teams will want to point at celestial objects which competes with solar and station keeping pointing	Science Operations Center	4 (ex: exoplanet, sky coverage)
G3	Station keeping, subsystem health monitoring, response and command design	ADCS, propulsion, power keeping demands for pointing, thermal management, C&DH updates or patches	Mission Control Center	+4 (fuel management, trajectory upkeep, subsystem liaisons)
G20, G21, G22 G24,	Mission command packaging	The last step before COSMIC commands are sent to the DSN for flight system uplink	Mission Control Center	2

Speaker: Alexi or Berenice **ST:** 0:00-0:00 TEMPLATE (WRITE IN ALL CAPS) / 245

ADCS

Pointing Capability Model

Preposition Science Pointing Budget

Accuracy Error Description	3 σ Error [arcsec]
CMG Pointing Error During Quasi-Static	20.626
Sensor Misalignment	0.017
Payload Misalignment	0.017
Star Tracker Misalignment	0.017
Star Tracker Noise	21.000
Thermal Deviations	135.520
Star Tracker Error	11.100
Per Axis Total	188.296

Stability Error Description	3 σ Error [arcsec / s]
MED Vibration	0.5
Propellant Sloshing	10.31324031
Total	10.81324031

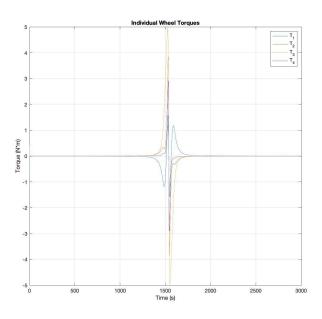
Downlink Pointing Budget

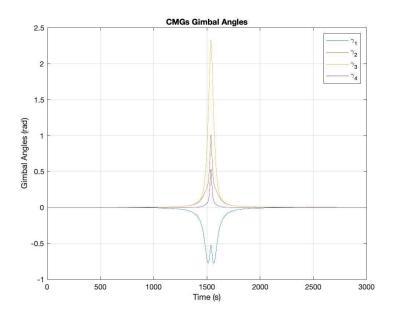
Accuracy Error Description	3 σ Error [arcsec]
CMG Pointing Error During Quasi-Static	20.626
Sensor Misalignment	0.017
Payload Misalignment	0.017
Star Tracker Misalignment	0.017
Star Tracker Noise	21.000
Thermal Deviations	135.520
Star Tracker Error	11.100
Per Axis Total	188.296

Encounter Pointing Budget

Accuracy Error Description	3 σ Error [arcsec]
CMG Pointing Error During Large Maneuver	412.530
Sensor Misalignment	0.017
Payload Misalignment	0.017
Star Tracker Misalignment	0.017
Star Tracker Noise	21.000
Thermal Deviations	135.520
Star Tracker Error	11.100
Per Axis Total	580.199

Stability Error Description	3 σ Error [arcsec / s]
MED Vibration	0.500
Propellant Sloshing	10.313
Structural Vibration During Large Maneuver	0.003
APIC Measurement Error	1.974
Total	12.790




Solar Array Pointing Budget

Accuracy Error Description	3 σ Error [arcsec]
CMG Pointing Error During Quasi-Static	20.626
Antenna Misalignment	0.017
Payload Misalignment	0.017
Star Tracker Misalignment	0.017
Star Tracker Noise	21.000
Thermal Deviations	135.520
Star Tracker Error	11.100
Solar Array Drive Pointing Knowledge error	72
Per Axis Total	260.296

CMG Wheel Torques/ Gimbal Angles (return)

CMG Preposition Desaturation due to Disturbance Torques

- Solar Radiation Pressure is the highest magnitude disturbance torque acting on the spacecraft during the prepositioned phase
- Attitude of spacecraft will point high gain antenna at Earth during most of phase, Solar Panels will have ~ 80-degree inclination to sun vector.
 - Near constant torque and accumulation of momentum
- Torque values over time: 0.1336 -0.1430 Nm
- Desaturation Timeline with 48 Nms
 of Momentum Storage: 93.24 99.5 hours
- Desaturation will be performed by

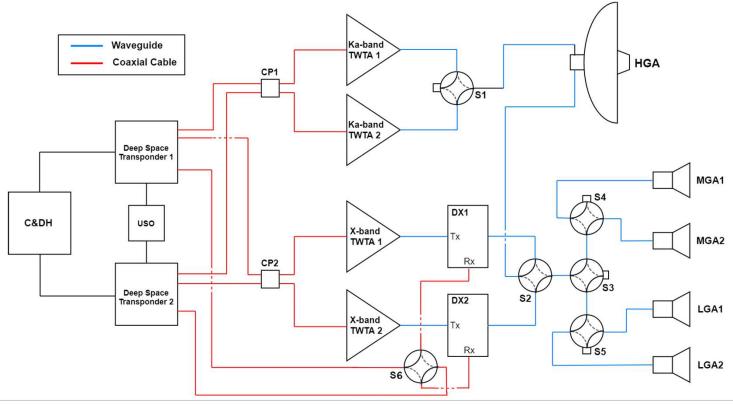
- calculating the angular impulse vector required and using the secondary thrusters to achieve necessary impulse.
- Required mass of 76 kg for 20-year mission period

ADCS Risks

• Given that the MEDs fail over the long mission life there is a possibility of an inability to perform the slew for encounter adversely impacting the resolution and our ability to find the ISO, which can result in an inability to achieve objectives.

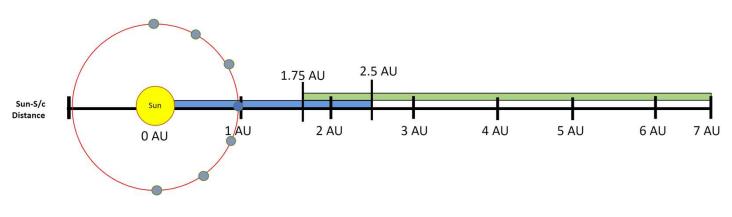
Comms

Communication — Downlink Budget Supporting Values


Antenna	Supplier	Boresight Gain [dBi]	3dB Beamwidth [deg]	Centering Frequency [GHz]	Max Pointing Error [deg]	Required BER (u/d)	Modulation Scheme	Coding	Required Eb/N0 [dB]	Nominal Link Margin [dB]
HGA [Ka/X]	In House	57.88 / 44.81	0.217 / 0.979	32.2 / 7.153	0.1	1e-6	Direct BPSK	Turbo (R=½, I =5)	1.25	3
MGA	JPL	18.8	20	7.153	0.1	1e-6	Direct BPSK	Turbo (R=½, I =5)	1.25	3
LGA	JPL	7.7	80	7.153	0.1	1e-6	Direct BPSK	Turbo (R=½, I =5)	1.25	3

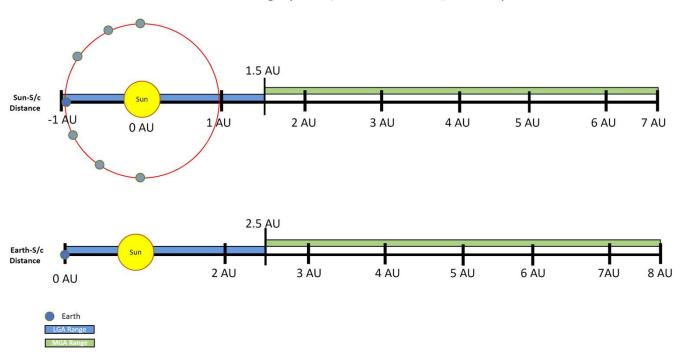
RETURN TO 138

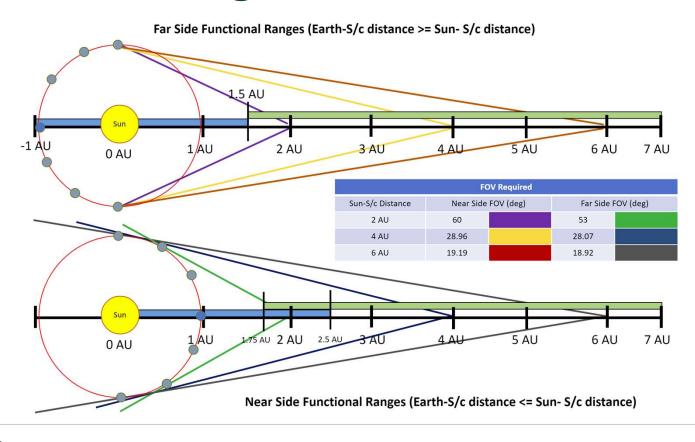
<u>Backup</u>



Telecom - Block Diagram

Near Side Functional Ranges (Earth-S/c distance <= Sun- S/c distance)




<u>Detumble</u>

Far Side Functional Ranges (Earth-S/c distance >= Sun- S/c distance)

With s/c rotating at 3 deg/min minimum communication period with Earth every 2 hours

Using LGAs

PP: 26 min1AU: 13 min

Using MGAs

• 2AU: 10 min

• 4AU: 20 min

• 7AU: 44 min

*Earth relative distance

Telecom Level 3 Requirements

ID	Requirement	Verification Method
COM1	The communication system shall transmit science data over a high gain downlink.	
COM2	The communication system shall transmit telemetry over a high gain downlink.	
COM3	The communication system shall be capable of transmitting telemetry over a medium gain downlink.	
COM4	The communication system shall be capable of transmitting telemetry over a low gain downlink.	
COM5	The communication system shall support ranging over a high gain link.	
COM6	The communication system shall support Doppler tracking over a high gain link.	
COM7	The communication system shall receive commands over a high gain uplink.	
COM8	The communication system shall be capable of receiving commands over a medium gain uplink.	
COM9	The communication system shall be capable of receiving commands over a low gain uplink.	
COM9	The communication system shall be capable of receiving commands over a low gain uplink.	
COM10	The communication system shall transmit science data at Ka-band.	
COM10	The communication system shall transmit science data at Ka-band.	
COM11	The communication system shall transmit telemetry at X-band.	
COM11	The communication system shall transmit telemetry at X-band.	
COM12	The communication system shall support ranging at X-band.	
COM12	The communication system shall support ranging at X-band.	

Telecom Level 3 Requirements

ID	Requirement
COM15	The communication system shall transmit science data with a minimum data rate of 32.4 kbps.
COM16	The communication system shall receive commands at a data rate of up to 2 kbps [TBC] during normal operations.
COM17	The communication system shall transmit telemetry with a data rate of TBD bps during normal operations.
COM18	The communication system shall transmit telemetry at a minimum data rate of 20 bps [TBC] while in system fault mode.
COM19	The communication system shall receive commands with a data rate of TBD bps during system fault mode.
COM20	The communication system shall be capable of continuous transmission.
COM21	The communication system shall be capable of continuous reception.
COM22	The communication system shall have a high gain transmission EIRP of 80.89 dBW [TBC].
COM23	The communication system shall have a medium gain transmission EIRP of TBD dBW.
COM24	The communication system shall have a low gain transmission EIRP of TBD dBW.
COM25	The communication system shall comply with CCSDS format to communicate with the DSN.
COM26	The communication system shall have a minimum reliability of 98%.
COM27	The communication system shall have a mass of 117 kg +/- TBD kg.
COM28	The communication system shall have a volume of 0.072 m^2 +/- TBD m^3.
COM29	The communication system shall operate in the space environment for 22 years.
COM20	The communication system shall operate at a heliocentric range of 0.5-7 AU.

C&DH

Jonathan Hood Samuel Westrick Solomon Dovinh Juan Carlos Flagg

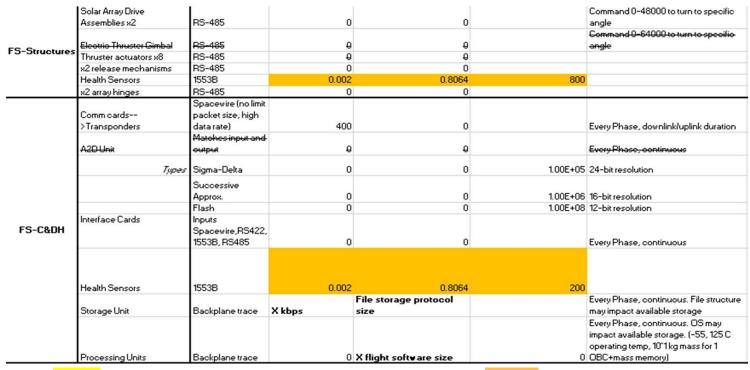
Yellow: Assumptions

Blue: Raw analog output

Team	Data Source	Data Format Protocol (type)	Data rate (MB/s)	Data storage (MB)	Frequency (Hz)	Operation Time & Phase
	SAR Visual Imager	8-bit analog, no protocol, Spacewire (can handle data rate, does point to point, no limit on packet size)	4.8	320.784	15600	*(ASSUMPTION) On for full encounter at max:data rate (4/28 Matt Jones run of SAR model, bounded by resolution morphology constraints)
	Remote Obs.	14-bit analog, SpaceWire	10.00	8078.4	5.347593583	"Remote Obs. (ASSUMPTION, see Editable Variables) Latest readout rate from Payload, 6 months campaign, 1 hr cadence, all data stored onboard for full campaign, Visual only
	Exoplanet	****	****	1344		"Exoplanet (ASSUMPTION, see Editable Variables) Latest readout rate from Payload, 4-week campaign, 30 min cadence, all data onboard for full campaign, Visual only
	OpNaw/AutoNav			0		*ASSUMPTION: no opnav/autonav images stored onboard; transmitted or processed directly.
	Encounter			112.2		*(ASSUMPTION) taking 60 images during encounter at 1.87 MB/image
	IR Imager	14-bit analog, SpaceWire	2.00	24		*(ASSUMPTION) taking 60 images during encounter at 0.4 MB/image
	Analog voltage for temp sensing (1553B)		1.87E-04	0.8064	4.67	*(ASSUMPTION: stored health data is downlinked weekly) Every phase, worst case 1/3 Hz frequency check

Yellow: Assumptions

Blue: Raw analog output


			<u></u>			
FS-Power	Power Distribution Unit(s) Health Sensors	MIL-STD-1553	1.25		As needed	*(ASSUMPTION) using entire available data rate *two thermocouples and the PDU for current/voltage sensing
	Transponder	Spacewire	0			
FS-Comms	Redundant Transponder	Spacewire	0			
I 3-Collins	Health Sensors	1553B, A	0.002	-		
	neakh Jensors		0.002	0.0004	1000	
FS-Thermal	Thermostat	readings; output analog volt (assuming 1553B due to required health data)	0.002	0.8064	50	Constantly operating; C&DH oontrols, rate unknown.
	Health Sensors	1553B, A	0.002	0.8064	200	
FS-GNC	APIC	RS-422	X kbps	How Much is Stored?	Readout rate, exp time?	Encounter Time, Phase 5
	Health Sensors	1553B , output A	0.002	0.8064	2000	
	Star Tracker (2x)	1553B	X kbps	How Much is Stored?	20	Constant, 10Hz, 4Hz
ADCS	IMU(s) (2x)	RS-422 converted to 485	X kbps	How Much is Stored?	400	Constant, 200 Hz
	CMGs x4	1553B	X kbps	How Much is Stored?	As needed	Constant
	Sun Sensor (x4)	RS-422 converted to 485	X kbps	How Much is Stored?	N/A	Constant

Yellow: Assumptions

Blue: Raw analog output

Yellow: Assumptions

Blue: Raw analog output

Orange: Based on default values

Poturn

	Phase 1				*No Payload use, negligible storage
	Phase 2: C&DH	13.51	20342.04365	69610.01	*STORAGE: Includes 1 full year of data following the conceptual PP outline (fu year of health data too)
	Phase 2 Comms: 1 Week		643.884		*TELECOM: Maximum new data onboard over the course of 1 week in Phase 2 assuming Exoplanet campaig
Total	Phase 3				*Looking for ISO, negligible storage
	Phase 4				*OpNav, negligible storage
	Phase 5: C&DH	18.31	563,478912	85210.01	*STORAGE: full encounter data + FOS
	Fhase 5: Comms		469.56576		*TELECOM: full encounter data
	Phase 6:				*N/A
	System-wide health, 1				
	week:		16.36992		
	System-wide health:		0.00081200		
			"includes C&DH factor of		
			safety, used to size onboard		
			storage		
			"does not include C&DH		
			factor of safety, used to size		
			Comms		

Yellow: Assumptions

Blue: Raw analog output

Processing Speed Assumptions

- Highest required during encounter: 85.24 kHz
- Includes health sensors from each subsystem (usually 2 per component)
 - C&DH: 50Hz
 - 2x voltage/current
 - 2x thermocouples
 - Structures: 50Hz
 - 8x voltage/current
 - 8x thermocouples
 - ADCS: 50Hz
 - 20x voltage/current
 - 20x thermocouples
 - GNC: 50Hz
 - 2x voltage/current

- 2x thermocouples
- Comms: 50Hz
 - 10x voltage/current
 - 10x thermocouple
- Power: 50Hz
 - 2x thermocouple
 - 1x PDU output (volt/current all subcomponents)
- Propulsion : Variable Hz
 - 84x voltage/current (valve checking, 50 Hz)
 - 63x thermocouples (10 Hz)
 - 60x pressure transducers (1000 Hz)
- Payload: 0.3Hz
 - 7x voltage/current
 - 7x thermocouples

Processing Speed Assumptions

- Additional bandwidth comes from other subsystems during operation
- Payload:

• SAR: 15.6 kHz

• Visual/IR Imager: 35.34 Hz

ADCS:

• Star Tracker x2: 10 Hz

• IMU x2: 200 Hz

Wire Protocol Characteristics

Potential Protocols	Multidrop?	Data Rate (MB/s)	Standard cable	Mass per unit length (kg/m)	Cable diameter (in)	Operating Temperature Range (°C)	Waste heat/ other thermal properties
RS-422	No	1.25	EIA Industrial RS- 422 PLTC/CM	0.036	0.23	-40 to 75	Negligible
SpaceWire	No	400	Full-duplex	0.085	0.281	-100 to 180	Negligible
1553B	Yes	1	Twinax	0.061	0.244	-20 to 60	Negligible
RS-485	Yes	1.25	EIA Industrial RS- 485 PLTC/CM	0.143	0.03	-20 to 60	Negligible

Return

Wire Protocol Rationale

ADCS

- CMGs: 1553B, required
- Star Tracker: 1553B, required
- Sun Sensors & IMUs: RS-485, modified.
 - 6 discrete RS-422 connections required; included an RS-485 Arbitrator to convert RS-422 connections to one multidrop-capable RS-485 connection to simplify physical integration

Structures

- Thruster Actuators (x8), SADAs (x2), Array Hinges (x2), Release Mechanisms (x2): RS-485, selected.
 - Capable of most protocols except 1553B; selected the other multidrop protocol, RS-485, to reduce incoming wire connections from 14 discrete to one combined
- Power
- PDU (x2): 1553B, required

Wire Protocol Rationale

Propulsion

- Pressure Transducers (x60): 1553B, selected.
 - Each transducer is equipped with a miniature ADC to produces a digital signal. To avoid 60 discrete connections, the signals are routed into a 1553B connection, reading each transducer at 1000 Hz intervals (requested by Propulsion)
- Fuel Valves (x?): no protocol, digital, required.
 - Valves operate via PWM; C&DH sets a digital duty cycle and, when "HIGH", the valves open, allowing fuel flow and thrust, and when "LOW", close the valves.
- Health Sensors, 1553B, selected.
 - All sensors are analog signals individually connected to ADCs
 - All sensors except thermal sensors on Payload, ADCS, GNC are routed to C&DH via 1553B to take advantage of low data rate and multidrop capabilities
 - Thermal sensors on Payload, ADCS, and GNC are looped internally and controlled via subsystemspecific preexisting processors already in use. Thermal data is included in science/regular data downstream. Mechanical thermostat keeps them in survival temperature range when not in use

Return

Wire Protocol Rationale

Payload

- Optical: SpaceWire, modified.
- IR: SpaceWire, modified.
- SAR: SpaceWire, modified.
 - All payload instruments output analog signals of varying packet size and data rates. Each is equipped with an ADC and then passed into a SpaceWire formatted wire, capable of very high (400 MB/s) data rates and of variable packet sizes. SpaceWire is a discrete connection.

Telecom

- Transponder (x2): SpaceWire, selected.
 - To avoid wire data rates becoming a limiting factor to uplink/downlinking, SpaceWire was selected (400 MB/s). SpaceWire is also capable of varying its packet size, and can follow any desired Telecom turbocode encoding scheme.

Duration Budget: PP Orbit

PP Orbit (1 Year Plan)				
Within Duration Budget				
Arrival Date:	12/31/2030			
DSN contact frequency (/week):	1			
DSN contact duration (hours)*:	0.5			
Num. of remote obs. campaigns:	1			
Remote obs. Image cadence (/hr):	1			
Duration of Remote Obs. Campaign (months):	6	*GS, 4/19, Alexi D.		
Num. of exoplanet obs. campaigns:	6	*GS, 4/19, Alexi D.		
Duration of Exoplanet Obs. Campaign (weeks):	4	*SS, Jon H. 4/19		
Exoplanet Image cadence (/hr):	2	*SS, Jon H. 4/19		
Default Health Sensor Frequency (Hz):	50	*SS, Jon H. 4/19		
Default # of Channels (x2 redundancy, health sensor):	10	*Adjusted to fill remaining time		
Default Health Data Size (bytes):	4	*SS, Jon H. 4/19		
Default Data Rate (MB/s):	0.002	*SS, Jon H. 4/19		
Default Storage Rate (Hz):	0.033333333	*Jon H 4/26, for sizing		
Stored Health Data (#):	20160	*Jon H 4/26, for sizing		
		*Float, bytes assumption 4/26		
Total Duration (days):	349.0833333	*Calculated from above		
Available time (days):	15.91666667	*Assumed stored health data every 30 seconds, Jon H 4/26		

*NOTE: duration is purely communication downlink, does NOT *assumed # of health data points to downlink for each system if health data is stored every 30 seconds

Duration Budget: Encounter

Encounter Timeline			
Within Duration Budget			
Total Allowed Encounter Duration (min):	9.2674	*5/17, Liam	
Visual Imager Time (min):	0.19	* calc from below	
IR Imager Time (min):	0.20	* calc from below	
SAR Operation Duration (min):	1.7324	*5/17, Liam	
Required Duration (min):	0.39		
Imager Operation Duration (min):	0.39	*calculated from below assuming image taken does not over	lap with image readout
Time in IR Imager Operational Range (min):	4.67	*5/17, Liam	
ime in Visual Imager Operational Range (min):	2.87	*5/17, Liam	
Remaining Visual Imager Available Duration			
(min, total):	2.68		
Remaining IR Imager Available Duration (min,			
total):	4.47		
Remaining Available Duration (min, total):	8.8804		

Return

Duration Budget: Assumptions

SAR # of Pulses:	41	*Matt Jones, 5/21
Pulse Duration (sec):	1.63	*Matt Jones, 5/21
Visual Image Num During Encounter:	60.00	*Lauren F, worst case from Encounter Meeting 4/26
IR Image Num During Encounter:	60.00	*Lauren F, worst case from Encounter Meeting 4/26
Visual Smallest Exp. Time (sec):	0.013	*PDR slides 5/24, formerly 0.023
IR Smallest Exp. Time (sec):	0.00	*Matt Jones, 5/5
Visual Readout Rate (sec):	0.1870	*PDR slides 5/24; 200 ms total, so -exposure time for readout rate. Formerly 0.028
IR Readout Rate (sec):	0.2000	*PDR slides 5/24
IR Image size:	0.40	*MB, 4/19 Colleen
Visual Image Size:	1.87	*MB, 4/19 Colleen
C&DH Data Factor of Safety:	1.20	*4/19 Solomon D., value over expected maximum storage required

Level	ID	Parent	Requirement	Rationale
3	CDH1	F1, F30	The C&DH system shall be capable of responding to commands received from ground.	The C&DH subsystem will be responsible for interpreting commands from Earth and controlling the necessary functions of each subsystem as a result. The system must be capable of receiving and immediately implementing commands for situations where immediate action is necessary.
3	CDH2	F9, F11, F12, F13, F14, F15, F16	The C&DH system shall be capable of storing commands for delayed execution.	The C&DH subsystem will be responsible for interpreting commands from Earth and controlling the necessary functions of each subsystem as a result. The system must be capable of storing these received commands and executing a sequence at a designated later time (like imaging campaign).
3	CDH3	F17, F20	The C&DH system shall store data until receipt is confirmed by the ground system.	The flight system will need to verify that data has been received by ground before deleting from storage.
3	CDH4	F3, F5, F15, F16, F20, F31, F33	The C&DH system shall decode data received from the ground system.	C&DH Comms cards will be responsible for decoding data received from ground and turning it into command form that can be sent to C&DH.
3	CDH5	F3, F5, F17, F18, F19, F21, F28	The C&DH system shall encode data prior to transmission to the ground system.	C&DH Comms cards will be responsible for encoding data sent to ground.

Level	ID	Parent	Requirement	Rationale
3	CDH6	F17	The C&DH system shall track elapsed time with an accuracy of +/- 1 millisecond.	Commands will need to be executed at a designated time. Additionally, the spacecraft will need to propagate position data onboard. In order to this, the C&DH system will need to accurately track elapsed time. The accuracy of +/- 1 millisecond was estimated with information from the deep space communications lecture.
3	CDH7	F11, F12, F13, F14	The C&DH system shall have a storage capacity of 21 GB [TBC].	The C&DH system needs to store science and telemetry data collected until there is a communication opportunity. The data storage was sized to accommodate several varieties of pre-positioned orbit observational campaigns
3	CDH8	F9, F11-F21, F28, F30, F31, F33	The C&DH system shall support the ADCS subsystem flight algorithms.	The C&DH subsystem will be responsible for supporting the ADCS components. The specific components are outlined in the Data Definition Presentation.
3	CDH9	F3, F5, F9, F11-F21, F28, F30, F31, F33	The C&DH system shall support of the ADCS subsystem file format protocols.	
3	CDH10	F10, F17-F22, F28, F30, F31, F33	The C&DH system shall support the Communications subsystem flight algorithms.	The C&DH subsystem will be responsible for supporting the Telecom components. The specific components are outlined in the Data Definition Presentation.

Level	ID	Parent	Requirement	Rationale
3	CDH11	F10, F17-F22, F28, F30, F31, F33	The C&DH system shall support the Communications subsystem file format protocols.	
3	CDH12	F9, F15, F16	The C&DH system shall support the GNC subsystem flight algorithms.	The C&DH subsystem will be responsible for supporting the GNC components. The specific components are outlined in the Data Definition Presentation.
3	CDH13	F9, F15, F16	The C&DH system shall support the GNC subsystem file format protocols.	
3	CDH14	F9, F11-F14, F24, F25, F27, F29	The C&DH system shall support the Payload subsystem flight algorithms.	The C&DH subsystem will be responsible for supporting the Payload components. The specific components are outlined in the Data Definition Presentation.
3	CDH15	F9, F11-F14, F24, F25, F27, F29	The C&DH system shall support the Payload subsystem file format protocols.	

Level	ID	Parent	Requirement	Rationale
3	CDH16	F5	The C&DH system shall support the Power subsystem flight algorithms.	The C&DH subsystem will be responsible for supporting the Power components. Power is required for the spacecraft to operate in space for 22 years. The specific components are outlined in the Data Definition Presentation.
3	CDH17	F5	The C&DH system shall support the Power subsystem file format protocols.	
3	CDH18	F15, F16	The C&DH system shall support the Propulsion subsystem flight algorithms.	The C&DH subsystem will be responsible for supporting the Propulsion components. The specific components are outlined in the Data Definition Presentation.
3	CDH19	F15, F16	The C&DH system shall support the Propulsion subsystem file format protocols.	
3	CDH20	F5	The C&DH system shall support the Structures subsystem flight algorithms.	The C&DH subsystem will be responsible for supporting the Structures components. The specific components are outlined in the Data Definition Presentation.

Level	ID	Parent	Requirement	Rationale
3	CDH21	F5	The C&DH system shall support the Structures subsystem file format protocols.	The C&DH subsystem will be responsible for supporting the Structures components. The specific components are outlined in the Data Definition Presentation.
3	CDH22	F3	The C&DH system shall have a minimum reliability of 99.8%.	In order to acheive an 80% likelihood of reaching and identifying at least one ISO in 20 years, the flight system must have an overall reliability of at least 90%. The breakdown of this reliability into the individual reliabilities of subsystems is described here.
3	CDH23	F5	The C&DH system shall operate in the space environment for 22 years.	The flight system will be operating in the space environment for at least 22 years, therefore the C&DH subsystem must operate in this environment for the listed time period.
3	CDH24	F10	The C&DH system shall operate at a heliocentric range of 0.5-7 AU.	The flight system will be at a range of 0.5 to 7AU from the Sun, therefore the C&DH subsystem must be able to operate in this environment.

Level	ID	Parent	Requirement	Rationale
4	CDH-C1	CDH3	The data storage shall store science data collected from the ISO.	Long-term hard storage holds flight system science data for downlink to ground
4	CDH-C2	CDH3	The data storage shall store flight system telemetry data.	Long-term hard storage holds flight system telemetry for downlink to ground
4	CDH-C3	CDH2	The data storage shall store commands from the ground system.	To hold commands for long-term delayed execution, they are stored in the MMC instead of in flash memory
4	CDH-C4	CDH1, CHD2	The processors shall employ flight software capable of handling ground system commands.	Created FS for OBC interprets received GS commands
4	CDH-C5	CDH20	The 1553B interface card shall provide wire protocol to SpaceWire backplane protocol.	Provide wire protocol to backplane protocol interface for each required protocol

Level	ID	Parent	Requirement	Rationale
4	CDH-C6	CDH9, CDH13	The RS-485 interface card shall provide wire protocol to SpaceWire backplane protocol.	Provide wire protocol to backplane protocol interface for each required protocol
4	CDH-C7	CDH15	The SpaceWire interface card shall provide wire protocol to SpaceWire backplane protocol.	Provide wire protocol to backplane protocol interface for each required protocol
4	CDH-C8	CDH4	The X-band communication card shall decode uplinked commands.	DSN uplinks in X-band to the HGA and requires turbo-decoding
4	CDH-C9	CDH5	The X-band and Ka-band communications cards shall encode downlinked commands/telemetry.	DSN downlinks in X and Ka-bands and requires turbo encoding
4	CDH-C10	CHD27	The power card shall regulate power into the C&DH subsystem.	Power regulation is necessary for efficient OBC operation.

Level	ID	Parent	Requirement	Rationale
4	CDH-C11	CDH12	The processor card shall have at least 5 MB of RAM.	GNC's APIC optical autoNav processing card requires 5 MB of RAM to run.
4	CDH-C12	CDH8-21	The processor card shall handle at least 85.21 kHz bandwidth.	Full system requirement
4	CDH-C13	CDH22	The C&DH subsystem shall have a redundant copy of itself.	To meet reliability requirements, there will be two separate C&DH subsystems capable of taking over for the other in the event of a fault.
4	CDH-C14	CDH22	Each C&DH subsystem shall have a redundant mass memory card.	To meet reliability requirements, there will be two separate mass memory cards in each C&DH system. When storing data, data will be written to each card and checked for errors when downlinking.

C&DH Risks

 Given that there is an unknown distribution and direction of energetic particles from a solar particle event or CME there is a possibility of the flight system being impacted by energetic particles adversely impacting the memory storage device and processor card, which can result in a loss or change in data stored in the memory device and the processor card being unable to properly process data.

Structures

Matthew Slymen

Ismael Castorena

Anthony Garcia

Saul Portillo

Edgar Yanez

System Design?

Driving Configuration Requirements

ID	Requirement	Driving Phase	Compliance (Y/N/M)
MP2	The flight system shall fit within a volume of 175.15 m^3 [TBC] with the dimensions specified in Figure 1.	Phase 1	Υ
STR2	The structure shall have a center of mass with a height above the SIS interface as specified in Figure 3-2 in the Falcon Heavy User Guide.	Phase 1	M
STR13	The structure shall interface with the launch vehicle.	Phase 1	Υ
STR 14	The structure shall provide interfaces to mount all components on the flight system.	N/A	N

Structures Risks

- Given that the mechanism to deploy the instrumentation does not deploy or gets jammed there is a possibility of the mechanisms not deploying adversely impacting any component that is gimbaled or deployed, which could result in the spacecraft not collecting data, power, or not directing its thrust.
- Given that we can come across unanticipated launch loads or launch environments there is a possibility of the

spacecraft shaking more than anticipated adversely impacting the entire spacecraft, which can result in a structural integrity compromise or component failure.

Likelihood: 1 Severity: 2

Mechanisms - Structures

Mechanism	Source	Mass	Continuous Draw	Actuation Draw	Actuation Type	Range	Resolution	Operating Temperatures
SADA (x2)	MOOG High Power Type 5	40kg	<20W	20W	Motor	+/-179 deg.	+/-0.02 deg.	-50 C to +70 C
Thruster Ring Actuator (x8)	MOOG 310	16kg	<28VDC	28VDC	Motion translation (rotational to linear)	2cm stroke	Future Work	-50 C to 80 C
Roll Out Solar Arrays (ROSAs, x2)	<u>DSS ROSA</u>	600 kg	N/A	N/A	Roll out	N/A	N/A	-65 C to +90 C
Non-Explosive Actuator for ROSA (x2)	EBAD NEA HDRM	4.3kg	250 mA	4 A (release current)	Hold Down and Release	N/A	N/A	-240 C to +135 C
Deployment Hinge for ROSA (x2)	Deployment System for Large Appendages	3kg	N/A	N/A	Spring driven	90-180 deg.	+/006 deg	-30C to +50 C (Survivable temperatures +/-150 C)
Non-Explosive Actuator for SAR	<u>NEA Model</u> <u>9100</u>	0.7kg	250 mA	4A	Hold Down and Release	N/A	N/A	-135C to +135C
Deployment Hinge for SAR	Deployment System for Large Appendages	1.5kg	N/A	N/A	Spring driven	90-180 deg.	+/006 deg	-30C to +50 C (Survivable temperatures +/-150 C)
APIC Gimbal	<u>JPL</u>	<5kg	<12W	<12W	Elevation Actuator	+/-90	19 microrad	Actively controlled
Primary Imager Lens Cap					Future Work			

Total Mechanisms: approx. 20

SADAs

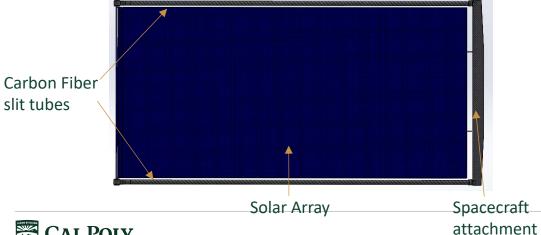
Model Number: MOOG High Power Type 5

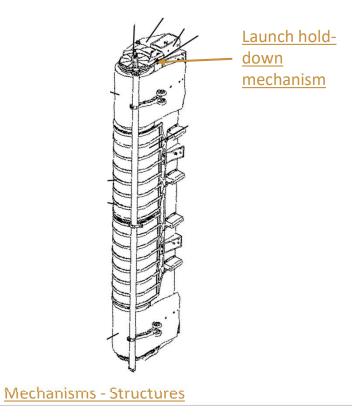
Source: MOOG High Power Type 5

Notes:

 Suited for 9kW through the system, scaled SMaP values x2 to accommodate for further mechanism development

• <u>Mechanisms – Structures</u>


ROSAs


Model Number: Deployable Space Systems ROSA

Source: <u>Deployable Space Systems ROSA</u>

Notes:

Roll out mechanism is the carbon fiber slit tubes on both sides (uses the tubes stored strain energy)

CAL POLY

Structures Tech Talk / 293

Thruster Ring Linear Actuators

Model Number: MOOG 310 Linear Actuator

Source: MOOG 310

Notes:

 Two actuators needed for control of each of four thrusters for total of eight actuators

• <u>Mechanisms - Structures</u>

Non-Explosive Actuator for ROSA: Hold Down and Release Mechanism

Model Number: EBAD NEA HDRM

Source: EBADNEAHDRM

Notes:

• Allows for 6 degree cone of misalignment

<50 ms release time</p>

195 kN release load rating

• Mechanisms - Structures

Deployment Hinge for ROSA

Model Number: DESY

Source: <u>DESY(Deployment System for Large Appendages)</u>

Notes:

- Spring Driven, High Position accuracy and stiffness in deployed configuration
- Used for deployment of large appendages such as solar arrays & antennas
 - Mechanisms Structures

Non-Explosive Actuator for ISAR

Model Number: EBAD NEA 9100 HDRM

Source: EBAD NEA HDRM

Notes:

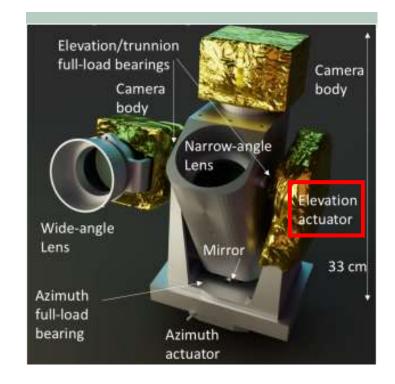
• Allows for 6 degree cone of misalignment

<50 ms release time</p>

7.6 kN release load rating

• Mechanisms - Structures

APIC Mechanism

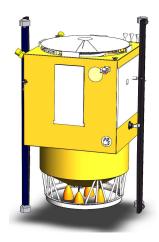

Model Number: Advanced Pointing Imaging Camera Concept

Source: **APIC**

Notes:

Comes pre-installed in APIC assembly, not a mechanism we need to design

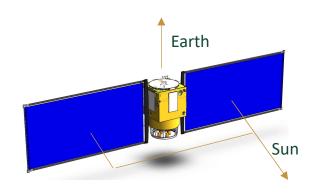
- See GNC for more information
- Mechanisms Structures


Driving Configuration Considerations

- 1. Adaptability
 - Spacecraft must be able to point in a variety of directions for different ISO cases
- Minimum Structural Mass
 - Configuration must allow for small structural mass for maximum fuel
- 3. Large Tanks and High Gain Antenna
- 4. High Power Requirement

Phase Timeline Othru 1

Phase 0: PreLaunch


Primary Points

• N/A

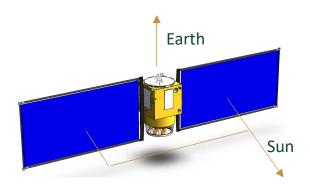
Mechanisms in use

N/A

Phase 1: Launch to Separation

Primary Points

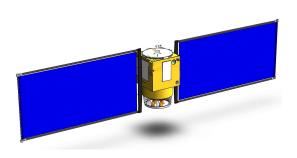
- HGA Pointed to Earth
- Solar Array Pointed to Sun


Mechanisms in use

Solar Drive Mechanism

Phase Timeline 6 thru 7

Phase 6: Downlink Data


Primary Points

- HGA Pointed to Earth
- MROSAs Pointed to Sun

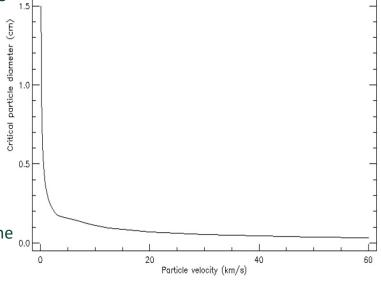
Mechanisms in use

Solar Drive Mechanism

Phase 7: EOL

Primary Points

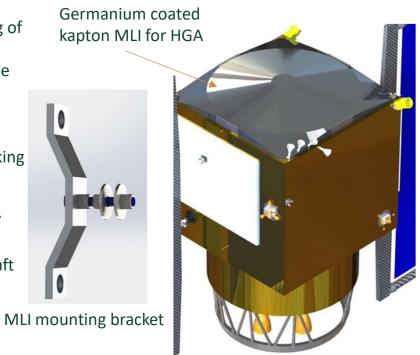
- N/A
- Mechanisms in use


MMOD Shielding Study

MMOD shielding consist of aluminum honeycomb sandwich panel and MLI shielding.

 The shield dimensions are 1 mm wall thickness on each side with a 5 cm honeycomb core. This shield can protect against particles with a critical diameter up to 1.5 cm.

 Grunmodel and MEM3 was used to determine MMOD flux environment. That then determines the probability of particles impacting that could cause failure.


- At the 1 AU prepositioned orbit we have a 98.38% probability of avoiding impacts of particles with a diameter of +0.2 cm
- During an Earth fly by we have a 99.34% probability of avoiding impacts of particles or orbital debris with diameters of +0.032 cm
- To determine if shielding can protect against the coma or tail of an ISO, model information on 2I/Borisov was used. For most studies, the particles diameters ranged from 1E-3 cm to .4 cm with the smaller particles reaching velocities up to 50 m/s

MLI Shielding Study

- The MLI shielding is a 15 mm thick, 30 layer blanket consisting of aluminized Mylar and tulle
 - The packing density chosen is 30 layers/15 mm due to the decrease in conductive shorting with less dense packing
 - The tulle is used as a spacer to prevent shorting as well
 - The decision to use this configuration is based on experimental studies in which number of layers and packing density were varied and a NASA study which saw diminishing returns past 20 layers
 - The heat flux through the 30-layer blanket was about .07
 W/m² less than the 20-layer blanket
- Due to the spacecraft's varied orientation, the entire spacecraft bus will be covered in MLI including the HGA which will be covered in a Germanium coated polyimide, which is RF transparent

Structural Factor of Safety Table

Table S1

Factor of Safety per Material										
Material Type	Verification Approach	Additional Considerations	Ultimate Design Factor	Yield Design Factor	Qualification Test Factor	Proof Test Factor				
Metallic	Prototype	N/A	1.4	1.0 ¹	1.4	N/A or 1.05 ²				
Wietanic	Protoflight	N/A	1.4	1.25	1.2	N/A or 1.05 ²				
	Prototype	Discontinuity Area Geometry	2.03	N/A	1.4	1.05				
Composite/Bonded	Тосотуре	Uniform Geometry	1.4	N/A	1.4	1.05				
Composite/Bonded	Protoflight	Discontinuity Area Geometry	2.03	N/A	1.2	1.2				
	Frotonight	Uniform Geometry	1.5	N/A	1.2	1.2				
	Proof Test	Nonpressurized Loading Condition	3	N/A	N/A	1.2				
Glass/Ceramics	Troor rest	Pressurized Loading Condition	3	N/A	N/A	2				
	Analysis Only ⁴	Nonpressurized Loading Condition	5	N/A	N/A	N/A				
Bonds in Glass/Ceramics	Proof Test	Nonpressurized Loading Condition	1.5	N/A	N/A	1.2				
bonus in Glassy cerumies	11001 Test	Pressurized Loading Condition	3	N/A	N/A	2				
Softgoods	Prototype and	Loss of Life or Vehicle Criticality	4	N/A	4	1.2				
3****	Proof Tests	Any Other Criticality	2	N/A	2	1.2				
Beryllium	Proof Test	None	1.6	1.4	N/A	1.2				

Return to Main

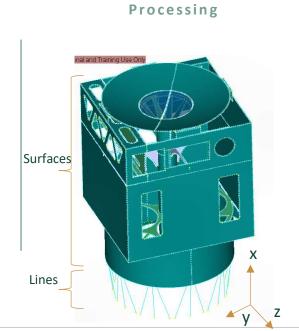
¹Structure has to be assessed to prevent detrimental yielding during its design service life, acceptance, or proof testing.

²Propellant tanks and SRM cases only.

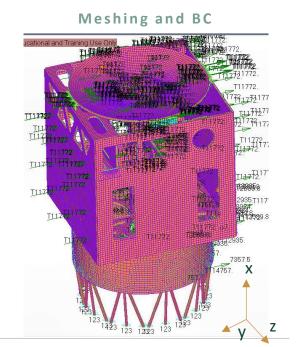
³Factor applies to concentrated stresses. For nonsafety-critical applications, this factor may be reduced to 1.4 for prototype structures and 1.5 for protoflight structures.

4Not applicable to ceramic structures.

Speaker: Matthew S.

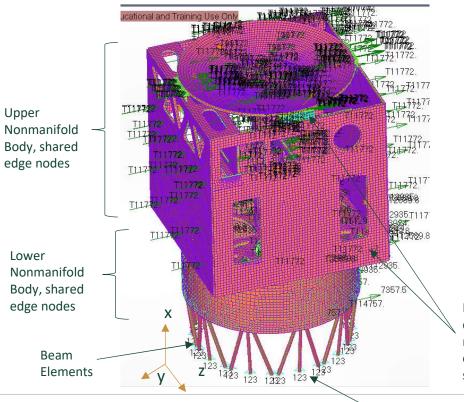

ST: 1-2 min

TEMPLATE (WRITE IN ALL CAPS) / 304

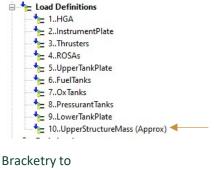

Link to Main **Analysis Slides**

Structures Flow

CAD (Solid Features)



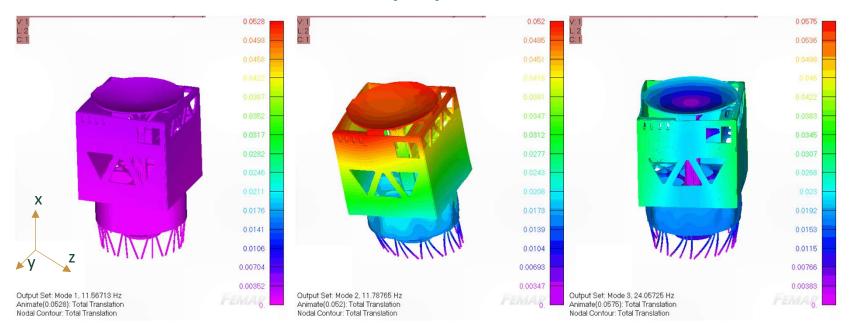
Geometry Pre-


FEM

Materials:

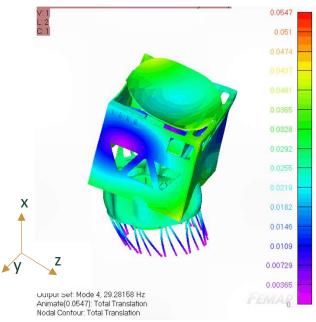
- Various thicknesses of 7075Al Facesheets/Hexcel Al Honeycomb Core
- Various thickness of 7075Al Plates
- Various Thicknesses of Ti-6Al-4V (Bracketry and Beams)

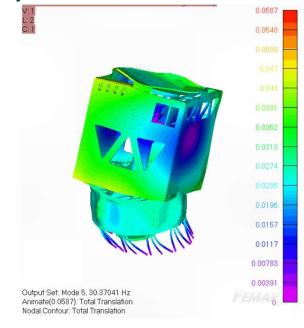
Loads:



connect regions with contact (glue) segments Remaining "Unaccounted for" mass

(Primarily Structural mass)


Modal Results (2) <35Hz (Open Issue)


Mode 1: 11.5Hz Max Translation: 5.3cm LV Limit: <7cm Mode 2: 11.8Hz Max Translation: 5.2cm LV Limit: <7cm Mode 3: 24.1Hz
Max Translation: 5.8cm
LV Limit: <7cm

Modal Results (3) <35Hz (Open Issue)

Mode 4: 29.3Hz Max Translation: 5.5cm Required: 7cm?

Mode 5: 30.4Hz Max Translation: 5.9cm Required: 7cm?

Analysis Next Steps

Post-PDR

- Finalize Modal Analysis
- Random Vibration
- Structural Optimization
- Further Bracketry for instrumentation
- Vibration dampening systems for subsystems
- Operational Loading Conditions
 - 1. Thrusters On
 - 2. Deployment Loads
 - 3. Control Torques

Analysis Summary

Static Loading

Load Case	Min/Max	Location
6G Axial Stress	FOS = 1	Upper Payload Box
6G Axial Translation	Deflection = 2.9cm	Center Column, upward
2G Lateral Stress	FOS = 1.25	LV Attachment Tubes
2G Lateral Translation	Deflection = 3.9cm	Top Corner, sideways

Ready for Refinement

Modal Analysis

Mode	Resonant Frequency	Max Translation
1	11.5Hz	5.3cm
2	11.8Hz	5.2cm
3	24.1Hz	5.8cm
4	29.3Hz	5.5cm
5	30.4Hz	5.9cm

Further Design Required

Power

Karen Llacsa

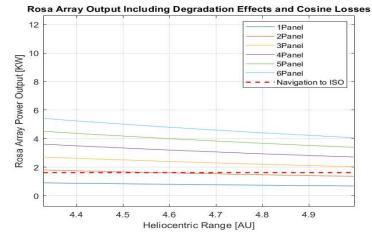
Joseph Poncini

Ethan Tran

Power Risks

 Given that electronic arcing occurs there is a possibility of electric failure adversely impacting the number of solar cells we have in series, which can result in reduced power availability.

Likelihood: 2 Severity: 2


Solar Array and Batteries

Solar Array Design:

- Sizing for ROSA panel dependent on most power sensitive portions of the power budget. Model is slightly over conservative on degradation rate (~1.25% yr) for expected 23.75 yr lifetime and average 10 deg cosine loss.
- Shifted panel design to a different heavier variant of the ROSA solar panels. More accurate density and improved cell efficiency compared to previous ROSA panel.
 - For full chem prop system investigated panel solutions between 2-6 panels.
- Temperature degradation assumed most impactful for 1 AU prepositioned phase.
 - Investigating panel orientation during preposition to reduced sun facing area to aid station keeping and thermal loads

Battery Design:

- Time from initial launch separation to array deployment is taken to be about 2 hours (This includes detumble and ROSA roll out)
 - At ~28 V bus voltage thus expecting a min battery capacity of 64.035 Ah
- Previous optimized battery had about 255 Ah capability and 5p10s configuration. Need for larger sized battery constrained by science collection phase and downlink at Au ranges past 4.
 - $\sim\!8324$ Wh new battery capacity after applying 8% degradation factor and assumption that 1 open parallel cell leaves 10 cells inactive.

Table 1. New ROSA Variant Array Specifications

	Size Stowed (m^3)	Mass (kg)	Specific Power (W/kg)	BOL Power @ 1 AU (kW)
156.25	~1.14	167.59	273.14	45.776

Table 2. Initial Battery Specifications

Battery (Li-Ion)	Size (m^3)	Mass (kg)	Capacity (Wh)	Cell Configuration
SAFT VL51ES	0.06892	80.4	10,452	6p10s

Max Power per Phase

Phase	Maximum Power Draw (W)			Max Angle from sun, θ (°)
2	753	1	34835	88
3	519	519 1		88
4	602	602 5		64
5	753	5	1393	65
6	887	7	710	0
7	514	7	710	36
SF	304	1-7	> 710	< 65

Phase 2: Power Budget Summary

Subphases	Duration (min)	AU	Power Draw (W)	ROSAS Deployed	Solar Power (W)	Initial Battery Power (W-hr)	Final Battery Power (W-hr)
2.1	1	1	316	0	0	8324	8319
2.2	30	1	696	0	0	8319	7971
2.3	5	1	543	0	0	7971	7926
2.4	5	1	583	2	34836	7926	8324
2.5	120	1	503	2	34836	8324	8324
2.6	60	1	753	2	34836	8324	8324
2.7	1051200	1	503	2	34836	8324	8324
2.8	60	1	753	2	34836	8324	8324

Phase 3: Power Budget Summary

Subphases	Duration (min)	AU	Power Draw (W)	ROSAS Deployed	Solar Power (W)	Initial Battery Power (W-hr)	Final Battery Power (W-hr)
3.1	10	1	503	2	34836	8324	8324
3.2	5256000	1	519	2	34836	8324	8324
3.3	30	1	519	2	34836	8324	8324

Phase 4: Power Budget Summary

Subphases	Duration (min)	AU	Power Draw (W)	ROSAS Deployed	Solar Power (W)	Initial Battery Power (W-hr)	Final Battery Power (W-hr)
4.1	60	1	603	2	34836	8324	8324
4.2	60	3	603	2	3871	8324	8324
4.3	259200	3	503	2	3871	8324	8324
4.4	60	5	753	2	1394	8324	8324
4.5	60	5	519	2	1394	8324	8324
4.6	30	5	519	2	1394	8324	8324
4.7	60	5	531	2	1394	8324	8324

Phase 5: Power Budget Summary

Subphases	Duration (min)	AU	Power Draw (W)	ROSAS Deployed	Solar Power (W)	Initial Battery Power (W-hr)	Final Battery Power (W-hr)
5.1	3	5	530	2	1393	8324	8324
5.2	5	5	503	2	1393	8324	8324
5.3	5	5	503	2	1393	8324	8324

Phase 6: Power Budget Summary

Subphases	Duration (min)	AU	Power Draw (W)	ROSAS Deployed	Solar Power (W)	Initial Battery Power (W-hr)	Final Battery Power (W-hr)
6.1	10	7	503	2	710	8324	8324
6.2	480	7	887	2	710	8324	6917
6.3	960	7	503	2	710	6917	8324

Phase 7: Power Budget Summary

Subphases	Duration (min)	AU	Power Draw (W)	ROSAS Deployed	Solar Power (W)	Initial Battery Power (W-hr)	Final Battery Power (W-hr)
7.1	7200	7	514	2	710	8324	8324

Fault Mode: Power Budget Summary

Duration (min)	AU	Power Draw (W)	ROSAS Deployed	Solar Power (W)	Initial Battery Power (W-hr)	Final Battery Power (W-hr)
14400	7	304	2	710	8324	8324

Table 2.0 Power Table

Phase	2	3	4	5	6	7	FM
Subsystem		Allocated Power (W)					
Thermal	201	201	201	201	201	201	201
ADCS	186	186	186	186	186	186	38
C&DH	100	100	100	100	100	100	0
Comms	16	16	16	16	400	16	16
GNC	0	0	12	12	12	12	0
Structures	164	84	84	84	84	0	0
Propulsion	200	0	200	0	0	0	0
Payload	0	25	25	25	0	0	0
Total:	867	612	824	624	983	515	255

Sci Tech

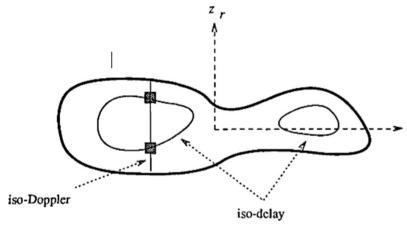
Matthew Jones Lauren Fukaye Michael Limotta

Sci Tech Risks

- Given that there are uncertainties about the backscatter power there is a possibility of the shape model not considering the measurement uncertainty or measurement precision in the backscatter power adversely impacting the post-processing necessary to generate the shape model, which can result in the shape model not being able to be known to the required resolution if the backscatter power is not able to be measured with a high enough precision and low enough certainly.
- Given that there are unknowns about the ISO's shape there is a possibility of the ISO not being spherical as predicted adversely impacting the post-processing of the data and the shape model, which can result in an

- ISO shape which could reduce the coverage that we could get on our model, leading to an unmet requirement.
- Given that the shape model resolution may decrease due to time delay measurement uncertainty there is a possibility of the model predicting higher resolutions than are possible adversely impacting the postprocessing necessary to generate the shape model, which can result in the final shape model not meeting the resolution requirement.

SAR Shape Model - Governing Equations


Doppler Equation:

$$\nu = -(2/\lambda)(dR/dt)$$

- R is the distance from the radar to a point on the ISO surface
- dR/dt is the slant range velocity between the radar and a point on the ISO surface
- Lambda is the radar signal wavelength
- c is the speed of light

Delay Equation:

$$\tau = 2R/c$$

Equations and Image From: Scott Hudson (1994) Three-dimensional reconstruction of asteroids from radar observations, Remote Sensing Reviews, 8:1-3, 195-203, DOI: 10.1080/02757259309532195

Model Assumptions

SAR Shape Model - General Process

- Choose a point on the ISO surface
- Calculate the expected delay and doppler values for a signal that came from that point
- Move to points 10 meters away in two specified directions (e.g., north and west)
- Calculate the expected delay and doppler values for a signal that came from those points
- Take the difference between the original delay and doppler values and those of the nearby points
- Calculate the total ISO surface area from which the data returns (assumed 50%)
- If the uncertainty in the doppler measurements is larger than the difference in doppler between either of the two points, then the point is unable to be discerned to the +/-10 meter resolution. The associated ISO surface area is subtracted from the total area represented in the return signal.
- Given the measurement uncertainty, if the radar is unable to discern the difference in doppler required to maintain the +/- 10 meter resolution, the associated surface area is subtracted from the total area represented in the return signal.
- The remaining ISO surface area can be discerned to +/- 10 meters

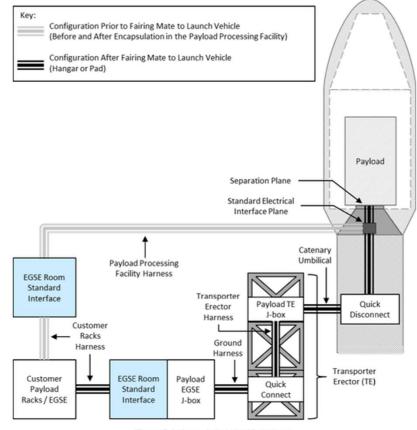
Model Assumptions

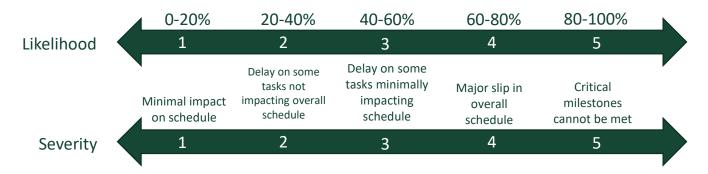
Launch Services

Ryan Antoff

Chris Wang

Electrical Connections to GSE on Launch Pad




Figure 5-2: On-pad electrical interfaces

Source: Falcon Heavy Users Guide

Pre-Launch Risks - Fueling

Given that	There is a possibility of	Which can result in	Likelihood (out of 5)	Severity (out of 5)	Sub team
The 3rd party fueling is unable to provide their services	No propellant being loaded into the spacecraft immediately before launch	A significant delay in the launch and lead to a delayed reaction readiness date	2	1 or 4	Launch Services

Speaker: Chris W.

Customer Clarifications

Customer Clarifications

Assumptions Clarified with Customer:

- The number of follow up trajectory updates and timeliness needed to keep the ISO uncertainty low will be defined by our ephemeris uncertainty team, but **updates may be provided by the customer**.
- Our team is required to design the function and performance of ground system but may utilize existing ground assets that match the mission needs, e.g. DSN
- A space-base system will react to incoming ISOs determined by the customer:
 - ISO determination will be based on orbital analysis of detected ISOs which fall within a predefined on-board dV value and other factors deemed most important by our team upon further research.
 - Our team will define these values based on orbit models that assume a constant, average rate of 1
 ISO detection per year for a 20-year period, and with ISO orbital parameters given by the
 solicitation.

Schedule Breakdown

System Realization Schedule

■ Phase C: Final Design & Fabrication	1199 days
Final Design	113 days
▶ Technology Research & Development	113 days
Critical Design Review	5 days
Develop Plans & Procedures	857 days
■ Development of the Instrument Housing Module (IHM)	641 days
COSMIC A IHM Realization	618 days
COSMIC B IHC Realization	585 days
Development of the Spacecraft Bus	277 days
Development of the Ground System	110 days
Phase C Margin	166 days
Systems Integration Review	5 days
Phase D: System Assembly, Integration & Test, Launch & Checkou	t 1021 days

Development of the Instrument Housing Module (IHM)	641 days
	618 days
▶ IHM Structure Subsystem Realization	80 days
▶ Power Subsystem Realization	56 days
 Guidance, Navigation, and Control (GNC) Subsystem Realization 	53 days
 Attitude Determination and Control (ADCS) Subsystem Realization 	82 days
Payload Subsystem Realization	111 days
Communication Subsystem Realization	93 days
Command and Data Handling (C&DH) Subsystem Realization	60 days
▶ Thermal Subsystem Realization	23 days
COSMIC A IHM Transition 1	14 days
COSMIC A IHM Functional Test	49 days
COSMIC A IHM Transition 2	14 days
COSMIC A IHM Environmental Testing	49 days
COSMIC A IHM Transition 3	14 days
COSMIC B IHC Realization	585 days

Speaker: Luke ST: 2 minutes SYSTEM 1&T / 333