ASSEMBLY AND ANALYSIS OF FRAGMENTATION DATA FOR LIQUID PROPELLANT VESSELS

By W. E. Baker, V. B. Parr, R. L. Bessey, and P. A. Cox
prepared for
NATIONAL AERONAUTICS AND SPACE ADMIAR\&\&RASTION LEWIS RESEARCH CENTER AEROSPACE SAFETY RESEARCH AND DATA INSTITUTE CLEVELAND, OHIO 44135
C. David Miller, Project Manager
R. D. Siewert, Project Manager

Contract NAS 3-16009

FOREWORD

Many staff members at Southwest Research Institute contributed substantially to the multifaceted effort required during the work reported here. The authors gratefully acknowledge the special technical contributions of the following:
o Mr. A. B. Wenzel, for many of the initial visits and contacts to \mathfrak{i} ather data, for review of Project PYRO films, and for assistance in project management.

O Mr. M. A. Sissung, for review of Project PYRO films, assistance in literature surveys, and report editing.
o Mr. R. Blackstone, for assistance in statistical studies.
In addition, these individuals helped the authors substantially in enterine data into the ASRDI data bank by reviewing documents and filling out ASRDI Forms 102A for the se documents.

The technica! support or personnel at both NASA-Lewis Research Center and NASA-Kennedy Space Center contributed materially to the success of this work. In particular, Mr. C. David Miller at NASA-Lewis provided excellent technical guidance throughout the project, and Mr. James H. Deese at. NASA-Kennedy gave us much insight into blast effects of liquid propellant explosions and provided us with the three most complete framment maps from such explosions.

TABLE OF CONTENTS

Page
LIST OF FIGURES vii
LIST OF TABIES $\times 1$
SUMMARY xii
INTRODUCTION 1
Background
Related Work 3
Purpose of Present Work 0
Scope of Present Work 6
Significance
I. RETRIEVAL OF FRAGMENTATION DATA FOR LIQUID PROPELLANT VESSELS 9
II. DETERMINATION OF BLAST YIELD 13
A. General 13
B. Project PYRO and Related Experiments 15 15
C. Work of Farber and Deese 20 20
D. Estimation of Blast Wave Properties 26
III. DETERMINATION OF FRAGMENT VELOCITY DISTRIBUTION 49
A. General 49
B. Reduction of Film Data 49
C. Methods of Predicting Velocity 67
D. Correlation of Velocity Prediction Methods with Data 85
E. Frequency Distribution of Initial Velocity 97
IV. DETERMINATION OF FPAGMENT SIZE AND RANGE 104
A. Retrieval of Data from Accidetits and Tests 104
B. Data Reduction 106 106
C. Statistical Studies
C. Statistical Studies
114
D. Methods of Prediction of Range Versus
D. Methods of Prediction of Range Versus Frazanent and Blaat Yield Parameters 129
F. Correlation
Table of Contents (Cont'd) - Page
V. EFFECTS OF FRAGMENTS 135
A. Introduction 135
B. The Probability of Arrival of a Fragment of Specified Characteristics Versus Range 136
C. Vulnerability Criteria 139 139
DISCUSSION O巨 RESULTS 142
VII. CONCLUSIONS 146
VIII. RESOMMENDATIONS 148
APPENDICES
APPENDIX A - Model Analysis for Mixing of Liquid 150 Rocket Propellants
APPENDIX B - Summary of Data Obtained From Films 165
Read
APPENDIX C - Model Aralyses for Fragment Velocities, 175 Range, Etc., for Bursting Liquid Pro- pellant Vessels
APPENDIX I) - Computer Program Entitled/W/2/In 186 Fort:an IV
APPENDIX E - Computer Prugram Entitled / ROOT/ 195
In Fortran IV
APPENDIX F - Calculation of "W" Goodness of Fit 200 Statistic from Reference 36
APPENDIX G - Calculation of Approximate Probability 207 for Otatairing the Caic lated Value of "W"
APPENDIX H - Computer Program Entitled / TEMP/ It: 209Fortran IV
APPENDIXI - List of Symbols 215
REFERENCES 219

LIST OF FIGURES

No.

Title
Normalized Pressure and Impulse Yields from Explosion w. $\mathrm{N}_{2} \mathrm{O}_{4} /$ Aerozine 50
Representative Shock Impulses Showing Coalescence of Shock Waves from Dissimilar Sources (Stages (a) tinrough (d))

Maximum Energy Releace for a Three-Component Liquid Propeilant Mixture (Ref. 27)

Mixing Function or Spill Function for Three-Component Liquid Propellant Spill Tests (Ref. 27)

Yield Potential as Time Function (Ref. 27)
Actual Yield for Random Ignition and Detonation (Ref. 27)
Estimated Explosive Yield as a Function of Propellant Weight (Ref. 27)
Terminal Yield vs. Impact Velocity for Hypergolic HighVelocity Impact (Ref. 16)

Pressure ris. Scaled Distance for Hypergolic Tests
Scaled Positive Impulse vs. Scaled Distance for Hypergolic Tests

Ignition Time vis. Yield $\mathrm{LO}_{2} / \mathrm{RP}-1 \mathrm{CBM}$
Pressure vis. Scaled Distance for $\mathrm{LO}_{2} / \mathrm{RP}-1$ CBMCase
Scaled Positive Impulse vs. Scaled Distance for LO_/RP-1 CBMCast

Ignition Iime vi. Normalized Yield $1-O_{2} / \mathrm{RP}-1 \mathrm{CBGS}$
Pressure us. Scaled Distance for $1 O_{2} / R P-1$ CBGS-V Case
Scaled Positive Impulse $\because \mathrm{s}$. Scaled Distance for LO $/$ /RP- 1 CBGS-VCase

Terminal Yield ve. Impact Velocity for $\mathrm{LO}_{2} /$ RP-1 (Ref. 16)

List of Figures (Cont'd) -
No. Title Page

18 Ignition Time vs. Yield $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ CBM 42
19 Pressure vs. Scaled Distance for $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ CBM Case 43Maximum Fragment Velocity as a Function of Number ofFragments

Naximum Fragment Velocity vs. Mass Ratio7431 Comparison of Taylor-Price to SwRI Solutions forAdiabatic Case

Schemati - for Acceleration of Appurtenances by Propellant
Blast
33 Interaction of Blast Wave with Iregular Object 79
34 Time History of Net Transverse Pressure on Object During Passage of Blast W ave 80

List of Figures (Cont'd) -
No.
Title
Page

35 Blast Wave Time Constant b vs. Dimensionless Overpressure $\overline{\mathrm{P}}$

Fragment Velocity: Correlation of Data from PYRO $\mathrm{LH}_{2} / \mathrm{LO}_{2}$ Tests with Theoretical Values, $\mathrm{W}_{\mathrm{t}}=200 \mathrm{lb}$
Fragment Velocity: Correlation of Data from PYRO Tests with Theoretical Values, $W_{t}=1000 \mathrm{lb}$

Approximate Probability Percentage Points of "W" Test for Normality ($\mathrm{n}=9$)
Fragment Velocity as a Function of Sound Speed in the Explosive Products
Initial Velocity Distribution, $\mathrm{CBM}, \mathrm{LO}_{2} / \mathrm{LH} \mathrm{H}_{2}$, Log Normal Plo's

Ir.itial Velocity Distribution, $\mathrm{CBM}, \mathrm{LO}_{2} / \mathrm{RP}-1$, Log Normal Plots

Inıtial Velocity Distribution, $\mathrm{CBGS}, \mathrm{LO}_{2} / \mathrm{LH}_{2}, \mathrm{Log}$ Normal Plots

Initial Velocity Distribution, CBGS, $\mathrm{LO}_{2} / \mathrm{RP}-1$, Log Normal Plots

Event 3 Probability Distribution (Normal), Distance K
Event 3 Probability Distribution (Log Normal), Distance R
Event + Probability Distribution (Log Normal), Projected Area A

Event 4 Probability Distribution (Log Normal) Weight W
Event 1 Probability Distribution (Normal), Area/Weight (A/W)

Mean Distance us. Yield
Mein Distance rs. Yield in 1 b TNT123
List of Figures (Cont'd) -
No. TitlePage
51 Mean Distance vs. Yield, with Estimated Range Containing 95% of the Fragments $\left(\hat{R}_{\mathrm{O}_{5}}\right)$52Standard Deviation S vs. Mean Distance R130
53 Geometric Mea: (A/W) vs. Geometric Mean Distance 131
54 Regression of Geometric Mean (A/ $\mathrm{W}^{2 / 3}$) vs. Geometric 132

LIST OF TABLES

No.
I
II II
III
IV
V Summary of Fragment Velocity MeasirementsVI Comparison of Predicted Fragments with Pittman's Data(Ref. 33)
VII
Drag Coefficients C_{D}, of Various Skiapes (Source: Ref. 35) 84
VIII Fragment Velocity Predictions Comr ed with Measurements 86
IX Grouping of Tests by Propellant and ${ }^{\text {nfiguration }}$ 99
X Percentiles, Means and Standard Deviation.s for Grouped Velocity Data (fps) 102 105
Chart of Events
Chart of Events XI
XII Calculated Statistics for Parameters of Eighi Eicats 108
XIII Percentiles for Plotting Parameters of Events 1 Through 8 110
XIV Summary of Fragment Data 115
117XVI $\quad=$ mary of "W" Test for Ncrmality for $R, W, A,(A / W)$
XV Approximate Fercentage Puints of "W" Test for Normality $(n=9)$ 116
XVII Confidence Limits on Mean, Standard Deviation and Distance Containing 95% of Fragments 125
XVIII Predicted vs. Measured Fragment Ranges 133
XIX Constarts for Vulne rability Equations 140

SUMMARY

The objective of this work was to assembl: and analyze fragmentation data for exploding liquid propellant vessels. These data were to be retrieved from reports of tests and accidents, including measurements or estimates of blast effects, fragment velocities, masses, shapes, and ranges. Correlations were to be made, if possible, of fragmentation effects with type of accident, type and quantity of propellant, blast yield, etc. A significant amount of data was retrieved from a series of tests conducted for measuremert of blast and fireball effects oi liquid propellant explosions (Project PYRO), a few well-documented accident reports, and a series of tests to determine autoignition properties of mixing liquid propellants. The data were reduced and fitted to various statistical functions. Comparisons were made with methods of prediction for blast yield, initial fragment velocities, and fragment range. Reasonably good correlation was achieved. Methods presented in the report allow prediction of fragment patterns, given type and quantity of propellant, type of accident, and time of propellant mixing. However, more work must be done before the results of this study can be easily applied to estimation of damaging effects of fragments from exploding liquid propellant vessels.

INTRODUCTION

Background

The primary hazard relating to large-scale expiosions has in the past been assumed to be the blast wave generated by the explosion. Thermal ef fects have been considered next, and effects of damaging fragments last. This study attempts to partially rectify this situation by providing a comprehensive analysis of fragmentation effects of bursting liquid propellant vessels.

In storage or in a launch configuration within tankage in a rocket motor, liquid propellants are initially contained within vessels of various sizes, geometries, and strengths. Various modes of failure of these vessels are possible, from either internal or external stimuli. If the vessel is pressurized with static interral pressure, one possible node of failure is simply fracture, instituted at a critical size flaw and propagated throughout the vessel. A similar kind of failure can occur if the vessel is accidentally immersed in a fire, and pressure increases internally because of vaporization of the internal propellant. Some launch vehicles have the liquid fuel and oxidizer separated by a common bulkhead. Accidental orer-pressurization of one of these chambers can cause rupture of this bulkhead, and subsequent mixing and explosion of the propellant. External stimuli which can cause vessel vailure include high-speed impact by foreign objects, accidental detcnation of the warhead of a missile, dropping of α tank to the ground (as in toppling of a missile on the launch pad), as well as many other external sources. Vessel failure can result in an immediate release of energy or it can cause subsequent energy release because of mixing of propellant and oxidizer and the subsequent ignition. Other modes of failure which have resulted or could result in vioient explosions are fall-back immediately after launch due to loss of thrust, or low-level failure of the guidance system after launch with subsequent impact into the ground at several hundred feet per second.

Failure of a vessel containing liquid propellants can result in various levels of energy release, ranging from negligible to the full heat value of the combined propellant and oxidizer. Toward the lower end of the scale of energy release might be the failure of a pressurized vessel due to crack propagation. Here, the stored pressure energy within the compressed propellant or gas in an ullage volume above the propellant could accelerate fragments of the vessel or generate a weak blıst wave. In the intermediate range of energy releases could lie vessel failure Ly external stimulus and ignition, either very rapidly or at very late times, so that only small proportions of mixed propellant and oxidizer contribute to the energy release. At the upper end of the scale could be the explosion of a mixed propellant in a vessel wherein a premixed propellant and oxidizer detonate in much the same fashion as a high expiosive, and explosions resulting after violent impact with the ground. In
past studies of possible blast and fragmentation effects from vessel rupture, a criticai problem has been to accurately assess the energy release as a result of the accident or incident. A common method of assessment of possible energy release or a correlation of the results of experiments has been to assess the energy release on the basis of equivalent pounds of TNT. This method is used because a large body of experimental data and theoretical analyses exist for blast waves generated by TNT or cther solid explosives (refs. 1 and 2). Although the comparison with TNT is convenient, the correlation is far from exact. Specific energies which can be released, i.e., energy per unit volume or mass of reacting material, differ quite widely between TNT and various liquid propellants or mixtures of liquid propellants and oxidizers (ref. 3).

Dependent on the total energy release and the rate of this energy release, the sizes and shapes of fragments generated by liquid bursting propellant vessels and their appurtenances cover a very wide spectrum. At one extreme is the case of a vessel bursting because of seam failure or crack propagation from a flaw wherein only one "fragment" is gencrated, the vessel itself. This fragment, from a very slow reaction, can be propelled by releasing the contents of the vessel. At the other extreme is the conversion of the vessel and parts near it into a cloud of small fragments by an explosion of the contents of a vessel at a very rapidrate, similar to a TNT explosion (refs. 4 and 5). For mostaccidental vessel failures, the distribution of fragment masses and shapes undoubtedly lies between these two extremes. The modes of failure of the vessel may be dependent upon details of construction and the metallurgy of the vessel material. Some of the masses and shapes are dictated by the masses and shapes of attached or nearby appurtenances. In any event, assessment and prediction of these parameters undoubtedly is much more difficult than is true for the better understood phenomenon of shell casing fragmentation.

Once the masses, shapes, and initial velocities of fragments from liquid propellant vessels have been determined in some manner, then the trajectories of these fragments and their losses in velocity due to air drag or perforation or penetration of various materials must be computed. This problem is on a exterior ballistics. It differs from conventional exterior ballistic studies of trajectories of projectiles, bombs, or missiles in that the body in flight is invariably very irregular in shape and is usually tumbling violently. Exact trajectories cannot be determined then in the same sense that they can be for well-designed projectiles. Only approximate trajectories can be estimated, usually by assuming 'equivalent spheres' ol other geometric shapes for which exterior ballistics data and techniques exist. But, in some fashion, one can predict the ranges and impact velocities for fragments which were initially projected in specified directions from the bursting vessel with specified initial velocities. An example of results of such analysis is given by Ahlers (ref. 6).

This problem is not complete until one can assess the effect of fragments from the burst propellant vessels on various "targets". For a proper assessment of hazards, one should consider a wide variety of targets, including human beings, various classes of buildings, vehicles, and perhaps even aircraft. Problems of this nature are exceedingly complcx, not only because of the inherent statistical nature of the characteristics of the impacting fragments but also because the terminal ballistic effects for large irregular objects impacting aly of the targets described are not very well known. In most past studies of fragment damage from accidents, the investigators have been content to simply locate and approximate the size and mass of the fragments in impact areas and have ignored the important problem of the terminal ballistic effect of these fragments.

Related Work

Extensive studies have been carried out over many years regarding the potential failure of nuclear reactor vessels from a variety of causes. The source of energy causing a reactor vessel failure can be the stored compressive energy in a liquid or gas within the containment vessel, the chemical energy release, or the uncontrolled nuclear energy release. The latter source is, of course, not present in the failure of liquid propellant vessels, but the first two sources are present. Although many of the studies of nuclear reactor vessels have concentrated on the design of the pressure vessel and the attachments to it to obviate failure, many other studies also have been concerned with shock and fragraentation effects in the event that failure does occur. The literature in this field is far too voluminous to cite other than to give a few examples which are indicative of the parallels between these studies and those reported here. The specific references given all relate to product : on of or containment of fragments caused by vessel failure.

The first of these references cited is a review paper by Gwaltney (ref. 7) on missile generation and protection in one class of a nuclear power plant. Various types of vessel failure are considered and reviewed and formulas are given for estimations of velocities with which fragments will be eiected after failure. Effects of impact of the fragments are discussed, and a number of empirical penetration formulas for metal missiles penetrating and perforating steel and oncrete are given. The paper also itcludes a simplified discussion cf poss:h1s shock wave effects caused by the release of energy after vessel rupture. The second paper is reference 8. This is the final report of a multiyear experimental and analytical investigation by Stanford Research Institute of the problems of generation and containment of fragments generated by a runaway reactor. More details of various phases of the investigation are given in additional 6 -month progress reports predating reference 8 . Nany of the aspects of the work reported in reference 8 are similar to the study reported here. Attempts were made to simulate the energy release rates ir the erent of reactor runaway by use of siow-detonating explosives and fuses.

These sources of energy release were used to apply pressure within model containment vessels and models of surrounding materials such as concrete. Failure of these model vessels was observed using high-speed cameras to determine velocities and initial trajectories of the fragments. In a parallel investigation, the Stanford Research institute staff conducted a series of experiments simulating impacts by long, slender missiles such as reactor control rods. Penetration formulas for such rods striking steel plates were developed as part of the effort.

A gcod general listing of the classes of problems considered in nuclear reactor containment studies can be found in reference 9, which reports papers on reactor safety given at the Second International Conference on Peaceful Uses of Atomic Energy. In particular, reference 10, one of the papers in the Proceedings of the conference, discusses various sources of energy release and gives approximate lirnits to the magnitudes which can be expected, considers ways of attenuating blast energy and of stopping fragments, and gives in general a good overall review of the range of problems one must consider in reactor containment studies.

The explosive behavior of bombs, grenades, mines and warheads has always commended wide attention, and the most commonly used bombs are usually constructed from suitably corrugated steel casings, either fully or partially filled with explosives. Interest in the mechanics of fragmentation has largely been directed towards trying to predict the influence of casing material and wall thickness, the size of the explosive charge, and the type of explosive on the fragmentation velocity and the expanded radius of a casing at which fracture occurs.

In a series of papers (refs. 4, 5, 11 through 14), there has evolved a simple approximate treatment for the acceleration of fragments by high explosives. The basic assumption made was that the potential energy in the charge before detonation was equal to the kinetic energy of the charge and casing after detonation and expansion. It was also assumed that, after detonation, the gaseous detonation products were equally dense at all points and expanding uniformly. Formulas for fragment velocity at the radius for case breakup (essentially the maximum velocity) are presented in these references for various regular geometries of cased explosive charges. All are of the form

$$
\begin{equation*}
\mathrm{U}=\mathrm{f}\left(\mathrm{H}_{\mathrm{e}}, \mathrm{M} / \mathrm{C}\right) \tag{1}
\end{equation*}
$$

where J is velocity and is a function of heat of explosion H_{e}, total casing mass M, and mass of the explosive charge C.

If the results of accidents involving explosions of liquid propellant vessels are well documented, they can provide useful data to assist in the
assessment of this problem. Some have indeed proven useful sources for our study, as we will document in later sections of this report. Although accident reports are useful in documenting the gross effects of vessel explosion, determining the maximum ranges to which fragments are projected, and indicating shapes and masses of fragments, they are often of less value in assess ing this problem than are controlled experiments. Because they are accidents, usually there is no measure of blast yields, fragment trajectories, and other data that would be useful in analysis of vessel failure and subsequent effects.

Project PYRO involved many test explosions with liquid propellants. The purpose of Project PYRO (refs. 15 through 17), was 'to develop a reliable philusophy for predicting the damaze potential which may be experienced from the accidental explusions of liquid proneilants during launch or test operations of military missiles or space vehicles'. Three combinations of propellants and oxidizers were chosen for test and evaluation, and at least seven agencies were involved in the program. The primary objective was to estimate blast yield and its efiects. The effects of fragmentation were secondary in the study. But, Jeffers (ref. 18) analyzed a small number of the photographic records to determine fragment velocity. As is apparent in later sections of this report, the films from Project PYRO, when studied carefully, provide the primary source of data for initial velocities for liquid propellant explosions.

There are a number of experimental studies and analyses of the effects of bursting pressure vessels which fail under the action of internal energy sources other than liquid propellants. A number of these can provide useful information for the problem at hand. Some specific examples follow.

Hunt, Walford, and Wood (ref. 19) have conducted an experimental study of the failure of a pressure vessel containing high temperature pressurized water. Iri this study, the authors observed the failure of a vessel with high-speed cameras and also located a number of blast transducers nearby to measure the resulting shock wave generated in the surrounding air. They also generated equations for calculation of velocities of the fragments resulting from burst of the vessel. In a somewhat similar study, Larson and Olson (ref. 20), measured the air blast effects from bursting pressure vesse!c containing high pressure gas. In this study, the authors also observed tie flight of fragments from the bursting vessel and developed an empirical method for estimating fragment velocities based on an energy balance and knowledge of the strength of the shock wave generated by the bursting vessel. In a scmewhat different category than the two previous studies are analyses and predictions of the effects of rupture of pressure vessels containing high pressure gases. An excellent example of such analyses is a compendium of gas autoclave engineering studies, edited by C. E. Muzzall (ref. 21). This compendium is an exhaustive study of the possible hazards associated with failure of a large, cylindrical vessel containing high pressure, high temper-
ature argon. Estimates are made of both the blast and fragmentation hazaids in the event of failure of the vessel, of the effects of both fragments and blast on a test cell within which the vessel is operated, and recommendations fo: redesign of the test cell to with stand both blast and fragmentation effects. A. second study of this same nature, but on a much more limited basis, is a seport by Baker, et al., (ref. 22), on the possible effects of failure of higr pressure helium vessel while under test in a NASA vibration and acoustic cest facility. $H \cdot e$, blast and fragmentation effects were estimated in the event of failure of the vessel, blast loading and response of the walls of the test facility were computed, as were possible penetration efferts by fragments of the vessel. The report concluded with recommendations for modification of eest procedures to obviate the very real hazards in the event the helium pressure vessel failed.

Purpose of Present Work

The purpose of the work reported here is to assemble fragmentation data for bursting liquid propellant vessels, analyze these data, and develop or modify methods of prediction of fragmentation effects of such explosionsi. An additional purpose is to enter all relevant reports, data, etc., into a data bank at the NASA Aerospace Safety Research and Data Institute (ASRDI).

Scope of Present Work

The primary purpose of this study and analysis is the retrieval, assembly and recording of available data regarding fragments from exploded vessels that contained liquid propellants o: substances that have similar chemical properties. These data cover boin test and accidental explosions and include blast yield, fragment sizes, frayment trajectories, fragment velocities, and a description of damage caused by the fragments.

The sacond part of the study and analysis shall be that of reducing the arailable data to a form most readily usable by aerospace engineers, for estimation of the integrated shrapnel hazard to which neighboring structures wili be sibjected. This reduction of the da+a shall be in the form of equations that will relate the blast yield to the nature and quantities of fuel and oxidants and to various farameters describing the type of explosion, and in the form of equations that will relate the blast yield to distributions of fragment size, initial fragment velocity, and initial direction of fragment motion.

Significance

It is believed that this report contains the first comprehensive stady of fragmentation effects of bursting liquid propellant vessels. The results of this work should provide a better understanding of such fregment characteristics as initial velocity, mass, shape, and range as ther relate to
estimated blast yield of exploding liquid propellant tanks. These characteristics used with munition fragment equations could predict the terminal or impact velocities of these fragments. Thus, it is possible to derive criteria that allow for the prediction of fragment hazards to people or the risk of damage to nearby facilities from the impact of these fragments. These criteria could be used to arrive at safe distances between populated areas at launch or test stands for fragments and overpressure hazards that are caused by exploding liquid propellant tanks. Moreover, intra-line separation distances can be established that would decrease the risk of damage to nearby facilities or systems from fragment impact; or, with a prediction of impact energy of fragments, barriers could be properly designed to protect these facilities at intra-line separation distances.

Statistical fitting to data on fragment range R versus measured terminal blast yield Y gave the following equation:

$$
\widehat{\mathrm{R}}=314.74 \mathrm{Y}^{0.2775}
$$

where \widehat{R} is the mean range in feet, and Y is the terminal blast yield in percent TNT equivalent. Fitting to data on fragment weight W and mean presented area A gave the equation

$$
\widehat{\mathrm{R}}=9.864\left(\mathrm{~A} / \mathrm{w}^{2 / 3}\right)^{0.78}
$$

where W is fragment weight in pounds and A is mean fragment presented area in square inches. These two equations can be used for prediction, subject to restrictions and limits noted in the body of the report. Also inclucied in Part IV are distribution functions for fragment initial velocities for various types of accident, which can be used to predict distributions of fragment sizes and masses for other postulated accidents.

Estimates of the distributions of the initial velocities for four specific combinations of configurations and propellants were derived. In all forir cases, the initial velocity (U_{i}) in ft/sec. followed a log normal distribution furction. The distribution functions for the four cases are given below, wher. \hat{u} and \hat{e} are estimates of means and standard deviations of $\hat{i} i U_{i}$ respectivaly:

1. Confined by Missile (CBM). J $\mathrm{O}_{2} / \mathrm{LH}$, propellant

$$
i\left(U_{i} ; \hat{u}, \hat{\sim}\right)=\left(1 / 2.475 ; \hat{U}_{i} ; \quad \exp \left[-\left(\ln U_{i}-6.464\right)^{2} / 1.9503\right)\right]
$$

2. CBM, LO $/$ /RP-1 propellant

$$
f\left(U_{i} ; \hat{u}, \hat{\sim}\right)=\left(1 / 1.5824 U_{i}\right) \quad \exp \left[-\left(\ln U_{i}-6.713\right)^{2} / 0.7071\right]
$$

3. Confined-by-Ground-Surface (CBGS), $\mathrm{LO}_{2} / \mathrm{I} \mathrm{H}_{2}$ propellant $f\left(U_{i} ; \hat{\mu}, \hat{\sigma}\right)=\left(1 / 1.9339 U_{i}\right) \exp \left[-\left(\ell n U_{i}-6.129\right)^{2} / 1.1904\right]$
4. CBGS, $\mathrm{LO}_{2} / \mathrm{RP}-1$ propellant
$f\left(U_{i} ; \hat{\mu}, \hat{\sigma}\right)=\left(1 / 1.6010 U_{i}{ }^{\prime} \quad \exp \left[-\left(\ln U_{i}-5.962\right)^{2} / 0.8159\right]\right.$

I. RETRIEVAL OF FRAGMENTATION DATA FOR LIQUID PROPELLANT VESSELS

The first task in this contract consisted of a series of contacts and visits with various government agencies and contractors to ascertain the extent of data available on fragmentation from liquid propellant explosions, either accidental or from planned tests, and to obtain pertinent data and reports for entry into the data bank at the Aerospace Safety Research and Data Institute (ASRDI) of NASA. The contacts and visits were suppiemented by a conventional literature search of the open literature and the Defense Docımentation Center (DDC).

The work cornmenced with an initial visit to ASRDI, and temporary trarsfer to SwRI of pertinent documents already acquired by the ASRDI staff. Potential sources of data and indivicluals to contact at various agencies, in adidion to those already known to SwRI staff, were also identified during this visit. We then made a series of telephone contacts to determine whether specific agencies or firms had applicable data and could send such data to is, and if a visit was desirable. All major NASA centers, several AEC laboratories, the military service ordnance laboratories, Air Force Eactern and Western Test Ranges, the Department of Defense Explosive Safety Board, and a number of commercial and other contractors were contacted during this initial telephone survey. More than thirty such contacts were made. A number of the calls led to blind alleys, with no data available, or individuals who might have had data or known of it being no longer present. But, other calls unearthed potential sources of data and allowed appointments for visits to review these data.

Following the initial phone contacts, several SwRI staff members visited those agencies which were potential sources of data. As much as possible, trips were combined to agencies in the same general geographical area. When the visits yielded applicable or potentially applicable documents. reports or data, we tried to obtain them for permanent retention or loan, or tried to arrange for them to be transmitted to SwRI. The results of these visits are summarized in Table I, which lists the agencies visited, individuals contacted at each agency, and the type of applicable data found to be available to us at each agency. Several agencies had sufficient data or information to warrant a follow - up risit to further discuss the data or to attempt to obtain it for use on this contract. These agencies are indicated by an asterisk in Table I. Of particular importance to this contract is the library of motion pictures of the Project PYRO tests available at Air Force Rocket Propulsion Laboratory. We obtained these films, and they form the primary data base for determination of initial fragment velocities from bursting propellant vessels. Individuals visited at the various agencies were for the most part very cooperative and helpful in obtaining or transmitting applicable data and cocuments. In at least one instance, however, we have not been able to obtain
T.ABLEI - SUMMARY OF AGENCIES VISITED TO OBT.IIN FRAGMENTATION DATA OR DOCUMENTS

Agency	Individuals Contacted	Data Available			
		Documents	Accident Reports	Films	Other
Aerospace Safety Research and Data 1 iute, NASA-Lewis	I. I. Pinkel C. D. Miller 3. M. Ordin D. Forney	X	X		X
NASA-Kennedy ${ }^{*}$	J. H. Deese A. H. Moore F. X. Hartman A. J. Carraway	X	X		X
Air Force Eastern Test Range	L. J. Ullian CPT R.P. Welborn T. Fewell Maj. K. Cailer	X	X		
Dept. of Mech. Eng., Univ. of Florida	Prof.E. A. Farber Prof. E. Watts Prof. J. Smith	X		X	X
Air Force Rocket Propulsion Lat. Edwards AF Base	J. G. Wancheck R. Thomas	X		X	
Aerospace Corp., El Segundo	R. Wolfe J. Smith R. Vega	X		X	
Air Force Space and Missile Systems Org.	CPT K. C. Tailman	X			
Gen. Elec. Cc., Bay St. Louns, Miss.	P. V. King	X			

This agency was visited twice to obtain data identified during the irst visit.

TABLE I. (Continued)

copies of accident reports which would provide useful fragmentation data, and have not been able to include these data in our review and further analysis.

As documents and data were received at SwRI as a result of our initial visit to ASRDI, our subsequent visits to other agencies, and our library and DDC literature searches, we reviewed each document, completed ASRDI form 102A for the documents and forwarded these forms to ASRDI. A total of 168 documents were reviewed in this manner, with various SwRI staff members completing the Forms 102A for documents which fell within their technical specialties.

We believe that we have discovered and reviewed most of the pertinent literature, data, and accident reports pertaining to fragmentation of liquid propellant rockets and vessels. There is, however, one possible exception. There may be a body of fragmentation data in accident reports in the Air Force Inspection and Safety Center at Norton Air Force Base, California, which we could not review or obtain for legal reasons. These reports were reviewed by staff members of the Center, and we have been notified that they contain no data which could be used in our study. Because we were not allowed to review the reports ourselves, we have no way of comparing them with other accident reports which have provided useful data, nor do we know the criteria applied by Norton per sonnel in assessing the potential value of specific reports to this project.

II. DETERMINATION OE BLAST YIELD

A. General

A prerequisite to estimation of fragmentation effects for liquid propellant explosions is the estimation of energ. released during the explosion which is synonymous with explosive yield. Furthermore, to properly estimate fragment velocities of appurtenances which can be accelerated by the blast wave from propellant explosions, one must know the time histories of various physical parameters describing the blast wave as a function of distance from the explosion. We must therefore consider blast effects in some detail, even though this is a study of fragmentation.

Accidents with liquid propellant rockets, both during static firing on a test stand and during launch, have shown that liquid propellants can generate violent explosions. These explosions "drive" air blast waves, which can cause direct damage and can accelerate fragments or nearby objects. The launch pads at the Air Force Eastern Test Range (ETR) have for a number of years been instrumented with air blast recorders to measure the overpressures generated during launch pad explosions, so some data are available on the intensities of the blast waves generated. Such measurements, and the common practice in safety circles of comparing explosive effects on the basis of blast waves generated by TNT, have led to expression of blast yields of propellant explosions in equivalent "pounds of TNT". (Althougn a direct conversion of pounds of TNT to energy can easily be made - $1 \mathrm{lb} \mathrm{m}_{\mathrm{m}}$ of TNT equals $1.4 \times 10^{6} \mathrm{ft}-\mathrm{lb}$ - this is seldom done.)

Liquid propellant explosions differ from TNT explosions in a number of ways, so that the concept of "TNT equivalence" quoted in pounds of TNT is far from exact. Some of the differences are described below.
(1) The specific energies of liquid propellants, in stoichiometric mixtures, are significantly greater than fo: TNT (specific energy is energy per unit mass). Table II, taken frum ref. 3, gives specific energies for a nimber of liquid-propellant/ oxidizer mixtures, as ratios to TNT specific nergy. Note that all of the energy rotios in Table II are greater than 1 , and range as high 2.55 .3 .
(2) Although the potential explosive vield is very high for liguid propellants, the acual vield 15 much lower, because propellant and oxidizer are never intimately mixed in the proper proportions before ignition.

BLE II - DETONATION ENERGY EQUIVALENTS FOR
SELECTED LIQUID PROPELLANTS (REF. 3)

		Oxygen/Fuel Ratio		$\begin{aligned} & \text { Density } \\ & \left(\mathrm{gm}_{2} / \mathrm{cm}^{2}\right) \end{aligned}$	Specific Energy (Relative to T:JT)
Fuel Oxidizer	Aluminum Triethyl Oxygen	$\begin{aligned} & \mathrm{Al}_{1}\left(\mathrm{C}, \mathrm{H}_{5}\right)_{3} \\ & \mathrm{O}_{2} \end{aligned}$	1.5	1.019	2.61
Fuel Oxidizer	Aluminum Trimethyl Oxygen	$\begin{aligned} & \mathrm{Al}\left(\mathrm{C} \cdot \mathrm{H}_{3}\right)_{3} \\ & \mathrm{O}_{2} \end{aligned}$	2.0	1.012	2.80
Fuel Oxidizer	Pentaborane Oxygen Natrogen Tetroxide IRFNA*	$\begin{aligned} & \mathrm{B}_{5} \mathrm{H}_{9} \\ & \mathrm{O}_{2} \\ & \mathrm{~N}_{2} \mathrm{O}_{4} \\ & \mathrm{HN}_{1.14} \mathrm{O}_{3.24} \end{aligned}$	$\begin{aligned} & 2.35 \\ & 3.35 \\ & 3.35 \end{aligned}$	$\begin{aligned} & 1.075 \\ & 1.220 \\ & 1.352 \end{aligned}$	$\begin{aligned} & 2.29 \\ & 3.36 \\ & 1.92 \end{aligned}$
Fuel Oxidizer	Monomethylbydrazine Oxygen Nitrogen Tetroxide IRFNA Chlorine Trifluoride	$\begin{aligned} & \mathrm{CH}_{3}, \mathrm{NH} \mathrm{NH}_{2} \\ & \mathrm{O}_{2} \mathrm{O}_{4} \\ & \mathrm{~N}_{2} \\ & \mathrm{H}_{4} \mathrm{~N}_{1.14} \mathrm{O}_{3.24} \\ & \mathrm{C} 1 \mathrm{~F}_{3} \end{aligned}$	$\begin{aligned} & 1.00 \\ & 2.17 \\ & 2.45 \\ & 3.13 \end{aligned}$	$\begin{aligned} & 1.007 \\ & 1.253 \\ & 1.460 \\ & 1.578 \end{aligned}$	$\begin{aligned} & 2.11 \\ & 2.38 \\ & 3.14 \\ & 2.37 \end{aligned}$
Fuel Oxidizer	UDMH Oxygen Nitrogen Tetroxide IR FNA	$\begin{aligned} & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}_{2} \mathrm{H}_{2} \\ & \mathrm{O}_{2} \mathrm{O}_{4} \\ & \mathrm{~N}_{2} \mathrm{O}_{4} \\ & \mathrm{H}_{1.14} \mathrm{O}_{3.24} \end{aligned}$	$\begin{aligned} & 1.70 \\ & 2.55 \\ & 2.85 \end{aligned}$	$\begin{aligned} & 1.009 \\ & 1.246 \\ & 1.365 \end{aligned}$	$\begin{aligned} & 2.85 \\ & 2.33 \\ & 3.16 \end{aligned}$
Fuel Oxidizer	Hydrogen Oxygen Nitrogen Tetroxide	$\begin{aligned} & \mathrm{H}_{2} \\ & \mathrm{O}_{2} \\ & \mathrm{~N}_{2} \mathrm{O}_{4} \end{aligned}$	$\begin{aligned} & 5.00 \\ & 5.25 \end{aligned}$	$\begin{array}{r} .968 \\ 1.211 \end{array}$	5.30 3.87
Fuel Oxidizer	Ammonia Oxygen Nitrogen Tetroxide	NH_{3} $\mathrm{Ni}_{2}^{2} \mathrm{O}_{4}$	$\begin{aligned} & 2.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} .964 \\ 1.312 \end{array}$	3.19 1.57
Fuel Oxidizer	Hydrazine Oxygen Nitrogen Tetroxide IRFNA	$\begin{aligned} & \mathrm{N}_{2} \mathrm{H}_{4} \\ & \mathrm{O}_{2} \\ & \mathrm{~N}_{2} \mathrm{O}_{4} \\ & \mathrm{H}^{2} \mathrm{~N}_{1.14} \mathrm{O}_{3.24} \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.30 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 1.070 \\ & 1.245 \\ & 1.342 \end{aligned}$	$\begin{aligned} & 2.78 \\ & 2.36 \\ & 3.17 \end{aligned}$
Fuel	$\begin{aligned} & 50 \% \mathrm{~N}_{2} \mathrm{H}_{4}-50 \% \text { UDMH } \\ & \text { Oxygen } \\ & \text { Nitrogen Tetroxide } \end{aligned}$	$\begin{aligned} & 1.875 \mathrm{~N}_{2} \mathrm{H}_{4}+(\mathrm{C}) \\ & \mathrm{O}_{2}^{2} \mathrm{O}_{4} \\ & \mathrm{~N}_{2}{ }^{2} \end{aligned}$	$\begin{aligned} & { }_{2} \mathrm{~N}_{2} \mathrm{H}_{2} \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.043 \\ & 1.262 \end{aligned}$	$\begin{aligned} & 2.79 \\ & 2.40 \end{aligned}$

* Inhibited Red Fuming Nitric Acid

Confinement of propellant and oxidizer, and subsequent effect on explosive yield, are very different for liquid propellants and TNT. Degree of confinement can seriously affect explosive yield of liquid propellants, but has only a secondary effect on detonation of TNT or any other solid explosive.
(:) The geometry of the liquid propellant mixture at time of ignition can be quite different than that of the sperical or hemispherical geometry of TNT usually used for generation of controlled blast waves. The sources of compiled data for blast waves from TNT or Pentolite such as references 2 and 3, invariably rely on measurements of blasts from spheres or hemispheres of explosive. The liquid propellant mixture can, however, be a shallow pool of large lateral extent at time of detonation.

The blast waves from liquid propellant explosions show different characteristics as a function of distance from the explosion than do waves from TNT explosions. This is undouhtedly simply a manifestation of some of the differences discussed previously, wut it dues change the "TNT equivalence" of a "liquid-propellant explosion with distance from the explosion. Fletcher (ref. 37) discusses these differences and shows them graphically in Figs. 1 and 2. These differences art vory evident in the results of the many blast experiments reported in Project PYRO (refs. 15-17). They have caused the coinage of the phrase "terminal yield", meaning the yield based on blast data taken at great enough distance from the explosion for the blast waves to be similar to those produced by TiNT explosions. At closer distances, two different yields are usually reported: an overpressure yield based on equivalence of side-on peak overpressures, and an inpulse yield based on equivalence of side-on positive impulses.

There exist at present at least thre methods fu: ustimating yield from liquid propellant explosions, which do not necessarily give the satur predictions. One method is based on Project PYRO results (refs. 15-17), and the other two are the "Seven Chart Approach" and the 'Matnematical Model" of Farber and Deese (ref. 23). We next discuss each method and some background information.

13. Project PYRO and Related Experiments

Project PYRO was a joint NASA/USAF project conducted during the period 1965-1967 with the purpose of determining the blast and thermal characteristics of three iquid propellant combirations in most common use in

FIGURE 1. NORMALIZED PRESSURF AND IMPLLSE YIELDS FROM EXPLOSION OF $\mathrm{N}_{2} \mathrm{O}_{4}$ /AEROZINE 50

FIGURF 2. REPRESENTATIVE SHOCK IMYULSES SHOWING COALESCENCE OF SHOCK WAVES FROM dISSIMILAR SOURCES [TAGES a) THROiGH d)]
military missiles and space vehicles. It included 270 tests with iotal weights of propellants ranging from 200 lb to $100,000 \mathrm{lb} \mathrm{m}$. Most of the tests wore conducted at the Air Force Rocket Propulsion Laboratory (AFRPL) at Edwards AFB, California. Prime contractor for much of the effort was URS Systems Corp., Burlingame, California. The project was supervised by a Stecring Committee of representatives from several NASA centers, the Air Force Eastern Test Range, and the Sandia Corp.

The emphasis in Project PYRO was almost exclusively experimental. Tests were designed to simulate various types of accidents wich could cause mixing and ignition of the profellants. The primary blast instrumentation was an array of blast pressure transducers whose outputs as functions of time were recorded on magnetic tape. (Although fragmentation effects were incidental to the program objectives, high-speed motion picture cameras photographed most of the tests, and our datio on fragment velocities are all obtained fron these films.) The results of the program were reported in a thev-volume final report, with Vol. I (ref. 15) describing the progran and giving overall results Vol. II (ref. 16) giving detailed test data, and Vol. III (ref. 17) giving prediction methods based on the program results. In the PYRO effort, three basic types of accidents were simulated. The first type consisted of failure of an interior bulkload separating fuel and oxidizer in a missile stage. This was termed Confinement by the Missile (CBM). The second type of accidint included impacts at various velocities of th missile on the ground, with atl tankage ruptured, and subsequent ignition. This was termed Confinterent be the Ciound Surface (C.3GS). The third type was High Velocity Impaci (IIVI) after launch.

Aithough Project PYRO generated much more data on explosive virlas cif iquid propellant explosions than all previous studies combined, seroral \because :rlier experimental programs did give useiul data and should be mentioned here. Arthur D. Little. Inc., (ref. 24) : onducted a series of blast tusts sir:mbating spills and ignition on the ground of various combinations of probellants in the Saturn vehicles. The tests were designed to produce the maximam possible blast yieid for this type of zocident. with thorough mixing of furls and ovidizer ad delays of ignition until such mixing was complete. These anonymons incestigators reported blaw wave charactoristics identical to those fro:
 and blast yiclls ranging from 0.23 t 1.98 Ib TNT/L1, propellant. Thes also estimated maximum potential vields (even including effects of afterburning wi unburned fuel with oxygen in the air) of considerably less than in Table II. Their predicted masima are given in Table III.

TABLE III
PREDICTED MAXIMUM BLAST YIELDS (REF. 24)

Propellant	Ratio of Blast Energies, lb TNT / /b Propellant
$\mathrm{RP}-1 / \mathrm{LO}_{2}$	1.25
$\mathrm{LH}_{2} / \mathrm{LO}_{2}$	3.70
$\mathrm{RP-1/LO}_{2} / \mathrm{LH}_{2}$	2.75

Another experimental effort prior to PYRO is reported by Pesante and Nishitazashi (ref. 25). These investigators measured the blast waves generated by fuels and oxidizers which were violently mixed by explosively shattering dewars containing one component, while the dewars were immersed in a bath of the other component. Blast yields ranging from $0.23-0.80 \mathrm{lb}$ TNT/ ih propellant were obtained in these experiments. (These tests also included attempts to measure velocities of objects plared near the blast wave, but no useful data were obtained.)

The final set of tests prior to PYRO is a pparently a series reported by Gayle, et al. (ref. 26). Fuels and oxidizers were mixed by several different methods (anticipating the two primary simulation methods in PYRO), and blast wave properties measured as a function of distance. These investigators showed a much greater spread in blast yields for other methods of mixing than spill tests, with much smaller yields being obscrved in most tests for simulated bulkhead rupture, etc. Yields for $\mathrm{LH}_{2} / \mathrm{LO}_{2}$ combinations were most affected by the change in methods of mixing, being no greater than 0.014 ib TNT/lb propellant for any of the tests.

From the test results reported in references 15 and 24 through 26 , a number of observations can be made regarding blast yields from liquid propellant explosions.
(1) The yield is very dependent on the mode of mixing of fuel and oxidizer, i.e., on the type of accident which is simulated. Maximum yields are experienced when intimate mixing is accomplished before ignition.
(2) Blast yield per unit mass of propellant decreases as total pro-

On many of the $\mathrm{LH}_{2} / \mathrm{LO}_{2}$ tests (regardless of investigators), spontaneous ignition occurred very early in the mixing process, resulting in very low percentage yields.

Yield is very dependent on time of ignition, even ignoring the possibility of spontaneous ignition.

Yield is quite dependent on the particular fuel and oxidizer being mixed.

Variability in yields for supposediy identical tests was great, compared to variability in blast measurements of conventional explosives.

The PYRO blast yield prediction methods given in reference 17 are a set of "cook-book procedures" for estimating blast pressures and impulses for specific types of liquid propellant accidents and specified geometric and initial. conditions. Inherent in the prediction method is scaling of ignition time according to $t / W^{l / 3}$. Types of accidents considered are confinement by missile (CBM), confinement by the ground surface (CBGS), and high velocity impact (HVI). Equivalent TNT yields are determined and estinates of overpressure and impulse made based on compiled blast data for TNT (ref. 2), with a correction factor for impulse to account for the difierence between TNT and liquid propellant explosions. Unfortunately, we feel that the prediction methods given in reference 17 are oversimplified (for example, they use discrete and different correction factors for impulse for different ranges of scaled distances, whereas the data in references 15 and 16 show a continupus variation in impulse with ;caled distance), and they are based on a scaling of ignition time which is dubious, i.e., not proven by experiment (see Appendix A). The methods of reference 17 also are designed to give upper-bound estimates of blast effects, rather than most probable estimates. The possibility of lirnitation of blast yield by early autoignition when large masses of propellants are mixed is ignored in the PYRO prediction schemes. Considering the careful and well-documented experineental work reported in references 15 and 11 , the prediction methods of reference 17 are quite disappointing.

C. Work of Farber and Deese

More or less concurrent with the PYRO work, but continuing to the present, Farber at the University of Florida and Deese at NASA-Jennedy have condacted a combined theoretical and experimental program of the study of the physical and chemical processes involved in mixing, ignition, and explosion of liquid rocket propellants. The results of this work are reported in a number of papers, with the efforts through Coctober 1968 being best summarized and reported in reference 27. Later work is reported in references 28 through 30.

In the work reported in references 28-30, the problem o: mixi:ng, ignition and explosion of liquid rocket propellants is subdivided into a nuraber of sub-problems, and each sub-problem studied more or less independently. The results of the subsequent analyses and experiments are then combined in several prediction schemes for explosive yield, of which the most detailed is the "Seven Chart Approach" of reference 23 .

The sub-problems into which the overall problem was divided by Farber and Deese were:
(1) Determination of the potential maximum explosive yield obtainable if the liquid propellants present were mix $2 d$ in an optimum manner (yield potential function)
(2) Determination of amounts of propellant which would be mixed as a function of time after "spill" (mixirg functicn)
(3) Determination of most probable times of delay of ignition and detonation (delay and detonation times)

Farber and Deese (ref. 23) also evolved a method of errepirically fitting to experimental data a four-parameter probability function or ish would predict the probability of explosive yield to various levels of confidence, and have more recently evolved an hypothesis of a critical mass of mixing propellants for which autoignition is certain.

The yield potential function is calculated by Farber, ct al (ref. 27) on thi. Dasis of chemical kinetics considering builing and frezzing of fuel-oxdizer components as a function of time after an assumed irstartaneols mixing. Heat values for the various chemical reactions which cold occur at various limes, considering s.tates and amounts of reactants fresent, are then calculated. Some details of the manner in which these calcu: ations are made are given in reference 27 , and a typical result for an initiai mixture of $\mathrm{LO}_{2} / \mathrm{i} \mathrm{H}_{2} /$ RP-I is shown ir. Figure 3. There are no experimental data which lirectly confirm such theo:etical calculations of the yield function.

FIGURE 3. MAXIMUM ENERGY RELEASE FOR A TIREE COMPONENT LIQUID IPROPELLANT MIXTURE (REF. 27)

The mixing function, expressing the fraction of mass of fuel plus oxidizer actually mixed as a function of time after spill, is the best established of Farber's sub-problems. No less than four experimental methods were used to establish this function (ref. 27). A typical mixing function is shown in Figur 4 . This function peaks as mixing becomes more complete, and then decays because the mixed propellant evaporates. An optimum time for ignition (optinum in that it will produce maximum explosive yield) is therefore heavily deperdent on this function.

The least well-determined of the sub-problems is the definition of expected delay times for ignition. A statement from reference 28 apdears approp:iate "The ignition time for prediction purposes, can be a controlled value, a known vaine bessed upon the characteristics of the propellants, a statistical value witn conifdence limits, or it can be a value determined by the critical mass method....". In viher words, the ignition time is apparentiy anyone's best guess. It is clear from the results of liquid propellart mixing tests that autoignition always occurs for mixing of sufficiently large quantities of propellants. Farber (refs. 27-30) has hypotaesized that a source of ignition whi h is always present upon mixing is electrostatic build-up of voltage and subsequent electrical discharge through a gas bubble, and that a critical nass exists for a given propellani mixture and set of initial conditions which providəs a short upper limit on ignition time, and therefore an upper limit on explosive yield. Recent experimental work by his group (ref. 29) is directed apecifically toward measurement and verification of this hypothesis, and verification is claimed (although not conclusively proven) by work reported in re :erence 30 .

The two prediction methods developed oy Farber, et al, are termed the "S even Cliart Approach" and the "Mathematical Model". Each will give an estimate of explosive vield y, expressed as a fraction of the total heat of combustion of a stoichiometric mixture of fuel and oxidizer. In the 'Seven Chart A'sproach', a graph such as Figure 3 is normalized by dividing by the naximum heat value reached by the mixture, and then converted to a normali:ed yield potential y_{p} versus time plot such as Figure 5. The fraction mixed x as a function of time (Figure 4) is then multiplied by y_{p} at approximate times to give expected yield y (see Figure 6). Finally, some estimated ; gnition time, with suitable confidence limits, is superimposed on Figure of to give the firal estimate of yield y. (Note that only four charts are discussed uere. The remaining three charts in the seven-chart method show intermediate steps).

The "Mathematical Model" method (ref. 28) consists of fitting to experimental data a clationship between normalized yield y and mixing function x of the form

FIGURE. 4. MIXING FUNCTION OR SPILL FUNCTION FOR THREE
FIGURE. 4. MIXING FUNC IION LIQUID PROPELLANT SPILL TESTS (REF. 27)

FIGURE … ACtUai. yield for random ignition and detonation (ref. 2i)

$$
\begin{equation*}
y=\frac{b}{b+c} x^{d} \tag{2}
\end{equation*}
$$

where b, c, and d are parameters to be adjusted. An auxiliary function is also introduced which inserts a fourth parameter, a . Using the physically realistic limits of $z \in r o$ yield for zero spill, and a maximum for y when $x=1$ which is defined by the fraction of mixed propellants which represent sioichiometry $(y \leq 1)$, fixes the parameters b and c. Farber originally used data from reference 24 to estimate the parameter d, and has not changed this parameter since. So, essentially only the parameter a remains to be varied, and Farber clains that the parameter a represents a "scaling parameter" related tototal mass of propellants. With parameters chosen from fitting data of reference 24, Farber claims (ref. 28) prediction of upper bounds on explosive yield which cover all available data through 1969 (see Figure 7).

After review of the work of Farber, Derse and co-workers, we feel that their efforts have their strengths and weaknesses, just as does the PYRO work. The greatest strengths are the excellent physical insight into the complex processes which occur during mixing and ignition of liquid propellarts, and the division of the complex overall problem into sub-problems which can be studied separately. Farber and co-workers were also apparently the first to realize that explosive yields for large quantities of propellants were always limited by early autoignition. The primary weaknesses lie in lack of experimental verification of the physical processes, sometimes doubtful claims of usefulness or applicability of limited test techniques or data*, and reiteration of the same material in succeeding reports. The two methods for prediction of blast yield are well described and understandable, but both give an estimate of explosive source energy without consideration of the nature of the blast waves generated by liquid propellant explosions which were evident in Project PYRO. It is also not clear how the critical mixing functioi: such as Figure + is obtained for various types of full-scale accidents or tests. or how it is scaled from laboratory experiments.

D. Fstimation o: Blast Wave F'ropert :s

We present her methods of estimating blast vielts and blast wave propertics for liquid propellant explosions, based prirarily on PYRO results and on the work of Farber and Deese. Although ,ur predict on methuds retain many of the features of the previous work, they aiso differ somewhat where w. feel changes are appropriate. Furthermore, factors which appear to have :

In particular, resporse times, time resolution and identificatior of :hysical phenomena from thermocouple grid measurements chinied in eference 27 seem doubt ful.

FIGURE 7. ESTIIAAIED EXPLOSIVE YIELD AG A FUNCTION OF PROPELi.ANT WEIGHT (PEF. 27)
secondary effect on blast yield, such as L/D ratio of tankage, are ignored. The concept of "TNT equivalency" is used only to estimate energy of a liquid propellant explosion, and not to predict detailed blast wave characteristics. Blast is strongly dependent on type of propellant, type of simulated accident, in ract velocity, and ignition time, so these factors must be accounted for in estimating blast wave characteristics and yield.

Throughout the PYRO work, blast yield is expressed as percent yield, based on an average of pressures and impulses measured at the farthest dis tance from the source when compared to standard reference curves (ref. 2) for TIIT surface bursts (terminal yield). Hopkinson's 'olast scaling is used when comparing blast data for tests with the same propellants and failure conditions, but different mass of propellant. So, the blast parameters P (peak side-on overpressure) and $I / W^{l / 3}$ (scaled impulse) are plotted as functions of $R / W^{1 / 3}$, (scaled distance) after being normalized by the fractional yield. This procedure is equivalent to determining an effective weight of propellant for blast from:

$$
\begin{equation*}
W=W_{T} \times \frac{Y}{100} \tag{3}
\end{equation*}
$$

where W_{T} is total weight of propellant, $\quad Y$ is terminal blast yield in percent, and W is effective weight of propellant. Because the data are normalized by comparing to TNT blast data, the effective blast energy E can be obtained by multiplying W by the specific detonation energy of TNT, $1.4 \times 10^{6} \mathrm{ft} \mathrm{lb} / \mathrm{lb} \mathrm{m}$. We will use smoothed curves through the scaled PYRO blast data, and Equation (3), to obtain blast wave properties for any particular combination of propellants and simulated accident. We will consider each propellant combination separately.

1. Hypergolic Propellant - The hyfergolic propellant in widest use, and used in the PYRO tests, is a fuel of $50 \% \mathrm{~N}_{2} \mathrm{H}_{4}-50 \%$ UDMH and an oxidizer of $\mathrm{N}_{2} \mathrm{O}_{4}$ in a mass ratio of $1 / 2$. Hypergolic materials, by definition, ignite spontaneously on contact, so it is not possible to obtain appreciable mixing befure ignition unless the fuel and oxidizer are thrown violently together. Ignition time is therefore not an important determinant of blast yield for hypergolics, but impact velocity and degree of confinement after impact are important factors. Project PYRO results and resulting prediction methods which are given in references 15-17 concentrate on these factors and can be used directly to obtain estimates of blast yield. The only modification which we propose is to use smoothed curves from PYRO results for peak overpressures and impulses, rather than multiplying factor.

The procedure is then as follows:
(1) Consider failure mode, or impact velocity and type of surface impacted.
(2) Obtain terminal yield Y in $\%$ from Table III or Figure 8 (from reference 16).
(3)

Calculate W from Equation (2) knowing tctal weight of propellant and Y.
(4) At distances R of interest, compute Hopkinson-scaled distance R/W1/3.
(5) From appropriate smooth curves in Figures 9 and 10, read peak overpressure P and scaled impulse $I / W^{1 / 3}$. Multiply scaled impulse by $W^{1 / 3}$ to obtain I.

TABLE IV - ESTIMATE OF TERMINAL YIELD (REF. 16)

FAILURE MODE	TERMINAL YIELD RANGE (\%)	ESTIMATED UPPER LIMIT
Diaphragm rupture (CBM)	$0.01-0.8$	1.5
Spij1 (CBGS)	$0.02-0.3$	0.5
Small explosive donor	$0.8-1.2$	2
Large explosive donor	$3.4-3.7$	5
Command destruct	$0.3-0.35$	0.5
$310-f t$ drop (CBGS)	~ 1.5	3

Note that the blast yields are very low (a fraction of one percent to a few percent, for all but high velocity impacts, which is not surprising in view of the small amount of mixing which is possible before ignition. Possible error in estimation of yield is also substantial, as can be seen from the ranges of yields in Table IV and data scatter in Figures 8, 9 and 10.
2. Liquid Oxygen-Hydrocarbon Propellant - The second propellant combination which we will consider uses Kerosene (RP-1) as a fuel, and liquid oxygen $\left(\mathrm{LO}_{2}\right)$ as the oxidizer in stoichiometric mass ratio of $1 / 2.25$. Because this liquid propellant is not hypergolic, considerable mixing can occur in

PYRO DATA

FIGURE 8. TERMINAL YIELD VS IMFACT VELOCITY FOR HY PERGOLIC HIGH-VELOCITY IMPACT (REF. 16)

FIGURE 9. PRESSURE VS SCALED DISTANCE FOR HYPERGOLIC TESTS

FIGURE 10. SCALED POSITIVE IMPULSE VS SCALED DISTANCE FOR HYPERGOLIC TESTS
various types of real or simulated accidents, and time of ignition after onset of mixing is an important determinant of blast yield. Other important parameters have been shown by the PYRO and other results to be the mode of failure or simulated accident, impact velocity, and propellant mass or weight. Less important parameters appear to be geometry of tankage expressed as a length-to-diameter (L/D) ratio, propellant orientation, and area of rupture of interior bulkhead for CBM case. The estimation methods which we give here are based largely on the PYRO test results, but also include conclusions and/or physical reasoning of our own and of Farber and other investigators.

For the case of mixing and an explosion within the missile tankage (CBM), time for ignition ard mass of propellant are the principal determinants of blast wave properties. The scaling of ignition time assumed for PYRO is not proven by the PYRO test results (see Appendix A), so we simply plot a smooth curve through PYRO results for blast yield Y as a function of time t in Figure ll. We also use Farber's physical reasoning in ploting this curve, i. e., for zero time for mixing, yield must be zero, and for long enough time, yield must decrease. A direct plot against ignition time is used, independent of mass of propellant, because it fits the data as well as scaled time plots and also serves to indicate that scaling of ignition time has not yet been vorificd experimentally. Once blast yield Y has been determined from Figure lifor an assumed ignition time, effective weight of propellant W is then calculated from Eqtation (3) for known Y and W_{T}, and blast pressures and impulses are obtained from fits to PYRO data in Figures 12 and 13 , in exactly the same manner as for the hypergolic propeilants.

For simulated fall-back on the launch pad (CBGS), impact velocity as well as ignition time are important parameters in estimating blast yield. PYRO prediction methods included fits to scaled time parameters and to impact velocity to a fractional power close to one. As stated before, time scaling is not proven by the data. Also, linear dependence on impact velocity is simpler than a fractional power close to one and fits the data just as well. A suitable fit of maximum yield Y_{m} to impact velocity, agreeing with curve A of Figure $5-41$ of reference 16 , is:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{m}}=5 \%+\frac{2.08}{(\mathrm{ft} / \mathrm{sec})} \mathrm{U}_{\mathrm{I}}, 0 \leq \mathrm{U}_{\mathrm{I}} \leq 80 \mathrm{ft} / \mathrm{sec} \tag{4}
\end{equation*}
$$

where Y_{m} is expressed in $\%$, and U_{I} is in ft/sec. Blast data for this case from reference 16 are normalized with respect $t c Y_{m}$ by the factor $\mathrm{X} \cdot 100 / \mathrm{Y} \mathrm{m}$, and plotted versusignition time in Figure l4. The smooth curve through the data can then be used to predict percent yield using Y_{m} from Equation (.f) for impact velocity U_{I}. Again, using Equation (3), W cante found and blast parameters determined from suitable fits to PYRO data, which are given here as Figures 15 and 16.

FIGURE 11. IGNITION TIME VS YIELD LO $2 / R P-1$ CBM

FIGURE 12. PRESSURE VS SCALED DISTANCE FOR $\mathrm{LO}_{2} / \mathrm{RP}-1$ CBM CASE

FIGURE 13. SCALED POSITIVE IMPULSE VS SCALED DISTANCE FOR $\mathrm{LO}_{2} / \mathrm{RP}-1 \mathrm{CBM}$ CASE

FIGURE 14. IGNITION TIME VS NORMALIZED YIELD $\mathrm{LO}_{2} / \mathrm{RP}-1 \mathrm{CBCS}$

FIGURE 15. PRESSURE VS SCALED DISTANCE FOR $\mathrm{LO}_{2} / \mathrm{RP}-1$ CBGS-V CASE

FIGURE 16. SCALED POSITIVE IMPULSE VS SCALED
DISTANCE FOR LO $/$ RP-1 CBGS-V CASE

In high velocity impacts of this propellant, the situation is scomewh : simpier because there is little ignition delay and therefore only impact veiocity affects yield. Prediction methods from reference 16 can then be used to estimate yield Y (see Figure 17) and blast parameters obtained from Equation (3) and Figures 15 and 16.
3. Liquid Oxygen-Liquid Hydrogen Propellant - The final propellant combination is the entirely cryogenic combination of liquid hydrogen (LH_{2}) fuel and liquid oxygen $\left(\mathrm{LO}_{2}\right)$ oxidizer in stoichiometric ratio by mass of $1 / 5$.

The rationale for predicting blast parameters for this propellant combination is identical to that for $\mathrm{LO}_{2} / \mathrm{RP}-1$. For the CBM case, Figure 18 gives a plot of ignition time versus yield. After determining W from this plot and Equation (3), one can enter Figures 19 and 20 to obtain blast wave properties.

For the CBGS case, a linear fit of maximum yield versus impact velocity gives

$$
\begin{equation*}
Y_{\mathrm{m}}=10 \%+\frac{1.35}{(\mathrm{ft} / \mathrm{sec})} \mathrm{U}_{\mathrm{I}}, \quad 0 \leq \mathrm{U}_{\mathrm{I}} \leq 80 \mathrm{ft} / \mathrm{sec} \tag{5}
\end{equation*}
$$

Using this equation to normalize ignition time versus yield, we obtain Figure 21. From the curve in Figure 21 , we can find Y for a given ignition time, and then obtain W from W_{T} and Equation (2). Finally, blast pressure and impulse are obtained from Figures 22 and 23.

For high-velocity impact of this propellant, the blast yield is also dependent only on the impact velocity, and the prediction methods of reference 16 can be used directly. The curve in Figure 24 gives the yield Y, and Equation (3) and Figures 22 and 23 will give predictions of blast wave properties.
4. Limit to Yi»ld for Large Mass of Propellant - Any method of predicting blast yield must, it seems clear, provide an upper limit on yield with increasing mass of propellant. All tests to date with large amounts of propellant have shown autolgnition sources which prevent mixing of even a large portion of the propellant prior to ignition. The simplest way to incorporate a limit is to use the limit curve of Figure 7 generated by Farber. The curve labeled "average value" should probably be used for our purposes. Explosive yield y in Figure 7 is only approximately related to Y in all of the preceding discussion, because Farber bases his yield on actual energy of combustion of the propellant rather than TNT equivalence. But, considering the multitude of other errors in these methods. we can igno.e the difference and simply assume that $y=Y / 100$.

FIGURE 17. TERMINAL YIELD VSIMPACT VELOCITY FOR
$\mathrm{LO}_{2} / \mathrm{RP}-1$ (REF. 16)

FIGURE 18. IGNITION TIME VS YIELD LO $\mathbf{2}_{2} / \mathrm{LH}_{2} \mathrm{CBM}$

FIGURE 19. PRESSURE VS SCALED DISTANCE

FIGURE 20. SCALED POSITIVE IMPULSE VS SCALED DISTANCE FOR $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ CBM CASE

FIGURE 21. IGNTION TIME VS NORMALIZED YIELD LO $/ \mathrm{LH}_{2}$ CBGS

FIGURE 22. PRESSURE VS SCALED DISTANCE FOR $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ CBGS-V CASE

FIGURE 23. SCALED POSITIVE IMPULSE VS SCALED DISTANCE
FOR LO $2 / \mathrm{LH}_{2}$ CBGS-V CASE

FIGURE 24. TERMINAL YIELD VS IMPACT VELOCITY FOR $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ (REF. 16)
III. DETERMINATION OF FRAGMENT VELOCITY DISTRIBUTION

A. General

In our review of accident and test data for liquid propeliant explosions, we found no data on the velocities of fragments produced by these explosions, outside of data available in films of Project PYRO. Only the report by Jeffers (ref. 18) contained an analysis of fragment velocities, and this analysis was based on a study of films of three of the PYRO tests.

The repository for all raw data, including films, from the extensive series of PYRO tests is the Air Force Rocket Propulsion Laboratory at Edwards Air Force Base, California. In visits to this agency, SwRI staff members viewed all of the library of PYRO films and selected for data'reduction films of 94 tests in which individual fragments were visible and could be followed from frame to frame. These films were then loaned to the institute for measurement of fragment velocities. For most of these experiments, several camera views of each test were available. Film speeds were accurately known, with timing marks at known repetition rates impressed on the edges of most films. The 94 tests for which we reduced fragment velocity data represented a spectrum of propellant types, scale of test, and type of sirnulated accident. In addition, reduced blast data and measured blast yields are known for each experiment and reported in references 15 and 16 .

Because the PYRO films constituted our raw data for determination of fragment velocity and because reduction of these data required more detailed knowledge of test details than were available in references 15 and 16 , we engaged a consultant from URS Corporation, prime contractors for PYRO. He provided us with sufficient additional information, drawings of test arrangements, etc., to enable us to obtain accurate estimates of such needed information as distance scales in the field of view of each camera and timing mark frequencies on films. He also helped us resolve unexplained discrepancies in reported PYRO test results.

Although the PYRO films provide all of our basic data on fragment velocities and can allow correlation with measured blast yields, they do not in general provide any data on fragment masses, shapes, or ranges. In only one PYRO test were these parameters measured, and this test is the only one for which any overall correlation of fragmentation effects conceivably can be made.

B. Reduction of Film Data

1. Camera Locations - Locations of the camera during PYRO tests from which fragmentation data were obtained are shown in Figure 25.

FIGURE 25. PLAN VIEW OF CAMERA LOC ATIONS DURING PYRO TESTS

Cameras were located along radial lines at azimuth angles $0^{\circ}, 240^{\circ}$ and 340° and on a tower directly above the event.* A few tests were also photographed from airplanes and from the tops of nearby mountains, but these cameras were located too far away from the event to provide fragmentation data. During five tests cameras located at position B of Figure 25 were focused on the barricade located along an extension of the zero degree leg. Although fragment data were read from these films, they were not processed because the data were too few to be statistically significant.

The greatest number of films and the largest amount of data came from cameras located at the azimuth angles of 0° and 240°. These camera positions, also called positions "A" and "B", were located 420 feet from the center of the test pad. From these locations, cameras filmed the event with several different focal length lens and at indicated camera speeds ranging from 64 frames/ sec to 1,000 frames/sec. Although overhead shots were available for inost tests, they provided little usable data. The field of view of the cameras was small relative to the size of the fireball and the fragments were not visible in the flames. Cameras situated at azimuth position 340° were located 1,050 feet from the center of the pad and were mounted on a tower 110 fect above the ground surface. Since the elevation at the base of the tower is 36 feet above that at the test site, the cameras were actually 146 ieet above the test pad. Only a few tests were photographed from this location, however, and not all of the filme provided fragmentation data. Some cameras had a field of view which was so large relative to the size of the fireball that fragments could not be seen. Other cameras with longer focal length lenses proviled good film data.

Generally, most data were obtained from those cameras which had a field of view slightly larger than the resulting fireball and which had the highest film speed. Because several camera views were often available from the same location (particularly for locations A and B), the view or views providing the best data were selected for reduction. For example, other factors such as field of view and quality of the film being equal, the film which had the higher framing rate was chosen for data reduction. Even at the higher framing rates, the film length was sufficient to observe the growth and start of decay of the fireball.

Most films were accompanied by data which identified the test number, camera number, camera speed, frequency of the timing mark generator, focal length of the lens, distance from the camera to the event, and the azimuth angle of the camera position. We found some of these data to be inconsistent. For example, we were informed by Project PYRO test personnel

[^0]thai cameras located 420 feet from the event were located at position " A " or position "B" (of Figure 25) on radial lines which are 120° apart. We found, however, that these positions were either labeled as 0° and 270°, respectively, or as 325° and 130°, respectively. Also, leg A was sometimes identified by an azimuth angle of 65° and the tower (located 1,050 feet from the pad) by azimuth angles of 300° and 340° (340° is correct). Consequently, we relied upon the background in the film itself to identify the leg upon which the camera was located. Except for cameras located directly above the event, (and those at distant locations which did not contribute fragmentation data), the cameras were assumed to be located at either position "A", "B", or at an azimuth angle of 340° as shown in Figure 25. This is consistent with the instructions of Project PYRO personnel.

Film datz reduction was accomplished using a Vanguard Film Analyzer. Data obtained from the films included the frame number relative to the initiation of the explosion, the X and Y positions of the fragment referenced to the frame number, the spacing of the timing mariss, the height to the top and bottom of the tank, the tank diameter, and, if in the field of view, the height of the tower above the test pad. The height of the tower was used for computing the scale factor. Since each test was viewed from more than one direction (from camera locations A and B) an attempt was made to identify the fragments in camera view's from both locations. When available, such data (which we have labeled "Duplicate View Data") permitted a fairly accurate determination of the flight path of the fragments. If the fragments were identified only in a single view, however, (this has been labeled "Single View Data '") it was not possible to determine their actual flight path. As recorded on film, the fragment position is a projection on a plane normal to the lens axis of the camera. Without additional data, such as from an additional camera view, no correction to the data to account for a flight path other than normal to the lens axis of the camera could be made. Thus, the fragment data were processed a though the fragments were traveling in a plane which was normal to the len, axis of the camera. After reducing the fragment data from the iilms we estimated that nearly all of the fragments sighted had a trajectory which was within ± 45 degrees of the normal to the lens axis of the camera. If this estimate is correct, computed velocities for single view data should be within $+0 \%$ to -30% of the true velocity.

Since cameras at positions A and B viewed the event from approxi. mately the same elevation as the test pad, fragment pusitions were recorded for a vertical plane normal to the azimuthal position of the camera. However, the camera on the tower, at azimuth 340°, was elevated above the test pad. A correction for this elevation was made so tlat the fragment position would be calculated for a vertical plane as for camera positions A and B. This correction is discussed in the processing for single view data.
2. Processing of Single View Data - As viewed from the camera, the fireball and fragment would appear as in Figure 26 with the positive X axis to the right and lying along ground surface and positive Y axis vertical through the center of the tank. Subscripts on the axes refer to the camera position A or B from which the data are obtained. The view shown in Figure 26 is typical of that obtained by a camera in position A. The angle between the intersection of the $X-Y$ planes of cameras A and B is then 120° (this angle is required for processing of the duplicate view data, but not for processing the single view data). Fragment positions are measured on the film with respect to the X and Y axes. Processed data are computed with respect to the X^{\prime} and Y axes; that is, with respect to a set of axes which pass through the center of the tank.

The first items calculated from the film data are the film speed in frames per second (fps), the scale factor (SF), and the height of the event (h_{e}). Spacing of the timing marks (tm) are read from the film in frames per timing mark. When spacing of timing marks is multiplied by the frequency of the timing mark generator in timing marks per second, the framing rate in frames per second is obtained. To compute the scale factor a known length in the field of view is divided by its length as measured on the screen of the Vanguard Analyzer. This gives the scale factor directly if the known length is the same distance from the camera as the event; otherwise, an appropriate adjustment must be made. The height of the event (h_{e}) can be determined from engineering drawings if they are available, but it is also determined directly from the film data. It is computed as one-half the sum of the distances to the top and to the bottom of the tank. Even though an attempt was always made to align the X axis ($\mathrm{Y}=0$ position on the screen of the Vanguard Analyzer) with the top of the pad, this alignment was never exact. Consequently, whenever it is available, h_{e} obtained from the film measurement is used. Knowing the film speed, the scale factor and the height of the event, the $\mathrm{X}-\mathrm{Y}$ positions of the fragment can be calculated from Equations (7) and (8).

$$
\begin{align*}
& x_{i}^{j}=x_{i}^{j}(S F) \tag{7}\\
& Y_{i}^{j}=\frac{y_{i}^{j}(S F)}{\cos \theta_{v}\left[1+\frac{r_{i}^{j}(S F)}{d c} \sin \theta_{v}\right]}-h_{e} \tag{8}
\end{align*}
$$

Subscript i refers to the frame number and superscript j refers to the fragment number. Lower case x and y denote the values as read from the film, and capital letters denote calculated displacements. The denominator of Equation (8) is a correction factor which adjusts for the condition that the lens optical axis may not be perpendicular to the vertical axis along which Y is

FIGURE 26. FIREBALL AND FRAGMENT AS VIEWED BY A CAMERA LOCATED AT POSITION A
to be calculated. For the camera elevated above the event as shown in Figure 27, θ_{v} is the positive angle between the lens axis of the camera and the horizon and dc is the horizontal distance from the camera to the event. To obtain the vertical position of the fragment relative to the center of the tank, h_{e}, the distance from the X -axis $(\mathrm{Y}=0)$ to the center of the tank is subtracted from the calculated displacements. Equation (8) is derived for the condition that the lens axis passes through the center of the tank (the assumed origin of the fragment trajectories). The error induced by neglecting the offset of the lens axis relative to the center of the tank is about 1%.

A cor rection similar to that in Equation (8) is needed when the fragment is not traveling in the $\mathrm{X}-\mathrm{Y}$ plane, but is traveling either toward or away from the camera. The error incurred is indicated in Figure 27. It is exaggerated because the camera is shown much closer to the event relative to the height of the fragment than actually was the case when photographing the fragments. This schematic does show, however, that the calculated Y displacement is a projection of the actual displacement on a vertical plane through the center of the event. If the fragment is coming toward the camera the Y displacement calculated will be slightly greater than the actual Y displacement; whereas, when the fragment is traveling away from the camera, the calculated displacements will be slightly smaller than the actual displacements. For single view data, there is no way to correct for this error because one cannot tell which direction the fragment is actually traveling. (A similar error occurs for the horizontal displacements.) For the duplicate view data, however, it is possible to calculate the true vertical and horizontal displacements. This will be discussed under 'Processing of Duplicate View Data."

Once the X and Y displacements of the fragments have been calculated for each frame number and once the times corresponding to these frame rumbers have been determined by dividing the frame number (event starts in frame number one) by the framing rate, the fragment velocities can be calculated. Velocities are calculated in two ways. An average velocity is computed by assuming that the fragment has traveled in a straight line from the center of the tank to the position where it is first sighted. This velocity is given by Equation (9)

where the subscript II indicates the frame number in which the fragment is first observed. In addition to this so-called average velocity, the velocity of the fragment during the period of time in which it is observed is also computed. To determine this velocity, the distance the fragment travels along

FIGURE 27. SCHEMATIC SHOWING ACTUAL AND C ALCULATED
its trajectory after first being sighted is calculated from Equations (10) and (11)

$$
\begin{align*}
& \Delta s_{i}^{j}=\sqrt{\left(x_{i}^{j}-x_{i-1}^{j}\right)^{2}+\left(Y_{i}^{j}-Y_{i-1}^{j}\right)^{2}} \tag{10}\\
& s_{i}^{j}=s_{i-1}^{j}+\Delta s_{i}^{j} \tag{11}
\end{align*}
$$

where the distance S is set to 0 at the time of sighting. Velocity of the frag ment, U_{i}, is then determined from the slope of a straight line fit to the computed distance-time data points S_{i} and T_{i}, where T_{i} is adjusted to 0 at the time of sighting as was S_{i}. The subscript i on the velocity is used to denote an instantaneous velocity. While it is true that this velocity is actually an average over the time of sighting, the elapsed time is short compared to the elapsed time between the explosion and the sighting of the fragment for which U_{A} was determined and the velocity of the fragment varies only slightly during the time of sighting. Also, the position of the fragment which corresponds to U_{i} is computed for the center of range over which the fragment is tracked (as discussed below) and U_{i} should be very close to the instantaneous velocity at this position.

In addition to the fragment velocities, the position of the fragment relative to the center of the event and its direction of travel are computed. Fragment coordinates are given as a radius $\overline{\mathrm{R}}$, height $\overline{\mathrm{Z}}$, and an azirr.uth angle Ψ. Since the computed velocity, U_{i}, is taken to be the instantaneous velocity of the fragment at the center of its range of travel while in view, the cylindrical coordinates are computed for this position also. The expressions for determining these coordinates are

$$
\begin{align*}
& \bar{R}^{j}=\frac{1}{2}\left(X_{I F}^{j}+X_{I I}^{j}\right) \tag{12}\\
& \bar{Z}^{j}=\frac{z}{2}\left(Y_{I F}^{j}+Y_{I I}^{j}\right) \tag{13}\\
& \Psi^{j}=-\frac{X_{I F}^{j}}{\left|X_{I F}^{j}\right|}(90)+\Psi_{c} \tag{14}\\
& I F \quad \Psi^{j}<0.0 \text { set } \quad \Psi^{j}=360+\Psi^{j} \tag{15}
\end{align*}
$$

where the subscript IF denotes the final frame in which the position of the fragment was recorded. Notice that \bar{R} and \bar{Z} are simply the center position of the : inge of the X and Y coordinates, respectively. The azimuth
position is determined from the azimuth angle, Ψ_{c}, of the camera viewing the fragment and the sign of the X displacement. This is based on the assumption that the fragment is traveling in the $X-Y$ plane which is normal to the line of sight of the camera. (For fragments which are photographed, and properly identified from two different camera positions, the azimuth angle of the line of flight can be determined more exactly.) The last parameter computed for the fragment is the elevation angle of its flight path above the horizon. This angle, θ, as shown in Figure 26 , is determined from the slope of a straight line fit to the $\mathrm{X}-\mathrm{Y}$ data for each fragment.
3. Processing of Duplicate View Data - After the single view data for each fragment had been processed, data for those fragments which could be identified in more than one camera view, that is, in views from camera positions A and B of Figure 25, were combined to more accurately determine a true trajectory of the fragments. Fragments were difficult to identify in more than one view, however, and thus the duplicate view data are very limited. In addition, we have often found when processing the data that what appeared to be the same fragment in two separate views, apparently was not. One criterion for determining whether or not the fragment is the same in two views are the Y displacements. They should be approximately the same when viewed from the two camera positions. As noted in Figure 27, there will be some differences depending on whether the fragment is traveling toward or away from the camera; however, these differences should be small because the cameras are located 420 feet from the event and it is unusual to follow a fragment for a distance of more than 60 feet above the ground. Thus, the cameras are viewing the fragment at an angle of less than 10° above the horizon. Although ro hard and fast rule was established, when the Y displacements of the two fragments differed by more than about 15%, it was assumed that two different iragments rather than the same fragment had been observed.

In duplicate view data, the same fragment is observed from cameras situated 120° apart. Thus, errors introduce by the fragment traveling toward or away from the camera tend to cancel out when averaging the Y displacements computed from the two different camera views. Consequentiy, the vertical displacements, δ, are calculated as the average of the vertical displacernents from the single view data. This is shown in Equation (16)

$$
\begin{equation*}
\delta_{j}^{i}=\frac{1}{2}\left(Y_{i}^{j}+Y_{i}^{D U P}\right) \tag{16}
\end{equation*}
$$

where the superscript DUP is the number of the fragment winch provides the additional camera view of fragment " j ".

Calculating the horizontal position of the fragment is more complicated. Figure 28 shows the geometry in plan view. The X displacements of the fragment, computed from the two separate camera views, are indicated by X_{A}

FIGURE 28. GEOMETRY FOR FRAGMENT POSITION FOR DUPLICATE VIEWS
and X_{B}. These are projections of the fragment horizontal displacement upon the $X-Y$ planes for each camera position. The true horizontal displacement of the fragment, H_{F}. relative to the center of the event is desired. Using simple geometrical relationships, two expressions for H_{F} were obtained and are given by Equations (17) and (18)

$$
\begin{align*}
& H_{F}=\frac{X_{A} d c_{A}}{X_{A} \cos \alpha+d c_{A} \sin \alpha} \text { for } X_{A} \neq 0 \tag{17}\\
& H_{F}=\frac{-X_{B} d c_{B}}{X_{B} \cos \left(h 0^{\circ}+\alpha\right)+d c_{B} \sin \left(60^{\circ}+\alpha\right)} \text { for } X_{B} \neq 0 \tag{18}
\end{align*}
$$

As indicared, Equation (17) cannot be used for $X_{A}=0$ and Equation (18) cannot be used for $X_{B}=0$. In practice, Equation (17) was used whenever the absolute value of X_{A} was greater than X_{B}, and Equation (18) was used when the reve.se was true. Subscript i and superscript j have been dropped from the equations for simplicity. The angle, α, is found by equating Equations (1:) to (18), and is given by Equation (19).

$$
\begin{equation*}
a=\tan ^{-1} \frac{X_{A} X_{B} \cos 60^{\circ}+X_{A} X_{B} d c_{B} / d c_{A}+X_{A} d c_{B} \sin 60^{\circ}}{X_{A} X_{B} \sin 60^{\circ}-X_{B} d c_{E}-X_{A} d c_{B} \cos 60^{\circ}} \tag{19}
\end{equation*}
$$

Equations (17), (18), and (19) hold for fragment positions in all quadrants.
The same procedures were used in calculating the average velocity, U_{A}, and the velocity of the fragment after acquisition, U_{i}, as were used for tise single view data. Quantities U and H were simply substituted for X ant Y. Also, with the exception of the azimuth angle, the cylindrical coorcinates of the fragment and the elevation aligle θ were computed as for the single view data. The azimuth position of the fragment is simply 360° minus the angle x.
4. Computer Program for Data Processing - A computer program was written to process the data as it was received in punched card form from the Vanguerd Analyzer. Although the details of the program will not be presented hert, it solves the ec ${ }_{b}$, ins given in the preceding sections anci prints the results in a usable form. The program also creates a tape file for subsequent statistizal analysis of the results.

A simmary of camera data and number of fragments whose trajectories were mwasured is given in Appendix A. The tests are grouped by type, as defined in the PYRO reports (refs. 15 through 17), and are identified by the PYRO test numbers. Numbers of fragments whose velocities and trajectories
were measured range from a minimum of 2 per test to a maximum of 36 per test. The maximum number of fragments identified in duplicate views was 3 per test.
5. Summary of Fragment Velocity Measurements and Calculations The fragment velocity data derived from the PYRO films are available on punched cards and in computer printouts. The key designator for all data is the PYRO test number; for each such test having readable fragment velocity data, all of the quantities defined by the equations in Section 4 are calculated and printed for each fragment traced. The printouts are quite voluminous and so are not included in this report.

The data for each test were further reduced using standard statistical procedures and a " anned" computer program available to us through our CDC library of programs. We chose the six output variables $U_{A}, U_{i}, \theta, \Psi, \bar{R}$, and H_{F} for statistical treatment, and computed the mean, standard deviation, standarderror of the mean, maximum, minimum, and range fur each variable. Again, the computer printout sheets are too detailed for inclusion in the report, but are available for study.

A summary of results is given in Table V. Each test is identified by the PYRO test number, and the tests are grouped by propellant and type of simulated accident. Test conditions given are total weight of propellant, tank L/D ratio, and impact or drop velocity. Ignition time and measured blast yield from reference 16 are listed." Fragmentation data are given in the last four columns, indicating number of camera views from which data were taken, number of fragments observed, mean value of fragment velocity, U_{i}, and standard deviation of this same parameter σ_{u}. These mean velocities and standard deviations were determined from the single view data only. The number of fragments which were identified in more than one camera view and processed as duplicate view data was too small for statistical analysis. Because the data represent a wide spectrum of test conditions, propellant types, and propellant weights, they should allow correlation with methods of prediction of initial velocity such as those presented later in this section, and snould also lend themselves to various types of statistical analysis. A limitation to the data which may render statistical studies difficult is that rela. tively few fragments could be observed in any one test. Some grouping between tests with different propellants, different blast yields, etc., may be possible. To aid in rational choice of ways to group the test results, we conducted several limited model studies. These are included in this report as Appendix C.

[^1]table V

Test No.	$\begin{aligned} & \text { Prop. Wt. } \\ & \text { (ibs) } \end{aligned}$	Impact velocity (ft/sec)	Ignition Time (msec)	$\begin{gathered} \text { Yield } \\ (\%) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Tank } \\ & \text { L/D } \end{aligned}$	No. Of Camera Views	No. Of Fragments Observed		$\begin{gathered} \hline \text { Standard } \\ \text { Deviation } \\ \sigma_{\mathrm{v}} \\ \text { (fps) } \\ \hline \end{gathered}$
GROUP 2: HYPERGOLIC (AFRPL) TESTS									
	200	---	---	4.00	1.93	1	7	34.6	14.0
30 31	200	---	---	. 20	2.00	1	4	77.5	26.5
32	200	--.	-.-	. 08	2.00	1	6	131.9 44.8	97.8 12.8
33	200	--.	---	8. 80	2.00	1	7	19.8 19.9	142.1
35	200	---	---	.15 .30	2.00 1.93	1	2	34.3	25.6
36	200	---	---	. 30	1.93 1.93	2	12	403.0	390.0
39 258	200 1000	77	---	. 30	2.00	2	7	76.0	35.9
GROÜP 3: LO $_{2} /$ RP-1 CONFINEMENT-BY-THE-MISSILE TESTS									
48	2 co		310	9.8	5. 58	2	12	300	263
49	200	--.	316	12	5.58	2	16	394	305 192
58	200	---	200	27	2. 14	2	14 15	434	374
87 A	200	---	70	16	2.14	2	15 13	698 291	111
88	200	---	60	17	5. 58	2	13	660	459
95A	200		120	17	2. 14	2	14	484	246
192	1000	---	216	14	2.07	2	18	621	312
193	1000	---	222	20 10	2.07	3	15	898	637
209	1000 200	---	127	32	2. 14	2		608	287

Test No.	Prop. Wt. (lbs)	Impact Or Drop Velocity (ft/sec)	Ignition Time (msec)	Yield $(\%)$	$\begin{aligned} & \text { Tank } \\ & \mathrm{L} / \mathrm{D} \end{aligned}$	No. Of Camera Views	No. Of Fragments Observed	$\begin{gathered} \text { Mean } \\ \text { Velocity } \\ \bar{V}_{I} \\ \left(\mathrm{fps}_{\mathrm{s}}\right) \\ \hline \end{gathered}$	
GROUP 8 (Cont'd) -									
	200	23	480	14	2.02	2	14	193	102
152	200	78	67	32	5.43	2	18	180	111
184	200	23	810	17	2.02	2	12	309	237
195	200	78	292	104	2.02	2	18	197	102
197	200	44	500	19	2.02	2	6	166	83
201	200	23	1524	26	2.02	2	17	310	201
204	200	44	317	42	1.02	2	17	747	463
211	1000	14	-0-	12	1.92	2	7	89	82
217	1000	44	1490	33	1.92	1	5	249	77
$こ 26$	200	78	283	51	2.02	2	21	434	313
230	200	44	24	21	1.92	3	19	482	241
266.	1000	44	-0-	14	1.92 2.10	2	20	698	300
288C	25000	44	365	13	2. 10	3	40	1176	66
289 A	25000	44	166	4	2. 10	3	32	878	693
290	25000	44	105	2	1.92	3	14	247	88
2918	1000	44	---	9	1.92	3	26	464	226
293	10G0	44	---	3.9					
GROUP 9: $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ CONFINEMENT-BY-THE-GROUND SURFACE HORIZONTAL TESTS									
		23**		6	2.02	2.	23	295	286.
13:	200	23		6	2.02	2	15	255	194
136	200	23	---	9	2.02		13	386	296
196	200	78**	---	17	2.02	2	12	360	314
228	200	78	--	34					

[^2]| Test | Prop. Wt. (ibs) | $\begin{aligned} & \text { Impact } \\ & \text { Or Drop } \\ & \text { Velocity } \\ & \text { (ft } / \mathrm{sec} \text {) } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Ignition } \\ \text { Time } \\ \text { (msec) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Yield } \\ (\%) \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Tank } \\ & \text { L/D } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { No. Of } \\ \text { Camera } \\ \text { Views } \end{gathered}$ | $\begin{gathered} \text { No. Of } \\ \text { Fragmente } \\ \text { Observed } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Mean } \\ \text { Velocity } \\ \sigma_{1} \\ (\mathrm{fps}) \\ \hline \end{gathered}$ | Standard Deviation σ_{v} σ_{v} (fps) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (SCRLED TWÓ-STAGE VEHICLE)
 GROUP 10: $\mathrm{LO}_{2} / \mathrm{LLH}_{2}$ AND LO $/$ RP- 1 CONBINED SPECIAL TESTS | | | | | | | | | |
| | | | | | 2.12 | ? | 7 | 259 | 181 |
| 169 173 | 200 200 | ${ }_{23}^{23}$ | 318 56 | 15 | 2. 12 | 2 | 16 14 | 207 254 | 138 234 |
| ${ }_{233}$ | 200 | 23 | 2182 | 109 | 2.02 | | | | |
| GROUP 11: LO /RP-1 COMBINED SPECIAL TESTS (SCALED TWO-STAGE VEHICLE) | | | | | | | | | |
| 294 | 1200 | | -0- | 5.6 | 3.33 | 4 | ${ }^{28}$ | 348 459 | 221 388 |
| 295 | 1200 | 44 | 544 | 70 | 3.33 | | | | |
| Saturn iv blast | | | | | | | | | |
| 62 | 91000 | --- | 183 | 6 | | 3 | 36 | 741 | 469 |

[^3]
C. Methods of Predicting Velocity

1. Explosions Within Missile Tanks

a. A Deterministic Method

(1) Choice of Parameters and Idealization of the Problem -

In this section, we discuss a method for predicting maximum velocities for fragments generated by explosions within missile tankage (CBM case). A method for predicting ranges is discussed in Section IV. In order to predict maximum fragment velocities, the problem must be "idealized" in a number of ways, and the parameters must be chosen such that the theory may be applicable to a spectrum of missile explosions involving different liquid fuels and oxidizers, volume of fuel oxidizer mixtures, tank wall specific mass, and tank geometries. To idealize the problem we consider only a spherical volume $V_{o o}$ of radius R_{o} in which we have a stoichiometric mixture of that amount of fuel and oxidizer which is mixed at time of detonation. Furthermore, upon detonation, all of this volume of fuel and oxidizer is assumed to be converted instantly to explosive products and energy, forming a "hot gas" which can be characterized by some ratio of specific heats. x, initial pressure, P_{00}, and initial sound velocity a_{00}. All of the fuei or oxidizer external to this spherical volume is considered to add mass to the container wall only and cakes no part in the chemical reaction of the explosive process. The container is spherically coincentric to the sphere in which the explosion takes place, and the non-reacting fuel (or oxidizer) moves initially with the fragments of this container wall as if they were an integral part of the fragments (i.e., they just add mass to the se fragments). Compression of the liquid fuel and oxidizer, and shock transmission effects in these liquids are ignored.

All fragments are assumed of equal size and have circular projections. If we pick a parameter, n, for the number of such fragments into which the containing sphere fractures, we can later solve the problem for various n, thus effectively varying the fragment size. It is further assumed that the sum of the concave inner surface areas of all the fragments is equal to the surface area of the original sphere of explusion.

$$
\begin{equation*}
\mathrm{A}_{\mathrm{i}}=4 \pi \mathrm{R}^{2} / \mathrm{n} \tag{20}
\end{equation*}
$$

where R is the initial radius of the sphere of explosion $\left[R=r_{i}(\tau)\right.$ for $\left.T=0\right]$, and A_{i} is the fragment surface area. Although these are gross idealizations of the fragmentation picture, they make the problem amenable to solution and allow some estimate to be made of how sensitive the solution is to fragment size and number.

If the stoichiometric mixture of fuel and oxidizer occupies a volume V_{0} and has a mass M_{0}, then, at the time $\tau=0$ the instant after the explosion, we assume the gaseous products of explosion occupy the same volume and have the same mass. The sound speed in this medium at this time is then a function of x, one of the independent parameters. One must pick $n, M_{00}, V_{0}(0)$, and $P_{0}(0)=P_{00}$ which characterize the sphere of explosion at $\tau=0\left(x, M_{0}\right.$, and $P_{o o}$ will depend on the type of fuel and oxidizer, and V_{0} depends on the amount of fuel and oxidizer that have mixed. One must then also pick an R, n, and M_{t} which charasterize the containing sphere (where R is the containing sphere's initial internal radius, equal to the external radius of the sphere of explosion; n is the number of fragments into which the containing sphere fragments, and M_{t} is the total mass of the containing sphere, i.e., the mass of the non-reactants, as well as the actual fuel tank mass). With this information the maximum fragment velocity for any of the equal sized n fragments is calculated? : the method to be described. This maximum velocity, U_{m}, may be used as the initial fragment velocity for the fragment range calculation (Section IV) in which the fragment is assumed to experience no acceleration due to the explosion after U_{m} is attained, but it experiences deceleration due to drag forces in the medium through which it is traveling.
(2) Equations for the Mathematical Model* - To obtain the initial velocities for the fragments from CBM explosions, an extension was made of the techniques of D. E. Taylor and C. F. Price (ref. 31) and of G. L. Grodzonski and F. A. Kukanov (ref. 32) relating to the motion of fragments from bursting gas reservoirs in a vacuum. These techniques were generalized from the case of spherical vessels which broke up into two perfectly hemispherical fragments to the case of a spherical vessel which fragments into n fragments, each of equal size and having a circular projection. For the case where the containing sphere is thin-walled, the equation of motion for the i-th fragment of mass M_{i} and radial displacement $r_{i}(\tau)$ having a projected area F and experiencing a pressure $P_{i}(\tau)$ at time T, is given by:

$$
\begin{equation*}
M_{i} \frac{d^{2} r_{i}(\tau)}{d \tau^{2}}=F^{\prime} P_{i}(\tau) \tag{21}
\end{equation*}
$$

If A_{i} is the area of the curved surface of the spherical segment (for the i-th fragment), then

[^4]\[

$$
\begin{equation*}
A_{i}=2 \pi \mathrm{Rh}=4 \pi \mathrm{R}^{2} / \mathrm{n} \tag{22}
\end{equation*}
$$

\]

where $R=r_{i}(0)$ and h is the segment height. Let the segment radius equal $\mathrm{d} / 2$, then it can be shown with the use of Equation (22) that

$$
\begin{equation*}
F=\frac{\pi \mathrm{d}^{2}}{4}=4 \pi R^{2}\left[\frac{1}{n}-\frac{1}{n^{2}}\right] \tag{23a}
\end{equation*}
$$

or

$$
\begin{equation*}
F \simeq A_{i} \quad \text { for } \quad n^{2} \gg n \tag{23b}
\end{equation*}
$$

The equation of state assumed for the gaseous products of explosion is given by

$$
\begin{equation*}
P_{0}(\tau) V_{0}(\tau)=c(\tau) R_{1} T_{0}(\tau) \tag{24}
\end{equation*}
$$

The rate of change in the mass of the confined gaseous explosion products in the sphere as the sphere begins to fragment and gas is lost to the external sphere region is given by

$$
\begin{equation*}
\frac{d c(\tau)}{d \tau}=-k \rho_{*} a_{*} \Pi \mathrm{w} \tag{25}
\end{equation*}
$$

where ρ_{*} and a_{*} are the critical gas density and velocity as they escape through the cracked surface of the sphere, Π is the crack perimeter, w is the crack width, and k is a discharge coefficient. The crack area for the i-th fragment given by $(\Pi, W)_{i}$ is equal to the difference betwcen the area subtended by the initial solid angle, ϕ, at the distance $r_{i}(\tau)$ for time τ and the actual area of the fragment A_{i}.

$$
\begin{equation*}
(\mathrm{A} w)_{i}=\phi r_{i}^{2}(\tau)-A_{i}=\frac{4 \pi R^{2}}{r_{i}}\left(\frac{r_{i}^{2}(\tau)}{R^{2}} \cdot 1\right) \tag{26}
\end{equation*}
$$

Inherent in Equation (26) is the assumption that all fragments travel in a radial direction and that the symmetry of the fragment motion is such that the equations of motion are only a function of the magnitude of the radius, i.e., the motion of the i-th fragment in the radial direction describes the motion of any other fragment in the radial direction and shear forces are small compared to dynamic forces. Thus, we may set $\mathbf{r}_{\mathbf{i}}=\mathbf{r}$ and, from Equations (25) and (26), we have

$$
\begin{equation*}
\frac{d c(\tau)}{d \tau}=-k \rho_{*} a_{*}\left(\frac{r(T)}{R^{2}}-1\right) 4 \pi R^{2} \tag{27}
\end{equation*}
$$

The volume of the gaseous explosion products at any time τ after $T=0$ is given by

$$
\begin{equation*}
V_{o}(\tau)=(4 / 3) \pi r^{3}(\tau) \tag{28}
\end{equation*}
$$

It has been assumed that the confined gas immediately adjacent to the fragrnents is accelerated to the velocity of the fragments but that this constitutes a negligible fraction of the gas, the great bulk of which is unaccelerated. Thus, from one-dimensional flow equations

$$
\begin{align*}
& P_{i}(\tau)=P_{0}(\tau)\left[1-\left(\frac{x-1}{2\left(a_{0}(\tau)\right)^{2}}\right)\left(\frac{d r(\tau)}{d \tau}\right)^{2}\right]^{x /(x-1)} \tag{29a}\\
& \rho_{*}=\rho_{0}(\tau)\left(\frac{2}{x+1}\right)^{1 /(x-1)} \tag{29~b}\\
& a_{*}=a_{0}(\tau)\left(\frac{2}{x+1}\right)^{1 / 2} \tag{29c}
\end{align*}
$$

Equations (29) can be non-dimensionalized by setting

$$
\begin{equation*}
r(\tau)=X g(\xi), \quad \tau=\forall \Xi, \quad P_{0}(\tau)=P_{00} P_{*}(\xi) \tag{30}
\end{equation*}
$$

For a confined gas that behaves adiabatically we have:

$$
\begin{equation*}
\frac{P_{0}(\tau)}{P_{00}}=\left(\frac{\rho_{0}(\tau)}{\rho_{00}}\right)^{x}=\left(\frac{T_{0}(\tau)}{T_{00}}\right)^{x /(x-1)}=\left(\frac{a_{0}(\tau)}{a_{00}}\right)^{2 x /(x-1)} \tag{31}
\end{equation*}
$$

where the double zero subscripts refer to the confined gas condition at $\tau=0$. From Equations (20), (29), (30), and (31), one obtains:

$$
\begin{equation*}
\frac{M_{i}}{M_{t}} g^{\prime \prime}=P_{*}\left[1-\frac{\left(g^{\prime}\right)^{2}}{\left(P_{*}^{*}\right)^{(x-1) / x}}\right]^{x /(x-1)} \tag{32}
\end{equation*}
$$

where primes denote derivatives with respect to \bar{y}, M_{i} is the mass of the $i-t h$ fragment, and M_{t} is the total "shell" mass. For n fragments of equal size,

$$
\begin{equation*}
\frac{M_{i}}{M_{t}}=\frac{1}{n} \tag{33}
\end{equation*}
$$

thus,

$$
\begin{equation*}
\left.g^{\prime \prime}=n P_{*}\left[1-\frac{\left(g^{\prime}\right)^{2}}{\left(P_{*}\right)}\right]^{(x-1) / x}\right]^{x /(x-1)} \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
X=\frac{M_{t}}{F} \frac{a_{00}^{2}}{P_{0 O}}\left(\frac{2}{x-1}\right), \quad Q=\frac{M_{t} a_{0 O}}{F P_{0 O}}\left(\frac{2}{x-1}\right)^{1 / 2} \tag{35}
\end{equation*}
$$

Differentiating Equation (31) and nondimensionalizing, one obtains

$$
\begin{equation*}
g^{3} \frac{P_{*}^{\prime}}{P_{; k}^{\prime}}=\left[-\alpha g^{2}+\alpha \beta\right] P_{\lambda_{k}}^{(x-1) / 2 x}-3 x g^{2} g^{\prime} \tag{36}
\end{equation*}
$$

where

$$
\beta(n)=R^{6} \pi^{2}\left(\frac{2}{x-1}\right)^{-2} \frac{P_{o o^{2}}}{M_{t}^{2} a_{o O} 4}\left[\frac{1}{n}-\frac{1}{n^{2}}\right]^{2}
$$

and

$$
a=3 k x\left(\frac{2}{x+1}\right)^{(x+1) / 2(x-1)}\left(\frac{2}{x-1}\right)^{-1 / 2}
$$

Equations (35) and (36) must be solved simultaneously with the initial conditions

$$
\begin{array}{lll}
r(0)=R & \therefore & g(0)=R / X \\
\frac{d \because(0)}{d \tau}=0 & \therefore & \frac{d g(0)}{d \xi}=0 \tag{37}\\
P_{0}(0)=P_{00} & \therefore & P_{*}(0)=1
\end{array}
$$

for values of ξ until the fragment acceleration is small with respect to the acceleration ${ }^{\prime} t \quad T=0$. $\mathrm{dg} / \mathrm{d} \xi$ is a maximum as the acceleration goes to zero. $\mathrm{dg} / \mathrm{d} \xi$ is the normalized initial velocity for the fragments to be used in the calculation of the fragment ranges.
(3) Solution of the Equations by Numerical Techniques and Computer Program - The solution of Equations (34) and (36) may be obtained numerically for the initial conditions of Equations (37), using the Runge-Kutta method. A program which does this (in FORTRAN IV), as well as the definition of its symbols, is given in Appendix C. This program requires as input the characteristics of the gaseous explosion products at $T=0$ ($A \phi$, the speed of sound; $F \notin$, the initial pressure; and CAP1, the ratio of specific heats), and the characteristics of the vessel (RR, the internal radius of vessel ard unburned fuel; $T M$, the mass of the vessel and unburned fuel; and $F N$, the number of fragments). Also, a guess must be made on the elapsed time between detonation and zero fragment acceleration, XMAX.* A time interval spacing, AH, must also be chosen for the calculation.

The program outputs the normalized displacement, velocity and acceleration (dynamic variables) of the fragment as a function of time; the normalized pressure within the vessel as a function of time; and the finfl values of time, displacement, velocity, acceleration, and pressure at XMAX. A sample program run is given in Appendix C.

Figure 29 shows the results for computing the maximum fragment velocity as a function of number of fragments when all other parameters are held constant. The figure indicates that the number of fragments does not affect maximum fragment velocity except at very low n (at which point the assumption of Equation (23b) does not hold). Figure 30 shows how maximum fragment velocity varies with x and the mass ratio M_{0} / M_{t}. The ratio of explosive products mass to shell and non-reactant fuel mass, a constant initial pressure ($P_{o o}$), number of fragments (n), sound velocity $\left(a_{o}\right)$, a d radius of explosion at $T=0(R)$ are assumed in this figure.
(4) Comparison of Results from this Method with Other Sources - The results of this method are compared to the cases described by Taylor and Price (ref. 31) in which:

$$
\alpha=\frac{P_{0} V_{o}}{M_{t_{0}}}=2.55, \quad 0.1436
$$

[^5]
FIGURE 29. MAXIMUM FRAGMENT VELOCITY AS A FUNCTION OF

in Figure 31. Generally it can be seen that our results predict somewhat lower fragment velocities than they do. Some discrepancy is to be expected because our assumptions on geometry were not as precise as theirs. This is especially true where we assumed that the surface area of a spherical volume could be divided into n equal circular areas; they assumed only two hemispherical fragments whose projected areas were well defined. Nonetheless, the agr-ement is relatively good, especially for the greater 2 .

Table VI gives a comparison between fragment velocities measured in experimental work relating to hazards from bursting high pressure tanks (ref. 33) and the predicted velocities using our deterministic method. The experimental values of Pittman (ref. 33) were obtained by pressurizing spherical metal tanks with N_{2} until they burst. Fragment velocitieg were measured by use of a breakwire system. In this system, a time interval counter was initiated by the tank rupture (start pulse) and was stopped when the first fragment reached the breakwire 1 foot away. Thus, the measured values actually are the mean fragment velocity for the first foot of travel (a stroboscopic photographic technique was also tised to measure fragment velocities in some cases). Where the experimental values were not precisely determined in tests D and E, limits were assignea to the fragment velocity on the basis of the data obtained. Input data to our progiam was based on the tank geometry and burst pressure, described in the report, and the properties of N_{2}. In general, our values agreed well with the measured values.

We believe on the basis of these comparisoris with independent data that our method has proven to be sufficiently accurate in predicting fraginent velocities to be useful. An effort to predict data reduced from PYRO films using this method is described later in this section.

TABLE V1. COMPARISON OF PREDICTED FRAGMENT VELOC!TIES WITH PITTMAN'S DATA (ref. 33)

Test.	$\begin{gathered} P_{n} \\ (\mathrm{psi}) \end{gathered}$	Ral. (in.)	$\begin{gathered} \text { Mass } \\ \left(\mathrm{llb}-\mathrm{sec}^{2} / \mathrm{in} .\right) \end{gathered}$	$\begin{gathered} \text { Measured } U_{f} \\ (f t / s e c) \\ \hline \end{gathered}$	$\text { Predicted } U_{f}$ $(\mathrm{ft} / \mathrm{sec})$
ᄃ	8×10^{3}	9.2	2.63×10^{-2}	1.2×10^{3}	1.201×10^{3}
D	8×10^{3}	27.0	4.45×10^{-1}	$<1.3 \times 10^{3}$	1.61×10^{3}
E	8.13×10^{3} !	27.0	4.43×10^{-i}	$\cdot 1.17 \times 10^{3}$	1.60×10^{3}

FIGI: RE 31. COMPARISON OF TAYLOR-PRICE TO SwRI SOLUTIONS FOR ADIABATIC CASE

2. Appurtenances Subjected to Propellant Blasts

a. Gener: - ' he situation considered here is shown in Figure 32. A propellant explosion occurs after some accident which ruptures the tankage and causes propellants and oxidizers to spill, mix andignite on the launch pad. We wish to establish a method of predicting velocities to which nearby objects (which we will call appurtenances) are accelerated by the passage of the blast wave. These objects can be parts of the launch tower, storage tanks, vehicles, and objects in or attached to the upper stages of the launch vehicle itself.

FIGURE 32. SCHEMATIC FOR ACCELERATION OF APPURTENANCES BY PROPELILANT ZLAST
b. Blast from Propellant Explosions - it is clear from the results of Project PYRO and other studies that the charactes'stics of blast waves produced by liquid propellant explosions differ eignificantly from the characteristics of blast waves produced by TNT nr other conventional solid explosives. These differences are discussed elsewhere (see Secsion : 1 , but some will be reiterated here because they affect estimation of velocities : appurtenances.

The firat characteristic of blast from propeliant explosions which differs from that of TNT is that the hlast wave is relatively weaker at all distanceabecause the propellant and oxidiser are almost never intimately mixed beforc being ignited. Thus, the full meplosive potential of the propellant-
oxidizer computed on the basis of energy of combustion is never realized. This difference is expressed, when comparing with blast waves from TNT explosions, as a percentage or fraction of "TNT yield", where the percentage must be multiplied by the total weight of propellant plus oxidizer, and then expresses the weight of TNT which will produce the same blast properties far enough from the explosion source.

The second characteristic of the blast from propellant explosions which differs from the blast from TNT explosions is that measured parameters such as peak overpressure and positive phase impulse vary with range in a different manner. Compared to TNT blasts, equal energy propellant explosions generate blast waves with relatively low overpressures and relatively high impulses (longer durations) at close-in distances, with gradual change to nearly identical pressures and impulses with increasing range. Below about 10 psi overpressure, blast characteristics from the two types of sources appear to be essentially identical. The term "terminal yield" has been introduced to designate blast yield calculated from measured blast parameters in the lowpressure regime. The basis for estimating the terminal yield is usually a source of compiled blast data for hemispherical TNT charges detonated on the ground (see ref. 2).

A third facet of difference between TNT explosions and liquid propellant explosions can seriously affect our ability to predict fragment velocities of appurtenances. For TNT explosions, there are available both a quantity of measurernents of time histories of dynamic pressures, and also proven connpuier programs which can predict time histories of this and other physical properties of blast waves. For liquid propellant explosions, the only complete body of data available is for time histories of overpressure, from Project PYRO (refs. 15 through 17). Methods are presented in Section ll for estimation of certain blast wave properties for several propellant combinations in test configurations which simulate accidental spill and subsequent ignition (identified in Section II as CBGS - Confined By the Ground Surface). The parameters which ran be estimated, given type of propellant, total weight of propellant W_{t}, impact velocity U_{I}, time of ignition t, and distance R from the center of the explosion to an appurienance, are the side-on peak overpressure P and the side-on impulse I. As we see later, these values must be used together with other data to estimate the pressures exerter on a body as the blast wave diffracts around it.
c. Interaction of Blast Waves with Appurtenances - To be able to predict velocities to which appirtenances are accelerated by propellant blasts. we must know something about the physics of interaction of blast waves with solid rbjects. Some of this knowledge is hrielly reviewed here. Figure 33 show's echematically, in three stages. the Interaction of a blast wave with an leregular object. Ae the wave striket the nbject, a portion le reflected from the front face, and the remainder diffracte around the object. In tie

FIGURE 33. INTERACTION OF BLAST WAVE WITH IRREGULAR OBJECT.

diffraction process, the incident wave front closes in behind the object, greatly weakened locally, and a pair of trailing vortices is formed. Rarefaction waves sweep across the front face, attenuating the initial reflected blast pressure. After passage of the front, the body is immersed in a time-varying flow field. Maximum pressure on the front face during this "drag" phase of loading is the stagnation pressure.

We are interested in the net transverse pressure on the object as a function of time. This loading, somewhat idealized, is shown in Figure 34. (Details on calculation are given in The Effects of Nuclear Weapons, ref. 34.) At time of arrival t_{a}, the net transverse pressure rises linearly from zero to maximum of P_{r} in time ($T_{1}-t_{2}$) (for a flat-faced object, this time is zerol. rressure then falls linearly to drag pressure in time ($\mathrm{T}_{2}-\mathrm{T}_{1}$), and then decays more slowly to zero in time ($\mathrm{T}_{3}-\mathrm{T}_{2}$). The time history of drag pressure is a modified exponential, with maximumgiven by

$$
\begin{equation*}
C_{D} Q=C_{D} \cdot v_{s} u_{s}^{2} \tag{1381}
\end{equation*}
$$

where C_{D} is the steady-ntate drag coefficient for the object. Q is peak drnamic pressure, and o_{s} and $u_{\text {: }}$ are peak density and particle velocity respectively for the blast wave. The characteristics of the diffraction phase of the loading can be determined easily if the peak side-on overpressure F, or the shoc!: :-iocity U are known, together with the shape and some charicteristic dimensic.. D of the object. The peak amplitude of the drag phase. $\mathrm{C}_{\mathrm{p}} \mathrm{Q}$. can aleo be determined explicilly from P_{s} or u_{g}. But. the time

FIGURE 34. TIME HISTORY OF NET TRANSVERSE PRESSURE ON OBJECT DURING PASSAGE OF A BLAST WAVE
history of the ensuing drag loading, $C_{D} q(t)$, is quite difficult to predict accurately for propellant blasts.
d. Method of Estimating Net Transverse Pressure - The method we present here utilizes the fite of Section II to PYRO data for side-on blast parameters, an assumed time history of drag pressure known to be reasonably accurate for TNT and nuclear blasts, estimates of diffraction times based on shock tube experiments, drag coefficients from wind tunnel data, and reflected and atagnation blast front properties based on equations which are well known in blast physics.

Side-on overpressure is often expressed as a function of time by the modified Friedlander equation (see Chapter 1 of ref. 1).

$$
\begin{equation*}
P(t)=P(1-t / T) e^{-b t / T} \tag{39}
\end{equation*}
$$

where T is the duration of the positive phase of the blast wave. Integrating this equation gives the impulee

$$
\begin{equation*}
1=\int_{0}^{T} p(t) d t=\frac{P T}{b}\left[1-\frac{\left(1-e^{-b_{j}}\right)}{b}\right] \tag{40}
\end{equation*}
$$

The dimenolonleas parameter b if called the tlme constant, io a function of shock etrength, and is reported in Chapter 6 of ref. 1 . It ie plotted graphically in Figire 35 for a range of ohock otrengthe F. where

$$
\begin{equation*}
\bar{P}=P / p_{0} \tag{41}
\end{equation*}
$$

and p_{0} is ambient air pressure. The peak reflected overpressure P_{r} and peak dynamic pressure Q are unique functions of P for a given ambient pressure Po. For shocks of intermediate to weak strengths, $\bar{P} \leq 3.5$, these functions are (see ref. 1, Chapter 6):

$$
\begin{equation*}
\bar{P}_{r}=2 \bar{P}+\frac{3 \bar{P}^{2}}{4} \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{Q}=\frac{5}{2} \frac{\overline{\mathrm{P}}^{2}}{7+\mathrm{P}} \tag{43}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{P}_{r}=P_{r} / \rho_{0}, \quad \bar{Q}=Q / P_{0} \tag{44}
\end{equation*}
$$

For the time history of drag pressure, a good fit to experimental data for TNT is a slightly modified form of that employed by Glasstone (ref. 34),

$$
\begin{equation*}
q(t)=Q(1-t / T)^{2} e^{-b t / T} \tag{45}
\end{equation*}
$$

The procedure for determining the transverse loading blast parameters in Figure 34 which are independent of object size and shape is then as follows:
(1) Obtain P and I from curves in Section II
(2) Calculate $\overline{\mathbf{F}}$
(3) Read b from Figure 35
(4) Solve Equation (40) for T, knowing P, L, and b
(5) Substitute \bar{P} in Equations (42) and (43) to obtain \bar{P}_{r} and \bar{Q}
(6) Obtain P_{r} and Q from Equation (44)
(7) Substitute in Equation (45) for $q(t)$, realizing that $T-T_{3}-t_{a}$ in Figure 34.

The remaining quantities needed to define the time history of transverse preasure are dependent on the aize and shape of the object. They are only well defined for objects of regular shape, such as right circular cylirders. flat rectangular strifis, etc. Methods for estimating ($\mathrm{T}_{1}-\mathrm{I}_{\mathrm{a}}$) and ($\mathrm{T}_{2}-\mathrm{T}_{1}$) are given by Glasstone (ref. 34) for eeveral such objects, and will not be repeated here. One does need to know, however, the shock front velocity U.

This is a unique function of the shock strength \bar{P}, and is given by (see Chapter 6 of ref. 1)

$$
\begin{equation*}
\bar{U}^{2}=1+\frac{6 \overline{\mathrm{P}}}{7} \tag{46}
\end{equation*}
$$

Drag coefficients C_{D} are a vailable from Hoerner (ref. 35) for a variety of bodies over a wide range of flow velocities. Estimates for the subsonic flow range which applies over the shock strengths of interest to us are given in Table VIi. Melding these quantities, dependent on the size and shape of the body, to the previous ones which are derivable from side-on blast wave properties permits an estimate of the entire time history of transverse pressure, at least for bodies of regular geometry.
e. Method of Predicting Appurtenance Velocity - Once the time history of net transverse pressure loading is known, the prediction of appurtenance velocity can be made quite easily. The basic assumptions are that the appurtenance behaves as a rigid body, that none of the energy in the blast wave is absorbed in treaking, the appurtenance loose from its moorings or deforming elastically or plastically, and that gravity effects can be ignored during this acceleration phase of the motion. The equation of motion of the object is then

$$
\begin{equation*}
A p(t)=M \ddot{x} \tag{47}
\end{equation*}
$$

where A is the area of the object presented to the blast front, $p(t)$ is the net transuerse pressure acco, ding to Figure 34, M is the total mass of the object, and x is displacement of the object (dots denote derivatives with respect to time). The object is assumed to be at rest initially, so that

$$
\begin{equation*}
\mathbf{x}(0)=0, \quad \dot{\mathbf{x}}(0)=0 \tag{48}
\end{equation*}
$$

Equation (47) can be integrated directly. With use of the initial conditions (48), this operation yields, for appurtenance velocity,

$$
\begin{equation*}
\dot{x}(t)=\frac{A}{M} \int_{0}^{\left(T_{3}-t_{a}\right)} p(t) d t=\frac{A}{M} I_{d} \tag{49}
\end{equation*}
$$

where l_{d} is total drag and diffraction impulse. The integrations in Equation (49) can be performed explicitly if the pressure time history is described by suitable mathematical functions, or performed graphically or numerically if $p(t)$ cannot be easily written in function form. In either case, Equation (49) yields the desired result - a predictod velocity for the ubject.

TABLE VII
DRAG COEFFICIENTS, C_{D}, OF VARIOUS SHAPES
(Source: ref. 35)

SHAPE	SKETCH	$C_{\text {D }}$
Right Circular Cylinder (long rod), side-on		1.20
Sphere		0.47
Rod, end-on	$\text { Flow } \longrightarrow$	0.82
Disc, face-on	or	1.17
Cube, face-on		1.05
Cube, edge-on		0.80
Long Rectangular Member, face-on		2.05
Long Rectangular Member, edge - on		1.55
Narrow Strip. face-on		1.98

D. Correlation of Velocity Prediction Methods With Data

1. Prediction of PYRO Data by a Deterministic Method for CBM - A deterministic method of predicting initial fragment velocities was described in Section III. C. It was found that initial fragment velocities could be obtained by this method when some of the geometric characteristics of the exploding vessel were known and when certain properties of the explosive products formed upon detonation within the vessel were known. The data from the Project PYRO tests were not really sufficient to properly quantify the required independent variables for this method, because exact quantities of propellant which mixed and exploded were not known. It was felt, however, that certain reasonable values could be assumed for the unknown variables (along with the measured values for other variables), and a feel for the applicability of this method could be obtained. Accordingly, results for initial fragment velocities were obtained from the computer program given in Appendix C when values for the independent variables to be described were used in it. These results were compared to PYRO data for mean initial fragment velocities obtained from analysis of films of PYRO tests. The data from the PYRO tests were limited to those cases which best approximated the constraints of the deterministic method. The correlation between the data and the theoretical values was good enough for "reasonable" values of the independent variables, that it may be concluded that a deterministic method of fragment velocity prediction may be useful if sufficient knowiedge is obtained of the explosive product parameters in future testing.
a. PYRO Data - The test numbers for PYRO tests considered in this correlation aregiver in Table VIII. Since our deterministic method is based on a spherically symmetric containment vessel, it was reasonable to take the cylindrical test geometry of the PYRO tests which most closely approximated spherical symmetry, i.e., L/D ratio closest to l. 0 . Thus, only tests with $L / D=1.8$ (the smallest L / D ratio) were considered. Furthermore, only confined-by-the-missile (CBM) cases were considered since confinement-by-the-ground-surface (CBGS) cases do not represent internal explosions. To ass re that well-confined explosions were being considered, only $D_{0} / L_{t} 0.45$ cases were allowed. Finally, to simplify the assumptions made about the reactants and explosive products, it was decicied to take the $\mathrm{LH}_{2} \mathrm{LOO}_{2}$ cases only.

Daia for tests which meet these criteria are plotted ir. Figures 3 band 37 for the $200-1 b$ and $1,000-1 b$ tests, respectively. In these plots, the measured initial velocity is plotted versus a measured yield. The measured initial velocity was ohtained from measurements taken from films of the PYKO tests (see Section li. A). The measured yield. Y_{M}, is a quantity obtained in the following manner. Measured blast overpressures obtained along blast lines about the center of explosion for the various tests produced the $P Y R O$
TABLE VIII - FRAGMENT VELOCITY PREDICTIONS COMPARED

PYRO Teat No.	Total Prop. Wt. $\begin{gathered} \mathrm{W} \\ \mathrm{wb}_{\mathrm{t}}^{\mathrm{t}} . \end{gathered}$	$\begin{gathered} \text { Measured } \\ Y_{i e l d} \\ Y_{M} \\ \hline \end{gathered}$	Reactごis Weight $\begin{array}{r} W_{r} \\ \mathrm{lbs}^{2} \end{array}$	$\begin{gathered} \hline \text { Reactants } \\ \text { Energy } \\ \text { E } \\ \text { ft-1bs } \\ \text { X } \quad 10-5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Mass } \\ \text { Nof } \\ \text { Non-Reac- } \\ \text { tants } \\ \mathrm{M}_{2}+\mathrm{M}_{2} \\ \mathrm{M}_{\mathrm{M}} \\ \mathrm{~b}_{\mathrm{sec}} \\ \text { ini. } \\ \hline \end{array}$	Radius Of Reactants Sph R in.	```Calc. Max. Frag. Velocity \(\mathrm{U}_{\mathrm{f}}\) \(\mathrm{ft} / \mathrm{sec}\)```	Measured Mean Velocity $\overline{U_{f}}$ $\mathrm{ft} / \mathrm{sec}$
053	200	1.08	2. 08	3.35	. 633	8.0	358	362
091	200	7.83	15.63	25.2	. 564	15.5	975	1500
118	200	5.41	10.82	17.4	. 589	13.7	790	710
199	200	2. 16	4.32	6.95	. 623	10.2	543	660
200	200	4.59	9. 18	14.8	. 597	13.0	786	880
210	1000	1.89	18.9	30.4	2.49	16.12	540	650
212	1000	7.29	72.9	117.	2.21	25.35	1020	790
213	1000	9.46	94.60	150.8	2. 11	27.15	1110	990
265	1000	2.70	27.0	43.5	2.45	17.85	636	690

FIGURE 30. FRAGMENT VELOCITY: CORRELATION OF DATA FROM PYRO
FIGURE. 30. $\mathrm{LH}_{2} / \mathrm{LO}_{2}$ TESTS WITH THEORETICAL VALUES, $\mathrm{W}_{\mathrm{t}}=200$ LBS

"yield" values, Y. This yield value is the percentage of the total propellant weight, W_{t}, such that

$$
\begin{equation*}
\mathrm{Y} \cdot \mathrm{~W}_{\mathrm{t}}=\mathrm{W}_{\mathrm{TNT}} \tag{50}
\end{equation*}
$$

where $W_{T N T}$ is the weight of TNT which would produce an equivalent serics of blast overpressure measurements in air to those of a given test. The weight of propellant which would produce the same blast effect as TNT' is

$$
\begin{equation*}
\mathrm{w}_{\mathrm{R}}=\mathrm{w}_{\mathrm{TNT}} \frac{\mathrm{H}_{\mathrm{TNT}}}{\mathrm{H}_{\mathrm{R}}} \tag{51}
\end{equation*}
$$

where W_{R} is the weight of the reactants (or propellant) estimated to be involved in the explosion from the blast measurements, and $H_{T N T}$ and H_{R} are the heats of explosion per unit mass for TNT and the reactants, respectively. For an $\mathrm{LH}_{2} / \mathrm{LO}_{2}$ explosion in which fuel and oxidizer are mixed stoichiometrically, Equation (51) becomes

$$
\begin{equation*}
\mathrm{w}_{\mathrm{R}}=\frac{\mathrm{W}_{\mathrm{TNT}}}{3.7} \tag{52}
\end{equation*}
$$

Measured yield, Y_{M}, is the ratio of the weight of the reactants estimated to be involved in the explosion from the external blast measurements to the total known weight of propellant. Thus, from Equations (50) and (52),

$$
\begin{equation*}
Y_{M}=\frac{W_{R}}{W_{t}}=\frac{Y}{3.7} \tag{53}
\end{equation*}
$$

Values for Y_{M} and W_{R} appear in Table VIII along with measured initial velocity.

Since measurements during the PYRO tests were all made external to the confinement vessel, it is not possible to estimate from them how much of the true blast yield was absorbed as kinetic energy of flying fragments. Thus, neither the PYRO yield value, Y, or the measured yield value, Y_{M}, can be used to determine the actual quantity of propellant involved in the explosion, and W_{R} is really only the quantity estimated by ignoring the effects of the confinement of the detonation. This is an important point, as will be seen in tt ensuing discussion, because our deterministic method requires knowledge of the actual quantity of propellant involved and the characteristics of the resulting explosive products, and to obtain this information ore is required to measure parameters internal to the confinement vessel, which was not done in the course of PYRO testing.
b. Data Predicted by Deterministic Method - in order to predict initial fragment velocities with our deterministic method, it is necessary to have values for the following parameters related to the confinement vessel, explosion products, and propellant ullage:
(1) The number of fragments, n, the vessel breaks up into;
(2) The peak overpressure, P_{o}, attained in the volume occlipied by the explosive products immediately after detonation;
(3) The ratio of specific heats, x, which describes the region of ti:e explosive products immediately after detonation;
(4) The speed of sound, a_{o}, in the region of the explosive products immediately after detonation;
(5) The radius, R_{o}, of the region of explosive products immediately after detonation;
(6) The mass, M, of all the propellani not involved in the explosion process plus the mass of the confinement vessel.

Physically, the explosion process is thought of as one in which a volume of the fuel and oxidizer mix stoichiometrically and then form a gas in the course of explosion whose volume and physical characteristics are described by parameters 2 through 5 above at the instant immediately after the explosion has occurred. All the rest of the propellant is thourht of as inert and merely augrienting the mass of the confinement vessel.

As was seen earlier in this section, Figure 29, our deterministic method predicts that initial fragment velocities are insensitive io the numbe: of fragments, n, when n is on the order of 10^{2} or more. It is relatively insensitive down to $n=2$. We picked $n=10^{2}$ as a reasonable number of fragments for the PYRO tests investigated here. Also in this same section, Figure 30 indicates that above $x=1.2$, the initial fragment velocities are relatively independent of the value of x. The parasneter x ranges between 1.1 and 1.4 for most gases and tends to be lower for the same gas at high temperatures $\left(x=1.3\right.$ for oxygen and hydrogen at $2,000^{\circ} \mathrm{C}$, for instance, while $x=1.4$ for these gases at $15^{\circ} \mathrm{C}$). We picked $x=1.2$ for our explosive products "gas", although a choice of a larger x would have changed the results very little.

Using the value for reactant weight, W_{R}, described under the previous heading, we were able to calculate the energy of explosion for each test as estimated from the external measurements. This was simply

$$
\begin{equation*}
\mathbf{E}=\mathbf{W}_{\mathbf{R}} \cdot \mathbf{H}_{\mathbf{R}} \tag{54}
\end{equation*}
$$

Based on the calculated density of a mixture of $\mathrm{LH}_{2} / \mathrm{LO}_{2}$ mixed stoichiometrically, we obtained a volume of reactants related to W_{R} for each test from

$$
\mathrm{V}_{\mathrm{R}}=\frac{\mathrm{W}_{\mathrm{R}}}{\rho}, \quad \text { where } \quad \rho=\frac{\mathrm{V}_{\mathrm{H}} \rho_{\mathrm{H}}+\mathrm{V}_{\mathrm{OX}} \rho_{\mathrm{OX}}}{\mathrm{~V}_{\mathrm{H}}+\mathrm{V}_{\mathrm{OX}}}
$$

and

$$
8 \mathrm{~V}_{\mathrm{H}} \rho_{\mathrm{H}}=\mathrm{V}_{\mathrm{OX}} \rho_{\mathrm{OX}}
$$

where ρ and V are density and volume, respectively, and the subscripts H and $O X$ refer to $L \mathrm{H}_{2}$ and LO_{2}, respectively. It should be stressed at this point that E and V_{R} refer to some weight W_{R} of reactants that was thought to be involved in the explosion process from external measurements. Obviously, this E is less than the actual energy of explosion, since it represents only the shock energy imparted to the air about the confinement vessel and does not account for kinetic energy imparted to the fragments, energy lost as heat and light to the air, energy lost through fragment heating, etc. The calculated volume of the reactants associated with energy of explosion E is also lower than the actual volume for the above reasons. Nonetheless, assuming these values for E and V_{R} are reasonable approximations for the real situation, for the stoichiometric mixtare of $\mathrm{L}_{2} / \mathrm{LO}_{2}$ one may obtain the peak pressire, P_{o}, from:

$$
\begin{equation*}
E=\frac{P_{00} V_{R}}{x-1}\left[\frac{P_{0}}{P_{00}} \cdot\left(\frac{P_{0}}{P_{00}}\right)^{1 / x}\right] \tag{56}
\end{equation*}
$$

where P_{00} is the ambient pressure (taken as 14.7 psi). This was done for our values of E, V_{R}, and x using the Newton-Raphson iteration technique for root finding. The program used (in the FORTRAN IV language) appears in Apperdix D. The results predicted peak pressures of nearly $10^{4} \mathrm{psi}$ within the explosive products. Since E and V_{R} are both proportional to W_{R}, this result is independent of the weight of the reactants, and the same value ($P_{0}=10^{4}$ psi) was used for precticting fragment velocities from all PYRO tests considered.

Picking a value for velocity of sound, a_{o} was complicated by the fact that this is a quantity that cannot be inferred from external measurements at all. It is an intrinsic property of the explosive products, a function of thermodynamic parameters such as temperature, density, and presaure, as well as the microscopic state of the "gas" at the instant of explosion. Since we had astumed gas-like propertien for the explosion products, however, and since sound velocity would certainly be in the range 10^{3} to $10^{5} \mathrm{in}$./sec for gases under most conceivable conditions, we calculajed fragment velocity,
U_{f}, as a function of a_{0} and R_{0} for fixed n, M, P_{0}, and x to obtain an estimate of the sensitivity of U_{f} to a_{0} and R_{o}, relatively. This plot, appearing in Figure 14, shows that over the orders of magnitude chosen for a_{o}, U_{f} is relatively insensitive to a_{o} and relatively sensi^ive to R_{o}. Accordingly, we chose $a_{0}=10^{4} \mathrm{in}$. $/ \mathrm{sec}$ as a constant value for all tests. This value is a reasonable one for gases whose sound velocities vary in the range 1.0 to $5.0 \times 10^{4} \mathrm{in} . / \mathrm{sec}$ for the most part under normal conditions. Furthermere, our results would not be as sensitive to error in this parameter as they would be to error in R_{0}. If one assumes that the density of the explosive products gas is equal to the density of the $\mathrm{LH}_{2} / \mathrm{LO}_{2}$ mixture detonated as reactants (i.e., see Equation (55)) which formed it (certainly an extreme and unlikely case), nonetheless a_{c} for a given R_{0} calculated from

$$
\begin{equation*}
a_{0}=\sqrt{\frac{n P_{0}}{\rho}} \tag{57}
\end{equation*}
$$

gives a fragment velocity very close to the same one obtained using $a_{0}=10^{4}$ in./sec (as seen from Figure 38).

The mass, M, required by our deterministic method is obtained from

$$
\begin{equation*}
\mathbf{M}=\mathbf{M}_{\mathbf{t}}+\mathbf{M}_{\mathbf{t a}}-\mathbf{M}_{\mathbf{R}} \tag{58}
\end{equation*}
$$

where subscripts t, $t a$, and R refer to the total propellant weight, the tank, and the reactants, respectively. Again, since M_{R} must be the mass of the actual quantity of reactants involved in the explosion process, it could only be estimated from the exterral PYRO measurements, that other internal measurements would be required to ascertain this quantity for each test. From the yield values it is apparent, however, that M_{R} was probably small relative to M_{t} and $M_{t a}$. We estimated M_{R} based on twice the calculated value W_{R}. This produced corrections in M on the order of less than 10%. Values obtained for M are given in Table VIII.

As was shown in Figure 38, the fragment velocities obtained from our deterministic method are most sensitive to values of R_{0} chosen to describe the radius of explosive products at the instant immediately after detonation. Since W_{R} is obviously lower than the actual weight of reactants involved in the expiosion process, at least a lower limit could be obtained for R_{o} based on

$$
\begin{equation*}
(4 / 3) \pi R_{0}^{3}=V_{R}=W_{R}:^{0} \tag{59}
\end{equation*}
$$

from Equation (55). We aesigned an upper limit on R_{0} baaid on the maximum radius a shere would have which had the ame volume as the confinement

vessel tank whose dimensions were obtained for the 200 and 1,000-1b tank tests. Thus, R_{0} could be larger than the radius of the tank since the latter was a cylinder, but was of the same order of magnitude.

Within these brackets, an R_{0} was chosen to give a reasonable value for initial fragment velocities for one PYRO test for each of the tank sizes. P_{0} was then varied as the cube root of the measured yield for the other tevin zad a corresponding U_{f} was calculated by the deterministic method. Values for R_{0} are given in Table VIII. Figures 36 and 37 show the comparison of the measured and calculated fragment velocities for the 200-1b and 1,000-1b tests.
c. Conclusions - Initial fragment velocities obtained by our deterministic method predict meagured fragment velocities from Project PYRO tests relatively well whon reasonable values are chosen for the unmeasured parameters. It should be noted that the values for R_{0} in Table VIII are all within a reasonable range relative to tank geometry. Our results indicate that a tho; ough lenowledge of the internal parameters on juat one test for a given tank geometry could probably allorp reasonable predictions for initial fragment velocity, using this method, for all teats of that geometry based on external measurements alone (i. ©., internal measurements would only have to be made once). Finally, the great difficulty in any deterministic approach for predicting fragment velocities for liquid rocket explosions (CBM) in general, is in obtaining data on how much of the reactants are actually going to be involved in the explosion. It seems that fragment velocity will be relatively independent of the number of fragments and oven of the thermodynamic properties of the explosion products gas (except the peak pressure generated) but it is very sensitive to the quantity of reactants involved in the explosion process.
2. Correlation of Velocity for Fragments from CBGS Tests with Predictions - The method given earlier in this section can, in theory, be used to predict velocities to which parts of the misaile and appur tenances are accelerated by explosions during CBGS teste of PYRO. In practice, the method can only be applied to a limited number of the CBGS teste for which we measured fragment velocitien. To uee the prediction method:
(1) We must know blast yield Y and total weight of propellant W_{T}.
(2) We must know the distance R of the fragment or appurtenance from the center of the explonion.
(3) We must lenow the geometry and mass of the fragment,
(4) Blant wave propertien at the initial location of the fragment muat lie within the range of the PYRO data.

We obviously satisfy the first requirement, but we can only estimate the second two. Also, the parts of the tankage which we believe constituie most of the visible fragments are located so close to the source that the blast is much stronger than for any of the PYRO blast data. Accordingly, only a rough "spot check" can be made to determine if the prediction method seems reasonable.

The test chosen for prediction was Test 293, a $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ CBGS test with $1,000 \mathrm{lb}$ of propellant impacting at $44 \mathrm{ft} / \mathrm{sec}$. The measured blast yield was 3.9%. Twenty-six fragments were observed, with a mean velocity of $464 \mathrm{ft} / \mathrm{sec} \pm 226 \mathrm{ft} / \mathrm{sec}$ (Table V). From descriptions of the test apparatus and method in reference 16, the dimensions, material, and skin thickness of the tankage are known, as well as the rest position after drop impact. We believe that the majority of the observed fragments were relatively large pieces of the tank skins, made of 0.060 -inch thick aluminum alloy. The lower part of the tank was about 3 ft above the center of the explosion,* but the middle of the tank was about 10 ft from the center of the explosion. So, approximate values for input parameters are as follows:

Blast

$$
\begin{aligned}
& \mathrm{R}=10 \mathrm{ft} \\
& \mathrm{~W}_{\mathrm{T}}=1,000 \mathrm{lb} \\
& \mathrm{p}_{\mathrm{o}}=14.7 \mathrm{psi} \\
& \mathrm{a}_{0}=1,088 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Fragment

Shape - circular disc of 12 -inch diameter
Thickness - $\mathrm{h}=0.060 \mathrm{in}$.
Density - $\rho=2.59 \times 10^{-4} \mathrm{lb} \mathrm{sec}{ }^{2} / \mathrm{in}^{4}{ }^{4}$
From Equation (3), Section II, the equivalent weight of propellant for blast is

$$
W=W_{T} \times \frac{Y}{100}=1,000 \times \frac{3.9}{100}=39 \mathrm{lb}
$$

Scaled distance is

$$
R . W^{1 / 3}=10 / 39^{1 / 3}=2.94 \mathrm{ft} / 1 \mathrm{~b}^{1 / 3}
$$

[^6]From Figures 22 and 23 in Section $\mathrm{II}_{\text {, }}$ the blast pressure and scaled impulse are:

$$
\begin{aligned}
& P=80 \mathrm{psi} ; \quad I / \mathrm{W}^{1 / 3}=30 \mathrm{psi}-\mathrm{msec} / \mathrm{lb}^{1 / 3} \\
& I=30 \times 3.4=102 \mathrm{psi}-\mathrm{msec}
\end{aligned}
$$

Dimensionless overpressure is

$$
\bar{P}=P / P_{0}=80 / 14.7=5.45
$$

From Figure 35, the time constant b can now be determined. It is

$$
b=10
$$

From Equations (40), (41), and (44), we can calculate dimensionless reflected pressure \bar{j}_{r}, drag pressure \bar{Q}, and shock velocity, \bar{U}. Multiplying by p_{0} or a_{0}, the corresponding dimensional quantities are:

$$
\begin{aligned}
& P_{r}=49 C \mathrm{~F}^{-\mathrm{i}} \\
& Q=72 \mathrm{psi} \\
& U=3.15 \times 10^{4} \mathrm{in} . / \varepsilon \mathrm{ec}
\end{aligned}
$$

Solving Equation (40) for duration T, we have

$$
\mathrm{I}=\mathrm{rb} /\left\{\mathrm{P}\left[1-\frac{\left(1-e^{-b}\right)}{\mathrm{b}}\right]\right\}=102 \times 10 /\left\{80\left[1-\frac{\left(1-e^{-10}\right)}{10}\right]\right\}=14.2 \mathrm{msec}
$$

To complete the description of the transverse pressure loading, we must know the drag coefficient C_{D} and two characteristic times for the diffraction phase of the loading. The drag coefficient for a flat disc is, from Table VII, $C_{D}=1.17$. The rise-time $\left(T_{1}-T_{a}\right)$ is zero,* and

$$
\begin{equation*}
\left(T_{2}-T_{1}\right) \quad\left(\frac{D}{2}\right) \cdot \frac{1}{U} \tag{60}
\end{equation*}
$$

where D is diamet r or the disc.

$$
\left(T_{2}-T_{1}\right)=\left(\frac{12}{2}\right)\left(\frac{1}{3.15 \times 10^{4}}\right) \approx 0.2 \mathrm{msec}
$$

[^7]All of the parameters needed to define the time history in Figure 34 are now known. After numerical integration, we get for the integral in Equation (47),

$$
I_{d}=139 \mathrm{psi}-\mathrm{msec}
$$

Finally, predicted velocity is

$$
U_{i}=\frac{A}{M} I_{d}=\frac{I_{d}}{\rho h}=\frac{139 \times 10^{-3}}{2.59 \times 10^{-4} \times 6 \times 10^{-2} \times 12}
$$

$$
U_{i}=745 \mathrm{ft} / \mathrm{sec}
$$

Comparing this to the measured mean value,

$$
\bar{U}_{i}=464 \pm 226 \mathrm{ft} / \mathrm{sec}
$$

we see that the predicted value is of the correct order of magnitude, but too high. The blast parameters, and consequent predicted velocities, are, however, very strong functions of the assumed standoff distance $R_{\text {, }}$ particularly at small standoffs. We could quite easily have predicted velocities very much higher and very much lower than the measured values by simply choosing a range of values for R covering the extremes of distances of the tank from the blast source. All that we can conclude is that the prediction method yields velocities which appear to ve of the same magnitude as the measured velocities.
E. Frequency Distribution of Initial Velocity

Since the nurnber of fragments which could be traced in each selected film from Project PYRO \because :ere relatively small, a logical grouping of the data was considered in order to determine the initial velocity frequency distributions.

Since the data on fragment distance versus yield (\%) in Section IV showed good correlation, a desirable grouping appeared to be over a medium yield (\%) range within a configuration and propellant type. The groupings are shown in Table IX and are:
(1) $\mathrm{CBM}, \mathrm{LO}_{2} / \mathrm{LH}_{2}$, Yield from 10 to 29%, group sample size 1013.
(2) $\mathrm{CBM}, \mathrm{LO}_{2} / \mathrm{FP}-1$, Yield from 9.8 to 20%, group sample size 131 .
(3) CBGS(Vertical), $\mathrm{LO}_{2} / \mathrm{LH}_{2}$, Yield from 12 to 22%, group sample size 15.
(4) CBGS(Vertical), $\mathrm{LO}_{2} /$ RP-1, Yield from 10 to 30%, group cample size 72.

The data for $\mathrm{U}_{\mathrm{A}}{ }^{*}$ were ordered, and 10 th through 90 th percentiles (in 10% steps) were determined.

The percentiles were plotted on normal and log ncrmal probability paper. The log normal plots were the best fits. These plots are shown in Figures 39 through 42. The parameters for the log normal distribution can be estimated, according to Hahn (ref. 36) as follows:

The mean, $\hat{\mu}$, can be estimated as the logarithm (to the base e) of the 50th percentile. The standard deviation, $\hat{\sigma}$, can be estimated as two-fifths of the difference between the logarithms of the 90th and 10th percentiles. The estimated means and standard deviations are shown in Table X. Goodness of fit statistics were calculated using the "W" test as described by Hahn and Shapiro (ref. 36). The method and calculations are described in Appendix F and discussed in more detail in Section IV. The calculated values of the "W" statistics for the four log normal distributions are:
(1) $\mathrm{CBM} \mathrm{LO} 2 / \mathrm{LH}_{2}-.925$
(2) $\mathrm{CBM} \mathrm{LO} 2 / \mathrm{RP}-1-.947$
(3) CBGS $\mathrm{LO}_{2} / \mathrm{LH}_{2}-.973$
(4) CBGS $\mathrm{LO}_{2} / \mathrm{RP}-1-.989$

Referring to Figure 48, Section IV, the approximate probabilities for obtaining values as low as the calculated values of " W ". given that the stated distributions are the correct ones, are:
(1) . 415
(2) .610
(3) . 915
(4) . 990

[^8]TABLE IX. GROUPING OF TESTS BY PROFELLANT AND CONFIGURATION

Propellant	Configuration	$\begin{gathered} \text { PYRO } \\ \text { Test No. } \end{gathered}$	Yield, Y (\%)	$\begin{gathered} \text { Weight, W } \\ \text { (lb) } \end{gathered}$	Sample Size
$\mathrm{LO}_{2} / \mathrm{LH}_{2}$	CBM	051	22.0	200	9
		090	29.0	200	7
		091	13.0	200	12
		094	25.0	200	11
		118	20.0	200	8
		200	17.0	200	26
		212	27.0	1,000	8
		265	10.0	1,000	27
$\mathrm{LO}_{2} / \mathrm{RP}-1$	CBM	48	9.8	200	12
		87A	16.0	200	15
		192	14.0	1,000	14
		193	20.0	1,000	14
		209	10.0	1,000	15
		270A	13.0	1,000	32
		278	13.0	25,000	16
		282	13.0	25,000	13
$\mathrm{LO}_{2} / \mathrm{LH}_{2}$	CBGS(Vertical)	106A	22.0	200	12
		115	15.0	200	14
		152	14.0	200	14
		184	17.0	200	16
		197	19.0	200	18
		211	12.0	1,000	17
		230	21.0	200	21
		266	14.0	1,000	19
		288C	13.0	25,000	20
$\mathrm{LO}_{2} / \mathrm{RP-1}$	CBGS (Vertical	107	29.0	200	21
		109	10.0	200	11
		191	13.0	1,000	24
		219	14.0	1,000	16

PLOTS

TABLE X. PERCENTILES, MEANS AND STANDARD DEVIATIONS FOR GROUPED VELOCITY DATA (fps)

*Log Normal Distribution, to base e. To convert to fps, take anti-logarithm

Since a probability as low as . 10 is considered insufficient evidence to reject the chosen distributions, the fits are assumed adequate. The derivation of data for Figure 48 in Section IV is given in Appendix G.

The normal and log normal density function equations are given in Equations (62) and (63) in Section IV.

IV. DETERMINATION OF FRAGMENT SIZE AND RANGE

A. Retrieval of Data from Accidents and Tests

All of the accident and test data which were retrieved were reviewed for pertinent information on fragment size, distance, and distribution.

The criteria for each fragment were that the range, weight and maximum projected area be specified. The nature of the test or accident, blast: yield, type of propellants, etc., were also of interest.

From approximately 168 reports and memos reviewed, only eight events, listed in Table XI yielded sufficient information to meet the abov:listed criteria. There were many other reports which had partial information, such as distance listed for fragments over 5 pounds, with fragments under 5 pounds listed in number per square yard.

The eight events listed in Table XI can be classified in three groups as follows:
(1) Events 1 and 2 were Saturn IV confined by missile (CBM), $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ explosions.
(2) Events 3, 4, and 5 were spill tests using three tanks, on 120° radials with $L O_{2} / L H_{2} / R P-1$, and mixing on the ground (CBGS).
(3) Events 6, 7, and 8 were mixing tests using two tanks with $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ and pouring the contents of one tank into the other.

Event 1 was Project PYRO test number 62, a Saturn IV vehicle with 91,000 pounds of $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ propellant, with self ignition, and a 5% yield. Complete details of the test can be found in Reference 16.

Event 2 was also a Saturn IV vehicle, witin 101 , 198 pounds of $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ aboard. The yield was estimated to be 1.1%. Complete details of the malfunction can be found in Reference 38.

Events 3, 4, and 5 are described fully in Reference 24. The tests were conducted using $1 / 25$ scale quantities of the propellants for the Saturn C-2 vehicle (i.e., 7880 lb of $\mathrm{RP}-1 ; 32,928 \mathrm{lb}$ of $\mathrm{LO}_{2} ; 3032 \mathrm{lb}$ of LH_{2}). The individual parts of the propellant were placed in opill tanks placed on 120° radials from some central location. The apill tanks were tipped toward this central location so that all three parts combined. They were then detonated from the central location by a mall charge of C-4.

TABLE XI - CHART OF EVENTS

\# Data from these tests were furnished by the NASA test director, Mr. J. H. Deese. There is no formal reference.

The method for event 6 is described in reference 39. Events 7 and 8 were similar. These were autoignition mixing tests using 240 pounds of $\mathrm{LO}_{2} /$ LH_{2}, pouring one tank into the other. Photographs of each fragment, along with fragment maps and fragment weights were supplied by the NASA Test Director, Mr. J. H. Deese.

B. Data Reduction

The data from each of the events were reduced by careful analysis of each fragment to assure that size (maximum projected area), weight, and distance were specified. In some cases, it was possible to fill in missing items by estimating weight and/or size from information supplied by deseriptions or photographs. Because of the paucity of fragment data, considerable effort was expended to extract as much fragment data as possible, without undue loss in accuracy of the parameters. Distances for each fragment were determined from fragment maps.

For each event, data including event code, fragment number, distance (R) in feet, weight (W) in pounds, width in inches, length in inches, maximum projected area (A) in square inches, area divided by weight (A/W), and drag coefficient (CD) were entered on key punch sheets. The drag coefficient was estimated from photographs and descriptions, and subsequent comparison with Table VII. Cards were keypunched and used in the analyses which are described in the foilcwing sections. A listing of all fragment data by event is available if desired.

C. Statistical Studies

1. Computer Routines - Using the Biomedical Computer Programs (Ref. 40), with a CDC 6500 computer . the data from each event was subjected to the follmuing routines:
(1) Means and variances were calculated for $R, W, A, A / W$, $C D, \log R, \log W, \log A$ and $\log A / W$.
(2) Histograms were constructed for the parameters listed in (1) above.
(3) Correlation plots were made for R versus W, R versus A, R versus $A / W, R$ versus $\log W$, and R versus (A / W) CD.
2. Preliminary Analysie- The output from the correlation routine was studied to determine if there were discernable patterns oi correlation between parameters within an event. While there was some general pattern in some cases, an a whole, the scatter was so great as to diecourage further inquiry along these lines. This result could be explained by not considering
(because of a lack of knowledge) the flight angle and initial location of the fragments.

The histograms were studied to relate the parameters R, W, A, and A/W to probability frequency distributions. Since the sample size varied from 31 to 1056, the histograms varied in information content in about the same ratio. However, the form of some of the histograms suggested that a normal probability density function would supply an adequate fit, and others offered the possibility of a $\quad \cdots$, t by a log normal disiribution.

The normal distribution can be written as:

$$
\begin{align*}
f(x)= & (1 / \sqrt{2 \pi} \sigma) \exp \left[-(x-\mu)^{2} / 2 \sigma^{2}\right],-\infty<x<\infty, \\
& -\infty<\mu, \sigma<\infty, \tag{61}
\end{align*}
$$

where σ is the s tandard deviation and μ is the mean.
The log normal distribution can be written (ref. 36):

$$
\begin{align*}
f(y)= & \left.(1 / \sqrt{2 \pi} \sigma y) \exp \quad\left[(\ln y-\mu)^{2} / 2 \sigma^{2}\right)\right], 0<y<\infty, \\
& -\infty>\mu<\infty, \sigma>0 . \tag{62}
\end{align*}
$$

where σ is the standard deviation, μ is the geometric mean, and x is lny.
The Weibull distribution was also considered, but later results showed that better fits were obtained by the normal and log normal distributions.

Table XII presents the mean, standard deviation, standard error of the mean, sample size (number of fragnents), maximum, minimum and range (maximum value minus the minimum value) for $R, W, A, A / W, \log _{10} W$, and $\log _{10} \mathrm{~A}$.
3. Probability Density Functions - The data for each parameter of interest within an event was sorted in ascending order and the value for the parameter for the 10 th to the 90 th percentiles in 10% steps was identified. Table XIII is a listing of the values. The use of order statistics tends to equalize the effecte of varying sample size from ovent to event.

A plot on normal and log normal probability paper was then made for each parameter for asch event. Figure 43 is a plot of distance for event 3 on normal probablility paper. Figure 44 is a plot of the same data on 1 gg normal probability paper. Since the pointe on the normal probability raper lie closer to a atrulghe line than those on the log normal paper, the normal
TABLE XII - CALCULATED STATISTICS FOR PARAMETERS OF EIGFTT EVENTS

Evant	Yar	Mean	S. $\mathrm{D}_{\text {. }}$	$\begin{gathered} \text { S.E. } \\ \text { of Mean } \\ \hline \end{gathered}$	Sample Size	Maximum	Minimum	Rapre
1	$\begin{aligned} & R \\ & W \\ & A \\ & A / W \\ & C D \\ & \log _{10} \mathrm{~W} \\ & \log 10 \mathrm{~A} \end{aligned}$	447.4282	193.9981	10.5056	341	1027.0000	105.0000	922.0000
		44.7962	5.8208	. 3152	341	36.0000	1.0000	35.0000
		576.8806	754.2380	40.8443	341	8064.0000	12.0000	8052.0000
		86.9405	60.6467	3.2842	341	524.0000	3.7000	520.3000
		1.7669	. 3855	. 0209	341	2.0000	. 9000	1.1000
		. 6976	. 3484	. 0189	341	1.5563	0.0000	1.5563
		2.5377	. 4507	. 0244	341	3.9066	1.0792	2.8274
		337.1053	203. 1829	32.9606	38	1100.0000	50.0000	1050.0000
2	$\stackrel{R}{\text { R }}$	24.8421	28.4802	4.6201	38	110.0000	1.0000	109.0000
	A	1129.1711	1839.8043	298.4557	38	9360.0000	2.4000	9357.6000
	A/w	54.8526	46.1599	7.4881	38	184.0000	. 3000	183.7000
	CD	1.5789	. 4503	. 0731	38	2.0000	1.000 C	1.0000
	$\log ^{10} \mathrm{~W}$	1.1423	. 4970	. 0806	38	2.0414	0.0000	2.0514
	$\log _{10} \mathrm{~A}$	2.4764	. 8554	. 1388	38	3.9	3802	3.591 :
3		829.6571	556.7326	54.3315	105	2200.0000	50.0000	2150.0000
	\%	72.838 i	92.4500	9.0222	105	536.5000	2.2000	534.3000
	A	1034.2390	2089.7322	203.9370	105	13824.0000	7.1000	13816.9000
	A/w	22.7210	57.5698	5.6182	105	356.9000	. 4000	356.5000
	CD	1.9448	. 2085	. 0203	105	2.0000	1.0000	1.0000
	Los 10 W	1.5891	. 5118	. 0500	105	2.7296	. 3424	2. 3871
	Log 10 A	2.5203	. 6448	. 0629	105	4.1406	. 8513	3.2894
4		739.6395	341.6650	36.8427	86	1655.0000	64.0000	1591.0000
	W	102.1744	169.0271	18.2267	86	1224.0000	5.0000	1219.0000
		1973.3023	4756.2041	512.8747	86	34560.0000	72.0000	34488.0000
	A/W	16.2012	10.8261	1.1674	86	28.8000	2.6000	26.2000
	CD	1.9930	. 0369	. 0040	86	2.0000	1.8000	. 2000
	$\log _{10} \mathrm{~W}$	1.7540	. 4507	. 0486	86	3.0878	. 6990	2.3888
	$\log _{10} 10$	2.8246	. 6001	. 0647	86	4.5386	1.8573	2.6812

TABLE XIII - PERCENTILES FOR PLOTTING PARAMETERS OF EVENTS 1 THROUGH 8

Event	Percent	$\begin{aligned} & \text { Distance (R) } \\ & (\mathrm{ft}) \end{aligned}$	Weight (W) (lb)	$\begin{gathered} \text { Area (A) } \\ \left(\text { in }^{2}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Area/Weight (A/W) } \\ & \left(\text { in }^{2} / \mathrm{lb}\right) \\ & \hline \end{aligned}$
1	10	222	2.0	96.0	26.0
	20	287	2.0	145.0	44.0
	30	331	3.0	209.0	55.5
	40	372	4.0	280.0	67.2
	50	408	5.0	360.0	76.0
	60	449	7.0	440.0	88.0
	70	521	8.0	578.0	100.0
	80	608	9.0	768.0	120.0
	90	722	16.0	1296.0	144.0
2	10	60	2.5	8. 0	1.2
	20	130	5.0	34.0	6.1
	30	225	8.0	140.0	19.3
	40	300	10.0	220.0	33.6
	50	325	14.0	330.0	43.2
	60	350	21.0	528.0	55.9
	70	375	26.0	1062.0	72.0
	80	450	40.0	1566.0	90.0
	90	550	90.0	3600.0	113.1
3	10	138	8.0	44.0	2.2
	20	198	11.0	144.0	3.8
	30	375	20.0	192.0	3.9
	40	695	26.0	216.0	4.4
	50	825	42.0	288.0	5.6
	60	990	61.0	360.0	14.1
	70	1050	90.0	480.0	24.0
	80	1523	108.0	864.0	28.1
	90	1650	141.0	3456.0	28.8
4	10	242	13.0	120.0	3.3
	20	466	26.0	180.0	3.8
	30	510	35.0	216.0	4.4
	40	608	41.0	360.0	7.5
	50	708	52.0	576.0	14.0
	60	823	76.0	864.0	26.2
	70	912	95.0	1152.0	27.9
	80	1003	125.0	2304.0	28.1
	90	1110	185.0	4320.0	28.3

Event	Percent	$\begin{aligned} & \text { atance (R) } \\ & \text { (ft) } \end{aligned}$	Weight (W) (lb)	$\begin{gathered} \text { Area (A) } \\ \text { (in } \left.^{2}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Area/Weight (A/W) } \\ & \left(\text { in }^{2} / \mathrm{lb}\right) \end{aligned}$
5		210	15.0	72.0	2. 1
	20	300	13.0	144.0	3.5
	30	680	21.0	192.0	3.6
	40	825	48.0	240.0	3.7
	50	925	55.0	288.5	3.8
	60	1035	65.0	360.0	4.0
	70	1120	97.0	432.0	7.2
	80	1220	110.0	576.0	13.4
	90	1730	125.0	1296.0	27.0
6		45.0	. 605	0.4	14.286
	20	82.0	. 010	0.5	27.996
	30	106.0	. 018	1.3	54.762
	40	127.0	. 028	2.0	70.000
	50	148.0	. 044	2.7	80.1768 88.888
	60	169.0	. 069	4.1	100.000
	70	192.0 233.0	. 210	12.0	119.469
	80 90	281.0	. 627	24.0	160.894
7			. 025	1.0	10.000
	20	80	. 051	2.0	20.000
	30	103	. 090	3.0	30.000
	40	125	. 100	4.0	45.557
	50	141	. 1.00	6.0	57.600
	60	162	. 135	8.0	69.767
	70	185	. 209	14.0	80.000
	80	238	. 400	24.0	93.023
	90	293	1.833	60.0	127.660
8	10	35	. 022	1.5	10.000
	20	67	. 039	2.5	28.000
	30	108	. 064	3.8	44.280
	40	142	. 100	5.5	61.303
	50	162	. 113	8.0	78.571
	60	180	. 193	14.0	96.154
	70	196	. 380	22.8	103.131
	80	213	. 721	40.0	125.000
	90	248	2. 009	90.0	166.667

"

distribution appears to be a better fit. Figures 45,46 and 47 are examples of the other plots. From the plots over all 8 events, it appeared that the normal distributions aciequately fitted the distance (R), and A / W and that \log normal distributions best fitted the weight (W) and area (A). A complete summary of the fragment data is given in Table XIV, giving the estimated standard deviation (S), and mean (M) for the respective distributions for each parameter in each event.

A "W" statistic for goodness of fit for each parameter was calculated using the methods outlined by Hahn and Shapiro (Ref. 36).

The approximate probability of obtaining the calculated test statistic, given that the chosen distribution is correct, was then determined, and is shown in Table XV. Figure 48 is a plet of Table XV, and can be used to determine the approximate probability of obtaining a value as low as the calculated value of " W ", given that the selected distribution is the correct one. The values in Table XVI were calculated usirg the method and formula outlined by Hahn and Shapiro (Ref. 36).

Table XVI is a summary of the "W" test on normality for R, W, A, and A/W for the eight events. The method, and sample calculations for the W statistic and the probability of obtaining the calcul ted value of W are given in Appendices E and F.

Referring to Table XVI, we see that the re are 32 distributions, one each for R, W, A, and A / W for each of the eight events. The probability of obtaining the calculated value of " W " is greater than 50 percent for all except the A / W distributions for events 3,4 , and 5 , indicating adequate fits for all except these three distributions, as it is customary to consider values exceeding 2 to 10% as adequate grounds for not rejecting the hypothesis that the data belong to the chosen distribution. It is interesting to note that each of the parameters is distributed in the same family (i.e., normal or log normal) across all eight events. That is, distance (R) has a normal distribution function in each of the eight events, indicating a repeatable pattern.

The estimate for the means and standard deviations for each of the distributions is given in Tavle XIV.

D. Methods of Prediction of Range Versus Fragment and Blast Yield Parameters

1. Determination of Mean Range of Fragments Versus Blast Yield by Regression Analysis - The mean distance R versus the yield Y in percent and equivalent pounds of TNT, $\mathrm{W}_{\text {TNT }}$ for the 8 events was plotted on log-1 ; paper and is shown in Figures 49 and 50, respectively. As can be seen, when events 6,7 and 8 which are the mixing tests are excluded, there is more
E...
TABLE XIV - SUMMARY OF FRAGMENT DAIA

Event No.	No. of Fragment	Yield, Y		$\begin{aligned} & \text { Range, } \\ & R(1)_{\text {in Feet }} \end{aligned}$			Weight, W, lbs			Area, A, IN^{2}			Area/Weight		
		$\%$	lbs TNT	Dist	M	S	Di.7t	M	5	Dist	M	S	Dist	M	5
1	341	5.0	4.55×10^{2}	N	447	194	L	4.98	2.23	L	344.9	2.8	N	86.9	60.6
2	38	1.1	1.08×10^{3}	N	377	203	L	26.49	3.14	1	299.5	7.16	N	54.9	46.2
3	105	23.0	4.03×10^{2}	N	830	557	2	38.82	3.25	1	331.5	4.4	N	22.7	57.6
4	86	24.4	4.28×10^{2}	N	740	342	1	56.35	2.82	L	667.7	3.98	N	16.2	10.8
5	31	62.6	1.097×10^{3}	N	986	574	1	51.16	2.42	2	293.5	2.75	N	8.8	9.0
6	1056	86.0	2.06×10^{2}	N	158	88	1	0.05	6.95	1	3.3	5:2	N	171.3	149.3
7	325	70.0	1.67×10^{2}	N	152	86	2	0.16	5.04	L	6.9	5.0	N	83.7	233.4
8	252	73.0	1.75×10^{2}	N	152	79	L	0.17	6.54	L	9.8	5.3	N	99.4	122.7

(1) Dist. is the type of frequency distribution, N is normal, and
L is log normal

TABLE XV - APPROXIMATE PERCENTAGE POINTS OF "W" TEST FOR NORMALITY ($\mathrm{n}=9$)
"W"
.764
.791
.829
.859
.921
.935
.945
.969
.978
.988

Percentage
1.0
2.0
5.0
10.0
38.2
50.0
64.3
87.1
94.8
99.0
TABLE XVI - SUMMARY OF "W" TEST ON NORMALITY FOR R, W, A, (A/W)

Event No.	Distance (R)			Weight (W)			Area (A)			Area/Weight		(A/W)
	Dist	"w' ${ }^{\text {\% }}$	$\mathbf{P}^{\text {** }}$	Dist	'W"	P	Dist	"W"	P	Dist	"W"	\mathbf{P}
1	\mathbf{N}^{*}	. 969	. 871	$\mathrm{LN}^{* *}$. 954	. 740	LN	. 994	. 999	N	. 987	. 990
2	\mathbf{N}	. 982	. 968	LN	. 998	. 999	LN	. 966	. 860	N	. 959	. 790
3	N	. 942	. 574	LN	. 949	. 642	LN	. 966	. 860	N	. 799	. 025
4	N	. 981	. 966	LN	. 989	. 995	LN	. 967	. 870	N	. 791	. 024
5	N	. 967	. 850	LN	. 921	. 382	LN	. 994	. 999	N	. 672	<. 01
6	N	. 988	. 990	[N	. 992	. 999	LN	. 945	. 643	N	. 983	. 072
7	N	. 969	. $8: 1$	LN	. 936	. 500	LN	. 989	. 995	N	. 972	. 910
8	N	. 989	. 995	LN	. 975	. 931	LN	. 978	. 948	N	. 983	. 972

* N is normal distribution
* \mathbf{P} is approximate probability of obtaining a value as low as the calculated value of W, given that the chosen distribution is the correct one.

FIGURE 45. EVENT 4 PROB ABILITY DISTRIBUTION (LOG NORMAL), PROJECTED AREA A

FIGURE 46. EVENI 4 PROBABILITY DISTRIBUTION
(LOG NORMAL), WEIGHT W

z

FIGURE 48. APPROXIMATE PROBABILITY PERCENTACE POINTS OF 'W' TEST FOR NORMALITY (n ${ }^{\prime}$ 9)

scatter on the TNT chart than on the percent yield chart. A regression equation was derived to describe a linear fit to the points. Events 6, 7 and 8 were excluded on the basis that the propellants were mixed differently then in events 1 through 5. The equation is:

$$
\begin{equation*}
\hat{R}=314.74 Y^{0.2775} \tag{63}
\end{equation*}
$$

This equation should be limited to the range of weights and configurations of events 1 through 5 .

The line is drawn on Figure 49, and the predicted versus observed values of the me an distance ior the 5 events can be read from the chart. On Figure 49, the maximum observed distance is also shown for each event.

In Figure 5l,the upper dashed line shows the estirnated distance which should contain at least 95% of the fragments. Table XVII shows the upper 95% confidence limit (CL) on the estimate of the mean (M), the upper 90% confidence limit on the estimate of the standard deviation, and the various quantities necessary to calcılate these confidence limits.

The confidence limit on the mean was calculated using the following formula:

$$
C L=M+\frac{S}{\sqrt{n}} t_{n} ; 95
$$

n is the number of fragments and $t_{n} ; 95$ is the value of the t distribution with a degrees of freedom at the 95 th percentile.

The confidence interval for the standard deviation was calculated using the following formula:

$$
C L=\left[\frac{\Sigma X^{2} i-(\Sigma X i)^{2} / n}{X^{2}(n-1) ; 90}\right]^{1 / 2}
$$

Where $X i$ is the distance of the ith fragment, n is the number of fragments, and $X^{2}(n-1) ; 90$ is the value of a chi square distribution with $n-1$ degrees of freedom at the 90 th percentile.

Then, using the new upper confidence level values of M and S, the range \hat{R}_{95} in which 95% of the fragments should fall was calculated as follows:

$$
\hat{R}_{95}=M+S t_{n ; 95}
$$

The interval from the mean (M) to \hat{R}_{95} is indicated for each event on Figure 51
TABLE XVII - CONFIDENCE LIMITS ON ME AN, STANDARD DEVIATION,

Event No.	Sample Size	Yield		Normal		Distribution				Max Dist
		\%	TNT	M	S	S.E.	$\begin{gathered} 95 \% \mathrm{CL} \\ \mathrm{M} \end{gathered}$	$\begin{gathered} 90 \% \mathrm{CL} \\ \mathrm{~S} \end{gathered}$	$95 \% \mathrm{CL}$ Dist	
1	341	5	4.55×10^{2}	447	194	10.5	464	204.5	784.4	1027
2	38	1.1	1.08×10^{3}	377	203	32. 96	433	240	838.6	1100
3	105	23	4.03×10^{2}	830	557	54.33	647	611	1662	2200
4	86	24.4	4.28×10^{2}	740	342	36.84	801	380	1433	1655
5	31	62.6	1.097×10^{2}	986	574	103.16	1161	693	2162	2280
6	1056	86	2.06×10^{2}	158	88	2. 714	162	90.56	311	485
7	325	70	1.673×10^{2}	152	86	4.762	160	90.7	310	435
8	252	73	1.753×10^{2}	152	79	5.004	158	84.1	308	342

by a bax.
A line was then drawn parallel to the regression line, and just touching the longest bar. Thus, the distances read from this line could be expected to encompass at least 95% of the fragments resulting frorn a given yield.
2. Determination of Mean Range of Fragments by Use of Ballistic Equations - The range of a fragment produced by a missile explosion may be about the initial fragment velocity and fragment characteristics. Specifically, it is necessary to know the following parameters:
(1) The fragment mass, M
(2) The initial fragment velocity, U_{f}
(3) The initial elevation of fragment trajectory, θ
(4) The fragment cross-sectional area, A
(5) The drag coefficient for the fragment, C_{D}
(6) The density of air, ρ air

Having given these parameters, the range of the fragment may be obtained from the equations of motion solved for the total time of flight of the fragment. This method is described and the following equations completely derived by J. J. Oslake, et al, (Ref. 41) for the case of missile exploding on the launch pad with the assumption that air density remains constant along the trajectory of the fragmenis produced. Only drag and gravitational forces are assumed to acl c the fragments where

$$
\begin{equation*}
F_{d}=-(1 / 2) \rho U_{z}^{2} A C_{D^{\prime}} \quad F g=-M g \tag{65}
\end{equation*}
$$

are the verticai cumponcnt of the drag force and the gravitational forces, respective)y. ($\rho=\rho_{\text {air }}$ and $U_{z}=$ vertical velocity of the fragment. $)$ The equation of motion for vertical acceleration may be integrated to obtain t as a fuaction of U_{z}, which gives

$$
\begin{equation*}
t_{r}=\frac{1}{\sqrt{c g}} \tan ^{-1}\left(U_{20} \sqrt{c / g}\right) \tag{66}
\end{equation*}
$$

for the case in which $U_{z}=0$ (i.e., $t_{\text {is }}$ is the of rise for the fragment). In Eq. (66) U_{zo} is the initial vertical fragment velocity and

$$
\begin{equation*}
\mathrm{c}=\left(\frac{1}{2}\right) \frac{\rho_{\mathrm{air}} A \mathrm{C}_{\mathrm{D}}}{\mathrm{M}} \tag{67}
\end{equation*}
$$

The equation of motion for the fall of the fragment may be similarly integrated to obtain

$$
\begin{equation*}
t_{f}=\frac{1}{2 \sqrt{c g}} \ln \left[\left(2 e^{2 C z_{M}}-1\right)+\left[\left(2 e^{2 c z_{M}}-1\right)^{2}-1\right]^{1 / 2}\right] \tag{68}
\end{equation*}
$$

where

$$
\begin{equation*}
Z_{M}=\frac{1}{c} \ln \left[\frac{1}{\cos \left(\sqrt{c g} t_{r}\right)}\right] \tag{69}
\end{equation*}
$$

The total time of flight of the fragment is

$$
\begin{equation*}
\tau=t_{r}+t_{f} \tag{70}
\end{equation*}
$$

where t_{r} and t_{f} are functions of initial conditions only. Finally, the equations of motion for radial acceleration of the fragment may be integrated to obtain the range R in terms of τ :

$$
\begin{equation*}
\mathrm{R}=\frac{1}{\mathrm{c}} \ln \left(1+\mathrm{c} \mathrm{U}_{\mathrm{Ro}} \tau\right) \tag{71}
\end{equation*}
$$

The range may be determined from our initial parameters, since c is a function of $M, A, C, P_{\text {air }}$ (Eq. (6?)); $U_{\text {Ro }}$ is the radial component of the given initial velocity, U_{f} :

$$
\left.\begin{array}{l}
v_{R o}=U_{f} \cos \theta \tag{72}\\
v_{Z o}=U_{f} \sin \theta
\end{array}\right\}
$$

and thus is a function of U_{f} and θ; and τ is a function of initial conditions U_{f}, θ, c and g.

A computer program in FORTRAN IV which computes fragment range as a function of the independent parameters mentioned above is given in Appendix H. This program was checked against the results of J. J. Oslake, et al (Ref. 41); the check appears in Appendix H. The syinbols used in the program as well as the input and output parameters are also discussed there.

This method of range prediction requires considerable information about the fragments emanating from the missile explosion. In general, the
initial fragment velocity, U_{f}, may be determined by one of the methods described in Section III. B. Fragment mass, cross-sectional area, and drag coefficients must be determined empirically. Drag coefficients for fragments at various velarities are described by L. D. Heppner and J. E. Steedman (ref. 42). C vefiicients for regular shaped projectiles (spheres and cylinders) are described by E. Richards (ref. 43). A correlation between range predicted by this method and that determined statistically for a "mean" (or average) fragment from the PYRO test data, event 062, is given in Section IV.E.

E. Correlation

1. Standard Statistical Tests

a. Standard Deviation Versus Mean Distance - Figure 52 is a plot of the standard deviation of the distance versus the mean distance R for each of the eight events. As one might expect, the standard deviation increases as mean distance increases.
b. Results of Scaling A/W Parameter - From Appendix B,
formula B13 is:

$$
\begin{equation*}
G_{7}^{\prime}=A_{f} / W_{f}^{2 / 3} \tag{73}
\end{equation*}
$$

where A_{f} is the fragment cross-scctional area (in ${ }^{2}$), and $W_{f}(l b)$ is the fragment weight.

Figure 53 is a plot of the ge ometric means of A / W versus geometric mean distance $R_{3}(f t)$ for the eight events. Figure 54 is a μ ot of the geometric means of A / W^{273} versus geometric mean distance.

The points, excluding events 3, 4 and 5 have been fitted to line with a regression analysis which resulted in the prediction equation:

$$
\begin{equation*}
\hat{R}=9.864\left(\mathrm{~A} / \mathrm{W}^{2 / 3}, 0.78\right. \tag{74}
\end{equation*}
$$

where \hat{R} is the me an range ($f t$), A is the area of the fragment (in ${ }^{2}$), and W is the weight of the fragment (lb).

The exclusion of events 3,4 and 5 car be justified on the basis that A/W for the se three events were noticeabiy low in probability of belonging to the \log normal family of distributions, while A / W for the sther events showed a high probability of belonging to the 10 g normal family.

Comparing the points in Figure 52 with those in Figure 54, it is obvious that, in this case, scaling of the A / W parameter improved the correlation

FIGURE 54. REGRESSION OF GEOMET RIC MEAN $\frac{A}{W \frac{2}{3}}$ VS. GEOMET RIC
ME AR RANGE, $\hat{\mathrm{R}}$
of the scaled parameter with distance. In fact, the correlation coefficient, τ, is. 97, showing a high degree of correlation between R and $A / W^{2 / 3}$.
2. Correlation of Statistically Determined Mean Range of Fragment to the Range Determined by Ballistic Equations for a "Mean" Fragment - The approach to the fragment range prediction problem which we originally anticipated was to substitute data obtained from statistical analysis of test events into the ballistic equations described in Section IV.C. 2. This would have permitted range predictions on the basis of observations of the initiai fragment velocities and fragment physical characteristics alone.

Unfortunately, we were only able to find one test which had sufficient data to check this method. This was the full-scale test of a Saturn IV fuel tank described in the Project PYRO Report, (ref. 16). For this test, both films of the explosions and a post-explosion fragment survey were available. It is identified as Event 1 in Table XII. The data provided were sufficient to calculate the characteristics of a "me an" fragment or a fragment whose properties we:e considered to be those described by the arithmetic mean of all the fragments observed. From our statistical analysis, the properties of this fragment were:
(1) The mean weight, $\bar{W}=6.797 \mathrm{lb}$
(2) The initiai me an velocity, $\bar{U}_{f}=741 \mathrm{ft} / \mathrm{sec}$
(3) The mean elevation angle, $\overline{0}=12.77^{\circ}$
(4) The me an cross-sectional area, $\bar{A}=4.0 \mathrm{ft}^{2}$

Values for C_{D} (the fragment drag coefficient) were obtained from references 42 and $43 . C_{D}=0.404$ if the fragment is modeled as a sphere while $C_{D}=0.75$ if the iragment is modeled as irregular in the sense described by Heppner and Steedman in their study of fragment simulating projectiles, (ref. 42).

Table XVIII shows the results of range predictions using the various C_{D} and the data from the Saturn IV test in progr m (TEMP) (see Appendix H).

TABLE XVIII - PREDICTED VS. MEASURED FRAGMENT RANGES

C_{D}	Predicted \hat{R} for Mean Fragment, ft	Measured $\hat{\mathrm{R}}, \mathrm{ft}$
.404	579	447.4
.750	353	447.4

It can be seen from the se results that reasonably accurate range values may be obtained if an appropriate C_{D} is chosen.

This range prediction method could be more useful if the fragments were broken down into classes of narrow mass ranges whose mean velocity, elevation angle, etc., were obtained from empirical considerations. Then a predicted range mapping could be made, as a function of yield, with the use of the se ballistic equations. To do a complete empirical study, however, would probably require arena tests using models of the actual missile tanks.

V. EFFECTS OF FRAGMENTS

A. Introduction

It is desirable to have the capability to predict the probable damage levels to humans, structures, vehicles, etc. at various ranges from an exploding missile. Damage can be produced due to the blast wave emanating from the rupture of the missile or the interaction of the blast wave with objects surrounding the missile.

Damage caused by blast waves has been extensively studied and is a result of the peak overpressure or impulse of the blast wave depending on the nature of the "target". Ref. 34 gives examples of this kind of data for damage to humans as a function of peak overpressure. Since peak overpressure is a function of range and yield, dannage levels can be associated with the se parameters.

In order to predict damage as a result of fragmentation, it is necessary to know the value of the terminal ballistic parameters of the fiagments (i.e., velocity, range, mass, cross-sectional area, etc.). Insofar as the value of these parameters can be determined from the characteristics of the missile explosion, damage levels can be predicted as a function of yield.

In Sections II and IV of this report, we have tried to investigate methods of determining fragment initial velocity and range by statistical and deterministic methods. By and large, however, the empirical data are not sufficient to cover the fragment damage problem on the basis of existing missile expiosior data. A great deal of work has been done, however, on the problem of fragment damage from bomb explosions. We feel that much of this work is applicable to the exploding missile problem, even though the initial fragment velocities for the exploding missile would be primarily subsonic, whereas those for exploding bombs are usually 8 dpersonic.

A considerable amount of investigation has been made of what the terminal ballistics characteristics of a fragment must be in order to cause damage to various "targets". Equations for penetration of wood, steel, etc., of various thicknesses (as well as human simulators) have been developed from empirical data which may be used to predict damage levels as a function of fragment mass, velocity, and area. The probability of damage to these targets at any range would be a function of the probability of arrival of a fragment meeting the minimum specifications for the damage equations. The probable fragment damage for a given range as a result of a missile explosion is thus predictable when these two parts of the problem are solved:
(1) The probability of arrival at any given range of a fragrent of specified mase and cross-sectional area, velocity, etc.
(2) The probability of penetration or damage to a specific "target" struck by a fragment of the specified mass, cross-sectional area, velocity, etc.
B. The Probability of Arrival of a Fragment of Specified Characteristics Versus Range

1. Fragment Characteristics - It is necessary to characterize the fragments in various ways such that trajectory analysis will allow a maj ing of fragments from a unit solid angle about the explosion to a unit arca on the ground surface at some range, R, from the explosion center. Specifically, it is necessary to know the fragment mass distribution; cross-serional area or projected area distribution, and the drag coefficient for the fragments.

Many of these characterizations are obtained from empirically derived equations for bomb studies. One accepted equation in bomb studies relating fragment mass and area is:

$$
\begin{equation*}
M=k A^{3 / 2} \tag{75}
\end{equation*}
$$

where M is a fragment mass, A is its cross-sectional area and k is some constant (ref. 44). For a mild steel fragment of "flattened" shape $k=1.45$, for instunce(where A is taken as the mean projected area of the fragment) (ref. 45). The distribution of fragment masses may be given by:

$$
\begin{equation*}
N(M)=N_{0} \exp \left\{-(M / \mu)^{Y}\right\} \tag{76}
\end{equation*}
$$

where N is the number of fragments with masses greater than M, and μ equals $1,1 / 2$, or $1 / 6$ the average fragment mass depending on whether γ equals $1,1 / 2$ or $1 / 3$, respectively (ref. 46). Equation (76) actually thus defines thret different mass distribution laws which are applicable for various types of explosions (for a thick walled shell in a three-dimensional breakup, μ equals the average fragment mass and $\gamma=1$, for instance).

Appropriate values for the drag coefficient must be chosen in order to calculate the aerodynamic coefficient in the drag force equation, c, [see Section III. B-1, Equation (67)]. Some values for C_{D} were given in Section IV-C. For bomb tests, the values $C_{D}=.48, .60$ for sub- and supersonic fragment velocities seem to be common (Refs. 46-48) giving:

$$
\begin{align*}
& F_{d}=.0031 \mathrm{~m}^{-1 / 3} \mathrm{U}^{2} \text { subsonic } \tag{77}\\
& F_{\mathrm{d}}=.0039 \mathrm{~m}^{-1 / 3} \mathrm{U}^{2} \text { supersonic }
\end{align*}
$$

for the drag forces (mass in engineering units and velocity in ft/sec.)

Empirical equations such as those obtained from bomb studies should be developad for missile explosions whe re the fragments are larger and have lower initial velocities. Until such equations are developed, some good predictions can probably be made using the equations relating to subsonic velocities for bomb fragments of relatively large mass.
2. Trajectory Analysis - A trajectory analysis may be carried out on fragments of known characteristics as was demonstrated in Section IV-C. These techniques result in a range calculation but not a terminal velocity calculation. Solution of the equations of motion for a fragment traveling at the speed U along its trajectory:

$$
\left.\begin{array}{l}
\ddot{\bar{X}}+\beta v \dot{\bar{X}}+g \sin \alpha=0 \tag{78}\\
\dot{\bar{Y}}+\beta v \dot{\bar{Y}}+g \cos \alpha=0
\end{array}\right\}
$$

where β is the aerodynamic coefficient with the same definition as c in Equation(65). Sections II-B, \bar{X} and \bar{Y} are local coordinates of the fragment at time t measured in a coordinate system moving with the fragment, and α is the elevation angle of the fragment relative to the trajectory in the \bar{X}, \bar{Y} coordinate system) will yield the terminal velocity and range. These equations are solved by Feinstein and Nazooka (ref. 48) using a technique in which gravitational effects are a perturbation on the drag equations.

$$
\begin{equation*}
\ddot{\bar{X}}_{0}+\beta \dot{\bar{X}}^{2}=0 \tag{79}
\end{equation*}
$$

For trajectories in which the fragments had an initial elevation angle less than that required for maximum range (low register trajectory)

$$
\begin{equation*}
x=\left(\bar{X}_{0}+\bar{X}_{p}\right) \cos \alpha_{0}-\bar{Y}_{\operatorname{Y}} \sin \alpha_{0} \tag{80}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{X}_{0}=\ln (1+u) / \beta \\
& \bar{X}_{p}=-(g / 2) t^{2} \sin \alpha(1+u / 3) /(1+u) \tag{81}\\
& u=\beta v_{0} t \\
& \bar{Y}=(g / 2) t^{2} \cos \alpha[u(1+u / 2)-\log (1+u)] / u^{2}
\end{align*}
$$

t is the time of flight obtained from the equation

$$
\begin{equation*}
Y=\bar{X}_{0}+\bar{X}_{p} \sin \alpha_{0}+\bar{Y} \cos \alpha_{0}=0 \tag{82}
\end{equation*}
$$

and $\alpha=\alpha$ is the initial elevation argle. Solutions for other trajectories are obtained numerically for time interval steps t in which displacements occur.

$$
\begin{align*}
& \Delta X=\bar{X} \cos \alpha-\bar{Y} \sin \alpha \tag{83}\\
& \Delta Y=\bar{X} \sin \alpha+\bar{Y} \cos \alpha
\end{align*}
$$

Terminal velocity can be obtained by straightforward differentiation of Equations (78) and (79) with respect to time, t, but Feinstein omitted this step.
3. Mapping From Explosion Center to the Ground Flane - Feinstein uses Eqs.(80) through (83) to map the number density of fragments from bombs, n_{i}, in a mass internal i from those passing through an area element $R_{0}^{2} \cos \alpha_{0}$ $\Delta^{1} \phi \Delta \alpha_{0} \quad$ on a hemisphere immediately surrounding the bomb, to those landing in an area on the ground plane at range $R, R \Delta \phi \Delta R$. For $n_{i}{ }^{\circ}$ density of fragments at the elemental area at the hemisphere and n_{i} density of fragments at the elemental area at the ground plane

$$
\begin{equation*}
n_{i}=n_{i}^{\circ} \quad \frac{R_{0}^{2} \cos \alpha_{0}}{R\left|d R / d \alpha_{0}\right|} \tag{84}
\end{equation*}
$$

The trajectory equations and initial conditions on the fragments yield the value for $R+d R / d \alpha_{0} \cdot n_{i}{ }^{\circ}, R_{0}$, and α_{0} are related by fragment arena data.

In a simpler view, $n_{i}{ }^{0}$ could be obtained from Eq. (77) and the explosion could be assumed to have spherical symmetry. As in Feinstein's calculation. Eq. (75) would be assumed to hold. Values for C_{D} would be chosen appropriate to the type of fragments expected from missile explosions and the number of fragments in a mass interval classification as a function of range would be calculated using Equation (84) and tra,iectory equations. Finally, the probability of impact on a target of area A_{i} of a fragment in mass internal i may be obtained from Poisson statistical equations, and the probability of damage for a given "target" would be assessed on the basis of vulnerability criteria and the flux of fragments as a function of range meeting those criteria.

Feinstein has actually solved the problem of hazards to humans $2 s$ a result of several types of bomb explosions using his technique. His results (for the assumption that fragments of $58 \mathrm{ft}-\mathrm{lb}$ or greater of energy are hazardous to humans) are given in the form of probability of injury contours. We suggest that this technique or a simplified version of it coupled with more complete data on missile explosions could be used to produce similar results for the missile explosion problem.

C. Vulnerability Criteria

1. Structures - When a fragment emanating from an explosion arrives at the "target", the degree of damage it will produce is generally a function of its terminal velocity, mass, cross-sectional area, and the characteristics of the target. The relationships between these quantities and some measure of damage level for structures are empirical equations which are unrelated to the source of the fragment. Thus equations of this type which have been extensively developed tor prediction of damage from bomb tragments would be applicable to the exploding missile problem.

An accepted form for vulnerabil:ty equations is:

$$
\begin{equation*}
U=k \frac{e^{\alpha} A^{\beta}}{M^{Y}} \tag{85}
\end{equation*}
$$

where U is the fragment velocity. A is the presentation area of the fragment, M is the fragment mass, and e is the thickness of the target material. This equation of the "de Marre type" predicts the terminal velocity of a fragment required to penetrate the distance e into a structure where the constants α, β, γ, and k are a function of the material from which the structure and fragment are made. The se constants are obtained empirically for various materiols, and example values for the constants can be seen in Table XIX.

Some fragments from missile explosions are sufficiently large that penetration of a structure is not likely to be the primary damage mode. For surin fragments the kinetic energy of the fragment may be of most interest in relating to probable structural damage. In some cases, the mass of the fragment would be sufficient to crush a structure were it to land on top of it. Clearly the damage potential of fragments from missile explosions is related to the types of structures which are in danger of damage and the materials and techniques used in their construction. To classify and investigate all such structures is beyond the scope of this report.
2. Personnel - The simplest criterion for fragment damage to personnel is the so-called 'kinetic energy criterion' which is attribed to Cranz' "Lehrbuch der Ballistik". This criterion states that a fragment having $58 \mathrm{ft}-\mathrm{lb}$ of kinetic energy is capable of producing a human casualty. This criterion was widely used during World War II to predict casualty levels and was used by Feinstein (ref. 44) in 1972 to obtain probability of casualty contours from the equations described in Section V-B. Like most empirical values its justification is that it seems to give correct resulte more often than not.
table dix - CONSTANTS FOR VULNERABILITY EQUATIONS

Target Material	Fragment Material	α	β	γ	k
Yellow Pine	$9 / 32^{\prime \prime}-9 / 16^{\prime \prime}$ steel spheres	$3 / 4$	$3 / 4$	$3 / 4$	66.6
Plywood	$9 / 32^{\prime \prime}-9 / 16^{\prime \prime}$ steel sphe:es	$3 / 4$	$3 / 4$	$3 / 4$	82.3
Steel	Steel	$3 / 4$	$3 / 8$	$1 / 2$	272×10^{2}

where A is in inches squared e is in inches
M is in lb
U is in $\mathrm{ft} / \mathrm{sec}$

Other empirical vaiues for the characteristics of fragments which will produce an incapacitating wound have been obtained from

$$
\begin{equation*}
M_{1} U_{1}^{\alpha}=M_{2} U_{2}^{\alpha} \tag{86}
\end{equation*}
$$

where M is the mass of one of two fragments, i, and U_{i} is its velocity. This equation attests that having determined the mass and velocity of one fragment capable of incapacitating personnel all other fragmerts satisfying Eq. (86) also would be potentially incapacitating. The value for α is variously given as $2.5,3.0$, etc.

A "standard" assessment for fragments capable of producing casualties which has been widely used, is the wood penetration test. In this test, pine wood panels of thicknesses ranging from $1 / 2$ to 1 inch are present in the range of fragments from an explosion. Where the panels are perforated, it is assumed a casualty would iave occurred, otherwise not.

At this time, it wculd seem that acceptance of an empirical "standard" such as the kinetic energy criterion of $58 \mathrm{ft}-1 \mathrm{~b}$ would be th. best idea in investigating potential fragment damage to personnel as a resul of a missile explosion. Acceptance of this value would allow the use of bomb fragment data which was based on that value. Ultimately, it would seem reasonable to try and obtain data on the probability of injury as a function of kinetic energy of the fragments, and extend existing bomb fragment data to the case of more massive fragments of the type which may be encountered in missile explosions.

VI. DISCUSSION OF RESULTS

A riajor part of the work consisted of efforts to retrieve data relevant to the basic problem of fragmentation of liquid propellant vessels by literature search and visits to various government and private agencies. We believe that we were successful in assembling the majority of such data which are still available in the literature and in the files and archives of NASA and Department of Defense agencies, and in entering the data in the ASRDI data bani. The primary sources of data were the Project PYRO experiments (refs. 15-17), recent experiments conducted at NASA-Kennedy Space Center (ref. 39), and several accident reports (refs. 24 and 38). These sources, however, yielded only partial information with one exception. They gave either data on initial fragment velocities together with measured blast yield, or data on final locations, masses, and shapes of fragments. The only exception was PYRO Test \#62, which gave both types of data.

The following observations are appropriate in order to place the results obtained from fragment velocities measured from PYRO films into the proper perspective.

Velocities were measured for many different combinations of tank size (and total propellant weight), tank height to diameter ratio, propellant types and test type, that is, confined by missile or confined by ground surface.
(2)

Velocities were measured at diffexent positions in space depending on where they were first sighted. The instantaneous velocity of the fragment immediately afier sighting was determined, and an average velocity of the fragment was determined by assuming that it traveled in a straight line from the center of the tank to a point at which the fragment was first sighted. No attempt was made to estimate the initial velocity of the fragment at the tank wall from the velocities calculated at a later time.

Velocities determined from data obtained from a single camera view are only approximate because the fragments of ten had components of velocities directed toward or away from the cameras which could not be detected. The neressary assumption that such fragments travelled normal to the camera lens axis introduced possible errors of $+0 \%$ to -30%, i.e., velocities were generally underestimated. Likewise the coordinates of the fragment in terms of the radial position, height, and azimuth angle could not be determined accurately.

For fragments which could be observed from two different camera locations (spaced 120° a part), their true trajectory and thus their true velocity could be obtained. Unfortunately, fragments were difficult to identify in more than one camera view and so true velocities were obtained for only a few fragments.

It was rot possible to relate on a one-to-one basis fragment velocity and heading with fragment size, shape or final range.

In spite of these limitations to the fragment velocity data, we feel that the data we obtained were very useful, and reasonable corrclations with predicted values of velocity have been obtained. Nevertheless, we feel that the velocity data warrant additional study directed perhaps toward predicting the initial fragment velocities and those we had measured. We also feel that controlled experiments should be performed which would permit correlation between measured fragment velocities and the resulting missile masses. Techniques could be employed to allow initial velocities to be correlated with the final fragment size, weight, and position. An overhead camera located above the event with a wide field of view should facilitate velocity measurements and tracking during such a test. Tag markings would also facilitate frigmnt identification.

The fragment initial velocities, as estimated by the calculated paraneter U_{f} (see Section III) for the four pooled groups (CBM- LO $/ \mathrm{LH}$ 2, CBM $\mathrm{LO}_{2} / \mathrm{RP}-1, \mathrm{CBGS}-\mathrm{LO}_{2} / \mathrm{LH}_{2}, \mathrm{CBGS}-\mathrm{LO}_{2} / \mathrm{RP}-1$) were fitted by log normal distributions. The means and standard deviations of these distributions are given in Table VIII.

The goodness of fit test, using the "W" statistic (ref. 36) showed probabilities from. 415 to .99 of obtaining the calculated values of W , giving us no cause to reject assumed distributions. Thus, the log normal distributions appear to be an adequate fit for the fragment initial velocity distributions.

These probability density functions c an be used to represent fragment initial velocity densities for the subject propellant combinations within the two configurations, $C E M$ and $C B C i S$.

Complete details of all data sources and analyses are given in the main body of the report.

In Section II, we reviewed data pertinent to blast yield for propellant explosions, and also presented methods for estimation of blast yield and the free-field blast wave properties for various types of explosions and propellants. These mechode relied heavily on the extensive series of test results from Project PYRO (refs. 15-17), but also incorporated much of the physical
insight apparent in the work of Farber and co-workers (refs. 27-30). The methods allow estimation of blast wave peak overpressure and impulse, given propellant type, total propellant weight, type of accident, mixing time, and distanse from the center of the explosion. Predictions are limited, however, to the range of scaled distances of the PYRO tests. A major difference in our prediction methods and those of reference 17 is in shoice and scaling of ignition time. We believe that the scaling for this time assumed in references 15 and 17 is not verified by the test results, and discuss this point at some length in Appendix A, together with a dimensional analysis of ignition time scaling.

Density functions for fragment distance R, weight W, area A, and area/weight A / W, were estimated for each of eight events. A complete listing of the form and estimated parameters is given in Table XIV. Goodness of fit tests using the "W" statistic supported the selected density functions, in all but 3 cases out of the 32. These three cases were A/W distributions for events 3,4 , and 5 .

The form of the density functions was constant for each parameter. That is, for all eight events, R and A / W followed normal density functions, and W and A followed log normal distributions.

Distance \hat{R} versus percent yield Y for events 1 through 5 shows a very good correlation in Figure 48. A prediction equation was derived, and is:

$$
\begin{equation*}
\hat{R}=314.74 \mathrm{Y}^{0.2775} \tag{63}
\end{equation*}
$$

Confidence intervals were calculated for the means and variances for R for each of the eight events, and are shown in Table XVIII. In addition the 95th percentile was calculated for R for each of the first five events, and is shown on Figure 51.

Using Equation C13 from Appendix C, dimensional analysis for fragment trajectories, a new parameter G_{7}^{\prime} wae calculated:

$$
\begin{equation*}
G_{7}^{\prime}=A_{f} / W_{f}^{2 / 3} \tag{73}
\end{equation*}
$$

Plotting the geometric mean distance P. of events $1,2,6,7$ and 8 versus G_{7}^{\prime} (Figure 54 demonstrated a good correlation between these two variables), the scaling of W by taking the $2 / 3$ root brought the distance R into a good linear correlation (on $\log -\log$ paper) with G_{7}^{\prime}. A second prediction equation,

$$
\begin{equation*}
\hat{R}=9.864\left(\mathrm{~A} / \mathrm{w}^{2 / 3}\right)^{0.78} \tag{74}
\end{equation*}
$$

results in a correlation of 0.97 . Thus, within the limits of th. accuracy
allowed by the fragment data available from these 5 events, the prediction equation could be used to predict rnean distance \hat{R} for a fragment of given maximum projected area A, and weight W.

Data sources and analysis are given in the body of the report. The damage potential from fragments as a function of range, for exploding missiles, can be as important a consideration as the damage potential due to the blast wave. To obtain useful data such as probability of damage as a function of range for various missile types and "targets" of interest, some criterion for damage to the particular target must be accepted and the probability of arrival at any given range of a fragment meeting that criterion must be calculated. The former can perhaps be accepted from bomb fragment damage studies, although fragments from liquid propellant explosions are larger and slower. The latter must be obtained from empirical equations developed to define the distribution of fragment characteristics at the instant the missile explosion occurs and from suitable solutions of the trajectory equations. Using the se techniques, a "mapping" of the fragments from missile to target and probability of damage to a specific target as a function of range may be calculated. We suggest an expanded data base relating to distribution of fragment characteristics from missile explosions. The supplementation of bomb fragment data to cover larger and more massive fragments will probably be necessary before accurate damage probability maps can be made.

vil. CONCLUSIONS

This report presents the resulis of an extensive study of fragmentation effects of liquid propellant rockets or vessels which explode after accidental mixing of the propellants. The work was ensirely investigative and analytic, and included no experiments.

Some specific conclusions are as follows:
(1) Accident reports and results of tests simulating accidental explosions provided a significant source of data on fragmentation effects of exploding liquid propellant vessels.
(2) Data on initial fragment velocities, masses and shapes of fragments, and ranges of fragments showed wide statistical variations. When the data were fitted to statistical distribution functions, however, good statistical fits were obtained for the se parameters or combinations of these parameters. In some instances, the combinations of parameters were chosen by dimensional analysis.

Methods were developed or adopted for prediction of blast wave properties, initial velocities of fragments, and fragment range. These methods were compared with data and appeared to give reasonably good correlation.

Some approximate methods for estimating damage to various "targets" by impacting fragments are presented. These could not, however, be correlated with data obtained during the data retrieval part of our work because no data were available on terminal (or impact) velocities of fragments from bursting propellant vessels.

The analyses and empirical fits to data inciuded in this report do allow prediction of blast yield and subsequent fragmentation patterns and velocities for the common propellant combinations over a wide spectrum of type of accident, weight of propellant, and time of ignition.

We believe that the work reported here constitutes the first relatively comprehensive study of fragmentation effects from exploding liquid propellant vessels. As noted above, predictions can be made of sone of these effects using results from this report. But, there are limitations imposed by limitations in the fragmentation data - which has, after all, been retrieved from sources in which study of fragmentation effects was econdary or even entirely incidental. There seems to be little doubt that one could better test the
prediction methods presented here if he were able to design and conduct experiments with the specific purpose of observing and measuring fragmentation effects.

VIII. RECOMMENDATIONS

The results of this study can, we believe, form the basis for development of relatively simple methods of assessing hazards to people and damage to facilities from the impact of fragment from liquid propellant explosions. But, the study does not in itself generate such methods because its primary aim was the collection and analysis of fraginentation data from past tests and accidents. We have pointed out previously that none of the data collected came from experiments designed to obtain initial or terminal fragment effects. There is also an almost complete lack of terminal ballistics effects data or methods for assessing hazards of the relatively large, odd-shaped, low-velocity fragments which predominate in liquid propellant explosions. The authors therefore feel that, although simplified methods for overall estimation of fragment hazards can be generated, some additional experimental work would be very desirable to validate these methods.

We recommend the following studies:
sing the initial velocity prediction methods developed here, the statistical fits to data on fragment mass and shape, and exercising the trajectory equations of Section IV, expected variations in impact velocities for a spectrum of fragments could be computed for a number of hypothetical explosions. These impact conditions could then be overlaid on expected densities of human observers or bystanders and on nearby structures to estimate fragment hits. Using the very much oversimplified assumption that a fragment hit on a person is a kill, or that a fragment hit on a structure causes some specified dollar damage, each "scenario" could then be assessed for fragment kills and property damage. In this way, a simplified damage assessment model coald be generated, based on the work in this report. It is recommended that this be done, but that the user be strongly cautioned that the model could be considerably refined and improved, if better data were available in certain areas.
(2) A careful set of small-scale experiments be designed to obtain more accurate initial velocity data for tests simulating several types of accidents. Vessels or nearby objects should be carefully deaigned to produce fragments of known geometry and size, and their motions followed with at least two highspeed cameras. Such data should serve to improve the data presented in this report, with much more "two-view" data yielding accurate trajectories.
(3) As a part of the initial velocity experimente, accurate missile maps should be made to determine fragment impact locations. The pre-formed fragments should be carefully marked so that impact locations of many of the fragments could be correlated with initial velocities and launch angles.
(4) Studies of the terminal ballistics effects of impacts of relatively large, slow fragments of irregular shape would be very desirable for animals (to make estimates for humans), and for a variety of structures. Cost might be prohibitive. Some analytic studies could well provide partial answers, however.

The order in which the above recommendations are listed is also our suggested order of pricrity. The first study is purely analytical, but yields an approximate hazards assessment method. The other three are primarily experimental, and servie to generate data which should refine the method.

APPENDIX A

MODEL ANALYSIS FOR MIXING OF LIQUID ROCKET PROPELLANTS

In the Project PYRO studies, a basic assumption was that, for any particular type of simulated accident, the time of ignition to produce maximum blast yield could be scaled as

$$
\begin{equation*}
\bar{t}=t / W^{1 / 3} \tag{Al}
\end{equation*}
$$

where \bar{t} is scaled time, t is time of ignition delay after missile failure, and W is total weight of propellant in the missile. It is not clear that this is the proper scaling, and no model analysis is presented in the PYRO final reports to justify such scaling. There are instead statements that the experimental data appear to agree with this scaling, but the inherent scatter in blast yields makes this conclusion doubtful. We thought that a model analysis should be conducted to ascertain, if possible, how ignition times for maximum yield should scale.

From both the Project PYRJ work and Dr. Farber's work, it seems clear that intimate mixing of fuel and oxidizer is needed to maximize the blast yield for a given type of accident. The tirne for ignition must be great enough to allow as much mixing as possible, but not so great that all of the most volatile liquid can have evaporated. The physics of the processes which occur on mixing of LH_{2} and $\mathrm{LO}_{2}, \mathrm{RP}-1$ and LO_{2}, and $\mathrm{LH}_{2} / \mathrm{RP}-1 / \mathrm{LO}_{2}$ have been studied most exhaustively by Farber and his associates. They have, however, considered the dynamics of impact or other accident leading to the mixing in only a cursory manner. To conduct a model analysis, we should be able to iist the physical parameters affecting this problem, and their dimensions, which is the prerequisite to conduct of the analysis.

A number of the physical processes which occur are a function of the particular propellant combinations, and conditions just prior to an accident, rather than the details of the accident. These processes should be governed by parameters wnich will be common to all possible types of accidents, and will thus be considered first. Those propellants and oxidizers which are cryogenic will be essentially at their boiling temperatures, while fuel such as RP-1 will be at or near the temperature of the ambient air. Once the propellants start to mix, violent boiling of the colder liquids will occur, while the warmer ones will be chilled and perhaps frozen. The processes will involve conductive he at transfer, convective heat transfer, and eventually radiative transfer to the ambiert atmosphere. Gravity is perhaps important in convective processes and in rate of upward migration of bubbles formed during boiling. Latent heats of fusion and boiling are obviously important, as are temperature differences
and gradients. Parameters affecting these processes, and their dimensions in a M, L, T, 0 (mass, length, time, temperature) system are listed in Table 1.

To complete the list of parameters for model analyses, we must consider specific types of accidents, and also add other parameters known to affect the blast yield. Consider first the case identified by PYRO as CBM (confinement-by-the-missile). This case is shown schematically in Figure Al.

ANG:

FIGURE Al.
SCHEMATIC OF CBM CASE

A rupture is assumed to occur in the common bulkhead, idealized as a circular opening of diameter D_{0}. Oxidizer then spills through this opening under the effects of gravity, and mixes with the fuel. Geometry of the tankage, ruptured area, distance for oxidizer to fall, static head to force oxidizer
through the opening, etc., all seem important. These can be characterized by the tank dimensions shown, ullage volumes, initial masses of fluids, gravity, and a generic length ℓ indicating location within the tankage. (Velocities of impact of fluids are important, but these are fixed once the other parameters described above are determined.) The specific heat of combustion (or explosion) for propellants mixed in stoiciometric ratios, together with fraction mixed at time of ignition, should determine total energy driving the blast wave. Adding these parameters to Table Al, we have in Table A2 the total list of 20 parameters for this type of accident. These parameters will yield 20-4=16 dimensionless groups, when the me thods of dimensional analysis are applied. One such set is given in Table A3.

The model law in Table A3 can be used to express any one of the dimensionless groups (π terms) as a function of the remaining ones. Because we are interested in time scaling, which is contained in π_{11}, we would probably express π_{11} as a function of π_{1} through π_{10}, and π_{12} through π_{16}. The law can also be used to fix inter relations between scale factors for physical quantities. In its present form, Table A3 is too general to provide much guidance. It states that all of the dimensionless groups must be maintained constant between model and prototype tests for accurate scaling. Let us consider, however, the practical limitations of testing and the effects of these limitations.

Two of the physical parameters in Table A2 are constants of nature for testing on earth, and cannot be altered. Scale factors for these quantities*, the Stefan- Boltzmann constant σ and earth's gravity g, are therefore unity, i.e.,

$$
\begin{equation*}
\lambda_{0}=\lambda_{g}=1 \tag{A2}
\end{equation*}
$$

Also, we wish to employ the same propellants under the same initial temperatures and atmospheric conditions (or, at least, this is what was done in Project PYRO). This renders a number of other scale factors unity, namely:

$$
\begin{equation*}
\lambda_{H_{f i}}=\lambda_{H_{b i}}=\lambda_{H_{e}}=\lambda_{\nu_{i}}=\lambda_{K_{i}}=\lambda_{\left(\rho c_{p}\right)_{i}}=\lambda_{0_{i}}=\lambda_{0_{a}}=1 \tag{A3}
\end{equation*}
$$

These limitations cause several π terms to be identically satisfied, namely, π_{1} and π_{12}. Furthermore, by making the morligeometrically similar to the prototype in all respects, a number of other π terms will be satisfied.

[^9]TABLE Al - PARAMETERS AFFECTING HEAT TRANSFER OF MIXING LIQUID PROPELLANTS

Parameter	Symbol	Dimensions
Ambient Air Temperature	0_{a}	θ
Initial Temps. of Liquids**	0_{i}	θ
Temp. in Mixture	0_{m}	0
Heats of Fusion*	H_{fi}	$\mathrm{L}^{2} \mathrm{~T}^{-2}$
Heats of Boiling*	H_{bi}	$L^{2} \mathrm{~T}^{-2}$
Masses**	M_{i}	M
Thermal Conductivities*	K_{i}	MLT ${ }^{-3} \theta^{-1}$
Kinematic Viscnsities*****	ν_{i}	$L^{2} \mathrm{~T}^{-1}$
Volumetric Heat Capacities*	$\left(\rho c_{p}\right)_{i}$	$M L^{-1} \mathrm{~T}^{-2} \theta^{-1}$
Time	t	T
Gravity	g	LT ${ }^{-2}$
Convective Heat Transfer Coefficient	h	$\mathrm{MT}^{-3} \theta^{-1}$
Stefan-Boltzmann Constant	σ	$M r^{3} \theta^{-4}$

[^10]TABLE A2 - PARAMETERS FOR PROPELLANT MIXING FOR CBM ACCIDENT

Parame ter	Symb ol	Dimensions
Ambient Air Temperature	θ_{a}	θ
Initial Temps. of Liquids	θ_{i}	θ
Temp. in Mixture	θ_{m}	θ
Heats of Fusion	H_{fi}	$L^{2} \mathrm{~T}^{-2}$
Heats of Boiling	H_{bi}	$L^{2} T^{-2}$
Heat of Explosion	H_{e}	$L^{2} \mathrm{~T}^{-2}$
Masses	M_{i}	M
Thermal Conductivities	K_{i}	$\mathrm{MLT}^{-3} \theta^{-1}$
Kinematic Viscosities	ν_{i}	$L^{2} \mathrm{~T}^{-1}$
Volumetric Heat Capacities	$\left(0 c_{p}\right)_{i}$	$\mathrm{ML}{ }^{-1} \mathrm{~T}^{-2} \theta^{-1}$
Time	t	T
Gravity	g	$L T^{-2}$
Convective Heat Transfer Coefficiency	h	$\mathrm{MT}^{-3} \theta^{-1}$
Stefan-Boltzmann Constant	σ	$\mathrm{MT}^{-3} \theta^{-4}$
Tank Diameter	D	L
Tank Length	L	L
Opening Diameter	Do	L
Generic Length	$\boldsymbol{\ell}$	L
Ullage Volumes	$\mathrm{V}_{\text {ui }}$	L^{3}
Total Mass of Propellant	$\mathrm{M}_{\mathbf{t}}$	M

TABLE A3 - DIMENSIONLESS GROU PS FOR PROPELLANT MIXING FOR CBM ACCIDENT

Term No.	Group	Description
${ }_{1}$	θ_{i} / θ_{a}	Temperature R
π_{2}	$\theta_{\mathrm{m}} / \theta_{\mathrm{a}}$	
π_{3}	$\mathrm{H}_{\mathrm{fi}} / \mathrm{gL}$	
${ }_{4}$	$\mathrm{H}_{\mathrm{bi}} / \mathrm{gL}$	Energy Ratios
π_{5}	$\mathrm{H}_{\mathrm{e}} / \mathrm{gL}$	
π_{6}	D/L	
π_{7}	$\mathrm{D}_{0} / \mathrm{L}$	Length Ratios
π_{8}	ℓ / L	
π_{9}	$\mathrm{v}_{\mathrm{ui}} / \mathrm{L}^{3}$	Volume Ratios
${ }_{10}$	M_{i} / M_{t}	Mass Ratios
${ }_{11}$	$\mathrm{tg}^{1 / 2 / L^{1 / 2}}$	Scaled Tim
${ }_{12}$	$\left(\nu c_{p}\right)_{i} \nu_{i} / K_{i}$	Prandtl No.
${ }_{13}$	$\mathrm{hL} / \mathrm{K}_{\mathrm{i}}$	Nusseit No.
${ }_{14}$	$v_{i} / L^{3 / 2} g^{1 / 2}$	Pseudo Reynolds No.
${ }_{15}$	$\sigma g_{z}^{3} g^{3} / K_{i} L^{2}$	Ratio of Radiation to Conduction
${ }^{7} 16$	$K_{i} L^{1 / 2} \theta_{a} / M_{t} g^{3 / 2}$	Ratio of Conduction to Inertia

These are $\pi_{6},{ }^{T_{7}}, \pi_{8}, \pi_{9}$ and π_{10}. Employing the se restrictions, the remaining π terms require the following interrelations between scale factors.

$$
\begin{align*}
& \pi_{2} \rightarrow \lambda_{\theta_{m}}=1 \\
& \pi_{3}, \pi_{4}, \pi_{5} \rightarrow 1=\lambda_{L} \\
& \pi_{11} \rightarrow \lambda_{t}=\lambda_{L} 1 / 2 \\
& { }_{\pi_{1}} \rightarrow \lambda_{h} \lambda_{L}=1 \\
& \pi_{14} \rightarrow \lambda_{L} 3 / 2=1 \\
& \pi_{15} \rightarrow \lambda_{L}^{2}=1 \\
& \pi_{16} \rightarrow \lambda_{L} 1 / 2=\lambda_{L} \tag{A4}
\end{align*}
$$

A quick examination will show that the inter relations can only be satisfied if all scale factors, including the length scale factor λ_{L}, are unity. That is, no sub-scale model is possible which correctly scales all of the phenomena which were initially assumed to be important! This impasse is not unusual in attempting to model complex phenomena. One must now consider those effects which will hopefully be of minor importance, and let them deliberately go out of scale.

For the problem we are considering, radiation he at transfer to the outside atmosphere can perhaps be safely neglected, because the mixture is confincd within the tank up to the time of interest. So, let us ignore term Π_{15}. For the mixing fluids, conduction and convection are probably the primary modes of heat transfer, so we wisi to retain ${ }^{\Pi_{1}} 13$, Nusselt No., because this term is a ratio of these two effects. Inertia effects are undoubtedly important and should be retained. Gravity is triply important because it affects mixing impact conditions, convection, and bubble migration. Whether viscosity is important is not certain. We will assume that it is not, and ignore π_{14}. Heats of fusion, boiling and explosion appear to be important, so we should retain $\pi_{3},{ }_{4}$ and π_{5}. This reduced form of the law can be written:

$$
\begin{align*}
& \left(\frac{t_{g}^{1 / 2}}{L^{1 / 2}}\right)=f_{1}\left[\left(\frac{0_{m}}{0_{a}}\right),\left(\frac{H_{i}}{g L}\right) \text {, geom. similarity, }\left(\frac{h L}{k_{i}}\right),\right. \\
& \tag{A5}\\
& \left.\left(\frac{k_{i} L^{1 / 2} 0_{a}}{M_{t} g^{3 / 2}}\right)\right]
\end{align*}
$$

But, we still have problems! The second term in the bracket in Eq. (A5) requires that $\lambda_{L}=1$, which negates sub-scale testing. If we relax this requiremert, the last term in the bracket makes

$$
\begin{equation*}
\lambda_{L}^{1 / 2}=\lambda_{M_{t}} \tag{A6}
\end{equation*}
$$

But, $\lambda_{M_{t}}=\lambda_{L}{ }^{3}$ if identical materials are used, and (A6) is only satisfied if $\lambda_{L}=1 . M_{t_{t}}$ Lo obtain any model law which coes allow small-scale testing, we must throw out all effects except inertia, heat conduction, and heat convection. This very much reduced law is

$$
\begin{equation*}
\left(\frac{t_{g}^{1 / 2}}{L^{1 / 2}}\right)=f_{2}\left[\text { geon. similarity, }\left(\frac{0_{m}^{0}}{0_{a}}\right),\left(\frac{h L}{k_{i}}\right)\right] \tag{A7}
\end{equation*}
$$

It says that, if geometric similarity is maintained, a model will have similar temperature distributions during the mixing process at similar locations and similar scaled times, provided the film coefficient h scales inversely as the length scale factor. Recalling that $\lambda_{g}=1$ and $\lambda_{L}=\lambda_{M_{t}} 1 / 3$, the dimensionless time parameter $\left(t g^{l / 2} / L^{1 / 2}\right) \underset{\text { requires that time scales as }}{\text { l }}$

$$
\begin{equation*}
\bar{t}=\left(t / M_{t}^{1 / 6}\right) \tag{A8}
\end{equation*}
$$

where \bar{t} is not dimensionless, but uniquely detrermines the dimensionless time parameter mentioned before.

This conclusion regarding time scaling is, of course, dependent on the series of assumptions used to r st $2 t$ the basic misiel law. One critical as sumption was that gravity effects were important and must not be allowed to go out of scale. Although the physics of the mixing process seem to be strongly dependent on gravity, let us exarnine the consequences of letting gravity go sut of scale. We will make the same assumptions as before regarding use of the same fluids at the same initlal temperatures, and assume geometric similarity. Let us also modify the π terms somewhat by combining and substitution. We can, for example, square Π_{11} and multiply it by π_{3} through
π_{5} to give new terms which can be substituted. In a similar manner, g can be eliminated from all terms but ${ }^{11}$. The resulting modified terms are:

$$
\begin{align*}
& \pi_{3}^{\prime}=H_{f i} t^{2} / L^{2} \\
& \pi_{4}^{\prime}=H_{b i} t^{2} / L^{2} \\
& \pi_{5}^{\prime}=H_{e} t^{2} / L^{2} \tag{A9}\\
& \pi_{14}^{\prime}=\nu_{i} t / L^{2} \\
& \pi_{15}^{\prime}=\sigma_{0} L / k_{i} t^{6} \\
& \pi_{16}^{\prime}=k_{i} 0_{a} t^{3} / M_{t} L
\end{align*}
$$

These terms dictate the following interrelations between scale factors

$$
\begin{align*}
& \pi_{3}^{\prime}, \pi_{4}^{\prime}, \pi_{5}^{\prime} \quad \lambda_{t}=\lambda_{L} \\
& \pi_{14}^{\prime}-\lambda_{t}=\lambda_{L}^{2} \tag{A10}\\
& \pi_{15}^{\prime}-\lambda_{L}=\lambda_{t}^{6} \\
& \pi_{16}^{\prime}-\lambda_{t}^{3}=\lambda_{M_{t}} \lambda_{L}
\end{align*}
$$

As before, only the assumption that all scale factors are unity will satisfy all of these terms. But, heats of fusion, boiling and explosion will be properly scaled by choosing $\lambda_{t}=\lambda_{L}$. So, by letting gravity, viscosity, radiation, and ratio of conduction to inertia go out of rale, we can generate another restricted scaling law.

$$
\left(H_{i} t^{2} / L^{2}\right)=f_{3}\left[\text { geom. similarity, }\left(\theta_{m} / \theta_{a}\right),\left(\frac{h L}{k_{i}}\right)\right]
$$

Time scaling related to total mass of propellants acales in this law as

$$
\begin{equation*}
\bar{t}=\left(t / M_{t}^{1 / 3}\right) \tag{A12}
\end{equation*}
$$

This can be seen to be the scaling for time to produce maximum yield which was assumed in Project PYRO.

Which time scaling is correct, Eq. (A8) or Eq. (A12)? If all phenomena are to be properly scaled, neither is strictly correct. If gravity effects are truly important, Eq. (A8) is more nearly correci. If scaling of heats of fusion, boiling, etc. is more important than scaling gravity effects, then Eq. (Al2) is more nearly correct. To test either hypothesis; sufficient test data must exist to fit data scaled in either manner over a relatively large range of total propellant weights for any given combination of fual and oxidizer. Even then, it may be difficult to determine which scaling law 0 use because the propellant mass is raised to a small fractional power ($1 / 3$ or $1 / 6$) in either case, and the dependence of the scaled time on propellant mass is therefore quite weak.

We reviewed the PYRO test results to ascertain whether those data substantiated correlation of a specific law for scaling of ignition time with blast yield.

The PYRO tests indicated that, for hypergolic propellante, ignition time is unimportant because ignition occurs immediately on contact of the fuel and oxidizer. Blast yield did depend on impact velocity for high velocity impact tests of hypergolics.

For non-hypergolic propellants, one would expect the blast yield to be a function of type of simulated accident, type of propellant, impact velocity, etc., in addition to time of ignition. Blast yield is expressed in the PYRO reports as a percent of an equivalent weight of TNT, based on the measured terminal yield from each experiment. This procedure essentially normalizes the results for all tests with respect to mass of propellant so that data on yields versus ignition times or scaled ignition times can be easily compared. We will make such comparisons for the propellant combinations $\mathrm{LO}_{2} / \mathrm{RP}-1$ and $\mathrm{LO}_{2} / \mathrm{LH}_{2}$, and for the CBM and CBGS type of test.

In Figure A2, we see blast yields Y plotted as a function of ignition time t for all $L O_{2} / R P-1$ CBM tests ${ }^{*}$. Different symbols are used fo-different masses of propellant. It is immediately evident that the data scatter is large, but the data do indicate an increase in yield up to $150-200 \mathrm{msec}$, and then a substantial decrease for longer ignition times. The data are plotted as a function of time, rather than time scaled by division by either $M_{t}{ }^{1 / 3}$ or $M_{t}{ }^{1 / 6}$. Replotting the data with time scaled in eiline r of these manners

* For physical re?sons, finite blast yield at zero ignition time is paradoxical. If propellants are not given time to mix, no explosion should be possible. Data points for zero ignition time probably represent a small, but non-zero, igrition time.

produces no less data scatter than is already present. Figure A3 shows a similar plot for $\mathrm{LO}_{2} / \mathrm{LH}_{2} \mathrm{CBM}$ tests. Again, the scatter is considerable, but a trend to increasing yield with increasing time is evident, with no apparent decrease at long tirnes. One isolated data point with a high yield may indicate peaking at near 200 msec , but this is inconclusive. Again, replotting on scaled time based doesn't improve the scatter.

Data for all $\mathrm{LO}_{2} /$ RP- 1 CBGS tests are plotted in Figure A4. It is evident that impact velocity for this propellant and type of test does have a signific ant effect on blast yield, and that yield increases for a maximum and then decreases. The same trends are evident in the data for $\mathrm{LO}_{2} / \mathrm{LH}_{2} \mathrm{CBGS}$ tests plotted in Figure A5. Some type of normalization of yield versus impact velocity would undoubtedly reduce the scatter evident in the se two figures, but the spreaii would still be great. As for the CBM tests, there is no evidence that scaling ignition time would decrease the data scatter.

We draw different conclusions from this study of the PYRO blast data than do the authors of that study. They concluded that, for all but the $\mathrm{LO}_{2} /$ RP-1 CBM tests, explosive yields scaled as a function $\bar{t}=\left(t / M_{t}^{1 / 3}\right) . W e^{2}$ conclude, on the other hand, that the data do not verify any particular scaling for ignition time. The blast yield is certainly a function of ignition time and that function can perhaps be estimated from the PYRO data for specific propellants and types of test. Direct plots of yield versus ignition time appear to be as valid as plots versus $\left(t / M_{t}^{1 / 3}\right)$, $\left(t / M_{i}^{1 / 6}\right)$, or perhaps any other scaling involving a small fractional power of M_{t}.

Figure a3. yield vs. igntion time $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ CBM tests

APPENDIX B

$\begin{aligned} & \text { PY RO } \\ & \text { TEST } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { DISTA VCE } \\ & \text { T } \\ & \text { CAMERA } \\ & \text { (FI) } \\ & \hline \end{aligned}$	BEARING		$\begin{aligned} & \text { FREQUENCY } \\ & \text { OF TIMING } \\ & \text { MARKS } \\ & \text { (TM/SEC) } \\ & \hline \end{aligned}$	FILM SPEED		NO. OF FRAGMENTS RECORDED	NO. OF DUPLICATE FRAGMENTS
		GIVEN	(DEG)		GIVEN	$\begin{aligned} & \text { LATED } \\ & (\mathrm{PPS})^{2} \\ & \hline \end{aligned}$		
GROUP 1: HY PERGOLIC HIGH-VELOCITY-IMPACT TESTS								
No Teste Read in This Group								
GROUP 2: HY PERCOLC (AFRPL) TESTS								
			0	100	1000	Not Read ${ }^{2}$	7	0
30	420	65 65	0	10	64	82	4	0
31	420	65 65	0	120	1000	1228	6	0
32	420	65	0	10	64	46	7	0
33	420	65	0	120	1000	Not Read	3	0
35	420	65	0	120 60	64	NR	2	0
$\begin{aligned} & 36 \\ & 39^{3} \end{aligned}$	429	65 270	$\stackrel{0}{0}$	60 120	1000	1423	7	0
	420	0	0	120	1000	951	5	0
258	420	270	240	120	1000	990 390	2	0
	420	0	9	120	400	390		
GROUP 3: LO $_{2}$ /RP-1 CONFINEMENT-BY-THE-MISSILE TESTS								
43^{3}	220	0	0	120	1000	1329	7	0
	420	270	240	120	1000	1397	8	2
49	420	0	${ }^{0} 40$	120	1000	1178	8	0
	420	270	240	120	1000	NR	10	0
58	420	0	0	120	1000	NR		

[^11]
第

\[

$$
\begin{aligned}
& 8 \\
& \text { N } \\
& \text { n } \\
& \text { m } \\
& \text { in } \\
& \text { n } \\
& \text { n } 8 \\
& 8 \% \\
& \text { が } \\
& \underset{\sim}{\infty}
\end{aligned}
$$
\]

$\underset{\sim}{N}$

$\begin{gathered} \text { PYRO } \\ \text { TEST } \\ \text { NO. } \\ \hline \end{gathered}$	distanceTOCAMERA(FT)	BEARING		FREQUENCY OF TIMING MARKS (TM/SEC)	FII. M SPEED		NC. OF FRAGMENTS RECORDED	NO. OF dUPLICATE FRAGMENTS
					Given	I.ATED		
		GIVEN	(DEG) ${ }^{\text {ASSUMED }}$			(PPS)	RECORDED	
Group 7 (Cont'd) -								
		270	240	120	1000	949 399	5	0
$1 ; 9$	420	0	0	120	400	895	11	0
200	420	270	240	120	1000 400	895 398	15	0
	420	0	$\stackrel{0}{0}$	120	1000	NR	9	0
210	420	270	240	120	400	NR	4	0
212	420	$\stackrel{0}{270}$	240	120	1000	NR NR	1	0
	420	0	0	120	400 1000	730	4	0
213	420	270	240 0	120	400	392	9	0
265	4220	270	240	120	1000	993	13	0
	420	0	م	120	400	394 375	14	2
	1000	300	340	120	400 4000	375 2497	4	0
279	42 C	130	240		1000	1127	,	
	420 1000	325 340	¢ 340	120^{5}	400	i84	3	0
	1000 1000	340 340	340	10	64	NR	4	0
GROUP 8: $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ CONFINEMENT BY-THE-GROUND-SURFACE VERTIC AL TE								
103 A	420	270	240	120	1000	1432	6	0
	420	0	0	120	64 400	NR NR	${ }_{6} 6$	0
$106 \mathrm{~A}^{3}$	420	\bigcirc	0	125 120	1000	1494		0
	420	270	240 240	120		1359	7	0
114	---	---	${ }^{240} 0$	--.	-.-	400	10	0
115	----	--.	240	---	---	1225 324	${ }_{10}^{4}$	0
			,	---				

PTRO FESTNO	$\begin{aligned} & \text { DISTANCE } \\ & \text { IO } \\ & \text { CAMERA } \\ & \text { (FT) } \\ & \hline \end{aligned}$	BEARINC		\qquad	FILM SPEED		NO. $O F$ FRAGMENTS RECORDED	NO. OF DUPLICATE FRACMENTS
		GVEN	$\begin{aligned} & \text { ASSUMESD } \\ & \text { (DIEG) } \end{aligned}$		CIVEN	(PPS) LATED		
Group s (ant'd) - $^{\text {d }}$								
152	420	0	0	120	400	393	7	0
	420	270	240	120	1000	$104 t$	7	0
160	420	0	0	120	400	399 1170	9	1
	420	270	240	120	1000	1170	8	0
184	---	270	240	120 120	1000	928 399	8	0
	---	0	0	:20	1000	1109	6	0
195	420	270	240	120 120	64	72	6	0
	420	0	0 240	120	1000	1101	7	0
197	420	270	240	120	400	393	11	0
	420	0	240	120	1000	1192	3	0
201	420	270 0	240	120	400	392	3	0
	420	270	240	120	1000	1046	5	0
224	420	270 0	240	120	400	403	12	0
211	420	270	240	120	1000	1091	6	0
	420	0	0	120	400	398	11	0
217	-..	--*	240	--.	--	1071	2	0
	-.-	---	0	---	---	64	5	0
226	420	0	0	120	400	3\%	5	0
230	420	270	240	120	1000	1098	11	0
	420	0	0	120	400	123	12	0
260	420	270	240	120	2000	400	8	0
	420	0	0	120	400	395	6	0
	1000	300	340	120	400	395	6	0
2000	---	---	0	${ }^{100}$	1000	1221	6	0
	---	---	340	120^{5}	400	377	14	0
				120	400	NR	6	0
				120	400	393	4	0
			0	120	1000	$: 097$	8	0

$\begin{aligned} & \text { PYRO } \\ & \text { TEST } \end{aligned}$	$\begin{aligned} & \hline \text { DETATCE } \\ & \text { TO } \\ & \text { CNTRA } \\ & \text { (FIT) } \\ & \hline \end{aligned}$	BEARING		FREQUENCTOF TIMANGMARKS(TMM/SEC)	FILM SPEEE ${ }^{\text {C }}$		NO. OF FRAGMENTS RECORDED	NO. OF duplicate FRAGMENTS
		CEVE	ASSixad		Gren	(PPS)		
saturn iv test								
				120	64	73		0
62	1000 420	270	240	120	1000		26	0

- Informetion Not Given on Film Ot On ribn Can
 - TM Frequesty of 10 Was Given. But 10 Was Covionaly Tw Lou ned so 12 C Wae Usad 7 Tlming Marke Definitely Noe What Wae Givsn

APFENDIX C

MODEL ANALYSES FOR FRAGMENT VELOCITIES, RANGE, ETC. FOR BURSTING LIQUID PROPELLANİ VESSELS

In an attempt to facilitate comparisons of the data which have been unearthed during thin atudy, let us conduct several limited model analyee relating to various aspects of the problem. To avoid too complex model laws. we will divide the problerns Into several subproblems.

Initial Velocities for CBM Case

Consider first the bursting and acceleration of vesuel fragments by an internal explosion (CBM case). A list of physical parameters appropriate to this case and part of the problom are given in Table $C 1$, with dimenaions in a Force-Length-Time (FLT) system. The twenty-one parameters in Table Cl can be combined into eighteen dimensionless groups (Pi terma) $\mathrm{f} ;$; he methode of dimencional analysis. One such grouping is given in Table C2, based on mass of propellant, heat of explosion f propeliant, and characteristic length as repeating variables. Table C2 includes deacriptione of the pi terma.

The dependent variables in Table C2 are eseentially $\Pi_{13}, \bar{F}_{14}, \Gamma_{1!}$, and
 Hil require gec hetric similarity. Term ${ }^{1} 12$ dictates acaling of energy release, and is cquivalont to fractional blast yfeld y. Term H_{15} can be considered as ratio of vensel burat pressure py to the pressure which would be generated by contained reaction of all of the mase of propellant. Finally, ${ }^{7} 18$ requires identica: equation of atate for the reartion productions of the exploding propellant.

The model law in Table C 2 can be exproseed in functional form an

$$
\begin{align*}
& {\left[\left(U_{i} / H_{e}^{1 / 2}\right),\left(p L^{3} / M_{i} H_{e}\right),\left(11_{e}^{1 / 2} / i j\right), n j\right.} \\
& =\left[\text { Density ration, Geom, ir. . (E/M, } H_{e}\right. \text {). } \\
& \left.\left(p_{v} L^{3} / M_{i} H\right), k\right] \tag{r;1}
\end{align*}
$$

If we confine our comparisong to testa with penmetricallv aimilir tanks made of the ame materials and fillad with the same propellant mixturen then the dennity ratio terme und terms deacribing genmetric similarity will all be the

TABLECI P PHYSICAL PARAMETERS FOR VESSEL BURST BY INTERNAL EXPLOGON

Symbol	Dimenolons	Parameter
M_{V}	$E T^{2} L^{-1}$	Total mase of veseel
M_{1}	$F T^{2} L^{-1}$	Total mase of propellant
M_{r}	$F T_{L} L^{-1}$	Reactive masa of propellant
E:	FL	Energy release during exploalon (blatet yield)
H_{e}	$L^{2} \mathrm{~T}^{-2}$	Heat of exrionion of propellant mixture
D	L	Tank diameter
1.	L	Tank length
0	'	Diamoter of internal bulk. head ruptura area
${ }^{\prime}$	1.	Thicknese of veesel material
${ }^{0} \mathrm{~F}$	$F T^{2} L^{-4}$	Denalty of proprilant
${ }^{\circ}$	$F r^{2} L^{-4}$	Denalty of veesel material
n		Number of iragmenta
M_{1}	$F T^{2}{ }^{2}$	Maee of Individual fragriente
A_{1}	L. ${ }^{\prime}$	Mean presented area of individual fragmenta
U,	L. r^{-1}	Velocity of Individual framment
v	L^{3}	Internal volume of tant.
v_{0}	L^{3}	Ullage volume of tank
*		Rallo of epecillc heate 'er exploaion produrte
P	FL. ${ }^{-2}$	Preanure within tenk during explosion
1	T	TImo
P_{1}	F1. ${ }^{-2}$	Burot preseure nf vessel

TABLE C2 - DIMENSIONLESS GROUPS FOR VESSEL BURST BY INTERNAL EXPLOSION

Number	Term	Description
π_{1}	M_{v} / M_{t}	
${ }^{2}$	M_{r} / M_{t}	
${ }_{3}$	M_{i} / M_{t} (Mans or density ratios
${ }_{4}$	$\rho_{p} L^{3} / M_{t}$	
"s	$\rho_{v} L^{3} / M_{t}$	
${ }_{7}$	D/L	
${ }^{7} 7$	$\mathrm{D}_{\mathrm{o}} / \mathrm{L}$	
${ }_{8}$	$\mathrm{h}_{\mathrm{v}} / \mathrm{L}$	
${ }^{5} 9$	$\mathrm{Af}_{\mathrm{f}} / \mathrm{L}^{2}$	Geometric elmiority
${ }^{10}$	v_{u} / L^{3}	
π_{11}	$\mathrm{v}_{\mathrm{v}} / \mathrm{L}^{3}$	
${ }^{12}$	$E / M_{t} H^{*}$	Energy acaling
${ }_{1} 13$	$\mathrm{U}_{\mathrm{f}} / \mathrm{H}^{1 / 2}$	Velocity acaling
${ }_{1} 14$	$\mathrm{pl}^{1 .{ }^{3} / M_{t} H_{e}}$	Preasure acaling
${ }^{15}$	$P_{v} L^{3} / M_{t} H_{0}$	
${ }^{16}$	$\mathrm{tH}_{\mathrm{e}}^{1 / 2}$	Time ecaling
"17	n	Number of fragment:
${ }^{71} 18$	*	Ratio of eprcific heata

same independent of scale, $\lambda_{L}^{3}=\lambda_{M_{t}}$, and k will not change. ${ }^{*}$ Also, the burst pressures P_{v} for geometrically similar vessels of the same material are adentical ($\lambda p_{v}=1$). Because we are using the same propellant, $\lambda_{H_{e}}=1$. Under these restricted conditions, Equation Cl reduces to**

$$
\begin{equation*}
\left[U_{f}, p,(t / t), n\right]=f(y) \tag{Cz}
\end{equation*}
$$

In other words, Equation (C2) say that initial fragment velocity, pressure rise within tank prior to rupture, time scaled proportional to length, and number of fragments generated should all be function of fractional yield.

Many other interpretations can be made of this law. If we do not make the simplifying assumptions a jove, then we ray be able to compare s, me test results for different propellants. Terms Π_{12} and Π_{13} can be combined to form:

$$
\begin{equation*}
\pi_{12}^{\prime}=U_{i}^{2} M_{t} / E \tag{C3}
\end{equation*}
$$

which :an replace π_{12} in Equation (C1).
This term defines an equivalent dimensional group

$$
\begin{equation*}
G_{12}^{\prime}=U_{i}^{2} W_{t} / Y \tag{C4}
\end{equation*}
$$

where W_{t} ie total weight of propellant and Y is blast yield in percent. We have recorded mont of our fragmentation data in terms of the se quantities, and so can plot G_{12}, or (te square root, versus Y (equivalent to Π_{12}) or against ${ }^{7} 15$, provided we use n consistent net of unite. It is quite likely that k is only weakly dependent on type of propellant, no perhaps we can ignore it. The model law does point out that (C / L) and ($\mathrm{D} / \mathrm{D}_{0}$) are potentially important geometric ratios, and that mean fragment area may scale as the square of the length scale.

Initial Velocities for CBGS and HVI Cases

In thin case, the propellants spill, mix on the ground, and then ignite o. the mivelle impacts the ground at high velocity. Solid nbjecte and nearby

[^12]appurtenancea are then accelerated by the reaultant blast wave to some maximum velocity ("initial" velocity). The pertinent physical parametera are some what different than for the CBM case. Geometry of the vessel is no longer important, but gravity and impact velocity must be conaidered. A liat is given in Table C3. Again uaing ae repeating variablea M_{t}, H_{e} and L, we obtain a group of fifteen pi terme from the eighteen physical parameters. These are given in Table C4.

Many of the terme in Table C4 can be seen to be identical to thoee in Table C2. These include the mase ratios Π_{1} through π_{3}, area ratio π_{4}, volume ratio π_{7}, ecaling for fragment velocity π_{9}, energy acaling $\pi_{1} 0$, preasure acaling π_{12}, time ecaling Π_{14}, and number of fragmente π_{15}. The terma whichare new are $\pi_{5}, \pi_{6}, \Pi_{8}, \Pi_{11}$ ' and π_{13}, and ome terma in Table $C 2$ do not appear. Thle model law can be axproaed aa:

$$
\begin{aligned}
& {\left[\left(U_{f i} / H_{0}^{1 / 2}\right),\left(p L^{3} / M_{t} H_{0}\right),\left(q L^{3} / M_{t} H_{0}\right),\left(t H_{0}^{1 / 2} / L\right),\left(A_{f i} / L^{2}\right), n\right]} \\
& \quad=f\left[\text { Density ratios, Geom. sim. }\left(E / M_{t} H_{0}\right), C_{D i},\left(U_{i} / H_{0}^{1 / 2}\right),\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.\left(\mathrm{g} L / \mathrm{H}_{0}\right)\right] \tag{C5}
\end{equation*}
$$

The term $\pi_{l i}$, if etrictly adinered to during teate of the ame propellant, would provent comparieon of teat. conducted at different geometric ecales, becsuse $\lambda_{L}=1, \lambda_{H_{e}}=1$, and therefore $\lambda_{L}=1$.

If wo deliberately let thin term go out of scale, which le equivalent to ignoring grevity effects, then almost the same model law aefor the CBM case reaulte, with the addition of a raquirement of ecaling of impact velocity from "g. If we aeaume that we cannot ignore effect of gravity oin such phyalcal proceseen as opreading and Intermingling of the fuel and oxidiser after epill, initial trajectory of fragmente, etc., then Equation (C5) regulres a change in heat of explooion $H_{\text {. }}$ in order to change length ecale. It le euggeted that woemply ery ploting fragment voloclties from CBGS data veraue blant yield for the eame propellant. We know from the PYRO work that blat yleld is function of impart voloulty V_{1}. eo term π_{8} mey de already accommodated by measuring blagtyield. An alternalive might be to plot the term

$$
\begin{equation*}
\Pi_{9}^{\prime}=V_{f_{1}} / \sqrt{R L} \tag{C6}
\end{equation*}
$$

iareue blant yield for the amm prupel'ant. Correlation here would indicatg that eravity effecte were Indeed Impor.ant.
\because

TAİ!EC 3 - PHYSICAL PARAMETERS FOR FRAGMENT ACCELERATION AFTER SPILL AND EXPLOSION

Symbo!	Dimenaions	Parameter
M_{v}	$F T^{2} L^{-1}$	Total mass of vessel
M_{t}	$\mathrm{FT}^{2} L^{-1}$	Total mase of propellant
M_{r}	$\mathrm{FT}^{\text {c }} \mathrm{L}^{-1}$	Reactive mass of propellant
${ }^{1.1} \mathrm{fi}$	$F T^{2} L^{-1}$	Mass of the solid body or appurtenance
E.	FL	Energy release during explosion
H_{e}	$L^{2} \mathrm{v}^{-2}$	Heat of explosion of propellant
V_{p}	L^{3}	Volume of propellant
U_{1}	LT^{-1}	Impact velocity
g	$L T^{-2}$	Acceleration of gravity
ℓ_{i}	---	Length ratios
L	L	Characteristic length
n	-.-	Numbel of fragmenta
$\mathrm{A}_{\mathbf{1 1}}$	L^{2}	Mean presented area of $i^{\text {th }}$ solid body or appurtenance
$u_{1 i}$	LT T^{-1}	Velocity of ame
$\mathrm{C}_{\text {Di }}$		Drag coefficient of same
p	$F L^{-2}$	Overpressure in blast wave
9	FL ${ }^{-2}$	Dynarnic pressure in blast wave
t	T	Time

TABLE C4 - DIMENSIONLESS GROUPS FOR FRAGMENT ACCELERATION AFTER SPILL

Number	Term	Description
${ }_{1}$	M_{v} / M_{t}	
π_{2}	. $\left./ 1 M_{t}\right\}$	Mase ratios
π_{3}	$\mathrm{M}_{\mathrm{fi}} / \mathrm{N}: \quad$ in	
π_{4}	$\left.\mathrm{A}_{\mathrm{fi}} / \mathrm{L}^{2}\right\}$	Geometry
π_{5}	ℓ_{i}	
${ }^{7}$	$C_{\text {Di }}$	Drag coefficient
π_{7}	$\mathrm{v}_{\mathrm{p}} / L^{3}$	Volume ratio
${ }^{1} 8$	$\left.v_{i} / H_{e}^{l / 2}\right\}$	Velocity scaling
π_{9}	$\mathrm{U}_{\mathrm{fi}} / \mathrm{H}_{0}^{1 / 2}$	
${ }^{10}$	$E / M_{i} H^{*}$	Energy scaling
${ }^{1} 11$	$\mathrm{gL/H}$	Gravity scaling
Π_{12} Π_{13}	$\left.\begin{array}{l} p L^{3} / M_{t} H_{e} \\ q L^{3} / M_{t} H_{e} \end{array}\right\}$	Pressure saling
$\cdots 14$	$\mathrm{tH}^{1 / 2 / \mathrm{L}}$	Time scaling
${ }_{1} 15$	n	Number of fragments

Trajectories of Fragments in Free Flight

After the fragments have been accelerated to their maximum velocities, then the problem is one of exterior ballistics for each fragment. Most of the parameters governing the resulting trajectories differ from those in the previous problems. They are listed in Table C5, and a possible set of pi terms is given in Table C6.

The first four pi terms in Table $C 6$ are initial conditions, π_{5} and π_{6} are aerodynamic coefficients, and Π_{4} through π_{10} specify geometric similarity. Term π_{9} can alsu be considered as the dependent variable. Term π_{11} specifies gravity scaling, which is essential in trajectory problems and cannot be ignored. Terms π_{12} and π_{13} are wind velocity and air density scaling, respectively. The model law can be written as:

$$
\begin{align*}
\left(R_{f} / L\right) & =f\left[\left(U_{f} t / L\right),\left(w_{f} t\right), \theta_{f}, \Psi_{f}, C_{D_{f}}, C_{L_{f}},\left(A_{f} / L{ }^{2}\right),\left(x_{i f} / L\right), \ell_{i}\right. \\
& \left(g t^{2} / L\right),\left(U_{w} t / L\right),\left(\rho_{a} L^{3} / M_{f} j\right] \tag{C7}
\end{align*}
$$

From our physical knowledge of exterior ballistics and the problem of fragment scatter, we can considerably reduce this function space. Range may be depandent on azimuth angle Ψ and scaled wind velocity ($U_{w} t / L$), but this dependent is weak for high velocity and "chunky" fragments. Furthermore, our data from missile maps nuerage ranges over all azimuths, so this dependence is not considered. The "lifting" characteristics of the fragments are represented by $C_{L_{f}}$ and by initial spin $W_{f} t$. Again, these characteristics represent random and uncontrolled quantities which we cannot assess, so we again ignore them. A reduced form for Equation (C7) is then

$$
\begin{align*}
\left(R_{f} / L\right) & =f\left[\left(U_{f} t / L\right), \theta_{f}, C_{D_{f}}\left(A_{f} / L L^{2}\right),\left(x_{i i} / L\right), \ell_{i},\left(g t^{2} / L\right)\right. \\
& \left.\left(\rho_{a} L^{3} / M_{f}\right)\right] \tag{C.8}
\end{align*}
$$

Of these remaining parameters, the first two nd the fifth are scaled initial conditions. The d_{A} ag coefficient is a functior. $\because\left(A_{f} / L^{2}\right)$ and ℓ_{i} and is therefore superflious. So, for iragments of similar feometry and sime scaled initial conditions, the law further i educes to

$$
\begin{equation*}
\left(R_{f} / r\right)=f\left[\left(U_{f} t / L\right) \cdot\left(g t^{2} / L\right) \cdot\left(p_{a} L^{3} / M_{i}\right)\right] \tag{C9}
\end{equation*}
$$

TABLE C5 - PHYSICAL PARAMETERS FOR FRAGMENT TRAJECTORIES

Symbol	Dimensions	Parameter
U_{f}	$\mathrm{LT}{ }^{-1}$	Initial linear velocity
${ }^{\omega} \mathrm{f}$	T^{-1}	Initial angular velocity
$\mathrm{C}_{\mathrm{D}_{\mathrm{f}}}$	---	Drag coefficient
$\mathrm{C}_{L_{\mathrm{f}}}$	---	Lift coefficient
A_{f}	L^{2}	Mear presented area
M_{f}	$F T^{2} L^{-1}$	Mass of fragment
${ }^{\text {f }}$	---	Initial elevation angle
${ }^{*}$ f	---	Initial azimuth angle
$\mathbf{x}_{\text {ii }}$	L	Initial coordinates of fragment
R_{f}	L	Range of fragment
g	LT^{-2}	Acceleration of gravity
${ }^{\circ} \mathrm{a}$	$F T^{2} L^{-4}$	Density of air
ℓ_{i}	---	Length ratios
U_{w}	$\underline{L T} \mathrm{~T}^{-1}$	Wind velocity
t	T	Time
L	L	A characteristic length

TABLE C6 - DIMENSIONLESS GROUPS FOR FRAGMENT TRAJECTORIES

Number	Term	Description
π_{1}	$\mathrm{U}_{\mathrm{f}} \mathrm{t} / \mathrm{L}$	
π_{2}	$w_{f}{ }^{\text {t }}$	
π_{3}	${ }^{\boldsymbol{f}}$	
π_{4}	${ }^{\boldsymbol{Y}} \mathrm{f}$	
π_{5}	$\mathrm{C}_{\mathrm{D}_{\mathrm{f}}}$	Aerodynamic Coefficients
π_{6}	$\mathrm{C}_{\text {L }}$	
${ }^{7} 7$	$\mathrm{A}_{\mathrm{f}} / \mathrm{L}^{2}$	
${ }_{8}$	$\mathbf{x i f ~}_{\text {if }} / \mathrm{L}$	Geometric Similarity
π_{9}	$\mathrm{R}_{\mathrm{f}} / \mathrm{L}$	
${ }_{10}$		
${ }_{11}$	$g t^{2} / \mathrm{L}$	Gravity Scaling
${ }^{1} 12$	$\mathrm{U}_{\mathrm{w}}{ }^{\text {t/L }}$	Velocity Scaling
${ }^{1} 13$	$\rho_{a} L^{3} /$	Denaity Scaling

Now, berause $\lambda_{g}=1, \pi_{11}$ requires that

$$
\begin{equation*}
\lambda_{t}^{2}=\lambda_{I_{1}} \tag{C10}
\end{equation*}
$$

The first term in Equation (C9) then requires that

$$
\lambda_{U_{f}} \lambda_{L}^{1 / 2}=\lambda_{L}
$$

or

$$
\begin{equation*}
\lambda_{U_{f}}=\lambda_{L}^{1 / 2} \tag{C11}
\end{equation*}
$$

i. e., initial velocities should scale as the square root of the length scale for the same scaled range. The third term is automatically sat afied because $\lambda_{\rho_{a}}=1$ and $\lambda_{L}^{3}=\lambda_{M_{f}}$.

We can combine π_{7} and π_{13} to form

$$
\begin{equation*}
\pi_{7}^{\prime}=A_{f} \rho_{a}^{2 / 3} / M_{f}^{2 / 3} \tag{C12}
\end{equation*}
$$

Because $\lambda_{\rho_{a}}=1$, a dimensional form of this term is

$$
\begin{equation*}
G_{7}^{\prime}=A_{f} / W_{f}^{2 / 3} \tag{Cl3}
\end{equation*}
$$

where W_{f} is weight of '.ragment.
This may provide a rational grouping for ploting versus scaled range.

APPENDIX D

COMPUTER PROCRAM ENTITLED /W2/ IN FORTRANIV

Function: This program computes initial fragment velocity.

Given the following in put data:
A) Characteristics of some explosive fuel-oxidizer gas mixture at moment $t=0$ of detonation.
(CAP1) Ratio of specific heats, x
(Aळ) Speed of sound in medium in in. /sec
(Pه) Initial pressure in psi
B) Characteristics of containing vessel
(RR) Internal radius of vessel + unburned fuel in inches
(TM) Mass of vessel \pm unburned fuel in $\mathrm{lb} / \mathrm{sec}^{2} / \mathrm{in}$.
(FN) No. of fragments
C) Calculatory requirements
(AH) Time interval of each calculation in seconds
(XMAX) Maximum time to last calculation in seconds
Variables: The definition and units of the vari les in this program are give' in the following table.

TABLE (D-1)

Program Variable	Variable	Definition	Units
F'F	F	projected fragment area	i... ${ }^{2}$
CAPl	K	specific heat ratio for explosive mixture	none
AO	a_{0}	speed of sound in explosive products mixture	in/sec

Program Variable	Variable	Definition	Units
PO	$\mathrm{P}_{\text {OC }}$	initial pressure after explosion	psi
FN	n	number of 'ragments	none
RR.	R	radius of explosive products mixture	in.
TM	M_{t}	mass of shell + unexploded fuel	$\mathrm{lb}-\mathrm{in}^{2} / \mathrm{sec}$
$F K$		coefficient	none
AH		time interval	sec
XMAX		maximum time	sec
FNl		if < I displays T-NORM (i, G', $\mathrm{C}^{\prime \prime}$	none
F N2		if < 1 displays normal pressure + tinie	no re
FN3		if < 1 calculates maximum range	none
G 1	u_{f}	distance to initial velocity	in.
G2		initial fragment velocity	$\mathrm{ft} / \mathrm{sec}$
G3		initial fragment acceleration	in/sec ${ }^{2}$
G4		final explosive product mixture presssin	psi
T 1		time to initial velocity	sec
JJ		countring variabies	none
PI		the constant π	none
C AP2		the quantity ($1-x ; / x$	none
C AP3		the quantity - $1 / \mathrm{x}$	none
C AP4		the quaratity $\left(3^{x}-1\right) / 2^{x}$	none
XX		displacement normalization coefficient (see Fq. - 35)	in.

Program Variable	Variable	Definition	Units
THETA		time normalization coefficient (see Eq. -35)	sec
Al	α	the coefficient α (Eq. - 36)	none
B 1	β	the coefficient ${ }^{\beta}(\mathrm{Eq} . \quad-36)$	none
$C \varnothing$		normalized initial fragment displacement from center of sphere	none
X		normalized time	none
Y(2)		normalized velocity	none
$\mathrm{Y}(3)$		normalized pressure	none
Y (1)		normalized fragment displacement	none
NA		number of differential equations to be solved	none
$\begin{aligned} & F(1), F(2), \\ & F(3) \end{aligned}$		differential equations solved (see Eqs. - 34 and - 36)	
TT		normalized time	none
PS		normalized pressure	none

The subprogram entitled ($R U N G E$) is described in the following:

FORTRAN IV

RUNGE - KUTTA

FILE NAME: F18

SUBROUTINE NAME: RUNGE

PURPOSE:

This subroutine employs the Fourth Order Runge Kutta Method to solve N simultaneous first-order ordinary differential equations by calculating successive values of Y according to the formula:

$$
\begin{aligned}
Y_{i+1} & =Y_{i}+\frac{h}{6}\left(K_{i}+2 K_{2}+2 K_{3}+K_{4}\right) \\
\text { where } K_{1} & =f\left(X_{i}, Y_{i}\right) \\
K_{2} & =f\left(x_{i}+\frac{h}{2}, y_{i}+\frac{h K_{1}}{2}\right) \\
K_{3} & =f\left(x_{i}+\frac{h}{2}, y_{i}+\frac{h K_{2}}{2}\right) \\
K_{4} & =f\left(x_{i}+h, y_{i}+h K_{3}\right)
\end{aligned}
$$

The subroutine is called by the calling program five times in order to approximate successive Yil)'s; the first time to initialize. the second time to calculate $K_{1}(1)$. the third time to calculate $\left.\mathrm{K}_{2}{ }^{\prime} \mathrm{I}\right)$, the fourth time to calculate K_{3} (${ }^{\prime}$ ' and the fifth time to calculate $K_{4}(I)$. In addition. each time the subroutine is called. it calculates a new $Y(I)$ and a new $X(i)$ which are returned to the calling program where the functions (first-order differential equations) are evaluated with the new $X(1)$ and $\mathcal{Y}(\mathrm{I})$. These values of the function are then returned to the subroutine where they are used as $K_{1}(1), K_{2}(1), K_{3}(1)$. or $K_{4}(1)$ and appropriately accumulated to obtain $Y_{i+1}(1)$ in the 5 calls to the slibroutine.

The subroutine :UNGE uses nine argaments: iv, \because, F, X, H, M, SAVEY, PHI, K

1. The firstargument. N, represents the number of simultaneous first-order ordina:y differential equations to be solved.
2. The second argument, X, is the array name which the calling program uses to cranymit the initial $Y(1)$ values for each differential equation. Upon completion of the 5 calls to RUNGE, $Y(I)$ will contain the new approximated values for the $Y_{i+1}{ }^{(1)}$ 'e.
3. The third argument, F. is the array which contains the cur reat values of the differential equatione calc- lated by the main program, i. ©., $F(J)$ contains the value of the $J^{\text {th }}$ firstorder differential equation.
4. The fourth argument, X, represents the independent variable which ahould be initialized in the main program before calling RUNGE. RUNGE increments X by the stepsize H.
5. The fifth argument, H, representa the step size for X.
6. The sixth argument, M, indicates which of the five passes of the subroutine is to be executed. The main program must initialize this argument as 1. RUNGE then successively merements the variable by 1 up to 5 .
7. The seventh argument, SAVEY, is used within RUNGE and nust be dimensioned in the calling program to be of zize N.
8. The eighth argument, PHI, is also used internally by RUNGE, but must be dimenaioned in the calling program to be of size N.
9. The ninth argiment, K, is manipulated within nUNGE. K should be tested right after the cail io RUNGE, in the calling program.

When K=1, control should transfer to a set of code in the salling program which calculates new values for the firstorder differential equations, $F(1)$, with the current values of X and $Y(1)$. Then RUNGE should be called again.

When $K=2$, the approximation for $Y(1)$ is completed. Values for the $\mathrm{Y}_{\mathrm{i}+1}(1)$'s are atored in $\mathrm{Y}(1)$ at this time, and normal flow of the calling program should resume.

1. The calling program must dimension SAVEY and PHI.
2. The caliing program muat set $M=1$ before calling HUNGE .
3. The calling program must set up the Nfirst-order differenthal equation values in ar array F to be passed through to RUNGE whe: the subroutine returns with $K=1$.
4. The calling program must set up separate arrays if all X and Y values for the aet of differential equations are to be saved. perhaps for plotting puyposes.

PROGRAM /W2/ LISTING

DIMENSIQN $F(3), Y(3), \% 1(3), \ln (3), P S(50), T T(50)$
300 FGRMAT (? $1,20 \mathrm{H}$ READ IN TRAJ. ANGLE)
301) FBRMAT (E1O.3)

301 FGRMAT (2/,35H READ IN DRAG CGEF. A!N! AIR DENSITY)
301! FgRMAT (2F10.3)
302 FORMAT (2/,?3H REAI) IN FRAGMENT MASS C3EF.)
303 FGRMAT (4/.25H CQNDITIMNS ON TRAJECTARY)
304 FGRMAT (/, PIH A:1BIENT AIR DENSITY-, EIJ.3,17H LES./CUBIC FT.)
305 FgRYAT ($/, 16 \mathrm{H}$ AIR DPAG COEF. $=$, EIO.3)

307 F ARMAT ($/, 16 H$ TRAJECTGRY AISGLE $=, \mathrm{E} 10.3$, BII DEGREES)
3071 FBZMAT (3/,9H CHECK C=, E1O.3)
308 FgR'1AT ($3 /, 15 \mathrm{H}$ MAXI:UUM RANGE=, EIU.3, 4:I FT.)
309 FBRI: 「 ($7 /, 45 H$ READ IN (APPA, SJUND SDEED, INITIAL PRESSURE)
310 FeRiat (3 E 10.5)

MASS 3F GHIL-FUEI., DISCIIARG: ETEF.)
312 FaFIM: (AE1O.3)
313 FGRAM ${ }^{+}$($\because, 36 H$ RFAD IN TIIE INTE!UCLL, AA:IMUM TIME)
314 FgRPAT (DEIT.3)

$J J=0$
Wilite (1,.3:.)
READ (1,311) CAPl, AH, 24
-RITE (1,311)
WAD (0,31 ?) FN, RK, TM, FK
Filte (1,313)
RFAD (1, 314) AH, XMAX
URITE (1,316)
READ $(0,3001)$ FNI
hilte (1.317)
READ (0,3001) FNC
WRITE (1,318)
RLAD (0,3001) FN3
RRITE $(1,315)$ CAP1, AX, $\overrightarrow{7}$ i, $11, T 1$, FN
$P 1=0.14!5926535$
FF=4.C*PI*(R.R**2.00)*((1/FN)-(1/FN**́n)))

CAP2=(1.OC-CAPI)/CAPI
CAP $3=-1.0 / 1 . A P 2$
${ }^{-} C^{2} P_{4}=(3.0 * C A P 1-(1.1)) /(2.0 * C . A P 1)$

CAP1-1.0))**0.5)
$31=((R K) * * 2 . n) *((2.0 /(C A P 1-1.0)) * *-2.0) *((F F * P 3) * * 2.0) /((T M * * 2.0) *(A d * * 4$
0))
$C A=R R / K X$ -
$:<=0.0$
$Y(1)=C a$
$Y(2)=0.0$
$Y(3)=1.0$
Gilte it, 322) $X, Y(1), Y(2), Y(3)$
iJn=3
$F(1)=Y(2)$
$F(2)=F N * Y(3) *((1.00-(Y(2) * * 2.2) *(Y(3) * * C A P 2)) * *$ CAP3:
$F(3)=((Y(1) * *-3,0) *(Y(3) * * C A P 4) *(A|* B 1-R| *(Y(1) * * 2.0)))-3.0 * C A P I *(Y(C) * Y$
3) $Y(1))$

If (FiN1-1.0) 200,200,30
200 धR1TE (1,320)

IF ($\mathrm{XA}-1$) $40,50,40$
$50 F(1)=Y(2)$
$F(2)=\bar{r} \quad Y * Y(3) *((1.00-(Y(2) * * 2.0) *(Y(3) * * C A P 2)) * * C A P 3)$
$F(3) *((Y(1) * *-3.0) *(Y(3) * * C A P 4) *(A 1 * B 1-A 1:(Y(1) * * 2.0)))-3.1) * C A P!*(Y(2) *$
(3) $/ Y(1))$
(3) T0 30

40 IF (FN1-1.0)45,45,201
45 WRITE $(1,312) X, Y(1), Y(2), F(2)$
201 CANTIN:'E
JJ=JJ+1
TT (JJ) $=\mathrm{X}$
PS(JJ) $=Y(3)$
IF (X-XMAX) 41,10,10
41 CONTINJE
G月 TD 30
10 Continue
IF (FN2-1.0) 202, 202,203
202 URIT (1, 321)
TRITE $(1,3011)(T T(1), P S(1), I=1, J J)$
203 CONTIJUE
Tl=THETi*:
$G I=X X * Y(1)-X X * C G$

raza 2/12.)
$G 3=(X X /(T, 1 F T A) * * 2.0) * F(2)$
G4= Pの*
: NRITE (1,319)TI, GI,G2,G3,G4
IF (FN3-1.0) 204, 204, 205
204 CONTINUE
205 CONTINUE
END

A SAMPLE RUN OF／WI／

```
r.N
#EA, IN GAPPA, JJ';:U SPEED, INITIAL PRFSSUSGE
1.4,1352%.,8j00.
```



```
10 ., :-.,.445,1.)
```



```
タ.FF-S.A.5E-02
```



```
i
    if `..iY j?RM. PIES_.? YES=1 \because)=:
I
```



```
2
iMS C.i&..aCT&.RISTICS
```



```
O.%:%:.0.003+04 PSI
MESSO, CHMLACTEI.ISTICS
```



```
    H. f FRa;MEJTj= . IDOE+13
```



```
        [-\because1? 
```

 [-\because1?
 •Five-G2 .f.3c-DI
 •Five-G2 .f.3c-DI
 .bi,jE-0i . =17E-0i . 543E+0n .150E+1%
 .bi,jE-0i . =17E-0i . 543E+0n .150E+1%
 .14:01 .546 -.01 . 600E+0N . AB25+01
 .14:01 .546 -.01 . 600E+0N . AB25+01
 .2" 11 .575E-01 . % ?3E+01 - 20?E+01
 .2" 11 .575E-01 . % ?3E+01 - 20?E+01
 .25,1 .j0%:-01 .632E+0) . 11 n+01
 .25,1 .j0%:-01 .632E+0) . 11 n+01
 .3:jt 63垃-01 .636E+0) .4リ`:+00
 .3:jt 63垃-01 .636E+0) .4リ`:+00
 .3CnE-1 .671E-01 .637E+0U .1?4E+00
 .3CnE-1 .671E-01 .637E+0U .1?4E+00
 .41ME-01 .703E-01 .638E+0J . .75E-01
 .41ME-01 .703E-01 .638E+0J . .75E-01
 .45\E-1)1. .735E-01 .638E+00 .297E-n?
 .45\E-1)1. .735E-01 .638E+00 .297E-n?
 .500E-01 .767E-O1 .638E+01 .144E-04
    ```
    .500E-01 .767E-O1 .638E+01 .144E-04
```

```
PRESSIJRE (NORMALIIED)
    T-NDRM P-NON:4
.500E-02.972E+0つ
.100E-01 .705E+03
.1505-71 . 51%E+0心
.つOOE-0: . 3j7E+00
.250E-31 .258E+73
.300E-01 .131%+0.0
.350E-31 ..127-+00
.4NOE-D1 .907E-01
.450E-31 .Kミここ-n1
.50JF-01 .174E-01
final valots
T：ME＝．T27E－03 SEC
DISTANCE＝－160E +02 INS
UELOCITY＝． \(161 E+04\) FT／SEC
ACCELERATIBN＝．235E＋02 IN／S3－SEC
PRESSUPE \(=.379 E+03\) PSI
```


APPENDIX E

COMPUTER PROGRAM ENTITLED /ROOT/ IN FORTRAN IV

Function: This program computes the root to the equation

$$
E=\frac{P_{00} V}{x-1}\left[\frac{P_{0}}{P_{00}}-\left(\frac{P_{0}}{P_{00}}\right)^{1 / x}\right]
$$

(see Section II.C) for the following input data:

| (EN) Energy of explosion of reactants | $\mathrm{ft}-\mathrm{lb}$ | |
| :--- | :--- | :--- |
| (VФ) | Volume of reactants | in^{3} |

Variables: The definition and units of the variables in this program are given in the following table.

| Program Variable | Variable | Definition | Units |
| :---: | :---: | :---: | :---: |
| XK | x | specific heats ratio | |
| P | P_{00} | ambient presisure | |
| A, B, C | | coefficients of the polynomial | |
| | | $A P_{0}-B P_{0}^{1 / K}-C=0$ | |
| 玉N | E | Energy of explosion of reactants | ft-1b |
| VO | v | volume of reactants | in |
| XS | | initial guess solution | |
| M | | maximum number of iterations | |
| X | | desired root | psi |
| F | | value of the equation at X | |
| FP | | value of the eqration derivative at X | |

The subprogram entitled/RCOTN/ is described in the following:

Newton's Root Finding

This subroutine finds a root of an arbitrary differentiable equation $F(X)=0$ using the Newton-Raphson iteration method.

CALLING SEQUENCE: CALL ROOTN(X,F,FP,XS,E,M,IFL)

Input: $\quad X S=$ initial estimate of root
$E=$ error tolerance
$M=$ maximum number of iterations allowed

Output:

$$
\begin{aligned}
X= & \text { value of root } \\
F= & \text { function value at } X \\
F P= & \text { derivative of function salue at } X \\
I F L= & \text { error flag } \\
& 0 \text { - if normal } \\
& 1 \text { - if no convergence in } M \text { iterations } \\
& 2 \text { - if derivative equals zero }
\end{aligned}
$$

METHOD: Given a function $f(x)$, find a root of $f(x)=0$ using an initial estimate x_{s}. The iteration algoritlim used is Newton-Raphson:

$$
x_{i}+1=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

whiere $\quad f^{\prime}\left(x_{i}\right)$ is the derivative of $f(x)$ evaluated at x_{i}.
The procedure has converged if:

$$
f\left(x_{i+1}\right) \leqslant 100 E
$$

and if either:

$$
\left|\frac{x_{i}+1^{-x_{i}}}{x_{i}+1}\right|<E \text { when }\left|x_{i+1}\right|>1
$$

or:

$$
\left|x_{i+1}-x_{i}\right|<E \text { when }\left|x_{i+1}\right| \leqslant 1
$$

where E is the user supplied error toerlance. which computes $f(x)$ and $f^{\prime}(x)$.

PROGRAM／ROOT／

```
ChMM\!1 /ABC/ A,B,C,D
1 f3RMAT (2/,15H READ IN ENERGY)
? FARMAT (ElO.5)
3 EXR!AT (2/,15A READ IN U\LUME)
```



```
5 FXRMAT (2/,11H READ IN XS)
6 FMRMAT (2/,10H READ IN E)
7 FIRMAT (2/,10!i READ IN !)
< FMT1AT (12)
G F N:1AT (2, 3:4 X=,E\2.5,4X,3H F=,E\2.5,4X,4H FP=, 512.5)
```



```
11 G73!AT (6|l YES=1,4X,5H NX::2)
1? F:ZMAT (?, 4:1 AO=,E12.5)
KK=1.2000
P=14.7
a=1.0/P
i= (1.\cap/D)**(1.1)/KK)
M?! ए:= (1,1)
qEA) (0, ?) E!
M?ITE (1,3)
MシAN (0,?) リ\
\because{1T}\because(1,|) FM,V
C=(シ1*(``-1.0))/(P*'1X*144.)
"=(1.')/\cdots!)*3
`15% (!,5)
(")
71T= (1,5)
<(i) (1,'?) "
":Ir: (1,7)
\cdots:4 (1, ) !
A!, \becauseMT! ( O,F,FP,XS,E,1,IFL)
?I[\because (1,') \,F,F?
\because:T (1,1) 
    !T
\because!(1, (!) J,l
!:(.1.j-1) ?),?.), 3
\therefore), TI!:O:
```



```
\prime!1? (!,1:) \:
    & こ`'TIO:%
```



```
    =1.!1j!
```



```
    3.T 12:1
    O!!!
```

SAMPLE RUN OF /ROOT/

```
SEAD IN ENERGY
3.35EO5
READ IN YOLUME
7.82E-02
    EN= .33500E+06 V
    READ IN XS
1.0E05
REAO I:! E
.i
    Ma, 1"%
    1.%
    x=..7:153,4+74 F= .125515-03 FP= .4352.2-11
```


APPENDIX F

CALCULATION OF "W" GOODNESS OF FIT STATISTIC FROM REFERENCE 36
Table of Coefficients $\left(a_{n-i}+1\right)$ used in W test for rormality for $n=9$
$0.5888,0.3244,0.1976,0.0947$
Step 1 Rearrange observations for ordered Sample $X_{1} X_{2} \ldots X_{n}$ from percentile values in Table V

Step 2 Compute

$$
s^{2}=\sum_{i-1}^{n}(X i-\bar{X})^{2}=\sum_{i-1}^{n} X i^{2}-\left(\frac{\sum X i}{n}\right)^{2}
$$

where \bar{X} is data mean.
Step 3 For when n is odd, set $k=(n-1) / 2$ then compute

$$
\begin{aligned}
b & =A_{n}\left(X_{n}-X_{1}\right)+A_{n-1}\left(X_{n-1}-X_{2}\right)+\ldots+A_{n-k+1}\left(X_{n-k+1}-X_{k}\right) \\
& =\sum_{i-1}^{k} A_{n-1+1}\left(X_{n-1+1}-X_{i}\right)
\end{aligned}
$$

Step 4 Compute the test statistic $W=\frac{b^{2}}{s^{2}}$

Step 5 Compare the calculated value of W with the percentiles of the distribution of the test statistic. From Table X of reference 36 ,

| n | 1% | 2% | 5% | 10% | 50% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 0.764 | 0.791 | 0.829 | 0.859 | 0.935 |

This table gives the minimum values of W that we would obtain with $1,2,5,10$ and 50% probabilicy as a function of n, if the data actually came from a normal distribution. Thus, small values of iv indicate non-normality.

1. Calculation of W Statistic for Fragment Parameters $R, W, A, A / W$

Event 1 Distance

Normal Distribution

$$
\begin{aligned}
\mathrm{s}^{2}= & 1,910,052 \frac{(3920)^{2}}{9}=1,910,052-1,707,377.778=202,674.222 \\
\mathrm{~b}= & 0.5888(722-222)+0.3244(608-287)+0.1976(521-331)+ \\
& .0947(449-372) \\
b= & 443.1683 \\
b^{2}= & 196398.1421 \\
\mathrm{w}= & \frac{b^{2}}{s^{2}}=\frac{196,398.1421}{202.674 .222}=.969
\end{aligned}
$$

Log Normal

$$
s^{2}=326.895411-\frac{(54.14941195)^{2}}{9}=326.895411-
$$

$$
325.7954239=1.099987!
$$

$$
b=1.045378098
$$

$$
b^{2}=1.092815368
$$

$$
w=\frac{b^{2}}{s^{2}}=.993
$$

Event 2 Distance (Normal)

$$
\begin{array}{ll}
s^{2}=185,405.5556 & b^{2}=182068.623 \\
b=426.695 & w=.982
\end{array}
$$

Event 3 Distance (Normal)

$$
\begin{array}{ll}
s^{2}=2,330,136.889 & b^{2}=2,194,581.81 \\
b=1481.4121 & w=.942
\end{array}
$$

Event 4 Distance

$$
\begin{array}{ll}
s^{2}=628,382.889 & b^{2}=616,345.7389 \\
b=785.0769 & w=.981
\end{array}
$$

Event 5 Distance

$$
\begin{array}{ll}
s^{2}=1,748,338.889 & b^{2}=1,690,633.065 \\
b=1300.255 & W=.967
\end{array}
$$

Event 6 Distance

$$
\begin{array}{ll}
s^{2}=44172 & b^{2}=43644.30731 \\
b=208.9122 & W=.988
\end{array}
$$

Event 7 Distance (Normal)

$$
\begin{aligned}
& s^{2}=47,296 \\
& b=214.0407
\end{aligned}
$$

$b^{2}=45813.42126$
$W=.969$

Event 8 Distance (Normal)

$$
s^{2}=38,674.8889
$$

$b=193.7642$
$b^{2}=37,544.5652$
$W=.971$

Event 1 Weight (LiA Normal)
$s^{2}=4.02243396$
$b^{2}=3.838093823$
$b=1.959105363$
$W=.954$

Event 2 Weight (Ln Normal)

$$
\begin{aligned}
& s^{2}=9.55743464 \\
& b=3.087710481
\end{aligned}
$$

$b^{2}=9.533956014$
$W=.998$

Event 3 Weight (Ln Normal)

$$
\begin{aligned}
& s^{2}=8.308249 \\
& b=: 2.808424493
\end{aligned}
$$

$$
\begin{aligned}
& b^{2}=7.887248133 \\
& w=.949
\end{aligned}
$$

Event 4 Weight (Ln Normal)
$s^{2}=5.4833992$
$b^{2}=5.422546817$
$b=2.328636257$

Event 5 Weight (In Normal)

$$
\begin{array}{ll}
s^{2}=5.2896359 & b^{2}=4.874006647 \\
b=2.207715255 & w=.921
\end{array}
$$

$$
b^{2}=18.24910526
$$

$$
\mathrm{w}=.992
$$

$$
\begin{aligned}
& b^{2}=11.50462977 \\
& w=.936
\end{aligned}
$$

$b^{2}=16.14913673$

$$
\mathrm{w}=.975
$$

Event 1 Area/Weight (Normal)

$$
\begin{aligned}
& S^{2}=11,152.03556 \\
& b=104.89576
\end{aligned}
$$

Event 2 Area/Weight (Normal)

$$
\begin{aligned}
& s^{2}=11639.72 \\
& b=105.62 .921
\end{aligned}
$$

$$
b^{2}=11157.53001
$$

$$
\mathrm{w}=.959
$$

Event 3 Area/Weight (Normal)

$$
\begin{aligned}
& s^{2}=1012.18 \\
& b=28.43535
\end{aligned}
$$

$$
b^{2}=808.5691296
$$

$$
\mathrm{w}=.799
$$

Event 4 Area/Weight (Normal)

$$
\begin{aligned}
& s^{2}=1064.262222 \\
& b=29.01741
\end{aligned}
$$

Event 5 Area/Weight (Normal)

$$
\begin{array}{ll}
s^{2}=515.8288889 & b^{2}=346.423295 \\
b=18.61245 & w=.672
\end{array}
$$

Event 6 Area/Weight (Normal)

$$
\begin{array}{ll}
s^{2}=16338.98741 & b^{2}=16059 . G o ́ 19 \\
b=126.724354 & W=.983
\end{array}
$$

Event 7 Area/Weight (Nu.)

$$
\begin{aligned}
& s^{2}=11,373.60751 \\
& b=105.1395562
\end{aligned}
$$

$b^{2}=11054.32628$
$W=.972$
Event 8 Area/Weight (Normal)

$$
\begin{aligned}
& s^{2}=19,558.42122 \\
& b=138.6416769
\end{aligned}
$$

$b^{2}=19221.51457$
$W=.983$

Eivent 1 Area (Ln Normal)

$$
s^{2}=5.4012421
$$

$b=2.317066189$
Event 2 Area (Ln Normal)

$$
\begin{aligned}
& \mathrm{s}^{2}=29.313013 \\
& \mathrm{~b}=5.322848019
\end{aligned}
$$

$b^{2}=28.33271103$
$W=.966$
Event 3 Area (Ln Normal)

$$
\begin{aligned}
& s^{2}=11.8267759 \\
& b=3.380014318
\end{aligned}
$$

$$
\mathrm{b}^{2}=11.42449679
$$

$$
W=.966
$$

Event 4 Area (Ln Normal)

$$
\begin{array}{ll}
s^{2}=11.6117262 & b^{2}=11.22719449 \\
b=3.350700597 & w=.967
\end{array}
$$

Event 5 Area (Ln Normal)
$S^{2}=5.5540099$
$b^{2}=5.523450094$
$b=2.350202139$
$W=.994$

Event 6 Area (Ln Normal)

$$
\begin{array}{ll}
s^{2}=15.45026354 & b^{2}=14.6041649 \\
b=3.821539598 & w=.945
\end{array}
$$

Event 7 Area (Ln Normal)
$s^{2}=13.00914442$
$b^{2}=12.86575672$
$b=3.586886773$
$\mathrm{w}=.989$

Event 8 Area (Ln Normal)

$$
\begin{array}{ll}
\mathrm{s}^{2}=14.3944438 & \mathrm{~b}^{2}=14.08282195 \\
\mathrm{~b}=3.752708615 & \mathrm{w}=.978
\end{array}
$$

2. Calculation of \mathbf{W} Statistic for Initial Velocity Distributions
$\mathrm{CBM} \mathrm{LO} 2-\mathrm{LH}_{2}$

$$
s^{2}=4.1582624
$$

$$
b^{2}=3.848096683
$$

$$
b=7.961656617
$$

$$
\mathrm{w}=.925
$$

$\mathrm{CBM} \mathrm{LO} 2-\mathrm{RPl}$

$$
\mathrm{s}^{2}=2.217937
$$

$b^{2}=2.100307203$
$b=1.449243666$

$$
\mathrm{w}=.947
$$

$\mathrm{CBGSLO} \mathrm{L}^{-} \mathrm{LH}_{2}$

$$
s^{2}=3.4304869
$$

$$
b^{2}=3.338371974
$$

$b=1.827121225$

$$
w=.973
$$

Thenter

$\mathrm{CBGSLO} 2-\mathrm{RPl}$

$$
\begin{aligned}
& b^{2}=1.688272606 \\
& w=.989
\end{aligned}
$$

APPENDIX G

C ALCULATION OF APPROXIMATE PROBABILITY FOR OBTAINING THE Calculated value of "W"

For $n=9$, from Table XI of reference $36, \alpha=-2.968, \quad n=1.400, \epsilon=0.3900$
Approximate probability of obtaining the calculated value of W, assuming a normally distributed variable can be obtained by finding:

$$
\begin{aligned}
& Z=\gamma+n \ln \left(\frac{W-\epsilon}{1-W}\right) \\
& Z=-2.968+1.400 \ln \left(\frac{W-0.3900}{1-W}\right)
\end{aligned}
$$

For $W=.942$

$$
\begin{aligned}
Z & =-2.968+1.400 \ln \left(\frac{.552}{.058}\right)=-2.968+1.400 \ln 9.517241379 \\
& =-2.968+1.400(2.253105036)=-2.968+3.15434705=.186347
\end{aligned}
$$

$\operatorname{Pr}(Z \leq 0.186)=.57$
For $W=.994$
$Z=3.4885$

Pr $=.999$

For $W=.969$
$Z=1.13$

$$
\mathrm{Pr}=.871
$$

For $W=.954$
$z=.54$
$P=.7054$
The following values and table result from using the aiove methods.

$$
\begin{aligned}
& \mathbf{W}=.921 \\
& \mathbf{W}=.9 \\
& \mathbf{W}=. \\
& \mathbf{W}=. \\
& \mathbf{W}=. \\
& \mathbf{W}=. \\
& \mathbf{W}=. \\
& \mathbf{W}=.944
\end{aligned}
$$

$P\left(Z^{\leq}-.3\right)=.382$
$P(Z \leq .186)=.574$
$P\left(Z^{<}-.268\right)=.643$
$P(Z \overline{<} 1.13)=.871$
$P(Z \leq .540)=.705$
$P(z<1.63)=.948$
$P(Z \leq 2.62)=.995$
$P(Z \leq 3.488)=9.99$

Summary of the Above Results

| W | $\%$ |
| :---: | :---: |
| .764 | .010 |
| .791 | .020 |
| .829 | .050 |
| .859 | .100 |
| .921 | .382 |
| .935 | .500 |
| .965 | .643 |
| .978 | .871 |
| .988 | .948 |
| | .99 |

APPENDIX H

COMPUTER PROGRAM ENTI'.E.ED /TEMP/ IN FORTRAN IV

Function: This program computes the range of a fragment from the equations described in Section IV.D for the following input data.

Sl Initial trajectory angle of fragment radians
S2 Fragment drag coefficient

Ambient air density
$1 b-f t^{3}$

S4 Fragment mass coefficient (ratio of fragment mass to tank mass)

TM Tank mass
$1 b-\sec ^{2} / i n$.

FF Projected cross-sectional area of fragment
$i n^{2}$

G2 Fragment initial velocity
ft/ser

Variables: The definition and units of the variables in this program are given in the following table.

| Program
 Variable | Variable | Definition | Units |
| :---: | :---: | :---: | :---: |
| S 1 | 0 | Initial trajectory angle | radiars |
| S2 | C_{D} | Drag coefficient | |
| S3 | $\stackrel{\text { air }}{ }$ | Air density | $l b-f t^{3}$ |
| S4 | | Mass coefficient | |
| TM | M | Fragment mass | lb $\cdot \sec ^{2} / \mathrm{in}$. |
| FF | A | Fragment cross-sectional area | in ${ }^{2}$ |
| G2 | U_{f} | Initial velocity | $\mathrm{ft} / \mathrm{sec}$ |
| PI | π | The constant π | |
| GR | g | Gravitational constant | $\mathrm{in} / \mathrm{sec}^{2}$ |

| Program Variable | Vairiable | Definition | Units |
| :---: | :---: | :---: | :---: |
| S5 | | The quantity 2A/ | in^{2} |
| S6 | c | Coefficient defined in Section IV. D. | in^{-1} |
| S7 | V_{Ro} | Initial radial velacity | $\mathrm{ft} / \mathrm{sec}$ |
| S8 | V_{20} | Initial vertical velocity $1 / 2$ | $\mathrm{ft} / \mathrm{sec}$ |
| S9 | | The quantity V_{zo} (c / g) | in. |
| S 10 | | The quantity $\tan ^{-1} \mathrm{~V}_{\mathrm{zO}}(\mathrm{c} / \mathrm{g})^{1 / 2}$ | |
| S11 | | The quantity $1 /(\mathrm{cg})$ | sec |
| S12 | | The quantity $\cos \tan ^{-1} \mathrm{~V}_{\mathrm{zo}}(\mathrm{c} / \mathrm{g})$ | |
| S13 | | The quantity $2.0 \mathrm{LOG}(1.0 / \mathrm{Sl2})$ | |
| S14 | | The quantity $2.0 \mathrm{e}^{\mathrm{Sl3}}-1.0$ | |
| S15 | τ | Time of flight of fragment | sec |
| S16 | R | Fragment range | ft |
| TR | ${ }^{t}$ R | Time of rise of fragment | sec |
| ZM | Z_{m} | Maximum height reached by fragment | in. |
| S17 | | The quantity $2.0 \mathrm{e}^{2 \mathrm{cz} \mathrm{Z}_{\mathrm{m}}-1.0}$ | sec |
| TF | ${ }^{\text {t }}$ | Time of fall of fragment | sec |
| T | τ | Time of flight of fragment | sec |

Sample runs: Substitution of the following data in the program yielded the range values R (appearing in Figure ($44^{-1)}$) as X^{\prime} s). Thus, results of this program are in accord with Oslake, et al.

FIGURE HI. FRAGMENT RANGE VERSUS ELEVATION ANGLE FOR CONSTANT $\frac{W}{C_{D} A}=100 \mathrm{LB} / \mathrm{FT}^{2}$, AND CONSTANT $u_{f} \quad C_{D} A$

TABLE H-1 - DATA FOR PROGRAM CHECK

| $\mathrm{S} 1=43.3^{\circ}$ | $\mathrm{G} 2=100 \mathrm{ft} / \mathrm{sec}$ | $\mathrm{R}=2.89 \times 10^{2} \mathrm{ft}$ |
| :--- | ---: | ---: |
| $\mathrm{S} 2=1.2$ | $500 \mathrm{ft} / \mathrm{sec}$ | $3.19 \times 10^{3} \mathrm{ft}$ |
| $\mathrm{S} 3=7.48 \times 10^{-2} \mathrm{lb} / \mathrm{ft}^{3}$ | $1000 \mathrm{ft} / \mathrm{sec}$ | $5.50 \times 10^{3} \mathrm{ft}$ |
| $\mathrm{S} 4=1.0$ | $5000 \mathrm{ft} / \mathrm{sec}$ | $1.09 \times 10^{4} \mathrm{ft}$ |
| $\mathrm{FF}=4.52 \times 10^{3} \mathrm{in}^{2}$ | | |
| $\mathrm{TM}=6.2 \mathrm{lb-8ec}{ }^{2} / \mathrm{in}$. | | |

A sample run for the case in which a "mean" fragment frors test 062 of PYRO was considered $\left(C_{D}=.750\right)$ is given in the following.

READ IN TRAJ. ANGLE
12.77

RFAD IN DRAG CQEF, AND AIR DENSITY
.75,7.4RE-02

READ IN FRAGMENT MASS COEF.
1.0
1.0

RFAD IN NB. GF FRAGMENTS

FRAG. MASS
1.7KF-02

FRAG. PREJ. AREA
5.77E02

YNITIAL. VEL.
7.41E02

```
AMRIFNT AIR DENSITY= .7ABE-01 LRS.ICUBICFT.
```

```
ATR NRAG CGFF.= .75OF+NO
FHAGMENT MACS COEF. = .100F+OI
TRAJFCTARY ANGLE= -1R8F+02 NFGRFFS
CHFRK r= .R75F-07
    722.671530a
    163.789069?
    2.95611946R
    1.24459RRO2
. 5R384F+O1
    MAXIMUM RANGF = .353E+03 FT.
.52384E+01
*STOP*
0:% FTRAT (21, 2OH REAU IN TRAN. ANGLE)
E1 =- P.AT (E10.5)
    AT (こノ,35A READ IS DRAG CYEF. AND A:G DENSITY)
        - (?:1).3)
```



```
    T (/,O1:1 A:3IE:JT AIR DENSITY=,E10:3,17:1
    \because (1,15: AI: DRAG CXEF.=,E1O.3)
```



```
    it (3/, (1 CHEC:( C=,",!).j)
        T (3/, 15:1 1.KIMUS ZAAST=,E1O.3,4i4 FT.)
```



```
    (!/,17:i FRAT. PROJ. alta)
    (%,11.i-3.17. 1ASS)
```



```
<=.1.1: ( %
    (!,314)
    (), 7)71) 51
    i= i - !
    1-(%,.j*31)/(2.0*?1)
    .!:(1,3)1)
        (0,2111) 3?,53
    17. (1,30?)
    &(1),30)!) S4
        (1,3!1)
        ,\mp@code{M1) F!}
    i- (1, 2.2)
```

```
READ (0,3001) TM
NRITE (1,201)
READ (0,3001) FF
WRITE (1,202)
PEAD (0,3001) G2
WRITE (1,304) S3
WRITE (1,305) S2
NRITE (1,306) S4
NRITE (A,307) SI
S5=(2.0*(FF/PI))
S6 = (0.5*(((S3/GR)*S5*S2)/(S4*(TM/FN))))/(12.0**3.0)
NRITE (1,3071) S6
S7=G2*COS((2.0*PI)*(SI/360.0))
S8=G2*SIU((2.0*PI)*(S1/3.60.0))
S9=(S8*((S6/GR)**0.5))*(12.0)
SIO=ATAN(S9)
S11=(1.0/(S6*(GR))**0.5
512=CMS(510)
313=2.0*AL XG(1.0/512)
314=(2.0*EXP(S13))-1.0
315=511*(.510+(0.5*AL\G(5!4+(((S14**2.0)-1.0)**0.5))))
\because:ZITE (1,3001) S15
515=(1.0/56)*AL@G(1.0+(56*57*5115*12.0))
Slん=S|^ハ12.0
*IT: (1,303) 515
T?=.111* TM\(S7)
:1=(1.0/5只)*ALTF(1.0/C.S(TR/S|1))
S17=(?.)*SX?(2.0*S6*Z4))-1.0
TF=0.5*S!1**ALDG(317+(((S17**2.0)-1.0)**0.5))
T=T T + : %
M1TE (1,3)J1) T
OD
```


APPENDIX I

LIST OF SYMBOLS

| Symbol | Definition | $\underline{\text { Units }}$ * |
| :---: | :---: | :---: |
| w | Crack width | L |
| x | Mixing function | --- |
| $\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$ | Coordinates of fraçments | L |
| y | Yield Fraction | --- |
| A, A_{i} | Areas | L^{2} |
| C | Mass of explosive charge or confined gas | M |
| $C_{\text {D }}$ | Drag coefficient | --- |
| E | Energy of reactant: | FL |
| F | Projected area of a fragment | $1 .^{2}$ |
| G_{i}, G_{i}^{\prime} | Dimensional parameters fixed by nondimensional groups | various |
| $\mathrm{H}_{\mathrm{e}}, \mathrm{H}_{\mathrm{R}}, \mathrm{H}_{\mathrm{TNT}}$ | Heats of explosion | $\mathrm{L}^{2} \mathrm{~T}^{-2}$ |
| $\mathrm{H}_{\mathrm{f}_{\mathrm{i}}}$ | Heats of fusion | $L^{2} \mathrm{~T}^{-2}$ |
| H_{b}^{i} | Heats of boiling | $\mathrm{I}^{2} \mathrm{~T}^{-2}$ |
| I, Id | Blast wave impulees | FTL ${ }^{-2}$ |
| K_{i} | Thermal conductivities | MLT ${ }^{3} \mathrm{c}^{-1}$ |
| L | Tank length | L |
| $M_{1} M_{\iota}, M_{T}$ | Masses | M |
| $\mathbf{P}, \mathrm{P}_{\mathbf{r}}, \mathbf{Q}$ | Peak pressures | $F L^{-2}$ |
| R | Distance from accident | L. |
| R_{1} | Unirersal gas constant | $L^{2} \mathrm{~T}^{-2} \theta^{-1}$ |
| S_{i} | Displacements | L |
| T | Temperature | 0 |

| Symb c1 | Definition | $\text { Units }{ }^{*}$ |
| :---: | :---: | :---: |
| $\begin{aligned} & v_{,} v_{o}, v_{o o}, V_{R^{\prime}} \\ & v_{H}, v_{u i} \end{aligned}$ | Volumes | L^{3} |
| $\begin{aligned} & \mathrm{w}, \mathrm{w}_{\mathrm{r}}, \mathrm{w}_{\mathrm{m}^{\prime}} \\ & \mathrm{w}_{\mathrm{TNT}}, \mathrm{w}_{\mathrm{T}} \end{aligned}$ | Weights of propellants, explosives, reactants. Also, fragment weight | F |
| 'W" | The "W" statistic | - |
| $\begin{aligned} & X_{A}, Y_{A} ; X_{i}, \\ & Y_{i} \end{aligned}$ | Displacements and distances | L. |
| $\mathrm{Y}, \mathrm{Y}_{\mathrm{m}}, \mathrm{Y}_{\mathrm{M}}$ | Blast yields as percents of TNT equivalent | --- |
| $\overline{\mathbf{P}}, \overline{\mathbf{P}}_{\mathbf{r}}, \overline{\mathbf{Q}}$ | Scaled blast pressures | --- |
| \bar{U} | Scaled shock velocity | -- |
| $\overline{\mathrm{Z}}$ | Average displacement | 1. |
| $\hat{\mathrm{R}}$ | Predicted mean fragment range | I. |
| α, β, θ | Coefficients | --- |
| α | Angle | |
| β | Coefficient | -- - |
| $\delta^{\text {j }}$ | Average vertical displacement | L |
| θ, θ_{v} | Elevation angles | |
| $\theta_{a}, \theta_{i}, \theta_{m}$ | Temperatures | θ |
| x | Ratio of specific heats | -- - |
| λ_{i} | Scale factors | --- |
| $\mu, \hat{\mu}$ | Statistical means | various |
| ν_{i} | Kinematic viscosities | $L^{2} \mathrm{~T}^{-1}$ |

| Symbol | Definition | Units** |
| :---: | :---: | :---: |
| ξ | Time ratio | -- |
| π | Crack length | L |
| ρ, ρ_{*}, ρ_{s} | Densities | ML ${ }^{-3}$ |
| $\left(\rho C_{p}\right)_{i}$ | Volumetric heat capacities | $\mathrm{ML}^{-1} \mathrm{~T}^{-2} \theta^{-1}$ |
| σ | Stefan-Boitzmann constant | $\mathrm{MT}^{3} 0^{-4}$ |
| ${ }^{\text {c }}$ | Standard deviation of velocity | $\underline{L T}{ }^{-1}$ |
| Φ | Solid angle | -.- |
| ψ, ψ^{j} | Azimuth angle:3 | --- |

REFERENCES

1. Baker, Wilfred E., Explosions in Air, Univ. of Texas Press, Austin, Texas, May 1973.
2. Kingery, C. N. and B. F. Pannill, "Peak Overpressure vs. Scaled Distance for TNT Surface Burst (Hemispherical Charges)", BRI Memo Report No. 1518, Aberdeen Proving Ground, Md., April 1964. AD 443102
3. Carter, P. B., Jr., "A Method of Evaluating Blast Parameters Resulting from. Detonation of Rocket Propellants", AEDC-TDR-64-200, Arnold Engineering Dev. Center, Air Force Systems Command, Oct. 1964. AD 450140
4. Gurney, R. W., 'The Initial Velocities of Fragments from Bombs, Shells, and Grenades," BRL Report 405, 1943.
5. Henry, I. G., "The Gurney Formula and Related Approximations for the High-Explosive Deployment of Fragments, "Hughes Aircraft Company, Report No. PUB-189, Culver City, California, April 1967.
6. Ahlers, E. B., "Fragment Hazard Study," Minites of the Eleventh Explosives Safety Seminar, Se ptember 1969, pp. 81-107.
7. Gwaltney, R. C., 'Missile Generation and Protection in Light-Water-Cooled Power Reactor Plant, " ORNL-NSIC-22, Oak Ridge National Laboratory, September 1968.

Gates, R. W., "Containmert of Fragments from a Runaway Reactor," Stanford Research Institute, Menlo Park, California, SRIA-117 AEC Researct. and Development Report UC-80, Reactor Technology TID-4500 (27th Edition), February 15, 1964. Final Report prepared for U. S. Atomic Energy Commission, Contract No. AT(04-3)-115, Project Agreement No. 2.
9. Proceedings of the Sec ond United Nations Intarnational Cionference oll Peaceful Uses of Atomic Energy, Vol. 11, Reactor Safety and Control, United Nations, Geneva, 1958.
10. Brittan, R. O. and J. C. Heap, "Reactor Containment," pp. 66-78 in Ref. 9.
11. Gurney, R. W., "Fragmentation of Bombs, Shells, and Grenades," BRL Report 635, March 1947.
12. Sterne, T. E., "A Note on the Initial Velocities of Fragments from Warheads, "BRL Report 648, September 1947.
13. Sterne, T. E., "The Fragment Velocity of a Spherical Shell Containing an Inert Core, "BRL Report 753, March 1951.
14. Thomas, L. H., "The ory of the Explosion of Cased Charges of Simple Shape, "BRL Report 475, July 1944.
15. Willoughby, A. B.,.C. Wilton and J. Mansfield, "Liquid Propellant Explosive Hazards. Final Report-Dec. 1968. Vol. I - Technical Documentary Report," AFRPL-TR-68-92, URS-652-35, URS Research Co., Burlingame, California.
16. Willoughby, A. B., C. Wilton and J. Mansfield, "Liquid Propellant Explosion Hazards, Final Report-Dec. 1968. Vol. Il - Test Data," AFRPL-TR-68-92, URS 652-35, URS Research Co., Burlingame, California.
17. Willoughby, A. F., C. Wilton and J. Mansfield, "Liquid Propellant Explosion Hazards. Final Report-Dec. 1968. Vol. III - Prediction Methods, " AFRPL-TR-68-92, URS 652-35, URS Research Co., Burlingame, California.
18. Jeffers, S. L., "Fragment Velocity Measurements from Three Project Pyro Experiments, " Report SC-DR-69-329, Aerospace Nuclear Safety Department 9510, Sandia Laboratories, Albuquerque, New Mexico, June 1969.
19. Hunt, D. L., F. J. Walford and F. C. Wood, "An Experimental Investigation into the Failure of a Pressure Vessel Containing High Temperature Pressurized Water," AEEW-R 97, United Kingdom Atomic Energy Acthority, Reactor Group, September 1961.
20. Larson, R. J., and W. C. Olson, "Measurements of Air Blast Effects from Simulated Nuclear Reactor Core Excursions, " BRL Memorandum Report No. 1102, Aberdeen Proving (iround, Md., Se ptember 1957.
21. Muzzall, C. E. (editor), "Compendiurn of Gas Autoclave Engineering Studies," Report Y-1478, Y-12 Engineering Division, Union Carbide Corporation, Nuclear Division, Oak Ridge, Tennessee, November 1964.
22. Baker, W. E., S. Silverman and T. D. Dunham, "Studies of Explosions in the NASA-MSC Vibration and Acoustic 'rest Facility (VATF)", Final Report on Contract NAS9-7749, Southwest Research Institute, March 1968.
23. Farber, E. A. and Deese, J. H., "A Systematic Approach for the Analytical Analysis and Prediction of the Yield from Liquid Propellant Explosions", Tech. Paper No. 347, Eng. Frogress at the Univ, of Florida, XX, 3, Mar. 1966.
24. (Anonymous), "Summary Report on a Study of the Blast Effect of a Saturn Vehicle'", Report No. C63850, Arthur D. Little, Inc., Cambridge, Mass., Feb. 1962.
25. Pesante, R. E. and Nishibazashi, M., "Evaluation of the Blast Parameters and Fireball Characteristics of Liquid Oxygen/Liquid Hydrogen Propellant", Report No. 0954-01(01)FP, AerojetGeneral Corp., Downey, Calif., Apr. 1967.
26. Gayle, J. B., Blakewood, C. H., Bransford, J. W., Swindell, W. H. and High, R. W., "Preliminary Investigation of Blast Hazards of RP-1/LOX and LH2./LOX Propellant Combinations" ${ }^{\prime \prime}$, NASA TM X-53240, George C. Marshall Space Flight Center, Huntsville, Ala., Apr. 1965.
27. Farber, E. A., Klement, F. W. and Bonzon, C. F., 'Prediction of Explosive Yield and Other Characteristics of Liquid Propellant Rocket Explosions, " Final Report, October 31, 1968, Contract No. NAS 10-1255, Univ. of Florida. Gainesville, Florida.
28. Farber, E. A., "Characteristics of Liquid Rocket Propellant Explosion Phenomena. No. 448. Part VIII. Prediction of Explosive Yield and Other Characteristics of Liquid Propellant Rocket Explosions," Vol. XXIII, No. 11, Engineering Progress at the Univ. of Florida, Nov., 1969.
29. Farber, E. A., "Characteristics of Liquid Rocket Propellant Explosion Phenomena Series. Report No. IX. Critical Mass (Hypothesis and Verification) of Liquid Rocket Propellants," Univ. of Florida, Gainesville, Florida, September 1971.
30. Farber, E. A., Smith, J. H. and Watts, E. H., "Electrostatic Charge Generation and Auto-ignition Results of Liquid Rocket Propellant Experiments", Report No. X, Univ. of Florida, Gainesville, Florida, Oct. 1972.
31. Taylor, D. B. and C. F. Price, "Velocities of Fragment From Bursting Gas Reservoirs," ASME Transactions, Journal of Engineering for Industry, Nov. 1971.
32. Grodzovski, G. L., and F. A. Kukanov, 'Motion of Fragments of a Vessel Bursting in a Vacuum, " Soviet Engineering Journal, Mar/Apr 1965.
33. Pittman, J. F., "Blast and Fragment Hazards From Bursting High Pressure Tanks, " NOLTR 72-102, May 1972.
34. Glasstone, Samuel, The Effects of Nuclear Weapons, U. S. Government Printing Office, Revised Edition, April 1962.
35. Hoerner, Sighard F., Fluid-Dynamic Drag, Published by the Author, Midland Park, New Jersey, 1958.
36. Hahn, Gerald J. and Shapiro, Samuel S., Statistical Models in Engineering, John Wiley and Sons Inc., New York, 1967.
37. Fletcher, R. F., 'Liquid-Propellant Explosions'", Jour. of Spacecraft and Rockets, 5, 10, pp 1227-1229, Oct. 1968.
38. (Anonymous), SIV All Systems Vehicle Malfunction 24 January 1964, Douglas Missile \& Space Division, Santa Monica, Califorria.
39. Deese, J. H., Test Conductors Damage Assessment Report on Auto-Ignition L02/LH2 Mixing Test Experimental Expersion of 2 March 1972, Systems Engineering Division, Kennedy Space Center, NASA.
40. Dixon, W. J., Bionedical Compute. Programs, University of California Press, Los Angeles, California 1970.
41. Oslake, J. J., Getz, R. J., Romine, R. A. and Sooftov, K., "Fxplosive Hazards of Rocke: Launchings," Ford Motor Co. Technical Report 4-108:98, Nov. 1960, AD253-235.
42. Heppner, L. D. and Steedman, J. E., "Drag Coefficient for Fragment Simulating Projectiles, 2.0 MM , Caliber . 50 , and Caliber . 30, "APG DPS-286, Aug. 1961, AD 822-489.
43. Richards, E., 'Comparative Dispersion and Drag of Spheres and Light Cylinders,' APG BRL TR-717. March 1950.
44. Feinstein, D. I., "Fragmentation Hazards to Unprotected Personnel" TR ITTRI-J6176 January 1972.
45. Transue, W. R. and Saramel, K. M., "Terminal Ballistics Fragmentation Effects, "TR Institute of Research Lehigh University, December 1947.
46. Thomas, J. H., "Computing Effect of Distance on Damage by Fragments" APG-BRL Report No. 468, May 1944.
47. Lewz, H., "Asymptotic Integration of Fragment Trajectories" APG-BRL Report No. 559 and Technicai Note No. 496, September 1951.
48. Feinstein, D. I. and Nazooka, H. H., "Fragment Hazards From Detonation of Multiple Munitions in Open Stores," TR IITRI-J6176, August 1971.

[^0]: *Obtained from drawings of field test arrangements for Project PYRO.

[^1]: *Blast yield in percent is defined in Section II.

[^2]: ** Velocity of LO_{2}; Velocity of $\mathrm{LH}_{2}, 12 \mathrm{ft} / \mathrm{sec}$

[^3]: * Velocity of LO_{2}; Velocity of LH_{2} is Zero

[^4]: The equations given in this section require a number of mathematical operations for their development. Many of these operations are omitted for brevity. All nomenclature is given in Appendix I.

[^5]: A "guess" is made of XMAX because the computer has to work with so.ne finite time. If XMAX is guessed too short, then $g^{\prime \prime}(\bar{y})$ (the normalized acceleration) is not reduced close enough to zero to yield an acceptable estimate of $g^{\prime}(\xi)$. If XMAX is guessed too long then the computer can not calculate the final values of $g^{\prime \prime}$ and g^{\prime}. In practice we watched g^{\prime} for each program iteration and accepted a g^{\prime} which remained constant to three significant figures between iterations as the value of g^{\prime} for g " nearly zero.

[^6]: *In the PYRO CBGS teste, the tank assembly was arrested by stops at the bottom of its fall after striking cutter blades which ruptured the tank bottoms.

[^7]: *See Glasstone, ref. 34.

[^8]: * U_{A} is defined in Equicion (5), and is taken to be an approximation of the initial velocity.

[^9]: * A scale factor λ is defined as the ratio of a quantity in the model to the corresponding quantity in the prototype.

[^10]: * Subscript i denotes a number of simılar properties

[^11]: No Teste Read in This Group

[^12]: * The eymbiol λ denotes a ecale factor, and a subscript letter denotes the physical parameter being scaled.
 **Noise that these products are not now rondimensional, because we have deleted dimensional terms which do not change.

