Chapter 13: Europe

3
 4 Coordinating Lead Authors: Birgit Bednar-Friedl (Austria), Robbert Biesbroek (Netherlands), Daniela N.
 5 Schmidt (United Kingdom/Germany)

Lead Authors: Peter Alexander (United Kingdom), Knut Yngve Børsheim (Norway), Jofre Carnicer
(Spain), Elena Georgopoulou (Greece), Marjolijn Haasnoot (Netherlands), Gonéri Le Cozannet (France),
Piero Lionello (Italy), Oksana Lipka (Russian Federation), Christian Möllmann (Germany), Veruska
Muccione (Switzerland/Italy), Tero Mustonen (Finland), Dieter Piepenburg (Germany), Lorraine Whitmarsh

11 (United Kingdom)

1

2

25

27

29 30

31

Contributing Authors: Sara Burbi (United Kingdom/Italy), Erika Coppola (Italy), Mladen Domazet
 (Croatia), Frank Ewert (Germany), Matthias Gauly (Italy), François Gemenne (Belgium), Peter Greve
 (Austria/Germany), Ana Iglesias (Spain), Anna Laine-Petäjäkangas (Finland), Heidi Kreibich (Germany),

(Austria/Germany), Ana Iglesias (Spain), Anna Laine-Petäjäkangas (Finland), Heidi Kreibich (Germany),
 Cristina Linares Gil (Spain), Danijela Markovic (Germany), Sadie McEvoy (Netherlands / Ireland), Raya

Cristina Linares Gil (Spain), Danijela Markovic (Germany), Sadie McEvoy (Netherlands / Ireland), Ray
 Muttarak (Austria/Thailand), Hans Orru (Estonia), Mark Parrington (United Kingdom), Kaisa Raitio

Muttarak (Austria/Thailand), Hans Orru (Estonia), Mark Parrington (United Kingdom), Kaisa Raitio
 (Sweden), Jan C. Semenza (Switzerland), Rubén Valbuena (United Kingdom), Michelle van Vliet

(Sweden), Jan C. Semenza (Switzerland), Ruben varbuena (Onited Kingdom), Michele Van Vilet
 (Netherlands), Heidi Webber (Germany), Laura Wendling (Finland), Katherine Yates (United Kingdom),

20 Monika Zurek (United Kingdom).

Review Editors: Georg Kaser (Austria/Italy), Jose Manuel Moreno (Spain)

Chapter Scientists: Sadie McEvoy (Netherlands / Ireland), Phoebe O'Brien (United Kingdom/Sweden)

26 **Date of Draft:** 4 December 2020

28 Notes: TSU Compiled Version

Table of Contents

32		
33	Executive Summary	3
34	13.1 Point of Departure	6
35	13.1.1 Introduction and Geographical Scope	6
36	13.1.2 Impact Assessment of Climate Change based on Previous Reports	8
37	13.1.3 European Climate: Main Conclusions from Recent Reports Including WGI AR6	8
38	13.2 Water	12
39	13.2.1 Observed Impacts and Projected Risks	12
40	Box 13.1: Venice and its Lagoon	12
41	13.2.2 Solution Space and Adaptation Options	15
42	13.2.3 Knowledge Gaps	18
43	13.3 Terrestrial and Freshwater Ecosystems and their Services	19
44	13.3.1 Observed Impacts and Projected Risks	19
45	13.3.2 Solution Space and Adaptation Options	24
46	13.4 Ocean and Coastal Ecosystems and their Services	
47	13.4.1 Observed Impacts and Projected Risks	26
48	13.4.2 Solution Space and Adaptation Options	
49	13.4.3 Knowledge Gaps	31
50	13.5 Food, Fibre, and Other Ecosystem Products	32
51	13.5.1 Observed Impacts and Projected Risks	32
52	13.5.2 Solution Space and Adaptation Options	35
53	13.5.3 Knowledge Gaps	
54	13.6 Cities, Settlements and Key Infrastructure	
55	13.6.1 Observed Impacts and Projected Risks	
56	13.6.2 Solution Space and Adaptation Options	46
57	13.6.3 Knowledge Gaps	
	- •	

13.7 Health, Wellbeing and the Changing Structure of Communities	53
13.7.1 Observed Impacts and Projected Risks	
13.7.2 Solution Space and Adaptation Options	
13.7.3 Knowledge Gaps	
3.8 Poverty, Livelihoods and Cultural Heritage	59
13.8.1 Observed Impacts and Projected Risks	
ox 13.2: Sami Reindeer Herding in Sweden	61
13.8.2 Solution Space and Adaptation Options	
13.8.3 Knowledge Gaps	64
3.9 Interregional Impacts, Risks and Adaptation	64
13.9.1 Consequences of Climate-change Driven Impacts, Risks and Adaptation Emer Parts of the World for Europe	rging in Other 64
13.9.2 Interregional Consequences of Climate Risks and Adaptation Emerging from	
13.9.2 Interregional Consequences of Climate Risks and Mauphation Emerging from	блигоре
13.9.1 Solution Space and Adaptation Options	
3 10 Detection and Attribution and Key Risks Across Sectors and Regions	٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬
13.10 1 Detection and Attribution of Impacts	
13.10.2 Consequences of multiple climate impacts and risks for Furopean economie	
13.10.2 Consequences of maniple cumate impues and risks for European economic 13.10.3 Key Risks Assessment for Furone	70
13.10.4 Knowledge gans	
3 11 Adaptation Decision-making Across Sectors and Regions	
13 11 1 Adaptation Responses across Europe	
13.11.2 Policy Responses Options and Pathways	
13 11 3 Societal Responses Ontions and Pathways	82
13 11 4 Adaptation Transformation and Sustainable Development Goals	
ox 13.3: Climate Resilient Development Pathways in European Cities	
requently Asked Questions	
FAO 13 1: How will climate change increase social inequalities across Europe?	88
FAO 13.2: What are the limits of adaptation for ecosystems in Europe?	
FAO 13.3: How can people adapt at individual and community level to heat waves i	n Europe?90
FAQ 13.4: What opportunities does climate change generate for human and natural	systems in Europe?
References	
Appendix 13.A: Supplementary Material	
13.A.1 Supplementary Material "Point of Departure" (13.1)	
13.A.2 Supplementary Material "Terrestrial and Freshwater Ecosystems and their S	Services" (13.3) 139
13.A.3 Supplementary Material "Cities, Settlements and Key Infrastructure" (13.6)	
13.A.4 Supplementary Material "Health, Wellbeing and the Changing Structure of C (13.7)	Communities" 154
13.A.5 Supplementary Material "Poverty, Livelihoods and Cultural Heritage" (13.8	8)156
13.A.6 Supplementary Material "Detection and Attribution and Key Risks Across Se (13.10)	ectors and Regions" 157
References	

Executive Summary

1 2

3

11

1. Where are we now?

A 1° C warmer world is already impacting natural and human systems in Europe (*high confidence*).
There is increasing confidence since AR5 in detected and attributed impacts of warming, heat extremes,
droughts, floods, and coastal erosion, resulting in loss of and damages to species, ecosystems, food systems,
infrastructure, energy, public health, the economy and wellbeing. Forest fire risk, consecutive climate
extreme events and compound hazards have become more frequent in Europe, with widespread ecological,
social, and economic consequences (*low to medium confidence*). {13.1, 13.10.1, 13.10.3}

12 Risks are increasing in European sectors, regions, and vulnerable groups (*high confidence*);

threatening ways of life, especially for traditional lifestyles and for poor households (*medium confidence*). Impacts result in deepening regional inequalities, with southern regions being more negatively affected (*high confidence*), while there are some benefits in northern and central regions. Traditional lifestyles, for example in the European Arctic, are threatened already (*medium evidence, high agreement*). Poor households have lower capacity to recover from, and adapt to, impacts and are vulnerable as they are more likely to settle in flood-prone areas and supplement food by self-provisioning (*low evidence, medium agreement*). {13.5.1, 13.8.1.1, 13.8.1.2, 13.8.2, 13.10.3}

Adaptation measures are being developed and implemented across Europe, some of which are

successful in reducing impacts/risks (*medium confidence*). These measures have reduced flood risks compared to those projected in AR5, heat-related deaths in Mediterranean Europe and ecological impacts in coastal systems. While most progress is observed in cities, there continues to be a gap between planning and implementation of adaptation measures (*high confidence*). {13.2.1, 13.4.2, 13.6.2.1, 13.7.1, 13.11}

The solution space for adaptation has increased in most parts of Europe since AR5 (*high confidence*), but the speed of adaptation is lagging the speed of climate change impacts (*medium confidence*). Countries are developing national adaptation plans and pledge increasing spending on adaptation, but these actions are insufficient to fill the adaptation gap. International collaboration within and beyond Europe to address the impacts of climate change have increased. {13.9.3, 13.11}

33 2. What are the future risks?

Europe will very likely continue to warm faster than the global mean in the 21st century, widening regional and seasonal disparities (*high confidence*). Differences will increase, with some benefits in the north (e.g., increased yields, forest growth) and largely negative impacts in the south (e.g., increased energy demand and water demand while availability decreases). At 3°C warming, benefits are offset by negative effects within and amongst sectors. {13.1.3, 13.2, 13.3, 13.5.1, 13.6, 13.10.3}

Climate change will impact across sectors and regions of Europe, with considerably higher risk severity with projected warming 3°C and higher compared to 1.5°C warming (*high confidence*). Key risks are: increased stress to ecosystems and stress to and mortality of people, due to warming and its extremes; loss in agricultural productivity and ecological resilience due to combined heat extremes and droughts; risks to people, coastal ecosystems, economies, and infrastructure, due to floods; and water stress to multiple interconnected sectors (*high confidence*). The severity of key risks is dependent on socioeconomic developments, and is highest under SSP3 and SSP5 and lowest under SSP1. {13.10.3}

48

32

49 Due to warming, changes in precipitation and sea level rise, the risk of flooding and water scarcity will

⁵⁰ increase in Europe (*high confidence*). Risks of permanent and extreme flooding will increase with

accelerating pace along Europe's coasts, due to sea-level rise (*high confidence*), leading to at least a 10-fold

⁵² increase in coastal flood damage by end of the 21st century, with high adaptation and mitigation. Low

adaptation or mitigation result in significantly greater increases in economic losses (high confidence). In

southern Europe, more than a third of the population will be exposed to water stress under 2° C warming; this

risk will double under 3°C warming and increase in extent to central and eastern Europe (*medium*

56 *confidence*). {13.2.2, 13.10.3}

In response to warming and more severe drought, an expansion of fire-prone areas and longer fire 1 seasons are projected across Europe (medium confidence). Fire damage can offset the effectiveness of 2 management strategies aiming to increase the forest carbon sink. Adaptation actions, including fire 3 management, afforestation and reforestation, agroforestry, and soil restoration, can increase resilience and 4 ensure ecosystem services. {13.3.2.11, 13.3.3, 13.5.2} 5 6 Climate change will decrease suitable habitat space for terrestrial, freshwater and marine ecosystems, 7 particularly in Mediterranean and temperate Europe at warming of 3°C and more (high confidence). 8 The ranges of warm-adapted species will increase as they disperse into the new climate and habitat space 9 (high confidence). Trade-offs between adaptation and mitigation options (e.g., coastal defences, renewable 10 energy production) will result in risks for the integrity and function of ecosystems, and the goods and 11 services they provide (*medium confidence*). {13.3.1, 13.3.4, 13.4.1, 13.4.3, 13.5.3} 12 13 Projected gains in food production in northern Europe will not offset losses in other European regions 14 over the 21st century (high confidence). Yield losses for maize, especially in Mediterranean Europe, will 15 reach up to 50% in response to 3-4°C warming. Yields of some crops may increase in northern Europe when 16 warming does not exceed 2°C (medium confidence). The ability to reduce the impact of droughts on 17 agriculture, especially in response to warming above 3°C, will depend on water availability for irrigation and 18 competing uses (high confidence). The combined impacts of ocean warming, and acidification will increase 19 vulnerability of marine biotas and thus food production from the sea. {13.4.1, 13.5.1} 20 21 With increasing warming, heat, floods, and droughts are projected to increase in cities, which are 22 already affected, and expand across Europe (high confidence). More frequent and intense heatwaves will 23 affect most of Europe, except northern Europe, significantly increasing overheating and demand for cooling 24 in buildings under all levels of further warming (high confidence). Increasing drought risks are projected for 25 almost all cities under 3°C warming, particularly when considering competing water demands. Both 26 structural and intangible cultural heritage is threatened across Europe. {13.2, 13.3.1, 13.6.1.5.2, 13.8, 27 13.10.3} 28 29 Warming beyond 2° C is projected to result in widespread impacts on infrastructure and businesses 30 (high confidence). These include constraints to energy supply (high confidence) increased risks for transport 31 infrastructure (medium confidence), increases in air conditioning needs (very high confidence), and high 32 water consumption for snowmaking (*high confidence*). {13.2.2, 13.6.1.1} 33 34 Variability in health impacts among European regions will persist, with strongest projected increases 35 in mortality due to hot days in Mediterranean Europe and urban areas (high confidence). The number 36 of people at high risk of mortality will triple with 3°C compared to 1.5°C warming, in particular in central 37 and southern Europe (high confidence). There are limits to the adaptation potential of existing health 38 systems, particularly in Mediterranean and eastern Europe and places where health systems are under 39 pressure, due to non-climatic causes. {13.7.2, 13.7.4} 40 41 Climate risks from outside Europe are emerging due to a combination of the position of European 42 countries in the global supply chain, shared resources, and links with overseas territories (medium 43 confidence). Trans-European effects will impact biodiversity, food production and marine resources beyond 44 Europe, and ultimately food prices and security (*medium evidence, medium agreement*). {13.9.2, 13.5.2} 45 46 3. What are the solutions and limits of adaptation? 47 48 49 The solution space is expanding (high confidence). Financial resources are increasingly dedicated to adaptation, and governance systems are being adjusted. Public perception of climate risk is increasing, 50 especially in the young generation (medium confidence). Adaptation knowledge is increasing in the private 51 and public sector (medium confidence). The solution space for compound and interconnected risks is not yet 52 explored. {13.5.2.1, 13.10.3, 13.11.2} 53 54

55 Public and private actors in Europe are planning to increase their efforts to enhance adaptation (*high*

confidence). The 'implementation gap' between adaptation planning and action needs to be tackled to reduce or remove risks. {13.11.3.2} SECOND ORDER DRAFT

1 Adaptation to increased climate risks for European businesses and industries, be they direct, or 2 indirect via supply chains, is occurring; adaptation happens in response to financial crises, extreme 3 events or to regulatory, shareholder or customer pressures (medium confidence). Concrete adaptation 4 measures are limited, and many businesses and citizens remain under-prepared. Key barriers to 5 implementation of measures include limited resources and space, lack of stakeholder involvement and 6 (political) leadership, and low sense of urgency. Sectors such as flood management, insurance and energy 7 have generally made most progress on adaptation planning. {13.6.1.3, 13.11.3} 8 9 Both infrastructural and nature-based solutions can reduce coastal and riverine flood risk in Europe, 10 though with residual risks (high confidence) and with low evidence for the effectiveness of nature-11 based solutions at large scale and to rapid sea level rise (medium confidence). There is high 12 agreement and medium evidence that adaptation to the likely range of projected sea-level rise for Europe's 13 coasts is possible during the 21st century if started in time. Beyond the *likely* range or after 2100, more 14 radical, transformative decisions for adaptation are required. Low-lying areas will experience impacts over 15 the coming decades, requiring continued adaptation. {13.2.2, 13.2.3, 13.10.3} 16 17 Large-scale, connected conservation areas in Europe provide both the space and time for ecosystems 18 to adapt naturally and climate mitigation benefits (medium confidence). In degraded areas, rewilding and 19 large-scale restoration may create renewed carbon sinks and increase biodiversity. {13.3, 13.4.2} 20 21 Implementation of nature-based solutions across Europe highlight key barriers, such as space, 22 dedicated resources, and legal and administrative structures (medium confidence). Nature-based 23 adaptation options are themselves under threat from warming, extreme heat, drought and sea level rise. They 24 compete for land and water resources with food production, bioenergy and mitigation options. Their 25 implementation can also have negative consequences e.g., creating new hotspots for infectious diseases. 26 {13.2, 13.3, 13.3.2, 13.4, 13.4.2, 13.5, 13.5.2, 13.6, 13.7, 13.10} 27 28 Indigenous knowledge, wisdom and practices can play a role in finding and implementing adaptation 29 measures (medium confidence). Indigenous communities like the Sámi herders in Northern Europe have 30 learned over centuries to read early signals of change and adapt to climatic changes, yet there are limits to 31 their ability to adapt. Incorporation of the local context is important in climate change adaptation (high 32 confidence), particularly in European overseas territories (low evidence, high agreement). {13.8.2, 13.9.3} 33 34 Adaptation actions considered or implemented are often not transformative and do not always exploit 35 the synergies with Sustainable Development Goals (medium confidence). Systemic barriers prevent 36 transformations of vulnerable sectors, regions and societal groups. Transformative and climate-resilient 37 development (CRD) pathways can reduce future adaptation gaps despite uncertainty about the timing and 38 scale of future changes. Behavioural adaptation remains limited amongst the European public (medium 39 confidence), due to socio-economic, psychological, cognitive and cultural factors (high confidence). In 40 European cities, CRD is most leveraged in the areas of green infrastructure, energy-efficient buildings and 41 construction, and transport. {13.10.3, 13.11, 13.11.3.2, 13.11.4} 42 43 The ability to adapt to climate change will depend on our knowledge of which adaptation options are 44 feasible and effective in their local context (high confidence). Actionable knowledge about 'what works, 45 where, and why' is important to support future decision-making within local contexts, but large knowledge 46 gaps remain about the effectiveness of options. Upscaling and a systematic assessment is missing across all 47 regions of Europe (high confidence), particularly for risks resulting from interacting climatic and non-48 49 climatic drivers (*high confidence*). {13.10.4, 13.11} 50 Existing literature does not vet allow assessment of the potential for adaptation to reduce climate risks 51 in Europe beyond 2100 and for high-end warming scenarios (high agreement, medium evidence). These 52 uncertainties include low-probability/high-impact risks and unclear interactions between climatic and socio-53 economic developments. While multiple scenarios and adaptive plans are increasingly integrated into 54 decision-making, many sectors, regions and vulnerable groups are not adapting to long-term risks and 55

- 56 beyond the *likely* range. {13.2, 13.10.3, 13.11}
- 57

Chapter 13

13.1 Point of Departure

13.1.1 Introduction and Geographical Scope

This chapter examines the impacts of climate change on the sectors, regions and vulnerable populations of Europe, assesses the causes of vulnerability, and analyses ways to adapt, thereby considering socio-economic developments, land use change, and other non-climatic drivers. Compared to AR5 and in the context of the Paris Agreement (2015), we have placed more emphasis on the solutions being implemented and assessed their feasibility and effectiveness where possible. We have considered the Sustainable Development Goals (SDG) as an explicit component in our assessment, although recognizing that scientific literature is only slowly beginning to emerge.

12

1 2

3

With the rapidly growing body of scientific literature since AR5 (Callaghan et al., 2020) our assessment prioritized systematic reviews, meta-analysis, and synthesis reports. Global and European-level studies have been prioritized for their broad coverage, and detailed regional and topical studies were assessed to ensure depth and breadth of our assessment. Feasibility and effectiveness assessments reported in this chapter used revised methods developed in SR15 (de Coninck et al., 2018; Singh et al., 2020). The protocol can be found in the Appendix 13.A as can supporting material for figures and tables.

19

20 This chapter generally follows the overall structure of the report. We first present our point of departure

21 (13.1) followed by the sectors central to the WGII AR6 assessment report (Chapters 2-8), starting with

water, as water is interconnected and of fundamental importance to subsequent sections (13.2-13.8). For each

section, we assess the observed impacts and projected risks, the solution space and adaptation options, and

the knowledge gaps. Section 13.9 discusses transnational aspects, followed by the key risks for Europe

25 (13.10). Our chapter ends with an assessment of the adaptation solution space, climate resilient development

- 26 pathways, and the Sustainable Development Goals (13.11).
- 27

The geographical scope of European land, ocean and coastal regions is largely the same as in the WGII AR5 28 Chapter 23 (Kovats et al., 2014). Four land sub-regions follow the new WGI AR6 regions: Southern Europe, 29 including the Mediterranean region (MED), Western Central Europe (WCE), Eastern Europe (EEU) and 30 Northern Europe (NEU). They include quite diversified (cold, temperate, Mediterranean, subtropical, arid, 31 Alpine and polar) climates within relatively short distances (see Figure 13.1). Overseas territories and the 32 European part of the polar region (which is extensively captured in Cross-Chapter Papers 6 and 7) are not 33 systematically assessed, but are considered particularly in 13.8 and 13.9. Other parts of Europe are discussed 34 in cross chapter papers, including the European biodiversity hotspots (Cross-Chapter Paper 1) coastal cities 35 and settlements (Cross-Chapter Paper 2), mountains (Cross-Chapter Paper 5) and Mediterranean region 36 (Cross-Chapter Paper 4). European seas are broadly divided by latitude into (a) European Arctic waters (incl. 37 the Barents Sea, White Sea and Nordic seas (EUAW), (b) European Temperate Seas (EUTS) encompassing 38 the Greater North Sea, Celtic Seas, Bay of Biscay, Iberian Coast and Baltic Sea, and (c) Southern Seas with 39 the Mediterranean and Black Sea (EUSS). 40

41

European countries are differently affected by extreme weather and climate events (Figure 13.2) and express different levels of concern about climate change, which is an indicator of their intention to mitigate and adapt. The adaptive capacity correlates positively with income and tends to be higher in European countries and regions with higher purchasing power (measured in GDP per capita) and lower unemployment rate.

1 2 3 4 5 6 7

Figure 13.1: Köppen-Geiger climate classification with the boundaries of the (a) NEU, (b) WCE, (c) MED, (d) EEU regions for the recent past (left, 1985-2014) and future A1FI scenario (right, 2076-2100, approximately corresponding to global warming of 4°C), based on Rubel and Kottek (2010). Figures not finalized: to be completed with endangered ecoregions: Fenno-Scandian, Mediterranean and Montane ecoregions (Olson and Dinerstein, 2002) and large protected areas of the Natura 2000 network (https://www.eea.europa.eu/data-and-maps/data/natura-11)

2

3

4

5 6 7

8 9

24

26

Figure 13.2 Point-of-departure in Europe from a socio-economic perspective, based on four indicators, by country: (a) Mean GDP from 2013-2018, in constant international dollars (WorldBank, 2020); (b) Unemployment as percent of total labour force (WorldBank, 2020); (c) Level of climate change concern, post-stratification weight including design weight (European Social Survey ESS8 2016); and (d) Climate Risk Index (WorldBank, 2020).

13.1.2 Impact Assessment of Climate Change based on Previous Reports

The main findings of previous reports, particularly the AR5 (Kovats et al., 2014) and Special Reports 10 11 (Hoegh-Guldberg et al., 2018) highlight the impacts of warming and rainfall variations on terrestrial and marine ecosystems, the services that they provide, food sector and human systems. At 2°C warming, 9% of 12 Europe's population is projected to be exposed to aggravated water scarcity and 8% of the territory of 13 Europe with high or very high sensitivity to desertification (UNEP/UNECE, 2016). These impacts are driven 14 by changes in precipitation, irrigation developments, population growth, agricultural policies, and markets 15 (EEA, 2017a). Droughts and heat are projected to impact southern Europe and mountainous areas, while heat 16 is the main hazard for high-latitude ecosystems which may increase opportunities (Kovats et al., 2014; Jacob 17 et al., 2018; Hock et al., 2019b). The combined impacts on tourism, agriculture, forestry, energy, health and 18 infrastructure are suggested to make southern Europe highly vulnerable and increase the risks of failures and 19 increase vulnerability for urban areas (Kovats et al., 2014). These reports stated that capacity to adapt in 20 Europe is high compared to other regions of the world, with limits to adaptation from physical, social, 21 economic, and technological factors. Evidence suggests that staying within 1.5°C of warming significantly 22 increases our ability to adapt to climate impacts (de Conick and Revi, 2018). 23

25 13.1.3 European Climate: Main Conclusions from Recent Reports Including WGI AR6

Changes of several climate drivers have already been observed in Europe and will become larger and
 significant for more drivers as global warming will intensify over both land and sea (Table 13.1). Mean

SECOND ORDER DRAFT

Chapter 13

temperatures, frequency of warm days and nights, maximum temperatures, heat extremes and heat-wave
frequency have increased since 1950, while the corresponding cold indices have decreased (*high confidence*,
WGI AR6 Chapter 11, WGI AR6 Chapter 12). Annual warming will be larger than the global mean in all
sub-regions, with largest winter warming in northern and eastern Europe and largest summer warming in the
Mediterranean (WGI AR6 Chapter 12, WGI AR6 Atlas, Hoegh-Guldberg et al., 2018) (*high confidence*).
Increases of warm extremes (Figure 13.3.a,b) and decreases of cold extremes (*high confidence*) are very
likely. Increases of warm extremes (Figure 13.3.a,b) and decreases of cold extremes are *very likely*.

8 9

Table 13.1 Observed and projected (at global warming levels of 1.5°C and 3°C) direction of change of climate drivers with confidence levels for European sub-regions and European Seas.

10 11 12

Changes in climate impact drivers Observations during the period 1970–2019 Projected changes based in warming levels		(a) European la 19 els	nd areas	Northern Europe	West Central Europe	Eastern Europe	Medi- terranean	(b) European se	as	European Arctic waters	European Temperate Seas	Southern Seas*		
		Mean warming	Observed	•••	•••	•••	•••	Sea level &	Observed	••	••	•••		
	Direction of change		d chirchics	1.5 ℃ —	•••	•••	•••	•••	0003101110003	1.5 ℃ —	•••	•••	•••	
					3.0 °C —	•••	•••	•••	•••	Marine storms	3.0 °C —	•••	•••	•••
Incre	easing Decr	easing Increat decre	sing & No change asing	Cold extremes	Observed -	•••	•••	•••	•••		Observed	•	•	•
	Confidence	in assessment	t of change		1.5 °C —	•••	•••	•••	•••		1.5 ºC —	••	••	••
	•	••	•• •••		3.0 °C —	•••	•••	•••	•••		3.0 °C —	••	••	••
	Low	Medium	Medium High M precipita	Mean	Observed -	•	•	•		Acidification	Observed	•••	•••	•••
				precipitation	1.5 ℃ —	•	•	•	•		1.5 ºC —	•••	•••	•••
		Not assessed			3.0 °C —	•••	••	•••	•••		3.0 °C —	•••	•••	•••
		Extreme	Observed	•••	••	•	•	Warming &	Observed	•••	•••	•••		
			P	precipitation	1.5 ℃ —	••	•	•	•	neur neuros	1.5 ℃ —	•••	•••	•••
Drought				3.0 °C —	•••	•••	•••			3.0 ℃ —	•••	•••	•••	
		Droughts	Observed -	•	•		••	Water column stratification	Observed					
			1.5 ºC —	•	•	•	•••		1.5 ºC —					
		3.0 °C —	••	••	••	•••		3.0 ºC —						
		Storrms	Observed	•	•	•	•		,					
				1.5 °C —	••	••	••	•						
				3.0 °C —	••	••	••	••	* with 1	the Mediterran	ean & Blac	k Sea (inclu	uding Azov)	

- 13
- 14 15

The majority of mountain glaciers have lost mass during the last two decades (*very high confidence*), snow depth and duration are decreasing, permafrost in the European Alps and Scandinavia is reducing (high confidence,Hock et al., 2019a). Projections suggest during the 21st century a substantial reduction of European ice glacier volume and of snow cover below elevations of 1500-2000m, permafrost thawing and degradation (*medium confidence*, WGI AR6 Chapter 12). In central Europe, Scandinavia and Caucasus glaciers will lose from 60% to 80% of their mass at the end of the 21st century depending on climate scenario (Hock et al., 2019a).

23

During the recent decades total precipitation has increased over north and eastern Europe, not changed in 24 west Europe and decreased in some areas of southern Europe (medium confidence, WGI AR6 Chapter 8; 25 WGI AR6 Chapter 12, WGI AR6 ATLAS). Precipitation extremes have increased in northern Europe, 26 central west Europe, and in the eastern Mediterranean (medium confidence; WGI AR6 Chapter 11). There is 27 high confidence of future increase of mean precipitation in northern and Eastern Europe and of its decrease 28 in the Mediterranean, *medium confidence* in the widespread increase of precipitation extremes, except in the 29 southern areas of the Mediterranean region (Figure 13.3c,d, WGI AR6 Chapter 12; WGI AR6, ATLAS). Dry 30 conditions have increased and will increase in the future in the Mediterranean region (high confidence, AR6 31 WGI Chapter 11 and 12) with magnitude and frequency more pronounced if the global warming will exceed 32 the 1.5° C threshold (figure 13.3e,f; medium confidence; WGI AR6 ATLAS). 33

- Projections for the 21st century show a future decrease of wind speed extremes in the Mediterranean 1 (medium confidence) and increase in the three other European regions (medium confidence; WGI AR6 2
- Chapter 12). 3
- 4

A widespread surface warming between 0.25°C and 1°C since 1982-1998 has been observed in the European

5 seas (high confidence; WGI AR6 Chapter 12). Water temperature will continue increasing (high confidence) 6

particularly in the Mediterranean Sea and at the European Artic coastline, with values above 2°C and 4°C, 7

respectively, for a global warming of 3°C (Figure 13.3g,h; WGI AR6 ATLAS). Salinity has increased in the 8

- Mediterranean Sea and decreased in northern European seas and such trends are expected to continue in the 9
- future (Bindoff et al., 2019). European waters have been and will continue acidifying and deoxygenating 10
- through the 21st century (Figure 13.3i,j) (virtually certain, WGI AR6 Chapter 3, WGI AR6 Chapter 11). 11 Projected pH changes are largest at high latitudes. A mean decrease of surface pH of about 0.05 and 0.020
- 12
- pH units is projected under the 1.5°C and 3.0°C warming levels (WGI AR6 ATLAS). 13
- 14

Relative sea level (WGI AR6 Chapter 12, Oppenheimer et al., 2019) has risen along the European coastlines, 15

though it has been mitigated by post-glacial rise of land masses in Scandinavia. It will very likely continue 16

- for the 21st century (Figure 13.3k,l) (high confidence), with regional deviations from global mean sea level 17
- rise (low confidence). Future sea level rise will be the main driver of extreme water levels, coastal floods, 18
- sandy coastline recession (high confidence), which are projected to increase along European coastlines (high 19 confidence) with few exceptions (the Baltic Sea, Iberian Atlantic coast and British Isles (low confidence). 20

1 2 3 4 5 6 7 8

Figure 13.3: Changes of climate drivers with respect to the CMIP5 baseline (WGI AR6 ATLAS) for global warming levels of 1.5°C and 3°C: (a,b) number of days with temperature maximum above 35°C, (c,d) 99th percentile of daily precipitation, (e,f) drought index [not yet available in the ATLAS], (g,h) sea surface temperature, (i,j) potential Hydrogen, (k,l) mean sea level rise [not yet available in the ATLAS]. [PLACEHOLDER FOR FINAL DRAFT: figure will be completed with information on present exposure: population density; built area; selected crop (maize) area; fish catch landings; marine protected areas; coastal populated places]

Chapter 13

13.2 Water

13.2.1 Observed Impacts and Projected Risks

13.2.1.1 Risk of coastal flooding and erosion

Almost 50 million European citizens live in the low elevation coastal zone (McEvoy et al., 2020) with an 7 additional 150 million within 50 km from the coastline (Vousdoukas et al., 2020a). Coastal protection has 8 been constantly upgraded in Europe over centuries. Migration towards coastal zones is continuing (Neumann 9 et al., 2015; Jones and O'Neill, 2016). Extreme sea level magnitude and occurrence frequency is projected to 10 increase throughout most of Europe (high confidence), contributing to coastal flooding and coastline 11 recession along most sandy coasts (high confidence) with lack of consensus around the Baltic, Iberia and the 12 British Isles (WGI AR6 Chapter 12). Increasing sea level will further increase coastal erosion today, 13 evidenced around the Baltic and North Sea (Pranzini et al., 2015; Castelle et al., 2018; Luijendijk et al., 14 2018; Mentaschi et al., 2018) (medium evidence, high agreement). 15

16

1 2

3 4

5 6

17 Without adaptation, flood risks along Europe's coasts will increase due to sea-level rise compounded with

storm surges, rainfall and river runoffs (*high confidence*) (Mokrech et al., 2015; Arns et al., 2017; Sayol and
 Marcos, 2018; Vousdoukas et al., 2018a; Bevacqua et al., 2019; Couasnon et al., 2020). The number of

people exposed to coastal flooding is projected to increase by 1.52 to 3.65 million, with increasing pace after

21 2050, but at lower rates under SSP1 and SSP3 due to declining population trends. Expected annual damages

due to coastal flooding are projected to rise from € 1.25 billion today to € 12.5–39 billion by 2050 and

accelerates to \notin 93–960 billion by 2100 (RCP4.5-SSP1, RCP8.5-SSP5) (Vousdoukas et al., 2018a;

Oppenheimer et al., 2019). UNESCO World Heritage sites in the low elevation coastal zone are at risk due to

sea-level rise, coastal erosion and flooding (Marzeion and Levermann, 2014; Reimann et al., 2018b) (Cross Chapter Paper 4; Section 13.8.1.3). Local sea level rise will be lower in Fennoscandia as it continues to rise

after the end of the ice age (Frolov et al., 2014).

28

There is *high confidence* that sea-level rise will increase coastal erosion in Europe, especially for sandy shorelines (WGI), but *low confidence* in quantitative values (Athanasiou et al., 2019; Le Cozannet et al., 2019; Thieblemont et al., 2019). Without nourishment or other natural or artificial barriers to erosion, sandy shoreline retreat reaches 65m [30-105m] in southern Europe and 100m [50-180m] in northern Europe in response to 4°C warming (Athanasiou et al., 2019). Limiting climate change to less than 3°C warming reduces these values by 50% (Vousdoukas et al., 2020b).

35 36

37 38

[START BOX 13.1 HERE]

39 Box 13.1: Venice and its Lagoon

Venice and its lagoon (a UNESCO World Heritage Site) constitute a socio-ecological system that is the
result of millennial interactions between people and the natural environment and it is presently exposed to
climate-driven and non-climatic hazards: frequent floods, warming, pollution, non-indigenous species,
hydrodynamic and bathymetric alterations, reduction of saltmarshes, waves generated by cruise ships and
boat traffic.

46

The average level of the city and of its monumental area are only 80cm and 55cm above the present relative mean sea level (RMSL), respectively. Consequently, floods may be caused even by small surges and compound events, when they are superimposed to astronomical tide maxima (tidal amplitude is about 50 cm)

50 (Lionello et al., 2020a). During the 20th century, RMSL has risen at about 2.5 mm year-1, due in

⁵¹ approximately equal parts to mean SLR and land subsidence, with both natural and anthropogenic

⁵² components (Zanchettin et al., 2020). Consequently, the frequency of floods affecting most of the city has

increased from 1/decade in the first half of the 20^{th} century to 40/decade in the last decade (2010-2019,

54 Figure 13.4a).

55

In 1973, the Italian government established a legal framework for safeguarding Venice and its lagoon. The approved solution (1994) is a system of mobile barriers (MoSE), which will close the lagoon inlets during storm surges only, while under normal conditions they lay on the seabed, thus allowing ship traffic and the renovation of the lagoon water. It needs to be integrated with other measures to prevent the flooding of the central monumental area. MoSE's construction was initiated in 2003 and it has been successfully tested in October 2020 (Lionello et al., 2020b). Other adaptation solutions that have been proposed are pumping seawater into deep brackish aquifers, which could raise the city's level about 30 cm (Comerlati et al., 2003; Castelletto et al., 2008; Gambolati et al., 2009; Schrefler et al., 2009; Teatini et al., 2010; Teatini et al., 2011a; Teatini et al., 2011b), restriction of the inlets and expansion of saltmarshes, which could reduce the average sea level maxima up to 30 cm (Umgiesser, 1999; Umgiesser, 2004).

average sea level maxima up to 30 cm (Umgiesser, 1999; Umgiesser, 2004).

The risks for the lagoon environments will be posed also by the ecosystem sensitivity to accelerating 10 warming (Solidoro et al., 2010) and the vulnerability of the salt marshes to fast RMSL rise (Day Jr et al., 11 1999; Marani et al., 2007). Without adaptation, potential economic damages in the range from 5.5 to 16 12 billion have been estimated for the 21st century (Caporin and Fontini, 2016). Flood duration is expected to 13 increase from 2-3 weeks to 2 and 6 months per year for RMSL rises of 30, 50 and 75cm, respectively 14 (Lionello, 2012; Lionello et al., 2020b; Umgiesser, 2020) (Figure 13.4b). Frequent closures of the inlets 15 would prevent ship traffic and lagoon water renovation. The lagoon would have to be disconnected from the 16 sea for most of the time for RMSL rise exceeding 75 cm. Adaptation pathways considering the full range of 17 plausible RMSL rise levels in Venice are not available. As their planning and implementation require several 18 decades (Haasnoot et al., 2020b), delays might prevent effective protection against future RMSL rise. 19

20 21

Figure 13.4: Venice sea level rise and flooding. Left panel: Evolution of relative and mean sea level in Venice, of the Subpolar North Atlantic (Frederikse et al., 2020) and decadal frequency of floods above the safeguard level in the city centre. Right panel: Projected MSL evolution at the Venetian coast (Thieblemont et al., 2019) and required duration of closure of the lagoon inlets as a function of RSL (Lionello, 2012; Umgiesser, 2020). Figures adapted from Lionello et al. (2020b).

[END BOX 13.1 HERE]

29 30

27 28

31 32

33

13.2.1.2 Risks related to river flows and groundwater

34 13.2.1.2.1 Riverine flooding

Precipitation is raising river flood hazards in WCE and decreases in EEU and MED making Europe one of 35 the regions with largest increases in flood risks except for EEU. River flow observations show that 36 discharges have increased in central western Europe, UK and Iceland with a rate of 11% per decade and 37 decrease of roughly 23% per decade in Eastern and Southern Europe (WGI AR6 Chapter 12, Blöschl et al., 38 2019). Incidence of summer floods is expected to decrease across the whole alpine region, whereas winter 39 and spring floods will increase as a result of extreme precipitation (Beniston et al., 2018 trends, and future 40 challenges). In regions dominated by snowmelt-induced peak flows, projections agree on decreasing of 41 extreme streamflow and earlier spring snowmelt peak flows (Frolov et al., 2014; Madsen et al., 2014; 42 Beniston and Stoffel, 2016) intensified by the regime shift in glacierised catchments, where maximum 43 discharge will happen earlier in the year such as Po, Danube, Rhine and Rhone (Stoffel et al., 2016; Beniston 44 et al., 2018). 45

SECOND ORDER DRAFT

Economic flood damages typically increased significantly, even considering inflation (Hu et al., 2018) 2 though not normalised to GDP (Paprotny et al., 2018) reflecting increasing exposure of people and economic 3 assets (Visser et al., 2014). New research increases confidence in AR5 statements that without adaptation 4 measures, increases in extreme rainfall will substantially increase flood damages (e.g., Madsen et al., 2014; 5 Alfieri et al., 2015a; Alfieri et al., 2015b; Bloschl et al., 2017). Socio-economic conditions will exacerbate 6 flood impacts more than global climate change (Hoegh-Guldberg et al., 2018). Damages from river flooding 7 in Europe (assuming a baseline 5 M€ losses annually) are projected to increase by 116% at 1.5°C and 137% 8 at 2 °C warming (Alfieri et al., 2018). Flood risks are estimated to increase from once in a 100 year to annual 9 for about 5 million Europeans (Ipcc, 2018). The frequency of these flood events is halved if the warming is 10 kept to 1.5 °C. 11 12 13.2.1.2.2 Low flows and water scarcity 13

Low flows are projected to decrease, making streamflow drought and water scarcity more severe and 14 persistent in many parts of Europe (WGI AR6 Chapter 12, Forzieri et al., 2014; Prudhomme et al., 2014; 15 Schewe et al., 2014). MED will experience very low river flows with reductions in minimum flows of up to 16 40% and annual flow up to 40-60% by the end of the century (Forzieri et al., 2014; Frolov et al., 2014). 17

18

1

With 1.5°C warming, in southern Europe the number of days with water scarcity (projected water 19 availability vs water demand) and drought will increase slightly (Schleussner et al., 2016; Naumann et al., 20 2018) while in WCE and EEU there is no clear trend in the number of days with water scarcity and drought 21 (Schleussner et al., 2016; Naumann et al., 2018). Under 4 °C warming areas in central Europe experience 22 water scarcity, especially in summer and autumn. Future intensive water use can aggravate the situation in 23 southern Europe (see 13.10.4) and reverse the climate induced reduction of droughts in northern Europe 24 (Forzieri et al., 2014).

25

26 Most European regions rely on groundwater for water supply. Groundwater abstraction rates reach up to 100 27 million m³/year across CEU and MED, and partially exceed 100 million m³/year in southern Spain, Italy, and 28 south-eastern Europe (Wada, 2016). Across Europe, groundwater abstraction is widely sustained through 29 substantial groundwater recharge (De Graaf et al., 2015; de Graaf et al., 2019). However, low recharge rates 30 lead to a depletion of groundwater resources in parts of south-eastern and eastern Europe (Döll et al., 2014; 31 Wada, 2016; de Graaf et al., 2017) increasing the impacts on water scarcity in the MED were all possible 32 water is being used. Groundwater pumping and associated declines in groundwater discharge already 33 threaten environmental flow limits in many European catchments extending to almost all basins and sub-34 basins within the next 30-50 years (de Graaf et al., 2019). 35

36 The combined effect of increasing water demand and successive dry climatic conditions further exacerbates 37 groundwater depletion lowering groundwater levels particularly in the driest regions of Europe (WGI AR6 38 Chapter 12) but also WCEU due to warming (Goderniaux et al., 2015). Declines in groundwater recharge of 39 up to 30% further increase groundwater depletion (Aeschbach-Hertig and Gleeson, 2012) especially in EEU 40 and semi-arid to arid regions (Moutahir et al., 2017). Abstraction rates are projected to increase due to 41 growing water demand. Even where groundwater resources are not depleted, e.g., WCE and NEU, projected 42 increases in groundwater abstraction will impact groundwater discharge, threatening sustaining 43 environmental flows under dry conditions. 44

45

The risks for soil moisture drought are projected to increase across all regions of Europe (except possibly 46 Northern Europe) and for all climate scenarios but are especially critical in the Mediterranean and Eastern 47 Europe (Grillakis, 2019; Tramblay et al., 2020). Compared to 1.5°C, the drought area across Europe under 48 3°C will increase by 40% and the population under drought by up to 42%, especially affecting southern, and 49 to a lesser extent also eastern and central Europe (Samaniego et al., 2018). 50

51

53

57

13.2.1.4 Water temperature and quality 52

Water temperatures in rivers and lakes have increased over the past century (~1 to 3°C in major European 54 rivers; (CBS et al., 2014; EEA, 2017a; Woolway et al., 2017). Warming is accelerating for all European river 55 basins (Wanders et al., 2019) and are projected to further increase by 0.8°C in response to 1.5°C warming 56

and 1.2°C for 3°C warming relative to the control period 1971-2000 (van Vliet et al., 2016b). Rates are

higher than atmospheric warming due to declines in summer river flow. The duration of high water
temperatures is projected to double until 2050 and quadruple by the end of the century (van Vliet et al.,
2013).

4

18

Projected precipitation and streamflow increases in winter are expected to increase nitrogen fluxes and eutrophication risks, especially in northern Europe (van Vliet et al., 2015; Sinha et al., 2017). In coastal areas such as southern Italy, Denmark and the Netherlands, (ground)water extractions or drainage caused land inundation (Rasmussen et al., 2013; Ketabchi et al., 2016). During summer, seawater will penetrate estuaries further upstream in response to reduced river flow and sea level rise, which results in more frequent closure of water inlets in the downstream part of the rivers in a period when water is most needed (e.g., Haasnoot et al., 2020b). Additionally, sea level rise will cause saltwater intrusions (*high agreement, low evidence*).

Higher water temperature affects cooling power (13.6), ecology (13.3), and recreation through algae blooms
(13.3, 13.4). The low flows further impact water-cooling capacity for power plants and the dilution capacity
for industrial effluents (13.6). Changes in streamflow regimes, groundwater levels and water quality impact
ecology (13.3), navigation (13.6), drinking water (13.6), irrigation for crops (13.5) and/or hydropower
generation (13.6) (Beniston et al., 2018).

19 13.2.2 Solution Space and Adaptation Options

20 In recent decades water management in Europe has increasingly shifted more towards integrated and 21 adaptive strategies, with most noticeable shifts in western Europe (high confidence) (e.g. Kreibich et al., 22 2015; Bubeck et al., 2017). Adaptive strategies are increasingly considered as an approach to strengthen 23 flexibility and implement climate change adaptation actions, given deep uncertainty about the future(Ranger 24 et al., 2013; Klijn et al., 2015; Orsato et al., 2017; Radhakrishnan et al., 2018; Bloemen et al., 2019; Hall et 25 al., 2019; Pot et al., 2019; Thaler et al., 2019), but more traditional water management approaches still 26 dominate across Europe (OECD, 2013; OECD, 2015). Progress on adaptation since AR5 is observed in the 27 increasing number of policies, plans and guidance documents (Section 13.11.1) (Leitner et al., 2020), as well 28 as the rapidly expanding academic literature on the various types of adaptation options and approaches 29 (Biesbroek and Delaney, 2020). Water policies and guidance documents increasingly consider 30 mainstreaming climate impacts and adaptation options (Runhaar et al., 2018). For instance, countries across 31 Europe are planning for SLR, but 25% still do not (Figure 13.5) (McEvoy et al., 2020). The planning horizon 32 2100 is most common and many countries are considering around 1m (adjusted for local conditions) of SLR 33 at that point in time. However, there are significant differences between countries, which may lead to 34 unequal impacts, over time (McEvoy et al., 2020). RCP4.5 and RCP8.5 are the most widely used climate 35 change scenarios. 36 37

Figure 13.5: Sea level rise preparedness. Map of countries in Europe summarizing: the 2020 population living in the low elevation coastal zone, the amount of sea level rise each country is planning for, at different time horizons, what type of planning is used, which climate change scenarios are employed in sea level rise planning and whether uncertainty handling is accounted for in sea level rise planning. The question mark for type of sea level rise planning in Russia reflects the unclear response on this topic and lack of confirmed planning documents. The amounts of sea level rise and time horizons reflect national guidance, local or project-based levels may differ (McEvoy et al., 2020).

13.2.2.1 Flood risk management

Across Europe a range of hard and soft measures have been implemented in flood risk and water resources management (Table 13.2). Flood risk measures include protect, accommodate, retreat and avoid options, with protect as a most used strategy in Europe (*high confidence*). Early warning and flood defences have been successful in reducing vulnerability to coastal and river flooding, also in Europe (Jongman et al., 2015; Kreibich et al., 2015; Bouwer and Jonkman, 2018). Fatalities due to river flooding have decreased in high income countries like Europe, despite similar numbers of people exposed (1990-2010 compared to 1980-1989).

19

1

2

3

4

5

6 7

8 9

10 11

Structural measures in mountain areas are used to increase water retention and storage (dam reservoirs, 20 channelization and flood embankments), while in lowland regions river floodplains and coastal regions are 21 protected through flood embankments. Such measures can be effective. For Europe at least 83% of flood 22 damages due to coastal flooding could be avoided by elevating dykes along ~23-32% of Europe's coastline. 23 Protection against coastal flooding is considered an economic beneficial option for densely populated areas 24 (Lincke and Hinkel, 2018; Tiggeloven et al., 2020). For Europe benefit-cost-ratios vary from 8.3 to 14.9, 25 with higher ratios for higher warming levels (Vousdoukas et al., 2020a). Building flood defences has 26 limitations including cost-benefit considerations in rural areas, and space and social acceptability in densely 27 populated areas (Hinkel et al., 2018; Haasnoot et al., 2019). 28 29

Nature-based and sediment-based solutions are increasingly considered for environmental, economic and/or

societal reasons (e.g. Stive et al., 2013; Kreibich et al., 2015; Pranzini et al., 2015) (Cross-Chapter Box
 NATURAL in Chapter 2). In riverine areas, these solutions include (forest) restoration for upstream storage,

NATURAL in Chapter 2). In riverine areas, these solutions include (forest) restoration for upstream storage, restoration of river channels, widening riverbeds (Kreibich et al., 2015; Barth and Döll, 2016; Wyżga et al.,

restoration of river channels, widening riverbeds (Kreibich et al., 2015; Barth and Döll, 2016; Wyżga et al.,
 2018). In coastal regions, nourishment of beaches aims to maintain the sandy coast and is increasingly

- considered as a flexible approach to adapt to uncertain changes (Kabat et al., 2009). Coastal wetlands can be
- effective to reduce for example wave height, but their feasibility to implement is restricted, particularly for
- densely populated areas with competing land use and sediment starved deltas like the Rhine delta (Edmonds

et al., 2020) and rapid SLR (Kirwan et al., 2016; Oppenheimer et al., 2019; Haasnoot et al., 2020b).

Combining NBS with structural defences might still be needed for long term coastal protection in urbanized 2 coastal regions.

Measures are also implemented to reduce flood exposure for example through zonation and early warning 5 systems (EWS) and vulnerability through flood proofing, smart design and building codes (Dieperink et al., 6 2016; Driessen et al., 2016; Hegger et al., 2016) (Table 13.2). 7

8 Retreat options are often considered as a last resort (Haasnoot et al., 2019; Siders et al., 2019), and rarely 9 applied in Europe (Mayr et al., 2020). Along parts of the coast in the UK (e.g., The Wash), Germany (e.g., 10 Langeoog Island), and the Netherlands (e.g., Westerschelde) retreat has been applied to restore salt marshes 11 and to aid coastal defence (Haasnoot et al., 2019). Household relocation has occurred in response to river 12 flood events (Mayr et al., 2020; Thaler and Fuchs, 2020). 13

14

1

3 4

While measures taken at household levels can reduce the risk of flooding, there is often insufficient 15 investment in even low-cost measures, as e.g., observed in CEU (Bamberg et al., 2017; Aerts et al., 2018). 16 Reasons for this include low awareness or under-estimation of the risk, short-term planning (Kellens et al., 17 2013), and low perceived efficacy or social norms related to adaptation measures (van Valkengoed and Steg, 18

2019). 19

20

Behavioural adaptation to flooding relies on one's appraisal of the threat and of one's capacity to respond, 21 both of which are often lacking (Bamberg et al., 2017; Haer et al., 2019) (Section 13.11.3). 22

23

24

Table 13.2: Assessment of effectiveness and feasibility of water related adaptation options to achieve objectives under 25 26 increasing climate hazards. The assessment steps are described in Figure 13.A.1. [PLACEHOLDER FOR FINAL

27 DRAFT: to be updated]

Effectiveness & feasibility of water related adaptation options •~ for climate impacts & risks

SECOND ORDER DRAFT

1 There is diversity of flood risk insurance and compensation systems across European countries, reaching 2 from ex post disaster relief payments by the state, to compulsory flood insurance, to public-private 3 partnerships where the state acts as reinsurer (Section 13.6). With increasing future flood risks due to both 4 climatic and socioeconomic change, government budgets could be overburdened with public assistance and 5 damage compensation (Section 13.11.2) (Paudel et al., 2015; Mysiak and Perez-Blanco, 2016; Schinko et al., 6 2017; Mochizuki et al., 2018), customers could be faced with unavailable or unaffordable insurance (13.8.3) 7 (Hudson et al., 2016; Surminski, 2018), and insurance companies could face problems of underfunding and 8 insufficient solvency to pay out insurance claims (Section 13.6.2.5) (Lamond and Penning-Rowsell, 2014). 9

11 *13.2.2.2 Water resources management*

Availability of fresh water has been increased through water storage (both local and in reservoirs), reduction 13 of water demand (including regulations and efficient water use) and transfer of runoff. On the demand side, 14 measures include those aimed at monitoring the consumption (e.g., water meters) and those aimed at 15 regulating demand and consumption (Garnier and Holman, 2019). Water restrictions are particularly efficient 16 to regulate consumption in areas exposed to droughts and water scarcity. As drought frequency and 17 conditions of water scarcity are projected to intensify in the future for certain regions, prolonged water 18 abstraction restrictions could result in economic losses to certain sectors, for example, irrigated agriculture 19 (Section 13.5.2) (Salmoral et al., 2019). 20

21

10

12

Water efficiency measures can potentially limit conflicts across sectors, but necessitate technological 22 advances and changes of practice together with a willingness to cooperate across multiple sectors (Garnier 23 and Holman, 2019), for example wastewater reuse e.g., for agriculture (Lavrnic et al., 2017). Changes in 24 irrigation efficiency are effective in reducing water scarcity, particularly in MED (De Roo et al., 2020). The 25 positive effects of water savings are insufficient to counteract a large reduction under global warming 26 (RCP8.5) (medium confidence, low evidence) (De Roo et al., 2020). Increasing desalination capacity is also a 27 widely used option towards water scarcity mitigation in particular in the Mediterranean but has adverse side 28 effects in terms of the brine produced and high cost and energy demands (Jones et al., 2019). 29

29 30

Adaptation to sea level rise and river flooding is possible with limited residual risks (if timely started) in 31 some regions (Dottori et al., 2020; Vousdoukas et al., 2020a), if timely started, but not in all locations (Box 32 13.1) (high agreement, medium evidence), leaving residual impacts (Section 13.2.2). Limits to adaptation to 33 extremely high sea-level rise scenarios have been identified for coastal defences, such as the Thames Barrier 34 in the UK (Ranger et al., 2013) and the Maeslant Barrier in the Netherlands (Kwadijk et al., 2010; Haasnoot 35 et al., 2020b), and maintaining sandy coastal and for fresh water supply (Haasnoot et al., 2020b). However, 36 the scale and pace of adaptation required to face such high-end scenarios along all the coasts of Europe 37 remains poorly studied so far. Given the lead and long lifetime of large critical infrastructure, there is a 38 growing need for high end scenarios that look beyond 2100 to support the design of new infrastructure 39 (Cross-Chapter Box SLR in Chapter 3). Some countries have looked at such scenarios, but these are not 40 uniformly used across Europe (Figure 13.5). Ultimately, the regulated long-term retreat of human 41 populations from coastal at-risk regions is increasingly considered as a realistic adaptation option in case of 42 extreme sea-level rise impacts on shorelines (Tol et al., 2016). 43

44

Limits to adaptation to drought and low flows, exist under high warming levels, when water saving and efficiency measures may not be sufficient to counteract the reduction in water availability (De Roo et al., 2020). Successful adaptation in the water sector also depends on the extent water management is integrated into other sectoral policies including health, agriculture, energy, transport, and biodiversity (KR4, Section 13.10.4).

51 **13.2.3 Knowledge Gaps**

52

50

While high-end scenarios and scenarios beyond 2100 are considered to be beneficial for risk-averse decision making, in particular in water infrastructure (Hinkel et al., 2019; Haasnoot et al., 2020b), such studies are still rare. Adaptation to low-end scenarios (e.g., RCP2.6), and thus minimum adaptation needs, are even less studied than the impacts of high-end sea-level rise scenarios. Quantification of the effectiveness of measures in reducing risk is limited in the scientific literature. Nature based solutions are increasingly implemented,

2 3 4

5 6

7

16

17

though often in small scale pilot projects. There is limited evidence on the ability to upscale these measures, and their effectiveness to high global warming.

13.3 Terrestrial and Freshwater Ecosystems and their Services

13.3.1 Observed Impacts and Projected Risks

Climate change has multiple impacts on European terrestrial and freshwater ecosystems, significantly
affecting biodiversity and key ecosystem functions and services. Terrestrial ecosystems of Europe include
from the North to the South: snow and ice-dominated systems, glaciers, polar deserts, tundra; peatlands;
nival mountain belts, alpine and subalpine systems; boreal and temperate forests and woodlands; temperate
grasslands, Mediterranean forests, woodlands and scrubs;; subtropical dry and humid forests; steppes and
deserts. Inland surface waters contain freshwater systems and enclosed seas and saline lakes (IPBES, 2018).
Projected risks for these systems are assessed in Table 13.3.

13.3.1.1 Impacts on biodiversity

18 In the EU, around 14 % of habitats and 13 % of species of interest are currently under pressure because of 19 climate change and multiple direct anthropogenic pressures (high confidence) (Füssel et al., 2017). About a 20 quarter of species are currently threatened by habitat degradation and other global change impacts in the EU 21 (EuropeanCommission, 2015; Füssel et al., 2017; Seibold et al., 2019; van Strien et al., 2019; van Klink et 22 al., 2020). In freshwater habitats, the groups with the highest proportion of threatened species are molluscs 23 (55%) and freshwater fish (43%). Other endangered groups include marine mammals (43%), amphibians 24 (22%), reptiles (21%) and birds (18%) (EuropeanCommission, 2015; Füssel et al., 2017). Sensitivity to 25 increasing climate-change impacts in Europe varies among species, functional and taxonomic groups (high 26 confidence). Strong climate-induced biodiversity declines have already been detected in thermosensitive 27 taxonomic groups, such as bumblebees and other cold-adapted species (Balint et al., 2011; Hellmann et al., 28 2016; Habel et al., 2019a; Harris et al., 2019; Crossley et al., 2020; Soroye et al., 2020). In contrast, stable 29 and increasing trends in local species richness have been also reported, and in some groups the loss of native 30 species is balanced by the establishment of new native and non-native species (Dornelas et al., 2014; McGill 31 et al., 2015; Hillebrand et al., 2018; Outhwaite et al., 2020). Table 13.3 summarises climate-change risk of 32 biodiversity loss due to reduced habitat availability and increased extinction risk for key endangered groups 33 in Europe. 34

35 36

Table 13.3: [PLACHOLDER FOR FINAL DRAFT] Summary of key impacts and risks for terrestrial ecosystems
 (reported trends are preliminary). See Table 13.A.1.

			LEGEND: Both>	Direction of confidence of detection Increasing • Low Decreasing • Medium No Evidence Not assessed			1	
IMPACT / RISK	Main Climatic	Affected systems	Direction of Change		by	REGION	s	- Are
	Driver(s) / Hazard(s)	biotas, habitats, ecosystems		EUROPE	MED	WCE	EEU	NEU
A. Reduced habitat availability and biodiversity	Warming, heatwaves	Species, communities (freshwater, terrestrial)	Observed Projected: +1.5 °C Projected: +3 °C	•	:::	: : :	?	? ?
B. Local extinctions	Warming	Species (freshwater, terrestrial)	Observed Projected: +1.5 °C Projected: +3 °C	•• ? ?	••	:::	•	
C. Range shifts	Warming	Species (terrestrial)	Observed Projected: +1.5 °C Projected: +3 °C	•••				
D. Invasions of non- native species	Warming	Communities (freshwater, terrestrial)	Observed Projected: +1.5 °C Projected: +3 °C	•••	•••	•••	?	•••
E. Shifts in community composition	Warming	Communities (freshwater, terrestrial)	Observed Projected: +1.5 °C Projected: +3 °C	••	••	•••		•••
F1. Non-gradual, abrupt biome shifts (critical transitions)	Warming	Mountain systems, cold-adapted biomes	Observed Projected: +1.5 °C Projected: +3 °C	?				
F2. Large-scale gradual biome shifts	Warming	Mountain systems, cold-adapted biomes	Observed Projected: +1.5 °C Projected: +3 °C	?	••	••	••	••
G. Changes in phenology and reproductive success	Warming	Species	Observed Projected: +1.5 °C Projected: +3 °C					
H. Foodweb disruptions	Warming	Communities, ecosystems	Observed Projected: +1.5 °C Projected: +3 °C	? ? ?	••	••	:	•
I. Incidence of fire	Warming, drought	Boreal systems, all mountain ranges, MED ecosystems, temperate ecosystems	Observed Projected: +1.5 °C Projected: +3 °C	:::				
J. Vegetation die- back, mortality events, population collapse	Extreme climatic events: heatwaves,	Boreal systems, all mountain ranges, MED ecosystems, temperate ecosystems, marine/freshwater	Observed Projected: +1.5 °C Projected: +3 °C					
K. Emergence trade- offs limiting adaptation options and solution space		Mountain systems, endemic hot spot areas, low dispersal and specialist groups, cold-adapted species	Observed Projected: +1.5 °C Projected: +3 °C					
L. Changes in regulating ecosystem services (carbon capture)	Warming	Ecosystems (terrestrial)	Observed Projected: +1.5 °C Projected: +3 °C	?				
OTHERS			Observed Projected: +1.5 °C Projected: +3 °C					

13.3.1.2 Shifts in species distributions

1 2

Across many animal and plant taxa, a northward shift in latitudinal distribution and an upward shift in 3 altitudinal distribution have been observed in Europe (high confidence) (Parmesan et al., 1999; Wilson et al., 4 2007; Devictor et al., 2008; Lenoir et al., 2008; Chen et al., 2011; Devictor et al., 2012; Pauli et al., 2012; 5 Kovats et al., 2014; Ancillotto et al., 2016; Füssel et al., 2017; Mills et al., 2017; Mori et al., 2018; 6 Steinbauer et al., 2018; Termaat et al., 2019). Elevational ranges of thermophilic plant species expand, while 7 those of cold-adapted species contract (Rumpf et al., 2018). Plant species display more stable distributions at 8 low altitudes than at higher altitudes, and altitudinal changes in the distribution of plants may increase 9 interspecific hybridization processes (Rumpf et al., 2018; Gómez, 2019). In southern Europe, northward 10 shifts in the rear edge of tree species distributions are not consistently detected, indicating tree species 11 persistence (medium confidence) (Vilà-Cabrera et al., 2019). Regional extinctions of species have also been 12 observed in response to climate change in Europe (medium confidence) (Wiens, 2016; Füssel et al., 2017; 13 Soroye et al., 2020). Although local microclimatic variability can potentially buffer warming impacts on 14 natural populations (medium confidence) (Scherrer and Körner, 2011; Lenoir et al., 2013; Carnicer et al., 15 2019c; Zellweger et al., 2020) shifts in species distributions are projected for the coming decades for 16 multiple taxonomic groups (high confidence), showing a wide range of species-specific responses (Tables 17 13.A.1 and 13.A.2). 18

20 13.3.1.3 Trends in population densities

21 Climate change is having both positive and negative effects on population trends and densities, with 22 contrasting regional and habitat-specific trends (high confidence) (Füssel et al., 2017; Bowler et al., 2018; 23 Outhwaite et al., 2020; Soroye et al., 2020). Positive effects of warming on population growth have been 24 reported across multiple aquatic and terrestrial taxonomic groups in temperate Europe (Bowler et al., 2017). 25 Populations of warm-adapted insects in central Europe and warm-adapted birds across Europe increase under 26 warming while those of cold-adapted species decline (Bowler et al., 2015; Jørgensen et al., 2016; Stephens et 27 al., 2016; Bowler et al., 2019; Lehikoinen et al., 2019). An increase in the proportion of warm-adapted 28 species in communities of butterflies, birds, plants and lichens in Europe has been detected (Füssel et al., 29 2017). In contrast, declines in insect populations have been detected in southern Europe (Stefanescu et al., 30 2011; Zografou et al., 2014; Melero et al., 2016; Carnicer et al., 2019c; Herrando et al., 2019). Climate 31 change impacts in Europe strongly interact with local habitat structure and resource dynamics (De Frenne et 32 al., 2013; Oliver et al., 2014; Oliver et al., 2015; Carnicer et al., 2017; Carnicer et al., 2019c). Observational 33 analyses suggest that declines in population abundance for both birds and mammals are greater in areas with 34 larger warming (Spooner et al., 2018a). 35

35 36 37

19

13.3.1.4 Ecosystem functions and services

38 Europe's land ecosystems have presently a neutral role as a source/sink region considering all main 39 greenhouse gases (low confidence) (Nabuurs et al., 2003; Schulze et al., 2009; Kovats et al., 2014; Tian et 40 al., 2016). The European carbon sink is significantly constrained by reduced soil moisture, increasing 41 drought trends, increasing atmospheric evaporative demand and associated land-atmosphere feedbacks (high 42 confidence) (Humphrey et al., 2018; Sanginés de Cárcer et al., 2018; Stocker et al., 2018; Carnicer et al., 43 2019b; Green et al., 2019; Xu et al., 2019; Yuan et al., 2019; Zhou et al., 2019; Brodribb et al., 2020; Lian et 44 al., 2020; Schuldt et al., 2020; Zhang et al., 2020). All these emerging climatic pressures may progressively 45 limit the carbon sink capacity of European land ecosystems in the next decades, shifting from dominant 46 positive fertilization effects of increased CO₂ to increased negative effects of warming (medium confidence) 47 (Peñuelas et al., 2017; Lugato et al., 2018; Green et al., 2019; Natali et al., 2019; Ito et al., 2020; Wang 48 2020). Climate change is significantly affecting key ecosystem functions in Europe, such as land respiration, 49 primary productivity, carbon assimilation and nutrient cycling (high confidence). Significant impacts of 50 warming on land ecosystem respiration and carbon sink activity have been detected (Ciais et al., 2005; Smith 51 et al., 2005; Reichstein et al., 2007; Fantappié et al., 2011; Keenan et al., 2016; Reich et al., 2016; Yigini and 52 Panagos, 2016; Ballantyne et al., 2017b; Ciais et al., 2019; Fernández-Martínez et al., 2019). 53 54

Climate change and land-use changes affect the functioning of European land ecosystems and their services (Schröter et al., 2005b; Schröter et al., 2014; Füssel et al., 2017; Verhagen et al., 2018). The expansion of European forests in boreal regions have a net warming effect because of changes in albedo,

European foresis în obreal regions nave a net warning effect decau

evapotranspiration and turbulence effects (Bright et al., 2017; Mykleby et al., 2017) and may influence cloud
 formation and rainfall patterns (*medium confidence*) (Teuling et al., 2017). European temperate and boreal
 forests sequester up to 12% of Europe's annual carbon emissions, with a quarter of this European forest area

- 4 protected under Natura 2000 (Commission, 2013). This service is increasingly impacted by droughts, which
- 5 induce lagged effects on forest growth and carbon sequestration services across European forests at
- 6 interannual time scales (*medium confidence*) (Schwalm et al., 2017; Gazol et al., 2018; Carnicer et al.,
- 7 2019b; Xu et al., 2019). Studies have predicted that future climate change scenarios in Europe will imply
- positive and negative changes in key ecosystem services (Schröter et al., 2005b; Schröter et al., 2014; Polce
 et al., 2016).
- 10

11 Throughout Europe, important trade-offs occur between ecosystem services, for instance between

provisioning services on the one side and regulating and cultural service categories on the other (Table 13.3)

13 (Maes et al., 2012; Queiroz et al., 2015; Kasimir et al., 2018; Torralba et al., 2018), setting limits to key

adaptation options, regional management and land use decisions (*medium confidence*) (Kovats et al., 2014;

Valade et al., 2017; Mankin et al., 2018; Saarikoski et al., 2018; Torralba et al., 2018; Lee et al., 2019;
 Ceccherini et al., 2020; Krause et al., 2020). Projected climate change impacts on ecosystem services are

Ceccherini et al., 2020; Krause et al., 2020). Projected climate change impacts on ecosystem services are affected by strong and often dominant effects of changes in land use and management (Table 13.3).

European ecosystems characterized by higher diversity are often more efficient in providing ecosystem

services (*medium confidence*) (Ruiz-Benito et al., 2014; van der Plas et al., 2016; EASAC, 2017; Ratcliffe et

- 20 al., 2017).
- 21 22

Table 13.4: Adaptation options for European land ecosystems [PLACEHOLDER FOR FINAL DRAFT: adaptation

- options will be grouped by risk according to Table 13.3; to increase balance between risks and adaptation options covered, the range of adaptation options will be expanded, and the listed options merged into less categories]. See Table
- 25 13.A.2.

Risks	Community	Adaptation option
		Promotion of mixed-species stands
		Forest and habitat restoration practices
		Use of drought and/or fire-resistant provenances
		Assisted species migration
		Enhancing and managing tree recruitment and forest
		resilience using thinning and prescribed burning
		Reducing tree density through thinning
		Randomizing tree spatial patterns in thinning practices
		Increasing the equitability or diversity of tree size
		classes in thinning practices
		Reducing forest understory cover by thorough
		mechanical treatments
		Implementing green infrastructure modelling
		platforms projecting land use changes into the near
		Tuture
		promoting participatory forest management planning
		Improving current networks of protected areas and
		corridors covering altitudinal gradients and
		integrating climatic microrefugia areas
		Rewilding as a vehicle of adapting to the rapid climate
		impacts
		Adaptation options for freshwater and coastal land
		ecosystems include hydrological and land use planning
		at basin scale, complemented with local restoration
		and conservation practices
		Preservation of the natural flow variability of rivers
		and streams
		Ameliorating sea-live rise impacts on land installing
		coastal protection elements, such as breakwaters,
		seawalls, dykes, surge barriers and submerged
		breakwaters
		Using beach and shore nourishment practices, dune
		restoration, and coastal restoration

Applying geotextiles
Managing irrigation canals for conservation and
 adaptation
Peatland rewetting and restoration as a key tool for
climate-change adaptation and mitigation. In Europe,
many peatland areas are under agricultural and forestry
usage, requiring active land use and management
planning. Saving extant peatlands, rewetting peatland
areas and restoring temperate and boreal agricultural
 peatlands have been assessed as key practices.
Management of fuel to reduce fire intensity and the
 extent of large fires
Using prescribed burning for reducing the risk of high
intensity fire and fuel load management
Incentivizing and planning residential development to
 withstand inevitable wildfire
Managing and planning landscape matrix schemes to reduce fire risk
Improved fire suppression capacities and strategies
Using forest types and agricultural fields as fire breaks
Reducing fire risk by promoting biomass extraction for
 energy purposes
Combining forest thinning, slash management and
prescribed burning techniques

3 4

13.3.1.5 Wildfire

Fires affect 0.5 Mha every year in Europe on average (less than 0.5% of a total forested area of 160 Mha),
with 85% of the impacted surface concentrated in Mediterranean Europe (Figure 13.6 a,b) (Khabarov et al.,
2016; Nolde, 2019). In Europe, human activities cause more than 90-95% of forest fires, although forest fires
with a natural origin account for a substantial fraction of burnt area in the case of the Russian Federation
(Wu et al., 2015b; Khabarov et al., 2016; Filipchuk et al., 2018).

9 10

Many factors impact the likelihood and extent of European fires such as topography, land use, soil moisture,
litter and vegetation composition, human behaviour, wind speed, weather and climate (de Rigo et al., 2017b).
Wildfire activity in the Mediterranean area is related to warming, increased wind activity and droughts
(Turco et al., 2017; Lahaye et al., 2018) while fires in boreal forests are linked to summer droughts
(Drobyshev et al., 2015; Drobyshev et al., 2016). Northern, Central and Southern Europe show contrasting
trends (Figure 13.6 a,b), with significantly higher risk and emissions in Southern Europe. Fire weather risk

¹⁷ indices (Di Giuseppe et al., 2020) have been dynamically changing in Europe in the last decades (1980-

18 2019), with significant increases in Southern and Central Europe (Figure 13.6c). In sharp contrast, estimates

of emissions from wildfires from 2003 to present show no significant temporal trends and large interannual

variability (Figure 13.6d). Overall wildfires are a key emerging risk for European forests in the next decades,

especially in the Mediterranean area. In the face of these increasing risks, fire-specific adaptation options
 have been thoroughly assessed (Table 13.4).

23

Figure 13.6: Geographical variability and dynamic changes in fire impacts and risks in Europe over the last decades. a) The environmental conditions required for fires to spread and intensify is evaluated using fire danger estimates which utilises the 'Fire Weather Index' (FWI) based on meteorological variables such as temperature, precipitation, wind speed and relative humidity. b) Estimates of emissions from wildfires as an indication of burned biomass extracted from the Global Fire Assimilation System (GFAS), based on satellite observations of fire radiative power providing a daily global dataset from 2003-present. c) Fire weather index trends calculated with the ECMWF ERA-5 FWI reanalysis dataset (Copernicus, 2019). d) Annual total estimates of total carbon from European fires as indication for changes of burned terrestrial biomass show a high degree of interannual variability but overall indicate non-significant trends in NEU, CEU and MED (Copernicus, 2020a; Copernicus, 2020b). In panels a and b, different letters indicate significantly different mean value of weather index and fire emissions, respectively (p<0.0001).

13.3.2 Solution Space and Adaptation Options

Adaptation options are available both within biophysical processes and as human responses. Natural adaptation processes include phenotypic plasticity, acclimatization, trans-generational and evolutionary adaptation, behavioural changes, and shifts in distribution and phenology. Multiple human-managed adaptation options for land and freshwater ecosystems have been assessed in Europe, evaluating their effectiveness (Table 13.3) (Naumann, 2011; Berkhout et al., 2015; van Teeffelen et al., 2015). Most adaptation practices are under continued reassessment and evaluation (Berkhout et al., 2015; van Teeffelen et al., 2015; Hermoso et al., 2017; Hermoso et al., 2018; Baldocchi and Penuelas, 2019a).

23

1 2

3

4

5

6

7

8

9

10

11 12 13

14

24 The implementation of EU's conservation directives and the Natura 2000 network have effectively

contributed to biodiversity protection in both terrestrial and freshwater ecosystems in the last decades

(*medium confidence*) (Mazaris et al., 2013; Gaüzère et al., 2016; Regos et al., 2016; Sanderson et al., 2016;

Santini et al., 2016; Gallardo et al., 2017; Hermoso et al., 2018). Adaptation to projected impacts of climate

change might require changing protected areas from static, conservation style networks to more dynamic

conservation units (low confidence) (Heino et al., 2009; Barredo et al., 2016; Gaüzère et al., 2016; Kabisch et

al., 2016; Nila et al., 2019; Prober et al., 2019; Heikkinen et al., 2020). Such dynamic approaches would

- explicitly and progressively integrate climate change effects in the improved spatial design of protected
- areas, facilitating in this way the movement of species, and creating new corridors between protected areas.
 Climate change risk projections will also increasingly affect regional land use planning, land development

plans, agro-system management, and green infrastructures (Habel et al., 2019b; Nila et al., 2019; Heikkinen 1 et al., 2020). A shift to more dynamic conservation networks would require changing existing laws and 2 regulations that constrain these approaches in terrestrial and aquatic ecosystems. Moreover, their future 3 development could also be hampered by elevated financial costs, budget limitations, uncertainty and 4 complexity of regional ecological projections and social barriers. In each European region and protected area 5 system, managing the future impacts of climate change on biodiversity will likely require a relatively 6 complex and site-specific mix of conservation and adaptation options (Prober et al., 2019). There are 7 potential co-benefits in planned adaptation, for example investments in green corridors can contribute to 8 increased public access to green space and benefit human health indicators (Sections 13.6 and 13.7), and 9 contribute to the storage of fresh water resources (Section 13.2) (Kabisch et al., 2016). Despite some 10 examples of early planned adaptation across Europe, widespread implementation and monitoring is limited. 11 Many of the adaptation options are difficult to implement because of management costs; competition for 12 land use; limited knowledge on the effectiveness of options, and laws and regulations which do not consider 13 species shifts (Kabisch et al., 2016). Moreover, despite increasing awareness of climate risks, perceptions of 14 climate change as irrelevant or not urgent due to the perceived high adaptive capacity of ecosystems persist 15 (Uggla and Lidskog, 2016; Esteve et al., 2018; Vulturius et al., 2018). 16

17

Harmonised national adaptation policies and governance schemes affecting land ecosystems have been 18 actively promoted since 2013 by the progressive development and implementation of the EU Adaptation 19 Strategy, the EU Biodiversity Strategy, the EU Forest Strategy, and the EU Green Infrastructure Strategy. In 20 addition, since 2018 the EU has included GHG emissions and removals from forestry, land use and land use 21 change (LULUCF) into the 2030 climate and energy framework (Regulation EU 2018/841). Land adaptation 22 policies on terrestrial ecosystems have been financed by multiple sources in the EU, including the European 23 Multiannual Financial Framework (2014–2020), the European Structural and Investment Funds, the Life 24 Programme, Horizon 2020 EU Framework Programme for Research and Innovation, and the EU Common 25 Agricultural Policy (CAP) 2014–2020. In addition, the European Investment Bank (EIB) and the European 26 Commission have partnered to create the Natural Capital Financing Facility (NCFF), a financial instrument 27 that supports projects delivering on biodiversity and climate adaptation through tailored loans and 28 investments. Multiple EU-level service platforms have been promoted to track adaptation and climate change 29 impacts on land ecosystems (Climate-Adapt, Copernicus Land and Fire Monitoring Service). Similarly, 30 under the EU Forest strategy from 2020 the Forest Information System of Europe (FISE) collects 31 harmonised Europe-wide information on the multifunctional role of forests, including climate change 32 adaptation and mitigation, bio-economic uses, and biodiversity. Forest Management Plans (FMPs) are 33 considered key instruments for forest adaptation policies. In the 2013-2018 period, a substantial increase in 34 the knowledge base for adaptation was detected linked to the development of the EU Adaptation Strategy 35 (EEA, 2018a). A Joint Programming Initiative on Agriculture, Food Security and Climate Change has been 36 established between 21 European countries to promote measures for adaptation in farming, forestry and 37 biodiversity sectors. However, widespread implementation of planned adaptation policies is often limited by 38 substantial public budget and personnel limitations, and other social barriers (*high agreement*). For example, 39 referring to the Nature 2000 network, recent assessments indicate that the current financial allocations from 40 the EU budget may cover between 9% and 19% of the estimated total financing needs (Hermoso et al., 41 2018). Overall, widespread implementation of adaptation options in land ecosystems in Europe is currently 42 limited by financial and other socioeconomic barriers (high agreement) (Kovats et al., 2014; Hermoso et al., 43 2017; Lee et al., 2019; Krause et al., 2020). Therefore revised financial, monitoring, planning and 44 maintenance schemes for this network are being discussed at the European scale (Hermoso et al., 2017; Pe'er 45 et al., 2017; Hermoso et al., 2018; Mammides, 2019). 46 47

Ecosystem-based adaptation and mitigation strategies in Europe are tightly linked, constraining and defining 48 the available solution space for EU sustainability pathways (medium confidence) (Cross-Chapter Box 49 NATURAL in Chapter 2, Luyssaert et al., 2018; Lee et al., 2019; Krause et al., 2020). Adaptation limits on 50 land are linked to trade-offs between adaptation practices, carbon capture services, bioenergy uses, and food 51 production (Kovats et al., 2014; Lee et al., 2019; Ceccherini et al., 2020; Krause et al., 2020). Multiple 52 management strategies modifying European land ecosystems have been simulated at the European scale, 53 finding important limiting trade-offs between carbon sink services, bioenergy and food provision (13.5, 54 Valade et al., 2017; Kallio et al., 2018; Yousefpour et al., 2018; Lee et al., 2019; Krause et al., 2020). For 55 example, policies promoting widespread afforestation in Europe would likely require substantial changes in 56 demand-side food consumption patterns and increased crop productivity (low confidence) (Lee et al., 2019). 57

In this context forest management is emerging as a key strategic axis defining sustainability pathways in
 Europe, linking planned adaptation practices and the mitigation objectives (Naudts et al., 2016; EASAC,
 2017; Grassi et al., 2017; Griscom et al., 2017; Luyssaert et al.; Baldocchi and Penuelas, 2019b; EASAC,

4

2019a).

5 Solution space and adaptation options in land ecosystems are also largely determined by mid-term EU 6 renewable energy strategies (medium confidence). European forest policies aim to increase the use of forests 7 as a source of bioenergy and as a substitute for fossil energy, with forest biomass contributing substantially 8 to the EU's renewable energy targets. In line with these planned strategies, power system modelling studies 9 indicate that a 100% renewable energy system in Europe is not feasible without substantial investments in 10 biomass energy (Zappa et al., 2019). While biomass plays a critical role in providing peak and load-11 following capacity in all 100% renewable scenarios, the EU renewable energy targets have been criticized 12 for causing the loss of established forests and carbon sinks in Europe, setting in turn strong limits to the 13 feasible adaptation options and available solution space (Schulze et al., 2012; Kovats et al., 2014; Lee et al., 14 2019; Ceccherini et al., 2020). EU forest policy objectives and projections contrast with available scientific 15 assessments which indicate that adapting and mitigating climate change through afforestation and forest 16 management may be hampered by complex biophysical and land use trade-offs (Schulze et al., 2012; Lee et 17 al., 2019; Ceccherini et al., 2020). Moreover, all these trade-offs between continental-scale carbon sink and 18 bioenergy uses have been dynamically changing over the last years. Econometric indicators on forestry, 19 wood-based bioenergy and international trade indicate a recent expansion of wood markets in Europe, 20 resulting in an increase in the harvested forest area over Europe for the period of 2016–2018 (relative to 21 2011–2015), with large losses occurring in the Nordic and Baltic countries, Eastern Europe and the Iberian 22 Peninsula (Ericsson and Werner, 2016; Ceccherini et al., 2020). 23 24 Due to these emerging complex socioecological trade-offs and the associated uncertainty, there is currently 25 low agreement on the specific forestry practices that may more effectively contribute to climate change 26 adaptation and sustainability at the European scale (Kolström, 2011; Naudts et al., 2016; EASAC, 2017;

27 Grassi et al., 2017; Griscom et al., 2017; Baldocchi and Penuelas, 2019b; EASAC, 2019b). Overall, 28 adaptation and mitigation need to be jointly considered in the coupled effects of forest management practices 29 on water, energy and carbon cycles (Ellison et al., 2017; Seneviratne et al., 2018). Adaptation and mitigation 30 options could also be limited by the intensification of climate-change impacts on land ecosystems (including 31 wind, insect outbreaks and fire impacts), with a calculated reduction of the carbon storage potential in 32 Europe's forest of over 0.5 GtC in 2021–2030 (medium confidence) (Seidl et al., 2017). Similarly, adaptation 33 options and solution space could also be constrained by strong trade-offs between fuel load management to 34 reduce fire risk, carbon sink capacity, and management of blue and green water resources in ecosystems 35 (medium confidence). In freshwater ecosystems, adaptation options can be limited by the disruption of 36 hydrological habitat connectivity by dams and by reduced flows (Knouft and Ficklin, 2017; Markovic et al., 37 2017; Pandit et al., 2017). 38

39 40

41 42

13.4 Ocean and Coastal Ecosystems and their Services

43 13.4.1 Observed Impacts and Projected Risks

45 *13.4.1.1 Observed impacts*

46

44

Warming continues to be the key climate hazard (Section 13.1) for European marine and coastal ecosystems, 47 with strong and far-reaching impacts (Table 13.5) in the waters of the NE Atlantic and its European tributary 48 seas, as well as the Mediterranean Sea (Hoegh-Guldberg et al., 2018) and the Barents Sea (Frolov et al., 49 2014). Among these impacts, poleward distribution shifts of species and communities are particularly 50 evident (high confidence; Chapter 3). For some biotas, such as kelp species at the Atlantic coasts of Spain 51 and Portugal, range contractions and even local extinctions have been observed (medium confidence) (Smale, 52 2020). Such redistribution trends can be accompanied by immigration, spread and establishment of non-53 native species (high confidence), e.g., the Pacific oyster Crassostrea gigas off the northern British Isles 54 (Cottier-Cook et al., 2017) and lionfish Pterois miles in the Mediterranean Sea (Castellanos-Galindo et al., 55 2020). Besides warming, further factors, such as human activities and ocean current regimes, determine the 56 magnitudes and rates of range shifts (Molinos et al., 2016) (high confidence). They depend on habitat type, 57

temperature gradient, thermal affinity (high confidence) and mobility of species (high confidence) and thus 1 vary across regions, taxa, and ecological groups (Berge et al., 2005; Brodie et al., 2014; Birchenough et al., 2 2015; Montero Serra et al., 2015; Chivers et al., 2017; Burrows et al., 2019; Krovnin et al., 2019; 3 Mieszkowska et al., 2019; Baudron et al., 2020) (Chapter 3). The resulting redistribution of biodiversity 4 (Molinos et al., 2016) has altered community compositions ('subtropicalisation' of temperate European 5 waters and 'tropicalisation' of the Mediterranean Sea; Chapter 3; Cross-Chapter Paper 4), ecosystem 6 functioning (Chivers et al., 2017; Baird et al., 2019) and biogeochemical cycling (Coma et al., 2009; 7 Garrabou et al., 2009; Huete-Stauffer et al., 2011; Munari, 2011; Kersting et al., 2013; Rivetti et al., 2014; 8 Garrabou et al., 2019). The pressures of extreme events like marine heatwaves have already had severe 9 ecological impacts in the Mediterranean region (high confidence) (Cross-Chapter Paper 4), particularly 10 threatening sessile benthic biotas and coastal habitats (Coma et al., 2009; Garrabou et al., 2009; Huete-11 Stauffer et al., 2011; Munari, 2011; Kersting et al., 2013; Rivetti et al., 2014; Garrabou et al., 2019). 12 13 Multiple further climatic and non-climatic factors, generally in interaction with the key climatic driver 14 warming or with each other (Chapter 3), have had cumulative or cascading impacts on marine and coastal 15 ecosystems, such as significant biodiversity declines in virtually all European seas (IPBES, 2018) (high 16 confidence). Ocean freshening and warming in temperate European seas (Section 13.1) together caused 17 increased water-column stratification (Huthnance et al., 2016) (high confidence), which in turn decreased 18 marine primary production (Capuzzo et al., 2018) (medium confidence), with cascading negative effects on 19 secondary productivity across several trophic levels (Free et al., 2019) (high confidence). In contrast, sea-ice 20 decline as a result of warming caused primary production to increase by 40-60% in Europe's northernmost 21 regions (Arrigo and van Dijken, 2015; Borsheim, 2017; Lewis et al., 2020) (high confidence). Ocean 22 acidification is continuing in NE Atlantic waters off Europe (IPCC, 2019) (Chapter 3), but its biological and 23 ecological impacts vary in direction and magnitude due to interactions with other climate-related (e.g., 24 warming, deoxygenation) and human-driven (overexploitation of living resources, habitat destruction, and 25 pollution) pressures (Gattuso et al., 2015), interspecific relationships (Bulleri et al., 2018) and food-web 26 dynamics (Sswat et al., 2018b) (medium confidence). For instance, acidification impacts can be amplified by 27 hypoxia in coastal habitats (Melzner et al., 2013) but also substantially mitigated by microclimatic 28 heterogeneity and pH buffering (Suggitt et al., 2018), providing refuge from acidification stress (Wahl et al., 29 2018) (medium confidence). Magnitudes and rates of ocean deoxygenation are generally small in most 30 European waters (Schmidtko et al., 2017), and hence its ecological impacts alone as well. Semi-enclosed 31 seas, such as the Baltic and Black Seas, are exceptions, since there the cumulative effects of deoxygenation 32 and other climatic and anthropogenic pressures, such as eutrophication, coastline modifications, pollution, 33 and overfishing, are strongest (high confidence) and pose serious risks to ecosystem health and service 34 provision (Jacob et al., 2014). In both the Baltic and Black Seas, warming has amplified the main effects of 35 eutrophication and regional oceanography in altering ecosystem functioning (high confidence), reducing 36 potential fish yield and favouring noxious algal blooms (Anonymous, 2014; Carstensen et al., 2014; 37 Daskalov et al., 2017; Reusch et al., 2018; Stanev et al., 2018) (Chapter 3). Conversely, the impacts of 38 warming and deoxygenation are intensified by eutrophication, increasing the likelihood of harmful algal 39 blooms (HAB) (Berdalet et al., 2017; Riebesell et al., 2018) and the emergence and increase of risks of 40 Vibrio pathogens and vibriosis (Baker-Austin et al., 2017; Semenza et al., 2017) (Section 13.7). 41 42

43

Table 13.5: Major impacts (observed) and risks (projected for two warming levels: +1.5 °C and 3 °C) for marine and coastal ecosystems in Europe. Direction of change of impact/risk level (increasing, decreasing, both, no evidence, not applicable) and confidence of detection (low, medium, low) are indicated for Europe and by its marine subregions (EUSS – Southern seas, with the Mediterranean and Black Sea; EUTS – Temperate seas, incl. Greater North Sea, Celtic Seas, Bay of Biscay, Iberian Coast, and Baltic Sea; EUAW – Arctic waters, incl. Barents, White and Nordic Seas), if available. [PLACEHOLDER FOR FINAL DRAFT: to be updated].

LEGEND:	Direction of change	Confidence of detection			
	Increasing	creasing •			
	Decreasing	••	Medium		
Both>		•••	High		
	No Evidence				
	Not assessed				

IMPACT / RISK	Main Climatic Driver (s) / Hazard(s)	Affected Systems		Direction of Change by Regions		Regions
				EUSS	EUTS	EUAW
			Observed	•••	•••	••
A. Reduced biodiversity and habitat availability	Warming, heatwaves	Species, communities	Projected: +1.5 °C	•••	•••	•••
			Projected: +3.0 °C	•••	•••	•••
			Observed	••	••	••
B. Local extinctions	Warming, deoxygenation	Species	Projected: +1.5 °C	••	••	
			Projected: +3.0 °C			
			Observed	•••	••	•••
C. Range shifts	Warming	Species, communities	Projected: +1.5 °C	•••	•••	•••
			Projected: +3.0 °C	•••	•••	•••
	Warming	Communities	Observed	•••	•••	•••
D. Invasions of non-native species			Projected: +1.5 °C			
			Projected: +3.0 °C			
	Warming, acidification	Communities	Observed	••	•••	•••
E. Shifts in taxonomic and functional composition			Projected: +1.5 °C			
			Projected: +3.0 °C	•••	•••	•••
	Warming, acidification	Species	Observed			
F. Changes in phenology and reproductive success			Projected: +1.5 °C			
			Projected: +3.0 °C			
		Communities, ecosystems	Observed	••	•••	•••
G. Changes in foodweb dynamics	Warming, acidification		Projected: +1.5 °C	••	•••	•••
-			Projected: +3.0 °C	••	•••	•••
			Observed		••	
H. Changes in productivity	Warming, stratification, sea-ice decline	Ecosystems	Projected: +1.5 °C		•••	••
			Projected: +3.0 °C		•••	••
L Emergence of harmful			Observed		••	
algal blooms and	Warming, acidification, deoxygenation	Species, communities, ecosystems	Projected: +1.5 °C			
patnogens			Projected: +3.0 °C			
L Changes in regulating			Observed			
ecosystem services	Warming, acidification	Ecosystems	Projected: +1.5 °C			
(carbon capture)			Projected: +3.0 °C			

13.4.1.2 Projected risks

4 In response to the projected accelerating warming (IPCC, 2019) (Section 13.1), risks to marine and coastal 5 European ecosystems are very likely to intensify (Table 13.5). For instance, pronounced changes in 6 community composition and biodiversity patterns are projected by 2100 for the North Sea, eastern 7 Mediterranean Sea and NE Atlantic under both intermediate and strong warming scenarios in both a +3 °C 8 and +4 °C world (Molinos et al., 2016). Such warming-driven shifts will pose, in combination with high 9 anthropogenic pressures (e.g., fishing), severe challenges for future conservation efforts (Corrales et al., 10 2018; Cramer et al., 2018; Kim et al., 2019). Already by 2040, in a +1.5 °C world under strong warming, 11 particularly in winter, Mediterranean coastal fish communities are projected to lose species, which will 12 13 exacerbate regime shifts linked to overexploitation in heavily fished areas (Clark et al., 2020) (medium confidence). As species- and life cycle-specific thermal bottlenecks define the vulnerabilities of species to 14 warming risks, the percentages of species potentially affected by water temperatures exceeding their 15 tolerance limit for reproduction differ widely among warming scenarios, e.g., for fish from ~10% in a +1.5 16 °C world to ~60% in a +4 °C world by 2100 (Dahlke et al., 2020). In a warmer-than +4 °C world projected 17 under strong warming by 2150, ocean temperatures will exceed the existing buffer against warming based on 18

the thermal sensitivity of constituent species (community thermal safety margins) of many biotas living in current Marine Protected Areas (MPA) in temperate and Arctic European waters (Bruno et al., 2018). While marine heatwaves are projected to increase in frequency and magnitude (Frölicher et al., 2018), particularly in the Mediterranean Sea in a +4 °C world by 2100 (Darmaraki et al., 2019c) (*high confidence*), their risks levels for marine organisms (Galli et al., 2017), coastal biodiversity, and ecosystem functions, goods and services (Smale et al., 2019) differ among biotas (Pansch et al., 2018) and across European seas (Smale et al., 2015).

8

Trends in marine primary production are projected to vary among European waters. In most regions, they 9 will further decrease, by 2100 depending on the warming scenario from 0.3% in a +1.5 °C world to 2.7% in 10 a +4 °C world, mainly driven by further stratification-driven reductions in nutrient availability (Doney et al., 11 2012; Laufkoetter et al., 2015; Wakelin et al., 2015; Salihoglu et al., 2017; Holt et al., 2018; Bryndum-12 Buchholz et al., 2019; Carozza et al., 2019; Kwiatkowski et al., 2019) (high confidence). In the Barents Sea, 13 however, models project stable production rates under all warming scenarios in response to further sea-ice 14 decline and resulting lower light and temperature limitations (Slagstad et al., 2011), and in the eastern 15 Mediterranean Sea marine production is projected to increase until 2100 in response to reduced stratification 16 due to increasing evaporation rates (Macias et al., 2015; Moullec et al., 2019). Decreasing net primary 17 production in most European waters will have negative implications for the productivity and biomass of 18 higher trophic levels, including fish (Section 13.5.1), for instance in the North Sea and Celtic Seas (Holt et 19 al., 2016; Holt et al., 2018) and the Mediterranean Sea (Stergiou et al., 2016). Marine animal biomass is 20 generally projected to *likely* decline under all warming scenarios, with particularly pronounced decreases of 21 up to 25% in a +2 °C world and 50% in a +4 °C world by 2100 in European waters of the NE Atlantic (Lotze 22 et al., 2019). 23 24

With accelerating ocean acidification in European waters (Section 13.1), the ecological risks of this climate 25 hazard are projected to also rise (medium confidence). Calcifying organisms, e.g., coralline algae, can be 26 affected by reduced skeletal elasticity under a strong warming scenario in a +3 °C world by 2050, with 27 negative consequences for their ability for habitat formation (Ragazzola et al., 2016) (medium confidence). 28 Risks will be higher for the more fragile coralline algae species in southern European shelf regions than for 29 the more robust species in the north (Melbourne et al., 2018). Regionally, for example in the Barents Sea and 30 the Skagerrak, differences in vulnerability to projected acidification will result in shifts from calcifying 31 macroalgae (Ragazzola et al., 2013) (medium confidence) to non-calcifying macroalgae (Gordillo et al., 32 2016) (high confidence). Some important habitat formers, such as the deep-water coral Lophelia pertusa 33 (Wall et al., 2015), and habitat engineers, such as limpets in the Mediterranean (Langer et al., 2014), can 34 change energetic allocation to continue calcification at acidification levels of -0.3 pH (projected for a +4 °C 35 world by 2100) and even -1.5 pH, which is well beyond a level projected after 2100 under a worst-case 36 warming scenario. 37

Responses of bivalves to ocean acidification in the Baltic Sea strongly depend on food availability (Thomsen 39 et al., 2013), suggesting that acidification risks will be amplified by increased stratification and reduced 40 primary production (medium confidence). Experimental evidence further suggests that elevated CO₂ levels 41 predicted under climate scenarios leading to a +4 °C world by 2100 can have contrasting effects in 42 European waters on the C/N ratio of organic-matter export and thus the efficiency of the biological pump, 43 with up to 20% increase or decrease depending on the variety of plankton taxa and corresponding shifts in 44 food-web structure (Taucher et al., 2020), as well as on ecologically and economically important fish 45 species: Atlantic herring (Clupea harengus) can benefit from indirect food-web effects (Sswat et al., 2018a), 46 whereas Atlantic cod (Gadus morhua) face overall negative impacts on larval growth and survival (Stiasny 47 et al., 2018; Stiasny et al., 2019) (Section 13.5). Increasing climate hazards are projected to amplify the 48 effect of eutrophication on deoxygenation and lead to a further expansion of anoxic dead zones in the Black 49 Sea (Altieri and Gedan, 2015) and the Baltic Sea (Jokinen et al., 2018; Reusch et al., 2018), e.g., in the Baltic 50 Sea by 5 % in a +4 °C world at the end of the 21st century (Saraiva et al., 2019). 51

52

38

The combination of climate hazards and non-climate pressures will have pronounced impacts on Europe's coastal vegetated 'blue-carbon' ecosystems (subtidal seagrass meadows and intertidal salt marshes), particularly in microtidal areas (*high confidence*), such as the Mediterranean and Baltic coasts, where >75% of coastal wetlands may be lost in a +3 °C world by 2100 (Spencer et al., 2016; Schuerch et al., 2018; Spivak et al., 2019). The Wadden Sea (North Sea), the world's largest system of intertidal flats, will reduce in Chapter 13

surface area and height, as the sediment transport capacity limits the possibility of growth with rapidly rising sea levels (Wang et al., 2018; Jiang et al., 2020). For the Dutch Wadden Sea, the critical rate of 6 to 10 mm yr⁻¹, at which intertidal flats will start to 'drown', may be reached already by 2030 in a +1.5 °C world, with subsidence due to human activities, such as water extraction, even earlier (van der Spek, 2018). The loss of ecosystem services driven by sea-level rise and the associated coastal erosion in Europe is estimated at €2.2 to €2.9 billion per year by 2050 under B1 and A1FI SRES scenarios, respectively, resulting in a decrease in

6 7 8

9

13.4.2 Solution Space and Adaptation Options

10 The capacity of natural systems for autonomous adaptation to the current rapid climate change is limited 11 (Thomsen et al., 2017; Miller et al., 2018; Bindoff et al., 2019) (medium confidence). Among human 12 adaptation actions, MPAs have been identified as one of the most practical and cost-effective conservation 13 strategies and adaptation options to lessen the risks to marine biodiversity (Selig et al., 2014; Hopkins et al., 14 2016; Roberts et al., 2017) (Chapter 3). Climate-change adaptation has not been the primary reason for the 15 establishment of MPAs but rather protection from non-climate stressors. The spatial protection though 16 enhances the resilience of marine and coastal ecosystems by reducing local stresses, such as commercial 17 exploitation (Roberts et al., 2017), which can also lessen the impacts of climate change (Narayan et al., 18 2016). The extent of MPAs has been increasing in Europe, albeit with strong regional variations: In 2012, 19 only the Baltic Sea (13.5% MPA coverage) had reached the 10% Aichi target, followed by the 20 Mediterranean Sea with 9.5%. In contrast, the Black Sea had only designated 4.5%, and in the EU part of the 21 NE Atlantic, only 4.2% were designated (Eurostat, 2018; Sala et al., 2018). Figures for MPA extent across 22 entire Europe are not published. Management plans that include standardised monitoring and reporting, as 23 well as refined threat assessments in a spatial and temporal context, can improve conservation capacity and 24 outcomes (Mazaris et al., 2013). MPAs have greatest climate-change adaptation capacity and can 25 significantly reduce the sensitivity or enhance the capacity of marine and coastal ecosystems to recover from 26 extreme events (Roberts et al., 2017) when they are highly protected (marine reserves, no-take zones, 27 'zapovedniks' in Russian). The capacity of the current MPA network to reduce climate change impacts is 28 arguably limited and at best uncertain (Jones et al., 2016; Claudet et al., 2020). 29

coastal ecosystem service values of 7 to 10% compared to 2006 (Roebeling et al., 2013).

30

In the European Union (EU), 'green' adaptations, characterized by 'ecosystem-based adaptations' or 'nature-31 based solutions', are part of adaptive management strategies (Anonymous, 2011). These measures, involving 32 interventions in natural or semi-natural ecosystems, can be of a similar or even higher effectiveness than 33 alternative approaches for reducing climate impacts. They can also often have more synergies than trade-offs 34 with broader ecological, social, and climate-change mitigation outcomes (Chausson et al., 2020). For 35 instance, in coastal ecosystems they can facilitate coastal flood protection (Section 13.2.2; Chapter 3; Cross-36 Chapter Box SLR in Chapter 3) reducing coastal erosion and storm surges, thus generating benefits beyond 37 habitat creation, e.g., from avoided expenditures for flood defence infrastructure and avoided loss of the built 38 assets (Gedan et al., 2010). Accordingly, in Europe many governance and implementation measures to cope 39 with climate change impacts and to advance sustainable development pathways (Section 13.11.4) are 40 embedded in international and EU-wide strategies, such as the Baltic Marine Environment Protection 41 Commission (HELCOM) Parties commitment to protect the Baltic Sea (Backer et al., 2010), the Convention 42 for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) (OSPAR, 2009), and the 43 Marine Strategy Framework Directive (MFSD) and European Water Framework Directive (EWFD). In 44 Russian Arctic waters, mainly the Barents Sea, conservation priority areas (CPA) have been identified, 45 according to a number of criteria, as ecologically and biologically significant areas (EBSA) changes 46 (Solovyev et al., 2017). Assessing the effectiveness of these mostly international transboundary policy 47 frameworks in mobilizing the solution space to accelerate climate-change adaptation (Haasnoot et al., 2020a) 48 49 are ongoing. Examples for implementing adaptation in marine environments are presented mainly in grey literature, and plans are generally at an early stage (Miller et al., 2018). Integrated Coastal Zone Management 50 (ICM) and Marine Spatial Planning (MSP) are frameworks for addressing climate-change adaptation needs, 51 as well as operationalizing and enforcing marine conservation (Jacob et al., 2014; Ballinger, 2015; Wescott, 52 2015: Oppenheimer et al., 2019). However, ICM and MSP do commonly not explicitly take climate-change 53 adaptation into consideration yet but have to adapt to climate-change impacts (Elliott et al., 2015) often 54 across national boundaries, requiring transnational agreements (Gormley et al., 2015). Transboundary ICM 55 and/or MSP become even more important with the expected acceleration of range extensions and ecological 56 57 regime shifts due to climate change (IPCC, 2019).

Climate change impacts and risks are usually not considered as prime aspects in legislation to protect marine 2 biodiversity, e.g., in the site-designation process or management of marine protected areas (e.g., the Habitats 3 Directive (European Council Directive 92/43/EC) and EC Birds Directive (Directive 2009/147/EC of the 4 European Parliament and of the Council), with few exceptions (Frost et al., 2016). On the other hand, a 5 creative interpretation of the law may enable climate change adaptation (Verschuuren, 2015). The European 6 Commission has issued guidance for recognition and incorporation of climate considerations in relation to 7 the management of Natura 2000 sites and advocated for an adaptive management approach 8 (EuropeanCommission, 2013). More recently, MSFD (Directive 2008/56/EC of the European Parliament and 9 of the Council) defines the expectations of EU member states to develop strategies to ensure a healthy 10 marine environment and increase ecosystem resilience to climate change in all European marine waters 11 (MSFD Preamble Paragraph 34). However, there is evidence that better international cooperation is required 12 to make the MSFD effective (Cavallo et al., 2019). Also, there is an observation challenge, which is not yet 13 met, to effectively monitor the indicators for Good Environmental Status (Machado et al., 2019). At the same 14 time, the European Commission promotes a 'Blue Growth' strategy with the aim to increase offshore 15 activities, which has the potential to increase the pressures on the marine environment. 16 17 Nature-based solutions can support alleviation of or adaptation to climate-change impacts but are themselves 18

impacted by climate change. For instance, while rising sea levels threaten intertidal and beach ecosystems, 19 they provide additional vertical accommodation space for coastal wetlands, enhancing their ability to capture 20 and store carbon (Rogers et al., 2019) (WGIII AR6 Chapter 4). Many coastal regions of the North Sea, 21 especially in the south, are particularly susceptible to rising sea levels because of the strong tidal regime and 22 the effects of storm surges (Figure 13.3). Hard measures to adapt human infrastructure against sea-level rise 23 (Section 13.2) will lead to loss of coastal habitats, with negative impacts on marine biodiversity (Airoldi and 24

Beck, 2007; Cooper et al., 2016) (Cross-Chapter Box SLR in Chapter 3). 25

26 Efforts to adapt to the impacts and risks of climate change and to mitigate climate change itself interact. The 27 use of European coastal blue-carbon ecosystems (seagrass meadows, kelp forests, tidal marshes) as effective 28 natural long-term carbon sinks in climate mitigation policies has the potential to interfere with other 29 ecosystem services, which these or other adjacent coastal ecosystem provide in a natural condition, as well as 30 biodiversity conservation issues (Howard et al., 2017; Chausson et al., 2020). Similarly, large-scale offshore 31 wind-park infrastructure is currently developed in European seas as a major component of climate-change 32 mitigation efforts (WGIII AR6 Chapter 6). By 2018, 4,543 turbines in 105 wind farms in 11 countries, 33 primarily the UK and Germany, have been installed, mostly in the North Sea (Anonymous, 2019). Their 34 profound and far-reaching ecological ramifications for the natural marine systems through the introduction 35 of novel hard-substrate intertidal habitats in soft-bottom systems include hydrodynamic changes, stepping-36 stones for none native species, noise and vibration, and changes to the food web (Lindeboom et al., 2011; De 37 Mesel et al., 2015; Gill et al., 2018; Dannheim et al., 2019) (high confidence) potentially resulting in 38 mitigation-adaptation trade-offs (Chapter 3). 39

13.4.3 Knowledge Gaps

41 42

40

Despite all efforts to assess the observed impacts and projected risks of climate-change driven hazards on 43 European marine and coastal ecosystems and to develop and implement adequate, feasible and effective 44 adaptations, there are still uncertainties and shortcomings in our understanding of these systems, which 45 demand further observational, experimental and modelling studies. In particular, there is still a need for 46 better addressing combined and cascading impacts on European marine and coastal socio-ecological 47 systems, to develop a level of understanding of the multiple processes and their interactions, which is 48 49 necessary to increase the confidence of impact assessments and risk projections.

50

Although MPA networks are generally recognized as an important management approach in ICM and MSP 51 frameworks (Hopkins et al., 2016), climate-change impacts, such as shifts of species' ranges, are seldom 52 incorporated into their planning, establishment and management (Solovyev et al., 2017; Johnson et al., 53

2018). Therefore, their effectiveness is limited (Bruno et al., 2018; Rilov et al., 2019). Reorganizing the 54

- spatial distribution of MPA networks can minimize exposure to one stressor (e.g., warming), but may result 55
- in an increase of the exposure to another pressure (e.g., deoxygenation) (Bruno et al., 2018). In addition, few 56 57

SECOND ORDER DRAFT

Chapter 13

both these shortcomings reduce the potential effectiveness of MPAs to reach their conservation goals (Bruno 1 et al., 2018). Also, the vast majority of MPAs in Europe are multi-use rather than highly protected and 2 existing no-take areas tend to be very small ($\leq 50 \text{ km}^2$) and nested within multi-use MPAs. Finally, to 3 achieve the protection and adaptation goals, interconnected MPAs (McLeod et al., 2009) (Chapter 3) 4 facilitating connectivity among species, populations, and ecosystems to provide new recruits and enable gene 5 flow (Dubois et al., 2016b; Sahyoun et al., 2016) are best suited. Yet, European MPAs were designed and 6 designated predominately on an individual site basis, with little or no explicit consideration of connectivity 7 between sites (Yates et al., 2013; Jones et al., 2016) (Section 13.9). 8

13.5 Food, Fibre, and Other Ecosystem Products

13.5.1 Observed Impacts and Projected Risks

13.5.1.1 Crop production

9 10

11 12

13 14

15

Agriculture is the primary user of land and water in Europe. In 2013, Europe provided 28% of cereals, 59%
of sugar beet and 60% of wine produced globally, as well as being part of a globalized food system with a
third of commodities produced and consumed in Europe traded internationally (FAOSTAT, 2019).

20 Observed climate change has led to a northward movement of agro-climatic zones in Europe and earlier 21 onset of the growing season (Ceglar et al., 2019) (high confidence). Impacts of drought are pervasive across 22 Europe affecting annual crops, permanent crops, water for irrigation and livestock farming resulting in 23 increased costs and economic losses (Stahl et al., 2016). Heat stress has increased in southern Europe in 24 spring, in summer throughout central and southern Europe, and recently expanded into the southern boreal 25 zone (Fontana et al., 2015; Ceglar et al., 2019). Drought, excessive rain, and the compound hazards of 26 drought and heat (13.2, 13.3, 13.10) cause losses in wheat production in the EU (van der Velde et al., 2018) 27 and north-west Russia (Ivanov et al., 2016) (high confidence). Warming and precipitation changes explain 28 continent-wide reductions in yield of wheat and barley and increases in maize and sugar beet (high 29 confidence) (Fontana et al., 2015; Moore and Lobell, 2015; Ray et al., 2015; Ceglar et al., 2017). Regionally, 30 warming causes increases in yields of field grown fruiting vegetables, decreases in root vegetables, tomatoes 31 and cucumbers (Potopová et al., 2017) and earlier flowering of olive trees (Garcia-Mozo et al., 2015) (high 32 confidence). Delayed harvest due to wet conditions and earlier harvests in central Europe in response to 33 warming both impact wine quality (Cook and Wolkovich, 2016; van Leeuwen and Darriet, 2016; Di Lena et 34 al., 2019). Meteorological extremes due to compound effects of cold winters, excessive autumn and spring 35 precipitation, and summer drought caused production losses in 2012, 2016, 2018 (Ben-Ari et al., 2018; van 36 der Velde et al., 2018; Zscheischler et al., 2018; Toreti et al., 2019b)that were exceptional compared to 37 recent decades (Webber et al., 2020), resulting in higher grain prices (Zakharov and Sharipova, 2017). 38 39

Evidence for growing regional differences of projected climate impacts is increasing since AR5 (high 40 confidence). While there is high agreement of the direction of change, the absolute yield losses are uncertain 41 due to differences in model parameterization and whether adaptation options are represented (high 42 confidence) (Donatelli et al., 2015; Moore and Lobell, 2015; Knox et al., 2016; Webber et al., 2018). In 43 response to 2°C warming, agro-climatic zones in Europe are expected to move northward 25-135 km/decade, 44 fastest in eastern Europe (Ceglar et al., 2019). At 1.5°C warming the likelihood of compound events which 45 led to recent large wheat losses are projected to become 12% more frequent, challenging farming systems 46 and yield forecasting systems (Ben-Ari et al., 2018). Growing regions are projected to shift northward or 47 expand for melons (Fink et al., 2009) (medium confidence, limited evidence), tomatoes and grapevines 48 reaching NEU and EEU in 2050 under 1.5°C. In contrast, warming would increase yields of onions, Chinese 49 cabbage and French beans (Bisbis et al., 2018 Potential impacts of climate change on vegetable production 50 and product quality – A review). 51

52

Agricultural yield reduction will be higher in the south at 4°C warming, with lower losses or gains in the
 north (Webber et al., 2016; Szewczyk et al., 2018) (*high confidence*). Largest impacts of warming are
 projected for maize in MED (Deryng et al., 2014; Knox et al., 2016) (*high confidence*) with losses across
 Europe of 10-25% at 1.5-2°C and 50-100% at 4°C (Deryng et al., 2014; Webber et al., 2018). Use of longer

SECOND ORDER DRAFT

season varieties can compensate for heat stress on maize in WCE and lead to yield increases for Northern Europe, but not the MED for 4°C warming (Siebert et al., 2017; Ceglar et al., 2019) (*medium confidence*).

Irrigation can reduce the projected heat stress for wheat and maize (Siebert et al., 2017). Negative impacts of
warming and drought are counterbalanced by CO₂ fertilization for crops such as winter wheat (*medium confidence, medium agreement*), resulting in some regional yield increases with climate change (Zhao et al.,
2017; Webber et al., 2018). The advantages of a longer growing season in northern and eastern Europe are
outbalanced by the increased risk of early spring and summer heat waves (Ceglar et al., 2019).

Across western Europe, 1°C warming and higher precipitation is projected to increase farmland value on average by circa 8%, with increases in northern and decreases in southern countries (Van Passel et al., 2017) (*limited evidence*). Increased heat and drought stress and reduced irrigation water availability will cause abandonment of farmland in the Mediterranean region because of decreased profitability of the agricultural sector (Holman et al., 2017).

15

20

22

9

1

2 3

Warming causes range expansion and alters host pathogen association of pests, diseases and weeds affecting
 health for European crops (Caffarra et al., 2012; Pushnya and Shirinyan, 2015; Latchininsky, 2017) (*high confidence*) with high risk for contamination of cereals (Moretti et al., 2019). Predicted reduction in rainfall
 (13.1) may lead to carryover of herbicides (Karkanis et al., 2018).

21 13.5.1.2 Livestock production

Climate change impacts animals such as dairy cows and goats directly exposed to heat and humidity in open barns and outdoors (Gauly et al., 2013; Bernabucci et al., 2014; Silanikove and Koluman, 2015), and on cold adapted husbandry (see Box 13.2, Section 13.8). Heat impacts animal health (Sanker et al., 2013; Lambertz et al., 2014), nutrition, behaviour and welfare (Heinicke et al., 2019), performance and product quality (Gauly and Ammer, 2020). Climate change also impacts grassland production, fodder composition and quality (Dumont et al., 2015), as well as altering the prevalence, distribution and load of pathogens and their vectors (Morgan et al., 2013; Charlier et al., 2016) (*high confidence*).

30

Warming increases the pasture growing season and farming period in northern Europe and at higher altitudes 31 (high confidence) (Fuhrer et al., 2014), while longer drought periods and thunderstorms can influence 32 abandonment of remote Alpine pastures, reducing cultural and landscape ecosystem services and losing 33 traditional farming practices (Herzog and Seidl, 2018). At high elevations in the northern Alps 2-4°C 34 warming will increase grassland biomass production for forage-fed animals due to sufficient water 35 availability and prolonged growing seasons, while in the southern Alps water scarcity will negatively affect 36 yields (Jäger et al., 2020). Forage yield is projected to increase in NEU while drought and heat will reduce 37 forage production in MED (Gauly et al., 2013), causing regional reductions of cow milk production in 38 Germany and northern Italy (Silanikove and Koluman, 2015). Projected impacts on intensive production 39 systems, e.g., poultry and pigs, are low due to temperature control in large parts of Europe, but greater in 40 Southern Europe where open systems prevail (Chapter 5). 41

43 13.5.1.3 Aquatic food production

Seafood production in Europe provides jobs for more than 250,000 people, predominantly in the MED (Carvalho et al., 2017c). Marine fisheries contribute 80% to European seafood production, while marine aquaculture provides 18% and freshwater production 3% (Blanchet et al., 2019). The Russian Federation provides 1/4 of seafood production in Europe (FAOSTAT, 2019), including 850,000-1,150,000 tons/year from the Northern Atlantic (Shibanov and Fomin, 2016).

50

42

51 Climate change has impacted European marine food production (*high confidence*). However, fishing is still 52 the major impact on commercially important fish stocks in Europe (Mullon et al., 2016), with 69% of the

total of 397 stocks overfished and 51% outside safe biological limits (Froese et al., 2018). The North Sea, the

- 54 Iberian coastal Sea and Celtic Sea-Biscay Shelf are globally among the areas most negatively affected with
- losses of Maximum Sustainable Yields (MSY) of 15-35% (Free et al., 2019). Warming is causing a
- northward movement and range expansion of Northeast Atlantic fish stocks (Baudron et al., 2020) (13.4).
- 57 Range expansions provide new target species for fishing such as cuttlefish (van der Kooij et al., 2016;

Oesterwind et al., 2020) and tuna (Bennema, 2018; Faillettaz et al., 2019) in the North Sea region (*medium confidence*). Warm-water species are increasingly dominating fisheries landings in southern Europe (Fortibuoni et al., 2015; Teixeira et al., 2016; Vasilakopoulos et al., 2017).

3 4

1

2

5 European marine fisheries and aquacultures are globally among the least vulnerable to the impacts of climate

change (*high confidence*), due to low levels of exposure, low sensitivity and high adaptive capacity (Barange
 et al., 2014; Ding et al., 2017) with salmon farming in Norway being an exception (Handisyde et al., 2017).

8 Within Europe, freshwater production is less vulnerable than marine sectors and marine production

vulnerability increases with latitude (Blanchet et al., 2019). Climate risks for fishing communities and the

vulnerability of aquaculture sectors is highest in the MED, as well as UK (marine fisheries), the Netherlands

and Portugal (aquaculture) (Handisyde et al., 2017; Payne et al., 2020; Peck et al., 2020); Figure 13.7).

- 12
- 13

14

Figure 13.7: A) Climate risk for fisheries in 105 coastal regions across 26 countries (Payne et al., 2020); B)
 Vulnerability of aquaculture to climate in European countries (Peck et al., 2020); C & D) Differences (%) between
 projected changes for 1.5°C; and 4°C global warming (Peck et al., 2020), with C) showing changes in population size
 (i.e. abundance) of major resource species by regional sea, and D) changes in productivity of major aquaculture species
 by country.

20 21

Future climate change will continue to have negative effects on the abundance of most commercially 22 exploited fish stocks in European waters (medium confidence). Recent projections, assuming MSY-23 management, suggest increased losses in abundance of 35% (up to 90% for individual stocks) given between 24 1.5°C and 4.0°C warming (Payne et al., 2020; Peck et al., 2020) (Figure 13.5.7). Higher trophic level 25 biomass is projected to increase in the Mediterranean Sea under 4°C warming mainly due to increases of 26 small pelagic and thermophilic often exotic species (Moullec et al., 2019). Future risks and opportunities are 27 projected for aquaculture productivity of finfish and shellfish species of economic importance in Europe 28 (Peck et al., 2020) (Figure 13.7). 29

Chapter 13

Ocean acidification (Section 13.4, Chapter 4) will develop into a major risk for marine food production in Europe (*high confidence*). Acidification will affect growth and recruitment of important fish stocks such herring and cod compounding the effect of warming and causing stock declines (Sswat et al., 2018b; Stiasny et al., 2018; Voss et al., 2019), and have negative effects on shellfish production and aquaculture in Europe (*medium confidence*) (Fernandes et al., 2017; Narita and Rehdanz, 2017; Mangi et al., 2018).

13.5.1.4 Forestry and forest products

The most important wood producers in Europe are the Russian Federation and Sweden, with harvests 9 increasing in the EU by approximately 6% after the 2008-2012 recession (high confidence) (FAOSTAT, 10 2020). Climate change affects forest productivity because warming and precipitation interact with other 11 disturbances, such as storms, pests and fire (see 13.3) (high confidence) altering the structure and function of 12 European forests (high confidence) (Moreno et al., 2018) (13.3). Productivity is currently increasing in 13 response to CO_2 (*medium confidence*) (13.3). While warming and extended growing seasons have positive 14 impacts on forest growth in cold areas (Pretzsch et al., 2014), drought stress impacts old trees and trees 15 growing under high levels of competition (Primicia et al., 2015), especially at high stand volume (Marqués et 16 al., 2018). Over the last two decades, European forests have become increasingly vulnerable to insect pests 17 (Feyen et al., 2020; Senf and Seidl, 2020). 18

19

33

35

39

40 41

45

6

7 8

Species-specific responses of trees to drier summers (Vitali et al., 2018) shape regional variability in 20 European forest productivity in response to water and nutrient availability, heat wave and evaporative 21 demand (high confidence) (Rever et al., 2014; Kellomäki et al., 2018). Under SSP1 agricultural land 22 abandonment in NEU and EEU would increase growth of natural woodland, with 2°C warming expansion of 23 bioenergy production would increase especially on abandoned agricultural land in WCEU, while 4°C and 24 SSP3 leads to reduced European forest production (Doelman et al., 2018) (low confidence). Assuming 25 acclimation to CO₂, net primary production increases in high latitudes and altitudes and decreases in the 26 Mediterranean region (Reyer et al., 2014) (medium confidence). High-end climate scenarios improve yields 27 in areas of Europe with current temperature limitations, but current tree species become climatically stressed 28 (Harrison et al., 2019). Lower levels of precipitation will affect mountain forests in the Mediterranean and 29 continental areas (Bugmann et al., 2017). Hydric stress is exacerbating the incidence and effects from fire 30 and other natural disturbances (13.3), which increases forest productivity declines or cancels out productivity 31 gains from CO₂ (Seidl et al., 2017) (high confidence). 32

34 13.5.2 Solution Space and Adaptation Options

European food and fibre related adaptations can be both direct, i.e. as a response to climatic conditions in that location, and indirect, e.g., in response to market movements (including demand change) or policy decisions, including those that may be occurring in other locations in Europe or globally.

13.5.2.1 Crops and livestock

Options for crop management adaptations to climate change are available, however their feasibility at large
 scale or effectiveness, especially of combinations of measures, is rarely assessed (Table 13.6) (*high confidence*).

Yield loss can be reduced by irrigation, e.g., for wheat and maize (Figure 3.5.8), but at the cost of increasing 46 water demand (Siebert et al., 2017). Extensive droughts during the last two decades caused many irrigated 47 systems in southern Europe to cease production (Stahl et al., 2016) indicating limited adaptive capacity to 48 49 heat and drought (medium confidence). Water management for food production on land is becoming increasingly complex due to the need to satisfy other social and environmental water demands (see KR4, 50 13.10) and is limited by costs and institutional coordination (Iglesias and Garrote, 2015). Agricultural water 51 management adaptation practices include irrigation, reallocating of water to other crops, improving use 52 efficiency, and soil water conservation practices (Iglesias and Garrote, 2015). In-season forecasts of climate 53 impacts on yield, allowing farmers to respond with changes in harvesting or irrigation, have successfully 54 been used in the 2018 drought for European wheat (van der Velde et al., 2018). 55

Figure 13.8: Projected yield losses for maize avoided by irrigating all locations, with increasing warming from low (top) to high (bottom). Panel on the left shows avoided yield losses due to heat stress, middle panel avoided yield losses due to drought stress, and right panel additional avoided yield losses arising from the interaction of heat and drought stress. Data represents ensemble median from crop models and HadGEM2_ES GCM (Webber et al., 2018). Results do not consider adaptation in growth seasons.

Management adaptations autonomously used by farmers in response to climate change include changing sowing dates and changes in cultivars (Donatelli et al., 2015). Soil management practices such as crop residue retention or improved crop rotations, generally undertaken as a mitigation option to increase soil carbon sequestration, are not commonly evaluated for European agriculture (Hamidov et al., 2018).

Adaptation practices for livestock systems on European farms commonly focus on controlling cooling, shade 14 provision and management of feeding times (Gauly et al., 2013). These options are used in indoors reared 15 species, e.g., pig and poultry (Gauly et al., 2013), but limited in mountain pastures because of natural 16 constraints and short season length (Deléglise et al., 2019). Response options to insufficient amount and 17 quality of fodder include changing feeding strategies (Kaufman et al., 2017; Ammer et al., 2018), feed 18 additives (Ghizzi et al., 2018), relocating livestock linked to improved pasture management, organic farming 19 (Rojas-Downing et al., 2017; European Environment, 2019), importing fodder and reducing stock (Toreti et 20 al., 2019b). Dairy systems that maximize the use of grazed pasture are considered more environmentally 21 sustainable, but are not fully supported by policy and markets (Hennessy et al., 2020). Genetic adaptation of 22 crops, pasture and animals could be a long-term adaptation strategy (Anzures-Olvera et al., 2019) et al. 2019) 23 but requires tools tailored for specific systems (Deléglise et al., 2019). Furthermore, control strategies for 24 pathogens and vectors include indoor or outdoor rearing and applying new diagnostic tools or drugs (Bett et 25 al., 2017; Vercruysse et al., 2018). 26

27

1

2

3

4

5

6 7 8

9 10

11

12 13

Agro-ecological systems are considered an adaptation option to a range of climate change impacts (Aguilera et al., 2020), and rely on ecological process (e.g., soil organic matter recycling and functional diversification) to lower inputs without impacting productivity (Cross-Chapter Box NATURAL in Chapter 2). High frequency rotational grazing and mixed livestock systems are agro-ecological strategies to control pathogens (Aguilera et al., 2020). Agroforestry, integrating trees with crops (silvoarable), livestock (silvopasture), or

both (agrosilvopasture), can enhance resilience to climate change, e.g., by reducing impact of extreme
- 1 weather events, but implementation in Europe needs improved training programs and policy support
- 2 (Hernández-Morcillo et al., 2018) (high confidence).

Implementation of adaptation at farm level depends on the type of climate impact, the size and economic

situation of the farm, and the cultural background and education of the farmer. Technological innovations

- including "smart farming" and knowledge training can strengthen farmers' responses to climate impacts
 (Deléglise et al., 2019; Kernecker et al., 2019), although strong belief in "technosalvation" by farmers
- (Deleginse et al., 2019; Kernecker et al., 2019), autough strong benef in technosalvation by farmers
 (Ricart et al., 2019) can reduce the solution space and timing of adaptation options. Agricultural policy,
- market prices, new technology and socio-economic factors play a more important role in short-term farm-
- level investment decisions than climate change impacts (Juhola et al., 2016; Hamidov et al., 2018) (*high confidence*).
- 11 12
- Effective policy guidance is needed to increase the climate-resilience of agriculture (Spinoni et al., 2018; 13 Toreti et al., 2019b). Financial measures that would be beneficial, include simplifying procedures for 14 obtaining subsidies and insurance premiums and reduction of interest rates on agricultural loans (Garrote et 15 al., 2015; Iglesias and Garrote, 2015; Zakharov and Sharipova, 2017; Hamidov et al., 2018; Wiréhn, 2018). 16 The EU's Common Agricultural Policy (CAP) has increasingly focused on environmental outcomes, and 17 since 2013 the EU Strategy on Adaptation has aimed to contribute to climate-resilience by providing 18 member states support to develop adaptation strategies (Alliance, 2018). However, the CAP is viewed as not 19 yet fully addressing environmental outcomes or providing effective measures for climate adaptation 20 (Leventon et al., 2017; Pe'er et al., 2020). Limits to European farm-level adaptation include lack of resources 21 for investment, political urgency to adapt, institutional capacity, access to adaptation knowledge and 22 information from other countries (European Environment, 2019). 23

25 *13.5.2.2 Aquatic food*

Changes in spatial distribution of fish stocks will be a source of conflict in fisheries management in Europe
(*medium confidence*), as demonstrated by the case of the North East Atlantic mackerel (Spijkers and
Boonstra, 2017). The Relative Stability Principle applied in the CFP where total allowable catch is split
among countries using a fixed allocation based on catches of member states during the 1970s is limiting the
adaptive capacity of European fisheries, which is further complicated by the unknown effects of the Brexit
(Harte et al., 2019; Baudron et al., 2020).

- There is a lack in adaptation planning towards climate-ready fisheries and aquaculture in all parts of Europe, especially accounting for the expected reduced landings of traditional target species and in preparation for a new portfolio of resource species (Blanchet et al., 2019). High-level adaptation strategies have been developed, but examples of implementation and actionable decision making to address climate change impacts are lacking (Bell et al., 2020).
- 39

45

24

The EU Common Fisheries Policy (CFP) aims at making fisheries and aquaculture environmentally, economically and socially sustainable, but is challenged by the lack of coordinated efforts among European countries, and by the non-inclusion of fisheries and aquaculture in national action plans (Baudron et al., 2020). The reformed CFP has the goal to rebuild fish stocks to maximum sustainable yield (MSY) levels by 2020, but progress is limited (Froese et al., 2018; Steef, 2019).

46 13.5.2.3 Forests

47 Successful adaptation requires short- and long-term strategies that focus on enhancing the resilience of 48 European forests, especially through altering the tree species composition (Zubizarreta-Gerendiain et al., 49 2017; Pukkala, 2018). Forest management has been adopted as a frequent strategy to cope with drought, 50 reduce fire risk, and maintain biodiverse landscapes and rural jobs (Hlásny et al., 2014; Fernández-Manjarrés 51 et al., 2018). Greater diversity of tree species reduces vulnerability to pests and pathogens (Felton et al., 52 2016) and increases resistance to natural disturbances (Jactel et al., 2017; Pukkala, 2018; Pardos et al., 2021) 53 (high evidence). Depending on forest successional history (Sheil and Bongers, 2020), tree composition 54 change can increase carbon sequestration (Liang et al., 2016), biodiversity and water quality (Felton et al., 55 2016) (high evidence). Conservation areas can also help climate change adaptation by keeping intact the

2016) (*high evidence*). Conservation areas can also help climate change adaptation by keeping intact
 forest cover and protecting their biodiversity (Jantke et al., 2016) (*low confidence*).

1 Reforestation reduces warming rates inside forests Zellweger, 2020, Forest microclimate dynamics drive 2 plant responses to warming} and consequently the number of extremely warm days (Sonntag et al., 2016), 3 with impacts for controlling natural disturbances such as fires (high confidence). Various active management 4 approaches can limit the impact of fires (see 13.3) on the productivity of forest, including fuel reduction 5 management, prescribed burning, changing from conifers to deciduous, less flammable species, and 6 recreating mixed forests (Feyen et al., 2020). Agroforestry can also reduce the spread of fire. The CAP is 7 limiting tree planting, as the introduction of isolated trees, forest strips and trees on hedgerows leads to 8

losses of Pillar I payments (Mosquera-Losada et al., 2018). 9

13.5.2.4 Demand and trade 11

An increasing globalized food system makes European nations sensitive to supply chain disturbances in 13 other parts of the world, but also provides capacity to adapt to production shifts within Europe through 14 changes in international trade (Section 13.9.1) (Alexander et al., 2018; Challinor et al., 2018). Consumer 15 demand for food and timber products can also adapt to productivity changes created by climate changes. 16 Consumer demand changes may be mediated by price (e.g., in response to production changes), reflect 17 changes in preferences (e.g., towards plant-based foods motivated by environmental, ethical or health 18 concerns), or reductions in food waste (Alexander et al., 2019; Willett et al., 2019) (high confidence). 19 Although mitigation potentials of dietary changes have received increasing attention, evidence is lacking on 20 potential for adaptation through changes in European food consumption and trade, despite these socio-21 economic factors being a stronger driver for change than climate (Harrison et al., 2019). Calls are increasing 22 across Europe for sustainable and resilient agri-food systems acknowledging interdependencies between 23 producers and consumers to deliver healthy, safe and nutritional foods and services (Venghaus and Hake, 24 25 2018) (Section 13.7).

26 27

30

10

12

28 Table 13.6: [PLACEHOLDER FOR FINAL DRAFT: to be updated] Effectiveness and feasibility of the main 29 adaptation options for food systems in Europe. The assessment steps are described in Figure 13.A.1

for climate impacts & risks Impact types Heat stress Drought

Effectiveness & feasibility of food related adaptation options

13.5.3 Knowledge Gaps

3 Aggregated projections of impacts, especially of combined drivers, are still rare despite many physiological 4 papers on species specific response to warming in all food sectors (high confidence). This is specifically true 5 for scenarios that consider land use change and population growth, though Agri SSPs are currently being 6 (Mitter et al., 2019)). Effectiveness of adaptation options is predominantly qualitatively mentioned but not 7 assessed (high confidence)(Ewert et al., 2015; Holman et al., 2018; Müller et al., 2020)). Adaptation 8 planning needs better modelling and scenario development including improved coupled nature-human 9 interactions, e.g., with more realistic representation of behaviours beyond economic rationality and 'bottom-10 up' autonomous farmer adaptations, as well as greater stakeholder involvement. 11 12

13 Coverage of impacts and adaptation options in Europe are biased towards the EU28 and have gaps within

- EEU, despite dramatic changes in land use over the recent decades in Russia and Ukraine (*high confidence*).
 Large land reserves in Russia and Ukraine that were abandoned in the 1990 have the potential to increase
 production and export of agricultural products, especially wheat, meat and milk, but there is large uncertainty
- due to the lack of projections (Swinnen et al., 2017).
- 18

1

2

Crop modelling bias towards cereals, and specifically wheat and maize, overlooking the need for quantitative assessment of impacts of climate change on fruit and vegetables, especially for temperate regions in Europe (Bisbis et al., 2018). The impacts of climate change for European agriculture include a lack of understanding of fundamentals such as irrigation needs and the impact of CO₂ and O₃ on a wide range of variants as assessments tend to focus on individual species and processes (Challinor et al., 2016b; Webber et al., 2016) (*high confidence*).

There is a lack of actionable adaptation strategies for European fisheries. Knowledge gaps include adaptive capacities of local fishing communities to a new mix of target species and the consumer acceptance of the product. Increased knowledge on the effects on freshwater fisheries and their resources is also needed.

29 30

31 32

34

13.6 Cities, Settlements and Key Infrastructure

33 13.6.1 Observed Impacts and Projected Risks

Urban areas in Europe offer home to 547 million inhabitants, corresponding to almost 74% of the total European population (UN/DESA, 2018). In the EU-28, 39% of the total population and 41% of the workforce lives in metropolitan regions (i.e. areas with at least one million inhabitants), where 47% of the total GDP is generated (Eurostat, 2016). This section also covers energy and transport networks as these are interconnected with urban areas and are key for livelihood and economic prosperity, as well as tourist, industrial and business structures and activities which are also part of key infrastructure.

42 *13.6.1.1 Energy systems*

43

41

The energy sector in Europe already faces impacts from climate extremes. Significant reductions or even interruptions of power supply have been observed during exceptionally dry and/or hot years of the recent 20year period, as for example in France, Germany, Switzerland and UK during the extremely hot summer of 2018, which led to water cooling constraints on power plants (van Vliet et al., 2016c; Abi-Samra, 2017; Vogel et al., 2019). Heating degree days decreased and cooling degree days in Europe increased during 1951-2014, with more prominent trends after 1980 (De Rosa et al., 2015; Spinoni et al., 2015; EEA, 2017a;

- 49 1951-2014, with more p50 Krakovska et al., 2019).
- 51

New studies reinforce the findings of AR5 on future risks for thermoelectric power and on the division between Northern and Mediterranean Europe regarding risks for hydropower (Table 13.7). The wind power potential is projected to display both increasing and decreasing trends, with *medium confidence* on decreases in parts of western Mediterranean, particularly beyond 3°C (Table 13.7). Observed reductions of surface

- wind speeds at several locations during 1979-2016 (Frolov et al., 2014; Perevedentsev and Aukhadeev,
- 2014; Tian et al., 2019) support these decreasing trends. The future wind fleet's configuration will affect the

spatial and temporal variability of wind power production (Tobin et al., 2016), and total backup energy needs in Europe could increase by 4-7% by 2100 (Wohland et al., 2017), with potentially larger seasonal changes

(Weber et al., 2018b). There is *limited new evidence* on solar power potential, projecting a decrease in

Northern Europe and contradictory signs of change in the rest of Europe (Table 13.7).

5 6 7

8

1

2

3

4

Table 13.7: Projected climate change risks for energy supply in Europe by 2100

Sub-	Trend/ Confidence	References	Remarks
I egion		1	
NEU	ower potentia	1 (Davy et al., 2018; Moemken et al., 2018; Tobin et al., 2018; Solaun and Cerdá, 2019)	Increases particularly beyond 2°C warming. Reductions in parts of Scandinavia. Reductions over extended areas in summer and increases over most areas in winter.
WCE	↓ ↑ *	(Carvalho et al., 2017b; Davy et al., 2018; Devis et al., 2018; Moemken et al., 2018; Tobin et al., 2018)	Projected changes differ across studies, models, and locations in terms of sign and magnitude. Reductions over extended areas in summer and increases over many areas in winter.
MED	↓ ↑ **	(Reyers et al., 2016; Tobin et al., 2016; Carvalho et al., 2017b; Davy et al., 2018; Devis et al., 2018; Moemken et al., 2018; Tobin et al., 2018; Katopodis et al., 2019; Solaun and Cerdá, 2020)	Reductions (possibly up to 15%) particularly beyond 3oC warming. Under 1.5°C warming, increases up to 5% over some islands in the south-eastern Aegean Sea have been estimated. No agreement on the sign of change in summer, while there is <i>medium confidence</i> on decreases in winter.
Off- shore	1 **	(Koletsis et al., 2016; Davy et al., 2018; Moemken et al., 2018; Weber et al., 2018a; Katopodis et al., 2019)	Increases over most of the Aegean and Baltic Seas beyond 2°C warming. Increasing probabilities and persistence of high winds over these seas could create new opportunities.
Solar p	ower potentia	1	
NEU	*	(Jerez et al., 2015; Wild et al., 2015; Bartok et al., 2017; Tobin et al., 2018; Muller et al., 2019)	Reductions in the entire domain of -10% over the largest part beyond 3°C warming, with higher reductions (up to -30%) in winter. Under 2°C warming, reductions up to - 6%.
WCE, EEU, MED	↓ ↑ *		Disagreement on sign of change due to different signs of climate models in terms of cloud cover.
Hydroj	oower potentia	al	
NEU	1 1 ***	(van Vliet et al., 2016a; van Vliet et al., 2016b; Tobin et al., 2018)	Increases up to +20% under +3°C warming. Magnitude differs significantly among models. Under 2oC and 1.5°C warming, increases <15% and <10% respectively. Extremely high water inflows to dams may increase flooding risks for plant and nearby settlements (Chernet Haregewoin et al., 2014).
MED	***		Reductions up to -40% under 3°C warming. Magnitude of change differs significantly among models. Under 2°C and 1.5°C warming, reductions below -10% and -5% respectively.
WCE	↓ ↑ *		Increases up to 20% in many models, small decreases (up to 5%) in some others.
Mount ains	1 *	(Anghileri et al., 2018; Bombelli et al., 2019)	For hydropower in the Alps, both increases and decreases of electricity production under different warming levels.
EEU	1 *	(Akentieva et al., 2014)	Risks of flooding for the plant and nearby settlements in case of extremely high water inflows (Porfiriev et al., 2017).
Bioene	rgy [PLACEH	OLDER FOR FINAL DRAFT: m	ore information on sub-regions to be added
MED	*	(EEA, 2019a).	Further expansion of energy crop production in water- scarce areas over Europe may be limited due to water- related constraints.

Sub-	Trend/	References	Remarks
region	Confidence		
Therm	oelectric powe	er	
WCE	***	(van Vliet et al., 2016a; Tobin et al., 2018)	Freshwater cooling plants (particularly with open-loop systems) will face constraints due to higher water temperatures and reduced summer streamflow.
EEU	↓ **	(Porfiriev et al., 2017; Cronin et al., 2018; Klimenko et al., 2018).	Increasing temperatures reduce the efficiency of power plants, with a loss in power output by 0.3-0.6% per +1°C.
MED	1 ***	(van Vliet et al., 2015; van Vliet et al., 2016a; van Vliet et al., 2016b; Behrens et al., 2017; Payet-Burin et al., 2018)	Under projected capacities by 2030, more regions will experience some reduction in power availability due to water scarcity. In 2050, reductions of usable capacity by ≥15% under RCP8.5 and by <10% under RCP2.6 (with summer reductions possibly reaching -30% in some locations). Climate pressures on water in other sectors will augment constraints.
Therm	oelectric pow	er with carbon capture and storag	e (CCS)
All	**	(Byers et al., 2016; Murrant et al., 2017; EEA, 2019a).	As CCS increases cooling water requirements, water scarcity may become an additional constraint to onshore CCS in some regions.

* *low confidence,* ** *medium confidence,* *** *high confidence.* NEU, WCE, EEU, MED: Northern, Western Central, Eastern, and Mediterranean Europe respectively.

Regarding electricity transmission and distribution, the welfare loss from an hour of power outage affecting entire countries in the summer under the A1B scenario could increase by about 20% in 2055 and 35% in 2089 compared to 2010 (Cohen et al., 2018a).

On energy demand, in line with AR5, new studies estimate a significant southwest-to-northeast decrease of 9 heating degree days by 2100 (mainly in northern Scandinavia and northern Russia), and a smaller north-to-10 south increase of cooling degree days (Porfiriev et al., 2017; Spinoni et al., 2018). Given present population 11 numbers, total energy demand would decrease in almost all Europe, whereas considering Eurostat's 12 population projections demand would increase in about half of them (Spinoni et al., 2018). There is medium 13 confidence that peak load will increase in Mediterranean and decrease in Northern Europe (Damm et al., 14 2017; Wenz et al., 2017; Bird et al., 2019), while the sign and magnitude for the other subregions are 15 uncertain, particularly under RCP4.5. Under RCP8.5, a shift of peak load from winter to summer in many 16 countries is possible (Wenz et al., 2017). This, together with water-cooling constraints for thermal power, 17 may challenge the stability of electricity networks during heatwaves (EEA, 2019a). Technological factors 18 and electrification influence significantly the temperature sensitivity of electricity demand and consequently 19 risks (Damm et al., 2017; Wenz et al., 2017; Cassarino et al., 2018; Figueiredo et al., 2020). 20

13.6.1.2 Transport

1 2

3 4

5

6

7 8

21

22

New research on future climate risks refers mainly to infrastructure and much less to transport flows and
disruptions. In parts of Western Central and Northern Europe, heatwaves in 2015 and 2018 caused road
melting, railway asset failures, and speed restrictions to reduce the likelihood of track buckling (Ferranti et al., 2018; Vogel et al., 2019).

Future sea-level rise (section 13.2) may disrupt port operations and adversely impact hinterland and foreland, mainly in parts of Northern and Central Europe (Christodoulou et al., 2018). Changes of waves agitation could increase non-operability hours of some ports of the Mediterranean Europe beyond 2°C warming (Sierra et al., 2016; Camus et al., 2019). Infrastructure in the Rhine River Delta is particularly prone to flooding, with a low water level critical threshold risking to be crossed in consecutive years beyond 2°C warming (van Slobbe et al., 2016).

Risks of rutting and blow-ups of roads (particularly in low altitudes) due to high temperatures are expected
 to increase (*medium confidence*) (Frolov et al., 2014; Matulla et al., 2018; Yakubovich and Yakubovich,
 2018). There is some evidence since AR5 on increasing landslide risks in Western Central and

27

33

35

Mediterranean Europe beyond a 2°C warming, threatening road networks (Schlogl and Matulla, 2018;
 Rianna et al., 2020). In Eastern Europe, the higher number of freezing-thawing cycles of construction
 materials will increase risks for roads (Frolov et al., 2014; Yakubovich and Yakubovich, 2018).

Current flood risk for railways could double or triple under 1.5-3°C warming, particularly in Western Central
 Europe, increasing public expenditure for rail transport in Europe by €1.22 billion annually under 3°C
 warming and no adaptation (Bubeck et al., 2019). Thermal discomfort in urban underground railways may
 increase, even at a high level of cooling (Jenkins et al., 2014a).

The number of airports vulnerable to inundation from sea-level rise and storm surges may double between
2030 and 2080 without adaptation, especially close to the North Sea coast (Christodoulou and Demirel,
2018). Warming could require some weight restrictions for large aircraft after 2060 under RCP8.5 in France,
UK and Spain (Coffel et al., 2017).

14 15 *13.6.1.3 Business and industry*

16 European business and industry sectors are directly affected by changes in temperature, precipitation, and 17 extreme events like flooding, storm and drought but also indirectly via changes along the global value chain 18 (Section 13.9.1). Climate-induced physical risks arise for many industrial sectors (Gasbarro and Pinkse, 19 2016; Meinel and Schule, 2018), by affecting a firm's production processes, labour productivity (Section 20 13.7) and assets, or leading to shortages in supplies, infrastructure disruptions or changes in customer 21 consumption patterns (Weinhofer and Busch, 2013; Schiemann and Sakhel, 2018; TEG, 2019). The 22 European financial and insurance sector is affected by climate change both directly (e.g., through impacts on 23 their premises and the value of their assets) and indirectly through impacts on their customers and financial 24 markets (Bank of England, 2015; Georgopoulou et al., 2015; Battiston et al., 2017; TCFD, 2017; Bank of 25 England, 2019; de Bruin et al., 2020; Monasterolo, 2020). 26

Compared to mitigation policy risks, such as the EU-ETS, European companies perceive physical climate risks as less relevant (Sakhel, 2017) and recommendations on financial disclosure of and requirements for supervision of physical climate risks are only emerging recently (D'Orazio and Popoyan, 2019; de Bruin et al., 2020; Feridun and Güngör, 2020; Monasterolo, 2020). Opportunities may also arise, such as a market for climate services (Section 13.11).

34 13.6.1.4 Tourism

Snow cover duration and snow depth in the Alps decreased since the 1960s (Klein et al., 2016; Schöner et al., 2019). Though snowmaking reduced the vulnerability of ski tourism (Abegg and Steiger, 2016; Falk and Vanat, 2016; Falk and Lin, 2018), the number of skiers to French resorts at low elevations during the extraordinary warm/dry winters of 2006/2007 and 2010/2011 was 26% and 12% lower respectively (Falk and Vanat, 2016).

- 41 New studies on winter tourism support the AR5 findings. Due to the significant drop of natural snow 42 reliability (Demiroglu et al., 2016; Damm et al., 2017; Campos Rodrigues et al., 2018; Steiger and Abegg, 43 2018), under 2°C warming the operation of low altitude resorts without snowmaking will likely be 44 discontinued, while beyond 3°C snowmaking will be a necessary but not always sufficient condition for 45 most resorts in the Pyrenees, the Alps and the Aosta Valley (Pons et al., 2015; Joly and Ungureanu, 2018; 46 Spandre et al., 2019b). Increased investment and operational costs will adversely affect the financial stability 47 of small resorts in favour of financially robust large resorts at high elevations with access to snowmaking 48 (Steiger and Abegg, 2014; Pons et al., 2015; Falk and Vanat, 2016; Spandre et al., 2016; Joly and 49 Ungureanu, 2018; Moreno-Gené et al., 2018; Scott et al., 2019; Steiger and Scott, 2020). Increasing 50 snowmaking will also significantly increase water and energy consumption, particularly under a 3°C 51 warming, as in the Alps (Steiger and Abegg, 2014; Spandre et al., 2019a). 52 53
- 54 Climatic conditions for summer tourism under a 1.5°C and 2°C warming are projected to improve over
- 55 Europe from May to October and less from June to August, except for the Mediterranean Europe on which
- there is no agreement (Dubois et al., 2016a; Georgopoulou et al., 2018; Martínez-Ibarra et al., 2019).
- 57 Tourists' high tolerance to heat and/or low tolerance to rain found by some European studies affects the

perceived comfort (Dubois et al., 2016a; Georgopoulou et al., 2018; Martínez-Ibarra et al., 2019). Risks are
increasing for Mediterranean Europe under SSP3 (Koutroulis et al., 2018). The amenity of European beaches
may decrease as a result of sea-level rise amplifying coastal erosion and inundation risks along the coasts,
although less in Scandinavia (Ebert et al., 2016; Toimil et al., 2018; Lopez-Doriga et al., 2019) (see also
Section 13.2 and WGI AR6 Section 12.4.5).

6

7 Knowledge on the economic consequences of climate change on European tourism is limited (Section

- 8 13.10.2). Under a 2°C warming, annual economic losses of 15 Billion Euros were estimated, with losses for
- 9 Mediterranean Europe and the Alps and gains for northern and Western Central Europe (Ciscar et al., 2014).
- 10 Climate-induced impacts on transport networks and modal shifts can further affect the exposure and
- vulnerability of tourism flows.

12

13 13.6.1.5 Built environment, settlements and communities

Further shifts of population to cities and coastal areas will increase assets at risk (Section 13.2). The
percentage of population in Europe residing in urban areas is projected to increase from 74% in 2015 to 84%
in 2050, corresponding to approximately 52 million new urban residents (UN/DESA, 2018), although these
highly depend on the SSP scenarios. Most of this increase will take place in northern and western Central
Europe, particularly in the UK and France. Moreover, 32% of 571 European cities show a medium to high or

relatively high vulnerability against heatwaves, drought and floods (Tapia et al., 2017). Climate change will

significantly augment risks for several cities, particularly beyond 3 °C warming (Figure 13.9).

11 13.6.1.5.1. Risks from coastal, river and pluvial flooding

New studies increase confidence in AR5 statements that floods and flood damages will increase in coastal areas due to sea level rise and changing social and economic conditions (Mokrech et al., 2015) (Section 13.2). Except for areas affected by land uplift (e.g., in Scandinavia and parts of Scotland), it is projected that further adaptation will be required to maintain risks at the present level for most coastal cities and

Mediterranean (red dots) and Northern Europe (blue dots) with respect to pluvial flooding, heatwaves and drought.

from literature (Tapia et al., 2017), transformed by the authors into a 0-100 scale. Figures show changes between

precipitation. TX35: number of days with mean temperature above 35oC. DF: drought frequency. [PLACEHOLDER

'Mid future' (2040-2060)/ 'Far future' (2080-2100) and the baseline (1995-2014). P99: 99th percentile of daily

Green, grey and orange shading indicate low, moderate and high risks correspondingly. Values for vulnerability derive

FOR FINAL DRAFT: to be updated]

- settlements (Haasnoot et al., 2013; Ranger et al., 2013; Malinin et al., 2018; Hinkel et al., 2019; Umgiesser, 1 2020). 2 3 There is *high agreement* that sea-level rise will become a major threat to urban beaches and coastal peri-4 urban settlements without adaptation by mid-21st century (Hinkel et al., 2013) (Cross-Chapter Box SLR in 5 Chapter 3). Neglecting uncertainties on future sea-level rise (WGI AR5 Chapter 9), tides, waves, currents at 6 the scale of the continental shelf, and precipitation and runoff at river-basins scales may mislead adaptation 7 (Hinkel et al., 2019; Haasnoot et al., 2020b). 8 9 Strong urbanization, resulting to growth of impervious surfaces in urban areas of Western Central and 10 Eastern Europe, can have comparable effects on the exposure of cities to pluvial flooding with some climate 11change scenarios (Thieken et al., 2016; Skougaard Kaspersen et al., 2017). 12 13 13.6.1.5.2 Risks from heatwaves, cold waves and drought 14 Heatwave days and long heatwaves increased in most capitals during 1998-2015 compared to 1980-1997 15 (Morabito et al., 2017). As a result, indoor overheating and reduced outdoor thermal comfort, often coupled 16 with urban heat island, have already impacted European cities (see also Section 13.7.1). In the summer of 17 2018, many cities suffered from heatwaves attributed to climate change (Vogel et al., 2019). In 2010, 18 Moscow suffered from a 44-day heatwave, the worst on record in Europe, with about 11,000 excess deaths 19 (Russo et al., 2015; Shaposhnikov et al., 2015). 20 21 Heatwaves are likely to become a major threat not only for Mediterranean but also for Western Central and 22 Eastern European cities, which will face the largest temperature increases (Russo et al., 2015; Guerreiro et 23 al., 2018; Lorencova et al., 2018; Smid et al., 2019). Under RCP8.5-SSP3 and by 2050, about half of 24 Europeans will be under very high heat stress in summer (Rohat et al., 2019). The urban heat island effect 25 will further increase urban temperatures up to 6-10°C under RCP8.5 (Estrada et al., 2017). There is high 26 confidence that overheating during summer in buildings with insufficient ventilation and/or solar protection 27 will increase significantly (Jenkins et al., 2014a; Hamdy et al., 2017; Heracleous and Michael, 2018; Dino 28
- and Meral Akgül, 2019; Shen et al., 2020). Highly insulated buildings according to present building
 standards across Europe will be more vulnerable to overheating than others, particularly under high warming
 levels, unless proper ventilation and other adaptation measures are applied (Williams et al., 2013; Virk et al.,
 2014; Mulville and Stravoravdis, 2016; Fosas et al., 2018; Ibrahim and Pelsmakers, 2018; Salem et al., 2019;
 Tian et al., 2020). Cities in northern and Western Central Europe are more vulnerable due to limited solar
- Tian et al., 2020). Cities in northern and Western Central Europe are more vulnerable due to limited solar
 shading and fewer air conditions installed (Ward et al., 2016; Thomson et al., 2019). Cooling energy demand
 in Mediterranean buildings has been projected to increase by 81-104% by 2035 and by 91-244% after 2065
- depending on climate change scenarios (Cellura et al., 2018), while increases of 31-73% by 2050 and by 165-323% by 2100 were estimated for buildings in Northern Europe (Dodoo and Gustavsson, 2016).
- 38

Cold waves under RCP8.5 will not represent an effective threat for European cities at the end of the century,
 and only a marginal hazard in mid-century (Smid et al., 2019).

41

Under RCP8.5 almost all cities would exceed the historical maximum 12-month drought severity index of the past 50-years (on drought risks see also Section 13.2) and 30% will have at least 30% probability of exceeding this maximum every month (Guerreiro et al., 2018), with potential adverse effects on the operation of municipal water services (Kingsborough et al., 2016). The combination of high temperatures, drought, and extreme winds, potentially coupled with insufficient preparedness and adaptation, may amplify the damage of wildfires in peri-urban environments.

47 48

49 13.6.1.5.3 Risks from thaw of permafrost

50 Increasing temperatures in Northern Europe and the Alps lead to accelerated degradation of permafrost,

- negatively affecting the stability of infrastructures (Stoffel et al., 2014; Beniston et al., 2018 trends, and
- ⁵² future challenges; Duvillard et al., 2019). In the Caucasus, glacial mudflows due to permafrost degradation
- and modern tectonic processes pose a significant danger to the infrastructure of the mountain territory
- 54 (Vaskov, 2016). In the last 30 years, the permafrost temperature in the European part of the Russian Arctic
- has increased by 0.5-2.0°C, and consequent damages in buildings, roads and pipelines, particularly in
- Vorkuta city, required significant expenditure for stabilizing soils (Porfiriev et al., 2017; Konnova and

Chapter 13

European Russia could decrease by 32-75% by mid-century and by 95% by 2100, potentially affecting
 settlements in Murmansk, Arkhangelsk Oblast, Komi Republic and Nenets Autonomous Okrug
 (Shiklomanov et al., 2017; Streletskiy et al., 2019). Increasing number of cycles of freezing and thawing wall

material, observed in the European part of Russia, leads to accelerated aging of building envelopes (Frolov et al., 2014).

13.6.2 Solution Space and Adaptation Options

Monetary assessments of future damages from climate extremes on critical infrastructures show rapidly
escalating figures by 2080s (Figure 13.10), by an order of seven compared to the baseline (Forzieri et al.,

11 2018), highlighting the need for adaptation.

12

6

7

Baseline 2020s 2050s 2080s
 Figure 13.10: Overall climate hazard risk to critical infrastructures aggregated at European (EU+) level under the
 SRES A1B scenario (Forzieri et al., 2018). Baseline: 1981-2010. 2020s: 2011–2040. 2050s: 2041–2070. 2080s: 2071–
 2100.

18 19

20 21

22

13.6.2.1 Current status of adaptation

There is new evidence on increasing adaptation planning in cities, settlements and key infrastructure, but less on implemented adaptation (Table 13.8; Box 13.3).

23 24 25

Tabla	120	Duagant	atatua	ofodo	atation	:	aitian	a attlama anta	and	Irari	in functions of	truna in	Europa
I able	13.0	riesem	status	or aua	plation	ш	cities,	settiements	anu	ксу	mmasuuc	iure m	Europe

	General commitments / Adaptation Plans		Implemented adaptation actions
Cities	 → Increasing number of cities. → Of 6900 European cities in the Covenant of Mayors for Climate & Energy, 1080 have set commitments for adaptation, 190 of these have submitted adaptation plans and 106 have their results monitored. → Most urban adaptation plans include ecosystem-based measures (but often with insufficient baseline information and lack of convincing implementation actions). 	$ \begin{array}{c} \rightarrow & I \\ H \\ I \\ \rightarrow & M \\ \end{array} $ $ \begin{array}{c} \rightarrow & M \\ \end{array} $	Large cities are in the process of implementation (e.g., Helsinki, Copenhagen, Rotterdam, Barcelona, Madrid, London). Many cities have implemented measures potentially supporting adaptation but not labelled as such. Current climate policies implemented at city-scale are primarily addressing mitigation and, to a lesser extent adaptation. Increasing use of NbS to address urban heating and the discontinuity of the urban water cycle due to surface sealing and limited infiltration.

	General commitments / Adaptation Plans	Implemented adaptation actions
y	→ 29 countries (in place in 14 and in progress in 15).	→ 11 countries (actions implemented in 5 and in progress in 6)
Energ	→ Few countries have considered specific adaptation actions (mostly preparatory) in their national or energy-specific risk assessments.	→ DSOs, electricity, and energy companies, focusing on adaptation of transmission lines, water cooling, dams for avoiding flooding during intense precipitation events, harbours to avoid flooding and secure fuel supply.
Tourism	→ Legally binding consideration of climate change when constructing new tourism units (e.g., the 2016 French Mountain Act).	 → 18-67% of ski slopes (67% in Austria, 39% in Switzerland, 18% in Bavaria-Germany, 20% in French Alps, 45% in Spain. → Resorts implementing nocturnal skiing (e.g., Spain) and offering other snow-based activities. Transformation to all-year mountain resorts (e.g., 70% of Spanish ski resorts).
unsport	 → Only 10 countries have started coordination activities or identified adaptation measures. → An integrated, trans-modal approach to adaptation is lacking. → Low mainstreaming of adaptation within transport planning and decision-making. 	 → Only in 5 countries. → Majority of actions are preparatory. → Actions mostly focus on infrastructure and much less on services.
Transport	→ Some action is undertaken in the public and private sector, e.g., revised manuals/guidelines/ protocols to consider climate change impacts and extreme events (e.g., Deutsche Bahn, Norwegian Public Roads Administration).	→ Some public and private actors are moving faster: new railway drainage standards (Network Rail/ UK), prediction of adverse weather events (Spanish rail service operator), measures against coastal flooding (Copenhagen Metro), measures for sea level rise (Rotterdam port and France).
Banking and insurance	 → Recommendation of the High Level (HLEG) Expert Group on Sustainable Finance that the European Commission endorses and implements the guidelines provided by the Task for on Climate- Related Financial Disclosure) → Central banks and supervisors establish a Network for Greening the Financial System; several European central banks take a leading role in this network 	 → Implementation of HLEG recommendations as regulation by banking supervision bodies in UK, France, Netherlands, Norway → Development of different tools (stress testing, scenario analysis, value at risk) by climate service providers
Gree	n shading: adaptation is well-established, Orange	shading: adaptation is advancing, <u>Grey shading</u> : low
Gedi	kli and Balaban. 2018: Reckien et al., 2018b: Col	M. 2019), b) Energy (EEA, 2019a), c) Tourism (Damm et al.,

3

4

5

6

7

8 9 Although urban adaptation is well underway, many small and economically weak (i.e. with low GDP/capita) or vulnerable cities lack adaptation planning (Reckien et al., 2015; EEA, 2016b). Also, while almost all large northern and western municipalities report implemented actions at least in one sector, this is not the case for 32% of Mediterranean and eastern municipalities (Aguiar et al., 2018). In the UK, the requirement to compile urban adaptation plans has been a significant driver for their rapid development (Reckien et al., 2015). The availability of funding for adaptation is also crucial for plan development (see Section 13.11.2). Network membership (e.g., ICLEI, C40/Covenant of Mayors) is an important driver for city planning and transfer of best practices

2017; Campos Rodrigues et al., 2018; Joye, 2018), d) Transport (Battiston et al., 2017; D'Orazio and Popoyan,

10 11

Although large municipalities usually fund the implementation of their adaptation plans, smaller and less populated municipalities in Mediterranean and Eastern Europe depend on international/ national funding which is often limited. The proportion of cities with adaptation strategies is much lower in countries without or recently produced national adaptation policies (Heidrich et al., 2016). Evidence from cities also shows that only 29% of local adaptation plans are mainstreamed, which could reduce the effectiveness of implementing adaptation (Reckien et al., 2019).

2019; de Bruin et al., 2020; Feridun and Güngör, 2020).

13.6.2.2 Adaptation options as a function of who is adapting

Much adaptation for cities and key infrastructure in Europe is still driven by governments who play an important role in enabling and accelerating societal adaptation across sectors and levels (Section 13.11.2). At present, almost all European countries have included the energy sector into their national climate change impact, vulnerability and risk (CCIV) assessments and their National Adaptation Strategies or Plans (EEA, 2019a). Conflicts between actors in transport where different modes often compete for public funds, and political priorities for specific modes have been shown to influence implemented adaptation (Rotter et al., 2016).

10 11

12 Private sector adaptation is increasing (Section 13.11.3), though not in a uniform rate across all sectors.

Large national and multinational companies, and companies regulated by mitigation policy are first movers in corporate adaptation (Averchenkova et al., 2016a; Schiemann and Sakhel, 2018), while small and medium

sized enterprises often lack knowledge on climate risks and adaptation options (Herrmann and Guenther,
 2017; Halkos et al., 2018).

17

Intra-community networking contributes in building community resilience and supporting individual
 adaptation, as in households undertaking adaptation measures to power outages (Ghanem et al., 2016).

19 20

22

21 13.6.2.3 Adaptation options as a function of impacts

23 Examples of adaptation options in Europe for reducing climate change risks are presented in Figure 13.11,

and in detail in Table 13.A.3. An assessment of the feasibility and effectiveness of main adaptation options,

based on literature, is presented in Table 13.9 (and details on input data in Table 13.A.4).

Figure 13.11: Interconnections between adaptation options for cities, settlements and key infrastructure in Europe, derived from relevant literature (presented in Table 13.A.13. 3). Red-bordered options indicate potential synergies and trade-offs with mitigation [PLACEHOLDER FOR FINAL DRAFT: to be updated].

Nature-based solutions (NbS) for urban stormwater management and heat mitigation represent an emerging 1 adaptation option. For example, the NbS implemented in the Augustenborg district of Malmö, Sweden, to 2 manage stormwater runoff (including multifunctional green spaces, ponds, wetlands and green roofs) 3 resulted in capturing an estimated 90% of runoff from impervious surfaces, and reduced the total annual 4 runoff volume from the district by about 20% compared to the conventional system (EEA, 2020). Urban 5 green is associated with lower ambient air temperature and relatively higher thermal comfort during warm 6 periods (Bowler et al., 2010; Oliveira et al., 2011; Cohen et al., 2012; Cameron et al., 2014). Both the scale 7 and relative degree of NbS management or integration with 'engineered' solutions affect their vulnerability 8 to climate change. Small-scale urban NbS are relatively less vulnerable due to increased capacity for 9 intervention, while the relatively greater contact between stakeholders and urban NbS (compared with larger-10 scale, rural NbS) provides greater opportunity for human intervention to ensure the survival of urban NbS 11 vegetation during droughts or heatwaves. 12 13

There is *medium confidence* that climate services support risk prevention in coastal and riverine cities, with stimulating regulations and bottom-up initiatives being set-up in various ways depending on each country (Cavelier et al., 2017; Le Cozannet et al., 2017; Reckien et al., 2018b). Other sectors (e.g., energy) have also started to explore their use. Still, climate services face many challenges (Section 13.11).

18 19

Table 13.9: Effectiveness and feasibility of the main adaptation options to climate change impacts and risks for cities, settlements and key infrastructure in Europe [PLACEHOLDER FOR FINAL DRAFT: to be updated]. The assessment steps are described in Table 13.A.3. Underlying data and references can be found in Table 13.A.4.

first contract of the second s

27

As shown, several options have a significant potential for reducing climate risks. Though, there are still gaps of knowledge on the social, environmental and geophysical dimension of feasibility for many options.

13.6.2.4 Adaptation limits, residual risks, incremental and transformative adaptation

Technical, environmental, economic and social factors pose limits to adaptation in Europe (Figure 13.12 and Table 13.A.5).

4 5

1 2

3

T – Technical limits E – Environmental limits ECS – Economic and social limits

Figure 13.12: Examples of adaptation limits in cities, settlements and key infrastructure in Europe, reported in the
 relevant literature. [PLACEHOLDER FOR FINAL DRAFT: to be updated]

10 11

30

31

Regarding residual risks, there is *high confidence* that many adaptation measures will not be able to fully 12 mitigate overheating in buildings under high warming (Tillson et al., 2013; Virk et al., 2014; Dodoo and 13 Gustavsson, 2016; Mulville and Stravoravdis, 2016; Hamdy et al., 2017; Heracleous and Michael, 2018; 14 Dino and Meral Akgül, 2019), and the same is true for snowmaking beyond 3°C warming (Scott et al., 2019; 15 Steiger et al., 2020; Steiger and Scott, 2020). There is some evidence on residual risks for hydropower 16 (Gaudard et al., 2013; Ranzani et al., 2018), electricity transmission and demand (Bollinger and Dijkema, 17 2016; EEA, 2019a; Palkowski et al., 2019), urban subways (Jenkins et al., 2014b), and flood mitigation in 18 cities (Skougaard Kaspersen et al., 2017; Umgiesser, 2020). Also, some adaptation actions in a sector may 19 increase vulnerability in others. For example, shifting ski areas to higher elevations could cause a decline of 20 the suitable area for birds in the Alps (Brambilla et al., 2016), and artificial beach nourishment can adversely 21 impact marine environment as witnessed in Montenegro (Pranzini et al., 2015). 22 23

Examples of transformative adaptation in urban areas are observed (e.g., the Benthemplein water square, the Floating Pavilion in Rotterdam and the Hafencity flood proofing in Hamburg), but they often remain policy experiments, disconnected from formal decision making and planning (Jacob, 2015; Restemeyer et al., 2015; Restemeyer et al., 2018; Holscher et al., 2019). The active involvement of local stakeholders, public administration and politicians are drivers for community transformation, whereas lack of local resources and/or capacities are frequently reported barriers to change (Fünfgeld et al., 2019; Thaler et al., 2019).

- 13.6.2.5 Governance and insurance
- Urban adaptation plans can contribute to enhance resilience. So far, their development is mandatory in the
 UK, France, and Denmark (Reckien et al., 2019). There is evidence that the development of urban adaptation
 planning is much more influenced by a city's population size, present adaptive capacity and GDP per capita

SECOND ORDER DRAFT

organizational capacity in a municipality is not a necessary condition for forward-looking investment 1 decisions (including climate change considerations) on urban water infrastructure, although enablers differ 2 for small versus medium-to-large municipalities (Pot et al., 2019). There is large in-country variation in how 3 cities are adapting (Lesnikowski et al., 2019b). In early adapter cities (e.g., Rotterdam), institutional 4 arrangements provide for a coordination of climate, resilience and sustainability-related actions and 5 collaboration between city departments, government levels, businesses, and rest stakeholders (Holscher et 6 al., 2019). In other cities however, adaptation planners rarely consider collaborations with citizens, 7 systematic monitoring and learning are lacking, and there are difficulties in departmental coordination and 8 upscaling from pilot projects (Brink and Wamsler, 2018). 9 10 The level and type of collaboration between the public and private sector in managing climate risks varies 11 across Europe. For example, in flood management, the private sector involvement in Rotterdam is much 12 more pronounced and there are joint public-private responsibilities throughout most of the policy process 13 due to the very large share of private ownership of land and real estate (Mees et al., 2014). 14 15 In large infrastructure networks, the lack of a leading and powerful body, with sufficient research resources 16 targeted to climate change risk assessment, may limit adaptive capacity, as for example in railways (Rotter et 17 al., 2016). 18 19 The insurance industry in Europe has developed tailored products for specific physical climate risks 20 threatening cities, settlements and key infrastructure, such as risk-based flood insurance for homeowners. 21 While risk-based insurance premiums can induce risk averting behaviour, they are potentially unaffordable 22 to poor households and households living in high risk zones (Hudson, 2018). Considerable differences exist 23 across European countries regarding the insurance system, and government funded compensation of 24 damages (Keskitalo et al., 2014; Surminski et al., 2015; Hanger et al., 2018). A public discourse is emerging 25 on whether society should bear the costs of flood risk insurance and management (Penning-Rowsell and 26 Priest, 2015; Kaufmann et al., 2018). The availability of public assistance in some European countries may 27 dis-incentivize private insurance uptake and private risk reductive behaviour (Poussin et al., 2013; Hanger et 28 al., 2018; Pagano et al., 2018) (Section 13.11.3). For instance, improvements in structural flood protection 29 can discourage homeowners from undertaking adaptation actions (O'Hare et al., 2016; Suykens et al., 2016; 30 Hanger et al., 2018; Seebauer and Babcicky, 2018) (see also Section 13.11.3). When flood insurance is made 31 conditional on flood protective behaviour, it can increase resilience (Surminski, 2018). 32

33 34

35

13.6.2.6 Links between adaptation and mitigation

Evidence from transport in Europe shows that adaptation actions do not consider enough long-term transition 36 paths embedded in mitigation, while mitigation strategies are often not assessed under the future climate 37 (Aparicio, 2017). Greenhouse gas emissions and fossil fuel consumption may increase the use of air-38 conditioning in European cities unless more efficient cooling technologies are applied (IEA, 2018), the 39 escape of city residents to cooler locations during heatwaves (Juschten et al., 2019a), and the increasing 40 snowmaking in European ski resorts (Scott et al., 2019). On the other hand, adaptation to overheating in 41 buildings reduces cooling demand and consequently emissions from electricity production by fossil fuels. 42 (Scott et al., 2019). 43

44 45

46 47

48

49

50

13.6.3 Knowledge Gaps

- A quantitative European-wide integrated assessment of future climate change risks on water and energy, including different socio-economic futures, is missing. Models capable of representing integrated policies for energy and water are lacking (Khan et al., 2016).
- Quantitative modelling of impacts on energy transmission and coastal energy infrastructure is limited (Cronin et al., 2018).
- Systematic collection of empirical data on the damage of transport infrastructure (e.g., railways)
 covering different European countries is missing, and indirect economic effects of interruptions of
 transport networks are understudied (Bubeck et al., 2019). Uncertainties associated with impacts of
 climate change on transport flows and indirect impacts (delays, economic losses).

SECOND ORDER DRAFT	Chapter 13	IPCC WGII Sixth Assessment Report

- Interactions created by synchronous adaptation in ski tourism supply and demand are not fully known, while models do not yet include individual snowmaking capacity and need a higher time resolution (Steiger et al., 2019). A European-wide assessment of flooding risks on coastal tourism is missing. Many studies do not consider market characteristics (e.g., competitors) in assessing risks.
- Location-specific climate risks for firm assets, operations, finance and insurance is needed to inform adaptation actions (de Bruin et al., 2020; Feridun and Güngör, 2020; Monasterolo, 2020)
 - Limited knowledge on sectoral risks from compound, concurrent, and consecutive climate extremes, as well as on cascading risks through transport, telecommunications, water, and banking and finance.
 - Limited knowledge on how SSPs affect risks, and on adaptation tipping points.

13.7 Health, Wellbeing and the Changing Structure of Communities

13.7.1 Observed Impacts and Projected Risks

13.7.1.1 Mortality due to heat and other extreme events

Across western Europe, up to 70,000 heat-related deaths attributed to heat have occurred during the 2003 18 heatwave (Kjellstrom et al., 2016). The 2010 heatwave in eastern Europe resulted in 54,000 heat-related 19 deaths (Barriopedro et al., 2011; Revich et al., 2019). Elderly, children, (pregnant) women, and socially 20 isolated people are particularly exposed and vulnerable to heat-related risks, as are those people suffering 21 from pre-existing medical conditions, including cardiovascular disease, kidney disorders, and respiratory 22 diseases (Chapter 7, de'Donato et al., 2015; Sheridan and Allen, 2018). An aging population in Europe 23 (13.1) will increase the pool of vulnerable individuals, resulting in higher risk of heat-related mortality 24 (Montero et al., 2012; Carmona et al., 2016a; WHO, 2018). 25

26

1

2

3

4

5

6

7

8

9

10 11

12 13

14 15

16 17

Staying within 1.5°C warming could result in 30,000 annual deaths due to extreme heat, with up to three-27 fold the number with 3°C in 2100 (high confidence) (Roldán et al., 2015; Forzieri et al., 2017; Kendrovski et 28 al., 2017; Naumann et al., 2020). The risk of heat stress, including mortality and discomfort, is dependent on 29 socioeconomic developments (Rohat et al., 2019) (Figure 13.13). The number of heat-related respiratory 30 hospital admissions is projected to increase from 11,000 (1981-2010) to 26,000 annually (2021-2050) 31 (Astrom et al., 2013), particularly in the elderly (75+ years) population group in Mediterranean and Northern 32 Europe (Michelozzi et al., 2009). Cold spells are projected to decrease across Europe, particularly in 33 southern Europe (Lhotka and Kysely, 2015; Carmona et al., 2016a). 34 35

Over 70% of Europeans live in urban areas (13.6.1), where microclimates due to buildings and infrastructure and exacerbated climatic hazards impacts human health, including air pollution, heat island effect, and extreme heat spells (WHO, 2018). In large European cities, stabilizing climate warming at 1.5°C would decrease premature deaths by 15–22% in summer compared with stabilization at 2°C (Mitchell et al., 2018) (*high confidence*).

40 (*I* 41

Although there is *robust evidence and high agreement* that risk consequences will inevitably be more pervasive and widespread in a warmer Europe, no adaptation and consequent heat habituation is improbable (Martinez et al., 2019). Evidence of higher heat tolerance is emerging across most European regions (Todd and Valleron, 2015; Åström Daniel et al., 2016 Sweden, 1901–2009; Follos et al., 2020). Future projections of mortality rates in Europe under the assumption of complete acclimatization suggest constant or even decreasing rates of mortality in spite of global warming (Astrom et al., 2017; Guo et al., 2018; Díaz et al., 2019).

2 3 4 5 6 7

9

10

11

12 13

14

1

Figure 13.13: Scenario matrix for multi-model median heat stress risks under RCP 2.6, 4.5 and 8.5 and extended SSPs for Europe (EU28+) for the period 2040-2060 (baseline 1986-2005). The heat stress risk is calculated by geometric aggregation of the hazard (heat wave days), population vulnerability and exposure. Risk values are normalised using a z-score rescaling with a factor 10-shift. Details of the methodology are provided in (Rohat et al., 2019).

Other extreme events already result in major health risks across Europe. Between 2000 and 2014, for example, floods in Russia killed approximately 420 people, mainly older women (Belyakova et al., 2018). Fatalities associated with coastal flooding, wildfires, windstorms and river floods are expected to rise substantially by 2071-2100 compared to 1981-2010 (*medium confidence*) (Forzieri et al., 2017), with demographics, social and economic factors considered to be important (*medium confidence*)

13.7.1.2 Air quality

15 Air pollution is already one of the biggest public health concerns in Europe; in 2016 roughly 412,000 people 16 died prematurely in due to long-term exposure to ambient PM2.5, 71 000 due to NO2, and more than 15,000 17 premature mortalities occurred due to near surface ozone (EEA, 2019b). Climate change could increase air 18 pollution health effects (Jacob and Winner, 2009; Orru et al., 2017) (high agreement, medium evidence). 19 Increases in temperature and changes in precipitation will impact future air quality due to increased risk of 20 wildfires and related air pollution episodes. Projected increase in wildfires (13.3) and reduced air quality is 21 expected to increase respiratory morbidity (Slezakova et al., 2013; de Rigo et al., 2017a). Data on the health 22 impacts of wild-fires in Europe is currently limited, but examples of the summer of 2017 fires suggest that 23 more than 100 people died prematurely in Portugal alone as a result of poor air-quality (Oliveira et al., 24 2020). 25

At 3 degrees warming could be 9,850 and 2,890 additional premature mortalities each year in Europe due to exposure to PM2.5 and O3, respectively (*medium confidence*) (Silva et al., 2017). Estimated annual premature mortalities due to exposure to near-surface ozone are projected to increase up to an 11% in central and southern Europe in 2050 and decrease up to an 9% in Northern Europe (under RCP4.5) (Orru et al., 2019) (*medium confidence*). Constant or lower emissions combined with to stricter regulations and new policy initiatives, might improve air quality in coming decades (*medium agreement, low evidence*). Aging population in Europe enhances the future air quality mortality burden by 3-13% in 2050 (Geels et al., 2015;
Orru et al., 2019). Beside ambient air quality, projected increases in flood risk and heavy rainfall could
decrease indoor air quality (13.6.1.5.2) due to dampness and mould, leading to increased negative health
impacts, including allergy, asthma and rhinitis (EASAC, 2019c; EEA, 2019b).

5 6

7

13.7.1.2 Climate sensitive infectious diseases

8 Transmission of infectious diseases are determined by a range of social, economic, ecological, health care, 9 and other factors, but the incidence, prevalence, and distribution are projected to shift in a changing climate 10 (Chapter 7). Table 13.10 summarizes the observed impacts and projected risks of the main climate sensitive 11 infectious diseases for the four European regions.

12 Lyme disease and tick-borne encephalitis (TBE) are frequently occurring vector borne disease and has been 13 documented to expand from western Europe northwards to Sweden, Norway and the Russian Arctic (Jaenson 14 et al., 2012; Jore et al., 2014; Tokarevich et al., 2017) and to higher elevations in Austria and the Czech 15 Republic (Daniel et al., 2003; Heinz et al., 2015) (medium confidence). Potential habitat expansion of 3.8% 16 across Europe is projected (Porretta et al., 2013; Boeckmann and Joyner, 2014). TBE and Lyme infections 17 are anticipated to reduce in southern Europe (Semenza and Suk, 2018). The Asian tiger mosquito (Aedes 18 albopictus) is present in many European countries and can transmit Dengue, Chikungunya and West Nile 19 fever (Semenza and Suk, 2018). Europe experienced an exceptionally early and intense transmission season 20 of West Nile fever during the 2018 heatwave (Haussig et al., 2018). Projections for Europe under the A1B 21 scenario show the West Nile fever risk extending; for 2025 risk is projected to increase in Southern and 22 South eastern Europe, with the risk areas expanding further northward by 2050 (medium confidence) 23 (Semenza et al., 2016b). 24

25

Climate change is projected to affect the precipitation patterns and rain in early spring which can trigger water borne diseases such as campylobacteriosis outbreaks (Djennad et al., 2019; Lake et al., 2019 2008 to 2016) and warming has been linked with elevated incidence in different European countries (Yun et al., 2016; Lake et al., 2019). Under further warming, the number of months with risk of Vibrio transmission increases and the seasonal transmission window expands (Semenza et al., 2017)There is empirical evidence that warming increases risks gastrointestinal infections in humans(Semenza et al., 2017) (*medium confidence*).

33 34

Table 13.10: Overview of observed impacts and projected risks for climate sensitive infectious diseases across
 European regions. Table 13.A.6 provides an overview of supportive references. [PLACEHOLDER FOR FINAL

37 DRAFT: to be updated]

		Confi	dence		NEU			EEU			MED			WCE	
		Evidence	Agreement	Obs.	1.5°C	3°C									
Vector borne diseases															
	Tick-borne encephalitis														
	Lyme borreliosis														
	West Nile fever														
	Dengue fever														
	Chikungua fever														
	Malaria														
	Zika														
Wate	r borne diseases														
	Vibriosis														
	Legionella														
Food borne diseases															
	Salmonella														
	Campylobacter														

High risk	
Medium risk	
Low risk	
Disease not established	
No evidence	
Not assessed for SOD	
	-

2

21

13.7.1.4. Allergies and pollen

3 The main drivers of allergies are predominantly non-climatic (increased urbanization, adoption of 4 westernized lifestyles, social and genetic factors etc.,) but climate change strongly contributes to the spread 5 of some allergenic plants, thus exacerbating existing and causing new allergies to humans across Europe 6 (high confidence) (D'Amato et al., 2016; EASAC, 2019c). The prevalence of hay fever (allergic rhinitis), for 7 example, is between 4% and 30% among European adults (Pawankar et al., 2013). The invasive common 8 ragweed is a key species already causing major allergy in late summers (including hay fever and asthma), 9 particularly in Hungary, Romania and parts of Russia (Ambelas Skjøth et al., 2019). Sensitization to ragweed 10 is expected to increase from 33 to 77 million people by 2041-2060 (RCP 4.5, 8.5, resp.) (Lake et al., 2017). 11 12

Warming will result in an earlier start of the pollen season and extending it, but this differs across regions, 13 species, traits and flowering periods (Ziello et al., 2012; Bock et al., 2014; Revich et al., 2019). For instance 14 in different parts of Europe, the start of the birch season flowering have been shifted and extended up to two 15 weeks earlier during recent decades (Biedermann et al., 2019). Airborne pollen concentrations are projected 16 to increase across Europe (Ziello et al., 2012). In south-eastern Europe, where pollen already have a 17 substantive impact, the pollen count could increase more than 3/3.5 times by 2041-2060 compared to 1986-18 2005 (RCP 4.5/8.5, resp.) and can become a more widespread health problem across Europe, particularly 19 where it is currently uncommon (medium agreement, low evidence) (Lake et al., 2017). 20

22 13.7.1.5. Labour productivity and occupational health

23 Extreme heat and cold waves have been linked to an increased risk of occupational injuries, loss of 24 productivity and economic damages (Martinez-Solanas et al., 2018). The sectors with a high percentage of 25 high intensity outdoor work in Europe, mainly agriculture and construction, have the highest risk of 26 increased injury and labour productivity losses, but also manufacturing and service sectors can be affected 27 when air conditioning is not available (Gosling et al., 2018; Szewczyk et al., 2018; Dellink et al., 2019; 28 Matsumoto, 2019; Orlov et al., 2019). A substantial reduction in work capacity and related labour 29 productivity in 2085 is projected under RCP8.5 particularly in the Mediterranean, but also for other parts of 30 Europe (Kjellstrom et al., 2016; Takakura et al., 2017; Gosling et al., 2018). For Europe and its regions, 31 occupational heat stress is projected to contribute substantially to the total economic welfare loss due to 32 climate change (section 13.10.2). Effects of other extreme events on labour productivity and occupational 33 health is limited. 34 35

36 13.7.1.6. Food quality and nutrition

37 There is strong evidence that climate change will affect food quality (diversity of food, nutrient density, and 38 food safety) and food access, although the risks for European citizens are significantly lower compared to 39 other regions (Fanzo et al., 2018; IFPRI, 2018). Projected changes in crop and livestock production (13.5.1), 40 particularly reduced access to fruits and vegetables and foods with lower nutritional quality, will impact 41 already vulnerable groups (Swinburn et al., 2019). The effects of climate change on food quality and access 42 varies based on wealth, livelihood, and nutrient requirements, with low income and more vulnerable societal 43 groups in Europe most affected (IFPRI, 2018). Spikes in food prices due to changing growing conditions in 44 Europe (13.5.1), increased competition for land (e.g., land-based climate change mitigation), and feedbacks 45 from international markets, are expected to decrease access to affordable and nutritious food for European 46 citizens (13.9.1) (EASAC, 2019c; Loopstra, 2020). Limited access to healthy and varied food could 47 contribute to overweight and obesity which is an increasing health concern across European countries 48 49 (Springmann et al., 2016). Increased rates of obesity and diabetes further exacerbate risks from heat related events (EASAC, 2019c). 50

51 52

13.7.1.7. Mental health and wellbeing

Extreme weather events can trigger post-traumatic stress disorder (PTSD), anxiety and depression; this is
 well-documented for flooding in Europe (*high confidence*), but less for other extreme weather events. For
 example, in the UK, flooded residents suffered stress and identity loss from the flood event itself, but also

from subsequent disputes with insurance and construction companies (Carroll et al., 2009; Greene et al.,

2015). Residents displaced from their homes for at least one year due to 2013-2014 floods in England were significantly more likely to experience PTSD, depression and anxiety, with stronger effects in the absence of advance warning (Munro et al., 2017; Waite et al., 2017).

3 4 5

6

7

8 9

11

1

2

There is emerging evidence across Europe that young people may be experiencing anxiety about climate change, though it is unclear how widespread or severe this is (Hickman, 2019). In northern Italy, the number of daily emergency psychiatric visits and mean daily air temperature has been linked (Cervellin et al., 2014). During the heatwave in 2010, the number of suicides in Moscow increased two-fold (Revich et al., 2019).

10 13.7.2 Solution Space and Adaptation Options

Adaptation to health impacts has generally received less attention compared to other climate impacts across Europe (EASAC, 2019c). Progress on health adaptation can be observed. Between 2012 and 2017, at least 20 European countries instituted new governance mechanisms such as interdepartmental coordinating bodies for health adaptation and adopted health adaptation plans (Kendrovski and Schmoll, 2019). Progress on city level health adaptation is generally limited (Araos et al., 2016a), with most activities occurring in the Mediterranean region (Paz et al., 2016).

18

A range of health adaptation options have been implemented across European cities and regions. Table 13.11 19 presents the assessment of the feasibility and effectiveness of key health adaptation. It shows that substantial 20 barriers complicate wide spread implementation of measures; studies on the implementation of new blue-21 green spaces in existing urban structures in for example Sweden (Wihlborg et al., 2019), UK (Carter et al., 22 2018), the Netherlands (Aalbers et al., 2019), point to important feasibility challenges (e.g., access to 23 financial resources, societal opposition, competition for space) (high confidence). Lower perception of health 24 risks has been observed amongst vulnerable groups which in conjunction with perceived high costs of 25 protective measures act as barriers to implement health adaptation plans (van Loenhout et al., 2016; 26 Macintyre et al., 2018; Martinez et al., 2019). Mental health has been given little attention with barriers 27 including lack of funding, coordination, surveillance, and training (e.g., psychological first aid) (Hayes et al., 28 2018; Hayes and Poland, 2018). Existing health measures, such as monitoring and early warning systems 29 play an important role in detecting and communicating emerging risks (Confalonieri et al., 2015; Linares et 30 al., 2020) (high confidence). Stricter enforcement of existing health regulation and policy can have a positive 31 effect in reducing risks (Berry et al., 2018). 32

33 34

Table 13.11: Effectiveness and feasibility of the main adaptation options to climate change impacts and risks for health
 in Europe [PLACEHOLDER FOR FINAL DRAFT: to be updated]. The assessment steps are described in Appendix
 13.A. Underlying data and references supporting this assessment can be found in the Table 13.A.7.

13.A. Underlying data and references supporting this assessment can be found in the Table 13.A.7.

Generation options for climate impacts & risk

There are still significant gaps in our understanding of the effectiveness of most options in reducing health 3 risks, and the effectiveness is determined by many co-founding factors, including the extent of the risk, 4 existing socio-political structure, and other adaptation options considered (high agreement, medium 5 evidence). Successful examples include the implementation of heat wave plans (Schifano et al., 2012; van 6 Loenhout and Guha-Sapir, 2016; de'Donato et al., 2018) and improvements in health services and 7 infrastructure of homes (Vandentorren et al., 2006) (13.10.3.2). A study of nine European cities, for 8 example, showed lower numbers of heat related deaths in Mediterranean cities, and attributed this to the 9 implementation of heat prevention plans, a greater level of individual and household adaptation, and growing 10 awareness of citizens about exposure to heat (de'Donato et al., 2015). Long-term national prevention 11 programs in Northern Europe have been shown to reduce temperature related suicide (Helama et al., 2013). 12 Combining multiple types of adaptation options into a consistent policy portfolio may have an amplifying 13 effect in reducing risks (Lesnikowski et al., 2019a) (medium confidence) (Chapter 7). 14 15

Health adaptation actions have demonstrable synergies and trade-offs. For example, increasing green-blue 16 spaces in Europe's densely populated areas can be effective in improving micro-climate, reducing the impact 17 of heat waves, reducing air pollution, and improving mental health by increasing access to fresh air and 18 green (restorative) environment (Gascon et al., 2015; Kondo et al., 2018). These can also have negative 19 trade-offs and could lead to maladaptaton, such as creating new nesting grounds for carriers of vector-borne 20 diseases, increase pollen and allergy (Kabisch et al., 2017), higher freshwater use for irrigation (Reyes-21 Paecke et al., 2019), and could lead to green gentrification (Yazar et al., 2019). Similarly, air conditioning 22 and cooling devices are considered highly effective but have low economic and social feasibility and 23 negative trade-offs due to increasing energy consumption which are particularly challenging for the poor 24 (section 13.8.1, 13.8.3), enhancing the heat island effect, and increasing noise production (Fernandez Milan 25 and Creutzig, 2015; Hunt et al., 2017; Macintyre et al., 2018). 26

27 The solution space for implementing health adaptation options is slowly expanding in Europe. Health 28 adaptation can build on, and integrate into, established health system infrastructures. Health systems 29 infrastructures differ significantly Europe, as are their existing capacities to deal with climate related extreme 30 events (Austin et al., 2016; Austin et al., 2018; Orru et al., 2018; Watts et al., 2018; Austin et al., 2019; 31 Martinez et al., 2019). Despite some progress, limited mainstreaming is observed, particularly due to limited 32 societal pressure to change, confidence in existing health systems, and lack of awareness of link between 33 human health and climate change (medium confidence) (Austin et al., 2016; WHO, 2018). Coordination of 34 health adaptation actions across scales and between public sectors is needed to ensure timely and effective 35 responses for a diversity of health impacts (high confidence) (Austin et al., 2018; Ebi et al., 2018). Key 36 enabling conditions to extend the solution space have been documented, including increased role of national 37 governments in facilitating knowledge sharing across scales, allocating dedicated financial resources, and 38 dedicated knowledge and policy programs (Wolf et al., 2014; Akin et al., 2015; Curtis et al., 2017). Investing 39 in public health care systems more broadly increases their capacity to respond to climate related extreme 40 events (Cross-Chapter Box COVID in Chapter 7). 41

Nevertheless, there are limits to how much adaptation can take place and residual risk remain. These are
predominantly discussed in the context of excess mortality and morbidity to heat extremes (Hanna and Tait,
2015; Martinez et al., 2019). Future heatwaves (13.7.1.1) are expected to stretch existing adaptation
interventions well beyond levels observed in response to the observed events of 2003 and 2010, see
13.10.3.2 (Hanna and Tait, 2015). Increases in excess mortality from mid to end century (compared to 19712020) cannot be avoided for most European countries under all emission scenarios (Guo et al., 2018).

50 13.7.3 Knowledge Gaps

49

Literature on the link between public health, climate impacts, vulnerability and adaptation is skewed across Europe, with most studies focusing region specific impacts (e.g., flood injuries in western Europe, heatwaves in the Mediterranean region (Berrang-ford et al., Submitted). In general, attributing health impacts to climate change remains challenging, particularly for mental health, (mal)nutrition and food quality, wellbeing, and infectious diseases, where other socio-economic determinants play an important role. The connection between climate change and health risks under different socio-economic development pathways is hardly

studied comprehensively for Europe, with some exceptions for extreme events (Section 13.7.1.1). SSP/RCP 1 combinations seem to play an important role in better understanding projected risks. 2 3 Some climate related health issues are emerging but evidence is too limited for a robust assessment, for 4 example evidence of the links between climate change and violence in Europe (Fountoulakis et al., 2016; 5 Mares and Moffett, 2016; Sanz-Barbero et al., 2018; Koubi, 2019). 6 7 The solution space for public health adaptation in Europe, and the leavers for interventions, are hardly 8 assessed. Although health adaptations are documented, these are particularly around mortality and injuries 9 due to extreme events (predominantly floods and heat waves). There are very few studies assessing the 10 barriers and enablers of health adaptations, nor systematically assess the effectiveness of (portfolio) of 11 options. Limited insights in what works where hampers upscaling of insights across Europe and constrains 12 the ability to evaluate whether investments in health adaptation have actually reduced risks. 13 14 15 13.8 Poverty, Livelihoods and Cultural Heritage 16 17 13.8.1 Observed Impacts and Projected Risks 18 19 13.8.1.1 Povertv 20 21 While AR5 found little evidence of climate change related poverty in Europe, the recent literature reports 22 that poor households are affected more strongly by heat, drought and flooding events (medium confidence). 23 Climate change is not the main driver of social inequality in Europe, but it can exacerbate existing risks to 24 marginalized people (medium confidence) because of their higher exposure and sensitivity to flooding and 25 heat, a higher dependence on food self-provisioning, and a lower adaptive capacity (Hallegatte et al., 2016; 26 Hallegatte and Rozenberg, 2017). 27 28 Urban poor and ethnic minorities often settle in more vulnerable settlement zones, and are therefore 29 impacted more e.g., by flooding with the subsequent recovery perpetuating exclusion (medium confidence) 30 (Medd et al., 2015; Župarić-Iljić, 2017; Efendić, 2018; Fielding, 2018; Winsemius et al., 2018; Puðak, 2019; 31 Inuit Circumpolar Council, 2020). Yet, in some western European residential waterside developments this 32 pattern is reversed by flooding impacting high income residents more strongly (Walker and Burningham, 33 2011). 34 35 The health of the poor is also disproportionately affected during heat waves in the Mediterranean (Jouzel and 36 Michelot, 2016) or when flooding leads to heavy metal contamination of agricultural land (Filijović and 37 Đorđević, 2014). Women and the elderly are disproportionately affected by heat (Section 13.7.1). 38 39 Food self-provisioning is a widespread practice in parts of Northern, Eastern and Southern Europe 40 (Aleynikov et al., 2014; Corcoran, 2014; Church et al., 2015; Mustonen and Huusari, 2020). While it 41 strengthens resilience for disadvantaged households (Church et al., 2015; Boost and Meier, 2017; 42 Promberger, 2017; Vávra et al., 2018; Ančić et al., 2019; Pungas, 2019), it can become at risk in regions with 43 projected crop yield reductions (high confidence) (Hallegatte et al., 2016; Quiroga and Suárez, 2016; Myers 44 et al., 2017; Inuit Circumpolar Council, 2020), and after devastation by extreme weather events (Filijović 45 and Đorđević, 2014). 46 47 Energy poor households often live in thermally inefficient homes and cannot afford air conditioning to adapt 48 to overheating in summer (Sanchez-Guevara et al., 2019; Thomson et al., 2019). While energy poverty is 49 much more prevalent in southern and eastern Europe (Bouzarovski and Petrova, 2015; Pye et al., 2015; 50 Atsalis et al., 2016; Monge-Barrio and Sánchez-Ostiz Gutiérrez, 2018), climate change will also exacerbate 51 energy poverty in European regions where heating was so far the major share of energy costs (medium 52 confidence) (Sanchez-Guevara et al., 2019; Randazzo et al., 2020). 53 54 13.8.1.2 Traditional Livelihoods and Displacement of People within Europe 55

- 56
- Do Not Cite, Quote or Distribute

Northern communities are particularly affected by climate change because of their dependence on 1

cryosphere ecosystems they live in and use for livelihoods (high confidence) (Chapter 8, Cross-Chapter 2 Paper 6, Hayashi, 2017; Huntington et al., 2017; Hock et al., 2019b; Meredith et al., 2019a; Inuit

3 Circumpolar Council, 2020). Table 13.12 summarizes how these livelihoods and cultures are affected. 4

5

Impacts cascade due to lack of access to key ecosystems, lakes and rivers preventing traditional livelihoods

6 and food security (see Box 13.2 for an example), as well as the capacity to maintain unique indigenous 7

cultural systems. They contribute to the loss of cultural heritage (burial grounds, nomadic camp sites, 8

- graveyards, seasonal dwellings and routes). Capacity of already-marginalised indigenous and local 9
- communities will be further hindered by their limited representation in formal institutions (Arctic Council, 10
- 2013; Post et al., 2019; Mustonen and Huusari, 2020). Severe impacts may also affect indigenous mental 11
- 12 health (Furberg et al., 2011) (Figure 13.14).
- 13 14 15

Geography(Hazard, Exposure)Vulnerabilityand Projected RisksReferencesRussian FederationIncreased forestVulnerable natural habitats, Sámi200% increase in burned boreal(Khabarov et al., 2016; Krikken et al., 2019; Mustonen and Shadrin, 2020)Archangelsk, Komi), Swedenper year in Swedenforests, boreal ecosystems under threatforestsal., 2019; Mustonen and Shadrin, 2020)Greenland, Finland, Sweden, NWIncreased loss/flux of freshwater ice coverDisruption of food systems, loss of systems, loss of security, livelihood safety, access al., 2019; Ruan et al., 2017; Meredith et al., 2019; Golledge, 2020; Inuit Circumpolar Council, 2020)Greenland, NW Russia (Kara Sea, Nenets Aut. Area)Unstable loss/flux of marine ice coverIncreased precipitation in tundra, Nenets herding strongly impacted, ice- dependent speciesInterlinked loss of food security, safety, access to council, 2020)(Forbes et al., 2016; Hayashi, safety, access to council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food pastures and food 2016; Mikhaylova, 2016; Mikhaylova, 2018
Russian Federation (Murmansk, Karelia, Archangelsk, per year in Sweden Komi), SwedenIncreased forest fires since 2010 including 250km2 per year in Sweden of freshwater ice coverVulnerable natural habitats, Sámi forests, boreal ecosystems under threat200% increase in burned boreal forests(Khabarov et al., 2016; Krikken et al., 2019; Mustonen and Shadrin, 2020)Greenland, Finland, Sweden, NW RussiaIncreased loss/flux of freshwater ice coverDisruption of food systems, loss of key speciesCollapse of food security, livelihood safety, access issues to freshwater issues to freshwater issues to freshwater issues to freshwater issues to freshwater al., 2019; Ruan et al., 2019; Golledge, 2020; Inuit Circumpolar Council, 2020)Olistic provide to al., 2019; Ruan et al., 2019; Golledge, 2020; Inuit Circumpolar Council, 2020)Greenland, NW Nenets Aut. Area)Unstable loss/flux of marine ice coverIncreased precipitation in tundra, Nenets herding strongly impacted, ice- dependent species potentially lostInterlinked loss of food security, safety, access to marine ice(Forbes et al., 2017; Huntington et al., 2017; Inuit Circumpolar Council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food and habitat of reindeer(Arctic Council, 2013; Forbes et al., 2016; Mikhaylova, 2013; Forbes et al., 2016; Mikhaylova, 2013; Forbes et al., 2016; Mikhaylova, 2016; Mikhaylova, 2016; Mikhaylova, 2018)
(Murmansk, Karelia,fires since 2010 including 250km2 per year in Swedenhabitats, Sámi forests, boreal cosystems under threatburned boreal forests2016; Krikken et al., 2019; Mustonen and Shadrin, 2020)Greenland, Finland, RussiaIncreased loss/flux of freshwater ice coverDisruption of food systems, loss of key speciesCollapse of food security, livelihood safety, access issues to freshwater issues to freshwater al., 2019; Ruan et al., 2019; Saros et al., 2019; Golledge, 2020; Inuit Circumpolar Council, 2020)Greenland, NW Russia (Kara Sea, Nenets Aut. Area)Unstable loss/flux of marine ice coverIncreased precipitation in tundra, Nenets herding strongly impacted, ice- dependent species potentially lostInterlinked loss of marine ice(Forbes et al., 2016; Hayashi, 2016; Hayashi, 2017; Huntington marine ice council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of Indigenous(Arctic Council, 2018)GreenlandChanges to marineLoss of IndigenousFurther(Hayashi, 2017;
Karelia, Archangelsk, (Mustonen and shadrin, 2020)forests, boreal ecosystems under threatforestsal., 2019; Mustonen and Shadrin, 2020)Greenland, Finland, RussiaIncreased loss/flux of freshwater ice coverDisruption of food systems, loss of key speciesCollapse of food security, livelihood safety, access issues to freshwater fisheries(Hanna et al., 2016; Abermann et al., 2017; Meredith et al., 2019; Ruan et al., 2019; Saros et al., 2019; Golledge, 2020; Inuit Circumpolar Council, 2020)Greenland, NW Russia (Kara Sea, Nenets Aut. Area)Unstable loss/flux of marine ice coverIncreased precipitation in tundra, Nenets herding strongly impacted, ice- dependent species potentially lostInterlinked loss of food security, safety, access to 2016; Hayashi, 2017; Huntington marine ice(Forbes et al., 2016; Hayashi, 2017; Huntington marine iceFinland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food and habitat of reindeerLoss of natural pastures and food pastures and food 2018)GreenlandChanges to marineLoss of IndigenousFurther(Hayashi, 2017;
Archangelsk, Komi), Swedenper year in Swedenecosystems under threatMustonen and Shadrin, 2020)Greenland, Finland, Sweden, NWIncreased loss/flux of freshwater ice coverDisruption of food systems, loss of key speciesCollapse of food security, livelihod safety, access fisheries(Hanna et al., 2016; Abermann et al., 2017; Meredith et al., 2019b; Post et al., 2019; Ruan et al., 2019; Saros et al., 2019; Golledge, 2020; Inuit Circumpolar Council, 2020)Greenland, NW Russia (Kara Sea, Nenets Aut. Area)Unstable loss/flux of marine ice cover to for arrine ice cover precipitation in tundra, Nenets herding strongly impacted, ice- dependent species potentially lostInterlinked loss of food security, safety, access to food security, safety, access to food security, safety, access to al., 2016; Hayashi, 2016; Hayashi, 2017; Inuit Circumpolar Council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food and habitat of reindeerAcretic Council, 2013; Forbes et al., 2016; Mikhaylova, 2016; Mikhaylova, 2016; Mikhaylova, 2016; Mikhaylova, 2016; Mikhaylova, 2018)
Komi), SwedenthreatShadrin, 2020)Greenland, Finland, Sweden, NWIncreased loss/flux of freshwater ice coverDisruption of food systems, loss of key speciesCollapse of food scurity, livelihood safety, access(Hanna et al., 2016; Abermann et al., 2017; Meredith et al., 2019; Ruan et al., 2019; Ruan et al., 2019; Ruan et al., 2019; Golledge, 2020; Inuit Circumpolar Council, 2020)Greenland, NW Russia (Kara Sea, Nenets Aut. Area)Unstable loss/flux of marine ice coverIncreased precipitation in tundra, Nenets herding strongly impacted, ice- dependent species potentially lostInterlinked loss of food security, safety, access to food security, safety, access to council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnMore frequent and habitat of reindeerLoss of natural pastures and food pastures and food pastures and food 2016; Mikhaylova, 2016; Mikhaylova, 2018)GreenlandChanges to marineLoss of IndigenousCouncil, 2017;
Greenland, Finland, Sweden, NW RussiaIncreased loss/flux of freshwater ice coverDisruption of food systems, loss of key speciesCollapse of food security, livelihood safety, access issues to freshwater fisheries(Hanna et al., 2016; Abermann et al., 2017; Meredith et al., 2019b; Post et al., 2019; Ruan et al., 2019; Saros et al., 2019; Concelledge, 2020; Inuit Circumpolar Council, 2020)Greenland, NW Russia (Kara Sea, Nenets Aut. Area)Unstable loss/flux of marine ice cover verticeIncreased precipitation in tundra, Nenets herding strongly impacted, ice- dependent species potentially lostInterlinked loss of food security, safety, access to marine ice(Forbes et al., 2016; Hayashi, 2016; Hayashi, 2017; Huntington marine iceFinland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of IndigenousLoss of natural pastures and food 2016; Mikhaylova, 2016; Mikhaylova, 2018
Sweden, NW Russiaof freshwater ice coversystems, loss of key speciessecurity, livelihood safety, access issues to freshwater fisheriesAbermann et al., 2017; Meredith et al., 2019; Ruan et al., 2019; Ruan et al., 2019; Ruan et al., 2019; Golledge, 2020; Inuit Circumpolar Council, 2020)Greenland, NW Russia (Kara Sea, Nenets Aut. Area)Unstable loss/flux of marine ice cover bereinter ice cover Finland, Sweden, NW RussiaIncreased marine ice cover precipitation in tundra, Nenets herding strongly impacted, ice- dependent species potentially lostInterlinked loss of food security, safety, access to marine ice(Forbes et al., 2016; Hayashi, 2016; Hayashi, 2017; Huntington et al., 2017; Inuit Circumpolar Council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food 2013; Forbes et al., 2016; Mikhaylova, 2016; Mikhaylova, 2016; Mikhaylova, 2016; Mikhaylova, 2016; Mikhaylova, 2016; Mikhaylova, 2018)
Russiacoverkey speciessafety, access issues to freshwater fisheries2017; Meredith et al., 2019b; Post et al., 2019; Ruan et al., 2019; Saros et al., 2019; Golledge, 2020; Inuit Circumpolar Council, 2020)Greenland, NW Russia (Kara Sea, Nenets Aut. Area)Unstable loss/flux of marine ice cover of marine ice cover precipitation in tundra, Nenets herding strongly impacted, ice- dependent speciesInterlinked loss of food security, safety, access to food security, safety, access to 2016; Hayashi, 2017; Huntington et al., 2017; Inuit Circumpolar Council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food and habitat of reindeerCascading loss of natural pastures, and habitat of reindeerCascading loss of pastures, and food 2018;Castal, 2017; Huitist Circumpolar Castal, 2018
Greenland, NW Russia (Kara Sea, Nenets Aut. Area)Unstable loss/flux of marine ice cover precipitation in tundra, Nenets herding strongly impacted, ice- dependent species potentially lostIncreased food security, safety, access to marine iceInterlinked loss of (Forbes et al., 2016; Hayashi, 2016; Hayashi, 2016; Hayashi, 2017; Huntington marine iceFinland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food and habitat of reindeerLoss of natural pastures and food pastures and food pastures and food 2013; Forbes et al., 2016; Mikhaylova, 2016; Mikhaylova, 2016; Mikhaylova, 2016; Mikhaylova, 2018)
Greenland, NW Nenets Aut. Area)Unstable loss/flux of marine ice cover Nenets Aut. Area)Increased precipitation in tundra, Nenets herding strongly impacted, ice- dependent species potentially lostInterlinked loss of food security, safety, access to marine ice(Forbes et al., 2016; Hayashi, 2017; Huntington et al., 2017; Inuit Circumpolar 2016; Hayashi, 2017; HuntingtonFinland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food 2018; Forbes et al., 2016; Mikhaylova, 2016; Mikhaylova, 2018)GreenlandChanges to marineLoss of IndigenousFurther(Hayashi, 2017;
Al., 2019; Saros etal., 2019; Saros etal., 2019; Saros etal., 2019; Golledge,2020; InuitCircumpolarCouncil, 2020)Greenland, NWRussia (Kara Sea,Nenets Aut. Area)Unstable loss/fluxof marine ice coverprecipitation intundra, Nenetsherding stronglyimpacted, ice-dependent speciespotentially lostFinland, Sweden,NW RussiaMore frequentRain-on-Snowevents / autumnand habitat ofreindeerChanges to marineLoss of IndigenousFurtherChanges to marineLoss of IndigenousCouncil, 2017;
Al., 2019; Golledge, 2020; InuitGreenland, NW Russia (Kara Sea, Nenets Aut. Area)Unstable loss/flux of marine ice coverIncreased precipitation in tundra, Nenets herding strongly impacted, ice- dependent species potentially lostInterlinked loss of food security, safety, access to marine ice(Forbes et al., 2016; Hayashi, 2017; Huntington et al., 2017; Inuit Circumpolar 2017; Inuit Circumpolar Council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food 2016; Mikhaylova, 2016; Mikhaylova, 2016; Mikhaylova, 2018)GreenlandChanges to marineLoss of IndigenousFurther(Hayashi, 2017;
Greenland, NW Nenets Aut. Area)Unstable loss/flux of marine ice cover Nenets Aut. Area)Increased precipitation in tundra, Nenets herding strongly impacted, ice- dependent species potentially lostInterlinked loss of food security, safety, access to marine ice(Forbes et al., 2016; Hayashi, 2017; Huntington et al., 2017; Inuit Circumpolar Council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food 2018; Forbes et al., 2016; Mikhaylova, 2013; Forbes et al., 2016; Mikhaylova, 2018)GreenlandChanges to marineLoss of IndigenousFurther(Hayashi, 2017;
Greenland, NW Russia (Kara Sea, Nenets Aut. Area)Unstable loss/flux of marine ice cover of marine ice coverIncreased precipitation in tundra, Nenets herding strongly impacted, ice- dependent species potentially lostInterlinked loss of food security, marine ice(Forbes et al., 2016; Hayashi, 2017; Huntington et al., 2017; Inuit Circumpolar Council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of IndigenousLoss of Indigenous(Arctic Council, 2013; Forbes et al., 2013; Forbes et al., 2013; Forbes et al., 2013; Forbes et al., 2016; Mikhaylova, 2018)
Greenland, NW Russia (Kara Sea, Nenets Aut. Area)Unstable loss/flux of marine ice cover of marine ice coverIncreased precipitation in tundra, Nenets herding strongly impacted, ice- dependent species potentially lostInterlinked loss of food security, marine ice(Forbes et al., 2016; Hayashi, 2017; Huntington et al., 2017; Inuit Circumpolar Council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food 2013; Forbes et al., 2016; Mikhaylova, 2013; Forbes et al., 2013; Forbes et al., 2016; Mikhaylova, 2018)GreenlandChanges to marineLoss of IndigenousFurther(Hayashi, 2017;
Greenland, NW Russia (Kara Sea, Nenets Aut. Area)Unstable loss/flux of marine ice coverIncreasedInterlinked loss of food security, safety, access to marine ice(Forbes et al., 2016; Hayashi, 2017; Huntington et al., 2017; Inuit Circumpolar Council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of IndigenousLoss of Indigenous(Arctic Council, 2013; Forbes et al., 2017; Huntington et al., 2017; Inuit Circumpolar Council, 2020)GreenlandChanges to marineLoss of IndigenousFurther(Hayashi, 2017;
Russia (Kara Sea, Nenets Aut. Area)of marine ice cover tundra, Nenetsprecipitation in tundra, Nenetsfood security, safety, access to marine ice2016; Hayashi, 2017; Huntington et al., 2017; Inuit Circumpolar Council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food(Arctic Council, 2013; Forbes et al., 2013; Forbes et al., 2016; Mikhaylova, 2013; Forbes et al., 2016; Mikhaylova, 2018)GreenlandChanges to marineLoss of IndigenousFurther(Hayashi, 2017;
Nenets Aut. Area)tundra, Nenets herding strongly impacted, ice- dependent species potentially lostsafety, access to marine ice2017; Huntington et al., 2017; Inuit Circumpolar Council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food 2013; Forbes et al., 2016; Mikhaylova, 2018)GreenlandChanges to marineLoss of IndigenousFurtherKartin Circumpolar (Arctic Council, 2020)Council, 2020)Kartin Circumpolar (Arctic Council, 2013; Forbes et al., 2016; Mikhaylova, 2016; Mikhaylova, 2018)Kartin Circumpolar (Kartin Circumpolar)Council, 2017;
herding strongly impacted, ice- dependent species potentially lostmarine iceet al., 2017; Inuit Circumpolar Council, 2020) potentially lostFinland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food 2013; Forbes et al., 2016; Mikhaylova, 2018)GreenlandChanges to marineLoss of IndigenousFurther
impacted, ice- dependent species potentially lostCircumpolar Council, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food 2013; Forbes et al., 2016; Mikhaylova, 2018)GreenlandChanges to marineLoss of IndigenousFurther
dependent species potentially lostCouncil, 2020)Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food 2013; Forbes et al., 2016; Mikhaylova, 2018)GreenlandChanges to marineLoss of IndigenousFurther
Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food 2013; Forbes et al., 2016; Mikhaylova, 2018)GreenlandChanges to marineLoss of IndigenousFurther(Hayashi, 2017;
Finland, Sweden, NW RussiaMore frequent Rain-on-Snow events / autumnCascading loss of natural pastures and habitat of reindeerLoss of natural pastures and food 2013; Forbes et al., 2016; Mikhaylova, 2018)GreenlandChanges to marineLoss of IndigenousFurther(Hayashi, 2017;
NW RussiaRain-on-Snow events / autumnnatural pastures pasturespastures and food pastures and food2013; Forbes et al., 2016; Mikhaylova, 2018)GreenlandChanges to marineLoss of IndigenousFurther(Hayashi, 2017;
events / autumnand nabitat of reindeer2016; Mikhaylova, 2018)GreenlandChanges to marineLoss of IndigenousFurther(Hayashi, 2017;
GreenlandChanges to marineLoss of IndigenousFurther(Hayashi, 2017;
Greenland Changes to marine Loss of indigenous Further (Hayasin, 2017,
food web knowledge food uncontrolled Pecket al 2017:
security system changes Hayashi and Walls
2019. Inuit
Circumpolar
Council. 2020)
Greenland, Finland, Loss of spring Loss of transport. Cultural and social (Arctic Council.
Sweden, NW snow and ice access, safety and impacts 2013; Post et al.,
Russia harvesting areas 2019; Mustonen
and Huusari, 2020)
NW Russia (Nenets Increased coastal Clogging of Loss of Indigenous (Brattland and
Autonomous Area, and catchment spawning sites, loss land use and Mustonen, 2018)
Archangelsk) erosion of habitat cultural sites
Greenland, Finland, Diminishing System shifts in Collapse of winter (Post et al., 2019;
Sweden, NW freshwater lake ice freshwater aquatic fisheries Mustonen and
Russia, Scotland in autumn habitats, loss of Huusari, 2020;
fish Mustonen et al.,
2020)

Table 13.12: Impacts to Cryosphere-Dependent Traditional Systems in the European Arctic

Finland, Sweden	Fish lake death and fish death events due to warm water, 2018	Loss of populations locally that support key systems; Loss of Indigenous knowledge, food security	Loss of cold- dependent species; Loss of food and cultural well-being	(Mustonen et al., 2018)
Finland, NW Russia, Norway	Expansion of invasive Pink Salmon, 1970s to 2018	Proliferation of non-native species, loss of A. salmon	Competition with native salmon	(Mustonen et al., 2020)
Finland	Erosion of river banks, increased nutrients, algal blooms	Loss of water quality and cold- species habitats	Impacts to waterways and quality	(Mustonen et al., 2018)
Puruvesi, Finland	Loss of ice cover months by 50% 1968-2020	Algal blooms and loss of ice risks extinction of seals	Seining season and incomes halved, habitat and gear lost	(Mustonen, 2014; Mustonen and Huusari, 2020)
Nellim, Finland	Cultural and linguistic loss due to lack of access to traditional harvesting areas	Endangered ways of knowing lost	Established cultures under threat	(Frainer et al., 2020)
Nellim, Finland	Sámi women lack of access to ice	Gendered knowledge lost	Gendered impacts	(Frainer et al., 2020)

Climate impacts on the cryosphere interact with complex and compounding processes both at sea and on 3 land creating inseparable links between temperature, ice formation and seasonal change, food chains and 4 ecosystems (high confidence). Across Northern Europe, several observed changes illustrate this 5 compounding nature. Mortality for Arctic Char associated with warmer waters in high-Arctic freshwater 6 habitats (13.3.1) impacts Sámi cultural and linguistic well-being (Mustonen et al., 2018) (Frainer et al., 7 2020). Introduced Pacific Pink Salmon expands in range, affecting endemic species through competition 8 reducing their abundance (Mustonen et al., 2020). Increased nutrient loading of rivers and rapid expansion of 9 algae increase the risks for cold-dependent fish (Mustonen et al., 2018). The start of ice cover on lakes, e.g., 10 lake Puruvesi (Finland), has changed from November to February (Mustonen, 2014; Mustonen and Huusari, 11 2020) which, combined with much earlier ice breakup, reduces fish harvest for important species by up to 12 50% and impacts on local safety, ecosystems, oral history maintenance and the local economy. 13 14

16 [START BOX 13.2 HERE]

Box 13.2: Sami Reindeer Herding in Sweden

Reindeer (Rangifer tarandus) are keystone species in northern landscapes (Vors and Boyce, 2009). Reindeer
herding is a traditional, semi-nomadic livelihood of the Sami. Reindeer migrate between seasonal pastures
that cover 55% of Sweden and are simultaneously used for multiple other purposes (Sandström et al., 2016).
As an indigenous right, reindeer herding is protected by the UN Declaration on the Rights of Indigenous
Peoples and several UN conventions.

24 25

15

17

18

Temperatures in Arctic and sub-Arctic regions have increased on average by 2°C over the last 30 years (*very high confidence*) (WGI AR6 Chapter 12). Future warming is expected to further increase winter precipitation (*high confidence*) (WGI AR6 Chapter 12) and extreme weather events such as rain-on-snow (ROS), creating a hard ice crust on the snow after refreezing (Bokhorst et al., 2016; Rasmus et al., 2018).

30

The documented and projected impacts on reindeer are complex and varied. Warming and CO_2 increase result in higher plant productivity (Section 13.3) changes in plant community composition, and higher

parasite harassment; unstable ice conditions affect migration; extreme weather conditions during critical

winter months, more frequent fires and changes in plant community composition reduce pasture quality

- (medium confidence) (Mallory and Boyce, 2018) (Figure 13.14). Warming and CO₂ increase result in higher
 plant productivity (Section 13.3) changes in plant community composition, and higher parasite harassment;
 unstable ice conditions affect migration; extreme weather conditions during critical winter months, more
 frequent fires and changes in plant community composition reduce pasture quality (medium confidence)
 (Mallory and Boyce, 2018) (Figure 13.14). High snow depth and ROS impede reindeer access to ground
 lichen in winter and delay spring green-up during critical calving period; both cause malnutrition and
- 7 negative impacts on reindeer health, mortality, and reproductive success (*medium confidence*) (Hansen et al.,
- 8 2014; Forbes et al., 2016; Mallory and Boyce, 2018). Lower slaughter weights and increased mortality
- ⁹ reduce the income of herders (*high confidence*) (Tyler et al., 2007; Helle and Kojola, 2008).
- 10 11

- 12 13
- Figure 13.14: Climate change-related impacts affecting nomadic reindeer herding in Northern Europe
 [PLACEHOLDER FOR FINAL DRAFT: direction of change will be added for observed impacts and projects risks]
- 15 See Table 13.A.8 for references.
- 16 17
- Reindeer herding already autonomously adapts to changing conditions through flexible use of pastures and
 supplementary feeding (*high confidence*), reducing and thereby hiding some of the negative impacts of
 climate change (Uboni et al., 2016). However, adaptive herding practices have themselves added significant
 burden through increased workload, costs and stress (*high confidence*) (Furberg et al., 2011; Löf, 2013;
 Rosqvist et al., 2020). Supplementary feeding also increases risk for infectious diseases and implies
 culturally undesirable herding practices (*low confidence*) (Lawrence and Kløcker Larsen, 2019; Tryland et
- 24 25

al., 2019).

- Rapid land use change reduces the ability to adapt (*high confidence*) (Tyler, 2010; Löf, 2013). National and
- EU policies expand land uses for mining, wind energy and bioeconomy in the area, causing loss,
- fragmentation and degradation of pastures, increasing human disturbance, and reducing the adaptation space
- *(medium confidence)* (Kivinen et al., 2012; Skarin and Åhman, 2014; Kivinen, 2015; Skarin et al., 2015; Sondetröm et al. 2016: Beland Lindehl et al. 2017; Öcterlin and Baitio 2020). The sumulative impacts of
- Sandström et al., 2016; Beland Lindahl et al., 2017; Österlin and Raitio, 2020). The cumulative impacts of these land-uses on pastures are not adequately assessed or recognized in land use planning (Kløcker Larsen

SECOND ORDER DRAFT

Chapter 13

et al., 2017; Larsen et al., 2018). Herding communities face strong barriers to protecting their rights and 1 halting further degradation of pastures (medium confidence) (Allard, 2018; Kløcker Rasmus and Raitio, 2 2019; Raitio et al., 2020). Attempts by herding communities to stop mining projects have led to conflicts 3 with other actors, including racist hate speech (Persson et al., 2017; Beland Lindahl et al., 2018). Combined 4 with land use conflicts climate impacts cause reduced psycho-social health and increase suicidal thoughts 5 among herders (low confidence) (Kaiser et al., 2010; Furberg et al., 2011). 6 7 Reindeer herding is and will be significantly affected by climate change directly and indirectly (Figure 8 13.14) (Pape and Löffler, 2012; Andersson et al., 2015). However, the complexity of the herding system and 9 its socio-political context result in *low confidence* for the precise nature of the impacts of 1.5°C and 3°C 10 warming. Nonetheless, the cumulative effects of land use and climate change have already increased 11 vulnerability and reduced the adaptive capacity of reindeer herding to the extent that its long-term 12 sustainability is threatened (medium confidence) (Löf, 2013; Horstkotte et al., 2014; Kløcker Larsen et al., 13 2017) }. 14 15 Maintaining and improving the solution space to adapt reindeer herding is crucial for reducing existing 16 impacts and projected risks of climate and land use change (low confidence) (Andersson et al., 2015; 17 Turunen et al., 2016; AMAP, 2017; Hausner et al., 2020). Seasonality of habitat selection can buffer alpine 18 reindeer pastoralism against climate variability (Altieri and Gedan, 2015). Lack of control over land use is 19 the biggest and most urgent threat to the adaptive capacity of reindeer herding and the right of Sami to their 20 culture (high confidence) (Pape and Löffler, 2012; Andersson et al., 2015; Larsen and Raitio, 2019). 21 22 [END BOX 13.2 HERE] 23 24

25

35

Displacement of people within Europe is predominantly triggered by economic disparities among European 26 countries (Fischer and Pfaffermayr, 2018) (see section 13.9 for external migration). There is limited and 27 inconclusive evidence for climate-driven impacts on these movements (Hoffmann et al., 2020). Climate-28 induced migration within Europe occurs in the aftermath of natural disasters and over short distances 29 (Cattaneo et al., 2019). The unequal distribution of future climate risks and adaptive capacity across 30 European regions may increase pressure for internal migration (Williges et al., 2017; Forzieri et al., 2018). 31 For instance, projected sea-level rise (13.2) has the potential to result in abandonment of coastal settlements 32 and inland migration in the UK, the Netherlands and the northern Mediterranean (Mulligan et al., 2014; 33 Antonioli et al., 2017). 34

36 13.8.1.3 Cultural Heritage

37 Changes in rainfall patterns, sea-level rise, coastal erosion, humidity, higher temperature, loss of ice and 38 permafrost, floods and exposure to extreme weather events pose a serious threat to preservation of cultural 39 heritage in Europe (high confidence) (Haugen and Mattsson, 2011; Daire et al., 2012; Dupont and Van 40 Eetvelde, 2013; Macalister, 2015; Phillips, 2015; Fatorić and Seekamp, 2017; Graham et al., 2017; Carroll 41 and Aarrevaara, 2018; Sesana et al., 2018; Iosub et al., 2019; Daly et al., 2020). With higher warming levels, 42 not only are building exteriors affected but also valuable collections are at risk from indoor climate changes 43 (Leissner et al., 2015). Low-lying coastal European regions, such as the German Wadden Sea and more than 44 50 heritage sites along the Mediterranean (Box 13.1 Venice) and UK coastline, are under water-related 45 threats (Reimann et al., 2018b; Walsh, 2018; Harkin et al., 2020) (Cross-Chapter Paper 4). 46

47

Disappearing cultural heritage can reduce incomes due to loss of tourism (Hall et al., 2016), as is the case for the Aletsch-Jungfrau glacier in the Swiss Alps or the glaciers of the Laponian Area in Scandinavia and in Greenland (Bjorst and Ren, 2015; Bosson et al., 2019). Intangible cultural heritage can be affected through socio-ecological interconnections with the ecosystems, such as place names, and lost traditional practices (Mustonen, 2018; Dastgerdi et al., 2019). Glacier retreat can create a sense of discomfort, displacement and anxiety in people (Section 13.7) (Albrecht et al., 2007; Brugger et al., 2013; Allison, 2015; Jurt et al., 2015).

55 13.8.2 Solution Space and Adaptation Options

As climate change is one of many drivers of poverty, improving the social position of the current poor and 1 the vulnerable will also increase their resilience in meeting climate change impacts (Hallegatte and 2 Rozenberg, 2017; Fronzek et al., 2019). Some adaptation actions have the potential to alleviate poverty, such 3 as rooftop photovoltaics which provide electricity to households at lower cost (Romero Rodríguez et al., 4 2018) (see section 13.11 on trade-offs and synergies). However, adaptation action can also increase social 5 inequalities, e.g., when practices of disaster recovery focus on high visibility areas and thereby amplify 6 inequalities (D'Alisa and Kallis, 2016). Disaster management and risk communication reliant on new 7 technologies can exclude older populations with lower educational attainment (Kešetović et al., 2017). 8

9

Regarding risks to northern traditional livelihoods and indigenous communities, small-scale adaptation is
 taking place, for example by ecological restoration of habitats (section 13.3) (Mustonen and Kontkanen,

12 2019). However, limited access to resources outside the jurisdictions of the communities limits the scope of 13 community-based adaptation (Arctic Council, 2013; Mustonen et al., 2018; Meredith et al., 2019b).

Indigenous knowledge, embedded e.g., in fishermen, farmers and navigators, can be a vehicle for detecting, monitoring and observing impacts (Arctic Council, 2013; Brattland and Mustonen, 2018; Madine et al.,

2018; Meredith et al., 2019b). Up to now, climate-induced large scale migration within Europe is prevented

by good governance and effective adaptation actions e.g., in the UK (Fielding, 2011; Mulligan et al., 2014).

18

European world heritage sites are in need of adaptation strategies to preserve key cultural assets (Haugen and Mattsson, 2011; Howard, 2013; Heathcote et al., 2017; Reimann et al., 2018b; Harkin et al., 2020). Current adaptation actions for climate change adaptation in the management of cultural heritage are underdeveloped (Phillips, 2015; Fernandes et al., 2017; Sesana et al., 2018; Daly et al., 2020). Lack of tailored knowledge and understanding of the impacts and how to translate these into adaptation measures constrains implementation and overarching policy guidance is largely absent (Sesana et al., 2018; Fatorić and Biesbroek, 2020; Sesana et al., 2020).

25 26

27 28

13.8.3 Knowledge Gaps

The understanding of the relation between social inequality, climate change impacts and adaptation, especially on different types of poverty (structural, temporal, permanent) and in respect to marginalised groups across different dimensions, such as sexual orientation, is in its infancy. It is unclear whether regional disparities across Europe and structural change amplify internal migration pressure. Indigenous and local knowledge sourcing is still relatively low for Europe and could provide a baseline for adaptation. For cultural heritage, there is also still a major knowledge gap on the range of adaptation options available, including its limits.

36 37 38

39

45

13.9 Interregional Impacts, Risks and Adaptation

This section addresses interregional risks between Europe and other parts of the world (not within Europe). Global risk pathways affecting sectors and supply chains relevant for European economies and societies involve (1) ecosystems, (2) people (e.g., through migration), (3) financial flows, and (4) trade, and these pathways ultimately impact security, health, wellbeing and food supply (Yokohata et al., 2019) (Cross-Chapter Box INTEREG in Chapter 16).

46 13.9.1 Consequences of Climate-change Driven Impacts, Risks and Adaptation Emerging in Other Parts 47 of the World for Europe

48 Recent literature (Wenz and Levermann, 2016a; Hedlund et al., 2018; Benzie et al., 2019) strengthens the 49 confidence in the AR5 statement from 2014 that "with increasing globalization, the impacts of climate 50 change outside the European region are likely to have implications for countries within the region"(Kovats et 51 al., 2014). The exposure of European countries to trans-European climate impact and risk pathways varies 52 with their degree of globalization, position in the global supply chain, territorial settings and national policies 53 (Berry et al., 2015; Hedlund et al., 2018; Benzie et al., 2019). There is *limited evidence* that Europe is more 54 exposed to interregional risks than North America, and less than Africa and Asia, due to European countries' 55 position in the global supply chain, their national policies, and links with territories outside Europe (see 56 1.9.3) (Hedlund et al., 2018). 57

There is *low confidence* in the sign and magnitude of climate change impacts for human inter-regional migration and violent conflicts (Gemenne, 2011; Buhaug et al., 2014; Topilin, 2016; Defrance et al., 2017; Gemenne and Blocher, 2017; Selby et al., 2017; Mach et al., 2019). Asylum applications might double for RCP8.5, but they might also decrease due to growing economic and regulatory limitations in the capacity of populations to migrate from Africa (Kelley et al., 2015; Missirian and Schlenker, 2017; Zickgraf, 2018; Borderon et al., 2019) (Cross-Chapter Box MIGRATE in Chapter 7).

8

9 Climate risks in the originating countries can be transmitted to European economies via trade networks

- 10 (Figure 13.15(a)). Figure 13.15(b) illustrates that European agricultural imports exert a high water footprint
- in originating countries already today (Dolganova et al., 2019; Ercin et al., 2019), and some crop imports are
- highly vulnerable to future climate change (Brás et al., 2019; Chatzopoulos et al., 2020). Simultaneous
- breadbasket failures, and trade restrictions, such as after the 2010 drought in Russia, increase risks to food
- supply (*medium confidence*) (Fellmann et al., 2014; d'Amour et al., 2016; Gaupp et al., 2017; Gaupp et al.,
 2020). The European economy is also projected to be negatively affected by supply chain disruptions due to
- 15 2020). The European economy is also projected to be negatively affected by supply chain disruptions due to 16 flooding destroying facilities, heatwaves and malaria reducing productivity in labor intensive industries and
- regions (13.7.1), and sea-level rise affecting ports and cities along coastlines (13.2.1) (*high confidence*)
- (Nicholls and Kebede, 2012; Challinor et al., 2016a; Wenz and Levermann, 2016b; Hedlund et al., 2018;
- 19 Koks, 2018; Szewczyk et al., 2018; Willner et al., 2018; Knittel et al., 2020; Kulmer et al., 2020).
- 20 21

Do Not Cite, Quote or Distribute

(a) Trade in commodities (imports from the rest of the world to Europe in 2019) and climate risks according to ND GAIN vulnerability score 2018 and the Climate Risk Index (CRI)

(b) Virtual water flows (of blue and green water) embodied in imports of agricultural products to Europe as an illustration of the biophysical pathway

Figure 13.15: Trans-European climate risks in trade: imports of goods and virtual water embodied in agricultural imports. (a) import flows of goods to Europe in 2018 in 1,000 USD (UNCTAD, 2020) and climate change vulnerability of countries of origin, as measured by the ND GAIN exposure score (University of Notre, 2020) and the Climate Risk Index (Germanwatch, 2020); (b) virtual water flows embodied in agricultural imports to Europe in 2018 and the vulnerability to climate change of the most important crops in the originating countries (Dolganova et al., 2019; Ercin et al., 2019).

7 8 9

10

1

2 3

4

5

6

13.9.2 Interregional Consequences of Climate Risks and Adaptation Emerging from Europe

New literature published since AR5 suggests that climate risks in Europe can propagate worldwide in a 3°C (*medium confidence*). Key concerns include climate impacts on European agriculture threatening global food security (Berry et al., 2017; van der Velde et al., 2018) (Section 13.5.1) and the European demand limiting the adaptation potential for ecosystems in South-America, Africa and Asia (IPBES, 2018; Pendrill et al., 2019; Fuchs et al., 2020). Emerging literature suggests that unprevented coastal flood risks in western Europe could be amplified through the global financial system, and generate a systemic financial crisis 1 (Mandel et al., 2020a) (Figure 13.16). For 3°C of global warming and without adaptation, northern Atlantic 2 flight routes and European ports are projected to be increasingly disrupted by changing winds, waves, and

flight routes and European ports are projected to be increasingly disrupted by changing winds, waves, and
 sea-level rise (Section 13.6.1.2) (Williams and Joshi, 2013; Irvine et al., 2016; Williams, 2016; Becker et al.,

4 2018; Camus et al., 2019; Verschuur et al., 2020).

5 6

Figure 13.16: The transmission of flood risks via finance flows from Europe to the Rest of the World. The color of the European regions shows the global effect relative to the regional effect. Values larger than 1 indicate that there is spill over, values larger than 2 indicate that their spill over effect is stronger than the regional effect. The fluxes indicate the financial flows from European to other IPCC regions. [Provisional figure - location of Pacific countries will be revised] (Mandel et al., 2020a).

13 14 15

13.9.3 European Territories Outside Europe

16 European territories outside Europe are critically exposed to climate risks such as increased forest fires 17 (Russian Siberia) (Sitnov et al., 2017), climate change-induced biodiversity losses and sea-level rise (UK, 18 Spanish, Portuguese, French and Dutch overseas regions and territories) (Ferdinand, 2018; Sieber et al., 19 2018). Europe is projected to be affected by climate risks emerging from these territories, such as smoke and 20 dust from Siberian forest fires (Sitnov et al., 2017), and, depending on European health-risk mitigation 21 measures, dengue and other mosquito-transmitted diseases (13.7) (Schaffner and Mathis, 2014). Some 22 marine protected areas (MPA) in European overseas territories are increasingly affected by changes 23 originating in far-field upstream areas, which, in turn, are influenced by climate change, and ultimately 24 undermines their ability to curb biodiversity losses and foster food security (Schaffner and Mathis, 2014; 25 Robinson et al., 2017). (Robinson et al., 2017)Adaptation options and regulations developed for mainland 26 Europe apply in these territories, despite *limited evidence* that they meet local and regional adaptation 27 challenges and address the aspiration for social justice, promotion of local solutions and consideration of 28 traditional knowledge (Schaffner and Mathis, 2014; Robinson et al., 2017; Sitnov et al., 2017; Ferdinand, 29 2018; Terorotua et al., 2020). 30

31

33

32 13.9.4 Solution Space and Adaptation Options

European countries can address interregional risks at the place of origin or destination, e.g., by developing local adaptation capacity in trading partner countries and in European territories outside Europe (Petit and Prudent, 2008; ADEME, 2014; Benzie and Persson, 2019; Adams et al., 2020; Terorotua et al., 2020), by

providing international adaptation finance (Dzebo and Stripple, 2015; BMUB, 2017), by developing 1 insurance mechanisms suitable for adaptation, or European climate services to support global adaptation 2 (Linnerooth-Bayer and Mechler, 2015; Brasseur and Gallardo, 2016; Street, 2016; Cavelier et al., 2017; Le 3 Cozannet et al., 2017) (Cross-Chapter Box INTEREG in Chapter 16). Along the supply chain, risks can be 4 reduced by trade diversification and alternative sourcing (Benzie and Persson, 2019; Adams et al., 2020). 5 Within Europe, risks can be reduced by integrating interregional climate risks into national adaptation 6 strategies and plans and mainstreaming into EU policies (e.g., Common Agricultural Policy, trade 7 agreements) (Benzie et al., 2019; Benzie and Persson, 2019; Adams et al., 2020). There is high confidence 8 that the exposure of European countries to interregional risks can be reduced by international governance 9 (Dzebo and Stripple, 2015; Cramer et al., 2018; Persson and Dzebo, 2019) (Cross-Chapter Paper 4), e.g., 10 fulfilling the targets of environmental agreements such as the Convention for Biological Diversity (IPBES, 11 2018). There is emerging evidence that supporting adaptation outside Europe may generate economic co-12 benefits for Europe (Román et al., 2018), but there is also the potential risk that, for example, substituting 13 suppliers may increase risk levels in the most vulnerable countries (Benzie et al., 2019; Adams et al., 2020). 14

15 16

17 18

13.10 Detection and Attribution, and Key Risks Across Sectors and Regions

19 13.10.1 Detection and Attribution of Impacts

20 Since AR5, scientific documentation of changes attributed to global warming have proliferated (high 21 confidence). Ecosystem changes detected in previous assessments, such as earlier annual greening and onset 22 of faunal reproduction processes, and relocation of species towards higher latitudes and altitudes, have been 23 further documented and attributed to climate change (high confidence). The impacts of heat on human 24 health, and productivity are already detectable now and have been attributed to climate change (medium 25 *confidence*) (Figure 13.17). Formal attribution of impacts of compound events to anthropogenic climate 26 change is just emerging. However, there is high agreement and medium evidence that particular events 27 attributed to climate change have induced cascading impacts and other impact interactions (Smale et al., 28 2019; Vogel et al., 2019). The methodology of attribution is discussed in Chapter 16.2. 29

Figure 13.17: Detected changes and attribution (D&A) on land (top) and in the ocean (bottom). Assessment based on peer reviewed literature in this chapter that reported observed evidence with at least 90% significance and usually with 95% significance or more. The list of the assessed references is provided in Table 13.A.9.

13.10.2 Consequences of multiple climate impacts and risks for European economies

While not all impact categories can be measured in monetary values, macroeconomic loss (reduction on aggregate economic output or welfare) is a metric for comparing between impact categories, regions, and time periods. Macroeconomic assessments of multiple climate risks capture not only the direct losses within the affected systems, but also indirect effects due to cascading and interaction effects across sectors, as well as market and price responses. The total economic effect can be therefore considerably larger than the direct effect, e.g., for riverine flooding (Koks and Thissen, 2016).

At lower warming levels (up to approx. 0.8 °C above pre-industrial), macroeconomic losses were detected for southern Europe whereas gains were detected for northern Europe and there was mixed evidence for central and eastern Europe (Burke et al., 2015). In the recent decades (2000-2015), economic losses intensified in southern Europe (*high confidence*) and were also detected for parts of Central, Eastern and Northern Europe (*medium confidence*) (Table 13.13), with an estimated GDP loss of US\$ 300 bn per year for Europe in total (Burke and Tanutama, 2019; Diffenbaugh and Burke, 2019b).

Under 1.5°C, a few sectors and regions experience economic gains (e.g., agriculture and energy supply in Northern Europe and Northern parts of Eastern Europe) (Pretis et al., 2018; Szewczyk et al., 2018; Kahn et al., 2019; Szewczyk et al., 2020), but the combined effect of multiple risks is negative for Southern Europe (*high confidence*) and for Europe in total (*medium confidence*) (Aaheim et al., 2017; Szewczyk et al., 2018; Szewczyk et al., 2020). Under 3°C warming, economic losses for Europe are multiple times larger than under 1.5°C (*medium confidence*) because almost all European regions show net losses and the losses are much higher in Southern Europe (*high confidence*) (Kalkuhl and Wenz, 2020). Despite net economic losses in almost all regions regional disparities are intensified (*medium confidence*) amplifying existing economic

- in almost all regions, regional disparities are intensified (*medium confidence*), amplifying existing economic
- disparities among European regions (Diffenbaugh and Burke, 2019b; Feyen et al., 2020). While the trend

2

3

- direction is uniform for MED and NEU, there are opposing trends within EEU and WCE due to the large spatial gradient. 2
- 3 When comparing across sectoral risks for 3°C warming, the highest contribution to macroeconomic damages 4 originate in health, followed by agriculture, coastal flooding, labour productivity and riverine flooding 5
- (Table 13.13). In addition, drought and water scarcity lead to considerable macroeconomic costs. While risks 6
- for tourism and energy supply and demand may be substantial in parts of Europe like the Alps (Gonseth and 7
- Vielle, 2018), the evidence suggests that the total effect on the European scale is smaller. There is also 8
- emerging evidence that climate risks from regions outside Europe lead to considerable economic losses for 9
- Europe (Section 13.9). Several climate risks, such as loss of biodiversity and ecosystem services e.g., 10
- provided by forests, are not included in these macroeconomic assessments but have potentially also high 11 societal costs. 12
- 13

Adaptation is found to effectively reduce macroeconomic costs but residual costs remain, particularly for 14 warming of more than 3°C (low evidence, medium agreement) (De Cian et al., 2016 damage and adaptation; 15 Bosello et al., 2018). 16

- 17
- 18 Table 13.13: Macroeconomic effects due to projected climate risks in multiple sectors, for 3°C relative to no additional 19 warming; macroeconomic effects measured in GDP or welfare; decrease = GDP/welfare loss; increase = GDP/welfare 20 gain. List of references in Table 13.A.10 21

Sectoral risks	n	MED	NEU	WCE	EEU	Europe			
Agriculture	(6)	•••	••	••	••	•••			
Coastal flooding	(8)	•••	•••	•••	•••	•••			
River flooding	(5)	••	••	••	••	••			
Health	(5)	•••	••	••	••	••			
Labor productivity	(5)	••	••	••	••	••			
Energy	(5)	••	••	••	••	••			
Forestry	(2)	LE	LE	LE	LE	LE			
Fisheries	(1)	LE	LE	LE	LE	LE			
Drought / water scarcity	(5)	••	•	•	•	••			
Tourism	(3)	••	•	•	•	•			
Transport	(2)	LE	LE	LE	LE	LE			
Trade	(3)	•	•	•	•	••			
TOTAL	(7)	•••	•••	•••	••	•••			
GDP Loss GDP Gain									

very high (VD)	high (HD)	moderate (MD)	no (N)	moderate (MI)	high (HI)	very high (VI)
Confidence: low (•)	high (•••), n	nedium (••),			both (B)	limited evidence (LE)

13.10.3 Key Risks Assessment for Europe

SECOND ORDER DRAFT

Chapter 13

The key risks are informed by a body of literature highlighting the complex and interacting nature of climate risks (Raymond et al., 2020; Zscheischler et al., 2020; Simpson et al., submitted). Consequences from key risks are amplified due to cumulative effects and feedbacks on human and ecosystems and their potential to cascade across sectors (Section 13.10.2) (*medium evidence, high agreement*) (Huber et al., 2014; Gallina et al., 2016; Gill and Malamud, 2016; Rosenzweig et al., 2017; Byers et al., 2018). Key risk consequences are summarised in Table 13.14 following the key risk approach in Section 16.5.2.1. The direction of change per region and aspects assessed are shown in Figure 13.18. The literature and data used are in Table 13.A.9.

8 9

10

11

Table 13.14: The table explains the (severe) risk consequences and geographical area they apply. A more detailed version is available in Chapter 16].

Key risk	Consequences that would be considered severe	Geographical area	Confidence in key risk identification
KR1: Risk of stress and mortality to people and to marine and freshwater ecosystems and loss of income from crop yields due to increasing temperatures and heat extremes	On average 40 times more heat-related deaths with 3°C warming (compared to present warming). By mid-century (2 C warming) up to 200 million people at high risk of heat stress (compared to 2 million for the period 1986-2005) with more than 50% of the population at risk of thermal discomfort. Large scale reorganisation of marine, terrestrial and freshwater ecosystems. Up to 30% loss in yields with highest losses in southern region. Up to 60% increase in the impacts of invasive species (e.g., bark beetles).	Europe (whole continent) but risk increases from Northern to Southern Europe	High confidence in the direction, medium confidence in the relative change
KR2: Risk of income loss from crops yields, fire and limited recovery of terrestrial ecosystems from compound heat and dry conditions	Reduced crop production; amplified risk of wildfires; abandonment of farmland; loss of fodder; considerable reduction of recovery capacity and large-scale reorganisation of ecosystems and biome- shift.	Southern and central Europe	High confidence (MED), medium confidence (WCE)
KR3: Risks of mortality and damage to coastal infrastructure and economic assets due to coastal and inland flooding	Expected Annual Damage (number of people) costs increase by a factor of at least 10 (at least 16), with large adaptation and mitigation. Local loss of marine and terrestrial ecosystems reduces or eliminate their ability to lessen the impacts.	Low-lying European coastal zones (lower concern in Scandinavia), some river floodplains and mountain areas	High confidence
KR4: Risk of water scarcity to multiple interconnected sectors	One-third to over one-half million people are exposed to moderate water scarcity in Southern regions by mid- century due to competing demands from agriculture, energy generation, domestic and municipal water consumption.	Southern Europe, Central and Eastern Europe	High confidence (Southern Europe), medium confidence (Central and Eastern Europe)

Figure 13.18: Regional synthesis of changes in consequences as "assessed aspects" associated with each key risk and for 1.5°C, 2°C and 3°C warming above pre-industrial. Further details in Table 13.A.9.

13.10.3.1 Risk of stress and mortality to people and to marine and freshwater ecosystems and loss of income from crop yields due to increasing temperatures and heat extremes

Heat related consequences to people manifest through an increase in the number of deaths, mortality rates, 10 heat stress and exposure as well as reduction in thermal comfort and labour productivity (high confidence) 11 (Table 13.11; Section 13.6.1.5.2; Section 13.7.1.1) (Forzieri et al., 2017; Gasparrini et al., 2017; Kendrovski 12 et al., 2017; Rohat et al., 2019; Casanueva et al., 2020). There is medium evidence and agreement that heat 13 related fatalities will be 3-6 times higher at 3°C compared with 1.5°C (Forzieri et al., 2017; Naumann et al., 14 2020). For present and SSP1 conditions, the aggregate risk (i.e. across all assessed aspects) will remain 15 moderate for warming levels up to 2°C (Figure 13.19(a)) (Gasparrini et al., 2017; Cellura et al., 2018; Guo et 16 al., 2018; Rohat et al., 2019). Higher risk levels are reached for SSP3 and SSP4 conditions (mapping a 17 medium to high vulnerability and exposure, see Figure 13.19(a)) (robust evidence, moderate agreement) 18 (Hunt et al., 2017; Kendrovski et al., 2017; Rohat et al., 2019). Negative consequences will be the highest in 19 southern Europe, where their magnitude is also expected to increase more rapidly (Forzieri et al., 2017; 20 Gasparrini et al., 2017; Cellura et al., 2018; Guo et al., 2018; Díaz et al., 2019; Rohat et al., 2019). Central, 21 eastern and northern Europe will also experience accelerating negative consequences beyond 1.5°C (Guo et 22 al., 2018; Revich et al., 2019). 23

24

2 3

4 5 6

7

8 9

The effectiveness of adaptation measures depends on local context (*high confidence*) (Figure 13.19(b)). For example, natural ventilation is considered an effective, low cost and highly feasible measure for northern Europe (Ibrahim and Pelsmakers, 2018), but the effectiveness is generally lower for southern Europe (Table 13.9, Section 13.6.2) (*medium agreement, robust evidence*). Other measures are highly effective across Europe irrespective of warming levels, including air conditioning and urban planning (*high confidence*)
(Sections 13.6.2 and 13.7.2) (Jenkins et al., 2014b; Donner et al., 2015; Dodoo and Gustavsson, 2016; 1 Astrom et al., 2017; Dino and Meral Akgül, 2019; Venter et al., 2020)], although air conditioning 2 increasingly faces feasibility constraints (Tables 13.9 and 13.11). Building interventions have low to medium 3 effectiveness independent of the region (Tables 13.9 and 13.11). Many behavioural changes such as 4 personal and home protection have already been implemented and a culture of heat exists in southern Europe 5 (Section 13.7.2, Martinez et al., 2019). To reach higher adaptation, measures combining low-medium-high 6 effective actions are needed (Figure 13.19(b)), many of which are more systems transformative (Chapter 16) 7 (e.g., heat proof land management) and remain effective at higher warming levels (medium confidence) 8 (Díaz et al., 2019). These system transformations have long lead times, therefore requiring timely start of 9 implementation including regions that are not yet experiencing high heat stress (high agreement, medium 10 evidence). 11 12 Adaptation limits are in general discussed in the context of heat tolerance and heat habituation for humans 13

Adaptation limits are in general discussed in the context of heat tolerance and heat habituation for humans recognising that adaptation has the potential to increase the thresholds of heat tolerance with *robust evidence and moderate agreement* that this process has happened already for people - albeit at different speeds - in almost all European regions (Section 13.7.1.1). However, it is uncertain how far heat tolerance can be enhanced and the conditions that will make it possible for warming of 3°C and beyond (Figure 13.19(a), Section 13.7.2)(Hanna and Tait, 2015).

19

The assessment of KR1 extends to natural systems and ecosystems. Warming impacts the physiology, 20 phenology and ecology of species and populations resulting in changes in timing of development, migration 21 northwards and upwards, desynchronization of species interactions, especially at the range limits, with 22 cascading and cumulative impacts through ecosystems and food webs (Sections 13.3 and 13.4, high 23 confidence). Stressful thermal and drought events impacting species on sea and land are increasing already, 24 particularly in coastal areas of the Mediterranean Sea, the Balkans, and the western area of the Caspian Sea 25 (Section 13.3; (Kärcher et al., 2019); Cross-Chapter Paper 4). In both land and the oceans, warming is 26 currently within the current tolerance envelope of many species (Henson et al., 2017) resulting in migration, 27 especially at the boundaries of ecological regions, but only rarely in documented local extinctions (Sections 28 13.3 and 13.4) (Smale, 2020). Land and marine heatwaves are projected to intensify, especially in the 29 Mediterranean (Darmaraki et al., 2019b) (Section 13.4, Cross-Chapter Paper 4, WGI AR6 Chapter 9), 30 projecting mass mortalities of vulnerable species and species extinction, altering the provision of important 31 ecosystem goods and services, such as carbon sequestration, habitat generation and socioeconomic value 32 (Marbà and Duarte, 2010). 33

34 Autonomous adaptation of species via migration in response to climate change is well documented in 35 contemporary, historical and geological records (Figure 13.18, Chapter 2, Cross-Chapter Box PALEO in 36 Chapter 1). However, the projected rate of environmental change can exceed migration potential, which 37 would lead to evolutionary adaptation or increased extinction risk (Chapters 2 and 3). A reduction of non-38 climatic stressors, such as nutrient loads, resource extraction, habitat fragmentation or pesticides on land, are 39 considered important adaptation options to increase the resilience to climate-change impacts (Ramírez et al., 40 2018) (Sections 13.3 and 13.4; high confidence). A major governance tool to reduce other impacts is the 41 establishment of networks of protected areas (Sections 13.3.2 and 13.4.2) which are particularly suited to 42 facilitate migration of species following their preferred temperature (high confidence), as well as a cost-43 effective adaptation strategy with multiple additional co-benefits (Roberts et al., 2017). Relocation of 44 species, such as replanting, and restoration and rewilding (Section 13.3) are measures in areas where habitats 45 have been lost. However, statutory policies around rewilding are lacking in Europe (Jones and Comfort, 46 2020). If these multiple adaptation tools are implemented too late or not sufficiently to effectively cope with 47 rapid change, the genetic manipulation of species to gain higher tolerance against climatic stressors (assisted 48 evolution) has been suggested as an adaptation tool (Filbee-Dexter and Smajdor, 2019). However, statutory 49 policies around rewilding are lacking in Europe (Jones and Comfort, 2020). 50 51

(c) KR1: Example of a figure for marine and land ecosystems to be further developed

2 Figure 13.19: Panel (a) shows the burning embers for KR1 (human health) for two vulnerability and exposure 3 4 conditions and for a high adaptation scenario, which refers to the adaptation to maintain current level of risk up to about 5 3° C. Panel (b) shows the illustrative adaptation pathways to achieve high adaptation for two regions based on the assessment of adaptation effectiveness (Section 13.10.3.1; Table 13.9; Table 13.11; (Haasnoot et al., 2020a)). Grey 6 shading represents long lead time and dotted lines signal reduced effectiveness. The squares mean that the options are 7 transferred to another pathway and the black bars that the pathways have reached a tipping point. Main key messages 8 9 from the effectiveness assessment are shown on the right sides with corresponding confidence level and informed by the feasibility and effectiveness assessment. [Bottom panel (c) will show a similar figure but for ecosystems. 10 [PLACEHOLDER FOR FINAL DRAFT: risk levels (left) will be inserted; pathways (right) have not been fully 11 assessed and will be finalised]. The literature and data associated with these figures can be found in Table 13.A.7 and 12 Table 13.A.9. 13

14 15

1

13.10.3.2 Risk of income loss from crops yields, fire and limited recovery of terrestrial ecosystems from compound heat and dry conditions

KR2 is already considered severe due to repetitive crop failure in the last decade in WCE and Russia
(Section 13.5.1). There is *high confidence* that heat extremes compounded by drying conditions and strong
winds have produced already widespread impacts across Europe (Hao et al., 2018; Pfleiderer et al., 2019;
Vogel et al., 2019). Heatwaves and droughts have impacted the health of people and livestock (Sections

- 13.5.2, 13.6 and 13.7.1); agriculture (Section 13.5.1), limiting water resources (Section 13.2, Section
- 13.10.3.4) and impacting ecosystem function (Sections 13.3 and 13.4). There is *high confidence* that climate

SECOND ORDER DRAFT

- change will increase the likelihood of concurrent extremely dry and hot warm seasons with higher risks for
 Central Europe, Eastern Europe (particularly north-western Russia) and Southern Europe leading to
- enhanced risk of wildfires, crop failure and decrease in pasture quality (Section 13.5.1) (AR6 WGI Chapter
 11, Zscheischler and Seneviratne, 2017; Sedlmeier et al., 2018).
- 4 5

Winter crops are projected to be less vulnerable due to earlier harvest. Yield loss in the EU28 in response to 6 3-4°C warming of 10% are projected, and regionally gains at low warming (Webber et al., 2018) though 7 some studies suggest significant losses (Toreti et al., 2019a). In contrast, maize, a summer crop, is irrigated 8 already today in the MED (13.5.2). Future compound heat and drought events are projected to lead to maize 9 yield losses in MED, WCE and EEU, locally resulting in total loss in southern Europe, averaging at 15% 10 across the EU28 (Webber et al., 2018). In Southern Europe, increased heat and drought stress and reduced 11 irrigation are projected to lead to abandonment of farmland as profitability of the land for agriculture 12 decreases (Holman et al., 2017). 13

14

More intense and longer droughts, potentially coupled to heatwaves, can lead to a substantial desiccation of 15 vegetation and drying of soils (high confidence). These will increase the conditions enabling fire, its rate of 16 spread and thereby reduce suppression opportunities, as was evidenced in past heat waves in southern 17 Europe (Section 13.2.1.2) (Ruffault et al., 2017). Projected increases in fire-hazard days for EEU vary 18 regionally between 20 and 50% (Frolov et al., 2014). Burned area is projected to increase by a factor 2 for 19 low end warming and 4 for 3°C-4°C (Wu et al., 2015a). Attempts at quantifying future risks from compound 20 heat and drought events are scarce, though physiological responses of land plants (Chapter 2; Section 13.3) 21 and crop (Chapter 4, Section 13.5.1) are well documented and impacts already detected for recent events in 22

eastern Europe and central Europe in the last decade (Section 13.5.1, 13.10.1).

Autonomous adaptation of farmers to changing environments has happened for centuries. Adaptation

- solutions in the context of heat and drought-risk management include irrigation, the use of protective
 vegetative cover, mixed farming practices, change of crop and animal species, timing of planting but an
- integrated assessment of feasibility and effectiveness of combined adaptation options is lacking for many
- crops and regions (*high confidence*, Section 13.5.2). KR2 can be significantly reduced for crop production if
- the canopy temperature is reduced with irrigation and the drought impact removed (*high confidence*)
- 31 (Webber et al., 2018); Section 13.5.2]. As KR4 points out clearly though, water will be distributed across
- many needs limiting its availability to agriculture which is currently the main user of water in many regions
- of Europe. Heat impacts on agriculture can be reduced via climate control for livestock and irrigation for crops at the cost of increasing the demand on energy and the investment in infrastructure (Section 13.5.2)
- crops at the cost of increasing the demand on energy and the investment in infrastructure (Section 13.5.2)
 (*medium confidence*). Without these adaptation options loss in the agricultural sector is projected, with an
- increase of risk from north to south with higher risk for those crops growing later in the season such as maize
- *(high confidence)*. Under high-end scenarios, heat and drought extremes could become more frequent and
- widespread as early as mid-century (Toreti et al., 2019a).
- 39

Figure 13.20: Panel (a) shows the burning ember diagram for KR2 [PLACEHOLDER FOR FINAL DRAFT: we have looked mainly at losses without and with irrigation. In the final draft we will amalgamate the burning ember with evidence from additional adaptation options to make it equivalent to Figure 13.19. We will also populate currently missing pathways (b)]

13.10.3.3 Risks to people, economies and infrastructures due to flood hazards

Damage and losses to people and infrastructure due to coastal and river floods are projected to increase 10 substantially in Europe (high confidence) (Section 13.2.1.2) (Alfieri et al., 2015a; Alfieri et al., 2015b; 11 Alfieri et al., 2016; Forzieri et al., 2017; Alfieri et al., 2018; Dottori et al., 2018; Guerreiro et al., 2018; Jacob 12 et al., 2018; Vousdoukas et al., 2018a; Vousdoukas et al., 2018b; Vousdoukas et al., 2020a; Haasnoot et al., 13 submitted). Damage and losses to people and infrastructure due to coastal and river floods are projected to 14 increase substantially in Europe (high confidence) (Section 13.2.1) (Alfieri et al., 2015a; Alfieri et al., 2015b; 15 Alfieri et al., 2016; Forzieri et al., 2017; Alfieri et al., 2018; Dottori et al., 2018; Guerreiro et al., 2018; Jacob 16 et al., 2018; Vousdoukas et al., 2018a; Vousdoukas et al., 2018b; Vousdoukas et al., 2020a; Haasnoot et al., 17 submitted). 18

Above 3°C, climate change may account for a doubling of damage costs and people affected from river flood 20 (Alfieri et al., 2018). Depending on future greenhouse gas emissions, coastal flood damages may increase by 21 a factor of 100 to 1000 without further adaptation (Vousdoukas et al., 2020a). While there is high confidence 22 in the sign of projected trends, there is low confidence in quantitative economic assessments of flood impacts 23 in Europe due to the uncertainties of current global flood models (see AR6 WGI Chapter 9). The human 24 exposure to coastal hazards is projected to increase by 20% or 50% for SSP1 and SSP5 by the end of the 25 century (low evidence) (Merkens et al., 2016; Reimann et al., 2018a). Future human exposure to river flood 26 hazards for SSP5 might increase in northern and western Europe and in Russia (low agreement) (Jongman et 27 al., 2012; Jones and O'Neill, 2016; Dottori et al., 2018). Vulnerability to flood hazards has decreased in 28 WCE and NEU in the last decades due to improved flood risk prevention, but there is *low agreement* that this 29 trend can compensate the projected increase in flood hazards (Jongman et al., 2015; Alfieri et al., 2018). 30 31

KR3 trends in flood risks are projected to increase considerably under scenarios of no to low adaptation both
in terms of fatalities and economic losses (Figure 13.21). However, damage from coastal floods can be
reduced by more than 80% with economically efficient adaptation (Vousdoukas et al., 2020a) Adaptation
approaches, their timing and effectiveness are assessed in Section 13.2 and visualised in Figure 13.21 for
urban and rural archetypes (Haasnoot et al., 2019).

37

1

2 3

4

5 6 7

8 9

Adaptation approaches include (1) reducing exposure (retreat/relocation/managed realignment); (2) reducing vulnerability (accommodation) and (3) reducing the hazard (nature-based or engineering based protections) (AR6 SROCC Chapter 4; Section 13.2; Cross-Chapter Box SLR in Chapter 3). Nature based solutions are increasingly considered and implemented across Europe (Pranzini et al., 2015), but their effectiveness is not guaranteed above 2.5° of global warming and for high rates of sea level rise (Gattuso et al., 2015; Kirwan et al., 2016) (Section 13.2.2).

1

2

3

4

5

9 10 11

Figure 13.21: KR3 flood risk assessments. Panel A: magnitude of exposure to KR3 and associated risks with and without adaptation; Panel B: plausible adaptation pathways to sea-level rise (Table 13.A.9; Table 13.2) [PLACEHOLDER FOR FINAL DRAFT: Panel B will be further developed]. 12

13 14

Figure 13.21 does not include emerging reasons for concern in Europe, such as observed and projected 15 increases of extreme rainfall events (van Oldenborgh et al., 2016; Philip et al., 2018; Myhre et al., 2019), 16 observed increases of synchronous river floods (Berghuijs et al., 2019), projected compound flood hazards in 17 lower river watersheds, due to a seasonal shift of extreme rainfall events toward the autumn and winter storm 18 surge season in particular in the Mediterranean and Northern Europe (Arnbjerg-Nielsen et al., 2015; 19 Bevacqua et al., 2019). Climate risks in Europe are projected to become even more substantial with ice-20 21 sheets collapse (Thieblemont et al., 2019) as well as beyond 2100 (Clark et al., 2016) (Cross-Chapter Box SLR in Chapter 3) (limited evidence, high agreement). Above 3 meters of sea-level rise, the location and size 22 of coastal infrastructures such as the Thames estuary needs to be reconsidered (Ranger et al., 2013). 23 24

13.10.3.4 Risk of water scarcity to multiple interconnected sectors 25

26 Drought and water scarcity affect a number of highly connected sectors in Europe, from public water supply 27 to agriculture and livestock farming, energy (hydropower and cooling of thermal power plants) and industry 28 (e.g., shipping) (Blauhut et al., 2015; Stahl et al., 2016; Bisselink et al., 2020; Cammalleri et al., 2020). 29 Across Europe, drought is generally impacting agriculture and livestock farming more than public water 30 supply (Stahl et al., 2016). Similarly, water quality will be negatively affected by climate change further 31 enhancing the risks of water stress to multiple sectors (Section 13.2.1.4). In the EU and UK together, around 32 3.3 million people and € 75 billion of economic activity are currently exposed to severe water scarcity (Stahl 33 et al., 2016; Bisselink et al., 2020). Around 90% of drought damage and population exposed to water scarcity 34 are located in Southern Europe (high confidence) (Section 13.2, 13.3 and 13.5) but there is emerging 35 evidence of damages due to drought and water scarcity also in parts of Central and Eastern Europe (medium 36 confidence). 37

Chapter 13

With 1.5°C warming, in Southern Europe the number of days with water scarcity and drought will increase slightly (Schleussner et al., 2016; Naumann et al., 2018). In Central and Eastern Europe, there is no clear trend in the number of days with water scarcity and drought (Schleussner et al., 2016; Naumann et al., 2018).

3 4

1

2

With warming of 3°C and beyond, water scarcity will become much more severe in already water scarce

5 regions in Southern Europe (high confidence) and will expand to currently non water scarce regions in 6

- Central and Eastern Europe (medium confidence) (Section 13.2.1.2) (Naumann et al., 2018; Harrison et al., 7
- 2019: Koutroulis et al., 2019: Bisselink et al., 2020; Cammalleri et al., 2020; Spinoni et al., 2020). One third 8
- to over a half of the population in Southern Europe will be exposed to moderate water scarcity with 3°C and 9
- SSP5 by end of the century (Byers et al., 2018; Arnell et al., 2019). In Central and Eastern Europe, around 10
- 10% of the population will be exposed to water stress (Byers et al., 2018; Arnell et al., 2019). 11

People at risk of water scarcity

- 12
- 13

14 Figure 13.22: Burning ember diagrams for the risk of water scarcity to people in MED, WCE and EEU 15

[PLACEHOLDER FOR FINAL DRAFT: references will be added; a panel on adaptation pathways will be added] (see 16 Table 13.A.9). 17

18

19 Socioeconomic change contributes to risk levels, e.g., when a larger share of population settles in drought 20 affected regions, or if the share of agriculture in GDP declines and therefore risk levels are lower (high 21 confidence). For Europe in total, risk of water stress is higher under SSP5 and SSP3 than under SSP1 (low 22 confidence) (Byers et al., 2018; Arnell et al., 2019; Harrison et al., 2019). Heat extremes will significantly 23 increase the energy demand for cooling, while concurrent droughts will reduce the hydropower potential and 24 river flows, and together with higher temperatures- will impose water-cooling constraints on thermoelectric 25 power generation (Section 13.6.1.1). 26

27

38

To reduce the effects of drought and water scarcity, adaptation measures both at the supply and demand have 28 been suggested (Section 13.2.2) (Garnier and Holman, 2019; Hagenlocher et al., 2019). There is only limited 29 evidence on the effectiveness of different adaptation options in reducing risk of cross-sectoral water scarcity. 30 While water trading is found to allocate water more efficiently across sectors and therefore reduce the 31 economywide costs of water scarcity (Roson and Damania, 2017), this might have negative side effects for 32 public water supply, the manufacturing sector and neighbouring countries (Wimmer et al., 2014; Koopman 33 et al., 2017; Teotónio et al., 2020) (Section 13.9.2). To address the trade-offs among sectors, collaborative 34 and integrated policies are needed that consider the trade-offs and synergies across sectors (Venghaus and 35 Hake, 2018 energy and water resources). For example, sustainable water management is found effective in 36 37 reducing future water scarcity, but there is a potential trade-off with food availability and employment (low

confidence) (Papadimitriou et al., 2019).

13.10.4 Knowledge gaps

3 There is *low to medium confidence* that adaptation will be effective to reduce the risk severity for warming of 4 and beyond 3°C and in particular in regions where multiple key risks show high to very high risk levels. 5 Therefore, residual risks cannot be completely excluded even under scenarios of high adaptation, although 6 there is only very limited evidence on their extent and timing. There is limited evidence on the effectiveness 7 of specific adaptation options at different levels of warming that also include consideration of lead and 8 lifetimes and in particular for KR1, KR2, and KR4. A Pan-European understanding of the emerging reasons 9 for concern listed in Section 13.10.3.3 is lacking in the literature available today. Estimates of 10 macroeconomic losses underestimate the full costs of climate change as available models neglect systemic 11 risks, tipping points and limits to adaptation (Koks et al., 2019a; van Ginkel et al., 2020). Efforts to extend 12 the SSP narratives to Europe can contribute to a more disaggregated understanding of risk severity for 13 different vulnerability and exposure conditions (Figure 13.13). However, the evidence remains limited to 14 only few examples (Rohat et al., 2018; Kok et al., 2019; Pedde et al., 2019; Rohat et al., 2019). 15

16 17

18 19

20 21

45

1

2

13.11 Adaptation Decision-making Across Sectors and Regions

13.11.1 Adaptation Responses across Europe

Observed and projected climate change impacts are recorded across Europe's sectors, vulnerable groups, and 22 regions (Section 13.10.1). Coordinated policy responses are necessary to prevent inefficient and costly action 23 (Clar, 2019), balance under- and over-reaction to climate risks (Peters et al., 2017; Biesbroek and Candel, 24 2019), prevent redistributing vulnerability (Atteridge and Remling, 2018), ensure timely implementation, 25 and avoid unintended and maladaptive actions (Magnan et al., 2016) (high confidence). Since AR5, progress 26 has been made to increase coordinated adaptation actions, but so far this is limited to a few sectors (mostly 27 water management and agriculture) and European countries and regions (mostly MED, WCE depending on 28 impact) (Lesnikowski et al., 2016; Biesbroek and Delaney, 2020) (high confidence) (Section 13.11.2). 29 Despite evidence of emerging bottom-up (e.g., citizens and business initiatives) and top-down initiatives 30 (e.g., governmental plans and instruments to ensure action), there are considerable barriers to implementing 31 and mainstreaming responses (Runhaar et al., 2018) (high confidence). The implementation gap identified in 32 AR5 (Chambwera et al., 2014), i.e. the gap between defined goals and ambitions and actual implemented 33 actions on the ground (Dupuis and Knoepfel, 2013), continues to persist in Europe (Aguiar et al., 2018; 34 Russel et al., 2020) with critical challenges including: difficulty translating abstract policy strategies into 35 concrete action, insufficient policy instruments to ensure timely implementation, lack of awareness of key 36 stakeholders to implement actions, and limited leadership on climate action (Aguiar et al., 2018; Howlett et 37 al., 2019). 38 39

In the following subsections, building on our sectoral analysis in previous sections, we look across European sectors, vulnerable groups, and regions to assess how climate change impacts are being responded to in general by state (Section 13.11.2) and non-state (Section 13.11.3) actors, and their synergies and dependencies. Sections 13.11.3 assess if and how system transformations have emerged and implications for the SDGs and climate resilient development pathways (CRDPs).

46 13.11.2 Policy Responses, Options and Pathways

47 European countries are increasingly planning to adapt to observed impacts and projected climate risks 48 (Lesnikowski et al., 2016; Russel et al., 2020) (high confidence). Whereas in 2009, only nine countries had 49 developed a National Adaptation Strategy (NAS) (Biesbroek et al., 2010; EEA, 2014b), in 2018, 25 EU 50 Member States have done so (Table 13.15). Several countries have revised their strategies building on 51 previous strategies (Klostermann et al., 2018). In some contexts, mostly Western Europe, national and 52 sectoral adaptation plans have been developed to implement NAS (high confidence). Progress is also 53 observed locally with an increasing number of European cities planning for climate risks (Aguiar et al., 54 2018; Reckien et al., 2018a; Grafakos et al., 2020) (Section 13.6.2.1; Box 13.3, Chapter 6). European 55 countries where national adaptation frameworks are absent or under development (Table 13.15), do show 56 evidence of actions across sectors and levels (Pietrapertosa et al., 2018), suggesting that, while adaptation 57

- plans can contribute to enhancing resilience, they are not necessary for advancing adaptation (medium confidence). 2
- 3 What drives sectors and regions to plan for adaptation and extend the adaptation solution space differs across 4 Europe. Recurring drivers include: experienced climatic events, improved climatic information, societal 5
- pressures to act, projected economic and societal costs of climate change, participation in (city) networks, 6
- and changes in national and European policies and legislation (medium evidence, high agreement) (EEA, 7
- 2014b; Massey et al., 2014; Reckien et al., 2018b). The availability of public resources (human, knowledge, 8 and financial) appears important for proactive adaptation (Termeer et al., 2012; Sanderson et al., 2018),
- 9 while adaptation is also strongly dependent on economic and social development (global assessment: (Araos 10
- et al., 2016b); for Europe: (Sanderson et al., 2018) (high confidence). How adaptation is governed differs 11
- substantially across Europe. This difference can partly be explained by the political and social systems in 12
- which adaptation is mainstreamed (Biesbroek et al., 2018; Clar and Steurer, 2019; Lesnikowski et al., 2020). 13
- Mainstreaming adaptation options with existing institutional and political systems increases chances of 14
- successful adaptation compared to seeking one-size fits all solutions (medium evidence, high agreement) 15 (Lesnikowski et al., 2020).
- 16 17

The scope of climate risks included in European adaptation policies and plans is generally broad, with some 18 focusing on few main risks and others considering a broad range (EEA, 2018b). Systemic and cascading

- 19 risks (see also Section 13.10) are often recognized, but most conventional risk assessment methods that 20
- inform adaptation planning are ill-equipped to deal with these effects (Adger et al., 2018). For example, 21
- transboundary risks emerging in regions outside of Europe are considered only by a few countries such as 22
- the UK and Germany (Section 13.9.3). European climate change adaptation strategies and national policies 23
- are generally weak on gender, LGBTQI, and other social equity issues (Boeckmann and Zeeb, 2014; 24
- Allwood, 2020). Adaptation policies and plans are generally considered as a technical exercise rather than a 25
- political process (Remling, 2018). 26
- 27 28

Table 13.15: Adoption of National Adaptation Plans and Strategies in Europe based on Grantham database and (EEA, 29 2018b) [to be updated for Final Draft] 30

Adaptive planning and decision making are still limited across Europe (high confidence). Many near-term 3 investment decisions have long-term consequences, and planning and implementation can take up to 4 decades, particularly for critical infrastructure planning in Europe. Consequently, there are calls to expand 5 the planning horizons and consider long-term uncertainties to prevent lock-in to decision pathways, seize 6 opportunities and synergies from other investments (e.g., socio-economic developments and energy 7 transitions) and consider the range of possible impacts (e.g. Marchau, 2019; Oppenheimer et al., 2019; 8 Haasnoot et al., 2020a). Extending planning horizons to beyond 2100, however, increases deep uncertainties 9 to decision-makers as a result of unclear future socio-economic and climatic changes. For adaptation to sea 10 level rise along Europe's coast, for example, there are already considerable uncertainties during this century 11 (WGI AR6 Chapter 9). Prominent examples of adaptive plans include the city of London (Ranger et al., 12 2013; Kingsborough et al., 2016; Hall et al., 2019) and the Netherlands to reduce impacts of flooding and 13 preserve fresh water resources under uncertain climate change (Van Alphen, 2016; Bloemen et al., 2019). 14 Flexible strategies are increasingly considered by European countries (e.g. Stive et al., 2013; Kreibich et al., 15 2015; Bubeck et al., 2017; Haasnoot et al., 2019). 16 17

Monitoring adaptation action can help to adjust planning (Hermans et al., 2017; Haasnoot et al., 2018). In the
 Netherlands, a comprehensive monitoring system has been put in place to evaluate implementation

effectiveness and determine appropriate pace (Hermans et al., 2017; Haasnoot et al., 2018; Bloemen et al., 2019). Signals for adaptation have been used to decide when to implement adaptation options or adjust plans.

3 Climate services to support adaptation decision-making of governments and businesses across Europe have 4 rapidly increased since AR5, partly as a result of EU investments in creating a climate services market (high 5 confidence) (Street, 2016; Soares and Buontempo, 2019). These services are increasingly used; however, 6 their success is hardly systematically evaluated (EEA, 2018b). Barriers to use include: lack of perceived 7 usefulness of climate information to organisations and expertise to use the information, and the mismatch 8 between needs and type of information made available (high evidence, medium agreement) (Cavelier et al., 9 2017; Bruno Soares et al., 2018; Christel et al., 2018). Adaptation support platforms also face challenges 10 regarding updating, training and engagement with users (EEA, 2015; Palutikof et al., 2019). High-end 11 scenarios are often not considered in climate change adaptation planning due to a lack of perceived usability, 12 missing socio-economic information, constraining institutional settings, and conflicting decision-making 13 timeframes (medium confidence) (Lourenco et al., 2019). Such scenarios are often seen as having a low 14 probability of occurrence, resulting in inaction or incremental rather than transformative adaptation 15 responses to projected climate risks (Dunn et al., 2017). In addition to scientific knowledge, indigenous and 16 local knowledges can demonstrate autonomous response space (Huntington et al., 2017) as is the case with 17 indigenous-led ecosystem restoration in the European Arctic (Brattland and Mustonen, 2018). 18

19

45

47

Dedicated financial resources for the implementation of NAS and plans are a key enabling factor for 20 successful adaptation (high confidence) (Russel et al., 2020) (Chapter 17). Yet, only 14 EU countries have 21 announced such budget allocations in their plans and strategies; and even if budget numbers are available, 22 they are difficult to compare (Leitner et al., 2020). Current adaptation spending varies greatly across 23 European countries, partly reflecting national adaptation priorities or financing sources targeting investment 24 projects (López-Dóriga et al., 2020; Russel et al., 2020). European government budgets are also burdened by 25 climate change damages today, particularly after huge flooding events, limiting anticipatory action (Penning-26 Rowsell and Priest, 2015; Miskic et al., 2017; Schinko et al., 2017; Slavíková et al., 2020). National 27 adaptation funding in MED, CEU and NEU is complemented by EU funding (European Structural and 28 Investment Funds (ESIF), Horizon 2020, and LIFE). While the EU spending target on climate action 29 increased from 20% in 2016-2020 to 25% in 2021-2016, most spending is going into mitigation, not 30 adaptation (Berkhout et al., 2015; Hanger et al., 2015; Leitner et al., 2020). 31 32

With higher warming levels, financing needs are likely to increase (medium confidence) (Mochizuki et al., 33 2018; Bachner et al., 2019; Parrado et al., 2020); governments can address this higher need by cutting other 34 expenditures, increasing taxes, or by increasing the fiscal deficit (Miskic et al., 2017; Mochizuki et al., 2018; 35 Bachner and Bednar-Friedl, 2019). Yet, the requirement for fiscal consolidation that will be needed after the 36 COVID-19 pandemic (Cross-Chapter Box COVID in Chapter 7) may also lead to a cessation of adaptation 37 spending, as evidenced by the expenditure drop in coastal protection in Spain after the financial crisis 2008 38 (López-Dóriga et al., 2020). Governments can shift the financial burden to beneficiaries of adaptation, as 39 e.g., suggested for coastal protection and riverine flooding (Jongman et al., 2014; Penning-Rowsell and 40 Priest, 2015; Bisaro and Hinkel, 2018). There is also an increase in financial mechanisms to accelerate 41 private adaptation actions, including adaptation loans, subsidies, direct investments, and novel public-private 42 arrangements. For example, the European Investment Bank created a finance facility to support European 43 regions through loans to implement adaptation projects (Leitner et al., 2020). 44

46 13.11.3 Societal Responses, Options and Pathways

48 *13.11.3.1 Private-sector*

49 Within the private sector, there tends to be a preference for 'soft' (e.g., knowledge generation) than 'hard' 50 (e.g., infrastructure) adaptation measures (Goldstein et al., 2019), in contrast to government-led responses 51 typically favouring hard measures (Pranzini et al., 2015). However, there also remains diversity across 52 sectors and organisations in the degree and type of adaptation response, as discussed earlier (Trawöger, 53 2014; Dannevig and Hovelsrud, 2016; Ray et al., 2017; Ricart et al., 2018). Whereas some sectors such as 54 flood management, insurance and energy (Gasbarro and Pinkse, 2016; Wouter Botzen et al., 2019) have 55 generally made moderate progress on adaptation planning across Europe, there are key vulnerable economic 56 sectors that are in earlier stages, including aviation (Burbidge, 2015), ports and shipping (Becker et al., 2018; 57

19

Ng et al., 2018), and ICT (EEA, 2018b) (*high confidence*). There is also some evidence of 'short-sighted' adaptation or maladaptation; for example, in winter tourism there is a preference for technical and reactive solutions (e.g., artificial snow) that will not be sufficient under high levels of warming (Section 13.6.1.4).

- Where adaptation is considered by companies, it is typically triggered either by the experience of extreme 5 weather events that led to business disruptions (McKnight and Linnenluecke, 2019) or is included into 6 corporate risk management in response to regulatory, shareholder or customer pressure (Averchenkova et al., 7 2016b; Gasbarro et al., 2017); see also Section 13.6). Even if companies experience extreme weather events 8 or stakeholder pressure, they may not adapt because they underestimate their vulnerability (Pinkse and 9 Gasbarro, 2019). For example, analysis of Greek firms found barriers to adaptation included both external 10 (e.g., lack of support/guidance) and internal factors (e.g., few resources, managerial perceptions (Halkos et 11 al., 2018). Similarly, a survey of diverse German SMEs found corporate knowledge and incentives predicted 12 adaptation (Herrmann and Guenther, 2017). Lack of knowledge, psychological distance (feeling climate 13 change is not a salient risk), and lack of social learning or collaboration, appear to be barriers to private-14 sector adaptation (Dinca et al., 2014; André et al., 2017; Romagosa and Pons, 2017; Esteve et al., 2018; Luís 15 et al., 2018; Ng et al., 2018) (Section 13.16.2.2). There remains little research on private-sector awareness of 16 or responses to cascading or compound risks associated with climate change (Miller and Pescaroli, 2018; 17 Pescaroli, 2018). 18
- 20 13.11.3.2 Communities, households and citizens
- 21 Planned behavioural adaptation remains limited amongst European households (high confidence); with few 22 examples that can be considered transformative (e.g., structural, long-term, collective; (Wilson et al., 2020) 23 (medium confidence). One Swedish survey of householders at risk of extreme weather events (e.g., floods, 24 storms) found evidence of some organisational measures (e.g., bringing possessions inside prior to a storm, 25 preparing for power cuts with candles, etc.) but very few households took any other (technical, social, 26 nature-based, or economic) measures (Brink and Wamsler, 2019). Similarly, few at risk of flooding are 27 taking action (Stojanov et al., 2015) (Section 13.4); for example, little public take-up of available municipal 28 support for individual adaptation in Germany (Wamsler, 2016). Water efficiency measures in anticipation of, 29 or response to, drought are also limited (Bryan et al., 2019), although water reuse in Mediterranean and some 30 other EU (e.g., UK, Netherlands) countries is increasing (Aparicio, 2017). Amongst the adaptation responses 31 recorded, few are perceived as opportunities (Taylor et al., 2014; Simonet and Fatorić, 2016). More 32 European research is needed on public responses to risks other than flooding, heat stress and drought, such as 33 vector-borne disease (van Valkengoed and Steg, 2019) (Section 13.7). 34 35 Perceived personal responsibility for tackling climate change remains low across the EU (Figure 13.23) and
- 36 partly explains why household adaptation remains limited (high confidence) (Taylor et al., 2014; van 37 Valkengoed and Steg, 2019), despite risk perception apparently growing (Figure 13.23: Eurobarometer, 38 2017; cf. (Capstick et al., 2015; Poppel et al., 2015; BEIS, 2019). Householders' risk perception and concern 39 about climate change fluctuates in response to media coverage and significant weather or socio-political 40 events (high confidence) (Capstick et al., 2015). On average across Europe, and particularly in relation to 41 gradual change, non-experts continue to under-estimate climate change risks compared to experts (medium 42 confidence) (Taylor et al., 2014). There is strong support for adaptation policy (e.g., building flood 43 defences), within the UK, France, Norway and Germany (Doran et al., 2018). Yet, public adaptation can 44 undermine motivation for householders to take adaptation measures in the case of flood protection (Section 45 13.2), with perceived efficacy of action a strong predictor of adaptation (high confidence) (Moser, 2014; van 46 Valkengoed and Steg, 2019). However, there are also structural and economic barriers to household 47 adaptation due to lack of policy incentives or regulations. For example, water-saving devices in homes could 48 halve consumption, but lack of economic benefits to householders are barriers to adoption; while lack of 49 standards may explain low levels of water reuse in Europe (EEA, 2017b). Conversely, water meters and 50 higher tariffs have been found to reduce water consumption (EEA, 2017b; Bryan et al., 2019). 51
- 52 53

Figure 13.23: Trends in perceived climate change risks and responsibility for tackling climate change across EU-28 (EuropeanCommission, 2017)

As well as temporal trends in climate change risk perception, the literature since AR5 continues to show 6 much heterogeneity (both within and between nations) amongst householders in respect of risk perception 7 (high confidence). Higher climate change risk perceptions observed in Spain, Portugal, Iceland, and 8 Germany (Figure 13.2); at individual level, women, younger age groups, more educated, left-leaning, and 9 those with more 'self-transcendent' values perceive more negative impacts from climate change, although 10 the strength of these relationships varies across European nations (Clayton et al., 2015; Doran et al., 2018; 11Poortinga et al., 2019). Stronger evidence exists since AR5 that experience of extreme weather events can 12 shape climate change risk perceptions, if these events are attributed to climate change or evoke negative 13 emotions (high confidence) (Clayton et al., 2015; Demski et al., 2017; Ogunbode et al., 2019). Proximity to 14 climate hazards does not predict adaptation responses in a straightforward way: in Portugal, those living by 15 the coast were more likely to attribute local natural hazards to climate change and to take some adaptive 16 measures (Luís et al., 2017); while coastal residents in flood-prone regions of France and Germany were 17 more resistant to relocation, due to higher place attachment (Rey-Valette et al., 2019; Seebauer and Winkler, 18 2020); cf. (Adger et al., 2013; van Valkengoed and Steg, 2019). Migration from threatened regions is also 19 discussed in Section 13.8.1. 20

13.11.4 Adaptation, Transformation and Sustainable Development Goals

Transformation is the implementation of far-reaching and rapid systemic change, including both adaptation 24 and mitigation options (de Coninck et al., 2018) that enhance multilevel governance and institutional 25 capabilities, and enables lifestyle/behavioural change and technology innovation. Adaptation responses 26 across European regions and sectors, where they exist at all, can be considered much more often incremental 27 than transformative, with possible exceptions including the Netherlands and some cities (Box 13.3) (medium 28 confidence). Transformative options may be better able to exploit new opportunities and co-benefits (EEA, 29 30 2019a) (Box 13.3) (Cross-Chapter Box TRANSFORM in Chapter 18). System transformations towards more adaptive and climate resilient systems are often the result of responses to crises which create windows of 31 opportunity for system changes (Johannessen et al., 2019) (cf. Chapter 18). This includes financial crises 32 (e.g., Malmö) and the COVID-19 pandemic which have disrupted the status quo and accelerated innovation 33 (e.g., Milan; Box 13.3, Cross-Chapter Box COVID in Chapter 7). 34

35 36

21

22 23

1

2

3 4 5

37 [START BOX 13.3 HERE]

Box 13.3: Climate Resilient Development Pathways in European Cities 1 2 Climate resilient development (CRD) in European cities offers synergies and co-benefits from integrating 3 adaptation and mitigation with environmental, social and economic sustainability (Geneletti and Zardo, 4 2016; Grafakos et al., 2020). Climate networks (e.g., Covenant of Mayors), funding (e.g., Climate-KIC), 5 research programs (e.g., H2020), European and national legislation, and international treaties contribute to 6 the prioritisation of climate action in European cities (Heidrich et al., 2016; Reckien et al., 2018b). 7 Engagement in climate networks, the identification of co-benefits, and the presence of national policies lead 8 to more ambitious and integrated climate planning and action (Heidrich et al., 2016; CDP, 2020). 9 Nevertheless, mitigation and adaptation remain largely siloed and sectoral (Heidrich et al., 2016; Reckien et 10 al., 2018a; Grafakos et al., 2020). An assessment of the integration of mitigation and adaptation in urban 11 climate change action plans in Europe found only 147 cases in a representative sample of 885 (Grafakos et 12 al., 2020). 13 14 In European cities, CRD is most evident in the areas of green infrastructure, energy efficient buildings and 15 construction, and active and low-carbon transport (Pasimeni et al., 2019; Grafakos et al., 2020). Nature-16 based solutions (NbS) often integrate adaptation and mitigation in sustainable urban developments and are 17 associated with increasing natural and social capital in urban communities, improving health and wellbeing, 18 and raising property prices (Geneletti and Zardo, 2016; Pasimeni et al., 2019; Grafakos et al., 2020; The 19 Ignition, 2020). Barriers to CRD in European cities include limitations in: funding, local capacity, guidance 20

- documents and quantified information on costs, co-benefits and trade-offs (Grafakos et al., 2020). Pilot
- projects are used to initiate CRD transitions (Nagorny-Koring and Nochta, 2018). Malmö (Sweden) and
 Milan (Italy) illustrate the strategies and challenges of two European cities implementing CRDP.
- 24

Malmö (population 315,000): Since the 1990s, Malmö has been transitioning toward an environmentally, 25 economically and socially sustainable city, investing in eco-districts and adopting ambitious adaptation and 26 mitigation targets. The city has focused on energy efficient buildings and construction, collective and low 27 carbon transportation, and green spaces and infrastructure (Anderson, 2014; Malmo, 2018). Malmö has 28 leveraged creative implementation mechanisms, including a "climate contract" between the city, the energy 29 distributor and the water and waste utility to co-develop the climate-smart district, Hyllie (Isaksson and 30 Heikkinen, 2018; Kanters and Wall, 2018; Parks, 2019). Flagship districts play a central role in the city's 31 transition, in the wider adoption of CRD and in securing implementation partners (Isaksson and Heikkinen, 32 2018; Stripple and Bulkeley, 2019). The city has also leveraged their status as a CRD leader to attract 33 investment. The private sector views CRD as profitable, due to the high demand and competitive value of 34 these developments (Holgersen and Malm, 2015). Malmö adopted the SDGs as local goals and the city's 35 Comprehensive Plan is evaluated on these, e.g., considering gender in the use, access and safety of public 36 spaces, and emphasizing development that facilitates climate resilient lifestyles (Malmo, 2018). Monitoring 37 achievement of goals provides critical feedback and accountability. Malmö also engages stakeholders in 38 planning and implementation, via dialogue with residents, collaboration with universities and partnerships 39 with industry and service providers (Kanters and Wall, 2018; Parks, 2019). 40

41

Milan (population 1.4M): Milan is taking a CRD approach to regeneration and new developments 42 (Comune di, 2019). From 2020, new buildings must be carbon neutral and reconstructions must reduce the 43 existing land footprint by at least 10%. The Climate and Air Plan (CAP) and the city's Master Plan (Comune 44 di, 2019) focus on low-carbon, inclusive and equitable development. The CAP is directed at municipal and 45 private assets, and individual to city-scale actions. In 2020, Milan released a revised Adaptation Plan and the 46 Open Streets project to ensure synergies between the COVID-19 response and longer-term CRD. Examples 47 include strengthening neighborhood-scale disaster response and opening streets for walking and cycling 48 (Comune di, 2020). Milan emphasizes institutionalization of CRD via a dedicated resilience department, and 49 through active participation in climate networks and projects that support learning and exchange. Climate 50 network commitments are cited in the city's Master Plan and CAP guidelines as driving more ambitious 51 deadlines and emissions targets (Comune di, 2019). 52

54 [END BOX 13.3 HERE]

55 56

SECOND ORDER DRAFT

Considerable barriers exist that prevent system changes from taking place, including institutional and 1 behavioural lock-ins such as administrative routines, certain types of legislation, and dominant paradigms of 2 problem solving (Johannessen et al., 2019; Roberts and Geels, 2019) (high confidence). Breaking through 3 these lock-ins requires substantive (political) will, (un)learning of practices, resources, and perseverance. 4 Trade-offs exist between the depth, scope, and pace of change in transforming from one system to another, 5 suggesting that designing system transformations is a careful balancing act (Termeer et al., 2017). Aspiring 6 quick, in-depth and comprehensive transformational changes might create a consensus frame to work 7 towards; but it might not offer concrete perspectives to act on the ground. Taking small steps and quick-wins 8 offer an alternative pathway (Termeer and Dewulf, 2018). 9 10 Adaptation responses can also be understood in terms of their trade-offs and synergies with SDGs 11 (Papadimitriou et al., 2019; Bogdanovich and Lipka, 2020). In terms of synergies, analysis of the Russian 12 NAP found that successful completion of its first phase could lead to significant progress towards 15 of the 13 17 goals (Bogdanovich and Lipka, 2020). European water adaptation (e.g., flood protection) can similarly 14 support freshwater provision; and water-secured environments support socio-economic growth (Sadoff et al., 15 2015) since people and assets tend to accumulate in areas protected from flooding, reducing the incentive for 16 autonomous adaptation (de Moel et al., 2011; Hartmann and Spit, 2016). In health, behavioural measures to 17 reduce mental health impacts (e.g., gardening, active travel) can have broader health benefits (SDG 3) as 18 well as help reduce emissions (Section 13.7; SDGs 7 and 13). Conversely, growing use of air conditioning 19 for humans and livestock represents a potential trade-off between adaptation and mitigation (Sections 20 13.5,13.6, 13.7, 13.10). As noted in Section 13.8, addressing poverty (SDG 1) - including energy poverty 21 (SDG 7) and hunger (SDG 2) - and inequalities (SDG 10) - including gender inequality (SDG 5) - improves 22 resilience to climate impacts for those groups that are disproportionately affected (women, low-income and 23

marginalised groups). Also, more inclusive and fair decision-making can enhance resilience (SDG 16;

(Dzebo et al., 2019). Economic trade-offs appear to be more common across adaptation strategies, for

Section 13.4.4); although adaptation measures may also lead to resource conflicts (SDG 16; Section 13.7).

Climate adaptation, particularly nature-based solutions, also supports ecosystem health (SDGs 14 and 15)

example reduced employment arising from land use change measures (Papadimitriou et al., 2019). Figure

particularly prominent are reported biodiversity and health benefits most often arising from social (e.g.,

measures have been found to be particularly likely to lead to synergies with SDGs (Papadimitriou et al.,

informational) and structural (e.g., technological/engineering) measures. Beyond the urban context,

13.24 summarises the synergies between adaptation and SDGs as identified by 861 European cities in 2019;

biodiversity co-benefits from agro-ecology are also recognised (Section 13.5). Sustainable behaviour change

34 35 2019).

24

25

26

27

28

29

30

31

32

33

Figure 13.24: Co-benefits for SDGs from adaptation actions (as categorised by AR5 into 'social', 'structural' and
 'institutional' measures) taken by European cities in response to climate hazards (using data reported by 861 European cities in 2019, CDP, 2019).

Frequently Asked Questions

FAQ 13.1: How will climate change increase social inequalities across Europe?

The poor and those practising traditional livelihoods are particularly exposed and vulnerable to climate change. They rely more often on food-self provisioning and settle in flood-prone areas. They also often lack the financial resources or the rights to successfully adapt to climate-driven changes. Yet, good practice examples demonstrate that adaptation can reduce inequalities.

Social inequalities in Europe arise from disparities in income, gender, ethnicity, age, as well as other social categorisations, and intersectionality. In the European Union, about a fifth of the population (109 million people) at present lives under conditions of poverty or social exclusion. Moreover, poverty is unequally distributed across Europe, with higher poverty levels in Eastern Europe.

14

1 2

3 4

5

6

7

8 9

The poor and those practising traditional livelihoods are particularly vulnerable and exposed to climate risks. 15 Many depend on food self-provisioning from lakes, forests and the land. With higher temperatures, the 16 availability of these sources of food is likely to be reduced in southern Europe, but also in the European 17 Arctic where e.g., semi-migratory reindeer herding is a way of life among Indigenous and traditional 18 communities (Komi, Saami, Nenets). Poorer households often settle in flood-prone areas and are therefore 19 more exposed to flooding. Almost 15% of the EU population (in some countries more than 25%) cannot 20 meet their needs for specific health care-related services for financial reasons. Low-income groups are also 21 more exposed to climate risks through the type of work they do. Age is another factor affecting vulnerability, 22 with the oldest and youngest in society often more at risk. 23

24

In addition to being more exposed to climate risks, socially vulnerable groups are also less able to adapt to 25 these risks, because of financial and institutional barriers. More than 20% of people in southern and Eastern 26 Europe live in dwellings that cannot be cooled to comfortable levels during summer and are thus particularly 27 vulnerable to risks from increasing heatwave days in European cities. They may also lack the means to 28 protect against flooding or heat, e.g., when they are renters but not owners of their dwellings or when they 29 are already face energy poverty. Risk-based insurance premiums, which are intended to help people reduce 30 climate risks, are potentially unaffordable for poor households. The ability to adapt is also often limited for 31 indigenous people, as they often lack the rights and governance to resources, particularly when in 32 competition with economic interests such as resource mining, oil and gas, and expansion of bioenergy 33 (forestry).

34 35

Adaptation actions by the state can both increase and decrease social inequalities. For example, there is 36 evidence that state support following extreme weather events was not well balanced between social groups. 37 The installation of new or restoration of existing green spaces may increase land prices and rents because of 38 a higher attractiveness of the areas, leading to potential displacement of population groups who cannot afford 39 these higher prices. On the other hand, rewilding and restoration of ecosystems can improve the access of 40 less privileged people to ecosystem services and goods, such as the availability of freshwater. At city level, 41 there are examples of good practice in climate-resilient development that consider social equity; for example, 42 Malmö (Sweden) integrates a gender-inclusive perspective in its sustainable urban planning, including 43 designing public spaces and transit to ensure women, disabled people and other vulnerable groups can access 44 and feel safe using these amenities (see Box 13.3). 45

FAQ 13.2: What are the limits of adaptation for ecosystems in Europe?

All over Europe, land, freshwater and ocean organisms and ecosystems are facing unprecedented pressures from human activities. Climate change is rapidly becoming an additional and, in the future, even primary threat to organism performance and ecosystem biodiversity and functionality. Ongoing and particularly projected future changes are too strong and happen too fast for many organisms and ecosystems to adapt. Reinforced environmental conservation and adaptation policies can slow and potentially stop and even reverse biodiversity and ecosystem declines.

9 Ecosystem degradation and biodiversity loss have been evident across Europe since 1950, mainly due to land 10 use and overfishing. However, climate-change hazards are becoming further key threats. The unprecedented 11 pace of the change in environmental conditions has already surpassed the natural adaptation capability of 12 most species, communities and ecosystems in Europe. For instance, the space available for some land 13 ecosystems is shrinking, especially in northern and Alpine regions, due to warming and permafrost melting. 14 Across Europe, heatwaves and droughts and their knock-on impacts (e.g., wildfires) add further acute 15 pressures. In the Mediterranean Sea, plants and animals cannot shift northward to evade warming risks and 16 are declining due to marine heatwaves. Food-web dynamics of European ecosystems are disrupted as climate 17 change alters the timing of biological processes, such as spawning and migration, and ecosystem 18 composition. Moreover, it fosters the immigration of invasive species that compete with-and can even out-19 compete-the native flora and fauna. 20

21

1

In a future with further and even stronger warming, climate change and its many direct and indirect impacts 22 will become increasingly more important threats. A number of species and ecosystems are projected to be 23 already at high risk in a 2°C warmer world, including fin fishes and lake and river ecosystems. In an even 24 warmer world of +3°C, many European ecosystems, such as coastal wetlands, peatlands, and forests, are 25 projected to be at much higher risk than in a 2°C warmer world. For example, Mediterranean seagrass 26 meadows will very likely become functionally extinct due to more, longer and more severe marine heat 27 waves by 2050. Several wetland and forest plants and animals will be at high risk to be replaced by invasive 28 species that are better adapted to increasingly dryer conditions, especially in boreal and Arctic ecosystems. 29 Current protection and adaptation measures, such as Marine Protected Areas or the European Water and 30 Marine Strategy Framework Directives, have some positive effects for European ecosystems. However, 31 these policies are not sufficient to effectively curb overall ecosystem decline, and they will certainly not be 32 for the projected higher risks in a more than 2°C warmer world at the end of the 21st century. In general, 33 solutions that include actions to mitigate climate change (such as greenhouse gas emission reduction and 34 carbon extraction), strengthened conservation measures, nature-based adaptations and international 35 cooperation are projected to more effectively reduce risks for European ecosystems and biodiversity. 36 Not all climate-change adaptation options are necessarily beneficial to ecosystems: for example, 'hard' 37 coastal protection measures (building seawalls, breakwaters and similar infrastructure) in response to sea-38 level rise reduce the space available for coastal ecosystems. Nature-based solutions, such as the restoration 39 of wetlands, peatlands and forests, serve both ecosystem protection and climate-change mitigation through 40 strengthening carbon sequestration. But those measures can also have side-effect risks and trade-offs, such as 41 increased methane release from larger wetland areas and albedo change due to large-scale tree planting. 42 43

3

4

5 6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24 25

26

27

28

29

30 31

Chapter 13 FAO 13.3: How can people adapt at individual and community level to heat waves in Europe? Heatwaves will become more frequent, intense and will last longer. A range of adaptation measures are available for communities and individuals to prepare for and deal with heat waves. Individual and collective measures are needed to reduce the impact when a heatwave strikes. Heat waves will affect the people in different ways, and risks are higher for the elderly and people with preexisting health conditions. By 2050, about half of the European population may be exposed to high or to very high risk of heat stress during summer, not only in Mediterranean but also in western central and eastern Europe. Climate change is an important driver, and the proportion of people at risk will also increase due to an ageing population. The severity of projected heat related risks will be higher in southern Europe and particularly in large cities due to the urban heat island effect. Eastern and central Europe are very likely to be faced with growing risks for heat waves in the coming decades. There is already a 'culture of heat' in southern Europe where the general public is highly aware of the risks of heat waves. Consequently, over the past decades, governments and citizens have implemented a range of adaptation responses to reduce the impacts of heat waves. There are limits to how much adaptation can occur, however, therefore additional and transformative actions are needed in some places to prevent future impacts. The parts of Europe where heat waves are relatively new phenomena, a culture of heat is also emerging. Although public awareness tends to be lower when compared with southern Europe, the institutional capacity is expanding, for example through the elaboration of public health interventions in Northern Europe and the heat health action plans and warning in Central Europe. Preparing for heat waves is an important first step. Experiences in southern Europe but also more recent from central Europe show that creating and implementing national or regional early warning and information systems, heat wave plans and guidelines, and raising public awareness through campaigns are successful responses governments can take to prepare people for heat waves. Anecdotal evidence suggests such measures contributed to reduced mortality rates in southern and central Europe. At city or municipal level, preparing for heat waves can take several forms, sometimes requiring systemic

32 transformations. For example, green-blue spaces such as recreational parks and ponds in cities have shown to 33 reduce the average temperature in cities dramatically. Across Europe, several cities have started to invest in 34 green-blue spaces as there are also several environmental, social and health co-benefits. Other measures such 35 as use of cool materials in asphalt, increasing reflectivity, green roofs, and building construction measures 36 are being considered in urban planning for mitigating heat risks. 37

38

People too can prepare themselves, for example using ventilation and energy efficient air-conditioners in 39 their homes, installing green roofs and green facades in their buildings, and by using renewables which can 40 lower fossil-fuel based electricity consumption and risk of power outages during heat wave events. 41 During extreme heat events targeted information to people and social care providers is critical, particularly to 42 those most vulnerable. Governments and NGOs play an important role in informing people what best to do 43 and coordination between vital emergency and health services is critical. Important actions individuals can 44 take to protect themselves from heat are (Figure FAO 13.3): I) decreasing exposure to high temperatures 45 (e.g., avoid outdoor during hottest times of the day, access cool areas, wear protective and appropriate 46 (cotton) clothing); II) keep hydrated (e.g., drink enough proper fluids, avoid alcohol, etc), III) be sensitive to 47 the symptoms of heat illness (dizziness, heavy sweating, fatigue, cool and moist skin with goosebumps when 48 49 in heat, etc.).

50

Once the heat wave has ended, it is important to take stock and evaluate: what worked well and why? What 51 can be improved when the next heat wave strikes? Governments can for example evaluate whether the early 52 warning systems provided timely and useful information, whether coordination among different departments, 53 organisations and stakeholders went well, or assess the effectiveness of measures taken using outcome 54 indicators such as the estimated number of lives saved as results of the measures implemented. Sharing these 55 lessons learned within a city or region is critical to allow changes to be made and linking to city networks 56 can be a powerful tool to gain access to lessons from other cities. Individuals too can evaluate, asking 57

- questions such as whether their responses were appropriate, investments needed to be better prepared, or key lessons about what (not) to do when the next heat wave strikes.
- 2 3

4

5 **Figure FAQ 13.3:** Range of risk signals and adaptation measures available at community and individual level to 6 prepare for and take action in response to heat waves (Based on:WHO, 2015).

7 8

9

Do Not Cite, Quote or Distribute

FAQ 13.4: What opportunities does climate change generate for human and natural systems in Europe?

Climate change impacts vary across European regions and with time, and not all its impacts pose challenges and threats to natural communities and human society but some offer opportunities instead. A slower climate change (facilitated by a drastic reduction of greenhouse gas emissions termed mitigation) as well as a forward looking/future oriented approach, as followed by some of the European countries, gives more time to innovate, plan, and implement measures and thus to seize opportunities.

Opportunities of climate change can be 1) positive effects of climate change, mainly warming, for specific
 sectors and regions such as agriculture in northern Europe, 2) co-benefits of measures reducing climate change speed and impact, which will improve air quality, mental health and wellbeing, and 3) opportunities
 for large-scale transitions and transformations of our society through new policy initiatives in response to the
 COVID crisis, such as the European New Green Deal and Building Back Better.

14

8

Warming and change in snow and rainfall patterns are projected to have large impacts in the more southern 15 part of Europe and those areas with extensive snow and ice cover. Therefore, opportunities derived from 16 climate change benefits are primarily in northern regions increasing inequalities across Europe. Positive 17 effects of climate change are fewer than negative impacts. Positive impacts are limited to some aspects of 18 agriculture, forestry, tourism, and energy sectors. In the food sector, these are driven by the northward 19 movement of food production zones, increases in plant growth due to CO₂ fertilisation, and reduction of 20 heating costs for livestock. In the energy sector, such positive effects include increased hydropower potential 21 in northern Europe and wind energy in the southwestern Mediterranean, and reduced energy demand for 22 heating across all Europe. Climatic conditions for tourist activities during spring and autumn are projected to 23 improve in most of European locations. Fewer cold waves will reduce risks on infrastructure particularly by 24 the end of the century. 25

25 26

Adapting to climate change creates opportunities for the entire European region. For example, societal
participation in designing flood risk management will increase inclusivity, legitimacy, and effectiveness.
Nature-based approaches to adaptation can make cities and settlements more liveable, increase the resilience
of agriculture, and protect biodiversity.

31

32 Opportunities emerge to mainstream adaptation into large socio-economic transformations. These

transformations include investments for energy transition and COVID19 recovery to implement adaptation
 measures. Under new environmental (e.g., warmer) conditions, additionally, new measures are becoming

feasible. All of these measures are backed by the increasing societal support across many European nations and especially young people for climate responses. Transformative climate solutions to achieve sustainability

may be accelerated through larger system changes of, for example behaviour, energy, food or transport, to

³⁸ better exploit new opportunities and co-benefits.

Large-scale infrastructure projects and major changes in governance highlight that transformative actions in
vulnerable places and social groups take a long time to establish and at present are largely not mainstreamed
within decision-making. At the same time, some opportunities for transformation and choices for options
will be reduced or become more difficult and costly if timely decision making is postponed.

References

2 3 4 5 6 7 8 9 10 11 12 13 14

15

16

17

18

1

 Aaheim, A., T. Wei and B. Romstad, 2017: Conflicts of economic interests by limiting global warming to +3 °C. *Mitigation and Adaptation Strategies for Global Change*, 22 (8), 1131-1148, doi:10.1007/s11027-016-9718-8.
 Aalbers, C. B. E. M., D. A. Kamphorst and F. Langers, 2019: Fourteen local governance initiatives in greenspace in

urban areas in the Netherlands. Discourses, success and failure factors, and the perspectives of local authorities. Urban Forestry & Urban Greening, **42**, 82-99, doi:<u>https://doi.org/10.1016/j.ufug.2019.04.019</u>.

- Abegg, B. and R. Steiger, 2016: Herausforderung Klimawandel: Alpiner Skitourismus unter Anpassungsdruck. *Geographische Rundschau*, **5**, 16-21.
- Abermann, J. et al., 2017: Hotspots and key periods of Greenland climate change during the past six decades. *Ambio*, **46** (S1), 3-11, doi:10.1007/s13280-016-0861-y.
- Abi-Samra, N., 2017: *Power Grid Resiliency for Adverse Conditions*. Power Engineering, Artech House, Norwood, MA, 280 pp.
- Adams, K. et al., 2020: Climate-Resilient Trade and Production: The Transboundary Effects of Climate Change and Their Implications for EU Member States. SEI, ODI, IDDRI.
- ADEME, 2014: Schéma Régional Climat Air Energie (SRCAE) de Guadeloupe. 283.
- Adger, W. N. et al., 2013: Cultural dimensions of climate change impacts and adaptation. *Nature Climate Change*, **3**, 112-117, doi:10.1038/nclimate1666.
- Adger, W. N., I. Brown and S. Surminski, 2018: Advances in risk assessment for climate change adaptation policy.
 Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 376 (2121), doi:10.1098/rsta.2018.0106.
- Aerts, J. C. J. H. et al., 2018: Integrating human behaviour dynamics into flood disaster risk assessment. *Nature Climate Change*, 8 (3), 193-199, doi:10.1038/s41558-018-0085-1.
- Aeschbach-Hertig, W. and T. Gleeson, 2012: Regional strategies for the accelerating global problem of groundwater
 depletion. *Nature Geoscience*, 5 (12), 853-861, doi:10.1038/ngeo1617.
- Aguiar, F. C. et al., 2018: Adaptation to climate change at local level in Europe: An overview. *Environmental Science* & *Policy*, 86, 38-63, doi:10.1016/j.envsci.2018.04.010.
- Aguilera, E. et al., 2020: Agroecology for adaptation to climate change and resource depletion in the Mediterranean
 region. A review. *Agricultural Systems*, 181, 102809, doi:<u>https://doi.org/10.1016/j.agsy.2020.102809</u>.
- Airoldi, L. and M. W. Beck, 2007: Loss, status and trends for coastal marine habitats of Europe. *Oceanography and Marine Biology, Vol 45*, 45, 345-405.
- Akentieva, E. M., G. I. Sidoenko and G. A. Tyusov, 2014: To assess the impact of observed and expected future climate
 changes on the hydropower potential of the regions of the Russian Federation. *Works of A.I. Voeykov Main Geophysical Observatory*, (570), 95-105.
- Akin, S.-M., P. Martens and M. M. T. E. Huynen, 2015: Climate Change and Infectious Disease Risk in Western
 Europe: A Survey of Dutch Expert Opinion on Adaptation Responses and Actors. *International Journal of Environmental Research and Public Health*, 12 (8), 9726-9749.
- Albrecht, G. et al., 2007: Solastalgia: The Distress Caused by Environmental Change. *Australasian Psychiatry*, 15
 (1_suppl), S95-S98, doi:10.1080/10398560701701288.
- Alexander, P. et al., 2018: Adaptation of global land use and management intensity to changes in climate and
 atmospheric carbon dioxide. *Global Change Biology*, 24 (7), 2791-2809, doi:10.1111/gcb.14110.
- Alexander, P. et al., 2019: Transforming agricultural land use through marginal gains in the food system. *Global Environmental Change*, 57, 101932, doi:<u>https://doi.org/10.1016/j.gloenvcha.2019.101932</u>.
- 44 Aleynikov, A. A. et al., 2014: Vaigach Island: nature, climate and people [in Russian]. WWF, Moscow.
- Alfieri, L., P. Burek, L. Feyen and G. Forzieri, 2015a: Global warming increases the frequency of river floods in
 Europe. *Hydrology and Earth System Sciences*, 19 (5), 2247-2260, doi:10.5194/hess-19-2247-2015.
- Alfieri, L. et al., 2018: Multi-Model Projections of River Flood Risk in Europe under Global Warming. *Climate*, 6 (1),
 doi:10.3390/cli6010016.
- Alfieri, L., L. Feyen and G. Di Baldassarre, 2016: Increasing flood risk under climate change: a pan-European
 assessment of the benefits of four adaptation strategies. *Climatic Change*, **136** (3-4), 507-521,
 doi:10.1007/s10584-016-1641-1.
- Alfieri, L., L. Feyen, F. Dottori and A. Bianchi, 2015b: Ensemble flood risk assessment in Europe under high end
 climate scenarios. *Global Environmental Change-Human and Policy Dimensions*, 35, 199-212,
 doi:10.1016/j.gloenvcha.2015.09.004.
- Allard, C., 2018: The Rationale for the Duty to Consult Indigenous Peoples: Comparative Reflections from Nordic and
 Canadian Legal Contexts. *Arctic Review on Law and Politics*, 9 (0), doi:10.23865/arctic.v9.729.
- 57 Alliance, E., 2018: Evaluation study of the impact of the CAP on climate change and greenhouse gas emissions.
- Allison, E. A., 2015: The spiritual significance of glaciers in an age of climate change. *Wiley Interdisciplinary Reviews: Climate Change*, 6 (5), 493-508, doi:10.1002/wcc.354.
- Allwood, G., 2020: Mainstreaming Gender and Climate Change to Achieve a Just Transition to a Climate-Neutral
 Europe. *JCMS: Journal of Common Market Studies*, 58 (S1), 173-186, doi:10.1111/jcms.13082.
 - Altieri, A. H. and K. B. Gedan, 2015: Climate change and dead zones. *Global Change Biology*, **21** (4), 1395-1406, doi:papers3://publication/doi/10.1111/gcb.12754.

62

1	AMAP, 2017: Adaptation actions for a changing Arctic: perspectives from the Barents area. Arctic Monitoring and
2	Assessment Programme (AMAP), Oslo, Norway.
3	Ambelas Skjøth, C. et al., 2019: Predicting abundances of invasive ragweed across Europe using a "top-down"
4	approach. Science of The Total Environment, 686, 212-222.
5	Ammer, S. et al., 2018: Impact of diet composition and temperature–humidity index on water and dry matter intake of
6	high-yielding dairy cows. Journal of Animal Physiology and Animal Nutrition, 102 (1), 103-113,
7	doi:10.1111/jpn.12664.
8	Ancic, B., M. Domazet and D. Zuparic-Iljic, 2019: "For my health and for my friends": Exploring motivation, sharing,
9	doi:10.1016/i.geoforum 2019.07.018
10	Ancillotto L et al. 2016: Extraordinary range expansion in a common bat: the potential roles of climate change and
12	urbanisation. The Science of Nature, 103 (3), 15, doi:10.1007/s00114-016-1334-7.
13	Anderson, T., 2014: Malmo: A city in transition. <i>Cities</i> , 39 , 10-20, doi:https://doi.org/10.1016/i.cities.2014.01.005.
14	Andersson, L. et al., 2015: Underlag till kontrollstation 2015 för anpassning till ett förändrat klimat. SMHI, SE-601 76.
15	Norrköping, Sverige [Available at:
16	https://www.smhi.se/polopoly_fs/1.86329!/Menu/general/extGroup/attachmentColHold/mainCol1/file/Klimatolog
17	<u>i%20Nr%2012.pdf</u>].
18	André, K. et al., 2017: Analysis of Swedish Forest Owners' Information and Knowledge-Sharing Networks for
19	Decision-Making: Insights for Climate Change Communication and Adaptation. Environmental Management, 59
20	(6), 885-897, doi:10.1007/s00267-017-0844-1.
21	Anghileri, D. et al., 2018: A Comparative Assessment of the Impact of Climate Change and Energy Policies on Alpine
22	Hydropower. Water Resources Research, 54 (11), 9144-9161, doi:10.1029/201/wr022289.
23	Anonymous, 2011: The EU Biodiversity Strategy to 2020. Publications Office of the European Union, Luxembourg, 1-
24	27 pp. Anonymous 2014: Second assessment report on climate change and its consequences in the Pussian Federation
25 26	Roshydromet Moscow 1008 nn nn
20	Anonymous 2019: Offshore Wind in Europe 2018 Key trends and statistics WindEurope Brussels 1-40
28	Antonioli, F. et al., 2017: Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for
29	2100. <i>Quaternary Science Reviews</i> , 158 , 29-43, doi:10.1016/j.guascirey.2016.12.021.
30	Anzures-Olvera, F. et al., 2019: The impact of hair coat color on physiological variables, reproductive performance and
31	milk yield of Holstein cows in a hot environment. Journal of Thermal Biology, 81 (January), 82-88,
32	doi:10.1016/j.jtherbio.2019.02.020.
33	Aparicio, Á., 2017: Transport adaptation policies in Europe: from incremental actions to long-term visions.
34	Transportation Research Procedia, 25, 3529-3537, doi: https://doi.org/10.1016/j.trpro.2017.05.277.
35	Araos, M., S. E. Austin, L. Berrang-Ford and J. D. Ford, 2016a: Public Health Adaptation to Climate Change in Large
36	Cities: A Global Baseline. International Journal of Health Services, 46 (1), 53-78,
37	doi:10.11///0020/31415621458.
38	Araos, M. et al., 2010b: Climate change adaptation planning in large cities: A systematic global assessment.
39 40	<i>Environmental Science & Policy</i> , 00 , 575-362, doi: <u>https://doi.org/10.1010/j.envsci.2010.00.009</u> .
40	and H. Bültmann (eds.)]. The Conservation of Arctic Flora and Fauna. Akurevri Iceland, 674 nn.
41	Arnhierg-Nielsen K. I. Leonardsen and H. Madsen. 2015: Evaluating adaptation ontions for urban flooding based on
43	new high-end emission scenario regional climate model simulations. <i>Climate Research</i> . 64 (1), 73-84.
44	doi:10.3354/cr01299.
45	Arnell, N. W. et al., 2019: The global and regional impacts of climate change under representative concentration
46	pathway forcings and shared socioeconomic pathway socioeconomic scenarios. Environmental Research Letters,
47	14 (8), 084046, doi:10.1088/1748-9326/ab35a6.
48	Arns, A. et al., 2017: Sea-level rise induced amplification of coastal protection design heights. Scientific Reports, 7,
49	doi:10.1038/srep40171.
50	Arrigo, K. R. and G. L. van Dijken, 2015: Continued increases in Arctic Ocean primary production. <i>Progress in</i>
51	Oceanography, 136 , 60-70, doi:papers3://publication/doi/10.1016/j.pocean.2015.05.002.
52	Astroni, C. et al., 2017: vulnerability Reduction Needed to Maintain Current Burdens of Heat-Kelated Mortality in a
55 54	Changing Chinate-Magintude and Determinants. International journal of environmental research and public health 14 (7). doi:10.3300/jjerph14070741
54 55	Astrom C et al. 2013: Heat-related respiratory hospital admissions in Europe in a changing climate: a health impact
56	assessment. <i>Bmi Onen.</i> 3 (1). doi:10.1136/bmionen-2012-001842
57	Åström Daniel, O. et al., 2016: Evolution of Minimum Mortality Temperature in Stockholm. Sweden, 1901–2009.
58	Environmental Health Perspectives, 124 (6), 740-744, doi:10.1289/ehp.1509692.
59	Athanasiou, P. et al., 2019: Global distribution of nearshore slopes with implications for coastal retreat. Earth System
60	Science Data, 11 (4), 1515-1529, doi:10.5194/essd-11-1515-2019.
61	Atsalis, A., S. Mirasgedis, C. Tourkolias and D. Diakoulaki, 2016: Fuel poverty in Greece: Quantitative analysis and
62	implications for policy. <i>Energy and Buildings</i> , 131 , 87-98, doi:10.1016/j.enbuild.2016.09.025.

1	Atteridge, A. and E. Remling, 2018: Is adaptation reducing vulnerability or redistributing it? Wiley Interdisciplinary
2	<i>Reviews-Climate Change</i> , 9 (1), doi:10.1002/wcc.500.
3	Austin, S. E. et al., 2016: Public Health Adaptation to Climate Change in OECD Countries. International Journal of
4	Environmental Research and Public Health, 13 (9), 889, doi:10.3390/ijerph13090889.
5	Austin, S. E. et al., 2019: Enabling local public health adaptation to climate change. Social Science & Medicine, 220,
6	236-244, doi: <u>https://doi.org/10.1016/j.socscimed.2018.11.002</u> .
7	Austin, S. E. et al., 2018: Intergovernmental relations for public health adaptation to climate change in the federalist
8	states of Canada and Germany. Global Environmental Change, 52, 226-237,
9	doi:10.1016/j.gloenvcha.2018.07.010.
10	Averchenkova, A. et al., 2016a: Multinational and large national corporations and climate adaptation: are we asking the
11	right questions? A review of current knowledge and a new research perspective. Wiley Interdisciplinary Reviews-
12	<i>Climate Change</i> , 7 (4), 517-536, doi:10.1002/wcc.402.
13	Averchenkova, A. et al., 2016b: Multinational and large national corporations and climate adaptation: are we asking the
14	right questions? A review of current knowledge and a new research perspective: Multinational and large national
15	corporations and climate adaptation. Wiley Interdisciplinary Reviews: Climate Change, 7 (4), 517-536,
16	doi:10.1002/wcc.402.
17	Bachner, G. and B. Bednar-Friedl, 2019: The Effects of Climate Change Impacts on Public Budgets and Implications of
18	Fiscal Counterbalancing Instruments. Environmental Modeling & Assessment, 24 (2), 121-142,
19	doi:10.1007/s10666-018-9617-3.
20	Bachner, G., B. Bednar-Friedl and N. Knittel, 2019: How does climate change adaptation affect public budgets?
21	Development of an assessment framework and a demonstration for Austria. Mitigation and Adaptation Strategies
22	for Global Change, doi:10.1007/s11027-019-9842-3.
23	Backer, H. et al., 2010: HELCOM Baltic Sea Action Plan - A regional programme of measures for the marine
24	environment based on the Ecosystem Approach. Marine Pollution Bulletin, 60 (5), 642-649,
25	doi:10.1016/j.marpolbul.2009.11.016.
26	Baird, D. et al., 2019: Ecosystem response to increasing ambient water temperatures due to climate warming in the Sylt-
27	R \o m \o Bight, northern Wadden Sea, Germany. Estuarine, Coastal and Shelf Science, 106322,
28	doi:10.1016/j.ecss.2019.106322.
29	Baker-Austin, C., J. Trinanes, N. Gonzalez-Escalona and J. Martinez-Urtaza, 2017: Non-Cholera Vibrios: The
30	Microbial Barometer of Climate Change. Trends in Microbiology, 25 (1), 76-84,
31	doi:papers3://publication/doi/10.1016/j.tim.2016.09.008.
32	Baldocchi, D. and J. Penuelas, 2019a: Natural carbon solutions are not large or fast enough. <i>Global Change Biology</i> , 25
33	(7), e5-e5, doi:10.1111/gcb.14654.
34	Baldocchi, D. and J. Penuelas, 2019b: The physics and ecology of mining carbon dioxide from the atmosphere by
35	ecosystems. Global Change Biology.
36	Balint, M. et al., 2011: Cryptic biodiversity loss linked to global climate change. Nature Climate Change, 1 (6), 313-
37	318, doi:10.1038/NCLIMATE1191.
38	Ballantyne, A. et al., 2017: Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced
39	respiration. Nature Climate Change, 7, 148, doi:10.1038/nclimate3204
40	https://www.nature.com/articles/nclimate3204#supplementary-information.
41	Ballinger, R., 2015: On the Edge: Coastal Governance and Risk. In: Risk Governance. Springer, Dordrecht, Dordrecht,
42	14, 373-394.
43	Bamberg, S., T. Masson, K. Brewitt and N. Nemetschek, 2017: Threat, coping and flood prevention – A meta-analysis.
44	Journal of Environmental Psychology, 54, 116-126, doi: https://doi.org/10.1016/j.jenvp.2017.08.001.
45	Bank of England, 2015: The impact of climate change on the UK insurance sector. London, 87.
46	Bank of England, 2019: A framework for assessing financial impacts of physical climate change - a practitioner's aide
47	for the general insurance sector. 85.
48	Barange, M. et al., 2014: Impacts of climate change on marine ecosystem production in societies dependent on
49	fisheries. Nature Climate Change, 4 (3), 211-216, doi:10.1038/nclimate2119.
50	Barredo, J., G. Caudullo and A. Dosio, 2016: Mediterranean habitat loss under future climate conditions: Assessing
51	impacts on the Natura 2000 protected area network. Applied Geography, 75, 83-92,
52	doi:10.1016/j.apgeog.2016.08.003.
53	Barriopedro, D. et al., 2011: The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. Science,
54	332 (6026), 220-224, doi:10.1126/science.1201224.
55	Barth, NC. and P. Döll, 2016: Assessing the ecosystem service flood protection of a riparian forest by applying a
56	cascade approach. Ecosystem Services, 21, 39-52, doi:10.1016/j.ecoser.2016.07.012.
57	Bartok, B. et al., 2017: Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-
58	CORDEX regional climate models for Europe. Climate Dynamics, 49 (7-8), 2665-2683, doi:10.1007/s00382-016-
59	3471-2.
60	Battiston, S. et al., 2017: A climate stress-test of the financial system. Nature Climate Change. 7 (4). 283-288.
61	doi:10.1038/nclimate3255.
62	Baudron, A. R. et al., 2020: Changing fish distributions challenge the effective management of European fisheries.
63	<i>Ecography</i> , 43 (4), 494-505, doi:papers3://publication/doi/10.1111/ecog.04864.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

- Becker, A., A. K. Y. Ng, D. McEvoy and J. Mullett, 2018: Implications of climate change for shipping: Ports and supply chains. *Wiley Interdisciplinary Reviews-Climate Change*, **9** (2), doi:10.1002/wcc.508.
- Behrens, P. et al., 2017: Climate change and the vulnerability of electricity generation to water stress in the European Union. *Nature Energy*, **2** (8), doi:10.1038/nenergy.2017.114.
- BEIS, 2019: BEIS Public Attitudes Tracker: Wave 29 key findings.

Beland Lindahl, K., A. Johansson, A. Zachrisson and R. Viklund, 2018: Competing pathways to sustainability? Exploring conflicts over mine establishments in the Swedish mountain region. *Journal of Environmental Management*, 218, 402-415, doi:10.1016/j.jenvman.2018.04.063.

- Beland Lindahl, K. et al., 2017: The Swedish forestry model: More of everything? *Forest Policy and Economics*, **77**, 44-55, doi:10.1016/j.forpol.2015.10.012.
- Bell, R. J., J. Odell, G. Kirchner and S. Lomonico, 2020: Actions to Promote and Achieve Climate-Ready Fisheries: Summary of Current Practice. *Marine and Coastal Fisheries*, **12** (3), 166-190, doi:10.1002/mcf2.10112.
- Belyakova, P. A., V. M. Moreido and A. I. Pyankova, 2018: Flood fatalities age and gender structure analysis in Russia in 2000-2014. In: *Third Vinogradov's Readings. Facets of hydrology*, Saint Pitersburg, Russia [Makarieva, O. M. (ed.)], High technology, 849-853.
- Ben-Ari, T. et al., 2018: Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France. *Nature Communications*, **9** (1), doi:10.1038/s41467-018-04087-x.

Beniston, M. et al., 2018: The European mountain cryosphere: a review of its current state, trends, and future challenges. *The Cryosphere*, **12** (2), 759-794, doi:10.5194/tc-12-759-2018.

- Beniston, M. and M. Stoffel, 2016: Rain-on-snow events, floods and climate change in the Alps: Events may increase
 with warming up to 4 °C and decrease thereafter. *Science of The Total Environment*, 571 (May 1999), 228-236,
 doi:10.1016/j.scitotenv.2016.07.146.
- Bennema, F. P., 2018: Long-term occurrence of Atlantic bluefin tuna Thunnus thynnus in the North Sea: contributions
 of non-fishery data to population studies. *Fisheries Research*, **199** (February 2017), 177-185,
 doi:10.1016/j.fishres.2017.11.019.
- Benzie, M., T. R. Carter, H. Carlsen and R. Taylor, 2019: Cross-border climate change impacts: implications for the
 European Union. *Regional Environmental Change*, 19 (3), 763-776, doi:10.1007/s10113-018-1436-1.
- Benzie, M. and A. Persson, 2019: Governing borderless climate risks: moving beyond the territorial framing of
 adaptation. *International Environmental Agreements: Politics, Law and Economics*, 19, 369 393.
- Berdalet, E. et al., 2017: GlobalHAB A New Program to Promote International Research, Observations, and Modeling of Harmful Algal Blooms in Aquatic Systems. *Oceanography*, **30** (1), 70-81,
- 32 doi:papers3://publication/doi/10.5670/oceanog.2017.111.
- Berge, J. et al., 2005: Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard
 after a 1000 year absence. *Marine Ecology-Progress Series-*, **303**, 167--175.
- Berghuijs, W. R., S. T. Allen, S. Harrigan and J. W. Kirchner, 2019: Growing Spatial Scales of Synchronous River
 Flooding in Europe. *Geophysical Research Letters*, 46 (3), 1423-1428, doi:10.1029/2018GL081883.
- Berkhout, F. et al., 2015: European policy responses to climate change: progress on mainstreaming emissions reduction
 and adaptation. *Regional Environmental Change*, 15 (6), 949-959, doi:10.1007/s10113-015-0801-6.
- Bernabucci, U. et al., 2014: The effects of heat stress in Italian Holstein dairy cattle. *Journal of Dairy Science*, 97 (1),
 471-486, doi:10.3168/jds.2013-6611.
- Berry, P., R. Betts, P. Harrison and A. Sanchez-Arcilla, 2017: High-end climate change in Europe. *Impacts, Vulnerability and Adaption.*
- Berry, P. et al., 2018: Assessing Health Vulnerabilities and Adaptation to Climate Change: A Review of International
 Progress. *International Journal of Environmental Research and Public Health*, 15 (12), 2626.
- Berry, P. M. et al., 2015: Cross-sectoral interactions of adaptation and mitigation measures. *Climatic Change*, 128 (3-4), 381-393, doi:10.1007/s10584-014-1214-0.
- Bett, B. et al., 2017: Effects of climate change on the occurrence and distribution of livestock diseases. *Preventive Veterinary Medicine*, 137 (November 2015), 119-129, doi:10.1016/j.prevetmed.2016.11.019.
- Bevacqua, E. et al., 2019: Higher probability of compound flooding from precipitation and storm surge in Europe under
 anthropogenic climate change. *Science Advances*, 5 (9), eaaw5531, doi:10.1126/sciadv.aaw5531.
- 51 Biedermann, T. et al., 2019: Birch pollen allergy in Europe. *Allergy*, **74** (7), 1237-1248, doi:10.1111/all.13758.
- Biesbroek, G. R. et al., 2010: Europe adapts to climate change: Comparing National Adaptation Strategies. *Global Environmental Change*, 20 (3), 440-450, doi:10.1016/j.gloenvcha.2010.03.005.
- Biesbroek, R. and J. J. L. Candel, 2019: Mechanisms for policy (dis)integration: explaining food policy and climate
 change adaptation policy in the Netherlands. *Policy Sciences*, doi:10.1007/s11077-019-09354-2.
- Biesbroek, R. and A. Delaney, 2020: Mapping the evidence of climate change adaptation policy instruments in Europe.
 Environmental Research Letters, 15 (8), 83005-83005, doi:10.1088/1748-9326/ab8fd1.
- Biesbroek, R. et al., 2018: Do Administrative Traditions Matter for Climate Change Adaptation Policy? A Comparative
 Analysis of 32 High-Income Countries. *Review of Policy Research*, 35 (6), 881-906, doi:10.1111/ropr.12309.
- Bindoff, N. L., W. L. Cheung and J. G. Kairo, 2019: Chapter 5: Changing Ocean, Marine ecosystems, and dependent
 communities. In: SROOC.

Birchenough, S. N. R. et al., 2015: Climate change and marine benthos: a review of existing research and future 1 directions in the North Atlantic. Wiley Interdisciplinary Reviews: Climate Change, 6 (2), 203--223, 2 doi:10.1002/wcc.330. 3 Bird, D. N. et al., 2019: Estimating the daily peak and annual total electricity demand for cooling in Vienna, Austria by 4 2050. Urban Climate, 28, doi:10.1016/j.uclim.2019.100452. 5 Bisaro, A. and J. Hinkel, 2018: Mobilizing private finance for coastal adaptation: A literature review. WIREs Climate 6 Change, 9 (3), e514, doi:10.1002/wcc.514. 7 Bisbis, M. B., N. Gruda and M. Blanke, 2018: Potential impacts of climate change on vegetable production and product 8 quality - A review. Journal of Cleaner Production, 170, 1602-1620, 9 doi:https://doi.org/10.1016/j.jclepro.2017.09.224. 10 Bisselink, B. et al., 2020: Climate change and Europe's water resources. 11Bjorst, L. R. and C. Ren, 2015: Steaming Up or Staying Cool? Tourism Development and Greenlandic Futures in the 12 Light of Climate Change. Arctic Anthropology, 52 (1), 91-101, doi:10.3368/aa.52.1.91. 13 Blanchet, M.-A. et al., 2019: How vulnerable is the European seafood production to climate warming? Fisheries 14 Research, 209, 251-258, doi:10.1016/j.fishres.2018.09.004. 15 Blauhut, V., L. Gudmundsson and K. Stahl, 2015: Towards pan-European drought risk maps: quantifying the link 16 between drought indices and reported drought impacts. Environmental Research Letters, 10 (1), 014008, 17 18 doi:10.1088/1748-9326/10/1/014008. Bloemen, P. J. T. M. et al., 2019: DMDU into Practice: Adaptive Delta Management in The Netherlands. In: Decision 19 Making under Deep Uncertainty: From Theory to Practice [Marchau, V. A. W. J., W. E. Walker, P. J. T. M. 20 Bloemen and S. W. Popper (eds.)]. Springer International Publishing, Cham, 321-351. 21 Bloschl, G. et al., 2017: Changing climate shifts timing of European floods. Science, 357 (6351), 588-590, 22 doi:10.1126/science.aan2506. 23 Blöschl, G. et al., 2019: Changing climate both increases and decreases European river floods. *Nature*, 573, 108–111. 24 BMUB, 2017: Achieving aims together. The Federal Environment Ministry's International Climate Initiative. Review of 25 Activities 2015 to 2016. Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety 26 (BMUB), Berlin. 27 Bock, A. et al., 2014: Changes in first flowering dates and flowering duration of 232 plant species on the island of 28 Guernsey. Global Change Biology, 20 (11), 3508-3519, doi:10.1111/gcb.12579. 29 Boeckmann, M. and T. A. Joyner, 2014: Old health risks in new places? An ecological niche model for I.ricinus tick 30 distribution in Europe under a changing climate. Health & Place, 30, 70-7. 31 Boeckmann, M. and H. Zeeb, 2014: Using a Social Justice and Health Framework to Assess European Climate Change 32 33 Adaptation Strategies. International Journal of Environmental Research and Public Health, 11 (12), 12389-12411. 34 Bogdanovich, A. Y. and O. N. Lipka, 2020: THE SINERGY OF THE CLIMATE GLOBAL SUSTAINABLE 35 DEVELOPMENT GOAL AND THE NATIONAL ADAPTATION PLAN IN RUSSIA. Problems of 36 environmental monitoring and modelling of ecosystems, (3-4), in press. 37 Bokhorst, S. et al., 2016: Changing Arctic snow cover: A review of recent developments and assessment of future needs 38 for observations, modelling, and impacts. Ambio, 45 (5), 516-537, doi:10.1007/s13280-016-0770-0. 39 Bollinger, L. A. and G. P. J. Dijkema, 2016: Evaluating infrastructure resilience to extreme weather - The case of the 40 Dutch electricity transmission network. European Journal of Transport and Infrastructure Research, 16 (1), 214-41 239. 42 Bombelli, G. M., A. Soncini, A. Bianchi and D. Bocchiola, 2019: Potentially modified hydropower production under 43 climate change in the Italian Alps. Hydrological Processes, 33 (17), 2355-2372, doi:10.1002/hyp.13473. 44 Boost, M. and L. Meier, 2017: Resilient practices of consumption in times of crisis-Biographical interviews with 45 46 members of vulnerable households in Germany. International Journal of Consumer Studies, 41 (4), 371-378, 47 doi:10.1111/ijcs.12346. Borderon, M. et al., 2019: Migration influenced by environmental change in Africa: A systematic review of 48 empirical evidence. Demographic Research, 41 (18), 491-54 4. 49 Borsheim, K. Y., 2017: Bacterial and primary production in the Greenland Sea. Journal of Marine Systems, 176, 54-63, 50 doi:papers3://publication/doi/10.1016/j.jmarsys.2017.08.003. 51 Bosello, F. et al., 2018: Economy-wide impacts of climate mitigation and adaptation strategies across European 52 Regions. In: Adapting to Climate Change in Europe [H, S., H. M, R. D, P.-L. G and C. A (eds.)]. Elsevier Inc. 53 Bosson, J. B., M. Huss and E. Osipova, 2019: Disappearing World Heritage Glaciers as a Keystone of Nature 54 Conservation in a Changing Climate. *Earth's Future*, 7 (4), 469-479, doi:10.1029/2018EF001139. 55 Bouwer, L. M. and S. N. Jonkman, 2018: Global mortality from storm surges is decreasing. Environmental Research 56 Letters, 13 (1), 014008, doi:10.1088/1748-9326/aa98a3. 57 Bouzarovski, S. and S. Petrova, 2015: A global perspective on domestic energy deprivation: Overcoming the energy 58 poverty-fuel poverty binary. Energy Research & Social Science, 10, 31-40, doi:10.1016/j.erss.2015.06.007. 59 Bowler, D. et al., 2015: A cross-taxon analysis of the impact of climate change on abundance trends in central Europe. 60 Biological Conservation, 187, 41-50. 61 Bowler, D. E. et al., 2018: The geography of the Anthropocene differs between the land and the sea. *bioRxiv*, 432880, 62 doi:10.1101/432880. 63

1	Bowler, D. E., L. Buyung-Ali, T. M. Knight and A. S. Pullin, 2010: Urban greening to cool towns and cities: A
2	systematic review of the empirical evidence. Landscape and Urban Planning, 97 (3), 147-155,
3	doi:https://doi.org/10.1016/j.landurbplan.2010.05.006.
4	Bowler, D. E. et al., 2019: Long-term declines of European insectivorous bird populations and potential causes.
5	Conservation Biology, 33 (5), 1120-1130, doi:10.1111/cobi.13307.
6	Bowler, D. E. et al., 2017: Cross-realm assessment of climate change impacts on species' abundance trends. <i>Nature</i>
7	Ecology & Amp; Evolution, 1, 0067, doi:10.1038/s41559-016-0067
8	https://www.nature.com/articles/s41559-016-0067#supplementary-information.
9	Brambilla, M., P. Pedrini, A. Rolando and D. Chamberlain, 2016: Climate change will increase the potential conflict
10	between skiing and high-elevation bird species in the Alps. Journal of Biogeography, 43 (11), 2299-2309,
11	doi:10.1111/jbi.12796.
12	Brás, T. A., J. Jägermeyr and J. Seixas, 2019: Exposure of the EU-28 food imports to extreme weather disasters in
13	exporting countries. Food Security, 11 (6), 1373-1393, doi:10.1007/s12571-019-00975-2.
14	Brasseur, G. P. and L. Gallardo, 2016: Climate services: Lessons learned and future prospects. Earths Future, 4 (3), 79-
15	89, doi:10.1002/2015ef000338.
16	Brattland, C. and T. Mustonen, 2018: How Traditional Knowledge Comes to Matter in Atlantic Salmon Governance in
17	Norway and Finland. ARCTIC, 71 (4), 365-482, doi: https://doi.org/10.14430/arctic4751.
18	Bright, R. M. et al., 2017: Local temperature response to land cover and management change driven by non-
19	radiative processes. Nature Climate Change, 7, 296, doi:10.1038/nclimate3250
20	https://www.nature.com/articles/nclimate3250#supplementary-information.
21	Brink, E. and C. Wamsler, 2018: Collaborative Governance for Climate Change Adaptation: Mapping citizen-
22	municipality interactions. Environmental Policy and Governance, 28 (2), 82-97, doi:10.1002/eet.1795.
23	Brink, E. and C. Wamsler, 2019: Citizen engagement in climate adaptation surveyed: The role of values, worldviews,
24	gender and place. Journal of Cleaner Production, 209, 1342-1353,
25	doi: <u>https://doi.org/10.1016/j.jclepro.2018.10.164</u> .
26	Brodie, J. et al., 2014: The future of the northeast Atlantic benthic flora in a high CO2 world. Ecology and Evolution, 4
27	(13), 27872798, doi:10.1002/ece3.1105.
28	Brodribb, T. J., J. Powers, H. Cochard and B. Choat, 2020: Hanging by a thread? Forests and drought. Science, 368
29	(6488), 261-266, doi:10.1126/science.aat7631.
30	Brugger, J., K. W. Dunbar, C. Jurt and B. Orlove, 2013: Climates of anxiety: Comparing experience of glacier retreat
31	across three mountain regions. Emotion, Space and Society, 6, 4-13,
32	doi: <u>https://doi.org/10.1016/j.emospa.2012.05.001</u> .
33	Bruno, J. F. et al., 2018: Climate change threatens the world's marine protected areas. <i>Nature Climate Change</i> , 8 (6),
34	499-503, doi:papers3://publication/doi/10.1038/s41558-018-0149-2.
35	Bruno Soares, M., M. Alexander and S. Dessai, 2018: Sectoral use of climate information in Europe: A synoptic
36	overview. <i>Climate Services</i> , 9, 5-20, doi: <u>https://doi.org/10.1016/j.cliser.2017.06.001</u> .
37	Bryan, K., S. Ward, S. Barr and D. Butler, 2019: Coping with Drought: Perceptions, Intentions and Decision-Stages of
38	South West England Households. <i>Water Resources Management</i> , 33 (3), 1185-1202, doi:10.1007/s11269-018-
39	2175-2.
40	Bryndum-Buchholz, A. et al., 2019: Twenty-first-century climate change impacts on marine animal biomass and
41	ecosystem structure across ocean basins. 25 (2), $459-472$, doi:doi:10.1111/gcb.14512.
42	Bubeck, P. et al., 2019: Global warming to increase flood risk on European railways. <i>Climatic Change</i> , 155 (1), 19-36,
43	doi:10.1007/s10584-019-02434-5.
44	Bubeck, P. et al., 2017: Explaining differences in flood management approaches in Europe and in the USA – a
45	comparative analysis. Journal of Flood Risk Management, 10 (4), 436-445, doi:10.1111/jfr3.12151.
46	Bugmann, H., I. Cordonnier, H. Iruhetz and M. J. Lexer, 2017: Impacts of business-as-usual management on
47	ecosystem services in European mountain ranges under climate change. Regional Environmental Change, 17 (1),
48	3-16, doi:10.100//s10113-016-10/4-4.
49 • •	Bunaug, H. et al., 2014: One effect to rule them all? A comment on climate and conflict. Climatic Change, 127 (3-4),
50	391-397.
51	Bulleri, F. et al., 2018: Harnessing positive species interactions as a tool against climate-driven loss of coastal
52 52	Distributiversity. FLOS Distriggy, 10 (9), e2000852, doi:10.15/1/journal.poi0.2000852.
55 54	Management 71 , 167, 174, doi:10.1016/j.jojimane: Ney priorities for action. Journal of Air Transport
54 55	wanagement, 11, 107-174, aui:10.1010/J.Jairtraman.2018.04.004.
55 56	577 (7577) 225 220 doi:10.1028/noture.15725
50 57	541 (15/1), 255-257, 401.10.1050/Halufe15/25. Burke M and V Tanutama 2010: Climatic Constraints on Aggregate Economic Output National Durson of Economic
51 58	Research Cambridge MA [Available at: http://www.nber.org/papers/w25770.pdf]
50 50	Research, Camphilinge, IVIA [Available at. <u>http://www.ilbcl.org/papers/w25779.put]</u> . Burrows M T et al. 2019: Ocean community warming responses evaluated by thermal affinities and temperature
57 60	aradients. Nature Climate Change 9 (12) 950.063 doi:noners3://publication/doi/10.1029/s41559.010.0621.5
61	Byers E et al 2018: Global exposure and vulnerability to multi-sector development and climate change botspots
62	Environmental Research Letters 13 (5) 55012-55012 doi:10.1088/1748-9326/aabf45

Byers, E. A. et al., 2016: Water and climate risks to power generation with carbon capture and storage. Environmental 1 Research Letters, 11 (2), 024011, doi:10.1088/1748-9326/11/2/024011. 2 Caffarra, A. et al., 2012: Modelling the impact of climate change on the interaction between grapevine and its pests and 3 pathogens: European grapevine moth and powdery mildew. Agriculture, Ecosystems & Environment, 148, 89-101, 4 doi:https://doi.org/10.1016/j.agee.2011.11.017. 5 Callaghan, M. W., J. C. Minx and P. M. Forster, 2020: A topography of climate change research. Nature Climate 6 Change, 10 (2), 118-123, doi:10.1038/s41558-019-0684-5. 7 Cameron, R. W. F., J. E. Taylor and M. R. Emmett, 2014: What's 'cool' in the world of green facades? How plant 8 choice influences the cooling properties of green walls. Building and Environment, 73, 198-207, 9 doi:https://doi.org/10.1016/j.buildenv.2013.12.005. 10 Cammalleri, C. et al., 2020: Global warming and drought impacts in the EU. Publications Office of the European 11Union, doi:10.2760/597045. 12 Campos Rodrigues, L., J. Freire-González, A. González Puig and I. Puig-Ventosa, 2018: Climate Change Adaptation of 13 Alpine Ski Tourism in Spain. Climate, 6 (2), doi:10.3390/cli6020029. 14 Camus, P. et al., 2019: Probabilistic assessment of port operation downtimes under climate change. Coastal 15 Engineering, 147, 12-24, doi:https://doi.org/10.1016/j.coastaleng.2019.01.007. 16 Caporin, M. and F. Fontini, 2016: Chapter 5 - Damages Evaluation, Periodic Floods, and Local Sea Level Rise: The 17 18 Case of Venice, Italy. In: Handbook of Environmental and Sustainable Finance [Ramiah, V. and G. N. Gregoriou 19 (eds.)]. Academic Press, San Diego, 93-110. Capstick, S. et al., 2015: International trends in public perceptions of climate change over the past quarter century. 20 Wiley Interdisciplinary Reviews: Climate Change, 6 (1), 35-61, doi:10.1002/wcc.321. 21 Capuzzo, E. et al., 2018: A decline in primary production in the North Sea over 25 years, associated with reductions in 22 zooplankton abundance and fish stock recruitment. Global Change Biology, 24 (1), e352--e364, 23 doi:10.1111/gcb.13916. 24 Carmona, R. et al., 2016: Geographical variation in relative risks associated with cold waves in Spain: the need for a 25 cold wave prevention plan. Environment international, 88, 103-111. 26 Carnicer, J. et al., 2019a: Regime shifts of Mediterranean forest carbon uptake and reduced resilience driven by 27 multidecadal ocean surface temperatures. Global Change Biology, 0 (0), doi:10.1111/gcb.14664. 28 Carnicer, J. et al., 2019b: Phenotypic biomarkers of climatic impacts on declining insect populations: A key role for 29 decadal drought, thermal buffering and amplification effects and host plant dynamics. Journal of Animal Ecology, 30 31 **88** (3), 376-391, doi:10.1111/1365-2656.12933. 32 Carnicer, J. et al., 2017: Evolutionary Responses of Invertebrates to Global Climate Change: the Role of Life-History 33 Trade-Offs and Multidecadal Climate Shifts. In: Global Climate Change and Terrestrial Invertebrates [Johnson, S. 34 N. and T. H. Jones (eds.)], 317-348. Carozza, D. A., D. Bianchi and E. D. Galbraith, 2019: Metabolic impacts of climate change on marine ecosystems: 35 Implications for fish communities and fisheries. Global Ecology and Biogeography, 28 (2), 158-169, 36 doi:papers3://publication/doi/10.1111/geb.12832. 37 Carroll, B., H. Morbey, R. Balogh and G. Araoz, 2009: Flooded homes, broken bonds, the meaning of home, 38 psychological processes and their impact on psychological health in a disaster. Health & Place, 15 (2), 540-547. 39 doi:10.1016/j.healthplace.2008.08.009. 40 Carroll, P. and E. Aarrevaara, 2018: Review of Potential Risk Factors of Cultural Heritage Sites and Initial Modelling 41 for Adaptation to Climate Change. Geosciences, 8 (9), 322, doi:10.3390/geosciences8090322. 42 Carstensen, J., J. H. Andersen, B. G. Gustafsson and D. J. Conley, 2014: Deoxygenation of the Baltic Sea during the 43 last century. Proceedings of the National Academy of Sciences, 111 (15), 5628-5633, 44 doi:10.1073/pnas.132315611. 45 Carter, J. G., J. Handley, T. Butlin and S. Gill, 2018: Adapting cities to climate change - exploring the flood risk 46 47 management role of green infrastructure landscapes. Journal of Environmental Planning and Management, 61 (9), 1535-1552, doi:10.1080/09640568.2017.1355777. 48 Carvalho, D., A. Rocha, M. Gomez-Gesteira and C. Santos, 2017a: Potential impacts of climate change on European 49 wind energy resource under the CMIP5 future climate projections. Renewable Energy, 101, 29-40, 50 doi:10.1016/j.renene.2016.08.036. 51 Carvalho, N. et al., 2017b: The 2017 annual economic report on the EU fishing fleet (STECF 17-12). 52 Casanueva, A. et al., 2020: Escalating environmental summer heat exposure—a future threat for the European 53 workforce. Regional Environmental Change, 20 (2), 40, doi:10.1007/s10113-020-01625-6. 54 Cassarino, T., E. Sharp and M. Barrett, 2018: The impact of social and weather drivers on the historical electricity 55 demand in Europe. Applied Energy, 229, 176-185, doi:10.1016/j.apenergy.2018.07.108. 56 Castellanos-Galindo, G. A., D. R. Robertson and M. E. Torchin, 2020: A new wave of marine fish invasions through 57 the Panama and Suez canals. Nature Ecology & Evolution, 29, 1-3, doi:papers3://publication/doi/10.1038/s41559-58 020-01301-2. 59 Castelle, B. et al., 2018: Spatial and temporal patterns of shoreline change of a 280-km high-energy disrupted sandy 60 coast from 1950 to 2014: SW France. Estuarine, Coastal and Shelf Science, 200, 212-223, 61 doi:https://doi.org/10.1016/j.ecss.2017.11.005. 62

7

8

9

10

11

1	Castelletto, N. et al., 2008: Can Venice be raised by pumping water underground? A pilot project to help decide. Water
2	Resources Research, 44 (1).
3	Cattaneo, C. et al., 2019: Human Migration in the Era of Climate Change. Review of Environmental Economics and
4	<i>Policy</i> , 13 (2), 189-206, doi:10.1093/reep/rez008.
5	Cavallo, M. et al., 2019: Impediments to achieving integrated marine management across borders: The case of the EU

Cavallo, M. et al., 2019: Impediments to achieving integrated marine management across borders: The case of the EU Marine Strategy Framework Directive. *Marine Policy*, **103**, 68-73, doi:papers3://publication/doi/10.1016/j.marpol.2019.02.033.

Cavelier, R. et al., 2017: Conditions for a market uptake of climate services for adaptation in France. *Climate Services*, **6**, 34-40, doi:https://doi.org/10.1016/j.cliser.2017.06.010.

CBS, PBL and WageningenUR. 2019: Temperatuur oppervlaktewater, Temperatuur oppervlaktewater, 1910-

2013. (indicator 0566, versie 02, 3 juni 2014). <u>http://www.clo.nl/nl0566</u>. [Available at]

- 12 CDP, 2019: Open Data Portal. doi:<u>https://data.cdp.net/</u>.
- CDP, 2020: The co-benefits of climate action: Accelerating city-level ambition.
 doi:<u>https://www.cdp.net/en/research/global-reports/co-benefits-climate-</u>
 action#671b3beee69d9180412202b6528ec8f7.
- Ceccherini, G. et al., 2020: Abrupt increase in harvested forest area over Europe after 2015. *Nature*, 583 (7814), 72-77,
 doi:10.1038/s41586-020-2438-y.
- Ceglar, A., M. Turco, A. Toreti and F. J. Doblas-Reyes, 2017: Linking crop yield anomalies to large-scale atmospheric
 circulation in Europe. *Agricultural and Forest Meteorology*, 240-241, 35-45,
 doi:10.1016/j.agrformet.2017.03.019.
- Ceglar, A., M. Zampieri, A. Toreti and F. Dentener, 2019: Observed Northward Migration of Agro-Climate Zones in
 Europe Will Further Accelerate Under Climate Change. *Earth's Future*, 7 (9), 1088-1101,
 doi:10.1029/2019EF001178.
- Cellura, M., F. Guarino, S. Longo and G. Tumminia, 2018: Climate change and the building sector: Modelling and
 energy implications to an office building in southern Europe. *Energy for Sustainable Development*, 45, 46-65,
 doi:<u>https://doi.org/10.1016/j.esd.2018.05.001</u>.
- Cervellin, G. et al., 2014: The number of emergency department visits for psychiatric emergencies is strongly
 associated with mean temperature and humidity variations. Results of a nine year survey. *Emergency Care Journal*, 10 (1).
- Challinor, A. et al., 2016a: UK Climate Change Risk Assessment Evidence Report 2017: Chapter 7, International
 Dimensions.
- Challinor, A. J. et al., 2016b: Current warming will reduce yields unless maize breeding and seed systems adapt
 immediately. *Nature Climate Change*, 6 (10), 954-958, doi:10.1038/nclimate3061.
- Challinor, A. J. et al., 2018: Improving the use of crop models for risk assessment and climate change adaptation.
 Agricultural Systems, 159, 296-306, doi:<u>https://doi.org/10.1016/j.agsy.2017.07.010</u>.
- Chambwera, M. et al., 2014: Economics of adaptation. In: Climate Change 2014: Impacts, Adaptation, and
 Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment
 Report of the Intergovernmental Panel of Climate Change [Field, C. B., V. R. Barros, D. J. Dokken, K. J. Mach,
 M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A.
 N. Levy, S. MacCracken, P. R. Mastrandrea and L. L. White (eds.)]. Cambridge University Press, Cambridge,
 United Kingdom and New York, NY, USA, XXX-YYY.
- Charlier, J. et al., 2016: Climate-driven longitudinal trends in pasture-borne helminth infections of dairy cattle.
 International Journal for Parasitology, 46 (13-14), 881-888, doi:10.1016/j.ijpara.2016.09.001.
- Chatzopoulos, T., I. Pérez Domínguez, M. Zampieri and A. Toreti, 2020: Climate extremes and agricultural commodity
 markets: A global economic analysis of regionally simulated events. *Weather and Climate Extremes*, 27,
 doi:10.1016/j.wace.2019.100193.

Chausson, A. et al., 2020: Mapping the effectiveness of nature-based solutions for climate change adaptation. *Global Change Biology*, **67**, 6134-6155, doi:papers3://publication/doi/10.1111/gcb.15310.

- Chen, I. C. et al., 2011: Rapid Range Shifts of Species Associated with High Levels of Climate Warming. *Science*, 333 (6045), 1024, doi:10.1126/science.1206432.
- Chernet Haregewoin, H., K. Alfredsen and H. Midttømme Grethe, 2014: Safety of Hydropower Dams in a Changing
 Climate. *Journal of Hydrologic Engineering*, 19 (3), 569-582, doi:10.1061/(ASCE)HE.1943-5584.0000836.
- Chivers, W. J., A. W. Walne and G. C. Hays, 2017: Mismatch between marine plankton range movements and the
 velocity of climate change. *Nature Communications*, 8, 14434,
 doi:papers3://publication/doi/10.1038/ncomms14434.
- Christel, I. et al., 2018: Introducing design in the development of effective climate services. *Climate Services*, 9, 111 121, doi:<u>https://doi.org/10.1016/j.cliser.2017.06.002</u>.
- Christodoulou, A., P. Christidis and H. Demirel, 2018: Sea-level rise in ports: a wider focus on impacts. *Maritime Economics & Logistics*, doi:10.1057/s41278-018-0114-z.
- Christodoulou, A. and H. Demirel, 2018: Impacts of climate change on transport: A focus on airports, seaports and
 inland waterways. Publications Office of the European Union, Luxembourg, 50, doi:10.2760/378464.

Church, A., R. Mitchell, N. Ravenscroft and L. M. Stapleton, 2015: 'Growing your own': A multi-level modelling 1 approach to understanding personal food growing trends and motivations in Europe. Ecological Economics, 110, 2 3 71-80, doi:10.1016/j.ecolecon.2014.12.002. Ciais, P. et al., 2005: Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 4 437 (7058), 529-533, doi:10.1038/nature03972. 5 Ciais, P. et al., 2019: Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. 6 Nature, 568 (7751), 221-225, doi:10.1038/s41586-019-1078-6. 7 Ciscar, J.-C. et al., 2014: Climate impacts in Europe-The JRC PESETA II project. EUR - Scientific and Technical 8 Research, 26586, 155. 9 Clar, C., 2019: Coordinating climate change adaptation across levels of government: the gap between theory and 10 practice of integrated adaptation strategy processes. Journal of Environmental Planning and Management, 1-20, 11 doi:10.1080/09640568.2018.1536604. 12 Clar, C. and R. Steurer, 2019: Climate change adaptation at different levels of government: Characteristics and 13 conditions of policy change. Natural Resources Forum, 43 (2), 121-131, doi:10.1111/1477-8947.12168. 14 Clark, N. J., J. T. Kerry and C. I. Fraser, 2020: Rapid winter warming could disrupt coastal marine fish community 15 structure. Nature Climate Change, 10 (9), 862-867, doi:10.1038/s41558-020-0838-5. 16 Clark, P. U. et al., 2016: Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. 17 18 *Nature Climate Change*, **6** (4), 360-369, doi:10.1038/nclimate2923. 19 Claudet, J., C. Loiseau, M. Sostres and M. Zupan, 2020: Underprotected Marine Protected Areas in a Global Biodiversity Hotspot. One Earth, 2 (4), 380-384, doi:papers3://publication/doi/10.1016/j.oneear.2020.03.008. 20 Clayton, S. et al., 2015: Psychological research and global climate change. Nature Climate Change, 5, 640-646, 21 doi:10.1038/nclimate2622. 22 Coffel, E. D., T. R. Thompson and R. M. Horton, 2017: The impacts of rising temperatures on aircraft takeoff 23 performance. Climatic Change, 144 (2), 381-388, doi:10.1007/s10584-017-2018-9. 24 Cohen, J., K. Moeltner, J. Reichl and M. Schmidthaler, 2018: Effect of global warming on willingness to pay for 25 uninterrupted electricity supply in European nations. Nature Energy, 3 (1), 37-45, doi:10.1038/s41560-017-0045-26 27 4. Cohen, P., O. Potchter and A. Matzarakis, 2012: Daily and seasonal climatic conditions of green urban open spaces in 28 the Mediterranean climate and their impact on human comfort. Building and Environment, 51, 285-295, 29 doi:https://doi.org/10.1016/j.buildenv.2011.11.020. 30 CoM, 2019: Covenant in Figures. Covenant of Mayors for Climate & Energy. 31 32 Coma, R. et al., 2009: Global warming-enhanced stratification and mass mortality events in the Mediterranean. PNAS, 33 **106** (15), 6176-6181, doi:papers3://publication/doi/10.1073/pnas.0805801106. 34 Comerlati, A. et al., 2003: Can CO2 help save Venice from the sea? Eos, Transactions American Geophysical Union, 84 (49), 546-553. 35 Commission, E., 2013: A new EU Forest Strategy: for forests and the forest-based sector. 36 Comune di, M., 2019: Milano 2030: Visione, Costruzione, Strategie, Spazi. 37 Comune di, M., 2020: Milan 2020. Adaptation strategy - Open Streets. 38 Confalonieri, U., J. Menezes and C. de Souza, 2015: Climate change and adaptation of the health sector: the case of 39 infectious diseases. Virulence, 6 (6), 550-553, doi:10.1080/21505594.2015.1023985. 40 Cook, B. I. and E. M. Wolkovich, 2016: Climate change decouples drought from early wine grape harvests in France. 41 Nature Climate Change, 6 (7), 715-719, doi:10.1038/nclimate2960. 42 Cooper, J. A. G., M. C. O'Connor and S. McIvor, 2016: Coastal defences versus coastal ecosystems: A regional 43 appraisal. Marine Policy, doi:papers3://publication/doi/10.1016/j.marpol.2016.02.021. 44 Copernicus, 2019: Copernicus Europe State of the Climate report [Available at: 45 https://climate.copernicus.eu/sites/default/files/2020-07/ESOTC2019 summary v2.pdf] 46 47 Copernicus, 2020a: Copernicus Emergency Management Service. [Available at: https://emergency.copernicus.eu/]. Copernicus, 2020b: ECMWF and Copernicus Atmosphere Monitoring Service [Available at: 48 https://atmosphere.copernicus.eu/]. 49 Corcoran, M., 2014: From Private Initiatives to Public Goods: A Comparative Analysis of European Urban 50 Agricultural Practices in the Age of Austerity. XVIII ISA World Congress of Sociology (July 13-19, 2014). 51 Isaconf [Available at: https://isaconf.confex.com/isaconf/wc2014/webprogram/Paper65556.html]. 52 Corrales, X. et al., 2018: Future scenarios of marine resources and ecosystem conditions in the Eastern Mediterranean 53 under the impacts of fishing, alien species and sea warming. Scientific Reports, 8, 1-16, doi:10.1038/s41598-018-54 32666-x. 55 Cottier-Cook, E. J. et al., 2017: Non-native species. In: MCCIP Science Review. Marine Climate Change Impacts 56 Partnership, 47-61. 57 Couasnon, A. et al., 2020: Measuring compound flood potential from river discharge and storm surge extremes at the 58 global scale. Natural Hazards and Earth System Sciences, 20 (2), 489-504, doi:10.5194/nhess-20-489-2020. 59 Cramer, W. et al., 2018; Climate change and interconnected risks to sustainable development in the Mediterranean. 60 Nature Climate Change, 8 (11), 972-980, doi:10.1038/s41558-018-0299-2. 61 Cronin, J., G. Anandarajah and O. Dessens, 2018: Climate change impacts on the energy system: a review of trends and 62 gaps. Climatic Change, 151 (2), 79-93, doi:10.1007/s10584-018-2265-4. 63

1	Crossley, M. et al., 2020: No net insect abundance and diversity declines across US Long Term Ecological Research
2	sites. Nature Ecology & Evolution, doi:10.1038/s41559-020-1269-4.
3	Curtis, S. et al., 2017: Adaptation to extreme weather events in complex health and social care systems: The example of
4	older people's services in England. Environment and Planning C: Politics and Space, 36 (1), 67-91,
5	doi:10.11//239965441/695101.
6	D'Amato, G. et al., 2016: Climate Change and Air Pollution: Effects on Respiratory Allergy. Allergy Asthma &
7	Immunology Research, δ (5), 391-395, doi:10.4108/aair.2016.8.5.391.
8	d'Amour, C. B. et al., 2016: Teleconnected food supply snocks. Environmental Research Letters, 11 (3),
9	001.10.1060/1/40-3520/11/5/05500/. D'Alisa G and G Kallis 2016: A political ecology of maladantation: Insights from a Gramssian theory of the State
10	Global Environmental Change 38 , 230-242, doi:10.1016/j.gloenycha.2016.03.006
12	D'Orazio P and I Popovan 2019: Fostering green investments and tackling climate-related financial risks: Which
12	role for macroprudential policies? <i>Ecological Economics</i> 160 25-37
14	doi:https://doi.org/10.1016/i.ecolecon.2019.01.029.
15	Dahlke, F. T., S. Wohlrab, M. Butzin and HO. Pörtner, 2020: Thermal bottlenecks in the life cycle define climate
16	vulnerability of fish. Science, 369 (6499), 65-70, doi:papers3://publication/doi/10.1126/science.aaz3658.
17	Daire, MY. et al., 2012: Coastal Changes and Cultural Heritage (1): Assessment of the Vulnerability of the Coastal
18	Heritage in Western France. The Journal of Island and Coastal Archaeology, 7 (2), 168-182,
19	doi:10.1080/15564894.2011.652340.
20	Daly, C. et al., 2020: Climate change adaptation planning for cultural heritage, a national scale methodology. Journal of
21	Cultural Heritage Management and Sustainable Development, ahead-of-print (ahead-of-print),
22	doi:10.1108/JCHMSD-04-2020-0053.
23	Damm, A. et al., 2017: Impacts of +2°C global warming on electricity demand in Europe. <i>Climate Services</i> , 7, 12-30,
24	$\frac{doi: https://doi.org/10.1016/j.cliser.2016.0/.001}{doi: https://doi.org/10.1016/j.cliser.2016.0/.001}$
25	Daniel, M. et al., 2003: Shift of the tick ixodes ricinus and tick-borne encephalitis to higher altitudes in Central Europe.
26	European Journal of Clinical Microbiology & Infectious Diseases, 22 (5), 527-528, doi:10.1007/\$10096-005-
21	0910-2. Danneyig H and G K Hovelsrud 2016: Understanding the need for adaptation in a natural resource dependent
20 20	community in Northern Norway: issue salience knowledge and values. <i>Climatic Change</i> 135 (2) 261-275
30	doi:10.1007/s10584-015-1557-1
31	Dannheim, J. et al., 2019: Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed
32	research. ICES Journal of Marine Science, 107, 223-17, doi:papers3://publication/doi/10.1093/icesjms/fsz018.
33	Darmaraki, S. et al., 2019a: Future evolution of Marine Heatwaves in the Mediterranean Sea. Climate Dynamics, 53 (3),
34	1371-1392, doi:10.1007/s00382-019-04661-z.
35	Darmaraki, S. et al., 2019b: Future evolution of Marine Heatwaves in the Mediterranean Sea. Climate Dynamics, 53 (3-
36	4), 13711392, doi:10.1007/s00382-019-04661-z.
37	Daskalov, G. M. et al., 2017: Architecture of collapse: regime shift and recovery in an hierarchically structured marine
38	ecosystem. Global Change Biology, 23 (4), 1486-1498, doi:papers3://publication/doi/10.1111/gcb.13508.
39	Dastgerdi, A. S., M. Sargolini and I. Pierantoni, 2019: Climate Change Challenges to Existing Cultural Heritage Policy.
40	Sustainability, 11 (19), 3227, doi:10.3390/su11193227.
41 42	frameworks 50 [Available at: https://ec.europa.eu/futurium/en/system/files/ged/naturvation_nature_
43	based solutions in european and national policy frameworks pdf
44	Davy, R., N. Gnatiuk, L. Pettersson and L. Bobyley, 2018: Climate change impacts on wind energy potential in the
45	European domain with a focus on the Black Sea. <i>Renewable & Sustainable Energy Reviews</i> , 81 , 1652-1659,
46	doi:10.1016/j.rser.2017.05.253.
47	Day Jr, J. et al., 1999: Soil accretionary dynamics, sea-level rise and the survival of wetlands in Venice Lagoon: a field
48	and modelling approach. Estuarine, Coastal and Shelf Science, 49 (5), 607-628.
49	de'Donato, F. et al., 2018: Temporal variation in the effect of heat and the role of the Italian heat prevention plan.
50	Public Health, 161, 154-162, doi: <u>https://doi.org/10.1016/j.puhe.2018.03.030</u> .
51	de Bruin, K. et al., 2020: Physical Climate Risks and the Financial Sector—Synthesis of Investors' Climate Information
52	Needs. In: Handbook of Climate Services [Leal Filho, W. and D. Jacob (eds.)]. Springer International Publishing,
53	Cham, 135-156.
54 55	and adaptation, Empironmental Research Letters 11 (7) 74015 74015 doi:10.1002/1740.0226/11/7/074015
55 56	and adaptation. Environmental Research Letters, 11 (1), 74013-74013, 001.10.1000/1740-9520/11/7/074013. de Conick H and A Revi 2018: Chapter 4: Strengthening and implementing the Global Response. In: 1.5 report
50 57	[IPCC (ed.)].
58	de Coninck, H. et al., 2018; Strengthening and implementing the global response. In: Global Warming of 1 5°C. An
59	IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global
60	greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate
61	change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, HO. Pörtner,
62	D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. MoufoumaOkia, C. Péan, R. Pidcock, S. Connors, J. B. R.
63	Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)], 313-443.

De Frenne, P. et al., 2013: Microclimate moderates plant responses to macroclimate warming. Proceedings of the 1 National Academy of Sciences, 110 (46), 18561, doi:10.1073/pnas.1311190110. 2 de Graaf, I. E. M. et al., 2019: Environmental flow limits to global groundwater pumping. Nature, 574 (7776), 90-94, 3 doi:10.1038/s41586-019-1594-4. 4 De Graaf, I. E. M., E. H. Sutanudjaja, L. P. H. Van Beek and M. F. P. Bierkens, 2015: A high-resolution global-scale 5 groundwater model. Hydrology and Earth System Sciences, 19 (2), 823-837, doi:10.5194/hess-19-823-2015. 6 de Graaf, I. E. M. et al., 2017: A global-scale two-layer transient groundwater model: Development and application to 7 groundwater depletion. Advances in Water Resources, 102, 53-67, 8 doi:https://doi.org/10.1016/j.advwatres.2017.01.011. 9 De Mesel, I. et al., 2015: Succession and seasonal dynamics of the epifauna community on offshore wind farm 10 foundations and their role as stepping stones for non-indigenous species. Hydrobiologia, 756 (1), 37-50, 11 doi:papers3://publication/doi/10.1007/s10750-014-2157-1. 12 de Moel, H., J. C. J. H. Aerts and E. Koomen, 2011: Development of flood exposure in the Netherlands during the 20th 13 and 21st century. Global Environmental Change, 21 (2), 620-627, 14 doi:https://doi.org/10.1016/j.gloenvcha.2010.12.005. 15 de Rigo, D. et al., 2017a: Forest fire danger extremes in Europe under climate change: variability and uncertainty. 16 17 Joint Research Centre. 18 de Rigo, D. et al., 2017b: Forest fire danger extremes in Europe under climate change: variability and uncertainty. 19 Union, P. O. o. t. E., Luxembourg. De Roo, A. et al., 2020: Assessing the effects of water saving measures on Europe's water resources; BLUE2 project – 20 Freshwater quantity. JRC Technical Report. 21 De Rosa, M., V. Bianco, F. Scarpa and L. A. Tagliafico, 2015: Historical trends and current state of heating and cooling 22 degree days in Italy. Energy Conversion and Management, 90, 323-335, 23 doi:https://doi.org/10.1016/j.enconman.2014.11.022. 24 de'Donato, F. et al., 2015: Changes in the effect of heat on mortality in the last 20 years in nine European cities. Results 25 from the PHASE project. International Journal of Environmental Research and Public Health, 12 (12), 15567-26 15583. 27 Defrance, D. et al., 2017: Consequences of rapid ice sheet melting on the Sahelian population vulnerability. 28 Proceedings of the National Academy of Sciences of the United States of America, 114 (25), 6533-6538, 29 doi:10.1073/pnas.1619358114. 30 Deléglise, C. et al., 2019: A Method for Diagnosing Summer Mountain Pastures' Vulnerability to Climate Change, 31 32 Developed in the French Alps. Mountain Research and Development, 39 (2). 33 Dellink, R., E. Lanzi and J. Chateau, 2019: The Sectoral and Regional Economic Consequences of Climate Change to 34 2060. Environmental and Resource Economics, 72 (2), 309-363, doi:10.1007/s10640-017-0197-5. Demiroglu, O., M. Turp, T. Ozturk and M. Kurnaz, 2016: Impact of Climate Change on Natural Snow Reliability, 35 Snowmaking Capacities, and Wind Conditions of Ski Resorts in Northeast Turkey: A Dynamical Downscaling 36 Approach. Atmosphere, 7 (4), doi:10.3390/atmos7040052. 37 Demski, C. et al., 2017: Experience of extreme weather affects climate change mitigation and adaptation responses. 38 Climatic Change, 140 (2), 149-164, doi:10.1007/s10584-016-1837-4. 39 Deryng, D. et al., 2014: Global crop yield response to extreme heat stress under multiple climate change futures. 40 Environmental Research Letters, 9 (3), 034011, doi:10.1088/1748-9326/9/3/034011. 41 Devictor, V., R. Julliard, D. Couvet and F. Jiguet, 2008: Birds are tracking climate warming, but not fast enough. 42 Proceedings of the Royal Society B: Biological Sciences, 275 (1652), 2743-2748, doi:doi:10.1098/rspb.2008.0878. 43 Devictor, V. et al., 2012: Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate 44 Change, 2, 121, doi:10.1038/nclimate1347 45 https://www.nature.com/articles/nclimate1347#supplementary-information. 46 Devis, A., N. P. M. Van Lipzig and M. Demuzere, 2018: Should future wind speed changes be taken into account in 47 wind farm development? Environmental Research Letters, 13 (6), 064012, doi:10.1088/1748-9326/aabff7. 48 Di Giuseppe, F. et al., 2020: Fire Weather Index: the skill provided by the European Centre for Medium-Range Weather 49 Forecasts ensemble prediction system. Nat. Hazards Earth Syst. Sci., 20 (8), 2365-2378, doi:10.5194/nhess-20-50 51 2365-2020. Di Lena, B., O. Silvestroni, V. Lanari and A. Palliotti, 2019: Climate change effects on cv. Montepulciano in some 52 wine-growing areas of the Abruzzi region (Italy). Theoretical and Applied Climatology, 136 (3), 1145-1155, 53 doi:10.1007/s00704-018-2545-y. 54 Díaz, J. et al., 2019: Mortality attributable to high temperatures over the 2021–2050 and 2051–2100 time horizons in 55 Spain: Adaptation and economic estimate. Environmental Research, 172, 475-485, 56 doi:<u>https://doi.org/10.1016/j.en</u>vres.2019.02.041. 57 Dieperink, C. et al., 2016: Recurrent Governance Challenges in the Implementation and Alignment of Flood Risk 58 Management Strategies: a Review. Water Resources Management, 30 (13), 4467-4481, doi:10.1007/s11269-016-59 1491-7. 60 Diffenbaugh, N. S. and M. Burke, 2019: Global warming has increased global economic inequality. Proceedings of the 61 National Academy of Sciences, 201816020, doi:10.1073/pnas.1816020116. 62

Dinca, A. I., C. Surugiu, M. Surugiu and C. Frent, 2014: Stakeholder perspectives on climate change effects on tourism 1 activities in the northern Romanian Carpathians: Vatra Dornei resort case study. Human Geographies, 8 (1), 27. 2 Ding, Q., X. Chen, R. Hilborn and Y. Chen, 2017: Vulnerability to impacts of climate change on marine fisheries and 3 food security. Marine Policy, 83, 55-61, doi:10.1016/j.marpol.2017.05.011. 4 Dino, I. G. and C. Meral Akgül, 2019: Impact of climate change on the existing residential building stock in Turkey: An 5 analysis on energy use, greenhouse gas emissions and occupant comfort. Renewable Energy, 141, 828-846, 6 doi:https://doi.org/10.1016/j.renene.2019.03.150. 7 Djennad, A. et al., 2019: Seasonality and the effects of weather on Campylobacter infections. Bmc Infectious Diseases, 8 19. doi:10.1186/s12879-019-3840-7. 9 Dodoo, A. and L. Gustavsson, 2016: Energy use and overheating risk of Swedish multi-storey residential buildings 10 under different climate scenarios. Energy, 97, 534-548, doi:https://doi.org/10.1016/j.energy.2015.12.086. 11 Doelman, J. C. et al., 2018: Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios 12 of land-use change and land-based climate change mitigation. Global Environmental Change, 48, 119-135, 13 doi:https://doi.org/10.1016/j.gloenvcha.2017.11.014. 14 Dolganova, I. et al., 2019: The Water Footprint of European Agricultural Imports: Hotspots in the Context of Water 15 Scarcity. Resources, 8 (3), 141, doi:10.3390/resources8030141. 16 17 Döll, P. et al., 2014: Global-scale assessment of groundwater depletion and related groundwater abstractions: 18 Combining hydrological modeling with information from well observations and GRACE satellites. Water 19 Resources Research, 50 (7), 5698-5720, doi:10.1002/2014wr015595. Donatelli, M. et al., 2015: Climate change impact and potential adaptation strategies under alternate realizations of 20 climate scenarios for three major crops in Europe. Environmental Research Letters, 10 (7), 075005, 21 doi:10.1088/1748-9326/10/7/075005. 22 Doney, S. C. et al., 2012: Climate Change Impacts on Marine Ecosystems. Annual Review of Marine Science, 4 (1), 11-23 37, doi:10.1146/annurev-marine-041911-111611. 24 Donner, J., J. M. Müller and J. Köppel, 2015: Urban Heat: Towards Adapted German Cities? Journal of Environmental 25 Assessment Policy and Management, 17 (02), 1550020, doi:10.1142/S1464333215500209. 26 Doran, R. et al., 2018: Consequence evaluations and moral concerns about climate change: insights from nationally 27 representative surveys across four European countries. Journal of Risk Research, 1-17, 28 doi:10.1080/13669877.2018.1473468. 29 Dornelas, M. et al., 2014: Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss. Science, 344 30 31 (6181), 296, doi:10.1126/science.1248484. 32 Dottori, F. et al., 2020: Adapting to rising river flood risk in the EU under climate change. Publications Office of the 33 European Union, Luxembourg. 34 Dottori, F. et al., 2018: Increased human and economic losses from river flooding with anthropogenic warming. Nature Climate Change, 8 (9), 781-786, doi:10.1038/s41558-018-0257-z. 35 Driessen, P. P. J. et al., 2016: Toward more resilient flood risk governance. Ecology and Society, 21 (4), 36 doi:10.5751/ES-08921-210453. 37 Drobyshev, I. et al., 2015: A 700-year record of large fire years in northern Scandinavia shows large variability and 38 increased frequency during the 1800 s. Journal of Quaternary Science, 30 (3), 211-221, doi:10.1002/jgs.2765. 39 Drobyshev, I. et al., 2016: Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia. Scientific 40 Reports, 6 (1), 22532, doi:10.1038/srep22532. 41 Dubois, G., J. Ceron, S. Gossling and C. Hall, 2016a: Weather preferences of French tourists: lessons for climate 42 change impact assessment. Climatic Change, 136 (2), 339-351, doi:10.1007/s10584-016-1620-6. 43 Dubois, M. et al., 2016b: Linking basin-scale connectivity, oceanography and population dynamics for the conservation 44 and management of marine ecosystems. Global Ecology and Biogeography, 25 (5), 503-515, 45 doi:papers3://publication/doi/10.1111/geb.12431. 46 47 Dumont, B. et al., 2015: A meta-analysis of climate change effects on forage quality in grasslands: specificities of mountain and mediterranean areas. Grass and Forage Science, 70 (2), 239-254, doi:10.1111/gfs.12169. 48 Dunn, M. et al., 2017: To what extent are land resource managers preparing for high-end climate change in Scotland? 49 Climatic Change, 141 (2), 181-195, doi:10.1007/s10584-016-1881-0. 50 Dupont, L. and V. Van Eetvelde, 2013: Assessing the potential impacts of climate change on traditional landscapes and 51 their heritage values on the local level: Case studies in the Dender basin in Flanders, Belgium. Land Use Policy, 52 35, 179-191, doi:10.1016/j.landusepol.2013.05.010. 53 Dupuis, J. and P. Knoepfel, 2013: The Adaptation Policy Paradox: the Implementation Deficit of Policies Framed as 54 Climate Change Adaptation. Ecology and Society, 18 (4), doi:10.5751/ES-05965-180431. 55 Duvillard, P.-A., L. Ravanel, M. Marcer and P. Schoeneich, 2019: Recent evolution of damage to infrastructure on 56 permafrost in the French Alps. Regional Environmental Change, 19 (5), 1281-1293, doi:10.1007/s10113-019-57 58 01465-z. Dzebo, A., H. Janetschek, C. Brandi and G. Iacobuta, 2019: Connections between the Paris Agreement and the 2030 59 Agenda: the case for policy coherence. SEI Working Paper, Stockholm Environment Institute, Stockholm. 60 Dzebo, A. and J. Stripple, 2015: Transnational adaptation governance: An emerging fourth era of adaptation. Global 61 Environmental Change-Human and Policy Dimensions, 35, 423-435, doi:10.1016/j.gloenvcha.2015.10.006. 62

1	EASAC, 2017: Multi-functionality and sustainability in the European Union's forests. Sciences, G. N. A. o. [Available
2	at: <u>www.easac.eu</u>].
3	EASAC, 2019a: Forest bioenergy, carbon capture and storage, and carbon dioxide removal: an update. EASAC,
4	Halle, 12 [Available at: https://easac.eu/publications/details/forest-bioenergy-carbon-capture-and-storage-and-
5	<u>carbon-dioxide-removal-an-update/]</u> .
6	EASAC, 2019b: Forest bioenergy, carbon capture and storage, and carbon dioxide removal: an update. [Available at:
7	https://easac.eu/fileadmin/PDF_s/reports_statements/Negative_Carbon/EASAC_Commentary_Forest_Bioenergy_
8	Feb_2019_FINAL.pdf].
9	EASAC, 2019c: The imperative of climate action to protect human health in Europe. Opportunities for adaptation to
10	reduce the impacts, and for mitigation to capitalise on the benefits of decarbonisation. European Academies'
11	Science Advisory Council, Germany.
12	Ebert, K., K. Ekstedt and J. Jarsjö, 2016: GIS analysis of effects of future Baltic sea level rise on the island of Gotland,
13	Sweden. Nat. Hazards Earth Syst. Sci., 16 (7), 1571-1582, doi:10.5194/nhess-16-1571-2016.
14	Ebi, K. L. et al., 2018: Monitoring and Evaluation Indicators for Climate Change-Related Health Impacts, Risks,
15	Adaptation, and Resilience. International Journal of Environmental Research and Public Health, 15 (9), 1943.
16	Edmonds, D. A., R. L. Caldwell, E. S. Brondizio and S. M. O. Siani, 2020: Coastal flooding will disproportionately
17	impact people on river deltas. Nature Communications, 11 (1), 1-8, doi:10.1038/s41467-020-18531-4.
18	EEA, 2014: National adaptation policy processes in European countries - 2014. 136-136 pp.
19	EEA, 2015: Overview of climate change adaptation platforms in Europe. EEA Technical report, European Environment
20	Agency, Union, P. O. o. t. E., Luxembourg, 79 [Available at: https://www.eea.europa.eu/publications/overview-
21	of-climate-change-adaptation].
22	EEA, 2016: Urban adaptation to climate change in Europe 2016
23	Transforming cities in a changing climate. European Environment Agency, Union, P. O. o. t. E., Luxembourg, 135
24	[Available at: https://www.eea.europa.eu/publications/urban-adaptation-2016].
25	EEA, 2017a: Climate change, impacts and vulnerability in Europe 2016 — An indicator-based report. EEA Report No
26	1/2017. Luxemburg, 1-424 [Available at:
27	https://www.eea.europa.eu/ds_resolveuid/31f53a5e9418419194f7f92e3cd04d3d].
28	EEA, 2017b: Pricing and non-pricing measures for managing water demand in Europe [EEA (ed.)]. 9 [Available at:
29	https://www.eea.europa.eu/publications/water-management-in-europe-price].
30	EEA, 2018a: Climate-Adapt, 2019, Climate-Adapt. Sharing adaptation information across Europe. EEA Report No
31	3/2018 [Available at: https://www.eea.europa.eu/publications/sharing-adaptation-information-across-europe/].
32	EEA, 2018b: National climate change vulnerability and risk assessments in Europe, 2018. European Environment
33	Agency, 79-79 [Available at: https://www.eea.europa.eu/publications/national-climate-change-vulnerability-
34	2018].
35	EEA, 2019a: Adaptation challenges and opportunities for the European energy system - Building a climate-resilient
36	low-carbon energy system. European Environment Agency, Union, P. O. o. t. E., Luxembourg, 122 [Available at:
37	www.eea.europa.eu/publications/adaptation-in-energy-system].
38	EEA, 2019b: Air quality in Europe — 2019 report. European Environment Agency, Copenhagen, Denmark, 10/2019.
39	EEA, 2020: Climate-ADAPT.
40	Efendić, A., 2018: The Role of Economic and Social Capital during the Floods in Bosnia and Herzegovina. In: Crisis
41	Governance in Bosnia and Herzegovina, Croatia and Serbia: The Study of Floods in 2014 [Džihić, V. and M.
42	Solska (eds.)]. Peter Lang CH.
43	Elliott, M. et al., 2015: Force majeure: Will climate change affect our ability to attain Good Environmental Status for
44	marine biodiversity? Viewpoint. Marine Pollution Bulletin, 95 (1), 7-27,
45	doi:papers3://publication/doi/10.1016/j.marpolbul.2015.03.015.
46	Ellison, D. et al., 2017: Trees, forests and water: Cool insights for a hot world. <i>Global Environmental Change</i> , 43, 51-
47	61, doi:https://doi.org/10.1016/j.gloenvcha.2017.01.002.
48	Ercin, E., D. Chico and A. K. Chapagain, 2019: Vulnerabilities of the European Union's Economy to Hydrological
49	Extremes Outside its Borders. Atmosphere, 10 (10), 593, doi:10.3390/atmos10100593.
50	Ericsson, K. and S. Werner, 2016: The introduction and expansion of biomass use in Swedish district heating systems.
51	Biomass and Bioenergy, 94, 57-65, doi:https://doi.org/10.1016/j.biombioe.2016.08.011.
52	Esteve, P., C. Varela-Ortega and T. E. Downing, 2018: A stakeholder-based assessment of barriers to climate change
53	adaptation in a water-scarce basin in Spain. Regional Environmental Change, 18 (8), 2505-2517.
54	Estrada, F., W. Botzen and R. Tol, 2017: A global economic assessment of city policies to reduce climate change
55	impacts. Nature Climate Change, 7 (6), 403-+, doi:10.1038/NCLIMATE3301.
56	European Environment, A., 2019: Climate change adaptation in the agriculture sector in Europe.
57	European Commission, 2013: Guidelines on Climate Change and Natura 2000. Brussels, 1-105 [Available at:
58	https://ec.europa.eu/environment/nature/climatechange/pdf/Guidance%20document.pdf]
59	European Commission, 2015: Our life insurance, our natural capital: an EU biodiversity strategy to 2020. Landscape
60	Ecology and Management, 20 (1), 37-40, doi:10.5738/jale.20.37.
61	European Commission, 2017: Special Eurobarometer 459 [Available at:
62	https://ec.europa.eu/clima/sites/clima/files/support/docs/report_2017_en.pdf]

1 2	Eurostat, 2016: Urban Europe — statistics on cities, towns and suburbs [M., K., T. Brandmüller, I. Lupu, A. Önnerfors, L. Corselli-Nordblad, C. Coyette, A. Johansson, H. Strandell and P. Wolff (eds.)]. Eurostat, Union, P. o. o. t. E.,
3	Luxembourg [Available at: https://ec.europa.eu/eurostat/documents/3217494/7596823/KS-01-16-691-EN- N pdf/0abf140c coc7_4c7f b236_682effede10f1
4 5 6	Eurostat, 2018: Sustainable development in the European Union. Overview of progress towards the SDGs in an EU context 1-23
7 8	Ewert, F. et al., 2015: Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling & Software, 72, 287-303, doi:https://doi.org/10.1016/j.envsoft.2014.12.003.
9 10	Faillettaz, R., G. Beaugrand, E. Goberville and R. R. Kirby, 2019: Atlantic Multidecadal Oscillations drive the basin- scale distribution of Atlantic bluefin tuna. <i>Science Advances</i> , 5 (1), 2-10, doi:10.1126/sciady.aar6993
10 11 12	Falk, M. and X. Lin, 2018: Sensitivity of winter tourism to temperature increases over the last decades. <i>Economic</i> <i>Modelling</i> , 71 , 174-183, doi:10.1016/j.econmod.2017.12.011
13	Falk, M. and L. Vanat, 2016: Gains from investments in snowmaking facilities. <i>Ecological Economics</i> , 130 , 339-349, doi:10.1016/j.ecolecon.2016.08.003
14 15 16	Fantappié, M., G. L'Abate and E. A. C. Costantini, 2011: The influence of climate change on the soil organic carbon content in Italy from 1961 to 2008. <i>Geomorphology</i> 135 (3-4), 343-352. doi:10.1016/j.geomorph.2011.02.006
17 18	 Fanzo, J., C. Davis, R. McLaren and J. Choufani, 2018: The effect of climate change across food systems: Implications for nutrition outcomes. <i>Global Food Security</i>, <i>Agriculture Policy Economics and Environment</i>, 18, 12-19
10 19 20	doi:10.1016/j.gfs.2018.06.001.
20 21	http://faostat.fao.org, accessed 20/9/2019] Fatorió S. and P. Piesbroak. 2020: Adopting gultural havitage to alignete ahonge impacts in the Natherlands: harriage
22 23 24	interdependencies, and strategies for overcoming them. <i>Climatic Change</i> , 162 (2), 301-320, doi:10.1007/s10584- 020-02831-1.
25 26	Fatorić, S. and E. Seekamp, 2017: Are cultural heritage and resources threatened by climate change? A systematic literature review. <i>Climatic Change</i> , 142 , 227-254, doi: <u>https://doi.org/10.1007/s10584-017-1929-9</u> .
27 28 29	Fellmann, T., S. Helaine and O. Nekhay, 2014: Harvest failures, temporary export restrictions and global food security: the example of limited grain exports from Russia, Ukraine and Kazakhstan. <i>Food Security</i> , 6 (5), 727-742, doi:10.1007/s12571-014-0372-2.
30 31 32	Felton, A. et al., 2016: How climate change adaptation and mitigation strategies can threaten or enhance the biodiversity of production forests: Insights from Sweden. <i>Biological Conservation</i> , 194 , 11-20, doi:10.1016/j.biocon.2015.11.030
33 34	Ferdinand, M., 2018: Subnational climate justice for the French Outre-mer: postcolonial politics and geography of an epistemic shift. <i>Island Studies Journal</i> , 13 (1), 119-134.
35 36	Feridun, M. and H. Güngör, 2020: Climate-Related Prudential Risks in the Banking Sector: A Review of the Emerging Regulatory and Supervisory Practices. <i>Sustainability</i> , 12 (13), 5325, doi:10.3390/su12135325.
37 38	Fernandes, J. A. et al., 2017: Estimating the ecological, economic and social impacts of ocean acidification and warming on UK fisheries. <i>Fish and Fisheries</i> , 18 (3), 389-411, doi:10.1111/faf.12183.
39 40 41	Fernández-Manjarrés, J. et al., 2018: Forest Adaptation to Climate Change along Steep Ecological Gradients: The Case of the Mediterranean-Temperate Transition in South-Western Europe. <i>Sustainability</i> , 10 (9), 3065, doi:10.3390/su10093065
42 43	Fernández-Martínez, M. et al., 2019: Global trends in carbon sinks and their relationships with CO2 and temperature. <i>Nature Climate Change</i> , 9 (1), 73-79, doi:10.1038/s41558-018-0367-7.
44 45	Fernandez Milan, B. and F. Creutzig, 2015: Reducing urban heat wave risk in the 21st century. <i>Current Opinion in Environmental Sustainability</i> , 14 , 221-231, doi: <u>https://doi.org/10.1016/j.cosust.2015.08.002</u> .
46 47	Ferranti, E. et al., 2018: The hottest July day on the railway network: insights and thoughts for the future. <i>Meteorological Applications</i> , 25 (2), 195-208, doi:10.1002/met.1681.
48 49	Feyen, L. et al., 2020: <i>JRC Science for Policy Report JRC PESETA IV final report</i> . Fielding, A. J., 2011: The impacts of environmental change on UK internal migration. <i>Global Environmental Change</i> ,
50 51	21 , S121-S130, doi:10.1016/j.gloenvcha.2011.08.003. Fielding, J. L., 2018: Flood risk and inequalities between ethnic groups in the floodplains of England and Wales.
52 53	<i>Disasters</i> , 42 (1), 101-123, doi:10.1111/disa.12230. Figueiredo, R., P. Nunes, M. J. N. O. Panão and M. C. Brito, 2020: Country residential building stock electricity
54 55	demand in future climate – Portuguese case study. <i>Energy and Buildings</i> , 209 , 109694, doi:https://doi.org/10.1016/j.enbuild.2019.109694.
56 57	Filbee-Dexter, K. and A. Smajdor, 2019: Ethics of Assisted Evolution in Marine Conservation. <i>Frontiers in Marine Science</i> , 6 , 20.
58 59	Filijović, M. and I. Đorđević, 2014: Impact of "May" floods on state of human security in the Republic of Serbia. Bezbednost, Beograd, 56(3), 115-128.
60 61	Filipchuk, A., B. Moiseev, N. Malysheva and V. Strakhov, 2018: Russian forests: A new approach to the assessment of carbon stocks and sequestration capacity. <i>Environmental Development</i> , 26 , 68-75, doi/https//doi/org/10.1016/j.cm/doi/2018.02.002
62 63	Fink, M., H. P. Kläring and E. George, 2009: Horticulture and climate change. <i>Water in Horticulture</i> , 328 , 1-9.

Fischer, L. B. and M. Pfaffermayr, 2018: The more the merrier? Migration and convergence among European regions. 1 Regional Science and Urban Economics, 72, 103-114, doi:10.1016/j.regsciurbeco.2017.04.007. 2 Follos, F. et al., 2020: The evolution of minimum mortality temperatures as an indicator of heat adaptation: The cases 3 of Madrid and Seville (Spain). Science of The Total Environment, 747, 141259, 4 doi:https://doi.org/10.1016/j.scitotenv.2020.141259. 5 Fontana, G., A. Toreti, A. Ceglar and G. De Sanctis, 2015: Early heat waves over Italy and their impacts on durum 6 wheat yields. Nat. Hazards Earth Syst. Sci., 15 (7), 1631-1637, doi:10.5194/nhess-15-1631-2015. 7 Forbes, B. C. et al., 2016: Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia. Biology Letters, 12 8 (11), 20160466, doi:10.1098/rsbl.2016.0466. 9 Fortibuoni, T. et al., 2015: Climate impact on Italian fisheries (Mediterranean Sea). Regional Environmental Change, 10 15 (5), 931-937, doi:10.1007/s10113-015-0781-6. 11 Forzieri, G. et al., 2018: Escalating impacts of climate extremes on critical infrastructures in Europe. Global 12 Environmental Change, 48 (November 2017), 97-107, doi:10.1016/j.gloenvcha.2017.11.007. 13 Forzieri, G., A. Cescatti, F. B. e Silva and L. Feyen, 2017: Increasing risk over time of weather-related hazards to the 14 European population: a data-driven prognostic study. The Lancet Planetary Health, 1 (5), e200-e208, 15 doi:10.1016/S2542-5196(17)30082-7. 16 Forzieri, G. et al., 2014: Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci., 18 (1), 17 18 85-108, doi:10.5194/hess-18-85-2014. 19 Fosas, D. et al., 2018: Mitigation versus adaptation: Does insulating dwellings increase overheating risk? Building and Environment, 143, 740-759, doi:https://doi.org/10.1016/j.buildenv.2018.07.033. 20 Fountoulakis et al., 2016: Climate change but not unemployment explains the changing suicidality in Thessaloniki 21 Greece (2000-2012). Journal of Affective Disorders, 193, 331-338. 22 Frainer, A. et al., 2020: Opinion: Cultural and linguistic diversities are underappreciated pillars of biodiversity. 23 Proceedings of the National Academy of Sciences, 117 (43), 26539-26543, doi:10.1073/pnas.2019469117. 24 Frederikse, T. et al., 2020: The causes of sea-level rise since 1900. Nature, 584 (7821), 393-397, doi:10.1038/s41586-25 020-2591-3. 26 Free, C. M. et al., 2019: Impacts of historical warming on marine fisheries production. Science, 363 (6430), 979-983, 27 doi:papers3://publication/doi/10.1126/science.aau1758. 28 Froese, R. et al., 2018: Status and rebuilding of European fisheries. Marine Policy, 93, 159-170, 29 doi:10.1016/j.marpol.2018.04.018. 30 Frölicher, T. L., E. M. Fischer and N. Gruber, 2018: Marine heatwaves under global warming. Nature, 560 (7718), 360-31 32 -+, doi:10.1038/s41586-018-0383-9. 33 Frolov, A. V. et al., 2014: Second Roshydromet Assessment Report on Climate Change and its consequences in Russian 34 Federation [Yasukevich, V. V., V. A. Govorkova, I. A. Korneva, T. V. Pavlova and E. N. Popova (eds.)]. Roshydromet, Roshydromet, Obninsk, Russia, 1004 [Available at: 35 http://downloads.igce.ru/publications/OD 2 2014/v2014/htm/1.htm]. 36 Fronzek, S. et al., 2019: Determining sectoral and regional sensitivity to climate and socio-economic change in Europe 37 using impact response surfaces. Regional Environmental Change, 19 (3), 679-693, doi:10.1007/s10113-018-1421-38 8. 39 Frost, M. et al., 2016: A review of climate change and the implementation of marine biodiversity legislation in the 40 United Kingdom. Aquatic Conservation: Marine and Freshwater Ecosystems, 26 (3), 576-595, 41 doi:10.1002/aqc.2628. 42 Fuchs, R., C. Brown and M. Rounsevell, 2020: Europe's Green Deal offshores environmental damage to other nations. 43 Nature, 586, 671-673, doi: https://doi.org/10.1038/d41586-020-02991-1. 44 Fuhrer, J., P. Smith and A. Gobiet, 2014: Implications of climate change scenarios for agriculture in alpine regions - A 45 case study in the Swiss Rhone catchment. Science of The Total Environment, 493, 1232-1241, 46 47 doi:10.1016/j.scitotenv.2013.06.038. Fünfgeld, H., K. Lonsdale and K. Bosomworth, 2019: Beyond the tools: supporting adaptation when organisational 48 resources and capacities are in short supply. Climatic Change, 153 (4), 625-641, doi:10.1007/s10584-018-2238-7. 49 Furberg, M., B. Evengård and M. Nilsson, 2011: Facing the limit of resilience: perceptions of climate change among 50 reindeer herding Sami in Sweden. Global Health Action, 4 (1), 8417, doi:10.3402/gha.v4i0.8417. 51 Füssel, H.-M., A. Jol, A. Marx and M. Hildén, 2017: Climate change, impacts and vulnerability in Europe 2016 - An 52 indicator-based report [EuropeanEnvironmentAgency (ed.)]. EEA report, 1/2017, EEA Report No 1/2017 53 [Available at: https://www.eea.europa.eu/publications/climate-change-impacts-and-vulnerability-2016]. 54 Gallardo, B. et al., 2017: Protected areas offer refuge from invasive species spreading under climate change. Global 55 Change Biology, 23 (12), 5331-5343. 56 Galli, G., C. Solidoro and T. Lovato, 2017: Marine Heat Waves Hazard 3D Maps and the Risk for Low Motility 57 Organisms in a Warming Mediterranean Sea. Frontiers in Marine Science, 4 (136), 58 doi:10.3389/fmars.2017.00136. 59 Gallina, V. et al., 2016: A review of multi-risk methodologies for natural hazards; Consequences and challenges for a 60 climate change impact assessment. Journal of Environmental Management, 168, 123-132, 61 62 doi:10.1016/j.jenvman.2015.11.011. Gambolati, G. et al., 2009: On the uniformity of anthropogenic Venice uplift. Terra Nova, 21 (6), 467-473. 63 13-107 Total pages: 216 Do Not Cite, Quote or Distribute

	Cancia Marza II. I. Otanas and C. Calan. 2015. Phonalogical changes in alive (SiOla superpose I. SiO) approductive
1	Carcia-Mozo, H., J. Oteros and C. Galan, 2015. Flenological changes in onve (<1-Ota europaea L. 1-) reproductive</td
2	Annuis of Agricultural and Environmental Medicine, 22 (5), 421-
3	428, d01:10.5604/12321966.116/706.
4	Garnier, M. and I. Holman, 2019: Critical Review of Adaptation Measures to Reduce the Vulnerability of European
5	Drinking Water Resources to the Pressures of Climate Change. Environmental Management, 64 (2), 138-153,
6	doi:10.1007/s00267-019-01184-5.
7	Garrabou, J. et al., 2009: Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003
8	heat wave. Global Change Biology, 15 (5), 1090-1103, doi:papers3://publication/doi/10.1111/j.1365-
9	2486.2008.01823.x.
10	Garrabou, J. et al., 2019: Collaborative Database to Track Mass Mortality Events in the Mediterranean Sea. Frontiers in
11	Marine Science, 6, 2775, doi:papers3://publication/doi/10.3389/fmars.2019.00707.
12	Garrote, L. et al., 2015: Quantitative Assessment of Climate Change Vulnerability of Irrigation Demands in
13	Mediterranean Europe. Water Resources Management, 29 (2), 325-338, doi:10.1007/s11269-014-0736-6.
14	Gasbarro, F., F. Iraldo and T. Daddi, 2017: The drivers of multinational enterprises' climate change strategies: A
15	quantitative study on climate-related risks and opportunities. Journal of Cleaner Production, 160, 8-26,
16	doi:10.1016/j.jclepro.2017.03.018.
17	Gasbarro, F. and J. Pinkse, 2016: Corporate Adaptation Behaviour to Deal With Climate Change: The Influence of
18	Firm-Specific Interpretations of Physical Climate Impacts, Corporate Social Responsibility and Environmental
19	Management. 23 (3), 179-192, doi:10.1002/csr.1374.
2.0	Gascon, M. et al., 2015: Mental health benefits of long-term exposure to residential green and blue spaces: A systematic
21	review. International Journal of Environmental Research and Public Health. 12 (4), 4354-4379.
22	doi:10.3390/ijerph120404354
22	Gasnarrini A et al 2017: Projections of temperature-related excess mortality under climate change scenarios. The
23	Lancet Planetary Health 1 (9) e360-e367 doi:https://doi.org/10.1016/S2542-5196(17)30156-0
27	Gattuse I. P. et al. 2015: Contrasting futures for ocean and society from different anthronogenic CO2 emissions
25	scenarios. Science 340 (6243), app. 4722, doi:noners3://publication/doi/10.1126/science.app.4722
20	Coulderd L. M. Gilli and F. Pomerio, 2013; Climate Change Impacts on Hydronower Management. Water Pascurees
27	Management 27 (15) 51/2 5156 doi:10.1007/s11260.012.0458.1
20	Couly M and S. Ammar 2020: Review: Challenges for drive any production systems arising from alimete changes
29	grim al 14 (S1) S106 S202 dai:10 1017/S1751721110002220
30	animal, 14 (51), 5190-5205, aoi:10.101//51/51/51/19005259.
31	Gauly, M. et al., 2013: Future consequences and challenges for dairy cow production systems arising from climate
32	change in Central Europe – a review. <i>animal</i> , $7(5)$, 843-859, doi:10.1017/517517112002352.
33	Gaupp, F., J. Hall, S. Hochrainer-Stigler and S. Dadson, 2020: Changing risks of simultaneous global breadbasket
34	failure. Nature Climate Change, 10 (1), 54-57, doi:10.1038/s41558-019-0600-z.
35	Gaupp, F. et al., 2017: Dependency of Crop Production between Global Breadbaskets: A Copula Approach for the
36	Assessment of Global and Regional Risk Pools: Dependency of Crop Production between Global Breadbaskets.
37	<i>Risk Analysis</i> , 3 7 (11), 2212-2228, doi:10.1111/risa.12761.
38	Gaüzère, P., F. Jiguet and V. Devictor, 2016: Can protected areas mitigate the impacts of climate change on bird's
39	species and communities? <i>Diversity and Distributions</i> , 22 (6), 625-637, doi:10.1111/ddi.12426.
40	Gazol, A. et al., 2018: Forest resilience to drought varies across biomes. <i>Global Change Biology</i> , 24 (5), 2143-2158.
41	Gedan, K. B. et al., 2010: The present and future role of coastal wetland vegetation in protecting shorelines: answering
42	recent challenges to the paradigm. <i>Climatic Change</i> , 106 (1), 7-29, doi:10.1007/s10584-010-0003-7.
43	Gedikli, B. and O. Balaban, 2018: An evaluation of local policies and actions that address climate change in Turkish
44	metropolitan cities. <i>European Planning Studies</i> , 26 (3), 458-479, doi:10.1080/09654313.2017.1397107.
45	Geels, C. et al., 2015: Future Premature Mortality Due to O-3, Secondary Inorganic Aerosols and Primary PM in
46	Europe - Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock.
47	International Journal of Environmental Research and Public Health, 12 (3), 2837-2869,
48	doi:10.3390/ijerph120302837.
49	Gemenne, F., 2011: Why the numbers don't add up: A review of estimates and predictions of people displaced by
50	environmental changes. Global Environmental Change-Human and Policy Dimensions, 21, S41-S49,
51	doi:10.1016/j.gloenvcha.2011.09.005.
52	Gemenne, F. and J. Blocher, 2017: How can migration serve adaptation to climate change? Challenges to fleshing out a
53	policy ideal. The Geographical Journal, 183 (4), 336-347.
54	Geneletti, D. and L. Zardo, 2016: Ecosystem-based adaptation in cities: An analysis of European urban climate
55	adaptation plans. Land Use Policy, 50, 38-47, doi: https://doi.org/10.1016/j.landusepol.2015.09.003.
56	Georgopoulou, E. et al., 2015: A methodological framework and tool for assessing the climate change related risks in
57	the banking sector. Journal of Environmental Planning and Management, 58 (5), 874-897,
58	doi:10.1080/09640568.2014.899489.
59	Georgopoulou, E. et al., 2018: Climatic preferences for beach tourism: an empirical study on Greek islands. <i>Theoretical</i>
60	and Applied Climatology, doi:10.1007/s00704-018-2612-4.
61	Germanwatch, 2020: Global Climate Risk Index 2020. germanwatch.org.
62	Ghanem, D., S. Mander and C. Gough, 2016: "I think we need to get a better generator": Household resilience to
63	disruption to power supply during storm events. Energy Policy, 92, 171-180, doi:10.1016/j.enpol.2016.02.003.
1	Ghizzi, L. G. et al., 2018: Effects of functional oils on ruminal fermentation, rectal temperature, and performance of
----	--
2	dairy cows under high temperature humidity index environment. Animal Feed Science and Technology, 246
3	(October), 158-166, doi:10.1016/j.anifeedsci.2018.10.009.
4	Gill, A. B. et al., 2018: Implications for the marine environment of energy extraction in the sea. In: Offshore Energy
5	and Marine Planning [Yates, K. L. and C. J. A. Bradshaw (eds.)]. Routledge Taylor and Francis Group, London
6	and New York, 132-169.
7	Gill, J. C. and B. D. Malamud, 2016: Hazard interactions and interaction networks (cascades) within multi-hazard
8	methodologies. Earth System Dynamics, 7 (3), 659-679, doi:10.5194/esd-7-659-2016.
9	Goderniaux, P. et al., 2015: Uncertainty of climate change impact on groundwater reserves – Application to a chalk
10	aguifer. Journal of Hydrology, 528 , 108-121, doi:https://doi.org/10.1016/j.jhydrol.2015.06.018.
11	Goldstein, A., W. R. Turner, J. Gladstone and D. G. Hole. 2019: The private sector's climate change risk and adaptation
12	blind snots Nature Climate Change $9(1)$ 18-25 doi:10.1038/s41558-018-0340-5
12	Golledge N. R. 2020: Long-term projections of sea-level rise from ice sheets. WIREs Climate Change 11 (2)
13	doi:10.1002/wor 634
14	Cómez I 2010: The silent extinction: climate change and the notential hybridization mediated extinction of endemic
15	bioh mountain plants Springer Link, Diadiugratia and Conservation 24 , 1842, 1857, doi:10.1007/s10521.015
16	nigh-mountain plants SpringerLink. Bioalversity and Conservation, 24, 1845-1857, doi:10.1007/S10551-015-
17	
18	Gonseth, C. and M. Vielle, 2018: A General Equilibrium Assessment of Climate Change Impacts on Swiss Winter
19	Tourism with Adaptation. Environmental Modeling & Assessment, doi:10.100//s10666-018-9641-3.
20	Gordillo, F. J. L. et al., 2016: Effects of simultaneous increase in temperature and ocean acidification on biochemical
21	composition and photosynthetic performance of common macroalgae from Kongsfjorden (Svalbard). Polar
22	<i>Biology</i> , 39 (11), 19932007, doi:10.1007/s00300-016-1897-y.
23	Gormley, K. S. G. et al., 2015: Adaptive management, international co-operation and planning for marine conservation
24	hotspots in a changing climate. Marine Policy, 53, 54-66,
25	doi:papers3://publication/doi/10.1016/j.marpol.2014.11.017.
26	Gosling, S. N. et al., 2018: PESETA III: climate change impacts on labour productivity.
27	Grafakos, S. et al., 2020: Integration of mitigation and adaptation in urban climate change action plans in Europe: A
28	systematic assessment. Renewable and Sustainable Energy Reviews, 121 , 109623,
29	doi:https://doi.org/10.1016/i.rser.2019.109623.
30	Graham, E., J. Humbly and T. Dawson, 2017: Scotland's eroding heritage: A collaborative response to the impact of
31	climate change doi:10.17863/CAM 23645
32	Grassi G et al 2017. The key role of forests in meeting climate targets requires science for credible mitigation <i>Nature</i>
32	Climate Change 7 220 doi:10.1038/nclimate3227
34	https://www.nature.com/articles/nclimate3227#supplementary_information
25	Green I. K. et al. 2010: Large influence of soil moisture on long term terrestrial carbon untake. Natura 565 (7740)
26	$A76_A70_Aoi:10.1038/sA1586_018_0848_x$
27	Greene G. S. Daroniothy and S. Dalmar. 2015: Desiliance and Vulnerability to the Developpical Harm From Flooding.
20	The Pole of Social Cohosion American Journal of Public Health 105 (0) 1702 1705
38	The Kole of Social Cohesion. American Journal of Fublic Health, $105(9)$, $1/92-1/95$, doi:10.2105/A IDII 2015 202700
39	Crillelia M. C. 2010. Increase in severe and extreme seil mainture dreughts for Europe under elimete change. Seignes
40	of The Tetel Environment ((0, 1245, 1255, doi:10.1016/j.goitetany.2010.01.001
41	O_{j} Ine Total Environment, 600 , 1245-1255, doi:10.1016/j.scholenv.2019.01.001.
42	Griscom, B. W. et al., 2017: Natural climate solutions. Proceedings of the National Academy of Sciences, 114 (44),
43	11645, doi:10.10/3/pnas.1/10465114.
44	Guerreiro, S. et al., 2018: Future heat-waves, droughts and floods in 5/1 European cities. <i>Environmental Research</i>
45	Letters, 13 (3), doi:10.1088/17/48-9326/aaaad3.
46	Guo, Y. et al., 2018: Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry
47	time series modelling study. <i>PLoS medicine</i> , 15 (7), e1002629.
48	Haasnoot, M. et al., 2020a: Defining the solution space to accelerate climate change adaptation. <i>Regional</i>
49	Environmental Change, 20 (2), 1-5, doi:papers3://publication/doi/10.1007/s10113-020-01623-8.
50	Haasnoot, M. et al., 2020b: Adaptation to uncertain sea-level rise; how uncertainty in Antarctic mass-loss impacts the
51	coastal adaptation strategy of the Netherlands. Environmental Research Letters, 15 (3), 034007,
52	doi:10.1088/1748-9326/ab666c.
53	Haasnoot, M., J. Kwakkel, W. Walker and J. ter Maat, 2013: Dynamic adaptive policy pathways: A method for crafting
54	robust decisions for a deeply uncertain world. Global Environmental Change-Human and Policy Dimensions. 23
55	(2), 485-498, doi:10.1016/j.gloenvcha.2012.12.006.
56	Haasnoot, M., S. van 't Klooster and J. van Alphen. 2018: Designing a monitoring system to detect signals to adapt to
57	uncertain climate change. Global Environmental Change. 52. 273-285.
58	doi:https://doi.org/10.1016/i.gloenycha.2018.08.003.
59	Haasnoot, M. et al., 2019: Generic adaptation pathways for coastal archetypes under uncertain sea-level rise
60	Environmental Research Communications
61	Haasnoot M et al. submitted: Adaptation commitment to sea level rise in the next decades and centuries. <i>Nature</i>
62	Climate Change
54	Contraite Changer

1	Habel, J., M. Samways and T. Schmitt, 2019a: Mitigating the precipitous decline of terrestrial European insects:
2	Requirements for a new strategy. <i>Biodiversity and Conservation</i> , 28 (6), 1343-1360, doi:10.1007/s10531-019-
3	01741-8.
4	Habel, J. C., M. J. Samways and T. Schmitt. 2019b: Mitigating the precipitous decline of terrestrial European insects:
5	Requirements for a new strategy. <i>Biodiversity and Conservation</i> . 28 (6), 1343-1360. doi:10.1007/s10531-019-
6	01741-8.
7	Haer T W J W Botzen and J C J H Aerts 2019. Advancing disaster policies by integrating dynamic adaptive
8	hebaviour in risk assessments using an agent-based modelling approach <i>Environmental Research Letters</i> 14 (4)
9	44022-44022 doi:10.1088/1748-9326/ab0770
10	Hagenlocher M et al. 2019: Drought vulnerability and risk assessments: state of the art persistent gaps, and research
11	agenda Environmental Research Letters 14 (8) 083002 doi:10.1088/1748-9326/ab225d
12	Halkos G A Skouloudis C Malesios and K Evangelinos 2018: Bouncing Back from Extreme Weather Events:
12	Some Preliminary Findings on Resilience Barriers Facing Small and Medium-Sized Enterprises Rusingss Strategy
14	and the Environment 27 (4) 547-559 doi:10.1002/bse 2019
15	Hall C M T Baird M James and V Ram 2016: Climate change and cultural heritage: conservation and heritage
16	tourism in the Anthronocene Journal of Haritage Tourism 11 (1) 10-24 doi:10.1080/1743873X 2015.1082573
10	Hall L W. H. Harvey and L. I. Manning, 2010: A dantation thresholds and nathways for tidal flood risk management in
10	London, Climate Disk Management 24, 42, 59, doi:https://doi.org/10.1016/j.org/2010.04.001
18	London. Cumale Risk Management, 24, 42-36, doi: <u>nups://doi.org/10.1010/j.cm.2019.04.001</u> .
19	Development Series World Devic Westington DC [Applicite device of climate change on poverty. Climate Change and
20	Development Series, world Bank, washington DC [Available at: doi:10.1590/978-1-4048-0075-5].
21	hanegatie, S. and J. Közenberg, 2017: Chinate change through a poverty lens. <i>Nature Climate Change</i> , 7 (4), 250-250,
22	doi:10.1058/nclimale5255.
23	Hamdy, M., S. Carlucci, PJ. Hoes and J. L. M. Hensen, 2017: The impact of chimate change on the overheating risk in
24	dweinings—A Duich case study. Building and Environment, 122, 507-525,
25	$\frac{\text{doi:} \underline{\text{nttps://doi.org/10.1016/j.buildenv.2017.06.031}}{\underline{\text{https://doi.org/10.1016/j.buildenv.2017.06.031}}$
26	Hamidov, A. et al., 2018: Impacts of climate change adaptation options on soil functions: A review of European case-
27	studies. Land Degradation & Development, 29 (8), 23 /8-2389, doi:10.1002/1dr.3006.
28	Handisyde, N., I. C. Telfer and L. G. Ross, 2017: Vulnerability of aquaculture-related livelihoods to changing climate
29	at the global scale. Fish and Fisheries, $18(3)$, 460-488, doi:10.1111/fat.12186.
30	Hanger, S., C. Haug, I. Lung and L. Bouwer, 2015: Mainstreaming climate change in regional development policy in
31	Europe: five insights from the 2007-2013 programming period. Regional Environmental Change, 15 (6), 973-985,
32	doi:10.100//s10113-013-0549-9.
33	Hanger, S. et al., 2018: Insurance, Public Assistance, and Household Flood Risk Reduction: A Comparative Study of
34	Austria, England, and Romania. <i>Risk Analysis</i> , 38 (4), 680-693, doi:10.1111/risa.12881.
35	Hanna, E., T. E. Cropper, R. J. Hall and J. Cappelen, 2016: Greenland Blocking Index 1851–2015: a regional climate
36	change signal. International Journal of Climatology, 36 (15), 4847-4861, doi:10.1002/joc.4673.
37	Hanna, E. G. and P. W. Tait, 2015: Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation
38	to Global Warming. International Journal of Environmental Research and Public Health, 12 (7), 8034-8074,
39	doi:10.3390/ijerph120708034.
40	Hansen, B. B. et al., 2014: Warmer and wetter winters: characteristics and implications of an extreme weather event in
41	the High Arctic. <i>Environmental Research Letters</i> , 9 (11), 114021, doi:10.1088/1748-9326/9/11/114021.
42	Hao, Z., F. Hao, V. P. Singh and X. Zhang, 2018: Changes in the severity of compound drought and hot extremes over
43	global land areas. <i>Environmental Research Letters</i> , 13 (12), 124022, doi:10.1088/1748-9326/aaee96.
44	Harkin, D. et al., 2020: Impacts of climate change on cultural heritage. MCCIP Science Review 2020, 26-pages,
45	doi:10.14465/2020.ARC26.CHE.
46	Harris, J., N. Rodenhouse and R. Holmes, 2019: Decline in beetle abundance and diversity in an intact temperate forest
47	linked to climate warming. <i>Biological Conservation</i> , 240 , doi:10.1016/j.biocon.2019.108219.
48	Harrison, P. A. et al., 2019: Differences between low-end and high-end climate change impacts in Europe across
49	multiple sectors. <i>Regional Environmental Change</i> , 16 , 695-709, doi:10.1007/s10113-018-1352-4.
50	Harte, M. et al., 2019: Countering a climate of instability: The future of relative stability under the Common Fisheries
51	Policy. ICES Journal of Marine Science, 76 (7), 1951-1958, doi:10.1093/icesjms/fsz109.
52	Hartmann, T. and T. Spit, 2016: Legitimizing differentiated flood protection levels – Consequences of the European
53	flood risk management plan. Environmental Science & Policy, 55, 361-367,
54	doi: <u>https://doi.org/10.1016/j.envsci.2015.08.013</u> .
55	Haugen, A. and J. Mattsson, 2011: Preparations for climate change's influences on cultural heritage. International
56	Journal of Climate Change Strategies and Management, 3 (4), 386-401, doi:10.1108/17568691111175678.
57	Hausner, V. H., S. Engen, C. Brattland and P. Fauchald, 2020: Sámi knowledge and ecosystem-based adaptation
58	strategies for managing pastures under threat from multiple land uses. Journal of Applied Ecology, 57 (9), 1656-
59	1665, doi:10.1111/1365-2664.13559.
60	Haussig, J. et al., 2018: Early start of the West Nile fever transmission season 2018 in Europe. <i>Eurosurveillance</i> , 23
61	(32), 7-12, doi:10.2807/1560-7917.ES.2018.23.32.1800428.
62	Hayashi, N., 2017: The human dimension of climate change research in Greenland: Towards a new form of knowledge
63	generation. Low Temperature Science, 75, 131-141, doi:10.14943/lowtemsci.75.131.

2

3

4

5

6

7

8

11

13

14

15

16

- Hayashi, N. and M. Walls, 2019: Endogenous community development in Greenland: A perspective on creative transformation and the perception of future. Polar Science, 21, 52-57, doi:10.1016/j.polar.2019.06.002. Hayes, K. et al., 2018: Climate change and mental health: risks, impacts and priority actions. International Journal of Mental Health Systems, 12, doi:10.1186/s13033-018-0210-6. Hayes, K. and B. Poland, 2018: Addressing Mental Health in a Changing Climate: Incorporating Mental Health Indicators into Climate Change and Health Vulnerability and Adaptation Assessments. International Journal of
- Environmental Research and Public Health, 15 (9), 1806. Heathcote, J., H. Fluck and M. Wiggins, 2017: Predicting and Adapting to Climate Change: Challenges for the Historic Environment. The Historic Environment: Policy & Practice, 8 (2), 89-100, doi:10.1080/17567505.2017.1317071.
- 9 Hedlund, J., S. Fick, H. Carlsen and M. Benzie, 2018: Quantifying transnational climate impact exposure: New 10 perspectives on the global distribution of climate risk. Global Environmental Change-Human and Policy Dimensions, 52, 75-85, doi:10.1016/j.gloenvcha.2018.04.006. 12
 - Hegger, D. L. T. et al., 2016: Toward more flood resilience: Is a diversification of flood risk management strategies the way forward? Ecology and Society, 21 (4), doi:10.5751/ES-08854-210452.
 - Heidrich, O. et al., 2016: National climate policies across Europe and their impacts on cities strategies. Journal of Environmental Management, 168, 36-45, doi:https://doi.org/10.1016/j.jenvman.2015.11.043.
 - Heikkinen, R. K. et al., 2020: Fine-grained climate velocities reveal vulnerability of protected areas to climate change. Scientific Reports, 10 (1), 1678, doi:10.1038/s41598-020-58638-8.
- 19 Heinicke, J., S. Ibscher, V. Belik and T. Amon, 2019: Cow individual activity response to the accumulation of heat load duration. Journal of Thermal Biology, 82 (March), 23-32, doi:10.1016/j.jtherbio.2019.03.011. 20
- Heino, J., R. Virkkala and H. Toivonen, 2009: Climate change and freshwater biodiversity: detected patterns, future 21 trends and adaptations in northern regions. Biological Reviews, 84 (1), 39-54, doi:10.1111/j.1469-22 185X.2008.00060.x. 23
- Heinz, F. et al., 2015: Emergence of tick-borne encephalitis in new endemic areas in Austria: 42 years of surveillance. 24 Eurosurveillance, 20 (13), 9-16, doi:10.2807/1560-7917.ES2015.20.13.21077. 25
- Helama, S., J. Holopainen and T. Partonen, 2013: Temperature-associated suicide mortality: contrasting roles of 26 climatic warming and the suicide prevention program in Finland. Environmental Health and Preventive Medicine, 27 18 (5), 349-355, doi:10.1007/s12199-013-0329-7. 28
- Helle, T. and I. Kojola, 2008: Demographics in an alpine reindeer herd: effects of density and winter weather. 29 Ecography, **31** (2), 221-230, doi:10.1111/j.0906-7590.2008.4912.x. 30
- Hellmann, F., R. Alkemade and O. Knol, 2016: Dispersal based climate change sensitivity scores for European species. 31 32 *Ecological Indicators*, **71**, 41-46, doi:10.1016/j.ecolind.2016.06.013.
- 33 Hennessy, D., L. Delaby, A. van den Pol-van Dasselaar and L. Shalloo, 2020: Increasing Grazing in Dairy Cow Milk 34 Production Systems in Europe. Sustainability, 12 (6), 2443.
- Henson, S. A. et al., 2017: Rapid emergence of climate change in environmental drivers of marine ecosystems. Nature 35 Communications, 8, 14682, doi:10.1038/ncomms14682. 36
- Heracleous, C. and A. Michael, 2018: Assessment of overheating risk and the impact of natural ventilation in 37 educational buildings of Southern Europe under current and future climatic conditions. *Energy*, **165**, 1228-1239, 38 doi:https://doi.org/10.1016/j.energy.2018.10.051. 39
- Hermans, L. M., M. Haasnoot, J. ter Maat and J. H. Kwakkel, 2017: Designing monitoring arrangements for 40 collaborative learning about adaptation pathways. Environmental Science & Policy, 69, 29-38, 41 doi:https://doi.org/10.1016/j.envsci.2016.12.005. 42
- Hermoso, V., M. Clavero, D. Villero and L. Brotons, 2017: EU's Conservation Efforts Need More Strategic Investment 43 to Meet Continental Commitments. Conservation Letters, 10 (2), 231-237, doi:10.1111/conl.12248. 44
- Hermoso, V., D. Villero, M. Clavero and L. Brotons, 2018: Spatial prioritisation of EU's LIFE-Nature programme to 45 46 strengthen the conservation impact of Natura 2000. Journal of Applied Ecology, 55 (4), 1575-1582, 47 doi:10.1111/1365-2664.13116.
- Hernández-Morcillo, M. et al., 2018: Scanning agroforestry-based solutions for climate change mitigation and 48 adaptation in Europe. Environmental Science & Policy, 80, 44-52, 49 doi:https://doi.org/10.1016/j.envsci.2017.11.013. 50
- Herrando, S. et al., 2019: Contrasting impacts of precipitation on Mediterranean birds and butterflies. Scientific Reports, 51 **9** (1), 5680, doi:10.1038/s41598-019-42171-4. 52
- Herrmann, J. and E. Guenther, 2017: Exploring a scale of organizational barriers for enterprises' climate change 53 adaptation strategies. Journal of Cleaner Production, 160, 38-49, doi:10.1016/j.jclepro.2017.03.009. 54
- Herzog, F. and I. Seidl, 2018: Swiss alpine summer farming: current status and future development under climate 55 change. The Rangeland Journal, 40 (5), 501-511, doi:https://doi.org/10.1071/RJ18031. 56
- Hickman, C., 2019: Children and Climate Change: Exploring Children's Feelings About Climate Change Using Free 57 Association Narrative Interview Methodology. In: Climate Psychology: On Indifference to Disaster [Hoggett, P. 58 (ed.)]. Springer International Publishing, Cham, 41-59. 59
- Hillebrand, H. et al., 2018: Biodiversity change is uncoupled from species richness trends: Consequences for 60 conservation and monitoring. Journal of Applied Ecology, 55 (1), 169-184, doi:10.1111/1365-2664.12959. 61
- Hinkel, J. et al., 2018: The ability of societies to adapt to twenty-first-century sea-level rise. Nature Climate Change, 8 62 (7), 570-578, doi:10.1038/s41558-018-0176-z. 63

1	Hinkel, J. et al., 2019: Meeting User Needs for Sea Level Rise Information: A Decision Analysis Perspective. <i>Earth's</i>
2	<i>Future</i> , 7 (3), 320-337, doi:10.1029/2018EF001071.
3	Hinkel, J. et al., 2015: A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA. Global
4	<i>una Planelary Change</i> , 111, 150-158, doi:10.1016/j.gloplacha.2015.09.002.
5	adaptation? Forestry Journal 60 (1) 5-18 doi:10.2478/fori.2014-0001
7	Hock R et al. 2019a: High Mountain Areas: In: IPCC Special Report on the Ocean and Cryosphere in a Changing
8	Climate
9	Hock R et al. 2019b: High Mountain Areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing
10	Climate [Masson-Delmotte, V., P. Zhai, HO. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W.
11	MoufoumaOkia, R. P. C. Péan, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T.
12	Maycock, M. Tignor and T. Waterfield (eds.)], 1-94.
13	Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5°C of Global Warming on Natural and Human Systems.[Marengo, J. A.,
14	J. Pereira and B. Sherstyukov (eds.)], 175-311.
15	Hoffmann, R. et al., 2020: A meta-analysis of country-level studies on environmental change and migration. Nature
16	<i>Climate Change</i> , 10 (10), 904-912, doi:10.1038/s41558-020-0898-6.
17	Holgersen, S. and A. Malm, 2015: "green fix" as crisis management. or, in which world is malmö the world's greenest
18	city? Geografiska Annaler: Series B, Human Geography, 97 (4), 275-290, doi:10.1111/geob.12081.
19	Holman, I. P. et al., 2018: Improving the representation of adaptation in climate change impact models. <i>Regional</i>
20	Environmental Change, 19 (3), /11-721, doi:10.1007/s10113-018-1328-4.
21	Holman, I. P., C. Brown, V. Janes and D. Sandars, 2017: Can we be certain about future land use change in Europe? A
22	dei https://doi.org/10.1016/i.org/2016.12.001
23 24	uoi. <u>intps.//doi.org/10.1010/j.agsy.2010.12.001</u> . Holscher K N Frantzeskaki and D Loorbach 2019: Steering transformations under climate change: capacities for
2 4 25	transformative climate governance and the case of Rotterdam the Netherlands <i>Regional Environmental Change</i>
26	19 (3), 791-805, doi:10.1007/s10113-018-1329-3.
27	Holt, J. et al., 2018: Climate-Driven Change in the North Atlantic and Arctic Oceans Can Greatly Reduce the
28	Circulation of the North Sea. Geophysical Research Letters, 45 (21), 11,827-11,836,
29	doi:papers3://publication/doi/10.1029/2018GL078878.
30	Holt, J. et al., 2016: Potential impacts of climate change on the primary production of regional seas: A comparative
31	analysis of five European seas. <i>Progress in Oceanography</i> , 140 , 91-115,
32	doi:papers3://publication/doi/10.1016/j.pocean.2015.11.004.
33	Hopkins, C. R., D. M. Bailey and I. Potts, 2016: Perceptions of practitioners: Managing marine protected areas for
34 25	doi:nonero3://publication/doi/10.1016/i.ocecoaman.2016.04.014
36	Horstkotte, T. C. Sandström and I. Moen. 2014: Exploring the Multiple Use of Boreal Landscapes in Northern
37	Sweden: The Importance of Social-Ecological Diversity for Mobility and Flexibility. <i>Human Ecology</i> , 42 (5).
38	671-682, doi:10.1007/s10745-014-9687-z.
39	Howard, A. J., 2013: Managing global heritage in the face of future climate change: the importance of understanding
40	geological and geomorphological processes and hazards. International Journal of Heritage Studies, 19 (7), 632-
41	658, doi:10.1080/13527258.2012.681680.
42	Howard, J. et al., 2017: Clarifying the role of coastal and marine systems in climate mitigation. Frontiers in Ecology
43	and the Environment, 15 (1), 42-50, doi:papers3://publication/doi/10.1002/fee.1451.
44	Howlett, M., I. Mukherjee and S. A. Fritzen, 2019: Challenges associated with implementing climate adaptation policy.
45	In: Research Handbook on Climate Change Adaptation Policy [Keskitalo, E. C. H. and B. L. Preston (eds.)].
40 47	Eignominic, 50–00. Hu P et al. 2018: Flood induced mortality across the globe: Spatiotemporal pattern and influencing factors. <i>Science</i> of
47 48	The Total Environment 643 171-182 doi:https://doi.org/10.1016/i.scitoteny.2018.06.197
49	Huber, V. et al., 2014: Climate impact research: beyond patchwork. <i>Earth System Dynamics</i> , 5 (2), 399-408.
50	doi:10.5194/esd-5-399-2014.
51	Hudson, P., 2018: A comparison of definitions of affordability for flood risk adaption measures: a case study of current
52	and future risk-based flood insurance premiums in Europe. Mitigation and Adaptation Strategies for Global
53	<i>Change</i> , 23 (7), 1019-1038, doi:10.1007/s11027-017-9769-5.
54	Hudson, P., W. Botzen, L. Feyen and J. Aerts, 2016: Incentivising flood risk adaptation through risk based insurance
55	premiums: Trade-offs between affordability and risk reduction. <i>Ecological Economics</i> , 125 , 1-13,
56 57	doi:10.1016/j.ecolecon.2016.01.015.
51 58	Tavolara (Sardinia, Italy) due to a mass mortality event Marine Feelow, 27 (Suppl), 107–116
50 59	doi:10.1111/i.1439-0485.2011.00429 x
60	Humphrey, V. et al., 2018: Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage
61	Nature, 560 (7720), 628-631, doi:10.1038/s41586-018-0424-4.
62	Hunt, A. et al., 2017: Climate and weather service provision: Economic appraisal of adaptation to health impacts.
63	Climate Services, 7, 78-86, doi: https://doi.org/10.1016/j.cliser.2016.10.004.

1	Huntington, H. P. et al., 2017: How small communities respond to environmental change: patterns from tropical to
2	polar ecosystems. <i>Ecology and Society</i> , 22 (3).
3	Huthnance, J. et al., 2016: Recent Change—North Sea. In: North Sea Region Climate Change Assessment [Quante, M.
4	and F. Colijn (eds.)]. Springer International Publishing, Cham, 85-136.
5	Ibrahim, A. and S. L. J. Pelsmakers, 2018: Low-energy housing retrofit in North England: Overheating risks and
6	possible mitigation strategies. Building Services Engineering Research and Technology, 39 (2), 161-172,
7	doi:10.1177/0143624418754386.
8	IEA, 2018: The Future of Cooling - Opportunities for energy efficient air conditioning. International Energy Agency,
9	France [Available at: <u>https://webstore.iea.org/download/direct/1036?fileName=The_Future_of_Cooling.pdf</u>].
10	IFPRI, 2018: 2018 Global food policy report. International Food Policy Research Institute, Washington, DC [Available
11	at: <u>http://www.itpri.org/publication/2018-global-food-policy-report</u>].
12	Iglesias, A. and L. Garrote, 2015: Adaptation strategies for agricultural water management under climate change in
13	Europe. Agricultural Water Management, 155, 113-124, doi:10.1016/j.agwat.2015.03.014.
14	Inuit Circumpolar Council, 2020: Food sovereignty and self-governance: Inuit role in managing arctic marine
15	resources. Anchorage, AK [Available at:
16	https://www.culturalsurvival.org/sites/default/files/FSSG%20Report_%20LR%20%281%29.pdf].
17	losub, M., A. Enea and I. Mine, 2019: Flash flood impact on the cultural heritage in Moldova region, Romania. Case
18	Study: Jijia valley. In: 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings,
19	2019/06/20/, Sofia, 19 , doi:10.5593/sgem2019/2.2/S11.103.
20	IPBES, 2018: The regional assessment report on biodiversity and ecosystem services for Europe and Central Asia
21	[Kounsevell, M., M. Fischer, A. Torre-Marin Rando and A. Mader (eds.)]. IPBES Secretariat, Secretariat, I.,
22	Bonn, Germany, 892 pp [Available at: <u>http://www.ipbes.dk/wp-</u>
23	content/uploads/2018/09/EuropaCentralAsia_SPM_2018.pdf].
24	Ipcc, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-
25	industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global
26	response to the threat of climate change. 1-630 [Available at: <u>www.environmentalgraphiti.org</u>].
27	IPCC, 2019: Special Report: The Ocean and Cryosphere in a Changing Climate [H O. Porther, D.C. Roberts, V. Marsen Delwatte, D. Zhai, M. Tismen, F. Deleserwehr, K. Mintenheel, M. Niselai, A. Ohem, J. Detreld, P. Dewe
28	Masson-Deimolle, P. Zhai, M. Tignor, E. Poloczańska, K. Minienbeck, M. Nicolai, A. Okem, J. Pelzola, B. Rama,
29	N. Weyer (eds.)]. In press. $11/0-11/0$ [Available at:
30	<u>https://report.ipcc.ch/srocc/pdi/SROCC_FinalDraft_FullReport.pdf</u>].
31	irvine, E. A., K. P. Shine and M. A. Stringer, 2010: What are the implications of climate change for trans-Atlantic
32	doi:10.1016/j.trd 2016.04.014
23 24	doi.10.1010/J.ud.2010.04.014. Isokeson K and S Heikkinen 2018: Sustainability Transitions at the Frontline Lock in and Potential for Change in the
54 25	Local Dianning Areno, Sustainability 10 (2) doi:10.2200/su10020840
33 26	Ito A et al. 2020: Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land
30	ecosystems. Environmental Research Letters 15 (4) 044006 doi:10.1088/1748-9326/ab702b
39	Ivanov V P et al. 2016: Invasion of the Casnian Sea by the Comb Jellyfish Mnemionsis Leidyi (Ctenonhora)
20	Riological Invasions 2 (3) 255-258 doi:10.1023/A:1010008624728
40	Jacob D et al 2018: Climate Impacts in Europe Under +1 5°C Global Warming Earth's Euture <i>Earth's Euture</i> 6 264-
41	285 doi:10.1002/eft2.286
42	Jacob D et al 2014 EURO-CORDEX: new high-resolution climate change projections for European impact research
43	Regional Environmental Change 14 (2) 563-578 doi:10.1007/s10113-013-0499-2
44	Iacob D I and D A Winner 2009: Effect of climate change on air quality. Atmospheric Environment 43 (1) 51-63
45	doi:https://doi.org/10.1016/i.atmoseny.2008.09.051.
46	Jacob, K. H., 2015: Sea level rise, storm risk, denial, and the future of coastal cities. <i>Bulletin of the Atomic Scientists</i> , 71
47	(5), 40-50, doi:10.1177/0096340215599777.
48	Jactel, H. et al., 2017: Tree Diversity Drives Forest Stand Resistance to Natural Disturbances. <i>Current Forestry</i>
49	<i>Reports.</i> 3 (3), 223-243, doi:10.1007/s40725-017-0064-1.
50	Jaenson, T. et al., 2012: Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the
51	past 30 years in Sweden, <i>Parasites & Vectors</i> , 5 , doi:10.1186/1756-3305-5-8.
52	Jäger, H., G. Peratoner, U. Tappeiner and E. Tasser, 2020: Grassland biomass balance in the European Alps: current
53	and future ecosystem service perspectives. <i>Ecosystem Services</i> , 45 , 101163,
54	doi:https://doi.org/10.1016/j.ecoser.2020.101163.
55	Jantke, K., J. Müller, N. Trapp and B. Blanz, 2016: Is climate-smart conservation feasible in Europe? Spatial relations
56	of protected areas, soil carbon, and land values. <i>Environmental Science and Policy</i> , 57, 40-49,
57	doi:10.1016/j.envsci.2015.11.013.
58	Jenkins, K. et al., 2014a: Implications of climate change for thermal discomfort on underground railways.
59	Transportation Research Part D: Transport and Environment, 30 , 1-9,
60	doi:https://doi.org/10.1016/j.trd.2014.05.002.
61	Jenkins, K. et al., 2014b: Probabilistic spatial risk assessment of heat impacts and adaptations for London. Climatic
62	<i>Change</i> , 124 (1), 105-117, doi:10.1007/s10584-014-1105-4.

Jerez, S. et al., 2015: The impact of climate change on photovoltaic power generation in Europe. Nature 1 Communications, 6, doi:10.1038/ncomms10014. 2 Jiang, L. et al., 2020: Effects of sea-level rise on tides and sediment dynamics in a Dutch tidal bay. Ocean Science, 16, 3 307-321, doi:papers3://publication/uuid/E5C4F306-9A38-4407-8AED-A8523359437B. 4 Johannessen, Å. et al., 2019: Transforming urban water governance through social (triple-loop) learning. Environmental 5 *Policy and Governance*, **0** (0), doi:10.1002/eet.1843. 6 Johnson, D., M. Adelaide Ferreira and E. Kenchington, 2018: Climate change is likely to severely limit the 7 effectiveness of deep-sea ABMTs in the North Atlantic. *Marine Policy*, 87, 111-122, 8 doi:papers3://publication/doi/10.1016/j.marpol.2017.09.034. 9 Jokinen, S., J. J. Virtasalo, T. S. Jilbert and J. Kaiser, 2018: A 1500-year multiproxy record of coastal hypoxia from the 10 northern Baltic Sea indicates unprecedented deoxygenation over the 20th century. Biogeosciences, 15, 3975-4001, 11 doi:papers3://publication/doi/10.1016/S0016-7037(00)00539-1. 12 Joly, M. and E. I. Ungureanu, 2018: Global warming and skiing: analysis of the future of skiing in the Aosta valley. 13 Worldwide Hospitality and Tourism Themes, 10 (2), 161-171, doi:doi:10.1108/WHATT-12-2017-0077. 14 Jones, B. and B. C. O'Neill, 2016: Spatially explicit global population scenarios consistent with the Shared 15 Socioeconomic Pathways. Environmental Research Letters, 11 (8), doi:10.1088/1748-9326/11/8/084003. 16 Jones, E. et al., 2019: The state of desalination and brine production: A global outlook. Science of The Total 17 Environment, 657, 1343-1356, doi:https://doi.org/10.1016/j.scitotenv.2018.12.076. 18 19 Jones, P. and D. Comfort, 2020: A commentary on rewilding in Europe. Journal of Public Affairs, 20 (3), e2071, doi:10.1002/pa.2071. 20 Jones, P. J. S., L. M. Lieberknecht and W. Oiu, 2016: Marine spatial planning in reality: Introduction to case studies 21 and discussion of findings. Marine Policy, 71, 256-264, 22 doi:papers3://publication/doi/10.1016/j.marpol.2016.04.026. 23 Jongman, B. et al., 2014: Increasing stress on disaster-risk finance due to large floods. Nature Climate Change, 4 (4), 24 264-268, doi:10.1038/NCLIMATE2124. 25 Jongman, B., P. J. Ward and J. Aerts, 2012: Global exposure to river and coastal flooding: Long term trends and 26 changes. Global Environmental Change-Human and Policy Dimensions, 22 (4), 823-835, 27 doi:10.1016/j.gloenvcha.2012.07.004. 28 Jongman, B. et al., 2015: Declining vulnerability to river floods and the global benefits of adaptation. Proceedings of 29 the National Academy of Sciences, 112 (18), E2271-E2280, doi:10.1073/pnas.1414439112. 30 31 Jore, S. et al., 2014: Climate and environmental change drives Ixodes ricinus geographical expansion at the northern 32 range margin. Parasites & Vectors, 7, doi:10.1186/1756-3305-7-11. 33 Jørgensen, P. S. et al., 2016: Continent-scale global change attribution in European birds - combining annual and 34 decadal time scales. Global Change Biology, 22 (2), 530-543, doi:10.1111/gcb.13097. Jouzel, J. and A. Michelot, 2016: Climate justice : Challenges and propsects for France. 66 [Available at: 35 https://www.lecese.fr/sites/default/files/travaux multilingue/avis justice climatique-min.pdf]. 36 Joye, J.-F., 2018: Tourism development and adaptation to climate change through legal constraint. Worldwide 37 Hospitality and Tourism Themes, 10 (2), 244-252, doi:10.1108/WHATT-12-2017-0074. 38 Juhola, S., E. Glaas, B.-O. Linnér and T.-S. Neset, 2016: Redefining maladaptation. Environmental Science & Policy, 39 55, 135-140, doi:10.1016/j.envsci.2015.09.014. 40 Jurt, C. et al., 2015: Local perceptions in climate change debates: insights from case studies in the Alps and the Andes. 41 Climatic Change, 133 (3), 511-523, doi:10.1007/s10584-015-1529-5. 42 Juschten, M. et al., 2019: Out of the City Heat-Way to Less or More Sustainable Futures? Sustainability, 11 (1), 214. 43 Kabat, P. et al., 2009: Dutch coasts in transition. Nature Geosciences, 2 (7), 450-452. 44 Kabisch, N. et al., 2016: Nature-based solutions to climate change mitigation and adaptation in urban areas: 45 perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society, 21 (2), 46 doi:10.5751/ES-08373-210239. 47 Kabisch, N., H. Korn, J. Stadler and A. Bonn, 2017: Nature-Based Solutions to Climate Change Adaptation in Urban 48 Areas. Linkages between Science, Policy and Practice. Springer. 49 Kahn, M. E. et al., 2019: Long-Term Macroeconomic Effects of Climate Change: A Cross-Country Analysis. Federal 50 Reserve Bank of Dallas, Globalization Institute Working Papers, 2019 (365), doi:10.24149/gwp365. 51 Kaiser, N. et al., 2010: Depression and anxiety in the reindeer-herding Sami population of Sweden. International 52 Journal of Circumpolar Health, 69 (4), 383-393, doi:10.3402/ijch.v69i4.17674. 53 Kalkuhl, M. and L. Wenz, 2020: The impact of climate conditions on economic production. Evidence from a global 54 panel of regions. Journal of Environmental Economics and Management, 103, 102360, 55 doi:10.1016/j.jeem.2020.102360. 56 Kallio, A. M. I., B. Solberg, L. Käär and R. Päivinen, 2018: Economic impacts of setting reference levels for the forest 57 carbon sinks in the EU on the European forest sector. Forest Policy and Economics, 92, 193-201, 58 doi:https://doi.org/10.1016/j.forpol.2018.04.010. 59 Kanters, J. and M. Wall, 2018: Experiences from the urban planning process of a solar neighbourhood in Malmö, 60 Sweden. Urban, Planning and Transport Research, 6 (1), 54-80, doi:10.1080/21650020.2018.1478323. 61 Kärcher, O., D. Hering, K. Frank and D. Markovic, 2019: Freshwater species distributions along thermal gradients. 62 Ecology and Evolution, 9 (1), 111-124, doi:10.1002/ece3.4659. 63

Karkanis, A. et al., 2018: Interference of weeds in vegetable crop cultivation, in the changing climate of Southern 1 Europe with emphasis on drought and elevated temperatures: A review. Journal of Agricultural Science, 156 (10), 2 1175-1185, doi:10.1017/S0021859619000108. 3 Kasimir, A., H. He, J. Coria and A. Norden, 2018: Land use of drained peatlands: Greenhouse gas fluxes, plant 4 production, and economics. Global Change Biology, 24 (8), 3302-3316, doi:10.1111/gcb.13931. 5 Katopodis, T. et al., 2019: Assessment of climate change impacts on wind resource characteristics and wind energy 6 potential in Greece. Journal of Renewable and Sustainable Energy, 11 (6), 066502, doi:10.1063/1.5118878. 7 Kaufman, J. D., K. R. Kassube and A. G. Ríus, 2017: Lowering rumen-degradable protein maintained energy-corrected 8 milk yield and improved nitrogen-use efficiency in multiparous lactating dairy cows exposed to heat stress. 9 Journal of Dairy Science, 100 (10), 8132-8145, doi:10.3168/jds.2017-13026. 10 Kaufmann, M., S. J. Priest and P. Leroy, 2018: The undebated issue of justice: silent discourses in Dutch flood risk 11management. Regional Environmental Change, 18 (2), 325-337, doi:10.1007/s10113-016-1086-0. 12 Keenan, T. F. et al., 2016: Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon 13 uptake. Nature Communications, 7, 1-9, doi:10.1038/ncomms13428. 14 Kellens, W., T. Terpstra and P. De Maeyer, 2013: Perception and Communication of Flood Risks: A Systematic 15 Review of Empirical Research. Risk Analysis, 33 (1), 24-49, doi:10.1111/j.1539-6924.2012.01844.x. 16 Kelley, C. P. et al., 2015: Climate change in the Fertile Crescent and implications of the recent Syrian drought. 17 18 Proceedings of the National Academy of Sciences of the United States of America, 112 (11), 3241-3246, 19 doi:10.1073/pnas.1421533112. Kellomäki, S. et al., 2018: Temporal and Spatial Change in Diameter Growth of Boreal Scots Pine, Norway Spruce, and 20 Birch under Recent-Generation (CMIP5) Global Climate Model Projections for the 21st Century. Forests, 9 (3), 21 118, doi:10.3390/f9030118. 22 Kendrovski, V. et al., 2017: Quantifying Projected Heat Mortality Impacts under 21st-Century Warming Conditions for 23 Selected European Countries. International Journal of Environmental Research and Public Health, 14 (7), 24 doi:10.3390/ijerph14070729. 25 Kendrovski, V. and O. Schmoll, 2019: Priorities for protecting health from climate change in the WHO European 26 Region: recent regional activities. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 62 (5), 27 537-545, doi:10.1007/s00103-019-02943-9. 28 Kernecker, M. et al., 2019: Experience versus expectation: farmers' perceptions of smart farming technologies for 29 cropping systems across Europe. Precision Agriculture, doi:10.1007/s11119-019-09651-z. 30 Kersting, D. K., N. Bensoussan and C. Linares, 2013: Long-term responses of the endemic reef-builder Cladocora 31 32 caespitosa to Mediterranean warming. PLoS One, 8 (8), e70820, 33 doi:papers3://publication/doi/10.1371/journal.pone.0070820. 34 Kešetović, Ž., P. Marić and V. Ninković, 2017: Crisis Communication of Local Authorities in Emergency Situations – Communicating "May Floods" in the Republic of Serbia. Lex localis - Journal of Local Self-Government, 15 (1), 35 93-109, doi:10.4335/15.1.93-109(2017). 36 Keskitalo, E., G. Vulturius and P. Scholten, 2014: Adaptation to climate change in the insurance sector: examples from 37 the UK, Germany and the Netherlands. Natural Hazards, 71 (1), 315-334, doi:10.1007/s11069-013-0912-7. 38 Ketabchi, H., D. Mahmoodzadeh, B. Ataie-Ashtiani and C. T. Simmons, 2016: Sea-level rise impacts on seawater 39 intrusion in coastal aquifers: Review and integration. Journal of Hydrology \$V 535, 235-255. 40 Khabarov, N. et al., 2016: Forest fires and adaptation options in Europe. Regional Environmental Change, 16 (1), 21-41 30. doi:10.1007/s10113-014-0621-0. 42 Khan, Z., P. Linares and J. García-González, 2016: Adaptation to climate-induced regional water constraints in the 43 Spanish energy sector: An integrated assessment. Energy Policy, 97, 123-135, 44 doi:https://doi.org/10.1016/j.enpol.2016.06.046. 45 Kim, G.-U., K.-H. Seo and D. Chen, 2019: Climate change over the Mediterranean and current destruction of marine 46 47 ecosystem. Scientific Reports, 9 (1), 9, doi:papers3://publication/doi/10.1038/s41598-019-55303-7. Kingsborough, A., E. Borgomeo and J. W. Hall, 2016: Adaptation pathways in practice: Mapping options and trade-offs 48 for London's water resources. Sustainable Cities and Society, 27, 386-397, 49 doi:https://doi.org/10.1016/j.scs.2016.08.013. 50 Kirwan, M. et al., 2016: Overestimation of marsh vulnerability to sea level rise. Nature Climate Change, 6 (3), 253-51 260, doi:10.1038/NCLIMATE2909. 52 Kivinen, S., 2015: Many a little makes a mickle: Cumulative land cover changes and traditional land use in the Kyrö 53 reindeer herding district, northern Finland. Applied Geography, 63, 204-211, doi:10.1016/j.apgeog.2015.06.013. 54 Kivinen, S. et al., 2012: Forest Fragmentation and Landscape Transformation in a Reindeer Husbandry Area in Sweden. 55 Environmental Management, 49 (2), 295-304, doi:10.1007/s00267-011-9788-z. 56 Kjellstrom, T. et al., 2016: Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of 57 Global Climate Change Impacts. Annual Review of Public Health, 37 (1), 97-112, doi:10.1146/annurev-58 publhealth-032315-021740. 59 Klein, G. et al., 2016: Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to 60 later snow onset. Climatic Change, 139 (3), 637-649, doi:10.1007/s10584-016-1806-y. 61

1 2	Klijn, F., H. Kreibich, H. de Moel and E. Penning-Rowsell, 2015: Adaptive flood risk management planning based on a comprehensive flood risk conceptualisation. <i>Mitigation and Adaptation Strategies for Global Change</i> , 20 (6), 845-
3 4	864, doi:10.1007/s11027-015-9638-z. Klimenko, V., E. Fedotova and A. Tereshin, 2018: Vulnerability of the Russian power industry to the climate change.
5	Energy, 142, 1010-1022, doi:10.1016/j.energy.2017.10.069.
6	Kløcker Larsen, R., K. Raitio, M. Stinnerbom and J. Wik-Karlsson, 2017: Sami-state collaboration in the governance of
/	Cumulative effects assessment: A critical action research approach. Environmental Impact Assessment Review, 04,
8	6/-70, doi:10.1010/j.etar.2017.05.003.
9 10	Perspectives from Sami Communities and Swedish State Officials. Arctic Review on Law and Politics, 10 (0), 4,
11	doi:10.23865/arctic.v10.1323.
12	Klostermann, J. et al., 2018: Towards a framework to assess, compare and develop monitoring and evaluation of
13	climate change adaptation in Europe. <i>Mitigation and Adaptation Strategies for Global Change</i> , 23 (2), 187-209,
14	doi:10.100//s1102/-015-96/8-4. Knittel N et al. 2020: A global analysis of heat-related labour productivity losses under climate change—implications
15	for Germany's foreign trade. Climatic Change 160 (2) 251 260 doi:10.1007/s10584.020.02661.1
10	Knouft I H and D I Ficklin 2017: The Detential Impacts of Climate Change on Biodiversity in Flowing Freshweter
1/	Systems In: Annual Daviaw of Ecology Evolution and Systematics Vol 48 [Entryma D. J. (ad.)] 49, 111, 122
18	Systems. In: Annual Review of Ecology, Evolution, and Systematics, vol 46 [Fuldyma, D. J. (ed.)], 46, 111-155.
19	Europe Environmental Research Letters 11 (11) 112004 doi:10.1089/1748.0226/11/11/112004
20	Kok K et al. 2010: New European social economic scenarios for climate change research: operationalising concents to
21	extend the shared social economic pathways. <i>Regional Environmental Change</i> 10 (3) 643 654
22	doi:10.1007/s10113-018-1400-0
24	Koks, E., 2018: Moving flood risk modelling forwards, <i>Nature Climate Change</i> , 8 (7), 561-562, doi:10.1038/s41558-
25	018-0185-v.
26	Koks, E., R. Pant, S. Thacker and J. W. Hall, 2019: Understanding Business Disruption and Economic Losses Due to
27	Electricity Failures and Flooding. International Journal of Disaster Risk Science. 10 (4), 421-438.
28	doi:10.1007/s13753-019-00236-v.
29	Koks, E. E. and M. Thissen, 2016: A Multiregional Impact Assessment Model for disaster analysis. <i>Economic Systems</i>
30	<i>Research</i> , 28 (4), 429-449, doi:10.1080/09535314.2016.1232701.
31	Koletsis, I., V. Kotroni, K. Lagouvardos and T. Soukissian, 2016: Assessment of offshore wind speed and power
32	potential over the Mediterranean and the Black Seas under future climate changes. Renewable and Sustainable
33	Energy Reviews, 60, 234-245, doi: <u>https://doi.org/10.1016/j.rser.2016.01.080</u> .
34	Kolström, M., 2011: Climate Change Impacts and Adaptation in European Forests. Policy Brief 6. European Forest
35	Institute.
36	Kondo, M. C., J. M. Fluehr, T. McKeon and C. C. Branas, 2018: Urban Green Space and Its Impact on Human Health.
37	International Journal of Environmental Research and Public Health, 15 (3), 445.
38	Konnova, L. A. and Y. V. Lvova, 2019: Permafrost degradation in security context livelihoods in the Arctic Zone of the
39	Russian Federation. Problems of technosphere risk management, (3(51)), 27-33.
40	Koopman, J. F. L., O. Kuik, R. S. J. 101 and R. Brouwer, 2017: The potential of water markets to allocate water
41	between industry, agriculture, and public water utilities as an adaptation mechanism to climate change. <i>Mitigation</i>
42	and Adaptation Strategies for Global Change, 22 (2), 325-347, doi:10.1007/s11027-015-9662-z.
43	Koubi, V., 2019: Climate Change and Conflict. Annual Review of Political Science, 22 (1), 343-360,
44	doi:10.1146/annurev-polisci-05031/-0/0830.
45	tourism under 2 °C global warming. Climatic Change 151 (2) 157 171 doi:10.1007/s10584.018.2208.8
46	Koutroulis A. G. et al. 2010: Global water availability under high and climate change: A vulnerability based
4/	second and Planatam Change 175 52 62 doubtres://doi.org/10.1016/j.gloplache.2010.01.012
48	Keyets P. S. et al. 2014: Europe In: Climate Change 2014: Impacts. Adaptation and Vulnerability. Part B: Perional
49 50	Aspects Contribution of Working Group II to the Fifth Assessment Penert of the Intergovernmental Panel of
51	Climate Change [Barros V R C B Field D I Dokken M D Mastrondrea V I Mach T E Dily M
51 52	Chatteriee K. J. Ebi V. O. Estrada R. C. Genova R. Girma E. S. Kissel, A. N. Lava, S. MacCraelcon, D. D.
52 52	Chancelow, K. L. EUI, T. O. Esitaua, K. C. Otilova, D. Olillia, E. S. Kissel, A. N. Levy, S. MacOlackell, F. K. Mastrandrag and L. L. White (eds.)] Combridge University Drass. Combridge United Vingdom and New Verle
55 54	NV LISA YYY-VVV
54 55	INI, USA, AAA-III. Krakovska S. V. I. V. Palamarchuk and T. M. Shnutal 2010. Climatic projections of heating season in Illuming up to
55 56	Makovska, S. V., L. V. I alamatonik and I. Wi. Supplit, 2019. Unitatic projections of nearing season in Okraine up to the middle of the 21st century $\langle i data_stringib_type="italie" style="how signed inherity color: rab/20, 29, 20]$.
50 57	font-family: Slack-Lato appleLogo sans-serif: font-size: 15px: font-variant-ligatures: common-ligatures:
58	hackground_color: rab(248-248) 248) ···>Geofizicheskiv, Thurnal 41 (6) 111-161 doi:10.24028/gzb.0202
59	3100.v41i6.2019.190072.
60	Krause, A., T. Knoke and A. Rammig, 2020: A regional assessment of land-based carbon mitigation potentials
61	Bioenergy, BECCS, reforestation, and forest management. Gcb Bioenergy, 12 (5), 346-360,

62 doi:10.1111/gcbb.12675.

1	Kreibich, H., P. Bubeck, M. Van Vliet and H. De Moel, 2015: A review of damage-reducing measures to manage
2	fluvial flood risks in a changing climate. <i>Mitigation and Adaptation Strategies for Global Change</i> , 20 (6), 967- 989. doi:10.1007/s11027-014-9629-5
4	Krikken F et al. 2019: Attribution of the role of climate change in the forest fires in Sweden 2018 Atmospheric
5	Meteorological and Climatological Hazards [Available at: <u>https://nhess.copernicus.org/preprints/nhess-2019-</u>
6	<u>206/</u>].
7	Krovnin, A. S., S. P. Melnikov, D. V. Artemenkov and G. P. Muriy, 2019: Climate change impact on fish communities
8	in the North Atlantic region. In: Modern problems of Hydrometeorology and sustainable development of the
9	Russian Federation, Saint-Petersburg [Mikheev, V. L., I. I. Musket, E. A. A. and A. A. Fokicheva (eds.)], Russian
10	State Hydrometeorological University, 382-383.
11	Kulmer, V., M. Jury, S. Wong and D. Kortschak, 2020: Global resource consumption effects of borderless climate
12 13	change: EU's indirect vulnerability. <i>Environmental and Sustainability Indicators</i> , 8 , 100071, doi:10.1016/j.indic.2020.100071
14	Kwadiik I C I et al. 2010: Using adaptation tipping points to prepare for climate change and sea level rise: a case
15	study in the Netherlands, <i>Wiley Interdisciplinary Reviews: Climate Change</i> , 1 (5), 729-740, doi:10.1002/wcc.64.
16	Kwiatkowski, L., O. Aumont and L. Bopp, 2019: Consistent trophic amplification of marine biomass declines under
17	climate change. Global Change Biology, 25 (1), 218-229, doi:papers3://publication/doi/10.1111/gcb.14468.
18	Lahave, S. et al., 2018: What are the drivers of dangerous fires in Mediterranean France? International Journal of
19	Wildland Fire, 27 (3), 155-163.
20	Lake, I. et al., 2019; Exploring Campylobacter seasonality across Europe using The European Surveillance System
21	(TESSy), 2008 to 2016. Eurosurveillance, 24 (13), 35-46, doi:10.2807/1560-7917.ES.2019.24.13.180028.
22	Lake, I. et al., 2017: Climate Change and Future Pollen Allergy in Europe. Environmental Health Perspectives, 125 (3),
23	385-391, doi:10.1289/EHP173.
24	Lambertz, C., C. Sanker and M. Gauly, 2014: Climatic effects on milk production traits and somatic cell score in
25	lactating Holstein-Friesian cows in different housing systems. Journal of Dairy Science, 97 (1), 319-329,
26	doi:10.3168/jds.2013-7217.
27	Lamond, J. and E. Penning-Rowsell, 2014: The robustness of flood insurance regimes given changing risk resulting
28	from climate change. Climate Risk Management, 2, 1-10, doi: https://doi.org/10.1016/j.crm.2014.03.001.
29	Langer, G. et al., 2014: Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell
30	layers. Biogeosciences, 11 (24), 73637368, doi:10.5194/bg-11-7363-2014.
31	Larsen, R. K., C. Österlin and L. Guia, 2018: Do voluntary corporate actions improve cumulative effects assessment?
32	Mining companies' performance on Sami lands. The Extractive Industries and Society, 5 (3), 375-383,
33	doi: <u>https://doi.org/10.1016/j.exis.2018.04.003</u> .
34	Larsen, R. K. and K. Raitio, 2019: Implementing the State Duty to Consult in Land and Resource Decisions:
35	Perspectives from Sami Communities and Swedish State Officials. Arctic Review on Law and Politics, 10 (0), 4,
36	doi:10.23865/arctic.v10.1323.
37	Latchininsky, A. V., 2017: Climate changes and locusts: What to expect? Scientific notes of the Russian State
38	Hydrometeorological University, 46 , 134-143.
39	Lautkoetter, C. et al., 2015: Drivers and uncertainties of future global marine primary production in marine ecosystem
40	Inducis. <i>Biogeosciences</i> , 12 (23), 0933-0984, doi:papers5://publication/doi/10.5194/0g-12-0935-2015.
41 42	Europe: Focus on Agriculture. <i>Water Air and Soil Pollution</i> , 228 (7), doi:10.1007/s11270-017-3425-2.
43	Lawrence, R. and R. Kløcker Larsen, 2019: Fighting to Be Herd: Impacts of the Proposed Boliden Copper Mine in
44	Laver, Älvsbyn, Sweden for the Semisjaur Njarg Sami Reindeer Herding Community. Stockholm Environment
45	Institute, Stockholm, 96 [Available at: https://www.sei.org/wp-content/uploads/2019/04/sei-report-fighting-to-be-
46	<u>herd-300419.pdf</u>].
47	Le Cozannet, G. et al., 2019: Quantifying uncertainties of sandy shoreline change projections as sea level rises.
48	Scientific Reports, 9 (1), 42, doi:10.1038/s41598-018-37017-4.
49	Le Cozannet, G. et al., 2017: Sea Level Change and Coastal Climate Services: The Way Forward. <i>Journal of Marine</i>
50	Science and Engineering, 5 (4), doi:10.3390/jmse5040049.
51	Lee, H. et al., 2019: Implementing land-based mitigation to achieve the Paris Agreement in Europe requires food
52	system transformation. <i>Environmental Research Letters</i> , 14 (10), 104009, doi:10.1088/1/48-9326/ab3/44.
53	Lehikoinen, A. et al., 2019: Declining population trends of European mountain birds. Global Change Biology, 25 (2),
54	5//-388, doi:10.1111/gc0.14322. Loisanor Lotal 2015: Climata for Cultural according the immediate change on the future indexe of the state in
33 57	Leissnei, J. et al., 2015. Unimate for Uniture: assessing the impact of chimate change on the future indoor climate in historic huildings using simulations. Howing Science 2 (1), 29, doi:10.1196/-40404.015.0007.0
30 57	Instone oundings using simulations. <i>Terilage Science</i> , 3 (1), 58, doi:10.1180/\$40494-015-000/-9.
50	Publications Office, I U
50	I unitations Office, LO. Lengir, Let al. 2008: A Significant Unward Shift in Plant Species Ontimum Elevation During the 20th Contumy
59 60	Science 320 (5884) 1768 doi:10.1126/science 1156831
61	Lenoir J et al. 2013. Local temperatures inferred from plant communities suggest strong spatial huffering of climate
62	warming across Northern Europe. Global Change Biology 19 (5) 1470-1481 doi:10.1111/gcb.12129

Lesnikowski, A., R. Biesbroek, J. D. Ford and L. Berrang-Ford, 2020: Policy implementation styles and local 1 governments: the case of climate change adaptation. Environmental Politics, 1-38, 2 doi:10.1080/09644016.2020.1814045. 3 Lesnikowski, A., J. Ford, R. Biesbroek and L. Berrang-Ford, 2019a: A policy mixes approach to conceptualizing and 4 measuring climate change adaptation policy. Climatic Change, 156 (4), 447-469, doi:10.1007/s10584-019-02533-5 3 6 Lesnikowski, A. et al., 2016: National-level progress on adaptation. Nature Climate Change, 6, 261-264. 7 Lesnikowski, A., J. D. Ford, R. Biesbroek and L. Berrang-Ford, 2019b: A policy mixes approach to conceptualizing 8 and measuring climate change adaptation policy. Climatic Change, doi:10.1007/s10584-019-02533-3. 9 Leventon, J. et al., 2017: Collaboration or fragmentation? Biodiversity management through the common agricultural 10 policy. Land Use Policy, 64, 1-12, doi:10.1016/j.landusepol.2017.02.009. 11 Lewis, K. M., G. L. van Dijken and K. R. Arrigo, 2020: Changes in phytoplankton concentration now drive increased 12 Arctic Ocean primary production. Science, 369 (6500), 198-202, 13 doi:papers3://publication/doi/10.1126/science.aay8380. 14 Lhotka, O. and J. Kysely, 2015: Characterizing joint effects of spatial extent, temperature magnitude and duration of 15 heat waves and cold spells over Central Europe. International Journal of Climatology, 35 (7), 1232-1244, 16 17 doi:10.1002/joc.4050. Lian, X. et al., 2020: Summer soil drying exacerbated by earlier spring greening of northern vegetation. Science 18 19 Advances, 6 (1), eaax0255, doi:10.1126/sciadv.aax0255. Liang, E. et al., 2016: Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. 20 Climatic Change, 134 (1-2), 163-176, doi:10.1007/s10584-015-1531-y. 21 Linares, C., G. Martinez, V. Kendrovski and J. Diaz, 2020: A new integrative perspective on early warning systems for 22 health in the context of climate change. Environmental Research, 187, doi:10.1016/j.envres.2020.109623. 23 Lincke, D. and J. Hinkel, 2018: Economically robust protection against 21st century sea-level rise. Global 24 Environmental Change-Human and Policy Dimensions, 51, 67-73, doi:10.1016/j.gloenvcha.2018.05.003. 25 Lindeboom, H. J. et al., 2011: Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; a 26 compilation. Environmental Research Letters, 6 (3), 035101-14, doi:papers3://publication/doi/10.1088/1748-27 9326/6/3/035101. 28 Linnerooth-Bayer, J. and R. Mechler, 2015: Insurance for assisting adaptation to climate change in developing 29 countries: a proposed strategy. In: Climate Change and Insurance. Routledge, 29-44. 30 Lionello, P., 2012: The climate of the Venetian and North Adriatic region: Variability, trends and future change. 31 32 *Physics and Chemistry of the Earth, Parts A/B/C*, **40**, 1-8. 33 Lionello, P. et al., 2020a: Extremes floods of Venice: characteristics, dynamics, past and future evolution. Nat. Hazards 34 Earth Syst. Sci., submitted. Lionello, P., R. J. Nicholls, G. Umgiesser and D. Zanchettin, 2020b: Venice flooding and sea level: past evolution, 35 present issues and future projections. Nat. Hazards Earth Syst. Sci., submitted. 36 Löf, A., 2013: Examining limits and barriers to climate change adaptation in an Indigenous reindeer herding 37 community. Climate and Development, 5 (4), 328-339, doi:10.1080/17565529.2013.831338. 38 Loopstra, R., 2020: An overview of food insecurity in Europe and what works and what doesn't work to tackle food 39 insecurity. European Journal of Public Health, 30, doi:doi.org/10.1093/eurpub/ckaa165.521. 40 Lopez-Doriga, U., J. Jimenez, H. Valdemoro and R. Nicholls, 2019: Impact of sea-level rise on the tourist-carrying 41 capacity of Catalan beaches. Ocean & Coastal Management, 170, 40-50, doi:10.1016/j.ocecoaman.2018.12.028. 42 López-Dóriga, U., J. A. Jiménez, A. Bisaro and J. Hinkel, 2020: Financing and implementation of adaptation measures 43 to climate change along the Spanish coast. Science of The Total Environment, 712, 135685, 44 doi:10.1016/j.scitotenv.2019.135685. 45 Lorencova, E. et al., 2018: Participatory Climate Change Impact Assessment in Three Czech Cities: The Case of 46 47 Heatwaves. Sustainability, 10 (6), doi:10.3390/su10061906. Lotze, H. K. et al., 2019: Global ensemble projections reveal trophic amplification of ocean biomass declines with 48 climate change. Proceedings of the National Academy of Sciences of the USA, 116 (26), 12907--12912, 49 doi:10.1073/pnas.1900194116. 50 Lourenco, T. et al., 2019: Are European decision-makers preparing for high-end climate change? Regional 51 Environmental Change, 19 (3), 629-642, doi:10.1007/s10113-018-1362-2. 52 Lugato, E. et al., 2018: Soil erosion is unlikely to drive a future carbon sink in Europe. Science Advances, 4 (11), 53 eaau3523, doi:10.1126/sciadv.aau3523. 54 Luijendijk, A. et al., 2018: The State of the World's Beaches. Scientific Reports, 8 (1), 6641, doi:10.1038/s41598-018-55 24630-6. 56 Luís, S. et al., 2017: Beliefs on the local effects of climate change: Causal attribution of flooding and shoreline retreat. 57 Journal of Integrated Coastal Zone Management, (1), 19-35% V 17. 58 Luís, S. et al., 2018: Psychosocial drivers for change: Understanding and promoting stakeholder engagement in local 59 adaptation to climate change in three European Mediterranean case studies. Journal of Environmental 60 Management, 223, 165-174, doi:10.1016/j.jenvman.2018.06.020. 61 Luyssaert, S. et al., 2018: Trade-offs in using European forests to meet climate objectives. Nature, 562 (7726), 259-262, 62 doi:10.1038/s41586-018-0577-1. 63

1	Macalister, F., 2015: Preparing for the future: Mitigating disasters and building resilience in the cultural heritage sector.
2	Journal of the Institute of Conservation, 38 (2), 115-129, doi:10.1080/19455224.2015.1068201. Mash K. Let al. 2010; Climete as a rick factor for armed conflict. Nature 571 (7764), $102 \pm doi:10.1028/a41586$
3	Mach, K. J. et al., 2019: Chinate as a fisk factor for affied conflict. <i>Nature</i> , $5/1$ (7/04), 195- \pm , doi:10.1058/841580-010_1300_6
5	Machado I et al. 2019: Assessment level and time scales of biodiversity indicators in the scope of the Marine Strategy
6	Framework Directive – A case study for the NE Atlantic <i>Ecological Indicators</i> 105 242-253
7	doi:naners3://nublication/doi/10/10/10/6/i ecolind 2019/05/067
8	Macias, D. M., E. Garcia-Gorriz and A. Stips, 2015: Productivity changes in the Mediterranean Sea for the twenty-first
9	century in response to changes in the regional atmospheric forcing. <i>Frontiers in Marine Science</i> , 2 , 1-13,
10	doi:10.3389/fmars.2015.00079.
11	Macintyre, H. L. et al., 2018: Assessing urban population vulnerability and environmental risks across an urban area
12	during heatwaves – Implications for health protection. <i>Science of The Total Environment</i> , 610-611 , 678-690,
13	doi: <u>https://doi.org/10.1016/j.scitotenv.2017.08.062</u> .
14 15	[Available at: http://www.snowchange.org/nages/wn-content/unloads/2018/11/Cherish_29112018.pdf]
16	Madsen, H. et al., 2014: Review of trend analysis and climate change projections of extreme precipitation and floods in
17	Europe. Journal of Hydrology, 519 , 3634-3650, doi:10.1016/j.jhydrol.2014.11.003.
18	Maes, J. et al., 2012: Mapping ecosystem services for policy support and decision making in the European Union.
19	<i>Ecosystem Services</i> , 1 (1), 31-39, doi: <u>https://doi.org/10.1016/j.ecoser.2012.06.004</u> .
20	Magnan, A. et al., 2016: Addressing the risk of maladaptation to climate change. Wiley Interdisciplinary Reviews-
21	<i>Climate Change</i> , 7 (5), 646-665, doi:10.1002/wcc.409.
22	Malinin, V. N., S. M. Gordeeva, I. V. Mitina and A. A. Pavlovsky, 2018: The negative consequences of storm surges
23	and the "age-old" level rise in the Neva Bay. Вода и экология: проблемы и решения, 1 (73), 48-58,
24	doi:10.23968/2305-3488.2018.23.1.48-58.
25	Mallory, C. D. and M. S. Boyce, 2018: Observed and predicted effects of climate change on Arctic caribou and
26	reindeer. Environmental Reviews, 20 (1), 15-25, doi:10.1159/er-201/-0052.
27	Mammides C 2019: European Union's conservation efforts are taxonomically biased <i>Riodiversity and Conservation</i>
20	28 (5) 1291-1296 doi:10.1007/s10531-019-01725-8
30	Mandel, A. et al., 2020: <i>Risks on Global Financial Stability Induced by Climate Change</i> . Social Science Research
31	Network, Rochester, NY [Available at: https://papers.ssrn.com/abstract=3626936
32	https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3626936]
33	Mangi, S. C. et al., 2018: The economic impacts of ocean acidification on shellfish fisheries and aquaculture in the
34	United Kingdom. Environmental Science & Policy, 86, 95-105, doi:10.1016/j.envsci.2018.05.008.
35	Mankin, J. S. et al., 2018: Blue Water Trade-Offs With Vegetation in a CO2-Enriched Climate. <i>Geophysical Research</i>
36	Letters, 45 (7), 3115-3125, doi:10.1002/2018GL07/051.
37	Marani, M. et al., 2007: Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon.
38	Geophysical Research Letters, 54 (11). Marbà N and C M Duarta 2010: Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality
39 40	Global Change Riology 16 (8) 2366-2375 doi:10.1111/j.1365-2486.2009.02130 x
41	Marchau V W Warren Bloemen Pieter Popper Steven Eds 2019 Decision Making under Deen Uncertainty
42	Springer.
43	Mares, D. M. and K. W. Moffett, 2016: Climate change and interpersonal violence: a "global" estimate and regional
44	inequities. Climatic Change, 135 (2), 297-310, doi:10.1007/s10584-015-1566-0.
45	Markovic, D. et al., 2017: Vulnerability of European freshwater catchments to climate change. Global Change Biology,
46	23 (9), 3567-3580, doi:10.1111/gcb.13657.
47	Marqués, L. et al., 2018: Last-century forest productivity in a managed dry-edge Scots pine population: the two sides of
48	climate warming. <i>Ecological Applications</i> , 28 (1), 95-105, doi:10.1002/eap.1631.
49	Martinez-Ibarra, E., B. M. Gomez-Martin, A. X. Armesto-Lopez and R. Pardo-Martinez, 2019: Climate Preferences for
50	Tourism: Perceptions Regarding Ideal and Unfavourable Conditions for Hiking in Spain. Atmosphere, 10 (11),
51	doi:10.5590/allitos10110040. Martinez Solanas, F. et al. 2018: Evaluation of the Impact of Ambient Temperatures on Occupational Injuries in Spain
52	<i>Environmental Health Perspectives</i> 126 (6) doi:10.1289/FHP2590
54	Martinez, G, S, et al. 2019: Heat-health action plans in Europe: Challenges ahead and how to tackle them
55	Environmental Research, 176 , 108548, doi:https://doi.org/10.1016/j.envres.2019.108548.
56	Marzeion, B. and A. Levermann, 2014: Loss of cultural world heritage and currently inhabited places to sea-level rise.
57	Environmental Research Letters, 9 (3), doi:10.1088/1748-9326/9/3/034001.
58	Massey, E., R. Biesbroek, D. Huitema and A. Jordan, 2014: Climate policy innovation: The adoption and diffusion of
59	adaptation policies across Europe. Global Environmental Change-Human and Policy Dimensions, 29, 434-443,
60	doi:10.1016/j.gloenvcha.2014.09.002.
61	Matsumoto, K. 1., 2019: Climate change impacts on socioeconomic activities through labor productivity changes
62	considering interactions between socioeconomic and climate systems. <i>Journal of Cleaner Production</i> , 216 , 528-541, doi:10.1016/j.jelenro.2018.12.127
05	סדו, מסו.וע.ועוען.וטופווט.בעוט.וב.ובד.

- Chapter 13 SECOND ORDER DRAFT IPCC WGII Sixth Assessment Report Matulla, C. et al., 2018: Climate Change driven evolution of hazards to Europe's transport infrastructure throughout the 1 twenty-first century. Theoretical and Applied Climatology, 133 (1), 227-242, doi:10.1007/s00704-017-2127-4. 2 Mayr, B., T. Thaler and J. Hübl, 2020: Successful small-scale household relocation after a millennial flood event in 3 Simbach, Germany 2016. Water (Switzerland), 12 (1), doi:10.3390/w12010156. 4 Mazaris, A. D. et al., 2013: Evaluating the Connectivity of a Protected Areas' Network under the Prism of Global 5 Change: The Efficiency of the European Natura 2000 Network for Four Birds of Prey. PLoS One, 8 (3), e59640, 6 doi:10.1371/journal.pone.0059640. 7 McEvoy, S., M. Haasnoot and R. Biesbroek, 2020: How are European countries planning for sea level rise? Ocean and 8 Coastal Management, under review. 9 McGill, B. J., M. Dornelas, N. J. Gotelli and A. E. Magurran, 2015: Fifteen forms of biodiversity trend in the 10 Anthropocene. Trends in Ecology & Evolution, 30 (2), 104-113, doi:https://doi.org/10.1016/j.tree.2014.11.006. 11 McKnight, B. and M. K. Linnenluecke, 2019: Patterns of Firm Responses to Different Types of Natural Disasters. 12 Business & Society, 58 (4), 813-840, doi:10.1177/0007650317698946. 13 McLeod, E., R. Salm, A. Green and J. Almany, 2009: Designing marine protected area networks to address the impacts 14 of climate change. Frontiers in Ecology and the Environment, 7 (7), 362-370, 15 doi:papers3://publication/doi/10.1890/070211. 16 Medd, W. et al., 2015: The flood recovery gap: a real-time study of local recovery following the floods of June 2007 in 17 18 Hull, North East England: The flood recovery gap. Journal of Flood Risk Management, 8 (4), 315-328, 19 doi:10.1111/jfr3.12098. Mees, H. L. P., P. P. J. Driessen and H. A. C. Runhaar, 2014: Legitimate adaptive flood risk governance beyond the 20 dikes: the cases of Hamburg, Helsinki and Rotterdam. Regional Environmental Change, 14 (2), 671-682, 21 doi:10.1007/s10113-013-0527-2. 22 Meinel, U. and R. Schule, 2018: The Difficulty of Climate Change Adaptation in Manufacturing Firms: Developing an 23 Action-Theoretical Perspective on the Causality of Adaptive Inaction. Sustainability, 10 (2), 24 doi:10.3390/su10020569. 25 Melbourne, L. A. et al., 2018: The importance of wave exposure on the structural integrity of rhodoliths. Journal of 26 Experimental Marine Biology and Ecology, 503, 109-119, doi:https://doi.org/10.1016/j.jembe.2017.11.007. 27 Melero, Y., C. Stefanescu and J. Pino, 2016: General declines in Mediterranean butterflies over the last two decades are 28 modulated by species traits. Biological Conservation, 201, 336-342, 29 doi:https://doi.org/10.1016/j.biocon.2016.07.029. 30 Melzner, F. et al., 2013: Future ocean acidification will be amplified by hypoxia in coastal habitats. Marine Biology, 31 32 160 (8), 1875--1888, doi:10.1007/s00227-012-1954-1. 33 Mentaschi, L. et al., 2018: Global long-term observations of coastal erosion and accretion. Scientific Reports, 8 (1), 34 12876, doi:10.1038/s41598-018-30904-w. Meredith, M. et al., 2019a: Polar Regions. In: SROOC [Delmotte, V. M. (ed.)], 101-101. 35 Meredith, M. et al., 2019b: Polar Regions. In: IPCC Special Report on the Ocean and Cryosphere in a Changing 36 Climate [Pörtner, H.-O., D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, 37 A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama and N. M. Weyer (eds.)], In press. 38 Merkens, J.-L., L. Reimann, J. Hinkel and A. T. Vafeidis, 2016: Gridded population projections for the coastal zone 39 under the Shared Socioeconomic Pathways. Global and Planetary Change, 145, 57-66, 40 doi:https://doi.org/10.1016/j.gloplacha.2016.08.009. 41 Michelozzi, P. et al., 2009: High Temperature and Hospitalizations for Cardiovascular and Respiratory Causes in 12 42 European Cities. American Journal of Respiratory and Critical Care Medicine, 179 (5), 383-389, 43 doi:10.1164/rccm.200802-217OC. 44 Mieszkowska, N. et al., 2019: Multinational, integrated approaches to forecasting and managing the impacts of climate 45 change on intertidal species. Marine Ecology Progress Series, 613, 247--252, doi:10.3354/meps12902. 46 47 Mikhaylova, G., 2018: The Arctic society under the environmental and climate change (based on survey results). Arctic and North, 32, 95-106, doi:10.17238/issn2221-2698.2018.32.95. 48 Miller, D. D. et al., 2018: Adaptation strategies to climate change in marine systems. Global Change Biology, 24 (1), 49 e1--e14, doi:10.1111/gcb.13829. 50
- Miller, J. L. and G. Pescaroli, 2018: Psychosocial capacity building in response to cascading disasters: A culturally
 informed approach. *International Journal of Disaster Risk Reduction*, **30**, 164-171,
 doi:10.1016/j.ijdrr.2018.04.018.
- Mills, S. C. et al., 2017: European butterfly populations vary in sensitivity to weather across their geographical ranges.
 Global Ecology and Biogeography, 26 (12), 1374-1385, doi:10.1111/geb.12659.
- Miskic, M., G. Coric and D. Vukosavljevic, 2017: Building financial and insurance resilience in the context of climate
 change. *Ekonomika poljoprivrede*, 64 (3), 1019-1033, doi:10.5937/ekoPolj1703019M.
- Missirian, A. and W. Schlenker, 2017: Asylum applications respond to temperature fluctuations. *Science*, 358 (6370),
 1610-1613, doi:10.1126/science.aao0432.
- Mitchell, D. et al., 2018: Extreme heat-related mortality avoided under Paris Agreement goals. *Nature Climate Change*,
 8 (7), 551-553, doi:10.1038/s41558-018-0210-1.
- Mitter, H. et al., 2019: Exploring Farmers' Climate Change Perceptions and Adaptation Intentions: Empirical Evidence
 from Austria. *Environmental Management*, 63 (6), 804-821, doi:10.1007/s00267-019-01158-7.

1	Mochizuki, J., T. Schinko and S. Hochrainer-Stigler, 2018: Mainstreaming of climate extreme risk into fiscal and
2 3	budgetary planning: application of stochastic debt and disaster fund analysis in Austria. <i>Regional Environmental Change</i> , 18 (7), 2161-2172, doi:10.1007/s10113-018-1300-3.
4	Moemken, J., M. Reyers, H. Feldmann and J. Pinto, 2018: Future Changes of Wind Speed and Wind Energy Potentials
5 6	in EURO-CORDEX Ensemble Simulations. <i>Journal of Geophysical Research-Atmospheres</i> , 123 (12), 63/3-6389, doi:10.1029/2018JD028473.
7	Mokrech, M. et al., 2015: An integrated approach for assessing flood impacts due to future climate and socio-economic
8	conditions and the scope of adaptation in Europe. <i>Climatic Change</i> , 128 (3-4), 245-260, doi:10.1007/s10584-014- 1298-6
10	Molinos, J. G. et al., 2016: Climate velocity and the future global redistribution of marine biodiversity. <i>Nature Scientific</i>
11	Data, 6 (1), 83-88, doi:papers3://publication/doi/10.1038/nclimate2769.
12	320. doi:10.1146/annurev-resource-110119-031134.
14	Monge-Barrio, A. and A. Sánchez-Ostiz Gutiérrez, 2018: Passive Energy Strategies for Mediterranean Residential
15	Buildings. Green Energy and Technology, Springer International Publishing, Cham.
10	Mancha (1975–2003). Science of The Total Environment, 414 , 73-80.
18	Montero Serra, I., M. Edwards and M. J. Genner, 2015: Warming shelf seas drive the subtropicalization of European
19 20	pelagic fish communities. <i>Global Change Biology</i> , 21 (1), 144-153,
20 21	Moore, F. C. and D. B. Lobell, 2015: The fingerprint of climate trends on European crop yields. <i>Proceedings of the</i>
22	National Academy of Sciences, 112 (9), 2670-2675, doi:10.1073/pnas.1409606112.
23 24	Morabito, M. et al., 2017: Increasing Heatwave Hazards in the Southeastern European Union Capitals. <i>Atmosphere</i> , 8 (7) doi:10.3390/atmos8070115
24	Moreno-Gené, J., L. Sánchez-Pulido, E. Cristobal-Fransi and N. Daries, 2018: The Economic Sustainability of Snow
26	Tourism: The Case of Ski Resorts in Austria, France, and Italy. Sustainability, 10 (9), 3012.
27 28	Moreno, A., M. Neumann and H. Hasenauer, 2018: Climate limits on European forest structure across space and time. Global and Planetary Change 169 168-178 doi:10.1016/j.gloplacha.2018.07.018
29	Moretti, A., M. Pascale and A. F. Logrieco, 2019: Mycotoxin risks under a climate change scenario in Europe. <i>Trends</i>
30	<i>in Food Science & Technology</i> , 84 , 38-40, doi:10.1016/j.tifs.2018.03.008.
31 32	Morgan, E. R. et al., 2013: Global change and helminth infections in grazing ruminants in europe: Impacts, trends and sustainable solutions. <i>Agriculture (Switzerland)</i> , 3 (3), 484-502, doi:10.3390/agriculture3030484.
33	Mori, E., A. Sforzi, G. Bogliani and P. Milanesi, 2018: Range expansion and redefinition of a crop-raiding rodent
34	associated with global warming and temperature increase. <i>Climatic Change</i> , 150 (3), 319-331,
35 36	Moser, S. C., 2014: Communicating adaptation to climate change: the art and science of public engagement when
37	climate change comes home. Wiley Interdisciplinary Reviews: Climate Change, 5 (3), 337-358,
38	doi:10.1002/wcc.276. Mosquera Losada M. R. et al. 2018: Agroforestry in the European common agricultural policy. Agroforestry Systems
39 40	92 (4), 1117-1127, doi:10.1007/s10457-018-0251-5.
41	Moullec, F. et al., 2019: An end-to-end model reveals losers and winners in a warming Mediterranean Sea. <i>Frontiers in</i>
42 43	<i>Marine Science</i> , 6 , 1-19, doi:10.3389/tmars.2019.00345. Moutabir H et al. 2017: Likely effects of climate change on groundwater availability in a Mediterranean region of
44	Southeastern Spain. <i>Hydrological Processes</i> , 31 (1), 161-176, doi:10.1002/hyp.10988.
45	Müller, B. et al., 2020: Modelling Food Security: Bridging the Gap between the Micro and the Macro Scale. <i>Global</i>
46 47	Muller, J., D. Folini, M. Wild and S. Pfenninger, 2019: CMIP-5 models project photovoltaics are a no-regrets
48	investment in Europe irrespective of climate change. Energy, 171, 135-148, doi:10.1016/j.energy.2018.12.139.
49 50	Mulligan, M., S. Burke and C. Douglas, 2014: Environmental Change and Migration Between Europe and Its
50 51	Migration [Piguet, E. and F. Laczko (eds.)]. Springer Netherlands. Dordrecht, 49-79.
52	Mullon, C. et al., 2016: Quantitative pathways for Northeast Atlantic fisheries based on climate, ecological-economic
53	and governance modelling scenarios. <i>Ecological Modelling</i> , 320 , 273-291, doi:10.1016/j.ecolmodel.2015.09.027.
54 55	& Information, 44 (5-6), 520-534, doi:10.1080/09613218.2016.1153355.
56	Munari, C., 2011: Effects of the 2003 European heatwave on the benthic community of a severe transitional ecosystem
57 58	(Comacchio Saltworks, Italy). <i>Marine Pollution Bulletin</i> , 62 (12), 27612770, doi:10.1016/i.marnolbul.2011.09.011
59	Munro, A. et al., 2017: Effect of evacuation and displacement on the association between flooding and mental health
60	outcomes: a cross-sectional analysis of UK survey data. <i>Lancet Planet Health</i> , 1 (4), 134-141.
61 62	2050: Part 1 identifying the problem. <i>Energy Policy</i> 108 844-858
63	doi: <u>https://doi.org/10.1016/j.enpol.2017.05.011</u> .

1 2	Mustonen, K., T. Mustonen, J. Kirillov and S. Council, 2018: <i>Traditional Knowledge of Northern Waters</i> . Snowchange Cooperative, Kontiolahti, Finland, 39 [Available at: <u>http://www.snowchange.org/pages/wp-</u>
3 4	<u>content/uploads/2018/12/1raditionalKnowledge.pdf</u>]. Mustonen, T., 2014: Endemic time-spaces of Finland: Aquatic regimes. <i>Fennia - International Journal of Geography</i> ,
5	192 (2), 120-139, doi:10.11143/40845.
6	Mustonen, T., 2018: Meaningful engagement and oral histories of the indigenous peoples of the north. 18.
7 8	Mustonen, T. and N. Huusari, 2020: How to know about waters? Finnish traditional knowledge related to waters and implications for management reforms. <i>Reviews in Fish Biology and Fisheries</i> , doi:10.1007/s11160-020-09619-7.
9 10	Mustonen, T. and H. Kontkanen, 2019: Safe places: Increasing Finnish waterfowl resilience through human-made wetlands. <i>Polar Science</i> , doi:10.1016/i.polar.2019.05.007
11	Mustonen, T. et al., 2020: Ponoi River Affected By Pink Salmon Expansion and Severe Weather Change. <i>Polar</i>
12	Mustonen, T. and V. Shadrin, 2020: The River Alazeya: Shifting socio-ecological systems connected to a Northeastern
14	Siberian River. ARCTIC, under review.
15 16 17	Myers, S. S. et al., 2017: Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. <i>Annual Review of Public Health</i> , 38 (1), 259-277, doi:10.1146/annurev-publhealth-031816- 044356
18	Myhre, G. et al., 2019: Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports 9, doi:10.1038/s/1508.019-52277.4
20	Walling. Sciencific Reports, 9, doi:10.1030/541390-019-32277-4.
20 21 22	albedo in midlatitude and high-latitude North American forests. <i>Geophysical Research Letters</i> , 44 (5), 2493-2501, doi:10.1002/2016gl071459
23 24	Mysiak, J. and C. Perez-Blanco, 2016: Partnerships for disaster risk insurance in the EU. <i>Natural Hazards and Earth</i> System Sciences, 16 (11), 2403-2419, doi:10.5194/nhess-16-2403-2016.
25	Nabuurs, GJ., MJ. Schelhaas, G. M. J. Mohren and C. B. Field. 2003: Temporal evolution of the European forest
26 27	sector carbon sink from 1950 to 1999. <i>Global Change Biology</i> , 9 (2), 152-160, doi:10.1046/j.1365- 2486 2003 00570 x
28	Nagorny-Koring N C and T Nochta 2018: Managing urban transitions in theory and practice - The case of the
29	Pioneer Cities and Transition Cities projects. <i>Journal of Cleaner Production</i> , 175 , 60-69.
30	doi:https://doi.org/10.1016/j.jclepro.2017.11.072.
31	Narayan, S. et al., 2016: The effectiveness, costs and coastal protection benefits of natural and nature-based defences.
32	PLoS One, 11 (5), e0154735, doi:10.1371/journal.pone.0154735.
33 34	Narita, D. and K. Rehdanz, 2017: Economic impact of ocean acidification on shellfish production in Europe. <i>Journal of Environmental Planning and Management</i> , 60 (3), 500-518, doi:10.1080/09640568.2016.1162705.
35 36	Natali, S. M. et al., 2019: Large loss of CO2 in winter observed across the northern permafrost region. <i>Nature Climate Change</i> , 9 (11), 852-857, doi:10.1038/s41558-019-0592-8.
37 38	Naudts, K. et al., 2016: Europe's forest management did not mitigate climate warming. <i>Science</i> , 351 (6273), 597-600. Naumann, G. et al., 2018: Global Changes in Drought Conditions Under Different Levels of Warming. <i>Geophysical</i>
39	Research Letters, 45 (7), 5285-5296, doi:10.1002/201/GL0/6521.
40 41	Naumann, S., 2011: Assessment of the potential of ecosystem-based approaches to climate change adaptation and
42	miligation in Europe.
45	Exposure to Sea-Level Rise and Coastal Flooding A Clobal Assessment <i>PLoS One</i> 10 (2)
44 45	doi:10.1371/journal.pone.0118571
46	Ng A K V et al. 2018: Port decision maker perceptions on the effectiveness of climate adaptation actions. <i>Coastal</i>
47	management 46 (3) 148-175
48	Nicholls, R. J. and A. S. Kebede, 2012: Indirect impacts of coastal climate change and sea-level rise: the UK example.
49	<i>Climate Policy</i> , 12 (sup01), S28-S52, doi:10.1080/14693062.2012.728792.
50 51	Nila, M. U. S. et al., 2019: Predicting the effectiveness of protected areas of Natura 2000 under climate change. <i>Ecological Processes</i> 8 (1) 13 doi:10.1186/s13717-019-0168-6
52	Nolde, M., 2019: Analyzing trends of changes in fire regimes on a global scale. In: <i>European Geosciences Union</i>
53	(EGU) General Assambly.
54	O'Hare, P., I. White and A. Connelly, 2016: Insurance as maladaptation: Resilience and the "business as usual' paradox.
55	Environment and Planning C-Government and Policy, 34 (6), 1175-1193, doi:10.1177/0263774X15602022.
56	OECD, 2013: Water and Climate Change Adaptation: Policies to Navigate Uncharted Waters. OECD Studies on
57	Water, OECD.
58	OECD, 2015: Water Resources Allocation: Sharing Risks and Opportunities. OECD Studies on Water, OECD.
59	Oesterwind, D. et al., 2020: First evidence of a new spawning stock of Illex coindetii in the North Sea (NE-Atlantic).
60	Fisheries Research, 221, 105384, doi:10.1016/j.fishres.2019.105384.
61 62	Ogunbode, C. A., C. Demski, S. B. Capstick and R. G. Sposato, 2019: Attribution matters: Revisiting the link between extreme weather experience and climate change mitigation responses. <i>Global Environmental Change</i> , 54 , 31-39,

Oliveira, M., C. Delerue-Matos, M. Pereira and S. Morais, 2020: Environmental Particulate Matter Levels during 2017 1 Large Forest Fires and Megafires in the Center Region of Portugal: A Public Health Concern? International 2 Journal of Environmental Research and Public Health, 17 (3), doi:10.3390/ijerph17031032. 3 Oliveira, S., H. Andrade and T. Vaz, 2011: The cooling effect of green spaces as a contribution to the mitigation of 4 urban heat: A case study in Lisbon. Building and Environment, 46 (11), 2186-2194, 5 doi:<u>https://doi.org/10.1016/j.buildenv.2011.04.034</u>. 6 Oliver, T. H. et al., 2015: Interacting effects of climate change and habitat fragmentation on drought-sensitive 7 butterflies. Nature Climate Change, 5, 941, doi:10.1038/nclimate2746 8 https://www.nature.com/articles/nclimate2746#supplementary-information. 9 Oliver, T. H. et al., 2014: Latitudinal gradients in butterfly population variability are influenced by landscape 10 heterogeneity. Ecography, 37 (9), 863-871, doi:10.1111/ecog.00608. 11 Olson, D. M. and E. Dinerstein, 2002: The Global 200: Priority Ecoregions for Global Conservation. Annals of the 12 Missouri Botanical Garden, 89 (2), 199-224, doi:10.2307/3298564. 13 Oppenheimer, M. et al., 2019: Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities. IPCC 14 SR Ocean and Cryosphere. In: SROOC [Delmotte, V. M. (ed.)], 1-169. 15 Orlov, A. et al., 2019: Economic Losses of Heat-Induced Reductions in Outdoor Worker Productivity: a Case Study of 16 Europe. Economics of Disasters and Climate Change, 3 (3), 191-211, doi:10.1007/s41885-019-00044-0. 17 18 Orru, H. et al., 2019: Ozone and heat-related mortality in Europe in 2050 significantly affected by changes in climate, 19 population and greenhouse gas emission. Environmental Research Letters, 14 (7), doi:10.1088/1748-9326/ab1cd9. Orru, H., K. L. Ebi and B. Forsberg, 2017: The Interplay of Climate Change and Air Pollution on Health. Current 20 Environmental Health Reports, 4 (4), 504-513, doi:10.1007/s40572-017-0168-6. 21 Orru, K., M. Tillmann, K. L. Ebi and H. Orru, 2018: Making Administrative Systems Adaptive to Emerging Climate 22 Change-Related Health Effects: Case of Estonia. Atmosphere, 9 (6), 221. 23 Orsato, R. J., S. R. Barakat and J. G. F. de Campos, 2017: Organizational adaptation to climate change: learning to 24 anticipate energy disruptions. International Journal of Climate Change Strategies and Management, 9 (5), 645-25 665, doi:10.1108/IJCCSM-09-2016-0146. 26 OSPAR, 2009: Assessment of climate change mitigation and adaptation [Commission, O. (ed.)]. Monitoring and 27 Assessment Series, London, 1-41 [Available at: https://www.ospar.org/documents?v=7157]. 28 Österlin, C. and K. Raitio, 2020: Fragmented Landscapes and Planscapes—The Double Pressure of Increasing Natural 29 Resource Exploitation on Indigenous Sámi Lands in Northern Sweden. Resources, 9 (9), 104, 30 31 doi:10.3390/resources9090104. 32 Outhwaite, C. et al., 2020: Complex long-term biodiversity change among invertebrates, bryophytes and lichens. 33 *Nature Ecology & Evolution*, **4** (3), 384-+, doi:10.1038/s41559-020-1111-z. 34 Pagano, A. J., M. Feofilovs and F. Romagnoli, 2018: The relationship between insurance companies and natural disaster risk reduction: overview of the key characteristics and mechanisms dealing with climate change. *Energy* 35 Procedia, 147, 566-572, doi:https://doi.org/10.1016/j.egypro.2018.07.072. 36 Palkowski, C., S. von Schwarzenberg and A. Simo, 2019: Seasonal cooling performance of air conditioners: The 37 importance of independent test procedures used for MEPS and labels. International Journal of Refrigeration, 104, 38 417-425, doi:https://doi.org/10.1016/j.ijrefrig.2019.05.021. 39 Palutikof, J. P., R. B. Street and E. P. Gardiner, 2019: Decision support platforms for climate change adaptation: an 40 overview and introduction. Climatic Change, 153 (4), 459-476, doi:10.1007/s10584-019-02445-2. 41 Pandit, S. N. et al., 2017: Climate change change risks, extinction debt, and conservation implications for a threatened 42 freshwater fish: Carmine shiner (Notropis percobromus). Science of The Total Environment, 598, 1-11, 43 doi:10.1016/j.scitotenv.2017.03.228. 44 Pansch, C. et al., 2018: Heat waves and their significance for a temperate benthic community: A near-natural 45 experimental approach. Global Change Biology, 24 (9), 4357-4367, 46 47 doi:papers3://publication/doi/10.1111/gcb.14282. Papadimitriou, L., I. P. Holman, R. Dunford and P. A. Harrison, 2019: Trade-offs are unavoidable in multi-objective 48 adaptation even in a post-Paris Agreement world. Science of The Total Environment, 696, 134027-134027, 49 doi:https://doi.org/10.1016/j.scitotenv.2019.134027. 50 Pape, R. and J. Löffler, 2012: Climate Change, Land Use Conflicts, Predation and Ecological Degradation as 51 52 Challenges for Reindeer Husbandry in Northern Europe: What do We Really Know After Half a Century of Research? Ambio, 41 (5), 421-434, doi:10.1007/s13280-012-0257-6. 53 Paprotny, D., A. Sebastian, O. Morales-Nápoles and S. N. Jonkman, 2018: Trends in flood losses in Europe over the 54 past 150 years. Nature Communications, 9 (1), 1985, doi:10.1038/s41467-018-04253-1. 55 Pardos, M. et al., 2021: The greater resilience of mixed forests to drought mainly depends on their composition: 56 Analysis along a climate gradient across Europe. Forest Ecology and Management, 481, 118687, 57 doi:https://doi.org/10.1016/j.foreco.2020.118687. 58 Parks, D., 2019: Energy efficiency left behind? Policy assemblages in Sweden's most climate-smart city. European 59 Planning Studies, 27 (2), 318-335, doi:10.1080/09654313.2018.1455807. 60 Parmesan, C. et al., 1999: Poleward shifts in geographical ranges of butterfly species associated with regional warming. 61 Nature, 399 (6736), 579-583, doi:10.1038/21181. 62

Parrado, R. et al., 2020: Fiscal effects and the potential implications on economic growth of sea-level rise impacts and 1 coastal zone protection. Climatic Change, 160 (2), 283-302, doi:10.1007/s10584-020-02664-y. 2 Pasimeni, M. R., D. Valente, G. Zurlini and I. Petrosillo, 2019: The interplay between urban mitigation and adaptation 3 strategies to face climate change in two European countries. Environmental Science & Policy, 95, 20-27, 4 doi:https://doi.org/10.1016/j.envsci.2019.02.002. 5 Paudel, Y., W. Botzen and J. Aerts, 2015: Influence of climate change and socio-economic development on catastrophe 6 insurance: a case study of flood risk scenarios in the Netherlands. Regional Environmental Change, 15 (8), 1717-7 1729, doi:10.1007/s10113-014-0736-3. 8 Pauli, H. et al., 2012: Recent Plant Diversity Changes on Europe's Mountain Summits. Science, 336 (6079), 353, 9 doi:10.1126/science.1219033. 10 Pawankar, R. et al., 2013: WAO White Book on Allergy: Update 2013. World Allergy Organization, Milwaukee, 11Wisconsin. 12 Payet-Burin, R., F. Bertoni, C. Davidsen and P. Bauer-Gottwein, 2018: Optimization of regional water - power systems 13 under cooling constraints and climate change. Energy, 155, 484-494, doi:10.1016/j.energy.2018.05.043. 14 Payne, M. R. et al., 2020: Climate-risk to European fisheries and coastal communities. Ecology [Available at: 15 http://biorxiv.org/lookup/doi/10.1101/2020.08.03.234401]. 16 Paz, S., M. Negev, A. Clermont and M. Green, 2016: Health Aspects of Climate Change in Cities with Mediterranean 17 18 Climate, and Local Adaptation Plans. International Journal of Environmental Research and Public Health, 13 (4), 19 doi:10.3390/ijerph13040438. Pe'er, G. et al., 2020: Action needed for the EU Common Agricultural Policy to address sustainability challenges. 20 People and Nature, 2 (2), 305-316, doi:10.1002/pan3.10080. 21 Pe'er, G. et al., 2017: Adding Some Green to the Greening: Improving the EU's Ecological Focus Areas for Biodiversity 22 and Farmers. Conservation Letters, 10 (5), 517-530, doi:10.1111/conl.12333. 23 Peck, M. A. et al., 2020: Climate change and European Fisheries and Aquaculture: 'CERES' Project Synthesis Report. 24 Universität Hamburg [Available at: https://www.fdr.uni-hamburg.de/record/804]. 25 Pecl, G. T. et al., 2017: Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. 26 Science, 355 (6332), eaai9214, doi:10.1126/science.aai9214. 27 Pedde, S. et al., 2019: Archetyping shared socioeconomic pathways across scales: an application to central Asia and 28 European case studies. *Ecology and Society*, 24 (4), doi:10.5751/ES-11241-240430. 29 Pendrill, F. et al., 2019: Agricultural and forestry trade drives large share of tropical deforestation emissions. Global 30 Environmental Change, 56, 1-10, doi: https://doi.org/10.1016/j.gloenvcha.2019.03.002. 31 Penning-Rowsell, E. C. and S. J. Priest, 2015: Sharing the burden of increasing flood risk: who pays for flood insurance 32 33 and flood risk management in the United Kingdom. Mitigation and Adaptation Strategies for Global Change, 20 34 (6), 991-1009, doi:10.1007/s11027-014-9622-z. Peñuelas, J. et al., 2017: Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology & 35 Evolution, 1 (10), 1438-1445, doi:10.1038/s41559-017-0274-8. 36 Perevedentsev, Y. P. and T. R. Aukhadeev, 2014: Features of the Wind Regime in the Volga Federal District in the Last 37 Decade. Bulletin of the Udmurt University. Series: Biology. Sciences about the Earth, 2, 112-121. 38 Persson, A. and A. Dzebo, 2019: Exploring global and transnational governance of climate change adaptation. 39 International Environmental Agreements: Politics, Law and Economics, volume 19, 357 – 367. 40 Persson, S., D. Harnesk and M. Islar, 2017: What local people? Examining the Gállok mining conflict and the rights of 41 the Sámi population in terms of justice and power. Geoforum, 86, 20-29, doi:10.1016/j.geoforum.2017.08.009. 42 Pescaroli, G., 2018: Perceptions of cascading risk and interconnected failures in emergency planning: Implications for 43 operational resilience and policy making. International Journal of Disaster Risk Reduction, 30, 269-280, 44 doi:10.1016/j.ijdrr.2018.01.019. 45 Peters, B., A. Jordan and J. Tosun, 2017: Over-reaction and under-reaction in climate policy: an institutional analysis. 46 47 Journal of Environmental Policy & Planning, 19 (6), 612-624, doi:10.1080/1523908X.2017.1348225. Petit, J. and G. Prudent, 2008: Climate change and biodiversity in the European Union overseas entities. IUCN. 48 Pfleiderer, P., C.-F. Schleussner, K. Kornhuber and D. Coumou, 2019: Summer weather becomes more persistent in a 49 2 °C world. Nature Climate Change, 9 (9), 666-671, doi:10.1038/s41558-019-0555-0. 50 Philip, S. et al., 2018: Validation of a Rapid Attribution of the May/June 2016 Flood-Inducing Precipitation in France to 51 Climate Change. Journal of Hydrometeorology, 19 (11), 1881-1898, doi:10.1175/JHM-D-18-0074.1. 52 Phillips, H., 2015: The capacity to adapt to climate change at heritage sites—The development of a conceptual 53 framework. Environmental Science & Policy, 47, 118-125, doi:10.1016/j.envsci.2014.11.003. 54 Pietrapertosa, F., V. Khokhlov, M. Salvia and C. Cosmi, 2018: Climate change adaptation policies and plans: A survey 55 in 11 South East European countries. Renewable & Sustainable Energy Reviews, 81, 3041-3050, 56 doi:10.1016/j.rser.2017.06.116. 57 Pinkse, J. and F. Gasbarro, 2019: Managing Physical Impacts of Climate Change: An Attentional Perspective on 58 Corporate Adaptation. Business & Society, 58 (2), 333-368, doi:10.1177/0007650316648688. 59 Polce, C. et al., 2016: Global change impacts on ecosystem services: a spatially explicit assessment for Europe. One 60 61 *Ecosvstem*, 1, e9990. Pons, M., J. Lopez-Moreno, M. Rosas-Casals and E. Jover, 2015: The vulnerability of Pyrenean ski resorts to climate-62 induced changes in the snowpack. Climatic Change, 131 (4), 591-605, doi:10.1007/s10584-015-1400-8. 63

Poortinga, W. et al., 2019: Climate change perceptions and their individual-level determinants: A cross-European 1 analysis. Global Environmental Change, 55, 25-35, doi:https://doi.org/10.1016/j.gloenvcha.2019.01.007. 2 Poppel, B., T. Andersen, H. Beach and N. Bernard, 2015: SLiCA: Arctic living conditions: Living conditions and 3 quality of life among Inuit, Saami and indigenous peoples of Chukotka and the Kola Peninsula. Nordisk 4 Ministerråd, Copenhagen. 5 Porfiriev, B. et al., 2017: Climate change impact on economic growth and specific sectors' development of the Russian 6 Arctic. Arctic Ecology and Economy, 4 (28), 13, doi:10.25283/2223-4594-2017-4-4-17. 7 Porretta, D. et al., 2013: Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species 8 distribution modelling. Parasites & Vectors, 6, doi:10.1186/1756-3305-6-271. 9 Post, E. et al., 2019: The polar regions in a 2°C warmer world. Science Advances, 5 (12), eaaw9883, 10 doi:10.1126/sciadv.aaw9883. 11 Pot, W. D., A. Dewulf, G. R. Biesbroek and S. Verweij, 2019: What makes decisions about urban water infrastructure 12 forward looking? A fuzzy-set qualitative comparative analysis of investment decisions in 40 Dutch municipalities. 13 Land Use Policy, 82, 781-795, doi:https://doi.org/10.1016/j.landusepol.2018.12.012. 14 Potopová, V. et al., 2017: The impacts of key adverse weather events on the field-grown vegetable yield variability in 15 the Czech Republic from 1961 to 2014. International Journal of Climatology, 37 (3), 1648-1664, 16 17 doi:10.1002/joc.4807. Poussin, J. K., W. J. W. Botzen and J. C. J. H. Aerts, 2013: Stimulating flood damage mitigation through insurance: an 18 19 assessment of the French CatNat system. Environmental Hazards, 12 (3-4), 258-277, doi:10.1080/17477891.2013.832650. 20 Pranzini, E., L. Wetzel and A. T. Williams, 2015: Aspects of coastal erosion and protection in Europe. Journal of 21 Coastal Conservation, 19 (4), 445-459, doi:10.1007/s11852-015-0399-3. 22 Pretis, F. et al., 2018: Uncertain impacts on economic growth when stabilizing global temperatures at 1.5°C or 2°C 23 warming. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 24 376 (2119), 20160460, doi:10.1098/rsta.2016.0460. 25 Pretzsch, H. et al., 2014: Forest stand growth dynamics in Central Europe have accelerated since 1870. Nature 26 Communications, 5 (1), doi:10.1038/ncomms5967. 27 Primicia, I. et al., 2015: Age, competition, disturbance and elevation effects on tree and stand growth response of 28 primary Picea abies forest to climate. Forest Ecology and Management, 354, 77-86, 29 doi:10.1016/i.foreco.2015.06.034. 30 Prober, S. M. et al., 2019: Shifting the conservation paradigm: a synthesis of options for renovating nature under 31 32 climate change. Ecological Monographs, 89 (1), e01333-e01333, doi:10.1002/ecm.1333. 33 Promberger, M., 2017: Resilience among vulnerable households in Europe. IAB-Discussion Paper, No. 12/2017, 34 Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg, 44. Prudhomme, C. et al., 2014: Hydrological droughts in the 21st century, hotspots and uncertainties from a global 35 multimodel ensemble experiment. Proceedings of the National Academy of Sciences, 111 (9), 3262 LP-3267, 36 doi:10.1073/pnas.1222473110. 37 Pudak, J., 2019: Lessons (not) learned on climate change adaptation policy: qualitative research on the case of floods in 38 Western Balkan countries. Sociialna ekologija, 28 (1), 3-26, doi:10.17234/SocEkol.28.1.1. 39 Pukkala, T., 2018: Effect of species composition on ecosystem services in European boreal forest. Journal of Forestry 40 Research, 29 (2), 261-272, doi:10.1007/s11676-017-0576-3. 41 Pungas, L., 2019: Food self-provisioning as an answer to the metabolic rift: The case of 'Dacha Resilience' in Estonia. 42 Journal of Rural Studies, 68, 75-86, doi:10.1016/j.jrurstud.2019.02.010. 43 Pushnya, M. V. and Z. A. Shirinyan, 2015: A new harmful pest of soyabean in Krasnodar Territory. Zashchita i 44 Karantin Rastenii, (No.10), 27-29. 45 Pye, S. et al., 2015: Energy poverty and vulnerable consumers in the energy sector across the EU: analysis of policies 46 47 and measures: INSIGHT E. [Available at: https://ec.europa.eu/energy/sites/ener/files/documents/INSIGHT E Energy%20Poverty%20-48 %20Main%20Report FINAL.pdf]. 49 Queiroz, C. et al., 2015: Mapping bundles of ecosystem services reveals distinct types of multifunctionality within a 50 Swedish landscape. Ambio, 44 (1), 89-101, doi:10.1007/s13280-014-0601-0. 51 Quiroga, S. and C. Suárez, 2016: Climate change and drought effects on rural income distribution in the Mediterranean: 52 a case study for Spain. Natural Hazards and Earth System Sciences, 16 (6), 1369-1385, doi:10.5194/nhess-16-53 1369-2016. 54 Radhakrishnan, M. et al., 2018: Flexible adaptation planning for water sensitive cities. Cities, 78, 87-95, 55 doi:https://doi.org/10.1016/j.cities.2018.01.022. 56 Ragazzola, F. et al., 2013: Phenotypic plasticity of coralline algae in a High CO2 world. Ecology and Evolution, 3 (10), 57 3436--3446, doi:10.1002/ece3.723. 58 Ragazzola, F. et al., 2016: Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale. 59 Scientific Reports, 6, 20572, doi:10.1038/srep20572 60 http://www.nature.com/articles/srep20572#supplementary-information. 61

Raitio, K., C. Allard and R. Lawrence, 2020: Mineral extraction in Swedish Sámi: The regulatory gap between Sami 1 rights and Sweden's mining permitting practices. Land Use Policy, 99, 105001, 2 doi:10.1016/j.landusepol.2020.105001. 3 Ramírez, F. et al., 2018: Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its 4 resilience to climate impacts. Scientific Reports, 8 (1), 14871, doi:10.1038/s41598-018-33237-w. 5 Randazzo, T., E. De Cian and M. N. Mistry, 2020: Air conditioning and electricity expenditure: The role of climate in 6 temperate countries. Economic Modelling, 90, 273-287, doi:10.1016/j.econmod.2020.05.001. 7 Ranger, N., T. Reeder and J. Lowe, 2013: Addressing 'deep' uncertainty over long-term climate in major infrastructure 8 projects: four innovations of the Thames Estuary 2100 Project. EURO Journal on Decision Processes, 1 (3), 233-9 262, doi:10.1007/s40070-013-0014-5. 10 Ranzani, A. et al., 2018: Hydropower Future: Between Climate Change, Renewable Deployment, Carbon and Fuel 11Prices. Water, 10 (9), doi:10.3390/w10091197. 12 Rasmus, S., S. Kivinen and M. Irannezhad, 2018: Basal ice formation in snow cover in Northern Finland between 1948 13 and 2016. Environmental Research Letters, 13 (11), 114009, doi:10.1088/1748-9326/aae541. 14 Rasmussen, P., T. O. Sonnenborg, G. Goncear and K. Hinsby, 2013: Assessing impacts of climate change, sea level 15 rise, and drainage canals on saltwater intrusion to coastal aquifer. Hydrology and Earth System Sciences, 17 (1), 16 17 421-443, doi:10.5194/hess-17-421-2013. 18 Ratcliffe, S. et al., 2017: Biodiversity and ecosystem functioning relations in European forests depend on environmental 19 context. Ecology Letters, 20 (11), 1414-1426, doi:10.1111/ele.12849. Ray, A., L. Hughes, D. M. Konisky and C. Kaylor, 2017: Extreme weather exposure and support for climate change 20 adaptation. Global Environmental Change, 46, 104-113, doi:https://doi.org/10.1016/j.gloenvcha.2017.07.002. 21 Ray, D. K., J. S. Gerber, G. K. MacDonald and P. C. West, 2015: Climate variation explains a third of global crop yield 22 variability. Nature Communications, 6, 5989, doi:10.1038/ncomms6989 23 https://www.nature.com/articles/ncomms6989#supplementary-information. 24 Raymond, C. et al., 2020: Understanding and managing connected extreme events. Nature Climate Change, 10 (7), 25 611-621, doi:10.1038/s41558-020-0790-4. 26 Reckien, D., J. Flacke, M. Olazabal and O. Heidrich, 2015: The Influence of Drivers and Barriers on Urban Adaptation 27 and Mitigation Plans-An Empirical Analysis of European Cities. PLoS One, 10 (8), 28 doi:10.1371/journal.pone.0135597. 29 Reckien, D. et al., 2018a: How are cities planning to respond to climate change? Assessment of local climate plans from 30 885 cities in the EU-28. Journal of Cleaner Production, 191, 207-219, 31 32 doi:https://doi.org/10.1016/j.jclepro.2018.03.220. 33 Reckien, D. et al., 2018b: How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. Journal of Cleaner Production, 191, 207-219, doi:10.1016/j.jclepro.2018.03.220. 34 Reckien, D. et al., 2019: Dedicated versus mainstreaming approaches in local climate plans in Europe. Renewable and 35 Sustainable Energy Reviews, 112, 948-959, doi: https://doi.org/10.1016/j.rser.2019.05.014. 36 Regos, A. et al., 2016: Predicting the future effectiveness of protected areas for bird conservation in Mediterranean 37 ecosystems under climate change and novel fire regime scenarios. Diversity and Distributions, 22 (1), 83-96, 38 doi:10.1111/ddi.12375. 39 Reich, P. B. et al., 2016: Boreal and temperate trees show strong acclimation of respiration to warming. Nature, 531 40 (7596), 633-636, doi:10.1038/nature17142. 41 Reichstein, M. et al., 2007: Reduction of ecosystem productivity and respiration during the European summer 2003 42 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 13 (3), 634-43 651, doi:10.1111/j.1365-2486.2006.01224.x. 44 Reimann, L., J.-L. Merkens and A. T. Vafeidis, 2018a: Regionalized Shared Socioeconomic Pathways: narratives and 45 spatial population projections for the Mediterranean coastal zone. Regional Environmental Change, 18 (1), 235-46 47 245, doi:10.1007/s10113-017-1189-2. Reimann, L. et al., 2018b: Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to 48 sea-level rise. Nature Communications, 9 (1), 4161, doi:10.1038/s41467-018-06645-9. 49 Remling, E., 2018: Depoliticizing adaptation: a critical analysis of EU climate adaptation policy. Environmental 50 Politics, 27 (3), 477-497, doi:10.1080/09644016.2018.1429207. 51 Restemeyer, B., M. van den Brink and J. Woltjer, 2018: Resilience unpacked - framing of 'uncertainty' and 52 'adaptability' in long-term flood risk management strategies for London and Rotterdam. European Planning 53 Studies, 26 (8), 1559-1579, doi:10.1080/09654313.2018.1490393. 54 Restemeyer, B., J. Woltjer and M. van den Brink, 2015: A strategy-based framework for assessing the flood resilience 55 of cities - A Hamburg case study. Planning Theory & Practice, 16 (1), 45-62, 56 doi:10.1080/14649357.2014.1000950. 57 Reusch, T. B. H. et al., 2018: The Baltic Sea as a time machine for the future coastal ocean. Science Advances, 4 (5), 58 doi:10.1126/sciadv.aar8195. 59 Revich, B. A., V. V. Maleev and M. D. Smirnova, 2019: Climate change and public health: assessments, indicators, 60 predictions [Revich, B. A. and K. A.O. (eds.)]. INP RAS, Moscow. 61 Rey-Valette, H., S. Robert and B. Rulleau, 2019: Resistance to relocation in flood-vulnerable coastal areas: a proposed 62 composite index. Climate Policy, 19 (2), 206-218, doi:10.1080/14693062.2018.1482823. 63

1	Rever, C. et al., 2014: Projections of regional changes in forest net primary productivity for different tree species in
2	Europe driven by climate change and carbon dioxide. <i>Annals of Forest Science</i> , 71 (2), 211-225,
3	doi:10.1007/s13595-013-0306-8.
4	Reyers, M., J. Moemken and J. Pinto, 2016: Future changes of wind energy potentials over Europe in a large CMIP5
5	multi-model ensemble. International Journal of Climatology, 36 (2), 783-796, doi:10.1002/joc.4382.
6	Reyes-Paecke, S. et al., 2019: Irrigation of green spaces and residential gardens in a Mediterranean metropolis: Gaps
7	and opportunities for climate change adaptation. <i>Landscape and Urban Planning</i> , 182 , 34-43,
8	doi: <u>https://doi.org/10.1016/j.landurbplan.2018.10.006</u> .
9	Rianna, G., A. Reder, L. Pagano and P. Mercogliano, 2020: Assessing Future Variations in Landslide Occurrence Due
10	to Climate Changes: Insights from an Italian Test Case. 255-264.
11	Ricart, S., J. Olcina and A. Rico, 2019: Evaluating Public Attitudes and Farmers' Beliefs towards Climate Change
12	Adaptation: Awareness, Perception, and Populism at European Level. Lana, 8 (1), 4.
13	Adoptation: Awareness, Dereantion, and Donulism at European Level. Land 9 (1), doi:10.2200/land8010004
14	Riebesell U et al. 2018: Toxic algal bloom induced by ocean acidification disrupts the pelagic food web. <i>Natura</i>
15	Scientific Data 8 (12) 1082-1086 doi:papers3://publication/doi/10.1038/s/1558.018-03/4-1
17	Rilov G et al 2019: Adaptive marine conservation planning in the face of climate change: What can we learn from
18	physiological ecological and genetic studies? Global Ecology and Conservation 17
19	doi:10.1016/i.gecco.2019.e00566.
20	Rivetti, I. et al., 2014: Global Warming and Mass Mortalities of Benthic Invertebrates in the Mediterranean Sea. <i>PLoS</i>
21	One, 9 (12), doi:papers3://publication/doi/10.1371/journal.pone.0115655.
22	Roberts, C. and F. W. Geels, 2019: Conditions for politically accelerated transitions: Historical institutionalism, the
23	multi-level perspective, and two historical case studies in transport and agriculture. Technological Forecasting
24	and Social Change, 140, 221-240, doi: https://doi.org/10.1016/j.techfore.2018.11.019.
25	Roberts, C. M. et al., 2017: Marine reserves can mitigate and promote adaptation to climate change. <i>Proceedings of the</i>
26	National Academy of Sciences of the USA, 114 (24), 6167–6175, doi:10.1073/pnas.1701262114.
27	Robinson, J. et al., 2017: Far-field connectivity of the UK's four largest marine protected areas: Four of a kind? <i>Earths</i>
28	Future, $5(5)$, $4/5-494$, doi:10.1002/2016ef000516.
29	Roebeling, P. C., L. Costa, L. Magainaes-Filno and V. Tekken, 2015: Ecosystem service value losses from coastal
30 21	doi:10.1007/s11852.013_0235_6
32	Rogers K et al. 2019: Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise
33	<i>Nature</i> , 567 (7746), 91-95, doi:papers3://publication/doi/10.1038/s41586-019-0951-7.
34	Rohat, G., J. Flacke, H. Dao and M. van Maarseveen, 2018: Co-use of existing scenario sets to extend and quantify the
35	shared socioeconomic pathways. Climatic Change, 151 (3-4), 619-636, doi:10.1007/s10584-018-2318-8.
36	Rohat, G. et al., 2019: Influence of changes in socioeconomic and climatic conditions on future heat-related health
37	challenges in Europe. Global and Planetary Change, 172, 45-59, doi:10.1016/j.gloplacha.2018.09.013.
38	Rojas-Downing, M. M., A. P. Nejadhashemi, T. Harrigan and S. A. Woznicki, 2017: Climate change and livestock:
39	Impacts, adaptation, and mitigation. <i>Climate Risk Management</i> , 16 , 145-163, doi:10.1016/j.crm.2017.02.001.
40	Roldán, E., M. Gómez, M. Pino and J. Díaz, 2015: The impact of extremely high temperatures on mortality and
41	mortality cost. International journal of environmental health research, 25 (3), 277-287.
42	komagosa, F. and J. Pons, 2017: Exploring local stakenoiders' perceptions of vulnerability and adaptation to climate
43 44	Román M V I Arto and A Ansusteri 2018: International trade and the distribution of economy wide benefits from
45	the disbursement of climate finance. <i>Climate and Development</i> 1-16 doi:10.1080/17565529.2018.1521330
46	Romero Rodríguez, L. et al., 2018: Mitigating energy poverty: Potential contributions of combining PV and building
47	thermal mass storage in low-income households. Energy Conversion and Management, 173, 65-80,
48	doi:10.1016/j.enconman.2018.07.058.
49	Rosenzweig, C. et al., 2017: Assessing inter-sectoral climate change risks: the role of ISIMIP. Environmental Research
50	Letters, 12 (1), 010301, doi:10.1088/1748-9326/12/1/010301.
51	Roson, R. and R. Damania, 2017: The macroeconomic impact of future water scarcity: An assessment of alternative
52	scenarios. Journal of Policy Modeling, 39 (6), 1141-1162, doi: <u>https://doi.org/10.1016/j.jpolmod.2017.10.003</u> .
53	Rosqvist, N. Inga and P. Eriksson, 2020: Impacts of climate warming on reindeer herding demand new land use
54 55	strategies. under review. Rotter M. F. Hoffmann A. Pechan and R. Stecker 2016: Commeting priorities: how actors and institutions influence
55 56	adaptation of the German railway system <i>Climatic Change</i> 137 (3) 600-623 doi:10.1007/s10584_016_1702_5
57	Ruan, R. et al., 2019: Decelerated Greenland Ice Sheet Melt Driven by Positive Summer North Atlantic Oscillation
58	Journal of Geophysical Research: Atmospheres, 124 (14), 7633-7646. doi:10.1029/2019JD030689.
59	Rubel, F. and M. Kottek, 2010: Observed and projected climate shifts 1901-2100 depicted by world maps of the
60	Köppen-Geiger climate classification. Meteorologische Zeitschrift, 135-141.
61	Ruffault, J., V. Moron, R. M. Trigo and T. Curt, 2017: Daily synoptic conditions associated with large fire occurrence
62	in Mediterranean France: evidence for a wind-driven fire regime. International Journal of Climatology, 37 (1),
63	524-533, doi:10.1002/joc.4680.

Ruiz-Benito, P. et al., 2014: Diversity increases carbon storage and tree productivity in Spanish forests. *Global Ecology* 1 and Biogeography, 23 (3), 311-322, doi:10.1111/geb.12126. 2 Rumpf, S. B. et al., 2018: Range dynamics of mountain plants decrease with elevation. Proceedings of the National 3 Academy of Sciences, 115 (8), 1848, doi:10.1073/pnas.1713936115. 4 Runhaar, H. et al., 2018: Mainstreaming climate adaptation: taking stock about "what works" from empirical research 5 worldwide. Regional Environmental Change, 18 (4), 1201-1210, doi:10.1007/s10113-017-1259-5. 6 Russel, D. et al., 2020: Policy Coordination for National Climate Change Adaptation in Europe: All Process, but Little 7 Power. Sustainability, 12 (13), 5393, doi:10.3390/su12135393. 8 Russo, S., J. Sillmann and E. M. Fischer, 2015: Top ten European heatwaves since 1950 and their occurrence in the 9 coming decades. Environmental Research Letters, 10 (12), 124003, doi:10.1088/1748-9326/10/12/124003. 10 Saarikoski, H. et al., 2018: Institutional challenges in putting ecosystem service knowledge in practice. Ecosystem 11Services, 29, 579-598, doi:https://doi.org/10.1016/j.ecoser.2017.07.019. 12 Sadoff, C. W. et al., 2015: Securing water, sustaining growth: Report of the GWP. OECD task force on water security 13 and sustainable growth. 14 Sahyoun, R., P. Guidetti, A. Di Franco and S. Planes, 2016: Patterns of Fish Connectivity between a Marine Protected 15 Area and Surrounding Fished Areas. PLoS One, 11 (12), e0167441, 16 17 doi:papers3://publication/doi/10.1371/journal.pone.0167441. 18 Sakhel, A., 2017: Corporate climate risk management: Are European companies prepared? Journal of Cleaner 19 Production, 165, 103-118, doi:10.1016/j.jclepro.2017.07.056. Sala, E. et al., 2018: Assessing real progress towards effective ocean protection. Marine Policy, 91, 11-13, 20 doi:10.1016/j.marpol.2018.02.004. 21 Salem, R., A. Bahadori-Jahromi and A. Mylona, 2019: Investigating the impacts of a changing climate on the risk of 22 overheating and energy performance for a UK retirement village adapted to the nZEB standards. Building Services 23 Engineering Research and Technology, 40 (4), 470-491, doi:10.1177/0143624419844753. 24 Salihoglu, B., S. S. Arkin, E. Akoglu and B. A. Fach, 2017: Evolution of Future Black Sea Fish Stocks under Changing 25 Environmental and Climatic Conditions. Frontiers in Marine Science, 4, 113, 26 doi:papers3://publication/doi/10.3389/fmars.2017.00339. 27 Salmoral, G. et al., 2019: A Probabilistic Risk Assessment of the National Economic Impacts of Regulatory Drought 28 Management on Irrigated Agriculture. Earth's Future, 7 (2), 178-196, doi:10.1029/2018EF001092. 29 Samaniego, L. et al., 2018: Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate 30 31 Change, 8 (5), 421-426, doi:10.1038/s41558-018-0138-5. 32 Sanchez-Guevara, C. et al., 2019: Assessing population vulnerability towards summer energy poverty: Case studies of 33 Madrid and London. Energy and Buildings, 190, 132-143, doi:10.1016/j.enbuild.2019.02.024. 34 Sanderson, F. J. et al., 2016: Assessing the Performance of EU Nature Legislation in Protecting Target Bird Species in an Era of Climate Change. Conservation Letters, 9 (3), 172-180, doi:10.1111/conl.12196. 35 Sanderson, H. et al., Eds., 2018: Adapting to Climate Change in Europe. Exploring Sustainable Pathways - From Local 36 Measures to Wider Policies. Elsevier, 368 pp. 37 Sandström, P. et al., 2016: On the decline of ground lichen forests in the Swedish boreal landscape: Implications for 38 reindeer husbandry and sustainable forest management. Ambio, 45 (4), 415-429, doi:10.1007/s13280-015-0759-0. 39 Sanginés de Cárcer, P. et al., 2018: Vapor-pressure deficit and extreme climatic variables limit tree growth. Global 40 Change Biology, 24 (3), 1108-1122, doi:10.1111/gcb.13973. 41 Sanker, C., C. Lambertz and M. Gauly, 2013: Climatic effects in Central Europe on the frequency of medical treatments 42 of dairy cows. animal, 7 (2), 316-321, doi:10.1017/S1751731112001668. 43 Santini, L., S. Saura and C. Rondinini, 2016: Connectivity of the global network of protected areas. Diversity and 44 Distributions, 22 (2), 199-211, doi:10.1111/ddi.12390. 45 46 Sanz-Barbero, B. et al., 2018: Heat wave and the risk of intimate partner violence. Science of The Total Environment, 47 644, 413-419. Saraiva, S. et al., 2019: Uncertainties in Projections of the Baltic Sea Ecosystem Driven by an Ensemble of Global 48 Climate Models. Frontiers in Earth Science, 6, 1, doi:papers3://publication/doi/10.3389/feart.2018.00244. 49 Saros, J. E. et al., 2019: Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape. 50 Environmental Research Letters, 14 (7), 074027, doi:10.1088/1748-9326/ab2928. 51 52 Sayol, J. M. and M. Marcos, 2018: Assessing Flood Risk Under Sea Level Rise and Extreme Sea Levels Scenarios: Application to the Ebro Delta (Spain). Journal of Geophysical Research: Oceans, 123 (2), 794-811, 53 doi:10.1002/2017jc013355. 54 Schaffner, F. and A. Mathis, 2014: Dengue and dengue vectors in the WHO European region: past, present, and 55 scenarios for the future. Lancet Infectious Diseases, 14 (12), 1271-1280, doi:10.1016/s1473-3099(14)70834-5. 56 Scheelbeek et al., Submitted: Human health effects of climate change adaptation responses: a systematic review of 57 evidence from low- and middle-income countries. Environmental Research Letters. 58 Scherrer, D. and C. Körner, 2011: Topographically controlled thermal-habitat differentiation buffers alpine plant 59 diversity against climate warming. Journal of Biogeography, 38 (2), 406-416, doi:10.1111/j.1365-60 2699.2010.02407.x. 61 62 Schewe, J. et al., 2014: Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences, 111 (9), 3245 LP-3250, doi:10.1073/pnas.1222460110. 63

1	Schiemann, F. and A. Sakhel, 2018: Carbon Disclosure, Contextual Factors, and Information Asymmetry: The Case of
2	Physical Risk Reporting. European Accounting Review, 1-28, doi:10.1080/09638180.2018.1534600.
3	Schifano, P. et al., 2012: Changes in the effects of heat on mortality among the elderly from 1998–2010: results from a
4	multicenter time series study in Italy. <i>Environmental Health</i> , II (1), 58.
5	Schinko, T., R. Mechier and S. Hochrainer-Sugler, 2017: A methodological framework to operationalize climate risk
07	Strategies for Global Change 22 (7) 1063-1086 doi:10.1007/s11027-016-0713-0
/ 0	Schleussner, CF. et al. 2016: Differential climate impacts for policy relevant limits to global warming: the case of
0	1 5°C and 2°C Farth System Dynamics 7 (2) 327-351 doi:10 5194/esd-7-327-2016
10	Schlog M and C Matulla 2018: Potential future exposure of European land transport infrastructure to rainfall-
11	induced landslides throughout the 21st century. <i>Natural Hazards and Earth System Sciences</i> , 18 (4), 1121-1132.
12	doi:10.5194/nhess-18-1121-2018.
13	Schmidtko, S., L. Stramma and M. Visbeck, 2017: Decline in global oceanic oxygen content during the past five
14	decades. Nature, 542 (7641), 335-339, doi:papers3://publication/doi/10.1038/nature21399.
15	Schöner, W. et al., 2019: Spatiotemporal patterns of snow depth within the Swiss-Austrian Alps for the past half
16	century (1961 to 2012) and linkages to climate change. International Journal of Climatology, 39 (3), 1589-1603,
17	doi:10.1002/joc.5902.
18	Schrefler, B. A. et al., 2009: Ground displacement data around the city of Ravenna do not support uplifting Venice by
19	water injection. Terra Nova, 21 (2), 144-150.
20	Schroter, D. et al., 2005: Ecosystem Service Supply and Vulnerability to Global Change in Europe.
21	doi:10.1120/science.1115255. Sabröter M. et al. 2014: Ecosystem Services and Opportunity Costs Shift Spatial Drigrities for Conserving Forest
22	Biodiversity PLoS One 9 (11) e112557 doi:10.1371/journal.pone.0112557
23	Schuerch M et al. 2018: Future response of global coastal wetlands to sea-level rise. <i>Nature</i> 561 (7722) 231-234
25	doi:papers3://publication/doi/10.1038/s41586-018-0476-5.
26	Schuldt, B. et al., 2020: A first assessment of the impact of the extreme 2018 summer drought on Central European
27	forests. Basic and Applied Ecology, 45, 86-103, doi:https://doi.org/10.1016/j.baae.2020.04.003.
28	Schulze, ED. et al., 2012: Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor
29	greenhouse gas neutral. Gcb Bioenergy, 4 (6), 611-616, doi:10.1111/j.1757-1707.2012.01169.x.
30	Schulze, E. D. et al., 2009: Importance of methane and nitrous oxide for Europe's terrestrial greenhouse-gas balance.
31	<i>Nature Geoscience</i> , 2 (12), 842-850, doi:10.1038/ngeo686.
32	Schwalm, C. R. et al., 2017: Global patterns of drought recovery. <i>Nature</i> , 548 , 202, doi:10.1038/nature23021.
33	Scott, D., R. Steiger, H. Dannevig and C. Aall, 2019: Climate change and the future of the Norwegian alpine ski
34 25	Industry. Current Issues in Tourism, 1-14, doi:10.1080/13083500.2019.1008919.
35 36	central Europe. Theoretical and Applied Climatology 131 (3) 1493-1501. doi:10.1007/s00704-017-2061-5
37	Seebauer S and P Babcicky 2018: Trust and the communication of flood risks: comparing the roles of local
38	governments, volunteers in emergency services, and neighbours. Journal of Flood Risk Management, 11 (3), 305-
39	316, doi:10.1111/jfr3.12313.
40	Seebauer, S. and C. Winkler, 2020: Should I stay or should I go? Factors in household decisions for or against
41	relocation from a flood risk area. Global Environmental Change, 60, 102018,
42	doi. <u>https://doi.org/10.1016/j.gloenvcha.2019.102018</u> .
43	Seibold, S. et al., 2019: Arthropod decline in grasslands and forests is associated with landscape-level drivers. <i>Nature</i> ,
44	574 (7780), 671-+, doi:10.1038/s41586-019-1684-3.
45	Seidl, R. et al., 2017: Forest disturbances under climate change. <i>Nature Climate Change</i> , 7, 395,
46	doi:10.1058/nclimate5505
47	Selby L. O. S. Dabi, C. Fröhlich and M. Hulme. 2017: Climate change and the Syrian civil war revisited. <i>Political</i>
40	Geography 60 232-244 doi:https://doi.org/10.1016/j.polgeo.2017.05.007
50	Selig, E. R. et al., 2014: Global Priorities for Marine Biodiversity Conservation, <i>PLoS One</i> , 9 (1).
51	doi:10.1371/journal.pone.0082898.
52	Semenza, J. and J. Suk, 2018: Vector-borne diseases and climate change: a European perspective. Fems Microbiology
53	Letters, 365 (2), doi:10.1093/femsle/fnx244.
54	Semenza, J. et al., 2016: Climate change projections of West Nile virus infections in Europe: implications for blood
55	safety practices. Environmental Health, 15, doi:10.1186/s12940-016-0105-4.
56	Semenza, J. C. et al., 2017: Environmental Suitability of Vibrio Infections in a Warming Climate: An Early Warning
57	System. Environmental Healin Perspectives, 125 (10), 10/004, doi:papers3://publication/uuid/D/FE22AA-142E-
50 50	Seneviratne S. Let al. 2018: Land radiative management as contributor to regional scale climate adaptation and
60	mitigation. Nature Geoscience, 11 (2), 88-96 doi:10.1038/s41561-017-0057-5
61	Senf, C. and R. Seidl, 2020: Mapping the forest disturbance regimes of Europe. <i>Nature Sustainability</i> . 1-26.
62	doi:10.1038/s41893-020-00609-y.

2

3

4 5

6

7

8

9

10

11

12

13

14

15 16

17 18

- Sesana, E., A. Gagnon, C. Bertolin and J. Hughes, 2018: Adapting Cultural Heritage to Climate Change Risks: Perspectives of Cultural Heritage Experts in Europe. *Geosciences*, 8 (8), 305, doi:10.3390/geosciences8080305.
 Sesana, E., A. S. Gagnon, A. Bonazza and J. J. Hughes, 2020: An integrated approach for assessing the vulnerability of World Heritage Sites to climate change impacts. *Journal of Cultural Heritage*, 41, 211-224, doi:10.1016/j.culher.2019.06.013.
- Shaposhnikov, D. et al., 2015: Long-Term Impact of Moscow Heat Wave and Wildfires on Mortality. *Epidemiology*, **26** (2), E21-E22, doi:10.1097/EDE.00000000000251.
- Sheil, D. and F. Bongers, 2020: Interpreting forest diversity-productivity relationships: volume values, disturbance histories and alternative inferences. *Forest Ecosystems*, **7** (1), doi:10.1186/s40663-020-0215-x.
- Shen, J. et al., 2020: An early-stage analysis of climate-adaptive designs for multi-family buildings under future climate scenario: Case studies in Rome, Italy and Stockholm, Sweden. *Journal of Building Engineering*, **27**, 100972, doi:<u>https://doi.org/10.1016/j.jobe.2019.100972</u>.
- Sheridan, S. and M. Allen, 2018: Temporal trends in human vulnerability to excessive heat. *Environmental Research Letters*, **13** (4), doi:10.1088/1748-9326/aab214.
- Shibanov, V. N. and K. Y. Fomin, 2016: The results of the Russian bottom trawl fishery in North-Western Atlantic in 2013. (Statlant 21).
- Shiklomanov, N. I., D. A. Streletskiy, T. B. Swales and V. A. Kokorev, 2017: Climate Change and Stability of Urban Infrastructure in Russian Permafrost Regions: Prognostic Assessment based on GCM Climate Projections. *Geographical Review*, **107** (1), 125-142, doi:10.1111/gere.12214.
- Siders, A. R., M. Hino and K. J. Mach, 2019: The case for strategic and managed climate retreat. *Science*, 365 (6455),
 761, doi:10.1126/science.aax8346.
- Sieber, I. M., P. A. Borges and B. Burkhard, 2018: Hotspots of biodiversity and ecosystem services: the Outermost
 Regions and Overseas Countries and Territories of the European Union. *One Ecosystem 3 (2018)*.
- Siebert, S., H. Webber, G. Zhao and F. Ewert, 2017: Heat stress is overestimated in climate impact studies for irrigated
 agriculture. *Environmental Research Letters*, 12 (5), 054023, doi:10.1088/1748-9326/aa702f.
- Sierra, J. et al., 2016: Vulnerability of Catalan (NW Mediterranean) ports to wave overtopping due to different
 scenarios of sea level rise. *Regional Environmental Change*, 16 (5), 1457-1468, doi:10.1007/s10113-015-0879-x.
- Silanikove, N. and N. Koluman, 2015: Impact of climate change on the dairy industry in temperate zones: Predications
 on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. *Small Ruminant Research*, 123 (1), 27-34, doi:https://doi.org/10.1016/j.smallrumres.2014.11.005.
- Silva, R. et al., 2017: Future global mortality from changes in air pollution attributable to climate change. *Nature Climate Change*, 7 (9), 647-+, doi:10.1038/NCLIMATE3354.
- Simonet, G. and S. Fatorić, 2016: Does "adaptation to climate change" mean resignation or opportunity? *Regional Environmental Change*, 16 (3), 789-799, doi:10.1007/s10113-015-0792-3.
- 35 Simpson, N. P. et al., submitted: Assessing and responding to complex climate change risks. *One Earth*.
- Singh, C. et al., 2020: Assessing the feasibility of adaptation options: methodological advancements and directions for
 climate adaptation research and practice. *Climatic Change*, 162 (2), 255-277, doi:10.1007/s10584-020-02762-x.
- Sinha, E., A. M. Michalak and V. Balaji, 2017: Eutrophication will increase during the 21st century as a result of
 precipitation changes. *Science*, **357** (6349), 405 LP-408, doi:10.1126/science.aan2409.
- Sitnov, S. A., I. I. Mokhov and A. V. Jola, 2017: Influence of Siberian fires on carbon monoxide content in the
 atmosphere over the European part of Russia in the summer of 2016. *Optics of the atmosphere and ocean*, **30** (2),
 146-152.
- Skarin, A. and B. Åhman, 2014: Do human activity and infrastructure disturb domesticated reindeer? The need for the
 reindeer's perspective. *Polar Biology*, **37** (7), 1041-1054, doi:10.1007/s00300-014-1499-5.
- Skarin, A. et al., 2015: Wind farm construction impacts reindeer migration and movement corridors. *Landscape Ecology*, **30** (8), 1527-1540, doi:10.1007/s10980-015-0210-8.
- Skougaard Kaspersen, P. et al., 2017: Comparison of the impacts of urban development and climate change on exposing
 European cities to pluvial flooding. *Hydrol. Earth Syst. Sci.*, **21** (8), 4131-4147, doi:10.5194/hess-21-4131-2017.
- Slagstad, D., I. H. Ellingsen and P. Wassmann, 2011: Evaluating primary and secondary production in an Arctic Ocean
 void of summer sea ice: An experimental simulation approach. *Progress in Oceanography*, 90 (1-4), 117-131,
 doi:10.1016/j.pocean.2011.02.009.
- Slavíková, L. et al., 2020: Approaches to state flood recovery funding in Visegrad Group Countries. *Environmental Hazards*, 19 (3), 251-267, doi:10.1080/17477891.2019.1667749.
- Slezakova, K., S. Morais and M. Pereira, 2013: Forest fires in Northern region of Portugal: Impact on PM levels.
 Atmospheric Research, **127**, 148-153, doi:10.1016/j.atmosres.2012.07.012.
- Smale, D. A., 2020: Impacts of ocean warming on kelp forest ecosystems. *New Phytologist*, 225 (4), 1447-1454,
 doi:papers3://publication/doi/10.1111/nph.16107.
- Smale, D. A. et al., 2019: Marine heatwaves threaten global biodiversity and the provision of ecosystem services.
 Nature Scientific Data, 9, 1, doi:papers3://publication/doi/10.1038/s41558-019-0412-1.
- Smale, D. A., A. L. E. Yunnie, T. Vance and S. Widdicombe, 2015: Disentangling the impacts of heat wave magnitude,
 duration and timing on the structure and diversity of sessile marine assemblages. *PeerJ*, 3 (1628),
 doi:10.7717/maeri 863
- 62 doi:10.7717/peerj.863.

1	Smid, M. et al., 2019: Ranking European capitals by exposure to heat waves and cold waves. Urban Climate, 27, 388-
2	402, doi: <u>https://doi.org/10.1016/j.uclim.2018.12.010</u> .
3	Smith, J. O. et al., 2005: Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080.
4	<i>Global Change Biology</i> , 11 (12), 2141-2152, doi:10.1111/j.1365-2486.2005.001075.x.
5	Soares, M. and C. Buontempo, 2019: Challenges to the sustainability of climate services in Europe. <i>Wiley</i>
6	Interdisciplinary Reviews-Climate Change, 10 (4), doi:10.1002/wcc.587.
7	Solaun, K. and E. Cerdá, 2019: Climate change impacts on renewable energy generation. A review of quantitative
8	projections. Renewable and Sustainable Energy Reviews, 116 , 109415,
9	doi: <u>https://doi.org/10.1016/j.rser.2019.109415</u> .
10	Solaun, K. and E. Cerdá, 2020: Impacts of climate change on wind energy power – Four wind farms in Spain.
11	<i>Renewable Energy</i> , 145 , 1306-1316, doi: <u>https://doi.org/10.1016/j.renene.2019.06.129</u> .
12	Solidoro, C. et al., 2010: Response of Venice Lagoon ecosystem to natural and anthropogenic pressures over the last 50
13	years. Coastal lagoons: critical habitats of environmental change, 483-511.
14	Solovyev, B. et al., 2017: Identifying a network of priority areas for conservation in the Arctic seas: Practical lessons
15	from Russia. Aqualic Conservation: Marine and Freshwater Ecosystems, 27 (1), 3031, doi:10.1002/aqc.2806.
10	Soroye, P., 1. Newbold and J. Kerr, 2020: Chinate change contributes to widespread declines among buildie bees
1/	Spendre D. H. Frencois, F. George Marcolnoil and S. Morin 2016; Denel based assessment of snow management
18	operations in Franch ski resorts. <i>Journal of Outdoor Pagrantion and Tourism</i> 16 24 36
20	doi:https://doi.org/10.1016/j.jort 2016.09.002
20	Spandre P et al. 2019a: Climate controls on snow reliability in French Alps ski resorts. Scientific Reports 9 (1) 8043
21	doi:10.1038/s41598-019-44068-8
23	Spandre P et al. 2019b: Winter tourism under climate change in the Pyrenees and the French Alps: relevance of
24	snowmaking as a technical adaptation. <i>The Cryosphere</i> . 13 (4), 1325-1347. doi:10.5194/tc-13-1325-2019.
25	Spencer, T., M. Schuerch, R. J. Nicholls and J. H. G. a. Planetary, 2016: Global coastal wetland change under sea-level
26	rise and related stresses: The DIVA Wetland Change Model. <i>Marine Policy</i> , 139 , 15-30,
27	doi:papers3://publication/doi/10.1016/j.gloplacha.2015.12.018.
28	Spijkers, J. and W. J. Boonstra, 2017: Environmental change and social conflict: the northeast Atlantic mackerel
29	dispute. Regional Environmental Change, 17 (6), 1835-1851, doi:10.1007/s10113-017-1150-4.
30	Spinoni, J. et al., 2020: Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. Journal of
31	<i>Climate</i> , 33 (9), 3635-3661, doi:10.1175/JCLI-D-19-0084.1.
32	Spinoni, J., J. Vogt and P. Barbosa, 2015: European degree-day climatologies and trends for the period 1951–2011.
33	International Journal of Climatology, 35 (1), 25-36, doi:10.1002/joc.3959.
34	Spinoni, J. et al., 2018: Changes of heating and cooling degree-days in Europe from 1981 to 2100. International
35	Journal of Climatology, 38 , E191-E208, doi:10.1002/joc.5362.
36	Spivak, A. C. et al., 2019: Global-change controls on soil-carbon accumulation and loss in coastal vegetated
37	ecosystems. <i>Nature Geoscience</i> , 12 (9), 685-692, doi:10.1038/s41561-019-0435-2.
38	Spooner, F. E., R. G. Pearson and R. Freeman, 2018: Rapid warming is associated with population decline among
39	terrestrial birds and mammals globally. <i>Global Change Biology</i> , 24 (10), 4521-4531.
40	springmann, M. et al., 2010: Global and regional health effects of future food production under climate change: a modelling study. Langest 397 (10021), 1027, 1046, doi:10.1016/S0140.6726(15)01156.2
41	modelling study. Lancel, 38 7 (10031), 1937-1946, doi:10.1016/S0140-0750(15)01150-5.
42	elevated temperatures and CO2 PLoS One 13 (1) e0101047
43	doi:naners3://nublication/doi/10.1371/journal.none.0191947
45	Sswat M et al 2018b: Food web changes under ocean acidification promote herring larvae survival <i>Nature Ecology</i>
46	& Evolution 2 (5) 836-840 doi:papers3://publication/doi/10 1038/s41559-018-0514-6
47	Stahl, K. et al., 2016: Impacts of European drought events: insights from an international database of text-based reports.
48	<i>Natural Hazards and Earth System Sciences</i> , 16 (3), 801-819, doi:10.5194/nhess-16-801-2016.
49	Stanev, E. V. et al., 2018: Understanding the Dynamics of the Oxic-Anoxic Interface in the Black Sea. <i>Geophysical</i>
50	Research Letters, 45 (2), 864871, doi:10.1002/2017GL076206.
51	Steef, 2019: Monitoring the performance of the Common Fisheries Policy. Publications Office of the European Union,
52	Luxembourg.
53	Stefanescu, C., J. Carnicer and J. Peñuelas, 2011: Determinants of species richness in generalist and specialist
54	Mediterranean butterflies: the negative synergistic forces of climate and habitat change. Ecography, 34 (3), 353-
55	363, doi:10.1111/j.1600-0587.2010.06264.x.
56	Steiger, R. and B. Abegg, 2014: Klimawandel und Skigebiete im Ostalpenraum. In: 18. DGT Jahrestagung im Rahmen
57	des "Kongress Tourismus und Sport", Köln, Germany, 13-15 November 2014.
58	Steiger, R. and B. Abegg, 2018: Ski Areas' Competitiveness in the Light of Climate Change: Comparative Analysis in
59	the Eastern Alps. In: Tourism in Transitions: Recovering Decline, Managing Change. Springer International
60	Publishing, Cham, 18/-199. Staigen D. E. Desch, C. Termeiner and I. Welds, 2020. The immediate shares a descent of shires the state of the
01	Singer, K., E. Posch, G. Lappenner and J. walde, 2020: The impact of climate change on demand of ski tourism - a
63	doi:https://doi.org/10.1016/i.ecolecon.2019.106589
05	doi. <u>maps//doi.org/10.1010/j.0000000.2017.100507</u> .

- Steiger, R. and D. Scott, 2020: Ski tourism in a warmer world: Increased adaptation and regional economic impacts in Austria. Tourism Management, 77, 104032, doi:https://doi.org/10.1016/j.tourman.2019.104032. Steiger, R. et al., 2019: A critical review of climate change risk for ski tourism. Current Issues in Tourism, 22 (11),
- 1343-1379, doi:10.1080/13683500.2017.1410110. Steinbauer, M. J. et al., 2018: Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 556 (7700), 231-234, doi:10.1038/s41586-018-0005-6.
- Stephens, P. A. et al., 2016: Consistent response of bird populations to climate change on two continents. Science, 352 (6281), 84, doi:10.1126/science.aac4858.
- Stergiou, K. I. et al., 2016: Trends in productivity and biomass yields in the Mediterranean Sea Large Marine Ecosystem during climate change. Environmental Development, 17, 57-74, doi:10.1016/j.envdev.2015.09.001.
- Stiasny, M. H. et al., 2018: Effects of parental acclimation and energy limitation in response to high CO2 exposure in Atlantic cod. Scientific Reports, 8 (1), 8348, doi:10.1038/s41598-018-26711-y.
- Stiasny, M. H. et al., 2019: Divergent responses of Atlantic cod to ocean acidification and food limitation. Global Change Biology, 25 (3), 839-849, doi:10.1111/gcb.14554.
- Stive, M. J. F. et al., 2013: A New Alternative to Saving Our Beaches from Sea-Level Rise: The Sand Engine. Journal of Coastal Research, 1001-1008, doi:10.2112/JCOASTRES-D-13-00070.1.
- Stocker, B. D. et al., 2018: Quantifying soil moisture impacts on light use efficiency across biomes. New Phytologist, 218 (4), 1430-1449, doi:10.1111/nph.15123.
- Stoffel, M., D. Tiranti and C. Huggel, 2014: Climate change impacts on mass movements Case studies from the European Alps. Science of The Total Environment, 493, 1255-1266, doi:https://doi.org/10.1016/j.scitotenv.2014.02.102.
- Stoffel, M., B. Wyżga and R. A. Marston, 2016: Floods in mountain environments: A synthesis. Geomorphology, 272, 1-9, doi:https://doi.org/10.1016/j.geomorph.2016.07.008.
- Stojanov, R. et al., 2015: Adaptation to the Impacts of Climate Extremes in Central Europe: A Case Study in a Rural Area in the Czech Republic. Sustainability, 7 (9), doi:10.3390/su70912758.
- Street, R. B., 2016: Towards a leading role on climate services in Europe: a research and innovation roadmap. Climate Services, 1, 2-5. 27
- Streletskiy, D. A. et al., 2019: Assessment of climate change impacts on buildings, structures and infrastructure in the 28 Russian regions on permafrost. Environmental Research Letters, 14 (2), 025003, doi:10.1088/1748-9326/aaf5e6. 29
- Stripple, J. and H. Bulkeley, 2019: Towards a material politics of socio-technical transitions: Navigating 30 31 decarbonisation pathways in Malmö. Political Geography, 72, 52-63, 32
 - doi:https://doi.org/10.1016/j.polgeo.2019.04.001.
- 33 Suggitt, A. J. et al., 2018: Extinction risk from climate change is reduced by microclimatic buffering. Nature Climate 34 Change, 8 (8), 713--717, doi:10.1038/s41558-018-0231-9.
- Surminski, S., 2018: Fit for Purpose and Fit for the Future? An Evaluation of the UK's New Flood Reinsurance Pool. 35 Risk Management and Insurance Review, 21 (1), 33-72, doi:10.1111/rmir.12093. 36
- Surminski, S. et al., 2015: Reflections on the current debate on how to link flood insurance and disaster risk reduction 37 in the European Union. Natural Hazards, 79 (3), 1451-1479, doi:10.1007/s11069-015-1832-5. 38
- Suvkens, C. et al., 2016: Dealing with flood damages: will prevention, mitigation, and ex post compensation provide for 39 a resilient triangle? Ecology and Society, 21 (4), doi:10.5751/ES-08592-210401. 40
- Swinburn, B. et al., 2019: The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet 41 Commission report. Lancet, 393 (10173), 791-846, doi:10.1016/S0140-6736(18)32822-8. 42
- Swinnen, J. et al., 2017: Production potential in the "bread baskets" of Eastern Europe and Central Asia. Global Food 43 Security, 14, 38-53, doi: https://doi.org/10.1016/j.gfs.2017.03.005. 44
- Szewczyk, W., J. C. Ciscar, I. Mongelli and A. Soria, 2018: JRC PESETA III project: Economic integration and 45 spillover analysis, EUR 29456 EN. Publications Office of the European Union, Luxembourg. 46
- 47 Szewczyk, W. et al., 2020: Economic analysis of selected climate impacts: JRC PESETA IV project : Task 14. Publications Office of the European Union, Luxembourg. 48
- Takakura, J. y. et al., 2017: Cost of preventing workplace heat-related illness through worker breaks and the benefit of 49 climate-change mitigation. Environmental Research Letters, 12 (6), 064010, doi:10.1088/1748-9326/aa72cc. 50
- Tapia, C. et al., 2017: Profiling urban vulnerabilities to climate change: An indicator-based vulnerability assessment for 51 European cities. Ecological Indicators, 78, 142-155, doi:10.1016/j.ecolind.2017.02.040. 52
- Taucher, J. et al., 2020: Changing carbon-to-nitrogen ratios of organic-matter export under ocean acidification. Nature 53 Climate Change, 2, 1-6, doi:papers3://publication/doi/10.1038/s41558-020-00915-5. 54
- Taylor, A. L., S. Dessai and W. Bruine de Bruin, 2014: Public perception of climate risk and adaptation in the UK: A 55 review of the literature. Climate Risk Management, 4-5, 1-16, doi:https://doi.org/10.1016/j.crm.2014.09.001. 56
- TCFD, 2017: Implementing the Recommendations of the Task Force on Climate related Financial Disclosures. 57 [Available at: https://www.fsb-tcfd.org/wp-content/uploads/2017/12/FINAL-TCFD-Annex-Amended-58 121517.pdf]. 59
- Teatini, P. et al., 2011a: A new hydrogeologic model to predict anthropogenic uplift of Venice. Water Resources 60 Research, 47 (12). 61
- Teatini, P. et al., 2010: Anthropogenic Venice uplift by seawater pumping into a heterogeneous aquifer system. Water 62 Resources Research, 46 (11). 63

1	Teatini P et al. 2011b: Land unlift due to subsurface fluid injection <i>Journal of Geodynamics</i> 51 (1) 1-16
2	TEG, 2019: <i>Taxonomy. Technical Report.</i> EU Technical Expert Group on Sustainable Finance, Brussels [Available at:
3	https://ec.europa.eu/info/sites/info/files/business_economy_euro/banking_and_finance/documents/190618-
4	sustainable-finance-teg-report-taxonomy_en.pdf].
5	I eixeira, C. M. et al., 2016: Environmental influence on commercial fishery landings of small pelagic fish in Portugal.
6	Regional Environmental Change, 16 (3), 709-716, doi:10.1007/S10113-015-0786-1.
7	Associate the comparise imports of climate change in a Mediterranean context. Energy Economics 95 , 104520
8	Assessing the economic impacts of climate change in a Mediterranean context. <i>Energy Economics</i> , 65 , 104559, doi:https://doi.org/10.1016/i.eneco.2010.104530
9	Termaat T et al. 2019: Distribution trends of European dragonflies under climate change. <i>Diversity and Distributions</i>
10	Termeer C. R. Biesbroek and M. van den Brink. 2012: Institutions for Adaptation to Climate Change: Comparing
12	National Adaptation Strategies in Europe <i>European Political Science</i> 11 (1) 41-53 doi:10.1057/eps.2011.7
13	Termeer, C. J. A. M. and A. Dewulf. 2018: A small wins framework to overcome the evaluation paradox of governing
14	wicked problems. <i>Policy and Society</i> , 1-17, doi:10.1080/14494035.2018.1497933.
15	Termeer, C. J. A. M., A. Dewulf and G. R. Biesbroek, 2017: Transformational change: governance interventions for
16	climate change adaptation from a continuous change perspective. Journal of Environmental Planning and
17	Management, 60 (4), 558-576, doi:10.1080/09640568.2016.1168288.
18	Terorotua, H., V. K. E. Duvat, A. Maspataud and J. Ouriqua, 2020: Assessing Perception of Climate Change by
19	Representatives of Public Authorities and Designing Coastal Climate Services: Lessons Learnt From French
20	Polynesia. Frontiers in Marine Science, 7, doi:10.3389/fmars.2020.00160.
21	Teuling, A. J. et al., 2017: Observational evidence for cloud cover enhancement over western European forests. <i>Nature</i>
22	<i>Communications</i> , 8 , 14065, doi:10.1038/ncomms14065
23	https://www.nature.com/articles/ncomms14065#supplementary-information.
24	I haler, 1. et al., 2019: Drivers and barriers of adaptation initiatives - How societal transformation affects natural nazard
25	doi:10.1016/j.coitoteny 2018.08.206
20	Thaler T and S Fuchs 2020: Financial recovery schemes in Austria: how planned relocation is used as an answer to
28	future flood events. Environmental Hazards 19 (3) 268-284 doi:10.1080/17477891.2019.1665982
29	The Ignition, P., 2020: Nature-based solutions to the climate emergency: The benefits to business and society.
30	Thieblemont, R. et al., 2019: Likely and High-End Impacts of Regional Sea-Level Rise on the Shoreline Change of
31	European Sandy Coasts Under a High Greenhouse Gas Emissions Scenario. Water, 11 (12),
32	doi:10.3390/w11122607.
33	Thieken, A. H. et al., 2016: Estimating changes in flood risks and benefits of non-structural adaptation strategies - a
34	case study from Tyrol, Austria. Mitigation and Adaptation Strategies for Global Change, 21 (3), 343-376,
35	doi:10.1007/s11027-014-9602-3.
36	Thomsen, J. et al., 2013: Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory
37	and field experiments. <i>Global Change Biology</i> , 19 (4), 10171027, doi:10.1111/gcb.12109.
38	Thomsen, J. et al., 2017: Naturally acidited habitat selects for ocean acidification \textendash tolerant mussels. Science
39	Advances, 3 (4), e1602411, doi:10.1126/sciadv.1602411.
40	issue in Europe. Energy and Buildings 106 21 20 depthtrau//doi.org/10.1016/j.enbuild.2010.05.014
41	Tian H et al. 2016: The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Natura 531
43	(7593) 225-228 doi:10.1038/nature16946
44	Tian, O., G. Huang, K. M. Hu and D. Nivogi, 2019: Observed and global climate model based changes in wind power
45	potential over the Northern Hemisphere during 1979-2016. Energy, 167, 1224-1235,
46	doi:10.1016/j.energy.2018.11.027.
47	Tian, Z., S. Zhang, J. Deng and B. Dorota Hrynyszyn, 2020: Evaluation on Overheating Risk of a Typical Norwegian
48	Residential Building under Future Extreme Weather Conditions. Energies, 13 (3), 658.
49	Tiggeloven, T. et al., 2020: Global-scale benefit-cost analysis of coastal flood adaptation to different flood risk drivers
50	using structural measures. Natural Hazards and Earth System Sciences, 20 (4), 1025-1044,
51	doi: <u>https://doi.org/10.5194/nhess-20-1025-2020</u> .
52	Tillson, AA., T. Oreszczyn and J. Palmer, 2013: Assessing impacts of summertime overheating: some adaptation
53	strategies. Building Kesearch & Information, 41 (6), 652-661, doi:10.1080/09613218.2013.808864.
54 55	1 opin, i. et al., 2018: vulnerabilities and resilience of European power generation to 1.5 °C, 2 °C and 3 °C warming.
33 56	Environmental Research Letters, 15 (4), 044024-044024, doi:10.1086/1/46-9520/aa0211. Tobin L et al. 2016: Climate change impacts on the power generation potential of a European mid contumy wind former
57	scenario Environmental Research Letters 11 (3) doi:10.1088/1748-0326/11/3/034013
58	Todd, N. and AJ. Valleron, 2015: Space–Time Covariation of Mortality with Temperature: A Systematic Study of
59	Deaths in France, 1968–2009. Environmental Health Perspectives. 123 (7), 659-664. doi:10.1289/ehp.1307771.
60	Toimil, A., P. Diaz-Simal, I. Losada and P. Camus, 2018: Estimating the risk of loss of beach recreation value under
61	climate change. Tourism Management, 68, 387-400, doi:10.1016/j.tourman.2018.03.024.

1	Tokarevich, N. et al., 2017: Impact of air temperature variation on the ixodid ticks habitat and tick-borne encephalitis
2 3	incidence in the Russian Arctic: the case of the Komi Republic. <i>International Journal of Circumpolar Health</i> , 76 , doi:10.1080/22423982.2017.1298882.
4	Tol, R. S. J. et al., 2016: Comment on 'The Global Impacts of Extreme Sea-Level Rise: A Comprehensive Economic
5	Assessment'. Environmental and Resource Economics, 64 (2), 341-344, doi:10.1007/s10640-015-9993-y.
6	Topilin, A. V., 2016: Migration and the general labor market of the EAEU: challenges and ways of integration.
7	Migration and socio-economic development, 1 (1), 39-62.
8	Toreti, A. et al., 2019a: The Exceptional 2018 European Water Seesaw Calls for Action on Adaptation. Earth's Future,
9	7 (6), 652-663, doi:10.1029/2019EF001170.
10	Toreti, A. et al., 2019b: Using reanalysis in crop monitoring and forecasting systems. <i>Agricultural Systems</i> , 168, 144-
11	153, doi:10.1016/j.agsy.2018.07.001.
12	Torralba, M. et al., 2018: A social-ecological analysis of ecosystem services supply and trade-offs in European wood-
13	pastures. Science Advances, 4 (5), eaar2176, doi:10.1126/sciadv.aar2176.
14	Tramblay, Y. et al., 2020: Challenges for drought assessment in the Mediterranean region under future climate
15	scenarios. Earth-Science Reviews, 210, 103348, doi:10.1016/j.earscirev.2020.103348.
16	Trawöger, L., 2014: Convinced, ambivalent or annoyed: Tyrolean ski tourism stakeholders and their perceptions of
17	climate change. Tourism Management, 40, 338-351.
18	Tryland, M. et al., 2019: Infectious Disease Outbreak Associated With Supplementary Feeding of Semi-domesticated
19	Reindeer. Frontiers in Veterinary Science, 6, doi:10.3389/fvets.2019.00126.
20	Turco, M. et al., 2017: On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. <i>Scientific</i>
21	Reports, 7 (1), 81, doi:10.1038/s41598-017-00116-9.
22	Turunen, M. T. et al., 2016: Coping with difficult weather and snow conditions: Reindeer herders' views on climate
23	change impacts and coping strategies. Climate Risk Management, 11, 15-36, doi:10.1016/j.crm.2016.01.002.
24	Tyler, N. J. C., 2010: Climate, snow, ice, crashes, and declines in populations of reindeer and caribou (Rangifer
25	tarandus L.). <i>Ecological Monographs</i> , 80 (2), 197-219, doi:10.1890/09-1070.1.
26	Tyler, N. J. C. et al., 2007: Saami reindeer pastoralism under climate change: Applying a generalized framework for
27	vulnerability studies to a sub-arctic social-ecological system. <i>Global Environmental Change</i> , 17 (2), 191-206,
28	doi:10.1016/j.gloenvcha.2006.06.001.
29	Uboni, A. et al., 2016: Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer. <i>PLoS</i>
30	<i>One</i> , 11 (6), e0158359, doi:10.1371/journal.pone.0158359.
31	Uggla, Y. and R. Lidskog, 2016: Climate risks and forest practices: forest owners' acceptance of advice concerning
32	climate change. Scandinavian Journal of Forest Research, 31 (6), 618-625, doi:10.1080/0282/581.2015.1134648.
33	Umgiesser, G., 1999: Valutazione degli effetti degli interventi morbidi e diffusi sulla riduzione delle punte di marea a
34	venezia. Chioggia e Burano, Atti Istituto veneto ai Scienze, Lettere ea Arti, 157, 231-86.
35	Umglesser, G., 2004: Effetti idrodinamici prodotti da opere fisse alle bocche di porto della Laguna di Venezia. Parte II:
36	Riduzione delle punte di marea ed effetti sui ricambio farico. Alli dell'Istituto veneto di SS. LL. AA, 102 (2), 555-
3/	5/0. Umgiogger G 2020: The impost of energing the mobile herriers in Venice (MOSE) under elimete change. <i>Journal for</i>
38 20	Nature Concernation 54, 125782, doi:https://doi.org/10.1016/j.jpp.2010.125782
39 40	IN/DESA 2018: World Urbanization Prospects: The 2018 Revision Online Edition United Nations - Department of
40	Economic and Social Affairs Population Division
41	LINCTAD 2020: Merchandise trade matrix – imports of geographical development-status and economic groups in
43	thousands United States dollars annual
44	UNEP/UNECE 2016: GEO-6 Assessment for the pan-European region (rev 1) [Programme U N E (ed)] Nairobi
45	Kenva.
46	University of Notre, D., 2020: Notre Dame Global Adaptation Index: Country Index. Notre Dame Global Adaptation
47	Initiative.
48	Valade, A., V. Bellassen, C. Magand and S. Luyssaert, 2017: Sustaining the sequestration efficiency of the European
49	forest sector. Forest Ecology and Management, 405, 44-55, doi: https://doi.org/10.1016/j.foreco.2017.09.009.
50	Van Alphen, J., 2016: The Delta Programme and updated flood risk management policies in the Netherlands. Journal of
51	Flood Risk Management, 9 (4), 310-319, doi:10.1111/jfr3.12183.
52	van der Kooij, J., G. H. Engelhard and D. A. Righton, 2016: Climate change and squid range expansion in the North
53	Sea. Journal of Biogeography, 43 (11), 2285-2298, doi:10.1111/jbi.12847.
54	van der Plas, F. et al., 2016: Biotic homogenization can decrease landscape-scale forest multifunctionality. <i>Proceedings</i>
55	of the National Academy of Sciences, 113 (13), 3557, doi:10.1073/pnas.1517903113.
56	van der Spek, A. J. F., 2018: The development of the tidal basins in the Dutch Wadden Sea until 2100: the impact of
57	accelerated sea-level rise and subsidence on their sediment budget - a synthesis. Netherlands Journal of
58	Geosciences, 97 (3), 71-78, doi:papers3://publication/doi/10.1017/njg.2018.10.
59	van der Velde, M. et al., 2018: In-season performance of European Union wheat forecasts during extreme impacts.
60	Scientific Reports, 8, doi:10.1038/s41598-018-33688-1.
61	van Ginkel, K. C. H. et al., 2020: Climate change induced socio-economic tipping points: review and stakeholder
62	consultation for policy relevant research. Environmental Research Letters, 15 (2), 023001, doi:10.1088/1/48-
63	<i>9320/a00393</i> .

1	van Klink, R. et al., 2020: Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances.
2	Science, 368 (6489), 417-+, doi:10.1126/science.aax9931.
3	van Leeuwen, C. and P. Darriet, 2016: The Impact of Climate Change on Viticulture and Wine Quality. Journal of Wine
4	<i>Economics</i> , 11 (1), 150-167, doi:10.1017/jwe.2015.21.
5	van Loenhout, J. A. F. and D. Guha-Sapir, 2016: How resilient is the general population to heatwaves? A knowledge
6	survey from the ENHANCE project in Brussels and Amsterdam. BMC research notes, 9 (1), 499.
7	van Loenhout, J. A. F., J. M. Rodriguez-Llanes and D. Guha-Sapir, 2016: Stakeholders' Perception on National
8	Heatwave Plans and Their Local Implementation in Belgium and The Netherlands. <i>International Journal of</i>
9	Environmental Research and Public Health, 13 (11), 1120, doi:10.3390/ijerph13111120.
10	van Oldenborgh, G. J. et al., 2016: Rapid attribution of the May/June 2016 flood-inducing precipitation in France and
11	Ven Dessel S. E. Meggetti and P. Mendelsehn 2017: A Discuss., 2010, 1-25, doi:10.5194/ness-2010-508.
12	Furges A grigulture Environmental and Resource Economics 67 (4), 725 760, doi:10.1007/s10640.016.0001
15	European Agriculture. Environmental and Resource Economics, 67 (4), 725-700, doi:10.1007/510040-010-0001-
14	y. van Slobbe E et al. 2016: The future of the Rhine: stranded shins and no more salmon? <i>Regional Environmental</i>
16	<i>Change</i> 16 (1) 31-41 doi:10.1007/s10113-014-0683-z
17	van Strien A et al 2019. Over a century of data reveal more than 80% decline in butterflies in the Netherlands
18	Biological Conservation, 234, 116-122, doi:10.1016/i.biocon.2019.03.023.
19	van Teeffelen, A. et al., 2015: How climate proof is the European Union's biodiversity policy? <i>Regional Environmental</i>
20	Change, 15 (6), 997-1010, doi:10.1007/s10113-014-0647-3.
21	van Valkengoed, A. M. and L. Steg, 2019: Meta-analyses of factors motivating climate change adaptation behaviour.
22	<i>Nature Climate Change</i> , 9 (2), 158-163, doi:10.1038/s41558-018-0371-y.
23	van Vliet, M. et al., 2015: European scale climate information services for water use sectors. Journal of Hydrology,
24	528 , 503-513, doi:10.1016/j.jhydrol.2015.06.060.
25	van Vliet, M. et al., 2016a: Multi-model assessment of global hydropower and cooling water discharge potential under
26	climate change. Global Environmental Change-Human and Policy Dimensions, 40, 156-170,
27	doi:10.1016/j.gloenvcha.2016.07.007.
28	van Vliet, M., D. Wiberg, S. Leduc and K. Riani, 2016b: Power-generation system vulnerability and adaptation to
29	changes in climate and water resources. <i>Nature Climate Change</i> , 6 (4), 3/5-+, doi:10.1038/NCLIMATE2905.
30 21	<i>Environmental Change</i> 23 (2) 450-464, doi:https://doi.org/10.1016/j.gloenycha.2012.11.002
32	van Vliet M T H I Sheffield D Wiberg and F F Wood 2016c: Impacts of recent drought and warm years on water
33	resources and electricity supply worldwide. Environmental Research Letters. 11 (12), 124021, doi:10.1088/1748-
34	9326/11/12/124021.
35	Vandentorren, S. et al., 2006: August 2003 heat wave in France: risk factors for death of elderly people living at home.
36	The European Journal of Public Health, 16 (6), 583-591.
37	Vasilakopoulos, P., D. E. Raitsos, E. Tzanatos and C. D. Maravelias, 2017: Resilience and regime shifts in a marine
38	biodiversity hotspot. Scientific Reports, 7 (1), 13647, doi:10.1038/s41598-017-13852-9.
39	Vaskov, I. M., 2016: Glacial mudflows of Central Caucasus at the beginning of XXI century. In: <i>IV International</i>
40	conference: Mud flows: disasters, risk, forecast, protection, Irkutsk, Russia [V.M., P., M. S.A., A. G.V. and S.
41	A.I. (eds.)], Publishing House of V.B. Sochava Institute of Geography RAS, Siberian Branch, 36-45.
42	Vávra, J. et al., 2018: Food Self-provisioning in Europe: An Exploration of Sociodemographic Factors in Five Regions: $F_{\rm reg} = 18$ if $r_{\rm reg} = 12100$
43	Food Self-provisioning in Europe. <i>Rural Sociology</i> , 83 (2), 431-461, doi:10.1111/ruso.12180.
44	and water resources. Environmental Science & Policy 90 , 183-102
45	doi https://doi org/10.1016/i envsci 2017.12.014
47	Venter Z S N H Krog and D N Barton 2020: Linking green infrastructure to urban heat and human health risk
48	mitigation in Oslo. Norway. Science of The Total Environment, 709 , 136193.
49	doi:https://doi.org/10.1016/j.scitotenv.2019.136193.
50	Vercruysse, J. et al., 2018: Control of helminth ruminant infections by 2030. Parasitology, 145 (13), 1655-1664,
51	doi:10.1017/S003118201700227X.
52	Verhagen, W., A. J. A. van Teeffelen and P. H. Verburg, 2018: Shifting spatial priorities for ecosystem services in
53	Europe following land use change. Ecological Indicators, 89, 397-410,
54	doi: <u>https://doi.org/10.1016/j.ecolind.2018.01.019</u> .
55	Verschuur, J., E. E. Koks and J. W. Hall, 2020: Port disruptions due to natural disasters: Insights into port and logistics
56	resilience. Transportation Research Part D-Transport and Environment, 85 , doi:10.1016/j.trd.2020.102393.
57	verschuuren, J., 2015: Connectivity: is Natura 2000 only an ecological network on paper? In: The Habitats Directive in
58	us EU Environmental Law Context: [Born, C. H., A. Cliquet, H. Schoukens, D. Misonne and G. Van Hoorick
59 60	(cus.)]. Roundage, Adinguon, 203-302. Vila Cabrera A. A. C. Premali and A. S. Jumn. 2010: Defining predictions of nonvestion dealine at species' respectively.
61	Global Change Riology 0(0) doi:10.1111/geb.14597
01	5.55 W Chunge Biology, V (0), WOLLOUTINE 500.17577.

1	Virk, G. et al., 2014: The effectiveness of retrofitted green and cool roofs at reducing overheating in a naturally
2	ventilated office in London: Direct and indirect effects in current and future climates. <i>Indoor and Built</i>
3	<i>Environment</i> , 23 (3), 504-520, doi:10.1177/1420326X14527976.
4	Viscer, H. A. C. Petersen and W. Liotvoet 2014: On the relation between weather-related disaster impacts
7	vissel, i., A. C. i etersen and w. Eigevolt, 2014. On the feation between weather-tenated disaster impacts, unlargebility and alimeter alonge. <i>Climatic Change</i> , 125 (2) 461 477 doi:10.1007/s10524.014.1170 g
2	Vulnerability and climate change. <i>Climatic Change</i> , 125 (5), 461-477, doi:10.1007/s10384-014-1179-2.
6	Vitali, V., U. Buntgen and J. Bauhus, 2018: Seasonality matters—The effects of past and projected seasonal climate
7	change on the growth of native and exotic conifer species in Central Europe. <i>Dendrochronologia</i> , 48, 1-9,
8	doi:10.1016/j.dendro.2018.01.001.
9	Vogel, M. M. et al., 2019: Concurrent 2018 Hot Extremes Across Northern Hemisphere Due to Human-Induced
10	Climate Change. Earth's Future, 7 (7), 692-703, doi:10.1029/2019ef001189.
11	Vors, L. S. and M. S. Bovce, 2009: Global declines of caribou and reindeer: CARIBOU REINDEER DECLINE.
12	Global Change Biology 15 (11) 2626-2633 doi:10 1111/i 1365-2486 2009 01974 x
12	Vos R et al. 2010: Ecological economic sustainability of the Baltic and fisheries under ocean warming and
13	voss, R. et al., 2017. Leological-economic sustainability of the Date Could institutes and to occan waiting and
14	actalization. Journal of Environmental Management, 238, 110-118, doi:10.1016/j.jenvinan.2019.02.103.
15	Vousdoukas, M. I. et al., 2020a: Economic motivation for raising coastal flood defenses in Europe. Nature
16	<i>Communications</i> , 11 (1), 2119, doi:10.1038/s4146/-020-15665-3.
17	Vousdoukas, M. I. et al., 2018a: Climatic and socioeconomic controls of future coastal flood risk in Europe. <i>Nature</i>
18	<i>Climate Change</i> , 8 (9), 776-780, doi:10.1038/s41558-018-0260-4.
19	Vousdoukas, M. I. et al., 2018b: Global probabilistic projections of extreme sea levels show intensification of coastal
20	flood hazard. Nature Communications, 9 (1), 2360, doi:10.1038/s41467-018-04692-w.
21	Vousdoukas, M. I. et al., 2020b: Sandy coastlines under threat of erosion. <i>Nature Climate Change</i> , 10 (3), 260-+,
22	doi:10.1038/s41558-020-0697-0
23	Vulturius G et al. 2018: The relative importance of subjective and structural factors for individual adaptation to
23	climate change by forest owners in Sweden Regional Environmental Change 18 (2) 5111-520
24	dai:10.1007/c10112.017.1218.1
25	uol. 10. 100//S10115-01/-1210-1.
26	wada, 1., 2010: Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects.
27	Surveys in Geophysics, 5 7 (2), 419-451, doi:10.100//s10/12-015-9347-x.
28	wani, M. et al., 2018: Macroalgae may mitigate ocean acidincation effects on mussel calcification by increasing pH
29	and its fluctuations. <i>Limnology and Oceanography</i> , 63 (1), 321, doi:10.1002/lno.10608.
30	Waite, T. et al., 2017: The English national cohort study of flooding and health: cross-sectional analysis of mental
31	health outcomes at year one. BMC public health, 17, doi:10.1186/s12889-016-4000-2.
32	Wakelin, S. L. et al., 2015: Modelling the combined impacts of climate change and direct anthropogenic drivers on the
33	ecosystem of the northwest European continental shelf. <i>Journal of Marine Systems</i> , 152 , 51-63,
34	doi:papers3://publication/doi/10.1016/j.jmarsys.2015.07.006.
35	Walker, G. and K. Burningham, 2011: Flood risk, vulnerability and environmental justice: Evidence and evaluation of
36	inequality in a UK context. Critical Social Policy, 31 (2), 216-240, doi:10.1177/0261018310396149.
37	Wall, M. et al., 2015: pH up-regulation as a potential mechanism for the cold-water coral Lophelia pertusa to sustain
38	growth in aragonite undersaturated conditions. <i>Biogeosciences</i> , 12 (23), 68696880, doi:10.5194/bg-12-6869-
39	2015.
40	Walsh, C., 2018: Metageographies of coastal management: Negotiating spaces of nature and culture at the Wadden Sea.
41	<i>Area</i> 50 (2) 177-185 doi:10.1111/area 12404
12	Wamsler, C. 2016: From Rick Governance to City-Citizen Collaboration: Capitalizing on individual adaptation to
42	climate change Environmental Policy and Governance 26 (3) 184-204 doi:10.1002/eet 1707
43	Wanders N et al. 2010: High Desclution Global Water Temperature Modeling. Water Descented 55 (4)
44	valuers, N. et al., 2019. High-Resolution Olobar water remperature modering. <i>Water Resources Research</i> , 55 (4),
45	2/00-2/76, doi:10.1029/2016 W K025250.
46	wang, S., 2020. Recent global decline of CO ₂ lertifization effects on vegetation photosynthesis. <i>Science</i> , accepted.
47	Wang, Z. B., E. P. L. Elias, A. J. F. van der Spek and Q. J. Lodder, 2018: Sediment budget and morphological
48	development of the Dutch Wadden Sea: impact of accelerated sea-level rise and subsidence until 2100.
49	Netherlands Journal of Geosciences, 97 (3), 183-214, doi:papers3://publication/doi/10.1017/njg.2018.8.
50	Ward, K., S. Lauf, B. Kleinschmit and W. Endlicher, 2016: Heat waves and urban heat islands in Europe: A review of
51	relevant drivers. Science of The Total Environment, 569, 527-539, doi:10.1016/j.scitotenv.2016.06.119.
52	Watts, N. et al., 2018: The 2018 report of the Lancet Countdown on health and climate change: shaping the health of
53	nations for centuries to come. <i>Lancet</i> , 392 (10163), 2479-2514, doi:10.1016/S0140-6736(18)32594-7.
54	Webber, H. et al., 2018: Diverging importance of drought stress for maize and winter wheat in Europe. Nature
55	Communications, 9 (1), 4249, doi:10.1038/s41467-018-06525-2.
56	Webber, H. et al., 2016: Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe.
57	Environmental Research Letters, 11 (7). 074007. doi:10.1088/1748-9326/11/7/074007.
58	Webber, H. et al., 2020: No perfect storm for crop vield failure in Germany <i>Environmental Research Letters</i>
59	Weber, J., F. Gotzens and D. Witthaut. 2018a. Impact of strong climate change on the statistics of wind power
60	generation in Europe Energy Procedia 153 22-28 doi:https://doi.org/10.1016/i.egypro.2018.10.004
61	Weber J et al 2018b: Impact of climate change on backun energy and storage needs in wind-dominated power
62	systems in Europe PLoS One 13 (8) doi:10.1371/journal.none.0201457
04	$\mathcal{L}_{\mathcal{L}}$

Weinhofer, G. and T. Busch, 2013: Corporate Strategies for Managing Climate Risks. Business Strategy and the 1 Environment, 22 (2), 121-144, doi:10.1002/bse.1744. 2 Wenz, L. and A. Levermann, 2016a: Enhanced economic connectivity to foster heat stress-related losses. Science 3 Advances, 2 (6), doi:10.1126/sciadv.1501026. 4 Wenz, L. and A. Levermann, 2016b: Enhanced economic connectivity to foster heat stress-related losses. Science 5 Advances, 2 (6), e1501026, doi:10.1126/sciadv.1501026. 6 Wenz, L., A. Levermann and M. Auffhammer, 2017: North-south polarization of European electricity consumption 7 under future warming. Proceedings of the National Academy of Sciences of the United States of America, 114 8 (38), E7910-E7918, doi:10.1073/pnas.1704339114. 9 Wescott, G., 2015: Ocean Governance and Risk Management. In: Risk Governance. Springer, Dordrecht, Dordrecht, 10 48, 395-412. 11 WHO, 2018: European health report 2018: More than numbers - evidence for all. WHO Regional Office for Europe, 12 Copenhagen, Denmark. 13 Wiens, J. J., 2016: Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species. 14 PLOS Biology, 14 (12), e2001104, doi:10.1371/journal.pbio.2001104. 15 Wihlborg, M., J. Sörensen and J. Alkan Olsson, 2019: Assessment of barriers and drivers for implementation of blue-16 green solutions in Swedish municipalities. Journal of Environmental Management, 233, 706-718. 17 18 Wild, M. et al., 2015: Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Solar Energy, 116, 12-24, doi:10.1016/j.solener.2015.03.039. 19 Willett, W. et al., 2019: Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable 20 food systems. Lancet, 393 (10170), 447-492, doi:10.1016/S0140-6736(18)31788-4. 21 Williams, K. et al., 2013: Retrofitting England's suburbs to adapt to climate change. Building Research & Information, 22 **41** (5), 517-531, doi:10.1080/09613218.2013.808893. 23 Williams, P. D., 2016: Transatlantic flight times and climate change. Environmental Research Letters, 11 (2), 24 doi:10.1088/1748-9326/11/2/024008. 25 Williams, P. D. and M. M. Joshi, 2013: Intensification of winter transatlantic aviation turbulence in response to climate 26 change. Nature Climate Change, 3 (7), 644-648, doi:10.1038/nclimate1866. 27 Williges, K., R. Mechler, P. Bowyer and J. Balkovic, 2017: Towards an assessment of adaptive capacity of the 28 European agricultural sector to droughts. *Climate Services*, 7, 47-63, doi:10.1016/j.cliser.2016.10.003. 29 Willner, S. N., C. Otto and A. Levermann, 2018: Global economic response to river floods. Nature Climate Change, 8 30 (7), 594-598, doi:10.1038/s41558-018-0173-2. 31 Wilson, R. J., D. GutiÉRrez, J. GutiÉRrez and V. J. Monserrat, 2007: An elevational shift in butterfly species richness 32 33 and composition accompanying recent climate change. Global Change Biology, 13 (9), 1873-1887, 34 doi:10.1111/j.1365-2486.2007.01418.x. Wilson, R. S., A. Herziger, M. Hamilton and J. S. Brooks, 2020: From incremental to transformative adaptation in 35 individual responses to climate-exacerbated hazards. Nature Climate Change, 10 (3), 200-208, 36 doi:10.1038/s41558-020-0691-6. 37 Wimmer, F. et al., 2014: Modelling the effects of cross-sectoral water allocation schemes in Europe. Climatic Change, 38 128 (3-4), 229-244, doi:10.1007/s10584-014-1161-9. 39 Winsemius, H. C. et al., 2018: Disaster risk, climate change, and poverty: assessing the global exposure of poor people 40 to floods and droughts. Environment and Development Economics, 23 (3), 328-348, 41 doi:10.1017/S1355770X17000444. 42 Wiréhn, L., 2018: Nordic agriculture under climate change: A systematic review of challenges, opportunities and 43 adaptation strategies for crop production. Land Use Policy, 77, 63-74, doi:10.1016/j.landusepol.2018.04.059. 44 Wohland, J., M. Reyers, J. Weber and D. Witthaut, 2017: More homogeneous wind conditions under strong climate 45 change decrease the potential for inter-state balancing of electricity in Europe. Earth System Dynamics, 8 (4), 46 47 1047-1060, doi:10.5194/esd-8-1047-2017. Wolf, T. et al., 2014: Protecting health from climate change in the WHO European Region. International journal of 48 environmental research and public health, 11 (6), 6265-6280, doi:10.3390/ijerph110606265. 49 Woolway, R. I. et al., 2017: Warming of Central European lakes and their response to the 1980s climate regime shift. 50 Climatic Change, 142 (3), 505-520, doi:10.1007/s10584-017-1966-4. 51 WorldBank, 2020: World Development Indicators. 52 Wouter Botzen, W. J. et al., 2019: Integrated Disaster Risk Management and Adaptation. In: Loss and Damage from 53 Climate Change: Concepts, Methods and Policy Options [Mechler, R., L. M. Bouwer, T. Schinko, S. Surminski 54 and J. Linnerooth-Bayer (eds.)]. Springer International Publishing, Cham, 287-315. 55 Wu, M. et al., 2015a: Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography: 56 A comparison of two fire-vegetation models. Journal of Geophysical Research: Biogeosciences, 120 (11), 2256-57 2272, doi:10.1002/2015JG003036. 58 Wu, M. et al., 2015b: Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography: 59 A comparison of two fire-vegetation models. Journal of Geophysical Research: Biogeosciences, 120 (11), 2256-60 2272, doi:10.1002/2015JG003036. 61

1	Wyżga, B. et al., 2018: Comprehensive approach to the reduction of river flood risk: Case study of the Upper Vistula
2 3	Basin. Science of The Total Environment, 631-632 , 1251-1267, doi:https://doi.org/10.1016/j.scitoteny.2018.03.015.
4	Xu, C. et al., 2019: Increasing impacts of extreme droughts on vegetation productivity under climate change. <i>Nature</i>
5	<i>Climate Change</i> , 9 (12), 948-953, doi:10.1038/s41558-019-0630-6.
6	Yakubovich, A. N. and I. A. Yakubovich, 2018: Analysis of the Multidimensional Impact of Climate Change on the
7 8	Operation Safety of the Road Network of the Permafrost Zone of Russia. <i>Intelligence. Innovations. Investments</i> , 3 , 77-83
9	Yates, K. L., A. Pavo Pavo and D. S. Schoeman, 2013: International, regional and national commitments meet local
10	implementation: A case study of marine conservation in Northern Ireland. Marine Policy, 38, 140-150,
11	doi:papers3://publication/doi/10.1016/j.marpol.2012.05.030.
12	Yazar, M. et al., 2019: From urban sustainability transformations to green gentrification: urban renewal in
13	Gaziosmanpașa, Istanbul. Climatic Change, doi:10.1007/s10584-019-02509-3.
14	Yigini, Y. and P. Panagos, 2016: Assessment of soil organic carbon stocks under future climate and land cover changes
15	in Europe. <i>Science of The Total Environment</i> , 557-558 , 838-850, doi:10.1016/j.scitotenv.2016.03.085.
16	Yokohata, T. et al., 2019: Visualizing the Interconnections Among Climate Risks. <i>Earths Future</i> , 7 (2), 85-100,
17	doi:10.1029/2018ef000945.
18	Forestry Scientific Panerts 9 (1) 345 doi:10.1038/s/1508.017.18778 w
20	Yuan W et al. 2019: Increased atmospheric vanor pressure deficit reduces global vegetation growth Science
20	Advances, 5 (8), 1-13, doi:10.1126/sciady.aax1396.
22	Yun, J. et al., 2016: Association between the ambient temperature and the occurrence of human Salmonella and
23	Campylobacter infections. Scientific Reports, 6, doi:10.1038/srep28442.
24	Zakharov, A. I. and R. B. Sharipova, 2017a: Agro climate potential and basic problems of influence of climate changes
25	on
26	agricultural crop production in Ulyanovsk region. Вестник Ульяновской государственной сельскохозяйственной
27	академии, 1 (37), 25-30, doi:10.18286/1816-4501-2017-1-25-30.
28	Zakharov, A. I. and R. B. Sharipova, 201/b: Agro climate potential and basic problems of influence of climate changes
29	011 ogricultural gron production in Ulyonovsk ragion <i>Bacmuur Vzi guogeroù zoevelgnemaguuoù egzi erovozgùemaguuoù</i>
30	agricultural crop production in Oryanovsk region. <i>Becmauk 9.163406ckou 20cyoupcmberhou centeckoxossucmberhou</i> arademmu 1 (37), 25-30, doi:10.18286/1816-4501-2017-1-25-30
32	Zanchettin D et al. 2020: Review article: Sea-level rise in Venice: historic and future trends. Nat. Hazards Earth Syst
33	Sci., submitted.
34	Zappa, W., M. Junginger and M. van den Broek, 2019: Is a 100% renewable European power system feasible by 2050?
35	Applied Energy, 233-234, 1027-1050, doi: https://doi.org/10.1016/j.apenergy.2018.08.109.
36	Zellweger, F. et al., 2020: Forest microclimate dynamics drive plant responses to warming. Science, 368 (6492), 772,
37	doi:10.1126/science.aba6880.
38	Zhang, Y. et al., 2020: Large and projected strengthening moisture limitation on end-of-season photosynthesis.
39	Proceedings of the National Academy of Sciences, 117 (17), 9216, doi:10.10/3/pnas.1914436117.
40	Zhao, C. et al., 2017: Temperature increase reduces global yields of major crops in four independent estimates.
41	The Section of the Inductional Academy of Sciences, 114 (55), 9520-9551, doi:10.10/5/pnas.1/01/02114.
43	Proceedings of the National Academy of Sciences of the United States of America 116 (38) 18848-18853
44	doi:10.1073/pnas.1904955116.
45	Zickgraf, C., 2018: Immobility. In: Routledge handbook of
46	environmental displacement and migration [McLeman, R., Gemenne and F. (eds.)]. Routledge:, London, 71-84.
47	Ziello, C. et al., 2012: Changes to Airborne Pollen Counts across Europe. PLoS One, 7 (4),
48	doi:10.1371/journal.pone.0034076.
49	Zografou, K. et al., 2014: Signals of Climate Change in Butterfly Communities in a Mediterranean Protected Area.
50	<i>PLoS One</i> , $9(1)$, e8/245, doi:10.13/1/journal.pone.008/245.
51	Environment 1 (7) 222 247 doi:10.1028/a2017.020.0060 z
52 53	Environment, 1 (1), 555-547, doi:10.1050/845017-020-0000-2. Zscheischler I and S. I. Seneviratne. 2017: Dependence of drivers affects risks associated with compound events
55 54	Science Advances 3 (6) e1700263 doi:10.1126/science v1700263
55	Zscheischler, J. et al., 2018: Future climate risk from compound events. <i>Nature Climate Change</i> . 8 (6), 469-477.
56	doi:10.1038/s41558-018-0156-3.
57	Zubizarreta-Gerendiain, A., T. Pukkala and H. Peltola, 2017: Effects of wind damage on the optimal management of
58	boreal forests under current and changing climatic conditions. Canadian Journal of Forest Research, 47 (2), 246-
59	256, doi:10.1139/cjfr-2016-0226.
60	Zuparić-Iljić, D., 2017: Environmental Change and Involuntary Migration: Environmental Vulnerability and
61	Displacement Caused by the 2014 Flooding in South-Eastern Europe. Ecology and Justice: Contributions from the
62	margins, insulute for Political Ecology.
03	

3

4 5

6 7 8

Appendix 13.A: Supplementary Material

[PLACEHOLDER FOR FINAL DRAFT: Supplementary Material will include additional supplementary tables on the observed impacts and projected risks as well as for the feasibility and effectiveness assessments.]

13.A.1 Supplementary Material "Point of Departure" (13.1)

11

9

Figure 13.A.1: General workflow for assessing feasibility and effectiveness of adaptation options. Approach is based 10 on (Singh et al., 2020). Not all tables have been completed. [PLACEHOLDER FOR FINAL DRAFT: to be updated] 12 13

13.A.2 Supplementary Material "Terrestrial and Freshwater Ecosystems and their Services" (13.3) 14

15 Table 13.A.1: Summary of key impacts and risks for terrestrial and marine ecosystems [PLACEHOLDER FOR FINAL 16 DRAFT: reported trends are preliminary]. A. Reduced habitat availability and biodiversity; B. Local extinctions; C. 17 Range shifts; D. Invasions of non-native species; E. Shifts in community composition; F1. Non-gradual, abrupt biome 18 shifts (critical transitions); F2. Large-scale gradual biome shifts; G. Changes in phenology and reproductive success; H. 19

Do Not Cite, Quote or Distribute

1 Foodweb disruptions; I. Changes in Productivity; J. Incidence of fire; K. Vegetation die-back, mortality events,

2 population collapse; L. Emergence of trade-offs limiting adaptation options and solution space; M. Changes in

Impacts/Risks	Description of projected risks and affected system	References
	Predicted patterns of biodiversity changes qualitatively differ among taxonomic groups and usually show strong declines under RCP 8.5	(Radinger et al., 2016; Ruiz- Navarro et al., 2016; Dyders et al., 2018; Miličić et al., 2018; Buras and Menzel, 2019; Di Marco et al., 2019; Harrison et al., 2019; Jarić e al., 2019; Soroye et al., 2020
	Over the period 2061–2080, modelling predicts different types of responses of European forest tree species under RCP 2.6, RCP 4.5, and RPC 8.5 scenarios. For most temperate tree species, the suitable habitat area is projected to decrease (<i>medium confidence</i>), including some conifer and pioneer species (e.g., Betula pendula, Larix decidua, Picea abies, and Pinus sylvestris). For some though, habitat gain may proximately balance habitat loss (e.g., Abies alba, Fagus sylvatica, Fraxinus excelsior, Quercus robur, and Quercus petraea).	(Dyderski et al., 2018).
	Shifts in species distributions are predicted for the coming decades for multiple taxonomic groups showing a wide range of species-specific responses	(Levinsky et al., 2007; Hof et al., 2012; Kovats et al., 2014; Aguirre-Gutiérrez et al., 2017; Dullinger et al., 2017; Sáenz-Romero et al., 2017; Dyderski et al., 2018; Howa et al., 2018; Buras and Menzel, 2019; Milić et al., 2019; Schwager and Berg, 2019).
	Range retractions have been predicted for alpine ecosystems in isolated mountain ranges, and expansions in mediterranean and dryland ecosystems in southern Europe	(Kovats et al., 2014; Barredo et al., 2016; Guiot and Cramer, 2016; Lefebvre et a 2019; Schwager and Berg, 2019).
	Climatically suitable habitats for peatlands may decrease in warmer climates in Northern Europe	(Swindles et al., 2019)
	In birds, by 2070 the breeding and non-breeding ranges of major migrant bird species may shift in response to all major RCP scenarios.	(Howard et al., 2018).
	While large decreases in the survival and growth of temperate oak trees are predicted for southern edge populations, demographic rates in the northern limits may not be strongly impacted.	(Sáenz-Romero et al., 2017)
J. Incidence of fire From 1985–2014 total annual burned area in western Europe decreased, stabilized in 2015–2016 and increased in 2017. In a warmer climate, more severe droughts with high fire risk, an expansion of the fire-prone area, and longer fire seasons are projected across Europe. Risks of wildfires with extreme pyroconvections, i.e. strong and deep convection events within a fire plume, may also increase with climate change in Europe		(Costa Alcubierre et al., 201 Dury et al., 2011; Frolov et al., 2014; Jacob et al., 2014; Khabarov et al., 2016; Lehtonen et al., 2016; Turcc et al., 2016; de Rigo et al., 2017a; Castellnou and et, 2018; Turco et al., 2018b; San-Miguel-Ayanz et al., 2019; Resco de Dios, 2020).
J. Incidence of fire Decreasing trends in the Mediterranean region have been reported in the total burned area between 1985 and 2011 and in the annual number of fires, which are partly explained by increased efforts in fire management and prevention. Since 2015 dangerous fires have occurred in mid autumn in Southern Europe. The risk of large fires and summer burned area is projected to largely increase in the Mediterranean basin. The estimate for summer burned areas in Mediterranean Europa under 15, 2 and		(Turco et al., 2014; Turco et al., 2016; Castellnou and et, 2018; Turco et al., 2018a; Michetti and Pinar, 2019; Resco de Dios, 2020).

	3°C warming is projected to increase from 40 to 100% across			
	the scenarios.			
J. Incidence of fire	Burnt area in the Russian Federation has been significantly increasing since the 2000s. Large-scale wildfires, with areas burnt exceeding 2.000 ha, increased in number over recent years in Russia, highlighting the need for improved fire risk management and monitoring.	(Ponomarev et al., 2015; Filipchuk et al., 2018)		
J. Incidence of fire While fires were concentrated in southern and eastern E the past, areas in northern Europe have recently suffered unprecedented forest fires.		(Ponomarev et al., 2015; Lebedinskii et al., 2019; San- Miguel-Ayanz et al., 2019; Torzhkov et al., 2019).		
	Larger extinction risks are expected in endemic, non-generalist and dispersal-limited taxa.	(Urban, 2015)		
	Under RCP8.5, population extinctions of widespread drought- sensitive insects might occur as early as 2050 in North Europe.	(Oliver et al., 2015)		
	Projected climate change impacts on ecosystem services are affected by strong and often dominant effects of changes in land use and management	(Schröter et al., 2005a; Polce et al., 2016; Verhagen et al., 2018).		

4

5

6

7

Table 13.A.2: Adaptation options for European land ecosystems to address risks listed in Table 13.3 [PLACEHOLDER FOR FINAL DRAFT: adaptation options will be grouped by risk; range of adaptation options will be expanded to increase balance between risks covered; some measures will be collapsed]. A. Reduced habitat availability and biodiversity; B. Local extinctions; C. Range shifts; D. Invasions of non-native species; E. Shifts in community

composition; F1. Non-gradual, abrupt biome shifts (critical transitions); F2. Large-scale gradual biome shifts; G.

8 Changes in phenology and reproductive success; H. Foodweb disruptions; I. Changes in Productivity; J. Incidence of

fire; K. Vegetation die-back, mortality events, population collapse; L. Emergence of trade-offs limiting adaptation
 options and solution space; M. Changes in regulating ecosystem services (carbon capture)

Risks Community/ Adaptation option References System affected (Vilà et al., 2007; Gamfeldt et al., Promotion of mixed-species stands 2013; Pretzsch et al., 2013; Ruiz-Benito et al., 2014; Guyot et al., 2016; Jactel et al., 2017; Ratcliffe et al., 2017) (Kolström, 2011; Habel et al., Forest and habitat restoration practices 2019a; Lewis et al., 2019) Use of drought and/or fire-resistant (Gil et al., 2009; Hlásny et al., 2014; Calvo et al., 2016) provenances (Willis et al., 2009; Williams and Assisted species migration Dumroese, 2013; Brooker et al., 2018) (Tardós et al., 2019) Enhancing and managing tree recruitment and forest resilience using thinning and prescribed burning (D'Amato et al., 2013; Giuggiola et Reducing tree density through thinning al., 2013; Elkin et al., 2015; Giuggiola et al., 2016; Aldea et al., 2017; Ameztegui et al., 2017; Del Río et al., 2017; Gleason et al., 2017) (Giuggiola et al., 2016; Lechuga et Randomizing tree spatial patterns in thinning al., 2017) practices (Kolström, 2011), (Bouriaud et al., Increasing the equitability or diversity of tree 2013; Giuggiola et al., 2016; size classes in thinning practices Lechuga et al., 2017) Reducing forest understory cover by thorough (Kolström, 2011; Vilà-Cabrera et al., 2018) mechanical treatments (Maes et al., 2015) Implementing green infrastructure modelling platforms projecting land use changes into the near future

	Promoting participatory forest management planning processes and local self-governance mechanisms	(Andersson, 2006; Bouriaud et al., 2013; Bouriaud et al., 2015)
	Improving current networks of protected areas and corridors, covering altitudinal gradients and integrating climatic microrefugia areas	(Keeley et al., 2018; Habel et al., 2019a; Müller et al., 2020)
	Rewilding as a vehicle of adapting to the rapid climate impacts	(Kuuluvainen, 1994; Kuuluvainen, 2009; Mustonen, 2017; Pohjanmies et al., 2017; Brattland and Mustonen, 2018; Mustonen, 2018; Mustonen and Kontkanen, 2019)
	Adaptation options for freshwater and coastal land ecosystems include hydrological and land use planning at basin scale, complemented with local restoration and conservation practices	(Bruno et al., 2014; Carrizo et al., 2017; Cañedo-Argüelles et al., 2019; Vaughan and Gotelli, 2019)
	Preservation of the natural flow variability of rivers and streams	(Cid et al., 2017; Menció and Boix, 2018)
	Ameliorating sea-live rise impacts on land installing coastal protection elements, such as breakwaters, seawalls, dykes, surge barriers and submerged breakwaters	(Tomasicchio, 1996; Lamberti and Zanuttigh, 2005; Iskander et al., 2007; Sancho-García et al., 2013; Becchi et al., 2014; Tsoukala et al., 2015; Bouvier et al., 2017)
	Using beach and shore nourishment practices, dune restoration, and coastal restoration	(Hanson et al., 2002; Aragonés et al., 2015; Danovaro et al., 2018)
	Applying geotextiles	(Balouin et al., 2015) (Acros et al. 2016)
	and adaptation	(Aspe et al., 2010)
	Peatland rewetting and restoration as a key tool for climate-change adaptation and mitigation. In Europe, many peatland areas are under agricultural and forestry usage, requiring active land use and management planning. Saving extant peatlands, rewetting peatland areas and restoring temperate and boreal agricultural peatlands have been assessed as key practices.	(Kasimir et al., 2018; Gunther et al., 2020; Ojanen and Minkkinen, 2020)
J. Incidence of fire	Management of fuel to reduce fire intensity and the extent of large fires	(Agee and Skinner, 2005; Loepfe et al., 2010; Pausas and Paula, 2012; Regos et al., 2014)
J. Incidence of fire	Using prescribed burning for reducing the risk of high intensity fire and fuel load management	(Piñol et al., 2005; Piñol et al., 2007; Fernandes et al., 2013; Fernandes et al., 2016; Khabarov et al., 2016; Fernandes, 2018; Vilà- Cabrera et al., 2018; Duane et al., 2019)
J. Incidence of fire	Incentivizing and planning residential development to withstand inevitable wildfire	(Schoennagel et al., 2017; Samara et al., 2018)
J. Incidence of fire	Managing and planning landscape matrix schemes to reduce fire risk	(Loepfe et al., 2010; Moreira et al., 2011; de Rigo et al., 2017a; Erdős et al., 2018)
J. Incidence of fire	Improved fire suppression capacities and strategies	(Piñol et al., 2005; Brotons et al., 2013; Khabarov et al., 2016; Regos et al., 2016; Cramer et al., 2018; Turco et al., 2018a)
J. Incidence of fire	Using forest types and agricultural fields as fire breaks	(Khabarov et al., 2016; de Rigo et al., 2017a)
J. Incidence of fire	Reducing fire risk by promoting biomass extraction for energy purposes	(Evans and Finkral, 2009; Pausas and Paula, 2012; Regos et al., 2016)
J. Incidence of fire	Combining forest thinning, slash management and prescribed burning techniques	(Keeley et al., 2011; Fernandes, 2018; Piqué and Domènech, 2018; Samara et al. 2018)

4

13.A.3 Supplementary Material "Cities, Settlements and Key Infrastructure" (13.6)

Table 13.A.3: Examples of adaptation options for reducing sectoral climate change risks

Sector	Risk and cause	Examples of adaptation options	Elements related to the implementation of adaptation options
Thermoelect ic power	Reduction/ Interruption of operation due to water cooling	Replacement of once-through cooling by cooling towers - Dry air-cooling - Seawater cooling (for coastal plants) - Replacement by new better adapted plants (Behrens et al., 2017; EEA, 2019a; IAEA, 2019)	The choice of electricity producers between options is guided mainly by the economics of adaptation technologies, and less by the supply of information on future climate change (Bogmans et al., 2017).
	constraints		Costs for retrofitting cooling are site-specific and increase with the distance to water bodies, needs for additional structures and the plant's age (Sieber, 2013). Dry cooling for new plants is 3–4 times higher than wet recirculating system and 4–5.5 times higher than once- through cooling (IAEA, 2019), and could result in 10% efficiency losses (EEA, 2019a).
		Switching to alternative generation technologies with low water use, e.g., wind, solar PV (Porfiriev et al., 2017; EEA, 2019a)	Fragmentation of energy and water policy frameworks make cohesive energy and water management difficult (Byers et al., 2015; Behrens et al., 2017). Ignoring the impact of climate-induced water constraints
		Inter-basin water transfer (Koch et al., 2014)	al., 2016).
		Use of 'non-traditional' water sources (e.g., recirculation of water from oil and gas fields or coal mines, treated wastewater from nearby cities) (Sieber, 2013)	Near-by sources of 'non-traditional' waters may not exist or may be of insufficient capacity.
		Shift part of power production to estuaries or coasts (Byers et al., 2015)	Its implementation to high-demand areas could bring significant nationwide water reductions (Byers et al., 2015), provided that recipient plants can undertake the extra production.
		Improved electricity interconnections (Behrens et al., 2017)	High investment costs.
		Demand management measures to reduce the economic losses during power curtailment	Can be an effective option, particularly under low climate change scenarios (Hanski et al., 2018).
_		Institutional measures (e.g., water temperature cap, heat load plan, contract between environmental regulator and electricity producers).	The efficiency of institutional adaptation options may differ depending on the increase of heat waves intensity, frequency or both (Eisenack, 2016).
Hydropower	Reduced production due to lower streamflow	Adjusted hydropower management (Gaudard et al., 2013; EEA, 2019a).	By optimizing the hydraulic head and the turbine schedule with respect to the prices could reduce power losses up to 35% (Gaudard et al., 2013).
	Increased risk of damage from flooding	Adjusted hydropower management (Ranzani et al., 2018; EEA, 2019a)	Adaptive strategies in the management of reservoirs could reduce (but not avoid) revenue losses (Ranzani et al., 2018)
		Recalibration of spillways, e.g., through PKW, concrete or metal fuse gates	Recalibration systems have been implemented successfully in hydropower facilities in Europe and outside Europe (EEA, 2019a).
		Increase the capacity of existing hydropower plants (i.e. increase installed turbine capacity, increase reservoir storage)	This option has been implemented in some northern European hydropower plants (EEA, 2016a)
		Hydropower operational warning systems, monitoring of snowpack and river flows, forecast of high water flows	Hydropower forecasting faces key challenges related to integration of state-of-the-art weather services, data assimilation schemes, links between forecast quality and

Sector Risk and cause Examples of adaptation options Elements related to the in options		Elements related to the implementation of adaptation options							
			value, and enhancement of risk-based decision-making (Boucher and Ramos, 2018).						
Electricity transmission and distribution	Power outages due to damages of transmission lines and power stations from extreme winds, storm surges, floods and very high temperatures	Construction of new substations and overhead lines (providing additional paths to transfer power in case of a transmission line failures) - Improve old overhead lines and substations (Fu et al., 2018).	Efficiency increases when construction of new lines and stations occurs to decentralized power systems, while improvement of existing lines and stations is less efficient (Fu et al., 2018). The contribution of substations' refurbishment in building flood resilience depends on the degree of protection of critical substations which may not necessarily be the most vulnerable to high water levels (Bollinger and Dijkema, 2016). The willingness-to-pay (WTP) to avoid power outage is higher for older people, females and urban residents; risk perceptions are greatly influenced by current regional temperatures; and under strong warming the WTP increases in summer and decreases in winter in all countries, particularly in the north (Cohen et al., 2018a). Experience with previous power cuts significantly enables resilience (Ghanem et al., 2016; Cohen et al., 2018a).						
		Vegetation management	New technologies (e.g., Lidar) allow to reduce the need for time-consuming and labour-intensive traditional verification and to provide reliable input for guiding tree trimming. Though, their implementation may require significant changes of management practices at utility level.						
		Turn, partially or totally, overhead lines into underground cables (Wang et al., 2016; Ciasca et al., 2017).	High installation cost Potentially long implementation time, depending on the area covered and the length of cables (EEA, 2019a). Selective undergrounding of line sections exposed to higher risk or harder to access can be a cost- effective adaptation strategy (Wang et al., 2016). For new lines, potentially long permitting processes and public opposition (Wang et al., 2016; Ciasca et al., 2017).						
		Locate assets above flood level, flood barriers, relocate assets (Bollinger and Dijkema, 2016; Wang et al., 2016; Thacker et al., 2018)	High investment costs for existing assets (Wang et al., 2016). Long implementation time (EEA, 2020). TSOs often prefer to combine investments in flood defences with major renovations or refurbishments to substations, and consequently prioritization often occurs based on factors unrelated to a substation's criticality (e.g., on its age) (Bollinger and Dijkema, 2016; Wang et al., 2016). Assets' relocation is almost always not cost beneficial (Thacker et al., 2018).						
		Distribution circuit segregation and automation (Wang et al., 2016).							
		Increase the height of poles supporting power lines, install conductors with hotter operating limits, use of 'low-sag' conductors (EEA, 2019a).	Legal requirements on minimum pole height support adaptation (EEA, 2019a).						
	Reliability problems in electricity networks due to increased peak load for cooling	Strict efficiency standards for cooling equipment (EEA, 2019a; Palkowski et al., 2019).	Reliability can be increased through measures reducing cooling demand, such as improved building design, water cooling technologies for thermoelectric generation that do						
		Increase transmission capacity, including international linkages	direct utilisation of cooling water where available (EEA, 2019a).						
		Increase backup capacity	_						
Transport	Reduction/ interruption of transportation due to damaged infrastructure and/or traffic	Broad range of options (EEA, 2014a; Frolov et al., 2014; Burbidge, 2015; Stamos et al., 2015; van Slobbe et al., 2016; Bachner, 2017):	Particularly in road transport, measures have also economy- wide feedback effects which must be considered when assessing adaptation benefits (Bachner, 2017). Nevertheless, as it is difficult to quantify the benefits and costs of adaptation measures in transport, cost-benefit analyses need to be performed on a case study level (Doll et al., 2014).						
Sector	Risk and cause	Examples of adaptation options	Elements related to the implementation of adaptation options						
-------------------	---	--	--	--	--	--	--	--	--
	disruption as a result of intense rain, flooding and heatwaves	a) Infrastructure construction/retrofitting (e.g., enlargement of drainage systems, measures to reduce slippery roads, raise links above flood level)	As 'soft' adaptation options (e.g., ICT) have already been implemented to a large extent in railways, investments in advanced protection systems (e.g., tunnels, protection walls and enlarged drainage) are necessary to support proactive maintenance strategies (Doll et al., 2014). Improving drainage or elevate critical road links can be cost effective but requires analysis at city level (Pregnolato et al., 2017). Adaptations in vessel design may reduce the vulnerability to low depth, but with a trade-off with performance in times of sufficient discharge (van Slobbe et al., 2016).						
		b) Improved maintenance (e.g., vegetation management, visual road inspection)	Network maintenance can be a more cost-efficient way to reduce short- and medium-term damage risks (Doll et al., 2014).						
		c) ICT and users (e.g., early warning on adverse weather, weather forecasting)	Lack of coherence between the climate adaptation plans of companies operating major transport infrastructure and their neighbouring municipalities may reduce the effectiveness of adaptation actions undertaken by the transport sector (EEA, 2014a).						
		d) Modal shifts							
		e) Technological innovations (e.g., heat-resistant pavement materials, materials designed for a greater number of cycles of freezing and thawing, logistic chains).	Some of the new pavement materials may increase noise levels in urban areas (Enríquez-de-Salamanca, 2019).						
		f) Revising operational guidelines and standards	The location-specific nature of weather impacts requires analysis and response also at route level to ensure investments in flood protection are cost effective (EEA, 2020). Dynamic heat management can reduce the heat- related disruption from unnecessary emergency speed restrictions (ESRs) on railway networks (Ferranti et al., 2016).						
	Reduction of thermal comfort of passengers in railways and metro lines due to higher temperatures	Saloon cooling, cooling of platforms and tunnels (Jenkins et al., 2014b)	Saloon cooling alone may not be sufficient to maintain comfortable thermal conditions for some lines under high emission scenarios (Jenkins et al., 2014b).						
Winter tourism	Reduction/Interr uption of operation due to lack of snow	Snowmaking (including application of automated snowmaking systems)	High investment cost (i.e. for development of water supply systems, purchase and installation of snow cannons) and increased operational costs (Campos Rodrigues et al., 2018; Scott et al., 2019). Increased snowmaking can maintain snow reliability under low warming, but is not sufficient under high-end warming (Steiger and Scott, 2020).						
		Protection and conservation of snowpack (e.g., water drainage, modification of the ski runs slopes, protection from avalanches, protection or storage of snow during the non-ski seasons)	Several techniques are available.						
		Expansion of skiable area	Need of substantial investments and free areas, has adverse impacts (e.g., land-use conflicts, impacts of construction on natural areas, impacts on the landscape quality, increased water and energy use) (Campos Rodrigues et al., 2018).						
		Nocturnal skiing (Campos Rodrigues et al., 2018)	Nocturnal skiing already offered at some ski resorts, but it can compensate for a small part of potential losses due to						

Sector	Risk and cause	Examples of adaptation options	Elements related to the implementation of adaptation options						
			adverse weather and safety limitations (Campos Rodrigues et al., 2018).						
		Shift to other ski destinations (spatial substitution)	The attachment ('loyalty') of glacier skiers to their favourite leisure destination, gender, demographics (i.e. age) and perceptions towards environmental sustainability were found to be important in guiding adaptation preferences (Demiroglu et al., 2018).						
		Diversification of snow-based activities	Diversification may be too costly for some resorts. Skiing in indoor slopes may be the least preferred option for skiers, while other winter activities (e.g., snowboard, downhill skiing) may not be effective adaptation options as skiing is perceived as a necessity in some countries (Falk, 2015; Falk and Hagsten, 2016).						
		Transformation to multi-recreational mountain resorts, compensating non- snow activities	Transformation may be too costly for some resorts (Campos Rodrigues et al., 2018). Non-snow activities not appealing to people for whom skiing is the main activity in their winter holiday (Steiger et al., 2020). Cultural differences affect the effectiveness of compensating activities (Landauer et al., 2013).						
		Management options, e.g., grouping of resorts, pricing strategies (Campos Rodrigues et al., 2018)	Price discounts are effective under less severe warming scenarios (Steiger et al., 2020). Price discount in ski lift tickets may not be efficient for attracting foreign visitors (Falk and Scaglione, 2018).						
Coastal and Summer tourism, Other forms of tourism	Loss of beaches/ coasts due to sea level rise and increased erosion	Hard defences (e.g., seawalls)	It is a measure that has been widely applied in Europe, but generally with no concern for future climate change impacts. It also requires high investments, proper maintenance (which is costly) and can affect sediment transport and coastal erosion (Pranzini et al., 2015).						
		Soft measures(e.g., artificial beach nourishment, dune planting (Pranzini et al., 2015; Jiménez et al., 2017)	Selective sand nourishment is common in Europe (Pranzini et al., 2015), as in Spain where more than 22 mill m3 of sand were deposited on the Catalan coast during the last 30 years (Jiménez and Valdemoro, 2019). There is often a reduced availability and high costs of fill material. Potential governance difficulties (lack of well-defined roles in coordinating nearshore activities, division of costs between government, private owners and local communities).						
		Inland shift of tourism activities	May not be possible due to land use and financial constraints as well as environmental and administrative regulations.						
	Disruption of tourism activities due to higher temperatures	Temporal shift/extension of recreational activities outside the summer period (e.g., transition time tourism, all year tourism)	Potential barriers include organizational issues, inability/reluctance of clientele (Mourey et al., 2020). Limiting factors to be considered include cost, school holidays or work (Brosy et al., 2014).						
Business	Reduction/ Interruption of	Individual adaptation measures at enterprise level							
	extreme events; Reduced sales due to lower demand.	Corporate adaptation. It is dominated by surveillance of climatic changes, climate proofing production facilities and assets, and supply chain management (Sakhel, 2017).	Corporate strategies to climate risks still predominantly focus on mitigation (Sakhel, 2017; Pinkse and Gasbarro, 2019).						
Banking and finance	Risk of instability of the financial system due to damages caused by climate extremes	Extension of financial regulations and requirements for risk monitoring towards climate-related risks, such as climate-related stress tests (TCFD, 2017; D'Orazio and Popoyan, 2019)	Only in a few European countries, such regulations are in place but are voluntary (D'Orazio and Popoyan, 2019)						

Sector	Risk and cause	Examples of adaptation options	Elements related to the implementation of adaptation options						
Insurance	Risk of	Public reinsurance							
	insurance default	Extension of risk monitoring towards climate-related risks							
Cities	Reduced indoor and outdoor thermal comfort and power outages due to heatwaves [1]	Passive and active cooling measures in buildings (e.g., air-conditioning, ventilation, shading)	Coping appraisal is a strong predictor for citizens' motivation to adapt, while elderly are less motivated (Murtagh et al., 2019). Though necessary, natural ventilation alone cannot fully mitigate overheating (Dodoo and Gustavsson, 2016; Heracleous and Michael, 2018; Dino and Meral Akgül, 2019; Shen et al., 2020), and its effectiveness is strongly affected by occupants' behaviour (Tillson et al., 2013; van Hooff et al., 2014), while a combination of shading and ventilation (including night-time) is needed (Ibrahim and Pelsmakers, 2018). Installation of air-conditioning may be too costly for many households (Thomson et al., 2019). Large increase of air- conditioning in densely populated areas may exacerbate the urban heat island and thus overheating (Kingsborough et al., 2017), and increases pressures on electricity systems.						
		Interventions at the buildings' shell, e.g., improving insulation, increasing thermal mass, use of phase-change materials (PCM)	Addition of insulation in poorly ventilated and shaded buildings may increase overheating. Altering the thermal mass is much harder in older buildings (Tillson et al., 2013). PCM could reduce significantly the cooling load, but are a relatively new technology to the construction industry, with many uncertainties (e.g., future prices, long-term durability, energy cost) (Sajjadian et al., 2015). Material changes to buildings are often prohibited by restrictive tenancy relations (Thomson et al., 2019).						
		Green, blue, and grey infrastructure (e.g., green areas, green roofs/walls, cool roofs/facades, cool pavements)	Climatic conditions may affect performance of options (Ward et al., 2016). On-site water reuse systems can provide supplementary water to green roofs and walls, gardens, and other smaller-scale urban nature-based solutions on an asneeded basis. The cooling potential of plants in green roofs or walls is influenced by the choice of plant species (Cameron et al., 2014). Cool roofs are less expensive and easier to apply than green roofs (Carvalho et al., 2017a).People's willingness to pay for green infrastructure (GI) was found to be mostly related to income and ethnicity, while citizens are willing to support climate adaptation through GI as long as the GI is multifunctional, i.e., comes with recreational and aesthetic benefits. (Derkzen et al., 2017). Urban governance mechanisms and institutional barriers to GI planning need additional research (Emmanuel and Loconsole, 2015). Cool roofs are an established technology, but this is not yet the case for cool pavement materials which may cause glare problems or excessive illuminance levels (Carnielo and Zinzi, 2013). Options are not easily transferable between countries or even cities (Hintz et al., 2018).						
		Update building standards to consider the expected increase of extreme summer temperatures and the consequent increase of energy demand for cooling	Standards considering climate change and outdoor climate conditions, and realistic assumptions in terms of occupant adaptations are needed (Mulville and Stravoravdis, 2016; Sánchez-García et al., 2020; Shen et al., 2020). Standards should consider regional differences (Frolov et al., 2014).						
		Watering of roads and pavements	Emergency option during heat waves, but not a long-term adaptation option (Hendel et al., 2016; Enríquez-de- Salamanca, 2019).						

Sector	Risk and cause	Examples of adaptation options	Elements related to the implementation of adaptation options						
			Optimization of possible watering methods has only rarely been conducted, while water consumption is an issue (Hendel et al., 2015).						
		Escape to nearby mountainous regions (Juschten et al., 2019a)	Mostly motivated by social and subjective norms, past experience with heat stress, outdoor sports as a travel motive, previous visits to the destination, positive media coverage, and perceived behaviour control (Juschten et al., 2019b).						
	Reduced water supply due to drought	Water demand management	High degree of uncertainty regarding effectiveness. Coupled with new water reuse infrastructure, it could keep the probability of exceeding the target frequency of an emergency drought order below 0.01 in London under severe drought combined and high population growth (Kingsborough et al., 2016).						
		Expand water supply	Water reuse, new water reservoirs, inter-basin transfers. L flexible as it requires commitment to supply infrastructure which can be maladaptive under increasing water demand (Kingsborough et al., 2016).						
	Corrosion of buildings due to permafrost and thaw melting	Use of materials with proper resistance to freezing and thawing cycles (Frolov et al., 2014) Increase corrosion resistance of	Development of an assessment methodology and database on the durability of materials under various climatic conditions is needed to support the selection of optimal materials under the future climate. Regular updating of regulatory parameters based on observational data (Frolov et al. 2014)						
		structural elements (Frolov et al., 2014)							
		Design solutions that prohibit an increase of moisture content in building structures (Frolov et al., 2014)	_						
	Damage to settlements and	Building new flood defenses (e.g., dikes)	Costs for maintaining the baseline flood protection level under climate change (and introducing a minimum of 100						
	due to flooding	Heightening and/or strengthening of existing dikes, dams, and levees. Widening of river floodplains and reduction of obstructions in floodplains (Bouwer et al., 2018). Updating the urban drainage system (Bodoque et al., 2019).	years protection) through defenses would not outweigh benefits for many countries before 2030 under different RCP/SSPs, while in 2080 adaptation benefits would excee costs in almost all countries (Bouwer et al., 2018). Update and increased maintenance of storm barriers come along with concerns on their environmental impacts as in the Petersburg (Rodionov, 2016).						
		Flood protection measures at building/household level, such as dry- proofing (e.g., sealing walls with waterproof coatings, impermeable layering of masonry, sealants for openings), wet-proofing (e.g., building elevation, use of water-resistant materials), emergency measures (e.g., mobile flood barriers, sandbags), securement of sources of contamination	There is high confidence that past experience of damage strongly affects risk perception and hence motivation for adaptation (Baron and Petersen, 2015; Lujala et al., 2015; Osberghaus, 2015; Madsen et al., 2019). Though, protection may be motivated mostly by coping and threat appraisal and trust in public institutions (Bamberg et al., 2017). Dry-proofing is costly and thus usually applied to new buildings (Bouwer et al., 2018). The level of wet-proofing differs significantly between locations (Koerth et al., 2013; Stojanov et al., 2015). Perceptions of flood risks, expected climate impacts, risk attitudes and geographical characteristics were found to be the most important determinants in the decision to invest in elevating houses (Botzen et al., 2013).						
		Nature-based solutions to manage water runoff, e.g., multifunctional green spaces, wetlands, retention/detention and infiltration basins, rain gardens and green roofs	Natural ecosystems remain under threat from changing climatic conditions. Potential barriers for development of green infrastructure for flood risk management include coordination and convincing stakeholders, limitations of the existing legislations, and difficulty in accounting non- monetary benefits (Liu and Jensen, 2018).						
		Facilitate recovery after climate extremes	The location and composition of urban green spaces is key for effective adaptation (García Sánchez et al., 2018)						

Sector	Risk and cause	Examples of adaptation options	Elements related to the implementation of adaptation options
		Increase flood risk standards, land use planning, risk zoning, dedicated flood management legislation	Measures that work well in one region may not be effective in another region facing different flood hazards, and thus building codes and rest flood risk management policies have to be region-specific (Poussin et al., 2015). Legislation to delimit non-suitable land for urbanization often shows a slow implementation (Pérez-Morales et al., 2018), although it can be very effective in reducing risks under climate change (Thieken et al., 2016). Under high sea level rise, risk zoning can be more effective than hard defences (Andersson-Sköld et al., 2015).
		Emergency plans, training for evacuations, early warning systems	Require that the role and responsibilities of different administrative departments and organizations involved are well-defined, and that there is a clear plan on how to manage the different stages in the recovery process (Adedeji et al., 2019).
		Planned relocation	Higher resistance was found among seafront residents, second-home occupants, homeowners, elderly, retired, and multi-generation households (Dachary-Bernard et al., 2019; Rey-Valette et al., 2019; Seebauer and Winkler, 2020).
	Clay-related subsidence due to increased/ extreme drought	Deeper foundations, trees or terraces around light buildings to keep humidity in soils and prevent ground motions	Clay-related subsidence risks can be managed by appropriate adaptation measures at building scales (<i>medium</i> <i>confidence</i>) (Pritchard et al., 2015)

1 [1] Heatwave warnings and Heat Action Plans as means for adaptation are discussed in Section 13.7 on Health.

SECOND ORDER DRAFT

1

Chapter 13

IPCC WGII Sixth Assessment Report

Risk & Adaptation	EC	TE	IN	SO	ENV	GE	EFF
measures							
Reduction of thermal o	comfort due to increas	sing temperatures an	d extreme heat	•	-		
Interventions in the building shell	(Tillson et al., 2013; Sajjadian et al., 2015; Murtagh et al., 2019)	(Sajjadian et al., 2015)	(Ibrahim and Pelsmakers, 2018; Murtagh et al., 2019)	(Ibrahim and Pelsmakers, 2018; Murtagh et al., 2019)	NE	(Tillson et al., 2013; Ibrahim and Pelsmakers, 2018; Domínguez-Amarillo et al., 2019)	(Tillson et al., 2013; Sajjadian et al., 2015; Ibrahim and Pelsmakers, 2018; Domínguez-Amarillo et al., 2019)
Ventilation	(van Hooff et al., 2014; Murtagh et al., 2019)	(van Hooff et al., 2014)	(Tillson et al., 2013; Mulville and Stravoravdis, 2016; Murtagh et al., 2019)	(Tillson et al., 2013; van Hooff et al., 2014; Mulville and Stravoravdis, 2016; Ibrahim and Pelsmakers, 2018; Murtagh et al., 2019; Thomson et al., 2019)	NE	(Tillson et al., 2013; van Hooff et al., 2014; Ibrahim and Pelsmakers, 2018)	(Tillson et al., 2013; van Hooff et al., 2014; Dodoo and Gustavsson, 2016; Mulville and Stravoravdis, 2016; Hamdy et al., 2017; Zinzi et al., 2017; Heracleous and Michael, 2018; Ibrahim and Pelsmakers, 2018; Dino and Meral Akgül, 2019; Thomson et al., 2019)
Air conditioning	(Ferrara and Fabrizio, 2017; Thomson et al., 2019)	NE	NE	(Thomson et al., 2019)	NE	(Jenkins et al., 2014a)	(Jenkins et al., 2014b; Dodoo and Gustavsson, 2016; Dino and Meral Akgül, 2019)
Shading	(Tillson et al., 2013; van Hooff e al., 2014; Murtagh et al., 2019)	(van Hooff et al., t 2014)	(Murtagh et al., 2019; Thomson et al., 2019)	(Tillson et al., 2013; Ibrahim and Pelsmakers, 2018; Murtagh et al., 2019)	NE	(van Hooff et al., 2014; Thomson et al., 2019)	(Tillson et al., 2013; van Hooff et al., 2014; Dodoo and Gustavsson, 2016; Zinzi et al., 2017; Ibrahim and Pelsmakers, 2018)

Table 13.A.4: Literature sources utilized in the assessment of feasibility and effectiveness of adaptation options for cities, settlements and key infrastructure in Europe

SECOND ORDER DI	RAI	FT		Chapter	13		IPCC WGII Sixth Assessment Report							
Risk & Adaptation measures		EC		TE		IN		SO		ENV		GE		EFF
Green roofs, green walls		(Cameron et al., 2014; Virk et al., 2015; Carvalho et al., 2017a; de Munck et al., 2018)		(Cameron et al., 2014; Carvalho et al., 2017a; de Munck et al., 2018)		(Cameron et al., 2014; Virk et al., 2014)		(Cameron et al., 2014; van Hooff et al., 2014; Virk et al., 2015; Carvalho et al., 2017a; Derkzen et al., 2017)		(Virk et al., 2015)		(van Hooff et al., 2014)		(Cameron et al., 2014; van Hooff et al., 2014; Virk et al., 2014; Virk et al., 2015; Carvalho et al., 2017a; de Munck et al., 2018)
Urban green spaces		(Carvalho et al., 2017a; de Munck et al., 2018)		(Carvalho et al., 2017a; de Munck et al., 2018)		(Emmanuel and Loconsole, 2015)		(Carvalho et al., 2017a; Derkzen et al., 2017; Thomson et al., 2019)		(de Munck et al., 2018)		(Emmanuel and Loconsole, 2015; Carvalho et al., 2017a; de Munck et al., 2018; Thomson et al., 2019)		(Emmanuel and Loconsole, 2015; Ward et al., 2016; Carvalho et al., 2017a; de Munck et al., 2018)
Use of 'cool' paints and coatings		(van Hooff et al., 2014; Virk et al., 2015; Carvalho et al., 2017a; Murtagh et al., 2019)		(Carnielo and Zinzi, 2013; Carvalho et al., 2017a)		(Virk et al., 2014)		(Carnielo and Zinzi, 2013; Virk et al., 2015; Murtagh et al., 2019)	NE			(Zinzi, 2016)		(Carnielo and Zinzi, 2013; van Hooff et al., 2014; Virk et al., 2014; Virk et al., 2015; Zinzi, 2016; Carvalho et al., 2017a)
Escape to nearby non- urban destinations	NE		NE		NE			(Juschten et al., 2019a; Juschten et al., 2019b)	NE		NE		NE	
Loss of critical services	s du	e to heatwaves and	d dro	ought	<u>.</u>						<u>.</u>		<u> </u>	
Improvements in cooling systems		(Koch et al., 2014; van Vliet et al., 2016d; Behrens et al., 2017; Bogmans et al., 2017; EEA, 2019a)		(Sieber, 2013; Ferranti et al., 2016)		(Jenkins et al., 2014a; Koch et al., 2014; Byers et al., 2015; Hendel et al., 2016; Kingsborough et al., 2016;	NE		NE			(Sieber, 2013; Koch et al., 2014; van Vliet et al., 2016d; Behrens et al., 2017)		(Jenkins et al., 2014a; Koch et al., 2014; Byers et al., 2015; Ferranti et al., 2016; Kingsborough et al., 2016; van Vliet et al., 2016d; Behrens et al., 2017; Bogmans et al., 2017)

SECOND ORDER DRAFT

Risk & Adaptation measures		EC		TE		IN		SO		ENV		GE		EFF	
						Behrens et al., 2017)									
Shifting production to less water-intensive plants		(Khan et al., 2016; Behrens et al., 2017)		(Khan et al., 2016)		(Behrens et al., 2017)	NE		NE		NE			(Khan et al., 2016)	
Regulatory measures		(Eisenack, 2016)	NE			(Eisenack, 2016)	NE		NE		NE			(Eisenack, 2016)	
Management measures		(Ferranti et al., 2016; Ranzani et al., 2018; Wang et al., 2019)		(Hendel et al., 2015; Kingsborough et al., 2016)		(Ferranti et al., 2016; EEA, 2019a; Palkowski et al., 2019)	NE			(Hendel et al., 2015)		(Gaudard et al., 2013; Hendel et al., 2015)		(Gaudard et al., 2013; Hendel et al., 2015; Ferranti et al., 2016; Kingsborough et al., 2016; Ranzani et al., 2018; Wang et al., 2019)	
Use of heat-resilient materials		(Carnielo and Zinzi, 2013; EEA, 2019a; Wang et al., 2019)		(Carnielo and Zinzi, 2013; EEA, 2019a; Wang et al., 2019)		(Carnielo and Zinzi, 2013; EEA, 2019a; Wang et al., 2019)		(Carnielo and Zinzi, 2013; EEA, 2019a; Wang et al., 2019)	NE		NE			(Carnielo and Zinzi, 2013; EEA, 2019a; Wang et al., 2019)	
Replace vulnerable infrastructure with resilient one		(van Slobbe et al., 2016; Wang et al., 2019)	NE		NE		NE		NE		NE			(van Slobbe et al., 2016; Wang et al., 2019)	
Damages to infrastruct	ture	es from flooding du	e to	intense rain and	l sea	level rise	<u> </u>		<u> </u>				<u></u>		
Flood defenses		(Bollinger and Dijkema, 2016; Pregnolato et al., 2017; Thacker et al., 2018; EEA, 2019a; EEA, 2020)		(Thacker et al., 2018)		(Bollinger and Dijkema, 2016; Thacker et al., 2018; EEA, 2019a; EEA, 2020)		(Pregnolato et al., 2017)		(Andersson-Sköld et al., 2015; Pérez- Morales et al., 2018)		(EEA, 2019a)		(Andersson-Sköld et al., 2015; Bollinger and Dijkema, 2016; Pregnolato et al., 2017; Bouwer et al., 2018; Pérez- Morales et al., 2018; Thacker et al., 2018; EEA, 2019a;	

Do Not Cite, Quote or Distribute

SECOND ORDER DI	RAI	FT		Chapter	Chapter 13 IPCC WGII Sixth Assessment Report									
Risk & Adaptation measures		EC		TE		IN		SO		ENV		GE		EFF
														EEA, 2020; Umgiesser, 2020)
Planned relocation		(Thacker et al., 2018; Seebauer and Winkler, 2020)		(Thacker et al., 2018)		(Thacker et al., 2018)		(Koerth et al., 2013; Dachary-Bernard et al., 2019; Rey-Valette et al., 2019; Seebauer and Winkler, 2020)		(Dachary-Bernard et al., 2019)	NE			(Thacker et al., 2018; Dachary-Bernard et al., 2019)
Update drainage systems		(Liu and Jensen, 2018; EEA, 2020)	NE			(Liu and Jensen, 2018)		(EEA, 2016a)		(EEA, 2020)		(Liu and Jensen, 2018; EEA, 2020)		(Skougaard Kaspersen et al., 2017)
Elevate infrastructure/equipme nt									NE		NE			
Flood prevention plans & early warning	NE								NE		NE			
Emergency plans	NE		NE	·			NE		NE		NE			
Flood insurance	NE		NE	e e e e e e e e e e e e e e e e e e e					NE		NE			
Dry proofing			NE	r			NE		NE		NE			
Land management	NE		NE	e e			NE				NE			

Table 13.A.5: Reported adaptation limits in Europe

Technical limits

1

- Seawater cooling feasible only for coastal plants (Behrens et al., 2017)
- Water temperature caps can reduce thermal power availability and cause blackouts (Eisenack, 2016)
- Management optimization not applicable to run-of-river hydropower plants (Gaudard et al., 2013)
- Automation for flood discharge not suitable for certain hydropower dams (EEA, 2020)
- Minimum Energy Performance standards covering only residential air-conditioners (Palkowski et al., 2019)
- Wet-bulb temperature for snowmaking (Spandre et al., 2016; Hartl et al., 2018)
- Too large sediment volumes needed for beach nourishment (Galofré et al., 2016; Jiménez and Valdemoro, 2019)
- Physical characteristics of the existing housing stock preventing high ventilation (Tillson et al., 2013)
- Limited efficacy of hard defences for high sea level rise (i.e. >1m)/ rapid rates of sea-level rise (e.g., above 1cm/year) (Umgiesser, 2020) [see also section 13.2 Venice Box]

Environmental limits

- Lack of nearby alternative non-fresh water sources for plant cooling (Sieber, 2013)
- Limited/no availability of free areas in higher altitudes and orographic constraints for expanding skiable corridors (Campos Rodrigues et al., 2018)
- Limited water resources for increasing snowmaking (Spandre et al., 2016; Scott et al., 2019; Steiger and Scott, 2020)
- Impossible inland shift of tourism and settlements due to coastal urbanization or geomorphology (Toimil et al., 2018)
- Space constraints on green infrastructure for flood management (Liu and Jensen, 2018)

Economic and social limits

- No adaptation benefits from turning aerial transmission cables into underground ones in flood-prone areas (Sieber, 2013)
- High investments needed for upgrading current drainage to new standards (EEA, 2020)
- High installation costs for applying flood-proofing measures beyond critical substations (EEA, 2020)
- Energy poverty limits the households' capacity to adapt to overheating (Sanchez-Guevara et al., 2019; Thomson et al., 2019)
- Low flood probability prohibits the pay-off of costly investments in home flood proofing (Poussin et al., 2015)

2 3 4

5

6

7

13.A.4 Supplementary Material "Health, Wellbeing and the Changing Structure of Communities" (13.7)

Table 13.A.6: References used for assessing observed impact, and projected risks (1.5 and 3 degrees) of climate sensitive infectious diseases in Europe. [PLACEHOLDER FOR FINAL DRAFT: to be updated]

Climate sensitive infectious diseases Supportive references

Vector borne diseases	
Tick-borne encephalitis	(Daniel et al., 2003; Semenza and Menne, 2009; Jaenson and Lindgren, 2011; Estrada-Pena et al., 2012; Jaenson et al., 2012; Medlock et al., 2013; Porretta et al., 2013; Boeckmann and Joyner, 2014; Jore et al., 2014; Heinz et al., 2015; Alfredsson et al., 2017; Semenza and Suk, 2018).
Lyme borreliosis	(Semenza and Menne, 2009; Jaenson and Lindgren, 2011; Jaenson et al., 2012; Semenza et al., 2016a; Alfredsson et al., 2017).
West Nile fever	(Semenza et al., 2016b; Vogels et al., 2017; Haussig et al., 2018; Semenza and Suk, 2018).
Dengue fever	(Fischer et al., 2011; Rogers et al., 2014; Schaffner and Mathis, 2014; Kraemer et al., 2015; Liu-Helmersson et al., 2016).
Chikungua fever	(Nsoesie et al., 2016; Semenza and Suk, 2018)
Malaria	(Semenza and Menne, 2009; Danis et al., 2013; Piperaki and Daikos, 2016; Hertig, 2019).
Zika	(Caminade et al., 2017)

Chapter 13

Water borne diseases Vibriosis (Semenza et al., 2016a) Legionella (Walker, 2018) Food borne diseases Salmonella (Yun et al., 2016; Lake, 2017). (Yun et al., 2016; Lake, 2017; Kuhn et al., 2020). Campylobacter Table 13.A.7: references used for feasibility and effectiveness of health adaptation options for Europe (only including heat related options). **Supportive reference** Adaptation option Heat protection behaviour - Modify sleeping habits (Hendel et al., 2017) Heat protection behaviour (general) (Khare et al., 2015) Home protection behaviour (general) (Khare et al., 2015) Cool roofs (Macintyre and Heaviside, 2019) Building improvements (Åström et al., 2017) (Fallmann et al., 2013) Enhancing reflective properties of buildings Installation of external shutters/shading (Taylor et al., 2018) Energy efficiency upgrades (of entire housing stock) (Taylor et al., 2018) Urban planning - Green areas (Taylor et al., 2018) Urban planning (GENERAL) (Åström et al., 2017) Urban planning - Green areas (Fallmann et al., 2013) Urban planning - Decrease building density (Fallmann et al., 2013) Urban planning (siting of constructions) (Donner et al., 2015)

2 3 4

1

Do Not Cite, Quote or Distribute

Urban planning - Land cover management

(Donner et al., 2015)

Chapter 13

Adaptation option	Supportive reference
Urban planning - Green infrastructures (e.g., tree canopy cover)	(Venter et al., 2020)
Urban planning - reurbanisation + green roofs in all buildings	(Richter, 2016)
Prevention plans for extreme temperatures	(Carmona et al., 2016b)
Public health intervention programmes	(Gasparrini et al., 2015)
Heath Health Action Plans and Heat Warning System	(Heudorf and Schade, 2014)
Heat protection plans	(Reischl et al., 2018)
Bundle of options (e.g., health plans, culture of heat, etc) and associated heat "habituation"	(Díaz et al., 2019)

5

6

13.A.5 Supplementary Material "Poverty, Livelihoods and Cultural Heritage" (13.8)

Table 13.A.8: Climate change-related impacts affecting nomadic reindeer herding in Northern Europe. [PLACEHOLDER FOR FINAL DRAFT: confidence will be added to trends; list of reference will be expanded]

Indicator	Observed	Projected	References
(b) Changing weather			
conditions			
Amount of snow	Negative	Negative	WGI, Ch.12
Unstable ice conditions	Negative	Negative	(Forbes et al., 2016; Mallory and Boyce, 2018)
Frequent freeze thaw	Negative	Negative	(Johansson et al., 2011; Hansen et al., 2014; Bokhorst
cycles			et al., 2016; Rasmus et al., 2018)
Late snow melting during	Negative		[PLACEHOLDER FOR FINAL DRAFT: references
spring			will be added]
Higher summer		Both	[PLACEHOLDER FOR FINAL DRAFT: references
temperatures			will be added]
(c) Effects on animals and			
people			
Diseases and insect	Negative	Negative	(Mallory and Boyce, 2018; Tryland et al., 2019)
harassment			
Mortality and weight loss	Negative	Negative	(Tyler et al., 2007; Helle and Kojola, 2008)
of animals			
Psychological stress	Negative	Negative	(Kaiser et al., 2010; Furberg et al., 2011; Stoor, 2016)
Increased workload and	Negative	Negative	(Furberg et al., 2011; Löf, 2013; Rosqvist et al., 2020)
costs			
Conflicts	Negative	Negative	(Lawrence, 2014; Sehlin MacNeil, 2015; Lawrence and
			Kløcker Larsen, 2017; Persson et al., 2017; Beland
			Lindahl et al., 2018)
Self-determination and	Negative	Negative	(Brännlund and Axelsson, 2011)
adaptive capacity			(Löf, 2013)
			(Andersson et al., 2015)
			(Brännström, 2017)
			(Allard, 2018)
			(Kløcker Larsen and Raitio, 2019)
(d) Combined effects			

from land pressure

wining	Negative	Negative	(Herrmann et al., 2014; Effestøl et al., 2019; Lawrence
			and Kløcker Larsen, 2019; Österlin and Raitio, 2020)
Hydropower	Negative	No change	(Össbo and Lantto, 2011; Össbo, 2018)
Forestry	Both	Both	(Kivinen et al., 2012; Sandström et al., 2016; Fischer et
-			al., 2020)
Wind power	Negative	Negative	(Skarin et al., 2015; Skarin and Alam, 2017; Österlin
-	-	-	and Raitio, 2020)

4 5 6

13.A.6 Supplementary Material "Detection and Attribution and Key Risks Across Sectors and Regions" (13.10)

Table 13.A.9: Detected changes and literature supporting attributio	m
---	---

Assessment statement	Supporting References
Forest growth and production has been influenced by temperature and moisture conditions combined over the last centuries. The consequences of climate change differed regionally, especially along the south to north axis	(Pretzsch et al., 2014; Reyer et al., 2014; Seidl et al., 2014; Gazol et al., 2015; Keenan et al., 2016; Reich et al., 2016; Tian et al., 2016; Alrahahleh et al., 2017; Ballantyne et al., 2017a; Zlatanov et al., 2017; Humphrey et al., 2018; Marqués et al., 2018; Stocker et al., 2018; Vitali et al., 2018; Carnicer et al., 2019a; Ciais et al., 2019; Green et al., 2019; Yuan et al., 2019; Brodribb et al., 2020).
Tundra vegetation growth rate and shrub height have been accelerated by climate change	(Belonovskaya et al., 2016; Martin et al., 2017).
Drought consequences in the Mediterranean region showed significant increase of adverse effects, and outside the southern region effects of drought varied considerably	(Fantappié et al., 2011; Giuntoli et al., 2013; Yigini and Panagos, 2016; Potopová et al., 2017; Stagge et al., 2017; Samaniego et al., 2018; García- Herrera et al., 2019; Spinoni et al., 2019; Zhou et al., 2019).
Crops decreased due to temperature related regional changes with variable regional impact in Europe, and optimal conditions of some crops moved northwards	(Garcia-Mozo et al., 2015; Long et al., 2016; Ceglar et al., 2017; Potopová et al., 2017; Zhao et al., 2017; Pérez-Domínguez and Fellmann, 2018; Webber et al., 2018; Di Lena et al., 2019).
River floods have had increasing damaging effects in central Europe, but decreased in other regions	(Alfieri et al., 2015a; Polemio and Lonigro, 2015; Ljungqvist et al., 2016; Blöschl et al., 2017; Kundzewicz et al., 2017; Paprotny et al., 2018; Berghuijs et al., 2019; Blöschl et al., 2019; Ganguli and Merz, 2019; Lenderink et al., 2019; Umgiesser, 2020).
Wildfire effects are jointly influenced by climate variables such as drought and temperature, but they are also highly influenced by management	(Moriondo et al., 2006; Moreno et al., 2014; Turco et al., 2014; Jolly et al., 2015; Tedim et al., 2015; Turco et al., 2016; de Rigo et al., 2017a; Turco et al., 2017; Turco et al., 2018b; Michetti and Pinar, 2019).
Marine heatwaves induced mass mortality of sessile life forms, and such episodes have increased in frequency	(Garrabou et al., 2009; Munari, 2011; Rivetti et al., 2014; Smale et al., 2015; Rubio-Portillo et al., 2016; Oliver et al., 2018; Darmaraki et al., 2019a; Holbrook et al., 2019; Smale et al., 2019).
Terrestrial species relocation rate towards higher latitude and altitude have increased	(Scherrer and Körner, 2011; Oliver et al., 2015; Melero et al., 2016; Stephens et al., 2016; Wiens, 2016; Bowler et al., 2017; Spooner et al., 2018b; Lehikoinen et al., 2019; van Klink et al., 2020).
Marine species relocation from warm waters to previously colder but warming waters increased	(Fossheim et al., 2015; Hiddink et al., 2015; Montero Serra et al., 2015; van der Kooij et al., 2016; Chivers et al., 2017; García-Molinos et al., 2017; Cozzi et al., 2019; Vilà-Cabrera et al., 2019).
Coastal flood damaging effects increased. Phenology changes were well documented in AR5, and later	(Halgin et al., 2017; Walliet al., 2013; Malagon Santos et al., 2017; Garnier et al., 2018; Fernández-Montblanc et al., 2020; Umgiesser, 2020) (HASSALL et al., 2007; Visser et al., 2012; Karlsson, 2014; Thackeray et al., 2016; Mayor et al., 2017; Cohen et al., 2018b).
literature have confirmed the trends Vector borne diseases have expanded northwards	(Daniel et al., 2003; Jaenson et al., 2012; Medlock et al., 2013; Jore et al., 2014; Tokarevich et al., 2017; Semenza and Suk, 2018).

Assessment statement	Supporting References
Winter tourism has experienced decreased potential due to reduced snow cover and reliability of natural snow, with severity of loss highest at low altitudes	(Falk, 2015; Falk and Vanat, 2016; Klein et al., 2016; Beniston et al., 2018; Falk and Lin, 2018; Schöner et al., 2019). Rain on snow event frequency have increased (Beniston and Stoffel, 2016).
Damages from thaw of permafrost have been detected in a large range of societally important infrastructure, such as buildings and roads	(Stoffel et al., 2014; Porfiriev et al., 2017; Ravanel et al., 2017; Beniston et al., 2018; Duvillard et al., 2019).
Electricity consumption for cooling demand due to increasing temperatures have increased	(De Rosa et al., 2015; Spinoni et al., 2015), and heating demand have decreased (van Vliet et al., 2016c; Abi-Samra, 2017).
Macroeconomic damages for Europe has been detected	(Burke et al., 2015; Diffenbaugh and Burke, 2019a).
Shoreline erosion is detected but literature is limited	(Castelle et al., 2018; Mentaschi et al., 2018).
Aquatic species relocation includes expansion northwards, which in the southern region implies tropicalization	(Zhang et al., 2017; Monchamp et al., 2018; Kärcher et al., 2019; van Klink et al., 2020).
Heatwaves induced mortality at increasing frequency and severity	(Shaposhnikov et al., 2015; Morabito et al., 2017; Vogel et al., 2019).
Ocean acidification combined with warming affects several aspects of marine commercial gain	(Lacoue-Labarthe et al., 2016; Fernandes et al., 2017).
Fisheries specimen size distribution changed. Frequency of small specimen size in increased in southern regions of European waters	(Fortibuoni et al., 2015; Gamito et al., 2015; Teixeira et al., 2016; Ding et al., 2017; Ojea et al., 2017; Free et al., 2019; Stecf, 2019).
Miscellaneous effects with limited evidence were not been included in table 13.xx. Several lone standing examples of effects that can be attributed to climate change have been adequately reported	For example increase in groundwater heavy metal contamination from fractured aquifers (Bondu et al., 2016), effects in livestock (Handisyde et al., 2017; Rojas-Downing et al., 2017), pathogene sensitivity (McIntyre et al., 2017; Moretti et al., 2019), and heat damage to railway tracks (Ferranti et al., 2018).

6

Table 13.A.10: Macroeconomic losses of multiple climate risks, measured by GDP and welfare for 3°C relative to no additional warming; GDP loss: very high (VD), high (HD), moderate (MD); GDP gain/increase: very high (VI), high (HI), moderate (MI); both (B)I; no (N); limited evidence (LE); * Only Europe in total is covered, no subregions; ** single country or subset of countries

single country of subset (
	MED	NEU	WCE	EEU	Europe	References
Agriculture	VD	В	MD	В	MD	Roson and Sartori 2016; Aaheim et
	(•••)	(••)	(••)	(••)	(•••)	al. 2017; Dellink et al. 2019;
						Szewczyk et al. 2018; Szewczyk et
						al. 2020; Bosello et al. 2020
Coastal flooding	HD	HD	MD	MD	HD	Roson and Sartori 2016; Aaheim et
6	(•••)	(•••)	(•••)	(•••)	(•••)	al. 2017; Dellink et al. 2019;
	, í				, í	Szewczyk et al. 2018; Szewczyk et
						al. 2020; Parrado et al. 2020; Pycroft
						et al. 2016; Bosello et al. 2020
River flooding	HD	MD	HD	HD	MD	Dottori et al. 2018; Szewczyk et al.
C	(•••)	(•••)	(•••)	(•••)	(•••)	2018; Szewczyk et al. 2020; Koks et
	``	. ,	, í		``	al. 2019; Bosello et al. 2020
Health	VD	MD	MD	HD	HD	Roson and Sartori 2016; Aaheim et
	(•••)	(•••)	(•••)	(•••)	(•••)	al. 2017; Dellink et al. 2019;

						Szewczyk et al. 2018; Szewczyk et al. 2020
Labor productivity	HD (••)	MD (••)	MD (••)	MD (••)	MD (••)	Roson and Sartori 2016; Szewczyk et al. 2018; Orlov et al 2020; Bosello et al. 2020; Knittel et al. 2020
Energy	B (••)	B (••)	В (••)	B (••)	B (••)	Aaheim et al. 2017; Dellink et al. 2019; Szewczyk et al. 2018; Szewczyk et al. 2020; Bosello et al. 2020
Forestry	LE	LE	LE	LE	LE	Aaheim et al. 2017; Bosello et al. 2020
Fisheries	LE	LE	LE	LE	LE	Bosello et al. 2020
Drought / water scarcity	HD (••)	B (•)	MD (•)	MD (•)	MD (••)	Faust 2015**; Koopman et al 2017**; Roson and Damania 2017, Szewczyk et al. 2020; Teotonio et al. 2020**
Tourism	MD (•)	MI (•)	MD (•)	B (•)	MD (•)	Roson and Sartori 2016; Dellink et al. 2019; Ciscar et al. 2014
Transport	LE	LE	LE	LE	LE	Bachner 2017**; Bosello et al. 2020
Trade	MD (•)	MD (•)	MD (•)	MD (•)	MD (•)	Dellink 2017; Kulmer et al. 2020; Knittel et al. 2020; Mandel et al. 2020
TOTAL	HD (•••)	MD (•••)	MD (•••)	MD (••)	HD (•••)	Aaheim et al. 2017; Dellink et al. 2019; Szewczyk et al. 2018; Szewczyk et al. 2020; Kompas et al. 2018; Kalkuhl and Wenz, 2020; De Cian et al. 2017*; Takakura et al. 2019*

References: (Ciscar et al., 2014; Faust et al., 2015; De Cian et al., 2016; Pycroft et al., 2016; Roson and Sartori, 2016; Aaheim et al., 2017; Bachner, 2017; Dellink et al., 2017; Koopman et al., 2017; Roson and Damania, 2017; Takakura et al., 2017; Dottori et al., 2018; Szewczyk et al., 2018; Dellink et al., 2019; Koks et al., 2019b; Orlov et al., 2019; Bosello et al., 2020; Kalkuhl and Wenz, 2020; Knittel et al., 2020; Kulmer et al., 2020; Mandel et al., 2020b; Parrado et al., 2020; Szewczyk et al., 2020; Teotónio et al., 2020)

References

- Aaheim, A., T. Wei and B. Romstad, 2017: Conflicts of economic interests by limiting global warming to +3 °C. *Mitigation and Adaptation Strategies for Global Change*, **22**(8), 1131-1148, doi:10.1007/s11027-016-9718-8.
- Aalbers, C. B. E. M., D. A. Kamphorst and F. Langers, 2019: Fourteen local governance initiatives in greenspace in urban areas in the Netherlands. Discourses, success and failure factors, and the perspectives of local authorities. Urban Forestry & Urban Greening, 42, 82-99, doi:<u>https://doi.org/10.1016/j.ufug.2019.04.019</u>.
- Abegg, B. and R. Steiger, 2016: Herausforderung Klimawandel: Alpiner Skitourismus unter Anpassungsdruck. *Geographische Rundschau*, **5**, 16-21.
- Abermann, J. et al., 2017: Hotspots and key periods of Greenland climate change during the past six decades. *Ambio*, **46**(S1), 3-11, doi:10.1007/s13280-016-0861-y.
- Abi-Samra, N., 2017: *Power Grid Resiliency for Adverse Conditions*. Power Engineering, Artech House, Norwood, MA, 280 pp. ISBN 9781630810177.
- Adams, K. et al., 2020: Climate-Resilient Trade and Production: The Transboundary Effects of Climate Change and Their Implications for EU Member States. SEI, ODI, IDDRI.
- Adedeji, T. et al., 2019: Making Birmingham a Flood Resilient City: Challenges and Opportunities. *Water*, **11**(8), 1699.
- ADEME, 2014: Schéma Régional Climat Air Energie (SRCAE) de Guadeloupe. 283 pp.
- Adger, W. N. et al., 2013: Cultural dimensions of climate change impacts and adaptation. *Nature Climate Change*, 3, 112-117, doi:10.1038/nclimate1666.

1	Adger, W. N., I. Brown and S. Surminski, 2018: Advances in risk assessment for climate change adaptation policy.
2	<i>Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences</i> , 376 (2121), doi:10.1098/rsta.2018.0106.
4 5	Aerts, J. C. J. H. et al., 2018: Integrating human behaviour dynamics into flood disaster risk assessment. <i>Nature Climate Change</i> 8(3), 193-199, doi:10.1038/s41558-018-0085-1
6	Aeschbach-Hertig, W. and T. Gleeson, 2012: Regional strategies for the accelerating global problem of groundwater
7	depletion. Nature Geoscience, 5(12), 853-861, doi:10.1038/ngeo1617.
8	Agee, J. K. and C. N. Skinner, 2005: Basic principles of forest fuel reduction treatments. <i>Forest Ecology and</i>
9	Management, $211(1-2)$, 83-96, doi:10.1016/j.foreco.2005.01.034.
10	Aguiar, F. C. et al., 2018: Adaptation to climate change at local level in Europe: An overview. <i>Environmental Science</i>
11	& Poucy, 60 , 56-05, doi:10.1010/j.ellvsci.2016.04.010.
12	region A review Agricultural Systems 181 102809 doi:https://doi.org/10.1016/j.agsv.2020.102809
14	Aguirre-Gutiérrez, J., R. v. Treuren, R. Hoekstra and T. J. L. v. Hintum, 2017: Crop wild relatives range shifts and
15	conservation in Europe under climate change. <i>Diversity and Distributions</i> , 23 (7), 739-750, doi:10.1111/ddi.12573.
16	Airoldi, L. and M. W. Beck, 2007: Loss, status and trends for coastal marine habitats of Europe. <i>Oceanography and</i>
17	Marine Biology, Vol 45, 45, 345-405.
18	Akentieva, E. M., G. I. Sidoenko and G. A. Tyusov, 2014: To assess the impact of observed and expected future climate
19	changes on the hydropower potential of the regions of the Russian Federation. Works of A.I. Voeykov Main
20	Geophysical Observatory,(570), 95-105.
21	Akin, SM., P. Martens and M. M. T. E. Huynen, 2015: Climate Change and Infectious Disease Risk in Western
22	Europe: A Survey of Dutch Expert Opinion on Adaptation Responses and Actors. International Journal of
23	Environmental Research and Public Health, 12(8), 9/20-9/49.
24 25	15 (1 suppl) S95-S98 doi:10.1080/10398560701701288
26	Aldea, J. et al., 2017: Thinning enhances the species-specific radial increment response to drought in Mediterranean
27	pine-oak stands. Agricultural and Forest Meteorology, 237-238, 371-383, doi:10.1016/j.agrformet.2017.02.009.
28	Alexander, P. et al., 2018: Adaptation of global land use and management intensity to changes in climate and
29	atmospheric carbon dioxide. Global Change Biology, 24(7), 2791-2809, doi:10.1111/gcb.14110.
30	Alexander, P. et al., 2019: Transforming agricultural land use through marginal gains in the food system. Global
31	Environmental Change, 57, 101932, doi:https://doi.org/10.1016/j.gloenvcha.2019.101932.
32	Aleynikov, A. A. et al., 2014: Vaigach Island: nature, climate and people [in Russian]. WWF, Moscow.
33	Altieri, L., P. Burek, L. Feyen and G. Forzieri, 2015a: Global warming increases the frequency of river floods in
34 25	Europe. Hydrology and Earth System Sciences, 19(5), 2247-2200, doi:10.5194/ness-19-2247-2015.
36	doi:10.3390/cli6010016
37	Alfieri, L., L. Feven and G. Di Baldassarre, 2016: Increasing flood risk under climate change: a pan-European
38	assessment of the benefits of four adaptation strategies. <i>Climatic Change</i> , 136 (3-4), 507-521, doi:10.1007/s10584-
39	016-1641-1.
40	Alfieri, L., L. Feyen, F. Dottori and A. Bianchi, 2015b: Ensemble flood risk assessment in Europe under high end
41	climate scenarios. Global Environmental Change-Human and Policy Dimensions, 35, 199-212,
42	doi:10.1016/j.gloenvcha.2015.09.004.
43	Alfredsson, M. et al., 2017: Surveillance of Ixodes ricinus ticks (Acari: Ixodidae) in Iceland. <i>Parasites & Vectors</i> , 10,
44	au:10.1180/8130/1-01/-25/3-2.
45	Canadian Legal Contexts. Arctic Review on Law and Politics. 9(0). doi:10.23865/arctic.v9.729
47	Alliance, E., 2018: Evaluation study of the impact of the CAP on climate change and greenhouse gas emissions. ISBN
48	9789279857973.
49	Allison, E. A., 2015: The spiritual significance of glaciers in an age of climate change. <i>Wiley Interdisciplinary Reviews:</i>
50	<i>Climate Change</i> , 6 (5), 493-508, doi:10.1002/wcc.354.
51	Allwood, G., 2020: Mainstreaming Gender and Climate Change to Achieve a Just Transition to a Climate-Neutral
52	Europe. JCMS: Journal of Common Market Studies, 58(S1), 173-186, doi:10.1111/jcms.13082.
53	Airanahlen, L. et al., 2017: Effects of forest conservation and management on volume growth, harvested amount of
54 55	under, carbon stock, and amount of deadwood in Finnish boreal forests under changing climate. Can. J. For. $R_{as} = A7(2)$, 215-225, doi:10.1139/cifr.2016.0153
55 56	Altieri A H and K B Gedan 2015: Climate change and dead zones Global Change Riology 21(4) 1395-1406
57	doi:papers3://publication/doi/10.1111/gcb.12754.
58	AMAP, 2017: Adaptation actions for a changing Arctic: perspectives from the Barents area. Arctic Monitoring and
59	Assessment Programme (AMAP), Oslo, Norway. ISBN 978-82-7971-102-5.
60	Ambelas Skjøth, C. et al., 2019: Predicting abundances of invasive ragweed across Europe using a "top-down"

approach. *Science of The Total Environment*, **686**, 212-222.

1 2	Ameztegui, A., A. Cabon, M. De Cáceres and L. Coll, 2017: Managing stand density to enhance the adaptability of Scots pine stands to climate change: A modelling approach. <i>Ecological Modelling</i> , 356 , 141-150,
3	doi:10.1016/j.ecolmodel.2017.04.006.
4 5	Ammer, S. et al., 2018: Impact of diet composition and temperature–humidity index on water and dry matter intake of high-yielding dairy cows. <i>Journal of Animal Physiology and Animal Nutrition</i> , 102 (1), 103-113,
6	doi:10.1111/jpn.12664.
7 8	Ančić, B., M. Domazet and D. Župarić-Iljić, 2019: "For my health and for my friends": Exploring motivation, sharing, environmentalism resilience and class structure of food self-provisioning. <i>Geoforum</i> 106 , 68-77
0	doi:10.1016/j.geoforum 2019.07.018
10	Ancillotto, L. et al., 2016: Extraordinary range expansion in a common bat: the potential roles of climate change and
11	urbanisation. The Science of Nature, 103 (3), 15, doi:10.1007/s00114-016-1334-7.
12 13	Anderson, T., 2014: Malmo: A city in transition. <i>Cities</i> , 39 , 10-20, doi: <u>https://doi.org/10.1016/j.cities.2014.01.005</u> . Andersson, K., 2006: Understanding decentralized forest governance: an application of the institutional analysis and
14 15	development framework. Sustainability: Science, Practice and Policy, 2 (1), 25-35, doi:10.1080/15487733.2006.11907975
16	Andersson I et al 2015: Underlag till kontrollstation 2015 för annassning till ett förändrat klimat SMHI SE-601 76
17	Norrköping, Sverige. Available at:
18	https://www.smhi.se/polopoly_fs/1.86329!/Menu/general/extGroup/attachmentColHold/mainCol1/file/Klimatolog
19	<u>i%20Nr%2012.pdf</u> (accessed 2020/11/03/08:48:06).
20 21	Andersson-Sköld, Y. et al., 2015: An integrated method for assessing climate-related risks and adaptation alternatives in urban areas. <i>Climate Risk Management</i> , 7, 31-50, doi: <u>https://doi.org/10.1016/j.crm.2015.01.003</u> .
22	André, K. et al., 2017: Analysis of Swedish Forest Owners' Information and Knowledge-Sharing Networks for
23 24	Decision-Making: Insights for Climate Change Communication and Adaptation. <i>Environmental Management</i> , 59 (6), 885-897, doi:10.1007/s00267-017-0844-1.
25	Anghileri, D. et al., 2018: A Comparative Assessment of the Impact of Climate Change and Energy Policies on Alpine
26	Hydropower. Water Resources Research, 54 (11), 9144-9161, doi:10.1029/2017wr022289.
27 28	27 nn ISBN 978-92-79-20762-4
29	Anonymous, 2014: Second assessment report on climate change and its consequences in the Russian Federation.
30	Roshvdromet, Moscow, 1008 pp pp.
31	Anonymous, 2019: Offshore Wind in Europe 2018. Key trends and statistics, WindEurope, Brussels, 1-40 pp.
32	Antonioli, F. et al., 2017: Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for
33	2100. Quaternary Science Reviews, 158, 29-43, doi:10.1016/j.quascirev.2016.12.021.
34	Anzures-Olvera, F. et al., 2019: The impact of hair coat color on physiological variables, reproductive performance and
35 36	milk yield of Holstein cows in a hot environment. <i>Journal of Thermal Biology</i> , 81 (January), 82-88, doi:10.1016/j.jtherbio.2019.02.020.
37	Aparicio, Á., 2017: Transport adaptation policies in Europe: from incremental actions to long-term visions.
38	Transportation Research Procedia, 25, 3529-3537, doi: https://doi.org/10.1016/j.trpro.2017.05.277.
39	Aragonés, L. et al., 2015: Beach nourishment impact on Posidonia oceanica: Case study of Poniente Beach (Benidorm,
40	Spain). Ocean Engineering, 107, 1-12, doi:10.1016/j.oceaneng.2015.07.005.
41 42	Araos, M., S. E. Austin, L. Berrang-Ford and J. D. Ford, 2016a: Public Health Adaptation to Climate Change in Large Cities: A Global Baseline. <i>International Journal of Health Services</i> . 46 (1), 53-78.
43	doi:10.1177/0020731415621458.
44	Araos, M. et al., 2016b: Climate change adaptation planning in large cities: A systematic global assessment.
45	Environmental Science & Policy, 66, 375-382, doi:https://doi.org/10.1016/j.envsci.2016.06.009.
46	Arctic Council, 2013: Arctic Biodiversity Assessment: status and trends in Arctic biodiversity [Barry, T., D. Berteaux
47	and H. Bültmann (eds.)]. The Conservation of Arctic Flora and Fauna, Akureyri, Iceland, 674 pp. ISBN 978-9935-
48	431-22-6.
49	Arnbjerg-Nielsen, K., L. Leonardsen and H. Madsen, 2015: Evaluating adaptation options for urban flooding based on
50	new high-end emission scenario regional climate model simulations. <i>Climate Research</i> , 64 (1), 73-84,
51	doi:10.3354/cr01299.
52	Arnell, N. W. et al., 2019: The global and regional impacts of climate change under representative concentration
53	pathway forcings and shared socioeconomic pathway socioeconomic scenarios. <i>Environmental Research Letters</i> ,
54 55	14(8), 084040, 001:10.1088/1/48-9520/a05530.
55 56	Arns, A. et al., 2017. Sea-reventise induced amprincation of coastal protection design neights. Scientific Reports, 7, doi:10.1038/srow/0171
50 57	Arrigo K R and G L van Dijken 2015: Continued increases in Arctic Ocean primary production Progress in
58	Oceanography, 136 , 60-70, doj:papers3://publication/doi/10.1016/i.pocean 2015.05.002
59	Aspe, C., A. Gilles and M. Jacqué, 2016: Irrigation canals as tools for climate change adaptation and fish biodiversity
60	management in Southern France. Regional Environmental Change, 16(7), 1975-1984, doi:10.1007/s10113-014-
61	0695-8.

Astrom, C. et al., 2017: Vulnerability Reduction Needed to Maintain Current Burdens of Heat-Related Mortality in a 1 Changing Climate-Magnitude and Determinants. International Journal of Environmental Research and Public 2 Health, 14(7), doi:10.3390/ijerph14070741. 3 Åström, C. et al., 2017: Vulnerability Reduction Needed to Maintain Current Burdens of Heat-Related Mortality in a 4 Changing Climate—Magnitude and Determinants. International Journal of Environmental Research and Public 5 Health, 14(7), doi:10.3390/ijerph14070741. 6 Astrom, C. et al., 2013: Heat-related respiratory hospital admissions in Europe in a changing climate: a health impact 7 assessment. Bmj Open, 3(1), doi:10.1136/bmjopen-2012-001842. 8 Åström Daniel, O. et al., 2016: Evolution of Minimum Mortality Temperature in Stockholm, Sweden, 1901–2009. 9 Environmental Health Perspectives, 124(6), 740-744, doi:10.1289/ehp.1509692. 10 Athanasiou, P. et al., 2019: Global distribution of nearshore slopes with implications for coastal retreat. Earth System 11Science Data, 11(4), 1515-1529, doi:10.5194/essd-11-1515-2019. 12 Atsalis, A., S. Mirasgedis, C. Tourkolias and D. Diakoulaki, 2016: Fuel poverty in Greece: Quantitative analysis and 13 implications for policy. Energy and Buildings, 131, 87-98, doi:10.1016/j.enbuild.2016.09.025. 14 Atteridge, A. and E. Remling, 2018: Is adaptation reducing vulnerability or redistributing it? Wiley Interdisciplinary 15 Reviews-Climate Change, 9(1), doi:10.1002/wcc.500. 16 Austin, S. E. et al., 2016: Public Health Adaptation to Climate Change in OECD Countries. International journal of 17 environmental research and public health, 13(9), 889, doi:10.3390/ijerph13090889. 18 19 Austin, S. E. et al., 2019: Enabling local public health adaptation to climate change. Social Science & Medicine, 220, 236-244, doi:https://doi.org/10.1016/j.socscimed.2018.11.002. 20 Austin, S. E. et al., 2018: Intergovernmental relations for public health adaptation to climate change in the federalist 21 states of Canada and Germany. Global Environmental Change, 52, 226-237, 22 doi:10.1016/j.gloenvcha.2018.07.010. 23 Averchenkova, A. et al., 2016a: Multinational and large national corporations and climate adaptation: are we asking the 24 right questions? A review of current knowledge and a new research perspective. Wiley Interdisciplinary Reviews-25 *Climate Change*, 7(4), 517-536, doi:10.1002/wcc.402. 26 Averchenkova, A. et al., 2016b: Multinational and large national corporations and climate adaptation: are we asking the 27 right questions? A review of current knowledge and a new research perspective: Multinational and large national 28 corporations and climate adaptation. Wiley Interdisciplinary Reviews: Climate Change, 7(4), 517-536, 29 30 doi:10.1002/wcc.402. Bachner, G., 2017: Assessing the economy-wide effects of climate change adaptation options of land transport systems 31 in Austria. Regional Environmental Change, 17(3), 929-940, doi:10.1007/s10113-016-1089-x. 32 Bachner, G. and B. Bednar-Friedl, 2019: The Effects of Climate Change Impacts on Public Budgets and Implications of 33 34 Fiscal Counterbalancing Instruments. Environmental Modeling & Assessment, 24(2), 121-142, doi:10.1007/s10666-018-9617-3. 35 Bachner, G., B. Bednar-Friedl and N. Knittel, 2019: How does climate change adaptation affect public budgets? 36 Development of an assessment framework and a demonstration for Austria. Mitigation and Adaptation Strategies 37 for Global Change, doi:10.1007/s11027-019-9842-3. 38 Backer, H. et al., 2010: HELCOM Baltic Sea Action Plan - A regional programme of measures for the marine 39 environment based on the Ecosystem Approach. Marine Pollution Bulletin, 60(5), 642-649, 40 doi:10.1016/j.marpolbul.2009.11.016. 41 Baird, D. et al., 2019: Ecosystem response to increasing ambient water temperatures due to climate warming in the Sylt-42 R \o m \o Bight, northern Wadden Sea, Germany. Estuarine, Coastal and Shelf Science, 106322, 43 doi:10.1016/j.ecss.2019.106322. 44 Baker-Austin, C., J. Trinanes, N. Gonzalez-Escalona and J. Martinez-Urtaza, 2017: Non-Cholera Vibrios: The 45 Microbial Barometer of Climate Change. Trends in Microbiology, 25(1), 76-84, 46 47 doi:papers3://publication/doi/10.1016/j.tim.2016.09.008. Baldocchi, D. and J. Penuelas, 2019a: Natural carbon solutions are not large or fast enough. *Global Change Biology*, 48 25(7), e5-e5, doi:10.1111/gcb.14654. 49 Baldocchi, D. and J. Penuelas, 2019b: The physics and ecology of mining carbon dioxide from the atmosphere by 50 ecosystems. Global change biology. 51 Balint, M. et al., 2011: Cryptic biodiversity loss linked to global climate change. Nature Climate Change, 1(6), 313-52 318, doi:10.1038/NCLIMATE1191. 53 Ballantyne, A. et al., 2017a: Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced 54 respiration. Nature Climate Change, 7(2), 148-152, doi:10.1038/nclimate3204. 55 Ballantyne, A. et al., 2017b: Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced 56 respiration. Nature Climate Change, 7, 148, doi:10.1038/nclimate3204 57 https://www.nature.com/articles/nclimate3204#supplementary-information. 58 Ballinger, R., 2015: On the Edge: Coastal Governance and Risk. In: Risk Governance. Springer, Dordrecht, Dordrecht, 59 pp. 373-394. ISBN 978-94-017-9327-8. 60 Balouin, Y., F. Longueville and Y. Colombet (eds.), Video monitoring of soft coastal defenses at the Lido of Sète, 61 France. Conférence Méditerranéenne Côtière et Maritime - Coastal and Maritime Mediterranean Conference, 62 2015, Editions Paralia, 191-196 pp. ISBN 978-2-35921-015-6. 63

- Bamberg, S., T. Masson, K. Brewitt and N. Nemetschek, 2017: Threat, coping and flood prevention A meta-analysis. 1 Journal of Environmental Psychology, 54, 116-126, doi:https://doi.org/10.1016/j.jenvp.2017.08.001. 2 Bank of England, 2015: The impact of climate change on the UK insurance sector. London, 87 pp. 3 Bank of England, 2019: A framework for assessing financial impacts of physical climate change - a practitioner's aide 4 for the general insurance sector. 85 pp. 5 Barange, M. et al., 2014: Impacts of climate change on marine ecosystem production in societies dependent on 6 fisheries. Nature Climate Change, 4(3), 211-216, doi:10.1038/nclimate2119. 7 Baron, N. and L. K. Petersen, 2015: Climate change or variable weather: rethinking Danish homeowners' perceptions 8 of floods and climate. Regional Environmental Change, 15(6), 1145-1155, doi:10.1007/s10113-014-0701-1. 9 Barredo, J., G. Caudullo and A. Dosio, 2016: Mediterranean habitat loss under future climate conditions: Assessing 10 impacts on the Natura 2000 protected area network. Applied Geography, 75, 83-92, 11 doi:10.1016/j.apgeog.2016.08.003. 12 Barriopedro, D. et al., 2011: The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. Science, 13 332(6026), 220-224, doi:10.1126/science.1201224. 14 Barth, N.-C. and P. Döll, 2016: Assessing the ecosystem service flood protection of a riparian forest by applying a 15 cascade approach. *Ecosystem Services*, **21**, 39-52, doi:10.1016/j.ecoser.2016.07.012. 16 17 Bartok, B. et al., 2017: Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-18 CORDEX regional climate models for Europe. Climate Dynamics, 49(7-8), 2665-2683, doi:10.1007/s00382-016-19 3471-2. Battiston, S. et al., 2017: A climate stress-test of the financial system. Nature Climate Change, 7(4), 283-288, 20 doi:10.1038/nclimate3255. 21 Baudron, A. R. et al., 2020: Changing fish distributions challenge the effective management of European fisheries. 22 Ecography, 43(4), 494-505, doi:papers3://publication/doi/10.1111/ecog.04864. 23 Becchi, C., I. Ortolani, A. Muir and S. Cannicci, 2014: The effect of breakwaters on the structure of marine soft-bottom 24 assemblages: A case study from a North-Western Mediterranean basin. Marine Pollution Bulletin, 87(1-2), 131-25 139, doi:10.1016/j.marpolbul.2014.08.002. 26 Becker, A., A. K. Y. Ng, D. McEvoy and J. Mullett, 2018: Implications of climate change for shipping: Ports and 27 supply chains. Wiley Interdisciplinary Reviews-Climate Change, 9(2), doi:10.1002/wcc.508. 28 Behrens, P. et al., 2017: Climate change and the vulnerability of electricity generation to water stress in the European 29 Union. Nature Energy, 2(8), doi:10.1038/nenergy.2017.114. 30 BEIS, 2019: BEIS Public Attitudes Tracker: Wave 29 - key findings. Available at: 31 32 https://www.gov.uk/government/collections/public-attitudes-tracking-survey. 33 Beland Lindahl, K., A. Johansson, A. Zachrisson and R. Viklund, 2018: Competing pathways to sustainability? 34 Exploring conflicts over mine establishments in the Swedish mountain region. Journal of Environmental Management, 218, 402-415, doi:10.1016/j.jenvman.2018.04.063. 35 Beland Lindahl, K. et al., 2017: The Swedish forestry model: More of everything? Forest Policy and Economics, 77, 36 44-55, doi:10.1016/j.forpol.2015.10.012. 37 Bell, R. J., J. Odell, G. Kirchner and S. Lomonico, 2020: Actions to Promote and Achieve Climate-Ready Fisheries: 38 Summary of Current Practice. Mar Coast Fish, 12(3), 166-190, doi:10.1002/mcf2.10112. 39 Belonovskaya, E. A. et al., 2016: "Greening" of the Russian Arctic and the Modern Trends of Transformation of Its 40 Biota. Izvestiva Rossiiskoi Akademii Nauk,(3), 28-39. 41 Belyakova, P. A., V. M. Moreido and A. I. Pyankova, 2018: Flood fatalities age and gender structure analysis in Russia 42 in 2000-2014. In: Third Vinogradov's Readings. Facets of hydrology, Saint Pitersburg, Russia, [Makarieva, O. M. 43 (ed.)], High technology, pp. 849-853. 44 Ben-Ari, T. et al., 2018: Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of 45 46 France. Nature Communications, 9(1), doi:10.1038/s41467-018-04087-x. 47 Beniston, M. et al., 2018: The European mountain cryosphere: a review of its current state, trends, and future challenges. The Cryosphere, 12(2), 759-794, doi:10.5194/tc-12-759-2018. 48 Beniston, M. and M. Stoffel, 2016: Rain-on-snow events, floods and climate change in the Alps: Events may increase 49 with warming up to 4 °C and decrease thereafter. Science of the Total Environment, 571(May 1999), 228-236, 50 51 doi:10.1016/j.scitotenv.2016.07.146. Bennema, F. P., 2018: Long-term occurrence of Atlantic bluefin tuna Thunnus thynnus in the North Sea: contributions 52 of non-fishery data to population studies. Fisheries Research, 199(February 2017), 177-185, 53 doi:10.1016/j.fishres.2017.11.019. 54 Benzie, M., T. R. Carter, H. Carlsen and R. Taylor, 2019: Cross-border climate change impacts: implications for the 55 European Union. Regional Environmental Change, 19(3), 763-776, doi:10.1007/s10113-018-1436-1. 56 Benzie, M. and A. Persson, 2019: Governing borderless climate risks: moving beyond the territorial framing of 57 adaptation. International Environmental Agreements: Politics, Law and Economics, 19, 369 – 393. 58
- Berdalet, E. et al., 2017: GlobalHAB A New Program to Promote International Research, Observations, and Modeling
 of Harmful Algal Blooms in Aquatic Systems. *Oceanography*, **30**(1), 70-81,
- 61 doi:papers3://publication/doi/10.5670/oceanog.2017.111.
- Berge, J. et al., 2005: Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard
 after a 1000 year absence. *Marine Ecology-Progress Series-*, **303**, 167--175.

Berghuijs, W. R., S. T. Allen, S. Harrigan and J. W. Kirchner, 2019: Growing Spatial Scales of Synchronous River 1 Flooding in Europe. Geophysical Research Letters, 46(3), 1423-1428, doi:10.1029/2018GL081883. 2 Berkhout, F. et al., 2015: European policy responses to climate change: progress on mainstreaming emissions reduction 3 and adaptation. Regional Environmental Change, 15(6), 949-959, doi:10.1007/s10113-015-0801-6. 4 Bernabucci, U. et al., 2014: The effects of heat stress in Italian Holstein dairy cattle. Journal of Dairy Science, 97(1), 5 471-486, doi:10.3168/jds.2013-6611. 6 Berrang-ford, L. et al., Submitted: Health effects of climate change adaptation options and responses: evidence and 7 reporting. Environmental Research Letters. 8 Berry, P., R. Betts, P. Harrison and A. Sanchez-Arcilla, 2017: High-end climate change in Europe. Impacts, 9 Vulnerability and Adaption. 10 Berry, P. et al., 2018: Assessing Health Vulnerabilities and Adaptation to Climate Change: A Review of International 11Progress. International Journal of Environmental Research and Public Health, 15(12), 2626. 12 Berry, P. M. et al., 2015: Cross-sectoral interactions of adaptation and mitigation measures. Climatic Change, 128(3-4), 13 381-393, doi:10.1007/s10584-014-1214-0. 14 Bett, B. et al., 2017: Effects of climate change on the occurrence and distribution of livestock diseases. Preventive 15 Veterinary Medicine, 137(November 2015), 119-129, doi:10.1016/j.prevetmed.2016.11.019. 16 Bevacqua, E. et al., 2019: Higher probability of compound flooding from precipitation and storm surge in Europe under 17 anthropogenic climate change. Science Advances, 5(9), eaaw5531, doi:10.1126/sciadv.aaw5531. 18 19 Biedermann, T. et al., 2019: Birch pollen allergy in Europe. *Allergy*, 74(7), 1237-1248, doi:10.1111/all.13758. Biesbroek, G. R. et al., 2010: Europe adapts to climate change: Comparing National Adaptation Strategies. Global 20 Environmental Change, 20(3), 440-450, doi:10.1016/j.gloenvcha.2010.03.005. 21 Biesbroek, R. and J. J. L. Candel, 2019: Mechanisms for policy (dis)integration: explaining food policy and climate 22 change adaptation policy in the Netherlands. Policy Sciences, doi:10.1007/s11077-019-09354-2. 23 Biesbroek, R. and A. Delaney, 2020: Mapping the evidence of climate change adaptation policy instruments in Europe. 24 Environmental Research Letters, 15(8), 83005-83005, doi:10.1088/1748-9326/ab8fd1. 25 Biesbroek, R. et al., 2018: Do Administrative Traditions Matter for Climate Change Adaptation Policy? A Comparative 26 Analysis of 32 High-Income Countries. Review of Policy Research, 35(6), 881-906, doi:10.1111/ropr.12309. 27 Bindoff, N. L., W. L. Cheung and J. G. Kairo, 2019: Chapter 5: Changing Ocean, Marine ecosystems, and dependent 28 communities. In: SROOC. 29 Birchenough, S. N. R. et al., 2015: Climate change and marine benthos: a review of existing research and future 30 directions in the North Atlantic. Wiley Interdisciplinary Reviews: Climate Change, 6(2), 203--223, 31 doi:10.1002/wcc.330. 32 33 Bird, D. N. et al., 2019: Estimating the daily peak and annual total electricity demand for cooling in Vienna, Austria by 34 2050. Urban Climate, 28, doi:10.1016/j.uclim.2019.100452. Bisaro, A. and J. Hinkel, 2018: Mobilizing private finance for coastal adaptation: A literature review. WIREs Climate 35 *Change*, **9**(3), e514, doi:10.1002/wcc.514. 36 Bisbis, M. B., N. Gruda and M. Blanke, 2018: Potential impacts of climate change on vegetable production and product 37 quality - A review. Journal of Cleaner Production, 170, 1602-1620, 38 doi:https://doi.org/10.1016/j.jclepro.2017.09.224. 39 Bisselink, B. et al., 2020: Climate change and Europe's water resources, ISBN 9789276103981. 40 Bjorst, L. R. and C. Ren, 2015: Steaming Up or Staving Cool? Tourism Development and Greenlandic Futures in the 41 Light of Climate Change. Arctic Anthropology, 52(1), 91-101, doi:10.3368/aa.52.1.91. 42 Blanchet, M.-A. et al., 2019: How vulnerable is the European seafood production to climate warming? Fisheries 43 Research, 209, 251-258, doi:10.1016/j.fishres.2018.09.004. 44 Blauhut, V., L. Gudmundsson and K. Stahl, 2015: Towards pan-European drought risk maps: quantifying the link 45 between drought indices and reported drought impacts. Environmental Research Letters, 10(1), 014008, 46 47 doi:10.1088/1748-9326/10/1/014008. Bloemen, P. J. T. M. et al., 2019: DMDU into Practice: Adaptive Delta Management in The Netherlands. In: Decision 48 Making under Deep Uncertainty: From Theory to Practice [Marchau, V. A. W. J., W. E. Walker, P. J. T. M. 49 Bloemen and S. W. Popper (eds.)]. Springer International Publishing, Cham, pp. 321-351. ISBN 978-3-030-50 51 05252-2. Bloschl, G. et al., 2017: Changing climate shifts timing of European floods. Science, 357(6351), 588-590, 52 doi:10.1126/science.aan2506. 53 Blöschl, G. et al., 2017: Changing climate shifts timing of European floods. Science, 357(6351), 588-590, 54 doi:10.1126/science.aan2506. 55 Blöschl, G. et al., 2019: Changing climate both increases and decreases European river floods. *Nature*, 573, 108–111. 56 BMUB, 2017: Achieving aims together. The Federal Environment Ministry's International Climate Initiative. Review of 57 Activities 2015 to 2016. Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety 58 59 (BMUB), Berlin. Bock, A. et al., 2014: Changes in first flowering dates and flowering duration of 232 plant species on the island of 60 Guernsey. Global Change Biology, 20(11), 3508-3519, doi:10.1111/gcb.12579. 61 13-164 Total pages: 216 Do Not Cite, Quote or Distribute

1	Bodoque, J. M. et al., 2019: Enhancing flash flood risk perception and awareness of mitigation actions through risk
2	communication: A pre-post survey design. <i>Journal of Hydrology</i> , 568 , 769-779, doi:https://doi.org/10.1016/i.ibydrol.2018.11.007
4	Boeckmann, M. and T. A. Jovner. 2014: Old health risks in new places? An ecological niche model for <i>Lricinus</i> tick
т 5	distribution in Europe under a changing climate <i>Health & place</i> 30 70-77
6	Boeckmann M and H Zeeb 2014: Using a Social Justice and Health Framework to Assess European Climate Change
7	Adaptation Strategies International Journal of Environmental Research and Public Health 11(12) 12389-12411
8	Bogdanovich A Y and O N Linka 2020: THE SINERGY OF THE CLIMATE GLOBAL SUSTAINABLE
9	DEVELOPMENT GOAL AND THE NATIONAL ADAPTATION PLAN IN RUSSIA Problems of
10	environmental monitoring and modelling of ecosystems (3-4) in press
11	Bogmans, C., G. Dijkema and M. van Vliet, 2017: Adaptation of thermal power plants: The (ir)relevance of climate
12	(change) information. <i>Energy Economics</i> , 62 , 1-18, doi:10.1016/j.eneco.2016.11.012.
13	Bokhorst, S. et al., 2016: Changing Arctic snow cover: A review of recent developments and assessment of future needs
14	for observations, modelling, and impacts. Ambio, 45(5), 516-537, doi:10.1007/s13280-016-0770-0.
15	Bollinger, L. A. and G. P. J. Dijkema, 2016: Evaluating infrastructure resilience to extreme weather – The case of the
16	Dutch electricity transmission network. European Journal of Transport and Infrastructure Research, 16(1), 214-
17	239.
18	Bombelli, G. M., A. Soncini, A. Bianchi and D. Bocchiola, 2019: Potentially modified hydropower production under
19	climate change in the Italian Alps. Hydrological Processes, 33(17), 2355-2372, doi:10.1002/hyp.13473.
20	Bondu, R., V. Cloutier, E. Rosa and M. Benzaazoua, 2016: A Review and Evaluation of the Impacts of Climate Change
21	on Geogenic Arsenic in Groundwater from Fractured Bedrock Aquifers. Water Air and Soil Pollution, 227(9),
22	doi:10.1007/s11270-016-2936-6.
23	Boost, M. and L. Meier, 2017: Resilient practices of consumption in times of crisis-Biographical interviews with
24	members of vulnerable households in Germany. International Journal of Consumer Studies, 41(4), 371-378,
25	doi:10.1111/ijcs.12346.
26	Borderon, M. et al., 2019: Migration influenced by environmental change in Africa: A systematic review of
27	empirical evidence. <i>Demographic Research</i> , 41 (18), 491-454 494.
28	Borsheim, K. Y., 2017: Bacterial and primary production in the Greenland Sea. <i>Journal of Marine Systems</i> , 176 , 54-63,
29	doi:papers3://publication/doi/10.1016/j.jmarsys.2017.08.003.
30	Bosello, F. et al., 2020: <i>Macroeconomic, spatially-resolved impact assessment</i> . CMCC, Venice, Italy. Available at:
31	https://www.coacch.eu/wp-content/uploads/2020/10/D2.7_final.pdf
32	Bosello, F. et al., 2018: Economy-wide impacts of climate mitigation and adaptation strategies across European
33	Regions. In: Adapting to Climate Change in Europe [H, S., H. M, R. D, PL. G and C. A (eds.)]. Elsevier Inc.
34	Bosson, J. B., M. Huss and E. Osipova, 2019: Disappearing world Heritage Glaciers as a Keystone of Nature
35	Conservation in a Changing Chimate. Earth's Future, 7(4), 409-479, doi:10.1029/2018EF001159.
27	near zero through elevation. Mitigation and Adaptation Stratagies for Global Change 18(2), 229-244
38	doi:10.1007/s11027-012-0359-5
30	Boucher M - A and M - H Ramos 2018: Ensemble Streamflow Forecasts for Hydronower Systems In: Handbook of
40	Hydrometeorological Ensemble Forecasting Springer Berlin Heidelberg Berlin Heidelberg nn 1-19 ISBN 978-
41	3-642-40457-3
42	Bouriaud, L., et al., 2015: Institutional factors and opportunities for adapting European forest management to climate
43	change. Regional Environmental Change, 15(8), 1595-1609, doi:10.1007/s10113-015-0852-8.
44	Bouriaud, L. et al., 2013: Governance of private forests in Eastern and Central Europe: An analysis of forest harvesting
45	and management rights. Annals of Forest Research, 56(1), 199-215.
46	Bouvier, C., Y. Balouin and B. Castelle, 2017: Video monitoring of sandbar-shoreline response to an offshore
47	submerged structure at a microtidal beach. Geomorphology, 295, 297-305, doi:10.1016/j.geomorph.2017.07.017.
48	Bouwer, L. et al., 2018: Chapter 4 - Upscaling the Impacts of Climate Change in Different Sectors and Adaptation
49	Strategies. In: Adapting to Climate Change in Europe. Elsevier, pp. 173-243. ISBN 978-0-12-849887-3.
50	Bouwer, L. M. and S. N. Jonkman, 2018: Global mortality from storm surges is decreasing. Environmental Research
51	Letters, 13(1), 014008, doi:10.1088/1748-9326/aa98a3.
52	Bouzarovski, S. and S. Petrova, 2015: A global perspective on domestic energy deprivation: Overcoming the energy
53	poverty-fuel poverty binary. Energy Research & Social Science, 10, 31-40, doi:10.1016/j.erss.2015.06.007.
54	Bowler, D. et al., 2015: A cross-taxon analysis of the impact of climate change on abundance trends in central Europe.
55	Biological Conservation, 187, 41-50.
56	Bowler, D. E. et al., 2018: The geography of the Anthropocene differs between the land and the sea. <i>bioRxiv</i> , 432880,
57	
58	BOWIER, D. E., L. BUYUNG-AII, I. IVI. KNIGHT and A. S. Pullin, 2010: Urban greening to cool towns and cities: A
59	systematic review of the empirical evidence. Landscape and Urban Planning, $\Psi(3)$, 14/-155, doi:https://doi.org/10.1016/j.londurbalay.2010.05.006
6U 61	au: <u>inups://doi.org/10.1010/j.landuropian.2010.05.006</u> . Rowler D. F. et al. 2010: Long term declines of European insectivorous hird nonvilations and notantial courses
01 62	Conservation Riology 33(5), 1120-1130, doi:10.1111/cobj.12207
02	Conservation Diology, So (5), 1120-1150, 001.10.1111/c001.15507.

1	Bowler, D. E. et al., 2017: Cross-realm assessment of climate change impacts on species' abundance trends. Nature
2	Ecology & Amp; Evolution, 1, 0067, doi:10.1038/s41559-016-0067
3	https://www.nature.com/articles/s41559-016-0067#supplementary-information.
4	Brambilla, M., P. Pedrini, A. Rolando and D. Chamberlain, 2016: Climate change will increase the potential conflict
5	between skiing and high-elevation bird species in the Alps. Journal of Biogeography, 43(11), 2299-2309,
6	doi:10.1111/jbi.12796.
7	Brännlund, I. and P. Axelsson, 2011: Reindeer management during the colonization of Sami lands: A long-term
8	perspective of vulnerability and adaptation strategies. Global Environmental Change, 21(3), 1095-1105,
9	doi: <u>https://doi.org/10.1016/j.gloenvcha.2011.03.005</u> .
10	Brännström, M., 2017: Skogsbruk och renskötsel på samma mark : en rättsvetenskaplig studie av äganderätten och
11	renskötselrätten. Umeå University, Umeå.
12	Brás, T. A., J. Jägermeyr and J. Seixas, 2019: Exposure of the EU-28 food imports to extreme weather disasters in
13	exporting countries. Food Security, 11(6), 1373-1393, doi:10.1007/s12571-019-00975-2.
14	Brasseur, G. P. and L. Gallardo, 2016: Climate services: Lessons learned and future prospects. <i>Earths Future</i> , 4(3), 79-
15	89, doi:10.1002/2015ef000338.
16	Brattland, C. and T. Mustonen, 2018: How Traditional Knowledge Comes to Matter in Atlantic Salmon Governance in
17	Norway and Finland. ARCTIC, 71 (4), 365-482, doi: <u>https://doi.org/10.14430/arctic4751</u> .
18	Bright, R. M. et al., 2017: Local temperature response to land cover and management change driven by non-
19	radiative processes. <i>Nature Climate Change</i> , 7, 296, doi:10.1038/nclimate3250
20	https://www.nature.com/articles/nclimate3250#supplementary-information.
21	Brink, E. and C. Wamsler, 2018: Collaborative Governance for Climate Change Adaptation: Mapping citizen–
22	municipality interactions. Environmental Policy and Governance, 28(2), 82-97, doi:10.1002/eet.1795.
23	Brink, E. and C. Wamsler, 2019: Citizen engagement in climate adaptation surveyed: The role of values, worldviews,
24	gender and place. Journal of Cleaner Production, 209, 1342-1353,
25	doi: https://doi.org/10.1016/j.jclepro.2018.10.164.
26	Brodie, J. et al., 2014: The future of the northeast Atlantic benthic flora in a high CO2 world. <i>Ecology and Evolution</i> ,
27	4(13), 2/8/2/98, doi:10.1002/ecc3.1105.
28	Brodribb, T. J., J. Powers, H. Cochard and B. Choat, 2020: Hanging by a thread? Forests and drought. <i>Science</i> ,
29	300 (0488), 201-200, 001:10.1120/science.aai/051.
30	small and immobile species. <i>Journal of Applied Feelogy</i> 55 (2), 621,620, doi:10.1111/1265.2664.12008
22	Brosy C. K. Zaninovia and A. Matzarakis. 2014: Quantification of climate tourism potential of Croatia based on
32 22	measured data and regional modeling. International journal of biometeorology 58(6), 1360, 1381
24	doi:10.1007/s00/84_013_0738_8
25	Brotons L et al. 2013: How Fire History Fire Suppression Practices and Climate Change Affect Wildfire Regimes in
36	Mediterranean Landscapes PLoS ONF 8(5), e62392 doi:10.1371/journal.none.0062392
37	Brugger I K W Dunbar C Jurt and B Orlove 2013: Climates of anxiety: Comparing experience of glacier retreat
38	across three mountain regions <i>Emotion Space and Society</i> 6 4-13
39	doi https://doi org/10.1016/i emospa.2012.05.001
40	Bruno, D. et al., 2014: Responses of Mediterranean aquatic and riparian communities to human pressures at different
41	spatial scales. <i>Ecological Indicators</i> , 45 , 456-464, doi:10.1016/j.ecolind.2014.04.051.
42	Bruno, J. F. et al., 2018: Climate change threatens the world's marine protected areas. <i>Nature Climate Change</i> , 8 (6).
43	499-503. doi:papers3://publication/doi/10.1038/s41558-018-0149-2.
44	Bruno Soares, M., M. Alexander and S. Dessai, 2018: Sectoral use of climate information in Europe: A synoptic
45	overview. Climate Services, 9, 5-20, doi:https://doi.org/10.1016/j.cliser.2017.06.001.
46	Bryan, K., S. Ward, S. Barr and D. Butler, 2019: Coping with Drought: Perceptions, Intentions and Decision-Stages of
47	South West England Households. Water Resources Management, 33(3), 1185-1202, doi:10.1007/s11269-018-
48	2175-2.
49	Bryndum-Buchholz, A. et al., 2019: Twenty-first-century climate change impacts on marine animal biomass and
50	ecosystem structure across ocean basins. 25(2), 459-472, doi:doi:10.1111/gcb.14512.
51	Bubeck, P. et al., 2019: Global warming to increase flood risk on European railways. <i>Climatic Change</i> , 155 (1), 19-36,
52	doi:10.1007/s10584-019-02434-5.
53	Bubeck, P. et al., 2017: Explaining differences in flood management approaches in Europe and in the USA – a
54	comparative analysis. Journal of Flood Risk Management, 10(4), 436-445, doi:10.1111/jfr3.12151.
55	Bugmann, H., T. Cordonnier, H. Truhetz and M. J. Lexer, 2017: Impacts of business-as-usual management on
56	ecosystem services in European mountain ranges under climate change. Regional Environmental Change, 17(1),
57	3-16, doi:10.1007/s10113-016-1074-4.
58	Buhaug, H. et al., 2014: One effect to rule them all? A comment on climate and conflict. <i>Climatic Change</i> , 127 (3-4),
59	391-397.
60	Bulleri, F. et al., 2018: Harnessing positive species interactions as a tool against climate-driven loss of coastal
61	biodiversity. PLoS Biology, 16(9), e2006852, doi:10.1371/journal.pbio.2006852.
62	Buras, A. and A. Menzel, 2019: Projecting Tree Species Composition Changes of European Forests for 2061–2090
63	Under RCP 4.5 and RCP 8.5 Scenarios. Front. Plant Sci., 9, doi:10.3389/fpls.2018.01986.

Burbidge, R., 2015: Adapting aviation to a changing climate: Key priorities for action. Journal of Air Transport 1 Management, 71, 167-174, doi:10.1016/j.jairtraman.2018.04.004. 2 Burke, M., S. M. Hsiang and E. Miguel, 2015: Global non-linear effect of temperature on economic production. Nature, 3 527(7577), 235-239, doi:10.1038/nature15725. 4 Burke, M. and V. Tanutama, 2019: Climatic Constraints on Aggregate Economic Output. National Bureau of Economic 5 Research, Cambridge, MA. Available at: http://www.nber.org/papers/w25779.pdf (accessed 6 2020/10/09/07:28:48). 7 Burrows, M. T. et al., 2019: Ocean community warming responses explained by thermal affinities and temperature 8 gradients. Nature Climate Change, 9(12), 959-963, doi:papers3://publication/doi/10.1038/s41558-019-0631-5. 9 Byers, E. et al., 2018: Global exposure and vulnerability to multi-sector development and climate change hotspots. 10 Environmental Research Letters, 13(5), 55012-55012, doi:10.1088/1748-9326/aabf45. 11 Byers, E. et al., 2015: Cooling water for Britain's future electricity supply. Proceedings of the Institution of Civil 12 Engineers - Energy, 168(3), 188-204, doi:10.1680/ener.14.00028. 13 Byers, E. A. et al., 2016: Water and climate risks to power generation with carbon capture and storage. Environmental 14 Research Letters, 11(2), 024011, doi:10.1088/1748-9326/11/2/024011. 15 Caffarra, A. et al., 2012: Modelling the impact of climate change on the interaction between grapevine and its pests and 16 17 pathogens: European grapevine moth and powdery mildew. Agriculture, Ecosystems & Environment, 148, 89-101, 18 doi:https://doi.org/10.1016/j.agee.2011.11.017. Callaghan, M. W., J. C. Minx and P. M. Forster, 2020: A topography of climate change research. Nature Climate 19 Change, 10(2), 118-123, doi:10.1038/s41558-019-0684-5. 20 Calvo, L., V. Hernández, L. Valbuena and A. Taboada, 2016: Provenance and seed mass determine seed tolerance to 21 high temperatures associated to forest fires in Pinus pinaster. Annals of Forest Science, 73(2), 381-391, 22 doi:10.1007/s13595-015-0527-0. 23 Cameron, R. W. F., J. E. Taylor and M. R. Emmett, 2014: What's 'cool' in the world of green façades? How plant 24 choice influences the cooling properties of green walls. Building and Environment, 73, 198-207, 25 doi:https://doi.org/10.1016/j.buildenv.2013.12.005. 26 Caminade, C. et al., 2017: Global risk model for vector-borne transmission of Zika virus reveals the role of El Nino 27 2015. Proceedings of the National Academy of Sciences of the United States of America, 114(1), 119-124, 28 doi:10.1073/pnas.1614303114. 29 Cammalleri, C. et al., 2020: Global warming and drought impacts in the EU. Publications Office of the European 30 31 Union, doi:10.2760/597045. 32 Campos Rodrigues, L., J. Freire-González, A. González Puig and I. Puig-Ventosa, 2018: Climate Change Adaptation of 33 Alpine Ski Tourism in Spain. *Climate*, **6**(2), doi:10.3390/cli6020029. 34 Camus, P. et al., 2019: Probabilistic assessment of port operation downtimes under climate change. Coastal Engineering, 147, 12-24, doi: https://doi.org/10.1016/j.coastaleng.2019.01.007. 35 Cañedo-Argüelles, M. et al., 2019: Freshwater conservation planning informed and validated by public participation: 36 The Ebro catchment, Spain, as a case study. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(8), 37 1253-1267, doi:10.1002/agc.3108. 38 Caporin, M. and F. Fontini, 2016: Chapter 5 - Damages Evaluation, Periodic Floods, and Local Sea Level Rise: The 39 Case of Venice, Italy. In: Handbook of Environmental and Sustainable Finance [Ramiah, V. and G. N. Gregoriou 40 (eds.)]. Academic Press, San Diego, pp. 93-110. ISBN 978-0-12-803615-0. 41 Capstick, S. et al., 2015: International trends in public perceptions of climate change over the past quarter century. 42 Wiley Interdisciplinary Reviews: Climate Change, 6(1), 35-61, doi:10.1002/wcc.321. 43 Capuzzo, E. et al., 2018: A decline in primary production in the North Sea over 25 years, associated with reductions in 44 45 zooplankton abundance and fish stock recruitment. Global Change Biology, 24(1), e352--e364, 46 doi:10.1111/gcb.13916. 47 Carmona, R. et al., 2016a: Geographical variation in relative risks associated with cold waves in Spain: the need for a cold wave prevention plan. Environment international, 88, 103-111. 48 Carmona, R. et al., 2016b: Mortality attributable to extreme temperatures in Spain: A comparative analysis by city. 49 Environment International, 91, 22-28, doi:https://doi.org/10.1016/j.envint.2016.02.018. 50 Carnicer, J. et al., 2019a: Regime shifts of Mediterranean forest carbon uptake and reduced resilience driven by 51 multidecadal ocean surface temperatures. Global Change Biology, 25(8), 2825-2840, doi:10.1111/gcb.14664. 52 Carnicer, J. et al., 2019b: Regime shifts of Mediterranean forest carbon uptake and reduced resilience driven by 53 multidecadal ocean surface temperatures. Global Change Biology, 0(0), doi:10.1111/gcb.14664. 54 Carnicer, J. et al., 2019c: Phenotypic biomarkers of climatic impacts on declining insect populations: A key role for 55 decadal drought, thermal buffering and amplification effects and host plant dynamics. Journal of Animal Ecology, 56 88(3), 376-391, doi:10.1111/1365-2656.12933. 57 Carnicer, J. et al., 2017: Evolutionary Responses of Invertebrates to Global Climate Change: the Role of Life-History 58 Trade-Offs and Multidecadal Climate Shifts. In: Global Climate Change and Terrestrial Invertebrates [Johnson, 59 S. N. and T. H. Jones (eds.)], pp. 317-348. 60 Carnielo, E. and M. Zinzi, 2013: Optical and thermal characterisation of cool asphalts to mitigate urban temperatures 61 and building cooling demand. Building and Environment, 60, 56-65, 62 doi:https://doi.org/10.1016/j.buildenv.2012.11.004. 63

1	Carozza D A D Bianchi and F D Galbraith 2019: Metabolic impacts of climate change on marine ecosystems:
2	Implications for fish communities and fisheries. <i>Global Ecology and Biogeography</i> , 28 (2), 158-169,
3	doi:papers3://publication/doi/10.1111/geb.12832.
4	Carrizo, S. F. et al., 2017: Critical catchments for freshwater biodiversity conservation in Europe: identification,
5	prioritisation and gap analysis. <i>Journal of Applied Ecology</i> , $54(4)$, 1209-1218, doi:10.1111/1365-2664.12842.
6	Carroll, B., H. Morbey, R. Balogh and G. Araoz, 2009: Flooded homes, broken bonds, the meaning of home,
7	psychological processes and their impact on psychological health in a disaster. Health & Place, 15(2), 540-54/,
8	Corroll D and E Aprrevence 2008.008.009.
9	for Adaptation to Climate Change <i>Geosciences</i> 8 (9) 322 doi:10.3390/geosciences8090322
11	Carstensen, J., J. H. Andersen, B. G. Gustafsson and D. J. Conley. 2014: Deoxygenation of the Baltic Sea during the
12	last century. Proceedings of the National Academy of Sciences, 111(15), 5628-5633.
13	doi:10.1073/pnas.132315611.
14	Carter, J. G., J. Handley, T. Butlin and S. Gill, 2018: Adapting cities to climate change – exploring the flood risk
15	management role of green infrastructure landscapes. Journal of Environmental Planning and Management, 61(9),
16	1535-1552, doi:10.1080/09640568.2017.1355777.
17	Carvalho, D. et al., 2017a: Urban resilience to future urban heat waves under a climate change scenario: A case study
18	for Porto urban area (Portugal). Urban Climate, 19, 1-27, doi: <u>https://doi.org/10.1016/j.uclim.2016.11.005</u> .
19	Carvalho, D., A. Rocha, M. Gomez-Gesteira and C. Santos, 2017b: Potential impacts of climate change on European
20	wind energy resource under the CMIPS future climate projections. <i>Renewable Energy</i> , 101 , 29-40,
21	uol. 10. 1010/J. Tenene. 2010.08.050. Carvalho N et al. 2017c: The 2017 annual economic report on the FU fishing fleet (STECE 17.12) ISBN 078-02-70-
22	73426-7
23	Casanueva, A. et al., 2020: Escalating environmental summer heat exposure—a future threat for the European
25	workforce. <i>Regional Environmental Change</i> , 20 (2), 40, doi:10.1007/s10113-020-01625-6.
26	Cassarino, T., E. Sharp and M. Barrett, 2018: The impact of social and weather drivers on the historical electricity
27	demand in Europe. Applied Energy, 229, 176-185, doi:10.1016/j.apenergy.2018.07.108.
28	Castellanos-Galindo, G. A., D. R. Robertson and M. E. Torchin, 2020: A new wave of marine fish invasions through
29	the Panama and Suez canals. Nature Ecology & Evolution, 29, 1-3, doi:papers3://publication/doi/10.1038/s41559-
30	020-01301-2.
31	Castelle, B. et al., 2018: Spatial and temporal patterns of shoreline change of a 280-km high-energy disrupted sandy
32	coast from 1950 to 2014: SW France. Estuarine, Coastal and Shelf Science, 200, 212-223, deithttps://doi.org/10.1016/j.orgs.2017.11.005
33 34	Castelletto N et al. 2008: Can Venice be raised by numping water underground? A nilot project to belp decide. <i>Water</i>
35	Resources Research 44(1)
36	Castellnou, M. and a. et, 2018: Fire growth patterns in the 2017 mega fire episode of October 15, central Portugal. In:
37	Advances in forest fire research 2018, 1 ed. Imprensa da Universidade de Coimbra, pp. 447-453. ISBN 978-989-
38	26-1650-6.
39	Cattaneo, C. et al., 2019: Human Migration in the Era of Climate Change. Rev Environ Econ Policy, 13(2), 189-206,
40	doi:10.1093/reep/rez008.
41	Cavallo, M. et al., 2019: Impediments to achieving integrated marine management across borders: The case of the EU
42	Marine Strategy Framework Directive. <i>Marine Policy</i> , 103 , 68-73,
43	doi:papers3://publication/doi/10.1016/j.marpoi.2019.02.033.
44 45	6 34-40 doi:https://doi.org/10.1016/j.cliser.2017.06.010
46	CBS. PBL and WageningenUR, 2019: Temperatuur oppervlaktewater. Temperatuur oppervlaktewater, 1910-
47	2013. (indicator 0566, versie 02, 3 juni 2014). http://www.clo.nl/nl0566.
48	CDP, 2019: Open Data Portal. Available at: https://data.cdp.net/.
49	CDP, 2020: The co-benefits of climate action: Accelerating city-level ambition.
50	doi: https://www.cdp.net/en/research/global-reports/co-benefits-climate-
51	action#671b3beee69d9180412202b6528ec8f7.
52	Ceccherini, G. et al., 2020: Abrupt increase in harvested forest area over Europe after 2015. <i>Nature</i> , 583 (7814), 72-77,
53	doi:10.1038/s41586-020-2438-y.
54 55	circulation in Europe Agricultural and Forest Mateorology 240 241, 25, 45
55 56	doi:10.1016/i.agrformet 2017.03.019
50 57	Ceglar, A., M. Zampieri, A. Toreti and F. Dentener. 2019: Observed Northward Migration of Agro-Climate Zones in
58	Europe Will Further Accelerate Under Climate Change. <i>Earth's Future</i> . 7 (9). 1088-1101.
59	doi:10.1029/2019EF001178.
60	Cellura, M., F. Guarino, S. Longo and G. Tumminia, 2018: Climate change and the building sector: Modelling and
61	energy implications to an office building in southern Europe. Energy for Sustainable Development, 45, 46-65,
62	doi: <u>https://doi.org/10.1016/j.esd.2018.05.001</u> .

1 2	Cervellin, G. et al., 2014: The number of emergency department visits for psychiatric emergencies is strongly associated with mean temperature and humidity variations. Results of a nine year survey. <i>Emergency Care</i>
3	<i>Journal</i> , 10 (1).
4 5	Challinor, A. et al., 2016a: UK Climate Change Risk Assessment Evidence Report 2017: Chapter 7, International Dimensions.
6 7	Challinor, A. J. et al., 2016b: Current warming will reduce yields unless maize breeding and seed systems adapt immediately. <i>Nature Climate Change</i> 6 (10), 954-958, doi:10.1038/nclimate3061
8	Challinor, A. J. et al., 2018: Improving the use of the use of the proving the
9	Agricultural Systems, 159 , 296-306, doi: <u>https://doi.org/10.1016/j.agsy.2017.07.010</u> .
10	Chambwera, M. et al., 2014: Economics of adaptation. In: <i>Climate Change 2014: Impacts, Adaptation, and</i>
11	Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment
12	Report of the Intergovernmental Panel of Climate Change [Field, C. B., V. K. Barros, D. J. Dokken, K. J. Mach,
13	M. D. Masurandrea, I. E. Billi, M. Chauterjee, K. L. Eol, I. O. Estrada, K. C. Genova, B. Giffild, E. S. Kissel, A. N. Louy, S. MasCraakan, D. P. Mastrandrea and L. L. White (add.)] Cambridge University Dress, Combridge
14	N. Levy, S. MacCracken, F. K. Mastrandrea and L. L. white (eds.)]. Camoridge University Press, Camoridge, United Kingdom and New York, NY, USA, np. XXX-VVV
15	Charlier L et al. 2016: Climate-driven longitudinal trends in pasture-horne helminth infections of dairy cattle
17	International Journal for Parasitology 46 (13-14) 881-888 doi:10.1016/i.jipara 2016.09.001
18	Chatzopoulos, T., I. Pérez Domínguez, M. Zampieri and A. Toreti, 2020: Climate extremes and agricultural commodity
19	markets: A global economic analysis of regionally simulated events. <i>Weather and Climate Extremes</i> , 27,
20	doi:10.1016/j.wace.2019.100193.
21	Chausson, A. et al., 2020: Mapping the effectiveness of nature-based solutions for climate change adaptation. <i>Global</i>
22	Change Biology, 67, 6134-6155, doi:papers3://publication/doi/10.1111/gcb.15310.
23	Chen, I. C. et al., 2011: Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science,
24	333 (6045), 1024, doi:10.1126/science.1206432.
25	Chernet Haregewoin, H., K. Alfredsen and H. Midttømme Grethe, 2014: Safety of Hydropower Dams in a Changing
26	Climate. Journal of Hydrologic Engineering, 19(3), 569-582, doi:10.1061/(ASCE)HE.1943-5584.0000836.
27	Univers, W. J., A. W. Walne and G. C. Hays, 2017: Mismatch between marine plankton range movements and the
20	doi:naners3://nublication/doi/10.1038/ncomms14434
30	Christel L et al 2018: Introducing design in the development of effective climate services <i>Climate Services</i> 9 111-
31	121, doi:https://doi.org/10.1016/j.cliser.2017.06.002.
32	Christodoulou, A., P. Christidis and H. Demirel, 2018: Sea-level rise in ports: a wider focus on impacts. Maritime
33	Economics & Logistics, doi:10.1057/s41278-018-0114-z.
34	Christodoulou, A. and H. Demirel, 2018: Impacts of climate change on transport: A focus on airports, seaports and
35	inland waterways. Publications Office of the European Union, Luxembourg, 50 pp.
36	Church, A., R. Mitchell, N. Ravenscroft and L. M. Stapleton, 2015: 'Growing your own': A multi-level modelling
37	approach to understanding personal food growing trends and motivations in Europe. <i>Ecological Economics</i> , 110 , 71, 80, doi:10.1016/j.ecological.2014.12.002
38	/1-80, doi:10.1010/J.ecolecon.2014.12.002.
39 40	437 (7058) 529-533 doi:10.1038/nature03972
41	Ciais. P. et al., 2019: Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient.
42	<i>Nature</i> , 568 (7751), 221-225, doi:10.1038/s41586-019-1078-6.
43	Ciasca, F., A. Sallati and N. Tolu (eds.), Italian national resilience plan 2017: For a more reliable grid. 2017 AEIT
44	International Annual Conference, 20-22 Sept. 2017, 1-5 pp.
45	Cid, N. et al., 2017: High Variability Is a Defining Component of Mediterranean-Climate Rivers and Their Biota.
46	Water, 9(1), 52, doi:10.3390/w9010052.
47	Ciscar, JC. et al., 2014: Climate impacts in Europe-The JKC PESETA II project. EUR – Scientific and Technical
40 40	Clar C 2019: Coordinating climate change adaptation across levels of government: the gap between theory and
50	practice of integrated adaptation strategy processes. Journal of Environmental Planning and Management, 1-20.
51	doi:10.1080/09640568.2018.1536604.
52	Clar, C. and R. Steurer, 2019: Climate change adaptation at different levels of government: Characteristics and
53	conditions of policy change. Natural Resources Forum, 43(2), 121-131, doi:10.1111/1477-8947.12168.
54	Clark, N. J., J. T. Kerry and C. I. Fraser, 2020: Rapid winter warming could disrupt coastal marine fish community
55	structure. <i>Nature Climate Change</i> , 10 (9), 862-867, doi:10.1038/s41558-020-0838-5.
56	Clark, P. U. et al., 2016: Consequences of twenty-first-century policy for multi-millennial climate and sea-level change.
59	Nuture Climate Change, 0(4), 500-509, doi:10.1058/nclimate2925.
50 50	Biodiversity Hotspot One Farth 2 (4) 380-384 doi:papers3://publication/doi/10.1016/j.oneear.2020.03.008
60	Clayton, S. et al., 2015: Psychological research and global climate change. <i>Nature Climate Change</i> . 5, 640-646.
61	doi:10.1038/nclimate2622.
62 63	Coffel, E. D., T. R. Thompson and R. M. Horton, 2017: The impacts of rising temperatures on aircraft takeoff performance. <i>Climatic Change</i> , 144 (2), 381-388, doi:10.1007/s10584-017-2018-9.
	$\mathbf{D}_{\mathbf{r}} \mathbf{N}_{\mathbf{r}} \mathbf{O}_{\mathbf{r}}^{\mathbf{r}} \mathbf{O}_{\mathbf{r}}^{\mathbf{r}}} \mathbf{O}_{\mathbf{r}}^{\mathbf{r}} \mathbf{O}_{\mathbf{r}} \mathbf{O}_{\mathbf{r}}^{\mathbf{r}} \mathbf{O}_{\mathbf{r}}^{\mathbf{r}} \mathbf{O}_{\mathbf{r}}^$

1 2 3	Cohen, J., K. Moeltner, J. Reichl and M. Schmidthaler, 2018a: Effect of global warming on willingness to pay for uninterrupted electricity supply in European nations. <i>Nature Energy</i> , 3 (1), 37-45, doi:10.1038/s41560-017-0045-
4	Cohen, J. M., M. J. Lajeunesse and J. R. Rohr, 2018b: A global synthesis of animal phenological responses to climate change. <i>Nature Climate Change</i> 8(3), 224-+ doi:10.1038/s41558-018-0067-3
6 7	Cohen, P., O. Potchter and A. Matzarakis, 2012: Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. <i>Building and Environment</i> , 51 , 285-295,
8	doi:https://doi.org/10.1016/j.buildenv.2011.11.020.
9 10	CoM, 2019: Covenant in Figures, Covenant of Mayors for Climate & Energy. Available at: <go to="" wos="">://WOS:000459735100001.</go>
11	Coma, R. et al., 2009: Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc
12	Natl Acad Sci USA, 106(15), 6176-6181, doi:papers3://publication/doi/10.1073/pnas.0805801106.
13 14	Comerlati, A. et al., 2003: Can CO2 help save Venice from the sea? <i>Eos, Transactions American Geophysical Union</i> , 84 (49), 546-553
15	Commission, E., 2013: A new EU Forest Strategy: for forests and the forest-based sector, COM(2013) 659.
16	Comune di, M., 2019: Milano 2030: Visione, Costruzione, Strategie, Spazi.
17	Comune di, M., 2020: Milan 2020. Adaptation strategy - Open Streets.
18	Confalonieri, U., J. Menezes and C. de Souza, 2015: Climate change and adaptation of the health sector: the case of
19	infectious diseases. Virulence, 6 (6), 550-553, doi:10.1080/21505594.2015.1023985.
20	Cook, B. I. and E. M. Wolkovich, 2016: Climate change decouples drought from early wine grape harvests in France.
21	Nature Climate Change, o(7), 713-719, doi:10.1038/nciimate2900.
22	appraisal Marine Policy doi:naners3://nublication/doi/10.1016/i marnol.2016.02.021
23	Copernicus, 2019: Copernicus Europe State of the Climate report Available at:
25	https://climate.copernicus.eu/sites/default/files/2020-07/ESOTC2019 summary v2.pdf.
26	Copernicus, 2020a: Copernicus Emergency Management Service. Available at: https://emergency.copernicus.eu/
27	(accessed 1/10/2020).
28	Copernicus, 2020b: ECMWF and Copernicus Atmosphere Monitoring Service Available at:
29	<u>https://atmosphere.copernicus.eu/</u> (accessed 1/10/2020).
30	Agricultural Practices in the Age of Austerity, XVIII ISA World Congress of Sociology (July 13-19, 2014)
32	Isaconf Available at: https://isaconf confex.com/isaconf/wc2014/webprogram/Paper65556 html
33	Corrales, X. et al., 2018: Future scenarios of marine resources and ecosystem conditions in the Eastern Mediterranean
34	under the impacts of fishing, alien species and sea warming. Scientific Reports, 8, 1-16, doi:10.1038/s41598-018-
35	32666-x.
36	Costa Alcubierre, P. et al., 2011: Prevention of large wildfires using the fire types concept, first edition: March 2011
37	ed., Generalitat de Catalunya [u.a.], Barcelona, 87 pp. ISBN 978-84-694-1457-6.
38	Cottier-Cook, E. J. et al., 2017: Non-native species. In: MCCIP Science Review. Marine Climate Change Impacts
39 40	Couasnon A et al. 2020: Measuring compound flood potential from river discharge and storm surge extremes at the
41	global scale. <i>Natural Hazards and Earth System Sciences</i> , 20 (2), 489-504, doi:10.5194/nhess-20-489-2020.
42	Cozzi, S. et al., 2019: Flow Regime and Nutrient-Loading Trends from the Largest South European Watersheds:
43	Implications for the Productivity of Mediterranean and Black Sea's Coastal Areas. Water, 11(1),
44	doi:10.3390/w11010001.
45	Cramer, W. et al., 2018: Climate change and interconnected risks to sustainable development in the Mediterranean.
46	Nature Climate Change, 8(11), 9/2-980, doi:10.1038/s41558-018-0299-2.
47	gaps Climatic Change 151(2) 79-93 doi:10.1007/s10584-018-2265-4
49	Crossley, M. et al., 2020: No net insect abundance and diversity declines across US Long Term Ecological Research
50	sites. Nature Ecology & Evolution, doi:10.1038/s41559-020-1269-4.
51	Curtis, S. et al., 2017: Adaptation to extreme weather events in complex health and social care systems: The example of
52	older people's services in England. Environment and Planning C: Politics and Space, 36(1), 67-91,
53	doi:10.1177/2399654417695101.
54	D'Amato, A. W., J. B. Bradford, S. Fraver and B. J. Palik, 2013: Effects of thinning on drought vulnerability and
55 56	doi:10.1890/13-0677.1
57	D'Amato, G. et al., 2016: Climate Change and Air Pollution: Effects on Respiratory Allergy. Allergy Asthma &
58	Immunology Research, 8(5), 391-395, doi:10.4168/aair.2016.8.5.391.
59	d'Amour, C. B. et al., 2016: Teleconnected food supply shocks. Environmental Research Letters, 11(3),
60	doi:10.1088/1748-9326/11/3/035007.
61	D'Alisa, G. and G. Kallis, 2016: A political ecology of maladaptation: Insights from a Gramscian theory of the State.
62	<i>Giodal Environmental Change</i> , 38 , 230-242, doi:10.1016/j.gloenvcha.2016.03.006.

1	D'Orazio, P. and L. Popoyan, 2019: Fostering green investments and tackling climate-related financial risks: Which
2	role for macroprudential policies? <i>Ecological Economics</i> , 160 , 25-37, doi:https://doi.org/10.1016/j.ecolecon.2019.01.029
4	Dachary-Bernard, J., H. Rev-Valette and e. B. Rulleau, 2019: Preferences among coastal and inland residents relating to
5	managed retreat: Influence of risk perception in acceptability of relocation strategies. <i>Journal of Environmental Management</i> , 232 , 772-780, doi:https://doi.org/10.1016/j.jenvman.2018.11.104.
7	Dahlke, F. T., S. Wohlrab, M. Butzin and HO. Pörtner, 2020: Thermal bottlenecks in the life cycle define climate
8	vulnerability of fish. Science, 369 (6499), 65-70, doi:papers3://publication/doi/10.1126/science.aaz3658.
9	Daire, MY. et al., 2012: Coastal Changes and Cultural Heritage (1): Assessment of the Vulnerability of the Coastal
10	Heritage in Western France. The Journal of Island and Coastal Archaeology, 7(2), 168-182,
11	doi:10.1080/15564894.2011.652340.
12	Daly, C. et al., 2020: Climate change adaptation planning for cultural heritage, a national scale methodology. <i>Journal of</i>
13	Cultural Heritage Management and Sustainable Development, ahead-of-print(ahead-of-print),
14	doi:10.1108/JCHMSD-04-2020-0053.
15	Damm, A. et al., 2017: Impacts of +2°C global warming on electricity demand in Europe. <i>Climate Services</i> , 7, 12-30,
16	doi:https://doi.org/10.1016/j.cliser.2016.07.001.
17	Daniel, M. et al., 2003: Shift of the tick Ixodes ricinus and tick-borne encephalitis to higher altitudes in Central Europe.
18 19	European Journal of Clinical Microbiology & Infectious Diseases, 22(5), 327-328, doi:10.1007/s10096-003-0918-2.
20	Danis, K. et al., 2013: Malaria in Greece: Historical and current reflections on a re-emerging vector borne disease.
21	Travel Medicine and Infectious Disease, 11(1), 8-14, doi:10.1016/j.tmaid.2013.01.001.
22	Dannevig, H. and G. K. Hovelsrud, 2016: Understanding the need for adaptation in a natural resource dependent
23	community in Northern Norway: issue salience, knowledge and values. <i>Climatic Change</i> , 135 (2), 261-275,
24	001.10.100//S10304-013-135/-1.
25	research ICES Journal of Marine Science 107 223-217 doi:naners3://publication/doi/10.1093/icesims/fsz018
20	Danovaro R et al. 2018: Limited impact of heach nourishment on macrofaunal recruitment/settlement in a site of
28	community interest in coastal area of the Adriatic Sea (Mediterranean Sea) Marine Pollution Bulletin 128 259-
29	266, doi:10.1016/j.marpolbul.2018.01.033.
30	Darmaraki, S., S. Somot, F. Sevault and P. Nabat, 2019a: Past Variability of Mediterranean Sea Marine Heatwaves.
31	Geophysical Research Letters, 0(0), doi:10.1029/2019GL082933.
32	Darmaraki, S. et al., 2019b: Future evolution of Marine Heatwaves in the Mediterranean Sea. <i>Climate Dynamics</i> , 53 (3),
33	1371-1392, doi:10.1007/s00382-019-04661-z.
34	Darmaraki, S. et al., 2019c: Future evolution of Marine Heatwaves in the Mediterranean Sea. <i>Climate Dynamics</i> , 53 (3-
35	4), 13711392, doi:10.1007/s00382-019-04661-z.
36	Daskalov, G. M. et al., 2017: Architecture of collapse: regime shift and recovery in an hierarchically structured marine
3/ 20	Destgerdi A. S. M. Sorgolini and I. Dierontoni. 2010: Climate Change Challenges to Existing Cultural Heritage Policy.
30 30	Sustainability 11(19) 5227 doi:10.3390/su11195227
40	Davis M K Abhold L Mederake and D Knoblauch 2018: Nature-based solutions in European and National policy
41	<i>frameworks.</i> 50 pp. Available at: https://ec.europa.eu/futurium/en/system/files/ged/naturvation_nature-
42	based solutions in european and national policy frameworks.pdf.
43	Davy, R., N. Gnatiuk, L. Pettersson and L. Bobylev, 2018: Climate change impacts on wind energy potential in the
44	European domain with a focus on the Black Sea. Renewable & Sustainable Energy Reviews, 81, 1652-1659,
45	doi:10.1016/j.rser.2017.05.253.
46	Day Jr, J. et al., 1999: Soil accretionary dynamics, sea-level rise and the survival of wetlands in Venice Lagoon: a field
47	and modelling approach. Estuarine, Coastal and Shelf Science, 49(5), 607-628.
48	de Bruin, K. et al., 2020: Physical Climate Risks and the Financial Sector—Synthesis of Investors' Climate Information Needs In: Handbook of Climate Services II cal Filho W and D Joseph (ads.)]. Springer International Publishing
49 50	Cham pp 135-156 ISBN 078-3-030-36874-6-078-3-030-36875-3
51	De Cian E et al 2016: Alleviating inequality in climate policy costs: an integrated perspective on mitigation damage
52	and adaptation. Environmental Research Letters, 11(7), 74015-74015, doi:10.1088/1748-9326/11/7/074015.
53	de Conick, H. and A. Revi, 2018: Chapter 4: Strengthening and implementing the Global Response. In: 1.5 report
54	[IPCC (ed.)].
55	de Coninck, H. et al., 2018: Strengthening and implementing the global response. In: Global Warming of 1.5°C. An
56	IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global
57	greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate
58	change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., Y. Zhai, HO. Pörtner, D. Babarta, J. Skap, D. P. Shukla, A. Biggri, W. Maufanna Oliz, C. Biggri, B. Bilanda, S. Commun, J. D. P.
59 60	D. RUUTIS, J. SKER, F. R. SHUKIR, A. FIRIHI, W. WOULOUMRAUKIR, U. FERN, K. FIRCOCK, S. COMMOTS, J. B. K. Matthews V. Chen, Y. Zhou, M. I. Gomis, F. Lonnov, T. Mayaoak, M. Tignor and T. Watarfield (eds.), m. 212
61	443.
62	De Frenne, P. et al., 2013: Microclimate moderates plant responses to macroclimate warming. <i>Proceedings of the</i>
63	National Academy of Sciences, 110(46), 18561, doi:10.1073/pnas.1311190110.

de Graaf, I. E. M. et al., 2019: Environmental flow limits to global groundwater pumping. Nature, 574(7776)	6), 90-94,
doi:10.1038/s41586-019-1594-4. De Graaf, I. E. M., E. H. Sutanudjaja, L. P. H. Van Beek and M. F. P. Bierkens, 2015: A high-resolution glo	obal-scale
 groundwater model. Hydrology and Earth System Sciences, 19(2), 823-837, doi:10.5194/hess-19-823- de Graaf, I. E. M. et al., 2017: A global-scale two-layer transient groundwater model: Development and app groundwater depletion. Advances in Water Resources, 102, 53-67. 	-2015. Dication to
doi:https://doi.org/10.1016/j.advwatres.2017.01.011.	
De Mesel, I. et al., 2015: Succession and seasonal dynamics of the epifauna community on offshore wind fa foundations and their role as stepping stones for non-indigenous species. <i>Hydrobiologia</i> , 756 (1), 37-50 doi:papers3://publication/doi/10.1007/s10750-014-2157-1	arm 0,
 de Moel, H., J. C. J. H. Aerts and E. Koomen, 2011: Development of flood exposure in the Netherlands dur and 21st century. <i>Global Environmental Change</i>, 21(2), 620-627, 	ing the 20th
 doi:<u>https://doi.org/10.1016/j.gloenvcha.2010.12.005</u>. de Munck, C. et al., 2018: Evaluating the impacts of greening scenarios on thermal comfort and energy and consumptions for adapting Paris city to climate change. Urban Climate, 23, 260-286, 	water
 doi:<u>https://doi.org/10.1016/j.uclim.2017.01.003</u>. de Rigo, D. et al., 2017a: Forest fire danger extremes in Europe under climate change: variability and unce Loint Research Cantra. 	ertainty.
de Rigo, D. et al., 2017b: Forest fire danger extremes in Europe under climate change: variability and unce Union P. O. o. t. E. Luxembourg	ertainty.
De Roo, A. et al., 2020: Assessing the effects of water saving measures on Europe's water resources; BLUE Freshwater quantity. JRC Technical Report. ISBN 9789276215363.	E2 project –
De Rosa, M., V. Bianco, F. Scarpa and L. A. Tagliafico, 2015: Historical trends and current state of heating degree days in Italy. <i>Energy Conversion and Management</i> , 90 , 323-335, doi:https://doi.org/10.1016/j.enconman.2014.11.022	and cooling
de'Donato, F. et al., 2018: Temporal variation in the effect of heat and the role of the Italian heat prevention <i>Public Health</i> 161 154-162 doi:https://doi.org/10.1016/j.pube.2018.03.030	ı plan.
de'Donato, F. et al., 2015: Changes in the effect of heat on mortality in the last 20 years in nine European ci from the PHASE project. <i>International journal of environmental research and public health</i> , 12 (12), 1 15583.	ities. Results 15567-
Defrance, D. et al., 2017: Consequences of rapid ice sheet melting on the Sahelian population vulnerability. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 114 (25), 6533-6538 doi:10.1073/pnas.1619358114.	8,
 Del Río, M. et al., 2017: A review of thinning effects on Scots pine stands: From growth and yield to new c under global change. <i>Forest Systems</i>, 26(2), eR03S, doi:10.5424/fs/2017262-11325. Deléglige C. et al. 2010: A Mathed for Disgraging Summer Mountain Pasturgel Vulnershility to Climate C. 	hallenges
Developed in the French Alps. <i>Mountain Research and Development</i> , 39 (2). Dellink R. H. Hwang, F. Lanzi and I. Chateau. 2017: International trade consequences of climate change.	Jilange,
doj:https://doj.org/10.1787/9f446180-en.	
Dellink, R., E. Lanzi and J. Chateau, 2019: The Sectoral and Regional Economic Consequences of Climate 2060. <i>Environmental and Resource Economics</i> , 72 (2), 309-363, doi:10.1007/s10640-017-0197-5.	Change to
Demiroglu, O., M. Turp, T. Ozturk and M. Kurnaz, 2016: Impact of Climate Change on Natural Snow Relia Snowmaking Capacities, and Wind Conditions of Ski Resorts in Northeast Turkey: A Dynamical Dow Approach Atmosphere 7(4). doi:10.3390/atmos7040052	ability, vnscaling
Demiroglu, O. C., H. Dannevig and C. Aall, 2018: Climate change acknowledgement and responses of sum (glacier) ski visitors in Norway. <i>Scandinavian Journal of Hospitality and Tourism</i> , 18 (4), 419-438,	imer
doi:10.1080/15022250.2018.1522721. Demski, C. et al., 2017: Experience of extreme weather affects climate change mitigation and adaptation res	sponses.
Derkzen, M. L., A. J. A. van Teeffelen and P. H. Verburg, 2017: Green infrastructure for urban climate ada How do residents' views on climate impacts and green infrastructure shape adaptation preferences? L	ptation:
and Urban Planning, 157 , 106-130, doi: <u>https://doi.org/10.1016/j.landurbplan.2016.05.027</u> . Dervng, D. et al., 2014: Global crop yield response to extreme heat stress under multiple climate change fut	hures.
<i>Environmental Research Letters</i> , 9 (3), 034011, doi:10.1088/1748-9326/9/3/034011. Devictor, V., R. Julliard, D. Couvet and F. Jiguet, 2008: Birds are tracking climate warming, but not fast en	ough.
Proceedings of the Royal Society B: Biological Sciences, 275 (1652), 2743-2748, doi:doi:10.1098/rspb Devictor, V. et al., 2012: Differences in the climatic debts of birds and butterflies at a continental scale. <i>Nat</i> <i>Change</i> 2 , 121, doi:10.1038/nclimate1347	5.2008.0878. ture Climate
https://www.nature.com/articles/nclimate1347#supplementary-information.	

1	Di Giuseppe, F. et al., 2020: Fire Weather Index: the skill provided by the European Centre for Medium-Range Weather
2	Forecasts ensemble prediction system. Nat. Hazards Earth Syst. Sci., 20(8), 2365-2378, doi:10.5194/nhess-20- 2365-2020
4	Di Lena, B., O. Silvestroni, V. Lanari and A. Palliotti, 2019: Climate change effects on cv. Montepulciano in some
5 6	wine-growing areas of the Abruzzi region (Italy). <i>Theoretical and Applied Climatology</i> , 136 (3), 1145-1155, doi:10.1007/s00704-018-2545-y.
7	Di Marco, M. et al., 2019: Projecting impacts of global climate and land-use scenarios on plant biodiversity using
8	compositional-turnover modelling. <i>Global Change Biology</i> , 25 (8), 2763-2778, doi:10.1111/gcb.14663.
9 10	Spain: Adaptation and economic estimate. <i>Environmental Research</i> 172 , 475-485
11	doi:https://doi.org/10.1016/j.envres.2019.02.041.
12	Dieperink, C. et al., 2016: Recurrent Governance Challenges in the Implementation and Alignment of Flood Risk
13	Management Strategies: a Review. Water Resources Management, 30 (13), 4467-4481, doi:10.1007/s11269-016-
14	1491-7. Differences N. S. and M. Burke. 2010a, Clobal warming has increased clobal accommissing soulity. <i>Braceedings of the</i>
15 16	National Academy of Sciences 116(20) 9808-9813 doi:10.1073/pnas.1816020116
17	Diffenbaugh, N. S. and M. Burke, 2019b: Global warming has increased global economic inequality. <i>Proceedings of</i>
18	the National Academy of Sciences, 201816020, doi:10.1073/pnas.1816020116.
19	Dinca, A. I., C. Surugiu, M. Surugiu and C. Frent, 2014: Stakeholder perspectives on climate change effects on tourism
20	activities in the northern Romanian Carpathians: Vatra Dornei resort case study. <i>Human Geographies</i> , 8 (1), 27.
21	Ding, Q., X. Chen, R. Hilborn and Y. Chen, 2017: Vulnerability to impacts of climate change on marine fisheries and food security. Marine Policy 83, 55, 61, doi:10.1016/j.marpol.2017.05.011
22	Dino, I. G. and C. Meral Akgül. 2019: Impact of climate change on the existing residential building stock in Turkey: An
23	analysis on energy use, greenhouse gas emissions and occupant comfort. <i>Renewable Energy</i> , 141, 828-846,
25	doi: <u>https://doi.org/10.1016/j.renene.2019.03.150</u> .
26	Djennad, A. et al., 2019: Seasonality and the effects of weather on Campylobacter infections. <i>Bmc Infectious Diseases</i> ,
27	19, doi:10.1186/s12879-019-3840-7. Dedge A and L Custourson 2016: Energy use and everbacting risk of Swedish multi-storey residential buildings
28 29	under different climate scenarios <i>Energy</i> 97 534-548 doi:https://doi.org/10.1016/j.energy.2015.12.086
30	Doelman, J. C. et al., 2018: Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios
31	of land-use change and land-based climate change mitigation. Global Environmental Change, 48, 119-135,
32	doi: <u>https://doi.org/10.1016/j.gloenvcha.2017.11.014</u> .
33 34	Dolganova, I. et al., 2019: The Water Footprint of European Agricultural Imports: Hotspots in the Context of Water Scarcity. <i>Resources</i> , 8 (3), 141, doi:10.3390/resources8030141.
35	Doll, C. et al., 2014: Adapting rail and road networks to weather extremes: case studies for southern Germany and
36	Austria. Natural Hazards, 72(1), 63-85, doi:10.1007/s11069-013-0969-3.
37	Döll, P. et al., 2014: Global-scale assessment of groundwater depletion and related groundwater abstractions:
38	Combining hydrological modeling with information from well observations and GRACE satellites. <i>Water</i>
39 40	Domínguez-Amarillo, S., J. Fernández-Agüera, J. J. Sendra and S. Roaf, 2019: The performance of Mediterranean low-
41	income housing in scenarios involving climate change. <i>Energy and Buildings</i> , 202 , 109374,
42	doi: <u>https://doi.org/10.1016/j.enbuild.2019.109374</u> .
43	Donatelli, M. et al., 2015: Climate change impact and potential adaptation strategies under alternate realizations of
44	climate scenarios for three major crops in Europe. Environmental Research Letters, 10(7), 0/5005, doi:10.1088/1748.0326/10/7/075005
45 46	Doney S C et al 2012: Climate Change Impacts on Marine Ecosystems Annual Review of Marine Science 4(1) 11-
47	37, doi:10.1146/annurev-marine-041911-111611.
48	Donner, J., J. M. Müller and J. Köppel, 2015: Urban Heat: Towards Adapted German Cities? Journal of Environmental
49	Assessment Policy and Management, 17(02), 1550020, doi:10.1142/S1464333215500209.
50	Doran, R. et al., 2018: Consequence evaluations and moral concerns about climate change: insights from nationally
51 52	doi:10.1080/13669877.2018.1473468
53	Dornelas, M. et al., 2014: Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss. <i>Science</i> ,
54	344 (6181), 296, doi:10.1126/science.1248484.
55	Dottori, F. et al., 2020: Adapting to rising river flood risk in the EU under climate change. Publications Office of the
56	European Union, Luxembourg. ISBN 978-92-76-12946-2.
57	Climate Change 8(9) 781-786 doi:10.1038/s41558-018-0257-7
59	Driessen, P. P. J. et al., 2016: Toward more resilient flood risk governance. <i>Ecology and Society</i> , 21 (4).
60	doi:10.5751/ES-08921-210453.
61	Drobyshev, I. et al., 2015: A 700-year record of large fire years in northern Scandinavia shows large variability and
62	increased frequency during the 1800 s. <i>Journal of Quaternary Science</i> , 30 (3), 211-221, doi:10.1002/jqs.2765.

1	Drobyshev, I. et al., 2016: Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia. <i>Scientific</i>
2	<i>Reports</i> , 6 (1), 22532, doi:10.1038/srep22532.
3	Duane, A. et al., 2019: Adapting prescribed burns to future climate change in Mediterranean landscapes. Science of The
4	<i>Total Environment</i> , 6 77, 68-83, doi:10.1016/j.scitotenv.2019.04.348.
5	Dubois, G., J. Ceron, S. Gossling and C. Hall, 2016a: Weather preferences of French tourists: lessons for climate
6	change impact assessment. <i>Climatic Change</i> , 136 (2), 339-351, doi:10.100//s10584-016-1620-6.
7	Dubois, M. et al., 2016b: Linking basin-scale connectivity, oceanography and population dynamics for the conservation
8	and management of marine ecosystems. Global Ecology and Biogeography, 25(5), 503-515,
9	doi:papers3://publication/doi/10.1111/geb.12431.
10	Dullinger, I. et al., 2017: Climate change will increase the naturalization risk from garden plants in Europe. <i>Global</i>
11	<i>Ecology and Biogeography</i> , 26 (1), 43-53, doi:10.1111/geb.12512.
12	Dumont, B. et al., 2015: A meta-analysis of climate change effects on forage quality in grasslands: specificities of
13	mountain and mediterranean areas. Grass and Forage Science, 70(2), 239-254, doi:10.1111/gfs.12169.
14	Dunn, M. et al., 2017: To what extent are land resource managers preparing for high-end climate change in Scotland?
15	<i>Climatic Change</i> , 141 (2), 181-195, doi:10.1007/s10584-016-1881-0.
16	Dupont, L. and V. Van Eetvelde, 2013: Assessing the potential impacts of climate change on traditional landscapes and
17	their heritage values on the local level: Case studies in the Dender basin in Flanders, Belgium. Land Use Policy,
18	35 , 179-191, doi:10.1016/j.landusepol.2013.05.010.
19	Dupuis, J. and P. Knoepfel, 2013: The Adaptation Policy Paradox: the Implementation Deficit of Policies Framed as
20	Climate Change Adaptation. <i>Ecology and Society</i> , 18 (4), doi:10.5751/ES-05965-180431.
21	Dury, M. et al., 2011: Responses of European forest ecosystems to 21st century climate: assessing changes in
22	interannual variability and fire intensity. <i>iForest - Biogeosciences and Forestry</i> , 4(2), 82-99,
23	doi:10.3832/itor05/2-004.
24	Duvillard, PA., L. Ravanel, M. Marcer and P. Schoeneich, 2019: Recent evolution of damage to infrastructure on
25	permatrost in the French Alps. Regional Environmental Change, 19(5), 1281-1293, doi:10.1007/s10113-019-
26	
27	Dyderski, M. K., S. Paz, L. E. Frelich and A. M. Jagodzinski, 2018: How much does climate change threaten European
28	forest tree species distributions? Global Change Biology, 24(3), 1150-1163, doi:10.1111/gcb.13925.
29	Dzebo, A., H. Janetschek, C. Brandi and G. Iacobuta, 2019: Connections between the Paris Agreement and the 2030
30	Agenda: the case for policy coherence. SEI Working Paper, Stockholm Environment Institute, Stockholm.
31	Dzebo, A. and J. Stripple, 2015: Transnational adaptation governance: An emerging fourth era of adaptation. <i>Global</i>
32	Environmental Change-Human and Policy Dimensions, 35 , 423-435, doi:10.1016/j.gloenvcna.2015.10.006.
33	EASAC, 2017: Multi-junctionality and sustainability in the European Union's forests. Sciences, G. N. A. O. Available
34	al: <u>www.easac.eu</u> . EASAC 2010a: Easast biography agritume and storage, and agriton disuide removal, an undete EASAC
35	EASAC, 2019a: Forest bloenergy, carbon capture and storage, and carbon atoxiae removal: an update. EASAC,
36	name, 12 pp. Available at: <u>https://easac.eu/publications/details/forest-ofoenergy-carbon-capture-and-storage-and-</u>
37	<u>carbon-dioxide-removal-an-update/</u> .
38	EASAC, 2019b: Forest bloenergy, carbon capture and storage, and carbon aloxide removal: an update. Available al:
39	nups://easac.eu/ineadmin/PDF_s/reports_statements/Negative_Caroon/EASAC_Commentary_Forest_Bioenergy_
40	Feb 2019 FINAL.pdl.
41	EASAC, 2019C: The imperative of climate action to protect numan health in Europe. Opportunities for adaptation to
42	Science Advisory Council Cormony
43	Science Advisory Council, Germany.
44	Sweden Nat Hazarda Easth Syst Sei 16(7) 1571 1582 doi:10.5104/nhoss 16.1571 2016
45	Swedell. Nat. Hazaras Earth Syst. Sci., 10(7), 15/1-1562, doi:10.5194/illess-10-15/1-2010.
40 47	Adaptation and Resilience International Journal of Environmental Research and Public Health 15(0) 1042
4/	Edmondo D. A. B. L. Caldwall E. S. Drandizio and S. M. O. Siani. 2020: Coastal floading will disproportionataly
40	impact people on river deltas. Nature Communications, 11 (1), 1, 8, doi:10.1028/s/11/67.020.18521.4
49 50	EFA 2014a: Adaptation of transport to climate change in Europe - Challenges and options across transport modes and
51	stakeholders [FFA (ed.)] Furgeren Environmental Agency Union P.O. o. t. F. Luxembourg 58 nn Available
52	at https://www.eea.europa.eu/publications/adaptation-of-transport-to-climate
53	FEA 2014b: National adaptation policy processes in European countries - 2014 136-136 pp ISRN 0780202134846
54	EEA, 2015: Overview of climate change adaptation platforms in Europe EEA Technical report European Environment
55	Agency Union P O o t E Luxembourg 79 nn Available at
56	https://www.eea.europa.eu/publications/overview-of-climate-change-adaptation
57	EEA. 2016a: Climate-ADAPT. Available at: https://climate-adapt.eea.europa.eu/metadata/case-studies/urban-storm-
58	water-management-in-augustenborg-malmo/#source.
59	EEA. 2016b: Urban adaptation to climate change in Europe 2016
60	Transforming cities in a changing climate, European Environment Agency, Union, P. O. o. t. E., Luxembourg, 135 pp.
61	Available at: https://www.eea.europa.eu/publications/urban-adaptation-2016.

1	EEA, 2017a: Climate change, impacts and vulnerability in Europe 2016 — An indicator-based report. EEA Report No
2	1/2017. Luxemburg, 1-424 pp. Available at:
3	https://www.eea.europa.eu/ds resolveuid/31f53a5e9418419194f7f92e3cd04d3d.
4	EEA, 2017b: Pricing and non-pricing measures for managing water demand in Europe [EEA (ed.)]. 9 pp. Available at:
5	https://www.eea.europa.eu/publications/water-management-in-europe-price.
6	EEA, 2018a: Climate-Adapt, 2019, Climate-Adapt. Sharing adaptation information across Europe. EEA Report No
7	3/2018. Available at: https://www.eea.europa.eu/publications/sharing-adaptation-information-across-europe/.
8	EEA, 2018b: National climate change vulnerability and risk assessments in Europe, 2018. European Environment
9	Agency, 79-79 pp. Available at: https://www.eea.europa.eu/publications/national-climate-change-vulnerability-
10	2018.
11	EEA, 2019a: Adaptation challenges and opportunities for the European energy system - Building a climate-resilient
12	low-carbon energy system. European Environment Agency, Union, P. O. o. t. E., Luxembourg, 122 pp. Available
13	at: www.eea.europa.eu/publications/adaptation-in-energy-system.
14	EEA, 2019b: Air quality in Europe — 2019 report. European Environment Agency, Copenhagen, Denmark.
15	EEA, 2020: Climate-ADAPT. Available at: https://climate-adapt.eea.europa.eu/metadata/case-studies/urban-storm-
16	water-management-in-augustenborg-malmo/#source.
17	Efendić, A., 2018: The Role of Economic and Social Capital during the Floods in Bosnia and Herzegovina. In: Crisis
18	Governance in Bosnia and Herzegovina. Croatia and Serbia: The Study of Floods in 2014 [Džihić, V. and M.
19	Solska (eds.)]. Peter Lang CH. ISBN 978-3-0343-2884-5 978-3-0343-2883-8 978-3-0343-2885-2 978-3-0343-
20	2747-3.
21	Eftestøl, S., K. Flydal, D. Tsegave and J. E. Colman, 2019: Mining activity disturbs habitat use of reindeer in Finnmark.
22	Northern Norway, Polar Biology, 42(10), 1849-1858, doi:10.1007/s00300-019-02563-8.
23	Eisenack, K., 2016: Institutional adaptation to cooling water scarcity for thermoelectric power generation under global
24	warming. Ecological Economics. 124 , 153-163, doi:10.1016/j.ecolecon.2016.01.016.
25	Elkin, C., A. Giuggiola, A. Rigling and H. Bugmann, 2015: Short- and long-term efficacy of forest thinning to mitigate
26	drought impacts in mountain forests in the European Alps. <i>Ecological Applications</i> 25 (4) 1083-1098
20	doi:10.1890/14-0690.1
28	Elliott M et al. 2015: Force majeure: Will climate change affect our ability to attain Good Environmental Status for
20	marine biodiversity? Viewpoint Marine pollution bulletin 95 (1) 7-27
30	doi:naners3://nublication/doi/10.1016/i marnolbul 2015.03.015
31	Ellison D et al. 2017: Trees forests and water: Cool insights for a hot world <i>Global Environmental Change</i> 43 51-
32	61 doi:https://doi.org/10.1016/j.gloenycha.2017.01.002
32	Emmanuel R and A Loconsole 2015: Green infrastructure as an adaptation approach to tackling urban overheating in
33	the Glasgow Clyde Valley Region IIK Landscape and Urban Planning 138 71-86
35	doi https://doi org/10.1016/i landurhnlan 2015.02.012
36	Enríquez-de-Salamanca \dot{A} 2019: Environmental impacts of climate change adaptation of road pavements and
37	mitigation options. International Journal of Payement Engineering 20 (6), 691-696
38	doi:10.1080/10298436.2017.1326236
20	Ercin F. D. Chico and A. K. Chanagain 2010: Vulnerabilities of the European Union's Economy to Hydrological
39 40	Evenin, E., D. Chico and A. R. Chapagain, 2017. Vulnerabilities of the European Onion's Economy to Hydrological Every Source of the European Onion's Economy to Hydrological
40	Extremes Outside its Borders. Amosphere, 10(10), 555, doi:10.5550/admos10100555.
41	Vagatation Science 21 (3) 345-362 doi:10.1111/avsc.12382
42	Friesson K and S. Werner 2016: The introduction and expansion of hismass use in Swedish district heating systems
45	Biomass and Biomargy 04 57 65 doubttps://doi.org/10.1016/j.biombiog.2016.08.011
44	Esteva D. C. Varala Ortaga and T. E. Downing 2018: A stakaholder based assessment of barriers to climate change
45	adaptation in a water scarce basin in Spain. Regional anvironmental change 18(8) 2505-2517
40	Estrada E. W. Botzen and P. Tol. 2017: A global economic assessment of city policies to reduce climate change
4/	imports Natura Chimate Change 7(6) 403 + doi:10.1038/NCLIMATE3301
48	Estrada Dana, A. N. Aullan and I. da la Evanta. 2012: Impact of alimeta trands on tials harna nathagan
49 50	transmission 2012:2:64 Erontiars in physiology 3(64)
51	Europeon Environment A 2010: Climate change adaptation in the agriculture sector in Europe ISBN 078-02-0480
51	European Environment, A., 2019. Cumule change adaptation in the agriculture sector in Europe. ISBN 978-92-9480-
52	0/2-5. Europeon Commission 2012: Cuidelines on Climate Change and Natura 2000 Proceeds 1 105 pp. Available at
55	http://op.aurone.au/apricentert/nature/alimetechange/ndf/Cycidencel/2006. Blussels, 1-105 pp. Available at.
54 55	<u>Interstructures and the insurance our natural conitals on EU biodiversity structure to 2020. Landoore</u>
55 56	Ecology and Managament 20 (1), 27 40. doi:10.5729/jolo.20.27
30 57	European Commission 2017, Special European stor 450 Available etc
51 50	https://ac.aurona.au/alima/citas/alima/files/auroart/docs/report_2017_cr_rdf
50 50	Eurostat 2016: Urban Europa statistics on citics towas and suburbs [M. K. T. Drandmüller, I. Lymp. A. Örnerfere
39 (0	Luiosiai, 2010. Ordan Europe — statistics on cutes, towns and suburds [191., K., 1. Brandmutter, 1. Lupu, A. Onnertors,
00	L. COISEIII-INOLUDIAU, C. COYEUE, A. JOHANSSON, H. SU'ANDERI AND P. WOIII (eds.)]. EUROSIAI, UNION, P. O. O. I. E., Luxombourg, Avoilable at https://oo.overop.ov/overotat/documents/2017404/750(202//KS.01.16.(01.DN
01 62	Luxenhourg. Available at: https://ec.europa.eu/eurostat/documents/321/494//390823/KS-U1-10-091-EN- N pdf/0abf140a app7/4a7f b236/682affada10f
02	<u>11.pu1/0a011400-0007-4a71-0250-062011000101</u> .

1	Eurostat, 2018: Sustainable development in the European Union. Overview of progress towards the SDGs in an EU
2	context, 1-23 pp.
3	Evans, A. M. and A. J. Finkral, 2009: From renewable energy to fire risk reduction: a synthesis of biomass harvesting
4	and utilization case studies in US forests. GCB Bioenergy, 1(3), 211-219, doi:10.1111/j.1757-1707.2009.01013.x.
5	Ewert, F. et al., 2015: Crop modelling for integrated assessment of risk to food production from climate change.
6	Environmental Modelling & Software, 72, 287-303, doi: https://doi.org/10.1016/j.envsoft.2014.12.003.
7	Faillettaz, R., G. Beaugrand, E. Goberville and R. R. Kirby, 2019: Atlantic Multidecadal Oscillations drive the basin-
8	scale distribution of Atlantic bluefin tuna. Science Advances, 5(1), 2-10, doi:10.1126/sciadv.aar6993.
9	Falk, M., 2015: The demand for winter sports: empirical evidence for the largest French ski-lift operator. <i>Tourism</i>
10	<i>Economics</i> , 21 (3), 561-580, doi:10.5367/te.2013.0366.
11	Falk, M. and E. Hagsten, 2016: Importance of early snowfall for Swedish ski resorts: Evidence based on monthly data.
12	Tourism Management, 53, 61-73, doi: https://doi.org/10.1016/j.tourman.2015.09.002.
13	Falk, M. and X. Lin, 2018: Sensitivity of winter tourism to temperature increases over the last decades. <i>Economic</i>
14	Modelling, 71, 174-183, doi:10.1016/j.econmod.2017.12.011.
15	Falk, M. and M. Scaglione, 2018: Effects of ski lift ticket discounts on local tourism demand. <i>Tourism Review</i> , 73 (4),
16	480-491, doi:10.1108/TR-08-2017-0133.
17	Falk, M. and L. Vanat, 2016: Gains from investments in snowmaking facilities. <i>Ecological Economics</i> , 130 , 339-349,
18	doi:10.1016/j.ecolecon.2016.08.003.
19	Fallmann, J., S. Emeis and P. Suppan, 2013: Mitigation of urban heat stress - a modelling case study for the area of
20	Stuttgart. Erde, 144(3-4), 202-216.
21	Fantappié, M., G. L'Abate and E. A. C. Costantini, 2011: The influence of climate change on the soil organic carbon
22	content in Italy from 1961 to 2008. Geomorphology, 135(3-4), 343-352, doi:10.1016/j.geomorph.2011.02.006.
23	Fanzo, J., C. Davis, R. McLaren and J. Choufani, 2018: The effect of climate change across food systems: Implications
24	for nutrition outcomes. Global Food Security-Agriculture Policy Economics and Environment, 18, 12-19,
25	doi:10.1016/j.gfs.2018.06.001.
26	FAOSTAT, 2019: FAO Online Database. Food and Agriculture Organization of the United Nations,, FAO, Rome.
27	Available at: http://faostat.fao.org.
28	Fatorić, S. and R. Biesbroek, 2020: Adapting cultural heritage to climate change impacts in the Netherlands: barriers,
29	interdependencies, and strategies for overcoming them. Climatic Change, 162(2), 301-320, doi:10.1007/s10584-
30	020-02831-1.
31	Fatorić, S. and E. Seekamp, 2017: Are cultural heritage and resources threatened by climate change? A systematic
32	literature review. Climatic Change, 142, 227-254, doi:https://doi.org/10.1007/s10584-017-1929-9.
33	Faust, AK., C. Gonseth and M. Vielle, 2015: The economic impact of climate-driven changes in water availability in
34	Switzerland. Water Policy, 17(5), 848-864, doi:10.2166/wp.2015.064.
35	Fellmann, T., S. Helaine and O. Nekhay, 2014: Harvest failures, temporary export restrictions and global food security:
36	the example of limited grain exports from Russia, Ukraine and Kazakhstan. Food Security, 6(5), 727-742,
37	doi:10.1007/s12571-014-0372-2.
38	Felton, A. et al., 2016: How climate change adaptation and mitigation strategies can threaten or enhance the
39	biodiversity of production forests: Insights from Sweden. Biological Conservation, 194, 11-20,
40	doi:10.1016/j.biocon.2015.11.030.
41	Ferdinand, M., 2018: Subnational climate justice for the French Outre-mer: postcolonial politics and geography of an
42	epistemic shift. Island Studies Journal, 13(1), 119-134.
43	Feridun, M. and H. Güngör, 2020: Climate-Related Prudential Risks in the Banking Sector: A Review of the Emerging
44	Regulatory and Supervisory Practices. Sustainability, 12(13), 5325, doi:10.3390/su12135325.
45	Fernandes, J. A. et al., 2017: Estimating the ecological, economic and social impacts of ocean acidification and
46	warming on UK fisheries. Fish and Fisheries, 18(3), 389-411, doi:10.1111/faf.12183.
47	Fernandes, P. M., 2018: Scientific support to prescribed underburning in southern Europe: What do we know? Science
48	of The Total Environment, 630, 340-348, doi:10.1016/j.scitotenv.2018.02.214.
49	Fernandes, P. M., A. M. G. Barros, A. Pinto and J. A. Santos, 2016: Characteristics and controls of extremely large
50	wildfires in the western Mediterranean Basin: Controls of Extremely Large Fires. Journal of Geophysical
51	Research: Biogeosciences, 121(8), 2141-2157, doi:10.1002/2016JG003389.
52	Fernandes, P. M. et al., 2013: Prescribed burning in southern Europe: developing fire management in a dynamic
53	landscape. Frontiers in Ecology and the Environment, 11(s1), doi:10.1890/120298.
54	Fernandez Milan, B. and F. Creutzig, 2015: Reducing urban heat wave risk in the 21st century. Current Opinion in
55	Environmental Sustainability, 14, 221-231, doi:https://doi.org/10.1016/j.cosust.2015.08.002.
56	Fernández-Manjarrés, J. et al., 2018: Forest Adaptation to Climate Change along Steep Ecological Gradients: The Case
57	of the Mediterranean-Temperate Transition in South-Western Europe. Sustainability, 10(9), 3065,
58	doi:10.3390/su10093065.
59	Fernández-Martínez, M. et al., 2019: Global trends in carbon sinks and their relationships with CO2 and temperature.
60	Nature Climate Change, 9(1), 73-79, doi:10.1038/s41558-018-0367-7.
61	Fernández-Montblanc, T., M. I. Vousdoukas, L. Mentaschi and P. Ciavola, 2020: A Pan-European high resolution
62	storm surge hindcast. Environment International, 135, 105367, doi: https://doi.org/10.1016/j.envint.2019.105367.

- Ferranti, E. et al., 2018: The hottest July day on the railway network: insights and thoughts for the future. 1 Meteorological Applications, 25(2), 195-208, doi:10.1002/met.1681. 2 Ferranti, E. et al., 2016: Heat-Related Failures on Southeast England's Railway Network: Insights and Implications for 3 Heat Risk Management. Weather, Climate, and Society, 8(2), 177-191, doi:10.1175/wcas-d-15-0068.1. 4 Ferrara, M. and E. Fabrizio, 2017: Cost optimal nZEBs in future climate scenarios. Energy Procedia, 122, 877-882, 5 doi:https://doi.org/10.1016/j.egypro.2017.07.377. 6 Feyen, L. et al., 2020: JRC Science for Policy Report JRC PESETA IV final report. ISBN 978-92-76-18123-1. 7 Fielding, A. J., 2011: The impacts of environmental change on UK internal migration. Global Environmental Change, 8 21, S121-S130, doi:10.1016/j.gloenvcha.2011.08.003. 9 Fielding, J. L., 2018: Flood risk and inequalities between ethnic groups in the floodplains of England and Wales. 10 Disasters, 42(1), 101-123, doi:10.1111/disa.12230. 11 Figueiredo, R., P. Nunes, M. J. N. O. Panão and M. C. Brito, 2020: Country residential building stock electricity 12 demand in future climate - Portuguese case study. Energy and Buildings, 209, 109694, 13 doi:https://doi.org/10.1016/j.enbuild.2019.109694. 14 Filbee-Dexter, K. and A. Smajdor, 2019: Ethics of Assisted Evolution in Marine Conservation. Frontiers in Marine 15 16 Science, 6, 20. Filijović, M. and I. Đorđević, 2014: Impact of "May" floods on state of human security in the Republic of Serbia. 17 18 Bezbednost, Beograd, 56(3), 115-128. 19 Filipchuk, A., B. Moiseev, N. Malysheva and V. Strakhov, 2018: Russian forests: A new approach to the assessment of carbon stocks and sequestration capacity. Environmental Development, 26, 68-75, 20 doi:https://doi.org/10.1016/j.envdev.2018.03.002. 21 Fink, M., H. P. Kläring and E. George, 2009: Horticulture and climate change. Water in Horticulture, 328, 1-9. 22 Fischer, D. et al., 2011: Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under 23 climate change conditions. Global and Planetary Change, 78(1-2), 54-64, doi:10.1016/j.gloplacha.2011.05.008. 24 Fischer, K., T. Stenius and S. Holmgren, 2020: Swedish Forests in the Bioeconomy: Stories from the National Forest 25 Program. Society & Natural Resources, 33(7), 896-913, doi:10.1080/08941920.2020.1725202. 26 Fischer, L. B. and M. Pfaffermayr, 2018: The more the merrier? Migration and convergence among European regions. 27 Regional Science and Urban Economics, 72, 103-114, doi:10.1016/j.regsciurbeco.2017.04.007. 28 Follos, F. et al., 2020: The evolution of minimum mortality temperatures as an indicator of heat adaptation: The cases 29 of Madrid and Seville (Spain). Science of The Total Environment, 747, 141259, 30 doi:https://doi.org/10.1016/j.scitotenv.2020.141259. 31 32 Fontana, G., A. Toreti, A. Ceglar and G. De Sanctis, 2015: Early heat waves over Italy and their impacts on durum 33 wheat yields. Nat. Hazards Earth Syst. Sci., 15(7), 1631-1637, doi:10.5194/nhess-15-1631-2015. 34 Forbes, B. C. et al., 2016: Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia. Biology Letters, 12(11), 20160466, doi:10.1098/rsbl.2016.0466. 35 Fortibuoni, T. et al., 2015: Climate impact on Italian fisheries (Mediterranean Sea). Regional Environmental Change, 36 15(5), 931-937, doi:10.1007/s10113-015-0781-6. 37 Forzieri, G. et al., 2018: Escalating impacts of climate extremes on critical infrastructures in Europe. Global 38 Environmental Change, 48(November 2017), 97-107, doi:10.1016/j.gloenvcha.2017.11.007. 39 Forzieri, G., A. Cescatti, F. B. e Silva and L. Feyen, 2017: Increasing risk over time of weather-related hazards to the 40 European population: a data-driven prognostic study. The Lancet Planetary Health, 1(5), e200-e208, 41 doi:10.1016/S2542-5196(17)30082-7. 42 Forzieri, G. et al., 2014: Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci., 18(1), 43 85-108, doi:10.5194/hess-18-85-2014. 44 Fosas, D. et al., 2018: Mitigation versus adaptation: Does insulating dwellings increase overheating risk? Building and 45 Environment, 143, 740-759, doi:https://doi.org/10.1016/j.buildenv.2018.07.033. 46 47 Fossheim, M. et al., 2015: Recent warming leads to a rapid borealization of fish communities in the Arctic. Nature *Climate Change*, **5**(7), 673-677, doi:10.1038/nclimate2647. 48 Fountoulakis et al., 2016: Climate change but not unemployment explains the changing suicidality in Thessaloniki 49 Greece (2000-2012). Journal of Affective Disorders, 193, 331-338. 50 Frainer, A. et al., 2020: Opinion: Cultural and linguistic diversities are underappreciated pillars of biodiversity. 51 Proceedings of the National Academy of Sciences, 117(43), 26539-26543, doi:10.1073/pnas.2019469117. 52 Frederikse, T. et al., 2020: The causes of sea-level rise since 1900. Nature, 584(7821), 393-397, doi:10.1038/s41586-53 020-2591-3. 54
- Free, C. M. et al., 2019: Impacts of historical warming on marine fisheries production. *Science*, 363(6430), 979-983,
 doi:papers3://publication/doi/10.1126/science.aau1758.
- 57 Froese, R. et al., 2018: Status and rebuilding of European fisheries. *Marine Policy*, **93**, 159-170,
- 58 doi:10.1016/j.marpol.2018.04.018.
- Frölicher, T. L., E. M. Fischer and N. Gruber, 2018: Marine heatwaves under global warming. *Nature*, 560(7718), 360- +, doi:10.1038/s41586-018-0383-9.
- Frolov, A. V. et al., 2014: Second Roshydromet Assessment Report on Climate Change and its consequences in Russian
 Federation [Yasukevich, V. V., V. A. Govorkova, I. A. Korneva, T. V. Pavlova and E. N. Popova (eds.)].

1	Roshydromet, Roshydromet, Obninsk, Russia, 1004 pp. Available at:
2	http://downloads.igce.ru/publications/OD_2_2014/v2014/htm/1.htm.
3	Fronzek, S. et al., 2019: Determining sectoral and regional sensitivity to climate and socio-economic change in Europe
4	using impact response surfaces. Regional Environmental Change, 19(3), 679-693, doi:10.1007/s10113-018-1421-
5	8.
6	Frost, M. et al., 2016: A review of climate change and the implementation of marine biodiversity legislation in the
7	United Kingdom. Aquatic Conservation: Marine and Freshwater Ecosystems, 26(3), 576-595,
8	doi:10.1002/aqc.2628.
9	Fu, G. et al., 2018: Integrated Approach to Assess the Resilience of Future Electricity Infrastructure Networks to
10	Climate Hazards. IEEE Systems Journal, 12(4), 3169-3180, doi:10.1109/JSYST.2017.2700791.
11	Fuchs, R., C. Brown and M. Rounsevell, 2020: Europe's Green Deal offshores environmental damage to other nations.
12	<i>Nature</i> , 586 , 671-673, doi: <u>https://doi.org/10.1038/d41586-020-02991-1</u> .
13	Fuhrer, J., P. Smith and A. Gobiet, 2014: Implications of climate change scenarios for agriculture in alpine regions - A
14	case study in the Swiss Rhone catchment. Science of the Total Environment, 493, 1232-1241,
15	doi:10.1016/j.scitotenv.2013.06.038.
16	Fünfgeld, H., K. Lonsdale and K. Bosomworth, 2019: Beyond the tools: supporting adaptation when organisational
17	resources and capacities are in short supply. <i>Climatic Change</i> , 153 (4), 625-641, doi:10.1007/s10584-018-2238-7.
18	Furberg, M., B. Evengård and M. Nilsson, 2011: Facing the limit of resilience: perceptions of climate change among
19	reindeer herding Sami in Sweden. Global Health Action, 4(1), 8417, doi:10.3402/gha.v4i0.8417.
20	Füssel, HM., A. Jol, A. Marx and M. Hildén, 2017: Climate change, impacts and vulnerability in Europe 2016 - An
21	indicator-based report [EuropeanEnvironmentAgency (ed.)]. EEA report, 1/2017, EEA Report No 1/2017.
22	Available at: <u>https://www.eea.europa.eu/publications/climate-change-impacts-and-vulnerability-2016</u> (accessed
23	24/4/2019).
24	Gallardo, B. et al., 2017: Protected areas offer refuge from invasive species spreading under climate change. <i>Global</i>
25	<i>change biology</i> , 23 (12), 5331-5343.
26	Galli, G., C. Solidoro and T. Lovato, 2017: Marine Heat Waves Hazard 3D Maps and the Risk for Low Motility
27	Organisms in a Warming Mediterranean Sea. Frontiers in Marine Science, 4(136),
28	doi:10.3389/fmars.2017.00136.
29	Gallina, V. et al., 2016: A review of multi-risk methodologies for natural hazards: Consequences and challenges for a
30	climate change impact assessment. Journal of Environmental Management, 108, 123-132,
31	doi:10.1010/J.jenvman.2015.11.011.
32	management during the last 25 years and future plans. Coastal Engineering Desearch Council
33	Gambolati G et al. 2000: On the uniformity of anthronogenic Venice unlift. Tarra Nova 21 (6) 467-473
34	Gamfeldt I et al. 2003. On the uniformity of antihopogenic venice upint. <i>Terra Nova</i> , 21(0), 407-475.
36	Nature Communications 4(1) doi:10.1038/ncomms2328
37	Gamito R C M Teixeira M I Costa and H N Cabral 2015: Are regional fisheries' catches changing with climate?
38	Fisheries Research 161 207-216 doi:papers3://publication/doi/10.1016/j fisheres 2014.07.014
39	Ganguli P and B Merz 2019: Trends in Compound Flooding in Northwestern Europe During 1901–2014
40	Geophysical Research Letters. 46 (19), 10810-10820, doi:10.1029/2019GL084220.
41	García Sánchez, F., W. D. Solecki and C. Ribalaygua Batalla. 2018: Climate change adaptation in Europe and the
42	United States: A comparative approach to urban green spaces in Bilbao and New York City. Land Use Policy. 79.
43	164-173, doi:https://doi.org/10.1016/j.landusepol.2018.08.010.
44	García-Herrera, R. et al., 2019: The European 2016/2017 drought. Journal of Climate, 0(0), null, doi:10.1175/jcli-d-18-
45	0331.1.
46	García-Molinos, J., M. T. Burrows and E. S. Poloczanska, 2017: Ocean currents modify the coupling between climate
47	change and biogeographical shifts. Scientific reports, 7(1), 1332, doi:doi/10.1038/s41598-017-01309-y.
48	Garcia-Mozo, H., J. Oteros and C. Galan, 2015: Phenological changes in olive (<i>Ola europaea L.</i>) reproductive
49	cycle in southern Spain due to climate change. Annals of Agricultural and Environmental Medicine, 22(3), 421-
50	428, doi:10.5604/12321966.1167706.
51	Garnier, E. et al., 2018: Historical analysis of storm events: Case studies in France, England, Portugal and Italy. Coastal
52	Engineering, 134, 10-23, doi:10.1016/j.coastaleng.2017.06.014.
53	Garnier, M. and I. Holman, 2019: Critical Review of Adaptation Measures to Reduce the Vulnerability of European
54	Drinking Water Resources to the Pressures of Climate Change. Environmental Management, 64(2), 138-153,
55	doi:10.1007/s00267-019-01184-5.
56	Garrabou, J. et al., 2009: Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003
57	heat wave. Global Change Biology, 15(5), 1090-1103, doi:papers3://publication/doi/10.1111/j.1365-
58	2486.2008.01823.x.
59	Garrabou, J. et al., 2019: Collaborative Database to Track Mass Mortality Events in the Mediterranean Sea. Frontiers in
60	Marine Science, 6, 2775, doi:papers3://publication/doi/10.3389/tmars.2019.00//0/.
61	Maditemanan Europa, Water Pasarman Management 20 (2), 225, 229, 4-310, 1007/-11260, 014, 0726.
62	Mediterranean Europe. <i>water Resources Management</i> , 29 (2), 525-558, doi:10.100//\$11269-014-0/36-6.

1	Gasbarro, F., F. Iraldo and T. Daddi, 2017: The drivers of multinational enterprises' climate change strategies: A
2	quantitative study on climate-related risks and opportunities. <i>Journal of Cleaner Production</i> , 160 , 8-26, doi:10.1016/j.jclepro.2017.03.018
4	Gasharro F and I Pinkse 2016: Corporate Adaptation Behaviour to Deal With Climate Change: The Influence of
5	Firm-Specific Interpretations of Physical Climate Impacts. Corporate Social Responsibility and Environmental Management 23(3), 179-192, doi:10.1002/csr.1374
7	Gascon M et al. 2015: Mental health heaefits of long-term exposure to residential green and blue spaces. A systematic
8	review. International Journal of Environmental Research and Public Health, 12(4), 4354-4379,
9	doi:10.3390/ijerph120404354.
10	Health Perspectives 123 (11) 1200-1207 doi:10.1289/ehp.1409070
12	Gasparrini A et al 2017: Projections of temperature-related excess mortality under climate change scenarios <i>The</i>
13	Lancet Planetary Health, 1(9), e360-e367, doj;https://doj.org/10.1016/S2542-5196(17)30156-0.
14	Gattuso, J. P. et al., 2015: Contrasting futures for ocean and society from different anthropogenic CO2 emissions
15	scenarios. Science, 349(6243), aac4722-aac4722, doi:papers3://publication/doi/10.1126/science.aac4722.
16	Gaudard, L., M. Gilli and F. Romerio, 2013: Climate Change Impacts on Hydropower Management. Water Resources
17	Management, 27(15), 5143-5156, doi:10.1007/s11269-013-0458-1.
18 19	Gauly, M. and S. Ammer, 2020: Review: Challenges for dairy cow production systems arising from climate changes. <i>Animal</i> , 14 (S1), S196-S203, doi:10.1017/S1751731119003239.
20	Gauly, M. et al., 2013: Future consequences and challenges for dairy cow production systems arising from climate
21	change in Central Europe – a review. animal, 7(5), 843-859, doi:10.1017/S1751731112002352.
22	Gaupp, F., J. Hall, S. Hochrainer-Stigler and S. Dadson, 2020: Changing risks of simultaneous global breadbasket
23	failure. <i>Nature Climate Change</i> , 10 (1), 54-57, doi:10.1038/s41558-019-0600-z.
24	Gaupp, F. et al., 2017: Dependency of Crop Production between Global Breadbaskets: A Copula Approach for the
25	Assessment of Global and Regional Risk Pools: Dependency of Crop Production between Global Breadbaskets.
20	Gaüzère P F liquet and V Devictor 2016: Can protected areas mitigate the impacts of climate change on bird's
28	species and communities? <i>Diversity and Distributions</i> , 22 (6), 625-637, doi:10.1111/ddi.12426.
29	Gazol, A. et al., 2015: Distinct effects of climate warming on populations of silver fir (<i>Abies alba</i>) across
30	Europe. Journal of Biogeography, 42(6), 1150-1162, doi:10.1111/jbi.12512.
31	Gazol, A. et al., 2018: Forest resilience to drought varies across biomes. <i>Global change biology</i> , 24 (5), 2143-2158.
32	Gedan, K. B. et al., 2010: The present and future role of coastal wetland vegetation in protecting shorelines: answering
33	recent challenges to the paradigm. <i>Climatic Change</i> , $106(1)$, 7-29, doi:10.1007/s10584-010-0003-7.
34	Gedikli, B. and O. Balaban, 2018: An evaluation of local policies and actions that address climate change in Turkish
35 26	Geels C et al. 2015: Euture Premature Mortality Due to O.3. Secondary Inorganic Aerosols and Primary PM in
37	Europe - Sensitivity to Changes in Climate Anthronogenic Emissions Population and Building Stock
38	International Journal of Environmental Research and Public Health, 12 (3), 2837-2869.
39	doi:10.3390/ijerph120302837.
40	Gemenne, F., 2011: Why the numbers don't add up: A review of estimates and predictions of people displaced by
41	environmental changes. Global Environmental Change-Human and Policy Dimensions, 21, S41-S49,
42	doi:10.1016/j.gloenvcha.2011.09.005.
43	Gemenne, F. and J. Blocher, 2017: How can migration serve adaptation to climate change? Challenges to fleshing out a
44	policy ideal. <i>The Geographical Journal</i> , 183 (4), 336-347.
45 46	adaptation plans. Land Use Policy 50, 38-47, doi:https://doi.org/10.1016/j.landusepol.2015.09.003
40	Georgonoulou E et al 2015: A methodological framework and tool for assessing the climate change related risks in
48	the banking sector. Journal of Environmental Planning and Management, 58(5), 874-897.
49	doi:10.1080/09640568.2014.899489.
50	Georgopoulou, E. et al., 2018: Climatic preferences for beach tourism: an empirical study on Greek islands. <i>Theoretical</i>
51	and Applied Climatology, doi:10.1007/s00704-018-2612-4.
52	Germanwatch, 2020: Global Climate Risk Index 2020. germanwatch.org.
53	Ghanem, D., S. Mander and C. Gough, 2016: "I think we need to get a better generator": Household resilience to
54	disruption to power supply during storm events. <i>Energy Policy</i> , 92 , 1/1-180, doi:10.1016/j.enpol.2016.02.003.
55	dairy acuses under high temperature humidity index environment. Animal Faed Science and Technology
50 57	246 (October) 158-166 doi:10.1016/i anifeedsci 2018.10.009
58	Gil, L., R. López, Á. García-Mateos and I. González-Doncel. 2009: Seed provenance and fire-related reproductive traits
59	of Pinus pinaster in central Spain. Int. J. Wildland Fire, 18 (8), 1003, doi:10.1071/WF08101.
60	Gill, A. B. et al., 2018: Implications for the marine environment of energy extraction in the sea. In: Offshore Energy
61	and Marine Planning [Yates, K. L. and C. J. A. Bradshaw (eds.)]. Routledge Taylor and Francis Group, London
62	and New York, pp. 132-169.

1	Gill, J. C. and B. D. Malamud, 2016: Hazard interactions and interaction networks (cascades) within multi-hazard
2	methodologies. Earth System Dynamics, 7(3), 659-6/9, doi:10.5194/esd-7-659-2016.
3	<i>Ecology and Management</i> 310 827 835. doi:10.1016/j foreco.2013.00.030
4 5	Giuggiola A et al 2016: Improvement of water and light availability after thinning at a veric site: which matters
6	more? A dual isotope approach. New Phytologist. 210 (1), 108-121, doi:10.1111/nph.13748.
7	Giuntoli, I., B. Renard, J. P. Vidal and A. Bard, 2013: Low flows in France and their relationship to large-scale climate
8	indices. Journal of Hydrology, 482, 105-118, doi:https://doi.org/10.1016/j.jhydrol.2012.12.038.
9	Gleason, K. E. et al., 2017: Competition amplifies drought stress in forests across broad climatic and compositional
10	gradients. Ecosphere, 8(7), e01849, doi:10.1002/ecs2.1849.
11	Goderniaux, P. et al., 2015: Uncertainty of climate change impact on groundwater reserves – Application to a chalk
12	aquifer. Journal of Hydrology, 528 , 108-121, doi: <u>https://doi.org/10.1016/j.jhydrol.2015.06.018</u> .
13	Goldstein, A., W. R. Turner, J. Gladstone and D. G. Hole, 2019: The private sector's climate change risk and adaptation
14	blind spots. <i>Nature Climate Change</i> , 9(1), 18-25, doi:10.1038/s41558-018-0340-5.
15	Golledge, N. R., 2020: Long-term projections of sea-level rise from ice sheets. WIREs Climate Change, II(2),
16	doi:10.1002/wcc.054.
17	high-mountain plants SpringerI ink <i>Riodiversity and Conservation</i> 24 1843-1857 doi:10.1007/s10531-015-
19	0909-5.
20	Gonseth, C. and M. Vielle, 2018: A General Equilibrium Assessment of Climate Change Impacts on Swiss Winter
21	Tourism with Adaptation. Environmental Modeling & Assessment, doi:10.1007/s10666-018-9641-3.
22	Gordillo, F. J. L. et al., 2016: Effects of simultaneous increase in temperature and ocean acidification on biochemical
23	composition and photosynthetic performance of common macroalgae from Kongsfjorden (Svalbard). Polar
24	<i>Biology</i> , 39 (11), 19932007, doi:10.1007/s00300-016-1897-y.
25	Gormley, K. S. G. et al., 2015: Adaptive management, international co-operation and planning for marine conservation
26	hotspots in a changing climate. Marine Policy, 53 , 54-66,
27	doi:papers3://publication/doi/10.1016/j.marpoi.2014.11.01/.
28 20	Grafakos S, et al. 2020: Integration of mitigation and adaptation in urban climate change action plans in Europe: A
29 30	systematic assessment Renewable and Sustainable Energy Reviews 121 109623
31	doi:https://doi.org/10.1016/j.rser.2019.109623.
32	Graham, E., J. Humbly and T. Dawson, 2017: Scotland's eroding heritage: A collaborative response to the impact of
33	climate change. doi:10.17863/CAM.23645.
34	Grassi, G. et al., 2017: The key role of forests in meeting climate targets requires science for credible mitigation. Nature
35	Climate Change, 7, 220, doi:10.1038/nclimate3227
36	https://www.nature.com/articles/nclimate3227#supplementary-information.
37	Green, J. K. et al., 2019: Large influence of soil moisture on long-term terrestrial carbon uptake. <i>Nature</i> , 565 (7/40),
38	4/6-4/9, doi:10.1038/s41586-018-0848-x.
39 40	The Pole of Social Cohesion American Journal of Public Health 105(0) 1702 1705
40 41	doi:10.2105/AIPH 2015.302709
42	Grillakis, M. G., 2019: Increase in severe and extreme soil moisture droughts for Europe under climate change. <i>Science</i>
43	of the Total Environment, 660, 1245-1255, doi:10.1016/i.scitotenv.2019.01.001.
44	Griscom, B. W. et al., 2017: Natural climate solutions. Proceedings of the National Academy of Sciences, 114(44),
45	11645, doi:10.1073/pnas.1710465114.
46	Guerreiro, S. et al., 2018: Future heat-waves, droughts and floods in 571 European cities. Environmental Research
47	Letters, 13(3), doi:10.1088/1748-9326/aaaad3.
48	Guiot, J. and W. Cramer, 2016: Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin
49	ecosystems. <i>Science</i> , 354 (6311), 465-468, doi:10.1126/science.aah5015.
50 51	Summer, A. et al., 2020: Prompt rewetting of drained peatiands reduces climate warming despite methane emissions.
51 52	Guo Y et al. 2018: Quantifying excess deaths related to heatwayes under climate change scenarios: A multicountry
52 53	time series modelling study <i>PLoS medicine</i> 15 (7) e1002629
54	Guvot, V. et al., 2016: Tree diversity reduces pest damage in mature forests across Europe. <i>Biology Letters</i> , 12 (4).
55	20151037, doi:10.1098/rsbl.2015.1037.
56	Haasnoot, M. et al., 2020a: Defining the solution space to accelerate climate change adaptation. Regional
57	Environmental Change, 20(2), 1-5, doi:papers3://publication/doi/10.1007/s10113-020-01623-8.
58	Haasnoot, M. et al., 2020b: Adaptation to uncertain sea-level rise; how uncertainty in Antarctic mass-loss impacts the
59	coastal adaptation strategy of the Netherlands. <i>Environmental Research Letters</i> , 15 (3), 034007, doi:10.1088/1748-
60 (1	9520/a00000. Hearmost M. I. Kwakkal W. Welker and I. for Mast 2012, Dynamic adapting a line anti-
01 62	robust decisions for a deeply uncertain world. Global Environmental Change Human and Policy Dimensions
63	23 (2), 485-498, doi:10.1016/j.gloenvcha.2012.12.006.
1	Haasnoot, M., S. van 't Klooster and J. van Alphen, 2018: Designing a monitoring system to detect signals to adapt to
----------	--
2	doi:https://doi.org/10.1016/i.gloenycha.2018.08.003.
4	Haasnoot, M. et al., 2019: Generic adaptation pathways for coastal archetypes under uncertain sea-level rise.
5	Environmental Research Communications.
6 7	Haasnoot, M. et al., submitted: Adaptation commitment to sea level rise in the next decades and centuries. <i>Nature Climate Change</i> .
8	Habel, J., M. Samways and T. Schmitt, 2019a: Mitigating the precipitous decline of terrestrial European insects:
9	Requirements for a new strategy. <i>Biodiversity and Conservation</i> , 28 (6), 1343-1360, doi:10.1007/s10531-019-
10	UI/41-8. Ushal L.C. M. I. Samuran and T. Sahnaitt. 2010h. Mitiasting the massivity of design of termsteich European increte:
11	Requirements for a new strategy. <i>Biodiversity and Conservation</i> , 28 (6), 1343-1360, doi:10.1007/s10531-019-
13	01/41-8.
14 15	behaviour in risk assessments using an agent-based modelling approach. <i>Environmental Research Letters</i> , 14 (4),
10	44022-44022, doi:10.1000/1/46-9520/a00//0. Hagenlacher M at al. 2010: Drought vulnershility and risk assessments: state of the art persistent gaps, and research
17	agenda. Environmental Research Letters, 14(8), 083002, doi:10.1088/1748-9326/ab225d.
19 20	Haigh, I., R. Nicholls and N. Wells, 2011: Rising sea levels in the English Channel 1900 to 2100. <i>Proceedings of the</i> Institution of Civil Engineers-Maritime Engineering 164 (2), 81-92, doi:10.1680/maen.2011.164.2.81
21	Halkos, G., A. Skouloudis, C. Malesios and K. Evangelinos, 2018; Bouncing Back from Extreme Weather Events:
22	Some Preliminary Findings on Resilience Barriers Facing Small and Medium-Sized Enterprises. Business Strategy
23	and the Environment, 27(4), 547-559, doi:10.1002/bse.2019.
24	Hall, C. M., I. Baird, M. James and Y. Kam, 2010: Climate change and cultural heritage: conservation and heritage tourism in the Anthroposona Journal of Havitage Tourism 11(1), 10,24, doi:10.1080/1742872X.2015.1082572
25 26	Hall LW H Harvey and L L Manning 2010: Adaptation thresholds and nathways for tidal flood risk management in
20	London Climate Risk Management 24 42-58 doi:https://doi.org/10.1016/j.crm.2019.04.001
28	Hallegatte, S. et al., 2016: Shock waves: managing the impacts of climate change on poverty. Climate Change and
29	Development Series, World Bank, Washington DC. Available at: doi:10.1596/978-1-4648-0673-5.
30	Hallegatte, S. and J. Rozenberg, 2017: Climate change through a poverty lens. Nature Climate Change, 7(4), 250-256,
31	doi:10.1038/nclimate3253.
32	Hamdy, M., S. Carlucci, PJ. Hoes and J. L. M. Hensen, 2017: The impact of climate change on the overheating risk in
33 34	dwellings—A Dutch case study. Building and Environment, 122, 307-323, doi:https://doi.org/10.1016/i.buildeny.2017.06.031
35	Hamidov, A. et al., 2018: Impacts of climate change adaptation options on soil functions: A review of European case-
36	studies. Land Degrad Dev, 29 (8), 2378-2389, doi:10.1002/ldr.3006.
37 38	at the global scale. Fish and Fisheries. 18(3), 466-488, doi:10.1111/faf.12186.
39	Hanger, S., C. Haug, T. Lung and L. Bouwer, 2015: Mainstreaming climate change in regional development policy in
40 41	Europe: five insights from the 2007-2013 programming period. <i>Regional Environmental Change</i> , 15 (6), 973-985, doi:10.1007/s10113-013-0549-9
42	Hanger, S. et al., 2018: Insurance, Public Assistance, and Household Flood Risk Reduction: A Comparative Study of
43	Austria, England, and Romania. <i>Risk Analysis</i> , 38 (4), 680-693, doi:10.1111/risa.12881.
44	Hanna, E., T. E. Cropper, R. J. Hall and J. Cappelen, 2016: Greenland Blocking Index 1851–2015: a regional climate
45	change signal. International Journal of Climatology, 36 (15), 4847-4861, doi:10.1002/joc.4673.
46	Hanna, E. G. and P. W. Tait, 2015: Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation
47 48	to Global Warming. International journal of environmental research and public health, 12(7), 8034-8074, doi:10.3390/ijerph120708034
49	Hansen, B. B. et al., 2014: Warmer and wetter winters: characteristics and implications of an extreme weather event in
50	the High Arctic. <i>Environmental Research Letters</i> , 9(11), 114021, doi:10.1088/1748-9326/9/11/114021.
51	Hanski, J., T. Rosqvist and D. Crawford-Brown, 2018: Assessing climate change adaptation strategies-the case of
52	drought and heat wave in the French nuclear sector. <i>Regional Environmental Change</i> , 18 (6), 1801-1813, doi:10.1007/s10113-018-1312-z
55 54	Hanson H et al 2002: Beach nourishment projects practices and objectives—a European overview Coastal
55	<i>Engineering</i> , 47 (2), 81-111, doi:10.1016/S0378-3839(02)00122-9.
56	Hao, Z., F. Hao, V. P. Singh and X. Zhang, 2018: Changes in the severity of compound drought and hot extremes over
57	global land areas. Environmental Research Letters, 13(12), 124022, doi:10.1088/1748-9326/aaee96.
58	Harkin, D. et al., 2020: Impacts of climate change on cultural heritage. MCCIP Science Review 2020, 26-pages,
59	doi:10.14465/2020.ARC26.CHE.
60	Harris, J., N. Rodenhouse and R. Holmes, 2019: Decline in beetle abundance and diversity in an intact temperate forest linked to alimete warming. <i>Biological Conservation</i> 240 , doi:10.1016/j.biogen.2010.108210
01 62	Harrison P A et al. 2019: Differences between low-end and high-end climate change impacts in Europe across
63	multiple sectors. <i>Regional Environmental Change</i> , 16 , 695-709, doi:10.1007/s10113-018-1352-4.

Harte, M. et al., 2019: Countering a climate of instability: The future of relative stability under the Common Fisheries

Policy. ICES Journal of Marine Science, 76(7), 1951-1958, doi:10.1093/icesjms/fsz109. 2 Hartl, L., A. Fischer and M. Olefs, 2018: Analysis of past changes in wet bulb temperature in relation to snow making 3 conditions based on long term observations Austria and Germany. Global and Planetary Change, 167, 123-136, 4 doi:https://doi.org/10.1016/j.gloplacha.2018.05.011. 5 Hartmann, T. and T. Spit, 2016: Legitimizing differentiated flood protection levels - Consequences of the European 6 flood risk management plan. Environmental Science & Policy, 55, 361-367, 7 doi:https://doi.org/10.1016/j.envsci.2015.08.013. 8 HASSALL, C., D. J. THOMPSON, G. C. FRENCH and I. F. HARVEY, 2007: Historical changes in the phenology of 9 British Odonata are related to climate. Global Change Biology, 13(5), 933-941, doi:10.1111/j.1365-10 2486.2007.01318.x. 11 Haugen, A. and J. Mattsson, 2011: Preparations for climate change's influences on cultural heritage. International 12 Journal of Climate Change Strategies and Management, 3(4), 386-401, doi:10.1108/17568691111175678. 13 Hausner, V. H., S. Engen, C. Brattland and P. Fauchald, 2020: Sámi knowledge and ecosystem-based adaptation 14 strategies for managing pastures under threat from multiple land uses. Journal of Applied Ecology, 57(9), 1656-15 1665, doi:10.1111/1365-2664.13559. 16 Haussig, J. et al., 2018: Early start of the West Nile fever transmission season 2018 in Europe. Eurosurveillance, 17 18 23(32), 7-12, doi:10.2807/1560-7917.ES.2018.23.32.1800428. 19 Hayashi, N., 2017: The human dimension of climate change research in Greenland: Towards a new form of knowledge generation. Low Temperature Science, 75, 131-141, doi:10.14943/lowtemsci.75.131. 20 Hayashi, N. and M. Walls, 2019: Endogenous community development in Greenland: A perspective on creative 21 transformation and the perception of future. Polar Science, 21, 52-57, doi:10.1016/j.polar.2019.06.002. 22 Hayes, K. et al., 2018: Climate change and mental health: risks, impacts and priority actions. International Journal of 23 Mental Health Systems, 12, doi:10.1186/s13033-018-0210-6. 24 Hayes, K. and B. Poland, 2018: Addressing Mental Health in a Changing Climate: Incorporating Mental Health 25 Indicators into Climate Change and Health Vulnerability and Adaptation Assessments. International Journal of 26 Environmental Research and Public Health, 15(9), 1806. 27 Heathcote, J., H. Fluck and M. Wiggins, 2017: Predicting and Adapting to Climate Change: Challenges for the Historic 28 Environment. The Historic Environment: Policy & Practice, 8(2), 89-100, doi:10.1080/17567505.2017.1317071. 29 Hedlund, J., S. Fick, H. Carlsen and M. Benzie, 2018: Quantifying transnational climate impact exposure: New 30 perspectives on the global distribution of climate risk. Global Environmental Change-Human and Policy 31 32 Dimensions, 52, 75-85, doi:10.1016/j.gloenvcha.2018.04.006. 33 Hegger, D. L. T. et al., 2016: Toward more flood resilience: Is a diversification of flood risk management strategies the 34 way forward? Ecology and Society, 21(4), doi:10.5751/ES-08854-210452. Heidrich, O. et al., 2016: National climate policies across Europe and their impacts on cities strategies. Journal of 35 Environmental Management, 168, 36-45, doi:https://doi.org/10.1016/j.jenvman.2015.11.043. 36 Heikkinen, R. K. et al., 2020: Fine-grained climate velocities reveal vulnerability of protected areas to climate change. 37 Scientific Reports, 10(1), 1678, doi:10.1038/s41598-020-58638-8. 38 Heinicke, J., S. Ibscher, V. Belik and T. Amon, 2019: Cow individual activity response to the accumulation of heat load 39 duration. Journal of Thermal Biology, 82(March), 23-32, doi:10.1016/j.jtherbio.2019.03.011. 40 Heino, J., R. Virkkala and H. Toivonen, 2009: Climate change and freshwater biodiversity: detected patterns, future 41 trends and adaptations in northern regions. Biological Reviews, 84(1), 39-54, doi:10.1111/j.1469-42 185X.2008.00060.x. 43 Heinz, F. et al., 2015: Emergence of tick-borne encephalitis in new endemic areas in Austria: 42 years of surveillance. 44 Eurosurveillance, 20(13), 9-16, doi:10.2807/1560-7917.ES2015.20.13.21077. 45 46 Helama, S., J. Holopainen and T. Partonen, 2013: Temperature-associated suicide mortality: contrasting roles of 47 climatic warming and the suicide prevention program in Finland. Environmental Health and Preventive Medicine, 18(5), 349-355, doi:10.1007/s12199-013-0329-7. 48 Helle, T. and I. Kojola, 2008: Demographics in an alpine reindeer herd: effects of density and winter weather. 49 *Ecography*, **31**(2), 221-230, doi:10.1111/j.0906-7590.2008.4912.x. 50 Hellmann, F., R. Alkemade and O. Knol, 2016: Dispersal based climate change sensitivity scores for European species. 51 *Ecological Indicators*, **71**, 41-46, doi:10.1016/j.ecolind.2016.06.013. 52 Hendel, M., K. Azos-Diaz and B. Tremeac, 2017: Behavioral adaptation to heat-related health risks in cities. Energy 53 and Buildings, 152, 823-829, doi:https://doi.org/10.1016/j.enbuild.2016.11.063. 54 Hendel, M., M. Colombert, Y. Diab and L. Royon, 2015: An analysis of pavement heat flux to optimize the water 55 efficiency of a pavement-watering method. Applied Thermal Engineering, 78, 658-669, 56 doi:https://doi.org/10.1016/j.applthermaleng.2014.11.060. 57 Hendel, M. et al., 2016: Measuring the effects of urban heat island mitigation techniques in the field: Application to the 58 case of pavement-watering in Paris. Urban Climate, 16, 43-58, doi:https://doi.org/10.1016/j.uclim.2016.02.003. 59 Hennessy, D., L. Delaby, A. van den Pol-van Dasselaar and L. Shalloo, 2020: Increasing Grazing in Dairy Cow Milk 60 Production Systems in Europe. Sustainability, 12(6), 2443. 61 Henson, S. A. et al., 2017: Rapid emergence of climate change in environmental drivers of marine ecosystems. Nature 62 Communications, 8, 14682, doi:10.1038/ncomms14682. 63 13-182 Total pages: 216 Do Not Cite, Quote or Distribute

1	Heracleous, C. and A. Michael, 2018: Assessment of overheating risk and the impact of natural ventilation in educational buildings of Southern Europe under current and future climatic conditions. <i>Energy</i> , 165 , 1228, 1239
3	doi:https://doi.org/10.1016/j.energy.2018.10.051.
4	Hermans, L. M., M. Haasnoot, J. ter Maat and J. H. Kwakkel, 2017: Designing monitoring arrangements for
5	collaborative learning about adaptation pathways. Environmental Science & Policy, 69, 29-38,
6	doi: <u>https://doi.org/10.1016/j.envsci.2016.12.005</u> .
~/ •	to Meet Continental Commitments. Conservation Letters 10(2), 231-237. doi:10.1111/conl.12248
0 9	Hermoso V D Villero M Clavero and L Brotons 2018: Spatial prioritisation of EU's LIFE-Nature programme to
10	strengthen the conservation impact of Natura 2000. Journal of Applied Ecology, 55(4), 1575-1582,
11	doi:10.1111/1365-2664.13116.
12	Hernández-Morcillo, M. et al., 2018: Scanning agroforestry-based solutions for climate change mitigation and
13	adaptation in Europe. <i>Environmental Science & Policy</i> , 80 , 44-52,
14	doi: <u>https://doi.org/10.1016/j.envsci.2017.11.013</u> .
15	9 (1) 5680 doi:10.1038/s41598-019-42171-4
10	Herrmann, J. and E. Guenther, 2017: Exploring a scale of organizational barriers for enterprises' climate change
18	adaptation strategies. <i>Journal of Cleaner Production</i> , 160 , 38-49, doi:10.1016/j.jclepro.2017.03.009.
19	Herrmann, T. M. et al., 2014: Effects of mining on reindeer/caribou populations and indigenous livelihoods:
20	community-based monitoring by Sami reindeer herders in Sweden and First Nations in Canada. The Polar
21	<i>Journal</i> , 4 (1), 28-51, doi:10.1080/2154896X.2014.913917.
22	Hertig, E., 2019: Distribution of Anopheles vectors and potential malaria transmission stability in Europe and the
23	Herzog E and I Seidl 2018: Swiss alpine summer farming: current status and future development under climate
25	change. The Rangeland Journal. 40(5), 501-511, doi:https://doi.org/10.1071/RJ18031.
26	Heudorf, U. and M. Schade, 2014: Heat waves and mortality in Frankfurt am Main, Germany, 2003–2013. Zeitschrift
27	für Gerontologie und Geriatrie, 47(6), 475-482, doi:10.1007/s00391-014-0673-2.
28	Hickman, C., 2019: Children and Climate Change: Exploring Children's Feelings About Climate Change Using Free
29	Association Narrative Interview Methodology. In: Climate Psychology: On Indifference to Disaster [Hoggett, P.
30	(ed.)]. Springer International Publishing, Cham, pp. 41-59. ISBN 978-3-030-11741-2.
31	response to climate change. <i>Global Changa Biology</i> 21 (1), 117–129. doi:10.1111/ach.12726
33	Hillebrand, H. et al., 2018: Biodiversity change is uncoupled from species richness trends: Consequences for
34	conservation and monitoring. Journal of Applied Ecology, 55 (1), 169-184, doi:10.1111/1365-2664.12959.
35	Hinkel, J. et al., 2018: The ability of societies to adapt to twenty-first-century sea-level rise. Nature Climate Change,
36	8 (7), 570-578, doi:10.1038/s41558-018-0176-z.
37	Hinkel, J. et al., 2019: Meeting User Needs for Sea Level Rise Information: A Decision Analysis Perspective. <i>Earth's</i>
38	Future, 7(3), 320-337, doi:10.1029/2018EF001071. Hinkel L et al. 2013: A global analysis of erosion of sandy beaches and sea level rise: An application of DIVA. <i>Global</i>
39 40	and Planetary Change, 111, 150-158, doi:10.1016/i.gloplacha.2013.09.002.
41	Hintz, M. J., C. Luederitz, D. J. Lang and H. von Wehrden, 2018: Facing the heat: A systematic literature review
42	exploring the transferability of solutions to cope with urban heat waves. Urban Climate, 24, 714-727,
43	doi: <u>https://doi.org/10.1016/j.uclim.2017.08.011</u> .
44	Hlásny, T. et al., 2014: Climate change increases the drought risk in Central European forests: What are the options for
45	adaptation? Forestry Journal, 60 (1), 5-18, doi:10.24/8/forj-2014-0001.
40 47	Climate
48	Hock, R. et al., 2019b: High Mountain Areas. In: <i>IPCC Special Report on the Ocean and Cryosphere in a Changing</i>
49	Climate [Masson-Delmotte, V., P. Zhai, HO. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W.
50	MoufoumaOkia, R. P. C. Péan, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T.
51	Maycock, M. Tignor and T. Waterfield (eds.)], pp. 1-94. ISBN 0321267974.
52	Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5°C of Global Warming on Natural and Human Systems. [Marengo, J.
53 54	A., J. Pereira and B. Snerstyukov (eds.)], pp. 1/3-311. Hof A. R. R. Jansson and C. Nilsson, 2012: Future Climate Change Will Favour Non-Specialist Mammals in the
54 55	(Sub)Arctics. <i>PLoS ONE</i> , 7(12), e52574. doi:10.1371/journal.pone.0052574.
56	Hoffmann, R. et al., 2020: A meta-analysis of country-level studies on environmental change and migration. <i>Nature</i>
57	Climate Change, 10(10), 904-912, doi:10.1038/s41558-020-0898-6.
58	Holbrook, N. J. et al., 2019: A global assessment of marine heatwaves and their drivers. <i>Nature Communications</i> , 10 (1),
59	2624, doi:10.1038/s41467-019-10206-z.
60	Holgersen, S. and A. Malm, 2015: "green fix" as crisis management. or, in which world is malmö the world's greenest oity? Geografiska Annalor: Series R. Human Geography, 07(A), 275,200, doi:10.1111/cook.12091
01 62	Holman I P et al. 2018: Improving the representation of adaptation in climate change impact models. <i>Regional</i>
63	Environmental Change, 19(3), 711-721. doi:10.1007/s10113-018-1328-4.

1	Holman, I. P., C. Brown, V. Janes and D. Sandars, 2017: Can we be certain about future land use change in Europe? A
2	multi-scenario, integrated-assessment analysis. Agricultural Systems, 151 , 126-135,
3	doi: <u>https://doi.org/10.1016/j.agsy.2016.12.001</u> .
4	transformative climate governance and the case of Rotterdam the Netherlands. Regional Environmental Change
6	19 (3), 791-805, doi:10.1007/s10113-018-1329-3.
7	Holt, J. et al., 2018: Climate-Driven Change in the North Atlantic and Arctic Oceans Can Greatly Reduce the
8	Circulation of the North Sea. Geophysical Research Letters, 45(21), 11,827-811,836,
9	doi:papers3://publication/doi/10.1029/2018GL078878.
10	Holt, J. et al., 2016: Potential impacts of climate change on the primary production of regional seas: A comparative
11	analysis of five European seas. <i>Progress in Oceanography</i> , 140 , 91-115,
12	doi:papers3://publication/doi/10.1016/j.pocean.2015.11.004.
13	Ropkins, C. K., D. M. Balley and T. Pous, 2010: Perceptions of practitioners: Managing marine protected areas for climate change resilience. Ocean & Coastal Management 128 , 18, 28
14	doi:naners3://nublication/doi/10.1016/j.ocecoaman.2016.04.014
16	Horstkotte, T., C. Sandström and J. Moen, 2014: Exploring the Multiple Use of Boreal Landscapes in Northern
17	Sweden: The Importance of Social-Ecological Diversity for Mobility and Flexibility. Human Ecology, 42(5), 671-
18	682, doi:10.1007/s10745-014-9687-z.
19	Howard, A. J., 2013: Managing global heritage in the face of future climate change: the importance of understanding
20	geological and geomorphological processes and hazards. <i>International Journal of Heritage Studies</i> , 19 (7), 632-
21	658, doi:10.1080/13527258.2012.681680.
22	Howard, C. et al., 2018: Flight range, fuel load and the impact of climate change on the journeys of migrant birds.
23 24	Howard L et al. 2017: Clarifying the role of coastal and marine systems in climate mitigation. Frontiers in Ecology
24 25	and the Environment 15(1) 42-50 doi:napers3://publication/doi/10.1002/fee 1451
26	Howlett, M., I. Mukherjee and S. A. Fritzen, 2019: Challenges associated with implementing climate adaptation policy.
27	In: Research Handbook on Climate Change Adaptation Policy [Keskitalo, E. C. H. and B. L. Preston (eds.)].
28	Elgaronline, pp. 50–68.
29	Hu, P. et al., 2018: Flood-induced mortality across the globe: Spatiotemporal pattern and influencing factors. Science of
30	<i>The Total Environment</i> , 643 , 171-182, doi: <u>https://doi.org/10.1016/j.scitotenv.2018.06.197</u> .
31	Huber, V. et al., 2014: Climate impact research: beyond patchwork. <i>Earth System Dynamics</i> , 5(2), 399-408,
32 22	doi:10.3194/csd-3-399-2014. Hudson P 2018: A comparison of definitions of affordability for flood risk adaption measures: a case study of current
33 34	and future risk-based flood insurance premiums in Europe. <i>Mitigation and Adaptation Strategies for Global</i>
35	<i>Change</i> , 23 (7), 1019-1038, doi:10.1007/s11027-017-9769-5.
36	Hudson, P., W. Botzen, L. Feyen and J. Aerts, 2016: Incentivising flood risk adaptation through risk based insurance
37	premiums: Trade-offs between affordability and risk reduction. Ecological Economics, 125, 1-13,
38	doi:10.1016/j.ecolecon.2016.01.015.
39	Huete-Stauffer, C. et al., 2011: <i>Paramuricea clavata</i> (Anthozoa, Octocorallia) loss in the Marine Protected Area of
40	Tavolara (Sardinia, Italy) due to a mass mortality event. <i>Marine Ecology</i> , 32 (Suppl), 107116,
41 42	doi:10.1111/j.1439-0485.2011.00429.X. Humphrey, V. et al. 2018: Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage
42 43	Nature 560 (7720) 628-631 doi:10.1038/s41586-018-0424-4
44	Hunt, A. et al., 2017: Climate and weather service provision: Economic appraisal of adaptation to health impacts.
45	<i>Climate Services</i> , 7 , 78-86, doi:https://doi.org/10.1016/j.cliser.2016.10.004.
46	Huntington, H. P. et al., 2017: How small communities respond to environmental change: patterns from tropical to
47	polar ecosystems. <i>Ecology and Society</i> , 22 (3).
48	Huthnance, J. et al., 2016: Recent Change—North Sea. In: North Sea Region Climate Change Assessment [Quante, M.
49	and F. Colijn (eds.)]. Springer International Publishing, Cham, pp. 85-136. ISBN 978-3-319-39745-0.
50	IAEA, 2019: Adapting the Energy Sector to Climate Change. INTERNATIONAL ATOMIC ENERGY AGENCY,
51 52	Vicinia. Ibrahim A and S. I. I. Pelsmakers, 2018: Low-energy housing retrofit in North England: Overheating risks and
52 53	possible mitigation strategies. Building Services Engineering Research and Technology, 39 (2), 161-172.
54	doi:10.1177/0143624418754386.
55	IEA, 2018: The Future of Cooling - Opportunities for energy efficient air conditioning. International Energy Agency,
56	France. Available at: https://webstore.iea.org/download/direct/1036?fileName=The_Future_of_Cooling.pdf.
57	IFPRI, 2018: 2018 Global food policy report. International Food Policy Research Institute, Washington, DC. Available
58	at: http://www.ifpri.org/publication/2018-global-food-policy-report.
59 (0	Iglesias, A. and L. Garrote, 2015: Adaptation strategies for agricultural water management under climate change in Europe. Agricultural Water Management 155, 112, 124, doi:10.1016/j.acrest.2015.02.014
6U 61	Europe. Agricultural waler Management, 135, 115-124, doi:10.1010/J.agwat.2015.05.014. Inuit Circumpolar Council 2020: Food sovereignty and self-governance: Inuit role in managing aretic marine.
62	resources Anchorage AK Available at
63	https://www.culturalsurvival.org/sites/default/files/FSSG%20Report_%20LR%20%281%29.pdf.

1 2	Iosub, M., A. Enea and I. Mine (eds.), Flash flood impact on the cultural heritage in Moldova region, Romania. Case Study: Jijia valley. 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings,
3	2019/06/20/, Sofia.
4	IPBES, 2018: The regional assessment report on biodiversity and ecosystem services for Europe and Central Asia
5	[Rounsevell, M., M. Fischer, A. Torre-Marin Rando and A. Mader (eds.)]. IPBES Secretariat, Secretariat, I.,
6	Bonn, Germany, 892 pp pp. Available at: <u>http://www.ipbes.dk/wp-</u>
7	content/uploads/2018/09/EuropaCentralAsia SPM 2018.pdf.
8	Ipcc, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-
9	industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global
10	response to the threat of climate change, 1-630 pp. Available at: www.environmentalgraphiti.org.
11	IPCC, 2019: Special Report: The Ocean and Cryosphere in a Changing Climate [H O. Pörtner, D.C. Roberts, V.
12	Masson-Delmotte P Zhai M Tionor E Poloczanska K Mintenbeck M Nicolai A Okem I Petzold B Rama
12	N Wever (eds.)] In press 1170-1170 pp. Available at:
13	https://report.inco.ch/sroco/ndf/SPOCC_FinalDraft_FullDeport.ndf
14	Industriant F A K B Shine and M A Stringer 2016: What are the implications of climate change for trans Atlantic
15	invine, E. A., K. F. Sinne and M. A. Sumger, 2010. What are the implications of clinitate change for trans-Atlantic
16	arctait routing and fight time? Transportation Research Part D-Transport and Environment, 41, 44-55,
17	doi:10.1016/j.trd.2016.04.014.
18	Isaksson, K. and S. Heikkinen, 2018: Sustainability Transitions at the Frontline. Lock-in and Potential for Change in the
19	Local Planning Arena. Sustainability, 10(3), doi:10.3390/su10030840.
20	Iskander, M. M. et al., 2007: Beach impacts of shore-parallel breakwaters backing offshore submerged ridges, Western
21	Mediterranean Coast of Egypt. <i>Journal of Environmental Management</i> , 85 (4), 1109-1119,
22	doi:10.1016/j.jenvman.2006.11.018.
23 24	Ito, A. et al., 2020: Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems. <i>Environmental Research Letters</i> , 15 (4), 044006, doi:10.1088/1748-9326/ab702b.
25	Ivanov, V. P. et al., 2016: Invasion of the Caspian Sea by the Comb Jellyfish Mnemiopsis Leidyi (Ctenophora).
26	Biological Invasions, 2(3), 255258, doi:10.1023/A:1010098624728.
27	Jacob, D. et al., 2018: Climate Impacts in Europe Under +1.5°C Global Warming Earth's Future. Earth's Future, 6, 264-
28	285, doi:10.1002/eft2.286.
29	Jacob, D. et al., 2014; EURO-CORDEX; new high-resolution climate change projections for European impact research.
30	Regional Environmental Change 14(2) 563-578 doi:10.1007/s10113-013-0499-2
31	Jacob D L and D A Winner 2009. Effect of climate change on air quality Atmospheric Environment 43(1) 51-63
22	doi:https://doi.org/10.1016/i.atmoseny.2008.09.051
32 22	Jacob K. H. 2015: See level rise storm risk denial and the future of coastal cities. Bullatin of the Atomic Scientists
24	71 (5) A0 50 doi:10.1177/0006240215500777
34 25	/1(5), 40-50, 401.10.11///0090540215599///.
35	Jaciel, H. et al., 2017: Tree Diversity Drives Forest Stand Resistance to Ivatural Disturbances. Current Forestry
36	Reports, 3 (5), 225-245, doi:10.1007/840725-017-0004-1.
37	Jaenson, 1. et al., 2012: Changes in the geographical distribution and abundance of the tick fixedes ricinus during the
38	past 30 years in Sweden. Parasites & Vectors, 5, doi:10.1186/1/56-3305-5-8.
39	Jaenson, T. and E. Lindgren, 2011: The range of Ixodes ricinus and the risk of contracting Lyme borreliosis will
40	increase northwards when the vegetation period becomes longer. <i>Ticks and Tick-Borne Diseases</i> , 2 (1), 44-49,
41	doi:10.1016/j.ttbdis.2010.10.006.
42	Jäger, H., G. Peratoner, U. Tappeiner and E. Tasser, 2020: Grassland biomass balance in the European Alps: current
43	and future ecosystem service perspectives. <i>Ecosystem Services</i> , 45 , 101163,
44	doi: <u>https://doi.org/10.1016/j.ecoser.2020.101163</u> .
45	Jantke, K., J. Müller, N. Trapp and B. Blanz, 2016: Is climate-smart conservation feasible in Europe? Spatial relations
46	of protected areas, soil carbon, and land values. Environmental Science and Policy, 57, 40-49,
47	doi:10.1016/i.envsci.2015.11.013.
48	Jarić, I. et al., 2019: Susceptibility of European freshwater fish to climate change: Species profiling based on life-
49	history and environmental characteristics. Global Change Biology 25(2) 448-458 doi:10.1111/gcb.14518
50	In the second s
51	Transportation Research Part D: Transport and Environment 30 1-9
52	doi https://doi org/10.1016/i trd 2014.05.002
52 52	Inking K et al. 2014b: Probabilistic spatial risk assassment of heat impacts and adoptations for London. Climatic
55 E 4	Change 12 $A(1)$ 105 117 doi:10.1007/s10594.014.1105.4
34 55	Chunge, 124(1), 103-117, 001.10.1007/S10304-014-1103-4.
33 57	<i>Communications</i> (doi:10.1029/noomy.10014
56	Communications, 0 , aoi:10.1058/ncomms10014.
57	Jiang, L. et al., 2020: Effects of sea-level rise on fides and sediment dynamics in a Dutch fidal bay. Ocean Sci, 16, 307-
58	321, doi:papers3://publication/uuid/E5C4F306-9A38-440/-8AED-A852335943/B.
59	Jimenez, J. A. and H. I. Valdemoro, 2019: Shoreline Evolution and its Management Implications in Beaches Along the
60	Catalan Coast. In: The Spanish Coastal Systems: Dynamic Processes, Sediments and Management. Springer
61	International Publishing, Cham, pp. 745-764. ISBN 978-3-319-93169-2.
62	Jiménez, J. A. et al., 2017: Impacts of sea-level rise-induced erosion on the Catalan coast. Regional Environmental
63	<i>Change</i> , 17 (2), 593-603, doi:10.1007/s10113-016-1052-x.

Johannessen, Å. et al., 2019: Transforming urban water governance through social (triple-loop) learning. Environmental 1 *Policy and Governance*, **0**(0), doi:10.1002/eet.1843. 2 Johansson, C., V. A. Pohjola, C. Jonasson and T. V. Callaghan, 2011: Multi-Decadal Changes in Snow Characteristics 3 in Sub-Arctic Sweden. AMBIO, 40(6), 566, doi:10.1007/s13280-011-0164-2. 4 Johnson, D., M. Adelaide Ferreira and E. Kenchington, 2018: Climate change is likely to severely limit the 5 effectiveness of deep-sea ABMTs in the North Atlantic. Marine Policy, 87, 111-122, 6 doi:papers3://publication/doi/10.1016/j.marpol.2017.09.034. 7 Jokinen, S., J. J. Virtasalo, T. S. Jilbert and J. Kaiser, 2018: A 1500-vear multiproxy record of coastal hypoxia from the 8 northern Baltic Sea indicates unprecedented deoxygenation over the 20th century. Biogeosciences, 15, 3975-4001, 9 doi:papers3://publication/doi/10.1016/S0016-7037(00)00539-1. 10 Jolly, W. M. et al., 2015: Climate-induced variations in global wildfire danger from 1979 to 2013. Nature 11*Communications*, **6**(1), 7537, doi:10.1038/ncomms8537. 12 Joly, M. and E. I. Ungureanu, 2018: Global warming and skiing: analysis of the future of skiing in the Aosta valley. 13 Worldwide Hospitality and Tourism Themes, 10(2), 161-171, doi:doi:10.1108/WHATT-12-2017-0077. 14 Jones, B. and B. C. O'Neill, 2016: Spatially explicit global population scenarios consistent with the Shared 15 Socioeconomic Pathways. Environmental Research Letters, 11(8), doi:10.1088/1748-9326/11/8/084003. 16 Jones, E. et al., 2019: The state of desalination and brine production: A global outlook. Science of The Total 17 Environment, 657, 1343-1356, doi:https://doi.org/10.1016/j.scitotenv.2018.12.076. 18 19 Jones, P. and D. Comfort, 2020: A commentary on rewilding in Europe. Journal of Public Affairs, 20(3), e2071, doi:10.1002/pa.2071. 20 Jones, P. J. S., L. M. Lieberknecht and W. Oiu, 2016: Marine spatial planning in reality: Introduction to case studies 21 and discussion of findings. Marine Policy, 71, 256-264, 22 doi:papers3://publication/doi/10.1016/j.marpol.2016.04.026. 23 Jongman, B. et al., 2014: Increasing stress on disaster-risk finance due to large floods. Nature Climate Change, 4(4), 24 264-268, doi:10.1038/NCLIMATE2124. 25 Jongman, B., P. J. Ward and J. Aerts, 2012: Global exposure to river and coastal flooding: Long term trends and 26 changes. Global Environmental Change-Human and Policy Dimensions, 22(4), 823-835, 27 doi:10.1016/j.gloenvcha.2012.07.004. 28 Jongman, B. et al., 2015: Declining vulnerability to river floods and the global benefits of adaptation. Proceedings of 29 the National Academy of Sciences, 112(18), E2271-E2280, doi:10.1073/pnas.1414439112. 30 Jore, S. et al., 2014: Climate and environmental change drives Ixodes ricinus geographical expansion at the northern 31 32 range margin. Parasites & Vectors, 7, doi:10.1186/1756-3305-7-11. 33 Jørgensen, P. S. et al., 2016: Continent-scale global change attribution in European birds - combining annual and 34 decadal time scales. Global Change Biology, 22(2), 530-543, doi:10.1111/gcb.13097. Jouzel, J. and A. Michelot, 2016: Climate justice : Challenges and propsects for France. 66 pp. Available at: 35 https://www.lecese.fr/sites/default/files/travaux multilingue/avis justice climatique-min.pdf. 36 Joye, J.-F., 2018: Tourism development and adaptation to climate change through legal constraint. Worldwide 37 Hospitality and Tourism Themes, 10(2), 244-252, doi:10.1108/WHATT-12-2017-0074. 38 Juhola, S., E. Glaas, B.-O. Linnér and T.-S. Neset, 2016: Redefining maladaptation. Environmental Science & Policy, 39 55, 135-140, doi:10.1016/j.envsci.2015.09.014. 40 Jurt, C. et al., 2015: Local perceptions in climate change debates: insights from case studies in the Alps and the Andes. 41 Climatic Change, 133(3), 511-523, doi:10.1007/s10584-015-1529-5. 42 Juschten, M. et al., 2019a: Out of the City Heat—Way to Less or More Sustainable Futures? Sustainability, 11(1), 214. 43 Juschten, M., A. Jiricka-Pürrer, W. Unbehaun and R. Hössinger, 2019b: The mountains are calling! An extended TPB 44 model for understanding metropolitan residents' intentions to visit nearby alpine destinations in summer. Tourism 45 Management, 75, 293-306, doi:https://doi.org/10.1016/j.tourman.2019.05.014. 46 47 Kabat, P. et al., 2009: Dutch coasts in transition. *Nature Geosciences*, 2(7), 450-452. Kabisch, N. et al., 2016: Nature-based solutions to climate change mitigation and adaptation in urban areas: 48 perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society, 21(2), 49 doi:10.5751/ES-08373-210239. 50 Kabisch, N., H. Korn, J. Stadler and A. Bonn, 2017: Nature-Based Solutions to Climate Change Adaptation in Urban 51 Areas. Linkages between Science, Policy and Practice. Springer. 52 Kahn, M. E. et al., 2019: Long-Term Macroeconomic Effects of Climate Change: A Cross-Country Analysis. gwp, 53 2019(365), doi:10.24149/gwp365. 54 Kaiser, N. et al., 2010: Depression and anxiety in the reindeer-herding Sami population of Sweden. International 55 Journal of Circumpolar Health, 69(4), 383-393, doi:10.3402/ijch.v69i4.17674. 56 Kalkuhl, M. and L. Wenz, 2020: The impact of climate conditions on economic production. Evidence from a global 57 panel of regions. Journal of Environmental Economics and Management, 103, 102360, 58 doi:10.1016/j.jeem.2020.102360. 59 Kallio, A. M. I., B. Solberg, L. Käär and R. Päivinen, 2018: Economic impacts of setting reference levels for the forest 60 carbon sinks in the EU on the European forest sector. Forest Policy and Economics, 92, 193-201, 61 doi:https://doi.org/10.1016/j.forpol.2018.04.010. 62

Kanters, J. and M. Wall, 2018: Experiences from the urban planning process of a solar neighbourhood in Malmö, 1 Sweden. Urban, Planning and Transport Research, 6(1), 54-80, doi:10.1080/21650020.2018.1478323. 2 Kärcher, O., D. Hering, K. Frank and D. Markovic, 2019: Freshwater species distributions along thermal gradients. 3 Ecology and Evolution, 9(1), 111-124, doi:10.1002/ece3.4659. 4 Karkanis, A. et al., 2018: Interference of weeds in vegetable crop cultivation, in the changing climate of Southern 5 Europe with emphasis on drought and elevated temperatures: A review. Journal of Agricultural Science, 156(10), 6 1175-1185, doi:10.1017/S0021859619000108. 7 Karlsson, B., 2014: Extended season for northern butterflies. International journal of biometeorology, 58, 8 doi:10.1007/s00484-013-0649-8. 9 Kasimir, A., H. He, J. Coria and A. Norden, 2018: Land use of drained peatlands: Greenhouse gas fluxes, plant 10 production, and economics. Global Change Biology, 24(8), 3302-3316, doi:10.1111/gcb.13931. 11 Katopodis, T. et al., 2019: Assessment of climate change impacts on wind resource characteristics and wind energy 12 potential in Greece. Journal of Renewable and Sustainable Energy, 11(6), 066502, doi:10.1063/1.5118878. 13 Kaufman, J. D., K. R. Kassube and A. G. Ríus, 2017: Lowering rumen-degradable protein maintained energy-corrected 14 milk yield and improved nitrogen-use efficiency in multiparous lactating dairy cows exposed to heat stress. 15 Journal of Dairy Science, 100(10), 8132-8145, doi:10.3168/jds.2017-13026. 16 Kaufmann, M., S. J. Priest and P. Leroy, 2018: The undebated issue of justice: silent discourses in Dutch flood risk 17 18 management. Regional Environmental Change, 18(2), 325-337, doi:10.1007/s10113-016-1086-0. 19 Keeley, A. T. H. et al., 2018: New concepts, models, and assessments of climate-wise connectivity. Environmental Research Letters, 13(7), 073002, doi:10.1088/1748-9326/aacb85. 20 Keeley, J. E. et al., 2011: Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge 21 University Press, Cambridge. ISBN 978-1-139-03309-1. 22 Keenan, T. F. et al., 2016: Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon 23 uptake. Nature Communications, 7, 1-9, doi:10.1038/ncomms13428. 24 Kellens, W., T. Terpstra and P. De Maeyer, 2013: Perception and Communication of Flood Risks: A Systematic 25 Review of Empirical Research. Risk Analysis, 33(1), 24-49, doi:10.1111/j.1539-6924.2012.01844.x. 26 Kelley, C. P. et al., 2015: Climate change in the Fertile Crescent and implications of the recent Syrian drought. 27 Proceedings of the National Academy of Sciences of the United States of America, 112(11), 3241-3246, 28 doi:10.1073/pnas.1421533112. 29 Kellomäki, S. et al., 2018: Temporal and Spatial Change in Diameter Growth of Boreal Scots Pine, Norway Spruce, and 30 Birch under Recent-Generation (CMIP5) Global Climate Model Projections for the 21st Century. Forests, 9(3), 31 32 118, doi:10.3390/f9030118. 33 Kendrovski, V. et al., 2017: Quantifying Projected Heat Mortality Impacts under 21st-Century Warming Conditions for Selected European Countries. International Journal of Environmental Research and Public Health, 14(7), 34 doi:10.3390/ijerph14070729. 35 Kendrovski, V. and O. Schmoll, 2019: Priorities for protecting health from climate change in the WHO European 36 Region: recent regional activities. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 62(5), 37 537-545, doi:10.1007/s00103-019-02943-9. 38 Kernecker, M. et al., 2019: Experience versus expectation: farmers' perceptions of smart farming technologies for 39 cropping systems across Europe. Precision Agric, doi:10.1007/s11119-019-09651-z. 40 Kersting, D. K., N. Bensoussan and C. Linares, 2013: Long-term responses of the endemic reef-builder Cladocora 41 caespitosa to Mediterranean warming. PLoS One, 8(8), e70820, 42 doi:papers3://publication/doi/10.1371/journal.pone.0070820. 43 Kešetović, Ž., P. Marić and V. Ninković, 2017: Crisis Communication of Local Authorities in Emergency Situations -44 Communicating "May Floods" in the Republic of Serbia. Lex localis - Journal of Local Self-Government, 15(1), 45 46 93-109, doi:10.4335/15.1.93-109(2017). 47 Keskitalo, E., G. Vulturius and P. Scholten, 2014: Adaptation to climate change in the insurance sector: examples from the UK, Germany and the Netherlands. *Natural Hazards*, 71(1), 315-334, doi:10.1007/s11069-013-0912-7. 48 Ketabchi, H., D. Mahmoodzadeh, B. Ataie-Ashtiani and C. T. Simmons, 2016: Sea-level rise impacts on seawater 49 intrusion in coastal aquifers: Review and integration. Journal of Hydrology \$V 535, 235-255. 50 Khabarov, N. et al., 2016: Forest fires and adaptation options in Europe. Regional Environmental Change, 16(1), 21-30, 51 doi:10.1007/s10113-014-0621-0. 52 Khan, Z., P. Linares and J. García-González, 2016: Adaptation to climate-induced regional water constraints in the 53 Spanish energy sector: An integrated assessment. Energy Policy, 97, 123-135, 54 doi:https://doi.org/10.1016/j.enpol.2016.06.046. 55 Khare, S. et al., 2015: Heat protection behaviour in the UK: results of an online survey after the 2013 heatwave. BMC 56 Public Health, 15(1), 878, doi:10.1186/s12889-015-2181-8. 57 Kim, G.-U., K.-H. Seo and D. Chen, 2019: Climate change over the Mediterranean and current destruction of marine 58 ecosystem. Scientific reports, 9(1), 9, doi:papers3://publication/doi/10.1038/s41598-019-55303-7. 59 Kingsborough, A., E. Borgomeo and J. W. Hall, 2016: Adaptation pathways in practice: Mapping options and trade-offs 60 for London's water resources. Sustainable Cities and Society, 27, 386-397, 61 doi:https://doi.org/10.1016/j.scs.2016.08.013. 62

1	Kingsborough, A., K. Jenkins and J. W. Hall, 2017: Development and appraisal of long-term adaptation pathways for
2	managing heat-risk in London. Climate Risk Management, 16, 73-92,
3	doi: <u>https://doi.org/10.1016/j.crm.2017.01.001</u> .
4	Kirwan, M. et al., 2016: Overestimation of marsh vulnerability to sea level rise. <i>Nature Climate Change</i> , 6 (3), 253-260,
5	doi:10.1038/NCLIMATE2909.
6	Kivinen, S., 2015: Many a little makes a mickle: Cumulative land cover changes and traditional land use in the Kyrö
7	reindeer herding district, northern Finland. Applied Geography, 63, 204-211, doi:10.1016/j.apgeog.2015.06.013.
8	Kivinen, S. et al., 2012: Forest Fragmentation and Landscape Transformation in a Reindeer Husbandry Area in Sweden.
9	Environmental Management, 49 (2), 295-304, doi:10.1007/s00267-011-9788-z.
10	Kjellstrom, T. et al., 2016: Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of
11	Global Climate Change Impacts. Annual Review of Public Health, 37(1), 97-112, doi:10.1146/annurev-
12	publhealth-032315-021740.
13	Klein, G. et al., 2016: Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to
14	later snow onset. Climatic Change, 139(3), 637-649, doi:10.1007/s10584-016-1806-y.
15	Klijn, F., H. Kreibich, H. de Moel and E. Penning-Rowsell, 2015: Adaptive flood risk management planning based on a
16	comprehensive flood risk conceptualisation. <i>Mitigation and Adaptation Strategies for Global Change</i> , 20 (6), 845-
17	864, doi:10.1007/s11027-015-9638-z.
18	Klimenko, V., E. Fedotova and A. Tereshin, 2018: Vulnerability of the Russian power industry to the climate change.
19	<i>Energy</i> , 142 , 1010-1022, doi:10.1016/j.energy.2017.10.069.
20	Kløcker Larsen, R. and K. Raitio, 2019: Implementing the State Duty to Consult in Land and Resource Decisions:
21	Perspectives from Sami Communities and Swedish State Officials. Arctic Review on Law and Politics, 10(0), 4,
22	doi:10.23865/arctic.v10.1323.
23	Kløcker Larsen, R., K. Raitio, M. Stinnerbom and J. Wik-Karlsson, 2017: Sami-state collaboration in the governance of
24	cumulative effects assessment: A critical action research approach. <i>Environmental Impact Assessment Review</i> , 64,
25	67-76, doi:10.1016/j.eiar.2017.03.003.
26	Kløcker Rasmus, R. and K. Raitio, 2019: Implementing the State Duty to Consult in Land and Resource Decisions:
27	Perspectives from Sami Communities and Swedish State Officials. Arctic Review on Law and Politics, 10(0), 4,
28	doi:10.23865/arctic.v10.1323.
29	Klostermann, J. et al., 2018: Towards a framework to assess, compare and develop monitoring and evaluation of
30	climate change adaptation in Europe. Mitigation and Adaptation Strategies for Global Change, 23(2), 187-209,
31	doi:10.100//s1102/-015-96/8-4.
32	Knittel, N. et al., 2020: A global analysis of heat-related labour productivity losses under climate change—implications for Communications for Communications $f_{\rm eff}$ Communications for Communicatio
33	for Germany's foreign trade. Climatic Change, $100(2)$, $251-269$, $d01:10.100//s10584-020-02661-1$.
34	Knouff, J. H. and D. L. Ficklin, 2017: The Potential Impacts of Climate Change on Biodiversity in Flowing Freshwater
35	Systems. In: Annual Review of Ecology, Evolution, and Systematics, Vol 48 [Futuyma, D. J. (ed.)], pp. 111-155.
30	ISDN 976-0-6245-1446-4. Know L. A. Dassacha T. Hass and D. Hans. 2016. Mats analysis of slimats imposts and uncertainty on such violds in
3/	Knox, J., A. Daccache, T. ness and D. naro, 2010: Meta-analysis of cliniate impacts and uncertainty on crop yields in Europe, Emvironmental Decograph Lattern 11 (11), 112004, doi:10.1089/1748.0226/11/11/112004
38	Europe. Environmental Research Letters, 11(11), 115004, doi:10.1060/1746-9520/11/11/11/115004.
39 40	Roch, H. et al., 2014. Security of water Supply and Electricity Production. Aspects of Integrated Management. <i>Water</i>
40	Kesources Munugement, 20(0), 1/0/-1/80, doi:10.100//S11209-014-0389-2.
41	Alialmanas National Dark Grassa Occar & Coastal Management 92 , 42, 50
42	Anakinonas Ivational Park, Olecce. Ocean & Coastal Management, 62 , 45-50, doi:https://doi.org/10.1016/j.oceacomman.2013.05.008
45	Kok K et al. 2010: New European socio economic scenarios for climate change research: operationalising concents to
44	extend the shared socio-economic pathways Regional Environmental Change 19(3) 643-654
45	doi:10.1007/s10113_018_1400_0
40	Koks F 2018: Moving flood risk modelling forwards Nature Climate Change 8(7) 561-562 doi:10.1038/s41558-
48	018-0185-v
49	Koks F. R. Pant S. Thacker and I. W. Hall. 2019a: Understanding Business Disruption and Economic Losses Due to
50	Flectricity Failures and Flooding International Journal of Disaster Risk Science 10(4) 421-438
51	doi:10.1007/s13753-019-00236-v
52	Koks E E and M Thissen 2016: A Multiregional Impact Assessment Model for disaster analysis. <i>Economic Systems</i>
53	Research 28(4) 429-449 doi:10.1080/09535314.2016.1232701
54	Koks, E. E. et al., 2019b: The macroeconomic impacts of future river flooding in Europe. <i>Environmental Research</i>
55	Letters, 14(8), 084042, doi:10.1088/1748-9326/ab3306.
56	Koletsis, I., V. Kotroni, K. Lagouvardos and T. Soukissian. 2016: Assessment of offshore wind speed and power
57	potential over the Mediterranean and the Black Seas under future climate changes. <i>Renewable and Sustainable</i>
58	Energy Reviews, 60, 234-245, doi:https://doi.org/10.1016/j.rser.2016.01.080.
59	Kolström, M., 2011: Climate Change Impacts and Adaptation in European Forests. Policy Brief 6. European Forest
60	Institute.
61	Kondo, M. C., J. M. Fluehr, T. McKeon and C. C. Branas, 2018: Urban Green Space and Its Impact on Human Health.
62	International Journal of Environmental Research and Public Health, 15(3), 445.

2

3

4

5

6

7

8

9

- Konnova, L. A. and Y. V. Lvova, 2019: Permafrost degradation in security context livelihoods in the Arctic Zone of the Russian Federation. *Problems of technosphere risk management*,(3(51)), 27-33.
- Koopman, J. F. L., O. Kuik, R. S. J. Tol and R. Brouwer, 2017: The potential of water markets to allocate water between industry, agriculture, and public water utilities as an adaptation mechanism to climate change. *Mitigation* and adaptation strategies for global change, 22(2), 325-347, doi:10.1007/s11027-015-9662-z.
- Koubi, V., 2019: Climate Change and Conflict. *Annual Review of Political Science*, **22**(1), 343-360, doi:10.1146/annurev-polisci-050317-070830.

Koutroulis, A. G., M. G. Grillakis, I. K. Tsanis and D. Jacob, 2018: Mapping the vulnerability of European summer tourism under 2 °C global warming. *Climatic Change*, **151**(2), 157-171, doi:10.1007/s10584-018-2298-8.

- Koutroulis, A. G. et al., 2019: Global water availability under high-end climate change: A vulnerability based
 assessment. *Global and Planetary Change*, 175, 52-63, doi:https://doi.org/10.1016/j.gloplacha.2019.01.013.
- Kovats, R. S. et al., 2014: Europe. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional
 Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of
- *Climate Change* [Barros, V. R., C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M.
 Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R.
 Mastrandrea and L. L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York,
 NY, USA, pp. XXX-YYY.
- Kraemer, M. et al., 2015: The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. *Tropical Medicine & International Health*, 20, 38-38.
- Krakovska, S. V., L. V. Palamarchuk and T. M. Shpytal, 2019: Climatic projections of heating season in Ukraine up to
 the middle of the 21st century. <*i data-stringify-type="italic" style="box-sizing: inherit; color: rgb(29, 28, 29); font-family: Slack-Lato, appleLogo, sans-serif; font-size: 15px; font-variant-ligatures: common-ligatures; background-color: rgb(248, 248, 248);">Geofizicheskiy Zhurnal, 41(6), 144-164, doi:10.24028/gzh.0203-*3100.v41i6.2019.190072.
- Krause, A., T. Knoke and A. Rammig, 2020: A regional assessment of land-based carbon mitigation potentials:
 Bioenergy, BECCS, reforestation, and forest management. *GCB Bioenergy*, 12(5), 346-360,
 doi:10.1111/gcbb.12675.
- Kreibich, H., P. Bubeck, M. Van Vliet and H. De Moel, 2015: A review of damage-reducing measures to manage
 fluvial flood risks in a changing climate. *Mitigation and Adaptation Strategies for Global Change*, 20(6), 967-989,
 doi:10.1007/s11027-014-9629-5.
- Krikken, F. et al., 2019: Attribution of the role of climate change in the forest fires in Sweden2018. Atmospheric,
 Meteorological and Climatological Hazards. Available at: <u>https://nhess.copernicus.org/preprints/nhess-2019-206/</u>
 (accessed 2020/10/26/18:42:18).
- Krovnin, A. S., S. P. Melnikov, D. V. Artemenkov and G. P. Muriy, 2019: Climate change impact on fish communities
 in the North Atlantic region. In: *Modern problems of Hydrometeorology and sustainable development of the Russian Federation*, Saint-Petersburg, [Mikheev, V. L., I. I. Musket, E. A. A. and A. A. Fokicheva (eds.)],
 Russian State Hydrometeorological University, pp. 382-383.
- Kuhn, K. et al., 2020: Campylobacter infections expected to increase due to climate change in Northern Europe.
 Scientific Reports, 10(1), doi:10.1038/s41598-020-70593-y.
- Kulmer, V., M. Jury, S. Wong and D. Kortschak, 2020: Global resource consumption effects of borderless climate
 change: EU's indirect vulnerability. *Environmental and Sustainability Indicators*, 8, 100071,
 doi:10.1016/j.indic.2020.100071.
- Kundzewicz, Z. W., I. Pińskwar and G. R. Brakenridge, 2017: Changes in river flood hazard in Europe: a review.
 Hydrology Research, 49(2), 294-302, doi:10.2166/nh.2017.016.
- Kuuluvainen, T., 1994: GAP DISTURBANCE, GROUND MICROTOPOGRAPHY, AND THE REGENERATION
 DYNAMICS OF BOREAL CONIFEROUS FORESTS IN FINLAND A REVIEW. *Annales Zoologici Fennici*,
 31(1), 35-51.
- Kuuluvainen, T., 2009: Forest Management and Biodiversity Conservation Based on Natural Ecosystem Dynamics in
 Northern Europe: The Complexity Challenge. *Ambio*, **38**(6), 309-315, doi:10.1579/08-a-490.1.
- Kwadijk, J. C. J. et al., 2010: Using adaptation tipping points to prepare for climate change and sea level rise: a case
 study in the Netherlands. *Wiley Interdisciplinary Reviews: Climate Change*, 1(5), 729-740, doi:10.1002/wcc.64.
- Kwiatkowski, L., O. Aumont and L. Bopp, 2019: Consistent trophic amplification of marine biomass declines under
 climate change. *Global Change Biology*, 25(1), 218-229, doi:papers3://publication/doi/10.1111/gcb.14468.
- Lacoue-Labarthe, T. et al., 2016: Impacts of ocean acidification in a warming Mediterranean Sea: An overview.
 Regional Studies in Marine Science, 5, 1-11, doi:<u>https://doi.org/10.1016/j.rsma.2015.12.005</u>.
- Lahaye, S. et al., 2018: What are the drivers of dangerous fires in Mediterranean France? *Int. J. Wildland Fire*, 27(3),
 155-163.
- Lake, I., 2017: Food-borne disease and climate change in the United Kingdom. *Environmental Health*, 16, 53-59,
 doi:10.1186/s12940-017-0327-0.
- Lake, I. et al., 2019: Exploring Campylobacter seasonality across Europe using The European Surveillance System (TESSy), 2008 to 2016. *Eurosurveillance*, **24**(13), 35-46, doi:10.2807/1560-7917.ES.2019.24.13.180028.
- Lake, I. et al., 2017: Climate Change and Future Pollen Allergy in Europe. *Environmental Health Perspectives*, **125**(3),
- 63 385-391, doi:10.1289/EHP173.

1	Lamberti, A. and B. Zanuttigh, 2005: An integrated approach to beach management in Lido di Dante, Italy. Estuarine,
2	Coastal and Shelf Science, 62(3), 441-451, doi:10.1016/j.ecss.2004.09.022.
3	Lambertz, C., C. Sanker and M. Gauly, 2014: Climatic effects on milk production traits and somatic cell score in
4	lactating Holstein-Friesian cows in different housing systems. Journal of Dairy Science, 97(1), 319-329,
5	doi:10.3168/jds.2013-7217.
6	Lamond, J. and E. Penning-Rowsell, 2014: The robustness of flood insurance regimes given changing risk resulting
7	from climate change. <i>Climate Risk Management</i> , 2 , 1-10, doi: <u>https://doi.org/10.1016/j.crm.2014.03.001</u> .
8	Landauer, M., W. Haider and U. Pröbstl-Haider, 2013: The Influence of Culture on Climate Change Adaptation
9	Strategies: Preferences of Cross-Country Skiers in Austria and Finland. <i>Journal of Travel Research</i> , 53(1), 96-
10	$\frac{110, \text{ doi: 10.11}}{1004/28/5134812/6}$
11	Langer, G. et al., 2014: Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell
12	layers. Biogeosciences, 11(24), /303/308, doi:10.3194/bg-11-/303-2014.
13	Mining companies' performance on Sami lands. The Extractive Industries and Society 5 (2), 275–282
14	doi:https://doi.org/10.1016/i.exis.2018.04.003
15	Larsen R K and K Raitio 2019: Implementing the State Duty to Consult in Land and Resource Decisions:
17	Perspectives from Sami Communities and Swedish State Officials Arctic Review on Law and Politics 10(0) 4
18	doi:10.23865/arctic v10.1323
19	Latchininsky A V 2017: Climate changes and locusts: What to expect? Scientific notes of the Russian State
20	Hydrometeorological University, 46, 134-143.
21	Laufkoetter, C. et al., 2015: Drivers and uncertainties of future global marine primary production in marine ecosystem
22	models. <i>Biogeosciences</i> , 12 (23), 6955-6984, doi:papers3://publication/doi/10.5194/bg-12-6955-2015.
23	Lavrnic, S., M. Zapater-Pereyra and M. Mancini, 2017: Water Scarcity and Wastewater Reuse Standards in Southern
24	Europe: Focus on Agriculture. Water Air and Soil Pollution, 228(7), doi:10.1007/s11270-017-3425-2.
25	Lawrence, R., 2014: Internal Colonisation and Indigenous Resource Sovereignty: Wind Power Developments on
26	Traditional Saami Lands. Environment and Planning D: Society and Space, 32(6), 1036-1053, doi:10.1068/d9012.
27	Lawrence, R. and R. Kløcker Larsen, 2017: The politics of planning: assessing the impacts of mining on Sami lands.
28	<i>Third World Quarterly</i> , 38 (5), 1164-1180, doi:10.1080/01436597.2016.1257909.
29	Lawrence, R. and R. Kløcker Larsen, 2019: Fighting to Be Herd: Impacts of the Proposed Boliden Copper Mine in
30	Laver, Alvsbyn, Sweden for the Semisjaur Njarg Sami Reindeer Herding Community. Stockholm Environment
31	Institute, Stockholm, 96 pp. Available at: <u>https://www.sei.org/wp-content/uploads/2019/04/sei-report-fighting-to-</u>
32	<u>De-nera-300419.pai</u> . Le Cozennet G, et al. 2010: Quantifying uncertainties of sandy shareline change projections as see level rises
33	Scientific Reports 9(1) 42 doi:10.1038/s41598-018-37017-4
35	Le Cozannet, G. et al., 2017: Sea Level Change and Coastal Climate Services: The Way Forward. <i>Journal of Marine</i>
36	Science and Engineering, 5(4), doi:10.3390/imse5040049.
37	Lebedinskii, A. A., O. S. Noskova and A. I. Dmitriev, 2019: Post-fire
38	recovery of terrestrial vertebrates in the Kerzhensky State Nature Biosphere
39	Reserve (Central Volga Region, Russia). Nature
40	Conservation Research, 4(Suppl.1), 45–56, doi: <u>https://dx.doi.org/10.24189/ncr.2019.049</u> .
41	Lechuga, V. et al., 2017: Managing drought-sensitive forests under global change. Low competition enhances long-term
42	growth and water uptake in Abies pinsapo. Forest Ecology and Management, 406 , 72-82,
43	doi:10.1016/j.foreco.2017.10.017.
44	Lee, H. et al., 2019: Implementing land-based mitigation to achieve the Paris Agreement in Europe requires food
45	system transformation. Environmental Research Letters, 14(10), 104009, doi:10.1088/1/48-9520/a05/44.
40	Mediterraneon Bosin, Science of The Total Environment 602, 546, 555, doi:10.1016/j.scitoteny.2010.07.263
47	Lehikoinen A et al 2019: Declining population trends of European mountain birds. Global Change Biology 25 (2)
49	577-588. doi:10.1111/gcb.14522.
50	Lehtonen, I. et al., 2016: Risk of large-scale fires in boreal forests of Finland under changing climate. <i>Nat. Hazards</i>
51	Earth Syst. Sci., 16(1), 239-253, doi:10.5194/nhess-16-239-2016.
52	Leissner, J. et al., 2015: Climate for Culture: assessing the impact of climate change on the future indoor climate in
53	historic buildings using simulations. Heritage Science, 3(1), 38, doi:10.1186/s40494-015-0067-9.
54	Leitner, M. et al., 2020: Monitoring and evaluation of national adaptation policies throughout the policy cycle.
55	Publications Office, LU.
56	Lenderink, G. et al., 2019: Systematic increases in the thermodynamic response of hourly precipitation extremes in an
57	idealized warming experiment with a convection-permitting climate model. <i>Environmental Research Letters</i> ,
58 50	14(1), 0/4012, doi:10.1088/1/48-9520/ab214a. Lenoir Let al. 2008: A Significant Unword Shift in Diant Spacies Ontimum Elevation During the 20th Continue
59 60	Science 320(5884) 1768 doi:10.1126/science 1156831
61	Lenoir, J. et al., 2013: Local temperatures inferred from plant communities suggest strong spatial buffering of climate
62	warming across Northern Europe. <i>Global Change Biology</i> , 19 (5), 1470-1481. doi:10.1111/gcb.12129.

Lesnikowski, A., R. Biesbroek, J. D. Ford and L. Berrang-Ford, 2020: Policy implementation styles and local 1 governments: the case of climate change adaptation. Environmental Politics, 1-38, 2 doi:10.1080/09644016.2020.1814045. 3 Lesnikowski, A., J. Ford, R. Biesbroek and L. Berrang-Ford, 2019a: A policy mixes approach to conceptualizing and 4 measuring climate change adaptation policy. Climatic Change, 156(4), 447-469, doi:10.1007/s10584-019-02533-5 3 6 Lesnikowski, A. et al., 2016: National-level progress on adaptation. Nature Climate Change, 6, 261-264. 7 Lesnikowski, A., J. D. Ford, R. Biesbroek and L. Berrang-Ford, 2019b: A policy mixes approach to conceptualizing 8 and measuring climate change adaptation policy. Climatic Change, doi:10.1007/s10584-019-02533-3. 9 Leventon, J. et al., 2017: Collaboration or fragmentation? Biodiversity management through the common agricultural 10 policy. Land Use Policy, 64, 1-12, doi:10.1016/j.landusepol.2017.02.009. 11 Levinsky, I., F. Skov, J.-C. Svenning and C. Rahbek, 2007: Potential impacts of climate change on the distributions and 12 diversity patterns of European mammals. Biodiversity and Conservation, 16(13), 3803-3816, doi:10.1007/s10531-13 007-9181-7. 14 Lewis, K. M., G. L. van Dijken and K. R. Arrigo, 2020: Changes in phytoplankton concentration now drive increased 15 Arctic Ocean primary production. Science, 369(6500), 198-202, 16 17 doi:papers3://publication/doi/10.1126/science.aay8380. Lewis, S. L., C. E. Wheeler, E. T. A. Mitchard and A. Koch, 2019: Restoring natural forests is the best way to remove 18 19 atmospheric carbon. Nature, 568(7750), 25-28, doi:10.1038/d41586-019-01026-8. Lhotka, O. and J. Kysely, 2015: Characterizing joint effects of spatial extent, temperature magnitude and duration of 20 heat waves and cold spells over Central Europe. International Journal of Climatology, 35(7), 1232-1244, 21 doi:10.1002/joc.4050. 22 Lian, X. et al., 2020: Summer soil drying exacerbated by earlier spring greening of northern vegetation. Science 23 Advances, 6(1), eaax0255, doi:10.1126/sciadv.aax0255. 24 Liang, E. et al., 2016: Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. 25 Climatic Change, 134(1-2), 163-176, doi:10.1007/s10584-015-1531-y. 26 Linares, C., G. Martinez, V. Kendrovski and J. Diaz, 2020: A new integrative perspective on early warning systems for 27 health in the context of climate change. Environmental Research, 187, doi:10.1016/j.envres.2020.109623. 28 Lincke, D. and J. Hinkel, 2018: Economically robust protection against 21st century sea-level rise. *Global* 29 Environmental Change-Human and Policy Dimensions, 51, 67-73, doi:10.1016/j.gloenvcha.2018.05.003. 30 Lindeboom, H. J. et al., 2011: Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; a 31 32 compilation. Environmental Research Letters, 6(3), 035101-035114, doi:papers3://publication/doi/10.1088/1748-33 9326/6/3/035101. 34 Linnerooth-Bayer, J. and R. Mechler, 2015: Insurance for assisting adaptation to climate change in developing countries: a proposed strategy. In: Climate Change and Insurance. Routledge, pp. 29-44. 35 Lionello, P., 2012: The climate of the Venetian and North Adriatic region: Variability, trends and future change. 36 Physics and Chemistry of the Earth, Parts A/B/C, 40, 1-8. 37 Lionello, P. et al., 2020a: Extremes floods of Venice: characteristics, dynamics, past and future evolution. Nat. Hazards 38 Earth Syst. Sci., submitted. 39 Lionello, P., R. J. Nicholls, G. Umgiesser and D. Zanchettin, 2020b: Venice flooding and sea level: past evolution, 40 present issues and future projections. Nat. Hazards Earth Syst. Sci., submitted. 41 Liu, L. and M. B. Jensen, 2018: Green infrastructure for sustainable urban water management: Practices of five 42 forerunner cities. Cities, 74, 126-133, doi:https://doi.org/10.1016/j.cities.2017.11.013. 43 Liu-Helmersson, J. et al., 2016: Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission 44 in Europe. Ebiomedicine, 7, 267-277, doi:10.1016/j.ebiom.2016.03.046. 45 Ljungqvist, F. C. et al., 2016: Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature, 46 47 532(7597), 94-98, doi:10.1038/nature17418. Loepfe, L. et al., 2010: Feedbacks between fuel reduction and landscape homogenisation determine fire regimes in three 48 Mediterranean areas. Forest Ecology and Management, 259(12), 2366-2374, doi:10.1016/j.foreco.2010.03.009. 49 Löf, A., 2013: Examining limits and barriers to climate change adaptation in an Indigenous reindeer herding 50 community. Climate and Development, 5(4), 328-339, doi:10.1080/17565529.2013.831338. 51 Long, T. B., V. Blok and I. Coninx, 2016: Barriers to the adoption and diffusion of technological innovations for 52 climate-smart agriculture in Europe: evidence from the Netherlands, France, Switzerland and Italy. Journal of 53 Cleaner Production, 112, 9-21, doi:https://doi.org/10.1016/j.jclepro.2015.06.044. 54 Loopstra, R., 2020: An overview of food insecurity in Europe and what works and what doesn't work to tackle food 55 insecurity. European Journal of Public Health. 56 Lopez-Doriga, U., J. Jimenez, H. Valdemoro and R. Nicholls, 2019: Impact of sea-level rise on the tourist-carrying 57 capacity of Catalan beaches. Ocean & Coastal Management, 170, 40-50, doi:10.1016/j.ocecoaman.2018.12.028. 58 López-Dóriga, U., J. A. Jiménez, A. Bisaro and J. Hinkel, 2020: Financing and implementation of adaptation measures 59 to climate change along the Spanish coast. Science of The Total Environment, 712, 135685, 60 doi:10.1016/j.scitotenv.2019.135685. 61 Lorencova, E. et al., 2018: Participatory Climate Change Impact Assessment in Three Czech Cities: The Case of 62 Heatwaves. Sustainability, 10(6), doi:10.3390/su10061906. 63

1	Lotze, H. K. et al., 2019: Global ensemble projections reveal trophic amplification of ocean biomass declines with
2	climate change. Proceedings of the National Academy of Sciences of the USA, 116 (26), 1290712912, doi:10.1073/pnas.1900194116.
4	Lourenco, T. et al., 2019: Are European decision-makers preparing for high-end climate change? <i>Regional</i>
5	Environmental Change, 19(3), 629-642, doi:10.1007/s10113-018-1362-2.
6	Lugato, E. et al., 2018: Soil erosion is unlikely to drive a future carbon sink in Europe. Science Advances, 4(11),
7	eaau3523, doi:10.1126/sciadv.aau3523.
8 9	Luijendijk, A. et al., 2018: The State of the World's Beaches. <i>Scientific Reports</i> , 8 (1), 6641, doi:10.1038/s41598-018-24630-6.
10	Luís, S. et al., 2017: Beliefs on the local effects of climate change: Causal attribution of flooding and shoreline retreat.
11	Journal of Integrated Coastal Zone Management,(1), 19-35%V 17.
12	Luís, S. et al., 2018: Psychosocial drivers for change: Understanding and promoting stakeholder engagement in local
13	adaptation to climate change in three European Mediterranean case studies. Journal of Environmental
14	Management, 223 , 165-174, doi:10.1016/j.jenvman.2018.06.020.
15	Lujala, P., H. Lein and J. K. Rød, 2015: Climate change, natural hazards, and risk perception: the role of proximity and
16	personal experience. Local Environment, $20(4)$, 489-509, doi:10.1080/13549839.2014.88/666.
1 /	Luyssaert, S. et al., 2018. Trade-ons in using European forests to meet climate objectives. <i>Nature</i> , $502(7/20)$, 259-202, doi:10.1038/s/1586.018-0577.1
19	Macalister F 2015: Preparing for the future: Mitigating disasters and building resilience in the cultural heritage sector
20	Journal of the Institute of Conservation, 38 (2), 115-129, doi:10.1080/19455224.2015.1068201.
21	Mach, K. J. et al., 2019: Climate as a risk factor for armed conflict. <i>Nature</i> , 571 (7764), 193-+, doi:10.1038/s41586-019-
22	1300-6.
23	Machado, I. et al., 2019: Assessment level and time scales of biodiversity indicators in the scope of the Marine Strategy
24	Framework Directive – A case study for the NE Atlantic. <i>Ecological Indicators</i> , 105 , 242-253,
25	doi:papers3://publication/doi/10.1016/j.ecolind.2019.05.067.
26	Macias, D. M., E. Garcia-Gorriz and A. Stips, 2015: Productivity changes in the Mediterranean Sea for the twenty-first
27	doi:10.3389/fmars 2015.00079
29	Macintyre, H. and C. Heaviside, 2019: Potential benefits of cool roofs in reducing heat-related mortality during
30	heatwaves in a European city. <i>Environment International</i> , 127 , 430-441, doi:10.1016/j.envint.2019.02.065.
31	Macintyre, H. L. et al., 2018: Assessing urban population vulnerability and environmental risks across an urban area
32	during heatwaves - Implications for health protection. Science of The Total Environment, 610-611, 678-690,
33	doi: <u>https://doi.org/10.1016/j.scitotenv.2017.08.062</u> .
34	Madine, C., K. Mustonen and T. Mustonen, 2018: <i>Wave Knowledge, Traditional Wisdom</i> . Snowchange Cooperative.
35 36	Available al: <u>http://www.snowchange.org/pages/wp-content/uploads/2018/11/Cherish_29112018.pdf</u> . Madsen H et al. 2014: Review of trend analysis and climate change projections of extreme precipitation and floods in
37	Europe. Journal of Hydrology, 519 , 3634-3650, doi:10.1016/j.jhydrol.2014.11.003.
38	Madsen, H. M., P. S. Mikkelsen and A. Blok, 2019: Framing professional climate risk knowledge: Extreme weather
39	events as drivers of adaptation innovation in Copenhagen, Denmark. Environmental Science & Policy, 98, 30-38,
40	doi: <u>https://doi.org/10.1016/j.envsci.2019.04.004</u> .
41	Maes, J. et al., 2015: More green infrastructure is required to maintain ecosystem services under current trends in land-
42	use change in Europe. Lanascape Ecology, 50 (3), 51/-534, doi:10.100//s10980-014-0083-2.
45 44	<i>Ecosystem Services</i> 1(1) 31-39 doi:https://doi.org/10.1016/j.ecoser.2012.06.004
45	Magnan, A. et al., 2016: Addressing the risk of maladaptation to climate change. <i>Wiley Interdisciplinary Reviews</i> -
46	<i>Climate Change</i> , 7 (5), 646-665, doi:10.1002/wcc.409.
47	Malagon Santos, V., I. D. Haigh and T. Wahl, 2017: Spatial and Temporal Clustering Analysis of Extreme Wave
48	Events around the UK Coastline. <i>Journal of Marine Science and Engineering</i> , 5 (3), doi:10.3390/jmse5030028.
49	Malinin, V. N., S. M. Gordeeva, I. V. Mitina and A. A. Pavlovsky, 2018: The negative consequences of storm surges
50	and the "age-old" level rise in the Neva Bay. Bood u экология: проолемы u решения, $I(73)$, 48-58, doi:10.22069/2205.2499.2018.22.1.48.59
52	Mallory C. D. and M. S. Boyce. 2018: Observed and predicted effects of climate change on Arctic caribou and
53	reindeer. Environmental Reviews, 26 (1), 13-25, doi:10.1139/er-2017-0032.
54	Malmo, S., 2018: Comprehensive Plan for Malmo.
55	Mammides, C., 2019: European Union's conservation efforts are taxonomically biased. Biodiversity and Conservation,
56	28 (5), 1291-1296, doi:10.1007/s10531-019-01725-8.
57	Mandel, A. et al., 2020a: <i>Risks on Global Financial Stability Induced by Climate Change</i> . Social Science Research
58	Network, Kochester, NY. Available at: <u>https://papers.ssrn.com/abstract=3626936</u>
39 60	Mandel A et al. 2020b Risks on Global Financial Stability Induced by Climate Change SSRN
61	doi:10.2139/ssrn.3626936.
62	Mangi, S. C. et al., 2018: The economic impacts of ocean acidification on shellfish fisheries and aquaculture in the
63	United Kingdom. Environmental Science & Policy, 86, 95-105, doi:10.1016/j.envsci.2018.05.008.

1	Mankin, J. S. et al., 2018: Blue Water Trade-Offs With Vegetation in a CO2-Enriched Climate. Geophysical Research
2	<i>Letters</i> , 45 (7), 3115-3125, doi:10.1002/2018GL077051.
3	Marani, M. et al., 2007: Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon.
4	Geophysical Research Letters, 34 (11).
5	Marba, N. and C. M. Duarte, 2010: Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality.
6	Global Change Biology, 16(8), 2300-2375, doi:10.1111/j.1305-2486.2009.02130.X. Marshay, V. W. Warren, Blannan, Bister, Barnen, Staven (ad.) 2010, Desigion Making under Deen Uncertainty
/ 0	Springer
0	Springer. Mares D. M. and K. W. Moffett. 2016: Climate change and interpersonal violence: a "global" estimate and regional
10	inequities Climatic Change 135(2) 297-310 doi:10.1007/s10584-015-1566-0
11	Markovic, D. et al., 2017: Vulnerability of European freshwater catchments to climate change. <i>Global Change Biology</i> .
12	23 (9), 3567-3580, doi:10.1111/gcb.13657.
13	Marqués, L. et al., 2018: Last-century forest productivity in a managed dry-edge Scots pine population: the two sides of
14	climate warming. Ecological Applications, 28(1), 95-105, doi:10.1002/eap.1631.
15	Martin, A. C. et al., 2017: Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using
16	an evidence-based approach. Environmental Research Letters, 12(8), 85007-85007, doi:10.1088/1748-
17	9326/aa7989.
18	Martinez, G. S. et al., 2019: Heat-health action plans in Europe: Challenges ahead and how to tackle them.
19	Environmental Research, 176, 108548, doi: <u>https://doi.org/10.1016/j.envres.2019.108548</u> .
20	Martínez-Ibarra, E., B. M. Gómez-Martín, A. X. Armesto-López and R. Pardo-Martínez, 2019: Climate Preferences for
21	I ourism: Perceptions Regarding Ideal and Unfavourable Conditions for Hiking in Spain. Atmosphere, 10(11),
22	doi:10.3390/atmos10110646.
23	<i>Environmental Health Devenesting</i> 12 6(6) doi:10.1280/EUD2500
24 25	Marzeion B and A Levermann 2014: Loss of cultural world heritage and currently inhabited places to sea-level rise
25	<i>Environmental Research Letters</i> 9 (3) doi:10.1088/1748-9326/9/3/034001
27	Massey, E., R. Biesbroek, D. Huitema and A. Jordan, 2014: Climate policy innovation: The adoption and diffusion of
28	adaptation policies across Europe. <i>Global Environmental Change-Human and Policy Dimensions</i> , 29 , 434-443.
29	doi:10.1016/j.gloenvcha.2014.09.002.
30	Matsumoto, K. i., 2019: Climate change impacts on socioeconomic activities through labor productivity changes
31	considering interactions between socioeconomic and climate systems. Journal of Cleaner Production, 216, 528-
32	541, doi:10.1016/j.jclepro.2018.12.127.
33	Matulla, C. et al., 2018: Climate Change driven evolution of hazards to Europe's transport infrastructure throughout the
34	twenty-first century. Theoretical and Applied Climatology, 133(1), 227-242, doi:10.1007/s00704-017-2127-4.
35	Mayor, S. J. et al., 2017: Increasing phenological asynchrony between spring green-up and arrival of migratory birds.
36	<i>Scientific Reports</i> , 7(1), 1902, doi:10.1038/s41598-017-02045-z.
37	Mayr, B., I. Thaler and J. Hubl, 2020: Successful small-scale household relocation after a millennial flood event in
38	Simbach, Germany 2016. <i>Water (Switzerland)</i> , 12(1), doi:10.3390/w12010156.
39	Change: The Efficiency of the European Nature 2000 Network for Four Pirds of Dray. PLOS ONE 9(2), o50640
40	doi:10.1371/journal.pone.0059640
41	McEvov S M Haasnoot and R Biesbroek 2020: How are European countries planning for sea level rise? Ocean and
43	Coastal Management, under review.
44	McGill, B. J., M. Dornelas, N. J. Gotelli and A. E. Magurran, 2015: Fifteen forms of biodiversity trend in the
45	Anthropocene. Trends in Ecology & Evolution, 30(2), 104-113, doi:https://doi.org/10.1016/j.tree.2014.11.006.
46	McIntyre, K. M. et al., 2017: Systematic Assessment of the Climate Sensitivity of Important Human and Domestic
47	Animals Pathogens in Europe. Scientific Reports, 7(1), 7134, doi:10.1038/s41598-017-06948-9.
48	McKnight, B. and M. K. Linnenluecke, 2019: Patterns of Firm Responses to Different Types of Natural Disasters.
49	Business & Society, 58(4), 813-840, doi:10.1177/0007650317698946.
50	McLeod, E., R. Salm, A. Green and J. Almany, 2009: Designing marine protected area networks to address the impacts
51	of climate change. Frontiers in Ecology and the Environment, 7(7), 362-370,
52	doi:papers3://publication/doi/10.1890/070211.
53	Medd, W. et al., 2015: The flood recovery gap: a real-time study of local recovery following the floods of June 2007 in
54	Hull, North East England: The flood recovery gap. <i>Journal of Flood Risk Management</i> , 8(4), 315-328,
55 56	uui.10.1111/JIIJ.12070. Medlock I. M. et al. 2013: Driving forces for changes in geographical distribution of Ivodes riginus ticks in Europe
57	Parasites & Vectors 6(1) 1 doi:10.1186/1756-3305-6-1
58	Mees. H. L. P. P. J. Driessen and H. A. C. Runhaar, 2014: Legitimate adaptive flood risk governance beyond the
59	dikes: the cases of Hamburg, Helsinki and Rotterdam. Regional Environmental Change. 14(2), 671-682.
60	doi:10.1007/s10113-013-0527-2.
61	Meinel, U. and R. Schule, 2018: The Difficulty of Climate Change Adaptation in Manufacturing Firms: Developing an
62	Action-Theoretical Perspective on the Causality of Adaptive Inaction. Sustainability, 10(2),
63	doi:10.3390/su10020569.

1	Melbourne, L. A. et al., 2018: The importance of wave exposure on the structural integrity of rhodoliths. Journal of
2	Experimental Marine Biology and Ecology, 503, 109-119, doi:https://doi.org/10.1016/j.jembe.2017.11.007.
3	Melero, Y., C. Stefanescu and J. Pino, 2016: General declines in Mediterranean butterflies over the last two decades are
4	modulated by species traits. Biological Conservation, 201, 336-342,
5	doi: <u>https://doi.org/10.1016/j.biocon.2016.07.029</u> .
6	Melzner, F. et al., 2013: Future ocean acidification will be amplified by hypoxia in coastal habitats. <i>Marine Biology</i> ,
7	100(8), $18/51888$, $00110.100/(80022/-012-1954-1)$.
8	alterations in Mediterraneon streame. <i>Journal of Hudrology</i> 566 , 566, 580, doi:10.1016/j.jbudrol.2018.00.040
9	Mentaschi L et al. 2018: Global long term observations of coastal erosion and accretion. Scientific Reports 8(1)
10	12876 doi:10.1038/s41598-018-30904-w
12	Meredith, M. et al., 2019a: Polar Regions, In: <i>IPCC Special Report on the Ocean and Cryosphere in a Changing</i>
13	<i>Climate</i> [Pörtner, HO., D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck,
14	A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama and N. M. Weyer (eds.)], pp. In press.
15	Meredith, M. et al., 2019b: Polar Regions. In: SROOC [Delmotte, V. M. (ed.)], pp. 101-101.
16	Merkens, JL., L. Reimann, J. Hinkel and A. T. Vafeidis, 2016: Gridded population projections for the coastal zone
17	under the Shared Socioeconomic Pathways. Global and Planetary Change, 145, 57-66,
18	doi: <u>https://doi.org/10.1016/j.gloplacha.2016.08.009</u> .
19	Michelozzi, P. et al., 2009: High Temperature and Hospitalizations for Cardiovascular and Respiratory Causes in 12
20	European Cities. American Journal of Respiratory and Critical Care Medicine, 179 (5), 383-389,
21	doi:10.1164/rccm.200802-21/OC.
22	Michetti, M. and M. Pinar, 2019: Forest Fires Across Italian Regions and Implications for Climate Change: A Panel
23	Data Analysis. Environmental and Resource Economics, 12(1), 207-240, doi:10.1007/s10040-018-0279-2. Mieszkowska, N. et al. 2010: Multinational integrated approaches to forecasting and managing the impacts of climate
24	change on intertidal species. Marine Ecology Progress Series 613, 247-252, doi:10.3354/mens12902
25	Mikhaylova G 2018: The Arctic society under the environmental and climate change (based on survey results) Arctic
27	and North, 32 , 95-106, doi:10.17238/issn2221-2698.2018.32.95.
28	Milić, D. et al., 2019: Stability and changes in the distribution of Pipiza hoverflies (Diptera, Syrphidae) in Europe under
29	projected future climate conditions. PLOS ONE, 14(9), e0221934, doi:10.1371/journal.pone.0221934.
30	Miličić, M., A. Vujić and P. Cardoso, 2018: Effects of climate change on the distribution of hoverfly species (Diptera:
31	Syrphidae) in Southeast Europe. Biodiversity and Conservation, 27(5), 1173-1187, doi:10.1007/s10531-017-1486-
32	6.
33	Miller, D. D. et al., 2018: Adaptation strategies to climate change in marine systems. <i>Global Change Biology</i> , 24(1), e1-
34	-e14, doi:10.1111/gcb.13829.
35	Miller, J. L. and G. Pescaroli, 2018: Psychosocial capacity building in response to cascading disasters: A culturally
30 27	doi:10.1016/i jidrr 2018.04.018
38	Mills S C et al. 2017: European butterfly nonulations vary in sensitivity to weather across their geographical ranges
39	Global Ecology and Biogeography 26(12) 1374-1385 doi:10.1111/geb.12659
40	Miskic, M., G. Coric and D. Vukosavlievic, 2017: Building financial and insurance resilience in the context of climate
41	change. Ekonomika poljoprivrede, 64(3), 1019-1033, doi:10.5937/ekoPolj1703019M.
42	Missirian, A. and W. Schlenker, 2017: Asylum applications respond to temperature fluctuations. Science, 358(6370),
43	1610-1613, doi:10.1126/science.aao0432.
44	Mitchell, D. et al., 2018: Extreme heat-related mortality avoided under Paris Agreement goals. <i>Nature Climate Change</i> ,
45	8 (7), 551-553, doi:10.1038/s41558-018-0210-1.
46	Mitter, H. et al., 2019: Exploring Farmers' Climate Change Perceptions and Adaptation Intentions: Empirical Evidence
47	from Austria. Environmental Management, 63 (6), 804-821, doi:10.100//s0026/-019-01158-/.
48	Mochizuki, J., 1. Schinko and S. Hochrainer-Stigler, 2018: Mainstreaming of climate extreme risk into fiscal and
49 50	Change 18(7) 2161-2172 doi:10.1007/s10113-018.1300-3
51	Moemken J. M. Revers, H. Feldmann and J. Pinto, 2018: Future Changes of Wind Speed and Wind Energy Potentials
52	in EURO-CORDEX Ensemble Simulations. Journal of Geophysical Research-Atmospheres, 123 (12), 6373-6389.
53	doi:10.1029/2018JD028473.
54	Mokrech, M. et al., 2015: An integrated approach for assessing flood impacts due to future climate and socio-economic
55	conditions and the scope of adaptation in Europe. Climatic Change, 128(3-4), 245-260, doi:10.1007/s10584-014-
56	1298-6.
57	Molinos, J. G. et al., 2016: Climate velocity and the future global redistribution of marine biodiversity. Nature Sci Data,
58	6 (1), 83-88, doi:papers3://publication/doi/10.1038/nclimate2769.
59	Monasterolo, I., 2020: Climate Change and the Financial System. <i>Annual Review of Resource Economics</i> , 12 (1), 299-
60	520, doi:10.1146/annurev-resource-110119-031134.
01 62	and eutrophication Nature Ecology & Evolution 2(2) 317+ doi:10.1028/s41550.017.0407.0
02	and can opinication. Training Beology & Bronnion, $\mathbf{z}(2)$, 517^{-1} , $\mathbf{u}(1, 10, 10, 50, 541, 557^{-01}, -040, 70, -0.5)$

1 2 3	Monge-Barrio, A. and A. Sánchez-Ostiz Gutiérrez, 2018: Passive Energy Strategies for Mediterranean Residential Buildings. Green Energy and Technology, Springer International Publishing, Cham. ISBN 978-3-319-69882-3 978-3-319-69883-0.
4	Montero, J. et al., 2012: Influence of local factors in the relationship between mortality and heat waves: Castile-La
5	Mancha (19/5–2003). Science of the Total Environment, 414, 73-80. Montero Serra J. M. Edwards and M. J. Genner. 2015: Warming shelf seas drive the subtronicalization of European
0 7	nelagic fish communities <i>Global Change Biology</i> 21 (1) 144-153
8	doi:papers3://publication/doi/10.1111/gcb.12747.
9	Moore, F. C. and D. B. Lobell, 2015: The fingerprint of climate trends on European crop yields. <i>Proceedings of the</i>
10	National Academy of Sciences, 112(9), 2670-2675, doi:10.1073/pnas.1409606112.
11	Morabito, M. et al., 2017: Increasing Heatwave Hazards in the Southeastern European Union Capitals. Atmosphere,
12	8 (7), doi:10.3390/atmos8070115.
13	Moreira, F. et al., 2011: Landscape – wildfire interactions in southern Europe: Implications for landscape management.
14	Journal of Environmental Management, 92(10), 2389-2402, doi:10.1016/j.jenvman.2011.06.028.
15	Global and Planetary Change 169 168-178 doi:10.1016/j.gloplacha.2018.07.018
17	Moreno, M. V., M. Conedera, E. Chuvieco and G. B. Pezzatti. 2014: Fire regime changes and major driving forces in
18	Spain from 1968 to 2010. Environmental Science & Policy, 37 , 11-22,
19	doi:https://doi.org/10.1016/j.envsci.2013.08.005.
20	Moreno-Gené, J., L. Sánchez-Pulido, E. Cristobal-Fransi and N. Daries, 2018: The Economic Sustainability of Snow
21	Tourism: The Case of Ski Resorts in Austria, France, and Italy. <i>Sustainability</i> , 10 (9), 3012.
22	Moretti, A., M. Pascale and A. F. Logrieco, 2019: Mycotoxin risks under a climate change scenario in Europe. <i>Trends</i>
23	In Food Science & Technology, 84, 38-40, doi:10.1016/j.tits.2018.03.008.
24 25	sustainable solutions. Agriculture (Switzerland) 3(3), 484-502, doi:10.3390/agriculture3030484
25 26	Mori, E., A. Sforzi, G. Bogliani and P. Milanesi, 2018: Range expansion and redefinition of a crop-raiding rodent
27	associated with global warming and temperature increase. <i>Climatic Change</i> , 150 (3), 319-331,
28	doi:10.1007/s10584-018-2261-8.
29	Moriondo, M. et al., 2006: Potential impact of climate change on fire risk in the Mediterranean area. Climate Research,
30	31 (1), 85-95, doi:10.3354/cr031085.
31	Moser, S. C., 2014: Communicating adaptation to climate change: the art and science of public engagement when
32	climate change comes home. Wiley Interdisciplinary Reviews: Climate Change, 5(3), 337-358, doi:10.1002/web.276
33 34	doi:10.1002/wcc.270. Mosquera-Losada M R et al. 2018: Agroforestry in the European common agricultural policy. Agroforestry Systems
35	92 (4), 1117-1127, doi:10.1007/s10457-018-0251-5.
36	Moullec, F. et al., 2019: An end-to-end model reveals losers and winners in a warming Mediterranean Sea. <i>Frontiers in</i>
37	Marine Science, 6, 1-19, doi:10.3389/fmars.2019.00345.
38	Mourey, J., C. Perrin-Malterre and L. Ravanel, 2020: Strategies used by French Alpine guides to adapt to the effects of
39	climate change. Journal of Outdoor Recreation and Tourism, 29, 100278,
40	doi: <u>https://doi.org/10.1016/j.jort.2020.100278</u> .
41 42	Moutanir, H. et al., 201 /: Likely effects of climate change on groundwater availability in a Mediterranean region of Southeastern Spain. Hydrological Processes 31 (1), 161, 176, doi:10.1002/byp.10088
42 43	Müller A II A Schneider and K Jantke 2020: Evaluating and expanding the European Union's protected-area
44	network toward potential post-2020 coverage targets. Conservation Biology. 34(3), 654-665.
45	doi:10.1111/cobi.13479.
46	Muller, B. et al., 2020: Modelling Food Security: Bridging the Gap between the Micro and the Macro Scale. Global
47	Environmental Change, 63.
48	Muller, J., D. Folini, M. Wild and S. Pfenninger, 2019: CMIP-5 models project photovoltaics are a no-regrets
49	investment in Europe irrespective of climate change. <i>Energy</i> , 171 , 135-148, doi:10.1016/j.energy.2018.12.139.
50	Mulligan, M., S. Burke and C. Douglas, 2014: Environmental Change and Migration Between Europe and Its
51 52	Migration [Piquet F and F Laczko (eds.)] Springer Netherlands, Dordrecht, pp. 49-79, ISBN 978-94-007-6985-
52 53	4.
54	Mullon, C. et al., 2016: Quantitative pathways for Northeast Atlantic fisheries based on climate, ecological-economic
55	and governance modelling scenarios. Ecological Modelling, 320, 273-291, doi:10.1016/j.ecolmodel.2015.09.027.
56	Mulville, M. and S. Stravoravdis, 2016: The impact of regulations on overheating risk in dwellings. Building Research
57	& Information, 44(5-6), 520-534, doi:10.1080/09613218.2016.1153355.
58	Munari, C., 2011: Effects of the 2003 European heatwave on the benthic community of a severe transitional ecosystem
59	(Comacchio Saltworks, Italy). Marine Pollution Bulletin, 62 (12), 27612770,
60 61	doi:10.1016/J.marpoibul.2011.09.011. Munro A et al. 2017: Effect of evacuation and displacement on the association between flooding and mental bealth
62	outcomes: a cross-sectional analysis of UK survey data Lancet Planet Health 1(4) 134-141
	,

1	Murrant, D., A. Quinn, L. Chapman and C. Heaton, 2017: Water use of the UK thermal electricity generation fleet by
2	2050: Part 1 identifying the problem. Energy Policy, 108, 844-858,
3	doi: <u>https://doi.org/10.1016/j.enpol.2017.05.011</u> .
4	Murtagh, N., B. Gatersleben and C. Fife-Schaw, 2019: Occupants' motivation to protect residential building stock from
5	climate-related overheating: A study in southern England. Journal of Cleaner Production, 226, 186-194,
6	doi: <u>nups://doi.org/10.1016/j.jciepro.2019.04.080</u> . Mustanan K. T. Mustanan I. Kirillov and S. Council 2018: Traditional Knowledge of Northern Watana Snowledge
/	Cooperative Kenticletti Finland 20 pp. Available at http://www.spowebarge.org/pages/wp
0	content/unloads/2018/12/TraditionalK nowledge pdf
10	Mustonen T 2014: Endemic time-spaces of Finland: Aquatic regimes <i>Fennia</i> - International Journal of Geography
11	192 (2), 120-139, doi:10.11143/40845.
12	Mustonen, T., 2017: Endemic time-spaces of Finland: from wilderness lands to 'vacant production spaces'. <i>Fennia</i> -
13	International Journal of Geography, 195 (1), 5-24, doi:10.11143/fennia.58971.
14	Mustonen, T., 2018: Meaningful engagement and oral histories of the indigenous peoples of the north. 18.
15	Mustonen, T. and N. Huusari, 2020: How to know about waters? Finnish traditional knowledge related to waters and
16	implications for management reforms. Reviews in Fish Biology and Fisheries, doi:10.1007/s11160-020-09619-7.
17	Mustonen, T. and H. Kontkanen, 2019: Safe places: Increasing Finnish waterfowl resilience through human-made
18	wetlands. Polar Science, doi:10.1016/j.polar.2019.05.007.
19	Mustonen, T. et al., 2020: Ponoi River Affected By Pink Salmon Expansion and Severe Weather Change. Polar
20	Biology, under review.
21	Mustonen, T. and V. Shadrin, 2020: The River Alazeya: Shifting socio-ecological systems connected to a Northeastern
22	Siberian River. Arctic, under review.
23	Myers, S. S. et al., 2017: Climate Change and Global Food Systems: Potential Impacts on Food Security and
24	Ondernutrition. Annual Review of Public Health, 38 (1), 239-277, doi:10.1146/annurev-publicatin-031816-
25	044550. Mybra G et al. 2010: Frequency of extreme precipitation increases extensively with event regeness under global
20	warming Scientific Reports 9 doi:10.1038/s41598-019-52277-4
28	Mykleby P M P K Snyder and T E Twine 2017 Quantifying the trade-off between carbon sequestration and
29	albedo in midlatitude and high-latitude North American forests. <i>Geophysical Research Letters</i> , 44(5), 2493-2501.
30	doi:10.1002/2016gl071459.
31	Mysiak, J. and C. Perez-Blanco, 2016: Partnerships for disaster risk insurance in the EU. Natural Hazards and Earth
32	System Sciences, 16(11), 2403-2419, doi:10.5194/nhess-16-2403-2016.
33	Nabuurs, GJ., MJ. Schelhaas, G. M. J. Mohren and C. B. Field, 2003: Temporal evolution of the European forest
34	sector carbon sink from 1950 to 1999. Global Change Biology, 9(2), 152-160, doi:10.1046/j.1365-
35	2486.2003.00570.x.
36	Nagorny-Koring, N. C. and T. Nochta, 2018: Managing urban transitions in theory and practice - The case of the
37	Pioneer Cities and Transition Cities projects. <i>Journal of Cleaner Production</i> , 175 , 60-69,
38	doi: <u>https://doi.org/10.1016/j.jclepro.2017.11.072</u> .
39	Narayan, S. et al., 2016: The effectiveness, costs and coastal protection benefits of natural and nature-based defences. $PL = S_{1} + S_{2} + S_{1} + S_{2} + S_{2}$
40	PLOS One, 11(5), e0154/35, doi:10.13/1/journal.pone.0154/35.
41	Fusition montal Planning and Management 60(2) 500 518 doi:10.1080/00640568.2016.1162705
42	Natali S M et al. 2019: Large loss of CO2 in winter observed across the northern permafrost region. <i>Nature Climate</i>
43	<i>Change</i> 9 (11) 852-857 doi:10.1038/s41558-019-0592-8
45	Naudts, K. et al., 2016: Europe's forest management did not mitigate climate warming. <i>Science</i> , 351 (6273), 597-600.
46	Naumann, G. et al., 2018: Global Changes in Drought Conditions Under Different Levels of Warming. <i>Geophysical</i>
47	Research Letters, 45(7), 3285-3296, doi:10.1002/2017GL076521.
48	Naumann, G. et al., 2020: Global warming and human impacts of heat and cold extremes in the EU. Luxembourg.
49	Naumann, S., 2011: Assessment of the potential of ecosystem-based approaches to climate change adaptation and
50	mitigation in Europe, Final report to the European Commission, DG Environment, Contract no.
51	070307/2010/580412/SER/B2, Ecologic institute and Environmental Change Institute, Oxford University
52	Centre for the Environment.
53	Neumann, B., A. T. Vafeidis, J. Zimmermann and R. J. Nicholls, 2015: Future Coastal Population Growth and
54	Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment. <i>Plos One</i> , 10 (3),
55	aoi:10.13/1/journal.pone.01185/1.
56 57	ING, A. K. 1. et al., 2018: Port decision maker perceptions on the effectiveness of climate adaptation actions. Coastal management $46(3)$, 148, 175
51 58	management, 40(3), 140-1/3. Nicholls R I and A S Kehede 2012: Indirect impacts of coastal climate change and see level rise: the UV example
50	Climate Policy 12(sup01) \$28-\$52 doi:10.1080/14693062.2012.728792
60	Nila M U S et al. 2019: Predicting the effectiveness of protected areas of Natura 2000 under climate change
61	<i>Ecological Processes</i> , 8(1), 13, doi:10.1186/s13717-019-0168-6.
62	Nolde, M. (ed.), Analyzing trends of changes in fire regimes on a global scale. European Geosciences Union (EGU)
63	General Assambly.

Nsoesie, E. et al., 2016: Global distribution and environmental suitability for chikungunya virus, 1952 to 2015.

Eurosurveillance, 21(20), 7-18, doi:10.2807/1560-7917.ES.2016.21.20.30234. 2 O'Hare, P., I. White and A. Connelly, 2016: Insurance as maladaptation: Resilience and the "business as usual' paradox. 3 Environment and Planning C-Government and Policy, 34(6), 1175-1193, doi:10.1177/0263774X15602022. 4 OECD, 2013: Water and Climate Change Adaptation: Policies to Navigate Uncharted Waters. OECD Studies on 5 Water, OECD. ISBN 978-92-64-20043-2 978-92-64-20044-9. 6 OECD, 2015: Water Resources Allocation: Sharing Risks and Opportunities. OECD Studies on Water, OECD. ISBN 7 978-92-64-22962-4 978-92-64-22963-1 978-92-64-23406-2. 8 Oesterwind, D. et al., 2020: First evidence of a new spawning stock of Illex coindetii in the North Sea (NE-Atlantic). 9 Fisheries Research, 221, 105384, doi:10.1016/j.fishres.2019.105384. 10 Ogunbode, C. A., C. Demski, S. B. Capstick and R. G. Sposato, 2019: Attribution matters: Revisiting the link between 11extreme weather experience and climate change mitigation responses. Global Environmental Change, 54, 31-39, 12 doi:https://doi.org/10.1016/j.gloenvcha.2018.11.005. 13 Ojanen, P. and K. Minkkinen, 2020: Rewetting Offers Rapid Climate Benefits for Tropical and Agricultural Peatlands 14 But Not for Forestry-Drained Peatlands. Global Biogeochemical Cycles, 34(7), doi:10.1029/2019GB006503. 15 Ojea, E., I. Pearlman, S. D. Gaines and S. E. Lester, 2017: Fisheries regulatory regimes and resilience to climate 16 change. Ambio, 46(4), 399-412, doi:10.1007/s13280-016-0850-1. 17 Oliveira, M., C. Delerue-Matos, M. Pereira and S. Morais, 2020: Environmental Particulate Matter Levels during 2017 18 19 Large Forest Fires and Megafires in the Center Region of Portugal: A Public Health Concern? International Journal of Environmental Research and Public Health, 17(3), doi:10.3390/ijerph17031032. 20 21 Oliveira, S., H. Andrade and T. Vaz, 2011: The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Building and Environment, 46(11), 2186-2194, 22 doi:https://doi.org/10.1016/j.buildenv.2011.04.034. 23 Oliver, E. C. J. et al., 2018: Longer and more frequent marine heatwaves over the past century. Nature 24 Communications, 9(1), --12, doi:10.1038/s41467-018-03732-9. 25 Oliver, T. H. et al., 2015: Interacting effects of climate change and habitat fragmentation on drought-sensitive 26 butterflies. Nature Climate Change, 5, 941, doi:10.1038/nclimate2746 27 https://www.nature.com/articles/nclimate2746#supplementary-information. 28 Oliver, T. H. et al., 2014: Latitudinal gradients in butterfly population variability are influenced by landscape 29 heterogeneity. Ecography, 37(9), 863-871, doi:10.1111/ecog.00608. 30 Olson, D. M. and E. Dinerstein, 2002: The Global 200: Priority Ecoregions for Global Conservation. Annals of the 31 32 Missouri Botanical Garden, 89(2), 199-224, doi:10.2307/3298564. 33 Oppenheimer, M. et al., 2019: Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities. IPCC 34 SR Ocean and Cryosphere. In: SROOC [Delmotte, V. M. (ed.)], pp. 1-169. ISBN 1095-9203 (Electronic) 0036-8075 (Linking). 35 Orlov, A. et al., 2019: Economic Losses of Heat-Induced Reductions in Outdoor Worker Productivity: a Case Study of 36 Europe. EconDisCliCha, 3(3), 191-211, doi:10.1007/s41885-019-00044-0. 37 Orru, H. et al., 2019: Ozone and heat-related mortality in Europe in 2050 significantly affected by changes in climate, 38 population and greenhouse gas emission. Environmental Research Letters, 14(7), doi:10.1088/1748-9326/ab1cd9. 39 Orru, H., K. L. Ebi and B. Forsberg, 2017: The Interplay of Climate Change and Air Pollution on Health. Current 40 Environmental Health Reports, 4(4), 504-513, doi:10.1007/s40572-017-0168-6. 41 Orru, K., M. Tillmann, K. L. Ebi and H. Orru, 2018: Making Administrative Systems Adaptive to Emerging Climate 42 Change-Related Health Effects: Case of Estonia. Atmosphere, 9(6), 221. 43 Orsato, R. J., S. R. Barakat and J. G. F. de Campos, 2017: Organizational adaptation to climate change: learning to 44 anticipate energy disruptions. International Journal of Climate Change Strategies and Management, 9(5), 645-45 665, doi:10.1108/IJCCSM-09-2016-0146. 46 47 Osberghaus, D., 2015: The determinants of private flood mitigation measures in Germany — Evidence from a nationwide survey. Ecological Economics, 110, 36-50, doi:https://doi.org/10.1016/j.ecolecon.2014.12.010. 48 OSPAR, 2009: Assessment of climate change mitigation and adaptation [Commission, O. (ed.)]. Monitoring and 49 Assessment Series, London, 1-41 pp. Available at: https://www.ospar.org/documents?v=7157. 50 Össbo, Å., 2018: Recurring Colonial Ignorance: A Genealogy of the Swedish Energy System. Journal of Northern 51 Studies, 12(2), 63-80. 52 Össbo, Å. and P. Lantto, 2011: Colonial Tutelage and Industrial Colonialism: reindeer husbandry and early 20th-53 century hydroelectric development in Sweden. Scandinavian Journal of History, 36(3), 324-348, 54 doi:10.1080/03468755.2011.580077. 55 Österlin, C. and K. Raitio, 2020: Fragmented Landscapes and Planscapes-The Double Pressure of Increasing Natural 56 Resource Exploitation on Indigenous Sámi Lands in Northern Sweden. Resources, 9(9), 104, 57 doi:10.3390/resources9090104. 58 Outhwaite, C. et al., 2020: Complex long-term biodiversity change among invertebrates, bryophytes and lichens. 59 *Nature Ecology & Evolution*, **4**(3), 384-+, doi:10.1038/s41559-020-1111-z. 60 Pagano, A. J., M. Feofilovs and F. Romagnoli, 2018: The relationship between insurance companies and natural 61 disaster risk reduction: overview of the key characteristics and mechanisms dealing with climate change. *Energy* 62 Procedia, 147, 566-572, doi:https://doi.org/10.1016/j.egypro.2018.07.072. 63

1	Palkowski, C., S. von Schwarzenberg and A. Simo, 2019: Seasonal cooling performance of air conditioners: The
2	importance of independent test procedures used for MEPS and labels. International Journal of Refrigeration, 104,
3	41/-425, doi: <u>https://doi.org/10.1016/j.ijrefrig.2019.05.021</u> .
4	Patutikol, J. P., K. B. Street and E. P. Gardiner, 2019: Decision support platforms for climate change adaptation: an
5	Pandit S N et al. 2017: Climate change change risks, extinction debt, and conservation implications for a threatened
7	freshwater fish: Carmine shiner (Notronis percobromus). Science of the Total Environment 598 1-11
8	doi:10.1016/j.scitotenv.2017.03.228
9	Pansch, C, et al., 2018: Heat waves and their significance for a temperate benthic community: A near-natural
10	experimental approach. Global Change Biology, 24(9), 4357-4367,
11	doi:papers3://publication/doi/10.1111/gcb.14282.
12	Papadimitriou, L., I. P. Holman, R. Dunford and P. A. Harrison, 2019: Trade-offs are unavoidable in multi-objective
13	adaptation even in a post-Paris Agreement world. Science of The Total Environment, 696, 134027-134027,
14	doi: <u>https://doi.org/10.1016/j.scitotenv.2019.134027</u> .
15	Pape, R. and J. Löffler, 2012: Climate Change, Land Use Conflicts, Predation and Ecological Degradation as
16	Challenges for Reindeer Husbandry in Northern Europe: What do We Really Know After Half a Century of
17	Research? AMBIO, 41(5), 421-434, doi:10.1007/s13280-012-0257-6.
18	Paprotny, D., A. Sebastian, O. Morales-Napoles and S. N. Jonkman, 2018: Trends in flood losses in Europe over the
19	past 150 years. Nature Communications, 9(1), 1985, doi:10.1038/s4146/-018-04253-1.
20	Analysis along a alimpta gradient agroas Europe. <i>Forest Feelogy and Management</i> 191 , 118687
21	doi:https://doi.org/10.1016/i foreco.2020.118687
22	Parks D 2019: Energy efficiency left behind? Policy assemblages in Sweden's most climate-smart city. <i>European</i>
23	Planning Studies, 27(2), 318-335, doi:10.1080/09654313.2018.1455807.
25	Parmesan, C. et al., 1999: Poleward shifts in geographical ranges of butterfly species associated with regional warming.
26	Nature, 399 (6736), 579-583, doi:10.1038/21181.
27	Parrado, R. et al., 2020: Fiscal effects and the potential implications on economic growth of sea-level rise impacts and
28	coastal zone protection. Climatic Change, 160(2), 283-302, doi:10.1007/s10584-020-02664-y.
29	Pasimeni, M. R., D. Valente, G. Zurlini and I. Petrosillo, 2019: The interplay between urban mitigation and adaptation
30	strategies to face climate change in two European countries. Environmental Science & Policy, 95, 20-27,
31	doi: <u>https://doi.org/10.1016/j.envsci.2019.02.002</u> .
32	Paudel, Y., W. Botzen and J. Aerts, 2015: Influence of climate change and socio-economic development on catastrophe
33	insurance: a case study of flood risk scenarios in the Netherlands. <i>Regional Environmental Change</i> , 15(8), 1/1/-
34 25	1/29, doi:10.100//S10115-014-0/50-5. Pauli H et al. 2012: Recent Plant Diversity Changes on Europe's Mountain Summits. Science, 336(6070), 353
36	doi:10.1126/science.1219033
37	Pausas, J. G. and S. Paula, 2012: Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems:
38	Fuel shapes the fire-climate relationship. <i>Global Ecology and Biogeography</i> , 21 (11), 1074-1082,
39	doi:10.1111/j.1466-8238.2012.00769.x.
40	Pawankar, R. et al., 2013: WAO White Book on Allergy: Update 2013. World Allergy Organization, Milwaukee,
41	Wisconsin.
42	Payet-Burin, R., F. Bertoni, C. Davidsen and P. Bauer-Gottwein, 2018: Optimization of regional water - power systems
43	under cooling constraints and climate change. <i>Energy</i> , 155 , 484-494, doi:10.1016/j.energy.2018.05.043.
44	Payne, M. R. et al., 2020: Climate-risk to European fisheries and coastal communities. Ecology. Available at:
45	$\frac{\text{http://biorxiv.org/lookup/doi/10.1101/2020.08.03.234401}{(accessed 2020/10/01/08:36:57)}.$
46	Paz, S., M. Negev, A. Clermont and M. Green, 2016: Health Aspects of Climate Change in Cities with Mediterranean Climate and Local Adoptation Plana. International Journal of Empireonmental Possagraph and Public Health 13(4)
4/	doi:10.3300/jjersh130/0/38
40	Pe'er G et al. 2020: Action needed for the EU Common Agricultural Policy to address sustainability challenges
50	<i>People and Nature</i> , 2 (2), 305-316, doi:10.1002/pan3.10080.
51	Pe'er, G. et al., 2017: Adding Some Green to the Greening: Improving the EU's Ecological Focus Areas for Biodiversity
52	and Farmers. Conservation Letters, 10(5), 517-530, doi:10.1111/conl.12333.
53	Peck, M. A. et al., 2020: Climate change and European Fisheries and Aquaculture: 'CERES' Project Synthesis Report.
54	Universität Hamburg. Available at: https://www.fdr.uni-hamburg.de/record/804 (accessed 2020/10/01/08:38:00).
55	Pecl, G. T. et al., 2017: Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being.
56	<i>Science</i> , 355 (6332), eaa19214, doi:10.1126/science.aa19214.
57	Pedde, S. et al., 2019: Archetyping shared socioeconomic pathways across scales: an application to central Asia and
58 50	European case studies. <i>Ecology and Society</i> , 24(4), doi:10.5/51/ES-11241-240450. Pendrill F at al. 2010: A grigultural and forestry trade drives have share of transist deferentation emissions. Cl-1-1
59 60	<i>Environmental Change</i> 56 1-10 doi:https://doi.org/10.1016/j.gloenycha.2019.03.002
61	Penning-Rowsell, E. C. and S. J. Priest, 2015: Sharing the burden of increasing flood risk: who naves for flood insurance
62	and flood risk management in the United Kingdom. <i>Mitigation and Adaptation Strategies for Global Change</i> .
63	20 (6), 991-1009, doi:10.1007/s11027-014-9622-z.

1	Peñuelas, J. et al., 2017: Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology &
2	Evolution, 1(10), 1438-1445, doi:10.1038/s41559-017-0274-8.
3	Perevedentsev, Y. P. and T. R. Aukhadeev, 2014: Features of the Wind Regime in the Volga Federal District in the Last
4	Decade. Bulletin of the Udmurt University. Series: Biology. Sciences about the Earth, 2, 112-121.
5	Pérez-Domínguez, I. and T. Fellmann, 2018: <i>PESETA III: Agro-economic analysis of climate change impacts in</i>
6	Europe. JRC Technical Reports, EUR 29431 EN, Publications Office of the European Union, Union, P. O. o. t. E.,
7	Luxembourg. Available at:
8	https://www.adaptecca.es/sites/default/files/documentos/2018_jrc_pesetaili_agriculture_economic_modelling.pdf.
9	For the second s
10	Management 11(S1) S302-S313 doi:10.1111/jfr3.12207
12	Persson A and A Dzebo 2019: Exploring global and transpational governance of climate change adaptation
13	International Environmental Agreements: Politics Law and Economics volume 19 357 – 367
14	Persson, S., D. Harnesk and M. Islar, 2017: What local people? Examining the Gállok mining conflict and the rights of
15	the Sámi population in terms of justice and power. Geoforum, 86, 20-29, doi:10.1016/j.geoforum.2017.08.009.
16	Pescaroli, G., 2018: Perceptions of cascading risk and interconnected failures in emergency planning: Implications for
17	operational resilience and policy making. International Journal of Disaster Risk Reduction, 30, 269-280,
18	doi:10.1016/j.ijdrr.2018.01.019.
19	Peters, B., A. Jordan and J. Tosun, 2017: Over-reaction and under-reaction in climate policy: an institutional analysis.
20	Journal of Environmental Policy & Planning, 19(6), 612-624, doi:10.1080/1523908X.2017.1348225.
21	Petit, J. and G. Prudent, 2008: <i>Climate change and biodiversity in the European Union overseas entities</i> . IUCN. ISBN
22	2831713153.
23	Pfleiderer, P., CF. Schleussner, K. Kornhuber and D. Coumou, 2019: Summer weather becomes more persistent in a
24 25	2 °C World. Nature Climate Change, 9(9), 666-6/1, doi:10.1038/841538-019-0555-0.
25 26	Climate Change Journal of Hydromateorology 10 (11) 1881 1808 doi:10.1175/JHM D 18.0074.1
20 27	Philling H 2015: The canacity to adapt to climate change at heritage sites. The development of a concentual
27	framework Environmental Science & Policy 47 118-125 doi:10.1016/j.envsci.2014.11.003
29	Pietrapertosa, F., V. Khokhlov, M. Salvia and C. Cosmi, 2018; Climate change adaptation policies and plans: A survey
30	in 11 South East European countries. <i>Renewable & Sustainable Energy Reviews</i> , 81 , 3041-3050,
31	doi:10.1016/j.rser.2017.06.116.
32	Pinkse, J. and F. Gasbarro, 2019: Managing Physical Impacts of Climate Change: An Attentional Perspective on
33	Corporate Adaptation. Business & Society, 58(2), 333-368, doi:10.1177/0007650316648688.
34	Piñol, J., K. Beven and D. X. Viegas, 2005: Modelling the effect of fire-exclusion and prescribed fire on wildfire size in
35	Mediterranean ecosystems. <i>Ecological Modelling</i> , 183 (4), 397-409, doi:10.1016/j.ecolmodel.2004.09.001.
36	Piñol, J., M. Castellnou and K. J. Beven, 2007: Conditioning uncertainty in ecological models: Assessing the impact of
37	fire management strategies. <i>Ecological Modelling</i> , 20 /(1), 34-44, doi:10.1016/j.ecolmodel.200/.03.020.
38	Piperaki, E. and G. Daikos, 2016: Malaria in Europe: emerging threat or minor nuisance? <i>Clinical Microbiology and</i> Infaction 22 (6), 487, 402, doi:10.1016/j.orgi.2016.04.022
39 40	Injection, 22(0), 467-495, doi:10.1010/J.ciii.2010.04.025.
40 41	Pinus nigra forests in NF Snain. Science of The Total Environment, 618, 1539-1546
42	doi:10.1016/i scitoteny 2017.09.316
43	Pohianmies, T. et al., 2017: Impacts of forestry on boreal forests: An ecosystem services perspective. Ambio. 46(7).
44	743-755, doi:10.1007/s13280-017-0919-5.
45	Polce, C. et al., 2016: Global change impacts on ecosystem services: a spatially explicit assessment for Europe. One
46	<i>Ecosystem</i> , 1 , e9990.
47	Polemio, M. and T. Lonigro, 2015: Trends in climate, short-duration rainfall, and damaging hydrogeological events
48	(Apulia, Southern Italy). Natural Hazards, 75(1), 515-540, doi:10.1007/s11069-014-1333-y.
49	Ponomarev, E. I., V. Ivanov and N. Korshunov, 2015: System of Wildfires Monitoring in Russia. In: <i>Wildfire Hazards</i> ,
50	<i>Risks and Disasters</i> . Elsevier, pp. 187-205. ISBN 978-0-12-410434-1.
51	Pons, M., J. Lopez-Moreno, M. Rosas-Casals and E. Jover, 2015: The vulnerability of Pyrenean ski resorts to climate-
52 52	Induced changes in the snowpack. Climatic Change, 131(4), 591-605, doi:10.100//s10584-015-1400-8.
55 54	analysis Global Environmental Change 55 25-35 doi:https://doi.org/10.1016/j.gloenycha.2010.01.007
55 55	Ponnel B T Andersen H Beach and N Bernard 2015: SLiCA: Arctic living conditions: Living conditions and
56	auality of life among Inuit. Saami and indigenous neonles of Chukotka and the Kola Peninsula Nordisk
57	Ministerråd, Copenhagen.
58	Porfiriev, B. et al., 2017: Climate change impact on economic growth and specific sectors' development of the Russian
59	Arctic. Arctic Ecology and Economy, 4(28), 13, doi:10.25283/2223-4594-2017-4-4-17.
60	Porretta, D. et al., 2013: Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species
61	distribution modelling. Parasites & Vectors, 6, doi:10.1186/1756-3305-6-271.
62	Post, E. et al., 2019: The polar regions in a 2°C warmer world. Science Advances, 5(12), eaaw9883,

63 doi:10.1126/sciadv.aaw9883.

1	Pot W D A Dewulf G R Biesbroek and S Verweij 2019: What makes decisions about urban water infrastructure
2	forward looking? A fuzzy-set qualitative comparative analysis of investment decisions in 40 Dutch municipalities.
3	Land Use Policy, 82, 781-795, doi:https://doi.org/10.1016/j.landusepol.2018.12.012.
4	Potopová, V. et al., 2017: The impacts of key adverse weather events on the field-grown vegetable yield variability in
5	the Czech Republic from 1961 to 2014. International Journal of Climatology, 37 (3), 1648-1664, doi:10.1002/joc.4807
7	Poussin I K W I W Botzen and I C I H Aerts 2013: Stimulating flood damage mitigation through insurance: an
8	assessment of the French CatNat system. <i>Environmental Hazards</i> , 12 (3-4), 258-277,
9	doi:10.1080/1/4//891.2013.832650.
10	Poussin, J. K., W. J. Wouter Botzen and J. C. J. H. Aerts, 2015: Effectiveness of flood damage mitigation measures:
11	doi:https://doi.org/10.1016/j.gloenycha.2014.12.007
12	Pranzini F. L. Wetzel and A. T. Williams. 2015: Aspects of coastal erosion and protection in Europe. <i>Journal of</i>
14	Coastal Conservation, 19(4), 445-459, doi:10.1007/s11852-015-0399-3.
15	Pregnolato, M. et al., 2017: Impact of Climate Change on Disruption to Urban Transport Networks from Pluvial
16	Flooding. Journal of Infrastructure Systems, 23(4), 04017015, doi:10.1061/(ASCE)IS.1943-555X.0000372.
17	Pretis, F. et al., 2018: Uncertain impacts on economic growth when stabilizing global temperatures at 1.5°C or 2°C
18	warming. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
19	376 (2119), 20160460, doi:10.1098/rsta.2016.0460.
20 21	Pretzsch, H. et al., 2014: Forest stand growth dynamics in Central Europe have accelerated since 1870. <i>Nature Communications</i> , 5 (1), doi:10.1038/ncomms5967.
22	Pretzsch, H. et al., 2013: Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus
23 24	robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. European Journal of Forest Research 132(2), 263-280, doi:10.1007/s10342-012-0673-v
25	Primicia, I. et al., 2015: Age, competition, disturbance and elevation effects on tree and stand growth response of
26	primary Picea abies forest to climate. Forest Ecology and Management, 354, 77-86,
27	doi:10.1016/j.foreco.2015.06.034.
28	Pritchard, O. G., S. H. Hallett and T. S. Farewell, 2015: Probabilistic soil moisture projections to assess Great Britain's
29	future clay-related subsidence hazard. Climatic Change, 133(4), 635-650, doi:10.1007/s10584-015-1486-z.
30	Prober, S. M. et al., 2019: Shifting the conservation paradigm: a synthesis of options for renovating nature under
31	climate change. Ecological Monographs, 89 (1), e01333-e01333, doi:10.1002/ecm.1333.
32	Promberger, M., 2017: Resilience among vulnerable households in Europe. IAB-Discussion Paper, No. 12/2017, Institut für Arbeitsmerkt, und Demisforschung (IAD). Nürnhang, 44 nm
33 24	Drudhomme C et al. 2014: Hydrological droughts in the 21st century, betcasts and uncertainties from a global
34 35	multimodel ensemble experiment. Proceedings of the National Academy of Sciences 111(9) 3262 I P-3267
36	doi:10.1073/pnas.1222473110.
37	Puđak, J., 2019: Lessons (not) learned on climate change adaptation policy: qualitative research on the case of floods in
38	Western Balkan countries. Socijalna ekologija, 28(1), 3-26, doi:10.17234/SocEkol.28.1.1.
39	Pukkala, T., 2018: Effect of species composition on ecosystem services in European boreal forest. J. For. Res., 29(2),
40	261-272, doi:10.1007/s11676-017-0576-3.
41 42	Pungas, L., 2019: Food self-provisioning as an answer to the metabolic rift: The case of 'Dacha Resilience' in Estonia. <i>Journal of Rural Studies</i> , 68, 75-86, doi:10.1016/j.jrurstud.2019.02.010.
43	Pushnya, M. V. and Z. A. Shirinyan, 2015: A new harmful pest of soyabean in Krasnodar Territory. Zashchita i
44	Karantin Rasteniĭ,(No.10), 27-29.
45	Pycroft, J., J. Abrell and JC. Ciscar, 2016: The Global Impacts of Extreme Sea-Level Rise: A Comprehensive
46	Economic Assessment. Environmental and Resource Economics, 64(2), 225-253, doi:10.1007/s10640-014-9866-
47	9.
48	Pye, S. et al., 2015: Energy poverty and vulnerable consumers in the energy sector across the EU: analysis of policies
49 50	ana measures: INSIGHT_E. Available al: https://se.gurone.gu/gnorg//sites/gnor/files/decuments/INSIGHT_E_Energy%20Devertu%20
50 51	//////////////////////////////////////
51 52	Oueiroz C et al 2015: Manning bundles of ecosystem services reveals distinct types of multifunctionality within a
53	Swedish landscape. AMBIO. 44(1), 89-101, doi:10.1007/s13280-014-0601-0.
54	Ouiroga, S. and C. Suárez, 2016: Climate change and drought effects on rural income distribution in the Mediterranean:
55	a case study for Spain. Natural Hazards and Earth System Sciences, 16(6), 1369-1385, doi:10.5194/nhess-16-
56	1369-2016.
57	Radhakrishnan, M. et al., 2018: Flexible adaptation planning for water sensitive cities. Cities, 78, 87-95,
58	doi: <u>https://doi.org/10.1016/j.cities.2018.01.022</u> .
59	Radinger, J. et al., 2016: Synergistic and antagonistic interactions of future land use and climate change on river fish
60	assemblages. Global Change Biology, Z2 (4), 1505-1522, doi:10.1111/gcb.13183.
01 62	Ragazzola, r. et al., 2015: Phenolypic plasticity of coralline algae in a High CO2 world. <i>Ecology and Evolution</i> , 3 (10), 2426–2446. doi:10.1002/aca3.723
02	$5 + 50^{-5} - 5 + 70$, $u_{01,10,1002/0005,125}$.

1	Ragazzola, F. et al., 2016: Impact of high CO2 on the geochemistry of the coralline algae <i>Lithothamnion glaciale</i> .
2	scientific Reports, 0 , 20372, doi:10.1038/step20372
5	Raitio K C Allard and R Lawrence 2020: Mineral extraction in Swedish Sámi: The regulatory gan between Sami
5	rights and Sweden's mining permitting practices. <i>Land Use Policy</i> , 99 , 105001, doi:10.1016/j.landworg.1.2020.105001
6	doi:10.1016/j.landusepoi.2020.105001.
8	resilience to climate impacts. <i>Scientific Reports</i> , 8 (1), 14871, doi:10.1038/s41598-018-33237-w.
9	Randazzo, T., E. De Cian and M. N. Mistry, 2020: Air conditioning and electricity expenditure: The role of climate in temperate countries. <i>Economic Modelling</i> , 90 , 273–287. doi:10.1016/j.coopmed.2020.05.001
10	Ranger N. T. Reeder and I. Lowe. 2013: Addressing 'deen' uncertainty over long-term climate in major infrastructure.
12	projects: four innovations of the Thames Estuary 2100 Project. <i>EURO Journal on Decision Processes</i> , 1(3), 233-
13	262, doi:10.100//\$400/0-013-0014-5.
14 15	Prices. <i>Water</i> , 10 (9), doi:10.3390/w10091197.
16	Rasmus, S., S. Kivinen and M. Irannezhad, 2018: Basal ice formation in snow cover in Northern Finland between 1948
17	and 2016. Environmental Research Letters, 13(11), 114009, doi:10.1088/1748-9326/aae541.
18 19	Rasmussen, P., T. O. Sonnenborg, G. Goncear and K. Hinsby, 2013: Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer. <i>Hydrology and Earth System Sciences</i> , 17 (1),
20	421-443, doi:10.5194/hess-17-421-2013.
21 22	Ratcliffe, S. et al., 2017: Biodiversity and ecosystem functioning relations in European forests depend on environmental context. <i>Ecology Letters</i> 20 (11) 1414-1426 doi:10.1111/ele.12849
22	Rayanel L. F. Magnin and P. Deline. 2017: Impacts of the 2003 and 2015 summer heatwayes on permafrost-affected
24	rock-walls in the Mont Blanc massif. Science of The Total Environment, 609, 132-143,
25	doi: <u>https://doi.org/10.1016/j.scitotenv.2017.07.055</u> .
26	Ray, A., L. Hughes, D. M. Konisky and C. Kaylor, 2017: Extreme weather exposure and support for climate change
27	adaptation. Global Environmental Change, 46, 104-113, doi: <u>https://doi.org/10.1016/j.gloenvcha.2017.07.002</u> .
28	variability. Nature Communications 6 5989 doi:10.1038/ncomms6989
30	https://www.nature.com/articles/ncomms6989#supplementary-information
31	Raymond, C, et al., 2020: Understanding and managing connected extreme events. <i>Nature Climate Change</i> , 10 (7), 611-
32	621. doi:10.1038/s41558-020-0790-4.
33	Reckien, D., J. Flacke, M. Olazabal and O. Heidrich, 2015: The Influence of Drivers and Barriers on Urban Adaptation
34	and Mitigation Plans-An Empirical Analysis of European Cities. Plos One, 10(8),
35	doi:10.1371/journal.pone.0135597.
36	Reckien, D. et al., 2018a: How are cities planning to respond to climate change? Assessment of local climate plans from
37	885 cities in the EU-28. Journal of Cleaner Production, 191, 207-219,
38	doi: <u>https://doi.org/10.1016/j.jclepro.2018.03.220</u> .
39 40	Reckien, D. et al., 2018b: How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. <i>Journal of Cleaner Production</i> , 191 , 207-219, doi:10.1016/j.jclepro.2018.03.220.
41	Reckien, D. et al., 2019: Dedicated versus mainstreaming approaches in local climate plans in Europe. <i>Renewable and</i>
42	<i>Sustainable Energy Reviews</i> , 112 , 948-959, doi: <u>https://doi.org/10.1016/j.rser.2019.05.014</u> .
43	Regos, A. et al., 2014: Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests. <i>PLoS</i>
44	ONE, 9(4), e94906, doi:10.13/1/journal.pone.0094906.
45	ecosystems under climate change and novel fire regime scenarios. <i>Diversity and Distributions</i> 27 (1), 83-96
40	doi:10 1111/ddi 12375
48	Reich, P. B. et al., 2016: Boreal and temperate trees show strong acclimation of respiration to warming. <i>Nature</i> .
49	531 (7596), 633-636, doi:10.1038/nature17142.
50	Reichstein, M. et al., 2007: Reduction of ecosystem productivity and respiration during the European summer 2003
51	climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 13(3), 634-
52	651, doi:10.1111/j.1365-2486.2006.01224.x.
53	Reimann, L., JL. Merkens and A. T. Vafeidis, 2018a: Regionalized Shared Socioeconomic Pathways: narratives and
54	spatial population projections for the Mediterranean coastal zone. <i>Regional Environmental Change</i> , 18 (1), 235-
55	245, doi:10.100//s10115-01/-1189-2.
56 57	Keimann, L. et al., 20180: Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to
51 58	Sua-IVVI 1150. IVUILLE COMMUNICULIONS, 9(1), 4101, UVI.10.1030/84140/-010-00043-9. Reischl C. R. Rauter and A. Posch. 2018: Urban vulnerability and adaptation to hastwayes: a case study of Graz
50 59	(Austria) Climate Policy 18(1) 63-75 doi:10.1080/14693062.2016.1227953
60	Remling, E., 2018: Depoliticizing adaptation: a critical analysis of EU climate adaptation policy. <i>Environmental</i>
61	<i>Politics</i> , 27 (3), 477-497, doi:10.1080/09644016.2018.1429207.
62	Resco de Dios, V., 2020: Plant-Fire Interactions: Applying Ecophysiology to Wildfire Management. Managing Forest
63	Ecosystems, vol. 36, Springer International Publishing, Cham. ISBN 978-3-030-41191-6 978-3-030-41192-3.

1 2	Restemeyer, B., M. van den Brink and J. Woltjer, 2018: Resilience unpacked – framing of 'uncertainty' and 'adaptability' in long-term flood risk management strategies for London and Rotterdam. <i>European Planning</i>
3	<i>Studies</i> , 26 (8), 1559-1579, doi:10.1080/09654313.2018.1490393.
4	Restemeyer, B., J. Woltjer and M. van den Brink, 2015: A strategy-based framework for assessing the flood resilience
5 6	of cities – A Hamburg case study. <i>Planning Theory & Practice</i> , 16 (1), 45-62, doi:10.1080/14649357.2014.1000950.
7 8	Reusch, T. B. H. et al., 2018: The Baltic Sea as a time machine for the future coastal ocean. <i>Science Advances</i> , 4 (5), doi:10.1126/sciadv.aar8195.
9	Revich, B. A., V. V. Maleev and M. D. Smirnova, 2019: Climate change and public health: assessments, indicators,
10	predictions [Revich, B. A. and K. A.O. (eds.)]. INP RAS, Moscow.
11	Rey-Valette, H., S. Robert and B. Rulleau, 2019: Resistance to relocation in flood-vulnerable coastal areas: a proposed
12	Rever C et al 2014: Projections of regional changes in forest net primary productivity for different tree species in
14	Europe driven by climate change and carbon dioxide. <i>Annals of Forest Science</i> , 71 (2), 211-225.
15	doi:10.1007/s13595-013-0306-8.
16	Reyers, M., J. Moemken and J. Pinto, 2016: Future changes of wind energy potentials over Europe in a large CMIP5
17	multi-model ensemble. International Journal of Climatology, 36(2), 783-796, doi:10.1002/joc.4382.
18	Reyes-Paecke, S. et al., 2019: Irrigation of green spaces and residential gardens in a Mediterranean metropolis: Gaps
19	and opportunities for climate change adaptation. <i>Landscape and Urban Planning</i> , 182 , 34-43,
20 21	doi: <u>https://doi.org/10.1016/j.landuropian.2018.10.006</u> . Rianna G. A. Reder, I. Pagano and P. Mercogliano, 2020: Assessing Future Variations in Landslide Occurrence Due
21	to Climate Changes: Insights from an Italian Test Case 255-264
22	Ricart, S., J. Olcina and A. Rico, 2019: Evaluating Public Attitudes and Farmers' Beliefs towards Climate Change
24	Adaptation: Awareness, Perception, and Populism at European Level. Land, 8(1), 4.
25	Ricart, S., J. Olcina and M. A. Rico, 2018: Evaluating Public Attitudes and Farmers' Beliefs towards Climate Change
26	Adaptation: Awareness, Perception, and Populism at European Level. Land, 8(1), doi:10.3390/land8010004.
27	Richter, M., 2016: Urban climate change-related effects on extreme heat events in Rostock, Germany. Urban
28	<i>Ecosystems</i> , 19(2), 849-866, doi:10.100//s11252-015-0508-y.
29 30	Data 8 (12) 1082-1086 doi:naners3://nublication/doi/10.1038/s41558-018-0344-1
31	Rilov, G. et al., 2019: Adaptive marine conservation planning in the face of climate change: What can we learn from
32	physiological, ecological and genetic studies? Global Ecology and Conservation, 17,
33	doi:10.1016/j.gecco.2019.e00566.
34	Rivetti, I. et al., 2014: Global Warming and Mass Mortalities of Benthic Invertebrates in the Mediterranean Sea. PLoS
35	One, 9(12), doi:papers3://publication/doi/10.1371/journal.pone.0115655.
36	Roberts, C. and F. W. Geels, 2019: Conditions for politically accelerated transitions: Historical institutionalism, the
37 29	and Social Change 140, 221-240, doi:https://doi.org/10.1016/j.techfore.2018.11.019
30 39	Roberts C M et al 2017: Marine reserves can mitigate and promote adaptation to climate change. <i>Proceedings of the</i>
40	National Academy of Sciences of the USA, 114(24), 6167–6175, doi:10.1073/pnas.1701262114.
41	Robinson, J. et al., 2017: Far-field connectivity of the UK's four largest marine protected areas: Four of a kind? Earths
42	<i>Future</i> , 5 (5), 475-494, doi:10.1002/2016ef000516.
43	Rodionov, V. Z., 2016: КОМПЛЕКС ЗАЩИТНЫХ СООРУЖЕНИЙ САНКТ-ПЕТЕРБУРГА
44	ОТ НАВОДНЕНИИ: ИСТОРИЯ И ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ. Региональная экология.
45 46	erosion in Europe: historical trends and future projections. <i>Journal of Coastal Conservation</i> 17 (3), 389-395
40 47	doi:10.1007/s11852-013-0235-6.
48	Rogers, D., J. Suk and J. Semenza, 2014: Using global maps to predict the risk of dengue in Europe. <i>Acta Tropica</i> , 129 ,
49	1-14, doi:10.1016/j.actatropica.2013.08.008.
50	Rogers, K. et al., 2019: Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise.
51	<i>Nature</i> , 567 (7746), 91-95, doi:papers3://publication/doi/10.1038/s41586-019-0951-7.
52	Rohat, G., J. Flacke, H. Dao and M. van Maarseveen, 2018: Co-use of existing scenario sets to extend and quantify the
53 54	shared socioeconomic pathways. <i>Climatic Change</i> , 151 (3-4), 619-636, doi:10.100//s10584-018-2318-8.
54 55	challenges in Europe Global and Planetary Change 172 45-59 doi:10.1016/j.j.gloplacha.2018.09.013
56	Rojas-Downing, M. M., A. P. Nejadhashemi, T. Harrigan and S. A. Woznicki, 2017: Climate change and livestock:
57	Impacts, adaptation, and mitigation. Climate Risk Management, 16, 145-163, doi:10.1016/j.crm.2017.02.001.
58	Roldán, E., M. Gómez, M. Pino and J. Díaz, 2015: The impact of extremely high temperatures on mortality and
59	mortality cost. International journal of environmental health research, 25(3), 277-287.
60	Romagosa, F. and J. Pons, 2017: Exploring local stakeholders' perceptions of vulnerability and adaptation to climate
61 62	change in the EDro delta. Journal of Coastal Conservation, 21(1), 223-232, doi:10.100//S11852-01/-0493-9. Román M V I Arto and A Ansulategi 2018: International trade and the distribution of economy wide bonefits from
63	the disbursement of climate finance. <i>Climate and Development</i> , 1-16, doi:10.1080/17565529.2018.1521330.

1	Romero Rodríguez, L. et al., 2018: Mitigating energy poverty: Potential contributions of combining PV and building
2	thermal mass storage in low-income households. Energy Conversion and Management, 173, 65-80,
3	doi:10.1016/j.enconman.2018.07.058.
4 5	Rosenzweig, C. et al., 2017: Assessing inter-sectoral climate change risks: the role of ISIMIP. <i>Environmental Research</i> Letters, 12 (1), 010301, doi:10.1088/1748-9326/12/1/010301.
6	Roson, R. and R. Damania, 2017: The macroeconomic impact of future water scarcity: An assessment of alternative
7	scenarios. Journal of Policy Modeling, 39 (6), 1141-1162, doi: https://doi.org/10.1016/j.jpolmod.2017.10.003.
8	Roson, R. and M. Sartori, 2016: Estimation of Climate Change Damage Functions for 140 Regions in the GTAP 9 Data
9	Base. Journal of Global Economic Analysis; Vol 1, No 2 (2016), doi:10.21642/JGEA.010202AF.
10	Rosqvist, N. Inga and P. Eriksson, 2020: Impacts of climate warming on reindeer herding demand new land use
11	strategies. under review.
12	Rotter, M., E. Hoffmann, A. Pechan and R. Stecker, 2016: Competing priorities: how actors and institutions influence
13	adaptation of the German railway system. Climatic Change, $137(3)$, 609-623, doi:10.100//s10584-016-1/02-5.
14	Ruan, R. et al., 2019: Decelerated Greenland Ice Sheet Melt Driven by Positive Summer North Atlantic Oscillation.
15	Journal of Geophysical Research: Almospheres, 124(14), 7655-7646, doi:10.1029/2019JD050689.
10	Küpen, F. and M. Kouek, 2010: Observed and projected climate sints 1901-2100 depicted by world maps of the Können Geiger climate classification. Meteorologische Zeitschrift, 135-141 nn
10	Rubio Portillo, E. et al. 2016: Effects of the 2015 heat wave on benthic invertebrates in the Tabarca Marine Protected
10	Area (southeast Spain) Marine Environmental Research 122, 135-142
20	doi:https://doi.org/10.1016/i.marenyres.2016.10.004.
21	Ruffault, J., V. Moron, R. M. Trigo and T. Curt, 2017: Daily synoptic conditions associated with large fire occurrence
22	in Mediterranean France: evidence for a wind-driven fire regime. International Journal of Climatology, 37(1),
23	524-533, doi:10.1002/joc.4680.
24	Ruiz-Benito, P. et al., 2014: Diversity increases carbon storage and tree productivity in Spanish forests. <i>Global Ecology</i>
25	and Biogeography, 23(3), 311-322, doi:10.1111/geb.12126.
26	Ruiz-Navarro, A., P. K. Gillingham and J. R. Britton, 2016: Predicting shifts in the climate space of freshwater fishes in
27	Great Britain due to climate change. <i>Biological Conservation</i> , 203 , 33-42,
28	doi: <u>https://doi.org/10.1016/j.biocon.2016.08.021</u> .
29	Rumpf, S. B. et al., 2018: Range dynamics of mountain plants decrease with elevation. <i>Proceedings of the National</i>
30	Academy of Sciences, 115(8), 1848, doi:10.10/3/pnas.1713936115.
31	Runhaar, H. et al., 2018: Mainstreaming climate adaptation: taking stock about "what works" from empirical research
32 22	Worldwide. Regional Environmenial Change, 18(4), 1201-1210, doi:10.100//S10115-01/-1259-5. Pussel D et al. 2020: Policy Coordination for National Climate Change Adaptation in Europe: All Process but Little
33 34	Power Sustainability 12(13) 5393 doi:10.3300/su12135303
35	Russo S. I. Sillmann and F. M. Fischer. 2015: Ton ten European heatwayes since 1950 and their occurrence in the
36	coming decades. Environmental Research Letters. 10(12), 124003, doi:10.1088/1748-9326/10/12/124003.
37	Saarikoski, H. et al., 2018: Institutional challenges in putting ecosystem service knowledge in practice. <i>Ecosystem</i>
38	Services, 29, 579-598, doi:https://doi.org/10.1016/j.ecoser.2017.07.019.
39	Sadoff, C. W. et al., 2015: Securing water, sustaining growth: Report of the GWP. OECD task force on water security
40	and sustainable growth.
41	Sáenz-Romero, C. et al., 2017: Adaptive and plastic responses of Quercus petraea populations to climate across Europe.
42	<i>Global Change Biology</i> , 23 (7), 2831-2847, doi:10.1111/gcb.13576.
43	Sahyoun, R., P. Guidetti, A. Di Franco and S. Planes, 2016: Patterns of Fish Connectivity between a Marine Protected
44	Area and Surrounding Fished Areas. <i>PLoS One</i> , 11 (12), e0167441,
45	doi:papers3://publication/doi/10.13/1/journal.pone.016/441.
46	Sajjadian, S. M., J. Lewis and S. Sharples, 2015: The potential of phase change materials to reduce domestic cooling
47	doi https://doi.org/10.1016/i.orbuild.2015.02.020
48 40	dol. <u>mups://dol.org/10.1010/j.enbund.2015.02.029</u> . Sakhel A 2017: Corporate climate risk management: Are European companies prepared? <i>Journal of Claguer</i>
49 50	Production 165 103-118 doi:10.1016/j.jclenro.2017.07.056
51	Sala E et al 2018: Assessing real progress towards effective ocean protection <i>Marine Policy</i> 91 11-13
52	doi:10.1016/i.marpol.2018.02.004.
53	Salem, R., A. Bahadori-Jahromi and A. Mylona, 2019: Investigating the impacts of a changing climate on the risk of
54	overheating and energy performance for a UK retirement village adapted to the nZEB standards. Building Services
55	Engineering Research and Technology, 40(4), 470-491, doi:10.1177/0143624419844753.
56	Salihoglu, B., S. S. Arkin, E. Akoglu and B. A. Fach, 2017: Evolution of Future Black Sea Fish Stocks under Changing
57	Environmental and Climatic Conditions. Frontiers in Marine Science, 4, 113,
58	doi:papers3://publication/doi/10.3389/fmars.2017.00339.
59	Salmoral, G. et al., 2019: A Probabilistic Risk Assessment of the National Economic Impacts of Regulatory Drought
60	Management on Irrigated Agriculture. <i>Earth's Future</i> , 7(2), 178-196, doi:10.1029/2018EF001092.
61	Samaniego, L. et al., 2018: Anthropogenic warming exacerbates European soil moisture droughts. <i>Nature Climate</i>
62	$Cnange, \mathbf{v}(5), 421-426, doi:10.1038/s41558-018-0138-5.$

2

3

4

5

6

7

8

9

10

11

12

13

14

15

18

19

- Samara, T., D. Raptis and I. Spanos, 2018: Fuel Treatments and Potential Fire Behavior in Peri-Urban Forests in Northern Greece. Environments, 5(7), 79, doi:10.3390/environments5070079.
- San-Miguel-Ayanz, J. et al., 2019: Forest fires in Europe, Middle East and North Africa 2018. EUR 29856 EN, Publications Office of the European Union, Luxembourg.
- Sánchez-García, D., C. Rubio-Bellido, M. Tristancho and M. Marrero, 2020: A comparative study on energy demand through the adaptive thermal comfort approach considering climate change in office buildings of Spain. Building Simulation, 13(1), 51-63, doi:10.1007/s12273-019-0560-2.
- Sanchez-Guevara, C. et al., 2019: Assessing population vulnerability towards summer energy poverty: Case studies of Madrid and London. Energy and Buildings, 190, 132-143, doi:10.1016/j.enbuild.2019.02.024.
- Sancho-García, A., J. Guillén and E. Ojeda, 2013: Storm-induced readjustment of an embayed beach after modification by protection works. Geo-Mar Lett, 33(2-3), 159-172, doi:10.1007/s00367-012-0319-6.
- Sanderson, F. J. et al., 2016: Assessing the Performance of EU Nature Legislation in Protecting Target Bird Species in an Era of Climate Change. Conservation Letters, 9(3), 172-180, doi:10.1111/conl.12196.
- Sanderson, H. et al. (eds.), 2018: Adapting to Climate Change in Europe. Exploring Sustainable Pathways From Local Measures to Wider Policies, Elsevier, 368 pp. ISBN 9780128498873.
- Sandström, P. et al., 2016: On the decline of ground lichen forests in the Swedish boreal landscape: Implications for 16 17 reindeer husbandry and sustainable forest management. Ambio, 45(4), 415-429, doi:10.1007/s13280-015-0759-0.
 - Sanginés de Cárcer, P. et al., 2018: Vapor-pressure deficit and extreme climatic variables limit tree growth. Global Change Biology, 24(3), 1108-1122, doi:10.1111/gcb.13973.
- Sanker, C., C. Lambertz and M. Gauly, 2013: Climatic effects in Central Europe on the frequency of medical treatments 20 of dairy cows. Animal, 7(2), 316-321, doi:10.1017/S1751731112001668.
- Santini, L., S. Saura and C. Rondinini, 2016: Connectivity of the global network of protected areas. Diversity and 22 Distributions, 22(2), 199-211, doi:10.1111/ddi.12390. 23
- Sanz-Barbero, B. et al., 2018: Heat wave and the risk of intimate partner violence. Science of the total environment, 24 644, 413-419. 25
- Saraiva, S. et al., 2019: Uncertainties in Projections of the Baltic Sea Ecosystem Driven by an Ensemble of Global 26 Climate Models. Frontiers in Earth Science, 6, 1, doi:papers3://publication/doi/10.3389/feart.2018.00244. 27
- Saros, J. E. et al., 2019: Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape. 28 Environmental Research Letters, 14(7), 074027, doi:10.1088/1748-9326/ab2928. 29
- Sayol, J. M. and M. Marcos, 2018: Assessing Flood Risk Under Sea Level Rise and Extreme Sea Levels Scenarios: 30 Application to the Ebro Delta (Spain). Journal of Geophysical Research: Oceans, 123(2), 794-811, 31 32 doi:10.1002/2017jc013355.
- 33 Schaffner, F. and A. Mathis, 2014: Dengue and dengue vectors in the WHO European region: past, present, and 34 scenarios for the future. Lancet Infectious Diseases, 14(12), 1271-1280, doi:10.1016/s1473-3099(14)70834-5.
- Scherrer, D. and C. Körner, 2011: Topographically controlled thermal-habitat differentiation buffers alpine plant 35 diversity against climate warming. Journal of Biogeography, 38(2), 406-416, doi:10.1111/j.1365-36 2699.2010.02407.x. 37
- Schewe, J. et al., 2014: Multimodel assessment of water scarcity under climate change. Proceedings of the National 38 Academy of Sciences, 111(9), 3245 LP-3250, doi:10.1073/pnas.1222460110. 39
- Schiemann, F. and A. Sakhel, 2018: Carbon Disclosure, Contextual Factors, and Information Asymmetry: The Case of 40 Physical Risk Reporting. European Accounting Review, 1-28, doi:10.1080/09638180.2018.1534600. 41
- Schifano, P. et al., 2012: Changes in the effects of heat on mortality among the elderly from 1998–2010: results from a 42 multicenter time series study in Italy. Environmental Health, 11(1), 58. 43
- Schinko, T., R. Mechler and S. Hochrainer-Stigler, 2017: A methodological framework to operationalize climate risk 44 management: managing sovereign climate-related extreme event risk in Austria. Mitigation and Adaptation 45 Strategies For Global Change, 22(7), 1063-1086, doi:10.1007/s11027-016-9713-0. 46
- 47 Schleussner, C.-F. et al., 2016: Differential climate impacts for policy-relevant limits to global warming: the case of 1.5°C and 2°C. Earth System Dynamics, 7(2), 327-351, doi:10.5194/esd-7-327-2016. 48
- Schlogl, M. and C. Matulla, 2018: Potential future exposure of European land transport infrastructure to rainfall-49 induced landslides throughout the 21st century. Natural Hazards and Earth System Sciences, 18(4), 1121-1132, 50 doi:10.5194/nhess-18-1121-2018. 51
- Schmidtko, S., L. Stramma and M. Visbeck, 2017: Decline in global oceanic oxygen content during the past five 52 decades. Nature, 542(7641), 335-339, doi:papers3://publication/doi/10.1038/nature21399. 53
- Schoennagel, T. et al., 2017: Adapt to more wildfire in western North American forests as climate changes. 54 Proceedings of the National Academy of Sciences, 114(18), 4582-4590, doi:10.1073/pnas.1617464114. 55
- Schöner, W. et al., 2019: Spatiotemporal patterns of snow depth within the Swiss-Austrian Alps for the past half 56 century (1961 to 2012) and linkages to climate change. International Journal of Climatology, 39(3), 1589-1603, 57 doi:10.1002/joc.5902. 58
- Schrefler, B. A. et al., 2009: Ground displacement data around the city of Ravenna do not support uplifting Venice by 59 water injection. Terra Nova, 21(2), 144-150. 60
- Schröter, D. et al., 2005a: Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science, 61 62 **310**(5752), 1333, doi:10.1126/science.1115233.

Schröter, D. et al., 2005b: Ecosystem Service Supply and Vulnerability to Global Change in Europe. 1 doi:10.1126/science.1115233. 2 Schröter, M. et al., 2014: Ecosystem Services and Opportunity Costs Shift Spatial Priorities for Conserving Forest 3 Biodiversity. PLOS ONE, 9(11), e112557, doi:10.1371/journal.pone.0112557. 4 Schuerch, M. et al., 2018: Future response of global coastal wetlands to sea-level rise. Nature, 561(7722), 231-234, 5 doi:papers3://publication/doi/10.1038/s41586-018-0476-5. 6 Schuldt, B. et al., 2020: A first assessment of the impact of the extreme 2018 summer drought on Central European 7 forests. Basic and Applied Ecology, 45, 86-103, doi:https://doi.org/10.1016/j.baae.2020.04.003. 8 Schulze, E.-D. et al., 2012: Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor 9 greenhouse gas neutral. GCB Bioenergy, 4(6), 611-616, doi:10.1111/j.1757-1707.2012.01169.x. 10 Schulze, E. D. et al., 2009: Importance of methane and nitrous oxide for Europe's terrestrial greenhouse-gas balance. 11Nature Geoscience, 2(12), 842-850, doi:10.1038/ngeo686. 12 Schwager, P. and C. Berg, 2019: Global warming threatens conservation status of alpine EU habitat types in the 13 European Eastern Alps. Regional Environmental Change, 19(8), 2411-2421, doi:10.1007/s10113-019-01554-z. 14 Schwalm, C. R. et al., 2017: Global patterns of drought recovery. Nature, 548, 202, doi:10.1038/nature23021. 15 Scott, D., R. Steiger, H. Dannevig and C. Aall, 2019: Climate change and the future of the Norwegian alpine ski 16 industry. Current Issues in Tourism, 1-14, doi:10.1080/13683500.2019.1608919. 17 Sedlmeier, K., H. Feldmann and G. Schädler, 2018: Compound summer temperature and precipitation extremes over 18 19 central Europe. Theoretical and Applied Climatology, 131(3), 1493-1501, doi:10.1007/s00704-017-2061-5. Seebauer, S. and P. Babcicky, 2018: Trust and the communication of flood risks: comparing the roles of local 20 governments, volunteers in emergency services, and neighbours. Journal of Flood Risk Management, 11(3), 305-21 316, doi:10.1111/jfr3.12313. 22 Seebauer, S. and C. Winkler, 2020: Should I stay or should I go? Factors in household decisions for or against 23 relocation from a flood risk area. Global Environmental Change, 60, 102018, 24 doi:https://doi.org/10.1016/j.gloenvcha.2019.102018. 25 Sehlin MacNeil, K., 2015: Shafted: a case of cultural and structural violence in the power relations between a Sami 26 community and a mining company in northern Sweden. Ethnologia Scandinavica, 45, 73-88. 27 Seibold, S. et al., 2019: Arthropod decline in grasslands and forests is associated with landscape-level drivers. *Nature*, 28 574(7780), 671-+, doi:10.1038/s41586-019-1684-3. 29 Seidl, R., M.-J. Schelhaas, W. Rammer and P. J. Verkerk, 2014: Increasing forest disturbances in Europe and their 30 impact on carbon storage. Nature Climate Change, 4(9), 806-810, doi:10.1038/nclimate2318. 31 32 Seidl, R. et al., 2017: Forest disturbances under climate change. Nature Climate Change, 7, 395, 33 doi:10.1038/nclimate3303 34 https://www.nature.com/articles/nclimate3303#supplementary-information. Selby, J., O. S. Dahi, C. Fröhlich and M. Hulme, 2017: Climate change and the Syrian civil war revisited. Political 35 Geography, 60, 232-244, doi:https://doi.org/10.1016/j.polgeo.2017.05.007. 36 Selig, E. R. et al., 2014: Global Priorities for Marine Biodiversity Conservation. PLoS One, 9(1), 37 doi:10.1371/journal.pone.0082898. 38 Semenza, J. et al., 2016a: Determinants and Drivers of Infectious Disease Threat Events in Europe. Emerging Infectious 39 Diseases, 22(4), 581-589, doi:10.3201/eid2204.151073. 40 Semenza, J. and B. Menne, 2009: Climate change and infectious diseases in Europe. Lancet Infectious Diseases, 9(6), 41 365-375, doi:10.1016/S1473-3099(09)70104-5. 42 Semenza, J. and J. Suk, 2018: Vector-borne diseases and climate change: a European perspective. Fems Microbiology 43 Letters, 365(2), doi:10.1093/femsle/fnx244. 44 Semenza, J. et al., 2016b: Climate change projections of West Nile virus infections in Europe: implications for blood 45 safety practices. Environmental Health, 15, doi:10.1186/s12940-016-0105-4. 46 47 Semenza, J. C. et al., 2017: Environmental Suitability of Vibrio Infections in a Warming Climate: An Early Warning System. Environmental Health Perspectives, 125(10), 107004, doi:papers3://publication/uuid/D7FE22AA-142E-48 4902-8B07-900878EA658B. 49 Seneviratne, S. I. et al., 2018: Land radiative management as contributor to regional-scale climate adaptation and 50 mitigation. Nature Geoscience, 11(2), 88-96, doi:10.1038/s41561-017-0057-5. 51 Senf, C. and R. Seidl, 2020: Mapping the forest disturbance regimes of Europe. Nature Sustainability, 1-26, 52 doi:10.1038/s41893-020-00609-y. 53 Sesana, E., A. Gagnon, C. Bertolin and J. Hughes, 2018: Adapting Cultural Heritage to Climate Change Risks: 54 Perspectives of Cultural Heritage Experts in Europe. Geosciences, 8(8), 305, doi:10.3390/geosciences8080305. 55 Sesana, E., A. S. Gagnon, A. Bonazza and J. J. Hughes, 2020: An integrated approach for assessing the vulnerability of 56 World Heritage Sites to climate change impacts. Journal of Cultural Heritage, 41, 211-224, 57 doi:10.1016/j.culher.2019.06.013. 58 Shaposhnikov, D. et al., 2015: Long-Term Impact of Moscow Heat Wave and Wildfires on Mortality. *Epidemiology*, 59 26(2), E21-E22, doi:10.1097/EDE.000000000000251. 60 Sheil, D. and F. Bongers, 2020: Interpreting forest diversity-productivity relationships: volume values, disturbance 61 histories and alternative inferences. Forest Ecosystems, 7(1), doi:10.1186/s40663-020-0215-x. 62

1	Shen, J. et al., 2020: An early-stage analysis of climate-adaptive designs for multi-family buildings under future climate
2	scenario: Case studies in Rome. Italy and Stockholm. Sweden. <i>Journal of Building Engineering</i> . 27, 100972.
3	doi:https://doi.org/10.1016/i.jobe.2019.100972.
4	Sheridan S and M Allen 2018: Temporal trends in human vulnerability to excessive heat <i>Environmental Research</i>
5	Letters, 13(4), doi:10.1088/1748-9326/aab214.
6	Shibanov, V. N. and K. Y. Fomin. 2016: The results of the Russian bottom trawl fishery in North-Western Atlantic in
7	2013 (Statlant 21)
8	Shiklomanov N I D A Streletskiv T B Swales and V A Kokorev 2017: Climate Change and Stability of Urban
9	Infrastructure in Russian Permafrost Regions: Prognostic Assessment based on GCM Climate Projections
10	Geographical Review 107(1) 125-142 doi:10.1111/gere 12214
11	Siders A R M Hino and K I Mach 2019: The case for strategic and managed climate retreat <i>Science</i> 365 (6455)
12	761 doi:10.1126/science.aax8346
12	Sieher I M P A Borges and B Burkhard 2018: Hotspots of biodiversity and ecosystem services: the Outermost
14	Regions and Overseas Countries and Territories of the European Union One Ecosystem 3 (2018)
14	Sieher J. 2013: Impacts of and adaptation ontions to extreme weather events and climate change concerning thermal
16	nower plants Climatic Change 121(1) 55-66 doi:10.1007/s10584-013-0915-0
17	Siehert S. H. Webber, G. Zhao and F. Ewert 2017: Heat stress is overestimated in climate impact studies for irrigated
10	agriculture Environmental Research Letters 12(5) 054023 doi:10.1082/1748.0326/00702f
10	agriculture. Environmental Research Letters, 12(5), 054025, doi:10.1000/1746-5520/dd/021.
20	scenarios of see level rise. <i>Pagional Environmental Change</i> 16(5), 1457, 1468, doi:10.1007/s10113.015.0870 x
20	Schlarikove N and N Kolumen 2015: Impact of climate change on the dairy industry in temperate zones: Predications
21	on the overall negative impact and on the positive role of drive goate in adoptation to earth warming. Small
22	Pumingent Research 122(1) 27.24 doubtrouv/doi org/10.1016/i smallrumros 2014.11.005
23	Silva P. et al. 2017: Euture global mortality from abanges in air pollution attributable to alimete abange. <i>Nature</i>
24	Silva, K. et al., 2017 . Future global monanty from changes in an ponution autobulatie to enhance change. Nature
25	Climate Change, 7(9), 047-7, doi:10.1056/NCLIMATE5554.
26	Simonel, G. and S. Fatoric, 2016: Does adaptation to climate change mean resignation or opportunity? <i>Regional</i>
27	Environmental Change, 10(5), 789-799, doi:10.1007/S10115-015-0792-5.
28	Simpson, N. P. et al., submitted: Assessing and responding to complex climate change fisks. <i>One Earth</i> .
29	singh, C. et al., 2020. Assessing the reasonity of adaptation options: methodological advancements and directions for
30	Climate adaptation research and practice. Climatic Change, 102(2), 255-277, doi:10.1007/S10584-020-02702-X.
31	Sinna, E., A. M. Michaiak and V. Baraji, 2017: Europhication with increase during the 21st century as a result of
32	precipitation changes. Science, 35 7(0549), 405 LP-408, doi:10.1126/science.aan2409.
33	Sinov, S. A., I. I. Moknov and A. v. Joia, 2017 . Influence of Siberian files of carbon monoxide content in the
34	atmosphere over the European part of Russia in the summer of 2010. Optics of the atmosphere and ocean, $30(2)$,
35	140-152. Starin A and D. Ålanan 2014. De human activity and informational disturb demanticated usin design design design
36	Skarin, A. and B. Anman, 2014: Do numan activity and infrastructure disturb domesticated reindeer? The need for the $\frac{1}{2}$
37	reindeer's perspective. <i>Polar Biology</i> , $5_{1(1)}$, 1041-1054, doi:10.1007/s00300-014-1499-5.
38	Skarin, A. and M. Alam, 2017: Reindeer habitat use in relation to two small wind farms, during preconstruction,
39	construction, and operation. <i>Ecology and Evolution</i> , 7(11), 3870-3882, doi:10.1002/ece3.2941.
40	Skarin, A. et al., 2015: Wind farm construction impacts reindeer migration and movement corridors. <i>Landscape</i>
41	<i>Ecology</i> , 30 (8), 1527-1540, doi:10.1007/s10980-015-0210-8.
42	Skougaard Kaspersen, P. et al., 2017: Comparison of the impacts of urban development and climate change on exposing
43	European cities to pluvial flooding. <i>Hydrol. Earth Syst. Sci.</i> , 21(8), 4131-4147, doi:10.5194/hess-21-4131-2017.
44	Slagstad, D., I. H. Ellingsen and P. Wassmann, 2011: Evaluating primary and secondary production in an Arctic Ocean
45	void of summer sea ice: An experimental simulation approach. <i>Progress in Oceanography</i> , 90(1-4), 117-131,
46	doi:10.1016/j.pocean.2011.02.009.
47	Slavíková, L. et al., 2020: Approaches to state flood recovery funding in Visegrad Group Countries. <i>Environmental</i>
48	<i>Hazards</i> , 19 (3), 251-267, doi:10.1080/17477891.2019.1667749.
49	Slezakova, K., S. Morais and M. Pereira, 2013: Forest fires in Northern region of Portugal: Impact on PM levels.
50	<i>Atmospheric Research</i> , 127 , 148-153, doi:10.1016/j.atmosres.2012.07.012.
51	Smale, D. A., 2020: Impacts of ocean warming on kelp forest ecosystems. <i>New Phytologist</i> , 225 (4), 1447-1454,
52	doi:papers3://publication/doi/10.1111/nph.16107.
53	Smale, D. A. et al., 2019: Marine heatwaves threaten global biodiversity and the provision of ecosystem services.
54	<i>Nature Sci Data</i> , 9 , 1, doi:papers3://publication/doi/10.1038/s41558-019-0412-1.
55	Smale, D. A., A. L. E. Yunnie, T. Vance and S. Widdicombe, 2015: Disentangling the impacts of heat wave magnitude,
56	duration and timing on the structure and diversity of sessile marine assemblages. PeerJ, 3(1628),
57	doi:10.7717/peerj.863.
58	Smid, M. et al., 2019: Ranking European capitals by exposure to heat waves and cold waves. Urban Climate, 27, 388-
59	402, doi: <u>https://doi.org/10.1016/j.uclim.2018.12.010</u> .
60	Smith, J. O. et al., 2005: Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080.
61	<i>Global Change Biology</i> , 11 (12), 2141-2152, doi:10.1111/j.1365-2486.2005.001075.x.
62	Soares, M. and C. Buontempo, 2019: Challenges to the sustainability of climate services in Europe. Wiley
63	Interdisciplinary Reviews-Climate Change, 10(4), doi:10.1002/wcc.587.

1	Solaun, K. and E. Cerdá, 2019: Climate change impacts on renewable energy generation. A review of quantitative projections. <i>Renewable and Sustainable Energy Reviews</i> , 116 , 109415.
3	doi:https://doi.org/10.1016/i.rser.2019.109415.
4	Solaun, K. and E. Cerdá. 2020: Impacts of climate change on wind energy power – Four wind farms in Spain.
5	<i>Renewable Energy</i> , 145 , 1306-1316, doi:https://doi.org/10.1016/j.renene.2019.06.129.
6	Solidoro, C. et al., 2010: Response of Venice Lagoon ecosystem to natural and anthropogenic pressures over the last 50
7	years. Coastal lagoons: critical habitats of environmental change, 483-511.
8	Solovyev, B. et al., 2017: Identifying a network of priority areas for conservation in the Arctic seas: Practical lessons
9	from Russia. Aquatic Conservation: Marine and Freshwater Ecosystems, 27(1), 3051, doi:10.1002/aqc.2806.
10	Soroye, P., T. Newbold and J. Kerr, 2020: Climate change contributes to widespread declines among bumble bees
11	across continents. Science, 367(6478), 685, doi:10.1126/science.aax8591.
12	Spandre, P., H. François, E. George-Marcelpoil and S. Morin, 2016: Panel based assessment of snow management
13	operations in French ski resorts. Journal of Outdoor Recreation and Tourism, 16, 24-36,
14	doi: <u>https://doi.org/10.1016/j.jort.2016.09.002</u> .
15	Spandre, P. et al., 2019a: Climate controls on snow reliability in French Alps ski resorts. Scientific Reports, 9(1), 8043,
16	doi:10.1038/s41598-019-44068-8.
17	Spandre, P. et al., 2019b: Winter tourism under climate change in the Pyrenees and the French Alps: relevance of
18	snowmaking as a technical adaptation. <i>The Cryosphere</i> , 13 (4), 1325-1347, doi:10.5194/tc-13-1325-2019.
19	Spencer, T., M. Schuerch, R. J. Nicholls and J. H. G. a. Planetary, 2016: Global coastal wetland change under sea-level
20	rise and related stresses: The DIVA Wetland Change Model. <i>Marine Policy</i> , 139 , 15-30,
21	doi:papers3://publication/doi/10.1016/j.gloplacha.2015.12.018.
22	Spijkers, J. and W. J. Boonstra, 2017: Environmental change and social conflict: the northeast Atlantic mackerel
23	dispute. <i>Regional Environmental Change</i> , 17(6), 1835-1851, doi:10.1007/s10113-017-1150-4.
24	Spinoni, J. et al., 2020: Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. <i>Journal of</i>
25	Climate, $33(9)$, $3635-3661$, $d01:10.11/5/JCLI-D-19-0084.1$.
26	Spinoni, J. et al., 2019: A new global database of meteorological drought events from 1951 to 2016. Journal of
27	Hydrology: Regional Studies, 22, 100593, doi:10.1016/j.ejrn.2019.100593.
28	International Journal of Climatology 35(1), 25-36. doi:10.1002/joc.2050
29	Spinoni L at al. 2018: Changes of heating and cooling degree days in Europe from 1981 to 2100. International
30 31	Journal of Climatology 38 E191-E208 doi:10.1002/joc.5362
37	Snivak A C et al. 2019: Global-change controls on soil-carbon accumulation and loss in coastal vegetated
32	ecosystems. Nature Geoscience 12(9), 685-692 doi:10.1038/s41561-019-0435-2
34	Spooner, F. E., R. G. Pearson and R. Freeman. 2018a: Rapid warming is associated with population decline among
35	terrestrial birds and mammals globally. <i>Global change biology</i> , 24 (10), 4521-4531.
36	Spooner, F. E. B., R. G. Pearson and R. Freeman, 2018b: Rapid warming is associated with population decline among
37	terrestrial birds and mammals globally. Global Change Biology, 24(10), 4521-4531, doi:10.1111/gcb.14361.
38	Springmann, M. et al., 2016: Global and regional health effects of future food production under climate change: a
39	modelling study. Lancet, 387 (10031), 1937-1946, doi:10.1016/S0140-6736(15)01156-3.
40	Sswat, M. et al., 2018a: Growth performance and survival of larval Atlantic herring, under the combined effects of
41	elevated temperatures and CO2. PLoS One, 13(1), e0191947,
42	doi:papers3://publication/doi/10.1371/journal.pone.0191947.
43	Sswat, M. et al., 2018b: Food web changes under ocean acidification promote herring larvae survival. <i>Nature Ecology</i>
44	& Evolution, 2 (5), 836-840, doi:papers3://publication/doi/10.1038/s41559-018-0514-6.
45	Stagge, J. H., D. G. Kingston, L. M. Tallaksen and D. M. Hannah, 2017: Observed drought indices show increasing
46	divergence across Europe. <i>Scientific Reports</i> , 7(1), 14045, doi:10.1038/s41598-01/-14283-2.
47	Stahl, K. et al., 2016: Impacts of European drought events: insights from an international database of text-based reports.
48	Natural Hazaras and Earth System Sciences, 16(3), 801-819, doi:10.5194/nness-10-801-2016.
49 50	Stamos, I., E. Milsakis and J. Grau, 2015: Roadmaps for Adaptation Measures of Transportation to Climate Change.
50 51	Staney F. V. et al. 2018: Understanding the Dynamics of the Ovic Anovic Interface in the Black Sea. <i>Coonhysical</i>
51 52	Research Letters 15 (2) 864-871 doi:10.1002/2017GL.076206
52 53	Steef 2019: Monitoring the performance of the Common Fisheries Policy Publications Office of the European Union
55 54	Luxembourg
55	Stefanescu, C., J. Carnicer and J. Peñuelas, 2011: Determinants of species richness in generalist and specialist
56	Mediterranean butterflies: the negative synergistic forces of climate and habitat change. <i>Ecography</i> 34 (3) 353-
57	363, doi:10.1111/j.1600-0587.2010.06264.x.
58	Steiger, R. and B. Abegg, 2014: Klimawandel und Skigebiete im Ostalpenraum. In: 18. DGT Jahrestagung im Rahmen
59	des "Kongress Tourismus und Sport", Köln, Germany, 13-15 November 2014.
60	Steiger, R. and B. Abegg, 2018: Ski Areas' Competitiveness in the Light of Climate Change: Comparative Analysis in
61	the Eastern Alps. In: Tourism in Transitions: Recovering Decline, Managing Change. Springer International
62	Publishing, Cham, pp. 187-199. ISBN 978-3-319-64325-0.

1	Steiger, R., E. Posch, G. Tappeiner and J. Walde, 2020: The impact of climate change on demand of ski tourism - a
2	simulation study based on stated preferences. Ecological Economics, 170, 106589,
3	doi: <u>https://doi.org/10.1016/j.ecolecon.2019.106589</u> .
4	Steiger, R. and D. Scott, 2020: Ski tourism in a warmer world: Increased adaptation and regional economic impacts in
5	Austria. Tourism Management, 77, 104032, doi:https://doi.org/10.1016/j.tourman.2019.104032.
6	Steiger, R. et al., 2019: A critical review of climate change risk for ski tourism. <i>Current Issues in Tourism</i> , 22(11),
7	1343-1379, doi:10.1080/13683500.2017.1410110.
8	Steinbauer, M. J. et al., 2018: Accelerated increase in plant species richness on mountain summits is linked to warming.
9	Nature, 556 (7/00), 231-234, doi:10.1038/s41586-018-0005-6.
10	Stephens, P. A. et al., 2016: Consistent response of bird populations to climate change on two continents. <i>Science</i> , 352 (6201), 84, doi:10.1126/asigneg.co.4858
11	552 (0201), 04, 001.10.1120/science.ddc4050.
12	Stergiou, K. I. et al., 2010: Trends in productivity and biomass yields in the interfacean Sea Large Marine Ecosystem during climate change. <i>Environmental Davelonment</i> 17 , 57, 74, doi:10.1016/j.envidov.2015.00.001
13	Stiasny M H et al. 2018: Effects of parental acclimation and energy limitation in response to high CO2 exposure in
14	Atlantic cod Scientific Reports 8(1) 8348 doi:10.1038/s41598-018-26711-v
16	Stiasny, M. H. et al., 2019: Divergent responses of Atlantic cod to ocean acidification and food limitation. <i>Global</i>
17	<i>Change Biology</i> , 25 (3), 839-849, doi:10.1111/gcb.14554.
18	Stive, M. J. F. et al., 2013: A New Alternative to Saving Our Beaches from Sea-Level Rise: The Sand Engine. <i>Journal</i>
19	of Coastal Research, 1001-1008, doi:10.2112/JCOASTRES-D-13-00070.1.
20	Stocker, B. D. et al., 2018: Quantifying soil moisture impacts on light use efficiency across biomes. New Phytologist,
21	218 (4), 1430-1449, doi:10.1111/nph.15123.
22	Stoffel, M., D. Tiranti and C. Huggel, 2014: Climate change impacts on mass movements — Case studies from the
23	European Alps. Science of The Total Environment, 493, 1255-1266,
24	doi: <u>https://doi.org/10.1016/j.scitotenv.2014.02.102</u> .
25	Stoffel, M., B. Wyżga and R. A. Marston, 2016: Floods in mountain environments: A synthesis. <i>Geomorphology</i> , 272,
26	1-9, doi: <u>https://doi.org/10.1016/j.geomorph.2016.0/.008</u> .
27	Stojanov, R. et al., 2015: Adaptation to the Impacts of Climate Extremes in Central Europe: A Case Study in a Rural
28	Area in the Czech Republic. Sustainability, 7(9), doi:10.3390/su/0912/38.
29	Available at: https://www.sametinget.se/rapport_psykosocial_obalsa
31	Street R B 2016: Towards a leading role on climate services in Europe: a research and innovation roadman <i>Climate</i>
32	Services, 1, 2-5.
33	Streletskiv, D. A. et al., 2019: Assessment of climate change impacts on buildings, structures and infrastructure in the
34	Russian regions on permafrost. Environmental Research Letters, 14(2), 025003, doi:10.1088/1748-9326/aaf5e6.
35	Stripple, J. and H. Bulkeley, 2019: Towards a material politics of socio-technical transitions: Navigating
36	decarbonisation pathways in Malmö. Political Geography, 72, 52-63,
37	doi: <u>https://doi.org/10.1016/j.polgeo.2019.04.001</u> .
38	Suggitt, A. J. et al., 2018: Extinction risk from climate change is reduced by microclimatic buffering. <i>Nature Climate</i>
39	<i>Change</i> , 8 (8), 713717, doi:10.1038/s41558-018-0231-9.
40	Surminski, S., 2018: Fit for Purpose and Fit for the Future? An Evaluation of the UK's New Flood Reinsurance Pool.
41	Risk Management and Insurance Review, 21(1), 33-72, doi:10.1111/rmir.12093.
42	Surminski, S. et al., 2015: Reflections on the current debate on how to link flood insurance and disaster risk reduction
43	In the European Onion. Natural Hazaras, 19(5), 1451-1479, doi:10.1007/S11009-015-1852-5.
44 45	a resilient triangle? Ecology and Society 21 (4) doi:10.5751/FS-08592-210401
46	Swinburn B et al 2019: The Global Syndemic of Obesity Undernutrition and Climate Change: The Lancet
47	Commission report. <i>Lancet.</i> 393 (10173), 791-846. doi:10.1016/S0140-6736(18)32822-8.
48	Swindles, G. et al., 2019: Widespread drving of European peatlands in recent centuries. <i>Nature Geoscience</i> , 12 (11).
49	922-+, doi:10.1038/s41561-019-0462-z.
50	Swinnen, J. et al., 2017: Production potential in the "bread baskets" of Eastern Europe and Central Asia. Global Food
51	Security, 14, 38-53, doi: https://doi.org/10.1016/j.gfs.2017.03.005.
52	Szewczyk, W., J. C. Ciscar, I. Mongelli and A. Soria, 2018: JRC PESETA III project: Economic integration and
53	spillover analysis, EUR 29456 EN. Publications Office of the European Union, Luxembourg. ISBN ISBN 978-92-
54	79-97422-9.
55	Szewczyk, w. et al., 2020: Economic analysis of selected climate impacts: JRC PESETA IV project : Task 14.
56	rubications Office of the European Union, Luxembourg. ISBN 9/8-92-76-18459-1. Takakura I. v. et al. 2017: Cost of preventing workplace heat related illness through workfor breaks and the basefit of
5/ 58	akakura, J. y. et al., 2017. Cost of preventing workplace heat-related niness infougn worker breaks and the benefit of climate-change mitigation. <i>Environmental Pasagraph Latters</i> 17 (6), 064010, doi:10.1099/1749.0226/co7200
50 50	Tanja C et al. 2017: Profiling urban vulnerabilities to climate change: An indicator-based vulnerability assessment for
60	European cities. Ecological Indicators, 78 142-155 doi:10.1016/i.ecolind.2017.02.040
61	Tardós, P. et al., 2019: Composite low thinning and slash burning treatment enhances initial Spanish black nine
62	seedling recruitment. Forest Ecology and Management, 433, 1-12, doi:10.1016/j.foreco.2018.10.042.

Taucher, J. et al., 2020: Changing carbon-to-nitrogen ratios of organic-matter export under ocean acidification. Nature 1 Climate Change, 2, 1-6, doi:papers3://publication/doi/10.1038/s41558-020-00915-5. 2 Taylor, A. L., S. Dessai and W. Bruine de Bruin, 2014: Public perception of climate risk and adaptation in the UK: A 3 review of the literature. Climate Risk Management, 4-5, 1-16, doi:https://doi.org/10.1016/j.crm.2014.09.001. 4 Taylor, J. et al., 2018: Comparison of built environment adaptations to heat exposure and mortality during hot weather, 5 West Midlands region, UK. Environment International, 111, 287-294, 6 doi:https://doi.org/10.1016/j.envint.2017.11.005. 7 TCFD, 2017: Implementing the Recommendations of the Task Force on Climate related Financial Disclosures. 8 Available at: https://www.fsb-tcfd.org/wp-content/uploads/2017/12/FINAL-TCFD-Annex-Amended-121517.pdf 9 10 (accessed 2019/08/25/09:24:59). Teatini, P. et al., 2011a: A new hydrogeologic model to predict anthropogenic uplift of Venice. Water Resources 11Research, 47(12). 12 Teatini, P. et al., 2010: Anthropogenic Venice uplift by seawater pumping into a heterogeneous aquifer system. Water 13 Resources Research, 46(11). 14 Teatini, P. et al., 2011b: Land uplift due to subsurface fluid injection. Journal of Geodynamics, 51(1), 1-16. 15 Tedim, F., G. Xanthopoulos and V. Leone, 2015: Forest Fires in Europe. In: Wildfire Hazards, Risks and Disasters. 16 17 Elsevier, pp. 77-99. ISBN 978-0-12-410434-1. 18 TEG, 2019: Taxonomy. Technical Report. EU Technical Expert Group on Sustainable Finance, Brussels. Available at: 19 https://ec.europa.eu/info/sites/info/files/business economy euro/banking and finance/documents/190618sustainable-finance-teg-report-taxonomy en.pdf (accessed 2019/08/21/20:43:23). 20 Teixeira, C. M. et al., 2016: Environmental influence on commercial fishery landings of small pelagic fish in Portugal. 21 Regional Environmental Change, 16(3), 709-716, doi:10.1007/s10113-015-0786-1. 22 Teotónio, C., M. Rodríguez, P. Roebeling and P. Fortes, 2020: Water competition through the 'water-energy' nexus: 23 Assessing the economic impacts of climate change in a Mediterranean context. Energy Economics, 85, 104539, 24 doi:https://doi.org/10.1016/j.eneco.2019.104539. 25 Termaat, T. et al., 2019: Distribution trends of European dragonflies under climate change. Diversity and Distributions. 26 Termeer, C., R. Biesbroek and M. van den Brink, 2012: Institutions for Adaptation to Climate Change: Comparing 27 National Adaptation Strategies in Europe. European Political Science, 11(1), 41-53, doi:10.1057/eps.2011.7. 28 Termeer, C. J. A. M. and A. Dewulf, 2018: A small wins framework to overcome the evaluation paradox of governing 29 wicked problems. Policy and Society, 1-17, doi:10.1080/14494035.2018.1497933. 30 Termeer, C. J. A. M., A. Dewulf and G. R. Biesbroek, 2017: Transformational change: governance interventions for 31 32 climate change adaptation from a continuous change perspective. Journal of Environmental Planning and 33 Management, 60(4), 558-576, doi:10.1080/09640568.2016.1168288. 34 Terorotua, H., V. K. E. Duvat, A. Maspataud and J. Ouriqua, 2020: Assessing Perception of Climate Change by Representatives of Public Authorities and Designing Coastal Climate Services: Lessons Learnt From French 35 Polynesia. Frontiers in Marine Science, 7, doi:10.3389/fmars.2020.00160. 36 Teuling, A. J. et al., 2017: Observational evidence for cloud cover enhancement over western European forests. Nature 37 Communications, 8, 14065, doi:10.1038/ncomms14065 38 https://www.nature.com/articles/ncomms14065#supplementary-information. 39 Thacker, S., S. Kelly, R. Pant and J. W. Hall, 2018: Evaluating the Benefits of Adaptation of Critical Infrastructures to 40 Hydrometeorological Risks. Risk Anal., 38(1), 134-150, doi:10.1111/risa.12839. 41 Thackeray, S. J. et al., 2016: Phenological sensitivity to climate across taxa and trophic levels. Nature, 535(7611), 241-42 U294, doi:10.1038/nature18608. 43 Thaler, T. et al., 2019: Drivers and barriers of adaptation initiatives - How societal transformation affects natural hazard 44 management and risk mitigation in Europe. Science of the Total Environment, 650, 1073-1082, 45 46 doi:10.1016/j.scitotenv.2018.08.306. 47 Thaler, T. and S. Fuchs, 2020: Financial recovery schemes in Austria: how planned relocation is used as an answer to future flood events. Environmental Hazards, 19(3), 268-284, doi:10.1080/17477891.2019.1665982. 48 The Ignition, P., 2020: Nature-based solutions to the climate emergency: The benefits to business and society. 49 Thieblemont, R. et al., 2019: Likely and High-End Impacts of Regional Sea-Level Rise on the Shoreline Change of 50 European Sandy Coasts Under a High Greenhouse Gas Emissions Scenario. Water, 11(12), 51 52 doi:10.3390/w11122607. Thieken, A. H. et al., 2016: Estimating changes in flood risks and benefits of non-structural adaptation strategies - a 53 case study from Tyrol, Austria. Mitigation and Adaptation Strategies for Global Change, 21(3), 343-376, 54 doi:10.1007/s11027-014-9602-3. 55 Thomsen, J. et al., 2013: Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory 56 and field experiments. Global Change Biology, 19(4), 1017--1027, doi:10.1111/gcb.12109. 57 Thomsen, J. et al., 2017: Naturally acidified habitat selects for ocean acidification \textendash tolerant mussels. Science 58 Advances, 3(4), e1602411, doi:10.1126/sciadv.1602411. 59 Thomson, H., N. Simcock, S. Bouzarovski and S. Petrova, 2019: Energy poverty and indoor cooling: An overlooked 60 issue in Europe. Energy and Buildings, 196, 21-29, doi:https://doi.org/10.1016/j.enbuild.2019.05.014. 61 Tian, H. et al., 2016: The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature, 62 531(7593), 225-228, doi:10.1038/nature16946. 63

1	Tian, Q., G. Huang, K. M. Hu and D. Niyogi, 2019: Observed and global climate model based changes in wind power
2	potential over the Northern Hemisphere during 1979-2016. <i>Energy</i> , 167 , 1224-1235, doi:10.1016/j.energy.2018.11.027
4	Tian Z. S. Zhang, J. Deng and B. Dorota Hrvnyszyn, 2020: Evaluation on Overheating Risk of a Typical Norwegian
5	Residential Building under Future Extreme Weather Conditions <i>Energies</i> 13 (3) 658
6	Tiggeloven, T. et al., 2020: Global-scale benefit–cost analysis of coastal flood adaptation to different flood risk drivers
7	using structural measures. Natural Hazards and Earth System Sciences. 20(4), 1025-1044.
8	doi:https://doi.org/10.5194/nhess-20-1025-2020
9	Tillson, AA., T. Oreszczyn and J. Palmer, 2013: Assessing impacts of summertime overheating: some adaptation
10	strategies. Building Research & Information, 41(6), 652-661, doi:10.1080/09613218.2013.808864.
11	Tobin, I. et al., 2018: Vulnerabilities and resilience of European power generation to 1.5 °C. 2 °C and 3 °C warming.
12	<i>Environmental Research Letters</i> , 13 (4), 044024-044024, doi:10.1088/1748-9326/aab211.
13	Tobin, I. et al., 2016: Climate change impacts on the power generation potential of a European mid-century wind farms
14	scenario, Environmental Research Letters, 11(3), doi:10.1088/1748-9326/11/3/034013.
15	Todd, N. and AJ. Valleron, 2015: Space-Time Covariation of Mortality with Temperature: A Systematic Study of
16	Deaths in France, 1968–2009. Environmental Health Perspectives, 123(7), 659-664, doi:10.1289/ehp.1307771.
17	Toimil, A., P. Diaz-Simal, I. Losada and P. Camus, 2018: Estimating the risk of loss of beach recreation value under
18	climate change. Tourism Management, 68, 387-400, doi:10.1016/j.tourman.2018.03.024.
19	Tokarevich, N. et al., 2017: Impact of air temperature variation on the ixodid ticks habitat and tick-borne encephalitis
20	incidence in the Russian Arctic: the case of the Komi Republic. International Journal of Circumpolar Health, 76,
21	doi:10.1080/22423982.2017.1298882.
22	Tol, R. S. J. et al., 2016: Comment on 'The Global Impacts of Extreme Sea-Level Rise: A Comprehensive Economic
23	Assessment'. Environmental and Resource Economics, 64(2), 341-344, doi:10.1007/s10640-015-9993-y.
24	Tomasicchio, U. (ed.), Submerged Breakwaters for the Defence of the Shoreline at Ostia Field Experiences,
25	Comparison. 25th International Conference on Coastal Engineering, 1996, American Society of Civil Engineers,
26	Orlando, Florida, United States, 2404-2417 pp. ISBN 978-0-7844-0242-9 978-0-7844-7951-3.
27	Topilin, A. V., 2016: Migration and the general labor market of the EAEU: challenges and ways of integration.
28	Migration and socio-economic development, 1(1), 39-62.
29	Toreti, A. et al., 2019a: The Exceptional 2018 European Water Seesaw Calls for Action on Adaptation. <i>Earth's Future</i> ,
30	7(6), 652-663, doi:10.1029/2019EF001170.
31	l oreti, A. et al., 2019b: Using reanalysis in crop monitoring and forecasting systems. <i>Agricultural Systems</i> , 168 , 144-
32	153, doi:10.1016/j.agsy.2018.0/.001.
33 34	nastures Science Advances 4(5) eaer2176 doi:10.1126/sciedy.aar2176
35	Torzhkov L O et al 2019: The economic consequences of future climate change in the forest sector of Russia <i>IOP</i>
36	Conf. Ser.: Earth Environ. Sci., 226 , 012032, doi:10.1088/1755-1315/226/1/012032.
37	Tramblay, Y. et al., 2020: Challenges for drought assessment in the Mediterranean region under future climate
38	scenarios. <i>Earth-Science Reviews</i> , 210 , 103348, doi:10.1016/j.earscirev.2020.103348.
39	Trawöger, L., 2014: Convinced, ambivalent or annoyed: Tyrolean ski tourism stakeholders and their perceptions of
40	climate change. Tourism Management, 40, 338-351.
41	Prindear Eventions in Veteringen Science & doi:10.2220/frate 2010.00126
42	Tsoukala V K V Katsardi K Hadiibiros and C I Moutzouris 2015: Beach Erosion and Consequential Impacts Due
45	to the Presence of Harbours in Sandy Beaches in Greece and Cyprus Environmental Processes 2(S1) 55-71
45	doi:10.1007/s40710-015-0096-0
46	Turco M et al 2016: Decreasing Fires in Mediterranean Europe PLOS ONE 11(3) e0150663
47	doi:10.1371/iournal.pone.0150663
48	Turco, M. et al., 2018a: Skilful forecasting of global fire activity using seasonal climate predictions. <i>Nature</i>
49	<i>Communications</i> , 9(1), 2718, doi:10.1038/s41467-018-05250-0.
50	Turco, M., MC. Llasat, J. von Hardenberg and A. Provenzale, 2014: Climate change impacts on wildfires in a
51	Mediterranean environment. Climatic Change, 125(3-4), 369-380, doi:10.1007/s10584-014-1183-3.
52	Turco, M. et al., 2018b: Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-
53	stationary climate-fire models. Nature Communications, 9(1), 3821, doi:10.1038/s41467-018-06358-z.
54	Turco, M. et al., 2017: On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. <i>Scientific</i>
55	Reports, 7(1), 81, doi:10.1038/s41598-017-00116-9.
56	Turunen, M. T. et al., 2016: Coping with difficult weather and snow conditions: Reindeer herders' views on climate
57	change impacts and coping strategies. <i>Climate Risk Management</i> , 11 , 15-36, doi:10.1016/j.crm.2016.01.002.
58	Tyler, N. J. C., 2010: Climate, snow, ice, crashes, and declines in populations of reindeer and caribou (Rangifer
59	tarandus L.). <i>Ecological Monographs</i> , 80 (2), 197-219, doi:10.1890/09-1070.1.
60	I yler, N. J. U. et al., 200/: Saami reindeer pastoralism under climate change: Applying a generalized framework for
61 (2	vumerability studies to a sub-arctic social-ecological system. Global Environmental Change, 17(2), 191-206, doi:10.1016/j.cloenycho.2006.06.001
02	doi.10.1010/j.giociiveiia.2000.00.001.

1	Uboni, A. et al., 2016: Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer. PLOS
2	ONE, 11(6), e0158359, doi:10.1371/journal.pone.0158359.
3	Uggla, Y. and R. Lidskog, 2016: Climate risks and forest practices: forest owners' acceptance of advice concerning
4	climate change. Scandinavian Journal of Forest Research, 31 (6), 618-625, doi:10.1080/0282/581.2015.1134648.
5	Umgiesser, G., 1999: Valutazione degli effetti degli interventi morbidi e diffusi sulla riduzione delle punte di marea a
6	Venezia. Chioggia e Burano, Atti Istituto Veneto di Scienze, Lettere ed Arti, 15 7, 231-286.
7	Umglesser, G., 2004: Effetti idrodinamici prodotti da opere fisse alle bocche di porto della Laguna di Venezia. Parte II:
8	Riduzione delle punte di marea ed effetti sul ricambio idrico. Atti dell'Istituto Veneto di SS. LL. AA, 162(2), 335-
9	3/0. Un since C 2020: The impact of exacting the metric hereins in Venice (MOSE) up den dimete shares. Isomether
10	Unglesser, G., 2020: The impact of operating the mobile barriers in venice (MOSE) under climate change. <i>Journal for</i>
11	Nature Conservation, 54, 125785, doi: <u>https://doi.org/10.1010/j.jnc.2019.125785</u> .
12	Economic and Social Affairs, Population Division, Available at: https://population.up.org/www.lood/
15	LINCTAD 2020: Merchandise trade metrix imports of geographical development status and economic groups in
14	thousands United States dollars, annual
15	LINEP/LINECE 2016: GEO.6 Assessment for the non-European region (rev. 1) [Programme II N E (ed.)] Nairobi
17	Kenva
18	University of Notre D 2020: Notre Dame Global Adaptation Index: Country Index Notre Dame Global Adaptation
19	Initiative
20	Urban M C 2015: Accelerating extinction risk from climate change <i>Science</i> 348 (6234) 571
21	doi:10.1126/science.aaa4984.
22	Valade, A., V. Bellassen, C. Magand and S. Luyssaert, 2017: Sustaining the sequestration efficiency of the European
23	forest sector. Forest Ecology and Management, 405, 44-55, doi:https://doi.org/10.1016/j.foreco.2017.09.009.
24	Van Alphen, J., 2016: The Delta Programme and updated flood risk management policies in the Netherlands. Journal of
25	Flood Risk Management, 9(4), 310-319, doi:10.1111/jfr3.12183.
26	van der Kooij, J., G. H. Engelhard and D. A. Righton, 2016: Climate change and squid range expansion in the North
27	Sea. Journal of Biogeography, 43(11), 2285-2298, doi:10.1111/jbi.12847.
28	van der Plas, F. et al., 2016: Biotic homogenization can decrease landscape-scale forest multifunctionality. Proceedings
29	of the National Academy of Sciences, 113(13), 3557, doi:10.1073/pnas.1517903113.
30	van der Spek, A. J. F., 2018: The development of the tidal basins in the Dutch Wadden Sea until 2100: the impact of
31	accelerated sea-level rise and subsidence on their sediment budget – a synthesis. Netherlands Journal of
32	Geosciences, 97(3), 71-78, doi:papers3://publication/doi/10.1017/njg.2018.10.
33	van der Velde, M. et al., 2018: In-season performance of European Union wheat forecasts during extreme impacts.
34	Scientific Reports, 8, doi:10.1038/s41598-018-33688-1.
35	van Ginkel, K. C. H. et al., 2020: Climate change induced socio-economic tipping points: review and stakeholder
36	consultation for policy relevant research. Environmental Research Letters, 15(2), 023001, doi:10.1088/1/48-
37	9520/200595.
38	van Hooli, I., B. Blocken, J. L. M. Hensen and H. J. P. Timmermans, 2014: On the predicted effectiveness of climate
39	doi https://doi.org/10.1016/i buildeny 2014.08.027
40	van Klink R et al. 2020: Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances
42	Science 368 (6489) 417-+ doi:10.1126/science aax9931
43	van Leeuwen, C. and P. Darriet. 2016: The Impact of Climate Change on Viticulture and Wine Ouality. <i>Journal of Wine</i>
44	<i>Economics</i> , 11 (1), 150-167, doi:10.1017/iwe.2015.21.
45	van Loenhout, J. A. F. and D. Guha-Sapir, 2016: How resilient is the general population to heatwaves? A knowledge
46	survey from the ENHANCE project in Brussels and Amsterdam. BMC research notes, 9(1), 499.
47	van Loenhout, J. A. F., J. M. Rodriguez-Llanes and D. Guha-Sapir, 2016: Stakeholders' Perception on National
48	Heatwave Plans and Their Local Implementation in Belgium and The Netherlands. International journal of
49	environmental research and public health, 13(11), 1120, doi:10.3390/ijerph13111120.
50	van Oldenborgh, G. J. et al., 2016: Rapid attribution of the May/June 2016 flood-inducing precipitation in France and
51	Germany to climate change. Hydrol. Earth Syst. Sci. Discuss., 2016, 1-23, doi:10.5194/hess-2016-308.
52	Van Passel, S., E. Massetti and R. Mendelsohn, 2017: A Ricardian Analysis of the Impact of Climate Change on
53	European Agriculture. Environmental and Resource Economics, 67(4), 725-760, doi:10.1007/s10640-016-0001-y.
54	van Slobbe, E. et al., 2016: The future of the Rhine: stranded ships and no more salmon? Regional Environmental
55	<i>Change</i> , 16 (1), 31-41, doi:10.1007/s10113-014-0683-z.
56	van Strien, A. et al., 2019: Over a century of data reveal more than 80% decline in butterflies in the Netherlands.
57	<i>Biological Conservation</i> , 234 , 116-122, doi:10.1016/j.biocon.2019.03.023.
58	van Teettelen, A. et al., 2015: How climate proof is the European Union's biodiversity policy? <i>Regional Environmental</i>
59	Change, 15(6), 99/-1010, doi:10.100//s10113-014-064/-3.
60	van valkengoed, A. M. and L. Steg, 2019: Meta-analyses of factors motivating climate change adaptation behaviour. Nature Climate Change $0(2)$, 152, 162, doi:10.1029/s41552.012.0271
01 62	van Vliet M et al. 2015: European scale climate information services for water use sectors. <i>Journal of Hudrology</i>
63	528 503-513 doi:10.1016/j.ibydrol.2015.06.060
05	26 , 565 515, 401.1010/J.Jiry4101.2015.00.000.

1 2 3	van Vliet, M. et al., 2016a: Multi-model assessment of global hydropower and cooling water discharge potential under climate change. <i>Global Environmental Change-Human and Policy Dimensions</i> , 40 , 156-170, doi:10.1016/j.gloenycha.2016.07.007
1	van Vliet M D Wiberg S Leduc and K Riahi 2016h: Power-generation system vulnerability and adaptation to
т 5	changes in climate and water resources Nature Climate Change 6(4) 375-+ doi:10.1038/NCI IMATE2903
6	van Vliet M T H et al. 2013: Global river discharge and water temperature under climate change. Global
7	<i>Environmental Change</i> 23 (2) 450-464 doi:https://doi.org/10.1016/j.gloenycha.2012.11.002
/	van Vliet M.T.H. I. Sheffield D. Wiberg and F.F. Wood 2016e: Impacts of recent drought and warm years on water
8	van vilet, M. I. H., J. Snellield, D. wiberg and E. F. wood, 2010c: Impacts of recent drought and warm years on water
9	resources and electricity supply worldwide. Environmental Research Letters, 11(12), 124021, doi:10.1088/1/48-
10	9320/11/12/124021.
11	van Vliet, M. I. H., D. wiberg, S. Leduc and K. Kiani, 2016d: Power-generation system vulnerability and adaptation to
12	changes in climate and water resources. <i>Nature Climate Change</i> , 6 , 375-375.
13	Vandentorren, S. et al., 2006: August 2003 heat wave in France: risk factors for death of elderly people living at home.
14	The European Journal of Public Health, 16(6), 583-591.
15	Vasilakopoulos, P., D. E. Raitsos, E. Tzanatos and C. D. Maravelias, 2017: Resilience and regime shifts in a marine
16	biodiversity hotspot. Scientific Reports, 7(1), 13647, doi:10.1038/s41598-017-13852-9.
17	Vaskov, I. M., 2016: Glacial mudflows of Central Caucasus at the beginning of XXI century. In: <i>IV International</i>
18	conference: Mud flows: disasters, risk, forecast, protection, Irkutsk, Russia, [V.M., P., M. S.A., A. G.V. and S.
19	A.I. (eds.)], Publishing House of V.B. Sochava Institute of Geography RAS, Siberian Branch, pp. 36-45.
20	Vaughan, I. P. and N. J. Gotelli, 2019: Water quality improvements offset the climatic debt for stream
21	macroinvertebrates over twenty years. <i>Nature Communications</i> , 10 (1), doi:10.1038/s41467-019-09736-3.
22	Vávra, J. et al., 2018: Food Self-provisioning in Europe: An Exploration of Sociodemographic Factors in Five Regions:
23	Food Self-provisioning in Europe. Rural Sociology, 83(2), 431-461, doi:10.1111/ruso.12180.
24	Venghaus, S. and J. F. Hake, 2018: Nexus thinking in current EU policies – The interdependencies among food, energy
25	and water resources. Environmental Science & Policy, 90, 183-192,
26	doi: <u>https://doi.org/10.1016/j.envsci.2017.12.014</u> .
27	Venter, Z. S., N. H. Krog and D. N. Barton, 2020: Linking green infrastructure to urban heat and human health risk
28	mitigation in Oslo, Norway. Science of The Total Environment, 709, 136193,
29	doi:https://doi.org/10.1016/j.scitotenv.2019.136193.
30	Vercruysse, J. et al., 2018: Control of helminth ruminant infections by 2030. Parasitology, 145(13), 1655-1664,
31	doi:10.1017/S003118201700227X.
32	Verhagen, W., A. J. A. van Teeffelen and P. H. Verburg, 2018: Shifting spatial priorities for ecosystem services in
33	Europe following land use change. <i>Ecological Indicators</i> , 89 , 397-410,
34	doi:https://doi.org/10.1016/j.ecolind.2018.01.019.
35	Verschuur, J., E. E. Koks and J. W. Hall, 2020: Port disruptions due to natural disasters: Insights into port and logistics
36	resilience. Transportation Research Part D-Transport and Environment, 85, doi:10.1016/j.trd.2020.102393.
37	Verschuuren, J., 2015: Connectivity: is Natura 2000 only an ecological network on paper? In: <i>The Habitats Directive in</i>
38	its EU Environmental Law Context: [Born, C. H., A. Cliquet, H. Schoukens, D. Misonne and G. Van Hoorick
39	(eds.)]. Routledge, Abingdon, pp. 285-302.
40	Vilà, M. et al., 2007: Species richness and wood production: a positive association in Mediterranean forests. <i>Ecology</i>
41	Letters, 10(3), 241-250, doi:10.1111/i.1461-0248.2007.01016.x.
42	Vilà-Cabrera, A., L. Coll, J. Martínez-Vilalta and J. Retana, 2018: Forest management for adaptation to climate change
43	in the Mediterranean basin: A synthesis of evidence. Forest Ecology and Management, 407, 16-22,
44	doi:10.1016/i.foreco.2017.10.021.
45	Vilà-Cabrera, A., A. C. Premoli and A. S. Jump, 2019: Refining predictions of population decline at species' rear edges.
46	Global Change Biology, 0 (0), doi:10.1111/gcb.14597.
47	Virk, G. et al., 2014: The effectiveness of retrofitted green and cool roofs at reducing overheating in a naturally
48	ventilated office in London: Direct and indirect effects in current and future climates. <i>Indoor and Built</i>
49	Environment, 23(3), 504-520, doi:10.1177/1420326X14527976.
50	Virk, G. et al., 2015: Microclimatic effects of green and cool roofs in London and their impacts on energy use for a
51	typical office building. <i>Energy and Buildings</i> , 88 , 214-228, doi:https://doi.org/10.1016/i.enbuild.2014.11.039.
52	Visser, H., A. C. Petersen and W. Ligtvoet, 2014: On the relation between weather-related disaster impacts.
53	vulnerability and climate change. <i>Climatic Change</i> , 125 (3), 461-477, doi:10.1007/s10584-014-1179-z.
54	Visser, M. E., L. te Marvelde and M. E. Lof, 2012: Adaptive phenological mismatches of birds and their food in a
55	warming world. Journal of Ornithology. 153 (1), 75-84, doi:10.1007/s10336-011-0770-6.
56	Vitali, V., U. Büntgen and J. Bauhus, 2018; Seasonality matters—The effects of past and projected seasonal climate
57	change on the growth of native and exotic conifer species in Central Europe. <i>Dendrochronologia</i> . 48 , 1-9
58	doi:10.1016/i.dendro.2018.01.001.
59	Vogel, M. M. et al., 2019: Concurrent 2018 Hot Extremes Across Northern Hemisphere Due to Human-Induced
60	Climate Change, <i>Earth's Future</i> , 7 (7), 692-703, doi:10.1029/2019ef001189.
61	Vogels, C., N. Hartemink and C. Koenraadt, 2017: Modelling West Nile virus transmission risk in Europe: effect of
62	temperature and mosquito biotypes on the basic reproduction number. <i>Scientific Reports</i> , 7. doi:10.1038/s41598-
63	017-05185-4.

Vors, L. S. and M. S. Boyce, 2009: Global declines of caribou and reindeer: CARIBOU REINDEER DECLINE. 1 Global Change Biology, 15(11), 2626-2633, doi:10.1111/j.1365-2486.2009.01974.x. 2 Voss, R. et al., 2019: Ecological-economic sustainability of the Baltic cod fisheries under ocean warming and 3 acidification. Journal of Environmental Management, 238, 110-118, doi:10.1016/j.jenvman.2019.02.105. 4 Vousdoukas, M. I. et al., 2020a: Economic motivation for raising coastal flood defenses in Europe. Nature 5 Communications, 11(1), 2119, doi:10.1038/s41467-020-15665-3. 6 Vousdoukas, M. I. et al., 2018a: Climatic and socioeconomic controls of future coastal flood risk in Europe. Nature 7 Climate Change, 8(9), 776-780, doi:10.1038/s41558-018-0260-4. 8 Vousdoukas, M. I. et al., 2018b: Global probabilistic projections of extreme sea levels show intensification of coastal 9 flood hazard. Nature Communications, 9(1), 2360, doi:10.1038/s41467-018-04692-w. 10 Vousdoukas, M. I. et al., 2020b: Sandy coastlines under threat of erosion. Nature Climate Change, 10(3), 260-+, 11 doi:10.1038/s41558-020-0697-0. 12 Vulturius, G. et al., 2018: The relative importance of subjective and structural factors for individual adaptation to 13 climate change by forest owners in Sweden. Regional Environmental Change, 18(2), 511-520, 14 doi:10.1007/s10113-017-1218-1. 15 Wada, Y., 2016: Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects. 16 Surveys in Geophysics, 37(2), 419-451, doi:10.1007/s10712-015-9347-x. 17 18 Wahl, M. et al., 2018: Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH 19 and its fluctuations. Limnology and Oceanography, 63(1), 3--21, doi:10.1002/lno.10608. Wahl, T. et al., 2015: Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nature 20 Climate Change, doi:10.1038/nclimate2736. 21 Waite, T. et al., 2017: The English national cohort study of flooding and health: cross-sectional analysis of mental 22 health outcomes at year one. Bmc Public Health, 17, doi:10.1186/s12889-016-4000-2. 23 Wakelin, S. L. et al., 2015: Modelling the combined impacts of climate change and direct anthropogenic drivers on the 24 ecosystem of the northwest European continental shelf. Journal of Marine Systems, 152, 51-63, 25 doi:papers3://publication/doi/10.1016/j.jmarsys.2015.07.006. 26 Walker, G. and K. Burningham, 2011: Flood risk, vulnerability and environmental justice: Evidence and evaluation of 27 inequality in a UK context. Critical Social Policy, 31(2), 216-240, doi:10.1177/0261018310396149. 28 Walker, J., 2018: The influence of climate change on waterborne disease and Legionella: a review. Perspectives in 29 Public Health, 138(5), 282-286, doi:10.1177/1757913918791198. 30 Wall, M. et al., 2015: pH up-regulation as a potential mechanism for the cold-water coral Lophelia pertusa to sustain 31 32 growth in aragonite undersaturated conditions. Biogeosciences, 12(23), 6869--6880, doi:10.5194/bg-12-6869-33 2015. 34 Walsh, C., 2018: Metageographies of coastal management: Negotiating spaces of nature and culture at the Wadden Sea. Area, 50(2), 177-185, doi:10.1111/area.12404. 35 Wamsler, C., 2016: From Risk Governance to City-Citizen Collaboration: Capitalizing on individual adaptation to 36 climate change. Environmental Policy and Governance, 26(3), 184-204, doi:10.1002/eet.1707. 37 Wanders, N. et al., 2019: High-Resolution Global Water Temperature Modeling. Water Resources Research, 55(4), 38 2760-2778, doi:10.1029/2018WR023250. 39 Wang, S., 2020: Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 40 accepted. 41 Wang, T. et al., 2019: How can the UK road system be adapted to the impacts posed by climate change? By creating a 42 climate adaptation framework. Transportation Research Part D: Transport and Environment, 77, 403-424, 43 doi:https://doi.org/10.1016/j.trd.2019.02.007. 44 Wang, X., R. Brown, G. Prudent-Richard and K. O'Mara, 2016: Enhancing Power Sector Resilience: Emerging 45 46 Practices to Manage Weather and Geological Risks. Energy Sector Management Assistance Program, World 47 Bank Group, Washington, D.C., 125 pp. Available at: http://documents.worldbank.org/curated/en/469681490855955624/Enhancing-power-sector-resilience-emerging-48 practices-to-manage-weather-and-geological-risks. 49 Wang, Z. B., E. P. L. Elias, A. J. F. van der Spek and Q. J. Lodder, 2018: Sediment budget and morphological 50 development of the Dutch Wadden Sea: impact of accelerated sea-level rise and subsidence until 2100. 51 Netherlands Journal of Geosciences, 97(3), 183-214, doi:papers3://publication/doi/10.1017/njg.2018.8. 52 Ward, K., S. Lauf, B. Kleinschmit and W. Endlicher, 2016: Heat waves and urban heat islands in Europe: A review of 53 relevant drivers. Science of the Total Environment, 569, 527-539, doi:10.1016/j.scitotenv.2016.06.119. 54 Watts, N. et al., 2018: The 2018 report of the Lancet Countdown on health and climate change: shaping the health of 55 nations for centuries to come. Lancet, 392(10163), 2479-2514, doi:10.1016/S0140-6736(18)32594-7. 56 Webber, H. et al., 2018: Diverging importance of drought stress for maize and winter wheat in Europe. Nature 57 Communications, 9(1), 4249, doi:10.1038/s41467-018-06525-2. 58 Webber, H. et al., 2016: Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe. 59 Environmental Research Letters, 11(7), 074007, doi:10.1088/1748-9326/11/7/074007. 60 Webber, H. et al., 2020: No perfect storm for crop yield failure in Germany. Environmental Research Letters. 61 Weber, J., F. Gotzens and D. Witthaut, 2018a: Impact of strong climate change on the statistics of wind power 62 generation in Europe. Energy Procedia, 153, 22-28, doi:https://doi.org/10.1016/j.egypro.2018.10.004. 63 13-213 Total pages: 216 Do Not Cite, Quote or Distribute

- Weber, J. et al., 2018b: Impact of climate change on backup energy and storage needs in wind-dominated power systems in Europe. Plos One, 13(8), doi:10.1371/journal.pone.0201457.
- Weinhofer, G. and T. Busch, 2013: Corporate Strategies for Managing Climate Risks. Business Strategy and the Environment, 22(2), 121-144, doi:10.1002/bse.1744.
- Wenz, L. and A. Levermann, 2016a: Enhanced economic connectivity to foster heat stress-related losses. Science Advances, 2(6), doi:10.1126/sciadv.1501026.
- Wenz, L. and A. Levermann, 2016b: Enhanced economic connectivity to foster heat stress-related losses. Science Advances, 2(6), e1501026, doi:10.1126/sciadv.1501026.
- Wenz, L., A. Levermann and M. Auffhammer, 2017: North-south polarization of European electricity consumption under future warming. Proceedings of the National Academy of Sciences of the United States of America, 114(38), E7910-E7918, doi:10.1073/pnas.1704339114.
- Wescott, G., 2015: Ocean Governance and Risk Management. In: Risk Governance. Springer, Dordrecht, Dordrecht, pp. 395-412. ISBN 978-94-017-9327-8.
- WHO, 2018: European health report 2018: More than numbers evidence for all. WHO Regional Office for Europe, Copenhagen, Denmark.
- Wiens, J. J., 2016: Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species. PLOS Biology, 14(12), e2001104, doi:10.1371/journal.pbio.2001104.
- Wihlborg, M., J. Sörensen and J. Alkan Olsson, 2019: Assessment of barriers and drivers for implementation of bluegreen solutions in Swedish municipalities. Journal of Environmental Management, 233, 706-718.
- Wild, M. et al., 2015: Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Solar Energy, 116, 12-24, doi:10.1016/j.solener.2015.03.039.
- Willett, W. et al., 2019: Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet, 393(10170), 447-492, doi:10.1016/S0140-6736(18)31788-4.
- Williams, K. et al., 2013: Retrofitting England's suburbs to adapt to climate change. Building Research & Information, **41**(5), 517-531, doi:10.1080/09613218.2013.808893.
- Williams, M. I. and R. K. Dumroese, 2013: Preparing for Climate Change: Forestry and Assisted Migration. Journal of Forestry, 111(4), 287-297, doi:10.5849/jof.13-016.
- Williams, P. D., 2016: Transatlantic flight times and climate change. Environmental Research Letters, 11(2), doi:10.1088/1748-9326/11/2/024008.
- Williams, P. D. and M. M. Joshi, 2013: Intensification of winter transatlantic aviation turbulence in response to climate change. Nature Climate Change, 3(7), 644-648, doi:10.1038/nclimate1866.
- Williges, K., R. Mechler, P. Bowyer and J. Balkovic, 2017: Towards an assessment of adaptive capacity of the European agricultural sector to droughts. Climate Services, 7, 47-63, doi:10.1016/j.cliser.2016.10.003.
- 34 Willis, S. G. et al., 2009: Assisted colonization in a changing climate: a test-study using two U.K. butterflies. Conservation Letters, 2(1), 46-52, doi:10.1111/j.1755-263X.2008.00043.x. 35
- Willner, S. N., C. Otto and A. Levermann, 2018: Global economic response to river floods. Nature Climate Change, 36 8(7), 594-598, doi:10.1038/s41558-018-0173-2. 37
- Wilson, R. J., D. GutiÉRrez, J. GutiÉRrez and V. J. Monserrat, 2007: An elevational shift in butterfly species richness 38 and composition accompanying recent climate change. Global Change Biology, 13(9), 1873-1887, 39 doi:10.1111/j.1365-2486.2007.01418.x. 40
- Wilson, R. S., A. Herziger, M. Hamilton and J. S. Brooks, 2020: From incremental to transformative adaptation in 41 individual responses to climate-exacerbated hazards. Nature Climate Change, 10(3), 200-208, 42 doi:10.1038/s41558-020-0691-6. 43
- Wimmer, F. et al., 2014: Modelling the effects of cross-sectoral water allocation schemes in Europe. Climatic Change, 44 128(3-4), 229-244, doi:10.1007/s10584-014-1161-9. 45
- Winsemius, H. C. et al., 2018: Disaster risk, climate change, and poverty: assessing the global exposure of poor people 46 47 to floods and droughts. Environment and Development Economics, 23(3), 328-348, doi:10.1017/S1355770X17000444. 48
- Wiréhn, L., 2018: Nordic agriculture under climate change: A systematic review of challenges, opportunities and 49 adaptation strategies for crop production. Land Use Policy, 77, 63-74, doi:10.1016/j.landusepol.2018.04.059. 50
- Wohland, J., M. Reyers, J. Weber and D. Witthaut, 2017: More homogeneous wind conditions under strong climate 51 change decrease the potential for inter-state balancing of electricity in Europe. Earth System Dynamics, 8(4), 52 1047-1060, doi:10.5194/esd-8-1047-2017. 53
- Wolf, T. et al., 2014: Protecting health from climate change in the WHO European Region. International journal of 54 environmental research and public health, 11(6), 6265-6280, doi:10.3390/ijerph110606265. 55
- Woolway, R. I. et al., 2017: Warming of Central European lakes and their response to the 1980s climate regime shift. 56 Climatic Change, 142(3), 505-520, doi:10.1007/s10584-017-1966-4. 57
- WorldBank, 2020: World Development Indicators. Available at: 58 https://databank.worldbank.org/indicator/NY.GDP.PCAP.CD/1ff4a498/Popular-Indicators# (accessed 59 2020/11/05/08:52:32). 60

Wouter Botzen, W. J. et al., 2019: Integrated Disaster Risk Management and Adaptation. In: Loss and Damage from 61 Climate Change: Concepts, Methods and Policy Options [Mechler, R., L. M. Bouwer, T. Schinko, S. Surminski 62 63

and J. Linnerooth-Bayer (eds.)]. Springer International Publishing, Cham, pp. 287-315. ISBN 978-3-319-72026-5.

- Wu, M. et al., 2015a: Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography: 1 A comparison of two fire-vegetation models. Journal of Geophysical Research: Biogeosciences, 120(11), 2256-2 2272, doi:10.1002/2015JG003036. 3 Wu, M. et al., 2015b: Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography: 4 A comparison of two fire-vegetation models. Journal of Geophysical Research: Biogeosciences, 120(11), 2256-5 2272, doi:10.1002/2015JG003036. 6 Wyżga, B. et al., 2018: Comprehensive approach to the reduction of river flood risk: Case study of the Upper Vistula 7 Basin. Science of The Total Environment, 631-632, 1251-1267, 8 doi:https://doi.org/10.1016/j.scitotenv.2018.03.015. 9 Xu, C. et al., 2019: Increasing impacts of extreme droughts on vegetation productivity under climate change. Nature 10 Climate Change, 9(12), 948-953, doi:10.1038/s41558-019-0630-6. 11 Yakubovich, A. N. and I. A. Yakubovich, 2018: Analysis of the Multidimensional Impact of Climate Change on the 12 Operation Safety of the Road Network of the Permafrost Zone of Russia. Intelligence. Innovations. Investments, 3, 13 77-83. 14 Yates, K. L., A. Payo Payo and D. S. Schoeman, 2013: International, regional and national commitments meet local 15 implementation: A case study of marine conservation in Northern Ireland. Marine Policy, 38, 140-150, 16 17 doi:papers3://publication/doi/10.1016/j.marpol.2012.05.030. 18 Yazar, M. et al., 2019: From urban sustainability transformations to green gentrification: urban renewal in Gaziosmanpasa, Istanbul. Climatic Change, doi:10.1007/s10584-019-02509-3. 19 Yigini, Y. and P. Panagos, 2016: Assessment of soil organic carbon stocks under future climate and land cover changes 20 in Europe. Science of the Total Environment, 557-558, 838-850, doi:10.1016/j.scitotenv.2016.03.085. 21 Yokohata, T. et al., 2019: Visualizing the Interconnections Among Climate Risks. Earths Future, 7(2), 85-100, 22 doi:10.1029/2018ef000945. 23 Yousefpour, R. et al., 2018: Realizing Mitigation Efficiency of European Commercial Forests by Climate Smart 24 Forestry. Scientific Reports, 8(1), 345, doi:10.1038/s41598-017-18778-w. 25 Yuan, W. et al., 2019: Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science 26 Advances, 5(8), 1-13, doi:10.1126/sciadv.aax1396. 27 Yun, J. et al., 2016: Association between the ambient temperature and the occurrence of human Salmonella and 28 Campylobacter infections. Scientific Reports, 6, doi:10.1038/srep28442. 29 Zakharov, A. I. and R. B. Sharipova, 2017: Agro climate potential and basic problems of influence of climate changes 30 31 on 32 agricultural crop production in Ulyanovsk region. Вестник Ульяновской государственной сельскохозяйственной 33 академии, 1(37), 25-30, doi:10.18286/1816-4501-2017-1-25-30. Zanchettin, D. et al., 2020: Review article: Sea-level rise in Venice: historic and future trends. Nat. Hazards Earth Syst. 34 Sci., submitted. 35 Zappa, W., M. Junginger and M. van den Broek, 2019: Is a 100% renewable European power system feasible by 2050? 36 37 Applied Energy, 233-234, 1027-1050, doi:https://doi.org/10.1016/j.apenergy.2018.08.109. Zellweger, F. et al., 2020: Forest microclimate dynamics drive plant responses to warming. Science, 368(6492), 772. 38 doi:10.1126/science.aba6880. 39 Zhang, Y. et al., 2020: Large and projected strengthening moisture limitation on end-of-season photosynthesis. 40 Proceedings of the National Academy of Sciences, 117(17), 9216, doi:10.1073/pnas.1914436117. 41 Zhang, Y. L. et al., 2017: Global loss of aquatic vegetation in lakes. Earth-Science Reviews, 173, 259-265, 42 doi:10.1016/j.earscirev.2017.08.013. 43 Zhao, C. et al., 2017: Temperature increase reduces global yields of major crops in four independent estimates. 44 Proceedings of the National Academy of Sciences, 114(35), 9326-9331, doi:10.1073/pnas.1701762114. 45 46 Zhou, S. et al., 2019: Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. 47 Proceedings of the National Academy of Sciences of the United States of America, 116(38), 18848-18853, doi:10.1073/pnas.1904955116. 48 Zickgraf, C., 2018: Immobility. In: Routledge handbook of 49 environmental displacement and migration [McLeman, R., Gemenne and F. (eds.)]. Routledge:, London, pp. 71-84. 50 Ziello, C. et al., 2012: Changes to Airborne Pollen Counts across Europe. Plos One, 7(4), 51 doi:10.1371/journal.pone.0034076. 52 Zinzi, M., 2016: Characterisation and assessment of near infrared reflective paintings for building facade applications. 53 Energy and Buildings, 114, 206-213, doi: https://doi.org/10.1016/j.enbuild.2015.05.048. 54 Zinzi, M. et al., 2017: Assessing the overheating risks in Italian existing school buildings renovated with nZEB targets. 55 Energy Procedia, 142, 2517-2524, doi:https://doi.org/10.1016/j.egypro.2017.12.192. 56 Zlatanov, T., C. Elkin, F. Irauschek and M. J. Lexer, 2017: Impact of climate change on vulnerability of forests and 57 ecosystem service supply in Western Rhodopes Mountains. Regional Environmental Change, 17(1), 79-91, 58 doi:10.1007/s10113-015-0869-z. 59 Zografou, K. et al., 2014: Signals of Climate Change in Butterfly Communities in a Mediterranean Protected Area. 60 PLOS ONE, 9(1), e87245, doi:10.1371/journal.pone.0087245. 61 Zscheischler, J. et al., 2020: A typology of compound weather and climate events. Nature Reviews Earth & 62
 - *Environment*, **1**(7), 333-347, doi:10.1038/s43017-020-0060-z.

- Zscheischler, J. and S. I. Seneviratne, 2017: Dependence of drivers affects risks associated with compound events. *Science Advances*, **3**(6), e1700263, doi:10.1126/sciadv.1700263.
- Zscheischler, J. et al., 2018: Future climate risk from compound events. *Nature Climate Change*, **8**(6), 469-477, doi:10.1038/s41558-018-0156-3.
- Zubizarreta-Gerendiain, A., T. Pukkala and H. Peltola, 2017: Effects of wind damage on the optimal management of
 boreal forests under current and changing climatic conditions. *Can. J. For. Res.*, 47(2), 246-256, doi:10.1139/cjfr 2016-0226.
- Župarić-Iljić, D., 2017: Environmental Change and Involuntary Migration: Environmental Vulnerability and
 Displacement Caused by the 2014 Flooding in South-Eastern Europe. Ecology and Justice: Contributions from
 the margins, Institute for Political Ecology.

1

2

3