WO2012123614A1 - Polipéptido que tiene actividad inductora de la defensa contra estrés biótico en plantas, secuencia de nucleótidos que lo codifica, microorganismo, composiciones y métodos - Google Patents

Polipéptido que tiene actividad inductora de la defensa contra estrés biótico en plantas, secuencia de nucleótidos que lo codifica, microorganismo, composiciones y métodos Download PDF

Info

Publication number
WO2012123614A1
WO2012123614A1 PCT/ES2012/070173 ES2012070173W WO2012123614A1 WO 2012123614 A1 WO2012123614 A1 WO 2012123614A1 ES 2012070173 W ES2012070173 W ES 2012070173W WO 2012123614 A1 WO2012123614 A1 WO 2012123614A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
plants
elicitor
protein
plant
Prior art date
Application number
PCT/ES2012/070173
Other languages
English (en)
French (fr)
Inventor
Atilio Pedro Castagnaro
Juan Carlos DÍAZ RICCI
Nadia Regina Chalfoun
Josefina Racedo
Sergio Miguel Salazar
Original Assignee
Universidad Nacional De Tucumán
Consejo Nacional De Investigaciones Científicas Y Técnicas (Conicet)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2013146180A priority Critical patent/RU2606261C2/ru
Application filed by Universidad Nacional De Tucumán, Consejo Nacional De Investigaciones Científicas Y Técnicas (Conicet) filed Critical Universidad Nacional De Tucumán
Priority to EP12720221.6A priority patent/EP2687538B1/en
Priority to PL12720221T priority patent/PL2687538T3/pl
Priority to ES12720221.6T priority patent/ES2646262T3/es
Priority to AU2012228211A priority patent/AU2012228211B2/en
Priority to BR112013023646-9A priority patent/BR112013023646A2/pt
Priority to CA2830194A priority patent/CA2830194C/en
Priority to US14/005,532 priority patent/US9357786B2/en
Priority to MX2013010539A priority patent/MX348500B/es
Priority to NZ616252A priority patent/NZ616252B2/en
Publication of WO2012123614A1 publication Critical patent/WO2012123614A1/es
Priority to US15/162,026 priority patent/US20160316746A1/en
Priority to US15/161,964 priority patent/US9534025B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/30Microbial fungi; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/18Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof
    • A01N37/20Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof containing the group, wherein Cn means a carbon skeleton not containing a ring; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/745Cephalosporium ; Acremonium

Definitions

  • Polypeptide that has defense-inducing activity against biotic stress in plants nucleotide sequence that encodes it, microorganism, compositions and methods
  • the present invention relates to a polypeptide that has defense-inducing activity against biotic stress in plants, nucleotide sequence encoding it, microorganism, compositions and methods. More specifically it refers to a subtilisin polypeptide that comes from Acremonium strictum and wherein said polypeptide has elicitor activity.
  • the polypeptide is encoded by the nucleotide sequence SEQ ID No. 1 or sequences at least 90% homologous thereto and has the amino acid sequence SEQ ID No. 2 or sequences at least 90 % homologous to it, wherein said polypeptide has elicitor activity.
  • Strawberry is a fruit of exceptional characteristics, which is consumed fresh, dehydrated, frozen and preserved. From the economic point of view it is a very important crop given the quantity of inputs and the technology that it uses, in addition to the added value that it can acquire due to its possibility of industrialization and export.
  • Root and crown rot different diseases caused by fungi of the genera Phytophthora, Rhizoctonia and Colletotrichum (anthracnose).
  • Leaf diseases Xanthomonas fragariae (angular leaf spot); Gnomonia comari (leaf spot); Mycosphaerella fragariae or Ramularia (smallpox); Diplocarpon ear liana (burn or leaf spot); Dendrophoma / Phomopsis obscurans (blight); Sphaerotheca macularis (Oidio); Colletotrichum spp. (anthracnose).
  • Colletotrichum is undoubtedly the disease that most negatively affects the crop, attacking practically all the organs of the plant and causing great losses both in fruit production and in nursery (production of seedlings), mainly in tropical and subtropical agroclimatic regions.
  • CBAs can i) act directly on the pathogen as is the case of "antagonistic microorganisms", ii) exert an indirect action when interacting in the host plant, conferring protection against the disease, either by: transmission of hypovirulence to races virulent with its consequent neutralization or through iii) activation of the defense mechanisms of the plant, which is known as the "Induced Resistance” or "preimmunization” strategy.
  • Plants defend themselves against potential invading pathogens either through morphological structures that act as physical barriers that inhibit the entry and development of the pathogen, or through biochemical reactions that take place in different tissues of the plant and produce toxic substances. for the pathogen or generate conditions that inhibit the entry and growth of the microorganism in the host.
  • These defenses can be found constitutively constituting a non-specific protection against a wide range of microorganisms or they can be induced in the presence of the attacking pathogen.
  • plants like other living beings, activate their own defense systems by recognizing a molecule derived from a pathogenic microorganism or by perceiving any molecule generated during the invasion of the pathogen, any of them called “inducer” or "elicitor” of defense.
  • the inducing molecules alert the presence of the invading pathogen upon recognition by the host plant (Nürnberger, 1999. Cell Mol. Life Sci. 55, 167-182).
  • the plant recognizes the elicitors of the attacking pathogen early, it produces a rapid activation of its defense mechanisms, which block the infection, stopping the pathogen's progress. It is said that in this case the plant / pathogen interaction is incompatible because it does not lead to disease and the phytopathogenic strain is defined as avirulent (Keen, 1990. Annu. Rev. Genet. 24, 447-463).
  • the plant becomes ill when it is not able to perceive the aggression of the pathogen or when it detects it late (to its elicitors) and although it triggers some mechanisms of defense, they are not enough to stop the invasion in time, therefore it is said that the plant / pathogen interaction is compatible and the strain is considered virulent.
  • plants can recognize the aggressor through a battery of elicitors.
  • Some of these molecules come inducing pathogen (non-specific factors) and may be present in the fungal surface (e.g., chitin and glucan fragments) or are secreted by the pathogen (e.g., protein avirulence); while others are generated by the plant during the fungal invasion (called own factors), such is the case of the cell wall fragments of the plant (eg, oligogalacturonates, chitin, heptaglucans, monosylated glycopeptides) that are released from precursors polymeric by the action of hydrolytic enzymes of the invading pathogen (Knogge, 1996.
  • the Plant Cell 8, 1711-1722 we can classify elicitors into preformed compounds, which are present on the surface of the pathogen, or they can be inducible, when they are synthesized during the interaction of the pathogen with the host plant.
  • recognition of the pathogen and subsequent activation of disease resistance responses in plants can occur at the species level (eg species or non-host resistance, or non-specific host resistance to cultivate, or innate immunity), or to genotype level (specific host resistance to cultivate).
  • the specific resistance of a cultivar is that expressed in a particular cultivar against one or a reduced number of pathogen races and constitutes what is known as the "gene-to-gene" response and is genetically determined by the complementary pair encoded by the gene of avirulence (Avr) of the pathogen and the product of a plant resistance gene R.
  • the AVR protein when recognized directly or indirectly by a resistant host plant, it acts as a "specific elicitor" of the defense, allowing it to be detected by the surveillance system available to the plant.
  • innate immunity is the predominant form of resistance in all plant species.
  • general elicitors a wide variety of products associated with microorganisms called “general elicitors” induce the defense response in many plant species and are not dependent on a specific cultivar.
  • He The term Pathogen-Associated Molecular Pattern or its acronym “PAMP” (by "Pathogen-Associated Molecular Pattern”) refers to any molecule capable of activating the plant's defense system and can be found in a broad group of pathogens (Bent and Mackey, 2007. Annu. Rev. Phytopathol.
  • an inducer interacts with a cell surface receptor that detects the extracellular signal and converts it into intracellular signals, whose transduction involves a) transmembrane ionic fluxes (ie Ca ++ , H + , Cl " input) , and Ca 2 ); b) the generation of reactive oxygen species (ERO) such as H 2 0 2 , 0 2 ⁇ , etc.
  • ERO reactive oxygen species
  • oxidative burst oxidative burst
  • NO production nitric oxide
  • MAPKs mitogen-activated protein kinases
  • CDPKs calcium-dependent
  • ERO reactive oxygen species
  • AS salicylic acid
  • AS asbestos.
  • PAL Phenyl ammonium lyase
  • CHS chalcona synthase
  • PRs proteins proteins related to pathogenesis
  • the Hypersensitivity Response is the rapid and localized death of host cells that are invaded by the pathogen, by a phenomenon of necrosis or programmed cell death (PCD). This phenomenon is associated with a reinforcement of the cell wall of the cells affected by local lignification and accumulation of calose, formation of cross-junctions of the glycoproteins rich in hydroxyproline (HRPG), activation of enzymes involved in the cross-linking of molecules (“cross-" linking ”) as a plant strategy to limit colonization to infection sites.
  • HRPG hydroxyproline
  • Salicylic acid a plant hormone that among other functions inhibits catalase exacerbating oxidative stress, and also coordinates the expression of the subgroup of PRs proteins that are grouped into three classes: chitinases, glucanases and chitin binding proteins.
  • AS Salicylic acid
  • systemic resistance can also be triggered by a non-pathogenic microorganism of the rhizosphere, in which it is called Induced Systemic Resistance or ISR (from the English “Induced Systemic Resistance”); or it can be induced by wounds (mechanical damage).
  • ISR Induced Systemic Resistance
  • wounds mechanical damage.
  • the different systemic defense responses associated with pathogen infections include the induction of several PR genes, accumulation of phytoalexins, induction of EROs and micro HR.
  • a simpler biotechnological alternative to solve this problem and induce resistance is to inactivate the pathogen and apply fractions from different cultures of the pathogen (non-pathogenic extracts) that retain the defense-inducing activity, while losing their pathogenicity potential, ie using fractions of the inactivated pathogen containing the defense inducing agent (s).
  • Greater knowledge of the system would allow from the direct application of molecules eliciters derived from the avirulent plant / pathogen interaction that are capable of giving resistance against diseases by inducing a broad-spectrum systemic defensive response (SAR elicitor), until the expression of the avirulence gene of said pathogen in transgenic plants.
  • SAR elicitor broad-spectrum systemic defensive response
  • the inventors have identified a new protein excreted into the medium by Acremonium strictum, and have been purified to homogeneity .
  • This protein acts as an avirulence factor (elicitor), triggering different defense mechanisms that immunize the plant, and make it resistant to diseases, including the anthracnose produced by Colletotrichum spp.
  • a polypeptide corresponds to a subtilisin that has elicitory (inductive) activity of defense against biotic stress in plants, which comes from Acremonium strictum, for example Acremonium strictum SS71 deposited in the German deposit center DSMZ with the access code DSM 24396 and wherein said polypeptide has elicitor activity.
  • the polypeptide is encoded by the nucleotide sequence SEQ ID No. 1 or sequences at least 90% homologous thereto and has the amino acid sequence SEQ ID No. 2 or sequences at least 90%> homologous thereto, in where said polypeptide has elicitor activity.
  • a nucleotide sequence is provided that encodes the elicitor polypeptide shown in the sequence SEQ ID No. 1 or at least 90% homologous sequences.
  • microorganism is the strain Acremonium strictum SS71 deposited in the German deposit center DSMZ with the access code DSM 24396.
  • a composition, useful in the induction of resistance to biotic factors in plants, comprising conidia of Acremonium strictum and excipients, is provided, for example it comprises between lxlO 3 and lxlO 8 conidia / ml.
  • the composition comprises conidia of the Acremonium strictum SS71 strain deposited in the German deposit center DSMZ with the access code DSM 24396
  • a composition useful in inducing resistance to biotic factors in plants, which comprises an extract of Acremonium strictum.
  • the composition comprises an extract of the Acremonium strictum SS71 strain deposited in the German deposit center DSMZ with the access code DSM 24396.
  • the extract may be a cell-free supernatant or conidial extract.
  • composition comprising between 2.5 and 15 ⁇ g / ml of the elicitor polypeptide is provided.
  • a method of obtaining and purifying the elicitor polypeptide comprising the following steps:
  • a method for inducing resistance to pathogens in a plant which comprises applying to said plant a composition derived from Acremonium strictum, for example the strain of Acremonium strictum SS71 with the access code DSM 24396.
  • the composition may be: a conidia suspension of the strain, cell free extract, conidial extract, culture supernatant, a solution of an elicitor polypeptide or a combination thereof.
  • the conidia suspension can be applied at a concentration of between Ixl0 3 and lxl0 8 conidio s / ml, the cell-free extract can have a concentration between 0.4 and 9 ⁇ protein / ml, the conidial extract can have a concentration between 0.12 and 1.5 ⁇ protein / ml and the elicitor polypeptide solution may comprise between 2.5 and 15 ⁇ ⁇ ⁇ . Because the elicitor generates a non-specific systemic response, the method of the invention provides protection against a wide range of pathogens, and is effective in protecting against fungi, bacteria and viruses.
  • the method can be applied among others to the following pathogens: Colletotrichum spp., Botrytis ci ⁇ era or Xanthomonas fragariae.
  • the protection mechanisms triggered by the elicitor are widespread in the plant kingdom, the method is effective in any type of plant, in particular plants belonging to Eudicotiledóneas such as strawberry (Fragaria x ananassa), tomato (Solanum lycopersicon) or Arabidopsis thaliana, by spraying in the aerial parts, infiltration or irrigation.
  • Figure 1 shows in a graph the level of disease severity (DSR) of anthracnose in strawberry plants cv. Bird treated with extracts containing the elicitor 48 hours before inoculation with the virulent isolate Mi l de C. acutatum. The plants were evaluated 40 dpi (days after inoculation) with Mi l.
  • EC Conidial extract (10 ⁇ g protein / ml) obtained by sonication; SN: liquid culture supernatant grown in PG medium (papa-glucose) to stationary phase (10 ⁇ g protein / ml).
  • Ctr-PC control of plants infected with Mi l which were previously inoculated with the avirulent strain (SS71) of A. strictum.
  • Ctr.-Ca control of plants infected with Mi l without prior treatment.
  • DSR means: Disease Severity Rating.
  • Figure 2 A shows the heat susceptibility of elicitor activity. The tests were carried out with supernatants from cultures of the SS71 isolate of A. strictum grown in PG medium until the stationary phase, after concentrating and dialysate.
  • Figure 2B shows the susceptibility to Proteinase K digestion of elicitor activity. SN: untreated extract; SNA: Proteinase K treated extract (100 ⁇ g / ml) for 1 hour at 50 ° C; and SNB: extract treated for 12 hours at 50 ° C.
  • Ctr.-PC plants infected with Mi l which were previously inoculated with the avirulent strain (SS71) of A. strictum.
  • Ctr.-Ca plants infected with Mi l without prior treatment. The evaluations were made 40 dpi.
  • DSR means: Disease Severity Rating
  • Figure 3 shows the first stage of purification of the fungal elicitor of the invention in a profile obtained from a chromatographic separation by FPLC using an anion exchange matrix Q equilibrated at pH 7.5 (Pharmacia). Elution was performed with a discontinuous increasing gradient of NaCl (0-100%). The activity is concentrated at peak I.
  • Figure 4 shows the second stage of purification of the fungal elicitor in a profile obtained from a chromatographic separation by FPLC using a hydrophobic interaction matrix Phenyl Superóse HP (Pharmacia) equilibrated with Tris-HCl (50mM, pH 7, 5), EDTA (lmM) and (NH 4 ) 2 S0 4 (1.5 M), and eluted with a discontinuous decreasing gradient of (NH 4 ) 2 S0 4 (100-0%). The activity is concentrated in pool IV.
  • Figure 5 shows the proteins present in fractions I to IV (20 ⁇ g total load) obtained by FPLC in Phenyl Superóse HP ( Figure 4) separated by 12% SDS-PAGE. The activity is concentrated in pool IV. The arrow indicates the active eliciter protein subsequently purified to homogeneity ( Figure 6).
  • Figure 6 shows a 10% SDS-PAGE of the active subfraction (7 ⁇ g total protein) obtained by re-chromatography of pool IV through Phenyl Superóse HP eluted under the same conditions as those mentioned in Figure 4 , with an inverse gradient of (NH) 2 S0 4 (100-0%>) more staggered.
  • the active protein elutes from the PS column at a concentration of (NH 4 ) 2 S0 4 of 0.5 M.
  • Figure 7 shows a photograph of the treated and untreated plants with the elicitor of the invention (2.5 ⁇ g protein / ml) and after infection with the virulent isolate (Mi l) of C. acutatum at 40 days post-inoculation.
  • the upper row corresponds to plants pre-treated with the elicitor and the lower row to plants treated with water (virulence control) respectively, 48 hours before inoculation with the pathogen Mi l.
  • Figure 8 shows photos of the accumulation of reactive oxygen species (ERO) 4 hours after the spray treatment of the elicitor (10 ⁇ g protein / mi) in strawberry leaves cv Bird.
  • ERO reactive oxygen species
  • Figure 9 shows photos of the accumulation of auto fluorescent species after treatment by infiltration of the elicitor (50 ⁇ , 10 ⁇ g protein / mi) in strawberry leaves cv. Bird.
  • A Sheet treated at zero time or treated with water,
  • B fluorescence 12 hours after treatment and
  • C fluorescence 72 hours after treatment.
  • the images were captured in a fluorescent magnifying glass (320 nm, Leitz). Scale bars indicate 300 ⁇ .
  • Figure 10 shows photos of the accumulation of calose on strawberry leaves cv. Bird 7 days after treatment by elicitor spray (10 ⁇ g protein / mi; A) or water (control; B); or at 2 days post-inoculation with virulent isolate C. acutatum Mi l treated 7 days before with elicitor (10 ⁇ g protein / mi; C); and control of plants only infected with Mi l (D). Scale bars indicate 100 ⁇
  • Figure 11 shows a graph of the accumulation of salicylic acid in strawberry leaf cv. Bird after water spray treatment ⁇ , BTH (0.5 mM) Hy elicitor (15 ⁇ protein mi) M
  • Figure 12 shows the experimental scheme, the appearance of strawberry plants of cv. Bird then different treatments and DSR values after 40 dpi.
  • the plants were treated on a sheet with the elicitor (arrow) 7 days before infecting the rest of the aerial part by sprinkling the virulent isolate MI 1 of C. acutatum (l, 5xl0 6 conidia / mi).
  • C) pre-treated with AS 0.5 mM
  • DSR means: Disease Severity Rating.
  • Figure 13 shows in a graph the symptomatology of the disease in different strawberry cultivars pretreated with the elicitor (10 ⁇ g proteins / ml) derived from A. strictum SS71.
  • DSR means: Disease Severity Rating.
  • Figure 14 shows in a graph the production measurement of NO (nitric oxide) and ERO (H 2 0 2 ) in tomato cell culture (Solanum lycopersicon) by fluorescent probes.
  • NO nitric oxide
  • ERO H 2 0 2
  • ⁇ exi 480 nm
  • ⁇ emi 525 nm.
  • Incubation time 30 minutes at room temperature.
  • the elicitor was used at a concentration of 10 ⁇ g / ml for NO and 5 ⁇ g / ml for ERO; xylanase (control inducer) at 100 ⁇ g / ml for NO and 10 ⁇ g / ml for ERO.
  • Figure 15 shows photos of the maximum intracellular hydrogen peroxide production with fluorescent probe Fluorescein Diacetate (DCFH-DA) in Arabidopsis thaliana leaves observed by fluorescence microscopy (UV light).
  • the panel (A) corresponds to the foliar control tissue of plants treated by spraying with water at 2 hpt (post treatment hours) while the panel (B) corresponds to the treatment with elicitor at the same time (2 hpt).
  • Scale bars indicate 100 ⁇
  • Figure 16 shows photos of the temporal evolution of the superoxide radical generation detected by staining with NBT in Arabidopsis thaliana leaves treated with elicitor at 2 hpt (A), 4 hpt (B) and 6 hpt (C) and their respective controls (treated with water) at each time (DF).
  • Figure 17 shows the amino acid sequences (Edman method) of the three fragments (tryptic digested) analyzed from the 34 kDa polypeptide of the present 34 kDa elicitor of the isolated defense of A. strictum.
  • Figure 18 shows the nucleotide sequence encoding the elicitor activity polypeptide of the present invention, A: Complete nucleotide sequence of the mature transcript or complementary DNA (cDNA) (SEQ ID No. 1); B Nucleotide sequences that produced the maximum similarity values and species of origin of these sequences obtained by Blast X.
  • Figure 19 A: The sequence of the elicitor protein deduced from the nucleotide sequence of the cDNA (SEQ ID N ° 2) is shown; B: Amino acid sequences that produced the maximum similarity values and species of origin obtained by Blast P; C: structure of a subtilisin obtained from Trichoderma koningii in which the inhibitor domain 19 and the catalytic domain S8 are indicated. It is shown that the sequences obtained that are fragments of the invention (defense elicitor protein in 34 kDa plants) are within the catalytic domain (S8 peptidase) of the protein. The amino acid extension of each domain is also shown.
  • the curves indicate the proteolytic activity of the elicitor protein at 15 ⁇ g / ml (A) and of the subtilisin of Bacillus subtilis (0.04 ⁇ g / ml) used as a positive control ( ⁇ ).
  • the curve ( ⁇ ) indicates the self-protective activity of the chromogenic substrate.
  • the increase in absorbance is due to the enzymatic reaction of proteolysis of the chromogenic substrate N-Suc-Ala-Ala-Pro-Phe-p-NA by release of
  • Elicitors can be molecules of a very varied nature: proteins, carbohydrates, lipids; small peptides, small compounds of heterogeneous origin, such as secondary metabolites, derivatives of sugars and / or amino acids, fatty acids and combinations thereof.
  • Eliciting capacity has the same meaning as inducing activity of defense against stress in plants, for example biotic stress.
  • IR Induced Resistance
  • Anthracnose is a fungal disease that causes holonecrosis in the vegetative part of the plant.
  • the infective form of the species of Colletotrichum spp. causes of this disease are the conidia that germinate through the stomata, trichomes or directly through the epidermis of the leaves of the plant and attack the conductive tissue (xylem), causing the strangulation of the petioles.
  • Symptoms begin to manifest in the upper part of the petiole and progress to attack the crown (modified stem), which causes the death of the plant.
  • the evaluation of the severity of anthracnose symptoms is performed on the petioles according to the scale set by Delp and Milholand (Delp and Milholand, 1980. Plant Dis.
  • DSR Disease Severity Rating
  • Degree of infection 2 lesions less than 3 mm in length and superficial, dark spots along the petiole (black spots).
  • Degree of infection 3 lesion between 3-10 mm in length, dark spot usually surrounded by a red coloration.
  • Degree of infection 4 severe lesion with strangulation of the petiole, which can cover up to 50% of its length.
  • Degree of infection 5 very severe lesion, with strangulation in more than 50% of the length of the petiole and / or dead plant.
  • the protocol to evaluate the evolution of anthracnose followed in the present application was the following: 1) Lesions are evaluated on the petioles of the three youngest fully expanded leaves.
  • DSR40 The evolution of the disease and the final recovery of the batch of plants were considered evaluation parameters.
  • the recovery of the plants is determined by the value of DSR at the end of the evaluation, that is to say at 40 days (DSR40), which means:
  • DSR 4 o l, total recovery or absence of disease.
  • the present application provides an elicitor that allows the prevention and / or treatment of plant diseases, such as anthracnose. More particularly, the present invention provides a polypeptide encoded by the nucleotide sequence SEQ ID No. 1 or sequences at least 90% homologous thereto. In a preferred embodiment, said polypeptide comprises the amino acid sequence SEQ ID No. 2 or at least 90% homologous sequences therein, wherein said polypeptide has elicitor activity. In another more preferred embodiment, the polypeptide of the present invention is derived from a strain of Acremonium strictum, preferably said strain is Acremonium strictum strain SS71, deposited under the Budapest Treaty on December 14, 2010 at the German warehouse center DSMZ with the access code DSM 24396.
  • the polypeptide of the present invention was obtained after the evaluation of numerous local isolates of different strains of strawberry fungal pathogens from the Argentine Northwest region, many of which belong to the different species of Colletotrichum that make up the fungal complex responsible for Anthracnose in strawberry cultivation: C. fragariae, C. acutatum, C. gloeosporioides.
  • C. fragariae C. acutatum
  • C. gloeosporioides C. fragariae
  • C. gloeosporioides C. acutatum
  • Strawberry Bird Acremonium strictum strain SS71 expresses a polypeptide having an amino acid sequence SEQ ID No. 2 or sequences at least 90%
  • a system of Cross Protection was defined in cv. Bird between the avirulent isolate A. strictum SS71 and a virulent isolate of C. acutatum (Mi l).
  • this system was revealed by first inoculating the aerial parts of healthy plants with live conidia of the SS71 isolate and after three days with live conidia of the Mi l isolate, observing that no disease occurred. Conidial state cells were used.
  • an agronomic biocontrol system based on cross protection can be implemented in the field, inoculating the plants directly with the live or conidia strain of SS71 of A. strictum. Taking into account that although the strain is avirulent against the cv. Bird is able to make susceptible varieties sick. It is more desirable to obtain nonpathogenic extracts containing the elicitor capacity to develop formulations that trigger the defense response, and better obtain and use the compound with elicitor activity to prepare a composition for inducing defense system of a plant.
  • this technology can be an agronomically applicable alternative because of its safety.
  • the conidial extract of A. strictum SS71 obtained by sonication (EC) was also analyzed.
  • the evolution of sintomato loggia (DSR) over time (dpi) assays double treatment was evaluated.
  • the symptomatology evaluation was taken as extremes, 1 when the state of recovery is total (absence of anthracnose symptoms) and 5 when there is no recovery.
  • the chemical nature of its active constituents and their technological potential were determined.
  • the thermal stability of the elicitor activity was studied.
  • the SN supernatant was used where the main active compound of the "inducing power" was found to have a higher degree of purity.
  • the SN was subjected to two thermal treatments of different intensity: A) boiling heating (100 ° C) for 15 minutes (SNl), sufficient to denature large proteins (generally of molecular weight greater than 10,000 Da) and insufficient to destroy other compounds of different chemical nature such as they are carbohydrates, lipids, etc .; and B) autoclaved (121 ° C) for 15 minutes (SN2), more drastic treatment that destroys most of the compounds except low molecular weight metabolites resistant to high temperatures, heat resistant peptides, etc.
  • the total protein content in the final supernatant was 8.43 ⁇ g proteins / ml.
  • the activity in each purification step was followed by two parallel methods: a) ERO production (H 2 0 2 and 0 2 ⁇ ) at 4 h post-, and b) protection against virulent isolate Mi l de C. acutatum.
  • the purification protocol includes the following steps:
  • the cultures were centrifuged at 16,300g, for 20-30 minutes, at 4 ° C.
  • the supernatant which is filtered by diatomaceous earth and then by filtration membranes of 0.22 um pore diameter was recovered. This fraction corresponds to the axenic supernatant (cell-free) IX (undiluted) that was stored frozen at -20 ° C for later use.
  • the activity was concentrated in peak IV.
  • the proteins not bound to the Q matrix were seeded in a PS matrix, the protective activity was distributed among three of the protein fractions that eluted by a decrease in ionic strength: poles II, III and IV, which when visualized in a 12% polyacrylamide gel they did not contain single bands ( Figure 5).
  • the activity is concentrated in peak IV.
  • a new chromatographic separation was carried out using the same system (matrix and buffers), but using a discontinuous gradient of (NH 4 ) 2 S0 4 with 5 intermediate steps.
  • a 34 kDa basic protein was purified to homogeneity, which is capable of inducing systemic resistance against the attack of the virulent isolate Mi l of C. acutatum.
  • the elicitor polypeptide is a new protein, different from other proteases previously reported. To confirm this, although no accessions of protein sequences described in Acremonium spp. Among the first 100 results ("top hits") obtained by Blast-P carried out with the elicitor protein sequence, the degree of identity of the same was studied with all proteins that have been reported as proteases or similar to them in this gender. Table 1 summarizes the characteristics of the amino acid sequences of the Acremonium genus proteins (producing organism, origin, extension, Mr, number of amino acids and function) and its comparison with the elicitor protein
  • Pr.Alc and a cephalosporin C acetylhydrolase (Acc. No. CAB87194.1; AcH).
  • subtilisin type sp. (TI 1 177) E3 (152/388) (62/450) genomic) 58,371 kDa
  • Sub-E3 is the only full-sequence subtilisin type serine protease described in Acremonium spp. which also presents experimentally proven lytic proteo activity (Liu et al., 2007). However, it has the lowest similarity percentage (39.2%) with respect to inductive subtilisin.
  • the highest identity value (53.7% identity and 2.1% gaps) of the elicitor protein corresponds to AcH of A. chrysogenum. It is a nonspecific esterase, which acts by eliminating the acetyl group of the cephalosporin C antibiotic. Although it lacks lytic proteic activity, it was decided to study AcH for its sequence similarity with serine proteases.
  • subtilisin protein isolated from C. fragariae tomato and arabidopsis. It can be concluded from these experiments that a general effect will be found in different cultures against pathogens of fungal and bacterial origin, which is also supported by positive results of resistance against Colletotrichum spp (biotrophic fungus), Botrytis cinerea (necrotrophic fungus) and Xanthomonas fragariae (bacteria).
  • the response to the elicitior of the invention includes the accumulation of salicylic acid, which induces resistance not only to fungal and bacterial pathogens but also to viruses. Therefore, the present invention is also useful for inducing resistance to viruses in plants.
  • the oxidative burst was evaluated through the accumulation of ROS. It was analyzed if the protection effect observed in plants pretreated with the elicitor was preceded by biochemical markers normally associated with the defense, we analyzed the accumulation of superoxide radical ion (0 2 ⁇ ) and hydrogen peroxide (H 2 0 2 ) by histochemical staining with NBT (nitroblue tetrazolium) and DAB (diaminobenzidine), respectively.
  • FIG. 10 shows that plants can accumulate warmly 7 days after treatment with the SS71 pure elicitor protein (Fig. 10B), but do not show accumulation when treated with water (Fig. 10A). However, said figure also shows that calose is deposited even in higher amounts in plants infected with the C. acutatum Mi l isolate, which were previously induced with the elicitor 7 days before infection (Fig. 10C). It was also observed that the deposition of calose occurs first in cells isolated from the epidermis and then continues to accumulate in the walls of adjacent groups of cells forming a matrix that act as a true physical barrier helps to stop the invasion of the pathogen.
  • the accumulated salicylic acid (AS) in phloem of strawberry plants infiltrated with the pure elicitor protein at 2.5 ⁇ g protein / ml concentration was quantified.
  • the AS was recovered from petioles at different times (0, 24, 48, 72 and 96 hours post treatment (htp), then purified by reverse phase chromatography and quantified by fluorescence spectroscopy exciting at 296 nm.
  • plants of commercial strawberry varieties were used that exhibit an incompatible type interaction (eg cvs. Bird, Camarosa) and of the type compatible with the SS71 pathogen producer of the elicitor (eg cvs. Milsei Tudla, Chandler).
  • the inducer After being treated with the inducer, they were challenged with a virulent strain for each cultivar, either C. acutatum: Mi l (isolated from cv. Chandler in Manantial- Tucumán), MP3 (isolated from Aroma in Mar del Plata) or LCF 1-05 (isolated from the fruit of Camarosa in Lules- Tucumán).
  • the elicitor derived from SS71 develops a high protection efficiency against anthracnose in cvs. resistant to SS71 (with those that behaves like avirulent), while leading to partial protection in cultivars susceptible to SS71 (with those behaving like virulent).
  • Figure 13 also shows that the degree of protection depends in particular on the isolate used. While the elicitor can quickly control the infection caused by MI 1 in all the cultivars evaluated, the situation is different with MP3 and LCF1 isolates.
  • the ability of the elicitor to induce production of ROS in the Arabidopsis thaliana model plant was then studied. For this, the production of hydrogen peroxide and that of superoxide radical were studied in parallel.
  • the intracellular hydrogen peroxide was evaluated with the fluorescent probe Fluorescein Diacetate (DCFH-DA), observing a maximum peak of the burst by treatment with the pure elicitor protein, which confirms the ability of the protein of the invention to induce the intracellular accumulation of hydrogen peroxide, although the accumulation peak does not coincide with that observed in strawberry where the maximum occurs at 4 hpt (Figure 15).
  • polypeptide of the present invention In order to chemically and molecularly characterize the polypeptide of the present invention with resistance inducing activity, its molecular weight was determined which, determined from 10% SDS-PAGE (with ⁇ -mercaptoethanol) with the PD Quest software ( BioRad), gave an approximate value of 34kDa. Said polypeptide has an approximate pl of 9.5 determined experimentally by isoelectric focusing.
  • the sequence of the NH 2 terminal end of the previously reduced and alkylated PVDF membrane transferred protein was obtained, and the sequence of three internal peptides obtained by tryptic gel digestion of the reduced and alkylated protein.
  • the sequences of the peptides whose molecular masses correspond to 1095.19, 2441.2 and 1938.1 msms are shown in Figure 17.
  • the analysis of the alignments showed that all peptide sequences have, each separately, a high similarity with fungal proteases of the subtilisin family.
  • the highest sequence identity values correspond to subtilisins of the Arthroderma spp. (or Trichophyton spp.) for mass peptide 2441.2 and to subtilisins of the species Aspergillus spp. for the mass peptide 1938.1.
  • Primers were designed from the sequence of the peptide fragments shown in Figure 17 and knowing that the first peptide corresponds to the amino-terminal end of the protein. It was achieved by means of an amplification protocol, isolating and sequencing the cDNA corresponding to the mature transcript of the elicitor protein and its nucleotide sequence is shown in Figure 18 A. Having the cDNA sequence, the similarity of this sequence was analyzed with others sequences included in the sequence data bank, in order to determine which family of proteins corresponds to. From this it could be concluded that the isolated sequence is effectively a serine protease of the subtilisin family.
  • Blast X nucleotide sequence identity
  • Blast P amino acid
  • Figure 19C shows the relative location of the sequenced fragments from the elicitor of A. strictum in relation to the domains characterized by the subtilisin of T koningii
  • the results shown allow us to conclude that the amino terminal end is located in the region between the Inhibitor 19 domain and the Peptidase S8 domain with protease function, while the other two sequences of sequenced internal peptides are in the Peptidase S8 domain.
  • the peptidase 19 inhibitor domain was found in the immature form of all the reference subtilisins analyzed.
  • the elicitor protein has a subtilisin-like proteolytic function
  • its ability to produce the proteolytic cleavage of the subtilisin-specific chromogenic substrate (N-Succinyl-Ala-Ala-Pro -Phe p-Nitroanilide) with release of p- was studied. NA absorbing at 405nm.
  • Figure 20 demonstrates that the elicitor protein (15 ⁇ g / ml) acts on the chromogenic substrate producing its proteosis over time, as does the Bacillus subtilis subtilisin (0.04 ⁇ g / ml) used as a positive control.
  • the elicitor protein after being purified to homogeneity manifests proteolytic activity on the subtilisin-specific chromogenic substrate, that is to say it has a subtilisin-like protease function in vitro.
  • the material was produced in three stages: 1) In vitro culture of meristems; 2) Rustification; and 3) Vegetative multiplication by stolons.
  • the plants used for testing were obtained by fixing stolons of said mother plants (asexual propagation) in sterile substrate under axenic conditions and subsequent growth under the same conditions. Once rooted, at approximately two weeks, the new seedlings are separated from the mother plant and grown for another 12-14 weeks. In other words, the mother seedlings grow until they reach 14 to 16 weeks of age in total, when they have at least four fully expanded leaves, which represents a relatively early stage of seedling growth. During that period the seedlings were irrigated only with distilled water twice a week and received no preventive application of fungicides or fertilizers.
  • Arabidopsis thaliana wild type (Columbia ecotype) seeds were germinated in MS medium (diluted to 1 ⁇ 2) supplemented with 1% sucrose and 0.8% agar. When the seedlings have 2 leaves, they were transplanted to a sterile substrate, and they remained in breeding chambers under optimal growth conditions (22 ° C, 70% humidity, 12 hours of light) until 4 weeks of age.
  • strain SS71 of the invention Acremonium strictum SS71 of the invention and CoUetotrichum acutatum Mi l strain for infection. These strains were used in the strictum / C. acutatum cross protection system defined in cv. Bird.
  • strain SS71 is a producer of the compound with elicitory defense activity
  • strain Mi l is the virulent strain against cv. Bird that is used for the evaluation of the inductive activity that is manifested by the increase in resistance to anthracnose (produced by Mi l) in plants previously treated with strain SS71.
  • the strains of the avirulent pathogen of A. strictum of the invention were grown in agar-potato-glucosed medium with 1.5% agar (1.5% APG). After melting the medium, it is cooled to 45-50 ° C and distributed in sterile Petri dishes (15 ml per box), with the addition of Streptomycin Sulfate (Richet) at a final concentration of 300 ⁇ g / ml.
  • the liquid culture of the strain SS71 of A. strictum was carried out in papa-glucosed medium (PG) that has the same composition to the APG medium without the agar aggregate and is obtained by identical procedure.
  • PG papa-glucosed medium
  • the strains were stored in conidia suspensions (10 7 -10 8 conidia / ml) in 50% glycerol and kept frozen at -70 ° C.
  • the cultures in solid medium of the different strains were obtained by mycelium peal at 1.5% APG medium or by planting conidia kept in glycerol, and subsequent incubation for 10 days under optimal conditions of growth (28 ° C) and sporulation ( continuous white light).
  • the liquid culture for the A. strictum strain of the invention was obtained by inoculating a volume of 40 ml of culture medium (PG), contained in glass containers of 100 ml capacity, with a volume of aqueous conidia suspension in such a way to obtain a final concentration of 10 6 conidia / ml of culture medium.
  • the conidia suspension was prepared on the day of each test from a new plate culture (see below Preparing conidia suspensions).
  • the inoculated liquid medium was incubated under optimal growth conditions and favorable to sporulation, that is, at 28 ° C with continuous white light and without stirring until the stationary phase of growth (21 days). This culture was called SN.
  • the cultures were followed by macroscopic and microscopic observation.
  • the macroscopic observation is qualitative, observing: mycelium film formation in the upper part, color, turbidity or opacity, degree of compaction or solidity.
  • the microscopic consists of observing a magnification of 40X, a fresh preparation (between porta and covers) to evaluate the purity and uniformity of the culture and the absence of spurious cells that indicate any contamination.
  • the suspension was prepared in sterility from new cultures of the strain
  • the conidia are they collected by scraping the surface of the colony with a sterile ansa or spatula. They were then resuspended in a given volume of sterile distilled water (5 or 15 ml). They were mixed in vortex for 1 minute and filtered through gauze with a sterile syringe. The conidia were counted in the Neubauer Chamber and continued in two different ways depending on the intended use of the suspension.
  • the concentrated conidia suspension of the Acremonium strictum SS71 avirulent of the invention (at a concentration of 10 8 conidia / ml) was fractionated into 1.5 ml aliquots in 2 ml tubes. Each aliquot was treated with ultrasound until the typical opalescence of the suspension disappeared, obtaining a translucent liquid. For this purpose, the suspension was subjected to sonication for 15 minutes, with intermittent pulses (sonication cycles lasting 20 seconds each, interspersed at intervals of 10 seconds of rest) at 60% intensity and 40 W of power in a water bath. ice. Brandon Sonifier Tune 40 equipment with titanium tip was used. The tube containing the conidial suspension was kept in an ice bath (0-4 ° C) to avoid overheating.
  • the axenic filtrate constitutes the cell-free supernatant of the liquid culture (SN). In this case, a volume of 25 ml was recovered, to which a protein concentration of 8.43 ⁇ g of protein / ml was determined.
  • the protein content of the samples corresponding to both treatments was lower than the detection limit of the method used.
  • INDUCTION It consisted of spraying the aerial parts of the plants (petioles and leaf blades) to a drip point, with one of the fractions from the different treatments of the SS71 strain of A. strictum ( EC and SN fractions). A volume of 5 ml is considered sufficient to wet the entire foliage of a 3 month seedling (4 fully expanded leaves).
  • Second treatment INOCULATION: Once the stipulated time had elapsed, the aerial parts (petioles and plates) of the plants that had received the first treatment were sprayed again until dripping, but this time using a suspension of 1, 5x10 6 conidia / ml of the Mi l isolate of C. acutatum, highly virulent for cv. Bird. Clarification: At this stage a suspension of live conidia of this strain was always used to trigger a compatible type interaction against the strawberry variety used in the test (cv. Bird) in order to assess the degree of protection acquired by the plants against the disease of anthracnose.
  • Plant health control a batch of plants from the cv. Bird received identical treatment to the plants tested but using sterile distilled water in both sprays. Under these conditions, plants should not show symptoms of disease.
  • Control of the cross protection (control of the inductive capacity of strain SS71 of A. strictum): a batch of plants of cv. Pájaro received a first inoculation with a suspension of live conidia of the avirulent strain A. strictum SS71, at a concentration of l, 5xl0 6 conidia / ml, and after 72 hours (the first 24 hours under stress conditions), a second with the live conidia of the virulent isolate C. acutatum Mi the same concentration. With this experiment it was checked that the avirulent pathogen has not lost its "elicit" ability of the defense response in cv. Bird, so that plants should not show symptoms of disease.
  • the Statistix program (Analytical software 1996 for Windows) was used. The study of the arithmetic mean of the DSR was performed as a measure of position. The program calculates the arithmetic mean of the DSR values (average of the four experimental units of each of the repetitions) corresponding to the fourth evaluation date (40 days) for each phytopathological test, which were 0 carried out with the fractions of A. strictum cultures obtained by different treatments.
  • Ctr-PC is designated to the Cross Protection control and Ctr-Ca is the positive infection control with live conidia of C. acutatum.
  • the elicitor of the present invention was purified from the 21-day culture supernatant of A strictum strain SS71 grown at 28 ° C under continuous white light in PG medium without agitation (SN fraction). After 21 days of cultivation; The supernatant was collected by centrifugation at 10 ° C (30 min, 4 ° C) and filtered through diatomaceous earth and then by Millipore membrane of 0.22 ⁇ in diameter. The axenic supernatant was frozen and concentrated 10 times under vacuum (lyophilization).
  • the extract was then passed to a dialysis tube (12 kDa cut off) and again concentrated 4 times more by dehydration with PEG (MW 15000-20000; Sigma) at 4 o C.
  • the concentrated extract was subjected to ultrafiltration under pressure of nitrogen gas through a molecular filter (30 kDa cut off; AMICON).
  • the fraction retained on the membrane was recovered by washing the membrane surface with 20 mM Tris-HCl buffer (pH 7.5).
  • the activity of the elicitor was tested in the retentate and in the filtrate; confirming that all activity was recovered in the fraction of the highest molecular weight retained in the membrane.
  • the extract containing the active elicitor polypeptide was subjected to two chromatographic separation steps by FPLC: anion exchange and hydrophobic interaction.
  • the Sepharose Q matrix was equilibrated with 20 mM Tris HCI (pH 7.5) and eluted by increasing the ionic strength with a discontinuous gradient of NaCl in three steps: 0.24 M (8 min), 0.38 M (8 min) and 1 M (10 min); flow rate 1 ml / min.
  • fraction with elicitor activity corresponding to the washing of the column was collected and subjected to a new chromatography using the Phenyl Superóse HP column (GE-FPLC) equilibrated with buffer A: 50 mM Tris HCI (pH 7.5 ), EDTA (1 mM) and (NH 4 ) 2 S0 4 (1.5M).
  • the elution buffer B has the same composition as buffer A but without the addition of (NH 4 ) 2 S0 4
  • the activity of all fractions were tested in two ways in parallel, analyzing ERO production and plant protection against C. acutatum Mi l.
  • the protein content of the water soluble samples were determined using the "Bio-Rad Protein Assay Kit ⁇ " based on the Bradford method (Bradford, 1976. Anal. Biochem. 72, 248-254). The products obtained up to this stage were used in the first treatment of the phytopathological tests of Induced Resistance.
  • Example 7 Evaluation of the elicitor activity in each purification step The elicitor activity in each purification step was evaluated in strawberry plants analyzing the accumulation of ROS (eg H 2 0 2 , and 0 2 ⁇ ) and protection against anthracnose. In the latter case, the capacity of the different fractions and of the purified protein to protect plants against virulent pathogens was determined by phytopathological tests. The methodology used for the phytopathological tests has already been explained above.
  • ROS eg H 2 0 2 , and 0 2 ⁇
  • H 2 0 2 was detected by histochemical staining with DAB (in strawberry) or with the fluorescent probe DCFH-DA (in Arabidopsis) and the accumulation of 0 2 ⁇ by histochemical staining with NBT (in both species).
  • the leaves were then incubated for 2 to 8 hours in the dark under nitrogen gas pressure. After incubation, the tissue was fixed and decolorized by heating in 95% ethanol (w / v), clarified with lactic acid / glycerol / H 2 0 [3: 3: 4] for 24 hours and mounted on slides with glycerol 60 %. Histochemical stains were observed and documented with an Olympus BH-2 microscope provided with a digital camera. Plants treated with water and the sterile PG medium were used as control.
  • Intracellular hydrogen peroxide detection in Arabidopsis leaf tissue was performed with the fluorescein diacetate fluorescent probe (DCFH-DA).
  • DCFH-DA fluorescein diacetate fluorescent probe
  • a stock solution was prepared at 10 mM concentration in DMSO and from there the working solution at 40 ⁇ concentration in lOmM phosphate buffer (pH 7.4).
  • the leaves harvested at different times were incubated in the DCFH-DA solution in the dark under nitrogen gas pressure for 15 minutes and immediately observed under a fluorescence microscope.
  • Microscopic observations and photos were obtained with the Olympus BXS1 model microscope, equipped with a U-LH 100HG type epifluorescence system, a U-MWB2 excitation filter and digital camera.
  • the detection of the 0 2 ⁇ anion was performed by histochemical staining with NBT as described above for strawberry.
  • Tomato suspension cell cultures 4 to 5 days old were exposed to different microtiter plate treatments (for measurements of fluorescence).
  • the detection of ERO (H 2 0 2 ) in the cells was carried out using the H2DCF diacetate fluorescent probe (2 ', 7'-difluorodihydrofluorescein diacetate, Molecular Probes). The latter; Originally described for phagocytic cells, it was adapted and modified to measure the oxidative burst reaction of suspension cell cultures induced with elicitors by assays in a multi-channel automatic microplate fluorescence system.
  • nitric oxide (NO) in cells was carried out using the fluorescent probe diacetate DAF-FM (4-amino-5-methylamino-2 ', 7'-difluorofluorescein diacetate, Molecular Probes).
  • the fluorescence of each individual well was measured every 20 milliseconds for 2 minutes at 25 ° C. Among the measurements, the cell suspensions were agitated at 120 rpm with lcm of rotation and always at 25 ° C. All experiments were performed in triplicate. The resulting fluorescence was expressed as relative production of EROs.
  • Control cells were treated with 20 ⁇ of preincubation medium instead of the elicitor.
  • Xylanase derived from Trichoderma viride was used as an induction control of EROs and NO at a concentration of 10 and 100 ⁇ g / ml, respectively.
  • Control experiments were also carried out with NO scavengers (cPTIO: 2- (4-carboxyphenil) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide oxide) and nitric oxide enzyme inhibitors synthase (competitors of Arginine), NADPH oxidase (Apocinin) and both enzymes (DPI: diphenyliodonium) to decrease the origin of fluorescent species.
  • Inhibitor treatments were carried out by incubating the cells 30 minutes prior to treatment.
  • Salicylic acid was determined in the leaf floematic exudate. Plants of cv. Bird were treated by spray with the elicitor (15 ⁇ g / ml) and its leaves harvested at different times to extract the phloem fluid. The controls of the experiment consisted of plants treated with water, S-methyl benzo (1,2,3) thiadiazol-7-carbothioic acid (BTH) as a positive control and infected with the Mi l isolate of C acutatum. At different post-treatment times, the phloem exudate was collected with micropipette from the petioles of the fully expanded leaves of two plants and collected in a single sample. AS was determined for each time. The exudates were received in 100% cold and acidified ethanol (pH 2.5) to precipitate proteins and other high molecular weight compounds.
  • the ethane extracts were transferred to previously tared microcentrifuge tubes and concentrated to dryness under vacuum using a rotary vacuum concentrator SpeedVac Sample Concentrator Model SVC 200 (Savant Instruments Co., Farmingale, NY). Once dried, the tubes were weighed to calculate the dry weight and the samples were resuspended in 250 ⁇ of 30% methanol.
  • the runs were carried out with a mobile phase flow rate of 0.5 ml / min and with a linear gradient of elution with methanol (0-100% in 15 minutes) and then maintained at 100% for 20 minutes.
  • AS was detected photometrically at 280 nm using a UV detector and the AS peak eluted with 100% methanol under the conditions used.
  • the quantitative analysis was performed by fluorescence using an ISS-PC1 Photon counting Spectroflurometer spectroflorometer.
  • Example 8 Molecular characterization of the elicitor Microsequencing, search for similarities and alignments
  • the elicitor polypeptide purified by hydrophobic interaction chromatography using an FPLC system was separated on a 12% polyacrylamide gel under denaturing conditions using Tris-Glycine buffer with SDS and then electrotransferred to a 0.1 ⁇ Immobilon-PSQ membrane. of pore diameter in 10 mM CAPS buffer (pH 11).
  • the band corresponding to the polypeptide was gel and subjected to microsequencing by Edman degradation reaction with an Applied Biosystems Model 476 gas phase sequencer.
  • the amino acid sequences obtained were compared with the known sequences stored in the databases using the BLAST program. and DNAMAN software (version 4- 03).
  • transcript was cloned.
  • An expression library was constructed from the fungal mycelium of a culture of strain SS71 grown in PG liquid medium until stationary phase.
  • the total AR of the fungal mycelium of strain SS71 was isolated as follows: each sample (approximately 1.2 grams) was crushed in mortar with liquid N 2 and homogenized with 8 ml of extraction buffer previously heated to 65 ° C.
  • composition of the extraction buffer used was as follows: 100 mM Tris-HCl (pH 8); EDTA, 25 mM (pH 8); NaCl, 2.5 M; CTA, 2%; PVP, 2%; Spermidine, 0.5 g / 1; ⁇ -mercaptoethanol, 2%.
  • the mixture was incubated at 65 ° C for 30 min, vigorously stirring every 5 min. After centrifuging at 5,000g for 10 min at 4 ° C, the supernatant was filtered through a QIAShredder column (Qiagen) and incubated on ice for one hour.
  • RNAeasy MiniKit and RNase-Free DNase Set (Qiagen) kits, respectively, following the manufacturer's instructions.
  • concentration and purity of the total RNA samples were determined photometrically by evaluating the absorbances at 260, 230 and 10 280 nm. The total RNA concentration was calculated using the following formula:
  • RNA [ng / ⁇ ] A 26 ox Dilution Factor x FC where FC is the conversion factor (ng / ⁇ ): 1 absorbance unit is approximately 40 ng / ⁇ RNA.
  • the purity with respect to contamination with proteins and carbohydrates / polyphenols was estimated using the ratios ⁇ 26 ⁇ / ⁇ 28 ⁇ and A 26 o / A 230 (both must be greater than 2).
  • samples were quantified, they were used in the back transcription reactions immediately or stored at -80 ° C precipitated with 1/10 volume of sodium acetate and 2 volumes of ethanol, until used.
  • the cDNA library was used for PCR reactions.
  • Semi-generated primers were used to amplify the protein with elicitor activity.
  • oligonucleotide primers were designed with the lowest possible degeneration (nucleotide variations per position). For this, the regions containing amino acids with lesser were chosen as template multiplicity in the genetic code (example: tryptophan) as well as the less conserved regions of amino acids were used in order to avoid raising a cDNA encoding a protein homologous to the protein of interest with elicitor activity.
  • the semi-generated primers used were:
  • a second amplification of the Nested PCR type was then carried out using as a template the amplification product obtained from the first PCR diluted 125 times in the reaction mixture (2 ⁇ of dilution 1/10 in final volume of 25 ⁇ ).
  • This amplification used the most internal sense and antisense primers (N2 and Cl).
  • a 1.5% agarose gel was made to visualize the amplified product.
  • the candidate bands were selected according to the size in the gel, which were excised from the gel and purified by a band purification kit.
  • the sum of the sizes of the bands obtained with N2 / IR and Cl / IF should be equal to the weight of the band from which it comes ( ⁇ 800pb). With the combination of primers N2 / IR a single band of suitable intensity of 350 bp is obtained and with Cl / IF a single band of approximately 500 bp is obtained.
  • the reactions were carried out in a final reaction volume of 25 ⁇ containing 50 mM KC1, 20 mM Tris-HCl (pH 8.4), 1.5 mM MgCl 2 , 2 ⁇ of each primer (sense and antisense), 0 , 2 mM of each dNTP and 0.75 U of Taq DNA polymerase (Invitrogen).
  • Reaction conditions included an initial denaturation of 10 min at 94 ° C, followed by 40 consecutive cycles of 45 sec at 94 ° C (denaturation), 30 sec at 55 ° C (primer hybridization) and 1.5 min at 72 ° C (elongation of primers). Finally, a final elongation period was added for 10 min at 72 ° C.
  • the optimal hybridization temperatures of the primers were determined after testing with different temperatures ranging from 45 ° C to 55 ° C. In addition, different concentrations of MgCl 2 , genomic DNA and each of the primers were tested to optimize reaction conditions.
  • the amplification reactions were performed in a PTC-100 thermal cycler from MJ Research Inc.
  • the bands were cleaved from the gel, purified as explained below and concentrated eluting them in a volume of 20 ⁇ . A 5 ⁇ ota aliquot of the purified fragments was used to reamplify them by PCR using the same conditions and the same primers used in the initial amplification. Finally, the presence of the amplicon was checked by electrophoresis.
  • the PCR products were directly linked to the plasmid pCR ® 2.1 of the TopoTA Cloning Kit (Invitrogen).
  • the pCR ® 2.1 vector contains the promoters of the T7 and T3 phage bacterial RNA polymerases, flanking a multiple cloning area within the coding region of the ⁇ -galactosidase enzyme (lac Z), which allowed the insert to be sequenced using the corresponding primers according to the manufacturer's instructions.
  • a 100 ⁇ aliquot of a pure Escherichia coli DH5a culture in exponential growth stage was inoculated in 40 ml of fresh medium and grown at 37 ° C and 250 rpm to an optical density of 0.6 (OD at 550 nm) .
  • the culture obtained under these conditions was kept in an ice bath for 10 min and then centrifuged at 4 ° C for 10 min at 7,000 rpm. The supernatant was removed and cells were resuspended in 5 ml of sterile 0.1 M CaCl 2.
  • Plasmids were eluted in 100 ⁇ of sterile double-distilled water and the integrity and quantity of DNA was verified as described in section 2.3.
  • the identification of positive clones was carried out by means of the PCR technique using the universal primers T3 (5 -ATTAACCCTCACTAAAGGGA-3) (SEQ ID N ° 9) and T7 (5 -TAATACGACTCACTATAGGG-3 ' ) (SEQ ID No.
  • reaction volume 20 ⁇ ⁇ containing IX buffer of Taq polymerase without Mg, 2mM MgCl 2 , 0.5 ⁇ of each primer, 0.2 mM of each dNTP, 1 U of Taq DNA polymerase (Promega) and approximately 50 ng of plasmid DNA.
  • the reaction conditions were: initial denaturation of 2 min at 95 ° C, 30 cycles of 30 sec at 95 ° C, 30 sec at 52 ° C and 1 min at 72 ° C followed by a final extension of 5 min at 72 ° C.
  • the PCR products were separated into 1% agarose gels in 0.5X TBE, stained with ethidium bromide and visualized through UV light. The same primers used for insert verification were used to sequence each insert in both directions.
  • the sequences obtained were initially analyzed with the VecScreen and ORF Finder algorithms (http: //.ncbi.nim.nih.gov/) in order to eliminate the sequences belonging to the vector and identify possible open reading frames, respectively.
  • DNAMAN software version 5.2.2 (Lynnon Biosoft, Québec, Canada) was used to assemble nucleotide sequences and obtain deduced amino acid sequences.
  • the nucleotide and amino acid sequences were compared with the sequences deposited in the GenBank NR database by means of the Blast X and Blast P heuristic algorithms.
  • the expected threshold value was set at 0.0001 (e-value), which is a value determined empirically to filter the randomly expected alignments given the size of the search space.
  • e-value is a value determined empirically to filter the randomly expected alignments given the size of the search space.
  • GSPvar-F 5 '-GGCCCAACTGGCTACACC-3' (SEQ ID No. 11)
  • GSPvar-R 5 '-ATGGCGACGATGCGGTTG-3' (SEQ ID No. 12)
  • RNA ligase-mediated Rapid Amplification of cDNA Ends "RNA ligase-mediated Rapid Amplification of cDNA Ends"
  • RLM-RACE RNA ligase-mediated Rapid Amplification of cDNA Ends
  • the GeneRacer system technology is based on the treatment of the starting mRNA with a phosphatase (CIP) that eliminates the phosphate groups present at the 5 'end of partially degraded messengers, so that only those with full sequence and protected by the cap or structure "Cap” can continue with the cloning protocol.
  • CIP phosphatase
  • the mRNA is treated with a pyrophosphatase (TAP) that removes this "cap” from the entire mRNA leaving a phosphate group in 5 'position to which an RNA oligonucleotide can be linked with a specific sequence that will serve for the amplification process RACE's own technique.
  • TEP pyrophosphatase
  • GSP specific primers
  • nested primers located within the first amplified sequence in order to increase specificity through the use of nested (or "nested") PCR, a technique consisting of a second amplification using the product of the first.
  • the conditions of these internal primers should be similar to those mentioned above.
  • the primers used to sequence the 5 ' end were:
  • GSP RACE-R (GSP-5): 5 '-GATGTTGTTGTCGATCAAGGACTTGG-3' (SEQ ID No. 13)
  • GSP RACE Nested-R (GSPN-5): 5 '-TGCCTTGGTAGGAGACAAGCTGGAA-3' (SEQ ID No. 14)
  • the primers used to sequence the 3 ' end were:
  • GSP RACE -F GSP-3: 5 '-AGCTTGTCTCCTACCAAGGCAGCAA-3' (SEQ ID No. 15)
  • GSP RACE Nested-F (GSPN-3): 5 '-GGCCAAGTCCTTGATCGACAACAAC-3' (SEQ ID No. 16)
  • the primers provided by the RACE kit are as follows:
  • GeneRacer TM 5 'Nested (R -5): 5' -GGACACTGACATGGACTGAAGGAGTA-3 '(SEQ ID No. 18)
  • GeneRacer TM 3' (R-3): 5 '-GCTGTCAACGATACGCTACGTAACG-3' (SEQ ID No. 19)
  • the reactions were carried out in a final volume of 50 ⁇ containing IX of the PCR buffer, 0.2 mM of each dNTP, 2 mM MgS0 4 , 0.6 ⁇ of the GeneRacer 5 'or 3' primer, 0.2 ⁇ of the first specific 5 'or 3' (GSP-5 or GSP-3 respectively), 2.5 U of Platinum Taq DNA Polymerase and 1 ⁇ of a 1/5 dilution of the retrotranscription product of the RACE Expression Library constructed from the isolated producer SS71.
  • the thermocycler program used to apply the touch-down technique was:
  • PCR products were separated and visualized on 1% agarose gels as described in 2.4.
  • Amplifications were performed by nested PCR from the product of the first amplification.
  • the reactions were carried out in a final volume of 50 ⁇ containing IX of the PCR buffer, 0.2 mM of each dNTP, 2 mM MgS0 4 , 0.2 ⁇ of the GeneRacer Nested Primer primer 5 'or 3', 0, 2 ⁇ of the first specific nested 5 ⁇ 3 '(GSPN-5 or GSPN-3 respectively), 1 U of Platinum Taq DNA Polymerase and 1 ⁇ of a 1/10 dilution of the initial PCR product.
  • the PCR program used was:
  • PCR products were separated and visualized on 1% agarose gels. In the case of finding more than one band, each of these was separated from the gel, purified and cloned as described above. Finally, 3 recombinant clones were selected for each transformation amplification event which were purified and sequenced in both directions with the universal primers T3 and T7 as previously described.
  • proteolytic activity in vitro.
  • the ability to hydrolyze the chromogenic peptide substrate N-Suc- Ala-Ala-Pro -Phe-pN A, specific for trypsin / subtilisin was evaluated. Lytic proteic cleavage produces the release of p-nitroanilide that absorbs (Moallaei et al., 2006. Mycopathologia 161, 369-375).
  • the optimal conditions of the enzymatic activity of the elicitor protein were previously determined.
  • the effect of specific inhibitors for different proteases on the proteolytic activity of the elicitor of the invention from SS71 was also studied.
  • Example 10 Treatment of strawberry plants with conidia of strain SS71 of A strictum
  • Conidia of A strictum strain SS71 were resuspended as shown in example 2. They were sprayed on strawberry plants of the Pajaro, Chandler, Milsei, Camarosa, Sweet Charlie cultivars at a concentration of 10 5 , 10 6 and 10 7 conidia / mi.
  • Example 11 Treatment of plants with the EC extract of strain SS71 of A strictum
  • the conidial extract (EC) was obtained by sonication of conidia of strain SS71 of A strictum as shown in example 3.
  • the aerial parts of strawberry plants with EC were sprayed at a concentration of 1.5 ⁇ g proteins / ml and even EC retained its activity by diluting said extract approximately 12 times reaching a final concentration of 0.12 ⁇ g / ml protein.
  • the induction of the Strawberry plant defense response by protection against different virulent isolates of the genus Colletotrichum spp. causing anthracnose in different strawberry genotypes (Pájaro, Chandler, Milsei and Camarosa) and with other strawberry pathogens (B. cinérea and X. fragariaé).
  • ERO H 2 0 2 and 0 2 ' ⁇
  • Example 12 Treatment of plants with the extract SN of strain SS71 of A strictum
  • the cell-free supernatant (SN) was recovered from a culture of the SS71 isolate of A. strictum grown at 28 ° C, without stirring with continuous white light to a stationary phase (21 days) as shown in example 4.
  • the aerial parts of strawberry plants were sprayed with SN IX (undiluted) corresponding to a concentration of 8.43 ⁇ g protein / ml and even SN retained its elicitory activity when diluted approximately 21 times reaching a final concentration of 0.4 ⁇ g protein / mi.
  • the induction of the plant defense response in strawberry was evaluated by disease resistance, which was evaluated by protection against different virulent isolates of the genus Colletotrichum spp. causing anthracnose in different strawberry genotypes (Bird, Chandler, Milsei and Camarosa) and against other strawberry pathogens (B. cinérea and X. fragariaé) in cv. Bird.
  • the resistance against anthracnose is achieved by treating a single leaf of the plant, so that it is a systemic protection response.
  • Example 13 Treatment of plants with purified elicitor polypeptide of strain SS71 of A. strictum
  • subtilisin-like elicitor polypeptide was purified from a cell-free supernatant (SN) from a culture of the SS71 isolate of A strictum as shown in example 7.
  • the aerial parts of strawberry plants were sprayed with said elicitor polypeptide at concentrations variables between 2.5-15 ⁇ g / ml of polypeptide depending on the defensive response studied.
  • the induction of the plant defense response in strawberry was evaluated by disease resistance when the polypeptide was applied at a minimum concentration of 2.5 ⁇ g / ml and optimum concentration of 10 ⁇ g / ml. Protection against different virulent isolates of the genus Colletotrichum spp. causing anthracnose in different strawberry genotypes (broad spectrum response) and against other strawberry pathogens (Botritys cinerea, X. fragariae) in cv. Bird.
  • the resistance against anthracnose in particular is achieved by treating a single leaf of the plant with the elicitor polypeptide at a concentration of 5 ⁇ g / ml, so that it is a systemic protection response.
  • 100 105 110 lie Asn Tyr Val Val Ser Asp Ser Arg Ser Arg Ser Cys Pro Asn Gly
  • n is a, c, g, or t
  • n is a, c, g, or t
  • n is a, c, g, or t
  • n is a, c, g, or t ⁇ 400> 3

Abstract

Polipéptido que tiene actividad inductora de la defensa en plantas, secuencia de nucleótidos que lo codifica, microorganismo, composiciones y métodos. El polipéptido es una subtilisina que proviene de una cepa de Acremonium strictum. El polipéptido es codificado por la secuencia de nucleótidos SEQ ID N° 1 ó secuencias almenos un 90% homólogas a la misma y tiene la secuencia de aminoácidos SEQ ID Nº 2 ó secuencias al menos un 90% homólogas a la misma.

Description

Título
Polipéptido que tiene actividad inductora de la defensa contra estrés biótico en plantas, secuencia de nucleótidos que lo codifica, microorganismo, composiciones y métodos
La presente invención se refiere a un polipéptido que tiene actividad inductora de la defensa contra el estrés biótico en plantas, secuencia de nucleótidos que lo codifica, microorganismo, composiciones y métodos. Más específicamente se refiere a un polipéptido subtilisina que proviene de Acremonium strictum y en donde dicho polipéptido tiene actividad elicitora. Según una realización particular de la invención, el polipéptido es codificado por la secuencia de nucleótidos SEQ ID N° 1 ó secuencias al menos un 90% homologas a la misma y tiene la secuencia de aminoácidos SEQ ID N° 2 ó secuencias al menos un 90% homologas a la misma, en donde dicho polipéptido tiene actividad elicitora. ANTECEDENTES
La fresa es un fruto de características excepcionales, que se consume en forma fresca, deshidratada, congelada y en conserva. Desde el punto de vista económico es un cultivo muy importante dada la cantidad de insumos y la tecnología que emplea, además del valor agregado que puede adquirir por su posibilidad de industrialización y exportación.
Uno de los principales problemas de producir fresa es la gran cantidad de enfermedades y plagas (estrés biótico) que atacan el cultivo, que resultan ser limitantes para la producción y calidad de fruta. La causa principal de estrés biótico en la fresa son las enfermedades fúngicas.
Existen numerosas enfermedades, entre las más frecuentes podemos mencionar:
Podredumbres de raíz y coronas: distintas enfermedades causadas por hongos de los géneros Phytophthora, Rhizoctonia y Colletotrichum (antracnosis).
Enfermedades de hojas: Xanthomonas fragariae (mancha angular de la hoja); Gnomonia comari (mancha foliar); Mycosphaerella fragariae o Ramularia (viruela); Diplocarpon ear liana (quemadura o mancha de la hoja); Dendrophoma/Phomopsis obscurans (tizón); Sphaerotheca macularis (oidio); Colletotrichum spp. (antracnosis).
Enfermedades de flores y frutos: Rhizopus stolonifer (podredumbre); Botrytis cinérea (moho gris); Colletotrichum spp. (antracnosis).
La antracnosis de fresa, causada por un complejo de hongos del género
Colletotrichum, es sin duda la enfermedad que afecta más negativamente el cultivo, atacando prácticamente todos los órganos de la planta y provocando grandes pérdidas tanto en producción de fruta como en vivero (producción de plantines), principalmente en regiones agroclimáticas tropicales y subtropicales.
Dada la gran diversidad patogénica (al menos tres especies distintas) casi todas las variedades son sensibles a la antracnosis. Lo difícil en el mejoramiento genético del cultivo, es combinar en una sola variedad genes que confieran características productivas, viverísticas y de resistencia a enfermedades, mucho más a una enfermedad causada por diversos patógenos como es el caso de la antracnosis.
Los manejos culturales en conjunto con los tratamientos químicos contribuyen a disminuir la incidencia de la antracnosis. Sin embargo, el uso desmedido de agroquímicos tiene un alto impacto en la degradación del ecosistema y en la salud del trabajador rural, así como en la contaminación de las aguas y en el contenido de residuos tóxicos en los alimentos, además de que llevan a la aparición de cepas de hongos resistentes a fungicidas y tienen efectos directos en la eliminación de los enemigos naturales de las plagas. El exceso de residuos de fungicidas presentes en la fruta puede causar serios inconvenientes a la hora de comercializar o realizar exportaciones de fresa por no cumplir con los estándares de calidad exigidos por las autoridades locales o los mercados importadores.
En la actualidad existe un importante consenso mundial de promover, en general, la agricultura sostenible o sustentable mediante el desarrollo de sistemas productivos integradores de procedimientos agronómicos de bajo impacto ambiental (producción integrada). Entre las diversas aproximaciones biológicas englobadas en el término biotecnología, se incluye la utilización de variedades con resistencia incrementada (resultantes de mejora genética convencional o asistida por biotecnología molecular) así como el empleo de Agentes de Control Biológico (ACB).
Los ACB pueden i) actuar directamente sobre el patógeno como es el caso de los "microorganismos antagonistas", ii) ejercer una acción indirecta al interaccionar en la planta hospedadora, confiriéndole protección frente a la enfermedad, ya sea por: transmisión de hipovirulencia a razas virulentas con su consiguiente neutralización o bien mediante iii) activación de los mecanismos de defensa de la planta, lo que se conoce como estrategia de "Resistencia Inducida" o "preinmunización".
Las plantas se defienden de los potenciales patógenos invasores ya sea a través de estructuras morfológicas que actúan como barreras físicas que inhiben la entrada y desarrollo del patógeno, o por medio de reacciones bioquímicas que tienen lugar en diferentes tejidos de la planta y que producen sustancias tóxicas para el patógeno o generan condiciones que inhiben la entrada y crecimiento del microorganismo en el hospedero. Estas defensas pueden encontrarse en forma constitutiva constituyendo una protección no específica contra un amplio rango de microorganismos o bien pueden ser inducidas ante la presencia del patógeno atacante. En este último caso, las plantas al igual que otros seres vivos, activan sus propios sistemas de defensa al reconocer una molécula derivada de un microorganismo patógeno o bien al percibir alguna molécula generada durante la invasión del patógeno, cualquiera de ellas denominada "inductor" o "elicitor" de defensa.
En una interacción planta/patógeno, las moléculas inductoras alertan la presencia del patógeno invasor al ser reconocidos por la planta hospedadora (Nürnberger, 1999. Cell Mol. Life Sci. 55, 167-182). Cuando la planta reconoce en forma temprana a los elicitores del patógeno atacante, produce una activación rápida de sus mecanismos de defensa, que bloquean la infección, deteniendo el avance del patógeno. Se dice que en este caso la interacción planta/patógeno es de tipo incompatible porque no conduce a enfermedad y la cepa fitopatógena se define como avirulenta (Keen, 1990. Annu. Rev. Genet. 24, 447-463). Por el contrario, la planta se enferma cuando no es capaz de percibir la agresión del patógeno o bien cuando lo detecta tardíamente (a sus elicitores) y aunque desencadena algunos mecanismos de defensa, no son suficientes para frenar a tiempo la invasión, por lo tanto se dice que la interacción planta/patógeno es de tipo compatible y la cepa se considera virulenta.
Durante una infección fúngica, las plantas pueden reconocer al agresor a través de una batería de elicitores. Algunas de estas moléculas inductoras provienen del patógeno (factores no propios), y pueden estar presentes en la superficie fúngica (e.g., quitina y fragmentos de glucano) o bien son secretadas por el patógeno (e.g., proteínas de avirulencia); mientras que otras son generadas por la planta durante la invasión fúngica (llamadas factores propios), tal es el caso de los fragmentos de pared celular de la planta (e.g., oligogalacturonatos, quitina, heptaglucanos, glicopéptidos monosilados) que son liberados a partir de precursores poliméricos por la acción de enzimas hidrolíticas del patógeno invasor (Knogge, 1996. The Plant Cell 8, 1711-1722). Es decir que podemos clasificar a los elicitores en compuestos preformados, los cuales están presentes en la superficie del patógeno, o bien pueden ser inducibles, cuando son sintetizados durante la interacción del patógeno con la planta hospedadora.
Generalmente, el reconocimiento del patógeno y la activación subsecuente de respuestas de resistencia a enfermedad en plantas puede ocurrir a nivel de especie (e.g. resistencia de especie o no-hospedero, o resistencia hospedero no específica de cultivar, o inmunidad innata), o bien a nivel de genotipo (resistencia hospedero específica de cultivar). La resistencia específica de un cultivar, es la que se expresa en un cultivar particular contra uno o un número reducido razas de patógenos y constituye lo que se conoce como respuesta "gen a gen" y está genéticamente determinada por el par complementario codificado por el gen de avirulencia (Avr) del patógeno y el producto de un gen de resistencia R de las planta. Así, cuando la proteína AVR es reconocida directa o indirectamente por una planta hospedadora resistente, actúa como un "elicitor específico" de la defensa, permitiendo ser detectado por el sistema de vigilancia que dispone la planta. Sin embargo, la inmunidad innata es la forma de resistencia predominante en todas las especies de plantas. En esta respuesta, una gran variedad de productos asociados a microorganismos llamados "elicitores generales", inducen la respuesta de defensa en muchas especies de plantas y no son dependientes de un cultivar específico. El término Patrón Molecular Asociado a Patógenos o sus siglas en inglés "PAMP" (por "Pathogen-Associated Molecular Pattern") se refiere a cualquier molécula capaz de activar el sistema de defensa de las plantas y pueden encontrarse en un grupo amplio de patógenos (Bent and Mackey, 2007. Annu. Rev. Phytopathol. 45, 399-436). Kamoun (Kamoun, 2006. Annu. Rev. Phytopathol. 44, 41-60) reporta los elicitores producidos por hongos oomycetes patógenos de plantas mientras Stergiopoulos y colaboradores (Stergiopoulos and de Wit, 2009. Annu. Rev. Phytopathol. 47, 233- 263) describen las proteínas de avirulencia fúngicas reportadas hasta el momento.
Después del reconocimiento del elicitor, se han identificado una serie de cambios cito lógicos y respuestas bioquímicas en las células de las plantas. En términos bioquímicos se puede decir que un inductor interacciona con un receptor de la superficie celular que detecta la señal extracelular y la convierte en señales intracelulares, cuya transducción implica a) flujos iónicos transmembrana (i.e. entrada de Ca++, H+, Cl", y Ca2); b) la generación de especies reactivas de oxígeno (ERO) como H202, 02 ~, etc. tóxicas para la células que producen un estallido oxidativo ("oxidative burst"); c) la producción de óxido nítrico (NO); c) la fosforilación/defosforilación de proteín-quinasas activadas por mitógeno (MAPKs) y otras dependientes de calcio (CDPKs).
Estas señales dan lugar a respuestas de defensa tempranas en el sitio de infección y tardías en áreas alejadas de la planta.
Las respuestas de defensa locales frente a elicitores implican la regulación de varios genes, los cuales contribuyen a generar condiciones fisiológicas protectivas contra los patógenos invasores. En el sitio de infección estas respuestas incluyen la generación de especies reactivas del oxígeno (ERO), la acumulación rápida de numerosas enzimas y metabolitos, como por ejemplo proteínas implicadas en la producción de señales tales como el ácido salicílico (AS), j asmo natos y/o etileno y de enzimas relacionadas al metabolismo de los fenilpropanoides (PAL: Fenil amonio liasa; CHS: chalcona sintasa; etc.) y la biosíntesis de fitoalexinas, metabolitos secundarios de bajo peso molecular que tienen actividad antimicrobiana, y las llamadas proteínas PRs (proteínas relacionadas con la patogénesis). Esta defensa está restringida al área que rodea al sitio de penetración del patógeno. Eventualmente, las células del sitio de infección pueden sufrir un proceso de muerte celular, que a menudo se vuelve visible como una respuesta de hipersensibilidad. La Respuesta de Hipersensibilidad (HR: del inglés "hypersensitive response") consiste en la muerte rápida y localizada de las células del hospedador que son invadidas por el patógeno, por un fenómeno de necrosis o bien de muerte celular programada (PCD). Este fenómeno está asociado a un reforzamiento de la pared celular de las células afectadas por lignificación local y acumulación de calosa, formación de uniones cruzadas de las glicoproteínas ricas en hidroxiprolina (HRPG), activación de enzimas implicadas en el entrecruzamiento de moléculas ("cross- linking") como estrategia de la planta para limitar la colonización a los sitios de infección.
El ácido salicílico (AS), una hormona vegetal que entre otras funciones inhibe la catalasa exacerbando el estrés oxidativo, y además coordina la expresión del subgrupo de las proteínas PRs que se agrupan en tres clases: quitinasas, glucanasas y proteínas de unión a quitina. En conclusión, para matar o detener exitosamente al microorganismo invasor se requiere una coordinación espacial y temporal precisa de las respuestas de defensa inducidas.
Una infección local a menudo conduce a la inducción de respuestas de defensa similares en tejidos de planta no infectados que resulta en una resistencia a infecciones subsecuentes (Kuc, 1982. BioScience 32, 854-860). Esta línea de defensa lleva a la acumulación de proteínas y enzimas hidrolíticas en todo el organismo por lo que se denomina "sistémica" (Hunt and Ryals, 1996. Crit. Rev. Plant Sci. 15, 583- 606). Normalmente confiere resistencia al agente inductor primario (patovar virulento) pero también a un amplio espectro de otros patógenos fúngicos, bacterianos y virales (inmunización). Cuando esta respuesta de defensa es mediada por acción de un patógeno avirulento se conoce como Resistencia Sistémica Adquirida o SAR (del inglés "Systemic Adquired Resistance"). Además, la resistencia sistémica también puede ser desencadenada por un microorganismo no patógeno de la rizósfera, caso en el que se llama Resistencia Sistémica Inducida o ISR (del inglés "Induced Systemic Resistance"); o bien puede ser inducida por heridas (daño mecánico). Las diferentes respuestas de defensa sistémicas asociadas con las infecciones del patógeno incluyen la inducción de varios genes PR, acumulación de fitoalexinas, inducción de EROs y micro HR.
Lo anteriormente expuesto sugiere que se podría utilizar la inducción de una respuesta de defensa sistémica de amplio espectro (tipo SAR o ISR) como una estrategia de "inmunización" para prevenir o disminuir las enfermedades en los cultivos (Resistencia Inducida o RI). En fresa se ha propuesto el uso la RI para el control de Phytophthora spp. (Eikemo et al, 2003. Plant Dis. 87, 345-350) y Botrytis (Adikaram et al, 2002. Australasian Plant Pathology 31(3), 223-229). Este fenómeno de protección de la planta hopedera que originalmente se denominó "Protección Cruzada" fue utilizado para el manejo de enfermedades causadas por virus por inoculación previa con estirpes débiles del mismo virus, lográndose que el virus que precede a otro en la inoculación impida el desarrollo del último. Posteriormente se vio que era posible incrementar la resistencia también a razas severas de un patógeno fúngico mediante la preinoculación con un genotipo avirulento de la misma especie de hongo o a través de la aplicación de un microorganismo no patógeno de la rizósfera; este último fenómeno, como se dijo, fue llamado ISR para diferenciarlo de SAR.
A diferencia de la respuesta inducida por un microorganismo no patógeno de la rizósfera, no es posible la implementación a campo de un sistema del tipo SAR que implica la infección de las plantas directamente con un microorganismo patogénico vivo, debido a que presenta serios inconvenientes dentro de los cuales merece citarse la posibilidad de que la cepa avirulenta usada para proteger un cultivar produzca la enfermedad en otros genotipos que se comporten como susceptibles (Fulton, 1986. Annu. Rev. Phytopathol. 24, 67-81). Una alternativa biotecnológica más sencilla para solucionar este problema e inducir la resistencia consiste en inactivar el patógeno y aplicar fracciones procedentes de diferentes cultivos del patógeno (extractos no patogénicos) que conserven la actividad inductora de defensa, a la vez que pierdan su potencial de patogenicidad, es decir usar fracciones del patógeno inactivado que contengan el o los agentes inductores de la defensa. Un mayor conocimiento del sistema permitiría desde la aplicación directa de moléculas elicitoras derivadas de la interacción planta/ patógeno avirulento que sean capaces de otorgar resistencia contra enfermedades mediante la inducción de una respuesta defensiva sistémica de amplio espectro (elicitor de SAR), hasta la expresión del gen de avirulencia de dicho patógeno en plantas transgénicas.
Actualmente se conocen muy pocos elicitores que consiguen inducir efectivamente la resistencia. En fresa se han registrado como bioplaguicidas de acción elicitora las proteínas harpin (nombre comercial: MESSENGER®) que constituyen una alternativa al uso de bromuro de metilo, las cuales son efectivas contra la mancha de hoja bacterial, tristeza bacterial, tizón bacterial, ciertas enfermedades fúngicas; y el quitosano (nombre comercial: ELEXA-4®) que es activo contra "mildeu" lanoso y polvoroso y moho gris. Sin embargo, hasta el momento no se ha propuesto ningún tipo de método de control biológico para controlar la antracnosis {Colletotrichum spp.) en fresa.
En vista de lo antes mencionado, y habiendo detectado la falta de soluciones respecto a la provisión de nuevos métodos de tratamiento y/o prevención de enfermedades, los inventores han identificado una nueva proteína excretada al medio por Acremonium strictum, y la han purificado a homogeneidad. Esta proteína actúa como factor de avirulencia (elicitor), desencadenando diferentes mecanismos de defensa que inmunizan al vegetal, y lo vuelven resistente a enfermedades, entre ellas la antracnosis producida por Colletotrichum spp.
BREVE DESCRIPCION DE LA INVENCION
Se provee un polipéptido que corresponde a una subtilisina que tiene actividad elicitora (inductora) de la defensa contra estrés biótico en plantas, el cual proviene de Acremonium strictum, por ejemplo Acremonium strictum SS71 depositada en el centro de depósito alemán DSMZ con el código de acceso DSM 24396 y en donde dicho polipéptido tiene actividad elicitora. El polipéptido es codificado por la secuencia de nucleótidos SEQ ID N° 1 ó secuencias al menos un 90% homologas a la misma y tiene la secuencia de aminoácidos SEQ ID N° 2 ó secuencias al menos un 90%> homologas a la misma, en donde dicho polipéptido tiene actividad elicitora. Se provee una secuencia de nucleótidos que codifica al polipéptido elicitor que se muestra en la secuencia SEQ ID N° 1 ó secuencias al menos un 90% homologas.
Se provee un microorganismo productor del polipéptido elicitor, dicho microorganismo es la cepa Acremonium strictum SS71 depositada en el centro de depósito alemán DSMZ con el código de acceso DSM 24396.
Se provee una composición, útil en la inducción de resistencia a factores bióticos en plantas, que comprende conidios de Acremonium strictum y excipientes, por ejemplo comprende entre lxlO3 y lxlO8 conidios/ml. Preferentemente, la composición comprende conidios de la cepa Acremonium strictum SS71 depositada en el centro de depósito alemán DSMZ con el código de acceso DSM 24396
Se provee una composición, útil en la inducción de resistencia a factores bióticos en plantas, que comprende un extracto de Acremonium strictum. Preferentemente, la composición comprende un extracto de la cepa Acremonium strictum SS71 depositada en el centro de depósito alemán DSMZ con el código de acceso DSM 24396. El extracto puede ser sobrenadante libre de células o extracto conidial.
Se provee una composición que comprende entre 2,5 y 15 μg/ml del polipéptido elicitor.
Se provee un procedimiento de obtención y purificación del polipéptido elicitor que comprende las siguientes etapas:
a. cultivar Acremonium strictum, preferentemente Acremonium strictum SS71 con el código de acceso DSM 24396;
b. recuperar el sobrenadante;
c. concentrar el sobrenadante; y
d. ultrafiltrar el producto obtenido en la etapa anterior.
Se provee un método para inducir resistencia a patógenos en una planta que comprende aplicar a dicha planta una composición derivada de Acremonium strictum, por ejemplo la cepa de Acremonium strictum SS71 con el código de acceso DSM 24396. La composición puede ser: una suspensión de conidios de la cepa, extracto libre de células, extracto conidial, sobrenadante de cultivo, una solución de un polipéptido elicitor o una combinación de las mismas. La suspensión de conidios se puede aplicar en una concentración de entre Ixl03 y lxl08 conidio s/ml, el extracto libre de células puede tener una concentración entre 0,4 y 9 μ proteína/ml, el extracto conidial puede tener una concentración entre 0,12 y 1,5 μ proteína/ml y la solución del polipéptido elicitor puede comprender entre 2,5 y 15 μ^ιηΐ. Debido a que el elicitor genera una respuesta sistémica no-específica, el método de la invención provee protección contra un amplio rango de patógenos, y es efectivo en la protección contra hongos, bacterias y virus. El método se puede aplicar entre otros a los siguientes patógenos: Colletotrichum spp., Botrytis ciñera o Xanthomonas fragariae. Más aún, debido a que los mecanismos de protección desencadenados por el elicitor están ampliamente difundidos en el reino vegetal, el método es efectivo en cualquier tipo deplanta, en particular plantas pertenecientes a las Eudicotiledóneas tales como fresa (Fragaria x ananassa), tomate (Solanum lycopersicon) o Arabidopsis thaliana, mediante aspersión en las partes aéreas, infiltración o riego.
DESCRIPCION DE LAS FIGURAS
Figura 1 : La figura 1 muestra en un gráfico el nivel de severidad de la enfermedad (DSR) de la antracnosis en plantas de fresa cv. Pájaro tratadas con extractos que contienen el elicitor 48 horas antes de la inoculación con el aislado virulento Mi l de C. acutatum. Las plantas fueron evaluadas 40 dpi (días posteriores a la inoculación) con Mi l . EC: Extracto conidial (10 μg proteína/ml) obtenido por sonicación; SN: sobrenadante de cultivo líquido crecidos en medio PG (papa- glucosa) hasta fase estacionaria (10 μg proteína/ml). Ctr-PC: control de plantas infectadas con el Mi l las que fueron previamente inoculadas con la cepa avirulenta (SS71) de A. strictum. Ctr.-Ca: control de plantas infectadas con Mi l sin tratamiento previo. DSR significa: Tasa de Severidad de la Enfermedad ("Disease Severity Rating").
Figura 2: La figura 2 A muestra la susceptibilidad al calor de la actividad elicitora. Los ensayos fueron realizados con sobrenadantes de cultivos del aislado SS71 de A. strictum crecidos en medio PG hasta la fase estacionaria, luego de concentrarlo y dializado. (A) SN: extracto sin tratamiento. SN1 : extracto calentado a ebullición en baño de agua hirviente por 15 min; SN2: extracto calentado a 120°C por autoclavado (1 atm. sobrepresión) por 15 min. La figura 2B muestra la susceptibilidad a la digestión con Proteinasa K de la actividad elicitora. SN: extracto no tratado; SNA: extracto tratado con Proteinasa K (100 μg/ml) por 1 hora a 50°C; y SNB: extracto tratado por 12 horas a 50°C. Controles: Ctr.-PC: plantas infectadas con el Mi l las que fueron previamente inoculadas con la cepa avirulenta (SS71) de A. strictum. Ctr.-Ca: plantas infectadas con Mi l sin tratamiento previo. Las evaluaciones fueron realizadas 40 dpi. DSR significa: Tasa de Severidad de la Enfermedad ("Disease Severity Rating")
Figura 3: La figura 3 muestra la primera etapa de purificación del elicitor fúngico de la invención en un perfil obtenido a partir de una separación cromatográfica por FPLC utilizando una matriz de intercambio aniónico Q equilibrada a pH 7,5 (Pharmacia). La elución se realizó con un gradiente creciente discontinuo de NaCl (0-100%). La actividad se encuentra concentrada en el pico I.
Figura 4: La figura 4 muestra la segunda etapa de purificación del elicitor fúngico en un perfil obtenido a partir de una separación cromatográfica por FPLC utilizando una matriz de interacción hidrofóbica Phenyl Superóse HP (Pharmacia) equilibrada con Tris-HCl (50mM, pH 7,5), EDTA (lmM) y (NH4)2S04 (1,5 M), y eluida con un gradiente decreciente discontinuo de (NH4)2S04 (100-0 %). La actividad se encuentra concentrada en el pool IV.
Figura 5: La figura 5 muestra las proteínas presentes en las fracciones I a IV (20 μg de carga total) obtenidos por FPLC en Phenyl Superóse HP (Figura 4) separadas mediante SDS-PAGE al 12%. La actividad se encuentra concentrada en el pool IV. La flecha indica la proteína elicitora activa posteriormente purificada a homogeneidad (Figura 6).
Figura 6: La Figura 6 muestra una SDS-PAGE al 10% de la subfracción activa (7 μg proteína total) obtenida por re-cromatografía del pool IV a través de Phenyl Superóse HP eluida en las mismas condiciones que las mencionadas en la figura 4, con un gradiente inverso de (NH )2S04 (100-0 %>) más escalonado. La proteína activa eluye de la columna PS a una concentración de (NH4)2S04 de 0,5 M. Figura 7: La figura 7 muestra una fotografía de las plantas tratadas y no tratadas con el elicitor de la invención (2,5 μg proteína/ml) y luego de la infección con el aislado virulento (Mi l) de C. acutatum a los 40 días post- inoculación. La hilera superior corresponde a plantas pre-tratadas con el elicitor y la hilera inferior a plantas tratadas con agua (control de virulencia) respectivamente, 48 hs antes de la inoculación con el patógeno Mi l .
Figura 8: La figura 8 muestra fotos de la acumulación de especies reactivas de oxígeno (ERO) 4 hs posterior al tratamiento por aspersión del elicitor (10 μg proteína /mi) en hojas de fresa cv Pájaro. (A) Acumulación de H202 detectada por DAB (método del ácido diaminobenzoico), (B) acumulación de 02 ~ (anión superóxido) detectado por NBT (método del azul de nitrotetrazolio) y (C) control de hoja tratada con agua. Las barras de escala indican 100 μιη.
Figura 9: La figura 9 muestra fotos de la acumulación de especies auto fluorescentes posterior al tratamiento por infiltración del elicitor (50 μΐ, 10 μg proteína /mi) en hojas de fresa cv. Pájaro. (A) Hoja tratada a tiempo cero o tratada con agua, (B) fluorescencia 12 horas posterior al tratamiento y (C) fluorescencia 72 horas posterior al tratamiento. Las imágenes fueron capturadas en una lupa fluorescente (320 nm, Leitz). Las barras de escala indican 300 μιη.
Figura 10: La figura 10 muestra fotos de la acumulación de calosa en hojas de fresa cv. Pájaro a los 7días posteriores al tratamiento por aspersión de elicitor (10 μg proteína /mi; A) o agua (control; B); o bien a los 2 días post-inoculación con aislado virulento C. acutatum Mi l tratadas 7 días antes con elicitor (10 μg proteína /mi; C); y control de plantas solo infectadas con Mi l (D). Las barras de escala indican 100 μιη
Figura 11 : La figura 11 muestra un gráfico de la acumulación de ácido salicílico en hoja de fresa cv. Pájaro luego del tratamiento por aspersión de agua □ , BTH (0,5 mM) Hy elicitor ( 15 μα proteína mi ) M
Figura 12: La figura 12 muestra el esquema experimental, el aspecto que presentaban plantas fresa del cv. Pájaro luego distintos tratamientos y los valores de DSR luego de 40 dpi. Los plantas fueron tratadas en una hoja con el elicitor (flecha) 7 días antes de infectar el resto de la parte aérea por aspersión del aislado virulento MI 1 de C. acutatum (l,5xl06 conidios /mi). A) plantas pre-tratadas con elicitor (5 μg proteína /mi), B) pre-tratadas con BTH (0,5 mM), C) pre-tratadas con AS (0,5 mM) y D) con agua. DSR significa: Tasa de Severidad de la Enfermedad ("Disease Severity Rating").
Figura 13: La figura 13 muestra en un gráfico la sintomato logia de la enfermedad en distintos cultivares de fresa pretratadas con el elicitor (10 μg proteínas/ml) derivado de A. strictum SS71. DSR significa: Tasa de Severidad de la Enfermedad ("Disease Severity Rating").
Figura 14: La figura 14 muestra en un gráfico la medición de producción de NO (óxido nítrico) y ERO (H202) en cultivo celular de tomate (Solanum lycopersicon) mediante sondas fluorescentes. Para detección de NO se utilizó la sonda fluorescente DAF-FMDA y para ERO la sonda H2DCF-DA y en ambos casos λ exi= 480 nm; λ emi = 525 nm. Tiempo de incubación 30 minutos a temperatura ambiente. El elicitor se utilizó a una concentración de 10 μg/ml para el NO y de 5 μg/ml para ERO; la xilanasa (inductor control) a 100 μg/ml para el NO y 10 μg/ml para ERO.
Figura 15: La figura 15 muestra fotos del máximo de producción de peróxido de hidrógeno intracelular con sonda fluorescente Diacetato de Fluoresceína (DCFH- DA) en hojas de Arabidopsis thaliana observadas por microscopía de fluorescencia (luz UV). El panel (A) corresponde al tejido foliar control de plantas tratadas por aspersión con agua a las 2 hpt (horas post tratamiento) mientras que el panel (B) corresponde al tratamiento con elicitor en el mismo tiempo (2 hpt). Las barras de escala indican 100 μιη
Figura 16: La figura 16 muestra fotos de la evolución temporal de la generación de radical superóxido detectado por tinción con NBT en hojas de Arabidopsis thaliana tratadas con elicitor a las 2 hpt (A), 4 hpt (B) y 6 hpt (C) y sus respectivos controles (tratadas con agua) a cada tiempo (D-F).
Figura 17: La figura 17 muestra las secuencias aminoacídicas (método de Edman) de los tres fragmentos (digeridos trípticos) analizados del polipéptido de la presente invención de 34 kDa elicitora de la defensa aislada de A. strictum. Figura 18: La figura 18 muestra la secuencia de nucleótidos que codifica el polipéptido con actividad elicitora de la presente invención, A: Secuencia nucleotídica completa del transcripto maduro o ADN complementario (ADNc) (SEQ ID N° 1); B Secuencias nucleotídicas que produjeron los valores máximos de similitud y especies de origen de estas secuencias obtenidas por Blast X.
Figura 19: A: Se muestra la secuencia de la proteína elicitora deducida a partir de la secuencia nucleotídica del ADNc (SEQ ID N° 2); B: Secuencias aminoacídicas que produjeron los valores máximos de similitud y especies de origen obtenidas por Blast P; C: estructura de una subtilisina obtenida de Trichoderma koningii en la que se indica el dominio inhibidor 19 y el dominio catalítico S8. Se muestra que las secuencias obtenidas que son fragmentos de la invención (proteína elicitora de la defensa en plantas de 34 kDa) se encuentran dentro del dominio catalítico (peptidasa S8) de la proteína. También se muestra la extensión en aminoácidos de cada dominio.
Figura 20: La figura 20 muestra la variación de la absorbancia a λ=405 nm en el tiempo. Las curvas indican la actividad proteolítica de la proteína elicitora a 15 μg/ml (A ) y de la subtilisina de Bacillus subtilis (0,04 μg/ml) empleada como control positivo (■ ). La curva (♦ ) indica la actividad de autoproteólisis del sustrato cromogénico. El incremento de la absorbancia es debido a la reacción enzimática de proteólisis del sustrato cromogénico N-Suc-Ala-Ala-Pro-Phe-p-NA por liberación de
Figure imgf000015_0001
DESCRIPCION DETALLADA DE LA INVENCIÓN DEFINICIONES:
A los efectos de la presente solicitud de patente siempre que se haga referencia a "elicitor o elicitores", se refiere a todo compuesto capaz de inducir cualquier tipo de respuesta de defensa en una planta. Los elicitores puede ser moléculas de naturaleza muy variada: proteínas, carbohidratos, lípidos; péptidos pequeños, compuestos pequeños de origen heterogéneo, tal como metabolitos secundarios, derivados de azúcares y/o aminoácidos, ácidos grasos y combinaciones de los mismos.
Capacidad elicitora tiene el mismo significado que actividad inductora de la defensa contra el estrés en plantas, por ejemplo estrés biótico.
Por otro lado, cuando en la presente solicitud se haga referencia a "Resistencia Inducida" (RI), se refiere al fenómeno por el cual una planta bajo la estimulación apropiada de su defensa por exposición previa a un elicitor adquiere un nivel aumentado de resistencia contra patógenos.
La antracnosis es una enfermedad fúngica que produce holonecrosis en la parte vegetativa de la planta. La forma infectiva de las especies de Colletotrichum spp. causante de esta enfermedad son los conidios que al germinar penetran por los estomas, tricomas o directamente por la epidermis de las hojas de la planta y atacan el tejido de conducción (xilema), causando el estrangulamiento de los pecíolos. Los síntomas comienzan a manifestarse en la parte superior del pecíolo y avanzan hasta atacar la corona (tallo modificado), lo que ocasiona la muerte de la planta. La evaluación de la severidad de los síntomas de antracnosis se realiza en los pecíolos según la escala fijada por Delp and Milholand (Delp and Milholand, 1980. Plant Dis. 64, 1071-1073) que define una Tasa de Severidad de la Enfermedad ("Disease Severity Rating": DSR). Esta escala de DSR se extiende de 1 hasta 5 en grado creciente de sintomatología de la enfermedad y es determinada en pecíolo. Los distintos niveles de severidad se clasifican como:
Grado de infección 1 : sin lesiones.
Grado de infección 2: lesiones menores a 3 mm de longitud y superficiales, manchas oscuras a lo largo del pecíolo (puntóos negros).
Grado de infección 3: lesión de entre 3-10 mm de longitud, mancha oscura rodeada generalmente de una coloración roja.
Grado de infección 4: lesión severa con estrangulamiento del pecíolo, que puede abarcar hasta un 50% de la longitud del mismo.
Grado de infección 5 : lesión muy severa, con estrangulamiento en más del 50% de la longitud del pecíolo y/o planta muerta.
El protocolo para evaluar la evolución de la antracnosis seguido en la presente solicitud fue el siguiente: 1) Las lesiones se evalúan en los pecíolos de las tres hojas más jóvenes totalmente expandidas.
2) En el caso de haber distintos grados de sintomatología en la misma planta, se considera el valor máximo en el momento de la observación.
3) Los síntomas de la enfermedad se evalúan los días 9, 21, 30, 40 posteriores a la inoculación (dpi: días post-inoculación) con el patógeno virulento, según el procedimiento optimizado por Salazar et al., 2001 (REDBIO Brasil) y 2002 (REDBIO Agentina).
A los fines prácticos y de simplicidad en la presentación de los resultados en la presente solicitud, sólo se informan los grados de sintomatología obtenidos a los 40 días posteriores a la inoculación (40 dpi) para cada ensayo fitopato lógico.
La evolución de la enfermedad y la recuperación final del lote de plantas fueron considerados parámetros de evaluación. La recuperación de las plantas está determinada por el valor de DSR al final de la evaluación, es decir a los 40 días (DSR40), el cual significa:
DSR4o=l, recuperación total o ausencia de enfermedad.
DSR4o=2, recuperación parcial.
DSR4o=3 a 5, persistencia de la enfermedad.
La recuperación de las plantas da una medida de la eficiencia de protección del inductor en relación al producto usado en el tratamiento de las plantas.
La presente solicitud provee un elicitor que permite la prevención y/o tratamiento de enfermedades vegetales, tales como la antracnosis. Más particularmente, la presente invención provee un polipéptido codificado por la secuencia de nucleótidos SEQ ID N° 1 ó secuencias al menos un 90% homologas a la misma. En una forma de realización preferida, dicho polipéptido comprende la secuencia de aminoácidos SEQ ID N° 2 o secuencias al menos un 90% homologas a la misma, en donde dicho polipéptido tiene actividad elicitora. En otra forma de realización más preferida, el polipéptido de la presente invención deriva de una cepa de Acremonium strictum, preferentemente dicha cepa es la cepa Acremonium strictum SS71, depositada bajo Tratado de Budapest el día 14 de Diciembre de 2010 en el centro de depósito alemán DSMZ con el código de acceso DSM 24396. El polipéptido de la presente invención fue obtenido luego de la evaluación de numerosos aislados locales de diferentes cepas de patógenos fúngicos de fresa procedentes de la región del Noroeste Argentino, muchas de las cuales pertenecen a las diferentes especies de Colletotrichum que integran el complejo fúngico responsable de la antracnosis en el cultivo de fresa: C. fragariae, C. acutatum, C. gloeosporioides . Como resultado de este estudio se logró aislar y purificar la cepa SS71 que fue identificado como Acremonium strictum que es motivo de la invención, que es virulento para algunos cultivares de fresa (i.e. cv. Chandler), mientras que es completamente avirulento para otros como por ejemplo el cv. Pájaro de fresa. La cepa SS71 de Acremonium strictum expresa un polipéptido que tiene una secuencia de aminoácidos SEQ ID N° 2 ó secuencias al menos un 90% homologas a la misma, en donde dicho péptido tiene actividad elicitora.
En los estudios llevados a cabo con los diferentes aislados se muestra que la interacción planta/patógeno es altamente específica, es decir que depende del genotipo de la planta y del patógeno (patovar o raza). Distintos pato vares pueden afectar a un determinado genotipo de fresa con diferente grado de severidad y viceversa, los diferentes cultivares y variedades de fresa responden en forma diferencial cuando son desafiados con un mismo aislado patogénico.
Se definió un sistema de Protección Cruzada en el cv. Pájaro entre el aislado avirulento A. strictum SS71 y un aislado virulento de C. acutatum (Mi l). Por ejemplo, este sistema se puso de manifiesto inoculando primero las partes aéreas de plantas sanas con conidios vivos del aislado SS71 y a los tres días con conidios vivos del aislado Mi l, observándose que no se producía enfermedad. Se utilizaron células en estado de conidios.
También se muestra que las plantas del cv. Pájaro después de la infección con
A. strictum SS71 adquieren resistencia frente a cepas virulentas de Colletotrichum spp., Botrytis ciñera y Xanthomonas fragariae. Además se comprobó que esta protección se produce debido a que la interacción del cultivar Pájaro con el patovar avirulento e induce una respuesta del tipo SAR. Este hallazgo tiene interesantes implicancias para generar un manejo agronómico de las enfermedades del cultivo, con un menor impacto en la salud humana y ambiental.
En una realización preferida se puede implementar a campo un sistema agronómico de biocontrol basado en la protección cruzada, inoculando las plantas directamente con la cepa viva o conidios de SS71 de A. strictum. Teniendo en cuenta que si bien la cepa es avirulenta frente al cv. Pájaro es capaz de enfermar variedades susceptibles. Es más deseable obtener extractos no patogénicos que contengan la capacidad elicitora para elaborar formulaciones que desencadenen la respuesta defensiva, y mejor obtener y utilizar el compuesto con actividad elicitora para preparar una composición para inducir el sistema de defensa de una planta.
Es otra realización preferida aplicar directamente la molécula elicitora de la presente invención para inmunizar y prevenir enfermedades fúngicas del cultivo, por ejemplo de fresa. Esta tecnología además de ser ambientalmente segura, puede constituir una alternativa agronómicamente aplicable por su inocuidad.
Se observó protección cruzada contra C. acutatum Mi l inoculando previamente las plantas del cv. Pájaro con una suspensión de conidios vivos de la cepa SS71 de A. strictum a una concentración de 1,5.106 conidios/ml.
Se analizó además al extracto conidial de A. strictum SS71 obtenido por sonicación (EC). Se evaluó la evolución de la sintomato logia (DSR) en el tiempo (dpi) en ensayos de doble tratamiento. La evaluación de la sintomatología se tomó como extremos, 1 cuando el estado de recuperación es total (ausencia de síntomas de antracnosis) y 5 cuando no existe recuperación.
Cuando las plantas fueron pulverizadas con el extracto conidial obtenido por sonicación como método de disrupción celular (EC), alcanzaron grados de sintomatología similares al control de Protección Cruzada, a la vez que manifestaron una total recuperación (DSR=1) a partir de los 40 días, en forma similar a dicho control (Figura 1); es decir que EC presenta una alta eficiencia de protección frente a la cepa virulenta causante de la enfermedad de la antracnosis. Estos resultados indican que: a) no se requiere la presencia de los conidios vivos del patógeno avirulento (A. strictum SS71 de la invención) para desencadenar la resistencia frente al patógeno virulento (C. acutatum MI 1); b) el medio conteniendo a los conidios del patógeno avirulento inactivados por tratamientos físicos de lisis celular es capaz de conservar la actividad que presentan dichos conidios en estado activo con igual eficiencia de protección.
A continuación se estudió la presencia del agente activo en el sobrenadante de cultivos líquidos del patógeno avirulento de A. strictum de la invención crecido en condiciones óptimas hasta fase estacionaria. Para ello se utilizó el medio papa- glucosado convencional (PG) y se midió la actividad presente en el sobrenadante libre de células (SN). Se observó que el sobrenadante del cultivo crecido en medio PG (SN) alcanza un valor de DSR= 1 a partir de los 30 días, el cual se mantiene durante todo el período de evaluación (DSP O=1; Figura 1), es decir que conduce a las plantas a una recuperación completa en forma temprana. De esto se deduce que SN desarrolla la máxima eficiencia de protección (DSP O=1) de forma idéntica al control de Protección Cruzada. Este resultado indica que se obtiene actividad con máxima eficiencia de protección en el sobrenadante del cultivo líquido, lo que implica que el principio activo sería excretado al medio de cultivo.
Por los resultados arriba mencionados se observa que de todas las fracciones de A. strictum SS71 de la invención ensayadas, se obtiene la máxima eficiencia de protección (DSR=1), en forma idéntica al control de Protección Cruzada con EC y SN, por lo que se concluye que ambos presentan una actividad de protección altamente efectiva. Estos experimentos confirman que el "poder inductor" se puede recuperar en las fracciones EC y SN, con las cuales se consigue una máxima protección.
El protocolo y diseño experimental utilizado para evaluar la actividad de protección de las diferentes fracciones obtenidas (EC y SN) se detalla en la Tabla 2 (ver ejemplos).
Con el objeto de caracterizar al elicitor se determinó la naturaleza química de sus constituyentes activos y sus potencialidades tecnológicas. Se estudió la estabilidad térmica de la actividad elicitora. Para ello se utilizó el sobrenadante SN donde el compuesto activo principal del "poder inductor" se encontraba con un grado mayor de pureza. En este sentido, el SN fue sometido a dos tratamientos térmicos de diferente intensidad: A) calentamiento a ebullición (100°C) durante 15 minutos (SNl), suficiente para desnaturalizar las proteínas de gran tamaño (en general de peso molecular mayor a 10.000 Da) e insuficiente para destruir otros compuestos de diferente naturaleza química como son los hidratos de carbono, lípidos, etc.; y B) autoclavado (121°C) durante 15 minutos (SN2), tratamiento más drástico que destruye la mayoría de los compuestos exceptuando los metabolitos de bajo peso molecular resistentes a altas temperaturas, péptidos termorresistentes, etc.
Los resultados que se muestran en la Figura 2A indican que el sobrenadante sometido a ambos tratamientos térmicos genera una evolución de la enfermedad muy similar al control positivo de C. acutatum Mi l. Con SNl y SN2 al igual que con este control, se obtiene una DSR= 5, que en el caso de los sobrenadantes calentados se alcanza a los 30 días, mientras que en el control positivo a los 21 días. En todos los casos las plantas evolucionan hasta la muerte. De esto se concluye que la actividad inductora de la defensa se pierde prácticamente en su totalidad por una exposición severa al calor.
Como se muestra en la Figura 2B el mismo efecto es observado cuando el SN es incubado con Proteinasa K durante una noche (12 horas) en condiciones óptimas de actividad de dicha enzima (50°C), la cual es ampliamente usada para digestión proteo lítica.
Los resultados expuestos indican que el compuesto activo principal que participa en la inducción de la respuesta defensiva pierde su actividad no solo por el tratamiento térmico menos severo (calentamiento a 100°C durante 15 minutos), probablemente por clivaje de enlaces peptídicos sino también por acción de una proteasa (Proteniasa K) lo que nos permite afirmar que se trata de un compuesto de naturaleza proteica.
Para una mejor comprensión del procedimiento de obtención del polipéptido de la presente invención se describe un ejemplo de realización: para asignar a un única molécula el efecto de protección contra C. acutatum atribuidos al sobrenadante completo derivado del patovar avirulento de Acremonium strictum (aislado SS71) de la invención. En este caso se procedió en primer lugar a la identificación de la(s) proteína(s) extracelular(es) con actividad inductora. Con dicho objetivo se diseñó un protocolo de purificación optimizado para la recuperación de la proteína en gran cantidad y con alto grado de pureza (banda única en SDS-PAGE o pico único en FPLC), dicho protocolo se realizó en 2 etapas:
a) Optimización de las condiciones de cultivo del hongo para la máxima 5 producción de actividad elicitora.
La protección total de las plantas se consigue por el pretratamiento de las plantas con el sobrenadante axénico del cultivo del aislado Acremonium strictum SS71 en caldo PG (papa glucosado, no tamponado, pH inicial=6,75), crecido a 28°C, en forma estática (sin agitación), con luz blanca continua hasta fase estacionaria de 10 crecimiento (21 días). El contenido de proteína totales en el sobrenadante final fue de 8,43 μg proteínas/ mi.
b) Aislamiento de la proteína extracelular con actividad inductor a a partir del medio PG:
Como se muestra en los ejemplos, la actividad en cada paso de purificación se 15 siguió por dos métodos en paralelo: a) producción de ERO (H202 y 02 ~) a las 4 h post-, y b) protección frente al aislado virulento Mi l de C. acutatum.
El protocolo de purificación incluye los siguientes pasos:
I. Procesamiento inicial para su conservación:
Para eliminar el micelio, los cultivos fueron centrifugados a 16.300g, durante 20 30 minutos, a 4°C. Se recuperó el sobrenadante que es filtrado por tierra de diatomea y luego por membranas filtrantes de 0,22 um de diámetro de poro. Esta fracción corresponde al sobrenadante axénico (libre de células) IX (sin diluir) que se conservó congelado a -20°C para su posterior utilización.
II. Concentración de los componentes de la muestra: El sobrenadante IX se 25 concentró 10 veces por liofilización y luego 4 veces más por el agregado de PEG a la muestra cargada en membrana de diálisis de 12 kDa cut-off a 4°C (ON).
III. Eliminación de los contaminantes mayoritarios: Este paso se realizó en dos etapas.
a) ultrafiltración por membrana filtrante de 10 kDa de tamaño de corte ("cut- 30 off): el sobrenadante concentrado se redujo en volumen unas 10 veces más (400X), quedando la actividad inductora mayoritaria retenida en la membrana (PM mayor a lOkDa);
b) cromatografía de Intercambio aniónico: el retentato con actividad mayoritaria fue fraccionado en un sistema de FPLC (Pharmacia), utilizando una columna empaquetada con matriz Sepharose Q (Q) Fast Flow (Pharmacia-FPLC) equilibrada en buffer Tris HCl pH 7,5 y eluida por aumento de fuerza iónica: gradiente creciente escalonado de NaCl a concentraciones 0,24M (8 min), 0,38M (8 min) y 1M (10 min). Se reunieron las fracciones en 4 pooles de proteínas que fueron ensayados fitopatológicamente (Figura 3). La actividad se encontró concentrada en el pico I.
El pretratamiento de las plantas con el volumen de lavado o"flow-through" de la columna Q a pH 7,5 produce protección total contra el aislado virulento Mi l, mientras que se consigue una alta protección (aunque no total) con el pool II de proteínas que interaccionan débilmente con la matriz (eluidas con 0,24M NaCl).
Estos resultados permiten concluir que el sobrenadante del cultivo líquido del aislado avirulento Acremonium strictum SS71 de la invención contiene dos o más proteínas con actividad inductora de defensa, las cuales presentan diferente pl. Sin embargo, debido a que la máxima actividad de inducción de resistencia a la antracnosis se obtiene con la fracción de proteínas que no interaccionan con la matriz de intercambio aniónico Q a pH 7,5, se eligió este pool de proteínas básicas (pl>8) para continuar con la purificación.
IV. Eliminación de los contaminantes trazas muy relacionados ("Polishing"): Luego las proteínas no unidas a la matriz Q (pool I) se separaron por cromatografía a través de una matriz de Interacción Hidrofóbica. Para ello, el pool I fue sembrado, en condiciones de alta fuerza iónica, en una columna de interacción hidrofóbica Phenyl Superóse HP (PS) adaptada a un sistema de FPLC. La matriz fue previamente equilibrada con buffer Tris HCl 50 mM pH 7,5 con agregado de EDTA lmM y (NH4)2S04 a concentración 1,5M, y luego de la siembra fue eluida por disminución de la fuerza iónica por aplicación de un gradiente de concentración decreciente de (NH4)2S04, obteniéndose el perfil que se muestra en la Figura 4. La actividad se encontró concentrada en el pico IV. Cuando las proteínas no unidas a la matriz Q fueron sembradas en una matriz PS, la actividad de protección se repartió entre tres de las fracciones de proteínas que eluyeron por disminución de la fuerza iónica: pooles II, III y IV, los cuales al ser visualizados en un gel de poliacrilamida al 12% no contenían bandas únicas (Figura 5). La actividad se encuentra concentrada en el pico IV. Se procedió a una nueva separación cromatográfica usando el mismo sistema (matriz y bufferes), pero utilizando un gradiente discontinuo de (NH4)2S04 con 5 escalones intermedios.
Se obtuvieron 10 picos cromatográficos, que fueron visualizados como bandas únicas por SDS-PAGE al 10% teñido con Coomassie Blue-R. La detección de actividad se realizó rociando una hoja de cada planta (n=4) con cada una de las fracciones obtenidas acondicionadas a una concentración de 2,5 μg proteína/ml. Los resultados mostraron que el pico 7 que eluye con (NH4)2S04 a una concentración 0,5 M, confiere a las plantas protección total frente a la antracnosis (DSPv4o=l) y que también induce la producción de ERO (tinciones NBT y DAB positivas).
Como se muestra en la Figura 6, cuando el pico 7 es separado por SDS-PAGE al 10% se observa una única banda, la cual es intensamente visualizada por tinción con Coomassie Blue-R. La proteína activa eluye de la columna con 0,5 M de (NH4)2S04.
Se purificó a homogeneidad una proteína básica de 34 kDa, la cual es capaz de inducir resistencia sistémica frente al ataque del aislado virulento Mi l de C. acutatum.
El polipéptido elicitor es una proteína nueva, diferente a otras proteasas reportadas previamente. Para confirmar esto, a pesar de que no se registraron accesiones de secuencias de proteínas descriptas en Acremonium spp. entre los 100 primeros resultados ("top hits") obtenidos por Blast-P realizado con la secuencia de la proteína elicitora, se estudió el grado de identidad de la misma con todas las proteínas que hayan sido reportadas como proteasas o similares a ellas en este género. En la Tabla 1 se resumen las características de las secuencias aminoacídicas de las proteínas del género Acremonium (organismo productor, origen, extensión, Mr, número de aminoácidos y función) y su comparación con la proteína elicitora
(porcentajes de aminoácidos idénticos y gaps obtenidos a partir del alineamiento con cada una de ellas).
En todas las bases de datos tanto genómicas como proteómicas, solamente se han reportado 6 secuencias de proteínas del tipo proteasa producidas por diferentes especies de Acremonium spp., de las cuales dos fueron determinadas experimentalmente y corresponden a secuencias de extremos aminoterminales (solo hay secuencia parcial) con función proteolítica comprobada (N° Acc. P85156, Sub- El de 40 aa) (N° Acc. P85157, Sub-E2 de 18 aa), mientras las cuatro restantes son secuencias inferidas por homología a partir de ADN genómico. Entre estas últimas se describe un fragmento interno de proteasa (N° Acc. AAC09289.1, Pr.) y tres secuencias completas correspondientes a una serin proteasa tipo subtilisina (N° Acc.
BAF62454.1 ; Sub-E3), un precursor de proteinasa alcalina (N° Acc. BAA00765.1;
Pr.Alc) y una cefalosporina C acetilhidrolasa (N° Acc. CAB87194.1 ; AcH).
Tabla 1. Descripción de las proteínas del tipo proteasa de Acremonium spp. anotadas en las bases de datos de proteínas (Uniprot).
Comparación con
Proteínas de Acremonium spp. descriptas
elicitor
N° Existencia de Extensión Ident. Gaps
Descripción Organismo Función Abrev
Accesión la proteína Mr (%) (%)
Clivaje de protrombina, Amino
P85156 Serin proteasa
Acremonium Evidencia fíbrinógeno e inhibición terminal Sub- 72,50 0 (ASE1 ACR tipo subtilisina
sp. experimental de coagulación del
SP) 40 aa E2 (29/40) (0/40)
AS-E1 plasma. 4,327 kDa
Serin proteasa Clivaje de protrombina, Amino
P85157
Acremonium Evidencia fíbrinógeno e inhibición terminal Sub- 61 ,1 1 0 (ASE2 ACR tipo subtilisina
sp. experimental de coagulación del
SP) 18 aa El (11/18) (0/18)
AS-E2 plasma 1 ,914 kDa
Inferida por
Fragmento
Acremonium homología
AAC09289.1 59,78 0
Proteasa Pl interno Pr.
coenophialum (ADN (55/92) (0/92)
92 aa
genómico)
Predicha Completa
Serin proteasa Acremonium Sub-
BAF62454.1 39,17 13,78
(ADN Clivaje de protrombina 535 aa
tipo subtilisina sp. (TI 1 177) E3 (152/388) (62/450) genómico) 58,371 kDa
Inferida por
Precursor de Completa
Acremonium homología
BAA00765.1 44,8 9,42
proteinasa 402 aa Pr.Alc
chtysogenum (ADN (168/375) (39/414) alcalina 42,099 kDa
genómico)
Inferida por
acetilhidrolasa Esterasa inespecífíca. Completa
Acremonium homología Eliminación del grupo
CAB87194.1 53,68 2,06 de
chtysogenum (ADN acetilo de cefalosporina 383 aa AcH
(204/280) (8/388) cefalosporina C
genómico) C 38,223 kDa
Como se puede observar en la Tabla en los alineamientos de la proteína elicitora con los fragmentos Sub-El, Sub-E2 y Pr se obtienen altos valores de identidad que oscilan entre 59,8 y 72,5% aproximadamente sin la apertura de gaps en las secuencias. Sin embargo la escasa longitud de las secuencias aminoacídicas (40 a 92 aa) de estas proteínas impide inferir homología con la proteína elicitora, pues se desconoce más del 75% de las secuencia de las mismas.
Por otro lado y en relación a las proteasas de secuencia completa reportadas en Acremonium spp., la proteína elicitora presenta un 39,2% de identidad con Sub- E3 y un 44,8% de identidad con la proteasa alcalina Pr.Alc, sin embargo en ambos alineamientos se obtienen porcentajes de gaps muy altos (13,8% y 9,4% respectivamente). Sub-E3 es la única serin proteasa tipo subtilisina de secuencia completa descripta en Acremonium spp. que además presenta actividad proteo lítica comprobada experimentalmente (Liu et al., 2007). Sin embargo ésta presenta el porcentaje de similitud (39,2%) más bajo con respecto a la subtilisina inductora.
Sorprendentemente el mayor valor de identidad (53,7% de identidad y 2,1% de gaps) de la proteína elicitora corresponde a AcH de A. chrysogenum. Se trata de una esterasa inespecífica, que actúa eliminando el grupo acetilo del antibiótico cefalosporina C. Si bien carece de actividad proteo lítica, se decidió estudiar AcH por su similitud de secuencia con serin proteasas.
En la siguiente comparación se muestra un alineamiento realizado con las secuencias aminoterminales de todas las proteasas reportadas en Acremonium spp, incluyendo la proteína elicitora, que evidencia la variedad de la región aminoterminal entre dichas proteasas.
Figure imgf000026_0001
Los ensayos realizados para determinar la actividad elicitora se muestran en la Figura 7. Las plantas tratadas con el elicitor presentan el mismo estado general que las plantas del control de Protección Cruzada, son plantas completamente sanas (DSPv4o=l) y de gran tamaño. Por otro lado, se verificó que dichas fracciones derivadas del asilado SS71 del patógeno avirulento de A. strictum de la invención no presentan ningún tipo de virulencia contra un genotipo de Fragaria vesca (fresa silvestre) que es altamente susceptible a esta especie de hongo patógeno. Estos resultados son consistentes con la posibilidad de utilizar estas fracciones para conferir protección a campo contra la antracnosis en la variedad Pájaro de la fresa cultivada (F. x ananas sa).
El protocolo y diseño experimental utilizado para evaluar la inducción de la resistencia contra antracnosis de las diferentes fracciones de purificación obtenidas se detalla en la Tabla 2 (ver ejemplos).
Se realizó la caracterización de la respuesta de defensa inducida por fracciones del patógeno avirulento y por el polipéptido con actividad elicitora de la presente invención en fresa.
Se estudiaron los eventos asociados a la defensa vegetal producidos por el polipéptido de la invención derivado del aislado SS71 del patógeno avirulento de A. strictum.
Las reacciones de defensa fueron evaluadas en hojas de planta de fresa del cultivar Pájaro tratadas con los extractos prepurificados activos derivados de cultivos del aislado SS71 de la invención, y posteriormente dichos resultados fueron confirmados con la proteína inductora pura. En estos estudios se observó la acumulación de especies reactivas del oxígeno (H202 y 02 ~) asociadas al estallido oxidativo; producción de óxido nítrico (NO); acumulación de compuestos fenó lieos; respuesta hipersensible microscópica (micro-HR); reforzamiento de la pared celular por lignificación y por deposición de calosa, acumulación de acido salicílico y expresión de genes asociadas a la respuesta de defensa y resistencia sistémica adquirida (SAR) e.g. proteínas PR. Todo esto indica que se obtiene una inducción de defensa vegetal general, encontrada en todas las especies de plantas estudiadas hasta hoy en día. Algunas de estas respuestas fueron estudiadas y encontradas en otras especies de plantas después de aplicación de la proteína subtilisina aislada de C. fragariae (tomate y arabidopsis). Se puede concluir de estos experimentos que se encontrará un efecto general en diferentes cultivos contra patógenos de origen fúngico y bacteriano, lo que también está sustentado por resultados positivos de resistencia contra Colletotrichum spp (hongo biotrófico), Botrytis cinérea (hongo necrotrófico) y Xanthomonas fragariae (bacteria). Como se mencionó antes, la respuesta al elicitior de la invención incluye la acumulación de ácido salicílico, el cual induce resistencia no solo a patógenos fúngicos y bacterianos sino también a virus. Por lo tanto, la presente invención también es útil para inducir resistencia a virus en plantas.
Se evaluó el estallido oxidativo a través de la acumulación de ERO. Se analizó si el efecto de protección observado en plantas pretratadas con el elicitor era precedido por marcadores bioquímicos normalmente asociados a la defensa, analizamos la acumulación de ión radical superóxido (02 ~) y peróxido de hidrógeno (H202) por tinción histoquímica con NBT (nitroblue tetrazolium) y DAB (diaminobencidina), respectivamente.
A partir de las 2 horas post-tratamiento (hpt) con el elicitor, se observó la producción de H202 (DAB +) y ión 02 '~ (NBT +) en las áreas de aplicación del elicitor, en sitios cercanos (foliólo proximal), como así también en hojas distales (no tratadas). La máxima producción se observó para ambas especies a las 4 hpt como podemos observar en la Fig. 8A para H202 y en la Fig. 8B para ión 02 '~. Sin embargo la detección del ión superóxido se hizo casi despreciable histoquímicamente a tiempos posteriores, mientras que los niveles de peróxido de hidrógeno siguieron elevados hasta las 12 hpt. Por otro lado no se observó producción de ninguna especie reactiva del oxígeno en plantas control tratadas con medio PG o agua (Fig.8C).
Cuando se realizó infiltración de la proteína pura por la cara abaxial de un foliólo de la hoja de la planta, se observó producción de ERO (tinciones DAB + y NBT+) en micrositios discretos distribuidos uniformemente en toda la superficie de los foliólos infiltrados (tejido proximal) y no infiltrados (tejido distal) lo que se conoce como micro estallidos oxidativos sistémicos.
Se evalúo la acumulación de compuestos autofluorescentes. Los resultados presentados en la Figura 9 muestran que las hojas infiltradas con extractos activos o la proteína pura exhiben una fuerte señal de autofluorescencia a 329 nm observada bajo luz UV en el punto de infiltración, la cual es acompañada por una lesión necrótica del tejido, sin embargo las hojas infiltradas con agua (control) no presentan autofluorescencia detectable ni necrosis del tejido. La evaluación de la autofluorescencia fue llevada a cabo en el punto de infiltración a distintos tiempos después de la inducción. A partir de las 12 hpt (horas post tratamiento) se observó bajo luz UV la clara aparición de una autofluorescencia amarilla (Fig. 9B), que aumenta su intensidad gradualmente, alcanzando su máximo a las 72 hpt (Fig. 9C). En el punto de infiltración de las plantas control, no se observa una autofluorescencia (Figura 9A). La autofluorescencia amarilla se debe probablemente a la liberación de compuestos fenólicos autofluorescentes derivados de la vía de los fenilpropanoides (i.e. fitoalexinas), la cual es fuertemente activada durante la HR.
También se analizó la modificación de la pared celular inducida por la respuesta de defensa la que fue evaluada a través de la acumulación de calosa. Para esto, se evaluó la capacidad del agua (control), los extractos con actividad y la proteína pura para inducir la acumulación de calosa en plantas de fresa. La Figura 10 muestra que las plantas pueden acumular calosa a los 7 días posteriores al tratamiento con la proteína elicitora pura de SS71 (Fig. 10B), pero no presentan acumulación cuando son tratadas con agua (Fig. 10A). Sin embargo dicha figura también muestra que la calosa se deposita aún en cantidades superiores en plantas infectadas con el aislado Mi l de C. acutatum, que fueron previamente inducidas con el elicitor 7 días antes de la infección (Fig. 10C). También se observó que la deposición de calosa ocurre primero en células aisladas de la epidermis y luego continua acumulándose en las paredes de grupos contiguos de células formando una matriz que actuar como una verdadera barrera física ayuda a detener la invasión del patógeno.
Se cuantificó el ácido salicílico (AS) acumulado en floema de plantas de fresa infiltradas con la proteína elicitora pura a concentración 2,5 μg proteína/ml. El AS fue recuperado de pecíolos a distintos tiempos (0, 24, 48, 72 y 96 horas post tratamiento (htp), luego fue purificado por cromatografía de fase reversa y cuantificado por espectroscopia de fluorescencia excitando a 296 nm.
Al igual que en plantas tratadas con BTH, a las 72 hpt se observó un aumento significativo de AS en el floema de las plantas tratadas con la proteína pura alcanzando un valor de 3,72 μg/ml de exudado floemático, mientras que el control presentó un valor 2,5 veces menor (1,45 μ /ηι1 exudado). La Figura 11 muestra que las plantas tratadas con agua no presentaron un incremento significativo de AS a lo largo del experimento, mientras que las plantas tratadas con el elicitor mostraron un incremento significativo después de las 72 hpt, al igual que el BTH (0,5 mM), usado como control positivo de respuesta SAR.
Se realizaron experimentos para determinar si los extractos con actividad y la proteína pura eran capaces de translocar la señal de defensa e inducir la respuesta del tipo SAR. Para ello se realizó la aspersión de una única hoja de la planta con la proteína pura (5 μg proteína/ml), y luego de 7 días (7dpt) se realizó la infección del resto de la planta con una suspensión de conidios del aislado virulento Mi l. Como controles positivos de inductores de SAR se usaron BTH (ácido S-metil benzo (1,2,3) tiadiazol-7-carbotioico, análogo de AS) y AS, mientras que el control negativo se realizó por aspersión con agua.
Como se puede observar en la tabla anexa a la Figura 12 las plantas pretratadas por aspersión en una única hoja con el elicitor de la invención presentan un valor de DSR menor a 1,5 a los 40 días post-inoculación al igual que las plantas tratadas con BTH y AS, mientras que las plantas pretratadas con agua mueren a los 10 dpi (DSR=5). Esto confirma que el elicitor confiere a las plantas una protección del tipo sistémica, ya que no manifiestan síntomas de enfermedad.
Con el objeto de investigar el espectro de acción inductora de la resistencia del polipéptido elicitor de la presente invención se realizó un ensayo de defensa en otros cultivares de fresa y en diferentes especies de plantas. En primer lugar se evaluó el efecto de protección que el elicitor puro derivado del aislado SS71 de la invención puede conferir a diferentes cultivares de fresa cuando son desafiadas a diferentes cepas virulentas de C. acutatum.
Para esto, se utilizaron plantas de variedades comerciales de fresa que presentan una interacción de tipo incompatible (e.g. cvs. Pájaro, Camarosa) y del tipo compatible con el patovar SS71 productor del elicitor (e.g. cvs. Milsei Tudla, Chandler). Luego de ser tratadas con el inductor, fueron desafiadas con una cepa virulenta para cada cultivar, ya sea C. acutatum: Mi l (aislado de cv. Chandler en Manantial- Tucumán), MP3 (aislado de Aroma en Mar del Plata) o LCF 1-05 (aislado de fruto de Camarosa en Lules- Tucumán).
En la Figura 13 se observa que luego del tratamiento con el elicitor, las plantas de los cvs. Pájaro y Camarosa no presentaron síntomas de enfermedad (DSR=1) a los 40 dpi, mientras que las plantas de los cvs. M. Tudla y Chandler presentaron variación en desarrollo de la enfermedad, dependiendo del aislado utilizado para la infección. Los resultados muestran que en general, todas las variedades manifestaron valores de sintomatología menores que las plantas controles, observándose en la mayoría de los casos una notable recuperación a los 30 dpi (DSR= 1-2).
El elicitor derivado de SS71 desarrolla una alta eficiencia de protección frente a la antracnosis en cvs. resistentes a SS71 (con los que se comporta como avirulenta), mientras que conduce a una protección parcial en los cultivares susceptibles a SS71 (con los se comporta como virulenta).
La Figura 13 muestra también que el grado de protección depende en particular del aislado usado. Mientras el elicitor puede controlar rápidamente la infección causada por MI 1 en todos los cultivares evaluados, la situación es diferente con los aislados MP3 y LCF1.
Este resultado nos permite concluir que el elicitor de la invención tiene actividad inductora de amplio espectro ya que es capaz de inducir las respuesta de defensa en otros cultivares y frente a otros patógenos, aunque con diferente grado de protección.
También se estudió la inducción de reacciones asociadas a la defensa en otras especies de plantas. Por ejemplo, se estudió su efecto sobre un cultivo celular de tomate {Lycospersicum solanum). Para ello se decidió investigar si el elicitor es capaz de inducir la acumulación no solo de ERO sino también de NO (óxido nítrico) como otros marcador bioquímico de la defensa. La proteína purificada fue añadida a una concentración de proteínas de 5 μg/ml o 10 μg/ml para evaluar la evolución en el tiempo de ERO o NO, respectivamente, por fluorescencia. La Figura 14 muestra que mientras las células de tomate manifiestan una fuerte y rápida acumulación de ERO y NO, en los primeros 30 minutos posteriores a la adición del elicitor. Los controles no exhibieron acumulación de ERO o NO por arriba del nivel basal.
Luego se estudió la capacidad del elicitor de inducir producción de ERO en la planta modelo Arabidopsis thaliana. Para esto se estudió en paralelo la producción de peróxido de hidrógeno y la de radical superóxido. El peróxido de hidrógeno intracelular se evaluó con la sonda fluorescente Diacetato de Fluoresceína (DCFH- DA), observándose un pico máximo del estallido por tratamiento con la proteína elicitora pura, lo cual confirma la capacidad de la proteína del invento en inducir la acumulación intracelular de peróxido de hidrógeno, aunque el pico de acumulación no coincide con lo observado en fresa donde el máximo se produce a las 4 hpt (Figura 15).
La acumulación de radical superóxido en hojas de A. thaliana se evaluó con NBT (ver arriba), observándose un pico de acumulación a las 4 hpt, en forma coincidente a la generación de superóxido en fresa, mientras que las hojas control no presentaron reacción alguna (Figura 16).
Con el objeto de caracterizar química y molecularmente al polipéptido de la presente invención con actividad inductora de resistencia, se determinó su peso molecular el que, determinado a partir de SDS-PAGE al 10% (con β-mercaptoetanol) con el software PD Quest (BioRad), dio un valor aproximado de 34kDa. Dicho polipéptido presenta un pl aproximado de 9,5 determinado de manera experimental por isoelectroenfoque.
Se obtuvo la secuencia del extremo NH2 terminal de la proteína transferida a membrana de PVDF previamente reducida y alquilada, y la secuencia de tres péptidos internos obtenidos por digestión tríptica en gel de la proteína reducida y alquilada. En la Figura 17 se muestran las secuencias de los péptidos cuyas masas moleculares corresponden a 1095.19, 2441.2 y 1938.1 msms. El análisis de los alineamientos mostró que todas las secuencias peptídicas tienen, cada una por separado, una alta similitud con proteasas fúngicas de la familia de las subtilisinas. Los valores más altos de identidad de secuencia corresponden a subtilisinas de las especies Arthroderma spp. (o Trichophyton spp.) para el péptido de masa 2441,2 y a subtilisinas de la especie Aspergillus spp. para el péptido de masa 1938,1.
Se diseñaron cebadores a partir de la secuencia de los fragmentos peptídicos mostrados en la Figura 17 y sabiendo que el primer péptido corresponde al extremo amino -terminal de la proteína. Se logró mediante un protocolo de amplificación, aislar y secuenciar el ADNc que corresponde al transcripto maduro de la proteína elicitora y su secuencia nucleotídica se muestra en la Figura 18 A. Teniendo la secuencia del ADNc se procedió a analizar la similitud de esta secuencia con otras secuencias incluidas en banco de datos de secuencias, con el objeto de determinar a que familia de proteínas corresponde. De esto se pudo concluir que la secuencia aislada se trata efectivamente de una serin-proteasa de la familia de las subtilisinas.
Con el fin que completar el estudio y confirmar el resultado también se estudió la afiliación de esta proteína por Blast P. Para esto se utilizó la secuencia aminoacídica deducida de la secuencia nucleotídica mostrada en la Figura 18, obteniéndose la secuencia mostrada en la Figura 19A. Este análisis ayudó a confirmar que la secuencia aislada corresponde a una serin-proteasa de la familia de las subtilisinas (Fig. 19B)
Luego, a los efectos de visualizar mejor la ubicación relativa de los dominios que presentaban mayor similitud, se realizó una comparación de secuencias de aminoácidos de las subtilisinas que presentaban mayor similitud global con la secuencia deducida de la subtilisina elicitora. Para esto, se eligieron las subtilisinas pertenecientes a Trichoderma koningii, Metarhizium anisopliae var. anisopliae, Ophiocordyceps sinensis, Paecilomyces lilacinus como por tener alta identidad de secuencia nucleotídica (Blast X) como aminoacídica (Blast P). Se tomó como modelo la estructura de la subtilisina de Trichoderma koningii que tiene una alta identidad de secuencia con la subtilisina elicitora de A. strictum. En la Figura 19C se muestra la ubicación relativa de los fragmentos secuenciados provenientes del elicitor de A. strictum en relación con los dominios caracterizados de la subtilisina de T koningii Los resultados mostrados nos permiten concluir que el extremo amino terminal se localiza en la región comprendida entre el dominio Inhibidor 19 y el dominio Peptidasa S8 con función proteasa, mientras que las otras dos secuencias de los péptidos internos secuenciados se encuentran en el dominio Peptidasa S8. El dominio inhibidor de peptidasa 19 fue encontrado en la forma inmadura de todas las subtilisinas de referencia analizadas.
Estos resultados sugieren que la proteína elicitora inmadura sufre una maduración post-traduccional, que consiste en el clivaje del dominio inhibidor 19 el cual puede ser el propéptido señal de exportación al medio extracelular. Por los resultados anteriormente mostrados sabemos que las secuencias están altamente conservadas en el dominio con función proteasa de modo que podemos especular que dicha proteína tenga actividad proteolítica.
Con el objetivo de determinar si la proteína elicitora tiene función proteolítica tipo subtilisina se estudió su capacidad para producir el clivaje proteolítico del sustrato cromogénico específico de subtilisina (N-Succinyl- Ala- Ala-Pro -Phe p- Nitroanilide) con liberación de p-NA que absorbe a 405nm. La Figura 20 demuestra que la proteína elicitora (15 μg/ml) actúa sobre el sustrato cromogénico produciendo la proteo lisis del mismo en el tiempo, al igual que la subtilisina de Bacillus subtilis (0,04 μg/ml) empleada como control positivo.
La proteína elicitora luego de ser purificada a homogeneidad manifiesta actividad proteolítica sobre el sustrato cromogénico específico de subtilisina, es decir que posee función proteasa tipo subtilisina in vitro.
Esta invención se encuentra mejor ilustrada según los siguientes ejemplos, los cuales no deben ser interpretados como una limitación impuesta al alcance de la misma. Por el contrario, debe entenderse claramente que puede recurrirse a otras realizaciones, modificaciones y equivalentes de la misma que luego de leerse la presente descripción, pueden sugerir a aquellos entendidos en el tema sin apartarse del espíritu de la presente invención y/o alcance de las reivindicaciones anexas.
Ejemplos:
Ejemplo 1 : Materiales y medios utilizados
Plantas de Fresa Se utilizaron plantas de fresa Fragaria x ananassa Duchesne cultivar Pájaro y plantas de fresa silvestre de la especie Fragaria vesca; todas disponibles en el banco de germoplasma del Pro/ Frutilla.
El material fue producido en tres etapas: 1) Cultivo in vitro de meristemas; 2) Rustificación; y 3) Multiplicación vegetativa por estolones.
1) Por cultivo in vitro de meristemas el material fue saneado y multiplicado bajo condiciones axénicas y controladas (temperatura: 25°C - fotoperíodo: 16 hs de luz). 2) Posteriormente se rustificó en bandejas usando como sustrato una mezcla de tierra y perlome (2:1) ésteril. A las cuatro semanas, se transplantó a macetas plásticas de 8 cm de alto x 8,5 cm de diámetro, obteniéndose los plantines madres. 3) Estos plantines madres se hacen crecer en cámaras de cría bajo condiciones controladas de temperatura (25-27°C), humedad (70%) y fotoperíodo (16 hs), que constituyen condiciones óptimas para estolonización. Las plantas usadas para ensayos se obtuvieron por fijación de estolones de dichas plantas madres (propagación asexual) en sustrato estéril bajo condiciones axénicas y posterior crecimiento en las mismas condiciones. Una vez enraizados, a las dos semanas aproximadamente, los nuevos plantines son separados de la planta madre y puestos a crecer durante 12- 14 semanas más. Es decir que los plantines madres crecen hasta llegar a las 14 a 16 semanas de edad en total, cuando al menos tienen cuatro hojas totalmente expandidas, lo que representa un estadio relativamente temprano de crecimiento del plantín. Durante ese período los plantines fueron regados únicamente con agua destilada dos veces por semana y no recibieron aplicación preventiva de fungicidas ni fertilizantes.
La respuesta de protección cruzada del sistema d, strictum SS71 /C. acutatum MI 1 se evaluó en el cultivar Pájaro donde ha sido definida y caracterizada.
Un ecotipo de la fresa silvestre Fragaria vesca, debido a su extrema susceptibilidad a la cepa SS71 de A. strictum, se utilizó en todos los ensayos realizados con esta cepa como control positivo de virulencia de la cepa. Este genotipo fue utilizado también como control de inactivación de A. strictum SS71 en las fracciones derivadas de esta cepa para demostrar que no producen enfermedad, lo que sirve para sustentar la aplicabilidad de esta metodología de biocontrol en el campo. Plantas de Arabidopsis
Semillas de Arabidopsis thaliana wild type (ecotipo Columbia) fueron germinadas en medio MS (diluido al ½) suplementado con sacarosa 1% y agar 0,8%. Cuando las plántulas tienen 2 hojas se transplantaron a sustrato estéril, y permanecieron en cámaras de cría en condiciones óptimas de crecimiento (22°C, 70% humedad, 12hs de luz) hasta las 4 semanas de edad.
Cultivos celulares en suspensión
Células cultivadas en suspensión (Solanum lycopersicon cv. Money Maker; line Msk8) crecieron 24° C en la oscuridad a 125 rpm en medio MS (Duchefa, Haarlem, The Netherlands) suplementado con NAA 5,4 μΜ, 6-benzyladenina 1 μΜ y vitaminas (Duchefa) como fue descripto anteriormente (Félix et al., 1991. Plant Physiol. 97, 19-25).
Hongos:
Se emplearon las siguientes cepas: SS71 de Acremonium strictum de la invención y la cepa Mi l de CoUetotrichum acutatum para infección. Estas cepas se usaron en el sistema de protección cruzada strictum/ C. acutatum definido en el cv. Pájaro. En este sistema la cepa SS71 es productora del compuesto con actividad elicitora de defensa, y la cepa Mi l es la cepa virulenta frente al cv. Pájaro que se utiliza para la evaluación de la actividad inductora que se manifiesta por el aumento de la resistencia a antracnosis (producida por Mi l) en plantas previamente tratadas con la cepa SS71.
Para estudiar la actividad elicitora de protección frente a la antracnosis en otros cultivares de fresa, fueron usadas otras cepas de CoUetotrichum acutatum (e.g. MP3, LCF1) de comportamiento virulento frente a los respectivos cultivares.
Medios de cultivo
Las cepas del patógeno avirulento de A. strictum de la invención fueron cultivados en medio agar-papa-glucosado con 1,5% de agar (APG 1,5%). Luego de fundir el medio, se enfría a 45-50°C y se distribuye en cajas de Petri estériles (15 mi por caja), previa adición de Sulfato de Streptomicina (Richet) a una concentración final de 300 μg/ mi. El cultivo líquido de la cepa SS71 de A. strictum se realizó en medio papa-glucosado (PG) que presenta igual composición al medio APG sin el agregado de agar y es obtenido por idéntico procedimiento.
Condiciones de cultivo
Las cepas se conservaron en suspensiones de conidios (107-108 conidios/ml) en glicerol al 50% y mantuvieron congeladas a -70°C.
Cultivos sólidos
Los cultivos en medio sólido de las diferentes cepas se obtuvieron por repique de micelio a medio APG 1,5% o por siembra de conidios mantenidos en glicerol, y posterior incubación durante 10 días en condiciones óptimas de crecimiento (28°C) y esporulación (luz blanca continua).
Cultivos líquidos
El cultivo en medio líquido para la cepa de A. strictum de la invención se obtuvo inoculando un volumen de 40 mi de medio de cultivo (PG), contenido en recipientes de vidrio de 100 mi de capacidad, con un volumen de suspensión acuosa de conidios de tal manera de obtener una concentración final de 106 conidios/ml de medio de cultivo. La suspensión de conidios fue preparada el día de cada ensayo a partir de un cultivo en placa nuevo (ver más adelante Preparación de suspensiones de conidios). Posteriormente el medio líquido inoculado se incubó en condiciones de crecimiento óptimas y favorables a la esporulación, es decir a 28°C con luz blanca continua y sin agitación hasta fase estacionaria de crecimiento (21 días). Este cultivo se denominó SN.
Los cultivos se siguieron por observación macroscópica y microscópica. La observación macroscópica es cualitativa, observándose: formación de película de micelio en parte superior, color, turbidez u opacidad, grado de compactación o solidez. La microscópica consiste en observar a una magnificación de 40X, una preparación en fresco (entre porta y cubre) para evaluar la pureza y uniformidad del cultivo y la ausencia de células espurias que indiquen alguna contaminación.
Ejemplo 2
Preparación de suspensiones de conidios
La suspensión se preparó en esterilidad a partir de cultivos nuevos de la cepa
A. strictum SS71 o Mi l, crecida en medio APG al 1,5%. Los conidios se recolectaron raspando la superficie de la colonia con un ansa o espátula estériles. Luego se resuspendieron en un volumen determinado de agua destilada estéril (5 ó 15 mi). Se mezclaron en vortex durante 1 minuto y se filtraron a través de una gasa con una jeringa estéril. Se realizó el recuento de los conidios en Cámara de Neubauer y se prosiguió de dos formas diferentes según el uso que se le pretenda dar a la suspensión.
En los ensayos en que se utilizó la suspensión de conidios vivos de la cepa SS71 de A. strictum o Mi l de C. acutatum para inocular las plantas, se ajustó por dilución con agua destilada estéril la concentración de conidios a 1 ,5x106 conidios/ml. Finalmente se añadió a la suspensión Tween 20 a una concentración final de 0,1% v/v, como agente tensoactivo.
Para los ensayos de inoculación en que se utilizó la cepa SS71 de A. strictum inactivada (ver más adelante Ensayos Fitopatológicos), se procedió a realizar la inactivación de los conidios del patógeno avirulento en forma previa a la dilución que se hace para ajustar la concentración al valor deseado. En estos caso no se utilizó Tween 20 para evitar una posible interacción de este agente tensoactivo con el compuesto activo.
Ejemplo 3
Método de obtención del extracto conidial (EC)
La suspensión concentrada de conidios del avirulento Acremonium strictum SS71 de la invención (a una concentración de 108 conidios/ml) se fraccionó en alícuotas de 1,5 mi en tubos de 2 mi. Cada alícuota se trató con ultrasonido hasta desaparición de la opalescencia típica de la suspensión, obteniéndose un líquido translúcido. Para este fin se sometió la suspensión a sonicación durante 15 minutos, con pulsos intermitentes (ciclos de sonicación de 20 segundos de duración cada uno, intercalados por intervalos de 10 segundos de reposo) a 60% de intensidad y 40 W de potencia en baño de hielo. Se utilizó el equipo Brandon Sonifier Tune 40 con punta de titanio. El tubo conteniendo la suspensión conidial se mantuvo en baño de hielo (0-4°C) para evitar un sobrecalentamiento. Después de sonicar la muestra, se realizó la observación microscópica (40X) de un preparado en fresco para determinar el grado de destrucción de conidios en comparación con la concentración inicial, de modo de estimar la eficiencia de lisis celular por el método de sonicación. Luego se filtró el producto de la sonicación por membrana filtrante (Millipore GV en PVDF) de 0,45 μιη de diámetro de poro, a fin de eliminar restos celulares y conidios enteros no destruidos durante el tratamiento. También se determinó la concentración de proteínas la que da valores de alrededor de 1,5 μg proteínas/ mi. La suspensión tratada es luego diluida con agua destilada estéril hasta llegar a una concentración equivalente a 1,5x106 conidios/ml en base al recuento inicial de conidios, lo que corresponde a una concentración final de 0,12 μg proteínas/ml. Esta fracción es la que denominamos EC.
Los volúmenes de suspensión y tiempos y ciclos de sonicación fueron estandarizados para obtener la mayor eficiencia posible de lisis celular. Ejemplo 4
Obtención del sobrenadante de cultivo líquido (SN)
Se partió de dos cultivos líquidos iguales (medio PG) de A. strictum SS71, de 40 mi cada uno los que fueron inoculados e incubados como se explicó anteriormente. Finalizada la etapa de crecimiento, cada cultivo se centrifugó a 10.400g durante 20 min a 4°C, descartándose el pellet y recuperando el sobrenadante. Luego se reunieron los sobrenadantes de ambos cultivos y centrifugaron nuevamente a 10.400g por 30 minutos a 4°C el sedimento residual. Posteriormente, el sobrenadante recuperado se sometió a sucesivas filtraciones en esterilidad para eliminar los conidios resuspendidos. Primero se filtró por papel de filtro Whatman N°2, luego por membrana filtrante de nitrato de celulosa Millipore de 0,8 μιη de diámetro de poro y finalmente por membrana filtrante de nitrato de celulosa Millipore de 0,45 μιη de diámetro de poro. El filtrado axénico constituye el sobrenadante libre de células del cultivo líquido (SN). En este caso se recuperó un volumen de 25 mi, al cual se le determinó una concentración de proteínas de 8,43 μg de proteínas/ mi.
A las dos fracciones de cultivos de A. strictum SS71, tanto al extracto libre de células (EC) como al sobrenadante del cultivo líquido (SN) se le realizó un control de esterilidad que consistió en el estriado del producto filtrado en medio fresco estéril APG al 1,5% y posterior incubación de la placa durante 48 hs a 28°C y bajo luz blanca continua. La ausencia de crecimiento fúngico confirmó la ausencia de células viables en el filtrado, ya sea de células vegetativas en los extractos o de estructuras reproductivas (conidios) en los filtrados.
Ejemplo 5
Caracterización del elicitor presente en el SN producido a partir de Acremonium strictum de la invención.
Determinación de la estabilidad térmica
Para determinar la estabilidad térmica del compuesto activo se emplearon dos tratamientos térmicos de diferente severidad. Para ello un volumen de 25 mi de sobrenadante libre de células del cultivo líquido de SS71, el cual conserva la capacidad de otorgar protección frente a la cepa de C. acutatum causante de antracnosis, se sometió a:
A- Calentamiento a ebullición en baño de agua hirviente (100-95°C durante 15 min, a presión atmosférica) (Producto SN1).
B- Autoclavado (121°C durante 15 min a 1 atm de sobrepresión) (Producto SN2).
El contenido de proteínas de las muestras correspondientes a ambos tratamientos fue inferior al límite de detección del método utilizado.
C- Proteo lisis con Proteinasa K (SIGMA): a una solución conteniendo actividad elicitora (10 μg protína /mi) se agregó la enzima a una concentración final de 100 μg proteinasa/ml e incubó a 50°C durante 1 hora (a este extracto se denominó SNA) o durante una noche (12 hs, a este extracto se denominó SNB).
Los productos obtenidos después de cada tratamiento de inactivación (Productos EC y SN y sus derivados: 1, 2, A, B) fueron utilizados para pulverizar las plantas en el pre-tratamiento previo a la inoculación (ver más adelante Ensayos fitopato lógicos: Sistema de doble tratamiento). Ejemplo 6: Ensayos fitopato lógicos: Sistema de doble Tratamiento
El diseño experimental que se utilizó para evaluar la protección cruzada consiste en la estrategia de doble tratamiento que se detalla a continuación:
1) Primer Tratamiento: INDUCCION: Consistió en rociar con pulverizador las partes aéreas de las plantas (pecíolos y láminas de las hojas) hasta punto de goteo, con una de las fracciones procedentes de los distintos tratamientos de la cepa SS71 de A. strictum (fracciones EC y SN). Se considera que un volumen de 5 mi es suficiente para mojar el follaje completo de una plantín de 3 meses (4 hojas totalmente expandidas).
2) Una vez efectuado el primer tratamiento, las plantas fueron trasladadas a una cámara de seguimiento, donde crecen en condiciones controladas de humedad (70%), temperatura (28°C) y fotoperíodo (16 hs luz) durante 72 hs (o 7 días en algunos casos). Aclaración: El intervalo de tiempo transcurrido entre el primer y el segundo tratamiento tiene como principal objetivo permitir la activación de los mecanismos de defensa en las plantas por acción del elicitor.
3) Segundo tratamiento: INOCULACIÓN: Una vez transcurrido el tiempo estipulado, las partes aéreas (pecíolos y láminas) de las plantas que habían recibieron el primer tratamiento fueron nuevamente rociadas con pulverizador hasta punto de goteo, pero esta vez empleando una suspensión de 1,5x106 conidios/ml del aislado Mi l de C. acutatum, altamente virulento para el cv. Pájaro. Aclaración: En esta etapa siempre se usó una suspensión de conidios vivos de esta cepa para desencadenar una interacción de tipo compatible frente a la variedad de fresa utilizada en el ensayo (cv. Pájaro) de modo de evaluar el grado de protección adquirida por las plantas frente a la enfermedad de la antracnosis.
4) Inmediatamente después de la segunda inoculación, las plantas fueron llevadas a una cámara de estrés (oscuridad, 100% de humedad, 30-32°C) donde permanecieron por 24 hs a fin de producir la apertura de los estomas y favorecer la germinación de los conidios del patógeno virulento y la penetración de las hifas infectivas por los estomas y tricomas de la planta.
5) Finalmente las plantas fueron trasladadas a la cámara de seguimiento en condiciones que favorecen el desarrollo del hongo patógeno, además de permitir el crecimiento de las plantas. Las plantas permanecieron en estas condiciones durante 40 días con el fin de evaluar la sintomatología de las mismas después de la infección. En esta etapa se define el establecimiento o no de la enfermedad de la antracnosis, según el nivel de protección logrado por los tratamientos.
Los controles que se usaron en los ensayos realizados fueron:
1) Control de sanidad de plantas: un lote de plantas del cv. Pájaro recibió idéntico tratamiento a las plantas ensayadas pero utilizando agua destilada estéril en ambas pulverizaciones. En estas condiciones, las plantas no deben presentar síntomas de enfermedad.
2) Control de la protección cruzada (control de la capacidad inductora de la cepa SS71 de A. strictum): un lote de plantas del cv. Pájaro recibió una primera inoculación con una suspensión de conidios vivos de la cepa de avirulento A. strictum SS71, a una concentración de l,5xl06 conidios/ml, y luego de 72 hs (las primeras 24 hs en condiciones de estrés), una segunda con los conidios vivos del aislado virulento C. acutatum Mi l a la misma concentración. Con este experimento se controló que el patógeno avirulento no haya perdido su capacidad "elicitora" de la respuesta de defensa en el cv. Pájaro, de modo tal que las plantas no deben presentar síntomas de enfermedad.
3) Control positivo de virulencia de Colletotrichum acutatum (Control del aislado Mi l usado en la segunda inoculación): un lote de plantas del cv. Pájaro recibió idéntico tratamiento al lote ensayado pero en el primer tratamiento se utilizó agua destilada estéril. En este caso las plantas deben enfermarse y morir en un lapso máximo de 21 días.
4) Control positivo de inactividad (ausencia de compuestos activos) del vehículo (medio de cultivo líquido): Para comprobar que el efecto producido por el sobrenadante empleado en los ensayos se debe a la presencia de compuestos activos que derivan exclusivamente del crecimiento del hongo y no del medio de cultivo líquido empleado, un lote de plantas del cv. Pájaro recibió idéntico tratamiento al lote ensayado pero el primer tratamiento se sustituyó por una pulverización con medio PG. Las plantas deben contraer la enfermedad y morir al cabo de 21 días.
5) Control positivo de virulencia de Acremonium strictum (cepa SS71 productora del elicitor y usada en la primera inoculación del sistema de protección cruzada): Para verificar que la cepa SS71 de A. strictum es activa y puede desencadenar la enfermedad en genotipos susceptibles a la misma, un lote de plantas de fresa silvestre F. vesca (altamente sensible) recibió una única inoculación con una suspensión de conidios vivos de dicha cepa a una concentración de 1,5x106 conidios/ mi, que es igual a la utilizada para conseguir la respuesta de protección cruzada en el cv. Pájaro. Las plantas deben enfermarse y morir en 7 días aproximadamente.
6) Control positivo de inocuidad de las fracciones derivadas de dicha cepa que contengan o no el elicitor si lo hubiere): Con el objeto de verificar que los extractos y sobrenadantes estén libres de agentes ñtotóxicos o patogénicos para el cultivo de fresa y por lo tanto sean inocuos y factibles de aplicar a campo, un lote de plantas de fresa silvestre F. vesca altamente susceptible a A. strictum SS71, se inoculó con cada una de las fracciones provenientes de cultivos de este patógeno (EC, SN o sub fracciones de purificación) a la misma concentración utilizada para evaluar la inducción de resistencia en el cv. Pájaro. Las plantas no deben manifestar síntomas de enfermedad.
Los experimentos fueron repetidos tres veces y cada ensayo fitopatológico fue aleatorizado con 4 plantas por lote experimental y 4 plantas para cada control. Los resultados presentados corresponden a la media (ξ) de una de las repeticiones debido a que la varianza (s2) entre ambas repeticiones era prácticamente nula. En la Tabla 2 se resumen los experimentos realizados y controles empleados en este ejemplo.
Tabla 2: Protocolo de inducción de resistencia de las fracciones de extracto celular y sobrenadante
Figure imgf000044_0001
Análisis estadístico de los datos
5 Se utilizó el programa Statistix (Analitical software 1996 para Windows). Se realizó el estudio de la media aritmética de la DSR como medida de posición. El programa calcula la media aritmética de los valores de DSR (promedio de las cuatro unidades experimentales de cada una de las repeticiones) correspondiente a la cuarta fecha de evaluación (40 días) para cada ensayo fitopatológico, los cuales se 0 realizaron con las fracciones de cultivos de A. strictum obtenidas por diferentes tratamientos. Se designa Ctr-PC al control de Protección Cruzada y Ctr-Ca al control positivo de infección con conidios vivos de C. acutatum. La comparación de las medias de los diferentes ensayos se realizó por el "Test de LSD" y el "Test de Tukey", con un grado de significación del 5% (a = 0,05) en ambos casos. Para 5 estudiar la dispersión de los datos respecto a la media se realizó en forma previa el Análisis de la Varianza (ANO VA). Ejemplo 6
Purificación del elicitor
El elicitor de la presente invención fue purificado a partir del sobrenadante de cultivos de 21 días de la cepa SS71 de A strictum crecido a 28° C bajo luz blanca continua en medio PG sin agitación (fracción SN). Después de 21 días de cultivo; el sobrenadante fue colectado por centrifugación a lO.OOOg (30 min, 4°C) y filtrado a través de tierra de diatomea y luego por membrana Millipore de 0,22 μιη de diámetro. El sobrenadante axénico fue congelado y concentrado 10 veces bajo vacío (liofilización).
El extracto luego fue pasado a un tubo de diálisis (12 kDa de cut off) y nuevamente concentrado 4 veces más por deshidratación con PEG (MW 15000-20000; Sigma) a 4o C. El extracto concentrado fue sometido a ultrafiltración bajo presión de nitrógeno gaseoso a través de un filtro molecular (30 kDa cut off; AMICON). La fracción retenida sobre la membrana fue recuperada lavando la superficie de la membrana con buffer Tris-HCl 20 mM (pH 7,5). La actividad del elicitor fue ensayada en el retentato y en el filtrado; confirmando que toda la actividad se recuperaba en la fracción de mayor peso molecular retenida en la membrana. El extracto conteniendo el polipéptido elicitor activo fue sometido a dos pasos de separación cromatográfica por FPLC: intercambio aniónico e interacción hidrofóbica.
En la primera cromatografía se usó una columna Sepharose Q Fast Flow column (Pharmacia-FPLC) y en la segunda una columna Phenyl Superóse HP column (GE- FPLC) ambas adaptadas a un sistema FPLC, monitoreado a λ = 280 nm. La matriz Sepharose Q fue equilibrada con Tris HCI 20 mM (pH 7,5) y eluida por incremento de la fuerza iónica con un gradiente discontinuo de NaCl en tres pasos: 0,24 M (8 min), 0,38 M (8 min) and 1 M (10 min); velocidad de flujo 1 ml/min. La fracción con actividad elicitora correspondiente al lavado de la columna (fracción eluida sin sal) fue colectada y sujeta a una nueva cromatografía usando la columna Phenyl Superóse HP (GE-FPLC) equilibrada con buffer A: Tris HCI 50 mM (pH 7,5), EDTA (1 mM) y (NH4)2S04 (1,5M). El buffer B de elusión tiene igual composición que el buffer A pero sin el agregado de (NH4)2S04 Las muestras fueron eluidas disminuyendo la fuerza iónica con un gradiente discontinuo de la sal (NH4)2S04 escalonado en 8 pasos: 22% B ( 5min), 30% B (7min), 40% (7min), 50% (7min), 70% (5min), 80% (5min), 90%) (5min), 100% (lOmin); velocidad de flujo= 1 ml/min. La actividad de todas las fracciones fueron testeadas de dos formas en paralelo, analizando la producción ERO y la protección de la planta contra C. acutatum Mi l.
La fracción eluída a 0,5 M de (NH4)2S04 fue visualizada como un pico único (pico 7, Fig 6) y mostró ambas actividades. Luego este pico fue colectado y desalado dos veces; primero por diálisis contra agua bidestilada y luego por siembra a través de una columna Sephadex G25 superfina (SIGMA). En cada paso de purificación las proteínas totales fueron cuantificadas y separadas por SDS PAGE en geles de poliacrilamida (12%), teñidas con Azul Brillante de Coomasie y/o tinción con plata (Sambroock. et. al, 1989. Molecular cloning, a laboratory manual. Second edition). La fracción desalada eluida de la columna HP (pico7) mostró una banda única de 34kDa en un SDS PAGE (10%).
Determinación de proteínas totales: Método de Bradford
El contenido de proteínas de las muestra solubles en agua fueron determinadas usando el "Bio-Rad Protein Assay Kit Π" basado en el método de Bradford (Bradford, 1976. Anal. Biochem. 72, 248-254). Los productos obtenidos hasta esta etapa fueron empleados en el primer tratamiento de los ensayos fitopatológicos de Resistencia Inducida.
Ejemplo 7: Evaluación de la actividad elicitora en cada paso de purificación La actividad elicitora en cada paso de purificación fue evaluada en plantas de fresa analizando la acumulación de ERO (e.g. H202, y 02 ~) y la protección contra antracnosis. En este último caso se determinó mediante ensayos fitopatológicos la capacidad de las diferentes fracciones y de la proteína purificada para proteger plantas contra patógenos virulentos. La metodología empleada para los ensayos fitopatológicos ya fue explicada más arriba.
Evaluación del Estallido oxidativo:
La acumulación de H202 fue detectada por tinción histoquímica con DAB (en fresa) o con la sonda fluorescente DCFH-DA (en Arabidopsis) y la acumulación de 02 ~ por tinción histoquímica con NBT (en ambas especies).
Para evaluar la evolución del estallido oxidativo, la generación de peróxido de hidrógeno y de radical superóxido fue seguida a través de tiempo. Para ésto, plantas de fresa (cv. Pájaro) fueron tratadas con el elicitor a una concentración 10 μg/ml y a distintos tiempos, desde 0 a 12 horas después del tratamiento (hpt) con el elicitor, se cortaron 10 foliólos proximales o distales, los cuales fueron incubados en una solución de 0,1 % (w/v) DAB, 10 mM MES, pH 3,8 (para la detección de peróxido) o en 0,1 % (w/v) NBT, 10 mM azida sódica, 10 mM fosfato de postasio (pH 7,8), sin la adición de NADPH (para la detección de superóxido). Las hojas fueron luego incubadas de 2 a 8 hs en la oscuridad bajo presión de nitrógeno gaseoso. Luego de la incubación, el tejido fue fijado y decolorado por calentamiento en etanol 95% (w/v), clarificado con ácido láctico /glicerol/H20 [3:3:4] durante 24 hs y montado en portaobjetos con glicerol 60%. Las tinciones histoquímicas fueron observadas y documentadas con un microscopio Olympus BH-2 provisto con una cámara digital. Plantas tratadas con agua y el medio PG estéril fueron usados como control.
La detección de peróxido de hidrógeno intracelular en tejido foliar de Arabidopsis se realizó con la sonda fluorescente diacetato de fluoresceína (DCFH- DA). Se preparó una solución stock a concentración 10 mM en DMSO y a partir de allí la solución de trabajo a concentración 40 μΜ en buffer fosfato lOmM (pH 7,4). Las hojas cosechadas a distintos tiempos fueron incubadas en la solución DCFH-DA en oscuridad bajo presión de nitrógeno gaseoso durante 15 minutos e inmediatamente observadas al microscopio de fluorescencia. Para la detección de fluorescencia; las observaciones microscópicas y las fotos fueron obtenidas con el microscopio de sistema Olympus modelo BXS1, equipado con un sistema de epifluorescencia tipo U-LH 100HG, un filtro de excitación U-MWB2 y cámara digital. La detección del anión 02 ~ se realizó por tinción histoquímica con NBT como fue descripto anteriormente para fresa.
Cuantificación de producción de NO y ERO en células de tomate cultivadas en suspensión (Solanum lycopersicon) por fluorescencia:
Cultivos de células en suspensión de tomate de 4 a 5 días de edad fueron expuestos a diferentes tratamientos en placas de microtítulo (para mediciones de fluorescencia). La detección de ERO (H202) en las células fue llevada a cabo usando la sonda fluorescente diacetato de H2DCF (2',7'-difluorodihydrofluorescein diacetate, Molecular Probes). Este último; originalmente descripto para células fagocíticas fue adaptado y modificado para medir la reacción de estallido oxidativo de cultivos de células en suspensión inducidos con elicitores mediante ensayos en un sistema de fluorescencia automático multicanal de microplaca. La cuantificación del óxido nítrico (NO) en células fue llevada a cabo usando la sonda fluorescente diacetato DAF-FM (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, Molecular Probes).
Noventa μΐ de una suspensión de cultivo celular fueron cuidadosamente alicuotados con micropipeta en los pocilios de una placa de microtítulo de 96 pocilios (Grein Lader) conteniendo 0,025 μΜ H2DCF-DA o 0,5 μΜ DAF-FM-DA y 10 μΐ de elicitor a diferentes concentraciones (a concentraciones finales de 5 o 10 μg /mi respectivamente). La microplaca fue inmediatamente transferida al fluorómetro para realizar la medición. La fluorescencia que resulta de la reacción de estallido oxidativo producida por las células fue continuamente monitoreada durante 30 minutos en fluorómetro de microplaca Fluoroskan Acsent (Termo Electrón Company, Vantaa, Finland) usando filtros Chroma D480-40 y D525-30 (Chroma Technology Corp, Rockingham, VT, AS) utilizando λεχ = 480 nm y λειη = 525nm.
La fluorescencia de cada pocilio individual fue medida cada 20 milisegundos durante 2 minutos a 25°C. Entre las mediciones, las suspensiones de células fueron agitadas a 120 rpm con lcm de rotación y siempre a 25°C. Todos los experimentos fueron realizados por triplicado. La fluorescencia resultante fue expresada como producción relativa de EROs.
Las células control fueron tratadas con 20 μΐ de medio de preincubación en lugar del elicitor. Xilanasa derivada de Trichoderma viride fue usada como control de inducción de EROs y NO a una concentración de 10 y 100 μg/ml, respectivamente. También se llevaron a cabo experimentos control con scavengers de NO (cPTIO: sal potásica de 2-(4-carboxyphenil)-4,4,5,5-tetramethylimidazoline-l- oxyl-3 -oxide) e inhibidores de la enzima óxido nítrico sintasa (competidores de Arginina), de la NADPH oxidasa (Apocinina) y de ambas enzimas (DPI: diphenyliodonium) para disminuir el origen de las especies fluorescentes. Los tratamientos con inhibidores fueron llevados a cabo incubando las células 30 minutos previos al tratamiento. Análisis de deposición de calosa:
Para visualizar la acumulación de calosa, las hojas de fresa fueron tratadas y teñidas. Las plantas fueron rociadas con la proteína elicitora purificada (10 μg/ml) o con agua. Las hojas fueron colectadas a los 7 días posteriores al tratamiento con elicitor (7dpi). Para un mayor control, se evaluó la deposición de calosa en plantas que a los 7 días post-tratamiento fueron infectadas con el aislado virulento Mi l de C acutatum. En este caso las hojas fueron analizadas a las 48 horas post-inoculación con Mi l . Luego el tejido fue clarificado y deshidratado con EtOH 100% durante toda la noche: Los tejidos clarificados fueron transferidos secuencialmente a soluciones decrecientes de Etanol en buffer K2HP04 67 mM (pH 12) desde 100% a 0% (e.g. 100%, 75%, 50%, 25% y 0%), y luego teñidos por 1 hora a temperatura ambiente con anilina azul 0,01% en K2HP04 67 mM (pH 12). El material teñido fue luego montado en glicerol al 30% y examinado usando epifluorescencia ultravioleta en el microscopio Olympus system modelo BXS 1 mencionado arriba. Determinación de ácido salicílico:
El ácido salicílico (AS) fue determinado en el exudado floemático de hoja. Plantas del cv. Pájaro fueron tratadas por spray con el elicitor (15 μg/ml) y sus hojas cosechadas a diferentes tiempos para extraer el fluido floemático. Los controles del experimento consistieron en plantas tratadas con agua, ácido S-metil benzo (1,2,3) tiadiazol-7-carbotioico (BTH) como control positivo e infectadas con el aislado Mi l de C acutatum. A diferentes tiempos post-tratamiento, el exudado floemático fue colectado con micropipeta a partir de los pecíolos de las hojas completamente expandidas de dos plantas y reunidos en una única muestra. AS fue determinado para cada tiempo. Los exudados fueron recibidos en etanol 100% frío y acidificado (pH 2,5) para precipitar las proteínas y otros compuestos de alto peso molecular.
Después de remover los materiales insolubles por centrifugación (12.000g por 15 minutos a 4°C), los extractos etanó lieos fueron transferidos a tubos de microcentrífuga previamente tarados y fueron concentrados a sequedad bajo vacío usando un concentrador rotatorio de vacío SpeedVac Sample Concentrator Modelo SVC 200 (Savant Instrumentos Co., Farmingale, NY). Una vez secos, los tubos se pesaron para calcular el peso seco y las muestras fueron resuspendidas en 250 μΐ de metanol al 30%.
La separación del AS fue llevada a cabo por HPLC con una columna de fase reversa C18 (Phenomenex- CV=3.4ml) equilibrada en 30% de metanol. Las corridas fueron llevadas a cabo con una velocidad de flujo de fase móvil de 0,5 ml/min y con un gradiente lineal de elución con metanol (0-100% en 15 minutos) y luego mantenido en 100% durante 20 minutos. AS fue detectado espectro fotométricamente a 280 nm usando un detector UV y el pico de AS eluyó con metanol 100% bajo las condiciones usadas. El análisis cuantitativo se realizó por fluorescencia utilizando un espectroflorómetro ISS-PC1 Photon counting Spectroflurometer. La concentración de ácido salicílico fue determinada en cada fracción colectada por HPLC (λεχ = 296 nm, λειη = 408 nm). Cada dato puntual es reportado como el promedio de dos réplicas de un experimento representativo realizado por duplicado. Los datos fueron expresados como AS total por gramo de peso seco de exudado. Detección de autofluorescencia:
Debido a que se reportó que el desarrollo de la respuesta defensiva puede estar asociada a la acumulación de compuestos autofluorescentes, se estudió la aparición de compuestos autofluorescentes en hojas de fresa después de ser tratadas con extractos conteniendo el elicitor, con la proteína activa pura y otras soluciones usadas como control. El tratamiento se realizó mediante infiltración por la cara abaxial del foliólo, de un volumen aproximado de 50 μΐ de agua o del elicitor (10 μg/ml) usando una jeringa sin aguja y la reacción fue seguida durante 96 hs por epifluorescencia UV (329 nm). Las microfotografías fueron obtenidas con un microscopio Olympus BH-2.
Ejemplo 8: Caracterización molecular del elicitor Microsecuenciación, búsqueda de similitudes y alineamientos
El polipéptido elicitor purificado por cromatografía de interacción hidrofóbica usando un sistema de FPLC fue separado en un gel de poliacrilamida al 12% en condiciones desnaturalizantes usando buffer Tris-Glicina con SDS y luego fue electrotransferido a una membrana de Immobilon-PSQ de 0,1 μιη de diámetro de poro en buffer CAPS 10 mM (pH 11). La banda correspondiente al polipéptido fue del gel y sujeta a microsecuenciación por reacción de degradación de Edman con un secuenciador de fase gaseosa Applied Biosystems Model 476. Las secuencias del aminoácidos obtenidas fueron comparadas con las secuencias conocidas almacenadas en las base de datos usando el programa BLAST y el software DNAMAN (versión 4- 03).
Construcción de una Biblioteca de expresión del aislado productor del elicitor
(SS71):
Con el objeto de obtener la secuencia completa del polipéptido elicitor, se procedió al clonado del transcripto. Se construyó una librería de expresión a partir del micelio fúngico de un cultivo de la cepa SS71 crecido en medio líquido PG hasta fase estacionaria.
El AR total del micelio fúngico de la cepa SS71 fue aislado de la siguiente manera: cada muestra (aproximadamente 1,2 gramos) fue triturada en mortero con N2 liquido y homogenizada con 8 mi de tampón de extracción previamente calentado a 65°C.
La composición del buffer de extracción utilizado fue la siguiente: Tris-HCl, 100 mM (pH 8); EDTA, 25 mM (pH 8); NaCl, 2,5 M; CTA, 2 %; PVP, 2 %; Espermidina, 0,5 g/1; β-mercaptoetanol, 2 %. Una vez homogeneizada, la mezcla se incubó a 65°C durante 30 min, agitando vigorosamente cada 5 min. Luego de centrifugar a 5.000g durante 10 min a 4°C se filtró el sobrenadante a través de una columna QIAShredder (Qiagen) y se incubó en hielo durante una hora. Posteriormente, se centrifugó nuevamente a 14.000g durante 10 min a 4°C para remover cualquier resto de material vegetal en suspensión. El sobrenadante fue purificado mediante dos extracciones con igual volumen de cloro formo/alcohol isoamílico (24: 1) seguidas de centrifugación a 14.000g durante 5 min a 4°C. Luego se precipitó con 1/4 de volumen de LiCl 10 M incubando a 4°C durante toda una noche. Al día siguiente se centrifugó a 14.000g durante 45 min a 4°C y el pellet se lavó con etanol 70% y se resuspendió en 100 μΐ de agua bidestilada tratada con 5 DEPC (dietil pirocarbonato) al 0,1% v/v. Finalmente se procedió a una limpieza final y tratamiento con DNasa "en columna" utilizando los kits RNAeasy MiniKit y RNase-Free DNase Set (Qiagen), respectivamente, siguiendo las instrucciones del fabricante. La concentración y la pureza de las muestras de ARN total fueron determinadas espectro fotométricamente evaluando las absorbancias a 260, 230 y 10 280 nm. La concentración de ARN total se calculó mediante la siguiente formula:
ARN [ng/μΐ] = A26o x Factor de Dilución x FC donde FC es el factor de conversión (ng/μΐ): 1 unidad de absorbancia es 15 aproximadamente 40 ng/μΐ de ARN.
La pureza con respecto a las contaminaciones con proteínas y carbohidratos/polifenoles se estimó mediante las relaciones Α26ο/Α28ο y A26o/A230 (ambas deben ser superior a 2).
Una vez cuantificadas las muestras se utilizaron en las reacciones de 0 retrotranscripción inmediatamente o se almacenaron a -80°C precipitadas con 1/10 volumen de acetato de sodio y 2 volúmenes de etanol, hasta su utilización. La librería de ADNc fue usada para reacciones de PCR.
Aislamiento del polipéptido elicitor mediante PCR empleando cebadores 5 degenerados:
Se utilizaron cebadores semidegenerados para amplificar la proteína con actividad elicitora.
Con los péptidos internos y el amino terminal secuenciados de la proteína se procedió al diseño de cebadores de oligonucleótidos con el menor grado de 30 degeneración posible (variaciones de nucleótidos por posición). Para ello se eligieron como molde de los mismos las regiones que contengan aminoácidos con menor multiplicidad en el código genético (ejemplo: triptófano) como también se usaron las regiones menos conservadas de aminoácidos a fin de evitar levantar un ADNc codificante para una proteína homologa a la proteína de interés con actividad elicitora.
En el diseño de los cebadores se tuvieron en cuenta los siguientes criterios: 1) los codones de uso más frecuentes en la especie Acremonium strictum y otras especies del género Acremonium spp., y 2) los codones empleados en las proteínas con mayor identidad de secuencia (obtenidas a partir de la búsqueda realizada por BLAST) que pertenecen a otras especies de organismos. Dichos codones deben codificar para los mismos aminoácidos secuenciados en las regiones del alineamiento.
Los cebadores semidegenerados utilizados fueron:
NH2 Fl (NI): 5'-GCNTAYACNACNCARGCNT-3' (SEQ ID N° 3)
NH2 F2 (N2): 5 '-CAGGCBWSBGCBCCBTGG- 3\SEQ ID N° 4)
InternoF (IF): 5 '-ATYATYGCYGGYATYAACTAYG- 3 ' (SEQ ID N° 5)
InternoR (IR): 5 '-CRTAGTTRATRCCRGCRATRAT- 3 ' (SEQ ID N° 6)
COOH Rl (Cl): 5 '-RATVACRCCVGTVGTVGCRAT-3 ' (SEQ ID N° 7)
COOH R2 (C2): 5 '-GTTVGGVGTRCCVWSVGGR-3 ' (SEQ ID N° 8)
Con el objetivo de aislar selectivamente la proteína con actividad elicitora se realizaron tres amplificaciones consecutivas utilizando diferentes combinaciones de los cebadores degenerados.
Figure imgf000053_0001
IR Cl C2
El protocolo utilizado para la amplificación por PCRs fue el siguiente:
1: Se realizó una amplificación inicial para enriquecer la muestra en el producto de interés, usando los cebadores sentido y antisentido más externos (NI y C2). Se empleó como molde de reacción 20 ng de ADNc proveniente de la librería de expresión.
2: Luego se realizó una segunda amplificación del tipo Nested PCR usando como molde el producto de amplificación obtenido de la primera PCR diluido 125 veces en la mezcla de reacción (2 μΐ de dilución 1/10 en volumen final de 25 μΐ). En esta amplificación se emplearon los cebadores sentido y antisentido más internos (N2 y Cl). Se realizó un gel de agarosa al 1,5% para visualizar el producto amplificado. Se seleccionaron las bandas candidatas según el tamaño en el gel, las cuales fueron escindidas del gel y purificadas mediante un kit de purificación de bandas.
3: Luego se realizaron dos reacciones de PCR independientes usando como molde la solución de acido nucleico purificada en el paso anterior (4 μΐ), la cual proviene de una única banda de 800 pb amplificada por Nested PCR. Para cada reacción de amplificación se empleó el cebador interno (IF o IR) combinado con el cebador del extremo amino terminal N2 (N2/IR) o combinado con el cebador del extremo carboxilo terminal (Cl/IF).
La sumatoria de los tamaños de las bandas obtenidas con N2/IR y Cl/IF debería ser igual al peso de la banda de la cual proviene (~800pb). Con la combinación de cebadores N2/IR se obtiene una única banda de intensidad adecuada de 350 pb y con Cl/IF se obtiene una única banda de 500pb aproximadamente.
La reacciones se llevaron a cabo en un volumen final de reacción de 25 μΐ conteniendo 50 mM KC1, 20 mM Tris-HCl (pH 8,4), l,5mM MgCl2, 2 μΜ de cada cebador (sentido y antisentido), 0,2 mM de cada dNTP y 0,75 U de Taq ADN polimerasa (Invitrogen).
Las condiciones de reacción incluyeron una desnaturalización inicial de 10 min a 94°C, seguida de 40 ciclos consecutivos de 45 seg a 94°C (desnaturalización), 30 seg a 55°C (hibridación de los cebadores) y 1,5 min a 72°C (elongación de los cebadores). Finalmente se añadió un periodo de elongación final durante 10 min a 72°C. Las temperaturas óptimas de hibridación de los cebadores se determinaron luego de probar con diferentes temperaturas que fueron desde los 45°C a los 55°C. Además, se probaron diferentes concentraciones de MgCl2, de ADN genómico y de cada uno de los cebadores para optimizar las condiciones de reacción. Las reacciones de amplificación se realizaron en un termociclador PTC- 100 de MJ Research Inc. Separación y purificación de los productos de PCR: 40 μΐ del volumen total de reacción fueron sembrados en geles de TBE/agarosa 1,5% y los productos de amplificación fueron separados mediante electroforesis a 90 V por 1 hora, luego fueron teñidos con bromuro de etidio y visualizados con transiluminador UV (320 nm).
En el segundo y tercer paso de amplificación en los que se observaron bandas de una intensidad y tamaño apropiados, los bandas fueron escindidas del gel, purificadas como se explica mas adelante y concentradas eluyéndolas en un volumen de 20 μΐ. Una alícuota de 5 μΐ de los fragmentos purificados se usó para reamplificarlos mediante PCR usando las mismas condiciones y los mismos cebadores empleados en la amplificación inicial. Finalmente, se comprobó la presencia del amplicón mediante electroforesis.
Clonación y secuenciación de los productos de PCR:
En todos los casos, los productos de PCR fueron ligados directamente al plasmido pCR®2.1 del TopoTA Cloning Kit (Invitrogen). El vector pCR®2.1 contiene los promotores de las ARN polimerasas de los bacterio fagoss T7 y T3, flanqueando una zona de clonado múltiple dentro de la región codificante de la enzima β-galactosidasa (lac Z), lo que permitió secuenciar el inserto empleando los cebadores correspondientes de acuerdo a las indicaciones del fabricante.
Obtención de células E. coli competentes:
Una alícuota de 100 μΐ de un cultivo puro de Escherichia coli DH5a en etapa de crecimiento exponencial fue inoculada en 40 mi de medio fresco y se hizo crecer a 37°C y 250 rpm hasta una densidad óptica de 0,6 (DO a 550nm). El cultivo obtenido en estas condiciones se mantuvo en baño de hielo durante 10 min y luego se centrifugó a 4 °C durante 10 min a 7.000 rpm. Se eliminó el sobrenadante y las células fueron resuspendidas en 5 mi de CaCl2 0,1 M estéril. Se dejó en hielo durante 20 min, se centrifugó como se indicó anteriormente y luego de descartar el sobrenadante asépticamente las células fueron cuidadosamente resuspendidas en 500 μΐ, de CaCl2 0,1 M preenfriado a 4 °C. La suspensión de células fue almacenada en heladera a 4 °C durante toda la noche. Transformación:
Para la transfomación de células competentes se realizó por shock térmico de acuerdo a Sambrock et al. (Sambrock et al., 1989. Molecular cloning, a laboratory manual. Second edition).
Verificación de insertos y secuenciación:
En cada evento de ligación se seleccionaron 10 colonias blancas para su posterior análisis, las cuales fueron reaisladas en placas con ampicilina 100 μg/ml e incubadas durante 24 hs. A partir de estas colonias reaisladas se hicieron cultivos líquidos en 8 a 10 mL de medio LB con ampicilina (100 μg/ml) para luego extraer y purificar los plásmidos recombinantes de acuerdo a Sambrock et al. (Sambrock et al., 1989. Molecular cloning, a laboratory manual. Second edition).
Los plásmidos se eluyeron en 100 μΐ de agua bidestilada estéril y la integridad y cantidad de ADN se verificó como se describe en la sección 2.3. La identificación de clones positivos (verificación de insertos) se llevó a cabo por medio de la técnica de PCR usando los cebadores universales T3 (5 -ATTAACCCTCACTAAAGGGA- 3 ) (SEQ ID N° 9) y T7 (5 -TAATACGACTCACTATAGGG-3 ') (SEQ ID N° 10) en un volumen de reacción de 20 μΐ^ conteniendo IX buffer de Taq polimerasa sin Mg, 2mM MgCl2, 0,5 μΜ de cada cebador, 0,2 mM de cada dNTP, 1 U de Taq ADN polimerasa (Promega) y aproximadamente 50 ng de ADN plasmídico. Las condiciones de reacción fueron: desnaturalización inicial de 2 min a 95°C, 30 ciclos de 30 seg a 95°C, 30 seg a 52°C y 1 min a 72°C seguidos por una extensión final de 5 min a 72°C. Los productos de PCR fueron separados en geles de agarosa 1% en 0,5X TBE, teñidos con bromuro de etidio y visualizados a través de luz UV. Los mismos cebadores usados para la verificación de insertos fueron usados para secuenciar cada inserto en ambas direcciones.
Edición y búsqueda de homólogos
Las secuencias obtenidas fueron inicialmente analizadas con los algoritmos VecScreen y ORF Finder (http://.ncbi.nim.nih.gov/) con el objeto eliminar las secuencias pertenecientes al vector e identificar posibles marcos de lectura abiertos, respectivamente. El software DNAMAN versión 5.2.2 (Lynnon Biosoft, Québec, Canadá) se usó para ensambles de secuencias nucleotídicas y obtención de secuencias aminoacídicas deducidas. Se compararon las secuencias nucleotídicas y aminoacídicas con las secuencias depositadas en la base de datos GenBank NR por medio de los algoritmos heurísticos Blast X y Blast P. El valor del umbral esperado fue fijado en 0,0001 (e-value), el cual es un valor determinado empíricamente para filtrar los alineamientos esperados al azar dado el tamaño del espacio de búsqueda. Mediante los programas CDSearch (del NCBI), SMART 5 y Pfam (del Sanger Institute) se determinó la presencia de motivos estructurales y/o dominios conservados.
Diseño de cebadores específicos
Con el objeto de confirmar la secuencia correspondiente al transcripto maduro ADNc de la proteína elicitora, se diseñaron cebadores específicos a partir de la secuencia nucleotídica consenso obtenida de los 10 clones seleccionados. Para tal motivo se eligieron las regiones menos conservadas de la familia de subtilisinas, que además no contengan nucleótidos variables entre las secuencias de los diferentes clones. Los cebadores se diseñaron mediante el programa DNAMAN versión 5.2.2.
GSPvar-F: 5 '-GGCCCAACTGGCTACACC-3 ' (SEQ ID N° 11)
GSPvar-R: 5 '-ATGGCGACGATGCGGTTG-3 '(SEQ ID N° 12)
Secuenciación completa del ADNc usando metodología tipo RACE-PCR La obtención de la secuencia completa del ADN complementario (ADNc) o transcripto maduro correspondiente a la proteína elicitora se realizó mediante la técnica del RACE (del inglés "Rapid Amplification of cDNA Ends") de acuerdo Frohman et al. (Frohman et al, 1988. Proc. Nati. Acad. Sci. USA. 85, 8998-9002).
Se utilizó el sistema GeneRacer de Invitrogen, basado en una técnica que emplea la ARN ligasa (RLM-RACE: del ingles "RNA ligase-mediated Rapid Amplification of cDNA Ends"), siguiendo las instrucciones del fabricante. Primero se obtiene una biblioteca de expresión tipo RACE del aislado patogénico A. strictum SS71 productor del elicitor, la cual está constituida por las primeras hebras de los ADNc con sitios de anillado de los cebadores GeneRacer para el extremo 5' y 3'. Brevemente, la tecnología del sistema GeneRacer se basa en el tratamiento del ARNm de partida con una fosfatasa (CIP) que elimina los grupos fosfato presentes en el extremo 5' de los mensajeros parcialmente degradados, de modo que sólo aquellos con secuencia completa y protegidos por el casquete o estructura "Cap" puedan continuar con el protocolo de clonado. Después, el ARNm se trata con una pirofosfatasa (TAP) que elimina este "cap" del ARNm íntegro dejando un grupo fosfato en posición 5' al cual se le puede ligar un oligonucleótido de ARN con una secuencia específica que servirá para el proceso de amplificación propio de la técnica RACE.
Diseño de cebadores específicos para RACE
El diseño de cebadores específicos (GSP, del inglés "gene-specific primers"), que anillan en los extremos 5 ' y 3 ' del fragmento del gen de interés, se llevó a cabo mediante el programa DNAMAN versión 5.2.2 (Lynnon Biosoft, Québec, Canadá) siguiendo los siguientes criterios:
-Alta temperatura de anillado (>72°C) lo que se consiguió mediante la longitud de los primers (24-28 nucleótidos) y el alto contenido en GC (50-70%). - Bajo contenido de GC hacia el extremo 3' (no más de 2 residuos de G o C en las últimas 5 bases)
-Ausencia de auto-complementariedad dentro del cebador y ausencia de complementariedad con los cebadores GeneRacer usados.
- Diseño de cebadores anidados (Nested RACE) ubicados dentro de la primera secuencia amplificada con el objeto de aumentar la especificidad mediante el uso de PCR anidado (o "nested"), técnica que consiste en una segunda amplificación usando como molde el producto de la primera. Las condiciones de estos cebadores internos deben ser similares a las anteriormente mencionadas.
Para obtener la secuencia nucleotídica de los extremos 5' y 3' del transcripto maduro correspondiente a la proteína elicitora usando la tecnología tipo RACE se diseñaron cebadores específicos siguiendo los requisitos antes descriptos a partir de la secuencia confirmada por el clonado con los cebadores GSPvar-F y GSPvar-R.
Los cebadores utilizados para secuenciar el extremo 5 ' fueron:
GSP RACE-R (GSP-5): 5 '-GATGTTGTTGTCGATCAAGGACTTGG-3 ' (SEQ ID N° 13)
GSP RACE Nested-R (GSPN-5): 5 '-TGCCTTGGTAGGAGACAAGCTGGAA-3 ' (SEQ ID N° 14)
Los cebadores utilizados secuenciar el extremo 3 ' fueron:
GSP RACE -F (GSP-3): 5 '-AGCTTGTCTCCTACCAAGGCAGCAA-3 ' (SEQ ID N° 15)
GSP RACE Nested-F (GSPN-3): 5 '-GGCCAAGTCCTTGATCGACAACAAC-3 ' (SEQ ID N° 16)
Los cebadores provistos por el kit RACE son los siguientes:
GeneRacer™ 5' (R-5): 5 '-CGACTGGAGCACGAGGACACTGA-3 ' (SEQ ID N° 17)
GeneRacer™ 5' Nested (R -5): 5 '-GGACACTGACATGGACTGAAGGAGTA-3 ' (SEQ ID N° 18) GeneRacer™ 3' (R-3): 5 '-GCTGTCAACGATACGCTACGTAACG-3 ' (SEQ ID N° 19)
GeneRacer™ 3' Nested (RN-3): 5 '-CGCTACGTAACGGC ATGACAGTG-3 ' (SEQ ID N° 20)
A continuación se muestra un esquema con la ubicación relativa de los cebadores en el transcripto de la proteína elicitora:
R-5 GSPN-5 GSP-5
<4
GSP-3 GSPN-3 R-3 RN-3
Amplificaciones por PCR
Con el objeto de minimizar el anillado inespecífico de cebadores ("misspriming") para las reacciones de amplificación se utilizó la enzima Platinum Taq DNA Polymerase High Fidelity (Invitrogen) de acuerdo a las instrucciones del fabricante.
Las reacciones se llevaron a cabo en un volumen final de 50 μΐ conteniendo IX del buffer de PCR, 0,2 mM de cada dNTP, 2 mM MgS04, 0,6 μΜ del cebador GeneRacer 5' o 3', 0,2 μΜ del primer específico 5' o 3' (GSP-5 o GSP-3 respectivamente), 2,5 U de Platinum Taq DNA Polymerase y 1 μΐ de una dilución 1/5 del producto de la retrotranscripción de la Biblioteca de expresión RACE construida a partir del aislado productor SS71. El programa del termociclador utilizado para aplicar la técnica de "touch-down" fue:
-Desnaturalización inicial: 94°C por 2 minutos
-5 ciclos de 94°C por 30 seg y 72°C por 4 min (1 min/kb ADN)
-5 ciclos de 94°C por 30 seg y 70°C por 4 min
-25 ciclos de 94°C por 30 seg, 66°C por 30 seg y 68°C por 4 min
-Extensión final: 68°C por 10 min
Los productos de PCR fueron separados y visualizados en geles de agarosa 1% como se describe en 2.4.
PCR anidado (Nested PCR)
Se realizaron amplificaciones por PCR anidada a partir del producto de la primera amplificación. Las reacciones se llevaron a cabo en un volumen final de 50 μΐ conteniendo IX del buffer de PCR, 0,2 mM de cada dNTP, 2 mM MgS04, 0,2 μΜ del cebador GeneRacer Nested Primer 5' o 3', 0,2 μΜ del primer específico anidado 5Ό 3' (GSPN-5 o GSPN-3 respectivamente), 1 U de Platinum Taq DNA Polymerase y 1 μΐ de una dilución 1/10 del producto de PCR inicial. El programa de PCR usado fue:
-Desnaturalización inicial: 94°C por 2 minutos
-25 ciclos de 94°C por 30 seg, 66°C por 30 seg y 68°C por 4 min
-Extensión final: 68°C por 10 min
Los productos de PCR fueron separados y visualizados en geles de agarosa 1%. En el caso de encontrarse más de una banda, cada una de estas fue separada del gel, purificada y clonada como se describe con anterioridad. Finalmente, se seleccionaron 3 clones recombinantes por cada evento de amplificación transformación los que fueron purificados y secuenciados en ambas direcciones con los cebadores universales T3 y T7 como se describe previamente.
Ejemplo 9: Determinación de la actividad proteolítica tipo subtilisina
Como le análisis de las secuencias nucleotídicas y aminoacídicas sugerían que la proteína podría tratarse de una proteasa del tipo subtilisina, se realizaron ensayos para determinar la actividad proteolítica in vitro. Para esto se evaluó la capacidad de hidrolizar el sustrato peptídico cromogénico N-Suc- Ala- Ala-Pro -Phe-pN A, específico para tripsina/subtilisina. El clivaje proteo lítico produce la liberación de p- nitroanilida que absorbe a
Figure imgf000061_0001
(Moallaei et al., 2006. Mycopathologia 161, 369-375). Se determinaron previamente las condiciones óptimas de la actividad enzimática de la proteína elicitora (temperatura, pH). Para caracterizar y confirmar la función proteasa se estudió también el efecto de inhibidores específicos para diferentes proteasas sobre la actividad proteolítica del elicitor de la invención proveniente de SS71.
Ejemplo 10: Tratamiento de plantas de fresa con conidios de la cepa SS71 de A strictum
Se resuspendieron conidios de la cepa SS71 de A strictum tal como se muestra en el ejemplo 2. Se rociaron sobre plantas de fresa de los cultivares Pájaro, Chandler, Milsei, Camarosa, Sweet Charlie a una concentración de 105, 106 y 107 conidios /mi.
Se evaluó la inducción de la respuesta de defensa de la planta mediante estallido oxidativo por acumulación de H202 y 02 ~, aumento de AS, producción de PRs (proteínas relacionadas a la patogénesis), engrasamiento de pared celular vegetal; translocación de la señal de una hoja al resto de la planta (respuesta sistémica), protección contra diferentes aislados virulentos del género CoUetotrichum spp. causantes de antracnosis y otros patógenos de fresa (Botritys cinérea, Xanthomonas fragariae), resistencia frente a sucesivas infecciones con los aislados virulentos y respuesta de larga duración en el tiempo (durabilidad o persistencia en el tiempo). Ejemplo 11 : Tratamiento de plantas con el extracto EC de la cepa SS71 de A strictum
Se obtuvo el extracto conidial (EC) mediante sonicación de conidios de la cepa SS71 de A strictum tal como se muestra en el ejemplo 3. Se rociaron las partes aéreas de plantas de fresa con EC a una concentración de 1,5 μg proteínas/ml e inclusive EC conservó su actividad diluyendo dicho extracto aproximadamente 12 veces alcanzando una concentración final de 0,12 μg/ml de proteína. Se evaluó la inducción de la respuesta de defensa vegetal en fresa mediante protección contra diferentes aislados virulentos del género Colletotrichum spp. causantes de antracnosis en diferentes genotipos de fresa (Pájaro, Chandler, Milsei y Camarosa) y con otros patógenos de fresa (B. cinérea y X. fragariaé). Además de observó producción de ERO (H202 y 02 '~) cuando las plantas de fresa fueron tratadas con EC a concentración 0,12 μg/ml.
Ejemplo 12: Tratamiento de plantas con el extracto SN de la cepa SS71 de A strictum
Se recuperó el sobrenadante libre de células (SN) a partir de un cultivo del aislado SS71 de A. strictum crecido a 28°C, sin agitación con luz blanca continua hasta fase estacionaria (21 días) tal como se muestra en el ejemplo 4. Se rociaron las partes aéreas de plantas de fresa con SN IX (sin diluir) que corresponde a una concentración de 8,43 μg proteína/ml e inclusive SN conservó su actividad elicitora cuando se diluyó aproximadamente 21 veces alcanzando una concentración final de 0,4 μg proteína /mi.
Se evaluó la inducción de la respuesta de defensa vegetal en fresa mediante resistencia a enfermedades, que fue evaluada por la protección contra diferentes aislados virulentos del género Colletotrichum spp. causantes de antracnosis en diferentes genotipos de fresa (Pájaro, Chandler, Milsei y Camarosa) y contra otros patógenos de fresa (B. cinérea y X. fragariaé) en el cv. Pájaro. La resistencia contra antracnosis se consigue tratando una única hoja de la planta, de modo que se trata de una respuesta de protección sistémica.
Cuando las plantas de fresa cv. Pájaro fueron tratadas con SN IX (8,43 μg proteína/ml) se observó acumulación de ERO (H202 y 02 ~) y HR microscópica inclusive en tejido foliar no tratado (micro estallidos y micro HR sistémicos), aumento de AS, engrasamiento de pared celular vegetal por acumulación de lignina; acumulación de especies autofluorescentes derivadas de la vía de los fenilpropanoides. Estas respuestas son igualmente observadas cuando se realiza la aplicación del SN axénico diluido 5 veces (~2 μg proteína/ml). Cuando cultivos celulares de tomate (Solanum lycopersicon) fueron tratados con SN IX (8,43 μg proteína/ml) se observó acumulación exacerbada de ERO y NO. Además SN IX (8,43 μg proteína/ml) produjo deposición de calosa en pared celular y acumulación de ERO (H202 y 02 '~) en plantas de A. thaliana.
Ejemplo 13: Tratamiento de plantas con el polipéptido elicitor purificado de la cepa SS71 de A. strictum
Se purificó el polipéptido elicitor tipo subtilisina a partir de sobrenadante libre de células (SN) de un cultivo del aislado SS71 de A strictum tal como se muestra en el ejemplo 7. Se rociaron las partes aéreas de plantas de fresa con dicho polipéptido elicitor a concentraciones variables entre 2,5-15 μg/ml de polipéptido dependiendo de la respuesta defensiva estudiada.
Se evaluó la inducción de la respuesta de defensa vegetal en fresa mediante resistencia a enfermedades cuando el polipéptido fue aplicado a una concentración mínima de 2,5 μg/ml y concentración óptima de 10 μg/ml. Se observó la protección contra diferentes aislados virulentos del género Colletotrichum spp. causantes de antracnosis en diferentes genotipos de fresa (respuesta de amplio espectro) y contra otros patógenos de fresa (Botritys cinérea, X. fragariae) en el cv. Pájaro. La resistencia contra antracnosis en particular se consigue tratando una única hoja de la planta con el polipéptido elicitor a concentración 5 μg/ml, de modo que se trata de una respuesta de protección sistémica.
Cuando las plantas de fresa cv. Pájaro fueron tratadas con el polipéptido elicitor a concentración 10 μg/ml se observó acumulación de EROs (H202 y 02 ~) y HR microscópica inclusive en tejido foliar no tratado (micro estallidos y micro HR sistémicos), engrosamiento de pared celular vegetal por acumulación de lignina y calosa; acumulación de especies autofluorescentes derivadas de la vía de los fenilpropanoides e inducción de genes de proteínas PRs (quitinasas, glucanasas) y por tratamiento con el polipéptido elicitor a concentración 15 μg/ml se observó aumento de AS. Por otro lado se observó acumulación exacerbada de ERO y NO en cultivos celulares de tomate (Solanum lycopersicon) tratados con el polipéptido elicitor a concentración final de 10 y 5 μg/ml respectivamente. Además dicho polipéptido elicitor a concentración 10 μg/ml es capaz de inducir acumulación de polímeros de calosa en la pared celular vegetal y estallido oxidativo (H202 y 02 '~) en plantas de A. thaliana. Referencias bibliográficas
Adikaram, N. .B.; Joyce, D.C. and Terry, L.A. (2002). Biocontrol activity and induced resistance as a possible mode of action for Aureobasidium pullulans against grey 5 mould of strawberry fruit. Australasian Plant Pathology 31(3), 223-229.
Bent, A. and Mackey, D. (2007). Elicitors, Effectors and R Genes: The New Paradigm and
Lifetime supply of Questions. Annu. Rev. Phytopathol. 45, 399-436.
Bradford, M. (1976). A rapid and sensitive method for the determination of microgram quantities of protein utilizing the principie of protein-dye binding. Anal. Biochem. 10 72, 248-254.
Delp B.R. and Milholland R.D. (1980). Evaluating strawberry plants for resistance to
Colletotrichum fragariae. Plant Disease 64, 1071-1073
Eikemo, H.; Stensvand, A. and Tronsmo, A.M. (2003). Induced Resistance as a Possible
Means to Control Diseases of Strawberry Caused by Phytophthora spp. Plant Disease 15 87, 345-350.
Félix, G., Grosskopof, D.G., Regenass, M., Basse, C.W. and Boller, T. (1991) Elicitor-
Induced Ethylene Biosynthesis in Tomato Cells. Plant Physiol. 97, 19-25
Frohman M.A., Dush M.K. and Martín G.R. (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide. 20 Proc. Nati. Acad. Sci. USA. 85, 8998-9002.
Fulton, R.W. (1986). Practices and precautions in the use of cross-protection for virus disease control. Annu. Rev. Phytopathol. 24, 67-81.
Hunt, M and Ryals, J. (1996). Systemic acquired resistance signal transduction. Crit. Rev.
Plant Sci. 15, 583-606.
Karñóun, S. (2006). A Catalogue of the Effector Secretóme of Plant Pathogenic Oomycetes.
Annu. Rev. Phytopathol. 44, 41-60.
Keen, N.T. (1990). Gene-for-gene complementarity in plant-pathogen interactions. Annu.
Rev. Genet. 24, 447-463.
Knogge, W. (1996). Fungal Infection of Plants. The Plant Cell 8, 1711-1722.
Kuc3D (1982) Induced immunity to plant disease. BioScience 32, 854-860 Liu C, Matsushita Y, Shimizu K, Makimura K, Hasumi K. (2007) Activation of prothrombin by two subtilisin-like serine proteases from Acremonium sp...Biochem Biophys Res
Commun. 2007 Jun 22;358(l):356-62. Epub 2007 Apr 30.
Moallaei, H., Zaini, F., Larcher, G., Beucher, B. and Bouchara, J. P. (2006). Partial 5 purification and characterization of a 37 kDa extracellular proteinase from
Trichophyton vanbreuseghemii. Mycopathologia 161, 369-375
Nürnberger, T. (1999). Signal perception in plant pathogen defense. Cell Mol. Life Sci. 55,
167-182.
Salazar, S.M.; Diaz Ricci, J.C. y Castagnaro, A.P. (2001). Caracterización de la Protección 10 Cruzada en Frutilla {Fragaria ananassa Duch.) como una estrategia de Biocontrol de la Antracnosis. IV Encuentro Latinoamericano de Biotecnología Vegetal (REDBIO 2001). Goiania, Brasil.
Salazar, S.M.; Diaz Ricci, J.C. y Castagnaro A.P. (2002). Respuesta defensiva en fresa (Fragaria ananassa) desencadenada por un patógeno avirulento. V Simposio Nacional 15 de Biotecnología Vegetal (REDBIO Argentina 2002). Buenos Aires, Argentina.
Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning, a laboratory manual. Second edition. Cold Spring Harbor Laboratory Press, New York.
Stergiopoulos, I. and de Wit, P.J.G.M. (2009). Fungal Effector Proteins. Annu. Rev.
Phytopathol. 47, 233-263.
20
LISTADO DE SECUENCIAS
<110> conicet
Conicet, Conicet
25 <120> Polipéptido que tiene actividad elicitora en plantas, secuencia
de nucleótidos que lo codifica, microorganismo, composiciones y métodos
<130> Conicet
<160> 20
30 <170> Patentln versión 3.5
<210> 1
<211> 787
<212> DNA
35 <213> Acremonium strictum <400> 1
caggcgaggc cgccgtgggg tcttgcccgt atctctactc gtcagcgtgg cccaactggc 60 tacacctacg acgacagcgc cggcgcagga acctgctcct acatcattga caccggcatc 120 caggctaacc accccaactt cggtggccgt gctttccagc ttgtctccta ccaaggcagc 180 aacgccgacg gtaatggcca cggcactcac gttgccggta ccatcggttc taccacctac 240 ggtgtcgcca agcgcaccac cctcctcggc gtcaaggtcc tcagcgactc cggctccggt 300 tccacctccg gtatcatcgc cggcatcaac tacgtcgtca gcgactctcg ctcccgcagc 360 tgccccaacg gttccgtcgc caacatgtcg ctcggcggag gctactctgc ttcgctcaac 420 agcgcggcca agtccttgat cgacaacaac atcttccttg ccgttgctgc cggtaacgag 480 aaccagaacg ccgccaatgt ctcccctgct tctgagccga ctgtctgcac tgttggtgcg 540 accacttctg ccgacgccaa ggcttctttc tccaactacg gctccggtgt cgacatcttc 600 gctcctggtc agagcattct atccacctgg attggcagca gcaccaacac catctctggc 660 acctccatgg cttctcccca catcgccggt cttgctgctt accttgctgg tcttgagggc 720 ttccccggtg cccaggccct gtgcaaccgc atcgtcgcca tcgccaccac cggcgtcatc 780 aagggcg 787 <210> 2
<211> 274
<212> PRT
<213> Acremonium strictum
<400> 2
Ala Tyr Thr Thr Gln Ala Arg Ala Pro Trp Gly Leu Ala Arg lie Ser
1 5 10 15
Thr Arg Gln Arg Gly Pro Thr Gly Tyr Thr Tyr Asp Asp Ser Ala Gly
20 25 30 Ala Gly Thr Cys Ser Tyr lie lie Asp Thr Gly lie Gln Ala Asn His 35 40 45
Pro Asn Phe Gly Gly Arg Ala Phe Gln Leu Val Ser Tyr Gln Gly Ser 50 55 60
Asn Ala Asp Gly Asn Gly His Gly Thr His Val Ala Gly Thr lie Gly 65 70 75 80
Ser Thr Thr Tyr Gly Val Ala Lys Arg Thr Thr Leu Leu Gly Val Lys
85 90 95
Val Leu Ser Asp Ser Gly Ser Gly Ser Thr Ser Gly lie lie Ala Gly
100 105 110 lie Asn Tyr Val Val Ser Asp Ser Arg Ser Arg Ser Cys Pro Asn Gly
115 120 125 Ser Val Ala Asn Met Ser Leu Gly Gly Gly Tyr Ser Ala Ser Leu Asn 130 135 140
Ser Ala Ala Lys Ser Leu lie Asp Asn Asn lie Phe Leu Ala Val Ala 145 150 155 160
Ala Gly Asn Glu Asn Gln Asn Ala Ala Asn Val Ser Pro Ala Ser Glu
165 170 175
Thr Val Cys Thr Val Gly Ala Thr Thr Ser Ala Asp Ala Lys Ala
180 185 190
Ser Phe Ser Asn Tyr Gly Ser Gly Val Asp lie Phe Ala Pro Gly Gln
195 200 205 Ser lie Leu Ser Thr Trp lie Gly Ser Ser Thr Asn Thr lie Ser Gly 210 215 220
Thr Ser Met Ala Ser Pro His lie Ala Gly Leu Ala Ala Tyr Leu Ala 225 230 235 240
Gly Leu Glu Gly Phe Pro Gly Ala Gln Ala Leu Cys Asn Arg lie Val
245 250 255 Ala lie Ala Thr Thr Gly Val lie Lys Gly lie Pro Ser Gly Thr Pro
260 265 270
Asn Arg
<210> 3
<211> 19
<212> D A
<213> Artificial Sequence
<220>
<223> NH2 Fl (NI)
<220>
<221> mise feature
<222> (3) .. (3)
<223> n is a, c, g, or t
<220>
<221> mise feature
<222> (9) .. (9)
<223> n is a, c, g, or t
<220>
<221> mise feature
<222> (12) .. (12)
<223> n is a, c, g, or t
<220>
<221> mise feature
<222> (18) .. (18)
<223> n is a, c, g, or t <400> 3
gcntayacna cncargcnt 19
<210> 4
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> NH2 F2 (N2)
<400> 4
caggcbwsbg cbccbtgg 18
<210> 5
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> InternoF (IF)
<400> 5
atyatygcyg gyatyaacta yg 22 <210> 6
<211> 22
<212> DMA
<213> Artificial Sequence
<220>
<223> InternoR (IR)
<400> 6
crtagttrat rccrgcratr at 22 <210> 7
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> COOH Rl (Cl)
<400> 7
ratvacrccv gtvgtvgcra t 21 <210> 8
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> COOH R2 (C2)
<400> 8
gttvggvgtr ccvwsvggr 19
<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> T3
<400> 9
attaaccctc actaaaggga 20 <210> 10
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> T7
<400> 10
taatacgact cactataggg 20
<210> 11
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> GSPvar-F
<400> 11
ggcccaactg gctacacc 18
<210> 12
<211> 18
<212> DNA
<213> Artificial Sequence
<220> <223> GSPvar-R
<400> 12
atggcgacga tgcggttg 18 <210> 13
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> GSP RACE-R (GSP-5)
<400> 13
gatgttgttg tcgatcaagg acttgg 26
<210> 14
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> GSP RACE Nested-R (GSPN-5)
<400> 14
tgccttggta ggagacaagc tggaa 25
<210> 15
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> GSP RACE -F (GSP-3)
<400> 15
agcttgtctc ctaccaaggc agcaa -5
<210> 16
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> GSP RACE Nested-F (GSPN-3)
<400> 16
ggccaagtcc ttgatcgaca acaac 25
<210> 17
<211> 23 <212> DNA
<213> Artificial Sequence
<220>
<223> GeneRacer™ 5' (R-5)
<400> 17
cgactggagc acgaggacac tga
<210> 18
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> GeneRacer™ 5' Nested (RN-5)
<400> 18
ggacactgac atggactgaa ggagta 26
<210> 19
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> GeneRacer™ 3' (R-3)
<400> 19
gctgtcaacg atacgctacg taacg
<210> 20
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> GeneRacer™ 3' Nested (RN-3)
<400> 20
cgctacgtaa cggcatgaca gtg 23

Claims

REIVINDICACIONES Habiendo así especialmente descrito y determinado la naturaleza de la presente invención y la forma como la misma ha de ser llevada a la práctica, se declara reivindicar como de propiedad y derecho exclusivo:
1. Un polipéptido, caracterizado porque comprende una subtilisina que proviene de Acremonium strictum y en donde dicho polipéptido tiene actividad inductora de la defensa en plantas.
2. El polipéptido de la reivindicación 1, caracterizado porque proviene de la cepa SS71 de Acremonium strictum depositada en el Centro de Depósito Alemán DSMZ con el código de acceso DSM 24396.
3. El polipéptido de acuerdo con la reivindicación 1 o 2, caracterizado porque es codificado por la secuencia de nucleótidos SEQ ID N° 1 ó secuencias al menos un
90% homologas a la misma.
4. El polipéptido de acuerdo con cualquiera de las reivindicaciones 1 a 3, caracterizado porque comprende a la secuencia de aminoácidos SEQ ID N° 2 ó secuencias al menos un 90%> homologas a la misma, en donde dicho polipéptido tiene actividad elicitora.
5. Una secuencia de nucleótidos que codifica a un polipéptido de acuerdo con cualquiera de las reivindicaciones 1 a 4, caracterizada porque comprende la secuencia SEQ ID N° 1 ó secuencias al menos con un 90%> de similitud.
6. Un microorganismo, caracterizado porque es la cepa Acremonium strictum SS71 depositada en el centro de depósito alemán DSMZ con el código de acceso DSM 24396.
7. El microorganismo de acuerdo con la reivindicación 6, caracterizado porque expresa un polipéptido que tiene una secuencia de aminoácidos SEQ ID N° 2 ó secuencias al menos un 90% homologas a la misma, en donde dicho polipéptido tiene actividad inductora de la defensa en plantas.
5
8. Una composición útil para inducir resistencia al estrés producido por patógenos en plantas, caracterizada porque comprende conidios de Acremonium strictum y excipientes.
10 9. La composición de la reivindicación 8, caracterizada porque la cepa de Acremonium strictum es Acremonium strictum SS71 depositada en el centro de depósito alemán DSMZ con el código de acceso DSM 24396 y excipientes
10. La composición de acuerdo con la reivindicación 8 o 9, caracterizada porque la 15 concentración de conidios es de entre lxlO3 y lxlO8 conidios/ml.
11. La composición de acuerdo con cualquiera de las reivindicaciones 8 a 10, caracterizada porque es una suspensión acuosa.
20 12. La composición de acuerdo con la reivindicación 11, caracterizada porque la suspensión acuosa comprende detergente.
13. Una composición útil para inducir resistencia al estrés producido por patógenos en plantas, caracterizada porque comprende un extracto de Acremonium strictum.
25
14. La composición de la reivindicación 13, caracterizada porque la cepa de Acremonium strictum es Acremonium strictum SS71 depositada en el centro de depósito alemán DSMZ con el código de acceso DSM 24396.
15. La composición de acuerdo con la reivindicación 13 o 14, caracterizada porque el extracto es seleccionado del grupo comprendido por sobrenadante libre de células y extracto conidial.
5 16. La composición de acuerdo con la reivindicación 15 caracterizada porque el sobrenadante libre de células comprende entre 0,4 y 9 μg proteína/ml.
17. La composición de acuerdo con la reivindicación 15, caracterizada porque el extracto conidial comprende entre 0,12 y 1,5 μg proteína/ml.
10
18. Una composición útil para inducir resistencia al estrés producido por patógenos en plantas, caracterizada porque comprende el polipéptido de cualquiera de las reivindicaciones 1 a 4.
15 19. La composición de la reivindicación 18, caracterizada porque comprende entre 2,5 y 15 μg/ml del polipéptido de cualquiera de las reivindicaciones 1 a 4.
20. Un procedimiento de obtención y purificación del polipéptido de cualquiera de las reivindicaciones 1 a 4, caracterizado porque comprende las siguientes etapas: 20 a. cultivar Acremonium strictum
b. recuperar el sobrenadante;
c. concentrar el sobrenadante; y
d. ultrafiltrar el producto obtenido en la etapa anterior.
25 21. El procedimiento de la reivindicación 20, caracterizado porque el Acremonium strictum que se cultiva es la cepa de Acremonium strictum SS71 con el código de acceso DSM 24396;
22. El procedimiento de acuerdo con la reivindicación 20 o 21, caracterizado porque 30 comprende además al menos una etapa de purificación por cromatografía luego de la ultrafiltración.
23. El procedimiento de acuerdo con la reivindicación 22, caracterizado porque la etapa de purificación es por una cromatografía de intercambio aniónico.
24. El procedimiento de acuerdo con la reivindicación 23, caracterizado porque además de dicha etapa de purificación por cromatografía de intercambio aniónico comprende una etapa de cromatografía de interacción hidrofóbica.
25. El procedimiento de acuerdo con cualquiera de las reivindicaciones 20 a 24, caracterizado porque la etapa a se lleva a cabo en un medio de cultivo líquido.
26. Un método para inducir resistencia al estrés producido por patógenos en plantas, caracterizado porque comprende aplicar a dicha planta una composición derivada de Acremonium strictum.
27. El método de la reivindicación 26, caracterizado porque la composición deriva de la cepa de Acremonium strictum SS71 con el código de acceso DSM 24396
28. El método de acuerdo con la reivindicación 26 o 27, caracterizado porque la composición es seleccionada del conjunto comprendido por una suspensión de conidios de la cepa, extracto libre de células, extracto conidial, sobrenadante de cultivo, una solución de un polipéptido elicitor y una combinación de los mismos.
29. El método de acuerdo con la reivindicación 28, caracterizado porque la suspensión de conidios se aplica en una concentración de entre lxl O3 y lxl O8 conidios/ml.
30. El método de acuerdo con la reivindicación 28, caracterizado porque el extracto libre de células comprende entre 0,4 y 9 μg proteína/ml.
31. El método de acuerdo con la reivindicación 28, caracterizado porque el extracto conidial comprende entre 0,12 y 1,5 μg proteína/ml.
32. El método de acuerdo con la reivindicación 28, caracterizado porque la solución 5 del polipéptido elictor comprende 2,5 y 15 μg/ml del polipéptido de la reivindicación
1.
33. El método de acuerdo con cualquiera de las reivindicación 26 a 32, caracterizado porque los patógenos son virus, hongos o bacterias.
10
34. El método de acuerdo con la reivindicación 33, caracterizado porque los patógenos son seleccionados del conjunto comprendido por Colletotrichum spp., Botrytis ciñera y Xanthomonas fragariae.
15 35. El método de acuerdo con la reivindicación 34, caracterizado porque el patógeno es Colletotrichum spp.
36. El método de acuerdo con cualquiera de las reivindicaciones 26 a 35, caracterizado porque la planta es una dicotiledónea.
20
37. El método de la reivindicación 36, caracterizado porque la planta es seleccionada del grupo comprendido por fresa (Fragaria x ananassa), tomate (Solanum lycopersicon) y Arabidopsis thaliana.
25 38. El método de acuerdo con la cualquiera de las reivindicaciones 26 a 37, caracterizado porque la composición se aplica por el método seleccionado del grupo comprendido por aspersión en las partes aéreas, infiltración y riego.
PCT/ES2012/070173 2011-03-16 2012-03-16 Polipéptido que tiene actividad inductora de la defensa contra estrés biótico en plantas, secuencia de nucleótidos que lo codifica, microorganismo, composiciones y métodos WO2012123614A1 (es)

Priority Applications (12)

Application Number Priority Date Filing Date Title
BR112013023646-9A BR112013023646A2 (pt) 2011-03-16 2012-03-16 polipeptídeo que induz defesa contra estresse biótico em plantas, sequência de nucleotídeo que codifica para o mesmo, microorganismo, composições e métodos
EP12720221.6A EP2687538B1 (en) 2011-03-16 2012-03-16 Polypeptide that induces defense against biotic stress in plants, nucleotide sequence that codes for same, microorganism, compositions and methods
PL12720221T PL2687538T3 (pl) 2011-03-16 2012-03-16 POLIPEPTYD, KTÓRY INDUKUJE OBRONĘ PRZECIWKO STRESOWI BIOTYCZNEMU U ROŚLIN, SEKWENCJA NUKLEOTYDOWA, KTÓRA GO KODUJE, MIKROORGANIZM, KOMPOZYCJE i SPOSOBY
ES12720221.6T ES2646262T3 (es) 2011-03-16 2012-03-16 Polipéptido que tiene actividad inductora de la defensa contra estrés biótico en plantas, secuencia de nucleótidos que lo codifica, microorganismo, composiciones y métodos
AU2012228211A AU2012228211B2 (en) 2011-03-16 2012-03-16 Polypeptide that induces defense against biotic stress in plants, nucleotide sequence that codes for same, microorganism, compositions and methods
RU2013146180A RU2606261C2 (ru) 2011-03-16 2012-03-16 Полипептид, обладающий активностью, индуцирующей защиту против биотического стресса у растений, кодирующая его нуклеотидная последовательность, микроорганизм, композиции и способы
CA2830194A CA2830194C (en) 2011-03-16 2012-03-16 Polypeptide having inducing activity for the defence against biotic stress in plants, nucleotide sequence encoding the same, microorganism, compositions and methods
NZ616252A NZ616252B2 (en) 2011-03-16 2012-03-16 Polypeptide having eliciting activity of plant immune response to pathogens for the defence against biotic stress in plants, nucleotide sequence encoding the same, microorganism, compositions and methods
MX2013010539A MX348500B (es) 2011-03-16 2012-03-16 Polipeptido que tienen actividad inductora de la defensa contra estres biotico en plantas, secuencia de nucleotidos que lo codifica, microorganismo, composiciones y metodos.
US14/005,532 US9357786B2 (en) 2011-03-16 2012-03-16 Polypeptide having inducing activity for the defence against biotic stress in plants, nucleotide sequence encoding the same, microorganism, compositions and methods
US15/162,026 US20160316746A1 (en) 2011-03-16 2016-05-23 Composition for inducing plant resistance to stress caused by pathogens
US15/161,964 US9534025B2 (en) 2011-03-16 2016-05-23 Method for inducing resistance to stress caused by pathogens in plants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ARP110100854A AR080686A1 (es) 2011-03-16 2011-03-16 Polipeptido que tiene actividad inductora de la defensa contra estres biotico en plantas, secuencia de nucleotidos que lo codifica, microorganismo composiciones y metodos
AR20110100854 2011-03-16

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/005,532 A-371-Of-International US9357786B2 (en) 2011-03-16 2012-03-16 Polypeptide having inducing activity for the defence against biotic stress in plants, nucleotide sequence encoding the same, microorganism, compositions and methods
US15/162,026 Division US20160316746A1 (en) 2011-03-16 2016-05-23 Composition for inducing plant resistance to stress caused by pathogens
US15/161,964 Division US9534025B2 (en) 2011-03-16 2016-05-23 Method for inducing resistance to stress caused by pathogens in plants

Publications (1)

Publication Number Publication Date
WO2012123614A1 true WO2012123614A1 (es) 2012-09-20

Family

ID=46052796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070173 WO2012123614A1 (es) 2011-03-16 2012-03-16 Polipéptido que tiene actividad inductora de la defensa contra estrés biótico en plantas, secuencia de nucleótidos que lo codifica, microorganismo, composiciones y métodos

Country Status (14)

Country Link
US (3) US9357786B2 (es)
EP (1) EP2687538B1 (es)
AR (1) AR080686A1 (es)
AU (1) AU2012228211B2 (es)
BR (1) BR112013023646A2 (es)
CA (1) CA2830194C (es)
CL (1) CL2013002647A1 (es)
CO (1) CO6900115A2 (es)
ES (1) ES2646262T3 (es)
MX (1) MX348500B (es)
PE (1) PE20141453A1 (es)
PL (1) PL2687538T3 (es)
RU (1) RU2606261C2 (es)
WO (1) WO2012123614A1 (es)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108203847B (zh) * 2016-12-16 2022-01-04 深圳华大智造科技股份有限公司 用于二代测序质量评估的文库、试剂及应用
CN110357949B (zh) * 2019-07-18 2021-02-09 中国热带农业科学院环境与植物保护研究所 一种来源于内生帚枝霉属真菌的激发子蛋白及其编码基因
CN110452290B (zh) * 2019-07-18 2021-03-16 中国热带农业科学院环境与植物保护研究所 来源于帚枝霉属真菌的激发子蛋白及其编码基因在蔬菜生防上的应用
CN114231433A (zh) * 2021-10-13 2022-03-25 南宁市拜欧生物工程有限责任公司 一种用于水果保鲜的枯草芽孢杆菌及其应用
CN114539424B (zh) * 2022-02-15 2023-04-11 南开大学 一种结合葡聚糖的融合蛋白、重组微生物及其制备方法和在重塑根际微生物群落中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101235355A (zh) * 2008-03-03 2008-08-06 中国热带农业科学院环境与植物保护研究所 一株植物内生真菌及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1621629A1 (en) * 2004-07-28 2006-02-01 Expressive Research B.V. A method to increase pathogen resistance in plants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101235355A (zh) * 2008-03-03 2008-08-06 中国热带农业科学院环境与植物保护研究所 一株植物内生真菌及其应用

Non-Patent Citations (44)

* Cited by examiner, † Cited by third party
Title
ADIKARAM ET AL., AUSTRALASIAN PLANT PATHOLOGY, vol. 31, no. 3, 2002, pages 223 - 229
ADIKARAM, N.K.B.; JOYCE, D.C.; TERRY, L.A.: "Biocontrol activity and induced resistance as a possible mode of action for Aureobasidium pullulans against grey mould of strawberry fruit", AUSTRALASIAN PLANT PATHOLOGY, vol. 31, no. 3, 2002, pages 223 - 229
BENT, A.; MACKEY, D.: "Elicitors, Effectors and R Genes: The New Paradigm and Lifetime supply of Questions", ANNU. REV. PHYTOPATHOL., vol. 45, 2007, pages 399 - 436
BENT; MACKEY, ANNU. REV. PHYTOPATHOL., vol. 45, 2007, pages 399 - 436
BRADFORD, ANAL. BIOCHEM., vol. 72, 1976, pages 248 - 254
BRADFORD, M.: "A rapid and sensitive method for the determination of microgram quantities of protein utilizing the principle of protein-dye binding", ANAL. BIOCHEM., vol. 72, 1976, pages 248 - 254
CHOI GYUNG JA ET AL: "Biocontrol Activity of Acremonium strictum BCP Against Botrytis Diseases", PLANT PATHOLOGY JOURNAL, vol. 25, no. 2, June 2009 (2009-06-01), pages 165 - 171, XP002678326, ISSN: 1598-2254 *
DELP B.R.; MILHOLLAND R.D.: "Evaluating strawberry plants for resistance to Colletotrichum fragariae", PLANT DISEASE, vol. 64, 1980, pages 1071 - 1073
DELP; MILHOLAND, PLANT DIS., vol. 64, 1980, pages 1071 - 1073
EIKEMO ET AL., PLANT DIS., vol. 87, 2003, pages 345 - 350
EIKEMO, H.; STENSVAND, A.; TRONSMO, A.M.: "Induced Resistance as a Possible Means to Control Diseases of Strawberry Caused by Phytophthora spp", PLANT DISEASE, vol. 87, 2003, pages 345 - 350
FELIX ET AL., PLANT PHYSIOL., vol. 97, 1991, pages 19 - 25
FELIX, G.; GROSSKOPOF, D.G.; REGENASS, M.; BASSE, C.W.; BOLLER, T.: "Elicitor- Induced Ethylene Biosynthesis in Tomato Cells", PLANT PHYSIO, vol. 97, 1991, pages 19 - 25
FROHMAN ET AL., PROC. NATL. ACAD. SCI. USA., vol. 85, 1988, pages 8998 - 9002
FROHMAN M.A.; DUSH M.K.; MARTIN G.R.: "Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide", PROC. NATL. ACAD. SCI. USA., vol. 85, 1988, pages 8998 - 9002, XP000604678, DOI: doi:10.1073/pnas.85.23.8998
FULTON, ANNU. REV. PHYTOPATHOL., vol. 24, 1986, pages 67 - 81
FULTON, R.W.: "Practices and precautions in the use of cross-protection for virus disease control", ANNU. REV. PHYTOPATHOL., vol. 24, 1986, pages 67 - 81
HUNT, M; RYALS, J.: "Systemic acquired resistance signal transduction", CRIT. REV. PLANT SCI, vol. 15, 1996, pages 583 - 606
HUNT; RYALS, CRIT. REV. PLANT SCI., vol. 15, 1996, pages 583 - 606
JALLOW M F A ET AL: "Indirect interaction between an unspecialized endophytic fungus and a polyphagous moth", BASIC AND APPLIED ECOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 5, no. 2, 1 January 2004 (2004-01-01), pages 183 - 191, XP004960674, ISSN: 1439-1791, DOI: 10.1078/1439-1791-00224 *
KAMOUN, ANNU. REV. PHYTOPATHOL., vol. 44, 2006, pages 41 - 60
KAMOUN, S.: "A Catalogue of the Effector Secretome of Plant Pathogenic Oomycetes", ANNU. REV. PHYTOPATHOL., vol. 44, 2006, pages 41 - 60
KEEN, ANNU. REV. GENET., vol. 24, 1990, pages 447 - 463
KEEN, N.T.: "Gene-for-gene complementarity in plant-pathogen interactions", ANNU. REV. GENET., vol. 24, 1990, pages 447 - 463, XP009028629, DOI: doi:10.1146/annurev.ge.24.120190.002311
KNOGGE, THE PLANT CELL, vol. 8, 1996, pages 1711 - 1722
KNOGGE, W.: "Fungal Infection of Plants", THE PLANT CELL, vol. 8, 1996, pages 1711 - 1722
KUC J.: "Induced immunity to plant disease", BIOSCIENCE, vol. 32, 1982, pages 854 - 860
KUC, BIOSCIENCE, vol. 32, 1982, pages 854 - 860
LI-HONG MALMBERG ET AL: "IDENTIFICATION OF RATE-LIMITING STEPS IN CEPHALOSPORIN C BIOSYNTHESIS IN CEPHALOSPORIUM ACREMONIUM: A THEORETICAL ANALYSIS", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, SPRINGER VERLAG, BERLIN, DE, vol. 38, no. 1, 1 January 1992 (1992-01-01), pages 122 - 128, XP009026197, ISSN: 0175-7598 *
LIU C; MATSUSHITA Y; SHIMIZU K; MAKIMURA K; HASUMI K.: "Activation of prothrombin by two subtilisin-like serine proteases from Acremonium sp.", BIOCHEM BIOPHYS RES COMMUN, vol. 358, no. 1, 22 June 2007 (2007-06-22), pages 356 - 62, XP022077654, DOI: doi:10.1016/j.bbrc.2007.04.133
MOALLAEI ET AL., MYCOPATHOLOGIA, vol. 161, 2006, pages 369 - 375
MOALLAEI, H.; ZAINI, F.; LARCHER, G.; BEUCHER, B.; BOUCHARA, J. P.: "Partial purification and characterization of a 37 kDa extracellular proteinase from Trichophyton vanbreuseghemii", MYCOPATHOLOGIA, vol. 161, 2006, pages 369 - 375, XP019404209, DOI: doi:10.1007/s11046-006-0019-8
NUMBERGER, T.: "Signal perception in plant pathogen defense", CELL MOL. LIFE SCI., vol. 55, 1999, pages 167 - 182
NURNBERGER, CELL MOL. LIFE SCI., vol. 55, 1999, pages 167 - 182
RAGAZZI A ET AL: "Antagonistic effects of some fungi of banana fruit against Colletotrichum musae", ZEITSCHRIFT FUER PFLANZENKRANKHEITEN UND PFLANZENSCHUTZ, vol. 104, no. 3, 1997, pages 281 - 288, XP001526050, ISSN: 0340-8159 *
SALAZAR, S.M.; DIAZ RICCI, J.C.; CASTAGNARO A.P.: "Respuesta defensiva en fresa (Fragaria ananassa) desencadenada por un patogeno avirulento", V SIMPOSIO NACIONAL DE BIOTECNOLOGIA VEGETAL, 2002
SALAZAR, S.M.; DIAZ RICCI, J.C.; CASTAGNARO, A.P.: "Caracterizacion de la Proteccion Cruzada en Frutilla (Fragaria ananassa Duch.) como una estrategia de Biocontrol de la Antracnosis", IV ENCUENTRO LATINOAMERICANO DE BIOTECNOLOGIA VEGETAL (REDBIO 2001, 2001
SAMBROOK ET AL.: "Molecular cloning, a laboratory manual", 1989
SAMBROOK ET AL.: "Molecular cloning, a laboratory manual.", 1989
SAMBROOK, J.; FRITSCH, E.F.; MANIATIS, T.: "Molecular cloning, a laboratory manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SAMBROOK.: "Molecular cloning, a laboratory manual", 1989
STERGIOPOULOS IOANNIS ET AL: "Fungal Effector Proteins", ANNUAL REVIEW OF PHYTOPATHOLOGY, vol. 47, 2009, pages 233 - 263, XP002678327, ISSN: 0066-4286 *
STERGIOPOULOS, I.; DE WIT, P.J.G.M.: "Fungal Effector Proteins", ANNU. REV. PHYTOPATHOL, vol. 47, 2009, pages 233 - 263, XP002678327, DOI: doi:10.1146/ANNUREV.PHYTO.112408.132637
STERGIOPOULOS; DE WIT, ANNU. REV. PHYTOPATHOL., vol. 47, 2009, pages 233 - 263

Also Published As

Publication number Publication date
US9534025B2 (en) 2017-01-03
EP2687538A1 (en) 2014-01-22
AU2012228211B2 (en) 2017-03-16
ES2646262T3 (es) 2017-12-13
MX2013010539A (es) 2014-03-12
US20140212385A1 (en) 2014-07-31
US20160316746A1 (en) 2016-11-03
RU2013146180A (ru) 2015-04-27
PL2687538T3 (pl) 2018-03-30
CA2830194C (en) 2020-12-22
US9357786B2 (en) 2016-06-07
RU2606261C2 (ru) 2017-01-10
PE20141453A1 (es) 2014-10-08
AU2012228211A1 (en) 2013-10-31
BR112013023646A2 (pt) 2018-10-09
CO6900115A2 (es) 2014-03-20
US20160330977A1 (en) 2016-11-17
EP2687538B1 (en) 2017-07-19
AR080686A1 (es) 2012-05-02
CA2830194A1 (en) 2012-09-20
NZ616252A (en) 2015-01-30
CL2013002647A1 (es) 2014-06-13
MX348500B (es) 2017-06-14

Similar Documents

Publication Publication Date Title
KR101624628B1 (ko) 작물의 생육촉진 및 내한성 증강효과를 갖는 신규한 바실러스 발리스모티스 bs07m 균주 및 이를 포함하는 미생물제제
US9534025B2 (en) Method for inducing resistance to stress caused by pathogens in plants
El-Mohamedy et al. Chitosan and Trichoderma harzianum as fungicide alternatives for controlling Fusarium crown and root rot of tomato
Gadaga et al. Phosphites for the control of anthracnose in common bean
Sofy et al. Potential impacts of seed bacterization or salix extract in faba bean for enhancing protection against bean yellow mosaic disease
CN107427011A (zh) 预防农作物和观赏植物中,优选葡萄种植和木本植物中的感染的方法
US20220053769A1 (en) Microbacterium esteraromaticum strain, composition comprising the same, and uses thereof
CN108070535A (zh) 防治大豆孢囊线虫和南方根结线虫的苏云金芽孢杆菌及制剂与应用
EP4334480A1 (en) Bacterial strains having fungicidal activity, compositions comprising same and use thereof
Beltrán et al. Bacterial community associated with canker disease from sweet cherry orchards of central valley of Chile presents high resistance to copper
US20110239327A1 (en) Nematicidal Effects of Cysteine Proteinases and Methods of Use Thereof to Treat Nematode Infestation
Class et al. Patent application title: POLYPEPTIDE HAVING INDUCING ACTIVITY FOR THE DEFENCE AGAINST BIOTIC STRESS IN PLANTS, NUCLEOTIDE SEQUENCE ENCODING THE SAME, MICROORGANISM, COMPOSITIONS AND METHODS Inventors: Atilio Pedro Castagnaro (De Tucuman, AR) Juan Carlos Diaz Ricci (De Tucuman, AR) Nadia Regina Chalfoun (De Tucuman, AR) Josefina Racedo (De Tucuman, AR) Sergio Miguel Salazar (De Tucuman, AR) Assignees: CONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS (CONICET)
Montasser et al. Biological control of a severe viral strain of cucumber mosaic virus (CMV) using a mild strain of CMV associated with viral satRNA combined with a mixture of plant growth promoting Rhizobacteria (PGPRs)
PT1594952E (pt) Agente de controlo biológico e formulações
WO2019116203A1 (en) Peptides with fungicidal activity, their compositions and related uses in agronomic field
US20230270119A1 (en) Biostimulant and bioprotective peptides and their use in agriculture
NZ616252B2 (en) Polypeptide having eliciting activity of plant immune response to pathogens for the defence against biotic stress in plants, nucleotide sequence encoding the same, microorganism, compositions and methods
KR102604427B1 (ko) 트리코더마 롱기브라키아툼 균주를 포함하는 식물병 방제용 조성물 및 이를 이용한 식물병 방제 방법
Lin et al. Pathogenic fungal protein-induced resistance and its effects on vegetable diseases
Maharjan Characterization and Gene Expression Analysis of Kazal-Type Serine Protease Inhibitors of Globisporangium ultimum
Gadaga et al. Fosfitos para o controle da antracnose em feijoeiro comum
WO2006129998A1 (es) Cepas mejoradas de trichoderma como agentes de biocontrol, métodos para su obtención y su uso para el control de enfermedades causadas por hongos fitopatógenos
Lodha et al. Antimicrobial activity of native and recombinant antiviral proteins from Bougainvillea xbuttiana leaves against plant pathogenic fungi and viruses
Riska et al. Stem canker of dragon fruit (Hylocereus polyrhizus): Neocytalidium sp. is the new cause of the disease and its control using the sodium salt.
Putra et al. Widespread occurrence of sugarcane streak mosaic virus in Indonesia, its biological characterisation, yield losses and method of control.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12720221

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2830194

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 002052-2013

Country of ref document: PE

Ref document number: MX/A/2013/010539

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012720221

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012720221

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013146180

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13245526

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 2012228211

Country of ref document: AU

Date of ref document: 20120316

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14005532

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013023646

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013023646

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130916

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013023646

Country of ref document: BR

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 112013023646

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130916