H424RD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

# LiDAR Surveys and Flood Mapping of Alubijid River





University of the Philippines Training Center for Applied Geodeny and Photogrammetry Central Mindanao University

APRIL 2012



© University of the Philippines Diliman and Central Mindanao University 2017

Published by the University of the Philippines Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and G.Puno, (Eds.).(2017), LiDAR Surveys and Flood Mapping of Alubijid River, Quezon City: University of the Philippines Training Center on Geodesy and Photogrammetry-192 pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

#### Dr. George Puno

**1101 PHILIPPINES** 

Project Leader, Phil-LiDAR 1 Program Central Mindanao University Maramag, Philippines 8710 geopuno@yahoo.com

#### Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 ecparingit@up.edu.ph

National Library of the Philippines ISBN: 987-621-430-008-2 Ma'am/Sir,

### **TABLE OF CONTENTS**

| List of Tables                                                                  |     |
|---------------------------------------------------------------------------------|-----|
| List of Figures                                                                 |     |
| List of Acronyms and Abbreviations                                              | х   |
| Chapter 1: Overview of the Program and Alubijid River                           |     |
| 1.1 Background of the Phil-LiDAR 1 Program                                      | 1   |
| 1.2 Overview of the Alubijid River Basin                                        |     |
| Chapter 2: LiDAR Data Acquisition of the Alubijid Floodplain                    |     |
| 2.1 Flight Plans                                                                | 4   |
| 2.2 Ground Base Stations                                                        | 6   |
| 2.3 Flight Missions                                                             |     |
| 2.4 Survey Coverage                                                             |     |
| Chapter 3: LiDAR Data Processing of the Alubijid Floodplain                     | 14  |
| 3.1 Overview of the LiDAR Data Pre-Processing                                   | 14  |
| 3.2 Transmittal of Acquired LiDAR Data                                          |     |
| 3.3 Trajectory Computation                                                      | 15  |
| 3.4 LiDAR Point Cloud Computation                                               |     |
| 3.5 LiDAR Data Quality Checking                                                 | 19  |
| 3.6 LiDAR Point Cloud Classification and Rasterization                          | 23  |
| 3.7 LiDAR Image Processing and Orthophotograph Rectification                    | 25  |
| 3.8 DEM Editing and Hydro-Correction                                            | 27  |
| 3.9 Mosaicking of Blocks                                                        | 29  |
| 3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model      | 31  |
| 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model       | 35  |
| 3.12 Feature Extraction                                                         |     |
| 3.12.1 Quality Checking (QC) of Digitized Features' Boundary                    | 37  |
| 3.12.2 Height Extraction                                                        |     |
| 3.12.3 Feature Attribution                                                      | 38  |
| 3.12.4 Final Quality Checking of Extracted Features                             | 40  |
| Chapter 4: LiDAR Validation Survey and Measurements of the Alubijid River Basin |     |
| 4.1 Summary of Activities                                                       |     |
| 4.2 Control Survey                                                              | 42  |
| 4.3 Baseline Processing                                                         |     |
| 4.4 Network Adjustment                                                          |     |
| 4.5 Cross-section and Bridge As-Built survey and Water Level Marking            |     |
| 4.6 Validation Points Acquisition Survey                                        |     |
| 4.7 Bathymetric Survey                                                          | 56  |
| Chapter 5: Flood Modeling and Mapping                                           | 60  |
| 5.1 Data Used for Hydrologic Modeling                                           | 60  |
| 5.1.1 Hydrometry and Rating Curves                                              |     |
| 5.1.2 Precipitation                                                             | 60  |
| 5.1.3 Rating Curves and River Outflow                                           |     |
| 5.2 RIDF Station                                                                | 63  |
| 5.3 HMS Model                                                                   | 65  |
| 5.4 Cross-section Data                                                          |     |
| 5.5 Flo 2D Model                                                                |     |
| 5.6 Results of HMS Calibration                                                  | 73  |
| 5.7 Calculated outflow hydrographs and discharge values for                     |     |
| different rainfall return periods                                               | 75  |
| 5.7.1 Hydrograph using the Rainfall Runoff Model                                |     |
| 5.7.2 Discharge data using Dr. Horritts' recommended hydrologic method          |     |
| 5.8 River Analysis Model Simulation                                             |     |
| 5.9 Flood Hazard and Flow Depth Map                                             |     |
| 5.10 Inventory of Areas Exposed to Flooding                                     |     |
| 5.11 Flood Validation                                                           |     |
| REFERENCES                                                                      |     |
| ANNEXES                                                                         |     |
| Annex 1.Technical Specifications of the LiDAR                                   |     |
| Sensors used in the Alubijid Floodplain Survey                                  | 113 |

| Annex 2. NAMRIA Certification of Reference Points used in the LiDAR Survey      | 115 |
|---------------------------------------------------------------------------------|-----|
| Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey | 118 |
| Annex 4. The LiDAR Survey Team Composition                                      |     |
| Annex 5. Data Transfer Sheets for the Alubijid Floodplain Flights               | 121 |
| Annex 6. Flight Logs for the Flight Missions                                    | 122 |
| Annex 7. Flight Status Reports                                                  | 127 |
| Annex 8. Mission Summary Reports                                                | 133 |
| Annex 9. Alubijid Model Basin Parameters                                        | 158 |
| Annex 10. Alubijid Model Reach Parameters                                       |     |
| Annex 11. Alubijid Field Validation Points                                      | 164 |
| Annex 12. Educational Institutions Affected by Flooding in Alubijid Floodplain  | 178 |
| Annex 13. Medical Institutions Affected by Flooding in Alubijid Floodplain      |     |

## LIST OF TABLES

| Table 1 . Flight planning parameters for Pegasus LiDAR system                                                             | 4   |
|---------------------------------------------------------------------------------------------------------------------------|-----|
| Table 2. Details of the recovered NAMRIA horizontal control point MSE-16                                                  |     |
| used as base station for the LiDAR acquisition                                                                            | 6   |
| Table 3. Details of the recovered NAMRIA horizontal control point MSE-17                                                  | 0   |
| used as base station for the LiDAR acquisition                                                                            | δ   |
| Table 4. Details of the recovered NAMRIA horizontal control point LE-89<br>used as base station for the LiDAR acquisition | 0   |
| Table 5. Ground control points used during LiDAR data acquisition                                                         |     |
| Table 6. Flight missions for LiDAR data acquisition in Alubijid floodplain                                                |     |
| Table 7. Actual parameters used during the LiDAR data acquisition of the Alubijid Flood plain                             |     |
| Table 8. List of municipalities and cities surveyed during Alubijid Flood plain LiDAR acquisition                         |     |
| Table 9. Self-Calibration Results values for Alubijid flights                                                             |     |
| Table 10. List of LiDAR blocks for Alubijid Floodplain                                                                    |     |
| Table 11. Alubijid classification results in TerraScan                                                                    |     |
| Table 12. LiDAR blocks with its corresponding area                                                                        |     |
| Table 13. Shift Values of each LiDAR Block of Alubijid Floodplain                                                         |     |
| Table 14. Calibration Statistical Measures                                                                                |     |
| Table 15. Validation Statistical Measures                                                                                 |     |
| Table 16. Quality Checking Ratings for Alubijid Building Features                                                         |     |
| Table 17. Building Features Extracted for Alubijid Floodplain                                                             |     |
| Table 18. Total Length of Extracted Roads for Alubijid Floodplain                                                         |     |
| Table 19. Number of Extracted Water Bodies for Alubijid Flood plain                                                       |     |
| Table 22. Control Point Constraints                                                                                       |     |
| Table 23. Adjusted Grid Coordinates                                                                                       | 47  |
| Table 24 . Adjusted Geodetic Coordinates                                                                                  |     |
| Table 25 . Reference and control points used and its location                                                             |     |
| Table 26. RIDF values for Cagayan de Oro Rain Gauge computed by PAGASA                                                    |     |
| Table 27. Range of Calibrated Values for Alubijid                                                                         |     |
| Table 28. Summary of the Efficiency Test of Alubijid HMS Model                                                            | 74  |
| Table 29. Peak values of the Alubijid HECHMS Model outflow using the Cagayan de Oro RIDF                                  |     |
| Table 30. Summary of Alubijid river (1) discharge generated in HEC-HMS                                                    |     |
| Table 31. Validation of river discharge estimates                                                                         | 78  |
| Table 32. Affected Areas in Alubijid, Misamis Oriental during 5-Year Rainfall Return Period                               | 86  |
| Table 33. Affected Areas in Alubijid, Misamis Oriental during 5-Year Rainfall Return Period                               | 86  |
| Table 34. Affected Areas in El Salvador City, MisamisOriental during 5-Year Rainfall Return Period                        | 88  |
| Table 35. Affected Areas in Gitagum, Misamis Oriental during 5-Year Rainfall Return Period                                | 89  |
| Table 36. Affected Areas in Initao, Misamis Oriental during 5-Year Rainfall Return Period                                 | 91  |
| Table 37. Affected Areas in Laguindingan, MisamisOriental during 5-Year Rainfall Return Period                            | 92  |
| Table 38. Affected Areas in Libertad, Misamis Oriental during 5-Year Rainfall Return Period                               | 93  |
| Table 39. Affected Areas in Alubijid, Misamis Oriental during 25-Year Rainfall Return Period                              | 93  |
| Table 40. Affected Areas in Alubijid, Misamis Oriental during 25-Year Rainfall Return Period                              | 94  |
| Table 41. Affected Areas in El Salvador City, Misamis Oriental during 25-Year Rainfall Return Period                      | 96  |
| Table 42. Affected Areas in Gitagum, Misamis Oriental during 25-Year Rainfall Return Period                               | 97  |
| Table 43. Affected Areas in Initao, Misamis Oriental during 25-Year Rainfall Return Period                                | 98  |
| Table 44. Affected Areas in Laguindingan, Misamis Oriental during 25-Year Rainfall Return Period                          | 99  |
| Table 45. Affected Areas in Libertad, Misamis Oriental during 25-Year Rainfall Return Period                              | 100 |
| Table 46. Affected Areas in Alubijid, Misamis Oriental during 100-Year Rainfall Return Period                             | 101 |
| Table 47. Affected Areas in Alubijid, Misamis Oriental during 100-Year Rainfall Return Period                             | 102 |
| Table 48. Affected Areas in El Salvador, Misamis Oriental during 100-Year Rainfall Return Period                          |     |
| Table 49. Affected Areas in Gitabum. Misamis Oriental during 100-Year Rainfall Return Period                              |     |
| Table 50. Affected Areas in Initao, Misamis Oriental during 100-Year Rainfall Return Period                               |     |
| Table 51. Affected Areas in Laguindingan, Misamis Oriental during 100-Year Rainfall Return Period                         |     |
| Table 52. Affected Areas in Libertad, Misamis Oriental during 100-Year Rainfall Return Period                             |     |
| Table 53. Area covered by each warning level with respect to the rainfall scenario                                        |     |
| Table 54 . Actual Flood Depth vs Simulated Flood Depth in Alubijid                                                        |     |
| Table 55 . Summary of Accuracy Assessment in Aluibijid                                                                    | 111 |

# LIST OF FIGURES

| Figure 1. Location Map of the Alubijid River Basin                                                  | 2          |
|-----------------------------------------------------------------------------------------------------|------------|
| Figure 2. Flight plans and base stations used for Alubijid Floodplain                               |            |
| Figure 3. GPS set-up over MSE-16 inside the school grounds of Libertad National High School, Bi     | rgy.       |
| Poblacion, Libertad, Misamis Oriental (a) and NAMRIA reference point MSE-16 (b)                     |            |
| as recovered by the field team                                                                      | 6          |
| Figure 4. GPS set-up over MSE-17 inside the school grounds of Pangayawan Elementary School ir       | ı Gitagum, |
| Misamis Oriental (a) and NAMRIA reference point MSE-17 (b)                                          | _          |
| as recovered by the field team                                                                      | 7          |
| Figure 5. GPS set-up over LE-89 in front of St. Peter Life Plan of Iligan City, Lanao del Norte (a) |            |
| and NAMRIA benchmark AN-44 (b) as recovered by the field team                                       | 8          |
| Figure 6. Actual LiDAR survey coverage for Alubijid floodplain                                      | 13         |
| Figure 7. Schematic Diagram for Data Pre-Processing Component                                       | 14         |
| Figure 8. Smoothed Performance Metric Parameters of Alubijid Flight 1505P.                          | 16         |
| Figure 9. Solution Status Parameters of Alubijid Flight 1505P.                                      | 17         |
| Figure 10. The best estimated trajectory of the LiDAR missions conducted                            |            |
| over the Alubijid floodplain                                                                        |            |
| Figure 11. Boundary of the processed LiDAR data over Alubijid Floodplain.                           | 19         |
| Figure 12. Image of data overlap for Alubijid floodplain.                                           | 20         |
| Figure 13. Density map of merged LiDAR data for Alubijid floodplain.                                | 21         |
| Figure 14. Elevation difference map between flight lines for Alubijid floodplain                    | 22         |
| Figure 15. Quality checking for an Alubijid flight 1505P using the Profile Tool of QT Modeler       | 23         |
| Figure 16. Tiles for Alubijid floodplain (a) and classification results (b) in TerraScan.           | 24         |
| Figure 17. Point cloud before (a) and after (b) classification                                      | 24         |
| Figure 18. The production of last return DSM (a) and DTM (b), first return DSM (c)                  |            |
| and secondary DTM (d) in some portion of Alubijid floodplain.                                       | 25         |
| Figure 19. Alubijid floodplain with available orthophotographs.                                     | 26         |
| Figure 20. Sample orthophotograph tiles for Alubijid floodplain                                     | 26         |
| Figure 21. Portions in the DTM of Alubijid floodplain – a bridge before (a) and after (b)           |            |
| manual editing; a paddy field before (c) and after (d) data retrieval;                              |            |
| a mountain ridge before (e) and after (f) data retrieval; and a building before (g)                 |            |
| and after (h) manual editing                                                                        | 28         |
| Figure 22. Map of Processed LiDAR Data for Alubijid Flood Plain.                                    | 30         |
| Figure 23. Map of Alubijid Flood Plain with validation survey points in green.                      | 32         |
| Figure 24. Correlation plot between calibration survey points and LiDAR data                        |            |
| Figure 25. Correlation plot between validation survey points and LiDAR data                         | 34         |
| Figure 26. Map of Alubijid Flood Plain with bathymetric survey points shown in blue                 |            |
| Figure 27. QC blocks for Alubijid building features                                                 |            |
| Figure 28. Extracted features for Alubijid floodplain                                               |            |
| Figure 29. Extent of bathymetric survey in Alubijid River and the LiDAR data validation survey      |            |
| Figure 30. GNSS Network of Alubijid River field survey                                              | 42         |
| Figure 31. GNSS receiver, Trimble <sup>®</sup> SPS 852, setup at ME-181 in Alubijid Bridge,         |            |
| Brgy. Poblacion, Alubijid.44                                                                        |            |
| Figure 32. GNSS receiver Trimble <sup>®</sup> SPS 985 setup, at MSE-42 on the concrete water tank   |            |
| behind the Molocboloc Barangay Hall, Municipality of Alubijid.                                      | 44         |
| Figure 33. GNSS receiver Trimble <sup>®</sup> SPS 852 setup at MSE-3241 in Brgy. 10 (POB.),         |            |
| Cagayan de Oro City.                                                                                |            |
| Figure 34. Cross Section survey at Alubijid Bridge in the Municipality of Alubijid.                 |            |
| Figure 35. Alubijid Bridge location map                                                             |            |
| Figure 36. Alubijid Bridge cross-section diagram.                                                   |            |
| Figure 37. Alubijid Bridge Data Form                                                                |            |
| Figure 38. Water level mark at the pier of Alubijid Bridge.                                         |            |
| Figure 39. Trimble SPS <sup>®</sup> 882 set-up in a vehicle in Alubijid River                       |            |
| Figure 40. LiDAR ground validation survey coverage for Alubijid River Basin.                        |            |
| Figure 41. Manualbathymetry in the shallow portion of Alubijid River                                |            |
| Figure 42. Bathymetric survey of Alubijid River.                                                    |            |
| Figure 43. Riverbed profile of Alubijid River.                                                      |            |
| Figure 44. The location map of Alubijid HEC-HMS model used for calibration.                         |            |
| Figure 45. Cross-Section Plot of Alubijid Bridge.                                                   |            |
| Figure 46. Rainfall and outflow data used for modeling                                              | 62         |

| Figure 47. HQ Curve of HEC-HMS model                                                            |             |
|-------------------------------------------------------------------------------------------------|-------------|
| Figure 48. Location of Cagayan de Oro RIDF Station relative to Alubijid River Basin             | 64          |
| Figure 49. Synthetic storm generated for a 24-hr period rainfall for various return periods     | s64         |
| Figure 50. The soil map of the Alubijid River Basin                                             |             |
| Figure 51. The land cover map of the Alubijid River Basin. (Source: NAMRIA)                     | 66          |
| Figure 52 . Slope Map of Alubijid River Basin.                                                  |             |
| Figure 53 . HEC-HMS generated Alubijid River Basin Model.                                       | 68          |
| Figure 54 . Alubijid River Cross-section generated using HEC GeoRAS tool                        | 69          |
| Figure 55. Screenshot of subcatchment with the computational area                               |             |
| to be modeled in FLO-2D GDS Pro                                                                 | 70          |
| Figure 56. Generated 100-year rain return hazard map from FLO-2D Mapper                         | 71          |
| Figure 57. Generated 100-year rain return flow depth map from FLO-2D Mapper                     | 72          |
| Figure 58. Outflow Hydrograph of Alubijid produced by the HEC-HMS                               |             |
| model compared with observed outflow.                                                           | 73          |
| Figure 59. Outflow hydrograph at AlubijidStation generated using Cagayan de Oro                 |             |
| RIDF simulated in HEC-HMS.                                                                      |             |
| Figure 60. Alubijid River generated discharge using 5-, 25-, and 100-year Cagayan de Oro        | City        |
| rainfall intensity-duration-frequency (RIDF) in HEC-HMS                                         | 77          |
| Figure 61. Sample output of Alubijid RAS Model.                                                 | 79          |
| Figure 62. 100-year Flood Hazard Map for Alubijid Floodplain.                                   |             |
| Figure 63. 100-year Flow Depth Map for Alubijid Floodplain                                      | 81          |
| Figure 64. 25-year Flood Hazard Map for Alubijid Floodplain                                     | 82          |
| Figure 65. 25-year Flow Depth Map for Alubijid Floodplain                                       | 83          |
| Figure 66. 5-year Flood Hazard Map for Alubijid Floodplain                                      | 84          |
| Figure 67. 5-year Flood Depth Map for Alubijid Floodplain                                       | 85          |
| Figure 68. Affected Areas in Alubijid, Misamis Oriental                                         |             |
| during 5-Year Rainfall Return Period.                                                           |             |
| Figure 69 . Affected Areas in Alubijid, Misamis Oriental                                        |             |
| during 5-Year Rainfall Return Period.                                                           |             |
| Figure 70 . Affected Areas in El Salvador City, MisamisOriental                                 |             |
| during 5-Year Rainfall Return Period.                                                           |             |
| Figure 71 . Affected Areas in Gitagum, Samar                                                    |             |
| during 5-Year Rainfall Return Period.                                                           |             |
| Figure 72 . Affected Areas in Initao, Misamis Oriental                                          |             |
| during 5-Year Rainfall Return Period.                                                           |             |
| Figure 73 . Affected Areas in Laguindingan, Misamis Oriental during 5-Year Rainfall Return      | 1 Period 92 |
| Figure 74 . Affected Areas in Libertad, Samar                                                   |             |
| during 5-Year Rainfall Return Period.                                                           |             |
| Figure 75 . Affected Areas in Alubijid, Misamis                                                 | 05          |
| during 25-Year Rainfall Return Period.                                                          |             |
| Figure 76 . Affected Areas in Alubijid, Misamis                                                 | 0.0         |
| during 25-Year Rainfall Return Period.                                                          |             |
| Figure 77 . Affected Areas in El Salvador City, Misamis Oriental                                | 07          |
| during 25-Year Rainfall Return Period.                                                          |             |
| Figure 78 . Affected Areas in Gitagum, Misamis Oriental                                         | 00          |
| during 25-Year Rainfall Return Period<br>Figure 79 . Affected Areas in Initao, Misamis Oriental |             |
| during 25-Year Rainfall Return Period.                                                          | 00          |
| Figure 80 . Affected Areas in Laguindingan, Misamis Oriental                                    |             |
| during 25-Year Rainfall Return Period.                                                          | 100         |
| Figure 81 . Affected Areas in Libertad, Misamis Oriental                                        |             |
| during 25-Year Rainfall Return Period.                                                          | 101         |
| Figure 82 . Affected Areas in Alubijid, Misamis Oriental                                        |             |
| during 100-Year Rainfall Return Period.                                                         | 102         |
| Figure 83 . Affected Areas in Alubijid, Misamis Oriental                                        | 102         |
| during 100-Year Rainfall Return Period.                                                         |             |
| Figure 84 . Affected Areas in El Salvador, Misamis Oriental                                     |             |
| during 100-Year Rainfall Return Period.                                                         |             |
| Figure 85 . Affected Areas in Gitagum, Misamis Oriental                                         |             |
| during 100-Year Rainfall Return Period.                                                         |             |

| Figure 86 . Affected Areas in Initao, Misamis Oriental       |     |
|--------------------------------------------------------------|-----|
| during 100-Year Rainfall Return Period.                      | 106 |
| Figure 87 . Affected Areas in Laguindingan, Misamis Oriental |     |
| during 100-Year Rainfall Return Period                       | 107 |
| Figure 88 . Affected Areas in Libertad, Misamis Oriental     |     |
| during 100-Year Rainfall Return Period.                      | 108 |
| Figure 89 . Alubijid Flood Validation Points.                | 110 |
|                                                              |     |

# LIST OF ACRONYMS AND ABBREVIATIONS

| AAC         | Asian Aerospace Corporation                                       |
|-------------|-------------------------------------------------------------------|
| Ab          | abutment                                                          |
| ALTM        | Airborne LiDAR Terrain Mapper                                     |
| ARG         | automatic rain gauge                                              |
| AWLS        | AWLS- Automated Water Level<br>Sensor                             |
| BA          | Bridge Approach                                                   |
| BM          | benchmark                                                         |
| CAD         | Computer-Aided Design                                             |
| CMU         | Central Mindanao University                                       |
| CN          | Curve Number                                                      |
| CSRS        | Chief Science Research Specialist                                 |
| DAC         | Data Acquisition Component                                        |
| DEM         | Digital Elevation Model                                           |
| DENR        | Department of Environment and<br>Natural Resources                |
| DOST        | Department of Science and<br>Technology                           |
| DPPC        | Data Pre-Processing Component                                     |
| DREAM       | Disaster Risk and Exposure<br>Assessment for Mitigation [Program] |
| DRRM        | Disaster Risk Reduction and<br>Management                         |
| DSM         | Digital Surface Model                                             |
| DTM         | Digital Terrain Model                                             |
| DVBC        | Data Validation and Bathymetry<br>Component                       |
| FMC         | Flood Modeling Component                                          |
| FOV         | Field of View                                                     |
| GiA         | Grants-in-Aid                                                     |
| GCP         | Ground Control Point                                              |
| GNSS        | Global Navigation Satellite System                                |
| GPS         | Global Positioning System                                         |
| HEC-<br>HMS | Hydrologic Engineering Center -<br>Hydrologic Modeling System     |
| HEC-<br>RAS | Hydrologic Engineering Center -<br>River Analysis System          |
| HC          | High Chord                                                        |
| IDW         | Inverse Distance Weighted<br>[interpolation method]               |
| IMU         | Inertial Measurement Unit                                         |
| kts         | knots                                                             |
| LAS         | LiDAR Data Exchange File format                                   |

| IND ABBREVIATIONS |                                                                                              |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------|--|--|--|
| LC                | Low Chord                                                                                    |  |  |  |
| LGU               | local government unit                                                                        |  |  |  |
| Lidar             | Light Detection and Ranging                                                                  |  |  |  |
| LMS               | LiDAR Mapping Suite                                                                          |  |  |  |
| m AGL             | meters Above Ground Level                                                                    |  |  |  |
| MMS               | Mobile Mapping Suite                                                                         |  |  |  |
| MSL               | mean sea level                                                                               |  |  |  |
| NAMRIA            | National Mapping and Resource<br>Information Authority                                       |  |  |  |
| NSTC              | Northern Subtropical Convergence                                                             |  |  |  |
| PAF               | Philippine Air Force                                                                         |  |  |  |
| PAGASA            | Philippine Atmospheric Geophysical<br>and Astronomical Services<br>Administration            |  |  |  |
| PDOP              | Positional Dilution of Precision                                                             |  |  |  |
| РРК               | Post-Processed Kinematic<br>[technique]                                                      |  |  |  |
| PRF               | Pulse Repetition Frequency                                                                   |  |  |  |
| PTM               | Philippine Transverse Mercator                                                               |  |  |  |
| QC                | Quality Check                                                                                |  |  |  |
| QT                | Quick Terrain [Modeler]                                                                      |  |  |  |
| RA                | Research Associate                                                                           |  |  |  |
| RIDF              | Rainfall-Intensity-Duration-<br>Frequency                                                    |  |  |  |
| RMSE              | Root Mean Square Error                                                                       |  |  |  |
| SAR               | Synthetic Aperture Radar                                                                     |  |  |  |
| SCS               | Soil Conservation Service                                                                    |  |  |  |
| SRTM              | Shuttle Radar Topography Mission                                                             |  |  |  |
| SRS               | Science Research Specialist                                                                  |  |  |  |
| SSG               | Special Service Group                                                                        |  |  |  |
| ТВС               | Thermal Barrier Coatings                                                                     |  |  |  |
| UPC               | University of the Philippines Cebu                                                           |  |  |  |
| UP-<br>TCAGP      | University of the Philippines<br>– Training Center for Applied<br>Geodesy and Photogrammetry |  |  |  |
| UTM               | Universal Transverse Mercator                                                                |  |  |  |
| WGS               | World Geodetic System                                                                        |  |  |  |
| UTM               | Universal Transverse Mercator                                                                |  |  |  |
| WGS               | World Geodetic System                                                                        |  |  |  |

#### CHAPTER 1: OVERVIEW OF THE PROGRAM AND ALUBIJID RIVER

Enrico C. Paringit, Dr. Eng., Dr. George Puno, and Eric Bruno

#### 1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) and the Grants-in-Aid (GIA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods" (Paringit, et. al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Central Mindanao University (CMU). CMU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the thirteen (13) river systems in the Northern Mindanao Region. The university is located in Maramag Municipality, Bukidnon Province, Mindanao.

#### 1.2 Overview of the Alubijid River Basin

The Alubijid River Basin is located in the western part of Misamis Oriental. Most of the river channels traverse the municipality of Alubijid with a total length of 88.10 kilometers. The Alubijid River Basin has a total land area of 12,206 hectares nested within the twenty-nine (29) barangay jurisdiction distributed in one (1) city and six (6) municipalities of Misamis Oriental. The municipality of Alubijid is bounded on the north by Macajalar Bay; on the east by El Salvador City; on the south by the Municipality of Manticao; and on the west by the Municipalities of Laguindingan, Gitagum, Libertad, Initao and Naawan (Figure 1).

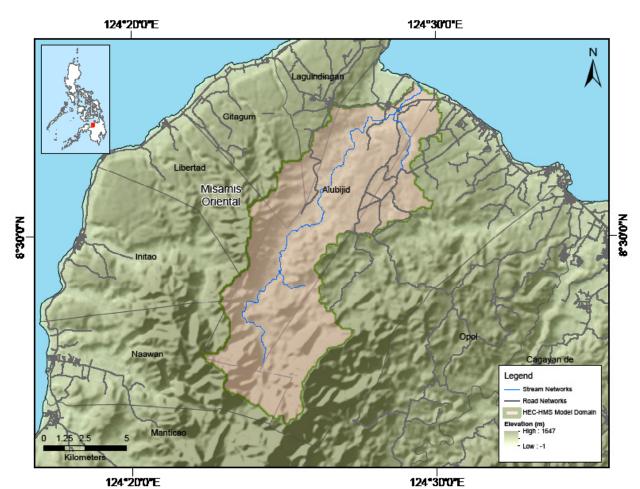



Figure 1. Location Map of the Alubijid River Basin (in brown)

The Alubijid River is classified as one of the eleven (11) major water resources in the province of Misamis Oriental, with its basin covering a total area of 12,206 hectares. It lies in the western portion of Northern Mindanao and covers the Municipalities of Alubijid, Manticao, Laguindingan, Gitagum, Libertad, Initao, Naawan and El Salvador City in the province of Misamis Oriental. It has a total area of 120 sq. km with an estimated total annual run-off of 516 (MCM).

The Alubijid Riveris part of the twelve (12) river systems in the Northern Mindanao Region. According to the 2010 national census of NSO, the total population ofresidents within the immediate vicinity of the river is 33,047, which is distributed among six (6) barangays of the Municipality of Alubijid namely: Baybay, Benigwayan, Calatcat, Lanao, Loguilo and Poblacion.Anthropogenic activities evident in the river basin include farming, animal raising, fishing, and shrimp and crabaquaculture. Some flat and low land plains are also utilized for salt production, especially during the dry season. One of the major tributaries of the Alubijid River, the Mahan-ob River, irrigates seventy (70) hectares of rice land along the national highway. The basin also contributes to eco-tourism with Mount Salumayagon, the headwater source of the river, as an excellent view point to the Macajalar Bay. However, some human activities upstream, such as charcoal production and small scale open-pit mining, are causing adverse environmental impact, especially in the communities downstream. The intensifying and increasing frequency of flood occurrences over the years has made Alubijid Riverone of the identified flood-prone rivers in the province of Misamis Oriental.

Focus group discussions and key informant interviews conducted in the floodplains of Alubijid revealed a flood incident as early as1990, during Typhoon Ruping. In 2009, three (3) of the visiting Typhoons in the country caused inundations in the area. These were Typhoons Auring (January 2009), Ondoy (September 2009), and Santi (November 2009). In 2010, a major flood took place along the national highways as Alubijid River overflowed. The flooding damaged the rice fields, and caused the Cagayan de Oro-Iligan Corridor to be impassable for hours. In December 2011, Typhoon Sendong left local residents with damaged agricultural crops, livestock, and infrastructure such as bridges and culverts, impedingtransportation to and from the rural barangays. Flooding also occurred during the December 2012 TyphoonPablo.

Under the Phil-LiDAR 1 Program, CMU was tasked to develop flood hazard maps in several rivers, including the Alubijid river, through flood Modeling and simulations using Hydrologic Engineering Center's – Hydrologic Modeling System (HEC-HMS), Hydrologic Engineering Center's – Hydrologic River Analysis System (HEC-RAS) and Light Detection and Ranging (LiDAR) technology. The generated basin model consists of forty-eight (48) sub basins, twenty-five (25) reaches, and twenty-six (26) junctions. It was calibrated using the actual climatic and hydrologic event on November 26, 2014, during Tropical Depression Queenie. Statistical tests for model efficiency revealed a satisfactory model performance. The model was subsequently used to simulate different river discharge scenarios using the Rainfall Intensity Duration Frequency (RIDF) data of Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) based on a 54-year record of Cagayan de Oro rain gauge. Flood inundation extent and depth were simulated using the hydraulic model for the three scenarios namely the 5-, 25-, and 100-year return periods.

The resulting analysis of the flood modelling of the Alubijid River Basin gives baseline information for the local government unit of the Municipality of Alubijid essential for the use of disaster preparedness. Furthermore, the simulations provide hydrologic details about quantity, variability and source of run-off in the river basin.

# CHAPTER 2: LIDAR DATA ACQUISITION OF THE ALUBIJID FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Renan D. Punto, and Pauline Joanne G. Arceo

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

#### 2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for the Alubijid floodplain in Misamis Oriental. These missions were planned for twelve (12) lines that ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR

| Block<br>Name | Flying<br>Height (m<br>AGL) | Overlap<br>(%) | Field of<br>View (θ) | Pulse<br>Repetition<br>Frequency<br>(PRF) (kHz) | Scan<br>Frequency | Average<br>Speed<br>(kts) | Average<br>Turn Time<br>(Minutes) |
|---------------|-----------------------------|----------------|----------------------|-------------------------------------------------|-------------------|---------------------------|-----------------------------------|
| BLK67A        | 850                         | 30             | 50                   | 200                                             | (Hz)              | 130                       | 5                                 |
| BLK67B        | 850                         | 30             | 50                   | 200                                             | 30                | 130                       | 5                                 |
| BLK67C        | 850                         | 30             | 50                   | 200                                             | 30                | 130                       | 5                                 |
| BLK67D        | 900                         | 30             | 50                   | 200                                             | 30                | 130                       | 5                                 |
| BLK67G        | 1200                        | 30             | 50                   | 200                                             | 30                | 130                       | 5                                 |
| BLK68A        | 1200                        | 30             | 50                   | 200                                             | 30                | 130                       | 5                                 |

Table 1. Flight planning parameters for Pegasus LiDAR system.

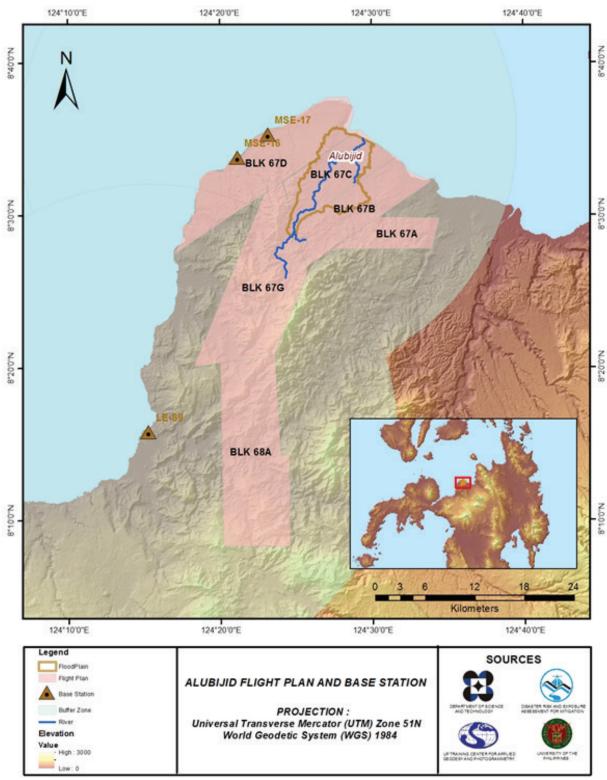



Figure 2. Flight plans and base stations used for Alubijid Floodplain.

#### 2.2 Ground Base Stations

The project team was able to recover two (2) NAMRIA ground control points: MSE-16 and MSE-17, which areof second (2nd) order accuracy; and one(1) NAMRIA benchmark: LE-89, which is of first (1st) order accuracy. The benchmark was used as vertical reference point and was established as ground control point. The certifications for the NAMRIA reference points and benchmark are found in Annex2. These were used as base stations during flight operations for the entire duration of the survey, held on May 22 to June 27, 2014. Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882 and SPS 852. Flight plans and location of base stations used during the aerial LiDAR acquisition in Alubijid floodplain are shown in Figure 2.

Figure 3to Figure 5show the recovered NAMRIA reference points within the area. In addition, Table 2 to Table 4show the details of the NAMRIA control stations, while Table 5 shows the list of all ground control points occupied during the acquisition, together with the corresponding dates of utilization.

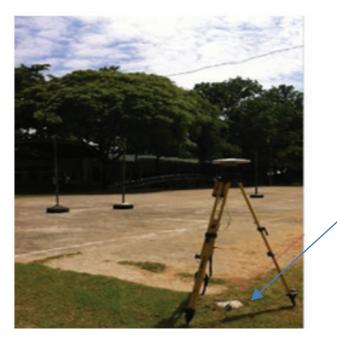





Figure 3. GPS set-up over MSE-16 inside the school grounds of Libertad National High School, Brgy. Poblacion, Libertad, Misamis Oriental (a) and NAMRIA reference point MSE-16 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point MSE-16 used as base station for the LiDAR acquisition.

| Station Name                                                                           | MSE-16                                      |                                                                |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|--|
| Order of Accuracy                                                                      | 2nd                                         |                                                                |  |
| Relative Error (horizontal positioning)                                                | 1 in 5                                      | 0,000                                                          |  |
| Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)                    | Latitude<br>Longitude<br>Ellipsoidal Height | 8°33′51.6922″ North<br>124°21′5.34868″ East<br>1.34700 meters  |  |
| Grid Coordinates, Philippine Transverse Mercator<br>Zone 5 (PTM Zone 5 PRS 92)         | Easting<br>Northing                         | 428608.692 meters<br>947021.389 meters                         |  |
| Geographic Coordinates, World Geodetic System<br>1984 Datum<br>(WGS 84)                | Latitude<br>Longitude<br>Ellipsoidal Height | 8°33'48.06049" North<br>124°21'10.74852" East<br>68.044 meters |  |
| Grid Coordinates, Universal Transverse Mercator<br>Zone 51 North<br>(UTM 51N PRS 1992) | Easting<br>Northing                         | 648735.65 meters<br>946891.04 meters                           |  |



Figure 4. GPS set-up over MSE-17 inside the school grounds of Pangayawan Elementary School in Gitagum, Misamis Oriental (a) and NAMRIA reference point MSE-17 (b) as recovered by the field team.

| Station Name                                                                        | MSE-17                                      |                                                                  |  |
|-------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------|--|
| Order of Accuracy                                                                   | 2nd                                         |                                                                  |  |
| Relative Error (horizontal positioning)                                             | 1 in 50,000                                 |                                                                  |  |
| Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)                 | Latitude<br>Longitude<br>Ellipsoidal Height | 8°35'22.50573" North<br>124°23'6.85732" East<br>5.0100 meters    |  |
| Grid Coordinates,<br>Philippine Transverse Mercator Zone 5 (PTM Zone<br>5 PRS 92)   | Easting<br>Northing                         | 423328.91 meters<br>949805.1 meters                              |  |
| Geographic Coordinates, World Geodetic System<br>1984 Datum (WGS 84)                | Latitude<br>Longitude<br>Ellipsoidal Height | 8°35′18.86995″ North<br>124°23′12.25471″ East<br>71.73900 meters |  |
| Grid Coordinates, Universal Transverse Mercator<br>Zone 51 North (UTM 51N PRS 1992) | Easting<br>Northing                         | 610204.602 meters<br>884431.706 meters                           |  |

Table 3. Details of the recovered NAMRIA horizontal control point MSE-17 used as base station for the LiDAR acquisition.



Figure 5. GPS set-up over LE-89 in front of St. Peter Life Plan of Iligan City, Lanao del Norte (a) and NAMRIA benchmark AN-44 (b) as recovered by the field team.

| Station Name                                                                      | LE-89                                       |                                                                |
|-----------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|
| Order of Accuracy                                                                 | 1st                                         |                                                                |
| Relative Error (horizontal positioning)                                           | 1 in 100,000                                |                                                                |
| Geographic Coordinates, World Geodetic System<br>1984 Datum (WGS 84)              | Latitude<br>Longitude<br>Ellipsoidal Height | 8°15'47.82322" North<br>124°15'17.37373" East<br>73.451 meters |
| Grid Coordinates, Universal Transverse Mercator<br>Zone 51 North (UTM 51N WGS 84) | Easting<br>Northing                         | 638201.305 meters<br>913622.047 meters                         |
| Elevation (mean sea level) 10.9546 m                                              |                                             | 546 m                                                          |

Table 4. Details of the recovered NAMRIA horizontal control point LE-89 used as base station for the LiDAR acquisition.

Table 5. Ground control points used during LiDAR data acquisition.

| Date Surveyed | Flight Number | Mission Name | Ground Control Points |
|---------------|---------------|--------------|-----------------------|
| May 22,2014   | 1497P         | 1BLK67B142A  | MSE-16 & MSE-17       |
| May 23,2014   | 1501P         | 1BLK67C143A  | MSE-16 & MSE-17       |
| May 24, 2014  | 1505P         | 1BLK67BC144A | MSE-16 & MSE-17       |
| June 23, 2014 | 1625P         | 1BLK67BC174A | MSE-16 & MSE-17       |
| June 27, 2014 | 1641P         | 1BLK68A178A  | MSE-16 & LE-89        |

#### 2.3 Flight Missions

Five (5) missions were conducted to complete the LiDAR data acquisition in the Alubijid floodplain, for a total of sixteen hours and twenty minutes (20+43) of flying time for RP-C9022. All missions were acquired using the Pegasus LiDAR system. Table 6shows the total area of actual coverage and the corresponding flying hours per mission, while Table 7 presents the actual parameters used during the LiDAR data acquisition.

| Date Flight pla  |        | Flight<br>Plan Area |        | Area<br>Surveyed<br>within the | Area<br>Surveyed<br>outside | No. of<br>Images   | Flying Hour |     |
|------------------|--------|---------------------|--------|--------------------------------|-----------------------------|--------------------|-------------|-----|
| Surveyed         | Number | (km2)               | (km2)  | Floodplain<br>(km2)            | the<br>Floodplain<br>(km2)  | loodplain (Frames) | Hr          | Min |
| May<br>22,2014   | 1497P  | 130.55              | 190.38 | 12.97                          | 177.41                      | 435                | 3           | 41  |
| May<br>23,2014   | 1501P  | 67.8                | 170.25 | 60.43                          | 109.82                      | 409                | 4           | 29  |
| May 24,<br>2014  | 1505P  | 117.48              | 152.26 | 11.60                          | 140.76                      | 670                | 3           | 47  |
| June 23,<br>2014 | 1625P  | 155.4               | 190.85 | 0.99                           | 189.86                      | 818                | 4           | 23  |
| June 27,<br>2014 | 1641P  | 148.6               | 230.97 | 0                              | 230.97                      | 787                | 4           | 23  |
| то               | TAL    | 619.83              | 934.71 | 85.99                          | 848.82                      | 3119               | 20          | 43  |

#### Table 6. Flight missions for LiDAR data acquisition in Alubijid floodplain.

| Flight<br>Number | Flying<br>Height<br>(m AGL) | Overlap<br>(%) | FOV (θ) | PRF<br>(kHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed<br>(kts) | Average<br>Turn Time<br>(Minutes |
|------------------|-----------------------------|----------------|---------|--------------|---------------------------|---------------------------|----------------------------------|
| 1497P            | 900                         | 30             | 50      | 200          | 30                        | 130                       | 5                                |
| 1501P            | 800/700                     | 30             | 50      | 200          | 30                        | 130                       | 5                                |
| 1505P            | 850                         | 30             | 50      | 200          | 30                        | 130                       | 5                                |
| 1625P            | 1200                        | 30             | 50      | 200          | 30                        | 130                       | 5                                |
| 1641P            | 1200                        | 30             | 50      | 200          | 30                        | 130                       | 5                                |

Table 7. Actual parameters used during LiDAR data acquisition.

#### 2.4 Survey Coverage

The Alubijid floodplain is located in the province of Misamis Oriental with majority of the floodplain situated within the municipalities of Alubijid and Laguindingan. Municipalities of Alubijid, Gitagum, Laguindingan and Libertad are fully covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 8.The actual coverage of the LiDAR acquisition for the Alubijid floodplain is presented in Figure 6. See Annex 7 for the Flight Status Reports.

| Province          | Municipality/City      | Area of<br>Municipality/City<br>(km2) | Total Area<br>Surveyed<br>(km2) | Percentage of Area<br>Surveyed |
|-------------------|------------------------|---------------------------------------|---------------------------------|--------------------------------|
|                   | Alubijid               | 80.16                                 | 80.16                           | 100%                           |
|                   | Gitagum                | 41.48                                 | 41.41                           | 100%                           |
|                   | Libertad               | 40.59                                 | 40.59                           | 100%                           |
|                   | Laguindingan           | 37.87                                 | 37.87                           | 100%                           |
| Missuria Oriental | Initao                 | 68.01                                 | 59.07                           | 87%                            |
| Misamis Oriental  | El Salvador City       | 141.45                                | 102.45                          | 72%                            |
|                   | Naawan                 | 69.78                                 | 47.35                           | 68%                            |
|                   | Manticao               | 110.07                                | 73.5                            | 67%                            |
|                   | Opol                   | 143.16                                | 25.27                           | 18%                            |
|                   | Cagayan de Oro<br>City | 440.17                                | 15.06                           | 3%                             |
| Lanao del Norte   | Iligan City            | 650.87                                | 175.7                           | 27%                            |
|                   | Караі                  | 188.22                                | 31.86                           | 17%                            |
| Lanao del Sur     | Tagoloan II            | 149.68                                | 18.82                           | 13%                            |

 $Table \ 8. \ List \ of \ municipalities \ and \ cities \ surveyed \ during \ Alubijid \ flood plain \ LiDAR \ survey.$ 

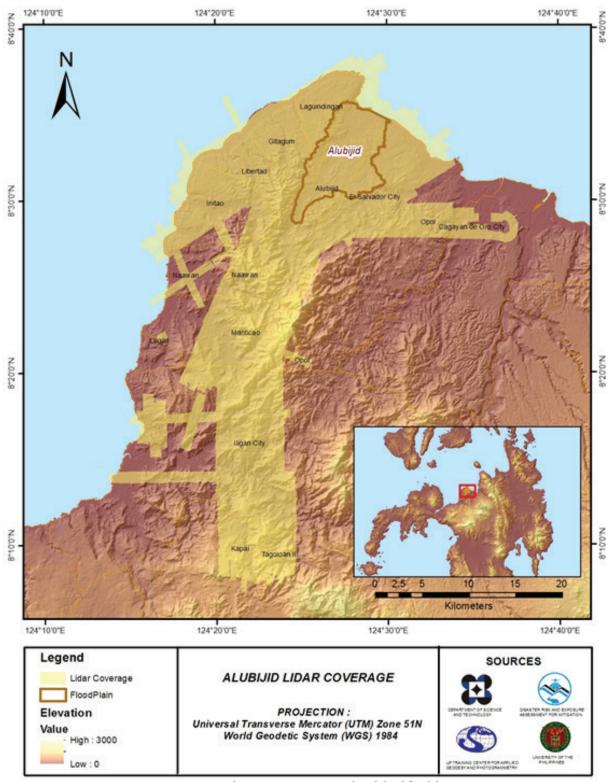



Figure 6. Actual LiDAR survey coverage for Alubijid floodplain.

# CHAPTER 3: LIDAR DATA PROCESSING OF THE ALUBIJID FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Gladys Mae Apat, Alex John B. Escobido, Engr. Ma. Ailyn L. Olanda, Aljon Rie V. Araneta, Engr. Vincent Louise DL. Azucena, Engr. Jommer M. Medina, and Esmael L. Guardian

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

#### 3.1 Overview of the LiDAR Data Pre-Processing

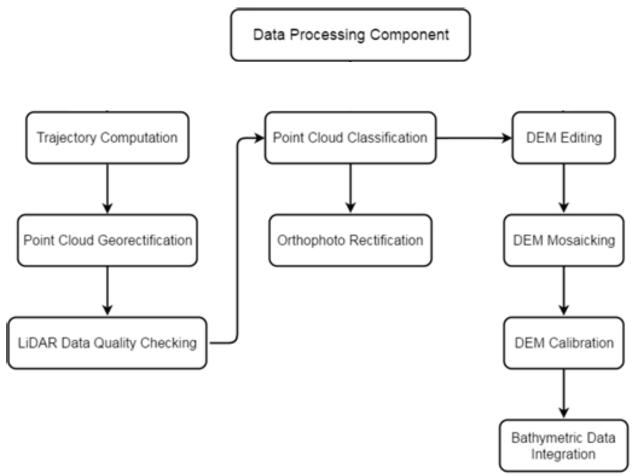



Figure 7. Schematic Diagram for Data Pre-Processing Component.

The data transmitted by the Data Acquisition Component (DAC) are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component (DVBC). LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 7.

#### 3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Alubijid floodplain can be found in Annex 5. Missions flown during the first survey conducted on May 2014 used the Airborne LiDAR Terrain Mapper (ALTM<sup>™</sup> Optech Inc.) Pegasus system over Alubijid, Misamis Oriental. The DAC transferred a total of 168.80 Gigabytes of Range data, 1.417 Gigabytes of POS data, 43.10 Megabytes of GPS base station data, and 343.20 Gigabytes of raw image data, to the data server on August 1, 2014. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Alubijid was fully transferred on August 1, 2014 as indicated on the Data Transfer Sheets for Alubijid floodplain.

#### **3.3 Trajectory Computation**

TheSmoothed Performance Metric Parameters of the computed trajectory for flight 1505P, one of the Alubijidflights, which are the North, East, and Down position RMSE values are shown in Figure8. The X-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week (May 24, 2014 00:00AM). The Y-axis is the RMSE value for that particular position.

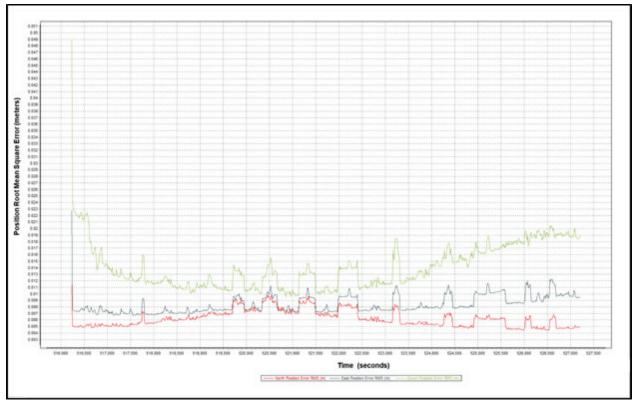



Figure 8. Smoothed Performance Metrics of Alubijid Flight 1505P.

The time of flight was from 516000 seconds to 527500 seconds, which corresponds to the morning of May 24, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system was starting tocomputefor the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increases in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 8 shows that the North position RMSE peaks at 0.98 centimeters, the East position RMSE peaks at 1. 22 centimeters, and the Down position RMSE peaks at 2.05 centimeters, which are within the prescribed accuracies described in the methodology.

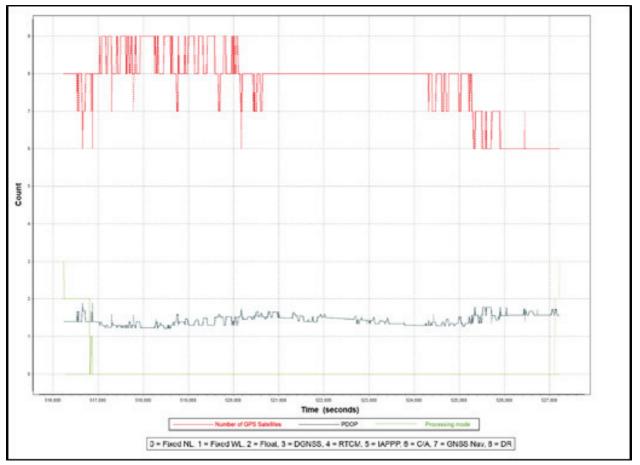



Figure 9. Solution Status Parameters of Alubijid Flight 1505P.

The Solution Statusparameters of flight 1505P, one of the Alubijidflights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 9. The graphs indicate that the number of satellites during the acquisition did not go down below six (6). Majority of the time, the number of satellites tracked was between six (6) and nine (9). The PDOP value also did not go above the value of three (3), which indicates optimal GPS geometry. The processing mode stayed at the value of zero (0) for majority of the survey with some peaks up to one (1) attributed to the turns performed by the aircraft. The value of zero (0) corresponds to a Fixed, Narrow-Lane Mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Alubijid flights is shown in Figure 10.

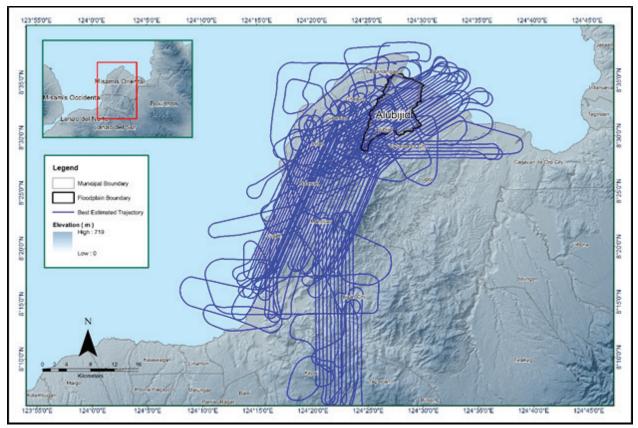



Figure 10. The best estimated trajectory of the LiDAR missions conducted over the Alubijid Floodplain.

#### 3.4 LiDAR Point Cloud Computation

The generated LAS data contains 158 flight lines, with each flight line containing two (2) channels, since the Pegasus System contains two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Alubijid floodplain are given in Table 9.

| Parameter                                                | Acceptable Value | Computed<br>Value |
|----------------------------------------------------------|------------------|-------------------|
| Boresight Correction stdev                               | (<0.001degrees)  | 0.000165          |
| IMU Attitude Correction Roll and Pitch Corrections stdev | (<0.001degrees)  | 0.000472          |
| GPS Position Z-correction stdev                          | (<0.01meters)    | 0.0063            |

Table 9. Self-Calibration Results values for Alubijid flights.

The optimum accuracy is obtained for all Alubijid flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8: Mission Summary Reports.

#### 3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over the Alubijid Floodplain is shown in Figure 11. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

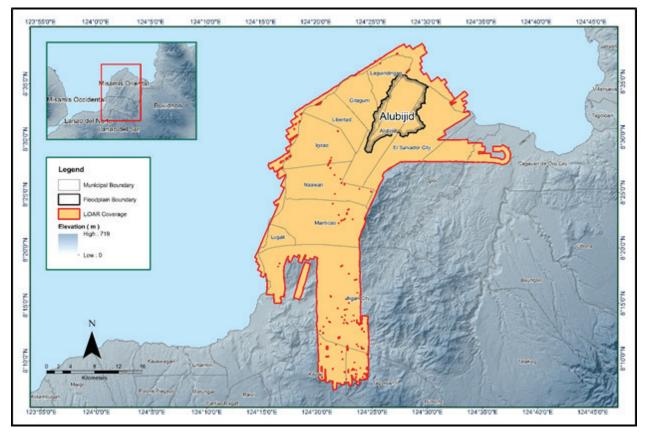



Figure 11. Boundary of the processed LiDAR data over Alubijid Floodplain.

The total area covered by the Alubijid missions is 1,002.53 sq.km, which is comprised of seven (7) flight acquisitions grouped and merged into five (5) blocks, as shown in Table 10.

| LiDAR Blocks              | Flight Numbers | Area (sq. km) |  |
|---------------------------|----------------|---------------|--|
| NorthernMindanao_Blk67AB  | 1505P          | 140.04        |  |
| NorthernMindanao_Blk67CD  | 1497P          | 332.58        |  |
|                           | 1501P          |               |  |
| NorthernMindanao_Blk67G   | 1625P          | 184.57        |  |
| Northour Mindorson, DUC75 | 1545P          | 127.05        |  |
| NorthernMindanao_Blk67E   | 1641P          | 137.95        |  |
| NorthernMindanao_Blk68A   | 1641P          | 207.39        |  |
| TOTAL                     | 1,002.53 sq.km |               |  |

Table 10. List of LiDAR blocks for Alubijid floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 12. Since the Pegasus System employs two channels, it is expected to have an average value of two (blue) for areas where there is limited overlap, and a value of three (yellow) or more (red) for areas with three or more overlapping flight lines.

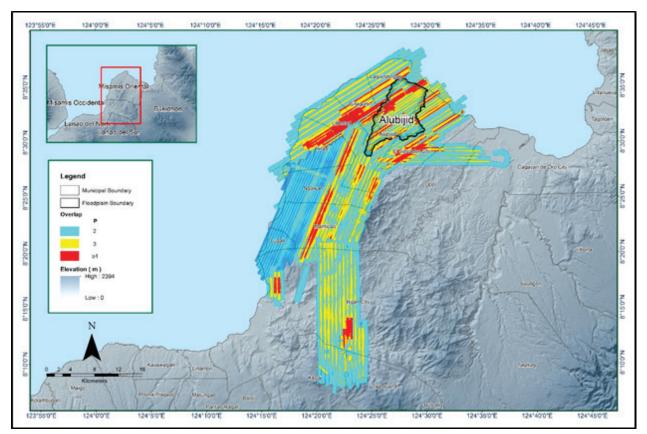



Figure 12. Image of data overlap for Alubijid floodplain.

The overlap statistics per block for the Alubijid floodplain can be found in Annex 8: Mission Summary Reports. It should be noted that one pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 37.51% and 57.82% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 13. It was determined that all LiDAR data for the Alubijid floodplain satisfy the point density requirement, and the average density for the entire survey area is 6.13 points per square meter.

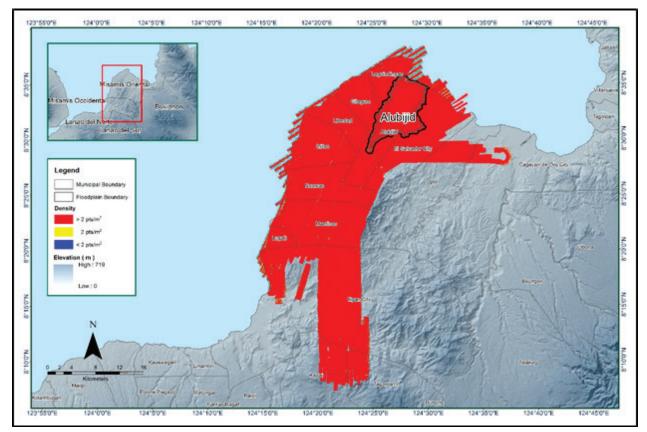



Figure 13. Density map of merged LiDAR data for Alubijid floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 14. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain (QT) Modeler software.

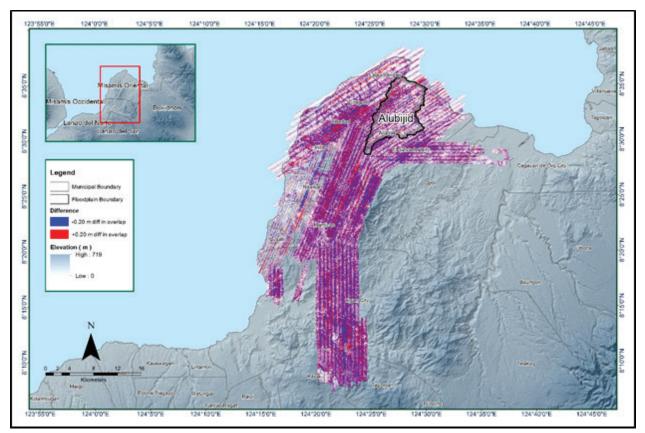



Figure 14. Elevation difference map between flight lines for Alubijid floodplain.

A screen capture of the processed LAS data from an Alubijid flight 1505P loaded in QT Modeler is shown in Figure 15. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The X-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data was satisfactory. No reprocessing was done for this LiDAR dataset.

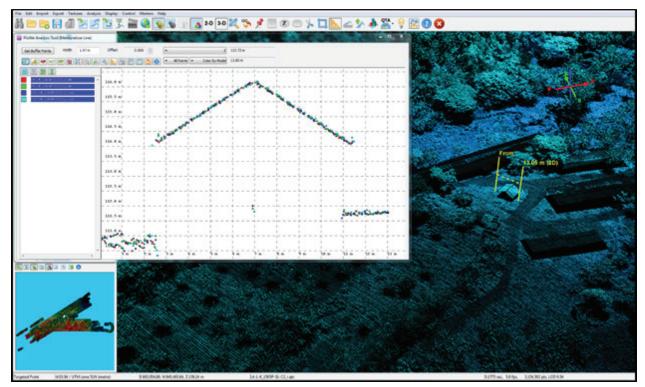



Figure 15. Quality checking for an Alubijid flight 1505P using the Profile Tool of QT Modeler.

#### 3.6 LiDAR Point Cloud Classification and Rasterization

| Pertinent Class   | Total Number of Points |  |
|-------------------|------------------------|--|
| Ground            | 1,143,449,288          |  |
| Low Vegetation    | 1,159,029,334          |  |
| Medium Vegetation | 1,833,282,838          |  |
| High Vegetation   | 1,483,877,104          |  |
| Building          | 62,775,690             |  |

Table 11. Alubijid classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Alubijid floodplain are shown in Figure 16. A total of 1,311 1km x 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 11. The point cloud has a maximum and minimum height of 1,067.00 meters and 61.09 meters, respectively.

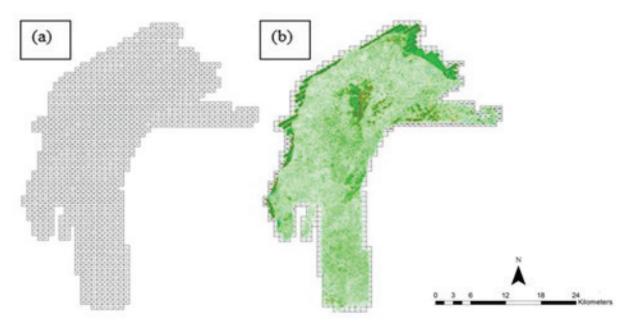



Figure 16. Tiles for Alubijid floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 17. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

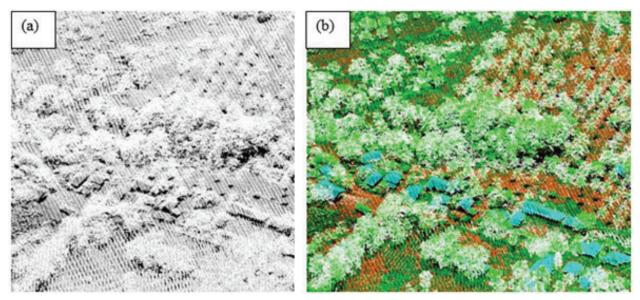



Figure 17. Point cloud before (a) and after (b) classification.

The production of last return (V\_ASCII) and the secondary (T\_ASCII) DTM, first (S\_ASCII) and last (D\_ASCII) return DSM of the area in top view display are shown in Figure 18. It shows that DTMs are the representation of the bare earth, while on the DSMs, all features are present such as buildings and vegetation.

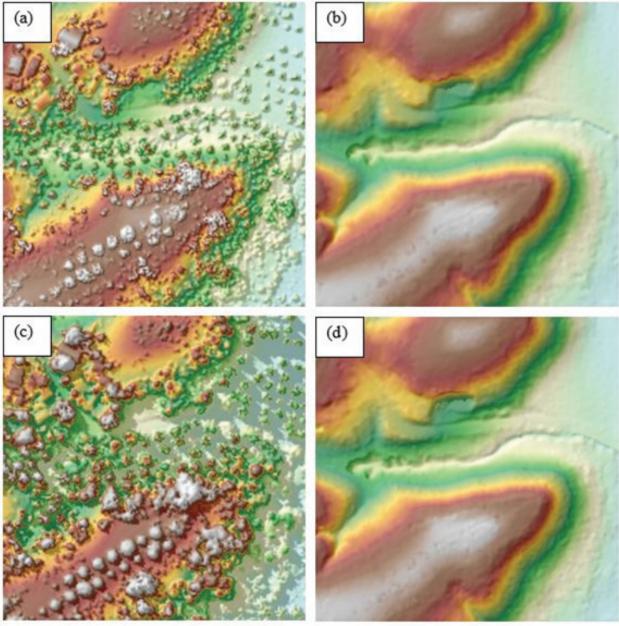



Figure 18. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Alubijid floodplain.

# 3.7 LiDAR Image Processing and Orthophotograph Rectification

The 1,273 1km x 1km tiles area covered by the Alubijid floodplain is shown in Figure 19. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seam lines where photos overlap. The Alubijid Floodplain survey attained a total of 873.24 sq.km in orthophotogaph coverage comprised of 4,647 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 20.

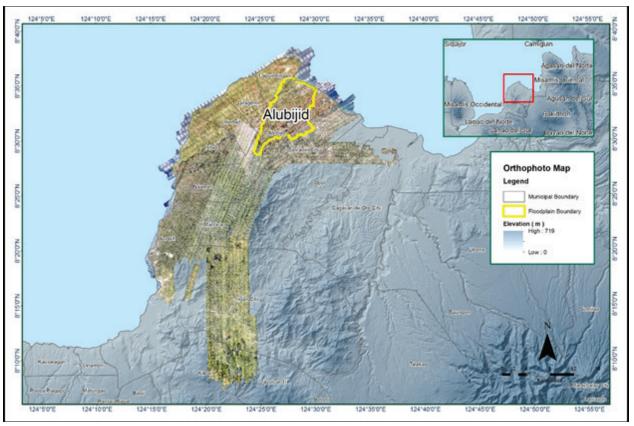



Figure 19. Alubijid floodplain with available orthophotographs.

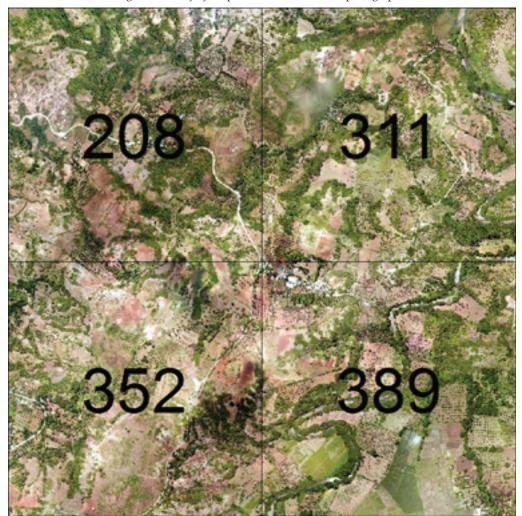



Figure 20. Sample orthophotograph tiles for Alubijid floodplain.

### 3.8 DEM Editing and Hydro-Correction

Five (5) mission blocks were processed for the Alubijid floodplain. These blocks are composed of Northern Mindanao blocks with a total area of 1,002.53 km2. Table 12 shows the name and corresponding area of each block in km2.

| LiDAR Blocks             | Area (sq.km)  |
|--------------------------|---------------|
| NorthernMindanao_Blk67CD | 332.58        |
| NorthernMindanao_Blk67AB | 140.04        |
| NorthernMindanao_Blk67E  | 137.95        |
| Northern Mindanao_Blk67G | 184.57        |
| NorthernMindanao_Blk68A  | 207.39        |
| TOTAL                    | 1,002.53sq.km |

| Table 12. | LiDAR | blocks | with its | corresbo | nding area. |
|-----------|-------|--------|----------|----------|-------------|
|           |       |        |          |          |             |

Portions of DTM before and after manual editing are shown in Figure 21. The bridge (Figure 21a.) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 21b.) in order to hydrologically correct the river. This was done through interpolation process wherein a specific polygon determines the upstream and downstream elevation values to generate an interpolated portion of a river and eventually remove the bridge footprint. Another example of interpolation is to manually enclose a building footprint by a polygon to interpolate ground elevation values from the edges. A building that is still present in the DTM after classification (Figure 21g.) has to be removed through manual editing (Figure 21h.). On the other hand, object retrieval was done in areas such as paddies (Figure 21c.) which have been removed during classification process and have to be retrieved to complete the surface (Figure 21d.). A portion of the ridge also (Figure 21e.) has been misclassified that needs to be retrieved to retain the correct terrain (Figure 21f.). Object retrieval uses the secondary DTM (t-layer) to fill in these areas.

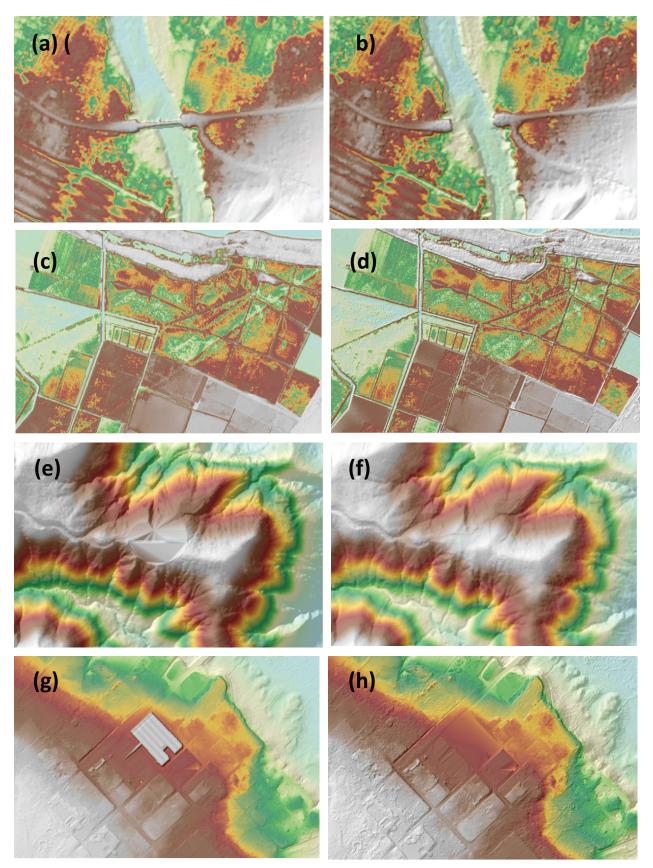



Figure 21. Portions in the DTM of Alubijid floodplain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval; a mountain ridge before (e) and after (f) data retrieval; and a building before (g) and after (h) manual editing.

#### 3.9 Mosaicking of Blocks

The Alubijid floodplain lies within the NorthernMindanao\_Blk67CD block. NorthernMindanao\_Blk67CD was used as the reference block at the start of mosaicking due to the availability of validation points that was used to calibrate such block. Table 13 shows the area of each LiDAR blocks and the shift values applied during mosaicking. Shifting values were derived from the height difference of the calibrated block and the overlapping adjacent block.

Mosaicked LiDAR DTM for the Alubijid floodplain is shown in Figure 22. It can be seen that the entire Alubijid floodplain is 100% covered by LiDAR data.

| Mission Diseks           | Shift Values (meters) |      |       |  |
|--------------------------|-----------------------|------|-------|--|
| Mission Blocks           | х                     | У    | Z     |  |
| NorthernMindanao_Blk67CD | 0.00                  | 0.00 | 0.00  |  |
| NorthernMindanao_Blk67AB | 0.00                  | 0.00 | 0.08  |  |
| NorthernMindanao_Blk67E  | 0.00                  | 0.00 | 0.03  |  |
| NorthernMindanao_Blk67G  | 0.00                  | 0.00 | -0.48 |  |
| NorthernMindanao_Blk68A  | 0.00                  | 0.00 | 0.44  |  |

| Table 13. Shift V | Values of each LiE | DAR Block of Alı | ıbijid floodplain. |
|-------------------|--------------------|------------------|--------------------|
|                   |                    |                  |                    |

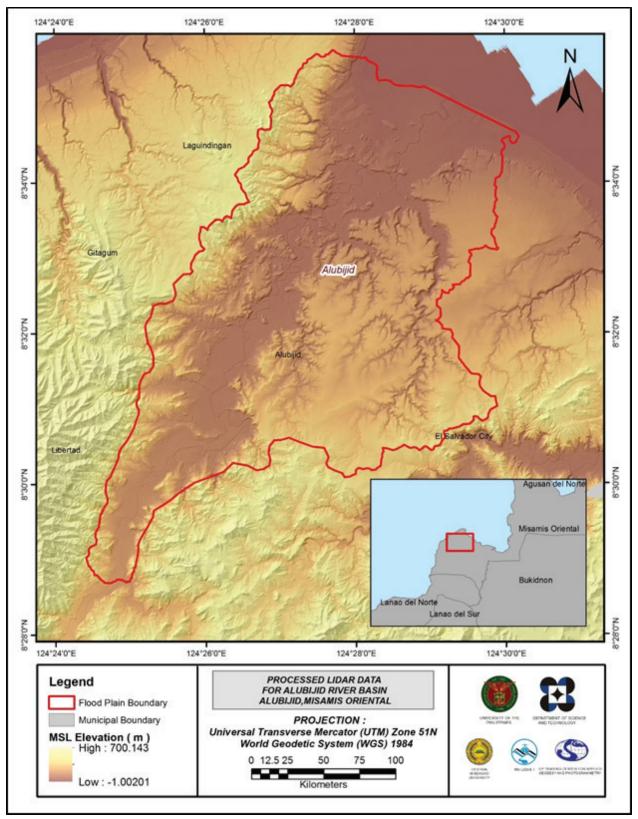



Figure 22. Map of Processed LiDAR Data for Alubijid Flood Plain.

### 3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Alubijid to collect points with which the LiDAR dataset is validated is shown in Figure 23. A total of 1152 survey points were used for calibration and validation of NorthernMindanao\_Blk67CD block (Alubijid LiDAR DTM). Eighty percent (80%) of the total survey points were extracted through equal selection at a certain interval, resulting to 921 points used for calibration. A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 24. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 0.08 meters with a standard deviation of 0.08 meters. Calibration of Alubijid LiDAR data was done by subtracting the height difference value, 0.08 meters, to Alubijid mosaicked LiDAR data and calibration data.

#### Hazard Mapping of the Philippines Using LiDAR (Phil-LIDAR 1)

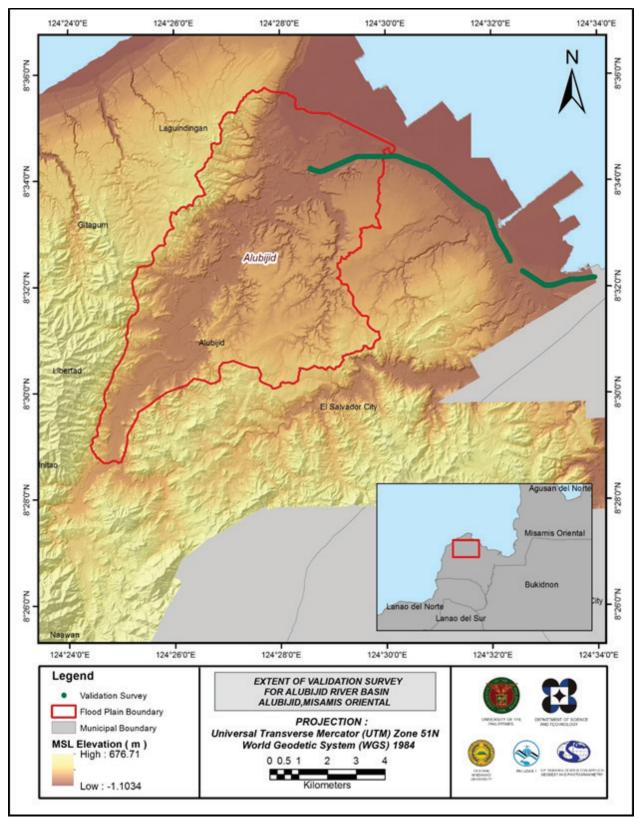



Figure 23. Map of Alubijid Flood Plain with validation survey points in green.

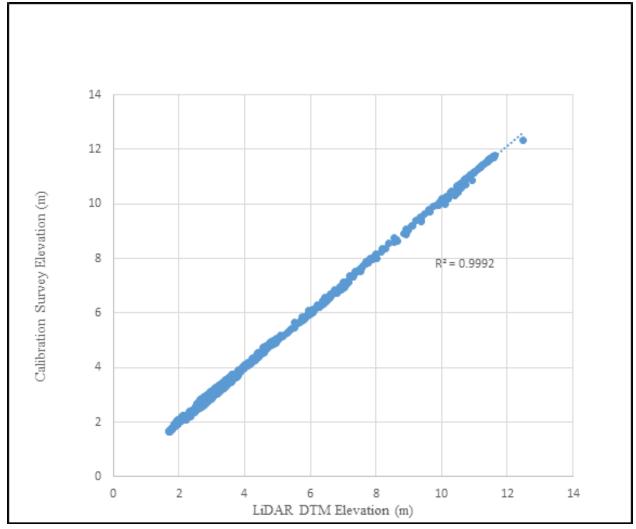
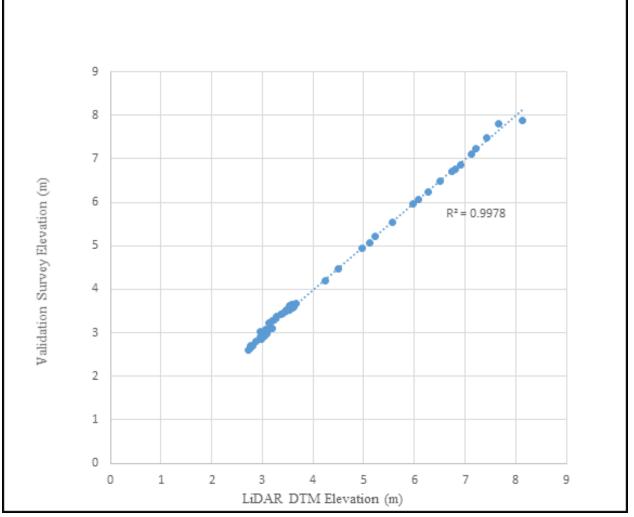




Figure 24. Correlation plot between calibration survey points and LiDAR data.

| Calibration Statistical Measures | Value (meters) |
|----------------------------------|----------------|
| Height Difference                | 0.08           |
| Standard Deviation               | 0.08           |
| Average                          | -0.03          |
| Minimum                          | 0.15           |
| Maximum                          | -0.19          |

The remaining twenty percent (20%) of the total survey points is equivalent to 230. Forty-six (46) of the said points lie within the Alubijid flood plain and were used for the validation of the calibrated Alubijid DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 25. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.08 meters with a standard deviation of 0.08 meters, as shown in Table 15.





| Validation Statistical Measures | Value (meters) |
|---------------------------------|----------------|
| RMSE                            | 0.08           |
| Standard Deviation              | 0.08           |
| Average                         | 0.02           |
| Minimum                         | -0.16          |
| Maximum                         | 0.25           |

Table 15. Validation Statistical Measures.

#### 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Alubijid, with 360 bathymetric survey points. The resulting raster surface produced was accomplished through the Inverse Distance Weighted (IDW) Interpolation Method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.08 meters. The extent of the bathymetric survey done by the DVBC in Alubijid integrated with the processed LiDAR DEM is shown in Figure 26.

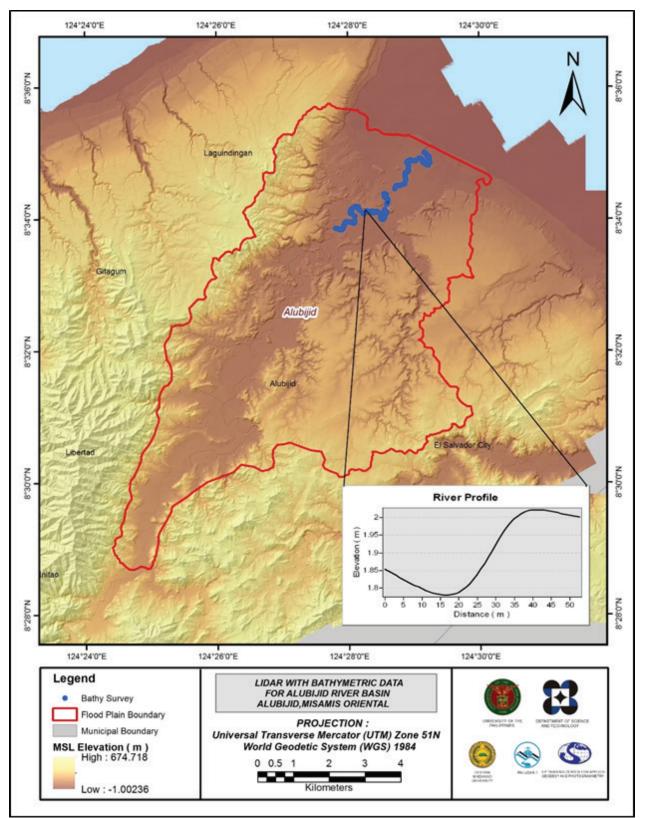



Figure 26. Extent of the bathymetric survey (in blue line) in Alubijid River and the LiDAR data validation survey (red).

#### **3.12 Feature Extraction**

The salient features in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area, with a 200-meter buffer zone. Mosaicked LiDAR DEM with one (1) meter resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares, such as highways and municipal and barangay roads, essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

# 3.12.1 Quality Checking (QC) of Digitized Features' Boundary

The Alubijid floodplain, including its 200-meter buffer, has a total area of 77.56 km2. For this area, a total of 5.0 km2, corresponding to a total of 827 building features, are considered for QC. Figure 27 shows the QC blocks for Alubijid floodplain.

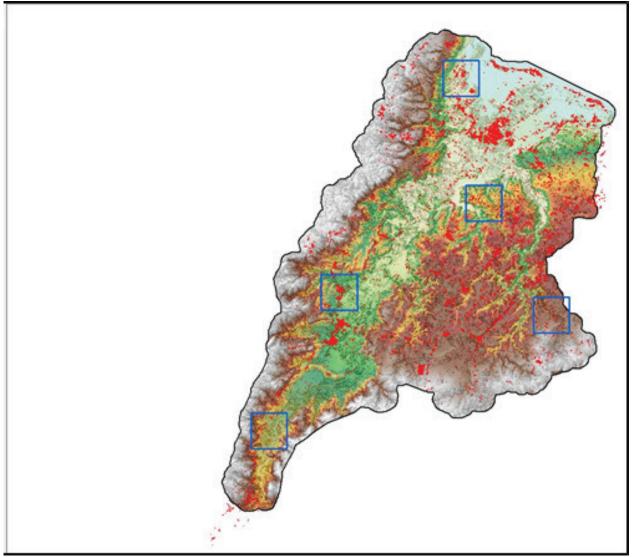



Figure 27. Blocks (in blue) of Alubijid building features that were subjected to QC

Quality Checking (QC) of Alubijid building features resulted in the ratings shown in Table 16.

| FLOODPLAIN | COMPLETENESS | CORRECTNESS | QUALITY | REMARKS |
|------------|--------------|-------------|---------|---------|
| Alubijid   | 100.00       | 100.00      | 99.97   | PASSED  |

Table 16. Quality Checking Ratings for Alubijid Building Features.

#### 3.12.2 Height Extraction

Height extraction was done for 11,248 building features in the Alubijid floodplain. Of these building features, 273 were filtered out after height extraction, resulting to 10,975 buildings with height attributes. Filtered features were the features with less than two (2) meters high. The lowest building height is at 2.00 meters, while the highest building is at 15.43 meters.

#### 3.12.3 Feature Attribution

Field data collection for the attribution process was done through Geotagging (point to a specific feature and shoot method) using a handheld GPS with a built-in camera. The X,Y,Z and the viewing direction of the GPS in 0-359 degrees during the photo capture were the essential information in the process. Using Arcmap's tool "Geotagged Photos to Points", the symbology of the imported point shapefile was set as "Airfield" and the viewing angle was set as "Direction". The "Path" is automatically created in the points' attribute table wherein the photo's directory is linked every after the "Identify" button is clicked to a specific point.

Table 17 summarizes the number of building features per type. From the total features identified, approximately 10,615 of it are residential establishments while the commercial establishments and schools are the most common in non-residential features. On the other hand, Table 18 shows the total length of each road type. Road networks were classified based on the Comprehensive Land Use Plan (CLUP) Map of Alubijid. Table 19 shows the water feature (major river) which is the Alubijid River. Fish pens are convertible into salt plantation ponds. During the rainy season, fish pens are used to accumulate rainwater. Fish pens are utilized as salt plantation ponds in the dry season.

| Facility Type                            | No. of Features |
|------------------------------------------|-----------------|
| Residential                              | 10, 615         |
| School                                   | 131             |
| Market                                   | 1               |
| Agricultural/Agro-Industrial Facilities  | 0               |
| Medical Institutions                     | 12              |
| Barangay Hall                            | 14              |
| Military Institution                     | 0               |
| Sports Center/Gymnasium/Covered<br>Court | 12              |
| Telecommunication Facilities             | 0               |
| Transport Terminal                       | 0               |
| Warehouse                                | 14              |

Table 17. Building Features Extracted for Alubijid Floodplain.

| r                               |        |
|---------------------------------|--------|
| Power Plant/Substation          | 0      |
| NGO/CSO Offices                 | 0      |
| Police Station                  | 0      |
| Water Supply/Sewerage           | 0      |
| Religious Institutions          | 22     |
| Bank                            | 4      |
| Factory                         | 0      |
| Gas Station                     | 7      |
| Fire Station                    | 1      |
| Other Government Offices        | 9      |
| Other Commercial Establishments | 144    |
| Total                           | 10,986 |

Table 18. Total Length of Extracted Roads for Alubijid Floodplain.

| Road Network Length (km) Floodplain |                  |                            |                    |                  |        |        |  |
|-------------------------------------|------------------|----------------------------|--------------------|------------------|--------|--------|--|
| Tioouplain                          | Barangay<br>Road | City/<br>Municipal<br>Road | Provincial<br>Road | National<br>Road | Others |        |  |
| Dalanas                             | 97.92            | 0                          | 31.45              | 7.13             | 0      | 136.50 |  |

Table 19. Number of Extracted Water Bodies for Alubijid Floodplain.

| Water Body Type |                    |             |     |     |          |    |
|-----------------|--------------------|-------------|-----|-----|----------|----|
|                 | Rivers/<br>Streams | Lakes/Ponds | Sea | Dam | Fish Pen |    |
| Dalanas         | 1                  | 0           | 0   | 0   | 78       | 79 |

A total of six (6) bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

# 3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 28 shows the Digital Surface Model (DSM) of Alubijid floodplain overlaid with its ground features.

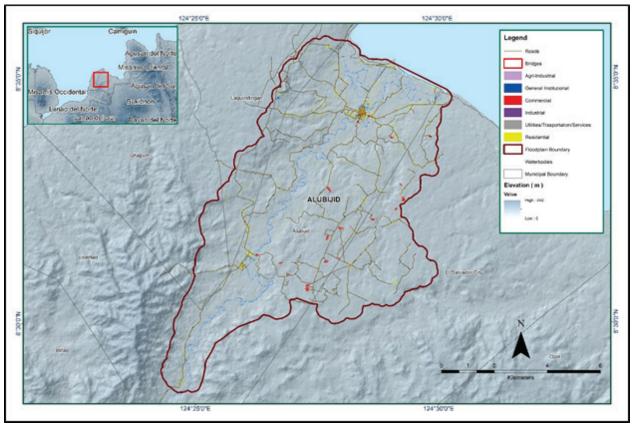



Figure 28. Extracted features for Alubijid floodplain.

# CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE ALUBIJID RIVER BASIN

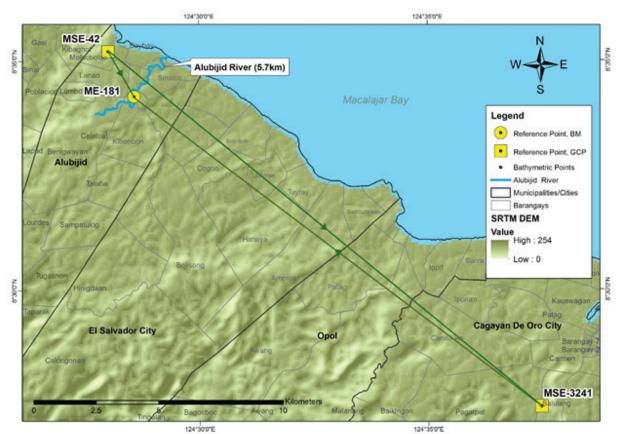
Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

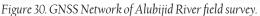
The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

#### 4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) of PHIL-LiDAR1 together with its partner for the area, PHIL-LiDAR1 personnel of Central Mindanao University (CMU) conducted surveys for the Alubijid River Basin on September 25 to October 9, 2014, with the following scope of work: (i) reconnaissance; (ii) control survey for the establishment of an accessible control point to be used in other survey types; (iii) cross-section survey, determination of bridge as-built features and water-level marking with respect to MSL on the pier of Alubijid Bridge; (iv) LiDAR ground validation points acquisition with approximate length of 30 km; and (v) bathymetry survey using Trimble<sup>®</sup> GNSS PPK survey technique and OHMEX Echosounder covering an estimated 5.7 km.




Figure 29. Extent of bathymetric survey in Alubijid River and the LiDAR data validation survey.


#### 4.2 Control Survey

The GNSS network used for theAlubijid River Basin is composed of a single loop established on September 26, 2014, occupying the following reference points: MSE-42, a second-order GCP in Brgy. Molocboloc, Municipality of Alubijid; and ME-181, a first-order BM in Brgy. Poblacion, Municipality of Alubijid, Misamis Oriental.

A NAMRIA established control point, MSE-3241, a 3rd order GCP, located in Barangay 10 (POB.), Cagayan de Oro Citywas also occupied to use as marker in the survey.

The summary of reference and control points and theirlocations is summarized in Table 20 while the GNSS network established is illustrated in Figure 30.





| Control<br>Point | Order of<br>Accuracy | Geographic Coordinates (WGS 84) |                  |                              |                         |                     |  |  |  |  |
|------------------|----------------------|---------------------------------|------------------|------------------------------|-------------------------|---------------------|--|--|--|--|
|                  | ,                    | Latitude                        | Longitude        | Ellipsoidal<br>Height<br>(m) | Elevation in<br>MSL (m) | Date<br>Established |  |  |  |  |
| MSE-42           | 2nd Order,<br>GCP    | 8°35'13.03914"                  | 124°28'00.89489" | 90.957                       | -                       | 2003                |  |  |  |  |
| ME-181           | 1st Order,<br>BM     | -                               | -                | 91.293                       | 22.896                  | 2007                |  |  |  |  |
| MSE-<br>3241     | Used as<br>Marker    | -                               | -                | 188.462                      | -                       | 2007                |  |  |  |  |

Table 20 List of References and Control Points occupied in Alubijid River Basin survey.

The GNSS set-ups on the recovered reference and control points in Alubijid River are shown in Figure 31 to Figure 33.



Figure 31. GNSS receiver, Trimble® SPS 852, setup at ME-181 in Alubijid Bridge, Brgy. Poblacion, Alubijid.



Figure 32. GNSS receiver Trimble® SPS 985 setup, at MSE-42 on the concrete water tank behind the Molocboloc Barangay Hall, Municipality of Alubijid.



Figure 33. GNSS receiver Trimble® SPS 852 setup at MSE-3241 in Brgy. 10 (POB.), Cagayan de Oro City.

# 4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within+/- 20 cm and +/- 10 cm requirement, respectively. In cases where one or more baselines do not meet all of these criteria, masking is performed. Masking is done by removing portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. The Baseline processing results of control points in the Alubijid River Basin is summarized in Table 21, generated by TBC software.

| Observation        | Date of<br>Observation | Solution<br>Type | Prec.<br>(Meter) | V. Prec.<br>(Meter) | Geodetic<br>Az. | Ellipsoid<br>Dist.<br>(Meter | ∆Height<br>(Meter) |
|--------------------|------------------------|------------------|------------------|---------------------|-----------------|------------------------------|--------------------|
| MSE-3241<br>MSE-42 | 09-26-2014             | Fixed            | 0.003            | 0.013               | 129°28'10"      | 22494.351                    | 97.525             |
| MSE-3241<br>ME-181 | 09-26-2014             | Fixed            | 0.004            | 0.027               | 307°23'52"      | 20550.228                    | -97.202            |

#### Table 21 Baseline processing report for Alubijid River Basin static survey.

| wqasMSE-3241<br>ME-181 | 09-26-<br>2014 | Fixed | 0.004 | 0.031 | 307°23'52" | 20550.220 | -97.149 |
|------------------------|----------------|-------|-------|-------|------------|-----------|---------|
| MSE-42 ME-<br>181      | 09-26-<br>2014 | Fixed | 0.008 | 0.018 | 307°23'52" | 20550.248 | -97.114 |
| MSE-42 ME-<br>181      | 09-26-<br>2014 | Fixed | 0.003 | 0.014 | 150°27'39" | 2097.031  | 0.364   |
| MSE-42 ME-<br>181      | 09-26-<br>2014 | Fixed | 0.004 | 0.007 | 150°27'39" | 2097.030  | 0.322   |
| MSE-42 ME-<br>181      | 09-26-<br>2014 | Fixed | 0.004 | 0.010 | 150°27'39" | 2097.023  | 0.333   |

As shown in Table 21, a total of seven (7) baselines were processed with coordinates of MSE-42 and elevation value of ME-181 held fixed. All of them passed the required accuracy.

#### 4.4 Network Adjustment

After the baseline processing procedure, network adjustment wasperformed using TBC. Looking at the Adjusted Grid Coordinates in Table 23of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm, or in equation form:

 $\sqrt{(x_e)^2+(y_e)^2} < 20$  cm and z<sup>e</sup><10 cm

Where:

 $x^{e}$  is the Easting Error,  $y^{e}$  is the Northing Error, and  $z^{e}$  is the Elevation Error for each control point. See Table 22 for the complete details of the Network Adjustment Report for Alubijid River.

| Point ID        | Туре     | East σ<br>(Meter) | North σ<br>(Meter) | Height σ<br>(Meter) | Elevation σ<br>(Meter) |
|-----------------|----------|-------------------|--------------------|---------------------|------------------------|
| MSE-42          | Local    | Fixed             | Fixed              |                     |                        |
| ME-181          | Grid     |                   |                    |                     | Fixed                  |
| Fixed = 0.00000 | 1(Meter) | °                 | °                  | ·                   |                        |

Table 22. Control Point Constraints.

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated inTable 23. All fixed control points have no values for grid and elevation errors.

|          |                    |                             | ,<br>,              |                              |                      |                               |            |
|----------|--------------------|-----------------------------|---------------------|------------------------------|----------------------|-------------------------------|------------|
| Point ID | Easting<br>(Meter) | Easting<br>Error<br>(Meter) | Northing<br>(Meter) | Northing<br>Error<br>(Meter) | Elevation<br>(Meter) | Elevation<br>Error<br>(Meter) | Constraint |
| ME-181   | 662470.950         | 0.005                       | 947675.855          | 0.004                        | 22.896               | ?                             | e          |
| MSE-42   | 661430.196         | ?                           | 949496.213          | ?                            | 22.819               | 0.017                         | LL         |
| MSE-241  | 678848.436         | 0.006                       | 935263.900          | 0.005                        | 118.361              | 0.033                         |            |

Table 23. Adjusted Grid Coordinates.

With the mentioned equation,  $\sqrt{((x_e)^2+(y_e)^2)}<20$ cm for horizontal and  $z^e<10$  cm for the vertical; the computation for the accuracy are as follows:

MSE-42 a. Horizontal Accuracy Fixed = Vertical Accuracy 1.7 < 10 cm= b. ME-181  $\sqrt{((0.5)^2 + (0.4)^2)}$ Horizontal Accuracy =  $\sqrt{(0.25+0.16)}$ = 0.64 < 20 cm= Vertical Accuracy =Fixed C. MSE-3241 Horizontal Accuracy =  $\sqrt{((0.6)^2 + (0.5)^2)}$  $\sqrt{(0.36 + 0.25)}$ = 0.78< 20 cm = Vertical Accuracy 3.3 < 10 cm =

Following the given formula, the horizontal and vertical accuracy results of the two occupied control points are within the required precision.

|          |                 | Tuple 27. Thefusien Geoderie |                   |                         |            |
|----------|-----------------|------------------------------|-------------------|-------------------------|------------|
| Point ID | Latitude        | Longitude                    | Height<br>(Meter) | Height Error<br>(Meter) | Constraint |
| ME - 181 | N8°34'13.65259" | E124°28'34.70466"            | 91.293            | ?                       | е          |
| MSE - 42 | N8°35'13.03914" | E124°28'00.89489"            | 90.957            | 0.017                   | LL         |
| MSE-3241 | N8°27'27.49300" | E124°37'28.59511"            | 188.462           | 0.033                   |            |

Table 24. Adjusted Geodetic Coordinates.

The corresponding geodetic coordinates of the observed points are within the required accuracy, as shown in Table 24.

The summary of reference and control points used is indicated in Table 25.

| Table 25 . Reference and control | points used and its location. |
|----------------------------------|-------------------------------|
|----------------------------------|-------------------------------|

(Source: NAMRIA, UP-TCAGP)

| Control<br>Point | Order of<br>Accuracy | Geographi      | ic Coordinates (WGS | UTM ZONE 51 N                |                 |                |                    |
|------------------|----------------------|----------------|---------------------|------------------------------|-----------------|----------------|--------------------|
|                  | ,                    | Latitude       | Longitude           | Ellipsoidal<br>Height<br>(m) | Northing<br>(m) | Easting<br>(m) | BM<br>Ortho<br>(m) |
| MSE-42           | 2nd<br>Order,<br>GCP | 8°35'13.03914" | 124°28'00.89489"    | 90.957                       | 949496.213      | 661430.196     | 22.819             |
| ME-<br>181       | 1st Order,<br>BM     | 8°34'13.65259" | 124°28'34.70466"    | 91.293                       | 947675.855      | 662470.95      | 22.896             |
| MSE-<br>3241     | Used as<br>Marker    | 8°27'27.49300" | 124°37'28.59511"    | 188.462                      | 935263.9        | 678848.436     | 118.361            |

#### 4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross section and bridge as-built survey was conducted on September 28, 2014 at the downstream side of the Alubijid Bridge in Brgy. Poblacion, Municipality of Alubijid using Trimble<sup>®</sup>SPS882 receiver in PPK survey technique, as shown in Figure 34.



Figure 34. Cross Section survey at Alubijid Bridge in the Municipality of Alubijid.

The cross-sectional line of Alubijid Bridge is about 147.41 m with twenty four (24) cross-sectional points using the control point ME-181 as the GNSS base station. The cross-section diagram, planimetric map and bridge data form are shown in Figure 35 to Figure 37, respectively.

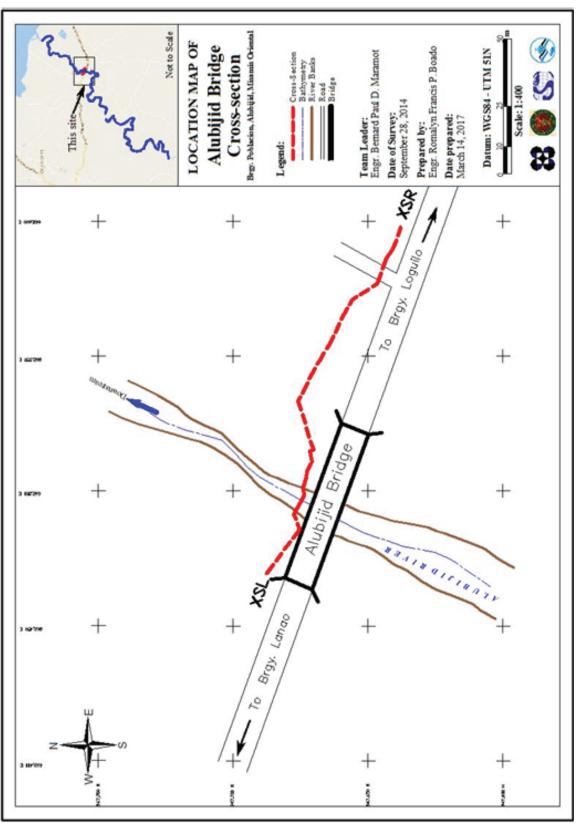
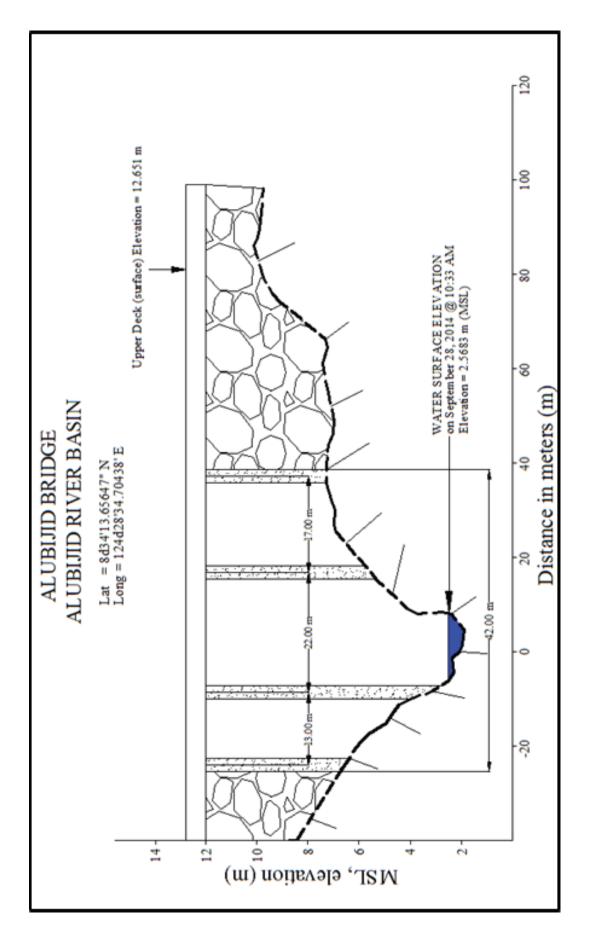
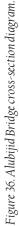





Figure 35. Alubijid Bridge location map.





| Bric | ige Nan  | ne: _AL      | UBIJID BRIDGE      |            | Bridge D            |                  |                            | ate:              | September             | 28, 2014       |  |
|------|----------|--------------|--------------------|------------|---------------------|------------------|----------------------------|-------------------|-----------------------|----------------|--|
| Rive | er Name  | e: <u>AL</u> | UBIJID RIVER       |            |                     |                  | Ti                         | me: _             | 10:33 am              |                |  |
|      |          |              | ty, Region): Brgy  |            |                     | l, Misan         | nis Oriental               |                   |                       |                |  |
| Sur  | vey Tea  | m:           | VBC Misamis Orier  | 1          |                     |                  |                            |                   |                       |                |  |
|      | w condi  |              |                    | ormal      | high                |                  | Weather (                  | Condit            | tion: (tai            | r rainy        |  |
| .ati | tude: _  | <u>8°34'</u> | 13.65238" N        |            |                     |                  | Longitude:                 | 12                | 4°28'34.704           | 79" E          |  |
|      | BA2      |              | D                  |            |                     | /BA3             |                            |                   |                       |                |  |
| BA:  | 1        |              |                    | •          |                     |                  | BA4. Le                    | gend:<br>= Bridge | Approach P =          | Pier LC = Low  |  |
|      |          |              |                    | _          |                     |                  | Ab                         | = Abutn           | nent D=               | Deck HC = High |  |
|      |          | Ab1          |                    | -          | 2                   | Ab2              |                            |                   |                       |                |  |
|      |          |              | P                  |            |                     | н                | c                          | -                 | <u> </u>              |                |  |
|      |          |              | Deck (Please star  | t your me  | asurement from      | the left si      | de of the bank facin       | g down            | stream)               |                |  |
| lev  | ation:   | 12.6         | 51 m (MSL) W       | idth:      | 10.841 n            | neters           | Span (BA                   | 3-BA2             | ):61.15               | 6 meters       |  |
| _    |          |              | Station            |            |                     | High             | n Chord Elevatio           | n                 | Low Cho               | ord Elevation  |  |
| 1    |          |              | Pier 1             |            |                     |                  | 12.6663                    |                   | 11.                   | 0003 m         |  |
| 2    |          |              |                    |            |                     |                  |                            |                   |                       |                |  |
| 3    |          |              |                    |            |                     |                  |                            |                   |                       |                |  |
| 4    |          |              |                    |            |                     |                  |                            |                   |                       |                |  |
|      |          |              | Bridge Approa      | ch (Please | start your measurem | ent from the     | left side of the bank faci | ing downs         | tream)                |                |  |
| ſ    |          | Stati        | on(Distance from   | BA1)       | Elevation           | n Station(Distan |                            |                   | nce from BA1) Elevati |                |  |
| Ì    | BA1      |              | 0                  |            | 13.952              | BA3 135.         |                            | 5.297             | ,                     | 11.593         |  |
|      | BA2      |              | 74.141             |            | 12.839              | BA4              | 21                         | 3.123             | ;                     | 9.861          |  |
|      |          |              |                    |            |                     |                  |                            |                   |                       |                |  |
|      | Abu      | tment        | Is the abutment    | sloping    | ? Yes               | (No;)            | If yes, fill in t          | he foll           | owing information     | ation:         |  |
|      |          |              | Stat               | ion (D     | istance from        | om BA1)          |                            |                   | Elevation             |                |  |
|      | A        | b1           |                    |            |                     |                  |                            |                   |                       |                |  |
|      | A        | b2           |                    |            |                     |                  |                            |                   |                       |                |  |
|      |          |              | Pier (Please start | your mea   | surement from       | the left si      | de of the bank facin       | g down            | stream)               |                |  |
| 5    | Shape: _ | Cylin        | drical             | Numb       | er of Piers: _4     | 1                | Height of c                | olumn             | footing:              |                |  |
|      |          |              | Station (Distan    | ce fro     | m BA1)              |                  | Elevation                  | <b>—</b>          | Pier \                | Vidth          |  |
|      | Pier 1   |              | 76.3               |            |                     | <u> </u>         | 12.648                     | +                 | rier                  |                |  |
|      | Pier 2   | _            | 92.6               |            |                     |                  | 12.387                     |                   |                       |                |  |
|      | Pier 3   |              | 115.               | 761        |                     |                  | 12.065                     |                   |                       |                |  |
|      | Pier 4   |              | 132.               |            |                     |                  | 11.586                     |                   |                       |                |  |
|      |          |              | ,                  | OTE: Use   | the center of the p | pier as refe     | rence to its station       |                   |                       |                |  |
|      |          |              |                    |            |                     |                  |                            |                   |                       |                |  |
|      |          |              |                    |            |                     |                  |                            |                   |                       |                |  |
|      |          |              |                    |            |                     |                  |                            |                   |                       |                |  |

Figure 37. Alubijid Bridge Data Form.

The water surface elevation of the Alubijid River was acquired using Trimble®SPS882 in GNSS PPK survey technique on September 28, 2014 at 10:33 AM. The water surface elevation is 2.568 m above MSL. The elevation data was translated to the bridge's pier using a GNSS receiver Trimble™ SPS 882. The resulting data was used to mark the piers of Alubijid Bridge as shown in Figure 38. The markings on the bridge pier shall serve as elevation reference for flow data gathering and depth gauge deployment of Central Mindanao University PHIL-LiDAR 1.



Figure 38. Water level mark at the pier of Alubijid Bridge.

### 4.6 Validation Points Acquisition Survey

LiDAR validation points acquisition survey was conducted on September 27, 2014 using a survey GNSS rover receiverTrimble<sup>®</sup>SPS882 mounted on a pole which was attached at the side of the vehicle, as shown in Figure 39. It was secured with a cabletieto ensure that it was horizontally and vertically balanced. The antenna height of 2.52 meters was measured from the ground up to the bottom of notch of the GNSS rover receiver.



Figure 39. Trimble SPS<sup>®</sup>882 set-up in a vehicle in Alubijid River.

The survey started from Brgy. Gimaylan, Municipality of Libertad, going east through the major roads traversing the municipalities of Libertad, Gitagum, Laguindingan, Alubijid, Opol, El Salvador City and Cagayan De Oro City; and ended in Brgy. Bulua, Cagayan De Oro City. A total of 3,721 points were gathered with an approximate length of 30 km using ME-181 as GNSS base station for the entire extent of validation points acquisition survey, as illustrated in the map in Figure 40.



Figure 40. LiDAR ground validation survey coverage for Alubijid River Basin.

# 4.7 Bathymetric Survey

Bathymetric survey in the Alubijid River was conducted on September 27, 2014 using Trimble<sup>®</sup> SPS 882 in GNSS PPK survey technique (See Figure 41). The survey commenced onthe upstream portion in Brgy. Benigwayanwith coordinates 8°32′41.34130″ 124°26′58.75098″, then walked down to its mouth in Brgy. Baybay with coordinates 8°35′00.30104″ 124°29′10.04657″.The reference point ME-181, located at Alubijid Bridge in Brgy. Poblacion, Alubijid, served as the GNSS base station. The bathymetry line length is about 5.7 kilometers, with a total of 406 bathymetric points gathered, as presented in Figure 42.



 $Figure \ 41. \ Manual \ bathymetry \ in \ the \ shallow \ portion \ of \ Alubijid \ River.$ 

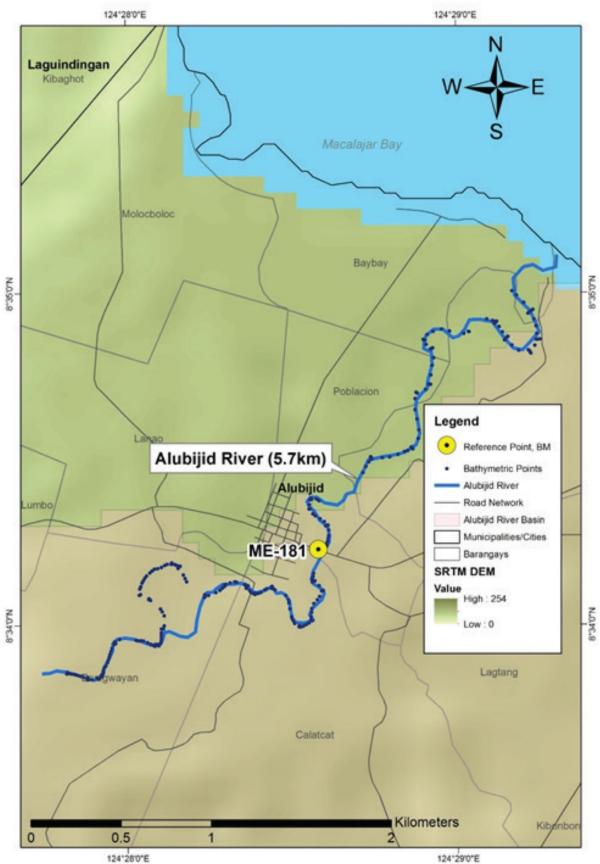
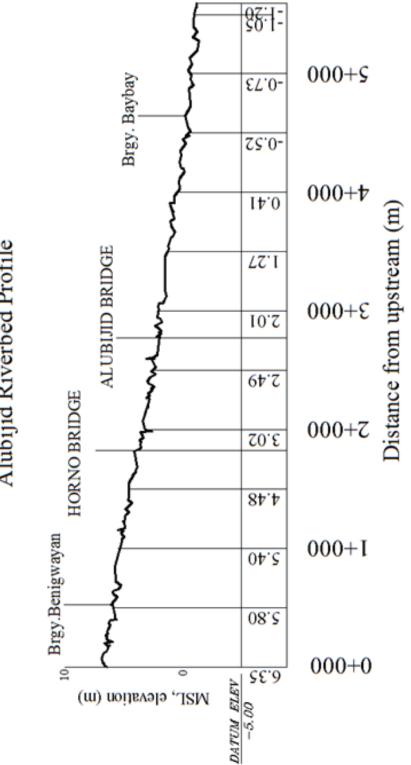




Figure 42. Bathymetric survey of Alubijid River.

A CAD drawing was produced to illustrate the riverbed profile of the Alubijid River, as shown in Figure 43. An elevation drop of 5.15 meters was observed within the approximate distance of 5.7 kilometers from Brgy. Benigwayan down to its mouth in Brgy. Baybay.



Alubijid Riverbed Profile

Figure 43. Riverbed profile of Alubijid River.

# **CHAPTER 5: FLOOD MODELING AND MAPPING**

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin and Mariel Monteclaro

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

#### 5.1 Data Used for Hydrologic Modeling

#### 5.1.1 Hydrometry and Rating Curves

Components and data that affect the hydrologic cycle of the Alubijid River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Alubijid River Basin were monitored, collected, and analyzed.

#### 5.1.2 Precipitation

Misamis Oriental, including the Alubijid River basin, was under Signal No. 1 during the landfall of Tropical Depression Queenie onNovember27, 2014. The hydrologic data collection covered the period 1020 hrs on November 26, 2014 until1610 hrs onNovember 27, 2014. Hydrologic data include the river velocity, water depth and rain collected from data logging sensors (mechanical velocity meter, depth gauge and rain gauges) in a specific time period. Precipitation data was taken from three (3) automatic rain gauges (ARGs) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). These were the Pigsag-an, Pugaan and San Simon ARGs. The location map of the rain gauges is seen in Figure 44. Rainfall data were downloaded from the web portal of Philippine E-Science Grid-ASTI (http://repo.pscigrid.gov.ph).

Total precipitation for this event inPigsag-an rain gauge is 6.2mm. It peaked to 5.6mm on 26 November 2014, 22:30. For Pugaan, total rain for this event is 58.7mm. Peak rain of 8.9mm was recorded on 26 November 2014, 23:30. For San Simon, total rain is 21.8mm. It peaked to 2.2mm at 26 November 2014, 22:15. The lag time between the peak rainfall and discharge is two hours and fifty minutes.

The DOST-ASTI Region X had successfully installed two ARGs inNovember 2015after the occurrence of Typhoon Queenie. ARGs are located in the barangays of Taparak (8° 29'20"N, 124°24'43"E) and Tula (8° 26'10"N, 124°25'10"E). The two (2) ARGs are within the Alubijid River Basin, as shown inFigure 44.

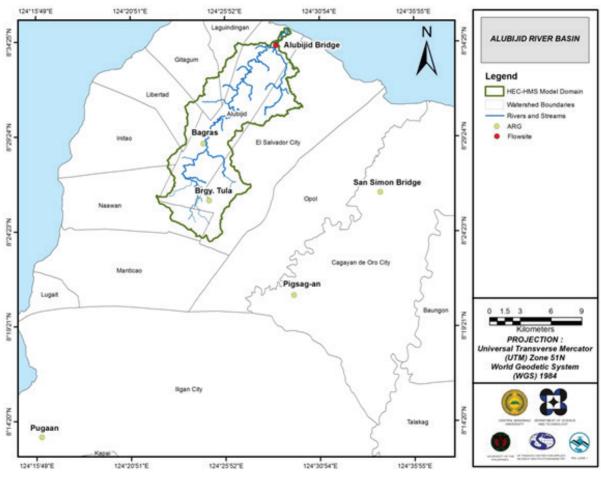



Figure 44. The location map of Alubijid HEC-HMS model used for calibration.

### 5.1.3 Rating Curves and River Outflow

Tropical Depression Queenie, which occurred on November26-27, 2014 contributed to a 1.04 meter water level rise with peak discharge of 18.668 m3/s recorded at 0220 hrs on November 27, 2014, with accumulated rainfall 86.7 mm. These hydrologic data are actual events in the Alubijid River, and inputted to the hydrologic modeling. Hydrologic measurements were taken from Alubijid Bridge, Poblacion, Alubijid, Misamis Oriental. Figure 45 and Figure 46 illustrate the cross-section plot of the Alubijid Bridge and the Alubijid Hydrometry, respectively.

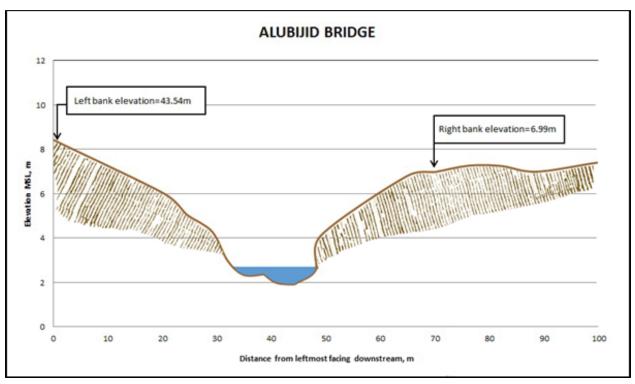



Figure 45. Cross-Section Plot of Alubijid Bridge.

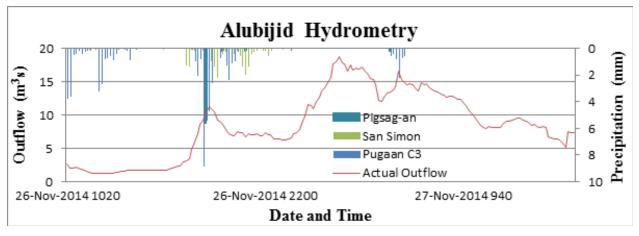



Figure 46. Rainfall and outflow data used for modeling.

A rating curve was generated for the observed flow and water level. It shows the relationship of the two hydrologic data. It is expressed in the form of the following equation:

Q=a nh

where, Q : Discharge (m3/s),

h : Gauge height (reading from Alubijid Bridge depth gauge sensor), and

a and n : Constants.

Alubijid River Rating Curve Alubijid Bridge, National Highway 35.0  $Q = 0.0065e^{2.4574x}$ 30.0 Outflow (m<sup>3</sup>/s) Field Data  $R^2 = 0.8523$ 25.0 Points 20.0 Expon. (Field 15.0 Data Points) 10.0 5.0 0.0 Stage Height (m) 1.0 0.0 3.0 4.0

The Alubijid River Rating Curve measured at Alubijid Bridge is expressed as Q = 0.0065e2.4574x (Figure 47).

Figure 47. HQ Curve of HEC-HMS model.

#### **5.2 RIDF Station**

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for Rainfall Intensity Duration Frequency (RIDF) values for the Cagayan de Oro City Rain Gauge, presented in Table 26. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way that a certain peak value will be attained at a certain time. This station was selected based on its proximity to the Alubijid watershed (Figure 48). The extreme values for this watershed were computed based on a 54-year record.

|         | COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION |         |         |       |       |       |       |        |        |
|---------|--------------------------------------------------|---------|---------|-------|-------|-------|-------|--------|--------|
| T (yrs) | 10 mins                                          | 20 mins | 30 mins | 1 hr  | 2 hrs | 3 hrs | 6 hrs | 12 hrs | 24 hrs |
| 2       | 18.6                                             | 29.5    | 37      | 48.3  | 62.3  | 69.4  | 81.6  | 91.8   | 100.1  |
| 5       | 24.5                                             | 38.4    | 48.2    | 63.7  | 84.3  | 92.6  | 109.9 | 128.1  | 141.7  |
| 10      | 28.4                                             | 44.3    | 55.6    | 73.9  | 98.8  | 107.9 | 128.7 | 152.1  | 169.2  |
| 15      | 30.6                                             | 47.7    | 59.8    | 79.6  | 107.1 | 116.6 | 139.3 | 165.6  | 184.7  |
| 20      | 32.2                                             | 50      | 62.8    | 83.7  | 112.8 | 122.7 | 146.7 | 175.1  | 195.6  |
| 25      | 33.3                                             | 51.8    | 65      | 86.8  | 117.3 | 127.4 | 152.4 | 182.4  | 204    |
| 50      | 37                                               | 57.3    | 72      | 96.3  | 130.9 | 141.8 | 170   | 204.9  | 229.8  |
| 100     | 40.6                                             | 62.8    | 78.9    | 105.8 | 144.5 | 156.1 | 187.4 | 227.3  | 255.5  |

Table 26. RIDF values for Cagayan de Oro Rain Gauge computed by PAGASA.

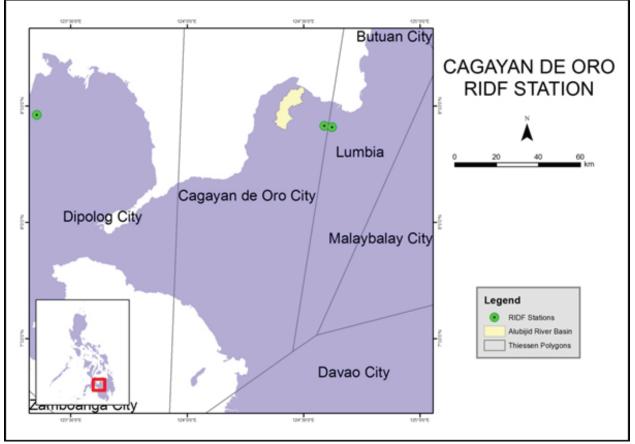



Figure 48. Location of Cagayan de Oro RIDF Station relative to Alubijid River Basin.

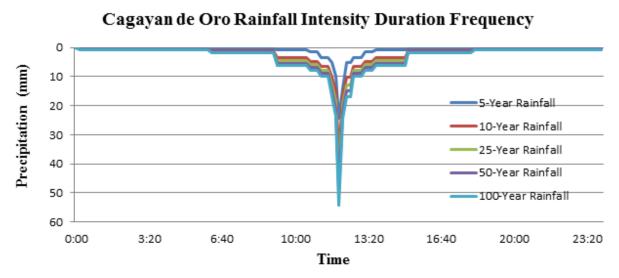



Figure 49. Synthetic storm generated for a 24-hr period rainfall for various return periods.

### 5.3 HMS Model

The soil shapefile was taken in 2004 from the Bureau of Soils and Water Management (BSWM), under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource Information Authority (NAMRIA). The soil and land cover of the Alubijid River Basin are shown in Figures 50 and 51, respectively.

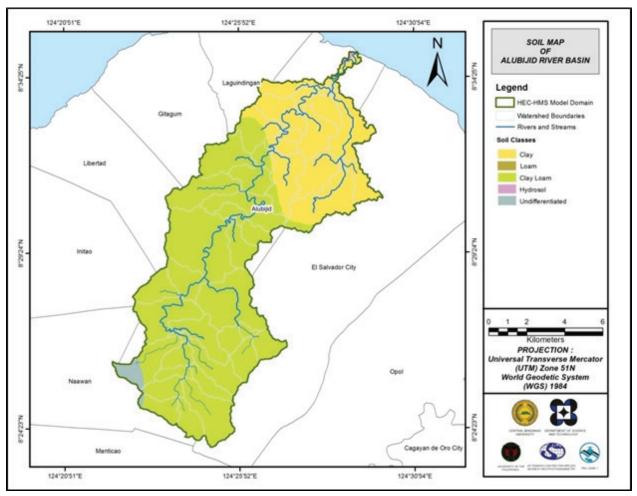



Figure 50. The soil map of the Alubijid River Basin.

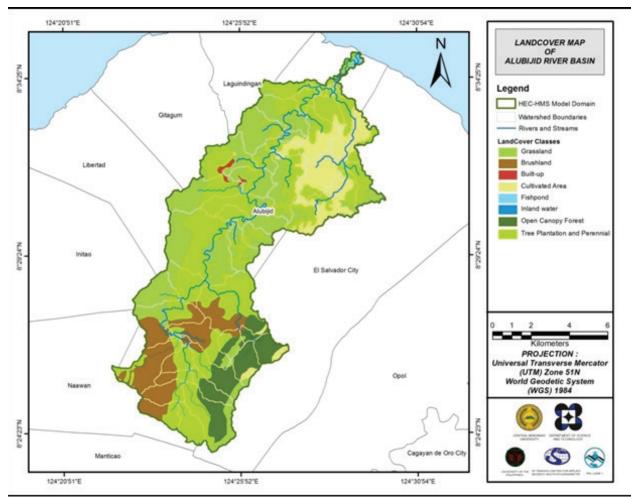



Figure 51. The land cover map of the Alubijid River Basin. (Source: NAMRIA)

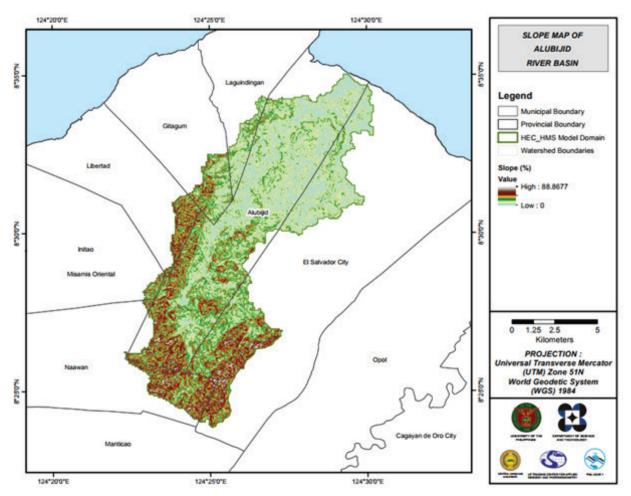



Figure 52. Slope Map of Alubijid River Basin.

A drainage system includes the basin boundary, subbasin and the stream networks of the basin. Using ArcMap 10.1 with HEC-GeoHMS version 10.1 extension, the Alubijid River centerline and SAR-DEM 10m resolution served as primary data, delineating the drainage system of the Alubijid river basin. The river centerline was digitized starting from upstream towards downstream in Google Earth (2014). Default threshold area used is 140 hectares.

Using the SAR-based DEM, the LunMasla basin was delineated and further subdivided into subbasins. The Alubijid basin model consists of forty-eight (48) sub basins, twenty-five (25) reaches, and twenty-six (26) junctions. The main outlet is EstuaryCopy1. This basin model is illustrated in Figure 53. The basins were identified based on soil and land cover characteristics of the area. Precipitation fromNovember 26-27,2014 (Tropical Depression Queenie) was taken from DOST rain gauges. Finally, it was calibrated using data from the Alubijid Bridge using depth gauge sensor.

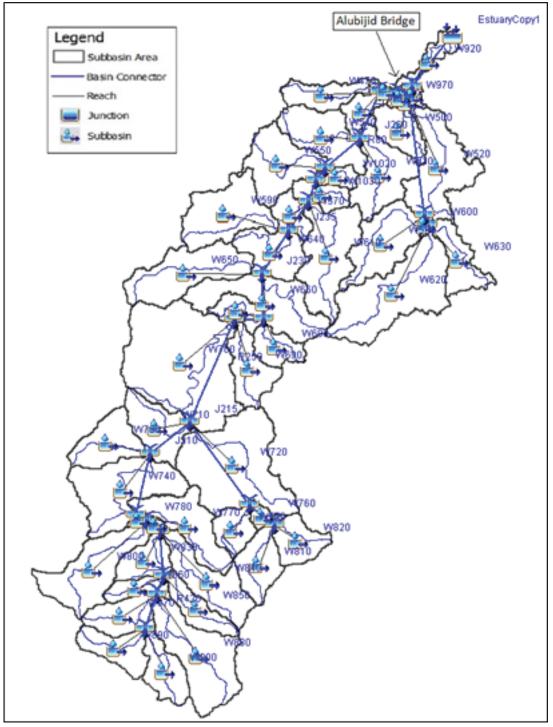



Figure 53. HEC-HMS generated Alubijid River Basin Model.

### 5.4 Cross-section Data

Riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 54).

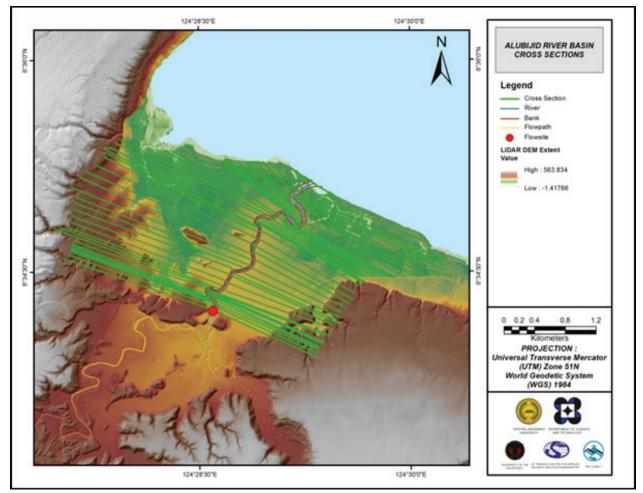



Figure 54. Alubijid River Cross-section generated using HEC GeoRAS tool.

### 5.5 Flo 2D Model

The automated modeling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area wasdivided into square grid elements, 10 meters by 10 meters in size. Each element wasassigned a unique grid element number which served as its identifier, then attributed with the parameters required for modeling such as x-and y-coordinates of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements were arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the northeast, following the main channel. As such, boundary elements in those particular regions of the model were assigned as inflow and outflow elements, respectively.



Figure 55. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro.

The simulation was then run through FLO-2D GDS Pro. This particular model had a computer run time of 39.55225 hours. After the simulation, FLO-2D Mapper Pro was used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following flood hazard maps. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h) is set at 0 m2/s.

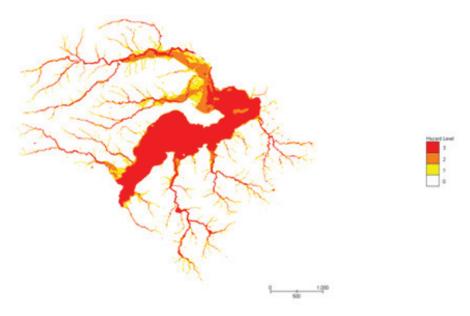



Figure 56. Generated 100-year rain return hazard map from FLO-2D Mapper.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 39 385 900.00 m2.




Figure 57. Generated 100-year rain return flow depth map from FLO-2D Mapper.

There is a total of 18 419 757.72 m3 of water entering the model. Of this amount, 10 725 727.85 m3 is due to rainfall while 7 694 029.87 m3 is inflow from other areas outside the model. 3 960 626.75 m3 of this water is lost to infiltration and interception, while 12 447 417.07 m3 is stored by the flood plain. The rest, amounting up to 2 011 714.06 m3, is outflow.

### 5.6 Results of HMS Calibration

After calibrating the Alubijid HEC-HMS river basin model, its accuracy was measured against the observed values (See Annex 9 for the Alubijid Model Basin Parameters). Figure 58 shows the comparison between the two (2) discharge data.

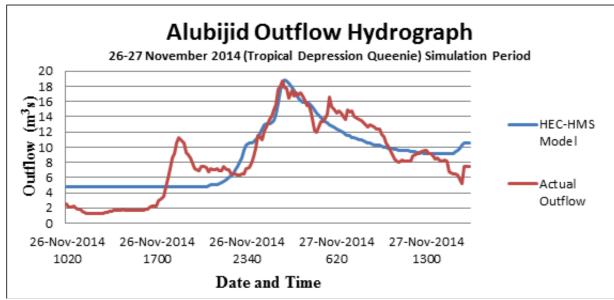



Figure 58. Outflow Hydrograph of Alubijid produced by the HEC-HMS model compared with observed outflow.

Enumerated in Table 27 are the adjusted ranges of values of the parameters used in calibrating the model.

| Hydrologic<br>Element | Calculation<br>Type | Method                   | Parameter                  | Range of Calibrated<br>Values |
|-----------------------|---------------------|--------------------------|----------------------------|-------------------------------|
|                       | Loss                | SCS Curve number         | Initial Abstraction (mm)   | 0.94 - 36.89                  |
|                       |                     |                          | Curve Number               | 45.96 -99                     |
| Basin Transform       |                     | Clark Unit<br>Hydrograph | Time of Concentration (hr) | 0.022 - 0.31                  |
|                       |                     | nyarographi              | Storage Coefficient (hr)   | 0.34 - 4.93                   |
|                       | Baseflow            | Recession                | Recession Constant         | 1                             |
|                       |                     |                          | Ratio to Peak              | 0.35                          |
| Reach                 | Routing             | Muskingum-Cunge          | Manning's Coefficient      | 0.0001                        |

| Table 27. | Range of | Calibrated | Values | for Alubi | jid. |
|-----------|----------|------------|--------|-----------|------|
|           |          |            |        |           |      |

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.94mm to 36.89mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 45.96 to 90 for curve number has values lower and higher than the advisable range for Philippine watersheds (70—80) depending on the soil and land cover of the area. For Alubijid, the basin mostly consists of grasslands, tree plantation, and perennial plants; and the soil consists of clay and clay loam.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.022 to 0.31 of an hour determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 1.0 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.35 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.0001 for the Alubijid river basin is lower than the usual Manning's n value in the Philippines

| Accuracy Measure | Value |
|------------------|-------|
| r2               | 0.74  |
| NSE              | 0.75  |
| PBIAS            | 24.74 |
| RSR              | 0.5   |
| PBIAS            | .40   |

Table 28. Summary of the Efficiency Test of Alubijid HMS Model.

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed at 2.5 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.74.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.75.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 24.74.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.5.

# 5.7 Calculated Outflow hydrographs and Discharge values for different Rainfall Return periods

### 5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 59) shows the Alubijid River outflow using the Cagayan de Oro Rainfall Intensity-Duration-Frequency curves (RIDF) in five (5) different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the PAGASA data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

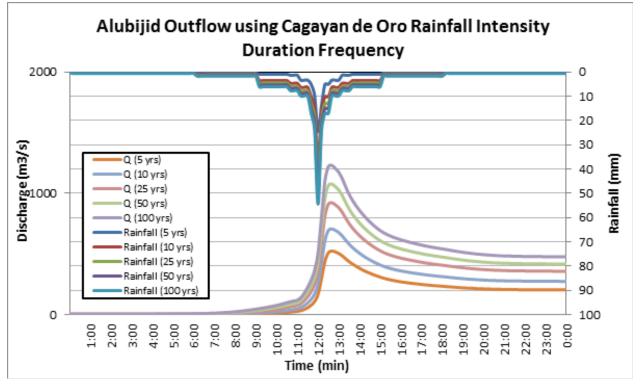



Figure 59. Outflow hydrograph at AlubijidStation generated using Cagayan de Oro RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Alubijid discharge using the Cagayan de Oro Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 29.

| RIDF Period | Total Precipitation<br>(mm) | Peak rainfall (mm) | Peak outflow<br>(m3s) | Time to Peak |
|-------------|-----------------------------|--------------------|-----------------------|--------------|
| 5-Year      | 141.7                       | 24.5               | 525.5                 | 40 minutes   |
| 10-Year     | 300.7                       | 37                 | 707.6                 | 40 minutes   |
| 25-Year     | 373.6                       | 44                 | 922.6                 | 40 minutes   |
| 50-Year     | 427.6                       | 49.2               | 1075.8                | 40 minutes   |
| 100-Year    | 481.2                       | 54.4               | 1229.8                | 40 minutes   |

Table 29. Peak values of the Alubijid HECHMS Model outflow using the Cagayan de Oro RIDF.

### 5.7.2 Discharge data using Dr. Horritts' recommended hydrologic method

The river discharge for the river entering the floodplainis shown in Figure 60 and the peak values are summarized in Table 30.




Figure 60. Alubijid River generated discharge using 5-, 25-, and 100-year Cagayan de Oro City rainfall intensity-duration-frequency (RIDF) in HEC-HMS.

| RIDF Period | Peak discharge (cms) | Time-to-peak         |
|-------------|----------------------|----------------------|
| 100-Year    | 857.9                | 12 hours, 50 minutes |
| 25-Year     | 631.4                | 12 hours, 50 minutes |
| 5-Year      | 181.9                | 13 hours             |

Table 30. Summary of Alubijid river (1) discharge generated in HEC-HMS.

The comparison of the discharge results using Dr. Horritt's recommended hydrological method against the bankful and specific discharge estimates is shown in Table 31.

| VALIDATION      |                   |                  |                    |                      |                       |
|-----------------|-------------------|------------------|--------------------|----------------------|-----------------------|
| Discharge Point | QMED(SCS),<br>cms | QBANKFUL,<br>cms | QMED(SPEC),<br>cms | Bankful<br>Discharge | Specific<br>Discharge |
| Alubijid (1)    | 160.072           | 308.790          | 144.528            | Pass                 | Pass                  |

Table 31. Validation of river discharge estimates.

The value from the HEC-HMS river discharge estimates was able to satisfy the conditions for validation using the bankful and specific discharge methods. The calculated value is based on theory but is supported by other discharge computation methods, so they were acceptable for use in flood modeling. This value will need further investigation for the purpose of validation. It is therefore recommended to obtain actual values of the river discharges for higher-accuracy modeling.

### 5.8 River Analysis Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section, for every time step, for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river will be presented. The sample generated map of Alubijid River using the calibrated HMS base flow is shown in Figure 61.




Figure 61. Sample output of Alubijid RAS Model.

## 5.9 Flood Hazard and Flow Depth Map

The resulting hazard and flow depth maps for the 5-, 25-, and 100-year rain return scenarios of the Alubijid floodplain are shown in Figure 62 to Figure 67.

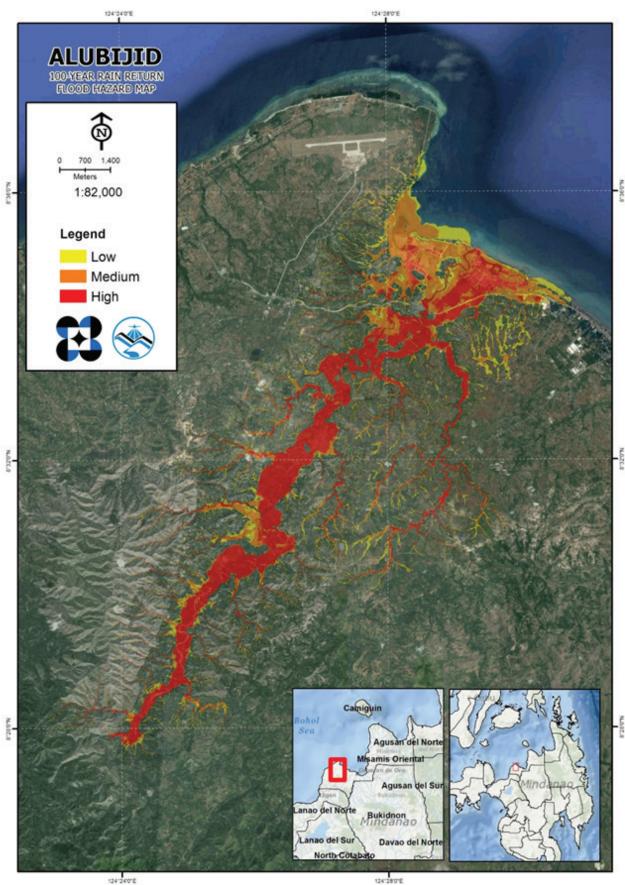



Figure 62. 100-year Flood Hazard Map for Alubijid Floodplain.

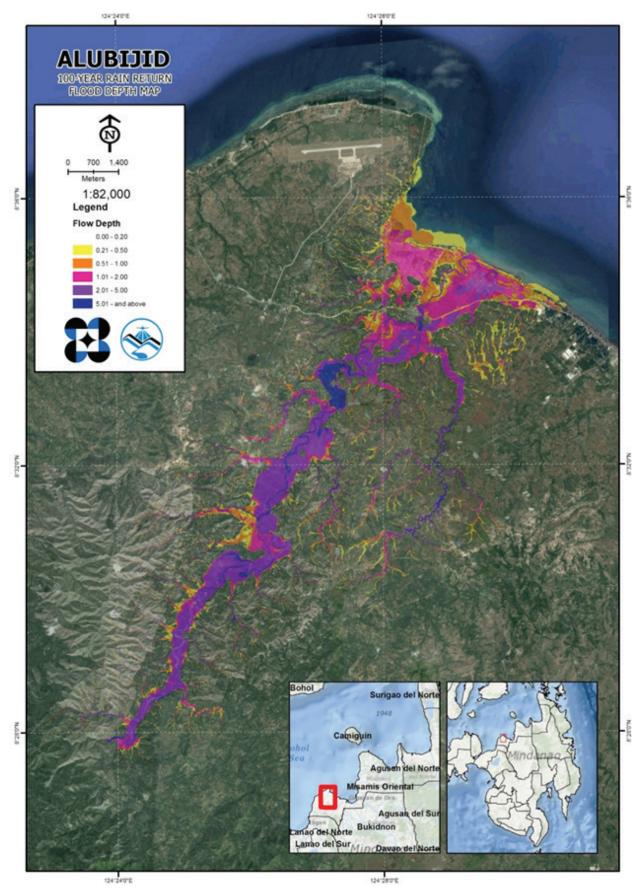



Figure 63. 100-year Flow Depth Map for Alubijid Floodplain.

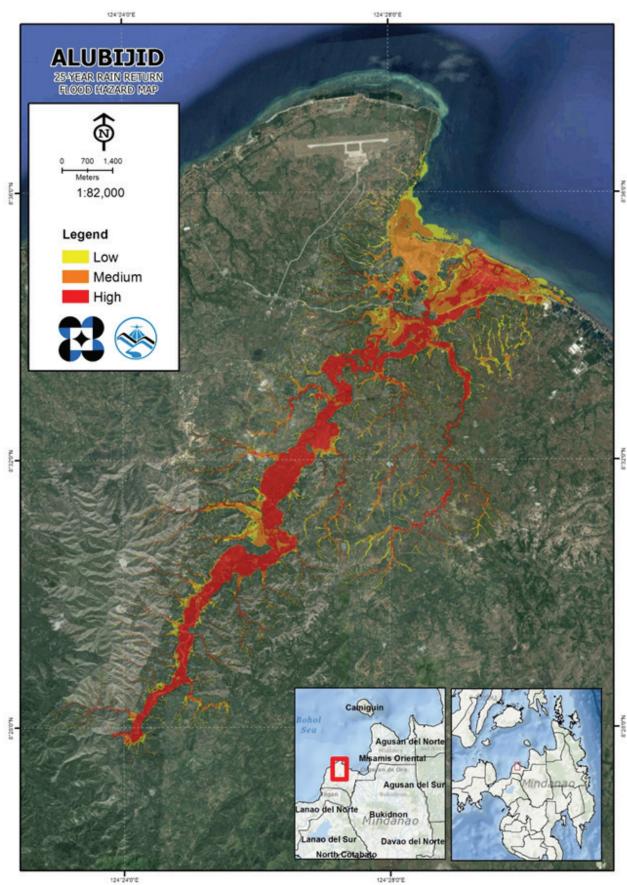



Figure 64. 25-year Flood Hazard Map for Alubijid Floodplain.

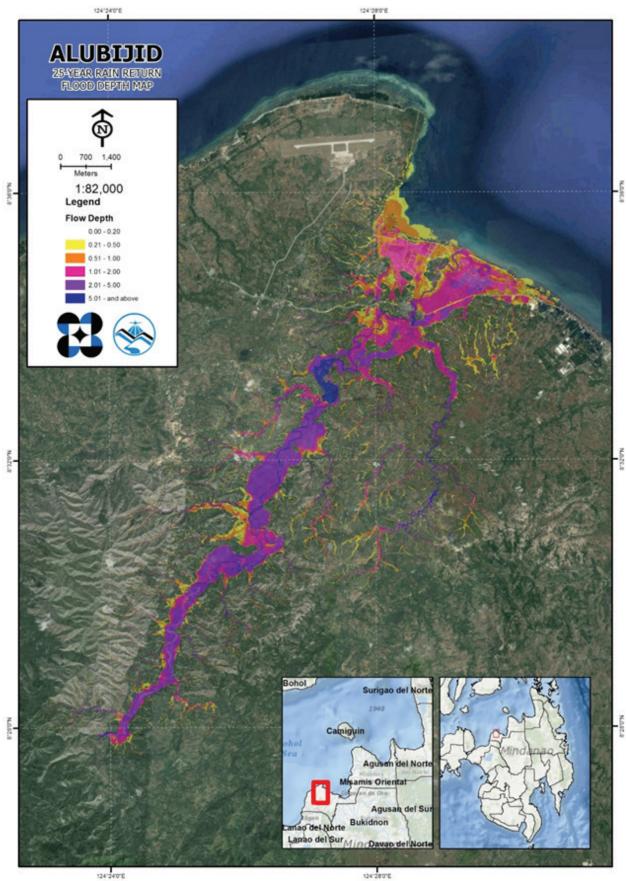



Figure 65. 25-year Flow Depth Map for Alubijid Floodplain.

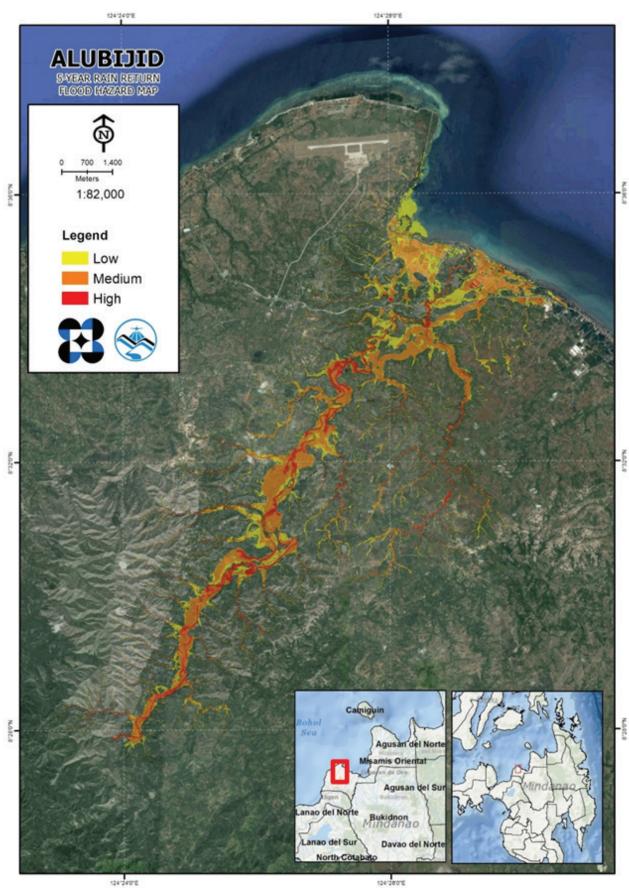



Figure 66. 5-year Flood Hazard Map for Alubijid Floodplain.

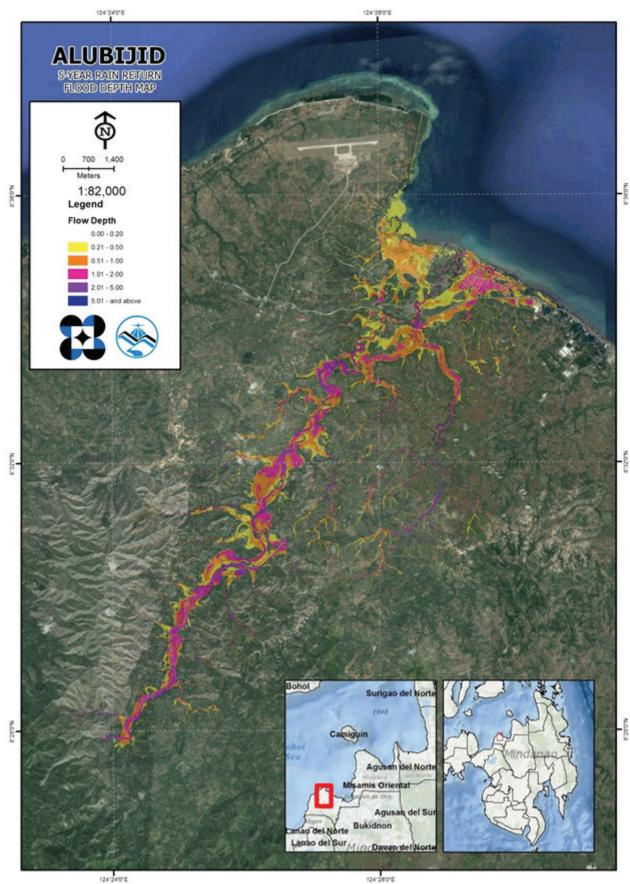



Figure 67.5-year Flood Depth Map for Alubijid Floodplain.

### 5.10 Inventory of Areas Exposed to Flooding

Affected barangays in the Alubijid river basin, grouped by municipality, are listed below. For the said basin, six (6) municipalities consisting of twenty-nine (29) barangays are expected to experience flooding when subjected to the 5-yr rainfall return period.

For the 5-year return period, 58.42% of the municipality of Alubijid, with an area of 80.1592 sq. km., will experience flood levels of less 0.20 meters. 6.11% of the area will experience flood levels of 0.21 to 0.50 meters; while 7.01%, 4.32%, 1.33%, and 0.11% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Tables 32 and 33 are the affected areas, in square kilometers, by flood depth per barangay.

| Affected Area<br>(sq. km.) by | Affected Barangays in Alubijid (in sq. km.) |            |          |         |        |         |         |        |
|-------------------------------|---------------------------------------------|------------|----------|---------|--------|---------|---------|--------|
| flood depth<br>(in m.)        | Baybay                                      | Benigwayan | Calatcat | Lagtang | Lanao  | Loguilo | Lourdes | Lumbo  |
| 0.03-0.20                     | 0.63                                        | 8.14       | 2.95     | 1.95    | 1.62   | 0.93    | 2.92    | 0.97   |
| 0.21-0.50                     | 0.32                                        | 0.99       | 0.25     | 0.15    | 0.28   | 0.5     | 0.79    | 0.038  |
| 0.51-1.00                     | 0.26                                        | 1.29       | 0.64     | 0.15    | 0.32   | 0.43    | 0.98    | 0.03   |
| 1.01-2.00                     | 0.016                                       | 1.04       | 0.27     | 0.071   | 0.056  | 0.39    | 0.61    | 0.016  |
| 2.01-5.00                     | 0.0041                                      | 0.32       | 0.031    | 0.00098 | 0.0033 | 0.022   | 0.27    | 0.0052 |
| > 5.00                        | 0                                           | 0.068      | 0.0062   | 0       | 0      | 0       | 0.0071  | 0      |

Table 32. Affected Areas in Alubijid, Misamis Oriental during 5-Year Rainfall Return Period.

Table 33. Affected Areas in Alubijid, Misamis Oriental during 5-Year Rainfall Return Period.

| Affected Area                          | Affected Barangays in Alubijid |           |            |        |        |         |          |  |
|----------------------------------------|--------------------------------|-----------|------------|--------|--------|---------|----------|--|
| (sq. km.) by<br>flood depth<br>(in m.) | Molocboloc                     | Poblacion | Sampatulog | Sungay | Talaba | Taparak | Tugasnon |  |
| 0.03-0.20                              | 1.08                           | 0.56      | 3.79       | 3.14   | 3.11   | 11.14   | 3.91     |  |
| 0.21-0.50                              | 0.3                            | 0.2       | 0.15       | 0.12   | 0.084  | 0.6     | 0.14     |  |
| 0.51-1.00                              | 0.39                           | 0.16      | 0.11       | 0.14   | 0.052  | 0.59    | 0.072    |  |
| 1.01-2.00                              | 0.016                          | 0.03      | 0.053      | 0.12   | 0.061  | 0.66    | 0.043    |  |
| 2.01-5.00                              | 0.0002                         | 0.023     | 0.034      | 0.063  | 0.017  | 0.25    | 0.021    |  |
| > 5.00                                 | 0                              | 0.0017    | 0.0011     | 0.004  | 0      | 0.0014  | 0.0005   |  |

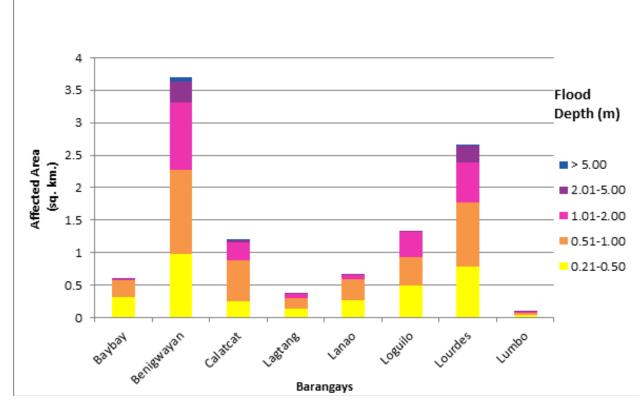



Figure 68. Affected Areas in Alubijid, Misamis Oriental during 5-Year Rainfall Return Period.

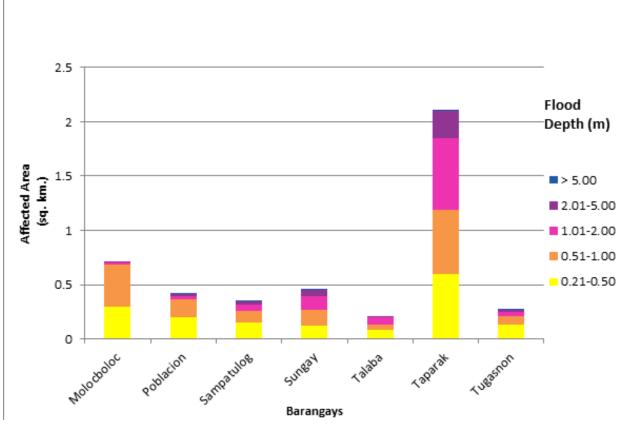
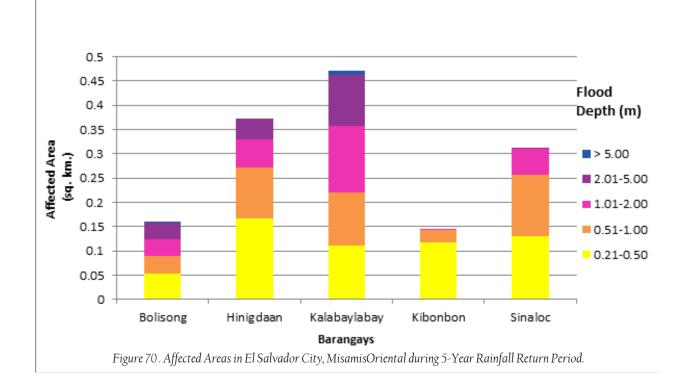




Figure 69. Affected Areas in Alubijid, Misamis Oriental during 5-Year Rainfall Return Period.

For the city of El Salvador, with an area of 141.446 sq. km., 9.09% will experience flood levels of less 0.20 meters. 0.41% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.28%, 0.20%, 0.13%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively.Listed in Table 34 are the affected areas, in square kilometers, by flood depth per barangay.

| Affected Area                          | Affected Barangays in El Salvador City |                                 |        |          |         |  |  |  |
|----------------------------------------|----------------------------------------|---------------------------------|--------|----------|---------|--|--|--|
| (sq. km.) by<br>flood depth<br>(in m.) | Bolisong                               | Bolisong Hinigdaan Kalabaylabay |        | Kibonbon | Sinaloc |  |  |  |
| 0.03-0.20                              | 2.07                                   | 4.27                            | 3.62   | 1.81     | 1.09    |  |  |  |
| 0.21-0.50                              | 0.053                                  | 0.17                            | 0.11   | 0.12     | 0.13    |  |  |  |
| 0.51-1.00                              | 0.038                                  | 0.1                             | 0.11   | 0.024    | 0.13    |  |  |  |
| 1.01-2.00                              | 0.034                                  | 0.06                            | 0.14   | 0.0032   | 0.053   |  |  |  |
| 2.01-5.00                              | 0.034                                  | 0.043                           | 0.11   | 0        | 0.00041 |  |  |  |
| > 5.00                                 | 0.0006                                 | 0                               | 0.0069 | 0        | 0       |  |  |  |

Table 34. Affected Areas in El Salvador City, MisamisOriental during 5-Year Rainfall Return Period.



For the municipality of Gitagum, with an area of 41.4755 sq. km., 14.71% will experience flood levels of less 0.20 meters. 0.43% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.26%, 0.22%, 0.12%, and 0.002% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 35 are the affected areas, in square kilometers, by flood depth per barangay.

| Affected Area                       | Affected Barangays in Gitagum |  |  |  |
|-------------------------------------|-------------------------------|--|--|--|
| (sq. km.) by flood depth<br>(in m.) | Gregorio Pelaez               |  |  |  |
| 0.03-0.20                           | 6.1                           |  |  |  |
| 0.21-0.50                           | 0.18                          |  |  |  |
| 0.51-1.00                           | 0.11                          |  |  |  |
| 1.01-2.00                           | 0.092                         |  |  |  |
| 2.01-5.00                           | 0.049                         |  |  |  |
| > 5.00                              | 0.0009                        |  |  |  |

Table 35. Affected Areas in Gitagum, Misamis Oriental during 5-Year Rainfall Return Period.

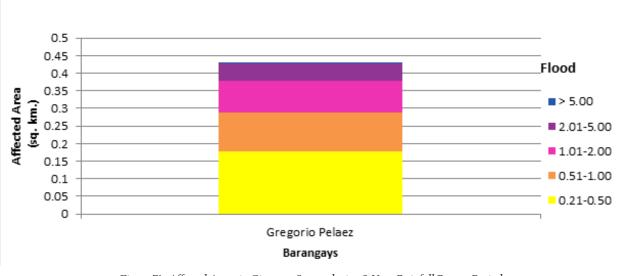



Figure 71. Affected Areas in Gitagum, Samar during 5-Year Rainfall Return Period.

For the municipality of Initao, with an area of 68.0114 sq. km., 1.38% will experience flood levels of less 0.20 meters. 0.026% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.012%, 0.007%, and 0.004% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters respectively. Listed in Table 36are the affected areas, in square kilometers, by flood depth per barangay.

| Affected Area<br>(sq. km.) by flood depth | Affected Barangays in Initao |
|-------------------------------------------|------------------------------|
| (in m.)                                   | Sinalac                      |
| 0.03-0.20                                 | 0.94                         |
| 0.21-0.50                                 | 0.018                        |
| 0.51-1.00                                 | 0.0081                       |
| 1.01-2.00                                 | 0.0045                       |
| 2.01-5.00                                 | 0.0025                       |
| > 5.00                                    | 0                            |

Table 36. Affected Areas in Initao, Misamis Oriental during 5-Year Rainfall Return Period.

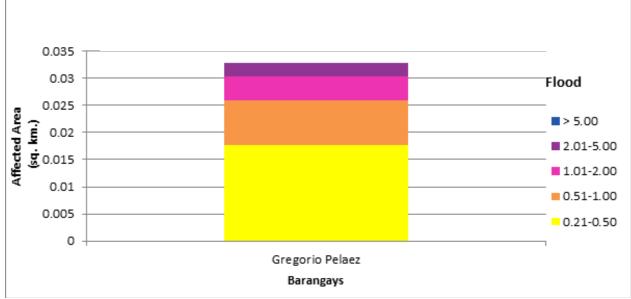



Figure 72. Affected Areas in Initao, Misamis Oriental during 5-Year Rainfall Return Period.

For the municipality of Laguindingan, with an area of 37.8738 sq. km., 20.34% will experience flood levels of less 0.20 meters. 0.82% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.43%, 0.16%, 0.09%, and 0.0005% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively.Listed in Table 37 are the affected areas, in square kilometers, by flood depth per barangay.

| Affected Area                          | Affected Barangays in Laguindingan |       |        |           |  |  |  |
|----------------------------------------|------------------------------------|-------|--------|-----------|--|--|--|
| (sq. km.) by<br>flood depth<br>(in m.) | Kibaghot                           | Lapad | Moog   | Poblacion |  |  |  |
| 0.03-0.20                              | 2.18                               | 3.47  | 0.64   | 1.41      |  |  |  |
| 0.21-0.50                              | 0.082                              | 0.16  | 0.026  | 0.038     |  |  |  |
| 0.51-1.00                              | 0.032                              | 0.11  | 0.0027 | 0.013     |  |  |  |
| 1.01-2.00                              | 0.011                              | 0.043 | 0      | 0.0076    |  |  |  |
| 2.01-5.00                              | 0.0035                             | 0.028 | 0      | 0.0043    |  |  |  |

Table 37. Affected Areas in Laguindingan, MisamisOriental during 5-Year Rainfall Return Period.

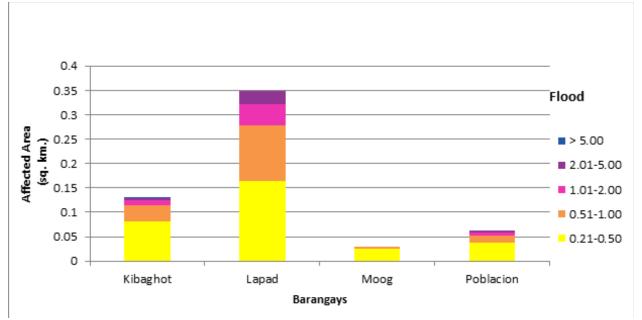



Figure 73. Affected Areas in Laguindingan, Misamis Oriental during 5-Year Rainfall Return Period.

For the municipality of Libertad, with an area of 40.5917 sq. km., 6.88% will experience flood levels of less 0.20 meters. 0.13% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.072%, 0.022%, 0.005%, and 0.001% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 38 are the affected areas, in square kilometers, by flood depth per barangay.

| Affected Area                       | Affected Barangays in Libertad |         |          |  |  |  |
|-------------------------------------|--------------------------------|---------|----------|--|--|--|
| (sq. km.) by flood<br>depth (in m.) | Kimalok                        | Tangcub | Taytayan |  |  |  |
| 0.03-0.20                           | 0.97                           | 0.86    | 0.96     |  |  |  |
| 0.21-0.50                           | 0.018                          | 0.014   | 0.019    |  |  |  |
| 0.51-1.00                           | 0.0054                         | 0.011   | 0.013    |  |  |  |
| 1.01-2.00                           | 0.001                          | 0.0047  | 0.0035   |  |  |  |
| 2.01-5.00                           | 0.0006                         | 0.00037 | 0.0009   |  |  |  |
| > 5.00                              | 0.0005                         | 0       | 0        |  |  |  |

Table 38. Affected Areas in Libertad, Misamis Oriental during 5-Year Rainfall Return Period.

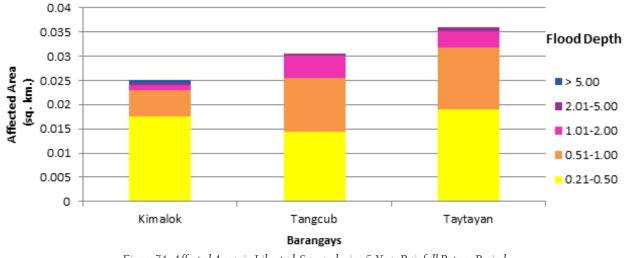



Figure 74 . Affected Areas in Libertad, Samar during 5-Year Rainfall Return Period.

For the 25-year return period, 52.09% of the municipality of Alubijid, with an area of 80.159203 sq. km., will experience flood levels of less than 0.20 meters. 3.80% of the area will experience flood levels of 0.21 to 0.50 meters; while 4.69%, 7.94%, 7.87%, and 0.91% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 39-40 are the affected areas, in square kilometers, by flood depth per barangay.

| Affected<br>Area                       | Affected Barangays in Alubijid |            |          |         |        |         |         |       |  |
|----------------------------------------|--------------------------------|------------|----------|---------|--------|---------|---------|-------|--|
| (sq. km.) by<br>flood depth<br>(in m.) | Baybay                         | Benigwayan | Calatcat | Lagtang | Lanao  | Loguilo | Lourdes | Lumbo |  |
| 0.03-0.20                              | 0.27                           | 7.06       | 2.75     | 1.74    | 1.35   | 0.096   | 2.24    | 0.93  |  |
| 0.21-0.50                              | 0.2                            | 0.43       | 0.12     | 0.16    | 0.16   | 0.19    | 0.33    | 0.046 |  |
| 0.51-1.00                              | 0.4                            | 0.61       | 0.17     | 0.13    | 0.3    | 0.38    | 0.38    | 0.03  |  |
| 1.01-2.00                              | 0.34                           | 1.17       | 0.8      | 0.23    | 0.43   | 1.17    | 0.68    | 0.035 |  |
| 2.01-5.00                              | 0.019                          | 2.04       | 0.3      | 0.057   | 0.025  | 0.43    | 1.87    | 0.016 |  |
| > 5.00                                 | 0                              | 0.55       | 0.024    | 0       | 0.0002 | 0       | 0.091   | 0     |  |

Table 39. Affected Areas in Alubijid, Misamis Oriental during 25-Year Rainfall Return Period.

Table 40. Affected Areas in Alubijid, Misamis Oriental during 25-Year Rainfall Return Period.

| Affected<br>Area                       | Affected Barangays in Alubijid |           |            |        |        |         |          |  |  |  |
|----------------------------------------|--------------------------------|-----------|------------|--------|--------|---------|----------|--|--|--|
| (sq. km.) by<br>flood depth<br>(in m.) | Molocboloc                     | Poblacion | Sampatulog | Sungay | Talaba | Taparak | Tugasnon |  |  |  |
| 0.03-0.20                              | 0.93                           | 0.31      | 3.67       | 2.99   | 3.03   | 10.6    | 3.79     |  |  |  |
| 0.21-0.50                              | 0.17                           | 0.094     | 0.17       | 0.13   | 0.11   | 0.58    | 0.17     |  |  |  |
| 0.51-1.00                              | 0.34                           | 0.23      | 0.13       | 0.094  | 0.068  | 0.41    | 0.11     |  |  |  |
| 1.01-2.00                              | 0.34                           | 0.24      | 0.094      | 0.16   | 0.053  | 0.55    | 0.07     |  |  |  |
| 2.01-5.00                              | 0.0016                         | 0.1       | 0.064      | 0.2    | 0.068  | 1.09    | 0.041    |  |  |  |
| > 5.00                                 | 0                              | 0.0066    | 0.014      | 0.021  | 0      | 0.021   | 0.0026   |  |  |  |

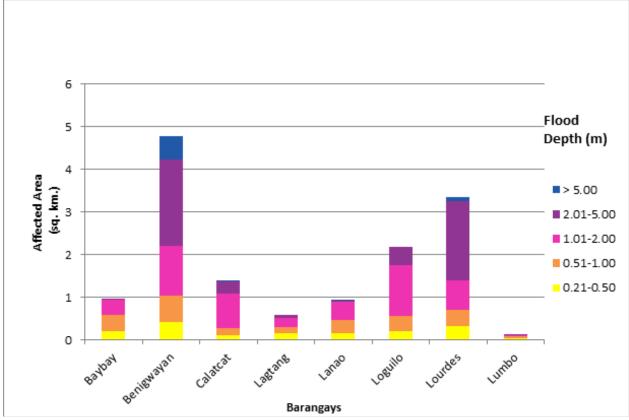
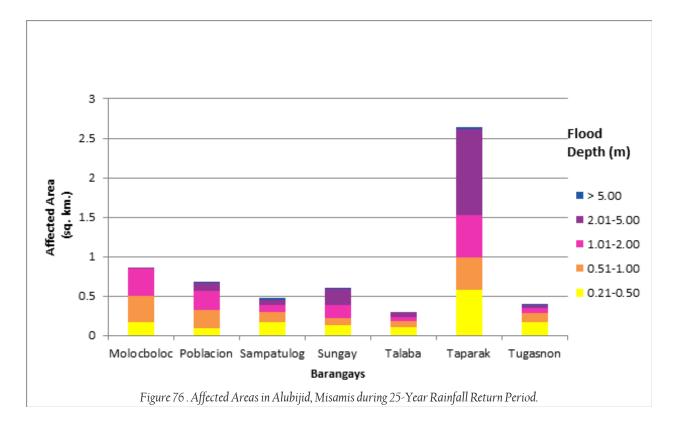




Figure 75 . Affected Areas in Alubijid, Misamis during 25-Year Rainfall Return Period.



For the 25-year return period, 8.49% of the city of El Salvador, with an area of 141.446 sq. km., will experience flood levels of less than 0.20 meters. 0.62% of the area will experience flood levels of 0.21 to 0.50 meters ;while 0.37%, 0.31%, 0.24%, and 0.09% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed inTable 41are the affected areas, in square kilometers, by flood depth per barangay.

| , , , , , , , , , , , , , , , , , , ,                |                                        |           |              |          |         |  |  |  |
|------------------------------------------------------|----------------------------------------|-----------|--------------|----------|---------|--|--|--|
| Affected Area<br>(sq. km.) by flood<br>depth (in m.) | Affected Barangays in El Salvador City |           |              |          |         |  |  |  |
|                                                      | Bolisong                               | Hinigdaan | Kalabaylabay | Kibonbon | Sinaloc |  |  |  |
| 0.03-0.20                                            | 2.01                                   | 4.12      | 3.46         | 1.63     | 0.79    |  |  |  |
| 0.21-0.50                                            | 0.064                                  | 0.21      | 0.12         | 0.25     | 0.23    |  |  |  |
| 0.51-1.00                                            | 0.049                                  | 0.12      | 0.081        | 0.06     | 0.22    |  |  |  |
| 1.01-2.00                                            | 0.042                                  | 0.1       | 0.12         | 0.0098   | 0.16    |  |  |  |
| 2.01-5.00                                            | 0.054                                  | 0.074     | 0.21         | 0.00092  | 0.0016  |  |  |  |
| > 5.00                                               | 0.011                                  | 0.02      | 0.096        | 0        | 0       |  |  |  |

Table 41. Affected Areas in El Salvador City, Misamis Oriental during 25-Year Rainfall Return Period.

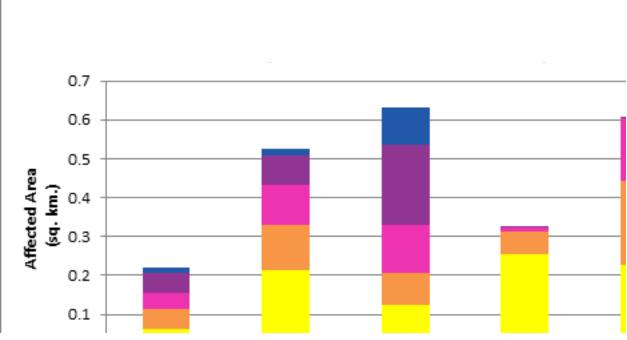



Figure 77 . Affected Areas in El Salvador City, Misamis Oriental during 25-Year Rainfall Return Period.

For the 25-year return period, 14.26% of the municipality of Gitagum, with an area of 41.475498 sq. km., will experience flood levels of less than 0.20 meters. 0.59% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.39%, 0.27%, 0.23%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 42 are the affected areas, in square kilometers, by flood depth per barangay.

| Affected Area                       | Affected Barangays in Gitagum |
|-------------------------------------|-------------------------------|
| (sq. km.) by flood<br>depth (in m.) | Gregorio Pelaez               |
| 0.03-0.20                           | 5.91                          |
| 0.21-0.50                           | 0.25                          |
| 0.51-1.00                           | 0.16                          |
| 1.01-2.00                           | 0.11                          |
| 2.01-5.00                           | 0.095                         |
| > 5.00                              | 0.0039                        |

Table 42. Affected Areas in Gitagum, Misamis Oriental during 25-Year Rainfall Return Period.

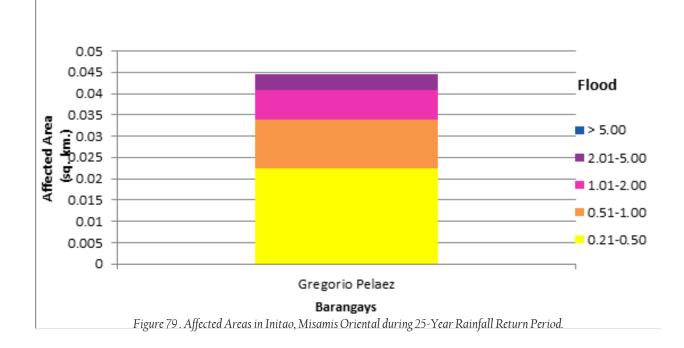




Figure 78. Affected Areas in Gitagum, Misamis Oriental during 25-Year Rainfall Return Period.

For the 25-year return period, 1.37% of the municipality of Initao, with an area of 68.011398 sq. km., will experience flood levels of less than 0.20 meters. 0.03% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.02%, 0.01%, 0.01%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 43 are the affected areas, in square kilometers, by flood depth per barangay.

| Affected Area                       | Affected Barangays in Initao |
|-------------------------------------|------------------------------|
| (sq. km.) by flood<br>depth (in m.) | Sinalac                      |
| 0.03-0.20                           | 0.93                         |
| 0.21-0.50                           | 0.023                        |
| 0.51-1.00                           | 0.011                        |
| 1.01-2.00                           | 0.0068                       |
| 2.01-5.00                           | 0.0039                       |
| > 5.00                              | 0                            |

Table 43. Affected Areas in Initao, Misamis Oriental during 25-Year Rainfall Return Period.



For the 25-year return period, 16.78% of the municipality of Laguindingan, with an area of 37.873798 sq. km., will experience flood levels of less than 0.20 meters. 1.19% of the area will experience flood levels of 0.21 to 0.50 meters; while 1.15%, 0.98%, 0.41%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 44are the affected areas, in square kilometers, by flood depth per barangay.

|                                     | 0 0                                | , ,    | 0 5    |           |  |  |
|-------------------------------------|------------------------------------|--------|--------|-----------|--|--|
| Affected Area                       | Affected Barangays in Laguindingan |        |        |           |  |  |
| (sq. km.) by flood<br>depth (in m.) | Kibaghot                           | Lapad  | Moog   | Poblacion |  |  |
| 0.03-0.20                           | 2.1                                | 3.34   | 0.61   | 0.31      |  |  |
| 0.21-0.50                           | 0.13                               | 0.16   | 0.06   | 0.094     |  |  |
| 0.51-1.00                           | 0.048                              | 0.15   | 0.0068 | 0.23      |  |  |
| 1.01-2.00                           | 0.023                              | 0.11   | 0      | 0.24      |  |  |
| 2.01-5.00                           | 0.0077                             | 0.048  | 0      | 0.1       |  |  |
| > 5.00                              | 0.0004                             | 0.0016 | 0      | 0.0066    |  |  |

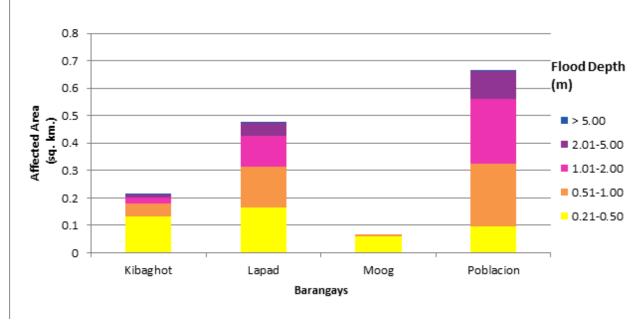
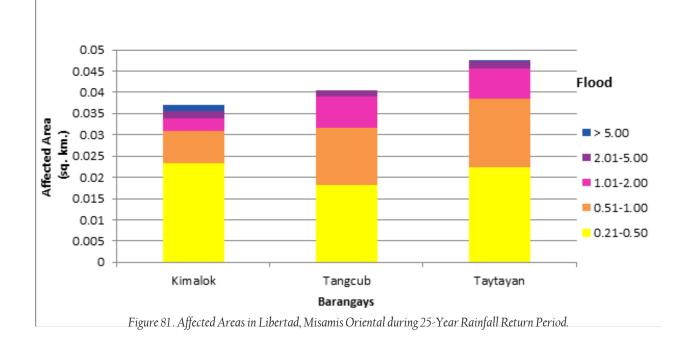




Figure 80. Affected Areas in Laguindingan, Misamis Oriental during 25-Year Rainfall Return Period.

For the 25-year return period, 6.80% of the municipality of Libertad, with an area of 40.591702 sq. km., will experience flood levels of less than 0.20 meters. 0.16% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.09%, 0.04%, 0.01%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed inTable 45 are the affected areas, in square kilometers, by flood depth per barangay.

|                                     | e ,                            |         |          |  |  |
|-------------------------------------|--------------------------------|---------|----------|--|--|
| Affected Area                       | Affected Barangays in Libertad |         |          |  |  |
| (sq. km.) by flood<br>depth (in m.) | Kimalok                        | Tangcub | Taytayan |  |  |
| 0.03-0.20                           | 0.96                           | 0.85    | 0.95     |  |  |
| 0.21-0.50                           | 0.023                          | 0.018   | 0.022    |  |  |
| 0.51-1.00                           | 0.0075                         | 0.014   | 0.016    |  |  |
| 1.01-2.00                           | 0.003                          | 0.0075  | 0.007    |  |  |
| 2.01-5.00                           | 0.0018                         | 0.0014  | 0.0017   |  |  |
| > 5.00                              | 0.0015                         | 0       | 0.000099 |  |  |

Table 45. Affected Areas in Libertad, Misamis Oriental during 25-Year Rainfall Return Period.



For the 100-year return period, 50.79% of the municipality of Alubijid, with an area of 80.159203 sq. km., will experience flood levels of less than 0.20 meters. 3.61% of the area will experience flood levels of 0.21 to 0.50 meters; while 4.31%, 7.64%, 9.58%, and 1.38% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 46-47are the affected areas, in square kilometers, by flood depth per barangay.

| Affected<br>Area                       | Affected Barangays in Alubijid |            |          |         |        |         |         |          |
|----------------------------------------|--------------------------------|------------|----------|---------|--------|---------|---------|----------|
| (sq. km.) by<br>flood depth<br>(in m.) | Baybay                         | Benigwayan | Calatcat | Lagtang | Lanao  | Loguilo | Lourdes | Lumbo    |
| 0.03-0.20                              | 0.16                           | 6.88       | 2.71     | 1.69    | 1.31   | 0.04    | 2.12    | 0.92     |
| 0.21-0.50                              | 0.18                           | 0.35       | 0.11     | 0.18    | 0.13   | 0.15    | 0.29    | 0.05     |
| 0.51-1.00                              | 0.37                           | 0.5        | 0.14     | 0.13    | 0.26   | 0.37    | 0.36    | 0.031    |
| 1.01-2.00                              | 0.5                            | 1.04       | 0.53     | 0.24    | 0.53   | 1.17    | 0.47    | 0.037    |
| 2.01-5.00                              | 0.021                          | 2.32       | 0.64     | 0.074   | 0.049  | 0.53    | 2.14    | 0.023    |
| > 5.00                                 | 0                              | 0.75       | 0.033    | 0       | 0.0002 | 0.00015 | 0.2     | 0.000099 |

Table 46. Affected Areas in Alubijid, Misamis Oriental during 100-Year Rainfall Return Period.

Hazard Mapping of the Philippines Using LiDAR (Phil-LIDAR 1)

| Affected Area                          | Affected Barangays in Alubijid |           |            |        |        |         |          |
|----------------------------------------|--------------------------------|-----------|------------|--------|--------|---------|----------|
| (sq. km.) by<br>flood depth<br>(in m.) | Molocboloc                     | Poblacion | Sampatulog | Sungay | Talaba | Taparak | Tugasnon |
| 0.03-0.20                              | 0.88                           | 0.27      | 3.62       | 2.94   | 2.99   | 10.45   | 3.75     |
| 0.21-0.50                              | 0.16                           | 0.081     | 0.18       | 0.14   | 0.12   | 0.58    | 0.19     |
| 0.51-1.00                              | 0.24                           | 0.22      | 0.13       | 0.084  | 0.073  | 0.42    | 0.12     |
| 1.01-2.00                              | 0.49                           | 0.29      | 0.11       | 0.12   | 0.059  | 0.46    | 0.079    |
| 2.01-5.00                              | 0.002                          | 0.11      | 0.076      | 0.27   | 0.082  | 1.27    | 0.053    |
| > 5.00                                 | 0                              | 0.0074    | 0.022      | 0.029  | 0.0003 | 0.067   | 0.0034   |

Table 47. Affected Areas in Alubijid, Misamis Oriental during 100-Year Rainfall Return Period.

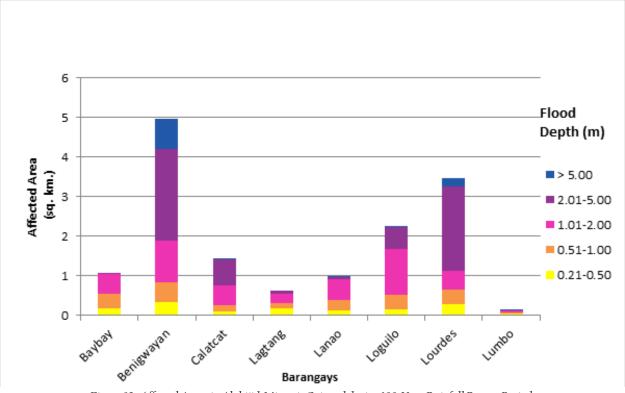
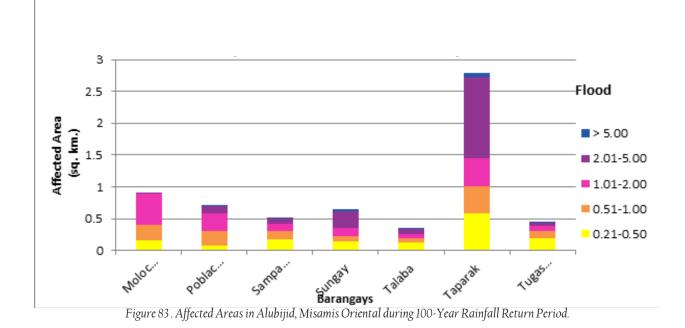
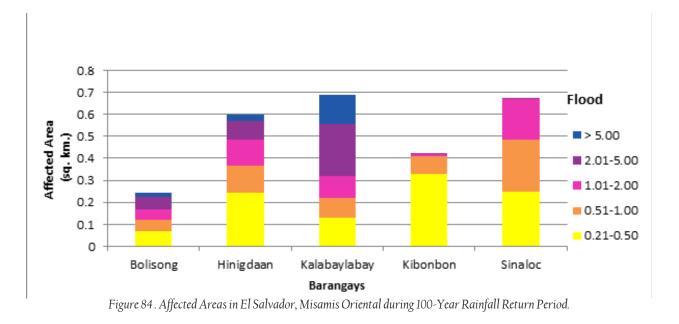



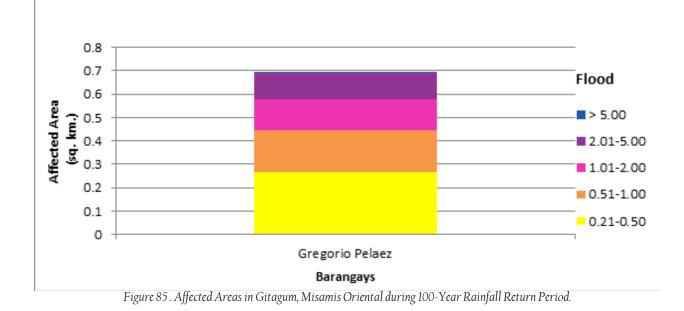

Figure 82 . Affected Areas in Alubijid, Misamis Oriental during 100-Year Rainfall Return Period.




For the 100-year return period, 8.27% of the city of El Salvador, with an area of 141.446 sq. km. will experience flood levels of less than 0.20 meters. 0.72% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.41%, 0.33%, 0.27%, and 0.13% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 48 are the affected areas, in square kilometers, by flood depth per barangay.

| Affected Area                          |          |           |              |          |         |
|----------------------------------------|----------|-----------|--------------|----------|---------|
| (sq. km.) by<br>flood depth (in<br>m.) | Bolisong | Hinigdaan | Kalabaylabay | Kibonbon | Sinaloc |
| 0.03-0.20                              | 1.99     | 4.04      | 3.4          | 1.54     | 0.72    |
| 0.21-0.50                              | 0.067    | 0.24      | 0.13         | 0.33     | 0.25    |
| 0.51-1.00                              | 0.052    | 0.12      | 0.089        | 0.08     | 0.23    |
| 1.01-2.00                              | 0.048    | 0.12      | 0.099        | 0.012    | 0.19    |
| 2.01-5.00                              | 0.058    | 0.085     | 0.24         | 0.0013   | 0.003   |
| > 5.00                                 | 0.018    | 0.031     | 0.13         | 0        | 0       |

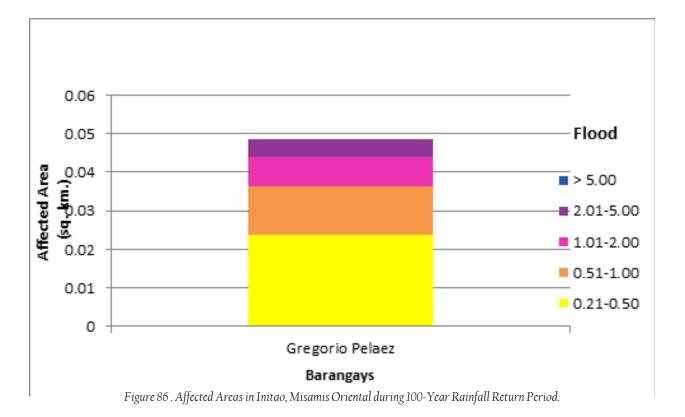
Table 48. Affected Areas in El Salvador, Misamis Oriental during 100-Year Rainfall Return Period.






For the 100-year return period, 14.07% of the municipality of Gitagum, with an area of 41.475498 sq. km., will experience flood levels of less than 0.20 meters. 0.65% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.42%, 0.32%, 0.27%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 49are the affected areas, in square kilometers, by flood depth per barangay.

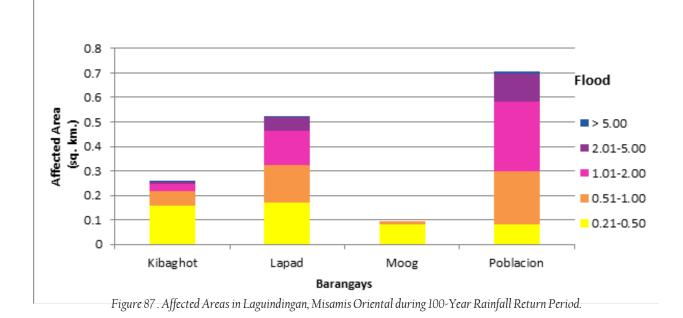
| Table 49. Affected Areas in | Gitabum.Misamis Oriental | during 100-Year Ro | ainfall Return Period. |
|-----------------------------|--------------------------|--------------------|------------------------|
|                             |                          |                    |                        |


| Affected Area                       | Affected Barangays in Gitagum |  |  |
|-------------------------------------|-------------------------------|--|--|
| (sq. km.) by flood<br>depth (in m.) | Gregorio Pelaez               |  |  |
| 0.03-0.20                           | 5.84                          |  |  |
| 0.21-0.50                           | 0.27                          |  |  |
| 0.51-1.00                           | 0.18                          |  |  |
| 1.01-2.00                           | 0.13                          |  |  |
| 2.01-5.00                           | 0.11                          |  |  |
| > 5.00                              | 0.0054                        |  |  |



For the 100-year return period, 1.36% of the municipality of Initao, with an area of 68.011398 sq. km., will experience flood levels of less than 0.20 meters. 0.04% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.02%, 0.01%, 0.01%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 50 are the affected areas, in square kilometers, by flood depth per barangay.

| Affected Area<br>(sq. km.) by flood | Affected Barangays in Initao |
|-------------------------------------|------------------------------|
| depth (in m.)                       | Sinalac                      |
| 0.03-0.20                           | 0.93                         |
| 0.21-0.50                           | 0.024                        |
| 0.51-1.00                           | 0.013                        |
| 1.01-2.00                           | 0.0075                       |
| 2.01-5.00                           | 0.0046                       |
| > 5.00                              | 0                            |


Table 50. Affected Areas in Initao, Misamis Oriental during 100-Year Rainfall Return Period.



For the 100-year return period, 16.37% of the municipality of Laguindingan, with an area of 37.873798 sq. km., will experience flood levels of less than 0.20 meters. 1.30% of the area will experience flood levels of 0.21 to 0.50 meters; while 1.16%, 1.20%, 0.47%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 51 are the affected areas, in square kilometers, by flood depth per barangay.

| Affected Area                       | Affected Barangays in Laguindingan |        |       |           |  |  |
|-------------------------------------|------------------------------------|--------|-------|-----------|--|--|
| (sq. km.) by flood<br>depth (in m.) | Kibaghot                           | Lapad  | Moog  | Poblacion |  |  |
| 0.03-0.20                           | 2.05                               | 3.29   | 0.58  | 0.27      |  |  |
| 0.21-0.50                           | 0.16                               | 0.17   | 0.084 | 0.081     |  |  |
| 0.51-1.00                           | 0.057                              | 0.16   | 0.01  | 0.22      |  |  |
| 1.01-2.00                           | 0.029                              | 0.14   | 0     | 0.29      |  |  |
| 2.01-5.00                           | 0.0093                             | 0.056  | 0     | 0.11      |  |  |
| > 5.00                              | 0.0007                             | 0.0024 | 0     | 0.0074    |  |  |

Table 51. Affected Areas in Laguindingan, Misamis Oriental during 100-Year Rainfall Return Period.



For the 100-year return period, 6.77% of the municipality of Libertad, with an area of 40.591702 sq. km. will experience flood levels of less than 0.20 meters. 0.17% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.10%, 0.06%, 0.02%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 52 are the affected areas, in square kilometers, by flood depth per barangay.

| Affected Area                       | Affected Barangays in Libertad |        |          |  |  |  |  |
|-------------------------------------|--------------------------------|--------|----------|--|--|--|--|
| (sq. km.) by flood<br>depth (in m.) | Kimalok Tangcub                |        | Taytayan |  |  |  |  |
| 0.03-0.20                           | 0.95                           | 0.84   | 0.95     |  |  |  |  |
| 0.21-0.50                           | 0.024                          | 0.021  | 0.025    |  |  |  |  |
| 0.51-1.00                           | 0.0092                         | 0.013  | 0.016    |  |  |  |  |
| 1.01-2.00                           | 0.0041                         | 0.0087 | 0.0098   |  |  |  |  |
| 2.01-5.00                           | 0.0018                         | 0.0024 | 0.0019   |  |  |  |  |
| > 5.00                              | 0.0018                         | 0      | 0.000099 |  |  |  |  |

Table 52. Affected Areas in Libertad, Misamis Oriental during 100-Year Rainfall Return Period.

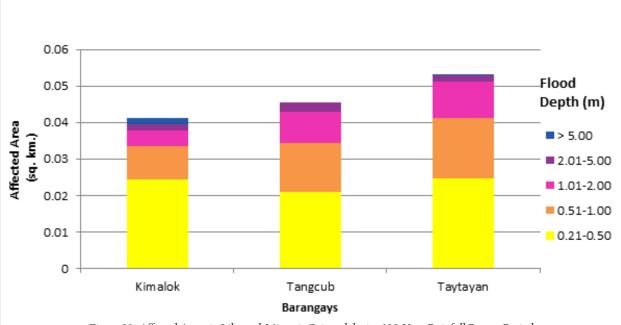



Figure 88 . Affected Areas in Libertad, Misamis Oriental during 100-Year Rainfall Return Period.

Among the barangays in the municipality of Alubijid, Taparak is projected to have the highest percentage of area that will experience flood levels at 16.52%. Meanwhile, Benigwayan posted the second highest percentage of area that may be affected by flood depths at 14.77%.

Among the barangays in the city of El Salvador, Hinigdaan is projected to have the highest percentage of area that will experience flood levels at 3.28%. Meanwhile, Kalabaylabay posted the second highest percentage of area that may be affected by flood depths at 2.89%.

For the municipality of Gitagum, only Gregorio Pelaez is projected to experience flood levels at a percentage of 15. 74%.

For the municipality of Initao, only Sinalac is projected to experience flood levels at a percentage of 1.43%. Among the barangays in the municipality of Laguindingan, Lapad is projected to have the highest percentage of area that will experience flood levels of at 10.08%. Meanwhile, Kibaghot posted the percentage of area that may be affected by flood depths of at 6.09%.

Among the barangays in the municipality of Libertad, Taytayan is projected to have the highest percentage of area that will experience flood levels at 2.47%. Meanwhile, Kimalok posted the second highest percentage of area that may be affected by flood depths of at 2.45%.

The generated flood hazard maps for the Alubijid Floodplain were also used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps – "Low", "Medium", and "High" – the affected institutions were given individual assessments for each Flood Hazard Scenario (5-yr., 25-yr., and 100-yr.). See Annex 12 and 13 for Educational Institutions and Health Institutions affected by flooding in the Alubijid floodplain.

| Warning Level | Area Covered in sq. km. |         |          |  |  |  |  |
|---------------|-------------------------|---------|----------|--|--|--|--|
|               | 5 year                  | 25 year | 100 year |  |  |  |  |
| Low           | 6.39                    | 5.18    | 5.37     |  |  |  |  |
| Medium        | 9.23                    | 9.02    | 8.66     |  |  |  |  |
| High          | 2.73                    | 11.09   | 13.15    |  |  |  |  |
| Total         | 18.35                   | 25.29   | 27.18    |  |  |  |  |

Table 53. Area covered by each warning level with respect to the rainfall scenario.

Of the twenty-eight (28) identified Education Institutes in the Alubijid Floodplain, four (4) schools were assessed to be exposed to Low level flooding during a 5-year scenario, while one(1) school was assessed to be exposed to Medium level flooding in the same scenario. In the 25-year scenario, three (3) schools were assessed to be exposed to Low level flooding, while four(4) schools were assessed to be exposed to Medium level flooding. In the same scenario, one (1) school is exposed to High level flooding. For the 100-year scenario, four (4) schools were assessed to be exposed to be exposed to be exposed to Low level flooding. In the same scenario, one (1) school was assessed to be exposed to High level flooding. In the same scenario, one (1) school was assessed to be exposed to High level flooding. The school exposed to high level flooding is located in Barangay Lourdes, Alubijid.

Five (5) Medical Institutions were identified in the AlubijidFloodplain.Only one (1) was assessed to be exposed to Low level flooding in the 5-year scenario and is exposed to Medium level flooding in the 25-and 100-year scenarios in Barangay Lourdes, Alubijid.

#### 5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data onflood occurrence in the area within the major river systems in the Philippines.

From the flood depth maps produced by the Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and will gather data on the actual flood level in each location. Data gathering was done through the assistance of local DRRM offices in obtaining maps or situation reports about the past flooding events, or through the conduct of interviews with some residents with knowledge or experience of flooding in the particular area.

The actual data from the field was compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on the results of the flood map. The flood validation consists of 202 points randomly selected all over the Alubijid floodplain. It has an RMSE value of 1.33. The validation points are found in Annex 11.

The validation data were obtained on November 15-25,2016

Hazard Mapping of the Philippines Using LiDAR (Phil-LIDAR 1)

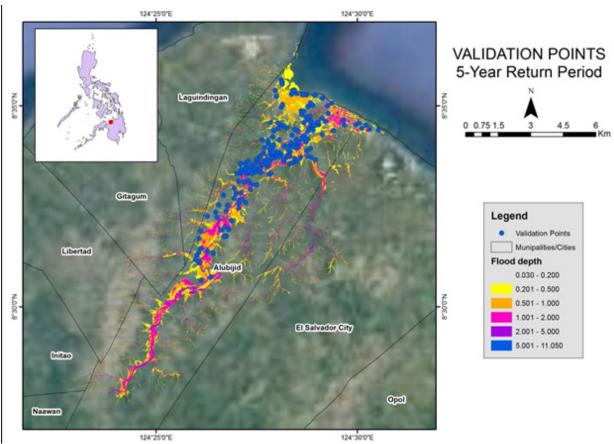



Figure 89 . Alubijid Flood Validation Points.

| Actual Flood<br>Depth (m) |        | Modeled Flood Depth (m) |           |           |           |        |       |  |  |
|---------------------------|--------|-------------------------|-----------|-----------|-----------|--------|-------|--|--|
|                           | 0-0.20 | 0.21-0.50               | 0.51-1.00 | 1.01-2.00 | 2.01-5.00 | > 5.00 | Total |  |  |
| 0-0.20                    | 57     | 15                      | 15        | 15        | 3         | 0      | 105   |  |  |
| 0.21-0.50                 | 7      | 4                       | 1         | 0         | 0         | 0      | 12    |  |  |
| 0.51-1.00                 | 19     | 4                       | 2         | 1         | 0         | 0      | 26    |  |  |
| 1.01-2.00                 | 8      | 7                       | 6         | 6         | 2         | 0      | 29    |  |  |
| 2.01-5.00                 | 2      | 3                       | 5         | 4         | 9         | 0      | 23    |  |  |
| > 5.00                    | 1      | 0                       | 2         | 2         | 2         | 0      | 7     |  |  |
| Total                     | 94     | 33                      | 31        | 28        | 16        | 0      | 202   |  |  |

Table 54 . Actual Flood Depth vs Simulated Flood Depth in Alubijid.

The overall accuracy generated by the flood model is estimated at 38.61%, with 78 points correctly matching the actual flood depths. In addition, there were 42 points estimated one level above and below the correct flood depths, while there were 48 points and 34 points estimated two (2) levels above and below, and three (3) or more levels above and below the correct flood. A total of 52 points were overestimated, while a total of 72 points were underestimated in the modeled flood depths of Alubijid.

|                | No. of<br>Points | %      |
|----------------|------------------|--------|
| Correct        | 78               | 38.61  |
| Overestimated  | 52               | 25.74  |
| Underestimated | 72               | 35.64  |
| Total          | 202              | 100.00 |

| Table 55. | Summary o | f Accuracy | Assessment in | ı Alubijid. |
|-----------|-----------|------------|---------------|-------------|
|           |           |            |               |             |

### REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

# ANNEXES

# Annex 1.Technical Specifications of the LiDAR Sensors used in the Alubijid Floodplain Survey

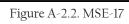
Table A-1.1. Technical specifications of the Pegasus sensor

#### 1. PEGASUS SENSOR

| Parameter                              | Specification                                                         |
|----------------------------------------|-----------------------------------------------------------------------|
| Operational envelope (1,2,3,4)         | 150-5000 m AGL, nominal                                               |
| Laser wavelength                       | 1064 nm                                                               |
| Horizontal accuracy (2)                | 1/5,500 x altitude, 1σ                                                |
| Elevation accuracy (2)                 | < 5-20 cm, 1σ                                                         |
| Effective laser repetition rate        | Programmable, 100-500 kHz                                             |
| Position and orientation system        | POS AV ™AP50 (OEM)                                                    |
| Scan width (FOV)                       | Programmable, 0-75 °                                                  |
| Scan frequency (5)                     | Programmable, 0-140 Hz (effective)                                    |
| Sensor scan product                    | 800 maximum                                                           |
| Beam divergence                        | 0.25 mrad (1/e)                                                       |
| Roll compensation                      | Programmable, ±37° (FOV dependent)                                    |
| Vertical target separation<br>distance | <0.7 m                                                                |
| Range capture                          | Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns |
| Intensity capture                      | Up to 4 intensity returns for each pulse, including last (12 bit)     |
| Image capture                          | 5 MP interline camera (standard); 60 MP full frame (optional)         |
| Full waveform capture                  | 12-bit Optech IWD-2 Intelligent Waveform Digitizer                    |
| Data storage                           | Removable solid state disk SSD (SATA II)                              |
| Power requirements                     | 28 V, 800 W, 30 A                                                     |
| Dimensions and weight                  | Sensor: 630 x 540 x 450 mm; 65 kg;                                    |
|                                        | Control rack: 650 x 590 x 490 mm; 46 kg                               |
| Operating Temperature                  | -10°C to +35°C                                                        |
| Relative humidity                      | 0-95% non-condensing                                                  |

1 Target reflectivity ≥20% 2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility 3 Angle of incidence ≤20° 4 Target

### Annex 2. NAMRIA Certification of Reference Points used in the LiDAR Survey


#### 1. MSE-16

|                                                     | I . HE                                                                                                                             |                                                                                    |                                                                                                                                              |                                                   |                                       |                                                     |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|-----------------------------------------------------|
|                                                     |                                                                                                                                    |                                                                                    |                                                                                                                                              |                                                   |                                       | July 25, 2014                                       |
|                                                     |                                                                                                                                    | CER                                                                                | TIFICATION                                                                                                                                   |                                                   |                                       |                                                     |
|                                                     | may concern:<br>o certify that according                                                                                           | to the records on f                                                                | ile in this office, the requ                                                                                                                 | ested survey                                      | inform                                | ation is as follows -                               |
|                                                     | o control of the control ing                                                                                                       |                                                                                    |                                                                                                                                              |                                                   |                                       |                                                     |
|                                                     |                                                                                                                                    |                                                                                    | AMIS ORIENTAL                                                                                                                                |                                                   |                                       |                                                     |
|                                                     |                                                                                                                                    | Order                                                                              |                                                                                                                                              |                                                   |                                       |                                                     |
|                                                     | lindanao<br>lity: LIBERTAD                                                                                                         |                                                                                    |                                                                                                                                              | Barangay<br>MSL Elev                              |                                       | LACION                                              |
| maniapa                                             | INF. EIDERTAD                                                                                                                      | PRS                                                                                | 92 Coordinates                                                                                                                               | NOL LICA                                          | auon.                                 |                                                     |
| Latitude:                                           | 8° 33' 51.69220"                                                                                                                   | Longitude:                                                                         | 124° 21' 5.34868"                                                                                                                            | Ellipsoida                                        | I Hgt:                                | 1.34700 m.                                          |
|                                                     |                                                                                                                                    | WGS                                                                                | 84 Coordinates                                                                                                                               |                                                   |                                       |                                                     |
| Latitude:                                           | 8° 33' 48.06049"                                                                                                                   | Longitude:                                                                         | 124° 21' 10.74852"                                                                                                                           | Ellipsoida                                        | I Hgt:                                | 68.04400 m.                                         |
|                                                     |                                                                                                                                    | PTM / PI                                                                           | RS92 Coordinates                                                                                                                             |                                                   |                                       |                                                     |
| Northing:                                           | 947021.389 m.                                                                                                                      | Easting:                                                                           | 428608.692 m.                                                                                                                                | Zone:                                             | 5                                     |                                                     |
|                                                     |                                                                                                                                    | UTM / PI                                                                           | RS92 Coordinates                                                                                                                             |                                                   |                                       |                                                     |
| Northing:                                           | 946,891.04                                                                                                                         | Easting:                                                                           | 648,735.65                                                                                                                                   | Zone:                                             | 51                                    |                                                     |
| bout 200m<br>ocated on t<br>bout 50m h<br>copper na | towards the municipal<br>he S corner of a concre<br>N of the main gate. The<br>il, top-centered on a 30<br>ith inscriptions, MSE-1 | town hall. E of the<br>te pavement used<br>istation is leveled<br>cm x 30cm x 60cm | Municipality of Liberta<br>municipal hall is Liberta<br>as a volleyball court. It is<br>flush with the pavement<br>a concrete block, leveled | d National Hig<br>s about 15m S<br>surface. Stati | h Scho<br>of the<br>on mar<br>earby o | ol. Station is<br>flagpole and<br>k lis the head of |
| Requesting<br>Pupose:<br>DR Number<br>[.N.:         | Reference                                                                                                                          |                                                                                    | Director                                                                                                                                     | UEL DM. BEL<br>Mapping And                        | EN, M<br>Geod                         | NSA<br>esy Branch                                   |

Figure A-2.1. MSE-16

#### 2. MSE-17

|                                                                                                                                                        |                                                                                                                                                                                                      |                                                                                         | June 06, 2014         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------|
|                                                                                                                                                        | CERTIFICATION                                                                                                                                                                                        |                                                                                         |                       |
| To whom it may concern:                                                                                                                                |                                                                                                                                                                                                      |                                                                                         |                       |
| This is to certify that according                                                                                                                      | to the records on file in this office, the                                                                                                                                                           | e requested survey informa                                                              | ation is as follows - |
|                                                                                                                                                        | Province: MISAMIS ORIENTAL                                                                                                                                                                           |                                                                                         |                       |
|                                                                                                                                                        | Station Name: MSE-17                                                                                                                                                                                 |                                                                                         |                       |
| Island: MINDANAO                                                                                                                                       | Order: 2nd                                                                                                                                                                                           | Barangay: PANG                                                                          | TAVALANA N            |
| Municipality: GITAGUM                                                                                                                                  |                                                                                                                                                                                                      | Galangay, PANG                                                                          | SATAWAN               |
| Internet and the second                                                                                                                                | PR\$92 Coordinates                                                                                                                                                                                   |                                                                                         |                       |
| Latitude: 8º 35' 22.50573"                                                                                                                             | Longitude: 124ª 23' 6.85732                                                                                                                                                                          | Ellipsoidal Hgt                                                                         | 5.01000 m.            |
|                                                                                                                                                        | WGS84 Coordinates                                                                                                                                                                                    |                                                                                         |                       |
| Latitude: 8º 35' 18.86995"                                                                                                                             | Longitude: 124º 23' 12.2547                                                                                                                                                                          | 1" Ellipsoidal Hgt.                                                                     | 71.73900 m.           |
|                                                                                                                                                        | PTM Coordinates                                                                                                                                                                                      |                                                                                         |                       |
| Northing: 949805.1 m.                                                                                                                                  | Easting: 432328.91 m.                                                                                                                                                                                | Zone: 5                                                                                 |                       |
|                                                                                                                                                        | UTM Coordinates                                                                                                                                                                                      |                                                                                         |                       |
| Northing:                                                                                                                                              | Easting:                                                                                                                                                                                             | Zone                                                                                    |                       |
|                                                                                                                                                        | Location Description                                                                                                                                                                                 |                                                                                         |                       |
| rom the provincial road on the left (<br>rdge of a corn field, about 20m NW<br>ighway. Station mark is the head o<br>rotruding by about 20cm above the | about 40km towards the municipality<br>side (SE side), is Pangayawan Eleme<br>of the flagpole, about 30m ESE of th<br>f a 4" copper nail, top-centered on a<br>a ground, with inscriptions, MSE-17 2 | Intery School, Station is low<br>the school gate, and about 3<br>30cm x 30cm x 50cm com | cated near the        |
| Requesting Party: UP-TCAGP<br>Pupose: Reference                                                                                                        |                                                                                                                                                                                                      |                                                                                         |                       |
| R Number: 8795290 A                                                                                                                                    |                                                                                                                                                                                                      | ten                                                                                     |                       |
| N.: 2014-1288                                                                                                                                          | 13                                                                                                                                                                                                   | - RUEL DM. BELEN. M                                                                     | NSA                   |
|                                                                                                                                                        |                                                                                                                                                                                                      | ector, Mapping And Geode                                                                |                       |
|                                                                                                                                                        |                                                                                                                                                                                                      |                                                                                         | 6                     |
|                                                                                                                                                        |                                                                                                                                                                                                      |                                                                                         | 4                     |
|                                                                                                                                                        |                                                                                                                                                                                                      |                                                                                         | V                     |
|                                                                                                                                                        |                                                                                                                                                                                                      |                                                                                         | v                     |
|                                                                                                                                                        |                                                                                                                                                                                                      |                                                                                         | v                     |
|                                                                                                                                                        |                                                                                                                                                                                                      |                                                                                         | v                     |
|                                                                                                                                                        |                                                                                                                                                                                                      |                                                                                         | v                     |
|                                                                                                                                                        |                                                                                                                                                                                                      |                                                                                         |                       |



#### 3. LE-89

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY July 25, 2014 CERTIFICATION To whom it may concern: This is to certify that according to the records on file in this office, the requested survey information is as follows -Province: LANAO DEL NORTE Station Name: LE-89 Municipality: LALA Barangay: Island: Mindanao Elevation: 10.8140 m. Order: 1st Order Datum: Mean Sea Level Location Description BM LE-89 Is in the Province of Lanao del Norte, Municipality of Lala, Brgy. Panguil, along the Iligan - Zamboanga National Road. The station is located on top of a riprap, about 6 meters North West of KM post 1600 and about 8 meters West of centerline of the highway. A brass rod is set on a drilled hole and cemented flushed on top of a 15cm x 15cm cement putty with inscription "LE-89, 2007 NAMRIA". Requesting Party: UP-TCAGP / Engr. Christopher Cruz Pupose: Reference OR Number: 8799582 A T.N.: 2014-1724 RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 10 NAME & OFFICES Main: Lawlor Avenut, Part Bondtolo, 1624 Tagaig Cily, Philippines Tel. No.: (632) (110-4531 to 41 Bunch : 421 Banaca St. San Nicoles. 1010 Munile. Philippines. Tel. No. (852) 241-3454 to 38 www.namria.gov.ph CRAPHICS, PRAM ISO 9001: 2009 CERTIFIED FOR MAPPINICAND GEOSPATIAL INFORMATION WANAGEMENT

Figure A-2.23 LE-89

#### Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

Table A-3.1. Baseline Processing Repors of Control Points used in the LiDAR Survey

| Project informat     | ion     |              |          |         |         |            | Cod     | ordinate  | System       | n       |                    |                   |                       |                      |                    |
|----------------------|---------|--------------|----------|---------|---------|------------|---------|-----------|--------------|---------|--------------------|-------------------|-----------------------|----------------------|--------------------|
| Name:                |         |              |          |         |         |            | Nar     | ne:       |              |         | υтм                |                   |                       |                      |                    |
| Size:                |         |              |          |         |         |            | Dat     | um:       |              |         | WGS 1              | 984               |                       |                      |                    |
| Modified:            |         | 10/12/2      | 012 4:40 | :11 PM  | (UTC:-6 | )          | Zon     | e:        |              |         | 61 Nor             | th (1238          | E)                    |                      |                    |
| Time zone:           |         | Mounta       | in Stand | ard Tim |         |            | Geo     | oid:      |              |         | EGMP               | н                 |                       |                      |                    |
| Reference num        | ber:    |              |          |         |         |            | Ver     | tical dat | tum:         |         |                    |                   |                       |                      |                    |
| Description:         |         |              |          |         |         |            |         |           |              |         |                    |                   |                       |                      |                    |
|                      |         |              |          | Ba      | seline  | Proc       | essir   | ng Re     | port         |         |                    |                   |                       |                      |                    |
|                      |         |              |          |         | Pro     | cessing    | 3 Sumi  | marv      |              |         |                    |                   |                       |                      |                    |
| Observatio Fr        | m Te    | o Occu       | pat Occ  | up Solu |         | V.         | ΔX      | ΔY        | ΔZ           | Geode   | Ellipsoi           | Δ                 | Proces                | Proces               | Satelli            |
| n                    |         | ion S<br>Tin |          | p       |         | r) (Motor) | (Motor) | (Motor)   | (Motor)      | tic Az. | d Dist.<br>(Motor) | Height<br>(Motor) | sing<br>Start<br>Time | sing<br>Stop<br>Time | e<br>Availa<br>ble |
| LDN01 LDN            | 01 LE89 |              | 14 0     | 7/2 Fix | ed 0.00 | 3 0.015    | 1621.5  | 1696.9    | 3341.5<br>97 |         | 4083.5             | -5.499            | 6/27/2<br>014         | 6/27/2<br>014        |                    |
| (B1)                 | P M     | 1:59         | :14 4:0  | 8:4     |         |            | 90      | 38        | 57           | 00      |                    |                   | 1:59:1                | 4:08:4               | GLON               |
|                      |         |              | PM 9     | PM      |         |            |         |           |              |         |                    |                   | 4 PM                  | 9 PM                 | ASS: 8<br>Galileo  |
|                      |         |              |          |         |         |            |         |           |              |         |                    |                   |                       |                      | : 0<br>QZSS:       |
|                      |         |              |          |         |         |            |         |           |              |         |                    |                   |                       |                      | 0                  |
| LDN01 LDN<br>LE89 AM | 01 LE89 |              | 14 0     | 7/2 Fix | ed 0.00 | 3 0.012    | 1621.6  | 1696.8    | 3341.6<br>11 |         | 4083.5<br>09       | -5.471            | 6/27/2<br>014         | 6/27/2<br>014        |                    |
| (82)                 |         | 8:08         | 24 12:   | 39:     |         |            | 27      | 94        |              |         | 05                 |                   | 8:08:3                | 12:39:               | GLON               |
|                      |         |              | AM 54    | M       |         |            |         |           |              |         |                    |                   | 4 AM                  | 54 PM                | ASS:<br>13         |
|                      |         |              |          |         |         |            |         |           |              |         |                    |                   |                       |                      | Galileo<br>: 0     |
|                      |         |              |          |         |         |            |         |           |              |         |                    |                   |                       |                      | QZSS:              |
|                      |         |              |          |         |         |            |         |           |              |         |                    |                   |                       |                      | U                  |
|                      |         |              |          |         | Acc     | eptanc     | e Sum   | mary      |              |         |                    |                   |                       |                      |                    |
| Proc                 | essed   |              |          | Pa      | sed     |            |         | Flag      | P            | >       |                    | Fa                | 1                     |                      |                    |
|                      | 2       |              |          |         | 2       |            |         |           | 0            |         |                    |                   | 0                     |                      |                    |
|                      |         |              |          |         | ssed    | eptanc     |         |           | 0            | >       |                    | Fa                | -                     | •                    |                    |

| LDN01 - LE89 PM | (1:59:14 PM-4:08:49 PM) (S1) |  |
|-----------------|------------------------------|--|
|-----------------|------------------------------|--|

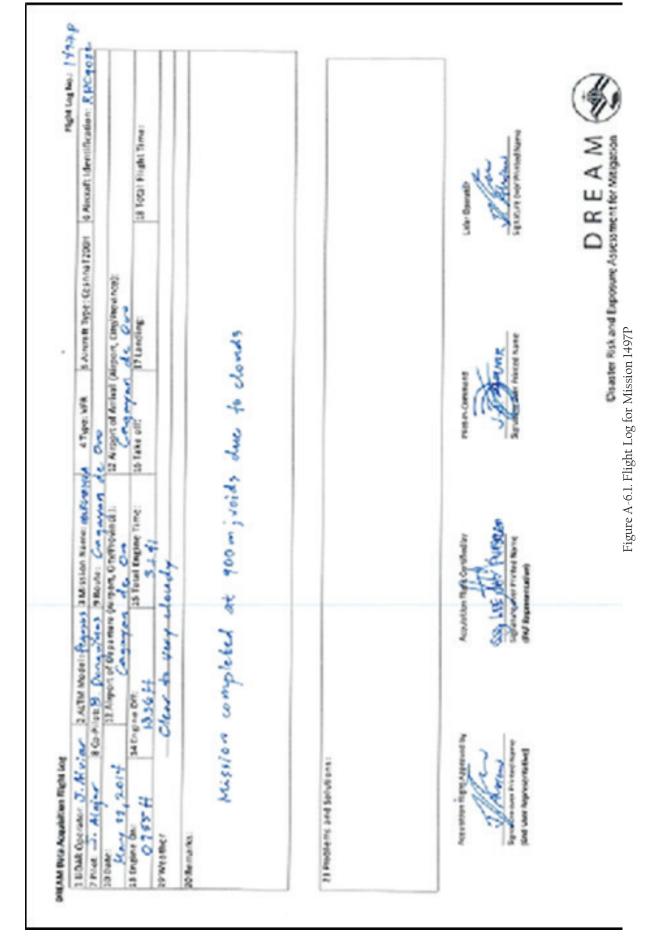
| Baseline observation:  | LDN01 LE89 PM (B1)                    |
|------------------------|---------------------------------------|
| Processed:             | 7/27/2014 10:37:49 PM                 |
| Solution type:         | Fixed                                 |
| Frequenc used:         | Dual Frequency (L1, L2)               |
| Horizontal precision:  | 0.003 m                               |
| Vertical precision:    | 0.015 m                               |
| RMS:                   | 0.002 m                               |
| Maximum PDOP:          | 1.981                                 |
| Ephemeris used:        | Broadcast                             |
| Antenna model:         | NGS Absolute                          |
| Processing start time: | 6/27/2014 1:59:14 PM (Local: UTC+8hr) |
| Processing stop time:  | 6/27/2014 4:08:49 PM (Local: UTC+8hr) |
| Processing duration:   | 02:09:35                              |
| Processing interval:   | 6 seconds                             |
|                        |                                       |

#### Vector Components (Mark to Mark)

| From:      | LDN01        |                     |                   |            |    |                   |
|------------|--------------|---------------------|-------------------|------------|----|-------------------|
|            | Grid         | L.                  | ocal              |            | G  | lobal             |
| Easting    | 635916.865 m | Latitude            | N8*13'67.88944"   | Latitude   |    | N8*13'67.88944'   |
| Northing   | 910238.165 m | Longitude           | E124*14'02.37264" | Longitude  |    | E124*14'02.37264' |
| Elevation  | 9.384 m      | Height              | 78.960 m          | Height     |    | 78.950 m          |
| To:        | LE89 PM      |                     |                   |            |    |                   |
| Grid       |              | L.                  | Global            |            |    |                   |
| Easting    | 638201.305 m | Latitude            | N8*15'47.82322"   | Latitude   |    | N8*15'47.82322'   |
| Northing   | 913622.047 m | Longitude           | E124*15'17.37373" | Longitude  |    | E124*16'17.37373' |
| Elevation  | 3.968 m      | Height              | 73.461 m          | Height     |    | 73.451 m          |
| Vector     |              |                     |                   |            |    |                   |
| ∆Easting   | 2284.44      | 10 m NS Fwd Azimuth | 1                 | 34*12'00"  | ΔX | -1621.760 m       |
| ΔNorthing  | 3383.89      | 2 m Ellipsoid Dist. |                   | 4083.501 m | ΔY | -1696.687 m       |
| ΔElevation |              | 16 m ΔHeight        |                   | -5.499 m   | 47 | 3341.640 m        |

#### Annex 4. The LiDAR Survey Team Composition

Table A-4.1. LiDAR Survey Team Composition


| Data Acquisition<br>Component Sub-Team       | Designation                                                     | Name                           | Agency/ Affiliation                  |  |  |  |
|----------------------------------------------|-----------------------------------------------------------------|--------------------------------|--------------------------------------|--|--|--|
| PHIL-LIDAR 1                                 | Program Leader                                                  | ENRICO C. PARINGIT,<br>D.ENG   | UP-TCAGP                             |  |  |  |
| Data Acquisition<br>Component Leader         | Data Component<br>Project Leader – I                            | ENGR. CZAR JAKIRI<br>SARMIENTO | UP-TCAGP                             |  |  |  |
|                                              | Chief Science Research<br>Specialist (CSRS)                     | ENGR. CHRISTOPHER<br>CRUZ      | UP-TCAGP                             |  |  |  |
|                                              | Supervising Science<br>Research Specialist<br>(Supervising SRS) | LOVELY GRACIA ACUÑA            | UP-TCAGP                             |  |  |  |
|                                              |                                                                 | LOVELYN ASUNCION               | UP-TCAGP                             |  |  |  |
| FIELD TEAM                                   |                                                                 |                                |                                      |  |  |  |
| LiDAR Operation                              | Senior Science Research<br>Specialist (SSRS)                    | JASMINE ALVIAR                 | UP-TCAGP                             |  |  |  |
|                                              | Research Associate (RA)                                         | GRACE SINADJAN                 | UP-TCAGP                             |  |  |  |
|                                              | RA                                                              | ENGR. IRO NIEL ROXAS           | UP-TCAGP                             |  |  |  |
| Ground Survey, Data<br>Download and Transfer | RA                                                              | LANCE KERWIN CINCO             | UP-TCAGP                             |  |  |  |
| LiDAR Operation                              | Airborne Security                                               | SSG. LEE JAY PUNZALAN          | PHILIPPINE AIR FORCE<br>(PAF)        |  |  |  |
|                                              | Pilot                                                           | CAPT. JEFFREY JEREMY<br>ALAJAR | ASIAN AEROSPACE<br>CORPORATION (AAC) |  |  |  |
|                                              |                                                                 | CAPT. CESAR ALFONSO<br>III     | AAC                                  |  |  |  |

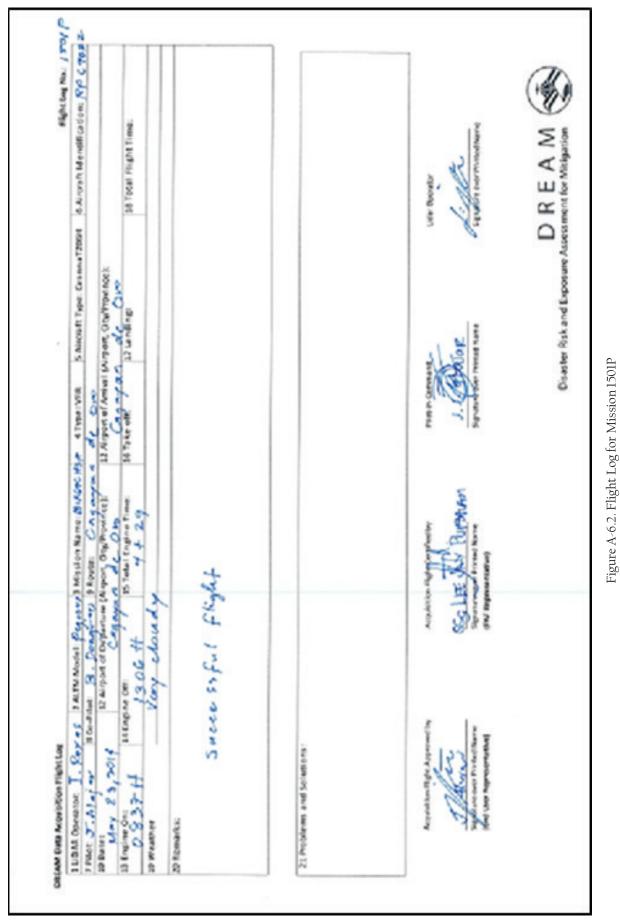

### Annex 5. Data Transfer Sheets for the Alubijid Floodplain Flights

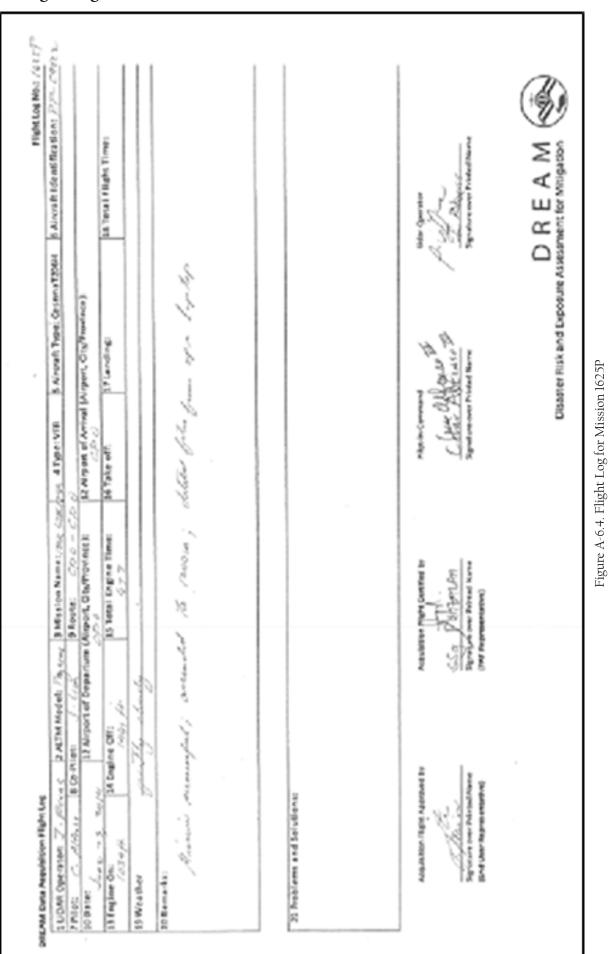
Figure A-5.1. Data Transfer Sheet for Sibalom Floodplain – A

#### Annex 6. Flight Logs for the Flight Missions

## 1. Flight Log for 1497P Mission

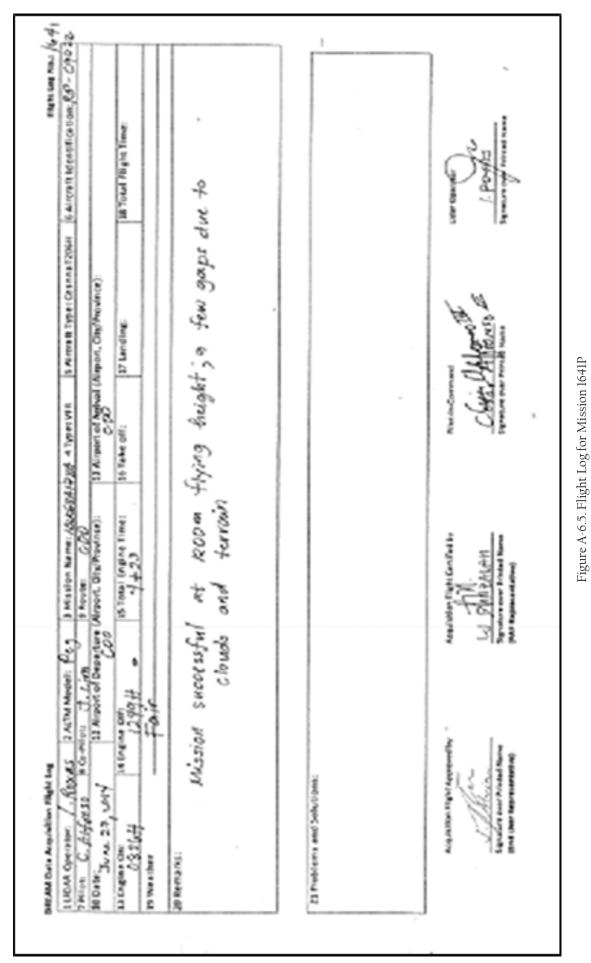





### 2. Flight Log for 1501P Mission

123

FEBRILAG No. 15059 6 Aurora it Mendill (#10 h) 28 Total Flight Linc: INTER OPPORT 1 Disaster Risk and Exposure Assessm S Aires ft 198-et Crs.nna120(4) Mirper, On/Province Due of Arrival 1 10/010 A.F. 2 MTM Model: Parasuf 1 Mission Name | Pr.Konc. Ng. 4 Tran. VIA Takia off 17 Alo 1 15 Tetal Engine Tumo: (Arpon, On/Province) 444 09 3 Router: Successful flight LL Nigorial Departure 3 THE O Ì 494060 HAASY ¢ A Engine Off. LOB-NIACC 9 **CECKM** Curs Arquisition Flight Log 1 UDAR OPERATOR J. & IV 22 Problems and Solutions. à 0701 Accession of 20 Remarks 1 2 13 Westher 1) (46 10 0.14 3 Billor


Figure A-6.3. Flight Log for Mission 1505P

## 3. Flight Log for 1505P Mission



Hazard Mapping of the Philippines Using LiDAR (Phil-LIDAR 1)

### 5. Flight Log for 1641P Mission



### Annex 7. Flight Status Reports

#### Table A-7.1. Flight Status Report

NORTHERN MINDANAO (May 22-July 10, 2014)

| FLIGHT NO | AREA            | MISSION      | OPERATOR | DATE<br>FLOWN    | REMARKS                                                                                                             |
|-----------|-----------------|--------------|----------|------------------|---------------------------------------------------------------------------------------------------------------------|
| 1497P     | BLK 67D         | 1BLK67B142A  | J.Alviar | May 22,<br>2014  | Mission completed at 900m;<br>voids due to clouds                                                                   |
| 1501P     | BLK<br>67C,67DS | 1BLK67C143A  | I. Roxas | May 23,<br>2014  | Original flight plan block cut<br>due to clouds and terrain;<br>mission completed at 800m<br>and 700m flying height |
| 1505P     | BLK 67A,67B     | 1BLK67C144A  | J.Alviar | May 24,<br>2014  | Surveyed at 850m                                                                                                    |
| 1625P     | BLK 67G         | 1BLK67BC174A | I. Roxas | June 23,<br>2014 | Mission successful;<br>ascended to 1200m                                                                            |
| 1641P     | BLK68A          | 1BLK68A178A  | I. Roxas | June 27,<br>2014 | Mission successful at 1200m<br>flying height; a few gaps due<br>to clouds and terrain                               |

#### LAS BOUNDARIES PER FLIGHT

Flight No. : 1497P Area: BLK 67D Mission Name: 1BLK67B142A Parameters: Altitude: 900m; Scan Frequency: 30Hz; Scan Angle: 25deg; Overlap: 30%



Figure A-7.1. Swath for Flight No. 1497P

#### 4. Flight Log for 1625P Mission

Flight No. : 1501P Area: BLK 67C, 67DS Mission Name: 1BLK67C143A Parameters: Altitude: 900m; Scan Frequency: 30Hz; Scan Angle: 25deg; Overlap: 30%

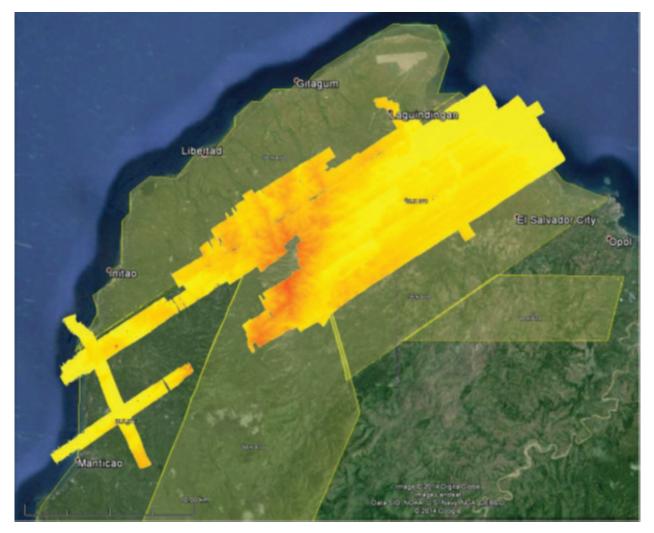



Figure A-7.2. Swath for Flight No. 1501P

1505P BLK 67C, 67DS Te: 1BLK67BC144A Te: 850 m; Flight No. : 1509 Area: BLK 67C, 6 Mission Name: 1BLI Parameters: Altitude: Scan Frequency: 30Hz; Scan Angle: 25deg; Overlap: 30%

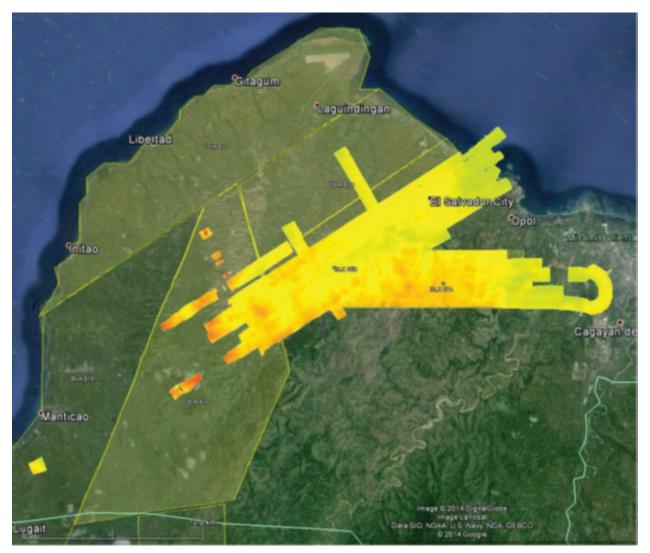



Figure A-7.3. Swath for Flight No. 1505P

Flight No. : 1625P Area: BLK 67G Mission Name: 1BLK67BC174A Parameters: Altitude: 1200m; Scan Frequency: 30Hz; Scan Angle: 25 deg; Overlap: 30%

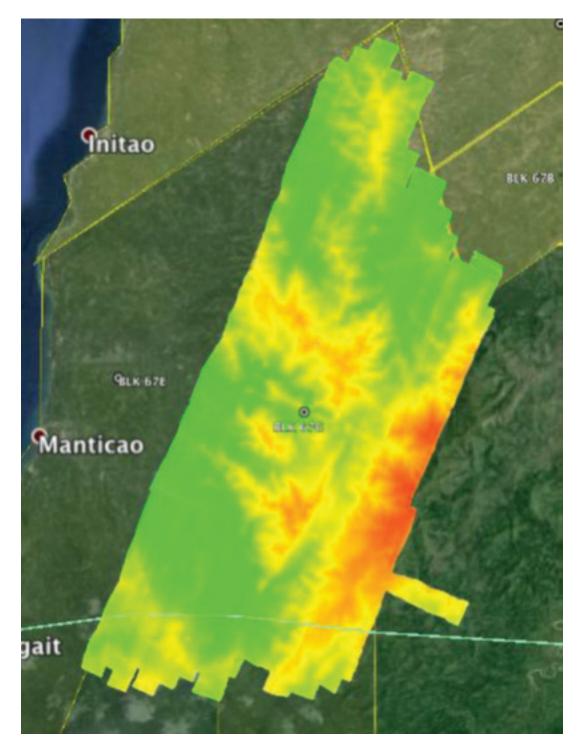



Figure A-7.4. Swath for Flight No. 1505P

Hazard Mapping of the Philippines Using LiDAR (Phil-LIDAR 1)

Flight No. : 1641P Area: BLK 68A Mission Name: 1BLK68A178A Parameters: Altitude:1200m; Scan Frequency: 30 kHz; Scan Angle: 25 deg Overlap: 30%

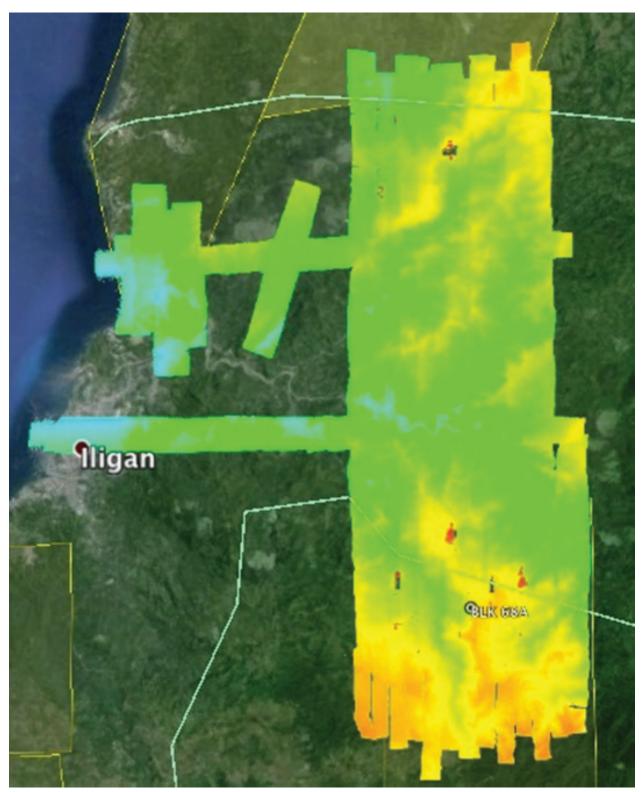



Figure A-7.5. Swath for Flight No. 1641P

## Annex 8. Mission Summary Reports

Table A-8.1. Mission Summary Report for Mission Blk43J

| Flight Area                                  | Northern Mindanao                                                      |
|----------------------------------------------|------------------------------------------------------------------------|
| Mission Name                                 | Blk67CD                                                                |
| Inclusive Flights                            | 1497P ,1501P                                                           |
| Range data size                              | 48.6 GB                                                                |
| Base data size                               | 12.8 MB                                                                |
| POS                                          | 472 MB                                                                 |
| Image                                        | 109.1 GB                                                               |
| Transfer date                                | June 10, 2014                                                          |
|                                              |                                                                        |
| Solution Status                              |                                                                        |
| Number of Satellites (>6)                    | Yes                                                                    |
| PDOP (<3)                                    | Yes                                                                    |
| Baseline Length (<30km)                      | Yes                                                                    |
| Processing Mode (<=1)                        | Yes                                                                    |
|                                              |                                                                        |
| Smoothed Performance Metrics(in cm)          |                                                                        |
| RMSE for North Position (<4.0 cm)            | 0.9                                                                    |
| RMSE for East Position (<4.0 cm)             | 1.3                                                                    |
| RMSE for Down Position (<8.0 cm)             | 2.6                                                                    |
| RIVISE IOF DOWIT POSITION (<8.0 CITI)        | 2.0                                                                    |
| Boresight correction stdev (<0.001deg)       | 0.000329                                                               |
| IMU attitude correction stdev (<0.001deg)    | 0.003593                                                               |
| GPS position stdev (<0.01m)                  | 0.0028                                                                 |
| · · · ·                                      |                                                                        |
| Minimum % overlap (>25)                      | 54.95%                                                                 |
| Ave point cloud density per sq.m. (>2.0)     | 4.39                                                                   |
| Elevation difference between strips (<0.20m) | Yes                                                                    |
|                                              |                                                                        |
| Number of 1km x 1km blocks                   | 398                                                                    |
| Maximum Height                               | 563.64 m                                                               |
| Minimum Height                               | 61.09 m                                                                |
| 0                                            |                                                                        |
| Classification (# of points)                 |                                                                        |
| Ground                                       | 444,340,071                                                            |
| Low vegetation                               | 418,432,205                                                            |
| Medium vegetation                            | 524,039,451                                                            |
| High vegetation                              | 335,166,168                                                            |
| Building                                     | 19,152,772                                                             |
| Orthophoto                                   | YES                                                                    |
| Processed by                                 | Engr. Angelo Carlo Bongat, Engr. Christy Lubiano,<br>Engr. Gladys Apat |

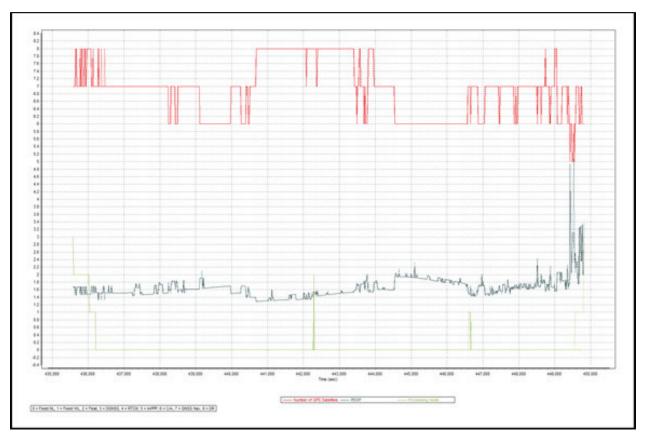



Figure A-8.1. Solution Status for Blk67CD.

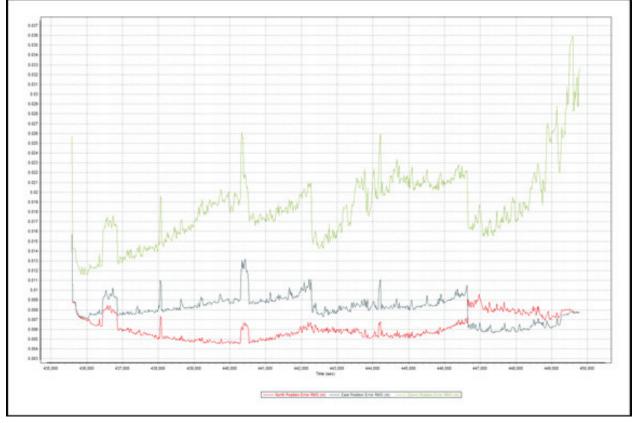



Figure A-8.2. Smoothed Performance Metric Parameters for Blk67CD.

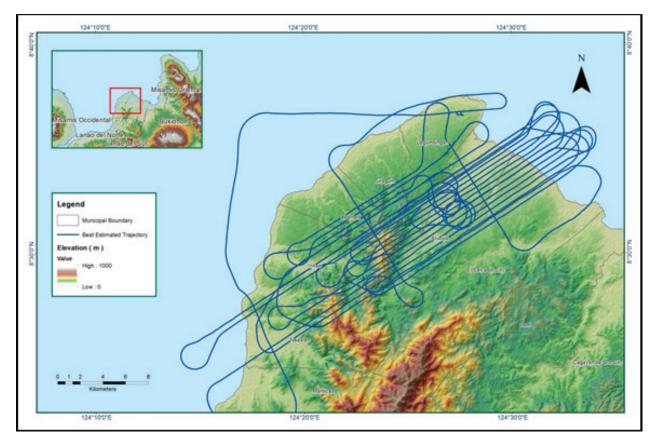



Figure A-8.3. Best Estimated Trajectory for Blk67CD.

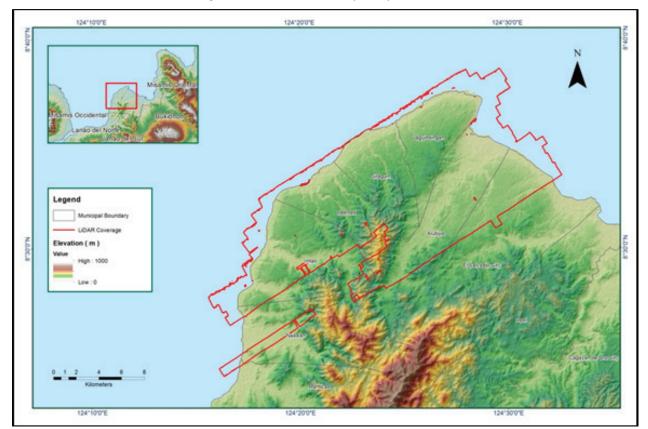



Figure A-8.4. Coverage of LiDAR data for Blk67CD.

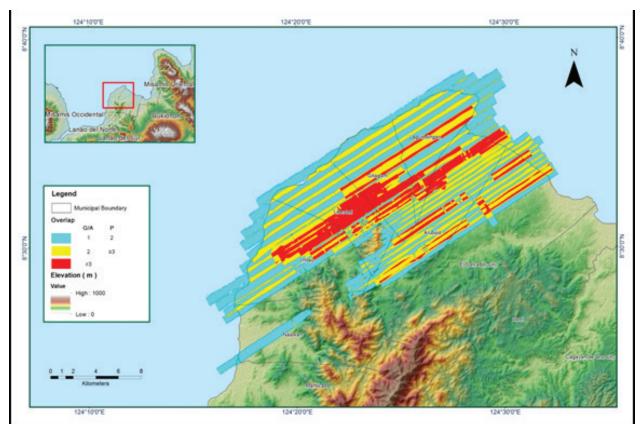



Figure A-8.5. Image of data overlap for Blk67CD.

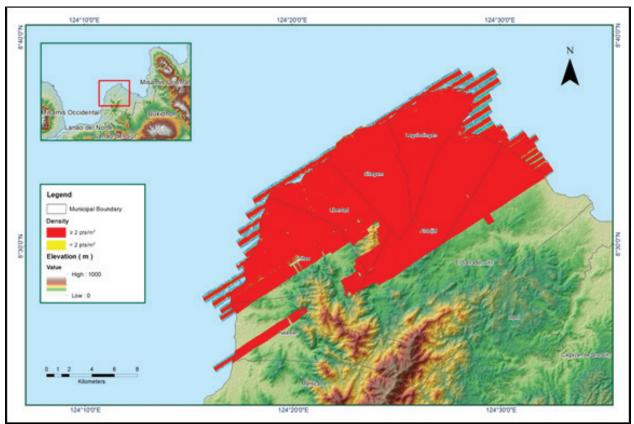



Figure A-8.6 . Density map of merged LiDAR data for Blk67CD.

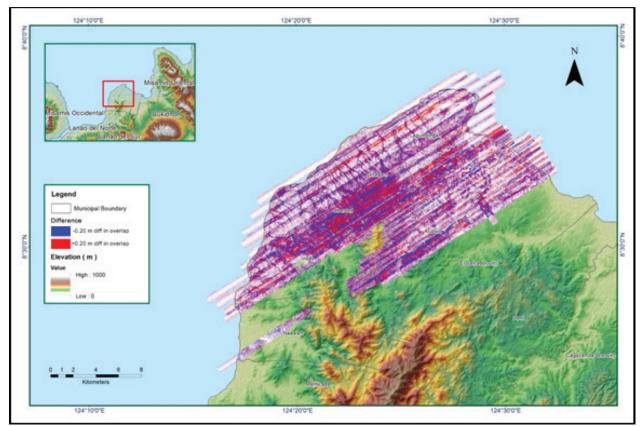



Figure A-8.7. Elevation difference between flight lines for Blk67CD.

| Flight Area                                   | Northern Mindanao                                                  |  |  |  |  |
|-----------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| Mission Name                                  | BIk67AB                                                            |  |  |  |  |
| Inclusive Flights                             | 1505P                                                              |  |  |  |  |
| Range data size                               | 21.8 GB                                                            |  |  |  |  |
| Base data size                                | 7.68 MB                                                            |  |  |  |  |
| POS                                           | 212 MB                                                             |  |  |  |  |
| Image                                         | 46.7 GB                                                            |  |  |  |  |
| Transfer date                                 | June 10, 2014                                                      |  |  |  |  |
| Solution Status                               | Julie 10, 2014                                                     |  |  |  |  |
|                                               | No.                                                                |  |  |  |  |
| Number of Satellites (>6)                     | Yes                                                                |  |  |  |  |
| PDOP (<3)                                     | Yes                                                                |  |  |  |  |
| Baseline Length (<30km)                       | No                                                                 |  |  |  |  |
| Processing Mode (<=1)                         | Yes                                                                |  |  |  |  |
|                                               |                                                                    |  |  |  |  |
| Smoothed Performance Metrics (in cm)          |                                                                    |  |  |  |  |
| RMSE for North Position (<4.0 cm)             | 1.0                                                                |  |  |  |  |
| RMSE for East Position (<4.0 cm)              | 1.2                                                                |  |  |  |  |
| RMSE for Down Position (<8.0 cm)              | 2.0                                                                |  |  |  |  |
|                                               |                                                                    |  |  |  |  |
| Boresight correction stdev (<0.001deg)        | 0.000165                                                           |  |  |  |  |
| IMU attitude correction stdev (<0.001deg)     | 0.000472                                                           |  |  |  |  |
| GPS position stdev (<0.01m)                   | 0.0065                                                             |  |  |  |  |
|                                               |                                                                    |  |  |  |  |
| Minimum % overlap (>25)                       | 37.51%                                                             |  |  |  |  |
| Ave point cloud density per sq.m. (>2.0)      | 4.35                                                               |  |  |  |  |
| Elevation difference between strips (<0.20 m) | Yes                                                                |  |  |  |  |
| Number of 1km x 1km blocks                    | 217                                                                |  |  |  |  |
| Maximum Height                                | 645.43 m                                                           |  |  |  |  |
| Minimum Height                                | 67.41 m                                                            |  |  |  |  |
|                                               | 07.41                                                              |  |  |  |  |
| Classification (# of points)                  |                                                                    |  |  |  |  |
| Ground                                        | 216,730,281                                                        |  |  |  |  |
| Low vegetation                                | 173,975,518                                                        |  |  |  |  |
| Medium vegetation                             | 246,142,374                                                        |  |  |  |  |
| High vegetation                               | 166,562,458                                                        |  |  |  |  |
| Building                                      | 9,373,891                                                          |  |  |  |  |
| Orthophoto                                    | YES                                                                |  |  |  |  |
| Processed by                                  | Engr. Kenneth Solidum, Engr. Christy Lubiano, Engr.<br>Gladys Apat |  |  |  |  |

Table A-8.2. Mission Summary Report for Mission Blk67AB

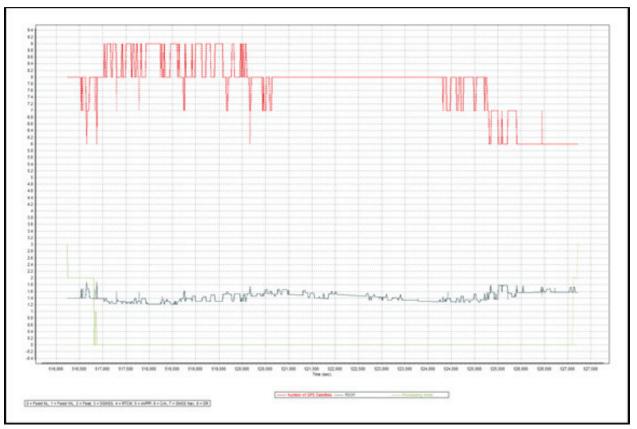



Figure A-8.9. Solution Status for Blk67AB.

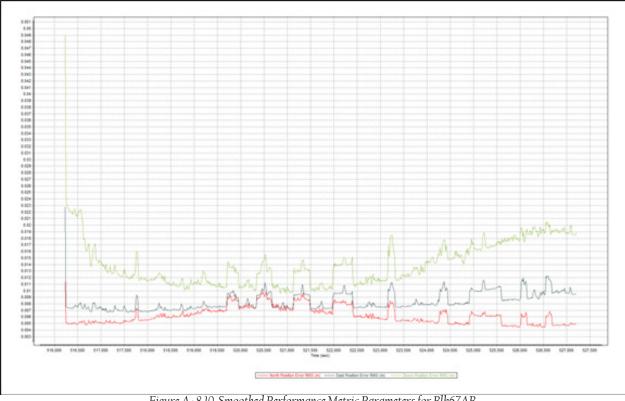



Figure A- 8.10. Smoothed Performance Metric Parameters for Blk67AB.

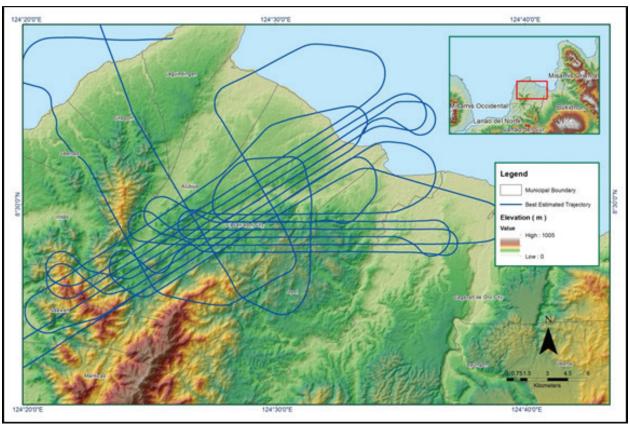



Figure A- 8.12 . Best Estimated Trajectory for Blk67AB.

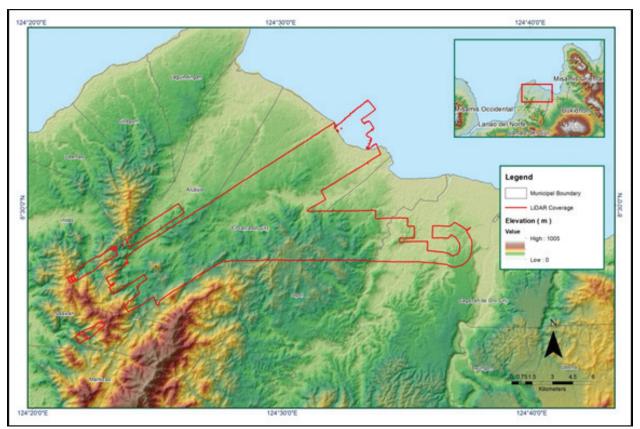



Figure A -8.13. Coverage of LiDAR data for Blk67AB.

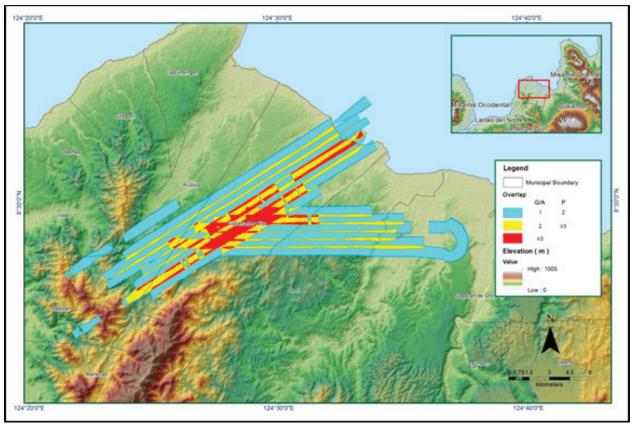



Figure A-8.14. Image of data overlap for Blk67AB.

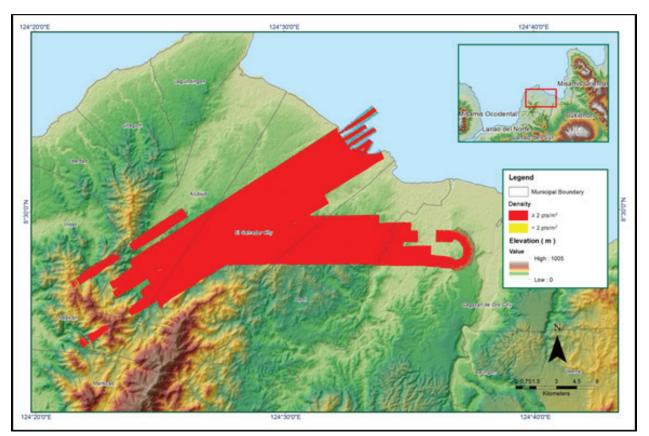



Figure A-8.15. Density map of merged LiDAR data for Blk67AB.

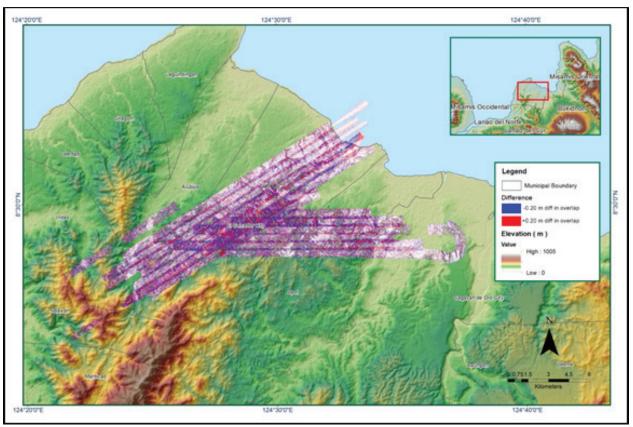



Figure A-8.17. Elevation difference between flight lines for Blk67AB.

| Flight Area                                   | Northern Mindanao                                                     |  |  |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|
| Mission Name                                  | Blk67G                                                                |  |  |  |  |
| Inclusive Flights                             | 1625P                                                                 |  |  |  |  |
| Range data size                               | 29.4 GB                                                               |  |  |  |  |
| Base data size                                | 4.97 MB                                                               |  |  |  |  |
| POS                                           | 258 MB                                                                |  |  |  |  |
| Image                                         | 60.3 GB                                                               |  |  |  |  |
| Transfer date                                 | August 01, 2014                                                       |  |  |  |  |
|                                               |                                                                       |  |  |  |  |
| Solution Status                               |                                                                       |  |  |  |  |
| Number of Satellites (>6)                     | Yes                                                                   |  |  |  |  |
| PDOP (<3)                                     | Yes                                                                   |  |  |  |  |
| Baseline Length (<30km)                       | No                                                                    |  |  |  |  |
| Processing Mode (<=1)                         | Yes                                                                   |  |  |  |  |
| Smoothed Performance Metrics (in cm)          |                                                                       |  |  |  |  |
| RMSE for North Position (<4.0 cm)             | 1.5                                                                   |  |  |  |  |
| RMSE for East Position (<4.0 cm)              | 1.9                                                                   |  |  |  |  |
| RMSE for Down Position (<8.0 cm)              | 3.4                                                                   |  |  |  |  |
| Boresight correction stdev (<0.001deg)        | 0.000157                                                              |  |  |  |  |
| IMU attitude correction stdev (<0.001deg)     | 0.000735                                                              |  |  |  |  |
| GPS position stdev (<0.01m)                   | 0.0062                                                                |  |  |  |  |
|                                               |                                                                       |  |  |  |  |
| Minimum % overlap (>25)                       | 56.61%                                                                |  |  |  |  |
| Ave point cloud density per sq.m. (>2.0)      | 5.09                                                                  |  |  |  |  |
| Elevation difference between strips (<0.20 m) | Yes                                                                   |  |  |  |  |
| Number of 1km x 1km blocks                    | 232                                                                   |  |  |  |  |
| Maximum Height                                | 1067 m                                                                |  |  |  |  |
| Maximum Height                                | 1067 M                                                                |  |  |  |  |
| Minimum Height                                | 89.42 m                                                               |  |  |  |  |
| Classifications (# of a cints)                |                                                                       |  |  |  |  |
| Classification (# of points)                  | 170 601 015                                                           |  |  |  |  |
| Ground                                        | 178,631,315                                                           |  |  |  |  |
| Low vegetation<br>Medium vegetation           | 159,869,678<br>466,647,080                                            |  |  |  |  |
|                                               |                                                                       |  |  |  |  |
| High vegetation                               | 400,753,213<br>11,454,907                                             |  |  |  |  |
| Building<br>Orthophoto                        | Yes                                                                   |  |  |  |  |
| Processed by                                  | Engr. Analyn Naldo, Engr. Mark Joshua Salvacion,<br>Engr. Gladys Apat |  |  |  |  |

Table A-8.3. Mission Summary Report for Mission Blk67G

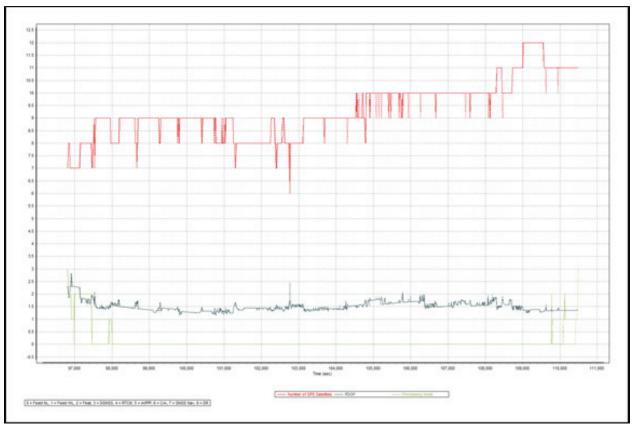



Figure A- 8.18. Solution Status for Blk67G.

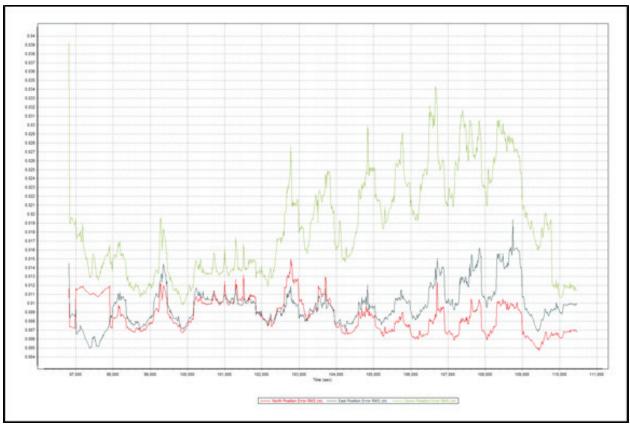



Figure A-8.19. Smoothed Performance Metric Parameters for Blk67G.

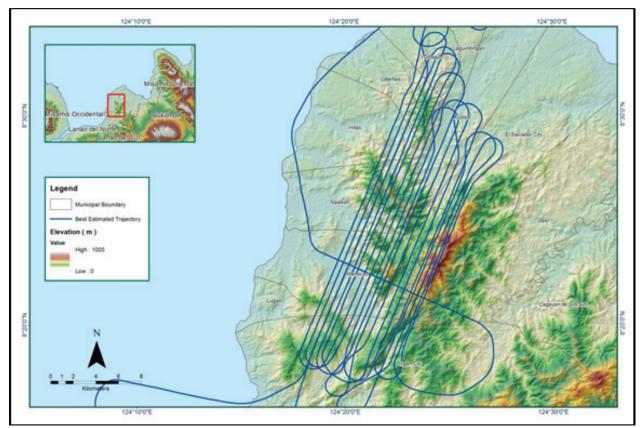



Figure A- 8.20. Best Estimated Trajectory for Blk67G.

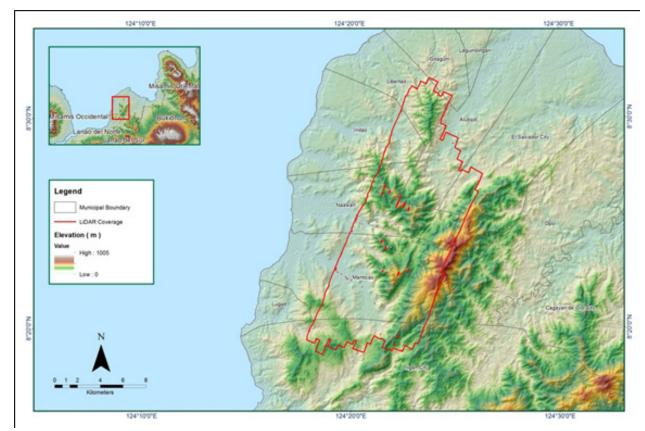



Figure A-8.21. Coverage of LiDAR data for Blk67G.

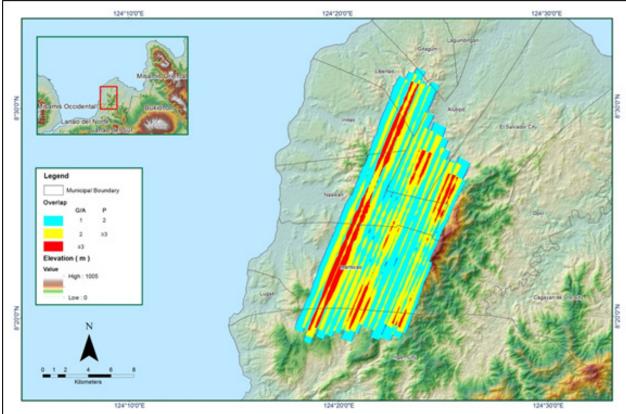



Figure A-8.23. Image of data overlap for Blk67G.

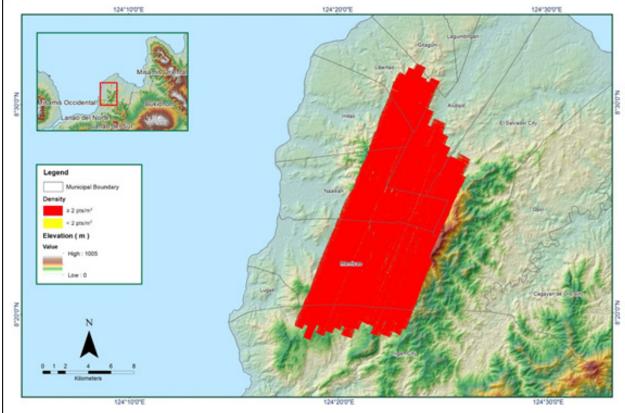



Figure A-8.24. Density map of merged LiDAR data for Blk67G.



Figure A-8.24. Elevation difference between flight lines for Blk67G.

| Flight Area                                   | Northern Mindanao |  |  |  |  |
|-----------------------------------------------|-------------------|--|--|--|--|
| Mission Name                                  | Blk67E            |  |  |  |  |
| Inclusive Flights                             | 1545P             |  |  |  |  |
| Mission Name                                  | 1BLK71C154A       |  |  |  |  |
| Range data size                               | 40.1 GB           |  |  |  |  |
| POS                                           | 253 MB            |  |  |  |  |
| Image                                         | 69.7 GB           |  |  |  |  |
| Transfer date                                 | June 23, 2014     |  |  |  |  |
|                                               |                   |  |  |  |  |
| Solution Status                               |                   |  |  |  |  |
| Number of Satellites (>6)                     | Yes               |  |  |  |  |
| PDOP (<3)                                     | Yes               |  |  |  |  |
| Baseline Length (<30km)                       | No                |  |  |  |  |
| Processing Mode (<=1)                         | Yes               |  |  |  |  |
|                                               |                   |  |  |  |  |
| Smoothed Performance Metrics (in cm)          |                   |  |  |  |  |
| RMSE for North Position (<4.0 cm)             | 2.2               |  |  |  |  |
| RMSE for East Position (<4.0 cm)              | 1.6               |  |  |  |  |
| RMSE for Down Position (<8.0 cm)              | 8.0               |  |  |  |  |
|                                               |                   |  |  |  |  |
| Boresight correction stdev (<0.001deg)        | 0.000548          |  |  |  |  |
| IMU attitude correction stdev (<0.001deg)     | 0.001101          |  |  |  |  |
| GPS position stdev (<0.01m)                   | 0.0091            |  |  |  |  |
|                                               |                   |  |  |  |  |
| Minimum % overlap (>25)                       | 57.82%            |  |  |  |  |
| Ave point cloud density per sq.m. (>2.0)      | 9.22              |  |  |  |  |
| Elevation difference between strips (<0.20 m) | Yes               |  |  |  |  |
|                                               |                   |  |  |  |  |
| Number of 1km x 1km blocks                    | 182               |  |  |  |  |
| Maximum Height                                | 589.93 m          |  |  |  |  |
| Minimum Height                                | 62.29 m           |  |  |  |  |
|                                               |                   |  |  |  |  |
| Classification (# of points)                  |                   |  |  |  |  |
| Ground                                        | 159,665,332       |  |  |  |  |
| Low vegetation                                | 117,352,334       |  |  |  |  |
| Medium vegetation                             | 207,785,534       |  |  |  |  |
| High vegetation                               | 244,112,573       |  |  |  |  |
| Building                                      | 8,516,950         |  |  |  |  |
|                                               |                   |  |  |  |  |
| Orthophoto                                    | Yes               |  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·         |                   |  |  |  |  |

Table A-8.4. Mission Summary Report for Mission Blk43H\_Additional

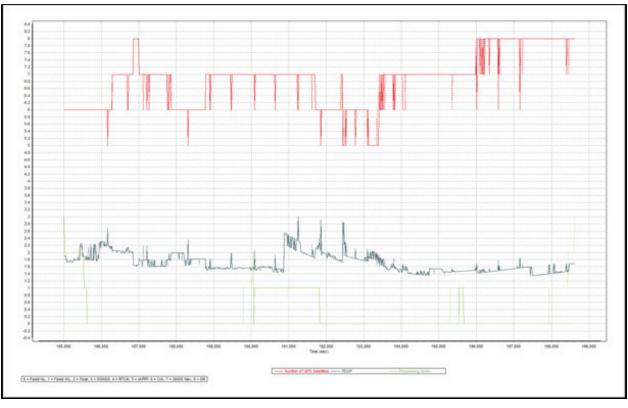



Figure A-8.25. Solution Status for Blk67E.

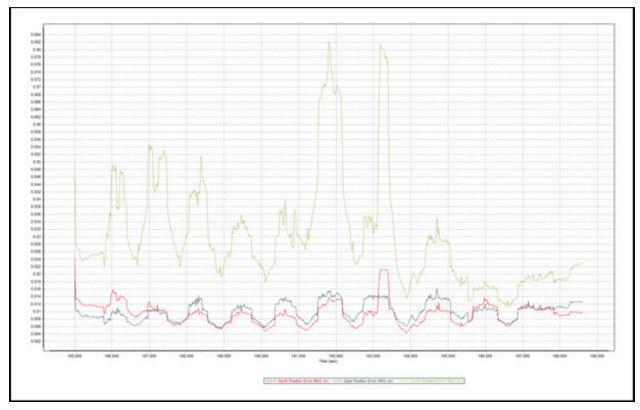



Figure A-8.26. Smoothed Performance Metric Parameters for Blk67E.

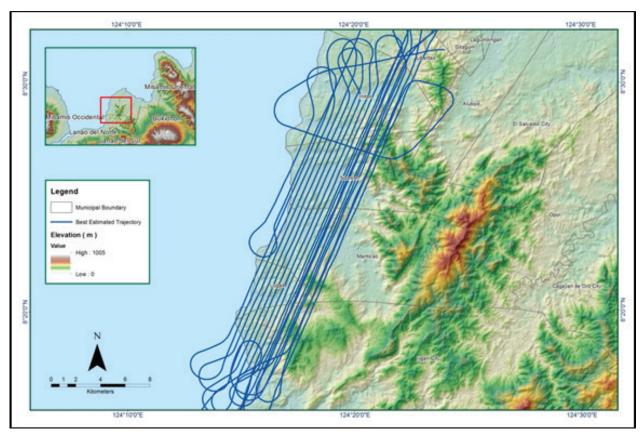



Figure A-5.27. Best Estimated Trajectory for 3 Blk67E.

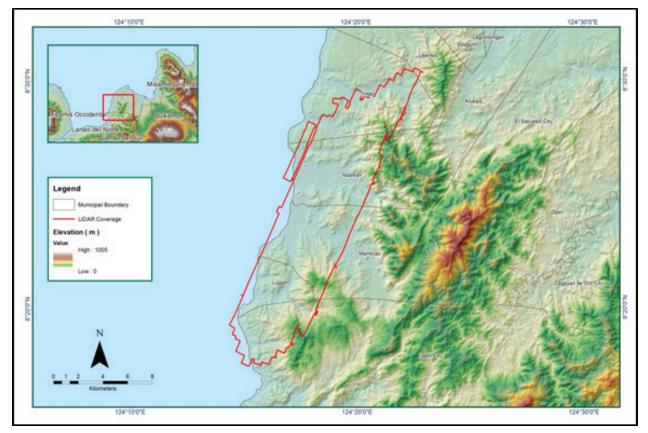



Figure A-8.28 . Coverage of LiDAR data for Blk67E.

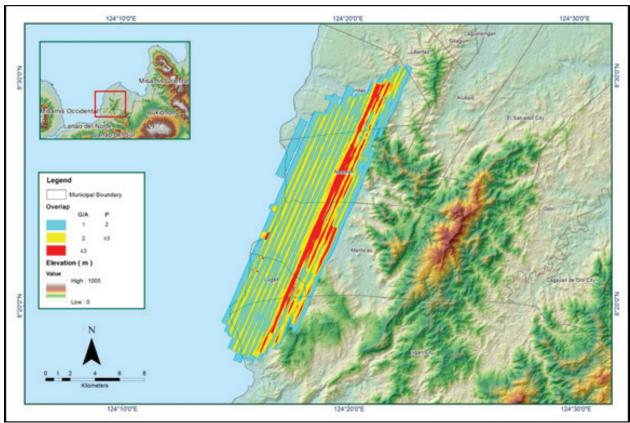



Figure A-8.29 . Image of data overlap for Blk67E.

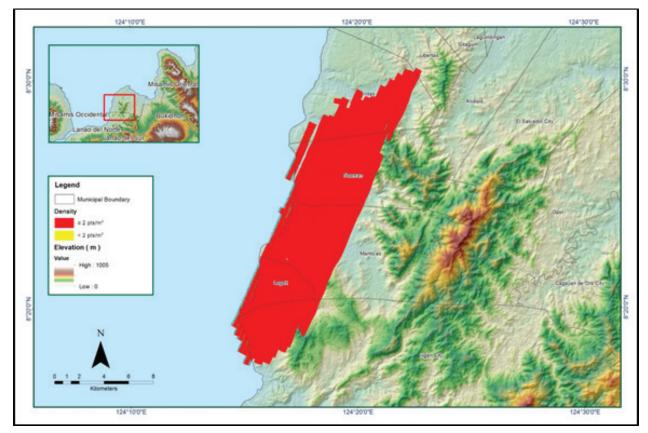



Figure A-8.30. Density map of merged LiDAR data for Blk67E.

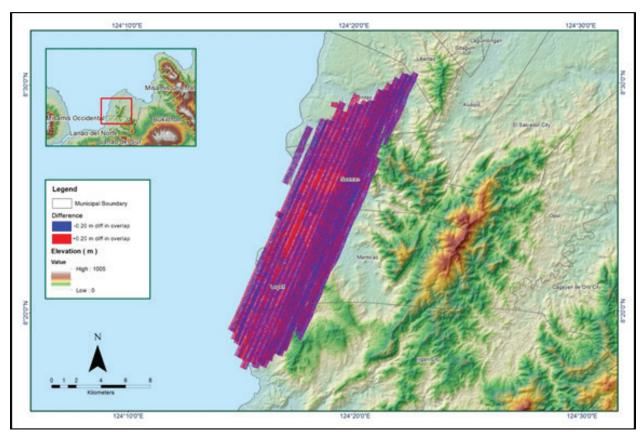



Figure A-8.31 . Elevation difference between flight lines for Blk67E.

| Flight Area                                   | Northern Mindanao |
|-----------------------------------------------|-------------------|
| Mission Name                                  | Blk68A            |
| Inclusive Flights                             | 1641P             |
| Range data size                               | 28.9 GB           |
| POS                                           | 268 MB            |
| Image                                         | 57.4 GB           |
| Transfer date                                 | July 28, 2014     |
| Solution Status                               |                   |
| Number of Satellites (>6)                     | Yes               |
| PDOP (<3)                                     | Yes               |
| Baseline Length (<30km)                       | Yes               |
| Processing Mode (<=1)                         | Yes               |
| Smoothed Performance Metrics (in cm)          |                   |
| RMSE for North Position (<4.0 cm)             | 3.0               |
| RMSE for East Position (<4.0 cm)              | 2.5               |
| RMSE for Down Position (<8.0 cm)              | 10                |
| Boresight correction stdev (<0.001deg)        | 0.000155          |
| IMU attitude correction stdev (<0.001deg)     | 0.001515          |
| GPS position stdev (<0.01m)                   | 0.0062            |
| Minimum % overlap (>25)                       | 42.46%            |
| Ave point cloud density per sq.m. (>2.0)      | 4.25              |
| Elevation difference between strips (<0.20 m) | Yes               |
| Number of 1km x 1km blocks                    | 282               |
| Maximum Height                                | 977.29 m          |
| Minimum Height                                | 67.52 m           |
|                                               |                   |
| Classification (# of points)                  |                   |
| Ground                                        | 144,082,289       |
| Low vegetation                                | 289,399,599       |
| Medium vegetation                             | 388,668,399       |
| High vegetation                               | 337,282,692       |
| Building                                      | 142,77,170        |
| Orthophoto                                    | Yes               |

### Table A-8.5. Mission Summary Report for Mission Blk43I

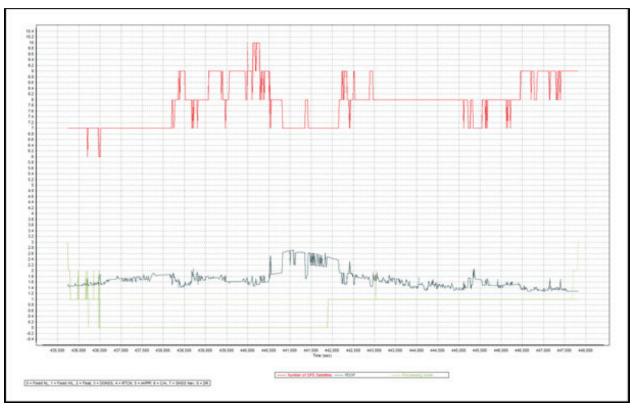



Figure A-8.32. Solution Status for Blk68A.

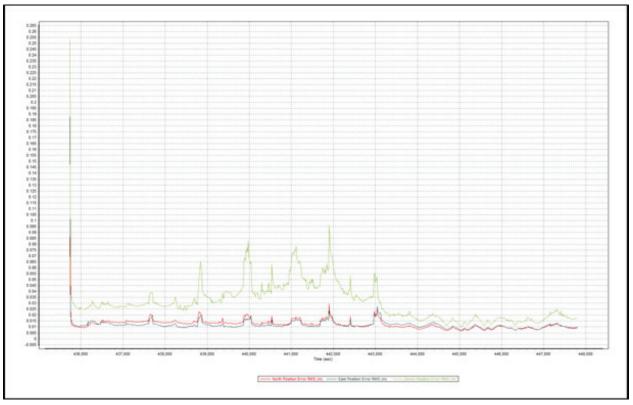



Figure A-8.33. Smoothed Performance Metric Parameters for Blk68A.

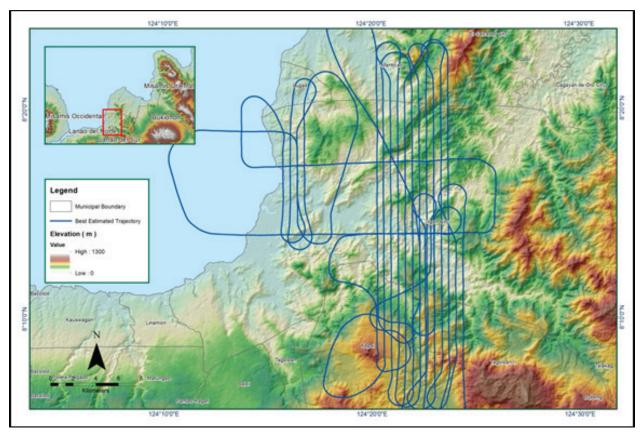



Figure A-8.34. Best Estimated Trajectory for Blk68A.

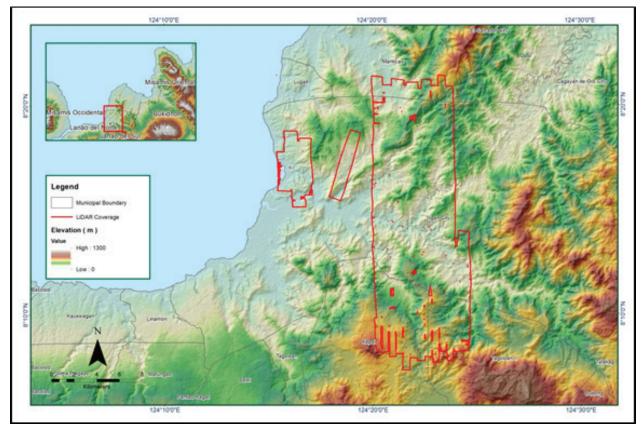



Figure A-8.35 . Coverage of LiDAR data for Blk68A.

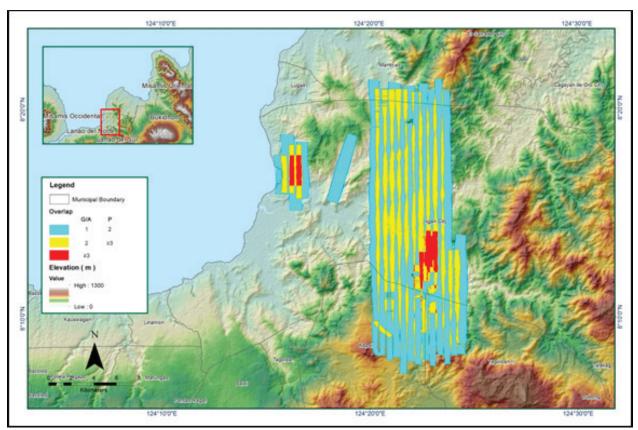



Figure A-8.36 . Image of data overlap for Blk68A.

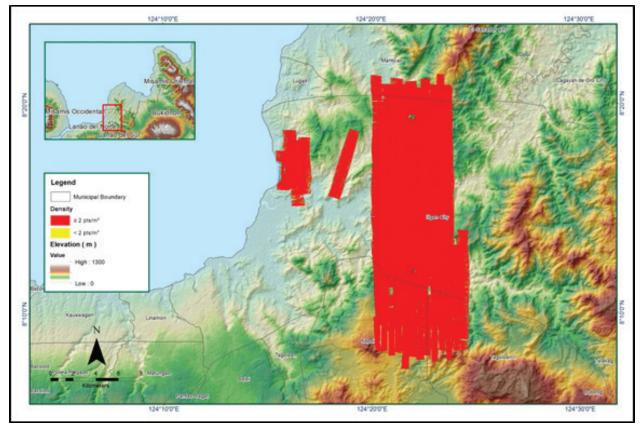



Figure A-8.37. Density map of merged LiDAR data for Blk68A.

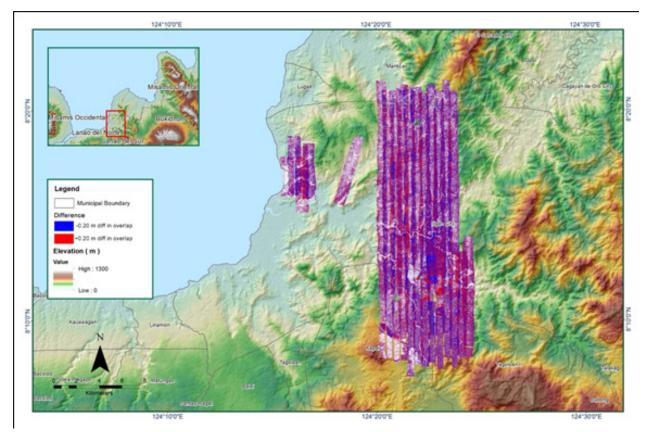



Figure A-8.38 . Elevation difference between flight lines for Blk68A.

## Annex 9. Alubijid Model Basin Parameters

Table A-9.1. Alubijid Model Basin Parameters

|                 | SCS Curve Number Loss          |                 |                   | Clark Unit Hydrograph<br>Transform |                                | Recession Baseflow |                                |                       |                   |                     |
|-----------------|--------------------------------|-----------------|-------------------|------------------------------------|--------------------------------|--------------------|--------------------------------|-----------------------|-------------------|---------------------|
| Basin<br>Number | Initial<br>Abstraction<br>(mm) | Curve<br>Number | Impervious<br>(%) | Time of<br>Concentration<br>(HR)   | Storage<br>Coefficient<br>(HR) | Initial<br>Type    | Initial<br>Discharge<br>(M3/S) | Recession<br>Constant | Threshold<br>Type | Ratio<br>to<br>Peak |
| W1020           | 2.6365                         | 83.808          | 0                 | 0.065551                           | 4.660684                       | Discharge          | 0.0269758                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W1030           | 6.3015                         | 85.075          | 0                 | 0.079154                           | 2.052806                       | Discharge          | 0.0470735                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W470            | 1.1554                         | 78.174          | 0                 | 0.12835                            | 1.42394                        | Discharge          | 0.0040461                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W490            | 0.93852                        | 99              | 0                 | 0.021571                           | 0.3449894                      | Discharge          | 0.000396013                    | 1                     | Ratio to<br>Peak  | 0.35                |
| W500            | 3.5334                         | 53.43           | 0                 | 0.13435                            | 2.148748                       | Discharge          | 0.0467869                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W510            | 3.4986                         | 99              | 0                 | 0.30838                            | 4.932144                       | Discharge          | 0.0291851                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W520            | 3.1875                         | 81.71           | 0                 | 0.27537                            | 4.404218                       | Discharge          | 0.11738                        | 1                     | Ratio to<br>Peak  | 0.35                |
| W530            | 3.5532                         | 79.346          | 0                 | 0.17012                            | 2.720872                       | Discharge          | 0.0866826                      | 1                     | Ratio to<br>Peak  | 0.35                |

|                 | SCS C                          | urve Number     | Loss              | Clark Unit H<br>Transf           |                                | Recession Baseflow |                                |                       |                   |                     |
|-----------------|--------------------------------|-----------------|-------------------|----------------------------------|--------------------------------|--------------------|--------------------------------|-----------------------|-------------------|---------------------|
| Basin<br>Number | Initial<br>Abstraction<br>(mm) | Curve<br>Number | Impervious<br>(%) | Time of<br>Concentration<br>(HR) | Storage<br>Coefficient<br>(HR) | Initial<br>Type    | Initial<br>Discharge<br>(M3/S) | Recession<br>Constant | Threshold<br>Type | Ratio<br>to<br>Peak |
| W540            | 6.8211                         | 75.411          | 0                 | 0.14241                          | 2.277716                       | Discharge          | 0.085096                       | 1                     | Ratio to<br>Peak  | 0.35                |
| W550            | 7.4881                         | 76.109          | 0                 | 0.15583                          | 2.492238                       | Discharge          | 0.0915338                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W570            | 5.0657                         | 74.989          | 0                 | 0.099471                         | 1.048404                       | Discharge          | 0.0184433                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W580            | 2.3174                         | 84.993          | 0                 | 0.28342                          | 1.590932                       | Discharge          | 0.0301908                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W590            | 3.1923                         | 78.197          | 0                 | 0.13031                          | 4.532892                       | Discharge          | 0.0940558                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W600            | 5.2298                         | 83.411          | 0                 | 0.04558                          | 2.084166                       | Discharge          | 0.10668                        | 1                     | Ratio to<br>Peak  | 0.35                |
| W610            | 5.3261                         | 77.68           | 0                 | 0.19913                          | 0.7289828                      | Discharge          | 0.003486                       | 1                     | Ratio to<br>Peak  | 0.35                |
| W620            | 3.4075                         | 81.5            | 0                 | 0.26548                          | 3.184902                       | Discharge          | 0.118                          | 1                     | Ratio to<br>Peak  | 0.35                |
| W630            | 4.083                          | 79.903          | 0                 | 0.16831                          | 4.246046                       | Discharge          | 0.16889                        | 1                     | Ratio to<br>Peak  | 0.35                |
| W640            | 3.9216                         | 77.679          | 0                 | 0.15564                          | 2.691864                       | Discharge          | 0.0523676                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W650            | 5.1018                         | 75.64           | 0                 | 0.13414                          | 2.4892                         | Discharge          | 0.0660925                      | 1                     | Ratio to<br>Peak  | 0.35                |

|                 | SCS C                          | urve Number     | r Loss            | Clark Unit H<br>Transf           |                                | Recession Baseflow |                                |                       |                   |                     |
|-----------------|--------------------------------|-----------------|-------------------|----------------------------------|--------------------------------|--------------------|--------------------------------|-----------------------|-------------------|---------------------|
| Basin<br>Number | Initial<br>Abstraction<br>(mm) | Curve<br>Number | Impervious<br>(%) | Time of<br>Concentration<br>(HR) | Storage<br>Coefficient<br>(HR) | lnitial<br>Type    | Initial<br>Discharge<br>(M3/S) | Recession<br>Constant | Threshold<br>Type | Ratio<br>to<br>Peak |
| W660            | 14.887                         | 77.757          | 0                 | 0.1602                           | 2.145416                       | Discharge          | 0.11434                        | 1                     | Ratio to<br>Peak  | 0.35                |
| W670            | 6.0375                         | 80.071          | 0                 | 0.14701                          | 2.562112                       | Discharge          | 0.11489                        | 1                     | Ratio to<br>Peak  | 0.35                |
| W680            | 4.5712                         | 52.407          | 0                 | 0.077953                         | 2.351314                       | Discharge          | 0.029034                       | 1                     | Ratio to<br>Peak  | 0.35                |
| W690            | 10.5543527                     | 75.713          | 0                 | 0.12766                          | 1.246756                       | Discharge          | 0.0364645                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W700            | 10.917                         | 76.444          | 0                 | 0.19606                          | 2.041732                       | Discharge          | 0.0598006                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W710            | 13.578                         | 84.168          | 0                 | 0.074845                         | 3.135706                       | Discharge          | 0.27441                        | 1                     | Ratio to<br>Peak  | 0.35                |
| W720            | 13.803                         | 75.101          | 0                 | 0.1665                           | 1.19707                        | Discharge          | 0.0698833                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W730            | 13.461                         | 45.961          | 0                 | 0.088286                         | 2.663052                       | Discharge          | 0.19886                        | 1                     | Ratio to<br>Peak  | 0.35                |
| W740            | 21.497                         | 74.5            | 0                 | 0.14511                          | 1.411984                       | Discharge          | 0.0662489                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W750            | 19.09                          | 82.844          | 0                 | 0.050473                         | 2.320934                       | Discharge          | 0.13122                        | 1                     | Ratio to<br>Peak  | 0.35                |

|                 | SCS C                          | urve Number     | Loss              | Clark Unit H<br>Transf           |                                | Recession Baseflow |                                |                       |                   |                     |
|-----------------|--------------------------------|-----------------|-------------------|----------------------------------|--------------------------------|--------------------|--------------------------------|-----------------------|-------------------|---------------------|
| Basin<br>Number | Initial<br>Abstraction<br>(mm) | Curve<br>Number | Impervious<br>(%) | Time of<br>Concentration<br>(HR) | Storage<br>Coefficient<br>(HR) | lnitial<br>Type    | Initial<br>Discharge<br>(M3/S) | Recession<br>Constant | Threshold<br>Type | Ratio<br>to<br>Peak |
| W760            | 25.342                         | 71.146          | 0                 | 0.052966                         | 0.8072358                      | Discharge          | 0.0373946                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W770            | 20.617                         | 71.397          | 0                 | 0.12786                          | 0.8471218                      | Discharge          | 0.0138136                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W780            | 13.9306013                     | 74.215          | 0                 | 0.026091                         | 2.044966                       | Discharge          | 0.0861954                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W790            | 6.7743                         | 99              | 0                 | 0.043233                         | 0.417284                       | Discharge          | 0.0045099                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W800            | 10.855                         | 67.895          | 0                 | 0.16256                          | 0.69146                        | Discharge          | 0.0054764                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W810            | 24.409                         | 99              | 0                 | 0.065888                         | 2.59994                        | Discharge          | 0.1105                         | 1                     | Ratio to<br>Peak  | 0.35                |
| W820            | 28.416                         | 74.702          | 0                 | 0.047878                         | 1.053794                       | Discharge          | 0.0568878                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W830            | 25.306                         | 74.933          | 0                 | 0.073465                         | 0.7657426                      | Discharge          | 0.0475138                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W840            | 18.841                         | 74.994          | 0                 | 0.093282                         | 1.174922                       | Discharge          | 0.044132                       | 1                     | Ratio to<br>Peak  | 0.35                |
| W850            | 20.19                          | 75.852          | 0                 | 0.066729                         | 1.491952                       | Discharge          | 0.0838272                      | 1                     | Ratio to<br>Peak  | 0.35                |

|                 | SCS C                          | ürve Numbei     | r Loss            | Clark Unit H<br>Transf           |                                | Recession Baseflow |                                |                       |                   |                     |
|-----------------|--------------------------------|-----------------|-------------------|----------------------------------|--------------------------------|--------------------|--------------------------------|-----------------------|-------------------|---------------------|
| Basin<br>Number | Initial<br>Abstraction<br>(mm) | Curve<br>Number | Impervious<br>(%) | Time of<br>Concentration<br>(HR) | Storage<br>Coefficient<br>(HR) | lnitial<br>Type    | Initial<br>Discharge<br>(M3/S) | Recession<br>Constant | Threshold<br>Type | Ratio<br>to<br>Peak |
| W860            | 29.974                         | 99              | 0                 | 0.052813                         | 1.06722                        | Discharge          | 0.043835                       | 1                     | Ratio to<br>Peak  | 0.35                |
| W870            | 36.886                         | 68.894          | 0                 | 0.085977                         | 0.8446718                      | Discharge          | 0.0264313                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W880            | 24.624                         | 51.967          | 0                 | 0.095183                         | 1.375038                       | Discharge          | 0.0541626                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W890            | 35.595                         | 46.831          | 0                 | 0.080413                         | 1.522332                       | Discharge          | 0.13001                        | 1                     | Ratio to<br>Peak  | 0.35                |
| W900            | 20.644                         | 78.119          | 0                 | 0.058507                         | 1.2861                         | Discharge          | 0.0520758                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W920            | 22.822                         | 79.487          | 0                 | 0.29141                          | 0.9357334                      | Discharge          | 0.050932                       | 1                     | Ratio to<br>Peak  | 0.35                |
| W930            | 2.4294                         | 99              | 0                 | 0.064044                         | 1.024296                       | Discharge          | 0.0046688                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W970            | 2.5073                         | 78.411          | 0                 | 0.089033                         | 1.868076                       | Discharge          | 0.0082642                      | 1                     | Ratio to<br>Peak  | 0.35                |
| W980            | 3.9647                         | 83.31           | 0                 | 0.1168                           | 1.265964                       | Discharge          | 0.03085                        | 1                     | Ratio to<br>Peak  | 0.35                |

# Annex 10. Alubijid Model Reach Parameters

| Reach  | I                        | Muskingu      | mCunge | Channel Routi  | ing       |       |               |
|--------|--------------------------|---------------|--------|----------------|-----------|-------|---------------|
| Number | Time Step Method         | Length<br>(m) | Slope  | Manning's<br>n | Shape     | Width | Side<br>Slope |
| R100   | Automatic Fixed Interval | 1119.4        | 0.0001 | 0.0001         | Trapezoid | 46.11 | 1             |
| R1000  | Automatic Fixed Interval | 732.55        | 0.0001 | 0.0001         | Trapezoid | 46.11 | 1             |
| R1050  | Automatic Fixed Interval | 1362.3        | 0.0008 | 0.0001         | Trapezoid | 46.11 | 1             |
| R110   | Automatic Fixed Interval | 4741.4        | 0.0077 | 0.0001         | Trapezoid | 46.11 | 1             |
| R120   | Automatic Fixed Interval | 321.42        | 0.0001 | 0.0001         | Trapezoid | 46.11 | 1             |
| R140   | Automatic Fixed Interval | 1552          | 0.0021 | 0.0001         | Trapezoid | 46.11 | 1             |
| R190   | Automatic Fixed Interval | 1988.9        | 0.0034 | 0.0001         | Trapezoid | 46.11 | 1             |
| R20    | Automatic Fixed Interval | 3367.6        | 0.0001 | 0.0001         | Trapezoid | 46.11 | 1             |
| R210   | Automatic Fixed Interval | 3362.3        | 0.0013 | 0.0001         | Trapezoid | 46.11 | 1             |
| R230   | Automatic Fixed Interval | 1462.3        | 0.0049 | 0.0001         | Trapezoid | 46.11 | 1             |
| R250   | Automatic Fixed Interval | 5621.6        | 0.0034 | 0.0001         | Trapezoid | 46.11 | 1             |
| R270   | Automatic Fixed Interval | 1956.9        | 0.0037 | 0.0001         | Trapezoid | 46.11 | 1             |
| R280   | Automatic Fixed Interval | 4693.2        | 0.0118 | 0.0001         | Trapezoid | 46.11 | 1             |
| R30    | Automatic Fixed Interval | 432.13        | 0.0001 | 0.0001         | Trapezoid | 46.11 | 1             |
| R300   | Automatic Fixed Interval | 4237.5        | 0.0116 | 0.0001         | Trapezoid | 46.11 | 1             |
| R310   | Automatic Fixed Interval | 406.27        | 0.0001 | 0.0001         | Trapezoid | 46.11 | 1             |
| R320   | Automatic Fixed Interval | 1027.8        | 0.0553 | 0.0001         | Trapezoid | 46.11 | 1             |
| R350   | Automatic Fixed Interval | 640.42        | 0.0084 | 0.0001         | Trapezoid | 46.11 | 1             |
| R380   | Automatic Fixed Interval | 1780.5        | 0.0214 | 0.0001         | Trapezoid | 46.11 | 1             |
| R40    | Automatic Fixed Interval | 78.284        | 0.0001 | 0.0001         | Trapezoid | 46.11 | 1             |
| R410   | Automatic Fixed Interval | 691.13        | 0.031  | 0.0001         | Trapezoid | 46.11 | 1             |
| R420   | Automatic Fixed Interval | 1581.2        | 0.0431 | 0.0001         | Trapezoid | 46.11 | 1             |
| R60    | Automatic Fixed Interval | 2810.1        | 0.0012 | 0.0001         | Trapezoid | 46.11 | 1             |
| R80    | Automatic Fixed Interval | 3072.9        | 0.0033 | 0.0001         | Trapezoid | 46.11 | 1             |
| R940   | Automatic Fixed Interval | 460.42        | 0.0028 | 0.0001         | Trapezoid | 46.11 | 1             |

## Annex 11. Alubijid Field Validation Points

| Point<br>Number | Validation Coordinates |               |                  |                          |       |                 | Rain                |
|-----------------|------------------------|---------------|------------------|--------------------------|-------|-----------------|---------------------|
|                 | Lat                    | Long          | Model<br>Var (m) | Validation<br>Points (m) | Error | Event/Date      | Return/<br>Scenario |
| 1               | 8.510848525            | 124.435297278 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 2               | 8.512294991            | 124.439254123 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 3               | 8.516109427            | 124.441074757 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 4               | 8.518891000            | 124.434086999 | 0.34             | 0.50                     | 0.16  | Ondoy/25Nov2009 | 5YR                 |
| 5               | 8.518969999            | 124.433839000 | 0.67             | 0.50                     | -0.17 | Ondoy/25Nov2009 | 5YR                 |
| 6               | 8.521616000            | 124.433596000 | 0.20             | 0.50                     | 0.30  | Ondoy/25Nov2009 | 5YR                 |
| 7               | 8.522198796            | 124.440307393 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 8               | 8.522490999            | 124.434282000 | 0.50             | 1.00                     | 0.50  | Ondoy/25Nov2009 | 5YR                 |
| 9               | 8.524058573            | 124.435103992 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 10              | 8.524310999            | 124.435431999 | 0.05             | 1.00                     | 0.95  | Ondoy/25Nov2009 | 5YR                 |
| 11              | 8.528258999            | 124.434445000 | 0.31             | 1.00                     | 0.69  | Ondoy/25Nov2009 | 5YR                 |
| 12              | 8.529125768            | 124.444787353 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 13              | 8.531336076            | 124.435299206 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 14              | 8.535649403            | 124.447881448 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |

Table A-11.1. Sibalom Field Validation Points

| Point<br>Number | Validation Coordinates |               |                  |                          |       |                 | Rain                |
|-----------------|------------------------|---------------|------------------|--------------------------|-------|-----------------|---------------------|
|                 | Lat                    | Long          | Model<br>Var (m) | Validation<br>Points (m) | Error | Event/Date      | Return/<br>Scenario |
| 15              | 8.537102658            | 124.441897189 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 16              | 8.537491000            | 124.437823000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 17              | 8.539205999            | 124.441247000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 18              | 8.539572889            | 124.445625124 | 1.68             | 0.00                     | -1.68 | Ondoy/25Nov2009 | 5YR                 |
| 19              | 8.540997393            | 124.450950734 | 1.72             | 0.00                     | -1.72 | Ondoy/25Nov2009 | 5YR                 |
| 20              | 8.542094836            | 124.446228621 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 21              | 8.542258999            | 124.442645000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 22              | 8.542730184            | 124.450813438 | 2.08             | 0.00                     | -2.08 | Ondoy/25Nov2009 | 5YR                 |
| 23              | 8.543139808            | 124.453779626 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 24              | 8.543899375            | 124.450914440 | 2.01             | 0.00                     | -2.01 | Ondoy/25Nov2009 | 5YR                 |
| 25              | 8.544603958            | 124.452092936 | 1.53             | 0.00                     | -1.53 | Ondoy/25Nov2009 | 5YR                 |
| 26              | 8.544976000            | 124.448885999 | 0.05             | 1.00                     | 0.95  | Ondoy/25Nov2009 | 5YR                 |
| 27              | 8.546195514            | 124.444579063 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 28              | 8.546970924            | 124.449721025 | 0.07             | 0.00                     | -0.07 | Ondoy/25Nov2009 | 5YR                 |
| 29              | 8.547276361            | 124.451860673 | 3.86             | 1.40                     | -2.46 | Ondoy/25Nov2009 | 5YR                 |

| Point<br>Number | Validation Coordinates |               |                  |                          |       |                 | Rain                |
|-----------------|------------------------|---------------|------------------|--------------------------|-------|-----------------|---------------------|
|                 | Lat                    | Long          | Model<br>Var (m) | Validation<br>Points (m) | Error | Event/Date      | Return/<br>Scenario |
| 30              | 8.548644119            | 124.455736297 | 0.71             | 0.00                     | -0.71 | Ondoy/25Nov2009 | 5YR                 |
| 31              | 8.549189446            | 124.448966402 | 1.40             | 0.00                     | -1.40 | Ondoy/25Nov2009 | 5YR                 |
| 32              | 8.550570509            | 124.458284843 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 33              | 8.550927182            | 124.456308698 | 1.44             | 0.00                     | -1.44 | Ondoy/25Nov2009 | 5YR                 |
| 34              | 8.551668143            | 124.453149475 | 1.06             | 1.80                     | 0.74  | Ondoy/25Nov2009 | 5YR                 |
| 35              | 8.552052202            | 124.450922655 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 36              | 8.552356129            | 124.455037499 | 2.26             | 1.80                     | -0.46 | Ondoy/25Nov2009 | 5YR                 |
| 37              | 8.554954854            | 124.463500287 | 0.57             | 4.50                     | 3.93  | Ondoy/25Nov2009 | 5YR                 |
| 38              | 8.555267080            | 124.454471050 | 1.48             | 1.30                     | -0.18 | Ondoy/25Nov2009 | 5YR                 |
| 39              | 8.555291891            | 124.456523191 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 40              | 8.555313013            | 124.451639139 | 2.65             | 3.20                     | 0.55  | Ondoy/25Nov2009 | 5YR                 |
| 41              | 8.555406974            | 124.464280139 | 1.14             | 5.00                     | 3.86  | Ondoy/25Nov2009 | 5YR                 |
| 42              | 8.555499175            | 124.450016068 | 0.34             | 0.00                     | -0.34 | Ondoy/25Nov2009 | 5YR                 |
| 43              | 8.555569248            | 124.454160919 | 2.21             | 2.20                     | -0.01 | Ondoy/25Nov2009 | 5YR                 |
| 44              | 8.555708723            | 124.460008386 | 2.26             | 4.20                     | 1.94  | Ondoy/25Nov2009 | 5YR                 |

| Point<br>Number | Validation Coordinates |               |                  |                          |       |                 | Rain                |
|-----------------|------------------------|---------------|------------------|--------------------------|-------|-----------------|---------------------|
|                 | Lat                    | Long          | Model<br>Var (m) | Validation<br>Points (m) | Error | Event/Date      | Return/<br>Scenario |
| 45              | 8.555811904            | 124.452412118 | 2.74             | 2.90                     | 0.16  | Ondoy/25Nov2009 | 5YR                 |
| 46              | 8.556115245            | 124.458107287 | 2.24             | 3.80                     | 1.56  | Ondoy/25Nov2009 | 5YR                 |
| 47              | 8.556241477            | 124.451411487 | 1.67             | 1.70                     | 0.03  | Ondoy/25Nov2009 | 5YR                 |
| 48              | 8.556322446            | 124.454827615 | 2.46             | 2.60                     | 0.14  | Ondoy/25Nov2009 | 5YR                 |
| 49              | 8.556940611            | 124.457540670 | 1.38             | 2.60                     | 1.22  | Ondoy/25Nov2009 | 5YR                 |
| 50              | 8.557084528            | 124.452059660 | 0.82             | 0.90                     | 0.08  | Ondoy/25Nov2009 | 5YR                 |
| 51              | 8.557413854            | 124.459719043 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 52              | 8.557591717            | 124.457625663 | 2.13             | 3.10                     | 0.97  | Ondoy/25Nov2009 | 5YR                 |
| 53              | 8.557696491            | 124.453664795 | 2.70             | 0.00                     | -2.70 | Ondoy/25Nov2009 | 5YR                 |
| 54              | 8.558075018            | 124.462693529 | 0.65             | 5.60                     | 4.95  | Ondoy/25Nov2009 | 5YR                 |
| 55              | 8.558102091            | 124.455712661 | 2.24             | 2.70                     | 0.46  | Ondoy/25Nov2009 | 5YR                 |
| 56              | 8.558817990            | 124.460426643 | 2.19             | 6.00                     | 3.81  | Ondoy/25Nov2009 | 5YR                 |
| 57              | 8.559030220            | 124.456661911 | 0.99             | 2.40                     | 1.41  | Ondoy/25Nov2009 | 5YR                 |
| 58              | 8.559097274            | 124.461029218 | 0.34             | 4.30                     | 3.96  | Ondoy/25Nov2009 | 5YR                 |
| 59              | 8.559166006            | 124.463192084 | 1.57             | 6.20                     | 4.63  | Ondoy/25Nov2009 | 5YR                 |

| Point<br>Number | Validation Coordinates |               |                  |                          |       |                 | Rain                |
|-----------------|------------------------|---------------|------------------|--------------------------|-------|-----------------|---------------------|
|                 | Lat                    | Long          | Model<br>Var (m) | Validation<br>Points (m) | Error | Event/Date      | Return/<br>Scenario |
| 60              | 8.559242366            | 124.451624388 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 61              | 8.559444620            | 124.453665213 | 0.34             | 0.00                     | -0.34 | Ondoy/25Nov2009 | 5YR                 |
| 62              | 8.560029426            | 124.458650937 | 0.66             | 4.00                     | 3.34  | Ondoy/25Nov2009 | 5YR                 |
| 63              | 8.560286080            | 124.454615134 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 64              | 8.560342071            | 124.461518469 | 0.32             | 0.00                     | -0.32 | Ondoy/25Nov2009 | 5YR                 |
| 65              | 8.560673659            | 124.463728778 | 0.77             | 5.60                     | 4.83  | Ondoy/25Nov2009 | 5YR                 |
| 66              | 8.560889999            | 124.458159999 | 0.07             | 2.50                     | 2.43  | Ondoy/25Nov2009 | 5YR                 |
| 67              | 8.560974000            | 124.458176000 | 0.05             | 0.10                     | 0.05  | Ondoy/25Nov2009 | 5YR                 |
| 68              | 8.560995356            | 124.482435006 | 0.81             | 0.00                     | -0.81 | Ondoy/25Nov2009 | 5YR                 |
| 69              | 8.561073141            | 124.469532910 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 70              | 8.561427024            | 124.462627898 | 1.91             | 6.30                     | 4.39  | Ondoy/25Nov2009 | 5YR                 |
| 71              | 8.561676303            | 124.464912721 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 72              | 8.561861543            | 124.480916457 | 1.25             | 0.00                     | -1.25 | Ondoy/25Nov2009 | 5YR                 |
| 73              | 8.561958999            | 124.476511999 | 0.17             | 1.50                     | 1.33  | Ondoy/25Nov2009 | 5YR                 |
| 74              | 8.562255999            | 124.470818000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |

|                 | Validation  | Coordinates   |                  |                          |       |                 | Rain                |
|-----------------|-------------|---------------|------------------|--------------------------|-------|-----------------|---------------------|
| Point<br>Number | Lat         | Long          | Model<br>Var (m) | Validation<br>Points (m) | Error | Event/Date      | Return/<br>Scenario |
| 75              | 8.562317015 | 124.459482924 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 76              | 8.562294999 | 124.479348000 | 0.81             | 0.20                     | -0.61 | Ondoy/25Nov2009 | 5YR                 |
| 77              | 8.562343999 | 124.470769999 | 0.05             | 1.20                     | 1.15  | Ondoy/25Nov2009 | 5YR                 |
| 78              | 8.562340401 | 124.472051672 | 1.11             | 2.50                     | 1.39  | Ondoy/25Nov2009 | 5YR                 |
| 79              | 8.563613779 | 124.461166765 | 1.36             | 0.00                     | -1.36 | Ondoy/25Nov2009 | 5YR                 |
| 80              | 8.563683349 | 124.463996579 | 0.66             | 0.00                     | -0.66 | Ondoy/25Nov2009 | 5YR                 |
| 81              | 8.563933214 | 124.464906184 | 2.39             | 3.60                     | 1.21  | Ondoy/25Nov2009 | 5YR                 |
| 82              | 8.564360000 | 124.472233000 | 0.05             | 0.20                     | 0.15  | Ondoy/25Nov2009 | 5YR                 |
| 83              | 8.564649999 | 124.478890999 | 0.12             | 1.50                     | 1.38  | Ondoy/25Nov2009 | 5YR                 |
| 84              | 8.564956309 | 124.471439877 | 0.65             | 0.00                     | -0.65 | Ondoy/25Nov2009 | 5YR                 |
| 85              | 8.565328968 | 124.463819386 | 0.31             | 0.00                     | -0.31 | Ondoy/25Nov2009 | 5YR                 |
| 86              | 8.565634555 | 124.480637231 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 87              | 8.565925508 | 124.464825466 | 0.60             | 0.00                     | -0.60 | Ondoy/25Nov2009 | 5YR                 |
| 88              | 8.565955767 | 124.461483266 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 89              | 8.566175959 | 124.473669715 | 0.70             | 3.60                     | 2.90  | Ondoy/25Nov2009 | 5YR                 |

|                 | Validation  | Coordinates   |                  |                          |       |                 | Rain                |
|-----------------|-------------|---------------|------------------|--------------------------|-------|-----------------|---------------------|
| Point<br>Number | Lat         | Long          | Model<br>Var (m) | Validation<br>Points (m) | Error | Event/Date      | Return/<br>Scenario |
| 90              | 8.566468000 | 124.471910999 | 0.56             | 2.00                     | 1.44  | Ondoy/25Nov2009 | 5YR                 |
| 91              | 8.566593378 | 124.469806244 | 0.05             | 0.80                     | 0.75  | Ondoy/25Nov2009 | 5YR                 |
| 92              | 8.567142141 | 124.472816688 | 0.38             | 2.20                     | 1.82  | Ondoy/25Nov2009 | 5YR                 |
| 93              | 8.567235851 | 124.465428292 | 0.36             | 0.00                     | -0.36 | Ondoy/25Nov2009 | 5YR                 |
| 94              | 8.567632399 | 124.463250338 | 0.76             | 0.00                     | -0.76 | Ondoy/25Nov2009 | 5YR                 |
| 95              | 8.567948000 | 124.472633000 | 0.05             | 2.00                     | 1.95  | Ondoy/25Nov2009 | 5YR                 |
| 96              | 8.568317000 | 124.478793000 | 0.34             | 1.50                     | 1.16  | Ondoy/25Nov2009 | 5YR                 |
| 97              | 8.568607000 | 124.478593999 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 98              | 8.568871915 | 124.462986057 | 0.36             | 0.00                     | -0.36 | Ondoy/25Nov2009 | 5YR                 |
| 99              | 8.569234768 | 124.467607671 | 4.92             | 5.20                     | 0.28  | Ondoy/25Nov2009 | 5YR                 |
| 100             | 8.569275504 | 124.460552036 | 0.70             | 0.00                     | -0.70 | Ondoy/25Nov2009 | 5YR                 |
| 101             | 8.569536999 | 124.479491999 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 102             | 8.569942999 | 124.477104000 | 0.05             | 1.00                     | 0.95  | Ondoy/25Nov2009 | 5YR                 |
| 103             | 8.570473445 | 124.464928312 | 1.25             | 0.00                     | -1.25 | Ondoy/25Nov2009 | 5YR                 |
| 104             | 8.571013000 | 124.477842000 | 0.05             | 0.53                     | 0.48  | Ondoy/25Nov2009 | 5YR                 |

|                 | Validation  | Coordinates   |                  |                          |       |                 | Rain                |
|-----------------|-------------|---------------|------------------|--------------------------|-------|-----------------|---------------------|
| Point<br>Number | Lat         | Long          | Model<br>Var (m) | Validation<br>Points (m) | Error | Event/Date      | Return/<br>Scenario |
| 105             | 8.571056999 | 124.472923999 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 106             | 8.571352999 | 124.485483000 | 1.01             | 1.00                     | -0.01 | Ondoy/25Nov2009 | 5YR                 |
| 107             | 8.572522999 | 124.479243000 | 0.49             | 1.00                     | 0.51  | Ondoy/25Nov2009 | 5YR                 |
| 108             | 8.572884416 | 124.465375906 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 109             | 8.572886000 | 124.475217000 | 0.22             | 1.52                     | 1.30  | Ondoy/25Nov2009 | 5YR                 |
| 110             | 8.573069999 | 124.490074999 | 1.28             | 1.80                     | 0.52  | Ondoy/25Nov2009 | 5YR                 |
| 111             | 8.573197999 | 124.481685000 | 0.64             | 1.80                     | 1.16  | Ondoy/25Nov2009 | 5YR                 |
| 112             | 8.573390000 | 124.474235999 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 113             | 8.573327000 | 124.508699999 | 0.53             | 0.86                     | 0.33  | Ondoy/25Nov2009 | 5YR                 |
| 114             | 8.573592000 | 124.505026999 | 0.78             | 1.20                     | 0.42  | Ondoy/25Nov2009 | 5YR                 |
| 115             | 8.573899548 | 124.467203579 | 1.51             | 0.00                     | -1.51 | Ondoy/25Nov2009 | 5YR                 |
| 116             | 8.574085291 | 124.470893544 | 0.60             | 0.00                     | -0.60 | Ondoy/25Nov2009 | 5YR                 |
| 117             | 8.574012999 | 124.501738000 | 0.06             | 0.00                     | -0.06 | Ondoy/25Nov2009 | 5YR                 |
| 118             | 8.574893977 | 124.469486139 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 119             | 8.575104000 | 124.481303000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |

|                 | Validation  | Coordinates   |                  |                          |       |                 | Rain                |
|-----------------|-------------|---------------|------------------|--------------------------|-------|-----------------|---------------------|
| Point<br>Number | Lat         | Long          | Model<br>Var (m) | Validation<br>Points (m) | Error | Event/Date      | Return/<br>Scenario |
| 120             | 8.575272999 | 124.481921999 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 121             | 8.575237000 | 124.503635999 | 0.09             | 0.00                     | -0.09 | Ondoy/25Nov2009 | 5YR                 |
| 122             | 8.575441999 | 124.494538999 | 0.05             | 1.00                     | 0.95  | Ondoy/25Nov2009 | 5YR                 |
| 123             | 8.575507000 | 124.499348000 | 0.05             | 0.47                     | 0.42  | Ondoy/25Nov2009 | 5YR                 |
| 124             | 8.575648851 | 124.467638181 | 1.19             | 0.00                     | -1.19 | Ondoy/25Nov2009 | 5YR                 |
| 125             | 8.576051999 | 124.500717999 | 0.80             | 0.00                     | -0.80 | Ondoy/25Nov2009 | 5YR                 |
| 126             | 8.576232064 | 124.467002330 | 0.66             | 0.00                     | -0.66 | Ondoy/25Nov2009 | 5YR                 |
| 127             | 8.576422920 | 124.464107975 | 0.32             | 0.00                     | -0.32 | Ondoy/25Nov2009 | 5YR                 |
| 128             | 8.576372999 | 124.477768999 | 0.20             | 0.00                     | -0.20 | Ondoy/25Nov2009 | 5YR                 |
| 129             | 8.576523000 | 124.483764999 | 0.05             | 0.86                     | 0.81  | Ondoy/25Nov2009 | 5YR                 |
| 130             | 8.576784000 | 124.480816000 | 0.05             | 0.70                     | 0.65  | Ondoy/25Nov2009 | 5YR                 |
| 131             | 8.576846000 | 124.486770999 | 1.51             | 1.80                     | 0.29  | Ondoy/25Nov2009 | 5YR                 |
| 132             | 8.577275000 | 124.494130999 | 1.33             | 0.00                     | -1.33 | Ondoy/25Nov2009 | 5YR                 |
| 133             | 8.577492000 | 124.479297999 | 0.24             | 0.47                     | 0.23  | Ondoy/25Nov2009 | 5YR                 |
| 134             | 8.578082999 | 124.485486000 | 0.20             | 0.86                     | 0.66  | Ondoy/25Nov2009 | 5YR                 |

|                 | Validation  | Coordinates   |                  |                          |       |                 | Rain                |
|-----------------|-------------|---------------|------------------|--------------------------|-------|-----------------|---------------------|
| Point<br>Number | Lat         | Long          | Model<br>Var (m) | Validation<br>Points (m) | Error | Event/Date      | Return/<br>Scenario |
| 135             | 8.578842000 | 124.478665999 | 0.17             | 0.47                     | 0.30  | Ondoy/25Nov2009 | 5YR                 |
| 136             | 8.578992000 | 124.480290000 | 0.05             | 0.20                     | 0.15  | Ondoy/25Nov2009 | 5YR                 |
| 137             | 8.579684000 | 124.476954000 | 0.65             | 1.30                     | 0.65  | Ondoy/25Nov2009 | 5YR                 |
| 138             | 8.580102000 | 124.487800000 | 0.05             | 0.80                     | 0.75  | Ondoy/25Nov2009 | 5YR                 |
| 139             | 8.580988000 | 124.477951999 | 0.33             | 0.47                     | 0.14  | Ondoy/25Nov2009 | 5YR                 |
| 140             | 8.583294000 | 124.487689000 | 0.05             | 0.86                     | 0.81  | Ondoy/25Nov2009 | 5YR                 |
| 141             | 8.583520999 | 124.481499000 | 0.09             | 0.67                     | 0.58  | Ondoy/25Nov2009 | 5YR                 |
| 142             | 8.584399000 | 124.489346000 | 0.63             | 1.20                     | 0.57  | Ondoy/25Nov2009 | 5YR                 |
| 143             | 8.584559000 | 124.480590000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 144             | 8.586381000 | 124.485559000 | 0.05             | 0.70                     | 0.65  | Ondoy/25Nov2009 | 5YR                 |
| 145             | 8.587757999 | 124.482352000 | 0.06             | 1.00                     | 0.94  | Ondoy/25Nov2009 | 5YR                 |
| 146             | 8.587777000 | 124.478602000 | 0.05             | 0.47                     | 0.42  | Ondoy/25Nov2009 | 5YR                 |
| 147             | 8.587775999 | 124.482381999 | 0.06             | 1.80                     | 1.74  | Ondoy/25Nov2009 | 5YR                 |
| 148             | 8.587857000 | 124.477541000 | 0.05             | 1.80                     | 1.75  | Ondoy/25Nov2009 | 5YR                 |
| 149             | 8.587926999 | 124.477759000 | 0.05             | 1.00                     | 0.95  | Ondoy/25Nov2009 | 5YR                 |

|                 | Validation  | Coordinates   |                  |                          |       |                 | Rain                |
|-----------------|-------------|---------------|------------------|--------------------------|-------|-----------------|---------------------|
| Point<br>Number | Lat         | Long          | Model<br>Var (m) | Validation<br>Points (m) | Error | Event/Date      | Return/<br>Scenario |
| 150             | 8.588068000 | 124.472737000 | 0.81             | 1.80                     | 0.99  | Ondoy/25Nov2009 | 5YR                 |
| 151             | 8.588445000 | 124.474780999 | 0.05             | 0.86                     | 0.81  | Ondoy/25Nov2009 | 5YR                 |
| 152             | 8.589693999 | 124.473824000 | 0.05             | 0.47                     | 0.42  | Ondoy/25Nov2009 | 5YR                 |
| 153             | 8.523087000 | 124.437839000 | 1.68             | 0.00                     | -1.68 | Ondoy/25Nov2009 | 5YR                 |
| 154             | 8.529306000 | 124.445692000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 155             | 8.529301000 | 124.445620000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 156             | 8.532048000 | 124.446661000 | 0.07             | 0.00                     | -0.07 | Ondoy/25Nov2009 | 5YR                 |
| 157             | 8.531837000 | 124.443824000 | 0.62             | 3.00                     | 2.38  | Ondoy/25Nov2009 | 5YR                 |
| 158             | 8.533108000 | 124.445174000 | 1.01             | 3.00                     | 1.99  | Ondoy/25Nov2009 | 5YR                 |
| 159             | 8.557752000 | 124.456815000 | 1.60             | 0.05                     | -1.55 | Ondoy/25Nov2009 | 5YR                 |
| 160             | 8.557790000 | 124.455319000 | 1.77             | 1.57                     | -0.20 | Ondoy/25Nov2009 | 5YR                 |
| 161             | 8.562826000 | 124.464283000 | 0.38             | 0.00                     | -0.38 | Ondoy/25Nov2009 | 5YR                 |
| 162             | 8.562027000 | 124.466003000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 163             | 8.562586000 | 124.466862000 | 0.34             | 3.00                     | 2.66  | Ondoy/25Nov2009 | 5YR                 |
| 164             | 8.563938000 | 124.466308000 | 0.48             | 0.00                     | -0.48 | Ondoy/25Nov2009 | 5YR                 |

|                 | Validation  | Coordinates   |                  |                          |       |                 | Rain                |
|-----------------|-------------|---------------|------------------|--------------------------|-------|-----------------|---------------------|
| Point<br>Number | Lat         | Long          | Model<br>Var (m) | Validation<br>Points (m) | Error | Event/Date      | Return/<br>Scenario |
| 165             | 8.563951000 | 124.467301000 | 0.36             | 1.58                     | 1.22  | Ondoy/25Nov2009 | 5YR                 |
| 166             | 8.563007000 | 124.468338000 | 0.32             | 1.52                     | 1.20  | Ondoy/25Nov2009 | 5YR                 |
| 167             | 8.563125000 | 124.468568000 | 0.33             | 0.00                     | -0.33 | Ondoy/25Nov2009 | 5YR                 |
| 168             | 8.562382000 | 124.467848000 | 0.41             | 0.00                     | -0.41 | Ondoy/25Nov2009 | 5YR                 |
| 169             | 8.580856000 | 124.476951000 | 0.20             | 1.20                     | 1.00  | Ondoy/25Nov2009 | 5YR                 |
| 170             | 8.581222000 | 124.476773000 | 0.34             | 1.20                     | 0.86  | Ondoy/25Nov2009 | 5YR                 |
| 171             | 8.583046000 | 124.479476000 | 0.05             | 0.50                     | 0.45  | Ondoy/25Nov2009 | 5YR                 |
| 172             | 8.576172000 | 124.483780000 | 0.24             | 0.25                     | 0.01  | Ondoy/25Nov2009 | 5YR                 |
| 173             | 8.575478000 | 124.483980000 | 0.29             | 0.00                     | -0.29 | Ondoy/25Nov2009 | 5YR                 |
| 174             | 8.575532000 | 124.483220000 | 0.32             | 0.00                     | -0.32 | Ondoy/25Nov2009 | 5YR                 |
| 175             | 8.575227000 | 124.482518000 | 0.17             | 0.60                     | 0.43  | Ondoy/25Nov2009 | 5YR                 |
| 176             | 8.574929000 | 124.481179000 | 0.05             | 0.60                     | 0.55  | Ondoy/25Nov2009 | 5YR                 |
| 177             | 8.574368000 | 124.480737000 | 0.05             | 0.60                     | 0.55  | Ondoy/25Nov2009 | 5YR                 |
| 178             | 8.573301000 | 124.479892000 | 0.34             | 0.60                     | 0.26  | Ondoy/25Nov2009 | 5YR                 |
| 179             | 8.573128000 | 124.480033000 | 0.38             | 1.20                     | 0.82  | Ondoy/25Nov2009 | 5YR                 |

|                 | Validation  | Coordinates   |                  |                          |       |                 | Rain                |
|-----------------|-------------|---------------|------------------|--------------------------|-------|-----------------|---------------------|
| Point<br>Number | Lat         | Long          | Model<br>Var (m) | Validation<br>Points (m) | Error | Event/Date      | Return/<br>Scenario |
| 180             | 8.594046000 | 124.468489000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 181             | 8.593120000 | 124.468750000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 182             | 8.592255000 | 124.468806000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 183             | 8.589677000 | 124.466109000 | 0.10             | 0.00                     | -0.10 | Ondoy/25Nov2009 | 5YR                 |
| 184             | 8.587179000 | 124.466491000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 185             | 8.582814000 | 124.468451000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 186             | 8.583831000 | 124.469035000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 187             | 8.589719000 | 124.473328000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 188             | 8.587780000 | 124.478869000 | 0.10             | 0.00                     | -0.10 | Ondoy/25Nov2009 | 5YR                 |
| 189             | 8.560081000 | 124.473811000 | 0.65             | 0.00                     | -0.65 | Ondoy/25Nov2009 | 5YR                 |
| 190             | 8.559581000 | 124.472889000 | 0.71             | 0.00                     | -0.71 | Ondoy/25Nov2009 | 5YR                 |
| 191             | 8.559265000 | 124.471911000 | 0.05             | 3.00                     | 2.95  | Ondoy/25Nov2009 | 5YR                 |
| 192             | 8.560419000 | 124.474921000 | 0.05             | 0.00                     | -0.05 | Ondoy/25Nov2009 | 5YR                 |
| 193             | 8.561483000 | 124.474112000 | 0.49             | 1.50                     | 1.01  | Ondoy/25Nov2009 | 5YR                 |
| 194             | 8.562858000 | 124.471290000 | 0.29             | 0.00                     | -0.29 | Ondoy/25Nov2009 | 5YR                 |

|                 | Validation  | Coordinates   |                  |                          |       |                 | Rain                |
|-----------------|-------------|---------------|------------------|--------------------------|-------|-----------------|---------------------|
| Point<br>Number | Lat         | Long          | Model<br>Var (m) | Validation<br>Points (m) | Error | Event/Date      | Return/<br>Scenario |
| 195             | 8.560218000 | 124.469597000 | 0.29             | 0.00                     | -0.29 | Ondoy/25Nov2009 | 5YR                 |
| 196             | 8.567137000 | 124.474723000 | 0.20             | 6.00                     | 5.80  | Ondoy/25Nov2009 | 5YR                 |
| 197             | 8.566098000 | 124.474671000 | 0.90             | 0.00                     | -0.90 | Ondoy/25Nov2009 | 5YR                 |
| 198             | 8.566007000 | 124.474993000 | 1.14             | 0.00                     | -1.14 | Ondoy/25Nov2009 | 5YR                 |
| 199             | 8.566227000 | 124.475572000 | 0.65             | 0.00                     | -0.65 | Ondoy/25Nov2009 | 5YR                 |
| 200             | 8.569359000 | 124.474715000 | 0.05             | 1.20                     | 1.15  | Ondoy/25Nov2009 | 5YR                 |
| 201             | 8.568866000 | 124.474985000 | 0.05             | 0.50                     | 0.45  | Ondoy/25Nov2009 | 5YR                 |
| 202             | 8.568349000 | 124.475828000 | 1.54             | 0.00                     | -1.54 | Ondoy/25Nov2009 | 5YR                 |

RMSE 1.334736

## Annex 12. Educational Institutions Affected by Flooding in Alubijid Floodplain

Table A-12.1. Educational Institutions Affected by Flooding in the Alubijid Floodplain

|                                    | Misamis Oriental |                   |         |          |  |  |  |  |  |
|------------------------------------|------------------|-------------------|---------|----------|--|--|--|--|--|
|                                    | Alul             | oijid             |         |          |  |  |  |  |  |
| Building Name                      | Parangay         | Rainfall Scenario |         |          |  |  |  |  |  |
| bulluling Marrie                   | Barangay         | 5-year            | 25-year | 100-year |  |  |  |  |  |
| Baybay Day Care Center             | Baybay           |                   | Low     | Medium   |  |  |  |  |  |
| Baybay Elem School                 | Baybay           |                   |         | Low      |  |  |  |  |  |
| Benigwayan Elem School             | Benigwayan       |                   |         |          |  |  |  |  |  |
| Catholic Learning Center           | Benigwayan       |                   |         |          |  |  |  |  |  |
| Day Care Center                    | Benigwayan       |                   |         |          |  |  |  |  |  |
| Sampatutlog Integrated School      | Benigwayan       |                   |         |          |  |  |  |  |  |
| School                             | Calatcat         |                   |         |          |  |  |  |  |  |
| Day Care Center                    | Lagtang          | Low               | Low     | Low      |  |  |  |  |  |
| Lagtang Day Care Center            | Lagtang          |                   |         |          |  |  |  |  |  |
| Lagtang Elem School                | Lagtang          |                   |         |          |  |  |  |  |  |
| Loguilo Elem School                | Lagtang          | Low               | Medium  | Medium   |  |  |  |  |  |
| Alubijid Elem School               | Lanao            |                   |         |          |  |  |  |  |  |
| Catholic Learning Center           | Lanao            |                   |         |          |  |  |  |  |  |
| Elementary School                  | Lanao            |                   |         |          |  |  |  |  |  |
| Loguilo Day Care Center            | Loguilo          |                   | Medium  | Medium   |  |  |  |  |  |
| Covered Stage                      | Lourdes          | Low               | Medium  | Medium   |  |  |  |  |  |
| Lourdes Day Care Center            | Lourdes          |                   |         | Low      |  |  |  |  |  |
| Lourdes School                     | Lourdes          | Medium            | High    | High     |  |  |  |  |  |
| Lumbo Elem School                  | Lumbo            |                   | Low     | Low      |  |  |  |  |  |
| Alubijid National High School      | Poblacion        |                   |         |          |  |  |  |  |  |
| Bukidnon State University<br>Annex | Poblacion        | Low               | Medium  | Medium   |  |  |  |  |  |
| Elementary School                  | Poblacion        |                   |         |          |  |  |  |  |  |
| Day Care Center                    | Talaba           |                   |         |          |  |  |  |  |  |
| Talaba Elem School                 | Talaba           |                   |         |          |  |  |  |  |  |

| El Salvador City         |              |                   |         |          |  |  |  |  |
|--------------------------|--------------|-------------------|---------|----------|--|--|--|--|
| Duilding Nome            | Dereneru     | Rainfall Scenario |         |          |  |  |  |  |
| Building Name            | Barangay     | 5-year            | 25-year | 100-year |  |  |  |  |
| Elem School              | Bolisong     |                   |         |          |  |  |  |  |
| Kalabaylabay Elem School | Kalabaylabay |                   |         |          |  |  |  |  |

| Laguindingan             |           |                   |         |          |  |  |  |  |
|--------------------------|-----------|-------------------|---------|----------|--|--|--|--|
| Puilding Name            | Dorongou  | Rainfall Scenario |         |          |  |  |  |  |
| Building Name            | Barangay  | 5-year            | 25-year | 100-year |  |  |  |  |
| School                   | Kibaghot  |                   |         |          |  |  |  |  |
| Laguindingan Elem School | Poblacion |                   |         |          |  |  |  |  |

## Annex 13. Medical Institutions Affected by Flooding in Alubijid Floodplain

Table A-13.1. Medical Institutions Affected by Flooding in the Alubijid Floodplain

| Misamis Oriental             |            |                   |         |          |
|------------------------------|------------|-------------------|---------|----------|
| Alubijid                     |            |                   |         |          |
| Building Name                | Barangay   | Rainfall Scenario |         |          |
|                              |            | 5-year            | 25-year | 100-year |
| Brgy Health Center           | Benigwayan |                   |         |          |
| Lagtang Health Center        | Lagtang    |                   |         |          |
| Alubijid Health Center       | Lanao      |                   |         |          |
| Alubijid Provincial Hospital | Lanao      |                   |         |          |
| Lourdes Health Center        | Lourdes    | Low               | Medium  | Medium   |

LiDAR Surveys and Flood Mapping of Alubijid River