Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Balatucan River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Central Mindanao University (CMU)

Balingasag

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines and Central Mindanao University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grant-in-Aid Program and is to be cited as:

E.C. Paringit, and G. R. Puno, (Eds.). (2017), LiDAR Surveys and Flood Mapping Report of Balatucan River/ Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry. 103pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. George R. Puno Project Leader, PHIL-LIDAR 1 Program Central Mindanao University Maramag, Bukidnon 8714 geopuno@yahoo.com

Enrico C. Paringit, Dr. Eng. Program Leader, PHIL-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 987-621-430-009-9

TABLE OF CONTENTS

LIST OF TABLES	iv
LIST OF FIGURES	v
LIST OF ACRONYMS AND ABBREVIATIONS	. vii
CHAPTER 1: OVERVIEW OF THE PROGRAM AND BALATUCAN RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Balatucan River Basin	1
CHAPTER 2: LIDAR ACQUISITION IN BALATUCAN FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Station	
2.3 Flight Missions	. 11
2.4 Survey Coverage	. 12
CHAPTER 3: LIDAR DATA PROCESSING FOR BALATUCAN FLOODPLAIN	.14
3.1 Overview of the LiDAR Data Pre-Processing	.14
3.2 Transmittal of Acquired LiDAR Data	. 15
3.3 Trajectory Computation	.16
3.4 LiDAR Point Cloud Computation	. 18
3.5 LiDAR Data Quality Checking	. 19
3.6 LiDAR Point Cloud Classification and Rasterization	.23
3.7 LiDAR Image Processing and Orthophotograph Rectification	.25
3.8 DEM Editing and Hydro-Correction	
3.9 Mosaicking of Blocks	. 28
3.10 Mosaicking of Blocks	
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	.33
3.12 Feature Extraction	
3.12.1 Quality Checking of Digitized Features' Boundary	.35
3.12.2 Height Extraction	.36
3.12.3 Feature Attribution	.36
3.12.4 Final Quality Checking of Extracted Features	.37
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS IN THE BALATUCAN RIVER BASIN.	.38
4.1 Summary of Activities	. 38
4.2 Control Survey	. 39
4.3 Baseline Processing	.42
4.4 Network Adjustment	
4.5 Bridge Cross-section and As-built Survey and Water Level Marking	.44
4.6 Validation Points Acquisition Survey	.48
4.7 River Bathymetric Survey	.50
CHAPTER 5: FLOOD MODELING AND MAPPING	
5.1 Data Used for Hydrologic Modeling	. 52
5.1.1 Hydrometry and Rating Curves	. 52
5.1.2 Precipitation	
5.1.3 Rating Curves and River Outflow	.53
5.2 RIDF Station	.54
5.3 HMS Model	
5.4 Cross-section Data	
5.5 FLO-2D Model	
5.6 Results of HMS Calibration	
5.7 Calculated Outflow Hydrographs and Discharge Values for Different Rainfall Return Periods	
5.7.1 Hydrograph Using the Rainfall Runoff Model	.64
5.7.2 Discharge Data Using Dr. Horritts's Recommended Hydrologic Method	
5.8 River Analysis Model Simulation	
5.9 Flow Depth and Flood Hazard	
5.10 Inventory of Areas Exposed to Flooding	
5.11 Flood Validation	
REFERENCES	
ANNEXES	
Annex 1. OPTECH Technical Specification of the Pegasus Sensor	
Annex 2. NAMRIA Certificates of Reference Points Used in the LiDAR Survey	
Annex 3. Baseline Processing Reports of Reference Points Used in the LiDAR Survey	.96

Annex 4. The LiDAR Survey Team Composition	97
Annex 5. Data Transfer Sheet for Balatucan Floodplain	
Annex 6. Flight Logs for the Flight Missions	
Annex 7. Flight Status Reports	
Annex 8. Mission Summary Reports	115
Annex 9. Balatucan Model Basin Parameters	140
Annex 10. Balatucan Model Reach Parameters	143
Annex 11. Balatucan Field Validation	145
Annex 12. Educational Institutions Affected by Flooding in Balatucan Floodplain	150
Annex 13. Health Institutions Affected in Balatucan Floodplain	151

LIST OF TABLES

Table 2. Details of the recovered NAMRIA horizontal control point MSE-19 used as base station 6 Table 3. Details of the recovered NAMRIA horizontal control point MSE-31 used as base station 7 Table 4. Details of the recovered NAMRIA horizontal control point MSE-32 used as base station 7 Table 5. Details of the recovered NAMRIA horizontal control point MSE-32 used as base station 8 Table 5. Details of the recovered NAMRIA horizontal control point MSE-3241 used as base station 9 Table 6. Details of the recovered NAMRIA horizontal control point MSE-3241 used as base station 10 Table 7. Ground control points used during LIDAR data acquisition 11 Table 8. Fight missions for LIDAR data acquisition in Bialatucan Floodplain 11 Table 9. Actual parameters used during LIDAR data acquisition 12 Table 11. Self-calibration results volveyed during Balatucan Floodplain 18 Table 12. List of LIDAR blocks for Balatucan Floodplain 19 Table 13. Balatucan classification results in TerraScan 23 Table 14. LIDAR blocks with their corresponding area 32 Table 15. Shift values of each LIDAR Block of Balatucan Floodplain 36 Table 14. ULIDAR blocks with their corresponding area 33 Table 15. Valuidon statistical measures. 33 Table 15. Adjui	Table 1. Flight planning parameters for Pegasus LiDAR system	3
Table 3. Details of the recovered NAMRIA horizontal control point MSE-31 used as base station 7 Table 4. Details of the recovered NAMRIA horizontal control point MSE-32 used as base station 8 Table 5. Details of the recovered NAMRIA horizontal control point MSE-3241 used as base station 8 Table 5. Details of the recovered NAMRIA horizontal control point MSE-3241 used as base 9 Table 6. Details of the recovered NAMRIA horizontal control point MSE-3241 used as base 9 Table 7. Ground control points used during LIDAR data acquisition 10 Table 8. Fight missions for LIDAR data acquisition in Balatucan Floodplain 11 Table 9. Actual parameters used during LIDAR data acquisition in Balatucan Floodplain 12 Table 11. Self-calibration results values for Balatucan flights 18 Table 12. Litt of municipalities and cittes surveyed during Balatucan Floodplain 18 Table 13. Balatucan classification results in TerraScan 23 Table 14. LIDAR blocks with their corresponding area 27 Table 15. Selfidiation statistical measures 32 Table 14. Outal parameters used during Balatucan Floodplain 36 Table 20. Cotal length of extracted for Balatucan Floodplain 37 Table 21. Number of extracted roads for Balatucan Floodplain 37 Table 22. Number of e	Table 2. Details of the recovered NAMRIA horizontal control point MSE-19 used as base station	
for the LDAR acquisition	for the LiDAR acquisition	6
Table 4. Details of the recovered NAMRIA horizontal control point MSE-32 used as base station 8 Table 5 Details of the recovered NAMRIA horizontal control point MSE-3241 used as base station 9 Table 6. Details of the recovered NAMRIA horizontal control point MSE-3241 used as base 9 Table 6. Details of the recovered NAMRIA horizontal control point MSE-3241 used as base 10 Table 7. Ground control points used during LiDAR data acquisition 11 Table 8. Flight missions for LiDAR data acquisition in Balatucan Floodplain 11 Table 10. List of municipalities and cities surveyed during Balatucan Floodplain 12 Table 11. Self-calibration results values for Balatucan floidplain 18 Table 12. List of LiDAR blocks for Balatucan Floodplain 18 Table 13. Balatucan classification results in TerraScan 23 Table 14. LiDAR blocks with their corresponding area 32 Table 15. Shift values of each LiDAR Block of Balatucan Floodplain 36 Table 15. Quality checking ratings for Balatucan Floodplain 36 Table 15. Quality checking ratings for Balatucan Floodplain 37 Table 20. Total length of extracted roads for Balatucan Floodplain 37 Table 21. List of reference and control points used and its location (Source: NAMRIA, UP-TCAGP) 34 Table 22. List o	Table 3. Details of the recovered NAMRIA horizontal control point MSE-31 used as base station	
for the LDAR acquisition		7
Table S Details of the recovered NAMRIA horizontal control point MSE-3241 used as base station 9 Table 6. Details of the recovered NAMRIA horizontal control point MSE-3241 used as base 10 Table 6. Details of the recovered NAMRIA horizontal control point MSE-3241 used as base 10 Table 7. Ground control points used during LiDAR data acquisition 11 Table 9. Actual parameters used during LiDAR data acquisition 11 Table 10. List of municipalities and cities surveyed during Balatucan Floodplain 110 Table 11. Self-calibration results values for Balatucan flights 18 Table 12. List of LiDAR blocks for Balatucan Floodplain 19 Table 13. Balatucan classification results in TerraScan 23 Table 14. LiDAR blocks with their corresponding area 27 Table 15. Self-calibration statistical measures 32 Table 14. Collation statistical measures 33 Table 15. Self-duidtion statistical measures 33 Table 20. To reference and control points used Balatucan Floodplain 37 Table 21. Number of extracted water bodies for Balatucan Floodplain 37 Table 22. List of reference and control points used Balatucan River Basin survey 39 Table 23. Baseline processing report for Balatucan River 42 Table 24. Cont	Table 4. Details of the recovered NAMRIA horizontal control point MSE-32 used as base station	
for the UDAR acquisition 9 Table 6. Details of the recovered NAMRIA horizontal control point MSE-3241 used as base 10 Table 7. Ground control points used during LiDAR data acquisition 11 Table 8. Fight missions for UDAR data acquisition in Balatucan Floodplain 11 Table 9. Actual parameters used during LiDAR data acquisition in Balatucan Floodplain LiDAR survey 12 Table 10. List of municipalities and cities surveyed during Balatucan Floodplain LiDAR survey 12 Table 11. Self-calibration results values for Balatucan floodplain 18 Table 13. Balatucan classification results in TerraScan 23 Table 15. Shift values of each LiDAR Block of Balatucan Floodplain 28 Table 15. Nift values of each LiDAR Block of Balatucan Floodplain 36 Table 15. Nift values of each LiDAR Block of Balatucan Floodplain 36 Table 16. Calibration statistical measures. 32 Table 17. Validation statistical measures. 32 Table 20. Total length of extracted vater bodies for Balatucan Floodplain 37 Table 21. List of reference and control points used in Balatucan Floodplain 37 Table 22. List of reference and control points used in Balatucan River Basin survey 39 Table 23. Adjusted grid coordinates 43 Table 2		
Table 6. Details of the recovered NAMRIA horizontal control point MSE-3241 used as base station for the LiDAR acquisition 10 Table 7. Ground control points used during LiDAR data acquisition 11 Table 8. Flight missions for LiDAR data acquisition in Balatucan Floodplain 11 Table 9. Actual parameters used during LiDAR data acquisition 12 Table 10. List of municipalities and cities surveyed during Balatucan Floodplain 12 Table 11. Self-calibration results values for Balatucan flights 18 Table 12. List of LiDAR blocks with their corresponding area 27 Table 15. Shift values of each LiDAR Block of Balatucan Floodplain 28 Table 16. Calibration statistical measures 33 Table 18. Quality checking ratings for Balatucan Floodplain 36 Table 20. Total length of extracted or Balatucan Floodplain 36 Table 20. Total length of extracted or Balatucan Floodplain 37 Table 21. Number of extracted water bodies for Balatucan River Basin survey 39 Table 22. Adjusted grid coordinates 43 Table 23. Baseline processing report for Balatucan River Basin survey 44 Table 24. Control point constraints. 42 Table 25. Adjusted grid coordinates 43 Table 26. Adjusted g	Table 5 Details of the recovered NAMRIA horizontal control point MSE-3241 used as base statio	n
station for the LiDAR acquisition 10 Table 7. Ground control points used during LiDAR data acquisition 11 Table 8. Flight missions for LiDAR data acquisition in Balatucan Floodplain 11 Table 9. Actual parameters used during LiDAR data acquisition 12 Table 10. List of municipalities and cities surveyed during Balatucan Floodplain LiDAR survey 12 Table 11. Self-calibration results values for Balatucan flights. 18 Table 12. List of LiDAR blocks for Balatucan Floodplain 19 Table 13. Balatucan classification results in TerraScan 23 Table 14. LiDAR blocks with their corresponding area 27 Table 15. Shift values of each LiDAR Block of Balatucan Floodplain 28 Table 15. Calibration statistical measures. 32 Table 16. Calibration statistical measures. 32 Table 17. Validation statistical measures. 32 Table 20. Total length of extracted vater bodies for Balatucan Floodplain 37 Table 21. Sub of reference and control points used in Balatucan Floodplain 37 Table 22. List of reference and control points used in Balatucan Floodplain 42 Table 23. Adjusted grid coordinates. 43 Table 24. Control point constraints. 42 Table 25. Adjusted g		9
Table 7. Ground control points used during LiDAR data acquisition 11 Table 8. Flight missions for LiDAR data acquisition in Balatucan Floodplain 11 Table 10. List of municipalities and cities surveyed during Balatucan Floodplain LiDAR survey 12 Table 11. Self-calibration results values for Balatucan Floodplain 13 Table 12. List of LiDAR blocks for Balatucan Floodplain 19 Table 13. Balatucan classification results in TerraScan 23 Table 15. Shift values of each LiDAR Block of Balatucan Floodplain 28 Table 16. Calibration statistical measures 33 Table 18. Quality checking ratings for Balatucan bloiding features 33 Table 19. Buildiation statistical measures 33 Table 20. Total length of extracted for Balatucan Floodplain 37 Table 21. Number of extracted vader bodies for Balatucan Floodplain 37 Table 22. Control point constraints. 42 Table 23. Baseline processing report for Balatucan River 43 Table 24. Control point constraints. 42 Table 25. Adjusted gid coordinates 43 Table 26. Adjusted geodetic coordinates. 43 Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP) 44 Table 28. RIDF valu	Table 6. Details of the recovered NAMRIA horizontal control point MSE-3241 used as base	
Table 8. Flight missions for LiDAR data acquisition in Balatucan Floodplain 11 Table 9. Actual parameters used during LiDAR data acquisition 12 Table 10. List of municipalities and cities surveyed during Balatucan Floodplain LiDAR survey 12 Table 11. Self-calibration results values for Balatucan flights 18 Table 12. List of LiDAR blocks for Balatucan Floodplain 19 Table 13. Balatucan classification results in TerraScan 23 Table 14. LiDAR blocks with their corresponding area 27 Table 15. Shift values of each LiDAR Block of Balatucan Floodplain 28 Table 16. Calibration statistical measures. 32 Table 19. Building features extracted for Balatucan building features 33 Table 21. Number of extracted roads for Balatucan Floodplain 37 Table 22. List of reference and control points used in Balatucan River Basin survey 39 Table 23. Adjusted grid coordinates 42 Table 24. Control point constraints. 42 Table 25. Adjusted grid coordinates 43 Table 28. Range of calibrated values for Balatucan How Model. 62 Table 28. Suljusted grid coordinates 43 Table 28. Adjusted grid coordinates 43 Table 28. Adjusted grid cound park for Balatucan		
Table 9. Actual parameters used during LiDAR data acquisition 12 Table 10. List of municipalities and cities surveyed during Balatucan Floodplain LiDAR survey 12 Table 11. Self-calibration results values for Balatucan flights. 18 Table 12. List of LiDAR blocks for Balatucan Floodplain 19 Table 13. Balatucan classification results in TerraScan 23 Table 14. LiDAR blocks with their corresponding area 27 Table 15. Shift values of each LiDAR Block of Balatucan Floodplain 28 Table 15. Uididing features extracted for Balatucan Floodplain 36 Table 12. Uuliding features extracted for Balatucan Floodplain 36 Table 20. Total length of extracted roads for Balatucan Floodplain 37 Table 21. Number of extracted water bodies for Balatucan Floodplain 37 Table 22. Buiding features extracted for Balatucan River 39 Table 23. Baseline processing report for Balatucan River 42 Table 24. Control point constraints. 42 Table 25. Adjusted geodetic coordinates. 43 Table 28. RiDF values for Lumbia Rain Gauge computed by PAGASA 54 Table 29. Range of callibrated values for Balatucan HMS Model. 63 Table 29. Range of callibrated values for Balatucan HMS Model. 63	Table 7. Ground control points used during LiDAR data acquisition	11
Table 10. List of municipalities and cities surveyed during Balatucan Floodplain LiDAR survey 12 Table 11. Self-calibration results values for Balatucan flights	Table 8. Flight missions for LiDAR data acquisition in Balatucan Floodplain	11
Table 11. Self-calibration results values for Balatucan flights. 18 Table 12. List of LiDAR blocks for Balatucan Floodplain 19 Table 13. Balatucan classification results in TerraScan 23 Table 14. LiDAR blocks with their corresponding area 27 Table 15. Shift values of each LiDAR Block of Balatucan Floodplain 28 Table 16. Calibration statistical measures. 32 Table 17. Validation statistical measures. 33 Table 19. Building features extracted for Balatucan Floodplain 36 Table 20. Total length of extracted vater bodies for Balatucan Floodplain 37 Table 21. Number of extracted vater bodies for Balatucan River Dasha uncer Ploodplain 37 Table 22. List of reference and control points used in Balatucan Floodplain 37 Table 23. Baseline processing report for Balatucan River Masin survey 39 Table 24. Adjusted gedetic coordinates 43 Table 25. Adjusted gedetic coordinates 43 Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA. 54 Table 29. Range of calibrated values for Balatucan River (1) discharge generated in HEC-HMS 66 Table 30. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS 66 Table 30. Alidication of river discharge estimates		
Table 12. List of LiDAR blocks for Balatucan Floodplain 19 Table 13. Balatucan classification results in TerraScan 23 Table 14. LiDAR blocks with their corresponding area 27 Table 15. Shift values of each LiDAR Block of Balatucan Floodplain 28 Table 15. Validation statistical measures. 32 Table 17. Validation statistical measures. 33 Table 19. Building features extracted for Balatucan Floodplain 36 Table 20. Total length of extracted roads for Balatucan Floodplain 37 Table 21. Number of extracted vater bodies for Balatucan Floodplain 37 Table 22. List of reference and control points used in Balatucan River Basin survey 39 Table 23. Adjusted grid coordinates 42 Table 24. Control point constraints. 42 Table 25. Adjusted grid coordinates 43 Table 26. RiDr values for Lumbia Rain Gauge computed by PAGASA 54 Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA 54 Table 23. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS 66 Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS 66 Table 34. Validation of river discharge estimates 67 Table 35. Municipaliti		
Table 13. Balatucan classification results in TerraScan23Table 14. LiDAR blocks with their corresponding area27Table 15. Shift values of each LiDAR Block of Balatucan Floodplain28Table 15. Shift values of each LiDAR Block of Balatucan Floodplain28Table 14. UDAR blocks with their corresponding area32Table 15. Quality checking ratings for Balatucan building features33Table 14. Undity the extracted measures35Table 15. Quality checking ratings for Balatucan Floodplain36Table 20. Total length of extracted vare bodies for Balatucan Floodplain37Table 21. Number of extracted ware bodies for Balatucan Floodplain37Table 22. List of reference and control points used in Balatucan River Basin survey39Table 23. Baseline processing report for Balatucan River42Table 24. Control point constraints.42Table 25. Adjusted grid coordinates43Table 26. Adjusted grid coordinates43Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP)44Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA.54Table 29. Range of calibrated values for Balatucan HMS Model63Table 31. Neak values of the Balatucan HEC-HMS Model outflow using the Lumbia RIDF64Table 32. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-B		
Table 14. LiDAR blocks with their corresponding area 27 Table 15. Shift values of each LiDAR Block of Balatucan Floodplain 28 Table 16. Calibration statistical measures. 32 Table 17. Validation statistical measures. 33 Table 18. Quality checking ratings for Balatucan Floodplain 36 Table 20. Total length of extracted roads for Balatucan Floodplain 37 Table 21. Number of extracted water bodies for Balatucan Floodplain 37 Table 22. Stit of reference and control points used in Balatucan River Basin survey 39 Table 23. Baseline processing report for Balatucan River 42 Table 24. Control point constraints. 43 Table 25. Adjusted grid coordinates 43 Table 26. Adjusted grid coordinates 43 Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP) 44 Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA 54 Table 29. Range of calibrated values for Balatucan HMS Model 62 Table 30. Summary of the efficiency test of Balatucan HMS Model 63 Table 32. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS 66 Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS 66 <td></td> <td></td>		
Table 15. Shift values of each LiDAR Block of Balatucan Floodplain28Table 16. Calibration statistical measures33Table 17. Validation statistical measures33Table 18. Quality checking ratings for Balatucan Floodplain36Table 20. Total length of extracted roads for Balatucan Floodplain37Table 21. Number of extracted water bodies for Balatucan Floodplain37Table 22. List of reference and control points used in Balatucan River Basin survey39Table 23. Baseline processing report for Balatucan River.42Table 24. Control point constraints.42Table 25. Adjusted geodetic coordinates43Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA54Table 29. Range of calibrated values for Balatucan River (1) discharge generated in HEC-HMS64Table 31. Peak values of the Balatucan River (1) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan River (2) discharge generated in HEC-HMS72Table 34. Validation of river discharge estimates72Table 35. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 39. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 34. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period <t< td=""><td></td><td></td></t<>		
Table 16. Calibration statistical measures32Table 17. Validation statistical measures33Table 18. Quality checking ratings for Balatucan building features35Table 19. Building features extracted for Balatucan Floodplain36Table 20. Total length of extracted roads for Balatucan Floodplain37Table 21. Number of extracted vater bodies for Balatucan Floodplain37Table 22. List of reference and control points used in Balatucan River Basin survey39Table 23. Baseline processing report for Balatucan River42Table 24. Control point constraints42Table 25. Adjusted grid coordinates43Table 26. Adjusted grid coordinates43Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP)44Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA54Table 29. Range of calibrated values for Balatucan62Table 30. Summary of the efficiency test of Balatucan River (1) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain67Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 38. Affected areas in Balingasag, Misamis Oriental d		
Table 17. Validation statistical measures33Table 18. Quality checking ratings for Balatucan building features35Table 19. Building features extracted for Balatucan Floodplain36Table 20. Total length of extracted roads for Balatucan Floodplain37Table 21. Number of extracted water bodies for Balatucan Floodplain37Table 22. List of reference and control points used in Balatucan River Basin survey39Table 23. Baseline processing report for Balatucan River42Table 24. Control point constraints42Table 25. Adjusted grid coordinates43Table 26. Adjusted grod coordinates43Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP)44Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA54Table 29. Range of calibrated values for Balatucan62Table 30. Summary of the efficiency test of Balatucan HMS Model63Table 31. Peak values of the Balatucan River (1) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain72Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 37. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 41. Affected areas in Balingasag, Misamis Ori		
Table 18. Quality checking ratings for Balatucan building features35Table 19. Building features extracted for Balatucan Floodplain36Table 20. Total length of extracted voads for Balatucan Floodplain37Table 21. Number of extracted water bodies for Balatucan Floodplain37Table 22. List of reference and control points used in Balatucan River Basin survey39Table 23. Baseline processing report for Balatucan River42Table 24. Control point constraints42Table 25. Adjusted geodetic coordinates43Table 26. Adjusted geodetic coordinates43Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP)44Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA54Table 30. Summary of the efficiency test of Balatucan HMS Model.63Table 31. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 39. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 34. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 34. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 34. Affected areas in J		
Table 19. Building features extracted for Balatucan Floodplain36Table 20. Total length of extracted roads for Balatucan Floodplain37Table 21. Number of extracted water bodies for Balatucan Floodplain37Table 22. List of reference and control points used in Balatucan River Basin survey39Table 23. Baseline processing report for Balatucan River42Table 24. Control point constraints.42Table 25. Adjusted grid coordinates43Table 26. Adjusted geodetic coordinates43Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP)44Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA54Table 29. Range of calibrated values for Balatucan62Table 30. Summary of the efficiency test of Balatucan HMS Model63Table 32. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain72Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 38. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 39. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 34. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 34. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall		
Table 20. Total length of extracted roads for Balatucan Floodplain37Table 21. Number of extracted water bodies for Balatucan Floodplain37Table 22. List of reference and control points used in Balatucan River Basin survey39Table 23. Baseline processing report for Balatucan River42Table 24. Control point constraints.42Table 25. Adjusted geodetic coordinates43Table 26. Adjusted geodetic coordinates43Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP)44Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA.54Table 29. Range of calibrated values for Balatucan62Table 30. Summary of the efficiency test of Balatucan HMS Model.63Table 31. Peak values of the Balatucan HEC-HMS Model outflow using the Lumbia RIDF.64Table 32. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain72Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 39. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 34. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 34. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 34. Affected areas in Balingasag, Misamis Orienta		
Table 21. Number of extracted water bodies for Balatucan Floodplain37Table 22. List of reference and control points used in Balatucan River Basin survey39Table 23. Baseline processing report for Balatucan River.42Table 24. Control point constraints.42Table 25. Adjusted grid coordinates.43Table 26. Adjusted geodetic coordinates.43Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP)44Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA.54Table 29. Range of calibrated values for Balatucan62Table 30. Summary of the efficiency test of Balatucan HMS Model63Table 31. Peak values of the Balatucan HEC-HMS Model outflow using the Lumbia RIDF.64Table 32. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain67Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 38. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 34. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period72Table 34. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 34. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 34. Affected areas in Bali		
Table 22. List of reference and control points used in Balatucan River Basin survey39Table 23. Baseline processing report for Balatucan River.42Table 24. Control point constraints.42Table 25. Adjusted grid coordinates43Table 26. Adjusted geodetic coordinates.43Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP)44Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA.54Table 30. Summary of the efficiency test of Balatucan62Table 31. Peak values of the Balatucan HEC-HMS Model63Table 32. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain67Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 30. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 40. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 41. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period72Table 42. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77 <t< td=""><td></td><td></td></t<>		
Table 23. Baseline processing report for Balatucan River.42Table 24. Control point constraints.42Table 25. Adjusted grid coordinates43Table 26. Adjusted geodetic coordinates.43Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP)44Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA54Table 29. Range of calibrated values for Balatucan62Table 30. Summary of the efficiency test of Balatucan HMS Model.63Table 31. Peak values of the Balatucan HEC-HMS Model outflow using the Lumbia RIDF.64Table 32. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain67Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period74Table 40. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period77Table 41. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 42. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period77Table 44. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period77		
Table 24. Control point constraints.42Table 25. Adjusted grid coordinates43Table 26. Adjusted geodetic coordinates.43Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP)44Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA54Table 20. Summary of the efficiency test of Balatucan HMS Model63Table 30. Summary of the Balatucan HEC-HMS Model outflow using the Lumbia RIDF64Table 32. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain67Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 38. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 39. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 40. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 41. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 44. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period77Table 44. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period77Table 45. Affected areas in Bal		
Table 25. Adjusted grid coordinates43Table 26. Adjusted geodetic coordinates43Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP)44Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA54Table 29. Range of calibrated values for Balatucan62Table 30. Summary of the efficiency test of Balatucan HMS Model63Table 31. Peak values of the Balatucan HEC-HMS Model outflow using the Lumbia RIDF64Table 32. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain67Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 38. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 40. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period75Table 41. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 42. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period77Table 43. Affec		
Table 26. Adjusted geodetic coordinates		
Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP)44Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA54Table 29. Range of calibrated values for Balatucan62Table 30. Summary of the efficiency test of Balatucan HMS Model63Table 31. Peak values of the Balatucan HEC-HMS Model outflow using the Lumbia RIDF64Table 32. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS66Table 32. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain67Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 38. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 39. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period72Table 40. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period77Table 41. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 42. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period77Table 44. Affected areas in B		
Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA		
Table 29. Range of calibrated values for Balatucan62Table 30. Summary of the efficiency test of Balatucan HMS Model.63Table 31. Peak values of the Balatucan HEC-HMS Model outflow using the Lumbia RIDF.64Table 32. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain67Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 39. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period74Table 40. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period77Table 41. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 42. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 44. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 45. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period77Table 44. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period82Table 45. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period		
Table 30. Summary of the efficiency test of Balatucan HMS Model.63Table 31. Peak values of the Balatucan HEC-HMS Model outflow using the Lumbia RIDF.64Table 32. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain67Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 38. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 40. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period72Table 40. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 41. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 44. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 45. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period79Table 45. Affected areas in Balingasag, Misamis Oriental during a		
Table 31. Peak values of the Balatucan HEC-HMS Model outflow using the Lumbia RIDF64Table 32. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain67Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 38. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period74Table 40. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period77Table 40. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 41. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 42. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Jasaan, Misamis Oriental during a 25-year rainfall return period79Table 45. Affected areas in Jasaan, Misamis Oriental during a 100-year rainfall return period80Table 46. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period82Table 47. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period82Table 48. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period82Table 49. Affected areas in Balinga		
Table 32. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS66Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain67Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 38. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 39. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period74Table 40. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period77Table 40. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 42. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 44. Affected areas in Jasaan, Misamis Oriental during a 100-year rainfall return period80Table 45. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period82Table 49. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period82Table 49. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period82Table 49. Affecte		
Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS66Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain67Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 38. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 39. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period74Table 40. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period75Table 41. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 42. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 44. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period79Table 45. Affected areas in Lagonglong, Misamis Oriental during a 100-year rainfall return period80Table 46. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period82Table 48. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period84Table 49. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period85Tab		
Table 34. Validation of river discharge estimates66Table 35. Municipalities affected in Musi-Balatucan Floodplain67Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 38. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 39. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period74Table 40. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period75Table 41. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 42. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 44. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period79Table 45. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period80Table 45. Affected areas in Jasaan, Misamis Oriental during a 100-year rainfall return period80Table 46. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period82Table 48. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period82Table 49. Affected areas in Jasaan, Misamis Oriental during a 100-year rainfall return period84Table 49. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period84Tab		
Table 35. Municipalities affected in Musi-Balatucan Floodplain		
Table 36. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72 Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72 Table 38. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period74 Table 40. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period74 Table 40. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period75 Table 41. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77 Table 42. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77 Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77 Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period79 Table 45. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period79 Table 45. Affected areas in Lagonglong, Misamis Oriental during a 100-year rainfall return period	Table 34. Validation of river discridige estimates	00
Table 37. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period72Table 38. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period		
Table 38. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period		
Table 39. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period		
Table 40. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period 75Table 41. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period 77Table 42. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period 77Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period 77Table 44. Affected areas in Jasaan, Misamis Oriental during a 25-year rainfall return period 79Table 45. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period		
Table 41. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 42. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 44. Affected areas in Jasaan, Misamis Oriental during a 25-year rainfall return period79Table 45. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period79Table 46. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period		
Table 42. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period77Table 44. Affected areas in Jasaan, Misamis Oriental during a 25-year rainfall return period79Table 45. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period		
Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period79Table 44. Affected areas in Jasaan, Misamis Oriental during a 25-year rainfall return period		
Table 44. Affected areas in Jasaan, Misamis Oriental during a 25-year rainfall return period		
Table 45. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period80Table 46. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period .82Table 47. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period .82Table 48. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period .82Table 49. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period		
Table 46. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period.82Table 47. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period.82Table 48. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period.82Table 49. Affected areas in Jasaan, Misamis Oriental during a 100-year rainfall return period.82Table 50. Affected areas in Lagonglong, Misamis Oriental during a 100-year rainfall returnperiod		
Table 47. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period.82Table 48. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period.82Table 49. Affected areas in Jasaan, Misamis Oriental during a 100-year rainfall return period		
Table 48. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period.82Table 49. Affected areas in Jasaan, Misamis Oriental during a 100-year rainfall return period		
Table 49. Affected areas in Jasaan, Misamis Oriental during a 100-year rainfall return period		
Table 50. Affected areas in Lagonglong, Misamis Oriental during a 100-year rainfall returnperiodTable 51. Area covered by each warning level with respect to the rainfall scenario85Table 52. Actual flood depth vs. simulated flood depth in Balatucan–Musi-Musi Floodplain88		
period		
Table 51. Area covered by each warning level with respect to the rainfall scenario86Table 52. Actual flood depth vs. simulated flood depth in Balatucan–Musi-Musi Floodplain88		85
Table 52. Actual flood depth vs. simulated flood depth in Balatucan–Musi-Musi Floodplain		

LIST OF FIGURES

Figure 1. Map of the Balatucan River Basin (in brown)	2
Figure 2. Flight plans and base stations used for Balatucan Floodplain	
Figure 3. GPS set-up over MSE-19at the center island located at the road intersections going to	
Cagayan de Oro, Butuan City and Iligan City (a)and NAMRIA reference point MSE-16 (b) as	
recovered by the field team	6
Figure 4. GPS set-up over MSE-31 inside the school grounds of Binuangan National High School	
of Sitio Naratulan, Binuangan, Misamis Oriental (a) and NAMRIA reference point MSE-31 (b) as	
recovered by the field team	7
Figure 5. GPS set-up over MSE-32 inside Alicomohan Elementary school, just in front of the	
school's flag pole, situated at Barangay Alicomohan, Sugbongcogon, Misamis Oriental (a) and	-
NAMRIA reference point MSE-32 (b) as recovered by the field team	8
Figure 6. GPS set-up over MSE-36 within Medina municipal port (a) and NAMRIA reference	~
point MSE-32 (b) as recovered by the field team	9
Figure 7. GPS set-up over MSE-3241 on a center island near a gasoline station beside SM	4.0
Cagayan de Oro (a) and NAMRIA reference point MSE-3241 (b) as recovered by the field team	
Figure 8. Actual LiDAR survey coverage for Balatucan Floodplain	
Figure 9. Schematic diagram for Data Pre-Processing Component	
Figure 10. Smoothed Performance Metric parameters of Balatucan Flight 1509P	
Figure 11. Solution Status Parameters of Balatucan Flight 1509P Figure 12. Best estimated trajectory of LiDAR missions conducted over Balatucan Floodplain	
Figure 13. Boundary of the processed LiDAR data over Balatucan Floodplain	
Figure 14. Image of data overlap for Balatucan Floodplain	
Figure 15. Pulse density map of merged LiDAR data for Balatucan Floodplain	
Figure 16. Elevation difference map between flight lines for Balatucan Floodplain	
Figure 17. Quality checking for a Balatucan flight 1509P using the Profile Tool of QT Modeler	
Figure 18. Tiles for Balatucan Floodplain (a) and classification results (b) in TerraScan	
Figure 19. Point cloud before (a) and after (b) classification	
Figure 20. The production of last return DSM (a) and DTM (b); first return DSM (c) and secondar	
DTM (d) in some portion of Balatucan Floodplain	
Figure 21. Balatucan Floodplain with available orthophotographs	
Figure 22. Sample orthophotograph tiles for Balatucan Floodplain	
Figure 23. Portions in the DTM of Balatucan Floodplain—bridges before (a), (c) and after (b), (d)	
manual editing; a paddy field before (e) and after (f) data retrieval; and a misclassified hill before	е
(g) and after (h) data retrieval	
Figure 24. Map of processed LiDAR data for Balatucan Floodplain	.29
Figure 25. Map of Balatucan Floodplain with validation survey points in green	.31
Figure 26. Correlation plot between calibration survey points and LiDAR data	.32
Figure 27. Correlation plot between validation survey points and LiDAR data	.33
Figure 28. Map of Balatucan Floodplain with bathymetric survey points shown in blue	.34
Figure 29. Blocks of Balatucan building features subjected to QC	
Figure 30. Extracted features for Balatucan Floodplain	
Figure 31. Extent of the bathymetric survey (in blue) in Balatucan River and the LiDAR validation	
survey (in red)	
Figure 32. GNSS network covering the Balatucan River	.39
Figure 33. GNSS base receiver set-up, Trimble [®] SPS 852 at MSE-25 in Brgy. Poblacion 1,	
Municipality of Villanueva, Misamis Oriental	.40
Figure 34. GNSS base receiver set-up, Trimble [®] SPS 852 at ME-112 at Musi-Musi Bridgein Brgy.	
Talusan, Municipality of Balingasag, Misamis Oriental	
Figure 35. GNSS base occupation, Trimble [®] SPS 882 at CAB-1 along Iligan-Cagayan de Oro-Butua	n
Road at the approach of Cabulig Bridge in Brgy. Bobontugan, Municipality of Jasaan, Misamis	
Oriental	
Figure 36. Mambayaan Bridge facing upstream	
Figure 37. Cross-section and bridge as-built survey for Mambayaan Bridge	
Figure 38. Mambayaan Bridge cross-section planimetric map	
Figure 39. Mambayaan Bridge cross-sectional diagram Figure 40. Mambayaan Bridge data form	
Figure 40. Mambayaan Bridge data form Figure 41. Water surface elevation marking on one of the bridge piers of Mambayan Bridge,	.47
Balingasag	10
วนแบธนวนธ์	40

Figure 42. Validation points acquisition survey using Trimble® SPS 882	
Figure 43. Validation points acquisition survey for Balatucan River	
Figure 44. Conduct of the bathymetric survey: (a) upstream and (b) downstream bathymetry	
Figure 45. Bathymetric survey of Balatucan River	
Figure 46. Riverbed profile of Balatucan River	
Figure 47. Location map of Balatucan HEC-HMS model used for calibration	.52
Figure 48. Cross-section plot of Mamblayan Bridge	
Figure 49. Rainfall and outflow data at Balatucan used for modeling	.53
Figure 50. HQ curve of HEC-HMS model	
Figure 51. Location of Lumbia RIDF Station relative to Balatucan River Basin	.55
Figure 52. Lumbia RIDF curves	
Figure 53. Soil map of the Balatucan River Basin	
Figure 54. Land cover map of the Balatucan River Basin	.57
Figure 55. Soil map of the Balatucan River Basin	
Figure 56. Stream delineation map of Balatucan River Basin	.58
Figure 57. HEC-HMS generated Balatucan River Basin Model	.59
Figure 58. River cross-section of Balatucan River generated through Arcmap HEC GeoRAS tool	.60
Figure 59. Screenshot of subcatchment with the computational area to be modeled in FLO-2D	
Grid Developer System Pro (FLO-2D GDS Pro)	.61
Figure 60. Outflow hydrograph of Balatucan produced by the HEC-HMS model compared with	
observed outflow	.62
Figure 61. Outflow hydrograph at Balatucan Station generated using Lumbia RIDF simulated in	
HEC-HMS	.64
Figure 62. Musi-Musi and Balatucan River (1) generated discharge using 5-, 25-, and 100-year	
Lumbia RIDF in HEC-HMS	.65
Figure 63. Musi-Musi and Balatucan River (2) generated discharge using 5-, 25-, and 100-year	
Lumbia RIDF in HEC-HMS	.65
Figure 64. Sample output of Balatucan–Musi-Musi RAS Model	
Figure 65. 100-year flood hazard map for Musi-Musi–Balatucan Floodplain	
Figure 66. 100-year flow depth map for Musi-Musi-Balatucan Floodplain	
Figure 67. 25-year flood hazard map for Musi-Musi–Balatucan Floodplain	
Figure 68. 25-year flow depth map for Musi-Musi–Balatucan Floodplain	
Figure 69. 5-year flood hazard map for Musi-Musi-Balatucan Floodplain	
Figure 70. 5-year flood depth map for Musi-Musi-Balatucan Floodplain	
Figure 71. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period	
Figure 72. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period	
Figure 73. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period	
Figure 74. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period	
Figure 75. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period.	
Figure 76. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period.	
Figure 77. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period	
Figure 77. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period	
Figure 79. Affected areas in Jasaan, Misamis Oriental during a 25-year rainfall return period	
Figure 80. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period.	.81
Figure 81. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return	02
period	. 83
Figure 82. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return	02
period	.83
Figure 83. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return	0.4
period	
Figure 84. Affected areas in Jasaan, Misamis Oriental during a 100-year rainfall return period	.85
Figure 85. Affected areas in Lagonglong, Misamis Oriental during a 100-year rainfall return	
period	
Figure 86. Musi-Musi–Balatucan flood validation points	
Figure 87. Flood map depth vs. actual flood depth	.88

LIST OF ACRONYMS AND ABBREVIATIONS

AACAsian Aerospace CorporationAbabutmentALTMAirborne LiDAR Terrain MapperARGautomatic rain gaugeATQAntiqueAWLSAutomated Water Level SensorBABridge ApproachBMbenchmarkCADComputer-Aided DesignCNCurve NumberCRNData Acquisition ComponentDACData Acquisition ComponentDEMDepartment of Environment and Natural ResourcesDDSTDepartment of Science and TechnologyDPPCData Pre-Processing ComponentDRRMDigital Surface ModelDRRMDigital Surface ModelDSMDigital Terrain ModelDSMDigital Surface ModelDRRMGrants-in-AidGRAGround Control PointFMCFlood Modeling ComponentFMCHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RMSHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation method]		
ALTMAirborne LiDAR Terrain MapperARGautomatic rain gaugeATQAntiqueAWLSAutomated Water Level SensorBABridge ApproachBMbenchmarkCADComputer-Aided DesignCNCurve NumberCSRSChief Science Research SpecialistDACData Acquisition ComponentDEMDepartment of Environment and Natural ResourcesDOSTDepartment of Science and TechnologyDPPCData Pre-Processing ComponentDREAMDigital Surface ModelDRMDigital Surface ModelDREAMDigital Surface ModelDRMDigital Surface ModelDRMDigital Surface ModelDRMGiaster Risk and Exposure Assessment for Mitigation [Program]DRMDigital Surface ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFMCFlood Modeling ComponentFMCGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Navigation Satellite SystemHEC-RASHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RASHydrologic Engineering Center - River Analysis SystemHCNier Distance Weighted [interpolation	AAC	Asian Aerospace Corporation
ARGautomatic rain gaugeARGautomatic rain gaugeATQAntiqueAWLSAutomated Water Level SensorBABridge ApproachBMbenchmarkCADComputer-Aided DesignCNCurve NumberCSRSChief Science Research SpecialistDACData Acquisition ComponentDEMDigital Elevation ModelDEMDepartment of Environment and Natural ResourcesDPPCData Pre-Processing ComponentDRAMDisaster Risk and Exposure Assessment for Mitigation [Program]DRMDigital Terrain ModelDSMDigital Surface ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFMCFlood Modeling ComponentFMCGround Control PointGIAGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Navigation SystemHEC-RASHydrologic Engineering Center - Hydrologic Modeling SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	Ab	abutment
ATQAntiqueAWLSAutomated Water Level SensorBABridge ApproachBMbenchmarkCADComputer-Aided DesignCNCurve NumberCSRSChief Science Research SpecialistDACData Acquisition ComponentDEMDigital Elevation ModelDEMDepartment of Environment and Natural ResourcesDOSTDepartment of Science and TechnologyDPPCData Pre-Processing ComponentDRRMDigital Surface ModelDSMDigital Surface ModelDSMDigital Surface ModelDKRFlood Modeling ComponentFMCFlood Modeling ComponentFMCGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-RMSHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	ALTM	Airborne LiDAR Terrain Mapper
AWLSAutomated Water Level SensorBABridge ApproachBMbenchmarkCADComputer-Aided DesignCNCurve NumberCSRSChief Science Research SpecialistDACData Acquisition ComponentDEMDigital Elevation ModelDEMDepartment of Environment and Natural ResourcesDOSTDepartment of Science and TechnologyDPPCData Pre-Processing ComponentDREAMDigital Surface ModelDTMDigital Surface ModelDTMDigital Surface ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFMCFlood Modeling ComponentFOVField of ViewGIAGrants-in-AidGCPGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RASHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	ARG	automatic rain gauge
BABridge ApproachBMbenchmarkCADComputer-Aided DesignCNCurve NumberCSRSChief Science Research SpecialistDACData Acquisition ComponentDEMDigital Elevation ModelDEMDepartment of Environment and Natural ResourcesDOSTDepartment of Science and TechnologyDPPCData Pre-Processing ComponentDRRMDigital Surface ModelDSMDigital Surface ModelDSMDigital Terrain ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFMCFlood Modeling ComponentFOVGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	ATQ	Antique
BMbenchmarkCADComputer-Aided DesignCNCurve NumberCSRSChief Science Research SpecialistDACData Acquisition ComponentDEMDigital Elevation ModelDEMDepartment of Environment and Natural ResourcesDOSTDepartment of Science and TechnologyDPPCData Pre-Processing ComponentDREAMDigital Surface ModelDRMDigital Surface ModelDRMDigital Terrain ModelDRMDigital Surface ModelDRMGlobal Navigation Satellite SystemFMCFlood Modeling ComponentFMCGlobal Navigation Satellite SystemGPSGlobal Navigation Satellite SystemHEC-HMSHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	AWLS	Automated Water Level Sensor
CADComputer-Aided DesignCADComputer-Aided DesignCNCurve NumberCSRSChief Science Research SpecialistDACData Acquisition ComponentDEMDigital Elevation ModelDEMDepartment of Environment and Natural ResourcesDOSTDepartment of Science and TechnologyDPPCData Pre-Processing ComponentDREAMDisaster Risk and Exposure Assessment for Mitigation [Program]DRRMDisaster Risk Reduction and ManagementDSMDigital Surface ModelDTMDigital Terrain ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFOVField of ViewGiAGrants-in-AidGCPGlobal Navigation Satellite SystemGPSGlobal Navigation SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	BA	Bridge Approach
CNCompare ForgerCNCurve NumberCSRSChief Science Research SpecialistDACData Acquisition ComponentDEMDigital Elevation ModelDEMDepartment of Environment and Natural ResourcesDOSTDepartment of Science and TechnologyDPPCData Pre-Processing ComponentDREAMDisaster Risk and Exposure Assessment for Mitigation [Program]DRRMDisaster Risk Reduction and ManagementDSMDigital Surface ModelDTMDigital Terrain ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFOVField of ViewGiAGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	BM	benchmark
CSRSChief Science Research SpecialistDACData Acquisition ComponentDEMDigital Elevation ModelDEMDepartment of Environment and Natural ResourcesDOSTDepartment of Science and TechnologyDPPCData Pre-Processing ComponentDREAMDisaster Risk and Exposure Assessment for Mitigation [Program]DRRMDisaster Risk Reduction and ManagementDSMDigital Surface ModelDTMDigital Terrain ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFOVField of ViewGIAGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	CAD	Computer-Aided Design
DACData Acquisition ComponentDEMDigital Elevation ModelDEMDepartment of Environment and Natural ResourcesDOSTDepartment of Science and TechnologyDPPCData Pre-Processing ComponentDREAMDisaster Risk and Exposure Assessment for Mitigation [Program]DRRMDisaster Risk Reduction and ManagementDSMDigital Surface ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFOVField of ViewGIAGrants-in-AidGCPGlobal Navigation Satellite SystemHEC-RASHydrologic Engineering Center - Hydrologic Modeling SystemHCHydrologic Engineering Center - River Analysis SystemHCInverse Distance Weighted [interpolation	CN	Curve Number
DEMDigital Elevation ModelDENRDepartment of Environment and Natural ResourcesDOSTDepartment of Science and TechnologyDPPCData Pre-Processing ComponentDREAMDisaster Risk and Exposure Assessment for Mitigation [Program]DRRMDisaster Risk Reduction and ManagementDSMDigital Surface ModelDVBCData Validation and Bathymetry ComponentPMCFlood Modeling ComponentFMCFlood Modeling ComponentFOVField of ViewGiAGrants-in-AidGCPGlobal Navigation Satellite SystemGNSSGlobal Novigation SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHCHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	CSRS	Chief Science Research Specialist
DENRDepartment of Environment and Natural ResourcesDOSTDepartment of Science and TechnologyDPPCData Pre-Processing ComponentDREAMDisaster Risk and Exposure Assessment for Mitigation [Program]DRRMDisaster Risk Reduction and ManagementDSMDigital Surface ModelDTMDigital Terrain ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFOVField of ViewGiAGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	DAC	Data Acquisition Component
ResourcesDOSTDepartment of Science and TechnologyDPPCData Pre-Processing ComponentDREAMDisaster Risk and Exposure Assessment for Mitigation [Program]DRRMDisaster Risk Reduction and ManagementDSMDigital Surface ModelDTMDigital Terrain ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFOVField of ViewGiAGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Novigation SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	DEM	Digital Elevation Model
DPPCData Pre-Processing ComponentDREAMDisaster Risk and Exposure Assessment for Mitigation [Program]DRRMDisaster Risk Reduction and ManagementDSMDigital Surface ModelDTMDigital Terrain ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFOVField of ViewGIAGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RASHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	DENR	
DREAMDisaster Risk and Exposure Assessment for Mitigation [Program]DRRMDisaster Risk Reduction and ManagementDSMDigital Surface ModelDTMDigital Terrain ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFOVField of ViewGiAGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RASHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	DOST	Department of Science and Technology
Mitigation [Program]DRRMDisaster Risk Reduction and ManagementDSMDigital Surface ModelDTMDigital Terrain ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFOVField of ViewGiAGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RASHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	DPPC	Data Pre-Processing Component
DSMDigital Surface ModelDTMDigital Terrain ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFOVField of ViewGiAGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-HMSSHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RASHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	DREAM	
DTMDigital Terrain ModelDVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFOVField of ViewGiAGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RASHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	DRRM	Disaster Risk Reduction and Management
DVBCData Validation and Bathymetry ComponentFMCFlood Modeling ComponentFOVFlood Modeling ComponentFOVField of ViewGiAGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RASHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	DSM	Digital Surface Model
FMCComponentFMCFlood Modeling ComponentFOVField of ViewGiAGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RASHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	DTM	Digital Terrain Model
FOVField of ViewGiAGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RASHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	DVBC	
GiAGrants-in-AidGCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RASHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	FMC	Flood Modeling Component
GCPGround Control PointGNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RASHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	FOV	Field of View
GNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RASHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	GiA	Grants-in-Aid
GPS Global Positioning System HEC-HMS Hydrologic Engineering Center - Hydrologic Modeling System HEC-RAS Hydrologic Engineering Center - River Analysis System HC High Chord IDW Inverse Distance Weighted [interpolation	GCP	Ground Control Point
HEC-HMSHydrologic Engineering Center - Hydrologic Modeling SystemHEC-RASHydrologic Engineering Center - River Analysis SystemHCHigh ChordIDWInverse Distance Weighted [interpolation	GNSS	Global Navigation Satellite System
HEC-RAS Hydrologic Engineering Center - River Analysis System HC High Chord IDW Inverse Distance Weighted [interpolation	GPS	Global Positioning System
Analysis System HC High Chord IDW Inverse Distance Weighted [interpolation	HEC-HMS	
IDW Inverse Distance Weighted [interpolation	HEC-RAS	
	нс	High Chord
	IDW	

IMU	Inertial Measurement Unit
kts	knots
LAS	LiDAR Data Exchange File format
LC	Low Chord
LGU	local government unit
Lidar	Light Detection and Ranging
LMS	LiDAR Mapping Suite
m AGL	meters Above Ground Level
MMS	Mobile Mapping Suite
MSL	mean sea level
NSTC	Northern Subtropical Convergence
PAF	Philippine Air Force
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration
PDOP	Positional Dilution of Precision
РРК	Post-Processed Kinematic [technique]
PRF	Pulse Repetition Frequency
PTM	Philippine Transverse Mercator
QC	Quality Check
QT	Quick Terrain [Modeler]
RA	Research Associate
RIDF	Rainfall-Intensity-Duration-Frequency
RMSE	Root Mean Square Error
SAR	Synthetic Aperture Radar
SCS	Soil Conservation Service
SRTM	Shuttle Radar Topography Mission
SRS	Science Research Specialist
SSG	Special Service Group
ТВС	Thermal Barrier Coatings
UPC	University of the Philippines Cebu
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry

CHAPTER 1: OVERVIEW OF THE PROGRAM AND BALATUCAN RIVER

Enrico C. Paringit, Dr. Eng., and Dr. George R. Puno

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

The program was also aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication titled Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit et al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Central Mindanao University (CMU). CMU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 13 river basins in the Northern Mindanao Region. The university is located in the Municipality of Maramag in the province of Bukidnon.

1.2 Overview of the Balatucan River Basin

Balatucan river basin has total area of 12,184 hectares and covers the Municipalities of Balingasag, Claveria, Lagonglong, Medina, and Gingoog City, in the province of Misamis Oriental, Philippines. It has geographic coordinates ranging from 124 degrees, 46 minutes to 125 degrees of north and 8 degrees, 44 minutes to 8 degrees, 51 minutes of east. The body of water has a total of area of 12,184.29 ha, and a perimeter of 204.58 km. The headwater of the river emanates from the inactive volcano, Mount Balatucan, and runs into a huge crater-shaped basin before draining into a single channel midstream. The water later disperses into different directions in the floodplain.

The river has a significant role in the agricultural town of Balingasag as it provides irrigation to the hundreds of hectares of rice fields. The downstream, which is highly altered and deposited with gravel materials, is dry in most of the year. However, during rainy season, the high slopes and narrow upstream channels cause drastic increase of water level resulting in flooding with rapid turbulence. The resulting massive inundations were repeatedly experienced over the past years in the floodplains of Balingasag. Specifically, flooding occurred during Typhoons Agaton, Henry, and Seniang on January, July, and December of 2014, respectively. Among the earliest remembered accounts of flooding that hit the area were on 1971, 1984 during Typhoon Undang, and 1990 during Typhoon Ruping.

Balatucan River being one of the sites assigned to Central Mindanao University (CMU) under the Phil-LiDAR 1 Program was created with flood hazard maps through flood simulation and mapping. The activity utilized Hydrologic Engineering Centre's Hydrologic Modeling System (HEC-HMS) and Hydrologic Engineering Centre's Hydrologic River Analysis System (HEC-RAS) computer applications and Light Detection and Ranging (LiDAR) Technology. Created basin model consists of 61 subbasins, 58 reaches, and 61 junctions. It was calibrated using the meteorologic and hydrologic data during an event on May 20, 2016, respectively measured at Sitio Lantad and Sitio Kiwale, Barangay Kibanban, Balingasag. Using the calibrated model, subsequent run-off simulations were conducted using a 26-year historically based Rainfall Intensity Duration Frequency (RIDF) data of Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) from Lumbia rain gauge. Simulated hydrographs were used as input in the hydraulic model for the simulation of one-dimensional hydraulic calculations for a full network of natural channel used in generating flood maps in 5-, 25-, and 100-year return period scenarios.

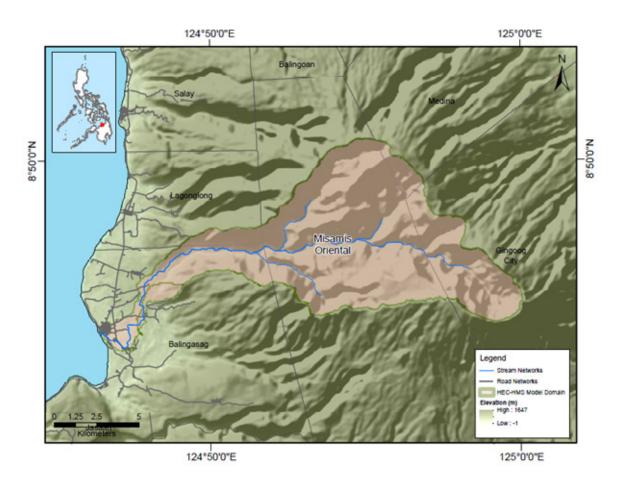


Figure 1. Map of the Balatucan River Basin (in brown).

CHAPTER 2: LIDAR ACQUISITION IN BALATUCAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Renan D. Punto, Ms. Pauline Joanne G. Arceo

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Balatucan Floodplain in Misamis Oriental. These missions were planned for 12 lines that ran for at most four and a half (4.5) hours including take-off, landing, and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 2 shows the flight plan for Balatucan Floodplain.

Table 1. Flight planning parameters for Pegasus LiDAR system

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
RX_BLKC	850	30	50	200	30	130	5
RX_BLKD	850	30	50	200	30	130	5
RX_BLKE	900	30	50	200	30	130	5
BLK64A	1200	30	50	200	30	130	5

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

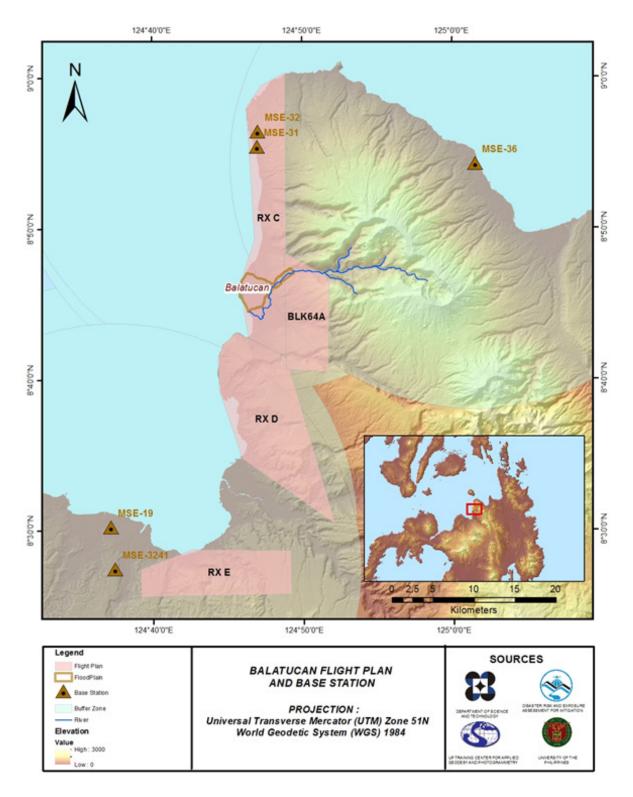


Figure 2. Flight plans and base stations used for Balatucan Floodplain

2.2 Ground Base Stations

The project team was able to recover five (5) NAMRIA ground control points: MSE-19, MSE-31, MSE-32, MSE-36 which are of second (2nd)-order accuracy and MSE-3241, which is of third (3rd)-order accuracy. The certifications for the NAMRIA reference points are found in ANNEX 2.These were used as base stations during flight operations for the entire duration of the survey (May 25–June 19, 2014) and November 15, 2016. Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882 and SPS 852. Flight plans and location of base stations used during the aerial LiDAR acquisition in Balatucan Floodplain are shown in Figure 2.

Figure 3 to Figure 7 show the recovered NAMRIA reference points within the area. In addition, Table 2 to Table 6 present the details about the following NAMRIA control stations, while Table 7 shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

(a)

Figure 3. GPS set-up over MSE-19at the center island located at the road intersections going to Cagayan de Oro, Butuan City and Iligan City (a)and NAMRIA reference point MSE-16 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point MSE-19 used as base station for
the LiDAR acquisition.

Station Name	N	1SE-19
Order of Accuracy		2 nd
Relative Error (horizontal positioning)	1 ir	n 50,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 30' 19.11464" North 124° 37' 6.46518" East 11.24200 meters
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	457,992.786 meters 940,451.853 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 30' 15.52234" North 124° 37' 11.86795" East 78.72200 meters
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	678,151.65 meters 940,474.22 meters

MSE-3J 20.03 NAMRIA

(a) Figure 4. GPS set-up over MSE-31 inside the school grounds of Binuangan National High School of Sitio Naratulan, Binuangan, Misamis Oriental (a) and NAMRIA reference point MSE-31 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point MSE-31 used as base station for the LiDAR acquisition.

Station Name	N	ISE-31
Order of Accuracy		2 nd
Relative Error (horizontal positioning)	1 ir	50,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8°55'28.57032" North 124°46'55.456" East 59.48400 meters
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	476032.898 meters 986806.828 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8°55'24.88251" North 124°47'0.81947" East 126.4900 meters
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	696109.62 meters 986876.83 meters

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 5. GPS set-up over MSE-32 inside Alicomohan Elementary school, just in front of the school's flag pole, situated at Barangay Alicomohan, Sugbongcogon, Misamis Oriental (a) and NAMRIA reference point MSE-32 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point MSE-32 used as base station for
the LiDAR acquisition.

Station Name	MSE-32		
Order of Accuracy		2 nd	
Relative Error (horizontal positioning)	1 ir	n 50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8°56'30.44605" North 124°46'58.97104" East 132.12900 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	476141.401 meters 988707.53 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8°56'26.75387" North 124°47'4.33290" East 199.10100 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	696045.73 meters 988828.70 meters	

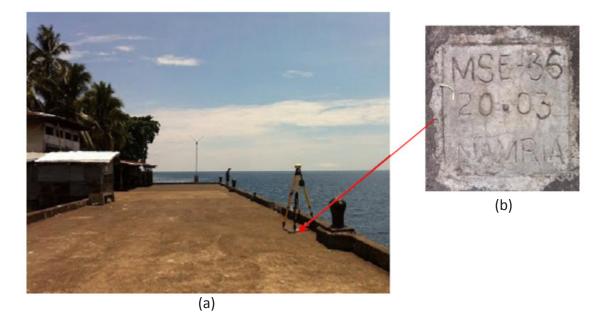


Figure 6. GPS set-up over MSE-36 within Medina municipal port (a) and NAMRIA reference point MSE-32 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point MSE-36 used as base station for the LiDAR acquisition.

Station Name	MSE-36		
Order of Accuracy		2 nd	
Relative Error (horizontal positioning)	1 ir	n 50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8°54'20.12398" North 125°1'28.36102" East 0.97100 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	502699.481 meters 984697.224 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8°54′16.46220″ North 125°1′33.72408″ East 68.61700 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	722630.22 meters 984961.57 meters	

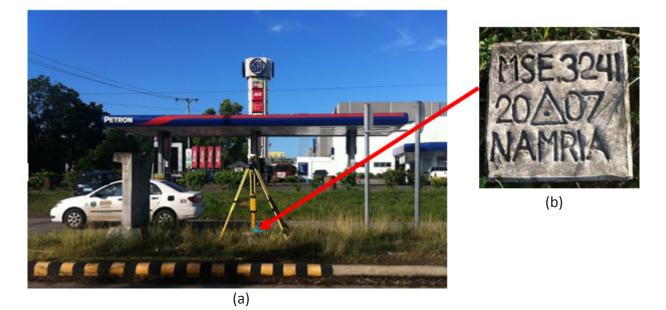


Figure 7. GPS set-up over MSE-3241 on a center island near a gasoline station beside SM Cagayan de Oro (a) and NAMRIA reference point MSE-3241 (b) as recovered by the field team.

Table 6. Details of the recovered NAMRIA horizontal control point MSE-3241 used as base station		
for the LiDAR acquisition.		

Station Name	MSE-3241		
Order of Accuracy		2 nd	
Relative Error (horizontal positioning)	1 ir	10,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 27' 31.07607" North 124° 37' 23.18891" East 109.46700 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	458499.251 meters 935289.375 meters 458499.251 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 27' 27.49608" North 124° 37' 28.59587" East 177.055 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	678684.71 meters 935314.30 meters	

Date Surveyed	Flight Number	Mission Name	Ground Control Points
May 25,2014	1509P	1RDXE145A	MSE-31 & MSE-32
May 27,2014	1517P	1RXE147A	MSE-19 & MSE-3241
June 7, 2014	1561P	1RXE158A	MSE-19 & MSE-3241
June 16, 2014	1597P	1BLKRXE167A	MSE-19 & MSE-3241
June 19,2014	1609P	1RXS170A	MSE-31 & MSE-36
November 15,2016	23552P	BLK64A	MSE-31 & MSE-32

Table 7. Ground control points used during LiDAR data acquisition

2.3 Flight Missions

Six (6) missions were conducted to complete the LiDAR data acquisition in Balatucan Floodplain, for a total of twenty four hours and fifty minutes (24+50) of flying time for RP-C9022. All missions were acquired using the Pegasus LiDAR system. Table 8 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 9 presents the actual parameters used during the LiDAR data acquisition.

Table 8. Flight missions for LiDAR data acquisition in Balatucan Floodplain.

LIATE FIIGHT ~		Flight Plan Area	Surveyed Area	Area Surveyed within the	Surveyed Surveyed	No. of	Flying Hours	
Surveyed	Number	(km2)	(km2)	Floodplain (km2)	the Floodplain (km2)	Images (Frames)	Ŧ	Min
May 25,2014	1509P	145.49	146.09	13.73	132.36	766	4	17
May 27,2014	1517P	256.68	164.99	0	164.99	NA	4	23
June 7, 2014	1561P	161.42	193.69	3.25	190.44	NA	3	41
June 16, 2014	1597P	256.68	165.7	0	165.7	NA	4	0
June 19, 2014	1609P	145.49	141.10	1.92	139.18	618	4	18
November 15,2016	23552P	68.32	131.50	3.41	128.09	NA	4	11
TOTA	L	1034.08	943.07	22.31	920.76	1384	24	50

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1509P	800	30	50	200	30	130	5
1517P	900	30	50	200	30	130	5
1561P	1000	30	50	200	30	130	5
1597P	800	30	50	200	30	130	5
1609P	900	30	50	200	30	130	5
23552P	1200	30	50	200	30	130	5

Table 9. Actual parameters used during LiDAR data acquisition.

2.4 Survey Coverage

Balatucan Floodplain is located in the province of Misamis Oriental with majority of the floodplain situated within the municipality of Balingasag. The municipality of Jasaan is fully covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 10. The actual coverage of the LiDAR acquisition for Balatucan Floodplain is presented in Figure 8.

Table 10. List of municipalities and cities surveyed during Balatucan Floodplain LiDAR survey.

Province	Municipality/City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Jasaan	68.33	68.33	100 %
	Binuangan	15.32	12.91	84 %
	Villanueva	46.05	38.71	84 %
	Sugbongcogon	21.35	14.59	68 %
	Kinoguitan	36.19	18.57	51 %
	Lagonglong	46.62	20.64	44 %
	Balingasag	125.59	54.01	43 %
Misamis	Salay	56.46	24.07	43 %
Oriental	Tagoloan	55.72	15.58	28 %
	Cagayan de Oro City	440.17	108.83	25 %
	Talisayan	65.14	11.99	18 %
	Balingoan	62.65	10.12	16 %
	Gingoog City	538.03	53.04	10 %
	Medina	118.64	7.55	6 %
	Claveria	768.95	44.47	6 %
	Manolo Fortich	350.15	59.80	17 %
Bukidnon	Libona	282.23	26.72	10 %
		359.59	27.29	8 %
Т	OTAL	3457.18	617.22	37%

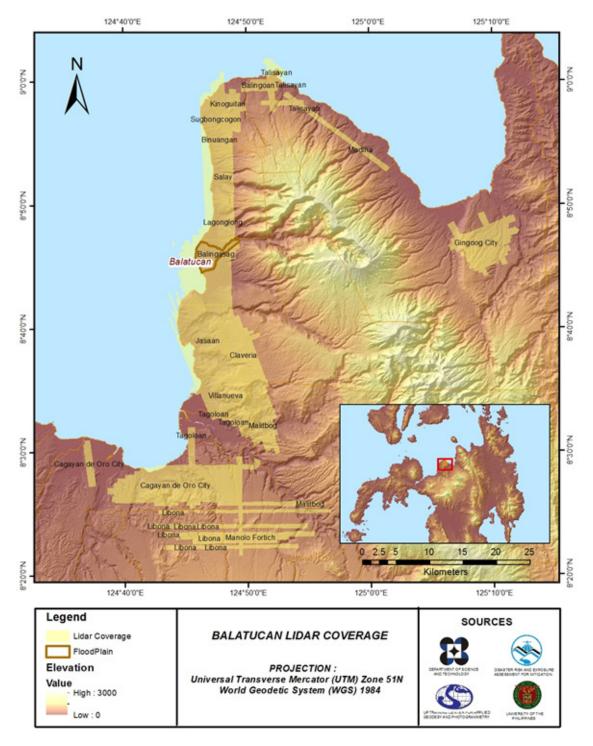


Figure 8. Actual LiDAR survey coverage for Balatucan Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING FOR BALATUCAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Gladys Mae Apat, Alex John B. Escobido, Engr. Ma. Ailyn L. Olanda, Engr. Mark Joshua A. Salvacion, Engr. Vincent Louise DL. Azucena, Engr. Jommer M. Medina, Esmael L. Guardian

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component (DAC) were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds were subject for quality checking to ensure that the required accuracies of the program, which were the minimum point density, vertical and horizontal accuracies, are met. The point clouds were then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR system were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 9.

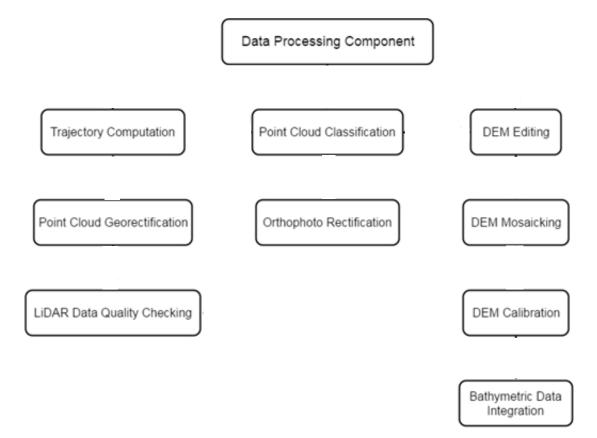


Figure 9. Schematic diagram for Data Pre-Processing Component.

3.2 Transmittal of Acquired LiDAR Data

The data transfer sheets for all the LiDAR missions for the Saub floodplain can be found in Annex 5. Missions flown during the survey conducted in October 2014 over Maitum, Sarangani used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Aquarius system. The DAC transferred a total of 23.75 Gigabytes of Range data, 600 Megabytes of POS data, 24.67 Megabytes of GPS base station data, and no raw image data to the data server on November 17, 2014 for the entire survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for the Saub River Basin survey was fully transferred on November 19, 2014, as indicated on the data transfer sheets for the Saub floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for flight 1509P, one of the Balatucan flights, which is the North, East, and Down position RMSE values are shown in Figure 10. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on May 25, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

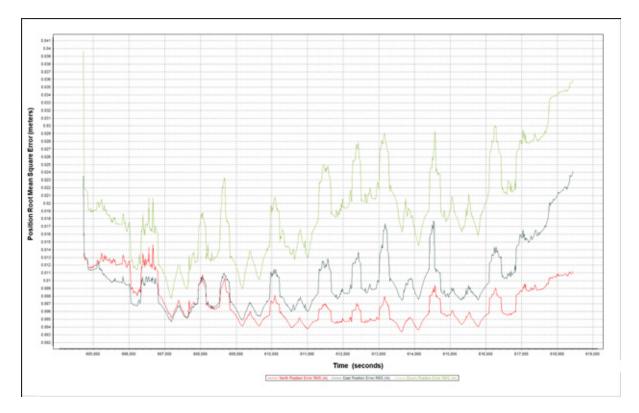


Figure 10. Smoothed Performance Metric parameters of Balatucan Flight 1509P.

The time of flight was from 605000 seconds to 619000 seconds, which corresponds to morning of May 25, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the time the POS system started computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 10 shows that the North position RMSE peaks at 1.50 centimeters, the East position RMSE peaks at 1.80 centimeters, and the Down position RMSE peaks at 3.00 centimeters, which are within the prescribed accuracies described in the methodology.

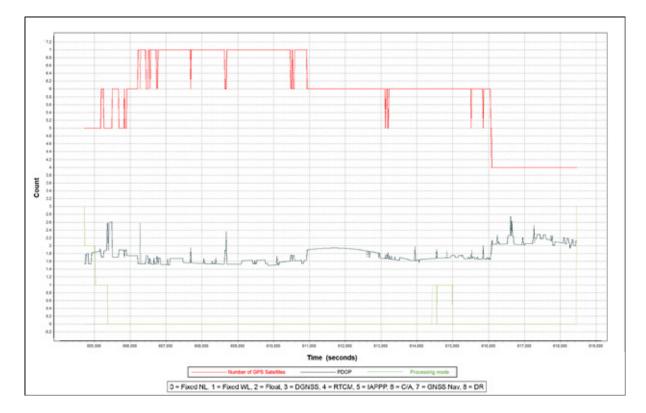


Figure 11. Solution Status Parameters of Balatucan Flight 1509P.

The Solution Status parameters of flight 1509P, one of the Balatucan flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 11. The graphs indicate that the number of satellites during the acquisition did go down below 6. Majority of the time, the number of satellites tracked was between 4 and 7.The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 or 2 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Balatucan flights is shown in Figure 12.

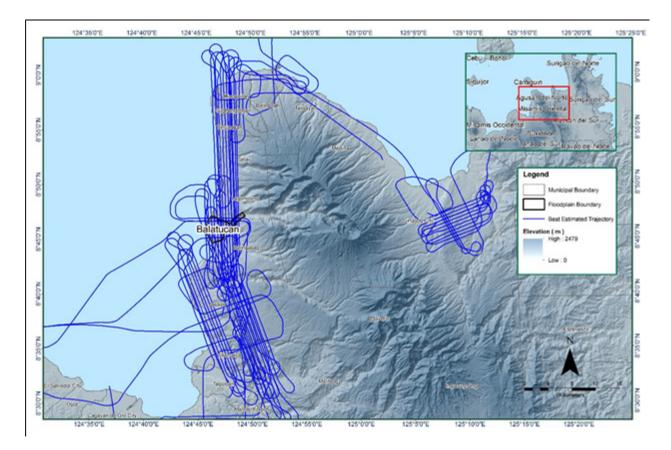


Figure 12. Best estimated trajectory of LiDAR missions conducted over Balatucan Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 71 flight lines, with each flight line containing one channel, since the Pegasus system contains two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Balatucan Floodplain are given in Table 11.

Parameter	Computed Value
Boresight Correction stdev (<0.001degrees)	0.000416
IMU Attitude Correction Roll and Pitch Corrections stdev (<0.001degrees)	0.000422
GPS Position Z-correction stdev (<0.01meters)	0.0061

Table 11. Self-calibration results values for Balatucan flights.

The optimum accuracy is obtained for all Balatucan flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in ANNEX 8.

3.5 LiDAR Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Balatucan Floodplain is shown in Figure 13. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

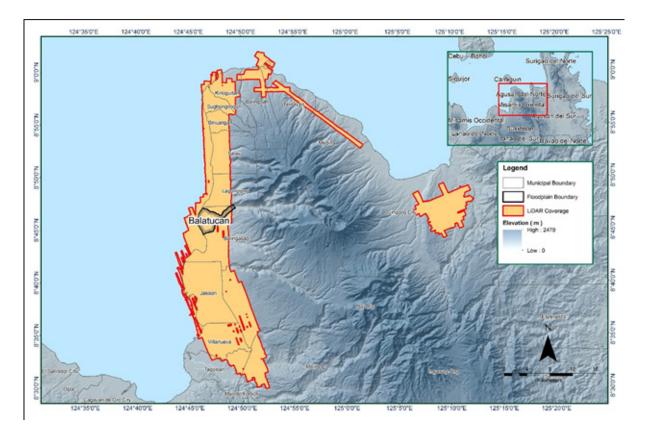


Figure 13. Boundary of the processed LiDAR data over Balatucan Floodplain.

The total area covered by the Balatucan missions is 507.29 sq km comprised of five (5) flight acquisitions grouped and merged into four (4) blocks as shown in Table 12.

LiDAR Blocks	Flight Numbers	Area (sq.km)
NorthernMindanao_RX_BlkC	1509P	138.78
NorthernMindanao_RX_supplement	1609P	50.42
NorthernMindanao_RX_BlkC_supplement	1609P	76.89
	1517P	
NorthernMindanao_RX_BlkD	1561P	241.20
	1597P	
TOTAL	507.29 sq km	

Table 12. List of LiDAR blocks	for Balatucan Floodplain.
--------------------------------	---------------------------

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location, is shown in Figure 14. Since the Pegasus system employs two channels, an average value of 1 (blue) would be expected for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

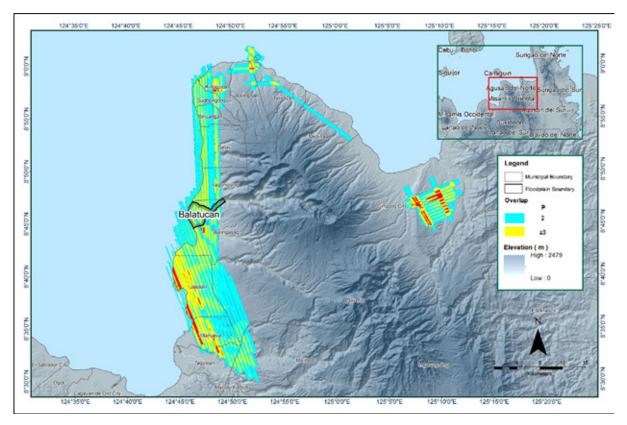


Figure 14. Image of data overlap for Balatucan Floodplain.

The overlap statistics per block for the Balatucan Floodplain can be found in ANNEX 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 30.50% and 38.61%, respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion, is shown in Figure 15. It was determined that all LiDAR data for Balatucan Floodplain satisfy the point density requirement, and the average density for the entire survey area is 4.63 points per square meter.

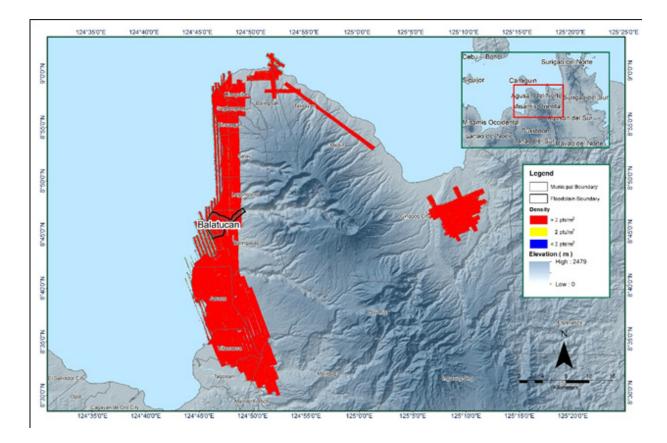


Figure 15. Pulse density map of merged LiDAR data for Balatucan Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 16. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20 m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20 m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

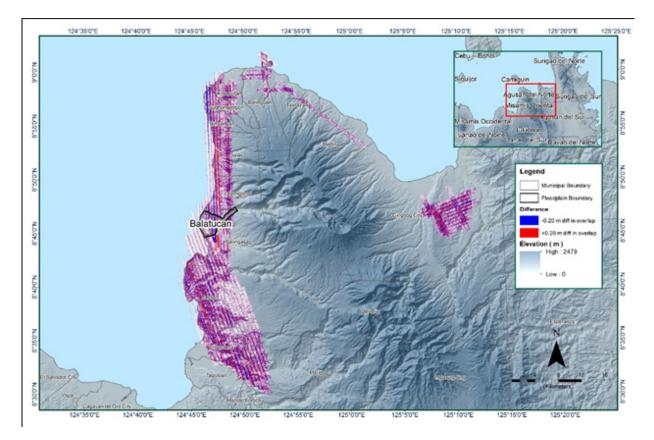


Figure 16. Elevation difference map between flight lines for Balatucan Floodplain

A screen capture of the processed LAS data from a Balatucan flight 1509P loaded in QT Modeler is shown in Figure 17. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

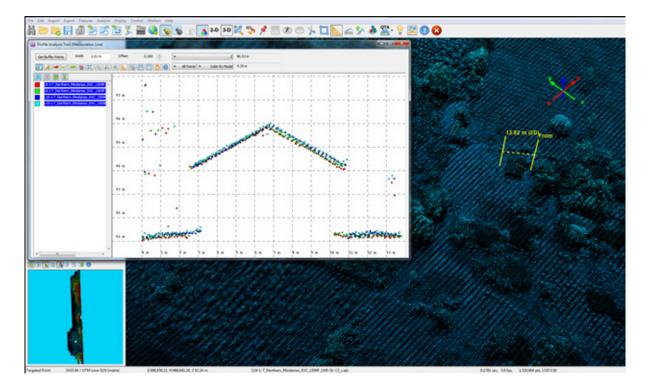


Figure 17. Quality checking for a Balatucan flight 1509P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points	
Ground	490,007,179	
Low Vegetation	481,160,815	
Medium Vegetation	892,464,071	
High Vegetation	829,322,362	
Building	30,305,024	

Table 13. Balatucan classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Balatucan Floodplain is shown in Figure 18. A total of 762 1 km by 1 km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 13. The point cloud has a maximum and minimum height of 747.65 meters and 65.41 meters, respectively.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

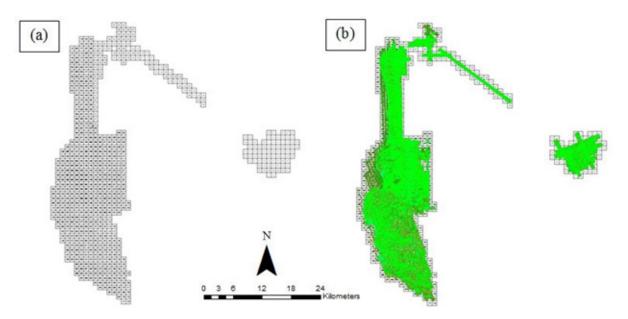


Figure 18. Tiles for Balatucan Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 16. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It is evident that residential structures adjacent or even below canopy were classified correctly, due to the density of the LiDAR data.

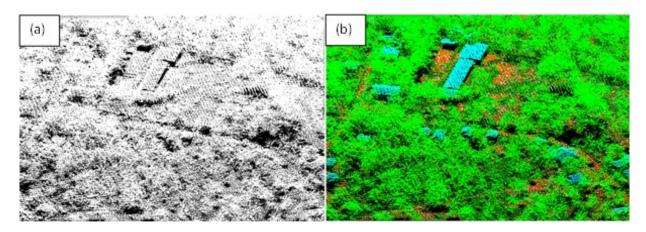


Figure 19. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 20. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

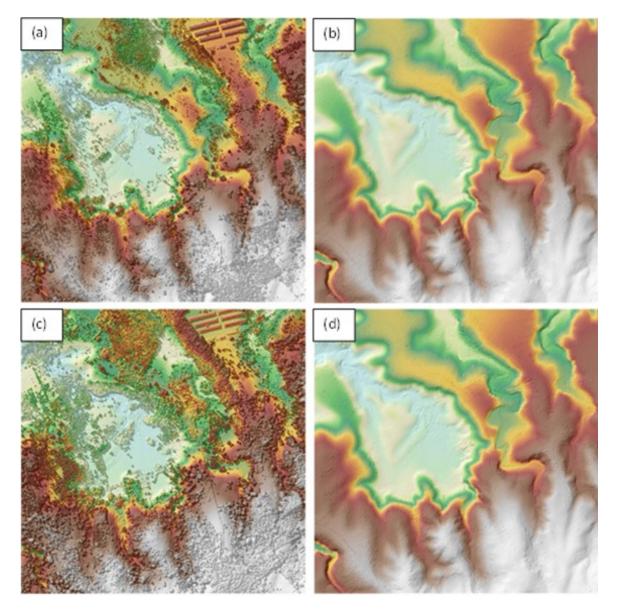


Figure 20. The production of last return DSM (a) and DTM (b); first return DSM (c) and secondary DTM (d) in some portion of Balatucan Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 267 1 km by 1 km tiles area covered by Balatucan Floodplain is shown in Figure 21. After tie-point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Balatucan Floodplain attained a total of 140.62 sq km in orthophotogaph coverage comprised of 614 images. A zoomed-in version of sample orthophotographs named in reference to its tile number is shown in Figure 22.

Figure 21. Balatucan Floodplain with available orthophotographs.

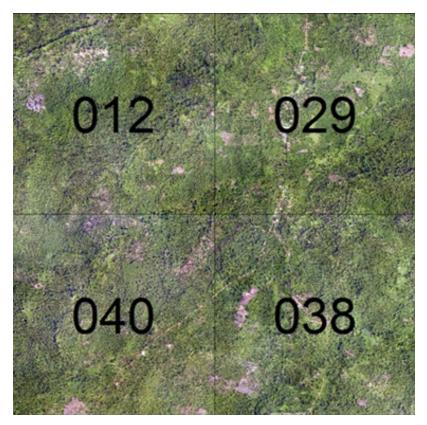


Figure 22. Sample orthophotograph tiles for Balatucan Floodplain.

3.8 DEM Editing and Hydro-Correction

Four (4) mission blocks were processed for Balatucan Floodplain. These blocks are composed of NorthernMindanao_RX_BlkC, NorthernMindanao_RX_supplement, NorthernMindanao_RX_BlkC_ supplement, and NorthernMindanao_RX_BlkD with a total area of 633.48 square kilometers. Table 14 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq. km.)
NorthernMindanao_RX_BlkC	138.78
NorthernMindanaoRX_supplement	50.42
NorthernMindanao_RX_BlkC_supplement	76.89
NorthernMindanao_RX_BlkD	241.20
Bukidnon Blk64F	126.19
TOTAL	633.48sq km

Table 14. LiDAR blocks with their corresponding area.

Portions of DTM before and after manual editing are shown in Figure 23. The bridge (Figure 23a and 23c) was considered to be an impedance to the flow of water along the river and had to be removed (Figure 23b and 23d) in order to hydrologically correct the river. This was done through interpolation process in which a specific polygon determines the upstream and downstream elevation values to generate an interpolated portion of a river and eventually remove the bridge footprint. On the other hand, object retrieval was done in areas such as paddies (Figure 23e) which had been removed during classification process and had to be retrieved to complete the surface (Figure 23f). Portion of hill (Figure 23g) had been misclassified and was needed to be retrieved to retain the correct terrain (Figure 23h). Object retrieval uses the secondary DTM (t_layer) to fill in these areas.

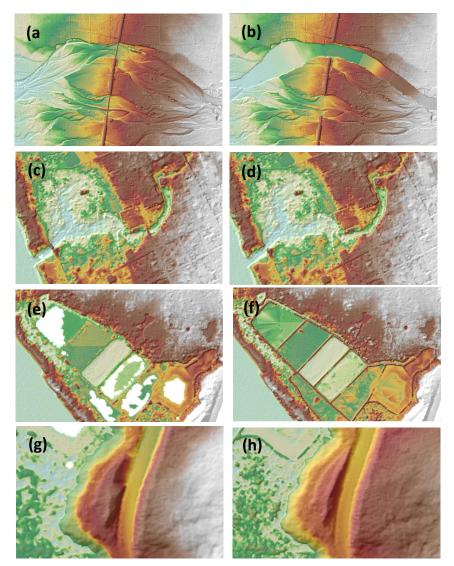


Figure 23. Portions in the DTM of Balatucan Floodplain—bridges before (a), (c) and after (b), (d) manual editing; a paddy field before (e) and after (f) data retrieval; and a misclassified hill before (g) and after (h) data retrieval.

3.9 Mosaicking of Blocks

The Balatucan Floodplain lies within the NorthernMindanao_RX_BlkC block. NorthernMindanao_RX_BlkC was used as the reference block at the start of mosaicking due to the availability of validation points that was used to calibrate such block. Supplementary blocks, NorthernMindanao_RX_supplement and NorthernMindanao_RX_BlkC_supplement, also overlap in areas where there are inconsistent patterns and data gaps. Adjacent to these, in the southern part, is the NorthernMindanao_RX_BlkD (Figure 24). Table 15 shows the area of each LiDAR blocks and the shift values applied during mosaicking. Shifting values were derived from the height difference of the calibrated block and the overlapping adjacent block.

Mission Blocks	Shift Values (meters)				
	х	у	z		
NorthernMindanao_RX_BlkC	0.00	0.00	0.00		
Northern Mindanao RX_supplement	0.00	0.00	-0.16		
NorthernMindanao_RX_BlkC_supplement	0.00	0.00	-0.18		
NorthernMindanao_RX_BlkD	0.00	0.00	-0.12		
Bukidnon Blk64F	0.00	0.00	0.01		

Table 15. Shift values of each LiDAR Block of Balatucan Floodplain.

Mosaicked LiDAR DTM for Balatucan Floodplain is shown in Figure 24. It can be seen that the entire Balatucan Floodplain is 97.18% covered by LiDAR data.

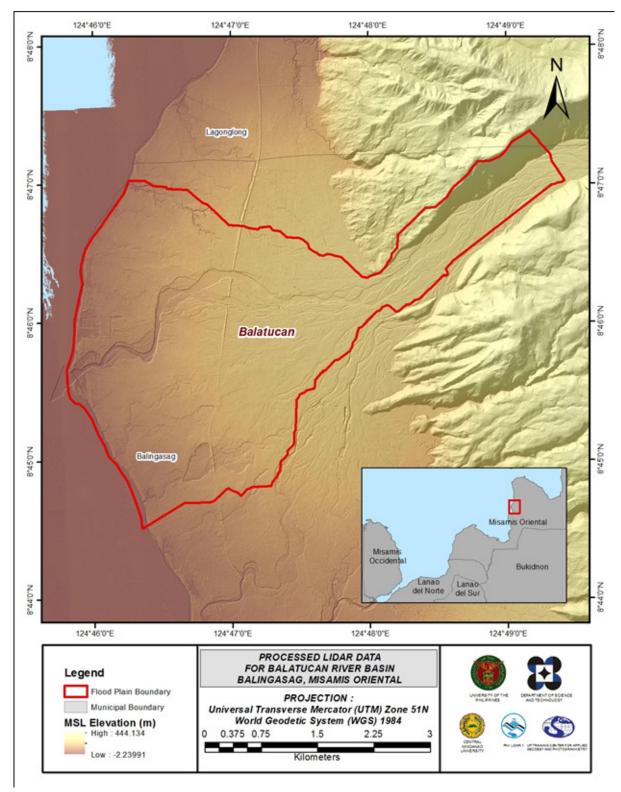


Figure 24. Map of processed LiDAR data for Balatucan Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Balatucan to collect points with which the LiDAR dataset is validated is shown in Figure 25. A total of 1,755 survey points were gathered for the Balatucan Floodplain. However, the point dataset was not used for the calibration of the LiDAR data for Balatucan because during the mosaicking process, each LiDAR block was referred to the calibrated Gingoog DEM. Therefore, the mosaicked DEM of Balatucan can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Gingoog LiDAR DTM and ground survey elevation values is shown in Figure 26. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.64 meters with a standard deviation of 0.10 meters. Calibration of Gingoog LiDAR data was done by subtracting the height difference value, 0.64 meters, to Gingoog mosaicked LiDAR data. Table 16 shows the statistical values of the compared elevation values between Gingoo gLiDAR data and calibration data. These values were also applicable to the Balatucan DEM.

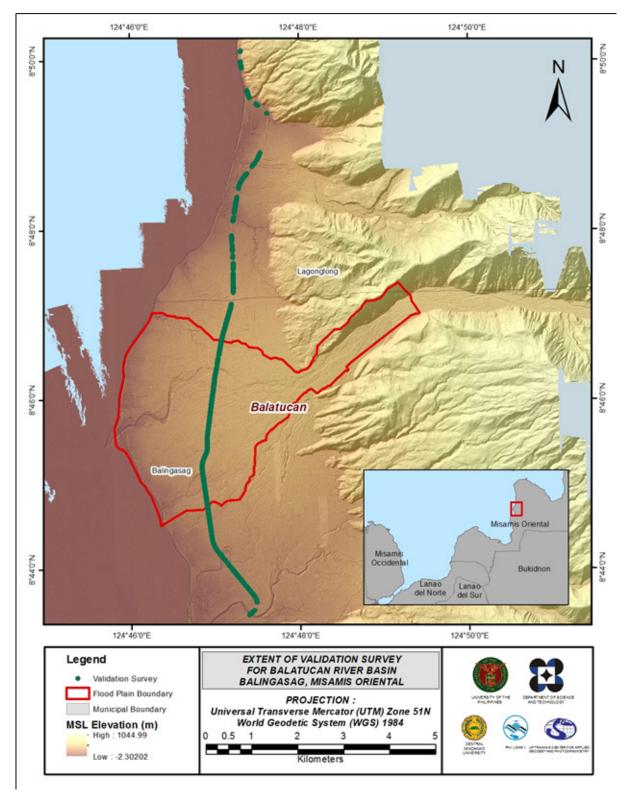


Figure 25. Map of Balatucan Floodplain with validation survey points in green.

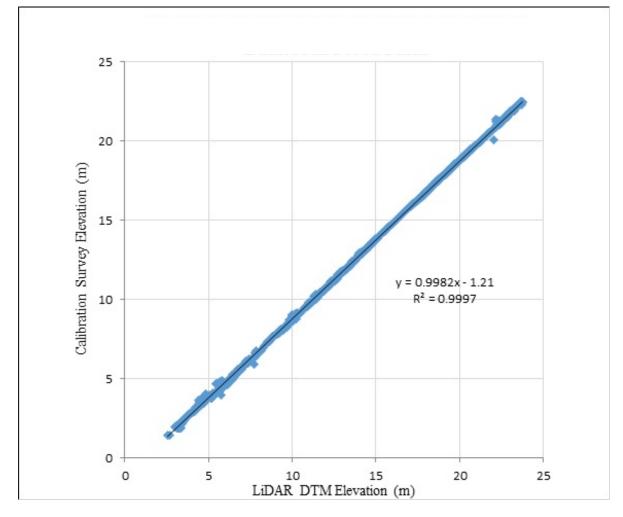
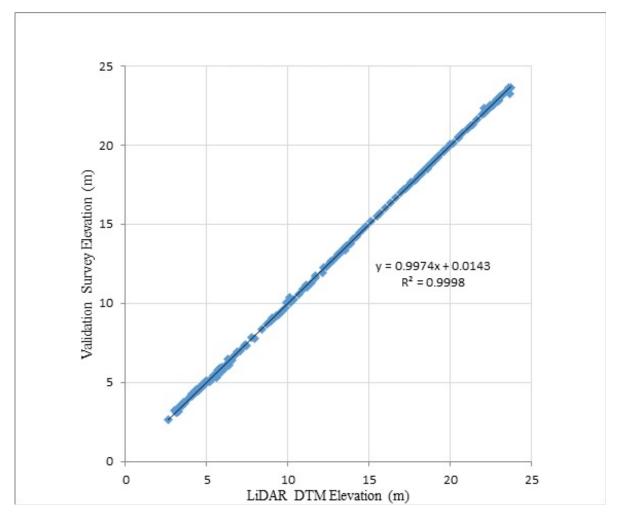



Figure 26. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	0.64
Standard Deviation	0.10
Average	-0.64
Minimum	-0.85
Maximum	-0.42

Table 16. Calibration statistical measures

All survey points of the Balatucan Floodplain were used for the validation of calibrated Balatucan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 27. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.13 meters with a standard deviation of 0.13 meters, as shown in Table 17.

Validation Statistical Measures	Value (meters)
RMSE	0.13
Standard Deviation	0.13
Average	-0.02
Minimum	-0.42
Maximum	0.47

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline data was available for Balatucan with 217 (with LiDAR Data) out of 525 total bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.32 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Balatucan integrated with the processed LiDAR DEM is shown in Figure 28.

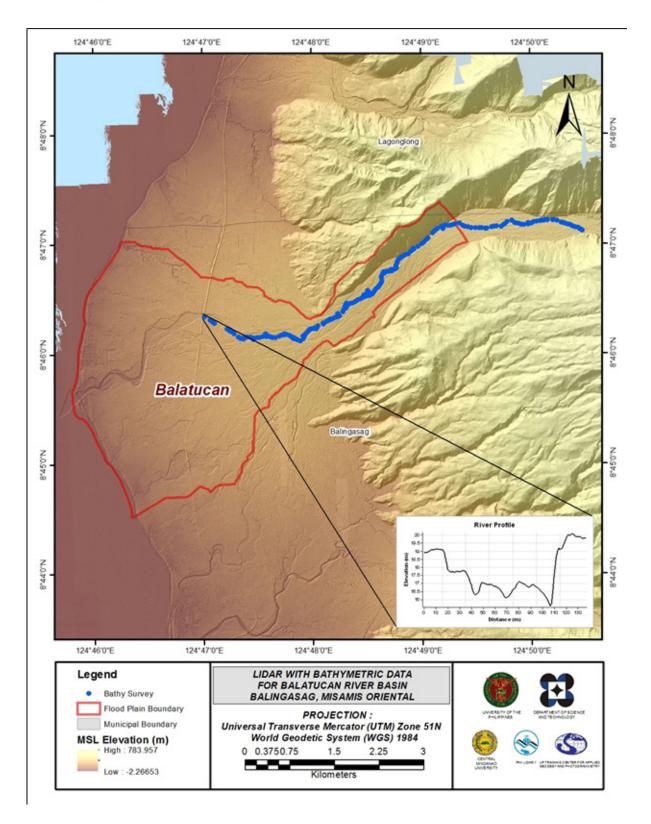


Figure 28. Map of Balatucan Floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking (QC) of Digitized Features' Boundary

Balatucan Floodplain, including its 200 m buffer, has a total area of 18.46 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 1,345 building features, are considered for QC. Figure 29 shows the QC blocks for Balatucan Floodplain.

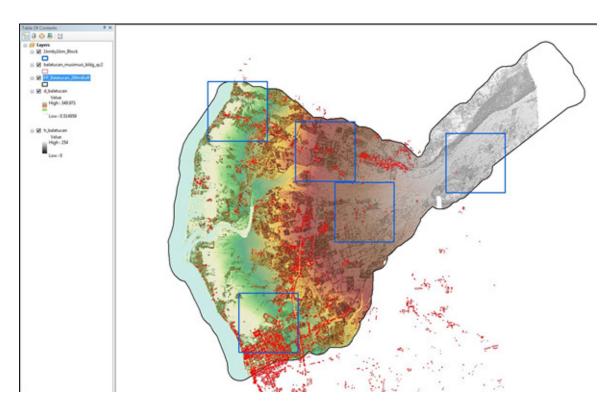


Figure 29. Blocks of Balatucan building features subjected to QC.

Quality checking of Balatucan building features resulted in the ratings shown in Table 18.

Table 18. Quality checking ratings for Balatucan building features.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Balatucan	99.48	100.00	99.03	PASSED

3.12.2 Height Extraction

Height extraction was done for 3,382 building features in Balatucan Floodplain. Of these building features, none was filtered out after height extraction, resulting in 3,382 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 7.89 m.

3.12.3 Feature Attribution

Field data collection for the attribution process was done through Geotagging (point to a specific feature and shoot method) using a handheld GPS with a built-in camera. The x,y,z and the viewing direction of the GPS in 0-359 degrees during the photo capture were the essential information in the process. Using Arcmap's tool "Geotagged Photos to Points," the symbology of the imported point shapefile was set as "Airfield" and the viewing angle was set as "Direction." The "Path" was automatically created in the points' attribute table wherein the photo's directory is linked every after the "Identify" button is clicked to a specific point.

Table 19 summarizes the number of building features per type. Approximately 3,212 of the total features identified are residential establishments, while the schools and commercial establishments are the most common in non-residential features. On the other hand, Table 20 shows the total length of each road type. However, road networks other than the national road (NA) were considered unclassified (Others). Table 21 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	3,212
School	80
Market	0
Agricultural/Agro-Industrial Facilities	0
Medical Institutions	3
Barangay Hall	5
Military Institution	0
Sports Center/Gymnasium/Covered Court	2
Telecommunication Facilities	0
Transport Terminal	0
Warehouse	0
Power Plant/Substation	0
NGO/CSO Offices	0
Police Station	0
Water Supply/Sewerage	0
Religious Institutions	0
Bank	0
Factory	0
Gas Station	2
Fire Station	0
Other Government Offices	3
Other Commercial Establishments	75
Municipal Hall	3,382
Purok Hall	0
Total	3,209

Table 19. Building features extracted for Balatucan Floodplain.

Road Network Length (km)							
Floodplain	Floodplain Barangay City/ Provincial Nationa Road Road Road Road Road					Total	
Balatucan	0	0	0	4.03	41.82	45.85	

Table 20. Total length of extracted roads for Balatucan Floodplain.

Table 21. Number of extracted water bodies for Balatucan Floodplain.

Water Body Type						
Floodplain	Rivers/ Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Total
Saub	2	0	0	0	0	2

A total of 6 bridges, 2 spillways, and a culvert that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 30 shows the Digital Surface Model (DSM) of Balatucan Floodplain overlaid with its ground features.

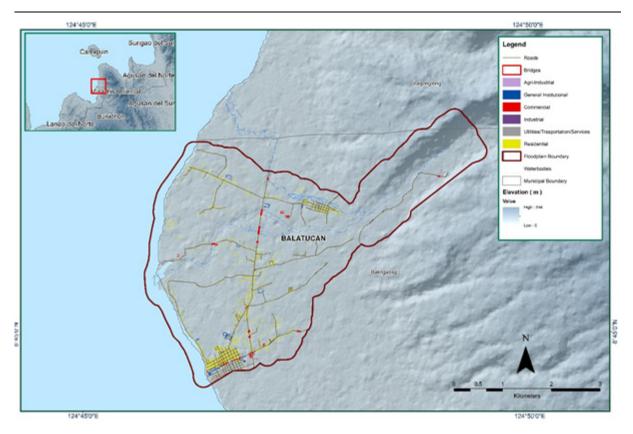


Figure 30. Extracted features for Balatucan Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS IN THE BALATUCAN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

4.1 Summary of Activities

DVBC conducted a field survey in Balatucan River from September 25 to October 09, 2014 with the following scope of work: reconnaissance; control survey for the establishment of a control point; cross-section, bridge as-built, and water level elevation marking tied with MSL of Mambayaan Bridge pier; ground validation data acquisition of about 36 km; and bathymetric survey from Brgy. Kibanban to Brgy. Mambayaan, Balingasag, Misamis Oriental with an estimated length of 10.6 km.

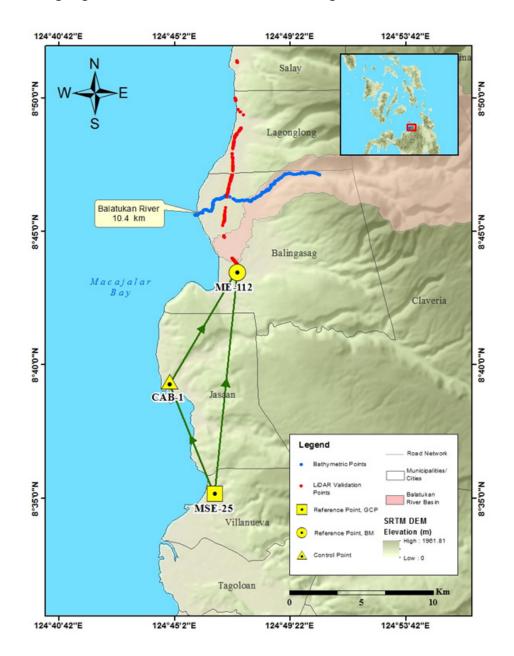


Figure 31. Extent of the bathymetric survey (in blue) in Balatucan River and the LiDAR validation survey (in red).

4.2 Control Survey

The GNSS network used for Balatucan River Basin is composed of a single loop established on September 29, 2014 occupying the reference points MSE-25, a second-order GCP in Brgy. Poblacion 1, Municipality of Villanueva, Misamis Oriental, fixed from previous Phil-LiDAR survey in Misamis Occidental with elevation derived from TGBM.

A control point was established along the approach of bridge, namely: CAB-1, located at Cabulig Bridge in Brgy. Bobontugan, Municipality of Jasaan, Misamis Oriental. A NAMRIA-established control point namely ME-112 in Brgy. Talusan, Municipality of Balingasag, Misamis Oriental was also occupied to use as marker.

The summary of references and control points and their location is summarized in Table 22 while the GNSS network established is illustrated in Figure 32.

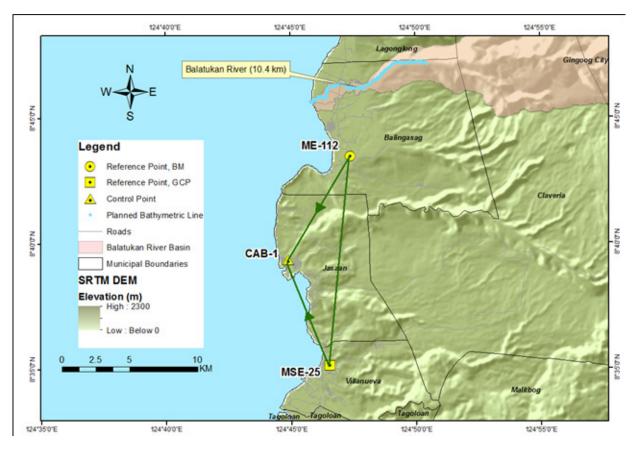


Figure 32. GNSS network covering the Balatucan River

Table 22. List of reference and control points used in Balatucan River Basin survey (Source: NAMRIA, UP-TCAGP)

		Geographic Coordinates (WGS 84)						
Control Point	Order of Accuracy	Latitude Longitude		Ellipsoid Height (m)	Elevation (MSL) (m)	Date of Establishment		
	Control Survey on December 10, 2016							
MSE-25	2nd order, GCP	8°35'09.60584"	124°46'32.43073"	76.139	6.528	2003		
ME-112	1storder, BM	-	-	-	-	2007		
CAB-1	UP Estab-lished	_	-	-	-	2014		

The GNSS set-ups made in the location of the reference and control points are exhibited in Figure 33 to Figure 35.

Figure 33. GNSS base receiver set-up, Trimble® SPS 852 at MSE-25 in Brgy. Poblacion 1, Municipality of Villanueva, Misamis Oriental.

Figure 34. GNSS base receiver set-up, Trimble® SPS 852 at ME-112 at Musi-Musi Bridgein Brgy. Talusan, Municipality of Balingasag, Misamis Oriental.

Figure 35. GNSS base occupation, Trimble® SPS 882 at CAB-1 along Iligan-Cagayan de Oro-Butuan Road at the approach of Cabulig Bridge in Brgy. Bobontugan, Municipality of Jasaan, Misamis Oriental.

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/-20 cm and +/-10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking was performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Balatucan River Basin is summarized in generated TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
MSE-25 CAB-1	09-29-2014	Fixed	0.003	0.016	338°15'59"	8315.309	0.636
CAB-1 ME- 112	09-29-2014	Fixed	0.007	0.030	31°26'18"	8885.787	-1.253
MSE-25 ME-112	09-29-2014	Fixed	0.006	0.020	5°48'19"	15384.161	-0.688

Table 23. Baseline processing report for Balatucan River.

As shown in Table 23, a total of three (3) baselines were processed and all of them passed the required accuracy set by the project.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment was performed using TBC. Looking at the adjusted grid coordinates table of the TBC generated network adjustment report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation from:

$$\sqrt{((x_e)^2 + (y_e)^2)} < 20 \text{ cm} \text{ and } z_e < 10 \text{ cm}$$

where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report shown from Table 21 to Table 24 for the complete details.

The three (3) control points, MSE-25, ME-112, and CAB-1, were occupied and observed simultaneously to form a GNSS loop. Coordinates and elevation values of MSE-25 were held fixed during the processing of the control points as presented in Table 24. Through this reference point, the coordinates and elevation of the unknown control points were computed.

Table 24. Control point constraints.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height ơ (Meter)	Elevation σ (Meter)			
MSE-25	Grid				Fixed			
MSE-25	Global	Fixed	Fixed					
Fixed = 0.00000	Fixed = 0.000001(Meter)							

The list of adjusted grid coordinates, i.e., Northing, Easting, Elevation, and computed standard errors of the control points in the network, is indicated in Table 25. All fixed control points have no values for grid and elevation errors.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
CAB-1	692303.312	0.006	957244.697	0.005	7.759	0.036	
ME-112	696903.266	0.009	964847.889	0.008	6.695	0.042	
MSE-25	695418.468	?	949534.368	?	6.528	?	LLe

Table 25. Adjusted grid coordinates.

The network is fixed at reference points. The list of adjusted grid coordinates of the network is shown in Table 26. Using the equation $[[\sqrt[n]{(x]_e}]^2 + [[(y]_e)]^2] < 20 \text{ cm}$ for horizontal and $z_e < 10 \text{ cm}$ for the vertical, below is the computation for accuracy that passed the required precision:

a.) MSE-25

Horizontal accuracy	=	Fixed
Vertical accuracy	=	Fixed

b.) ME-112

Horizontal accuracy Vertical accuracy	= = =	V ((0.9) ² + (0.8) ² V(0.81 + 0.64) 1.20 cm < 20 cm 4.2 cm < 10 cm
c.) CAB-1 Horizontal accuracy Vertical accuracy	= = =	√ ((0.6) ² + (0.5) ² √(0.36 + 0.25) 0.78 cm < 20 cm 3.6 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the three occupied control points are within the required accuracy of the project.

Point ID	Latitude	Longitude	Ellipsoid Height (Meter)	Height Error (Meter)	Constraint
CAB-1	N8°39'21.02516"	E124°44'51.71530"	76.762	0.036	
ME-112	N8°43'27.78957"	E124°47'23.33936"	75.468	0.042	
MSE-25	N8°35'09.60584"	E124°46'32.43073"	76.139	?	LLe

Table 26. Adjusted geodetic coordinates.

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 26. Based on the result of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 27.

		Geograph	UT	M ZONE 51 N			
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
MSE- 25	2nd order, GCP	8°35'09.60584"	124°46'32.43073"	76.139	949534.368	695418.468	6.528
ME- 112	1st order, BM	8°43'27.78957"	124°47'23.33936"	75.468	964847.889	696903.266	6.695
CAB-1	UP Estab- lished	8°39'21.02516"	124°44'51.71530"	76.762	957244.697	692303.312	7.759

Table 27. References and control points used and its location (Source: NAMRIA, UP-TCAGP).

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built survey were conducted on October 3 and 4, 2014 along the downstream side of Mambayaan Bridge in Brgy. Mambayaan, Municipality of Balingasag, Misamis Oriental as shown in Figure 36. A GNSS receiver Trimble[®] SPS 882 in PPK survey technique was used to get the cross-section of the

Figure 36. Mambayaan Bridge facing upstream.



Figure 37. Cross-section and bridge as-built survey for Mambayaan Bridge.

The cross-sectional line for the Mambayaan Bridge is about 90.338 m with 16 cross-sectional points gathered using ME-122 as the GNSS base. Figure 38 to Figure 40 show the Mambayaan planimetric map, cross-section diagram, and as-built data.

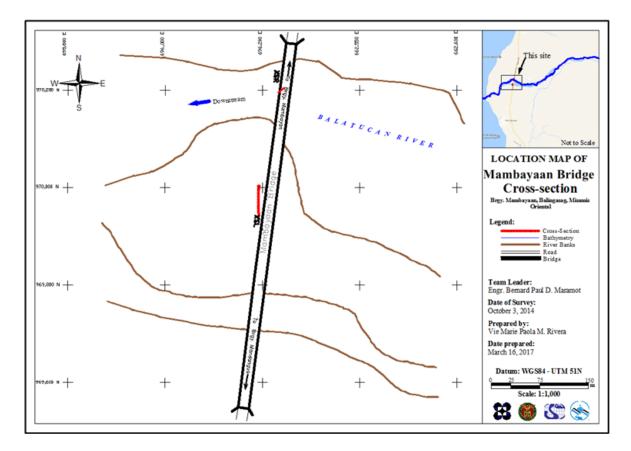
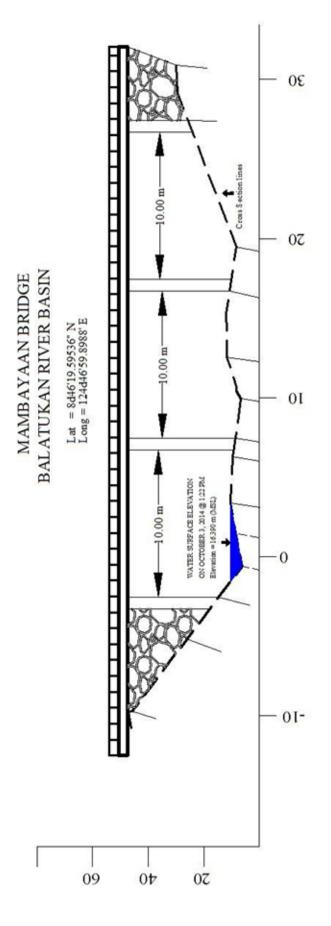
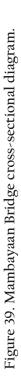




Figure 38. Mambayaan Bridge cross-section planimetric map.

Bridge Data Form Bridge Name: <u>Mambayaan</u> BridgeDate: <u>October 7, 2014</u>									
River Name: Balatukan River Time: 4:36pm									
			ity,Region): Brgy. Lower a		isaan, J	asaan, Misamis	Orien	tal	
	-		OVBC Misamis Oriental Surv	-					
	w condi			high Wea			air(rai	ッ	
Lati	tude:	8*46';	19.59536" N Lon	gitude: <u>1</u>	24°46'5	9.89888" E	_		
	BA2	~	P 💫	\frown	(BA3				
BA1	-			\mathbb{P}		BA4	= Bridge = Abutm	Approach P = Plan ant D = Dec	LC - Low Chor k HC - High Chor
		Ab1		~,	Ab2		п		
			P		н	c			
			Deck(Please start your me	asurement from	the left si	de of the bank facing	g downst	tream)	
Bev	ation	16.3	90 m (MSL)Width:	10.361 met	ers	_ Span (BA3-BA	2):	107.938 m	eters
			Station		High	h Chord Elevation	n	Low Cho	rd Elevation
1			Pier 1			21.9953		21	.6913
2			Pier 2			20.9623		20	.8663
3			Pier 3			21.1483		21	.3493
4									
			Bridge Approach Meaner	tert your measurem	ent from the	left side of the bank facing	ng down st	wam)	
ļ		Stat	ion(Distance from BA1)	Elevation		Station(Dista			Elevation
ļ	BA1		0	19.2963			21.9213		
l	BA2		31.79335	22.1623	BA4	16	6.717		21.2493
	Abu	rtmen	t: Is the abutment sloping	? Yes	No;	If yes, fill in th	ne follo	wing inform:	ation:
			Station(Di	stance fron	n BA1)			Elevatio	n
	A	b1	3	2.27495				22.8073	3
	A	bZ	3	8.90793				16.0133	3
			Pier (Please start your mea	surement from	the left si	ide of the bankfacing	g downs	tream)	
		Shape	e: Cylindrical Number	of Piers: 3	Heig	ht of column foo	ting: _		_
			Station (Distance from	n BA1)	1	Elevation		Pier V	Vidth
	Pier 1		59.33459		<u> </u>	21.9953	+		
	Pier 2 86.70531 20.9623 Pier 3 114.2751 21.1483								
	Pier 4		114.2731			21.1403	+		
	Pier 5								
	Pier 6								
	Pier 7								
			NOTE Use	ine center of the p	ner as rafe	rence to its station			

Figure 40. Mambayaan Bridge data form.

Figure 41. Water surface elevation marking on one of the bridge piers of Mambayan Bridge,

The water surface elevation of Balatucan River was determined using a Trimble[®] SPS 882 in PPK mode survey on October 8, 2014 at 5:38 PM. Its MSL value was translated onto marking the bridge's pier using a digital level. The markings shall serve as a reference for the flow data gathering and depth gauge deployment by Central Mindanao University, the HEI handling the flood model of Balatucan River.

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on September 29, 2014 using a survey-grade GNSS Rover receiver, Trimble® SPS 882, mounted on a pole which was attached at the side of the vehicle as shown in Figure 42. It was secured with a cable tie to ensure that it was horizontally and vertically balanced. The antenna height of 2.52 m was measured from the ground up to the bottom of the notch of the GNSS Rover receiver. The survey was conducted using PPK technique on a continuous topography mode. The activity started from the Municipality of Jasaan and traversed major roads going to the boundary of the Municipality of Villanueva.

Figure 42. Validation points acquisition survey using Trimble® SPS 882.

The survey acquired 1,942 points with an approximate length of 30 km using CAB-1 as the GNSS base station, as shown in the map in Figure 43.

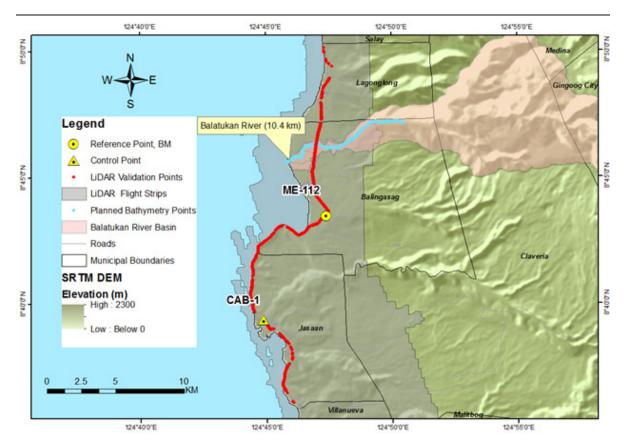


Figure 43. Validation points acquisition survey for Balatucan River.

4.7 River Bathymetric Survey

Manual bathymetric survey was done from October 2 to 3, 2014 using high-grade GPS Trimble[®] SPS 882 in GNSS PPK survey technique as shown in Figure 44. The Survey started from the upstream part of the river in Brgy. Kibanban, Municipality of Balingasag with coordinates 8°47′07.26286″124°50′28.33932″, traversed down by foot and ended in at the mouth of the river in Brgy. Mambayaan, also in the Municipality of Balingasag with coordinates 8°45′37.11323″124°45′47.68792″. The control point CAB-1 was used as the GNSS base station all throughout the survey.

Figure 44. Conduct of the bathymetric survey: (a) upstream and (b) downstream bathymetry.

The bathymetric line of Balatucan River has an estimated length of 10.6 km with a total number of 529 bathymetric points acquired covering Brgy. Kibanban, Napaliran, Mandangoa and Cogon in Municipality of Balingasag. CAD drawing was also produced to illustrate the Balatucan riverbed profile as shown in Figure 46. The highest and lowest elevation value has 136-m difference in elevation. The highest elevation observed was 134.40 m in MSL located at the upstream part of the river, while the lowest elevation observed was -2.094 m below MSL located near the mouth of the river in Brgy. Cogon. Quarrying activities are present near Mambayaan Bridge which resulted in a drop in elevation downstream.

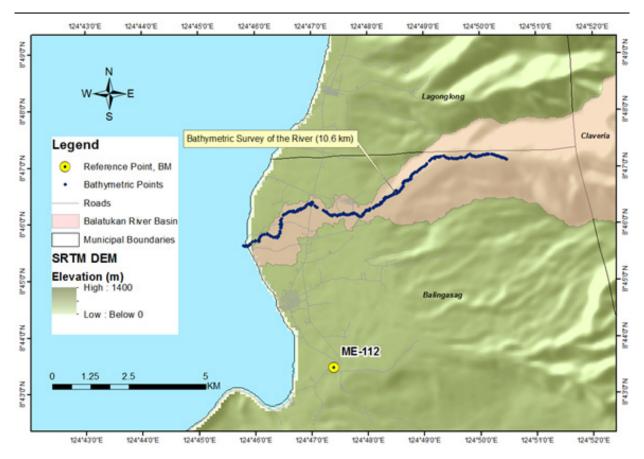


Figure 45. Bathymetric survey of Balatucan River

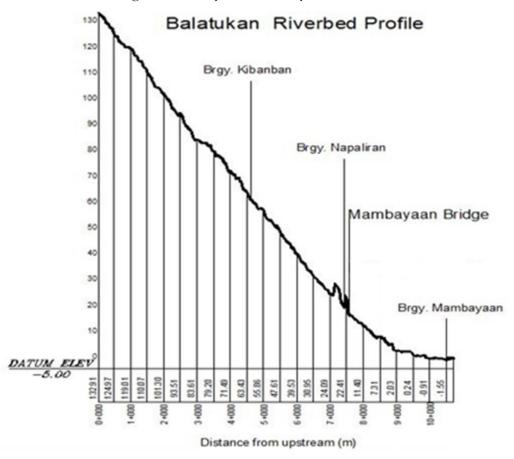


Figure 46. Riverbed profile of Balatucan River.

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Mariel Monteclaro

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Balatucan River Basin, were monitored, collected, and analyzed.

5.1.2 Precipitation

The fifteen (15)-minute precipitation data was taken from the automatic rain gauge (ARG) installed by the CMU Phil-LiDAR 1 at the Sitio Lantad, Barangay Kibanban, Balingasag, Misamis Oriental and accessed through manual downloading after the rainfall event. Figure 47 shows the location of the rain gauge in Balatucan River Basin.

The total precipitation for this event is 39.2 mm. It peaked to 11 mm on 20 May 2016 at 15:15. The lag time between the peak rainfall and discharge is three (3) hours and five (5) minutes.

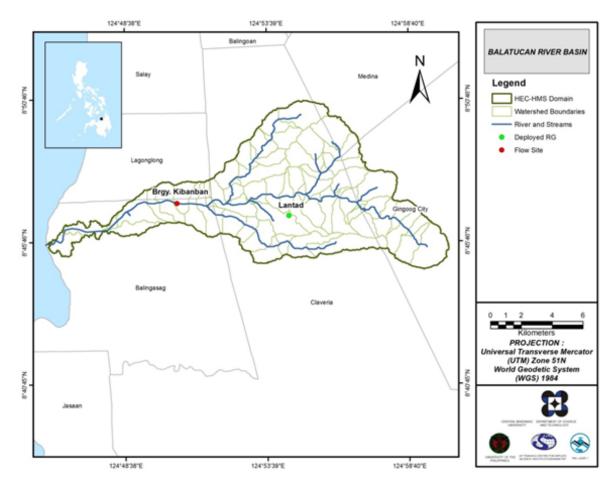


Figure 47. Location map of Balatucan HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

Data on river outflow used to calibrate the HEC-HMS model was gathered at the Sitio Kiwali, Barangay Kibanban, Balingasag. The river discharge was gathered using calibrated water level to measure the height of the water and mechanical flow meter to determine the velocity of the flowing water at ten (10)-minute interval. River outflow was measured during the rainfall event from 1410 of May 20, 2016 to 0200 of May 21, 2016. Peak discharge is 36.40 m3/s on May 20, 2016 at 1820.

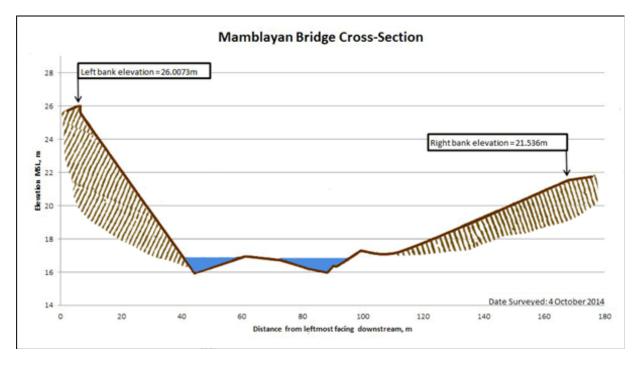


Figure 48. Cross-section plot of Mamblayan Bridge.

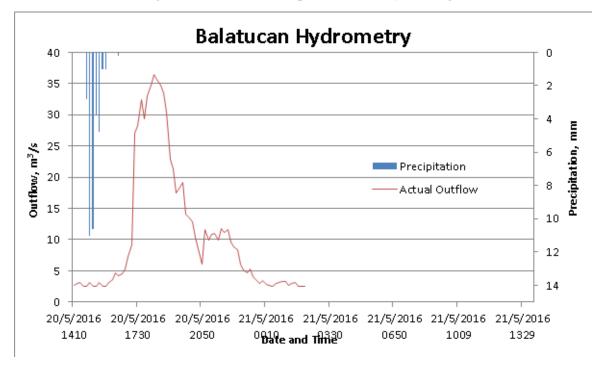


Figure 49. Rainfall and outflow data at Balatucan used for modeling.

Using the gathered stage and discharge data, a rating curve was developed to illustrate the relationship between the observed stage of the river and discharge. Stage was determined by the tying up the water surface elevation and water level change measured using a digital depth gauge. Meanwhile, discharge was calculated using the cross-section area, stage, and river velocity measured using a mechanical flow meter. The relationship is expressed in the form of the following equation: Q=anh

where, Q

Discharge (m3/s);

h : Gauge height (reading from Riverside staff gauge); and

a and n : Constants.

:

For Balatucan Bridge, the rating curve is expressed as Q = 3.0043e6.3327h as shown in Figure 50.

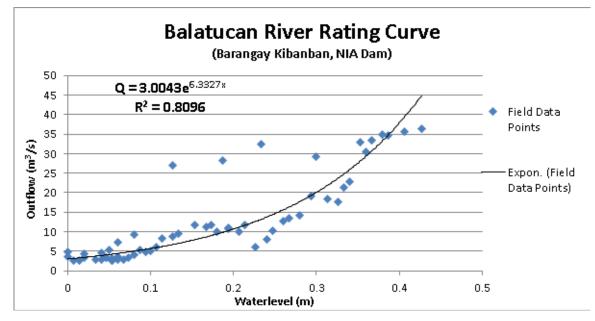


Figure 50. HQ curve of HEC-HMS model.

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for Rainfall Intensity Duration Frequency (RIDF) values for the Lumbia Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value would be attained at a certain time. This station was chosen based on its proximity to the Balatucan watershed. The extreme values for this watershed were computed based on a 26-year record.

	COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION								
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	22.3	32.5	42	56.6	68.1	74.1	82.1	85.1	88.8
5	27.1	39.9	52.7	74	91.5	96.5	104.8	110.4	129.2
10	30.2	44.9	59.8	85.4	107.1	111.4	119.9	127.1	156
15	32	47.6	63.8	91.9	115.8	119.7	128.4	136.5	171.1
20	33.3	49.6	66.6	96.4	122	125.6	134.4	143.1	181.6
25	34.2	51.1	68.7	99.9	126.7	130.1	139	148.2	189.8
50	37.2	55.7	75.4	110.7	141.3	144	153.1	163.9	214.8
100	40.2	60.3	82	121.3	155.7	157.8	167.2	179.4	239.7

Table 28. RIDF values for Lumbia Rain Gauge computed by PAGASA.

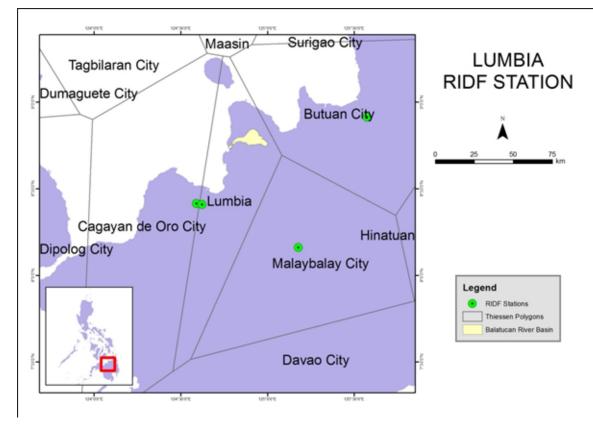


Figure 51. Location of Lumbia RIDF Station relative to Balatucan River Basin.

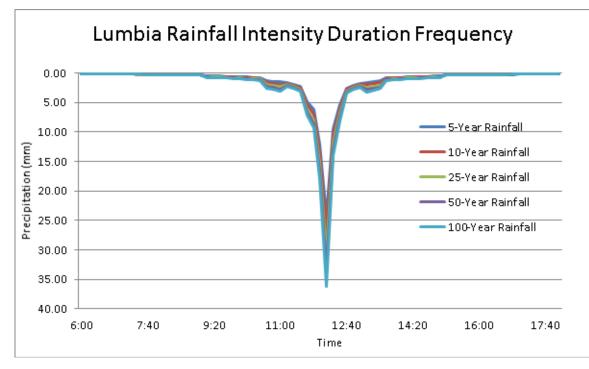


Figure 52. Lumbia RIDF curves.

5.3 HMS Model

The soil dataset was taken from and generated by the Bureau of Soils and Water Management (BSWM) under the Agriculture (DA). The land cover dataset was from the National Mapping and Resource Information Authority (NAMRIA). The soil and land cover of the Balatucan River Basin are shown in Figure 53 and Figure 54, respectively.

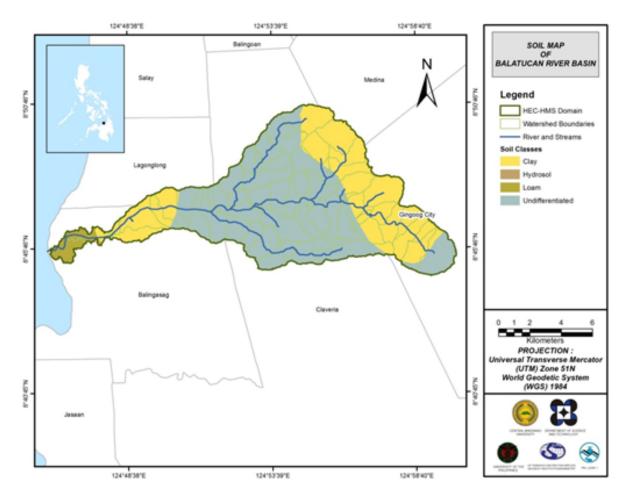


Figure 53. Soil map of the Balatucan River Basin.

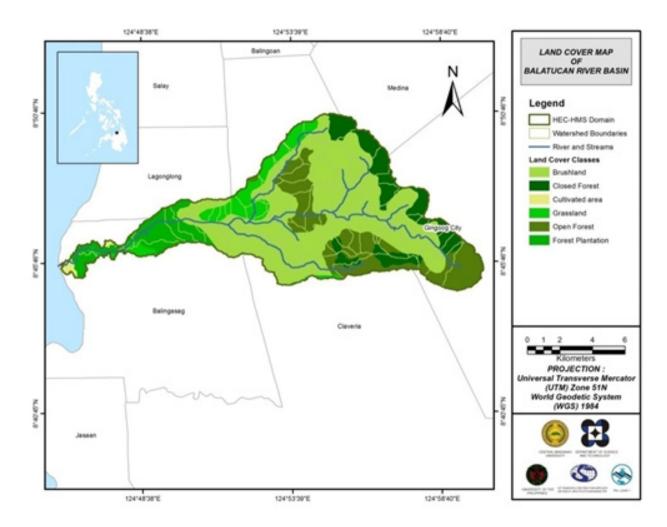


Figure 54. Land cover map of the Balatucan River Basin.

For Balatucan, four soil classes were identified. These are clay, hydrosol, loam, and undifferentiated soil. Moreover, six land cover classes were identified, namely brushland, closed forest, cultivated area, grassland, open forest, and forest plantation.

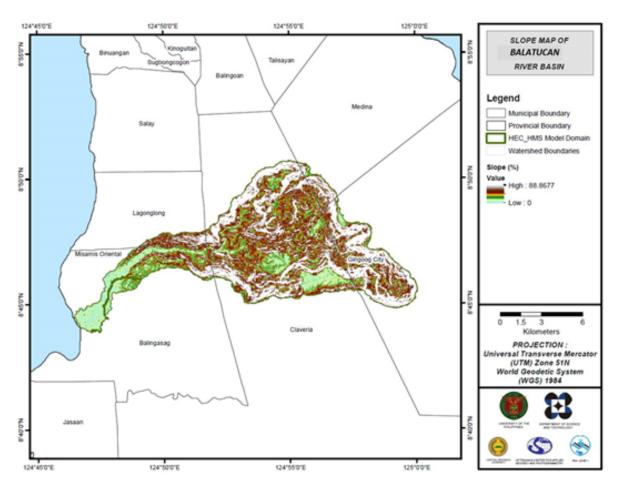


Figure 55. Soil map of the Balatucan River Basin.

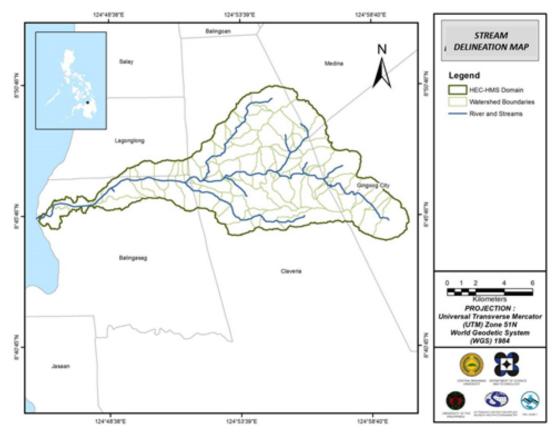


Figure 56. Stream delineation map of Balatucan River Basin.

Using the SAR-based DEM, the Balatucan basin was delineated and further subdivided into subbasins. The Balatucan basin model consists of 61 subbasins, 58 reaches, and 61 junctions. The main outlet assigned at the estuary. The delineated subbasins range from 0.003 to 4.64 km2 in area, and with an average area of 2.01 km2. This basin model is illustrated in Figure 57. The basins were identified based on soil and land cover characteristics of the area. Precipitation from the 20 May 2016 was taken from the deployed automatic rain gauge at Sitio Lantad, Kibanban, Balingasag, Misamis Oriental. Finally, it was calibrated using discharge data gathered at the Balatucan spillway in Sitio Kiwale using mechanical flow meter and a staff gauge for water level measurement.

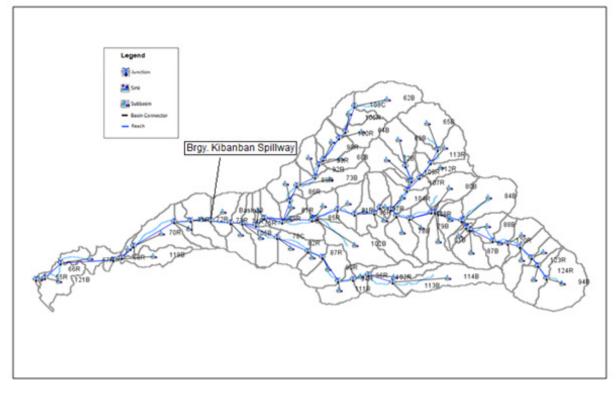
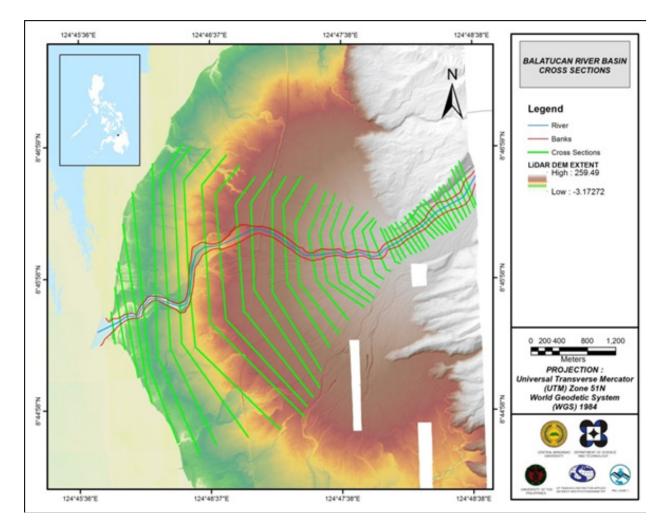
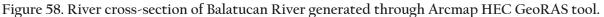




Figure 57. HEC-HMS generated Balatucan River Basin Model.

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model set-up. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

5.5 Flo 2D Model

The automated modeling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area was divided into square grid elements, 10 meter by 10 meter in size. Each element was assigned a unique grid element number which served as its identifier, then attributed with the parameters required for modeling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements were arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the northeast, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements, respectively.

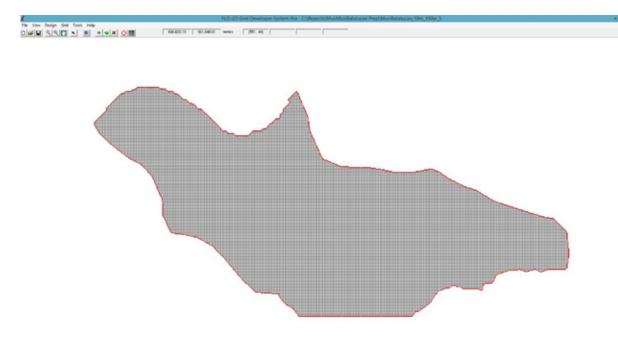


Figure 59. Screenshot of subcatchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 39.55225 hours. After the simulation, FLO-2D Mapper Pro was used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High created the following food hazard map. Most of the default values given by FLO-2D Mapper Pro were used, except for those in the Low-hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h) is set at 0 m2/s.

The creation of a flood hazard map from the model also automatically created a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in FLO-2D Mapper was not a good representation of the range of flood inundation values, so a different legend was used for the layout. In this particular model, the inundated parts cover a maximum land area of 39 385 900.00 m2.

There is a total of 18,419,757.72 m3 of water entering the model. Of this amount, 10,725 727.85 m3 is due to rainfall while 7,694,029.87 m3 is inflow from other areas outside the model. About 3,960,626.75 m3 of this water is lost to infiltration and interception, while 12,447 417.07 m3 is stored by the floodplain. The rest, amounting up to 2,011,714.06 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Balatucan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 60 shows the comparison between the two discharge data.

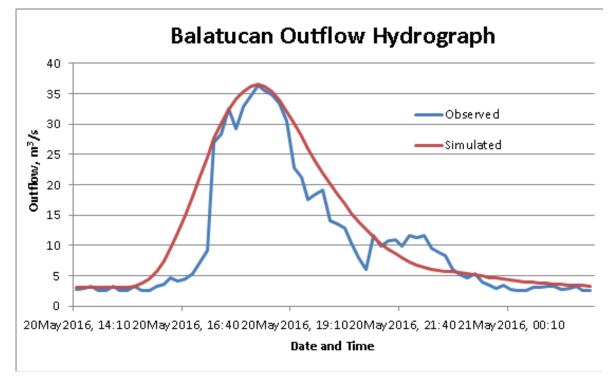


Figure 60. Outflow hydrograph of Balatucan produced by the HEC-HMS model compared with observed outflow.

Enumerated in Table 29 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loop	CCC Currie Number	Initial Abstraction (mm)	5.51 – 36.15
	Loss SCS Curve Numb	SCS Curve Number	Curve Number	59.5 - 83
Deste	T		Time of Concentration (hr)	1.1-17.75
Basin	Transform	Clark Unit Hydrograph	Storage Coefficient (hr)	0.35 – 5.79
	Baseflow Reces	Dessesion	Recession Constant	0.001 - 1
		Recession	Ratio to Peak	0.001
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.0001

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 5.51 mm to 36.15 mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 59.5 to 83 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area. For Balatucan, the basin mostly consists of brushlands and the soil consists of clay and undifferentiated soil.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 1.1 hours to 17.75 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. A recession constant of 0.001 indicates that the basin will quickly go back to its original discharge while a recession constant of 1 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.001 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.0001 for the Balatucan River Basin is lower than the usual Manning's n value in the Philippines.

Accuracy measure	Value
RMSE	2.8
r2	0.8096
NSE	0.82
PBIAS	22.12
RSR	0.42

Table 30. Summary of the efficiency test of Balatucan HMS Model.

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 2.8 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. A value close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC-HMS model. Here, it measured 0.8096.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here, the optimal value is 1. The model attained an efficiency coefficient of 0.82.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 22.12.

The Observation Standard Deviation Ratio (RSR) is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.42.

5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 61) show the Balatucan outflow using the Lumbia RIDF in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the PAGASA data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

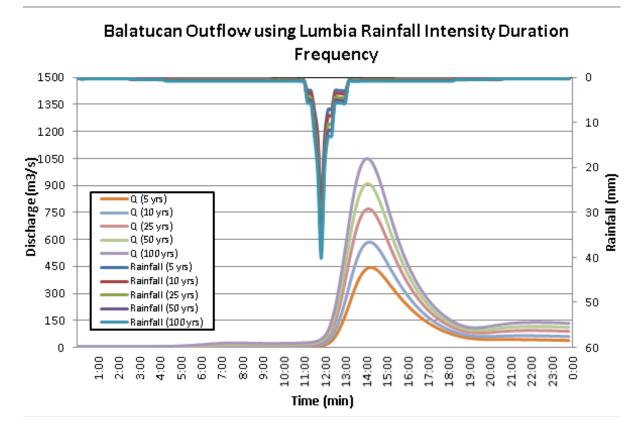


Figure 61. Outflow hydrograph at Balatucan Station generated using Lumbia RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Balatucan discharge using the Lumbia RIDF curves in five different return periods is shown in Table 31.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	129.2	27.1	443.4	2hours, 20 minutes
10-Year	155.9	30.2	585.7	2 hours, 20 minutes
25-Year	189.7	34.2	769.5	2 hours, 20 minutes
50-Year	214.8	37.2	907.5	2 hours, 20 minutes
100-Year	239.7	40.2	1048.3	2hours, 10 minutes

5.7.2 Discharge Data Using Dr. Horritts's Recommended Hydrologic Method

The river discharges for the three rivers entering the floodplain are shown in Figure 62 to Figure 63 and the peak values are summarized in Table 32 to Table 33.

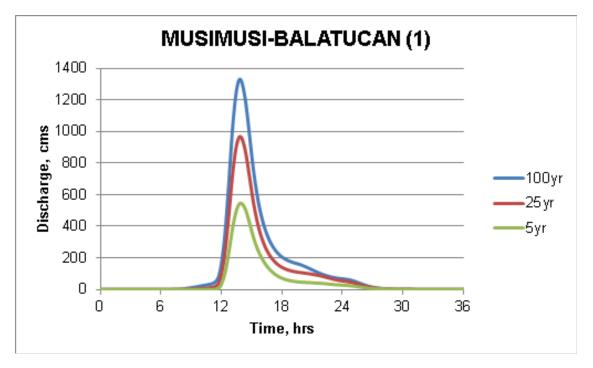


Figure 62. Musi-Musi and Balatucan River (1) generated discharge using 5-, 25-, and 100-year Lumbia RIDF in HEC-HMS.

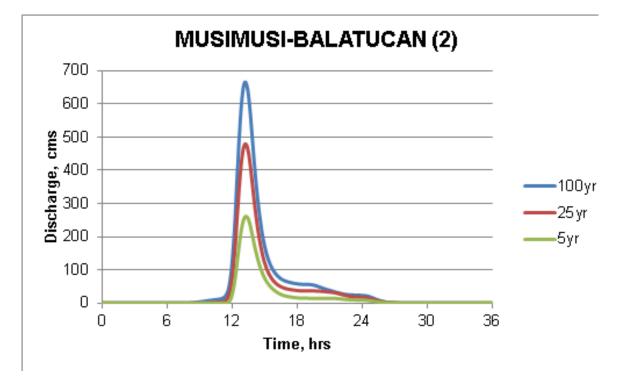


Figure 63. Musi-Musi and Balatucan River (2) generated discharge using 5-, 25-, and 100-year Lumbia RIDF in HEC-HMS.

Table 32. Summary of Musi-Musi and Balatucan River (1) discharge generated in HEC-HMS.

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	1331.9	13 hours, 50 minutes
25-Year	969.0	13 hours, 50 minutes
5-Year	545.1	13 hours, 50 minutes

Table 33. Summary of Musi-Musi and Balatucan River (2) discharge generated in HEC-HMS.

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	665.9	13 hours, 10 minutes
25-Year	479.3	13 hours, 10 minutes
5-Year	260.2	13 hours, 10 minutes

The comparison of the discharge results using Dr. Horritt's recommended hydrological method against the bankful and specific discharge estimates is shown in Table 34.

				VA	LIDATION
Discharge Point	Q _{MED(SCS)} , cms	Q _{BANKFUL} , cms	Q _{MED(SPEC)} , cms	Bankful Discharge	Specific Discharge
Musi-Musi and Balatucan (1)	479.688	471.303	355.125	Pass	Pass
Musi-Musi and Balatucan (2)	228.976	320.892	193.706	Pass	Pass

Table 34. Validation of river discharge estimates.

The two values from the HEC-HMS river discharge estimates were able to satisfy the conditions for validation using the bankful and specific discharge methods. The calculated values are based on theory but are supported using other discharge computation methods so they were good to use flood modeling. However, these values will need further investigation for the purpose of validation. It is therefore recommended to obtain actual values of the river discharges for higher-accuracy modeling.

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS flood model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river is shown. The sample generated map of Balatucan River using the calibrated HMS base flow is shown in Figure 64.

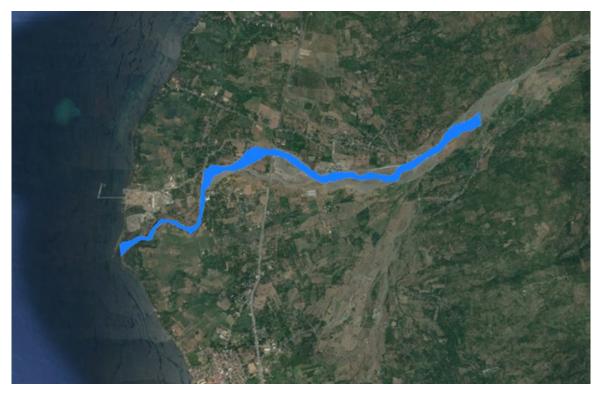


Figure 64. Sample output of Balatucan–Musi-Musi RAS Model.

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10 m resolution. Figure 65 to Figure 70 show the 100-, 25-, and 5-year rain return scenarios of the Musi-Balatucan Floodplain. The floodplain, with an area of 46.31 sq km, covers four municipalities namely Balingasa, Claveria, Jasaan, and Lagonglong. Table 35 shows the percentage of area affected by flooding per municipality.

Municipality	Total Area	Area Flooded	% Flooded
Balingasag	165.73	39.29	23.71%
Claveria	622.22	0.09	0.01%
Jasaan	64.84	2.47	3.81%
Lagonglong	47.38	3.56	7.51%

Table 35. Municipalities affected in Musi-Balatucan Floodplain.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

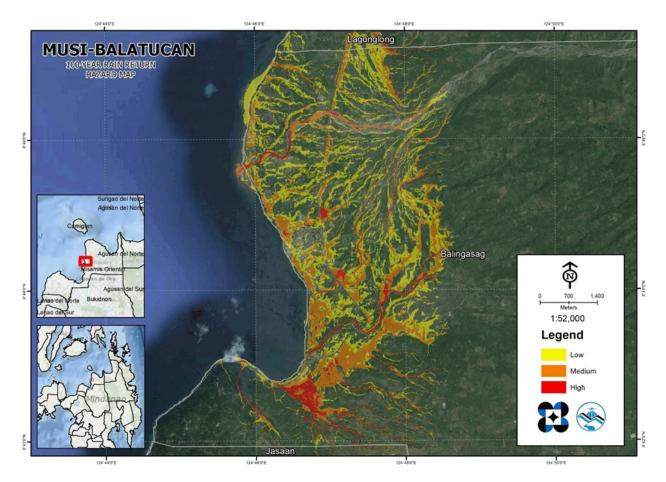


Figure 65. 100-year flood hazard map for Musi-Musi-Balatucan Floodplain.

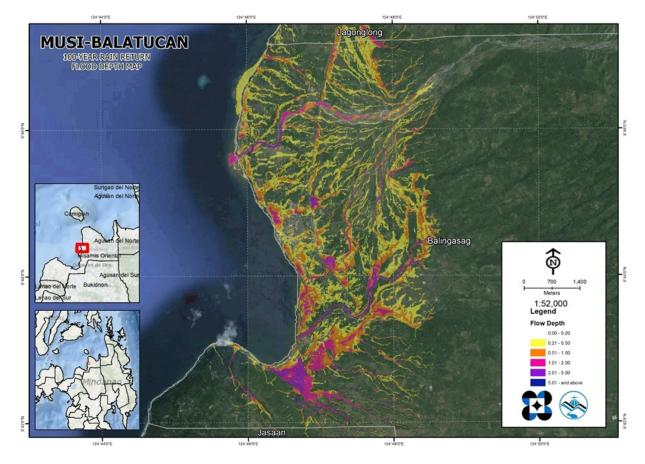


Figure 66. 100-year flow depth map for Musi-Musi-Balatucan Floodplain.

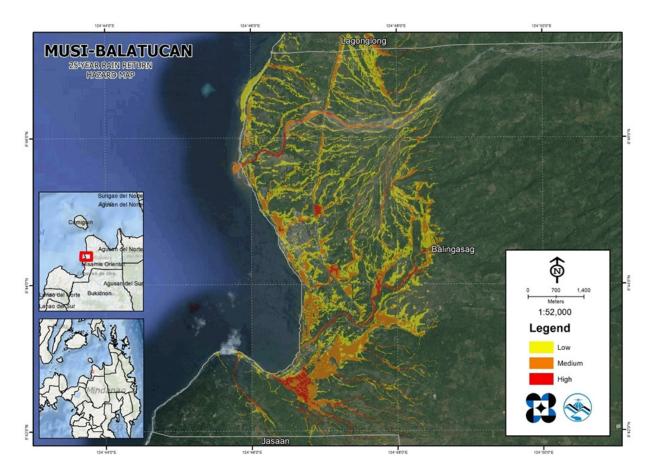


Figure 67. 25-year flood hazard map for Musi-Musi-Balatucan Floodplain.

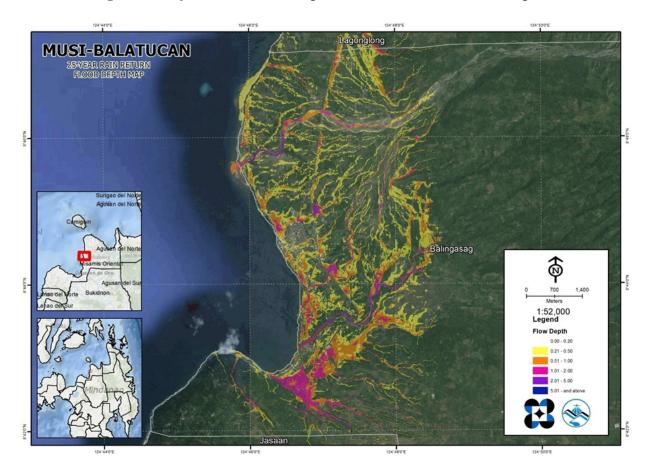


Figure 68. 25-year flow depth map for Musi-Musi-Balatucan Floodplain.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

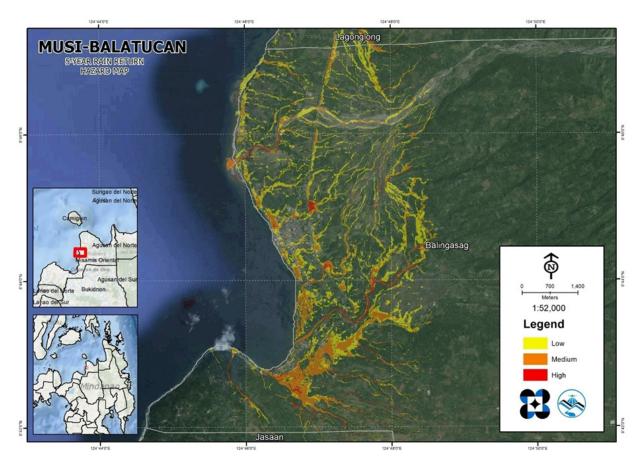


Figure 69. 5-year flood hazard map for Musi-Musi-Balatucan Floodplain.

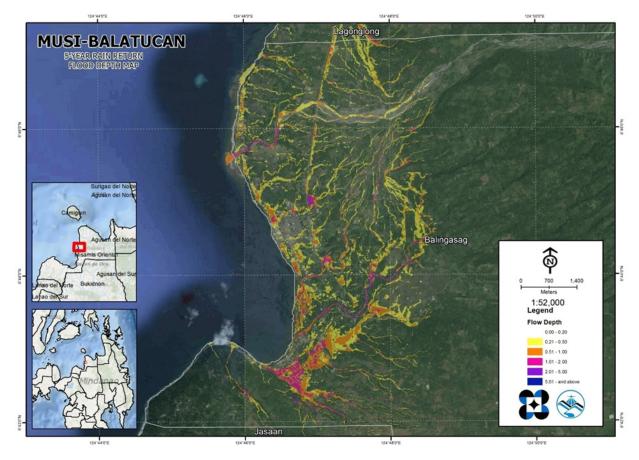


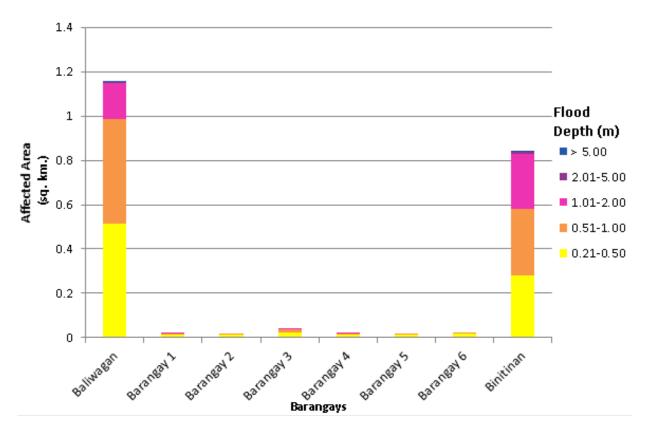
Figure 70. 5-year flood depth map for Musi-Musi-Balatucan Floodplain.

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Balatucan–Musi-Musi River Basin, grouped by municipality, are listed below. For the said basin, three municipalities consisting of 26 barangays are expected to experience flooding when subjected to 5-year rainfall return period.

For the 5-year return period, 27.95% of the municipality of Balingasag with an area of 125.591 sq km will experience flood levels of less than 0.20 meters; 3.91% of the area will experience flood levels of 0.21 to 0.50 meters; while 1.67%, 0.59%, and 0.09%, of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 36 to Table 38 are the affected areas in square kilometers by flood depth per barangay.

po
eturn perio
pe
Ľ
Ē
re
IJ
nfâ
aj
r r
-year
Ý
J.
60
j
In
ld
ta
ien
)ri
S
ni
sar
A15
~
- be
as
b0 L
ali
B
in
as
are
ď
te
ec.
₹Ħ
5. A
36
le
ab
Η


MUSI BASIN Baiwagan Barangay I Barangay 2 Barangay 3 Barangay 4 Barangay 5 Barangay 6 Binitinan 0:03-0.20 2.53 0.078 0.078 0.049 0.14 0.094 0.097 3.22 0:03-0.20 2.51 0.012 0.011 0.023 0.014 0.094 0.097 3.22 0:21-0.50 0.51 0.012 0.011 0.023 0.014 0.018 0.28 0:21-0.50 0.51 0.012 0.011 0.023 0.014 0.018 0.28 0:21-0.50 0.51 0.012 0.011 0.023 0.014 0.018 0.28 0:51-1.00 0.48 0.0065 0.0064 0.0014 0.018 0.3 1:01-2.00 0.16 0.0038 0 0.0064 0.0014 0.024 0.3 2:01-5.00 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0	BALATUC/	BALATUCAN – MUSI-			A	ffected Baran	Affected Barangays in Balingasag	ag		
0.03-0.20 2.53 0.078 0.034 0.094 0.097 0.03-0.20 2.53 0.078 0.078 0.049 0.014 0.094 0.097 0.21-0.50 0.51 0.012 0.011 0.023 0.014 0.018 0 0.51-1.00 0.48 0.012 0.011 0.023 0.014 0.018 0 0.51-1.00 0.48 0.0065 0.0066 0.014 0.011 0.024 0 1.01-2.00 0.16 0.0038 0	MUSI	BASIN	Baliwagan	Barangay 1	Barangay 2		Barangay 4	Barangay 5		Binitinan
Addition 0.21-0.50 0.51 0.012 0.011 0.013 0.0013 0.0024	p	0.03-0.20	2.53	0.078	0.078	0.049	0.14	0.094	0.097	3.22
April 0.014 0.0049 0.0011 0.0024 0.51-1.00 0.48 0.0065 0.0014 0.0024 0.0024 1.01-2.00 0.16 0.0038 0 0.0064 0.0026 0 0 2.01-5.00 0.0057 0 0 0 0 0 0 0 > 5.00 0.0005 0 0 0 0 0 0 0	oolf	0.21-0.50	0.51	0.012	0.011	0.023	0.014	0.011	0.018	0.28
Yei 1.01-2.00 0.16 0.0038 0 0.0064 0.00026 0 0 Yei 2.01-5.00 0.0057 0 <	γλ	0.51-1.00	0.48	0.0065	900.0	0.014	0.0049	0.0011	0.0024	0.3
(3, 4) (2, 1) (2	(· ɯ	1.01-2.00	0.16	0.0038	0	0.0064	0.00026	0	0	0.25
> 5.00 0.0005 0 <th< td=""><th>d. k</th><td>2.01-5.00</td><td>0.0057</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>900.0</td></th<>	d. k	2.01-5.00	0.0057	0	0	0	0	0	0	900.0
	s)	> 5.00	0.0005	0	0	0	0	0	0	0.0006

1 able 27. Allected areas in bailingasag, ivilsamis Oriental during a 2-year fainiali return period.

BALATUCA	BALATUCAN – MUSI-			4	Affected Barar	Affected Barangays in Balingasag	sag		
MUSI	MUSI BASIN	Blanco	Cogon	Dumarait	Hermano	Kibanban	Linabu	Linggangao	Mambayaan
p	0.03-0.20	2.91	3.01	1.76	0.37	0.76	2	1.44	2.86
oolf	0.21-0.50	0.27	0.55	0.3	0.006	0.033	0.051	0.17	0.39
þλ	0.51-1.00	0.22	0.14	0.086	0.002	0.0029	0.012	0.054	0.11
ecte m.)	1.01-2.00	0.041	0.049	0.023	0.00065	0	0.0016	0.019	0.012
d. k	2.01-5.00	0.012	0.014	0.012	0	0	0.000099	0.0039	0
s)	> 5.00	0.0019	0	0	0	0	0	0	0

Table 38. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period.

BALATUCA	BALATUCAN – MUSI-		A	Affected Barangays in Balingasag	gays in Balinge	asag	
MUSI	MUSI BASIN	Mandangoa	Napaliran	Quezon	San Isidro	Talusan	Waterfall
р	0.03-0.20	3.08	3.89	1.69	2.84	1.48	0.71
rea floc (.m	0.21-0.50	0.4	0.53	0.19	0.58	0.32	0.23
þλ	0.51-1.00	0.13	0.11	0.073	0.15	0.1	0.091
ath ath dth	1.01-2.00	0.035	0.014	0.012	0.03	0.06	0.026
у . р	2.01-5.00	0.0042	0.0009	0.002	0.0031	0.04	0.0039
s)	> 5.00	0	0	0	0	0.0004	0

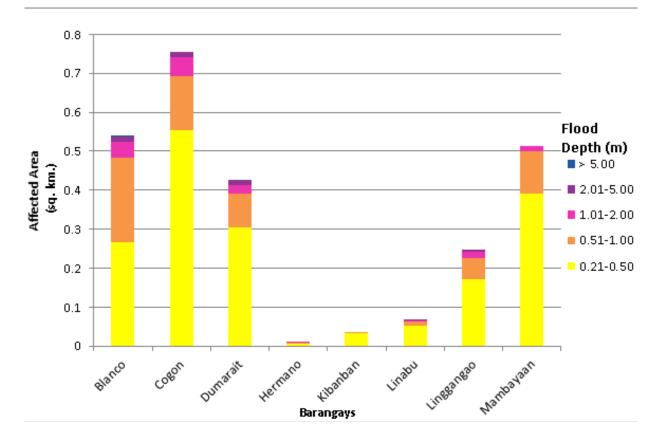


Figure 72. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period.

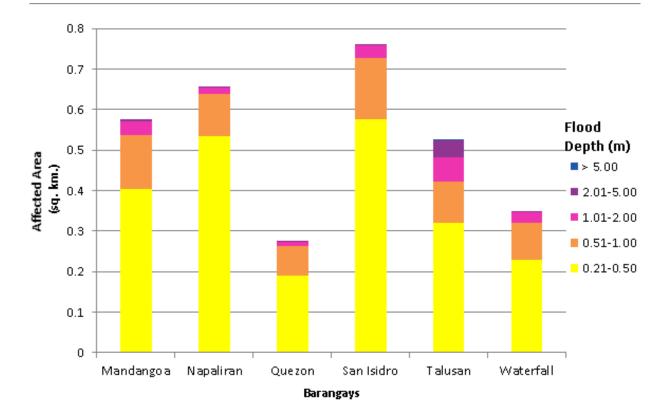


Figure 73. Affected areas in Balingasag, Misamis Oriental during a 5-year rainfall return period.

For the 5-year return period, 2.17% of the municipality of Jasaan with an area of 68.327103 sq km will experience flood levels of less than 0.20 meters; 0.06% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.03%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Listed in Table 39 are the affected areas in square kilometers by flood depth per barangay.

BALATUC	AN – MUSI-MUSI BASIN	Affected I	Barangays in Jasaan
		Danao	I. S. Cruz
e -	0.03-0.20	0.044	1.44
Are by	0.21-0.50	0.00016	0.04
fected iq. km. ood de (in m	0.51-1.00	0	0.02
ffec sq. (i)	1.01-2.00	0	0.014
	2.01-5.00	0	0.0016

Table 39. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period.

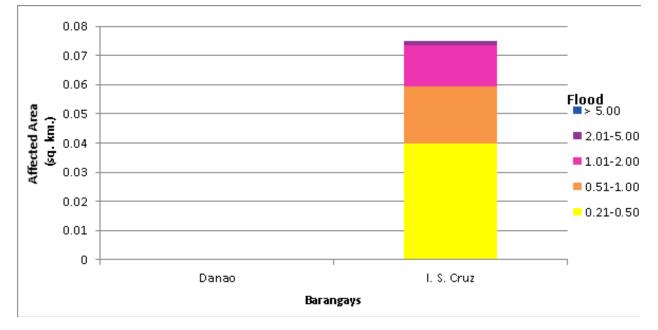


Figure 74. Affected areas in Jasaan, Misamis Oriental during a 5-year rainfall return period.

For the 5-year return period, 2.48% of the municipality of Lagonglong with an area of 46.624699 sq km will experience flood levels of less than 0.20 meters.; 0.34% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.10%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters respectively. Listed in Table 40 are the affected areas in square kilometers by flood depth per barangay.

Table 40. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period.

BALATUCAN	– MUSI-MUSI BASIN	Affected Barangays in Lagonglong		
BALAIOCAN		Kauswagan	Manaol	
g	0.03-0.20	0.46	0.7	
Area / floo	0.21-0.50	0.1	0.053	
n.) by A m.)	0.51-1.00	0.013	0.035	
ecte dej (in	1.01-2.00	0	0.0096	
Affect (sq. km do	2.01-5.00	0	0.000099	
(s	> 5.00	0	0	

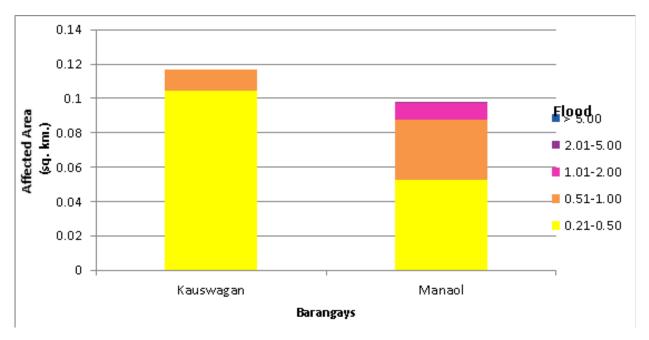


Figure 75. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period.

For the 25-year return period, 25.10% of the municipality of Balingasag with an area of 125.591 sq km will experience flood levels of less than 0.20 meters; 5.21% of the area will experience flood levels of 0.21 to 0.50 meters; while 2.56%, 1.13%, 0.22%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 40 to Table 42 are the affected areas in square kilometers by flood depth per barangay.

Ч
eturn perio
- DC
d u
Ш
et
l r
fall
rainfall
ra]
ЗГ
ve:
5 N
a 25
ದ
Ë
during
þ
al
ŭ
rien
Õ
ús
E
lisal
Mi
ьb
Sa
- go
aling:
Ba]
in Balir
S İ.
ca
ar
q
χ
ĕ
₫Ð
41. Affect
4
ole
Table
Tał

	Binitinan	3.03	0.28	0.26	0.45	0.045	0.0028
	Barangay 6	0.08	0.034	0.0038	0.000099	0	0
Se	Barangay 5	0.082	0.022	0.002	0	0	0
Affected Barangays in Balingasag	Barangay 4	0.14	0.015	0.0087	0.00075	0	0
ffected Barang	Barangay 3	0.029	0.027	0.026	0.011	0.000099	0
A	Barangay 2	0.07	0.013	0.011	0.00087	0	0
	Barangay 1	0.069	0.015	0.0088	0.006	0	0
	Baliwagan	2.25	0.54	0.55	0.34	0.019	0.0007
N – MUSI-	BASIN	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
BALATUCAN – MUSI-	MUSI BASIN	р	oolf	þλ	ecte m.)	d. k	s)

Table 42. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period

BALATUCA	BALATUCAN – MUSI-			4	Affected Baran	Affected Barangays in Balingasag	sag		
MUSI	MUSI BASIN	Blanco	Cogon	Dumarait	Hermano	Kibanban	Linabu	Linggangao	Mambayaan
р	0.03-0.20	2.78	2.58	1.48	0.37	0.73	1.97	1.32	2.59
oolt	0.21-0.50	0.25	0.83	0.47	0.0096	0.067	0.07	0.23	0.5
þλ	0.51-1.00	0.31	0.28	0.17	0.0026	0.0067	0.025	0.092	0.24
ath ath bth	1.01-2.00	0.096	0.058	0.039	0.0014	0	0.0046	0.033	0.05
d. k	2.01-5.00	0.018	0.029	0.026	0	0	0.000099	0.0076	0.000099
s)	> 5.00	0.0026	0	0	0	0	0	0	0

Table 43. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period

	Affected Barangays in Balingasag	Napaliran Quezon San Isidro Talusan Waterfall	3.53 1.58 2.37 1.18 0.55	0.72 0.24 0.86 0.46 0.3	0.24 0.12 0.3 0.21 0.15	0.053 0.032 0.066 0.097 0.04	0.0018 0.0033 0.0048 0.063 0.012	
1		Mandangoa Nap	2.76 3	0.6 0.0	0.19 0	0.056 0.	0.041 0.0	0
	BALATUCAN – MUSI-	MUSI BASIN	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
	BALATUCA	MUSI	p	دوء آاەە ۱۰.)			d. k	s)

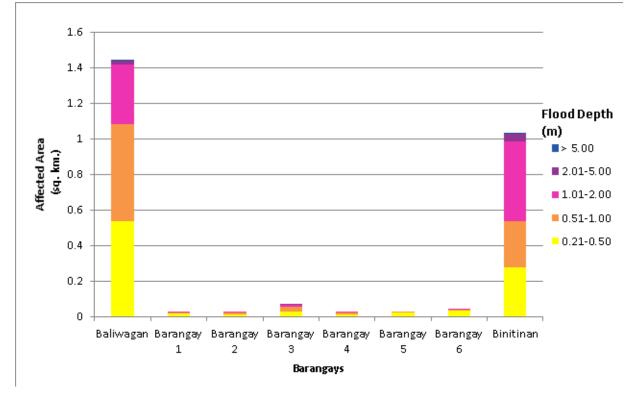


Figure 76. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period.

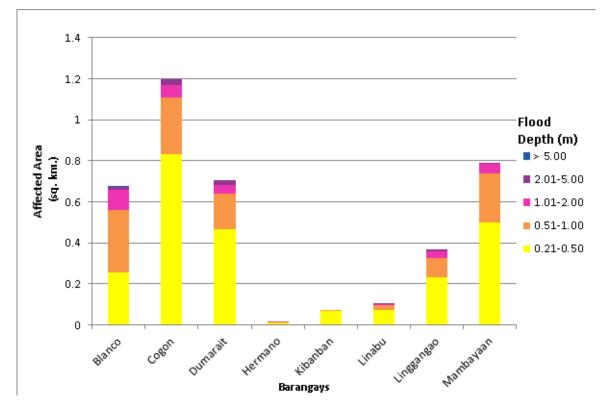


Figure 77. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period.

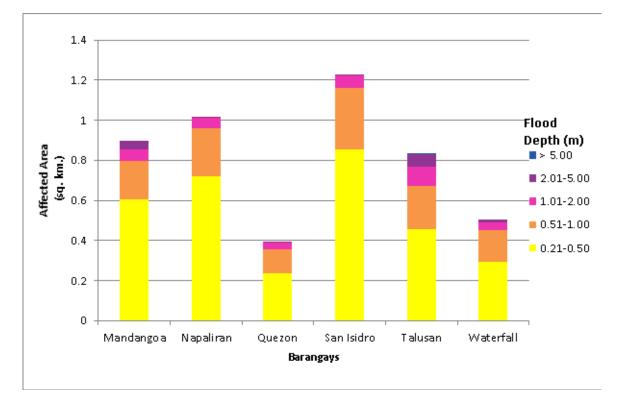


Figure 78. Affected areas in Balingasag, Misamis Oriental during a 25-year rainfall return period.

For the 25-year return period, 2.14% of the municipality of Jasaan with an area of 68.327103 sq km will experience flood levels of less than 0.20 meters; 0.07% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.04%, 0.03%, 0.00%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 44 are the affected areas in square kilometers by flood depth per barangay.

	– MUSI-MUSI BASIN	Affected I	Barangays in Jasaan
BALAIUCAN		Danao	I. S. Cruz
σ	0.03-0.20	0.044	1.42
Area / flood .)	0.21-0.50	0.00016	0.049
ם לב ב	0.51-1.00	0	0.024
ecte m.) dep (in I	1.01-2.00	0	0.022
Affect Sq. km. de (ir	2.01-5.00	0	0.0034
s)	> 5.00	0	0

Table 44. Affected areas in Jasaan, Misamis Oriental during a 25-year rainfall return period.

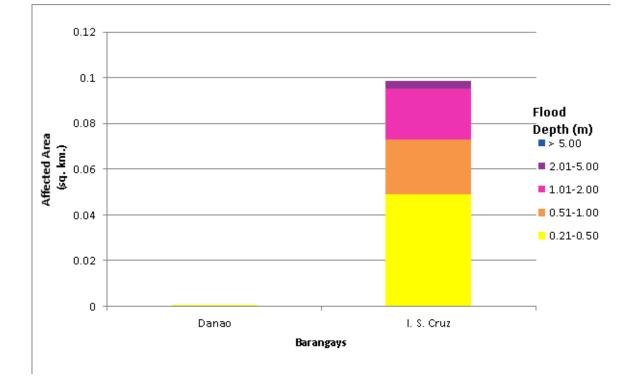


Figure 79. Affected areas in Jasaan, Misamis Oriental during a 25-year rainfall return period.

For the 25-year return period, 2.26% of the municipality of Lagonglong with an area of 46.624699 sq km will experience flood levels of less than 0.20 meters; 0.44% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.19%, 0.04%, 0.00%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 45 are the affected areas in square kilometers by flood depth per barangay.

Table 45. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period.

RALATUCAN	– MUSI-MUSI BASIN	Affected Ba	rangays in Lagonglong
BALAIOCAN		Kauswagan	Manaol
σ	0.03-0.20	0.39	0.67
Area / flood	0.21-0.50	0.15	0.055
by by n.)	0.51-1.00	0.038	0.051
Affecte 4. km.) den (in	1.01-2.00	0.0003	0.018
Aff sq. k	2.01-5.00	0	0.0008
s)	> 5.00	0	0

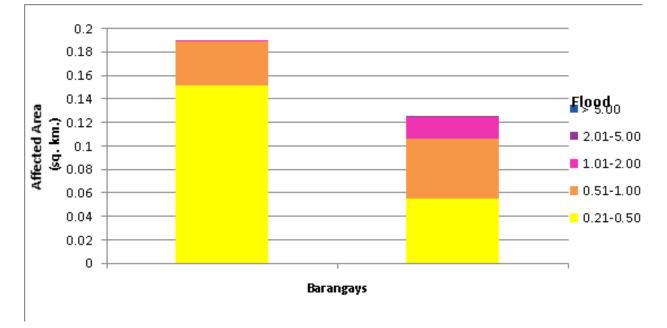


Figure 80. Affected areas in Lagonglong, Misamis Oriental during a 5-year rainfall return period.

For the 100-year return period, 23.15% of the municipality of Balingasag with an area of 125.591 sq km will experience flood levels of less than 0.20 meters; 6.06% of the area will experience flood levels of 0.21 to 0.50 meters; while 3.15%, 1.47%, 0.41%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 46 to Table 48 are the affected areas in square kilometers by flood depth per barangay.

i
perioc
Ц
rainfall retur
year ra
a 100-y
during a
Oriental d
Misamis (
Balingasag,
eas in
46. Affected an
46. /
Table

MUSI BASIN Baliwagan Barangay 1 Barangay 2 Barangay 3 Barangay 4 Barangay 5 Barangay 6 Binitinar 0.03-0.20 2.07 0.064 0.063 0.021 0.13 0.072 0.068 2.91 0.03-0.20 2.07 0.064 0.065 0.021 0.13 0.072 0.068 2.91 0.21-0.50 0.53 0.019 0.016 0.025 0.021 0.044 0.29 0.21-1.00 0.59 0.019 0.014 0.025 0.021 0.044 0.29 0.51-1.00 0.59 0.0019 0.014 0.025 0.0012 0.024 0.24 1.01-2.00 0.45 0.0019 0.015 0.012 0.0057 0.24 2.01-5.00 0.044 0.0012 0.012 0.00068 0.42 2.01-5.00 0.044 0.0012 0.0012 0 0 0.24 2.01-5.00 0.044 0.0012 0.012 0.0012 0 0	BALATUCA	BALATUCAN – MUSI-			A	ffected Baran	Affected Barangays in Balingasag	<u>ag</u>		
0.03-0.202.070.0640.0630.0210.130.0720.0680.13-0.200.21-0.500.530.0190.0160.0250.0310.04400.51-1.000.590.00990.0140.0310.0120.044001.01-2.000.450.00190.0140.0150.0120.00590.005712.01-5.000.0440.00030.00190.0150.0012000> 5.000.01300000000	MUSI	BASIN	Baliwagan	Barangay 1	Barangay 2	Barangay 3		Barangay 5	Barangay 6	Binitinan
April bit 0.21-0.50 0.53 0.019 0.016 0.025 0.031 0.044 Dist 0.51-1.00 0.59 0.014 0.031 0.031 0.037 0.044 101-2.00 0.45 0.0009 0.014 0.015 0.0012 0.0057 0 2.01-5.00 0.45 0.0003 0.011 0.012 0.0068 0 0 3.0003 0.014 0.0019 0.015 0.012 0.0057 0 <th< td=""><td>p</td><td>0.03-0.20</td><td>2.07</td><td>0.064</td><td>0.063</td><td>0.021</td><td>0.13</td><td>0.072</td><td>0.068</td><td>2.91</td></th<>	p	0.03-0.20	2.07	0.064	0.063	0.021	0.13	0.072	0.068	2.91
Ation 0.51-1.00 0.59 0.0014 0.031 0.012 0.0057 0.0057 Ation 0.11-2.00 0.45 0.0069 0.0119 0.012 0.0058 0.0058 0.0058 0.0068 0 Ation 0.014 0.0019 0.015 0.0012 0.00068 0	oolì	0.21-0.50	0.53	0.019	0.016	0.025	0.02	0.031	0.044	0.29
j 1.01-2.00 0.45 0.0069 0.0019 0.015 0.0002 0.00068 0 2.01-5.00 0.044 0.0003 0 0.001 0	þλ	0.51-1.00	0.59	0.0099	0.014	0.031	0.012	0.0029	0.0057	0.24
y d d d d d d d d d d	('ɯ	1.01-2.00	0.45	0.0069	0.0019	0.015	0.0012	0	0.00068	0.42
>5.00 0.0013 0	d. k	2.01-5.00	0.044	0.0003	0	0.001	0	0	0	0.2
	s)	> 5.00	0.0013	0	0	0	0	0	0	0.0033

Table 47. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period.

ted Area ۱۰) by flood ۱۵ (.m ni) th ۱۹	Вацатисам – MUSI- MUSI BASIN MUSI BASIN 0.03-0.20 bh (in m.) 0.21-0.50 0.51-1.00 1.01-2.00	Blanco 2.68 0.28 0.31 0.16	Cogon 2.27 1.02 0.4	Dumarait 1.3 0.55 0.25	Affected Baran Hermano 0.36 0.013 0.0031	Affected Barangays in Balingasag Hermano Kibanban 0.36 0.71 0.013 0.08 0.0031 0.011 0.0019 0.0018	sag Linabu 1.94 0.086 0.031	Linggangao 1.24 0.27 0.12	Mambayaan 2.38 0.64 0.27 0.091
d. kn	2.01-5.00	0.028	0.038	0.032	0	0	0.0003	0.0094	0.0032
s)	> 5.00	0.0035	0	0	0	0	0	0	0

Table 48. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period.

BALATUCA	BALATUCAN – MUSI-		Ą	Affected Barang	igays in Balinga	ngasag	
MUSI BASIN	BASIN	Mandangoa	Napaliran	Quezon	San Isidro	Talusan	Waterfall
p	0.03-0.20	2.52	3.3	1.49	2.05	0.98	0.46
rea floo (.m	0.21-0.50	0.76	0.83	0.27	0.99	0.52	0.32
-	0.51-1.00	0.24	0.31	0.15	0.46	0.29	0.21
ecte m.)	1.01-2.00	0.084	0.093	0.054	0.097	0.14	0.054
у . р	2.01-5.00	0.053	0.0035	0.0048	0.0061	0.078	0.018
s)	> 5.00	0.000099	0	0	0	0.0056	0

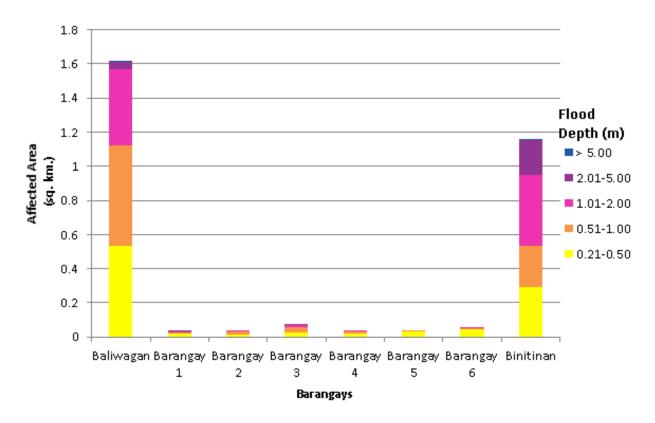


Figure 81. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period.

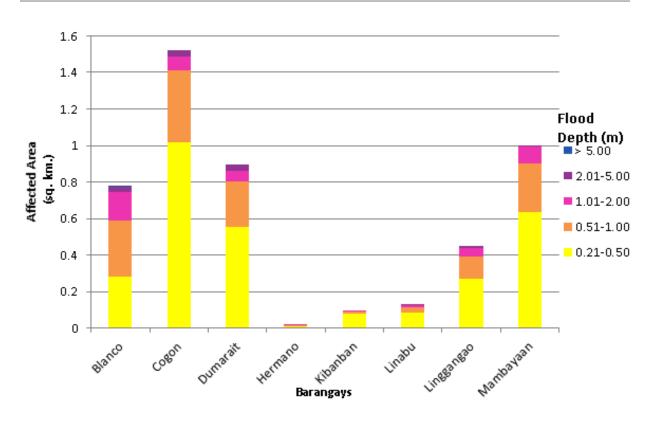


Figure 82. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period.

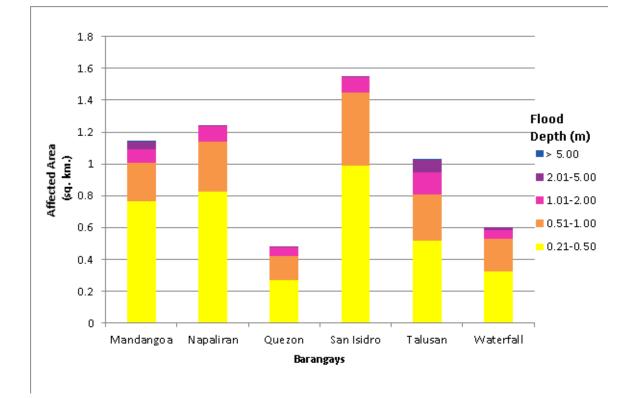


Figure 83. Affected areas in Balingasag, Misamis Oriental during a 100-year rainfall return period.

For the 100-year return period, 2.12% of the municipality of Jasaan with an area of 68.327103 sq km will experience flood levels of less than 0.20 meters; 0.08% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.04%, 0.04%, 0.01%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 49 are the affected areas in square kilometers by flood depth per barangay.

DALATUCAN		Affected I	Barangays in Jasaan
BALAIUCAN	– MUSI-MUSI BASIN	Danao	I. S. Cruz
σ	0.03-0.20	0.044	1.4
Area / flood	0.21-0.50	0.00016	0.051
n, b d A	0.51-1.00	0	0.029
ecte del (in	1.01-2.00	0	0.027
Affect sq. km. de (ir	2.01-5.00	0	0.0046
(s	> 5.00	0	0.000099

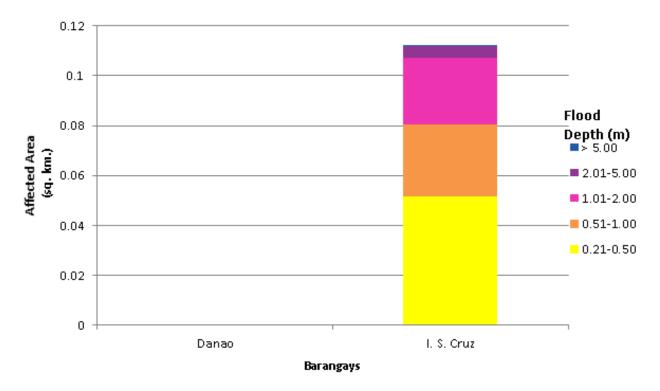


Figure 84. Affected areas in Jasaan, Misamis Oriental during a 100-year rainfall return period.

For the 100-year return period, 2.13% of the municipality of Lagonglong with an area of 46.624699 sq km will experience flood levels of less than 0.20 meters; 0.50% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.23%, 0.07%, 0.00%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 50 are the affected areas in square kilometers by flood depth per barangay.

Table 50. Affected areas in Lagonglong, Misamis Oriental during a 100-year rainfall return period.

BALATUCAN – MUSI-MUSI BASIN		Affected Barangays in Lagonglong			
BALAIOCAN	BALATUCAN - MUSI-MUSI BASIN		Manaol		
g	0.03-0.20	0.34	0.65		
Area / flood	0.21-0.50	0.17	0.059		
by by m.)	0.51-1.00	0.061	0.047		
ecte dej (in	1.01-2.00	0.0005	0.034		
Affect Sq. km. de (ii	2.01-5.00	0	0.0015		
s)	> 5.00	0	0		

		Affected Barangays in Jasaan		
BALATUCAN – M	IUSI-MUSI BASIN	Kauswagan	Manaol	
	0.03-0.20	0.341212	0.651848	
) ea	0.21-0.50	0.172983	0.05945	
ed Ar km.)	0.51-1.00	0.061363	0.047111	
Affected Ar (sq. km.)	1.01-2.00	0.0005	0.033755	
Affi Affi	2.01-5.00	0	0.0015	
	> 5.00	0	0	

Figure 85. Affected areas in Lagonglong, Misamis Oriental during a 100-year rainfall return period.

Among the barangays in the municipality of Balingasag, Napaliran is projected to have the highest percentage of area that will experience flood levels at 3.62%. Meanwhile, Binitinan posted the second highest percentage of area that may be affected by flood depths at 3.24%.

Among the barangays in the municipality of Jasaan, I. S. Cruz is projected to have the highest percentage of area that will experience flood levels at 2.22%. Meanwhile, Danao posted the second highest percentage of area that may be affected by flood depths at 0.065%.

Among the barangays in the municipality of Lagonglong, Manaol is projected to have the highest percentage of area that will experience flood levels of at 1.70%. Meanwhile, Kauswagan posted the percentage of area that may be affected by flood depths of at 1.23%.

Moreover, the generated flood hazard maps for the Balatucan–Musi-Musi Floodplain were used to assess the vulnerability of the educational and health institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps—"Low," "Medium," and "High"——the affected institutions were given their individual assessment for each Flood hazard scenario (5-year, 25-year, and 100-year).

	Area Covered in sq. km.				
Warning Level	5 year	25 year	100 year		
Low	5.32	5.18	5.37		
Medium	2.89	9.02	8.66		
High	0.40	11.09	13.15		
	8.61	25.29	27.17		

Table 51. Area covered by each warning level with respect to the rainfall scenario.

Of the 12 identified educational institute in Balatucan–Musi-Musi Floodplain, 1 school was assessed to be exposed to low-level flooding in a 5-year scenario. In the 25-year scenario, 2 schools were assessed to be exposed to low-level flooding. For the 100-year scenario, 5 schools were assessed for low-level flooding. See ANNEX 12 for a detailed enumeration of schools in the Balatucan Floodplain.

None of the three (3) health institutions were identified in Balatucan–Musi-Musi Floodplain to be exposed to flooding in the three different scenarios. See ANNEX 13 for a detailed enumeration of hospitals and clinics in the Balatucan Floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there performing validation survey work was done. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done by going to a local DRRM office to obtain maps or situation reports about the past flooding events or by interviewing some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field were compared to the simulated data to assess the accuracy of the flood depth maps produced and to improve on what is needed.

The flood validation consists of 221 points randomly selected all over the Balatucan–Musi-Musi Floodplain. It has an RMSE value of 0.66.

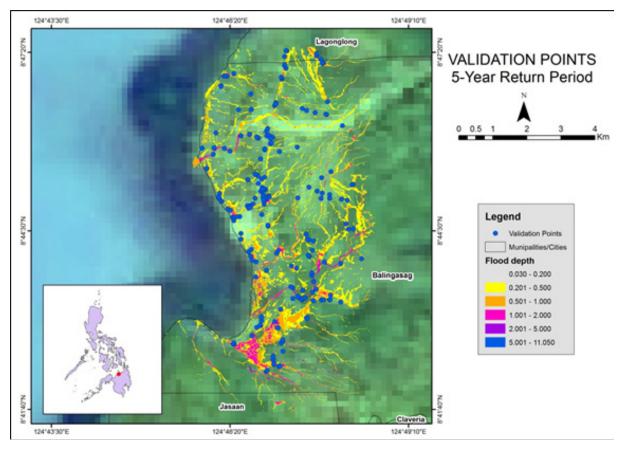


Figure 86. Musi-Musi-Balatucan flood validation points.

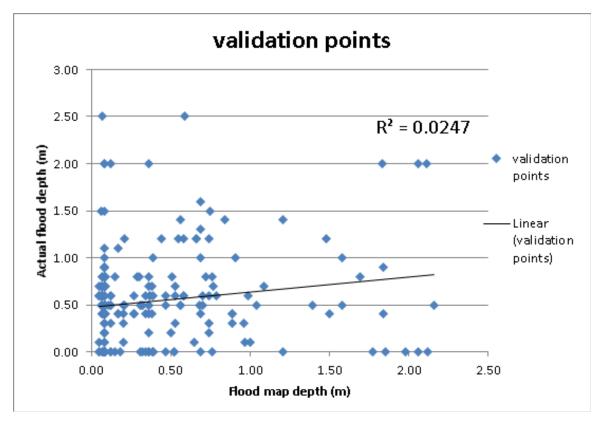


Figure 87. Flood map depth vs. actual flood depth.

Table 52. Actual flood depth vs. simulated flood depth in Balatucan–Musi-Musi Floodplain.

BALA	TUCAN –			Modeled Flood Depth (m)					
MUSI-N	AUSI BASIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total	
	0-0.20	39	13	8	4	2	0	66	
	0.21-0.50	31	13	11	5	1	0	61	
Actual	0.51-1.00	37	12	14	4	0	0	67	
Flood Depth	1.01-2.00	7	3	10	3	2	0	25	
(m)	2.01-5.00	1	0	1	0	0	0	2	
	> 5.00	0	0	0	0	0	0	0	
	Total	115	41	44	16	5	0	221	

The overall accuracy generated by the flood model is estimated at 31.22%, with 69 points correctly matching the actual flood depths. In addition, there were 83 points estimated one level above and below the correct flood depths while there were 54 points and 15 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 50 points were overestimated while a total of 102 points were underestimated in the modeled flood depths of Balatucan–Musi-Musi Floodplain.

Table 53. Summary of accuracy assessment in Balatucan–Musi-Musi Floodplain

	No. of Points	%
Correct	69	31.22
Overestimated	50	22.62
Underestimated	102	46.15
Total	221	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. OPTECH Technical Specification of the Pegasus Sensor

Table A-1.1 Parameters and Specifications of Pegasus Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation dis- tance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

1 Target reflectivity ≥20%

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

3 Angle of incidence $\leq 20^{\circ}$

4 Target size ≥ laser footprint5 Dependent on system configuration

Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey

1. MSE-19

					June 24, 2014
		CERT	FICATION		
o whom it r	may concern:				
This is t	o certify that according	to the records on file	in this office, the requ	lested survey inform	nation is as follows -
		Province: MISA	MIS ORIENTAL		
			ne: MSE-19		
Island: N	IINDANAO	Order: 2	nd	Barangay: BUL	.UA
Municipal	ity: CAGAYAN DE OR		Coordinates		
Latitude:	8° 30' 19.11464"		24° 37' 6.46518"	Ellipsoidal Hgt:	11.24200 m.
		WGS84	Coordinates		
Latitude:	8° 30' 15.52234"	Longitude: 1	24° 37' 11.86795"	Ellipsoidal Hgt:	78.72200 m.
		PTM	Coordinates		
Northing:	940451.853 m.	Easting: 4	57992.786 m.	Zone: 5	
		UTM	Coordinates		
Northing:	940,474.22	Easting: 67	78,151.65	Zone: 51	
e island. S	s located at the intersec he center island betwee ace marker, about 10n tatio mark is the head o rotruding by about 12cr Party: Engr. Cruz Reference	n S of road centerlin if a 4" copper nail se	e, and about 3.5m S o t on the center of a 30	of the N end of the a	rc-shaped curb of m. concrete A.
equesting I upose: R Number: N.:			Director,	UEL DM. BELEN, N Mapping And Geod	lesy Branch

Figure A-2.1.MSE-19

Republic of the Philippings Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

June 06, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: MISAMIS ORIENTAL	
	Station Name: MSE-31	
Island: MINDANAO Municipality: BINUANGAN	Order: 2nd	Barangay: SITIO: NARATULAN
and the feature and the	PRS92 Coordinates	
Latitude: 8° 55' 28.57032"	Longitude: 124º 46' 65.45600"	Ellipsoidal Hgt: 59.48400 m.
	WGS84 Coordinates	
Latitude: 8° 55' 24.88251"	Longitude: 124º 47' 0.81947"	Ellipsoidal Hgt: 125.49000 m.
	PTM Coordinates	
Northing: 986806.828 m.	Easting: 476032.898 m.	Zone: 5
	UTM Coordinates	
Northing:	Easting:	Zone:

Location Description

MSE-31 From the town proper of Medine, travel W along provincial road for about 40km to the municipality of Binuangan. Just beside Km. Post 1389 is Binuangan National High School. Station is located just within the school, about 4m W on the 3rd post of the well inline with the school gate, and about 9m W of Km post 1389. Approximately 300 m past the school is the municipal hall. Station mark is the hoad of a 4" copper nail, top-centered on a 30cm x 30cm x 80cm concrete block, protructing by about 7cm, with inscriptions, MSE-31, 2003 NAMRIA.

Requesting Party: UP-TCAGP Pupose: OR Number Reference 8796290 A T.N.: 2014-1289

the 1 POL RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 9

UNRUL OFFICES

Kann, Lawren Avenue, Fort Bornhold, 1634 Tagleg-Chy Releptives. Tal. No. (620) 818-888 to 88 Bench. 1421 Banace St. Kanniecter, 1018 Vanis, Strilgsmer, Tel. No. 9321 281-3424 p. 38 www.namria.gov.ph

ISO 301: 2018 CERTIFIED FOR MARPING AND GEOSRATIAL INFORMATION MANAGENENT

Figure A-2.2.MSE-31

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

June 06, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

		Province: MIS	SAMIS ORIENTAL			
		Station N	ame: MSE-32			
	INDANAO	Order	: 2nd	Baranga	y: ALIC	OMOHAN
C	•	PRS	92 Coordinates			
Latitude:	8" 56" 30.44605"	Longitude:	124° 46' 58.97104"	Ellipsoid	al Hgt:	132.12900 m
		WGS	84 Coordinates			
Latitude	8' 56' 26.75387"	Longitude:	124° 47° 4.33290"	Ellipsoid	al Hgt	199.10100 m
		PTA	I Coordinates			
Northing	988707.53 m.	Easting:	476141.401 m.	Zone:	5	
			Coordinates			
Northing:	988,828.70	Easting:	696,045.73	Zone:	51	

MSE-32

MSE-32 From the town proper of Medina, travel W along provincial road for about 40kms, to the municipality of Sugbongcogon, Approximately a km. S of the municipal hall, and just before the boundary of Binuangan and Sugbongcogon, is Alicomohan Elementary School in barangay Alicomohan. The station is located on the E edge of a concrete platform, and beside the western corner of a statrose. It is approximately halfway between the school gate and the flagpole, about 12m WNW of the flagpole, and about 12m ESE of the school gate. It is also about 50cm SW of the junction between the E edge of the concrete platform and the second set of concrete steps. Station mark is the head of a 2-1/2" copper nail, top-centered on a 15cm x 15cm cement putty with inscriptions.

Location Description

Requesting Party: UP-TCAGP Pupose: Reference OR Number. 8796290 A T.N : 2014-1290

1 the second CA- RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 0

ukulisu (princes) Mari Luanon Kueluk, Pan Byretaren 1604 Tagaig Giyi Prolasinak - Tai Ala, 1972;818-4231 to 41 Narroh - 421 Barraco St. San Nacola, Hiro Narria, Projektean Tai Na, 1922;019-1454 to 18 www.samria.gov.ph

ISD 3001 2003 CERTIFIED FOR MAPPING AND SEDERATIAL INFORMATION MAIN/GENENT

Figure A-2.3.MSE-32

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

June 24, 2014

CERTIFICATION

To whom it may concern:

This is to cartify that according to the records on file in this office, the requested survey information is as follows -

		Deminen Mit	SAMIS ORIENTAL			
		Station N	ame: MSE-36			
		Order	: 2nd			
Island: MIND Municipality: I				Baranga	y SOU	TH POBLACION
1.		PRS	92 Coordinates			
Labitude: 8º	54' 20.12398"	Longitude:	125" 1' 28.36102"	Ellipsoid	al Hgt	0.97100 m.
		WGS	84 Coordinates			
Latitude: 8º	54' 16.46220"	Longitude:	125" 1'33.72408"	Ellipsoid	al Hgt	68.61700 m.
		PTM	I Coordinates			
Northing: 984	697.224 m.	Easting:	502699.481 m.	Zone:	5	
		UTA	Coordinates			
Northing: 98	4,961.57	Easting:	722,630.22	Zone:	51	

MSE-36

Location Description

The station is located at Medina municipal part, Brgy. South Poblacion, Medina, Misamis Oriental, Medina municipal part is just in front of Tiro residence, and about 85m SSE of Medina lighthouse where station MSE-47 is located. Beside the part is a Beer na beer warehouse. The station is approximately 50cm W of the E edge of the pier and approximately 20m N from the S end of the pier. Station mark is the head of a 4" copper nail, top-centered on a 19cm x 18cm cement putty, with inscriptions, MSE-36, 2003 NAMRIA.

Requesting Party: En Pupose: Ret OR Number: 875 T.N.: 201

Engr. Cruz Reference 8796376 A 2014-1438

NAME A DAVIDES

in the second 0.5 RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

Main: Lowiter Avenue, Fost Bostodo, 1638 Faying Cry, Philippines – Fail No. (822) Brid Abris II an Boena – Chi Barren Sr. Gan Messial, 1010 Manta, Philippines, Fei Xiy, (852) 241-3458 to 58 w www.elaiminifa.gov..ph

ISO 3001: 2003 CERTIFIED FOR MAPPING AND GEOSATIVE, INFORMATION MANAGENENT

Figure A-2.4.MSE-36

People of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

April 18, 2013

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

		Province: MR	SAMIS ORIENTAL			
		Station Na	ame: MSE-3241			
	INDANAO	Order	and	Baranga	y: BAR	ANGAY 10 (POB
Municipal	(CAPITAL)		92 Coordinates			
Latitude:	8" 27" 31.07607"	Longitude:	124º 37' 23.18891"	Etipsoid	al Hgt.	109.46700 m.
		WGS	84 Coordinates			
Latitude:	8* 27' 27.49508"	Longitude:	124° 37' 28.59587"	Elipsoid	al Hgt:	177.05500 m.
		PTM	f Coordinates			
Northing:	935289.375 m.	Easting:	458499.251 m.	Zona:	5	
		UTI	# Coordinates			
Northing:	935,314.30	Easting:	678,684.71	Zone:	51	

Location Description

MSE-3241

Is located at the center island along Macapagal Rd., Brgy, 10 (Pob.), Cagayan de Oro City. It is situated between Sungole Bldg, and Super Mart Mail, about 20 m. facing the mail entrance. Mark is the head of a 4 in, copper nail embedded on a 25 cm. x 25 cm. concrete block, with inscriptions "MSE-3241 2007 NAMRIA".

Requesting Party: UP DREAM/ Melchor Nery Pupose: Reference OR Number: 3943540 B T.N.: 2013-0311

RUEL DM. BELEN, MNSA Director, Mapping and Geodesy Department,

.

Figure A-2.5.MSE-3241

Annex 3. Baseline Processing Reports of Reference Points Used in the LiDAR Survey

This river basin has no baseline provessing report

Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Com- ponent Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science Research Specialist	LOVELY GRACIA ACUÑA	UP-TCAGP
	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP
	FIELD TEAM	I	
	Senior Science Research Specialist (SSRS)	JASMINE ALVIAR	UP-TCAGP
	SSRS	PAULINE JOANNE ARCEO	UP-TCAGP
LiDAR Operation	Research Associate (RA)	GRACE SINADJAN	UP-TCAGP
	DA	ENGR. IRO NIEL ROXAS	UP-TCAGP
	RA	REGINA FELISMINO	UP-TCAGP
Ground Survey, Data	24	LANCE KERWIN CINCO	UP-TCAGP
Download and Transfer	RA	BRYLLE ADAM DE CASTRO	UP-TCAGP
	Airborne Security	SSG. LEE JAY PUNZALAN	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. JEFFREY JEREMY ALAJAR	ASIAN AEROSPACE CORPORTION (AAC)
		CAPT. CESAR ALFONSO III	AAC

Table A-4.1. The LiDAR Survey Team Composition

	SERIES	LOCATION	Z'Wittome Rawl	Z'Mittome (Rawl) SCIP	2'Wittome_Rawli 5059	2'Nitione, Rawlt SOIP	2 Writtome Rawlt S(TP	2 Webcme, Raeld S21P	1.02
	1	뒻	z	5	2	¥	5	×	
	FLGHT FLAN	Actual	4	1965	5	2040	ZURL	31	
	CPERATOR LOCS	offerton Loon		8	8	8	18	<u>8</u>	
	(sho)	Base Info (JAG)	22	10	3/8	1/3	1/3	8%	
	BASE STRITONS!	BARE	5.8	191	168	88	87	355	10/2419
ł	-		*	NA N	NA 2	NA A	NA B	NN N	2
08102014/Northern Mindanaol Wrd 01-0	RANDE		18	285	218	28.2 N	27 1	2	2 T
	NESKON LOG FLECUE		12	605	9	Now.	N I	N N	dann
	POS madesca		218	6 E.T	41 3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	N.	M	Received by Neme Postion Postion Separatra
			100	1. 1.02	2	2	18		ac 25 (ac 100)
	OCONE	land land	191	341	2	112		2	
	RAINLAS	KOR. (Smeth)	190	1221	费	800	185	88	
	18	Output	18		52	17	274	239	
	SENSOR		PEGNOUS	PEONSUS	PECKEUS	PEONGUS	FECHEUS	PECKEUS	See.
	MISSON NAME		1BLKE7B142A	1BUK87C143A	1BLKE7BC144A	1RDXE145A	1R0E147A	1R0C148A	Received Iona Contraction Iona Contraction Iona Contraction Iona Iona Iona Iona Iona Iona Iona Io
	Public In		489	44051	4000	dition,	15179	d-751	a
	DATE	DATE		5/23/2014	5/24/2014	5/25/2014	5/27/2014	5/28/2014 152P	

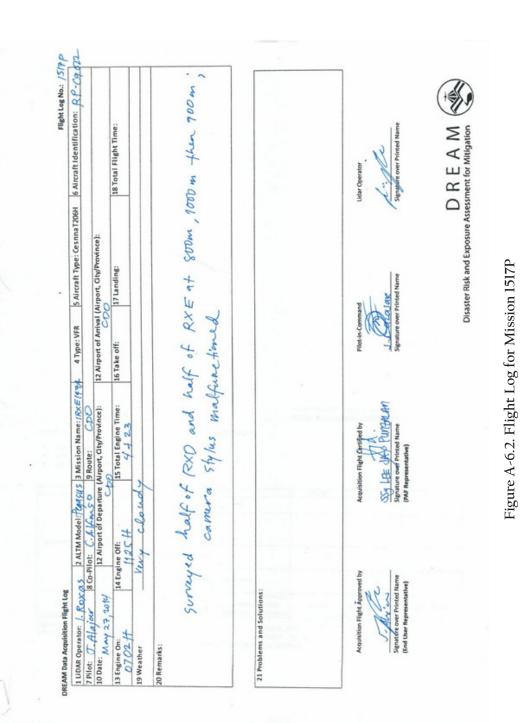
Figure A-5.1. Transfer Sheet for Balatucan Floodplain (A).

r

SERVER	LOCATION	NA 525P	NA 533P	NA 541P	Z'Mithome_Rawi1 545P	NA 548P	NA 561P	NA 565P			
AN	KML	NA	NA	NA	NA 545P	NA	NA	NA			
FLIGHT PLAN	Actual	40	47/38	47/45/40/34	141	54/50/45	71	36			
OPERATOR LOGS (OPLOG)		1KB	1KB	1KB	1KB	1KB	1KB	1KB			
	Base Info (,bd)	1KB	1KB	12.6 1KB	1KB	11.2 ^{1KB}	8.1 1KB	1KB		_	
BASE STATION(S)	BASE STATION(S)	9.83 ^{1KB}	8.87 TKB	12.6	9.95 ^{1KB}	11.2	8.1	7.75 ^{1KB}		6(23/2019	
DIGITZER		26.5 NA	5	39 674MB	072MB	5	5	5			
	RANGE		33.3 NA	39 6	40.1 272MB	34.6 NA	22 NA	13.3 NA		JOIDH F. PRIETO	
MISSION LOG FILE/CASI LOGS		na	428	139	633	NA	NA	163		Adiol	
RAIN IMAGESICA SI		265 ^{na}							Received by	Name Position Signature	
	POS II		224 43.2	285 19.7	253 69.7	264 NA	187 NA	168 22 1	<u>u</u> .	ZILW	
LOGS(MB)		9.27	14.4	0	13	14.3	NA	6.35			
RAW LAS	KML (swath)	457	270	242	2259	150	44	16			
	Output	1.6	3.32	4	4.13	3.48	NA	NA		3.1	
SENSOR		PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS		C. Londrin	
MISSION NAME		1R08149A	1BLK67151A	1BLK71B153A	18LK71CIS4A	18LK71D155A	1R0E158A	18LK718159A	Received from	Name Poston Signature	
FUGHT NO.		1525P	1533P	1541P	1545P	1549P	1561P	1565P	Rect		
DATE		29-May-14	31-May-14	2-Jun-14	3-Jun-14	4-Jun-14	7-Jun-14	8-Jun-14			

99

															Received from	-	
Z'Wittome_	NA	59/68	ŝ	ŝ	6.25	MA	27.4 NA	375		242 51.8	11.4	NA	284	Pegasus	1BLK/ICI79A	1045P	51 07/07/0
Z'Mittome_	NA	40	1KB	1KB	7.7	NA	5.65	NA	YN N	119	4.33	95	532	Pegasus	IBLK67ABS1788	_	6/27/2014
Z.Withome_ Raw	NA	65/65/60/ 58	1KB	148	7.7	57.2	28.9 572	398	57.4	268	12.6	1995	254	regasus	TPC/TPCOVTOT	THOT	- I - Contraction
Raw		13	T	T	ALL.		T		Τ	Γ	T	Γ	-	Danner	1RI K68A179A	1641P	6/27/2014
Raw Z.Wittome_	NA	1	1KB	1KB	445	NA	26.1 NA	268	36.3	187	10.7	370	2.79	Pegasus	1BUKRXES175A	1629P	6/24/2014
Z'Mittome	M	52/56	1KB	1KB	4.97	86.6	29.4	415		212 60.3	11.7	1112	3.09	Pegasus	16LKb/BC1/4A	ACTOT	LTN7 /C7
Z'Vitborne_	NA	46	1KB	1KB	5.92	NA	33.2 NA	431		258 67.3	13.7	111		_	an venue and	16760	6/22/2014
Raw	ž	9/1/1	2		1.11				Τ			1	3.44	Peoasus	18LK71G171A	1613P	6/20/2014
Raw Z'Mithome		11/10	5	1KB	7.07	NA	22.1	309	45.3	259 45.3	11.2	526	2.16	Pegasus	1RX5170A	1609P	6/19/2014
Raw Z'Mittome	NN N	00	1KB	1KB	7.52	NA	21.3 NA	NA	X	237 NA	10.5	332	2.18	Pegasus	1BUKRXE167A	1597P	6/16/2014
Z'Mittome_	NA	86	148	1KB	10	MA N	38.5 NA	62	8,86	290 8.86	16.5	832	4.16	Pegasus	1BLKRXE160A	_	p/3/2014
Z'Mittome	N	8	108	1KB	7.75	NA	13.3 NA	NA	W	168 NA	6.93	16	W	Pegasus	16UK/18159A		a source of a
LOCATION	KML	Actual	(oproa)	(tot)	STATION(S)			6000				(swath)	Output LAS		AD1010101	15650	6/8/2014
SERVER			1003			DIGITIZER	RANGE	FLEICASI	INAGESICASI	2	(BM)cont	KML					
	PLAN	FLIGHT PLAN	OPERATOR	(shour)	BASE STATION(5)			MISSION LOG	RAIN	BUG	LOGSIMBI	3	RAW LAS	SENSOR	MISSION NAME	FLIGHT NO.	

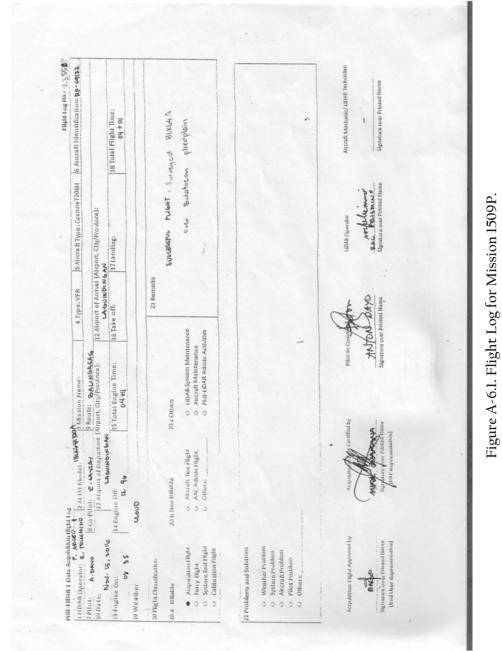

	SERVER LOCATION	Z-DACINAW DATA	ZIDACRAW	ZICHCHUNI	ZICHORNIN	ZIEMORNIW	ZIGACIBAW	Z-DACRAW CATA	
PLOST PLAN	NR	ž	848	ź	ž	12	ž	11	
0.000	Athen	ź	88	910	505	100	10	174	
	1000	95	1931	8	8	as:	100	1931	
	ane info (Ind)	8	8	8	110	193	193	180	
BASE STATONSES	BARE Base Into (DO)	8	10	5	8	952	80	101	Received by Name A: Boong at Freedom (Kan de 1/2014)
ſ	DIGTORIA	ź	ź	ž	ž	W	*	NN.	Man and a line and a l
ſ	RANGE	16.6	22.9	21.4	543	18	26.7	20.6	Received by we by Boys atom C(B) praine (Am-
on inclusion	PLEICASI LOGS	2	2	2	ź	ž	ž	NA	N N N N
-	MAGENCAS	ź	2	12	N.	NN.	12	W	
F	R Pos	10	236	203	230	285	2	10	
F	1005		10.6	9.76	10.8	978	15	90.5	IN
2	dl. (swath)	ž	12	ž	Ń	N	N	W	R. P. WITS
RAWLAS	Output LAS KML (swath)	181	2.45	52	2.61	1.95	2.06	2.1	Received team
ľ	SENSOR	PEGAGUS	PEONGUS	PEGASUS	PEGASUS	PEGAGUS	PEGAGUS	PEGAGUS	N K N
	INME		-					18UK64A3	
	FLIGHT MO.	23534P	235369	235409	23544P	23546P	23548P	23552P	
	DATE	November 10, 2016	November 11, 2016	November 12, 2016	November 13, 2016	November 13, 2016	November 14, 2016	November 15, 2016	

1.Flight Log for 2130A Mission

ations -	Γ		Π				
4 Aircraft Mendifications			18 Total Flight Time:			the Granty	D R E A M
S Aincreft Type: Ces no.972004		12 Augorie of Amiral (alignet, ChyProvince); Carls august de Deve	17 Landing:			and the second s	DI R E A M
A ATYPOLYTA	a de Orio	12 Augort of Arrival	11 ce al			International State	3
3 Mission Name: 24 pure of	9 Route: CALO AND	12 Allipert of Ceparture (Alipert, Gravitevinde): 1 12	15 Total Engine Times			Amazon menjanjan v	
2 ALTM Model-Per-Sey	MI C. HBAN	12 Airport of Cuparture C	++ 102	successful flight			
DAR Operator J. ALZ and	HOLD ALAINY BCA-PIL	10 Bate: Vay 2.5, 2014	13 fragme Col. 14 Englise Col. 12 Col.		21 Problems and Solvellons	Aucoustic fight Approved by	

Figure A-6.1. Flight Log for Mission 1509P.

Flight Log No. /TG//		10 10	18 Total Filght Time:					Uder Operator Control of Printed Name Signature of Printed Name	DREAM
a strand Transferra	5 Aircraft Type: Cesnna Look	12 Airport of Arrival (Airport, City/Province):	17 Landing:					Plotin Command Leggy Marry Oll	
the state of the state	CPO-CDO	12 Airport of Arrival	16 Take off:					Pilotin-Command Classify M	ż
	1 LIDAR Operator: 6: Stierty Lo. 2 ALTM Model: Versus 3 Mission Name: / Edd (2X/952/4 Type: VFR 2 Mission - 2/1 0Po - CP 0 Runte: 0Po - CP	12 Airport of Departure (Airport, Gty/Prownce):	15 Total Engine Time:					Acquisition Flight Certified by Acquisition Flight Certified by Services over Printed Name (PM Representative)	
0	2 ALTM Model: Vecasu	12 Airport of Departure	14 Engine Off:	Ally divindy					
REAM Data Acquisition Flight Log	1 UDAR Operator: 6. Spinely but 2 ALT	3		19 Weather Partly	20 Remarks:		21 Problems and Solutions:	Acquisition Fight, Approved by	


Figure A-6.3. Flight Log for Mission 2162A

$\frac{1980 \text{ cm} \left[1.5 \text{ Levels} 200 \text{ miles} 1.0 \text{ Lin} \right]}{12 \text{ Argent of Coperture (Algence, CB0 - C00)} 12 \text{ Argent of Argent (Argence, CB0 - C00)} 12 \text{ Argent of Argent (Argence, CB0 - C00)} 12 \text{ Argent of Argent (Argence, CB0 - C00)} 12 \text{ Argent of Argent (Argence, CB0 - C00)} 12 \text{ Argent of Argent (Argence, CB0 - C00)} 12 \text{ Argent of Argent (Argence, CB0 - C00)} 12 \text{ Argent of Argent (Argence, CB0 - C00)} 12 \text{ Argent of Argent (Argence, CB0 - C00)} 12 \text{ Argent of Argent (Argence, CB0 - C00)} 12 \text{ Argent of Argent (Argence, CB0 - C00)} 12 \text{ Argent of Argent (Argence, CB0 - C00)} 12 \text{ Argent of Argent (Argence, CB0 - C00)} 12 \text{ Argent of Argent (Argence, CB0 - C00)} 12 \text{ Argent of Argence, CB0 - C00)} 12 \text{ Argence, CB0 - C00)} 12 Argence, CB$	$\frac{1}{2} \frac{1}{2} \frac{1}$	12 All year of Annual Mugani, Chighmanace) 16 Take of 2 Januarias	ta Yorki filght Time i
Sebulicens :	accertical 5 filled guys	in RAE	ta Yorkal Flight Time :
and Selectores	accertical j'filled gups	A ROLE	
hrold eres and Soluctions :			
Augustive stight Augusted by Augusters two Potence Auro Solutions two Potence Auro Solutions two Potence Auro	Accession signer curited for Sec. 1940 BRATER Specifier one Missed Survey (ON Destrumentation)	Maintennend (SAND MARS	titier Generier Construction of Construction Byraction of Construction
		Disaster Nisk and Expo	
	Eimre A.6.4 Elicht Loc	t for Mission 1507D	
	Figure A-6.4. Flight Log for Mission 1597P.	Chanter Not and	d Espos

10, 2000 ALTER OF CONTRACTOR AND ALL	1 LIDAR Develor: J. Jours 20 7 Niel: C. J. American (Control 10 Outer:	ALTA Medeli Securi V 2714 Arport of Beparture	News Z. M. Mandelli (Spectral 1 Missler Moneccher 2 / 2 / 4 / 10 / 10 / 10 / 10 / 10 / 10 / 10	a Tryner VI R 2.0.0 (2.0.0pe/c of Anivel	a Type: VIR 5 Arrow Type: Cesma 1968 22 Arrows Arrivel (Arron Capifronia col)	[6 Aircraft Ide Alfford and $D^{1/2}$, and 2 1, .
Manimi mucconful familie Eller Aller Seen Al		15 april	25 Total (ngine Time:	1 11		Là Yota I filght Timei
ad hy a manufacture of the second of the sec	Marin	1 5 6 1	and to 800	a The we	woodd	
ARGARING PART CONTRACTING THE FORM	1 Problems and Solutions:					
	Accession The Connect In Accession The Connect In Accession one Prints Name (and User Representation)	And	Public Contract by	risch Carro		the transfer La n La Maren est Novad Name
				5	source Mask and Exposure Asset	R E A M 🦥

Flight Log for 2130A Mission

÷

Annex 7. Flight status reports

Table A-7-1. Flight Status Report

		(Ividy 25-Julie .			0,
		Table A-	7.1. Flight State	us Report	
FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1509P	RX BLKC	1RDXE145A	J.Alviar	May 25, 2014	Mission done at 800m with voids east of the area; camera assertion failed 2x; no cam mission log; to be renamed to 1RXC145A;
1517P	RX BLKD,E	1RXE147A	I. Roxas	May 27, 2014	Surveyed half of RX D and half of RX E at 800m, 1000m then 900m; cam stylus malfunctioned
1561P	RX BLKD	1RXE158A	G.Sinadjan	June 7, 2014	Mission successful; gaps due to high terrain
1597P	RX BLKD,E	1BLKRXE167A	G.Sinadjan	June 16, 2014	Mission successful; filled gaps in RX E
1609P	RX A,B,C, BLK 64	1RXS170A	I. Roxas	June 19, 2014	Mission successful; descended to 800m then ascended to 1000m
23552P	BLK64A	1BLK64A320A	R. Felismino	November 15, 2016	Surveyed BLK64A over Balatucan Floodplain

NORTHERN MINDANAO (May 25-June 19, 2014& November 15,2016)

LAS BOUNDARIES PER FLIGHT

Flight No. :	1509P		
Area:	RX C		
Mission Name:	1RDXE145A		
Parameters:	Altitude:	800m;	Scan Frequency: 30Hz;
	Scan Angle:	25deg;	Overlap: 30%
	-		

LAS

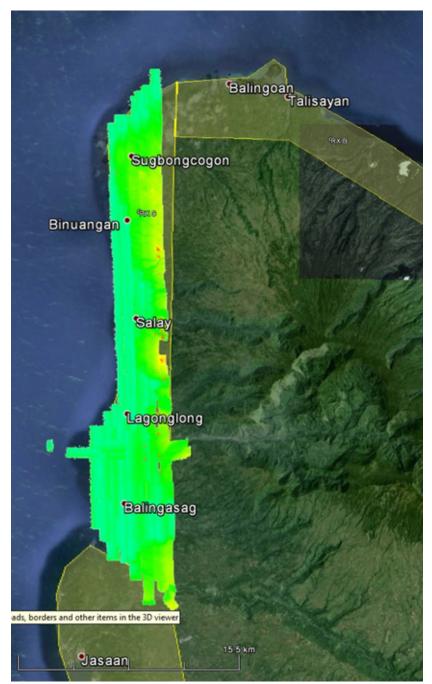


Figure A-7.1. Swath for Flight No.1509P.

Flight No. :1517PArea:RX D, RX EMission Name:1RXE147AParameters:Altitude:
Scan Angle:

900m; Scan Frequency: 30Hz; 25deg; Overlap: 30%

LAS

Figure A-7.2. Swath for Flight No. 1517P.

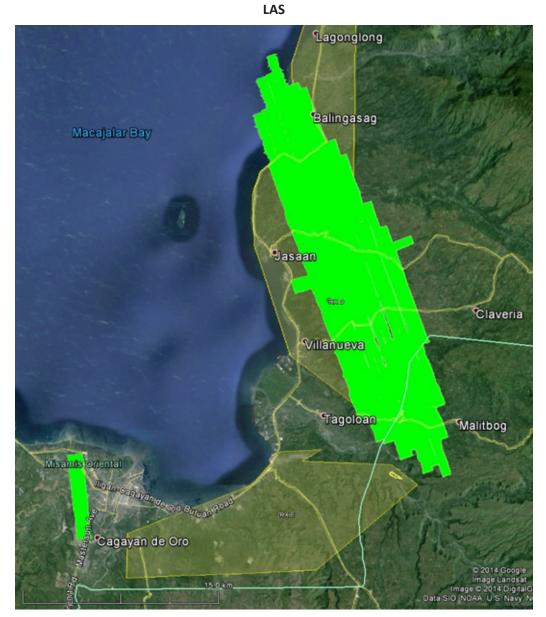
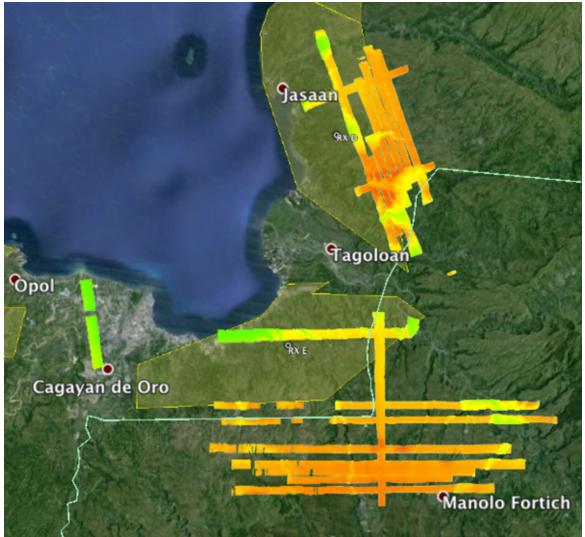



Figure A-7.3. Swath for Flight No.1561P.

Flight No.:1597PArea:RX D, RX EMission Name:1BLKRXE167AParameters:Altitude:800m;Scan Frequency: 30Hz;Scan Angle:25 deg; Overlap: 30%

Data SIO NOAA U.S. Navy NCA CERCO

Figure A-7.4. Swath for Flight No. 1597P.

Flight No. :1609PArea:RX A, B, CMission Name:1RXS170AParameters:Altitude:900mScan Angle:25 de

900m; Scan Frequency: 30 kHz; 25 deg Overlap: 30%

LAS

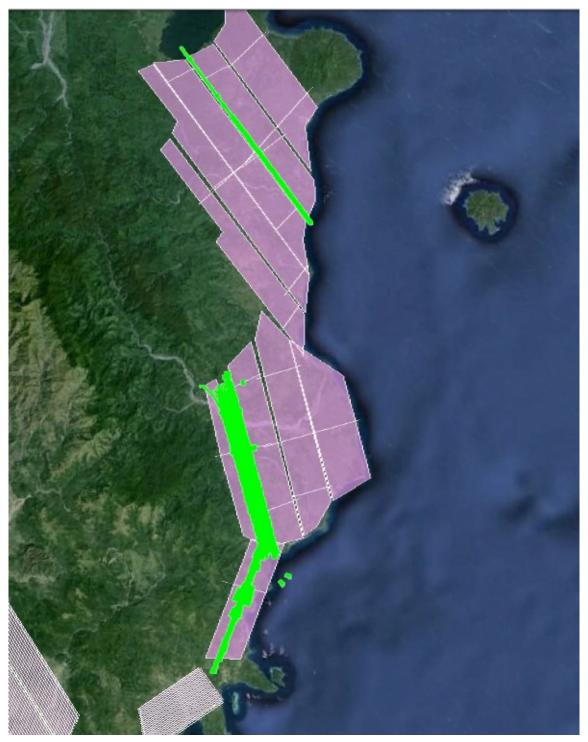


Figure A-7.5. Swath for Flight No. 1609P

Flight No. :	23552P	
Area:	BLK 64A	
Mission Name:	1BLK64A320A	
Parameters:	Altitude: Scan Angle:	1200m; Scan Frequency: 30 kHz; 25 deg Overlap: 30%

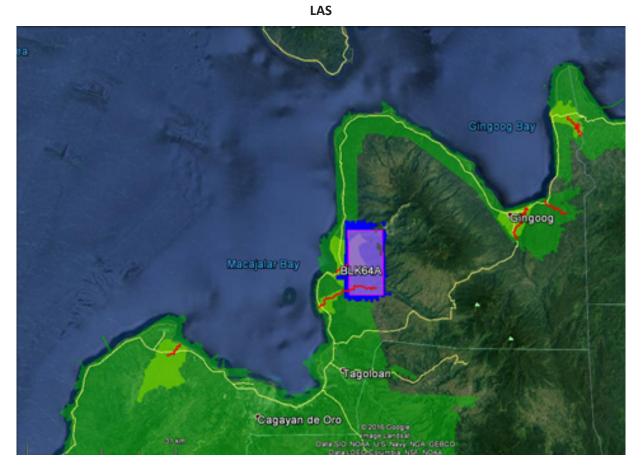


Figure A-7.6. Swath for Flight No. 26552P

Flight Area Northern Mindanao **Mission Name** RX_C 1509P **Inclusive Flights** Range data size 26.2 GB Base data size 5.0 MB POS 254 MB 53.6 GB Image Transfer date June 10, 2014 **Solution Status** Number of Satellites (>6) Yes PDOP (<3) Yes Baseline Length (<30km) Yes Processing Mode (<=1) Yes Smoothed Performance Metrics(in cm) RMSE for North Position (<4.0 cm) 1.4 RMSE for East Position (<4.0 cm) 1.8 RMSE for Down Position (<8.0 cm) 3.0 Boresight correction stdev (<0.001deg) 0.000264 IMU attitude correction stdev (<0.001deg) 0.004243 GPS position stdev (<0.01m) 0.0069 Minimum % overlap (>25) 38.61% 4.28 Ave point cloud density per sq.m. (>2.0) Elevation difference between strips (<0.20m) Yes Number of 1km x 1km blocks 185 Maximum Height 531.69 m **Minimum Height** 65.50 m Classification (# of points) Ground 122,191,837 148,368,596 Low vegetation Medium vegetation 208,375,236 High vegetation 193,794,857 Building 10,741,701 Orthophoto No Processed by Engr. Irish Cortez, Engr. Melanie Hingpit, Engr. Krisha Marie Bautista

ANNEX 8. Mission Summary Reports

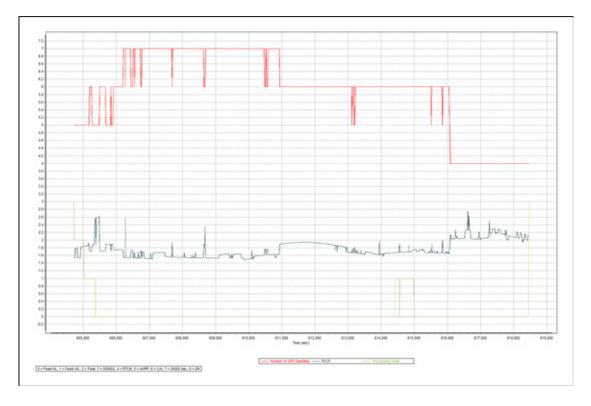


Figure A-8.1. Solution Status

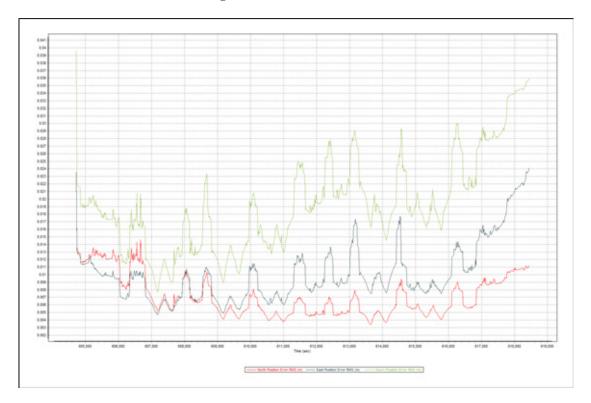


Figure A-8.2. Smoothed Performance Metric Parameters

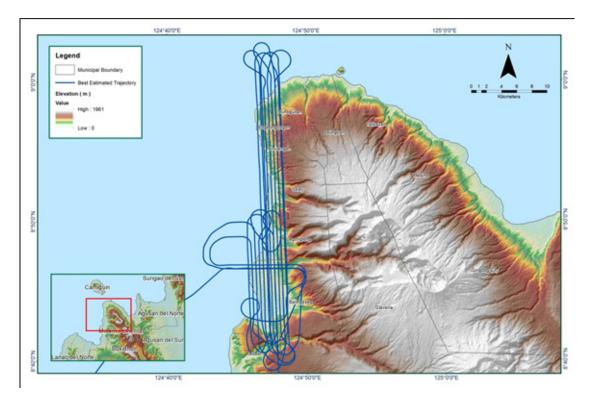


Figure A-8.3. Best Estimated Trajectory

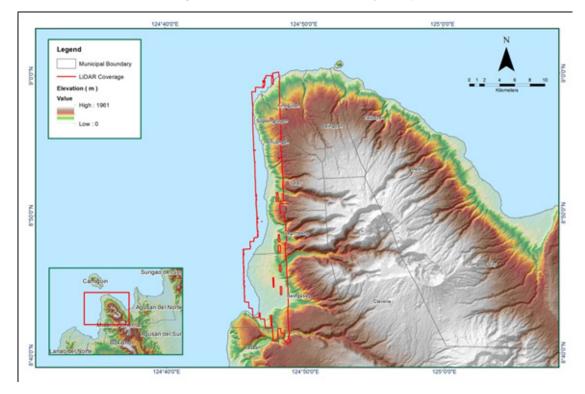


Figure A-8.4. Coverage of LiDAR data

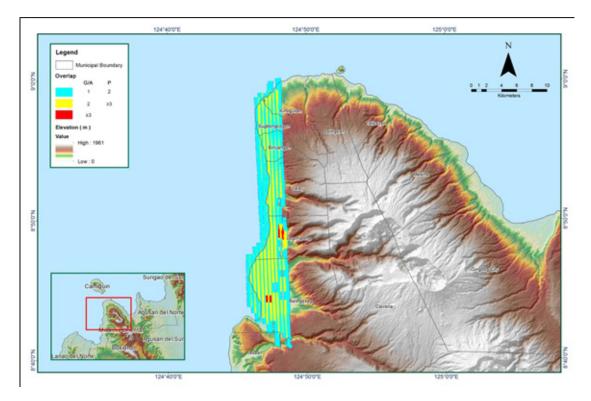


Figure A-8.5. Image of data overlap

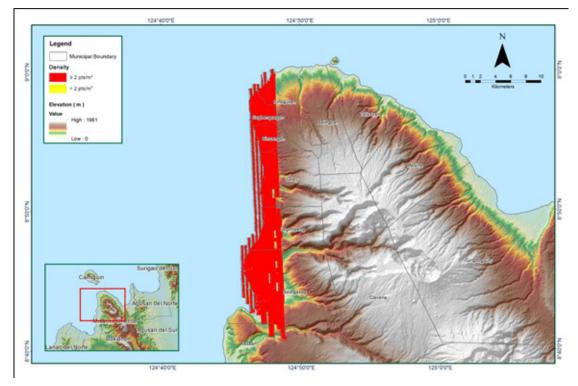


Figure A-8.6. Density map of merged LiDAR data

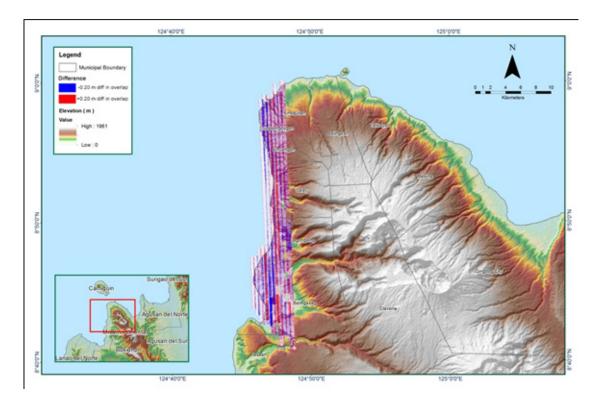


Figure A-8.7. Elevation difference between flight lines

Flight Area	Northern Mindanao
Mission Name	Blk RX_supplement
Inclusive Flights	 1609P
Range data size	22.1 GB
Base data size	7.1 MB
POS	259 MB
Image	45.3 GB
Transfer date	July 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.2
RMSE for East Position (<4.0 cm)	2.1
RMSE for Down Position (<8.0 cm)	3.5
Boresight correction stdev (<0.001deg)	0.000218
IMU attitude correction stdev (<0.001deg)	0.000460
GPS position stdev (<0.01m)	0.0010
Minimum % overlap (>25)	33.39%
Ave point cloud density per sq.m. (>2.0)	5.40
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	132
Maximum Height	678.91 m
Minimum Height	68.96 m
Classification (# of points)	
Ground	50,885,013
Low vegetation	47,864,075
Medium vegetation	170,807,118
High vegetation	161,481,667
Building	1,560,519
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Analyn Naldo, Engr. Chelou Prado, Engr. Gladys Mae Apat

Table A-8.2. Mission Summary Report for Mission Blk90H

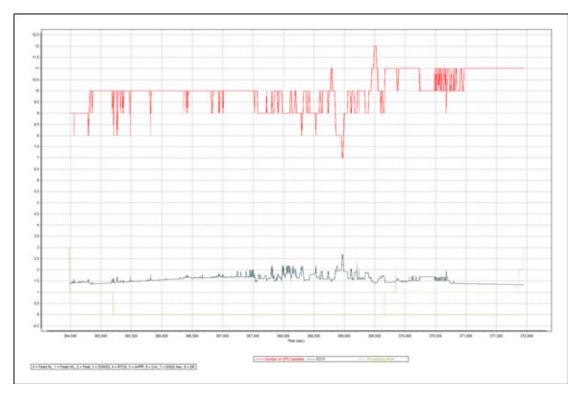


Figure A-8.8. Solution Status

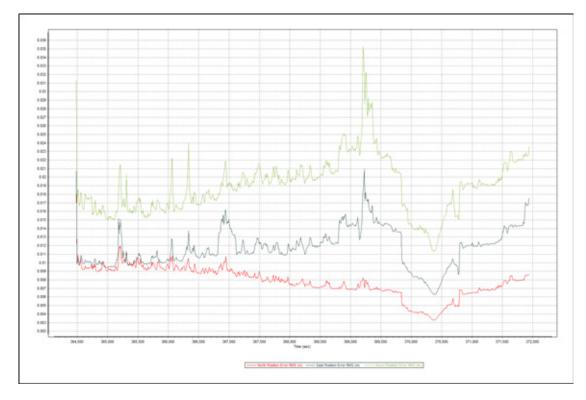


Figure A-8.9. Smoothed Performance Metric Parameters

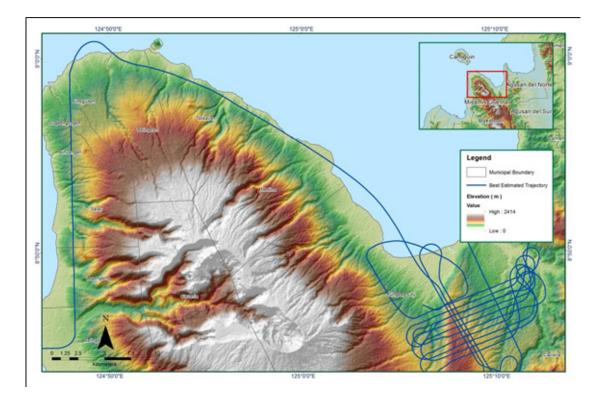


Figure A-8.10. Best Estimated Trajectory

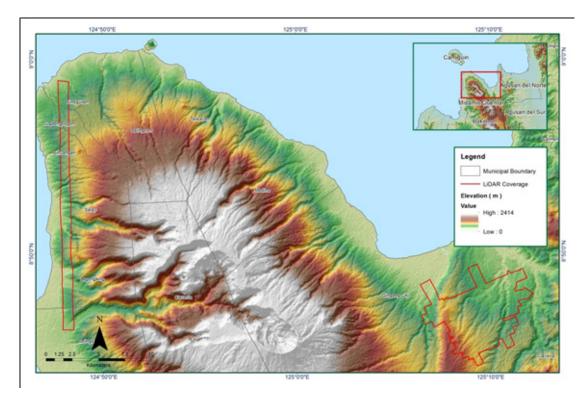


Figure A-8.11. Coverage of LiDAR data

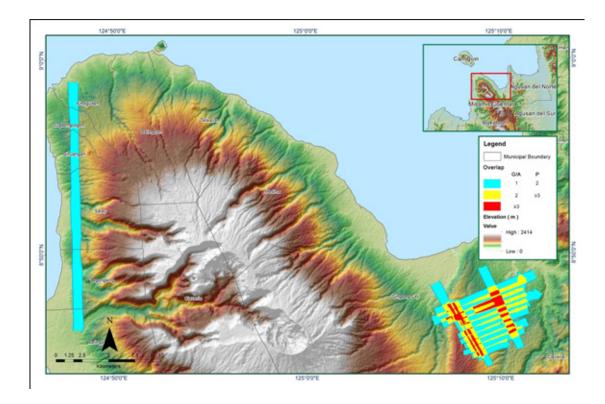


Figure A-8.12. Image of data overlap

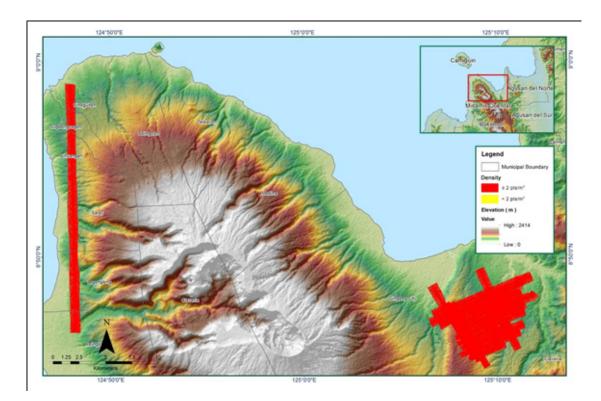


Figure A-8.13. Density map of merged LiDAR data

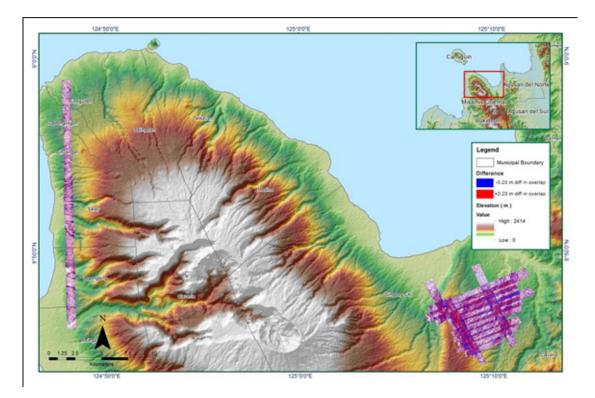


Figure A-8.14. Elevation difference between flight lines

Flight Area	Northern Mindanao
Mission Name	Blk RX_Csupplement
Inclusive Flights	1609P
Range data size	22.1 GB
Base data size	7.1 MB
POS	259 MB
Image	45.3 GB
Transfer date	July 28, 2014
	3017 20, 2011
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.2
RMSE for East Position (<4.0 cm)	2.1
RMSE for Down Position (<8.0 cm)	3.4
Boresight correction stdev (<0.001deg)	0.000218
IMU attitude correction stdev (<0.001deg)	0.000460
GPS position stdev (<0.01m)	0.0010
Minimum % overlap (>25)	30.50%
Ave point cloud density per sq.m. (>2.0)	4.28
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	148
Maximum Height	610.04 m
Minimum Height	65.41 m
Classification (# of points)	
Ground	74,863,357
Low vegetation	68,810,625
Medium vegetation	154,140,328
High vegetation	140,551,764
Building	2,051,193
Orthophoto	
Processed by	Victoria Rejuso, Engr. Melanie Hingpit, Engr. Roa Shelmar Redo

Table A-8.3. Mission Summary Report for Mission Blk RX_Csupplement

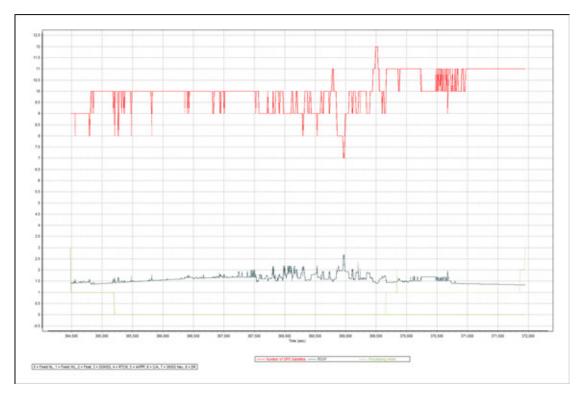


Figure A-8.15. Solution Status

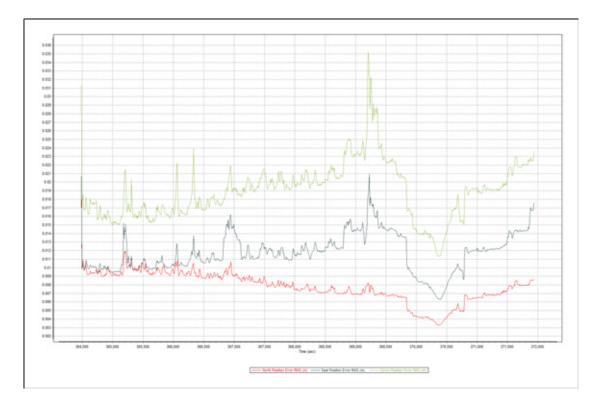


Figure A-8.16. Smoothed Performance Metric Parameters

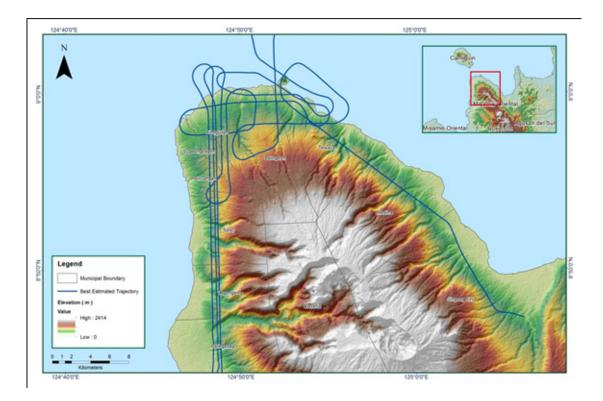


Figure A-8.17. Best Estimated Trajectory

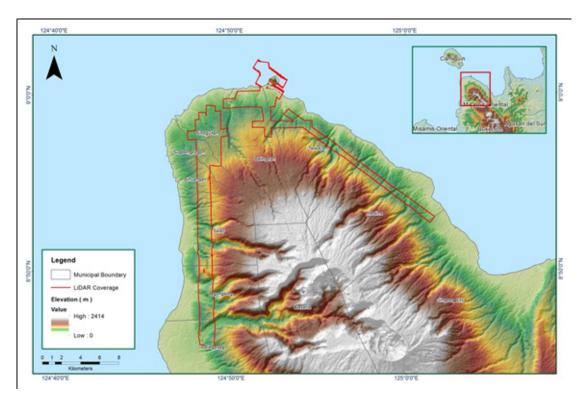


Figure A-8.18. Coverage of LiDAR data

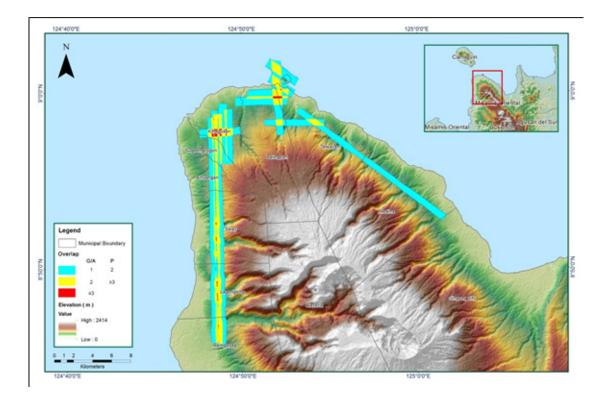


Figure A-8.19. Image of data overlap

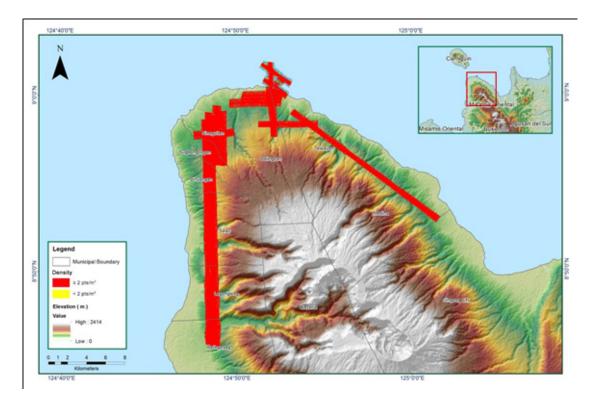


Figure A-8.20. Density map of merged LiDAR data

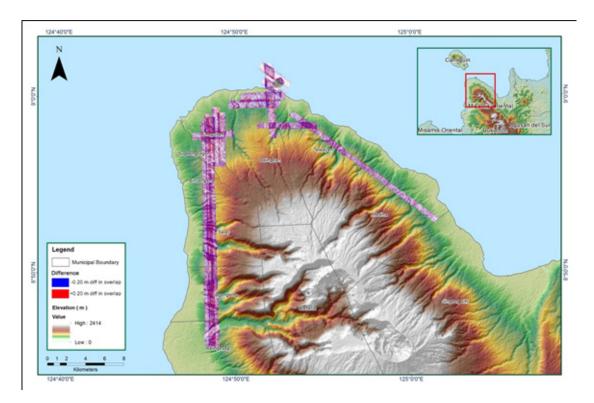


Figure A-8.21. Elevation difference between flight lines

Flight Area	Northern Mindanao
Mission Name	RX_D
Inclusive Flights	1561P
Range data size	22 GB
Base data size	8.1 MB
POS	187 MB
Image	n/a
Transfer date	June 23, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.05
RMSE for Down Position (<8.0 cm)	3.2
Boresight correction stdev (<0.001deg)	0.000179
IMU attitude correction stdev (<0.001deg)	0.001266
GPS position stdev (<0.01m)	0.0058
Minimum % overlap (>25)	33.38%
Ave point cloud density per sq.m. (>2.0)	3.85
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	297
Maximum Height	747.65 m
Minimum Height	66.39
Classification (# of points)	
Ground	242,066,972
Low vegetation	216,117,519
Medium vegetation	359,141,389
High vegetation	333,494,074
Building	15,951,611
Orthophoto	
Processed by	Engr. Jommer Medina, Engr. Kenneth Solidum, Aljon Rie Araneta, Engr. Gladys Mae Apat

Table A-8.4. Mission Summary Report for Mission RX_D

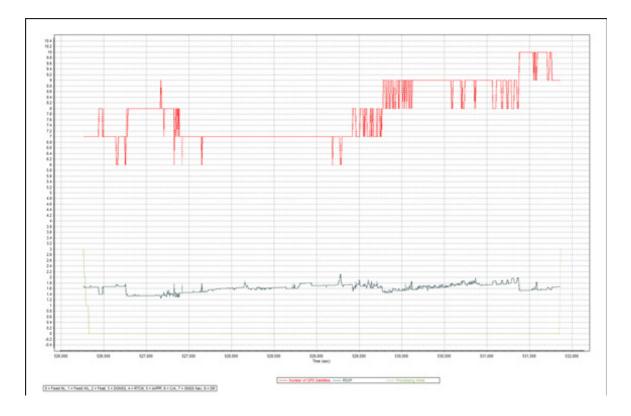


Figure A-8.22. Solution Status

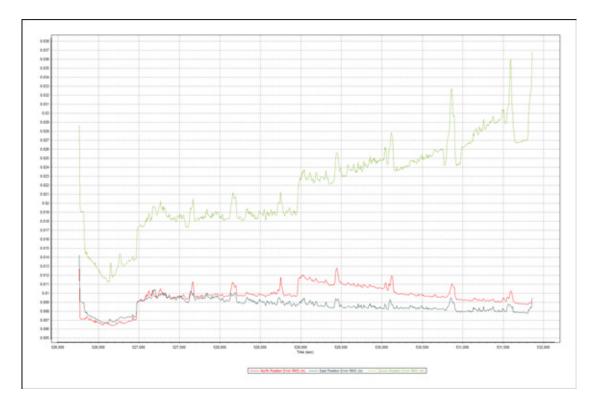


Figure A-8.23. Smoothed Performance Metric Parameters

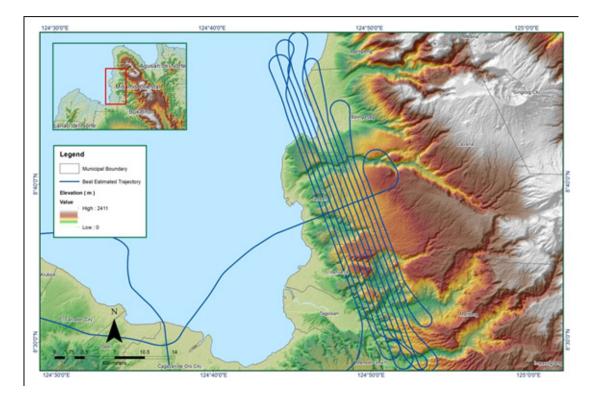


Figure A-8.24. Best Estimated Trajectory

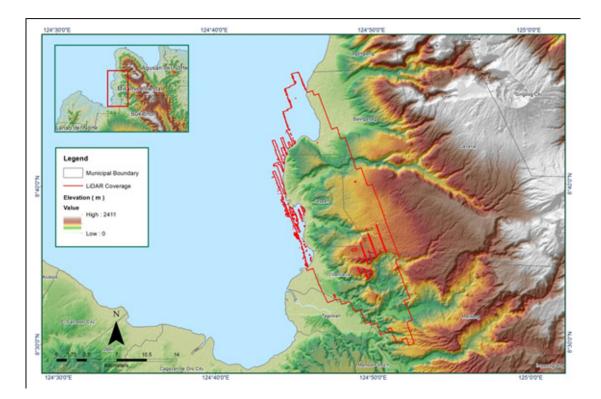


Figure A-8.25. Coverage of LiDAR data

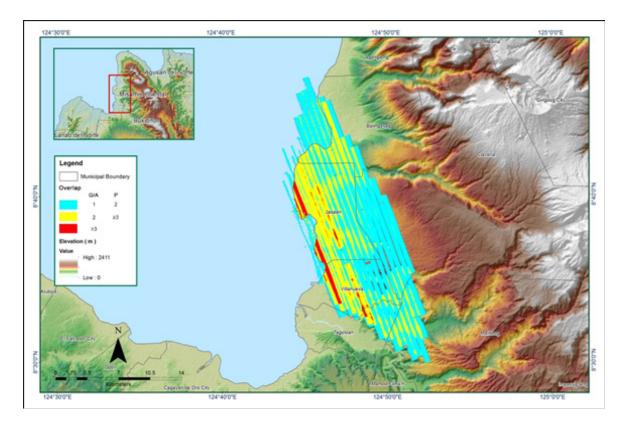


Figure A-8.26. Image of data overlap

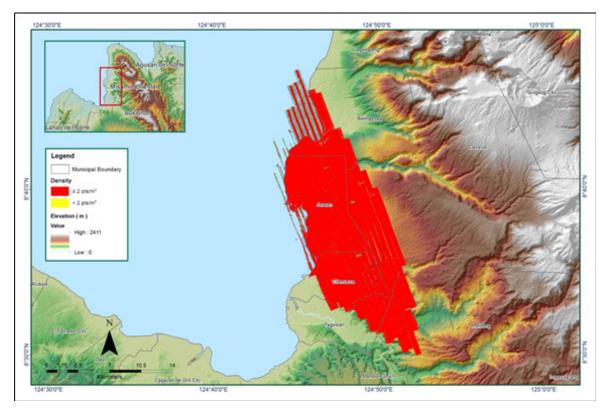


Figure A-8.27. Density map of merged LiDAR data

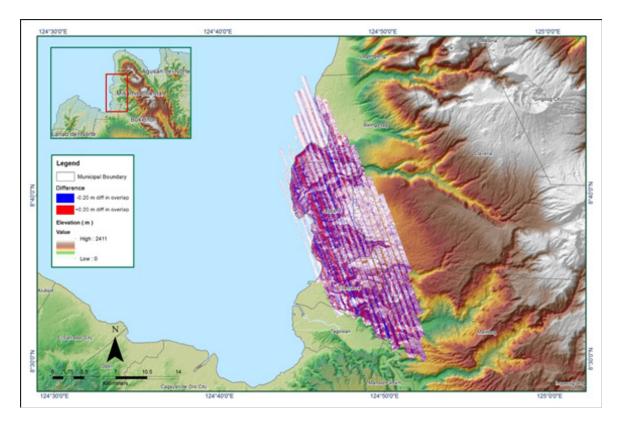


Figure A-8.28. Elevation difference between flight lines

Flight Area	Bukidnon
Mission Name	Block 64F
Inclusive Flights	23552P
Range data size	20.6 GB
Base data size	131 MB
POS	261 MB
Image	N/A
Transfer date	November 24, 2016
	November 24, 2010
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.492
RMSE for East Position (<4.0 cm)	1.474
RMSE for Down Position (<8.0 cm)	3.170
	0.270
Boresight correction stdev (<0.001deg)	0.000182
IMU attitude correction stdev (<0.001deg)	0.010301
GPS position stdev (<0.01m)	0.0027
Minimum % overlap (>25)	54.18
Ave point cloud density per sq.m. (>2.0)	5.01
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	156
Maximum Height	1396.06 m
Minimum Height	68.22 m
Classification (# of points)	
Ground	124,368,997
Low vegetation	128,062,833
Medium vegetation	343,670,586
High vegetation	634,413,336
Building	35,123,927
Orthophoto	No
Processed by	Engr. Irish Cortez, Ma. Joanne Balaga, Engr. Monalyne Rabino

Table A-8.5. Mission Summary Report for Mission Block 64F

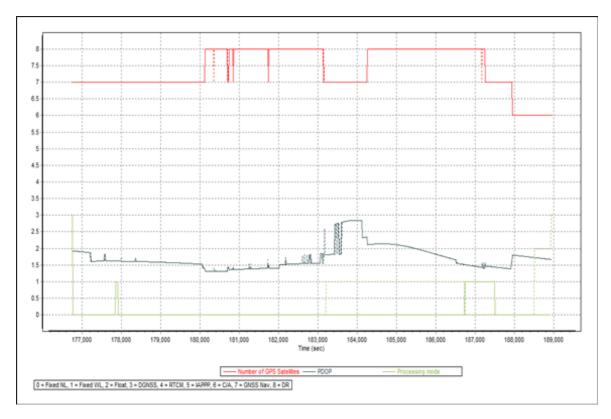


Figure A-8.29. Solution Status

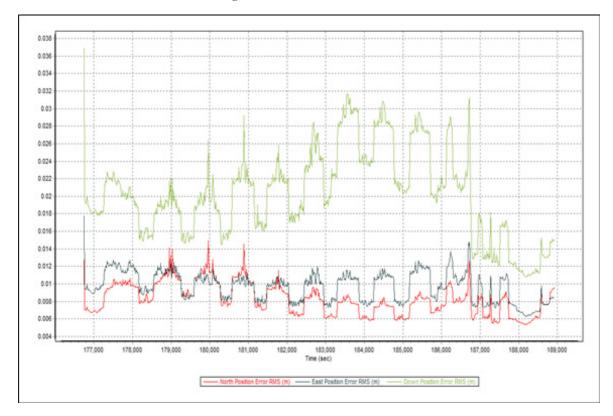


Figure A-8.30. Smoothed Performance Metric Parameters

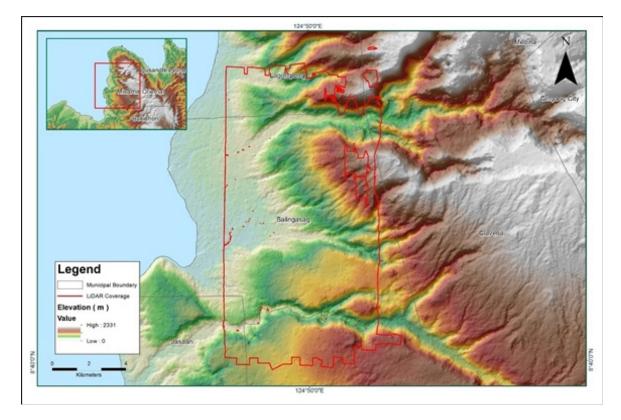


Figure A-8.31. Best Estimated Trajectory

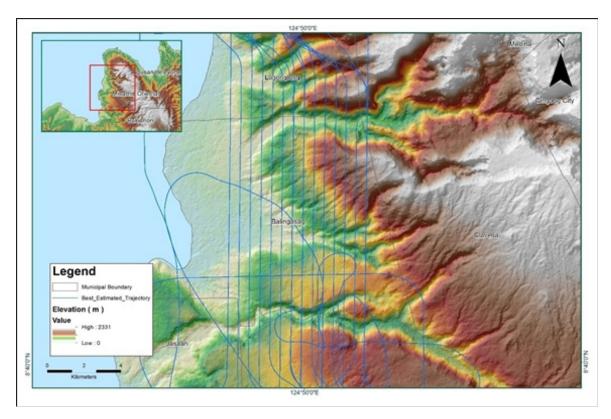


Figure A-8.32. Coverage of LiDAR data

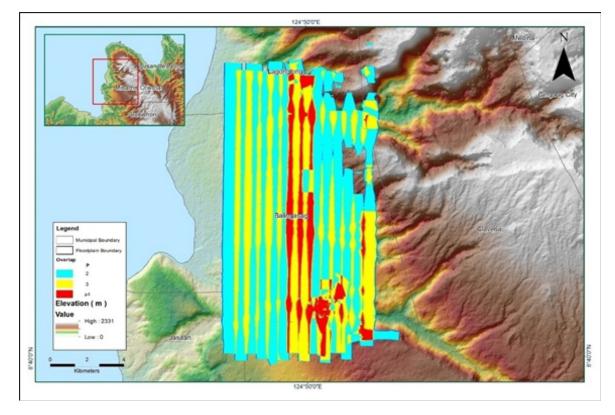


Figure A-8.33. Image of data overlap

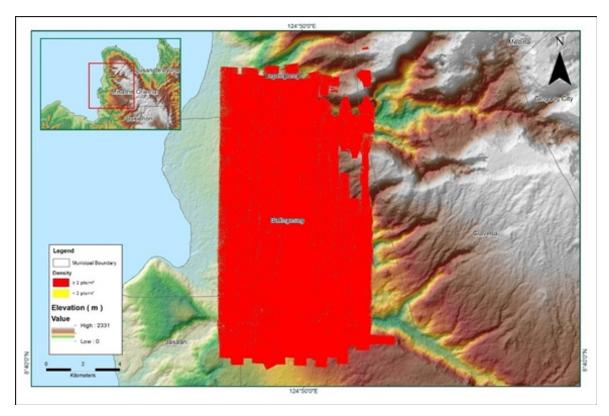


Figure A-8.34. Density map of merged LiDAR data

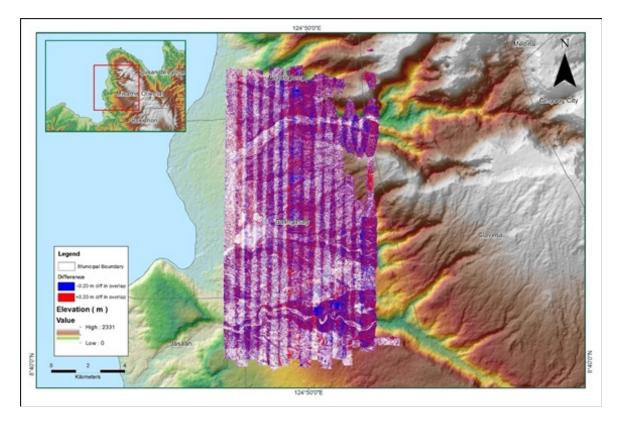


Figure A-8.35. Elevation difference between flight lines

	SCS C	SCS Curve Number Loss	r Loss	Clark Unit Hydrogr	t Hydrograph Transform		Ϋ́Υ	Recession Baseflow	flow	
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
114B	11.3175	71.63	0.0001	2	1.617	Discharge	0.08460	0.5	Ratio to Peak	0.001
113B	21.14925	70.73	0.0001	2	1.362	Discharge	0.05746	0.5	Ratio to Peak	0.001
112B	13.9125	66.7	0.0001	2.45	0.793	Discharge	0.01891	0.5	Ratio to Peak	0.001
111B	28.3215	66.5	0.0001	2.65	0.866	Discharge	0.03688	1	Ratio to Peak	0.001
110B	9.68925	66.5	0.0001	2.8	0.921	Discharge	0.05368	1	Ratio to Peak	0.001
109B	14.42175	66.5	0.0001	2	1.033	Discharge	0.02610	1	Ratio to Peak	0.001
108B	7.73325	67.67	0.005	2	1.375	Discharge	0.03965	1	Ratio to Peak	0.001
94B	12.9585	68.26	0.0001	3.1	1.018	Discharge	0.09207	1	Ratio to Peak	0.001
93B	18.7275	72.5	0.0001	1.65	0.544	Discharge	0.04857	1	Ratio to Peak	0.001
92B	9.6615	72.32	0.0001	1.75	0.569	Discharge	0.01804	1	Ratio to Peak	0.001
91B	5.505375	69.17	0.0001	2.25	0.731	Discharge	0.04685	1	Ratio to Peak	0.001
90B	5.529	68.38	0.0001	2.55	0.836	Discharge	0.03232	1	Ratio to Peak	0.001
89B	8.9205	67.22	0.0001	2.45	0.797	Discharge	0.04036	0.5	Ratio to Peak	0.001
88B	6.858375	68.75	0.0001	1.95	0.634	Discharge	0.02944	0.5	Ratio to Peak	0.001
87B	7.99725	66.5	0.0001	1.1	0.363	Discharge	0.04052	0.5	Ratio to Peak	0.001
86B	25.97925	67.23	0.0001	1.3	0.429	Discharge	0.00001	0.5	Ratio to Peak	0.001
85B	11.3175	68.51	0.0001	2.95	0.961	Discharge	0.01093	0.5	Ratio to Peak	0.001
84B	21.14925	66.68	0.0001	1.95	0.643	Discharge	0.07875	0.5	Ratio to Peak	0.001
83B	13.9125	66.5	0.0001	1.1	0.353	Discharge	0.00455	0.5	Ratio to Peak	0.001
82B	28.3215	67.24	0.0001	2.05	0.67	Discharge	0.03357	0.5	Ratio to Peak	0.001
81B	9.68925	68.75	0.0001	2	1.556	Discharge	0.04166	0.5	Ratio to Peak	0.001

0.001

Ratio to Peak

0.5

0.05057

Discharge

0.951

2.9

0.0001

69.53

14.42175

80B

Table A-9.1. Balatucan Model Basin Parameters

Annex 9. Balatucan Model Basin Parameters

	SCS C	<mark>SCS Curve Number Loss</mark>	r Loss	Clark Unit Hydrogr	it Hydrograph Transform		æ	<mark>Recession Baseflow</mark>	flow	
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
79B	7.73325	66.5	0.0001	2.5	0.815	Discharge	0.04219	0.5	Ratio to Peak	0.001
78B	12.9585	66.5	0.0001	2	1.225	Discharge	0.04027	0.5	Ratio to Peak	0.001
69B	18.7275	67.92	0.0001	2.2	0.716	Discharge	0.04523	0.5	Ratio to Peak	0.001
72B	9.6615	69.03	0.0001	2.75	0.89	Discharge	0.05176	0.5	Ratio to Peak	0.001
65B	5.505375	67.17	0.0001	4.8	1.573	Discharge	0.07012	0.5	Ratio to Peak	0.001
67B	5.529	66.5	0.0001	2.4	0.776	Discharge	0.04663	0.5	Ratio to Peak	0.001
71B	8.9205	67.17	0.0001	2.5	0.822	Discharge	0.04053	0.5	Ratio to Peak	0.001
74B	6.858375	70.25	0.0001	4.1	1.335	Discharge	0.02307	0.5	Ratio to Peak	0.001
77B	7.99725	69.78	0.0001	3.4	1.109	Discharge	0.03783	0.5	Ratio to Peak	0.001
76B	25.97925	66.81	0.0001	1.8	0.595	Discharge	0.00746	0.5	Ratio to Peak	0.001
97B	11.3175	67.35	0.0001	3.95	1.283	Discharge	0.06537	0.5	Ratio to Peak	0.001
96B	36.14925	69.2	0.0001	2.6	0.844	Discharge	0.03204	0.5	Ratio to Peak	0.001
95B	13.9125	69.54	0.0001	3.25	1.062	Discharge	0.04068	0.5	Ratio to Peak	0.001
103B	28.3215	69.08	0.0001	2.95	0.963	Discharge	0.03506	0.5	Ratio to Peak	0.001
102B	9.68925	71.12	0.0001	2.7	0.875	Discharge	0.07814	0.5	Ratio to Peak	0.001
101B	14.42175	70.11	0.0001	3.1	1.008	Discharge	0.00030	0.5	Ratio to Peak	0.001
100B	7.73325	69.55	0.0001	2.55	0.825	Discharge	0.00133	0.5	Ratio to Peak	0.001
62B	12.9585	71.34	0.0001	2.35	0.775	Discharge	0.07973	0.5	Ratio to Peak	0.001
63B	18.7275	68.38	0.0001	4.1	1.339	Discharge	0.03904	0.5	Ratio to Peak	0.001
64B	9.6615	69.12	0.0001	1.8	0.586	Discharge	0.03858	0.5	Ratio to Peak	0.001
66B	5.505375	67.86	0.0001	2.75	0.905	Discharge	0.03877	0.5	Ratio to Peak	0.001
68B	5.529	68.5	0.0001	3.65	1.191	Discharge	0.03157	0.5	Ratio to Peak	0.001
70B	8.9205	73.04	0.0001	3.3	1.08	Discharge	0.03041	0.5	Ratio to Peak	0.001
73B	6.858375	76.5	0.0001	4.65	1.523	Discharge	0.05748	0.5	Ratio to Peak	0.001
75B	7.99725	75.19	0.0001	5.6	1.821	Discharge	0.04047	0.5	Ratio to Peak	0.001

	SCS CI	SCS Curve Number Loss	r Loss	Clark Unit Hydrograph Transform	aph Transform		Ŗ	<mark>Recession Baseflow</mark>	llow	
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	<u>Recession</u> Constant	Threshold Type	Ratio to Peak
99B	25.97925	68.5	0.0001	5	1.635	Discharge	0.02166	0.5	Ratio to Peak	0.001
98B	11.3175	61.45	5.3334	12.85	4.198	Discharge	0.06285	0.5	Ratio to Peak	0.001
107B	21.14925	59.5	5.2	17.75	5.791	Discharge	0.01316	0.5	Ratio to Peak	0.001
106B	7.73325	73.62	0.0001	4.95	1.617	Discharge	0.05702	0.5	Ratio to Peak	0.001
105B	12.9585	74.93	0.0001	4.15	1.362	Discharge	0.04748	0.5	Ratio to Peak	0.001
Basin33	18.7275	74.43	0.0001	2.45	0.793	Discharge	0.04107	0.5	Ratio to Peak	0.001
115B	9.6615	79.62	0.0001	2.65	0.866	Discharge	0.05326	0.5	Ratio to Peak	0.001
116B	5.505375	83.00	0.0001	2.8	0.921	Discharge	0.02824	0.5	Ratio to Peak	0.001
117B	5.529	82.88	0.0001	3.15	1.033	Discharge	0.06753	0.5	Ratio to Peak	0.001
118B	8.9205	80.64	0.005	4.2	1.375	Discharge	0.00805	0.5	Ratio to Peak	0.001
119B	6.858375	80.70	0.0001	3.1	1.018	Discharge	0.03915	0.001	Ratio to Peak	0.001
120B	7.99725	69.05	0.0001	1.65	0.544	Discharge	0.03838	0.001	Ratio to Peak	0.001
121B	25.97925	71.47	0.0001	1.75	0.569	Discharge	0.05122	0.001	Ratio to Peak	0.001
122B	11.3175	78.00	0.0001	2.25	0.731	Discharge	0.00345	0.001	Ratio to Peak	0.001

Annex 10. Balatucan Model Reach Parameters

Table A-10.1. Balatucan Model Reach Parameters

_		Muskingum	Cunge Char	nnel Routing			
Reach Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
102R	Automatic Fixed Interval	5056.108	0.175850	0.0001	Trapezoid	50	1
96R	Automatic Fixed Interval	2993.294	0.096200	0.0001	Trapezoid	50	1
94R	Automatic Fixed Interval	2579.976	0.049210	0.0001	Trapezoid	50	1
90R	Automatic Fixed Interval	5412.552	0.161040	0.0001	Trapezoid	50	1
87R	Automatic Fixed Interval	2679.659	0.067660	0.0001	Trapezoid	50	1
82R	Automatic Fixed Interval	5961.221	0.061140	0.0001	Trapezoid	50	1
78R	Automatic Fixed Interval	16484.209	0.543750	0.0001	Trapezoid	50	1
124R	Automatic Fixed Interval	97598.477	0.204740	0.0001	Trapezoid	50	1
123R	Automatic Fixed Interval	2484.319	0.647220	0.0001	Trapezoid	50	1
122R	Automatic Fixed Interval	61385.776	0.089610	0.0001	Trapezoid	50	1
121R	Automatic Fixed Interval	84738.896	0.739650	0.0001	Trapezoid	50	1
120R	Automatic Fixed Interval	111595.413	0.417690	0.0001	Trapezoid	50	1
119R	Automatic Fixed Interval	184361.639	0.487700	0.0001	Trapezoid	50	1
117R	Automatic Fixed Interval	4095.777	0.195190	0.0001	Trapezoid	50	1
118R	Automatic Fixed Interval	26751.112	0.343670	0.0001	Trapezoid	50	1
116R	Automatic Fixed Interval	46430.647	0.586300	0.0001	Trapezoid	50	1
115R	Automatic Fixed Interval	3743.565	0.426620	0.0001	Trapezoid	50	1
114R	Automatic Fixed Interval	153954.287	0.094240	0.0001	Trapezoid	50	1
111R	Automatic Fixed Interval	29817.603	0.613100	0.0001	Trapezoid	50	1
110R	Automatic Fixed Interval	157921.157	0.717770	0.0001	Trapezoid	50	1
108R	Automatic Fixed Interval	124934.164	0.58540	0.0001	Trapezoid	50	1
103R	Automatic Fixed Interval	57625.407	0.519780	0.0001	Trapezoid	50	1
101R	Automatic Fixed Interval	82795.724	0.355180	0.0001	Trapezoid	50	1
109R	Automatic Fixed Interval	2829.032	0.178370	0.0001	Trapezoid	50	1
106R	Automatic Fixed Interval	1815.931	0.124730	0.0001	Trapezoid	50	1
113R	Automatic Fixed Interval	2925.552	0.251280	0.0001	Trapezoid	50	1
112R	Automatic Fixed Interval	3197.532	0.103690	0.0001	Trapezoid	50	1
107R	Automatic Fixed Interval	3253.833	0.138540	0.0001	Trapezoid	50	1
104R	Automatic Fixed Interval	7658.843	0.45790	0.0001	Trapezoid	50	1
99R	Automatic Fixed Interval	74151.489	0.261160	0.0001	Trapezoid	50	1
97R	Automatic Fixed Interval	59228.593	0.308380	0.0001	Trapezoid	50	1
95R	Automatic Fixed Interval	144052.115	0.187620	0.0001	Trapezoid	50	1
91R	Automatic Fixed Interval	59359.740	0.795590	0.0001	Trapezoid	50	1
88R	Automatic Fixed Interval	149896.719	0.560890	0.0001	Trapezoid	50	1
84R	Automatic Fixed Interval	3094.279	0.615930	0.0001	Trapezoid	50	1
85R	Automatic Fixed Interval	8433.077	0.578450	0.0001	Trapezoid	50	1
83R	Automatic Fixed Interval	104279.032	0.552610	0.0001	Trapezoid	50	1
105R	Automatic Fixed Interval	5301.244	0.180540	0.0001	Trapezoid	50	1
100R	Automatic Fixed Interval	1557.180	0.184400	0.0001	Trapezoid	50	1

Deed		Muskingum	Cunge Char	nel Routing			
Reach Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
98R	Automatic Fixed Interval	5191.555	0.112560	0.0001	Trapezoid	50	1
93R	Automatic Fixed Interval	1083.716	0.124310	0.0001	Trapezoid	50	1
92R	Automatic Fixed Interval	2650.183	0.043570	0.0001	Trapezoid	50	1
89R	Automatic Fixed Interval	3910.587	0.056370	0.0001	Trapezoid	50	1
86R	Automatic Fixed Interval	3380.423	0.057840	0.0001	Trapezoid	50	1
81R	Automatic Fixed Interval	5051.009	0.183170	0.0001	Trapezoid	50	1
79R	Automatic Fixed Interval	23030.659	0.337110	0.0001	Trapezoid	50	1
77R	Automatic Fixed Interval	18655.959	0.215860	0.0001	Trapezoid	50	1
75R	Automatic Fixed Interval	8858.806	0.029590	0.0001	Trapezoid	50	1
74R	Automatic Fixed Interval	8354.767	0.026410	0.0001	Trapezoid	50	1
73R	Automatic Fixed Interval	3303.752	0.010240	0.0001	Trapezoid	50	1
72R	Automatic Fixed Interval	16480.015	0.018030	0.0001	Trapezoid	50	1
71R	Automatic Fixed Interval	2741.833	0.013200	0.0001	Trapezoid	50	1
70R	Automatic Fixed Interval	28189.033	0.027480	0.0001	Trapezoid	50	1
69R	Automatic Fixed Interval	17443.299	0.659200	0.0001	Trapezoid	50	1
68R	Automatic Fixed Interval	2810.834	0.58010	0.0001	Trapezoid	50	1
67R	Automatic Fixed Interval	22167.620	0.014360	0.0001	Trapezoid	50	1
66R	Automatic Fixed Interval	38702.371	0.288170	0.0001	Trapezoid	50	1
65R	Automatic Fixed Interval	41028.775	0.384550	0.0001	Trapezoid	50	1

Annex 11. Balatucan Field Validation

Point	Validation	Coordinates	Model	Validation			Rain Return
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Scenario
1	8.70447800000	124.78178400000	0.36	0.00	-0.36	Seniang/29Dec2014	5YR
2	8.70448400000	124.78178500000	0.36	2.00	1.64	Seniang/29Dec2014	5YR
3	8.70479752800	124.78203100000	0.77	0.70	-0.07	Seniang/29Dec2014	5YR
4	8.70636800000	124.78375800000	0.72	0.80	0.08	Seniang/29Dec2014	5YR
5	8.70752200000	124.78360800000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
6	8.70771000000	124.78367100000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
7	8.70858076800	124.78360710000	0.12	0.50	0.38	Seniang/29Dec2014	5YR
8	8.70988241400	124.78617430000	0.08	0.80	0.72	Seniang/29Dec2014	5YR
9	8.71200100000	124.78569900000	0.20	0.30	0.10	Seniang/29Dec2014	5YR
10	8.71202700100	124.78569800000	0.20	0.50	0.30	Seniang/29Dec2014	5YR
11	8.71255300000	124.78613300000	0.32	0.50	0.18	Seniang/29Dec2014	5YR
12	8.71293600000	124.78613500000	0.34	0.60	0.26	Seniang/29Dec2014	5YR
13	8.71601900000	124.78480000000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
14	8.71603200000	124.78479300000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
15	8.71615900100	124.77931800000	0.05	0.70	0.65	Seniang/29Dec2014	5YR
16	8.71666400100	124.78031400000	0.12	2.00	1.88	Seniang/29Dec2014	5YR
17	8.71668899900	124.78026900000	0.12	0.30	0.18	Seniang/29Dec2014	5YR
18	8.71673299900	124.78019200000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
19	8.71791200000	124.78055200000	0.08	0.60	0.52	Seniang/29Dec2014	5YR
20	8.71889600000	124.78054800000	0.09	0.70	0.61	Seniang/29Dec2014	5YR
21	8.72323700000	124.79423300000	0.39	1.00	0.61	Seniang/29Dec2014	5YR
22	8.72341600100	124.79637500000	0.08	1.00	0.92	Seniang/29Dec2014	5YR
23	8.72344600000	124.79702700000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
24	8.72344800000	124.79115800000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
25	8.72347499900	124.79852800000	0.08	0.80	0.72	Seniang/29Dec2014	5YR
26	8.72348100000	124.79858800000	0.08	0.70	0.62	Seniang/29Dec2014	5YR
27	8.72354700000	124.79869000000	0.08	0.80	0.72	Seniang/29Dec2014	5YR
28	8.72363900000	124.79115500000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
29	8.72365500000	124.79113400000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
30	8.72376300000	124.78881900000	0.08	0.30	0.22	Seniang/29Dec2014	5YR
31	8.72468899900	124.79878700000	0.51	0.80	0.29	Seniang/29Dec2014	5YR
32	8.72600400000	124.79145200000	0.37	0.60	0.23	Seniang/29Dec2014	5YR
33	8.72603100000	124.79146700000	0.37	0.60	0.23	Seniang/29Dec2014	5YR
34	8.73177200000	124.78982200000	0.08	0.40	0.32	Seniang/29Dec2014	5YR
35	8.73237099900	124.78848700000	0.36	0.50	0.14	Seniang/29Dec2014	5YR
36	8.73352400000	124.77913600000	0.56	0.50	-0.06	Seniang/29Dec2014	5YR
37	8.73392100000	124.77808400000	0.08	0.20	0.12	Seniang/29Dec2014	5YR
38	8.73489493600	124.79319960000	0.17	0.40	0.23	Seniang/29Dec2014	5YR
39	8.73517542000	124.79290780000	0.05	0.00	-0.05	Seniang/29Dec2014	5YR
40	8.73614900100	124.77716800000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
41	8.73654599900	124.79399300000	0.07	0.60	0.53	Seniang/29Dec2014	5YR
42	8.73673648100	124.77783920000	0.47	0.60	0.13	Seniang/29Dec2014	5YR
43	8.73904900000	124.79426800000	0.09	0.40	0.31	Seniang/29Dec2014	5YR

Table A-11.1. Balatucan Field Validation

Point	Validation	Coordinates	Model	Validation			Rain Return
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Scenario
45	8.73950300100	124.79265400000	0.07	0.70	0.63	Seniang/29Dec2014	5YR
46	8.74079299900	124.79230900000	0.07	0.80	0.73	Seniang/29Dec2014	5YR
47	8.74100500000	124.77511700000	0.15	0.00	-0.15	Seniang/29Dec2014	5YR
48	8.74444000000	124.77322500000	0.32	0.50	0.18	Seniang/29Dec2014	5YR
49	8.74546600100	124.77475200000	0.07	0.50	0.43	Seniang/29Dec2014	5YR
50	8.74548500100	124.77476100000	0.07	0.60	0.53	Seniang/29Dec2014	5YR
51	8.74603500000	124.78060800000	0.07	0.00	-0.07	Seniang/29Dec2014	5YR
52	8.74746800000	124.77169300000	0.08	0.20	0.12	Seniang/29Dec2014	5YR
53	8.74800500100	124.77739900000	0.58	0.60	0.02	Seniang/29Dec2014	5YR
54	8.74802800000	124.77746200000	0.89	0.40	-0.49	Seniang/29Dec2014	5YR
55	8.74804200000	124.77750800000	0.89	0.40	-0.49	Seniang/29Dec2014	5YR
56	8.74806000000	124.77746500000	0.89	0.30	-0.59	Seniang/29Dec2014	5YR
57	8.74812499900	124.77735000000	0.09	0.50	0.41	Seniang/29Dec2014	5YR
58	8.74837900000	124.77760800000	0.70	0.60	-0.10	Seniang/29Dec2014	5YR
59	8.74863900000	124.78126000000	0.36	0.00	-0.36	Seniang/29Dec2014	5YR
60	8.74949700000	124.76993800000	0.06	0.60	0.54	Seniang/29Dec2014	5YR
61	8.74949800000	124.76999600000	0.06	0.60	0.54	Seniang/29Dec2014	5YR
62	8.74965400000	124.76984700000	0.06	0.50	0.44	Seniang/29Dec2014	5YR
63	8.74975400000	124.80323500000	0.27	0.40	0.13	Seniang/29Dec2014	5YR
64	8.75003000000	124.80168200000	0.07	2.50	2.43	Seniang/29Dec2014	5YR
65	8.75024000000	124.79625600000	1.58	1.00	-0.58	Seniang/29Dec2014	5YR
66	8.75027299900	124.79857600000	0.08	0.50	0.42	Seniang/29Dec2014	5YR
67	8.75031000000	124.77883100000	0.68	0.50	-0.18	Seniang/29Dec2014	5YR
68	8.75033300000	124.76934900000	0.47	0.50	0.03	Seniang/29Dec2014	5YR
69	8.75033600000	124.78118300000	2.16	0.50	-1.66	Seniang/29Dec2014	5YR
70	8.75040600000	124.79010200000	0.06	1.50	1.44	Seniang/29Dec2014	5YR
71	8.75045500000	124.78099400000	0.08	0.70	0.62	Seniang/29Dec2014	5YR
72	8.75058100000	124.78185600000	1.84	0.40	-1.44	Seniang/29Dec2014	5YR
73	8.75061100000	124.76918000000	0.08	0.60	0.52	Seniang/29Dec2014	5YR
74	8.75092500000	124.78249100000	0.76	0.80	0.04	Seniang/29Dec2014	5YR
75	8.75127600000	124.79855100000	0.15	0.80	0.65	Seniang/29Dec2014	5YR
76	8.75160900100	124.76948700000	0.39	0.60	0.21	Seniang/29Dec2014	5YR
77	8.75215700000	124.79522400000	0.05	0.00	-0.05	Seniang/29Dec2014	5YR
78	8.75265400000	124.78160700000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
79	8.75272200000	124.78117800000	0.39	0.00	-0.39	Seniang/29Dec2014	5YR
80	8.75320100000	124.78069000000	0.36	0.20	-0.16	Seniang/29Dec2014	5YR
81	8.75391900000	124.80469900000	0.59	2.50	1.91	Seniang/29Dec2014	5YR
82	8.75393300000	124.80438700000	0.36	0.80	0.44	Seniang/29Dec2014	5YR
83	8.75421500000	124.77971100000	0.17	0.40	0.23	Seniang/29Dec2014	5YR
84	8.75516000000	124.77690800000	0.08	0.60	0.52	Seniang/29Dec2014	5YR
85	8.75519800000	124.77686300000	0.08	0.70	0.62	Seniang/29Dec2014	5YR
86	8.75535400000	124.78059800000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
87	8.75582500000	124.78136000000	0.11	0.50	0.39	Seniang/29Dec2014	5YR
88	8.75625800000	124.77962100000	0.69	0.40	-0.29	Seniang/29Dec2014	5YR
89	8.75663700000	124.77893400000	0.27	0.40	0.13	Seniang/29Dec2014	5YR
90	8.75664600000	124.77891100000	0.27	0.60	0.33	Seniang/29Dec2014	5YR
91	8.75669200000	124.77894600000	0.27	0.40	0.13	Seniang/29Dec2014	5YR

Point	Validation	Coordinates	Model	Validation			Rain Return
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Scenario
92	8.75732700000	124.79893700000	0.08	0.60	0.52	Seniang/29Dec2014	5YR
93	8.75814000000	124.76604600000	0.08	0.40	0.32	Seniang/29Dec2014	5YR
94	8.75817099900	124.76602600000	0.08	0.60	0.52	Seniang/29Dec2014	5YR
95	8.76069200000	124.78031500000	0.07	0.50	0.43	Seniang/29Dec2014	5YR
96	8.76263700000	124.78527400000	0.09	0.80	0.71	Seniang/29Dec2014	5YR
97	8.76314300000	124.78140600000	0.07	0.80	0.73	Seniang/29Dec2014	5YR
98	8.76337167100	124.78137780000	0.07	0.40	0.33	Seniang/29Dec2014	5YR
99	8.76354000000	124.76489500000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
100	8.76361200000	124.76798700000	0.12	0.00	-0.12	Seniang/29Dec2014	5YR
101	8.76365400000	124.76798900000	0.12	0.60	0.48	Seniang/29Dec2014	5YR
102	8.76381000000	124.78998500000	0.08	0.70	0.62	Seniang/29Dec2014	5YR
103	8.76620660400	124.77968620000	0.34	0.40	0.06	Seniang/29Dec2014	5YR
104	8.76636700000	124.77941900000	0.12	0.60	0.48	Seniang/29Dec2014	5YR
105	8.76640300000	124.78348700000	0.08	2.00	1.92	Seniang/29Dec2014	5YR
106	8.76644900000	124.77926600000	0.29	0.80	0.51	Seniang/29Dec2014	5YR
107	8.76676800000	124.78196400000	0.08	2.00	1.92	Seniang/29Dec2014	5YR
108	8.76684799900	124.77509500000	0.53	0.30	-0.23	Seniang/29Dec2014	5YR
109	8.76691700000	124.78272000000	0.08	0.70	0.62	Seniang/29Dec2014	5YR
110	8.76692600000	124.77511600000	0.53	0.60	0.07	Seniang/29Dec2014	5YR
111	8.76719200000	124.77736000000	0.58	0.60	0.02	Seniang/29Dec2014	5YR
112	8.76726400000	124.77735000000	0.31	0.50	0.19	Seniang/29Dec2014	5YR
113	8.76805500100	124.78183500000	0.05	0.60	0.55	Seniang/29Dec2014	5YR
114	8.76876400000	124.78217800000	0.05	0.60	0.55	Seniang/29Dec2014	5YR
115	8.76948800000	124.80195900000	0.08	0.50	0.42	Seniang/29Dec2014	5YR
116	8.77244900000	124.79773700000	0.08	0.20	0.12	Seniang/29Dec2014	5YR
117	8.77258500000	124.79755200000	0.07	0.40	0.33	Seniang/29Dec2014	5YR
118	8.77293400000	124.79474000000	0.07	0.40	0.33	Seniang/29Dec2014	5YR
119	8.77351400000	124.79242500000	0.05	0.60	0.55	Seniang/29Dec2014	5YR
120	8.77374100000	124.77444300000	0.12	0.00	-0.12	Seniang/29Dec2014	5YR
121	8.77375800000	124.77784000000	0.39	0.00	-0.39	Seniang/29Dec2014	5YR
122	8.77375800000	124.77784000000	0.39	0.00	-0.39	Seniang/29Dec2014	5YR
123	8.77375800000	124.77784000000	0.39	0.00	-0.39	Seniang/29Dec2014	5YR
124	8.77375800000	124.77784000000	0.39	0.00	-0.39	Seniang/29Dec2014	5YR
125	8.77404200000	124.79136200000	0.07	0.40	0.33	Seniang/29Dec2014	5YR
126	8.77479400000	124.78404400000	0.69	1.00	0.31	Seniang/29Dec2014	5YR
127	8.77518400000	124.78429300000	0.08	0.40	0.32	Seniang/29Dec2014	5YR
128	8.77558700000	124.78435400000	0.30	0.80	0.50	Seniang/29Dec2014	5YR
129	8.77581899900	124.79800600000	0.36	0.70	0.34	Seniang/29Dec2014	5YR
130	8.77792800000	124.77775800000	0.08	0.20	0.12	Seniang/29Dec2014	5YR
131	8.78008600000	124.76986000000	0.36	0.40	0.04	Seniang/29Dec2014	5YR
132	8.78176700000	124.78593300000	0.70	0.50	-0.20	Seniang/29Dec2014	5YR
133	8.78232800000	124.78582400000	0.38	0.40	0.02	Seniang/29Dec2014	5YR
134	8.78235099900	124.78578100000	0.38	0.70	0.32	Seniang/29Dec2014	5YR
135	8.78256700000	124.77138000000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
136	8.78264400000	124.77057700000	0.06	0.70	0.64	Seniang/29Dec2014	5YR
137	8.78268699900	124.77103300000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
138	8.78320500000	124.77320900000	0.76	0.00	-0.76	Seniang/29Dec2014	5YR

Point	Validation	Coordinates	Model	Validation	_		Rain Return
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Scenario
139	8.78462600100	124.78699500000	0.91	1.00	0.09	Seniang/29Dec2014	5YR
140	8.78534300000	124.78662800000	0.08	0.50	0.42	Seniang/29Dec2014	5YR
141	8.78600700000	124.79688300000	1.09	0.70	-0.39	Seniang/29Dec2014	5YR
142	8.78778500000	124.78666100000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
143	8.78796800000	124.79509600000	0.74	0.60	-0.14	Seniang/29Dec2014	5YR
144	8.78927699900	124.78730700000	0.53	0.70	0.17	Seniang/29Dec2014	5YR
145	8.78929300000	124.78699600000	0.08	0.70	0.62	Seniang/29Dec2014	5YR
146	8.75165900000	124.79660000000	0.08	1.10	1.02	Seniang/29Dec2014	5YR
147	8.75575900000	124.79640000000	0.07	0.00	-0.07	Seniang/29Dec2014	5YR
148	8.75324900000	124.79310000000	0.32	0.00	-0.32	Seniang/29Dec2014	5YR
149	8.71177900000	124.77330000000	0.69	1.60	0.91	Seniang/29Dec2014	5YR
150	8.71174400000	124.77310000000	0.84	1.40	0.56	Seniang/29Dec2014	5YR
151	8.71397600000	124.7780000000	0.08	0.30	0.22	Seniang/29Dec2014	5YR
152	8.70654400000	124.78390000000	0.79	0.60	-0.19	Seniang/29Dec2014	5YR
153	8.70585500000	124.7851000000	0.96	0.30	-0.66	Seniang/29Dec2014	5YR
154	8.70596400000	124.78540000000	0.74	0.20	-0.54	Seniang/29Dec2014	5YR
155	8.71768200000	124.78400000000	0.17	1.10	0.93	Seniang/29Dec2014	5YR
156	8.72093700000	124.78560000000	0.08	0.40	0.32	Seniang/29Dec2014	5YR
157	8.72288900000	124.80150000000	0.31	0.00	-0.31	Seniang/29Dec2014	5YR
158	8.71868100000	124.79240000000	0.69	1.30	0.61	Seniang/29Dec2014	5YR
159	8.71848900000	124.79260000000	0.99	0.60	-0.39	Seniang/29Dec2014	5YR
160	8.72395300000	124.79210000000	0.47	0.00	-0.47	Seniang/29Dec2014	5YR
161	8.72365900000	124.79110000000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
162	8.72400800000	124.79040000000	1.98	0.00	-1.98	Seniang/29Dec2014	5YR
163	8.72442500000	124.79010000000	1.85	0.00	-1.85	Seniang/29Dec2014	5YR
164	8.72660400000	124.78890000000	0.08	0.90	0.82	Seniang/29Dec2014	5YR
165	8.72984300000	124.79380000000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
166	8.73057400000	124.79390000000	0.08	0.90	0.82	Seniang/29Dec2014	5YR
167	8.72830500000	124.79430000000	0.08	0.40	0.32	Seniang/29Dec2014	5YR
168	8.72621900000	124.79500000000	0.50	0.20	-0.30	Seniang/29Dec2014	5YR
169	8.72543600000	124.79400000000	0.08	0.30	0.22	Seniang/29Dec2014	5YR
170	8.73434700000	124.8070000000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
171	8.74349300000	124.80290000000	0.20	0.10	-0.10	Seniang/29Dec2014	5YR
172	8.74212500000	124.80350000000	0.18	0.00	-0.18	Seniang/29Dec2014	5YR
173	8.74219800000	124.80480000000	0.05	0.10	0.05	Seniang/29Dec2014	5YR
174	8.73345100000	124.79720000000	0.08	0.90	0.82	Seniang/29Dec2014	5YR
175	8.73298600000	124.80150000000	0.08	0.40	0.32	Seniang/29Dec2014	5YR
176	8.73580400000	124.78460000000	1.69	0.80	-0.89	Seniang/29Dec2014	5YR
177	8.73653100000	124.78500000000	1.84	0.90	-0.94	Seniang/29Dec2014	5YR
178	8.74289800000	124.78230000000	1.21	1.40	0.19	Seniang/29Dec2014	5YR
179	8.74320200000	124.78220000000	0.74	1.20	0.46	Seniang/29Dec2014	5YR
180	8.75125300000	124.7810000000	0.69	0.00	-0.69	Seniang/29Dec2014	5YR
181	8.74941600000	124.78120000000	1.50	0.40	-1.10	Seniang/29Dec2014	5YR
182	8.75219800000	124.7803000000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
183	8.71198900000	124.77320000000	0.08	0.90	0.82	Seniang/29Dec2014	5YR
184	8.71393500000	124.77800000000	0.08	1.50	1.42	Seniang/29Dec2014	5YR
185	8.72695200000	124.78830000000	0.08	0.50	0.42	Seniang/29Dec2014	5YR

Point	Validation	Coordinates	Model	Validation			Rain Return
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Scenario
186	8.73118600000	124.78190000000	0.21	0.50	0.29	Seniang/29Dec2014	5YR
187	8.72953000000	124.77900000000	0.56	1.40	0.84	Seniang/29Dec2014	5YR
188	8.73501600000	124.77770000000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
189	8.73947200000	124.77510000000	0.66	1.20	0.54	Seniang/29Dec2014	5YR
190	8.75058900000	124.76930000000	0.75	1.50	0.75	Seniang/29Dec2014	5YR
191	8.74710300000	124.77240000000	0.55	1.20	0.65	Seniang/29Dec2014	5YR
192	8.74525600000	124.77290000000	0.08	0.10	0.02	Seniang/29Dec2014	5YR
193	8.74512500000	124.77330000000	0.65	0.10	-0.55	Seniang/29Dec2014	5YR
194	8.74539900000	124.77400000000	0.56	0.50	-0.06	Seniang/29Dec2014	5YR
195	8.74832500000	124.77680000000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
196	8.74771600000	124.77710000000	0.21	1.20	0.99	Seniang/29Dec2014	5YR
197	8.74779000000	124.77750000000	1.48	1.20	-0.28	Seniang/29Dec2014	5YR
198	8.74879600000	124.77830000000	0.34	0.00	-0.34	Seniang/29Dec2014	5YR
199	8.77982900000	124.76980000000	0.44	1.20	0.76	Seniang/29Dec2014	5YR
200	8.76756500000	124.76850000000	0.08	0.10	0.02	Seniang/29Dec2014	5YR
201	8.76189800000	124.76780000000	1.83	2.00	0.17	Seniang/29Dec2014	5YR
202	8.76351700000	124.77070000000	2.06	2.00	-0.06	Seniang/29Dec2014	5YR
203	8.76275500000	124.77220000000	2.11	2.00	-0.11	Seniang/29Dec2014	5YR
204	8.76608100000	124.78290000000	0.66	1.20	0.54	Seniang/29Dec2014	5YR
205	8.76467600000	124.78290000000	0.58	1.20	0.62	Seniang/29Dec2014	5YR
206	8.76489800000	124.78320000000	0.97	0.10	-0.87	Seniang/29Dec2014	5YR
207	8.78563500000	124.78670000000	1.00	0.10	-0.90	Seniang/29Dec2014	5YR
208	8.78598900000	124.79660000000	0.74	0.30	-0.44	Seniang/29Dec2014	5YR
209	8.78710700000	124.79620000000	0.12	0.50	0.38	Seniang/29Dec2014	5YR
210	8.78851100000	124.79510000000	1.04	0.50	-0.54	Seniang/29Dec2014	5YR
211	8.77520300000	124.78430000000	0.08	0.00	-0.08	Seniang/29Dec2014	5YR
212	8.77583100000	124.7980000000	0.36	0.50	0.14	Seniang/29Dec2014	5YR
213	8.75254500000	124.78090000000	0.52	0.00	-0.52	Seniang/29Dec2014	5YR
214	8.75262000000	124.78090000000	0.52	0.00	-0.52	Seniang/29Dec2014	5YR
215	8.75068300000	124.78220000000	1.58	0.50	-1.08	Seniang/29Dec2014	5YR
216	8.75068600000	124.78260000000	1.39	0.50	-0.89	Seniang/29Dec2014	5YR
217	8.75031600000	124.78210000000	1.77	0.00	-1.77	Seniang/29Dec2014	5YR
218	8.75037800000	124.78160000000	2.06	0.00	-2.06	Seniang/29Dec2014	5YR
219	8.75068200000	124.78150000000	2.12	0.00	-2.12	Seniang/29Dec2014	5YR
220	8.75076800000	124.78110000000	1.21	0.00	-1.21	Seniang/29Dec2014	5YR
221	8.74992900000	124.78110000000	0.08	0.90	0.82	Seniang/29Dec2014	5YR

Annex 12. Educational Institutions affected by flooding in Balatucan Flood Plain

Mi	samis Oriental Balingasag			
Building Name	Barangay	R	ainfall Scena	rio
	Darangay	5-year	25-year	100-year
St. Peter's College	Barangay 2			
Day Care Center	Barangay 3			Low
St. Rita's College	Barangay 3			Low
Central School	Barangay 4			
St. Peter's College	Barangay 5			
St. Rita's College	Barangay 6			
Elementary School	Cogon			Low
Mis Oriental Institute of Science and Tech-nology	Cogon			
Mambayaan Elementary School	Mambayaan		Low	Low
School	Mambayaan			
Mandangoa Elementary School	Mandangoa	Low	Low	Low
Napaliran Elementary School	Napaliran			

Table A-12.1. Educational Institutions Affected in Balingasag

Annex 13. Medical Institutions affected by flooding in Balatucan Flood Plain

	is Oriental ingasag			
Building Name	Barangay	R 5-year	ainfall Scenar 25-year	io 100-year
Health Center	Barangay 3			
Provincial Hospital	Barangay 3			
Provincial Hospital	Barangay 6			

Table A-13.1. Health Institutions Affected in Balingasag